Btrfs: fail to mount if we have problems reading the block groups
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
6e1d5dcc
AD
58static const struct inode_operations btrfs_dir_inode_operations;
59static const struct inode_operations btrfs_symlink_inode_operations;
60static const struct inode_operations btrfs_dir_ro_inode_operations;
61static const struct inode_operations btrfs_special_inode_operations;
62static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
63static const struct address_space_operations btrfs_aops;
64static const struct address_space_operations btrfs_symlink_aops;
828c0950 65static const struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
f34f57a3
YZ
91static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
92 struct inode *inode, struct inode *dir)
0279b4cd
JO
93{
94 int err;
95
f34f57a3 96 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 97 if (!err)
f34f57a3 98 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
99 return err;
100}
101
c8b97818
CM
102/*
103 * this does all the hard work for inserting an inline extent into
104 * the btree. The caller should have done a btrfs_drop_extents so that
105 * no overlapping inline items exist in the btree
106 */
d397712b 107static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
108 struct btrfs_root *root, struct inode *inode,
109 u64 start, size_t size, size_t compressed_size,
110 struct page **compressed_pages)
111{
112 struct btrfs_key key;
113 struct btrfs_path *path;
114 struct extent_buffer *leaf;
115 struct page *page = NULL;
116 char *kaddr;
117 unsigned long ptr;
118 struct btrfs_file_extent_item *ei;
119 int err = 0;
120 int ret;
121 size_t cur_size = size;
122 size_t datasize;
123 unsigned long offset;
124 int use_compress = 0;
125
126 if (compressed_size && compressed_pages) {
127 use_compress = 1;
128 cur_size = compressed_size;
129 }
130
d397712b
CM
131 path = btrfs_alloc_path();
132 if (!path)
c8b97818
CM
133 return -ENOMEM;
134
b9473439 135 path->leave_spinning = 1;
c8b97818
CM
136 btrfs_set_trans_block_group(trans, inode);
137
138 key.objectid = inode->i_ino;
139 key.offset = start;
140 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
141 datasize = btrfs_file_extent_calc_inline_size(cur_size);
142
143 inode_add_bytes(inode, size);
144 ret = btrfs_insert_empty_item(trans, root, path, &key,
145 datasize);
146 BUG_ON(ret);
147 if (ret) {
148 err = ret;
c8b97818
CM
149 goto fail;
150 }
151 leaf = path->nodes[0];
152 ei = btrfs_item_ptr(leaf, path->slots[0],
153 struct btrfs_file_extent_item);
154 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
155 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
156 btrfs_set_file_extent_encryption(leaf, ei, 0);
157 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
158 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
159 ptr = btrfs_file_extent_inline_start(ei);
160
161 if (use_compress) {
162 struct page *cpage;
163 int i = 0;
d397712b 164 while (compressed_size > 0) {
c8b97818 165 cpage = compressed_pages[i];
5b050f04 166 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
167 PAGE_CACHE_SIZE);
168
b9473439 169 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 170 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 171 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
172
173 i++;
174 ptr += cur_size;
175 compressed_size -= cur_size;
176 }
177 btrfs_set_file_extent_compression(leaf, ei,
178 BTRFS_COMPRESS_ZLIB);
179 } else {
180 page = find_get_page(inode->i_mapping,
181 start >> PAGE_CACHE_SHIFT);
182 btrfs_set_file_extent_compression(leaf, ei, 0);
183 kaddr = kmap_atomic(page, KM_USER0);
184 offset = start & (PAGE_CACHE_SIZE - 1);
185 write_extent_buffer(leaf, kaddr + offset, ptr, size);
186 kunmap_atomic(kaddr, KM_USER0);
187 page_cache_release(page);
188 }
189 btrfs_mark_buffer_dirty(leaf);
190 btrfs_free_path(path);
191
c2167754
YZ
192 /*
193 * we're an inline extent, so nobody can
194 * extend the file past i_size without locking
195 * a page we already have locked.
196 *
197 * We must do any isize and inode updates
198 * before we unlock the pages. Otherwise we
199 * could end up racing with unlink.
200 */
c8b97818
CM
201 BTRFS_I(inode)->disk_i_size = inode->i_size;
202 btrfs_update_inode(trans, root, inode);
c2167754 203
c8b97818
CM
204 return 0;
205fail:
206 btrfs_free_path(path);
207 return err;
208}
209
210
211/*
212 * conditionally insert an inline extent into the file. This
213 * does the checks required to make sure the data is small enough
214 * to fit as an inline extent.
215 */
7f366cfe 216static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
217 struct btrfs_root *root,
218 struct inode *inode, u64 start, u64 end,
219 size_t compressed_size,
220 struct page **compressed_pages)
221{
222 u64 isize = i_size_read(inode);
223 u64 actual_end = min(end + 1, isize);
224 u64 inline_len = actual_end - start;
225 u64 aligned_end = (end + root->sectorsize - 1) &
226 ~((u64)root->sectorsize - 1);
227 u64 hint_byte;
228 u64 data_len = inline_len;
229 int ret;
230
231 if (compressed_size)
232 data_len = compressed_size;
233
234 if (start > 0 ||
70b99e69 235 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
236 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
237 (!compressed_size &&
238 (actual_end & (root->sectorsize - 1)) == 0) ||
239 end + 1 < isize ||
240 data_len > root->fs_info->max_inline) {
241 return 1;
242 }
243
920bbbfb 244 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 245 &hint_byte, 1);
c8b97818
CM
246 BUG_ON(ret);
247
248 if (isize > actual_end)
249 inline_len = min_t(u64, isize, actual_end);
250 ret = insert_inline_extent(trans, root, inode, start,
251 inline_len, compressed_size,
252 compressed_pages);
253 BUG_ON(ret);
a1ed835e 254 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
255 return 0;
256}
257
771ed689
CM
258struct async_extent {
259 u64 start;
260 u64 ram_size;
261 u64 compressed_size;
262 struct page **pages;
263 unsigned long nr_pages;
264 struct list_head list;
265};
266
267struct async_cow {
268 struct inode *inode;
269 struct btrfs_root *root;
270 struct page *locked_page;
271 u64 start;
272 u64 end;
273 struct list_head extents;
274 struct btrfs_work work;
275};
276
277static noinline int add_async_extent(struct async_cow *cow,
278 u64 start, u64 ram_size,
279 u64 compressed_size,
280 struct page **pages,
281 unsigned long nr_pages)
282{
283 struct async_extent *async_extent;
284
285 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
286 async_extent->start = start;
287 async_extent->ram_size = ram_size;
288 async_extent->compressed_size = compressed_size;
289 async_extent->pages = pages;
290 async_extent->nr_pages = nr_pages;
291 list_add_tail(&async_extent->list, &cow->extents);
292 return 0;
293}
294
d352ac68 295/*
771ed689
CM
296 * we create compressed extents in two phases. The first
297 * phase compresses a range of pages that have already been
298 * locked (both pages and state bits are locked).
c8b97818 299 *
771ed689
CM
300 * This is done inside an ordered work queue, and the compression
301 * is spread across many cpus. The actual IO submission is step
302 * two, and the ordered work queue takes care of making sure that
303 * happens in the same order things were put onto the queue by
304 * writepages and friends.
c8b97818 305 *
771ed689
CM
306 * If this code finds it can't get good compression, it puts an
307 * entry onto the work queue to write the uncompressed bytes. This
308 * makes sure that both compressed inodes and uncompressed inodes
309 * are written in the same order that pdflush sent them down.
d352ac68 310 */
771ed689
CM
311static noinline int compress_file_range(struct inode *inode,
312 struct page *locked_page,
313 u64 start, u64 end,
314 struct async_cow *async_cow,
315 int *num_added)
b888db2b
CM
316{
317 struct btrfs_root *root = BTRFS_I(inode)->root;
318 struct btrfs_trans_handle *trans;
db94535d 319 u64 num_bytes;
c8b97818
CM
320 u64 orig_start;
321 u64 disk_num_bytes;
db94535d 322 u64 blocksize = root->sectorsize;
c8b97818 323 u64 actual_end;
42dc7bab 324 u64 isize = i_size_read(inode);
e6dcd2dc 325 int ret = 0;
c8b97818
CM
326 struct page **pages = NULL;
327 unsigned long nr_pages;
328 unsigned long nr_pages_ret = 0;
329 unsigned long total_compressed = 0;
330 unsigned long total_in = 0;
331 unsigned long max_compressed = 128 * 1024;
771ed689 332 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
333 int i;
334 int will_compress;
b888db2b 335
c8b97818
CM
336 orig_start = start;
337
42dc7bab 338 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
339again:
340 will_compress = 0;
341 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
342 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 343
f03d9301
CM
344 /*
345 * we don't want to send crud past the end of i_size through
346 * compression, that's just a waste of CPU time. So, if the
347 * end of the file is before the start of our current
348 * requested range of bytes, we bail out to the uncompressed
349 * cleanup code that can deal with all of this.
350 *
351 * It isn't really the fastest way to fix things, but this is a
352 * very uncommon corner.
353 */
354 if (actual_end <= start)
355 goto cleanup_and_bail_uncompressed;
356
c8b97818
CM
357 total_compressed = actual_end - start;
358
359 /* we want to make sure that amount of ram required to uncompress
360 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
361 * of a compressed extent to 128k. This is a crucial number
362 * because it also controls how easily we can spread reads across
363 * cpus for decompression.
364 *
365 * We also want to make sure the amount of IO required to do
366 * a random read is reasonably small, so we limit the size of
367 * a compressed extent to 128k.
c8b97818
CM
368 */
369 total_compressed = min(total_compressed, max_uncompressed);
db94535d 370 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 371 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
372 disk_num_bytes = num_bytes;
373 total_in = 0;
374 ret = 0;
db94535d 375
771ed689
CM
376 /*
377 * we do compression for mount -o compress and when the
378 * inode has not been flagged as nocompress. This flag can
379 * change at any time if we discover bad compression ratios.
c8b97818 380 */
6cbff00f 381 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32
CM
382 (btrfs_test_opt(root, COMPRESS) ||
383 (BTRFS_I(inode)->force_compress))) {
c8b97818 384 WARN_ON(pages);
cfbc246e 385 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 386
c8b97818
CM
387 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
388 total_compressed, pages,
389 nr_pages, &nr_pages_ret,
390 &total_in,
391 &total_compressed,
392 max_compressed);
393
394 if (!ret) {
395 unsigned long offset = total_compressed &
396 (PAGE_CACHE_SIZE - 1);
397 struct page *page = pages[nr_pages_ret - 1];
398 char *kaddr;
399
400 /* zero the tail end of the last page, we might be
401 * sending it down to disk
402 */
403 if (offset) {
404 kaddr = kmap_atomic(page, KM_USER0);
405 memset(kaddr + offset, 0,
406 PAGE_CACHE_SIZE - offset);
407 kunmap_atomic(kaddr, KM_USER0);
408 }
409 will_compress = 1;
410 }
411 }
412 if (start == 0) {
771ed689
CM
413 trans = btrfs_join_transaction(root, 1);
414 BUG_ON(!trans);
415 btrfs_set_trans_block_group(trans, inode);
416
c8b97818 417 /* lets try to make an inline extent */
771ed689 418 if (ret || total_in < (actual_end - start)) {
c8b97818 419 /* we didn't compress the entire range, try
771ed689 420 * to make an uncompressed inline extent.
c8b97818
CM
421 */
422 ret = cow_file_range_inline(trans, root, inode,
423 start, end, 0, NULL);
424 } else {
771ed689 425 /* try making a compressed inline extent */
c8b97818
CM
426 ret = cow_file_range_inline(trans, root, inode,
427 start, end,
428 total_compressed, pages);
429 }
430 if (ret == 0) {
771ed689
CM
431 /*
432 * inline extent creation worked, we don't need
433 * to create any more async work items. Unlock
434 * and free up our temp pages.
435 */
c8b97818 436 extent_clear_unlock_delalloc(inode,
a791e35e
CM
437 &BTRFS_I(inode)->io_tree,
438 start, end, NULL,
439 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 440 EXTENT_CLEAR_DELALLOC |
32c00aff 441 EXTENT_CLEAR_ACCOUNTING |
a791e35e 442 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
443
444 btrfs_end_transaction(trans, root);
c8b97818
CM
445 goto free_pages_out;
446 }
c2167754 447 btrfs_end_transaction(trans, root);
c8b97818
CM
448 }
449
450 if (will_compress) {
451 /*
452 * we aren't doing an inline extent round the compressed size
453 * up to a block size boundary so the allocator does sane
454 * things
455 */
456 total_compressed = (total_compressed + blocksize - 1) &
457 ~(blocksize - 1);
458
459 /*
460 * one last check to make sure the compression is really a
461 * win, compare the page count read with the blocks on disk
462 */
463 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
464 ~(PAGE_CACHE_SIZE - 1);
465 if (total_compressed >= total_in) {
466 will_compress = 0;
467 } else {
468 disk_num_bytes = total_compressed;
469 num_bytes = total_in;
470 }
471 }
472 if (!will_compress && pages) {
473 /*
474 * the compression code ran but failed to make things smaller,
475 * free any pages it allocated and our page pointer array
476 */
477 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 478 WARN_ON(pages[i]->mapping);
c8b97818
CM
479 page_cache_release(pages[i]);
480 }
481 kfree(pages);
482 pages = NULL;
483 total_compressed = 0;
484 nr_pages_ret = 0;
485
486 /* flag the file so we don't compress in the future */
1e701a32
CM
487 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
488 !(BTRFS_I(inode)->force_compress)) {
a555f810 489 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 490 }
c8b97818 491 }
771ed689
CM
492 if (will_compress) {
493 *num_added += 1;
c8b97818 494
771ed689
CM
495 /* the async work queues will take care of doing actual
496 * allocation on disk for these compressed pages,
497 * and will submit them to the elevator.
498 */
499 add_async_extent(async_cow, start, num_bytes,
500 total_compressed, pages, nr_pages_ret);
179e29e4 501
42dc7bab 502 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
503 start += num_bytes;
504 pages = NULL;
505 cond_resched();
506 goto again;
507 }
508 } else {
f03d9301 509cleanup_and_bail_uncompressed:
771ed689
CM
510 /*
511 * No compression, but we still need to write the pages in
512 * the file we've been given so far. redirty the locked
513 * page if it corresponds to our extent and set things up
514 * for the async work queue to run cow_file_range to do
515 * the normal delalloc dance
516 */
517 if (page_offset(locked_page) >= start &&
518 page_offset(locked_page) <= end) {
519 __set_page_dirty_nobuffers(locked_page);
520 /* unlocked later on in the async handlers */
521 }
522 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
523 *num_added += 1;
524 }
3b951516 525
771ed689
CM
526out:
527 return 0;
528
529free_pages_out:
530 for (i = 0; i < nr_pages_ret; i++) {
531 WARN_ON(pages[i]->mapping);
532 page_cache_release(pages[i]);
533 }
d397712b 534 kfree(pages);
771ed689
CM
535
536 goto out;
537}
538
539/*
540 * phase two of compressed writeback. This is the ordered portion
541 * of the code, which only gets called in the order the work was
542 * queued. We walk all the async extents created by compress_file_range
543 * and send them down to the disk.
544 */
545static noinline int submit_compressed_extents(struct inode *inode,
546 struct async_cow *async_cow)
547{
548 struct async_extent *async_extent;
549 u64 alloc_hint = 0;
550 struct btrfs_trans_handle *trans;
551 struct btrfs_key ins;
552 struct extent_map *em;
553 struct btrfs_root *root = BTRFS_I(inode)->root;
554 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
555 struct extent_io_tree *io_tree;
f5a84ee3 556 int ret = 0;
771ed689
CM
557
558 if (list_empty(&async_cow->extents))
559 return 0;
560
771ed689 561
d397712b 562 while (!list_empty(&async_cow->extents)) {
771ed689
CM
563 async_extent = list_entry(async_cow->extents.next,
564 struct async_extent, list);
565 list_del(&async_extent->list);
c8b97818 566
771ed689
CM
567 io_tree = &BTRFS_I(inode)->io_tree;
568
f5a84ee3 569retry:
771ed689
CM
570 /* did the compression code fall back to uncompressed IO? */
571 if (!async_extent->pages) {
572 int page_started = 0;
573 unsigned long nr_written = 0;
574
575 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
576 async_extent->start +
577 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
578
579 /* allocate blocks */
f5a84ee3
JB
580 ret = cow_file_range(inode, async_cow->locked_page,
581 async_extent->start,
582 async_extent->start +
583 async_extent->ram_size - 1,
584 &page_started, &nr_written, 0);
771ed689
CM
585
586 /*
587 * if page_started, cow_file_range inserted an
588 * inline extent and took care of all the unlocking
589 * and IO for us. Otherwise, we need to submit
590 * all those pages down to the drive.
591 */
f5a84ee3 592 if (!page_started && !ret)
771ed689
CM
593 extent_write_locked_range(io_tree,
594 inode, async_extent->start,
d397712b 595 async_extent->start +
771ed689
CM
596 async_extent->ram_size - 1,
597 btrfs_get_extent,
598 WB_SYNC_ALL);
599 kfree(async_extent);
600 cond_resched();
601 continue;
602 }
603
604 lock_extent(io_tree, async_extent->start,
605 async_extent->start + async_extent->ram_size - 1,
606 GFP_NOFS);
771ed689 607
c2167754 608 trans = btrfs_join_transaction(root, 1);
771ed689
CM
609 ret = btrfs_reserve_extent(trans, root,
610 async_extent->compressed_size,
611 async_extent->compressed_size,
612 0, alloc_hint,
613 (u64)-1, &ins, 1);
c2167754
YZ
614 btrfs_end_transaction(trans, root);
615
f5a84ee3
JB
616 if (ret) {
617 int i;
618 for (i = 0; i < async_extent->nr_pages; i++) {
619 WARN_ON(async_extent->pages[i]->mapping);
620 page_cache_release(async_extent->pages[i]);
621 }
622 kfree(async_extent->pages);
623 async_extent->nr_pages = 0;
624 async_extent->pages = NULL;
625 unlock_extent(io_tree, async_extent->start,
626 async_extent->start +
627 async_extent->ram_size - 1, GFP_NOFS);
628 goto retry;
629 }
630
c2167754
YZ
631 /*
632 * here we're doing allocation and writeback of the
633 * compressed pages
634 */
635 btrfs_drop_extent_cache(inode, async_extent->start,
636 async_extent->start +
637 async_extent->ram_size - 1, 0);
638
771ed689
CM
639 em = alloc_extent_map(GFP_NOFS);
640 em->start = async_extent->start;
641 em->len = async_extent->ram_size;
445a6944 642 em->orig_start = em->start;
c8b97818 643
771ed689
CM
644 em->block_start = ins.objectid;
645 em->block_len = ins.offset;
646 em->bdev = root->fs_info->fs_devices->latest_bdev;
647 set_bit(EXTENT_FLAG_PINNED, &em->flags);
648 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
649
d397712b 650 while (1) {
890871be 651 write_lock(&em_tree->lock);
771ed689 652 ret = add_extent_mapping(em_tree, em);
890871be 653 write_unlock(&em_tree->lock);
771ed689
CM
654 if (ret != -EEXIST) {
655 free_extent_map(em);
656 break;
657 }
658 btrfs_drop_extent_cache(inode, async_extent->start,
659 async_extent->start +
660 async_extent->ram_size - 1, 0);
661 }
662
663 ret = btrfs_add_ordered_extent(inode, async_extent->start,
664 ins.objectid,
665 async_extent->ram_size,
666 ins.offset,
667 BTRFS_ORDERED_COMPRESSED);
668 BUG_ON(ret);
669
771ed689
CM
670 /*
671 * clear dirty, set writeback and unlock the pages.
672 */
673 extent_clear_unlock_delalloc(inode,
a791e35e
CM
674 &BTRFS_I(inode)->io_tree,
675 async_extent->start,
676 async_extent->start +
677 async_extent->ram_size - 1,
678 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
679 EXTENT_CLEAR_UNLOCK |
a3429ab7 680 EXTENT_CLEAR_DELALLOC |
a791e35e 681 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
682
683 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
684 async_extent->start,
685 async_extent->ram_size,
686 ins.objectid,
687 ins.offset, async_extent->pages,
688 async_extent->nr_pages);
771ed689
CM
689
690 BUG_ON(ret);
771ed689
CM
691 alloc_hint = ins.objectid + ins.offset;
692 kfree(async_extent);
693 cond_resched();
694 }
695
771ed689
CM
696 return 0;
697}
698
699/*
700 * when extent_io.c finds a delayed allocation range in the file,
701 * the call backs end up in this code. The basic idea is to
702 * allocate extents on disk for the range, and create ordered data structs
703 * in ram to track those extents.
704 *
705 * locked_page is the page that writepage had locked already. We use
706 * it to make sure we don't do extra locks or unlocks.
707 *
708 * *page_started is set to one if we unlock locked_page and do everything
709 * required to start IO on it. It may be clean and already done with
710 * IO when we return.
711 */
712static noinline int cow_file_range(struct inode *inode,
713 struct page *locked_page,
714 u64 start, u64 end, int *page_started,
715 unsigned long *nr_written,
716 int unlock)
717{
718 struct btrfs_root *root = BTRFS_I(inode)->root;
719 struct btrfs_trans_handle *trans;
720 u64 alloc_hint = 0;
721 u64 num_bytes;
722 unsigned long ram_size;
723 u64 disk_num_bytes;
724 u64 cur_alloc_size;
725 u64 blocksize = root->sectorsize;
726 u64 actual_end;
42dc7bab 727 u64 isize = i_size_read(inode);
771ed689
CM
728 struct btrfs_key ins;
729 struct extent_map *em;
730 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
731 int ret = 0;
732
733 trans = btrfs_join_transaction(root, 1);
734 BUG_ON(!trans);
735 btrfs_set_trans_block_group(trans, inode);
736
42dc7bab 737 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
738
739 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
740 num_bytes = max(blocksize, num_bytes);
741 disk_num_bytes = num_bytes;
742 ret = 0;
743
744 if (start == 0) {
745 /* lets try to make an inline extent */
746 ret = cow_file_range_inline(trans, root, inode,
747 start, end, 0, NULL);
748 if (ret == 0) {
749 extent_clear_unlock_delalloc(inode,
a791e35e
CM
750 &BTRFS_I(inode)->io_tree,
751 start, end, NULL,
752 EXTENT_CLEAR_UNLOCK_PAGE |
753 EXTENT_CLEAR_UNLOCK |
754 EXTENT_CLEAR_DELALLOC |
32c00aff 755 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
756 EXTENT_CLEAR_DIRTY |
757 EXTENT_SET_WRITEBACK |
758 EXTENT_END_WRITEBACK);
c2167754 759
771ed689
CM
760 *nr_written = *nr_written +
761 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
762 *page_started = 1;
763 ret = 0;
764 goto out;
765 }
766 }
767
768 BUG_ON(disk_num_bytes >
769 btrfs_super_total_bytes(&root->fs_info->super_copy));
770
b917b7c3
CM
771
772 read_lock(&BTRFS_I(inode)->extent_tree.lock);
773 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
774 start, num_bytes);
775 if (em) {
6346c939
JB
776 /*
777 * if block start isn't an actual block number then find the
778 * first block in this inode and use that as a hint. If that
779 * block is also bogus then just don't worry about it.
780 */
781 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
782 free_extent_map(em);
783 em = search_extent_mapping(em_tree, 0, 0);
784 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
785 alloc_hint = em->block_start;
786 if (em)
787 free_extent_map(em);
788 } else {
789 alloc_hint = em->block_start;
790 free_extent_map(em);
791 }
b917b7c3
CM
792 }
793 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
794 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
795
d397712b 796 while (disk_num_bytes > 0) {
a791e35e
CM
797 unsigned long op;
798
c8b97818 799 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 800 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 801 root->sectorsize, 0, alloc_hint,
e6dcd2dc 802 (u64)-1, &ins, 1);
d397712b
CM
803 BUG_ON(ret);
804
e6dcd2dc
CM
805 em = alloc_extent_map(GFP_NOFS);
806 em->start = start;
445a6944 807 em->orig_start = em->start;
771ed689
CM
808 ram_size = ins.offset;
809 em->len = ins.offset;
c8b97818 810
e6dcd2dc 811 em->block_start = ins.objectid;
c8b97818 812 em->block_len = ins.offset;
e6dcd2dc 813 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 814 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 815
d397712b 816 while (1) {
890871be 817 write_lock(&em_tree->lock);
e6dcd2dc 818 ret = add_extent_mapping(em_tree, em);
890871be 819 write_unlock(&em_tree->lock);
e6dcd2dc
CM
820 if (ret != -EEXIST) {
821 free_extent_map(em);
822 break;
823 }
824 btrfs_drop_extent_cache(inode, start,
c8b97818 825 start + ram_size - 1, 0);
e6dcd2dc
CM
826 }
827
98d20f67 828 cur_alloc_size = ins.offset;
e6dcd2dc 829 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 830 ram_size, cur_alloc_size, 0);
e6dcd2dc 831 BUG_ON(ret);
c8b97818 832
17d217fe
YZ
833 if (root->root_key.objectid ==
834 BTRFS_DATA_RELOC_TREE_OBJECTID) {
835 ret = btrfs_reloc_clone_csums(inode, start,
836 cur_alloc_size);
837 BUG_ON(ret);
838 }
839
d397712b 840 if (disk_num_bytes < cur_alloc_size)
3b951516 841 break;
d397712b 842
c8b97818
CM
843 /* we're not doing compressed IO, don't unlock the first
844 * page (which the caller expects to stay locked), don't
845 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
846 *
847 * Do set the Private2 bit so we know this page was properly
848 * setup for writepage
c8b97818 849 */
a791e35e
CM
850 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
851 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
852 EXTENT_SET_PRIVATE2;
853
c8b97818
CM
854 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
855 start, start + ram_size - 1,
a791e35e 856 locked_page, op);
c8b97818 857 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
858 num_bytes -= cur_alloc_size;
859 alloc_hint = ins.objectid + ins.offset;
860 start += cur_alloc_size;
b888db2b 861 }
b888db2b 862out:
771ed689 863 ret = 0;
b888db2b 864 btrfs_end_transaction(trans, root);
c8b97818 865
be20aa9d 866 return ret;
771ed689 867}
c8b97818 868
771ed689
CM
869/*
870 * work queue call back to started compression on a file and pages
871 */
872static noinline void async_cow_start(struct btrfs_work *work)
873{
874 struct async_cow *async_cow;
875 int num_added = 0;
876 async_cow = container_of(work, struct async_cow, work);
877
878 compress_file_range(async_cow->inode, async_cow->locked_page,
879 async_cow->start, async_cow->end, async_cow,
880 &num_added);
881 if (num_added == 0)
882 async_cow->inode = NULL;
883}
884
885/*
886 * work queue call back to submit previously compressed pages
887 */
888static noinline void async_cow_submit(struct btrfs_work *work)
889{
890 struct async_cow *async_cow;
891 struct btrfs_root *root;
892 unsigned long nr_pages;
893
894 async_cow = container_of(work, struct async_cow, work);
895
896 root = async_cow->root;
897 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
898 PAGE_CACHE_SHIFT;
899
900 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
901
902 if (atomic_read(&root->fs_info->async_delalloc_pages) <
903 5 * 1042 * 1024 &&
904 waitqueue_active(&root->fs_info->async_submit_wait))
905 wake_up(&root->fs_info->async_submit_wait);
906
d397712b 907 if (async_cow->inode)
771ed689 908 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 909}
c8b97818 910
771ed689
CM
911static noinline void async_cow_free(struct btrfs_work *work)
912{
913 struct async_cow *async_cow;
914 async_cow = container_of(work, struct async_cow, work);
915 kfree(async_cow);
916}
917
918static int cow_file_range_async(struct inode *inode, struct page *locked_page,
919 u64 start, u64 end, int *page_started,
920 unsigned long *nr_written)
921{
922 struct async_cow *async_cow;
923 struct btrfs_root *root = BTRFS_I(inode)->root;
924 unsigned long nr_pages;
925 u64 cur_end;
926 int limit = 10 * 1024 * 1042;
927
a3429ab7
CM
928 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
929 1, 0, NULL, GFP_NOFS);
d397712b 930 while (start < end) {
771ed689
CM
931 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
932 async_cow->inode = inode;
933 async_cow->root = root;
934 async_cow->locked_page = locked_page;
935 async_cow->start = start;
936
6cbff00f 937 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
938 cur_end = end;
939 else
940 cur_end = min(end, start + 512 * 1024 - 1);
941
942 async_cow->end = cur_end;
943 INIT_LIST_HEAD(&async_cow->extents);
944
945 async_cow->work.func = async_cow_start;
946 async_cow->work.ordered_func = async_cow_submit;
947 async_cow->work.ordered_free = async_cow_free;
948 async_cow->work.flags = 0;
949
771ed689
CM
950 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
951 PAGE_CACHE_SHIFT;
952 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
953
954 btrfs_queue_worker(&root->fs_info->delalloc_workers,
955 &async_cow->work);
956
957 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
958 wait_event(root->fs_info->async_submit_wait,
959 (atomic_read(&root->fs_info->async_delalloc_pages) <
960 limit));
961 }
962
d397712b 963 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
964 atomic_read(&root->fs_info->async_delalloc_pages)) {
965 wait_event(root->fs_info->async_submit_wait,
966 (atomic_read(&root->fs_info->async_delalloc_pages) ==
967 0));
968 }
969
970 *nr_written += nr_pages;
971 start = cur_end + 1;
972 }
973 *page_started = 1;
974 return 0;
be20aa9d
CM
975}
976
d397712b 977static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
978 u64 bytenr, u64 num_bytes)
979{
980 int ret;
981 struct btrfs_ordered_sum *sums;
982 LIST_HEAD(list);
983
07d400a6
YZ
984 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
985 bytenr + num_bytes - 1, &list);
17d217fe
YZ
986 if (ret == 0 && list_empty(&list))
987 return 0;
988
989 while (!list_empty(&list)) {
990 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
991 list_del(&sums->list);
992 kfree(sums);
993 }
994 return 1;
995}
996
d352ac68
CM
997/*
998 * when nowcow writeback call back. This checks for snapshots or COW copies
999 * of the extents that exist in the file, and COWs the file as required.
1000 *
1001 * If no cow copies or snapshots exist, we write directly to the existing
1002 * blocks on disk
1003 */
7f366cfe
CM
1004static noinline int run_delalloc_nocow(struct inode *inode,
1005 struct page *locked_page,
771ed689
CM
1006 u64 start, u64 end, int *page_started, int force,
1007 unsigned long *nr_written)
be20aa9d 1008{
be20aa9d 1009 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1010 struct btrfs_trans_handle *trans;
be20aa9d 1011 struct extent_buffer *leaf;
be20aa9d 1012 struct btrfs_path *path;
80ff3856 1013 struct btrfs_file_extent_item *fi;
be20aa9d 1014 struct btrfs_key found_key;
80ff3856
YZ
1015 u64 cow_start;
1016 u64 cur_offset;
1017 u64 extent_end;
5d4f98a2 1018 u64 extent_offset;
80ff3856
YZ
1019 u64 disk_bytenr;
1020 u64 num_bytes;
1021 int extent_type;
1022 int ret;
d899e052 1023 int type;
80ff3856
YZ
1024 int nocow;
1025 int check_prev = 1;
be20aa9d
CM
1026
1027 path = btrfs_alloc_path();
1028 BUG_ON(!path);
7ea394f1
YZ
1029 trans = btrfs_join_transaction(root, 1);
1030 BUG_ON(!trans);
be20aa9d 1031
80ff3856
YZ
1032 cow_start = (u64)-1;
1033 cur_offset = start;
1034 while (1) {
1035 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1036 cur_offset, 0);
1037 BUG_ON(ret < 0);
1038 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1039 leaf = path->nodes[0];
1040 btrfs_item_key_to_cpu(leaf, &found_key,
1041 path->slots[0] - 1);
1042 if (found_key.objectid == inode->i_ino &&
1043 found_key.type == BTRFS_EXTENT_DATA_KEY)
1044 path->slots[0]--;
1045 }
1046 check_prev = 0;
1047next_slot:
1048 leaf = path->nodes[0];
1049 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1050 ret = btrfs_next_leaf(root, path);
1051 if (ret < 0)
1052 BUG_ON(1);
1053 if (ret > 0)
1054 break;
1055 leaf = path->nodes[0];
1056 }
be20aa9d 1057
80ff3856
YZ
1058 nocow = 0;
1059 disk_bytenr = 0;
17d217fe 1060 num_bytes = 0;
80ff3856
YZ
1061 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1062
1063 if (found_key.objectid > inode->i_ino ||
1064 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1065 found_key.offset > end)
1066 break;
1067
1068 if (found_key.offset > cur_offset) {
1069 extent_end = found_key.offset;
e9061e21 1070 extent_type = 0;
80ff3856
YZ
1071 goto out_check;
1072 }
1073
1074 fi = btrfs_item_ptr(leaf, path->slots[0],
1075 struct btrfs_file_extent_item);
1076 extent_type = btrfs_file_extent_type(leaf, fi);
1077
d899e052
YZ
1078 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1079 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1080 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1081 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1082 extent_end = found_key.offset +
1083 btrfs_file_extent_num_bytes(leaf, fi);
1084 if (extent_end <= start) {
1085 path->slots[0]++;
1086 goto next_slot;
1087 }
17d217fe
YZ
1088 if (disk_bytenr == 0)
1089 goto out_check;
80ff3856
YZ
1090 if (btrfs_file_extent_compression(leaf, fi) ||
1091 btrfs_file_extent_encryption(leaf, fi) ||
1092 btrfs_file_extent_other_encoding(leaf, fi))
1093 goto out_check;
d899e052
YZ
1094 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1095 goto out_check;
d2fb3437 1096 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1097 goto out_check;
17d217fe 1098 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1099 found_key.offset -
1100 extent_offset, disk_bytenr))
17d217fe 1101 goto out_check;
5d4f98a2 1102 disk_bytenr += extent_offset;
17d217fe
YZ
1103 disk_bytenr += cur_offset - found_key.offset;
1104 num_bytes = min(end + 1, extent_end) - cur_offset;
1105 /*
1106 * force cow if csum exists in the range.
1107 * this ensure that csum for a given extent are
1108 * either valid or do not exist.
1109 */
1110 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1111 goto out_check;
80ff3856
YZ
1112 nocow = 1;
1113 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1114 extent_end = found_key.offset +
1115 btrfs_file_extent_inline_len(leaf, fi);
1116 extent_end = ALIGN(extent_end, root->sectorsize);
1117 } else {
1118 BUG_ON(1);
1119 }
1120out_check:
1121 if (extent_end <= start) {
1122 path->slots[0]++;
1123 goto next_slot;
1124 }
1125 if (!nocow) {
1126 if (cow_start == (u64)-1)
1127 cow_start = cur_offset;
1128 cur_offset = extent_end;
1129 if (cur_offset > end)
1130 break;
1131 path->slots[0]++;
1132 goto next_slot;
7ea394f1
YZ
1133 }
1134
1135 btrfs_release_path(root, path);
80ff3856
YZ
1136 if (cow_start != (u64)-1) {
1137 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1138 found_key.offset - 1, page_started,
1139 nr_written, 1);
80ff3856
YZ
1140 BUG_ON(ret);
1141 cow_start = (u64)-1;
7ea394f1 1142 }
80ff3856 1143
d899e052
YZ
1144 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1145 struct extent_map *em;
1146 struct extent_map_tree *em_tree;
1147 em_tree = &BTRFS_I(inode)->extent_tree;
1148 em = alloc_extent_map(GFP_NOFS);
1149 em->start = cur_offset;
445a6944 1150 em->orig_start = em->start;
d899e052
YZ
1151 em->len = num_bytes;
1152 em->block_len = num_bytes;
1153 em->block_start = disk_bytenr;
1154 em->bdev = root->fs_info->fs_devices->latest_bdev;
1155 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1156 while (1) {
890871be 1157 write_lock(&em_tree->lock);
d899e052 1158 ret = add_extent_mapping(em_tree, em);
890871be 1159 write_unlock(&em_tree->lock);
d899e052
YZ
1160 if (ret != -EEXIST) {
1161 free_extent_map(em);
1162 break;
1163 }
1164 btrfs_drop_extent_cache(inode, em->start,
1165 em->start + em->len - 1, 0);
1166 }
1167 type = BTRFS_ORDERED_PREALLOC;
1168 } else {
1169 type = BTRFS_ORDERED_NOCOW;
1170 }
80ff3856
YZ
1171
1172 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1173 num_bytes, num_bytes, type);
1174 BUG_ON(ret);
771ed689 1175
d899e052 1176 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1177 cur_offset, cur_offset + num_bytes - 1,
1178 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1179 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1180 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1181 cur_offset = extent_end;
1182 if (cur_offset > end)
1183 break;
be20aa9d 1184 }
80ff3856
YZ
1185 btrfs_release_path(root, path);
1186
1187 if (cur_offset <= end && cow_start == (u64)-1)
1188 cow_start = cur_offset;
1189 if (cow_start != (u64)-1) {
1190 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1191 page_started, nr_written, 1);
80ff3856
YZ
1192 BUG_ON(ret);
1193 }
1194
1195 ret = btrfs_end_transaction(trans, root);
1196 BUG_ON(ret);
7ea394f1 1197 btrfs_free_path(path);
80ff3856 1198 return 0;
be20aa9d
CM
1199}
1200
d352ac68
CM
1201/*
1202 * extent_io.c call back to do delayed allocation processing
1203 */
c8b97818 1204static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1205 u64 start, u64 end, int *page_started,
1206 unsigned long *nr_written)
be20aa9d 1207{
be20aa9d 1208 int ret;
7f366cfe 1209 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1210
6cbff00f 1211 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1212 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1213 page_started, 1, nr_written);
6cbff00f 1214 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1215 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1216 page_started, 0, nr_written);
1e701a32
CM
1217 else if (!btrfs_test_opt(root, COMPRESS) &&
1218 !(BTRFS_I(inode)->force_compress))
7f366cfe
CM
1219 ret = cow_file_range(inode, locked_page, start, end,
1220 page_started, nr_written, 1);
be20aa9d 1221 else
771ed689 1222 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1223 page_started, nr_written);
b888db2b
CM
1224 return ret;
1225}
1226
9ed74f2d
JB
1227static int btrfs_split_extent_hook(struct inode *inode,
1228 struct extent_state *orig, u64 split)
1229{
1230 struct btrfs_root *root = BTRFS_I(inode)->root;
1231 u64 size;
1232
1233 if (!(orig->state & EXTENT_DELALLOC))
1234 return 0;
1235
1236 size = orig->end - orig->start + 1;
1237 if (size > root->fs_info->max_extent) {
1238 u64 num_extents;
1239 u64 new_size;
1240
1241 new_size = orig->end - split + 1;
1242 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1243 root->fs_info->max_extent);
1244
1245 /*
32c00aff
JB
1246 * if we break a large extent up then leave oustanding_extents
1247 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1248 */
1249 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1250 root->fs_info->max_extent) < num_extents)
1251 return 0;
1252 }
1253
32c00aff
JB
1254 spin_lock(&BTRFS_I(inode)->accounting_lock);
1255 BTRFS_I(inode)->outstanding_extents++;
1256 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1257
1258 return 0;
1259}
1260
1261/*
1262 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1263 * extents so we can keep track of new extents that are just merged onto old
1264 * extents, such as when we are doing sequential writes, so we can properly
1265 * account for the metadata space we'll need.
1266 */
1267static int btrfs_merge_extent_hook(struct inode *inode,
1268 struct extent_state *new,
1269 struct extent_state *other)
1270{
1271 struct btrfs_root *root = BTRFS_I(inode)->root;
1272 u64 new_size, old_size;
1273 u64 num_extents;
1274
1275 /* not delalloc, ignore it */
1276 if (!(other->state & EXTENT_DELALLOC))
1277 return 0;
1278
1279 old_size = other->end - other->start + 1;
1280 if (new->start < other->start)
1281 new_size = other->end - new->start + 1;
1282 else
1283 new_size = new->end - other->start + 1;
1284
1285 /* we're not bigger than the max, unreserve the space and go */
1286 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1287 spin_lock(&BTRFS_I(inode)->accounting_lock);
1288 BTRFS_I(inode)->outstanding_extents--;
1289 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1290 return 0;
1291 }
1292
1293 /*
1294 * If we grew by another max_extent, just return, we want to keep that
1295 * reserved amount.
1296 */
1297 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1298 root->fs_info->max_extent);
1299 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1300 root->fs_info->max_extent) > num_extents)
1301 return 0;
1302
32c00aff
JB
1303 spin_lock(&BTRFS_I(inode)->accounting_lock);
1304 BTRFS_I(inode)->outstanding_extents--;
1305 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1306
1307 return 0;
1308}
1309
d352ac68
CM
1310/*
1311 * extent_io.c set_bit_hook, used to track delayed allocation
1312 * bytes in this file, and to maintain the list of inodes that
1313 * have pending delalloc work to be done.
1314 */
b2950863 1315static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1316 unsigned long old, unsigned long bits)
291d673e 1317{
9ed74f2d 1318
75eff68e
CM
1319 /*
1320 * set_bit and clear bit hooks normally require _irqsave/restore
1321 * but in this case, we are only testeing for the DELALLOC
1322 * bit, which is only set or cleared with irqs on
1323 */
b0c68f8b 1324 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1325 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1326
32c00aff
JB
1327 spin_lock(&BTRFS_I(inode)->accounting_lock);
1328 BTRFS_I(inode)->outstanding_extents++;
1329 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1330 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1331 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1332 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1333 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1334 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1335 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1336 &root->fs_info->delalloc_inodes);
1337 }
75eff68e 1338 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1339 }
1340 return 0;
1341}
1342
d352ac68
CM
1343/*
1344 * extent_io.c clear_bit_hook, see set_bit_hook for why
1345 */
9ed74f2d
JB
1346static int btrfs_clear_bit_hook(struct inode *inode,
1347 struct extent_state *state, unsigned long bits)
291d673e 1348{
75eff68e
CM
1349 /*
1350 * set_bit and clear bit hooks normally require _irqsave/restore
1351 * but in this case, we are only testeing for the DELALLOC
1352 * bit, which is only set or cleared with irqs on
1353 */
9ed74f2d 1354 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1355 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1356
32c00aff
JB
1357 if (bits & EXTENT_DO_ACCOUNTING) {
1358 spin_lock(&BTRFS_I(inode)->accounting_lock);
1359 BTRFS_I(inode)->outstanding_extents--;
1360 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1361 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1362 }
9ed74f2d 1363
75eff68e 1364 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1365 if (state->end - state->start + 1 >
1366 root->fs_info->delalloc_bytes) {
d397712b
CM
1367 printk(KERN_INFO "btrfs warning: delalloc account "
1368 "%llu %llu\n",
9ed74f2d
JB
1369 (unsigned long long)
1370 state->end - state->start + 1,
d397712b
CM
1371 (unsigned long long)
1372 root->fs_info->delalloc_bytes);
6a63209f 1373 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1374 root->fs_info->delalloc_bytes = 0;
9069218d 1375 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1376 } else {
6a63209f 1377 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1378 state->end -
1379 state->start + 1);
1380 root->fs_info->delalloc_bytes -= state->end -
1381 state->start + 1;
1382 BTRFS_I(inode)->delalloc_bytes -= state->end -
1383 state->start + 1;
b0c68f8b 1384 }
ea8c2819
CM
1385 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1386 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1387 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1388 }
75eff68e 1389 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1390 }
1391 return 0;
1392}
1393
d352ac68
CM
1394/*
1395 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1396 * we don't create bios that span stripes or chunks
1397 */
239b14b3 1398int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1399 size_t size, struct bio *bio,
1400 unsigned long bio_flags)
239b14b3
CM
1401{
1402 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1403 struct btrfs_mapping_tree *map_tree;
a62b9401 1404 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1405 u64 length = 0;
1406 u64 map_length;
239b14b3
CM
1407 int ret;
1408
771ed689
CM
1409 if (bio_flags & EXTENT_BIO_COMPRESSED)
1410 return 0;
1411
f2d8d74d 1412 length = bio->bi_size;
239b14b3
CM
1413 map_tree = &root->fs_info->mapping_tree;
1414 map_length = length;
cea9e445 1415 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1416 &map_length, NULL, 0);
cea9e445 1417
d397712b 1418 if (map_length < length + size)
239b14b3 1419 return 1;
239b14b3
CM
1420 return 0;
1421}
1422
d352ac68
CM
1423/*
1424 * in order to insert checksums into the metadata in large chunks,
1425 * we wait until bio submission time. All the pages in the bio are
1426 * checksummed and sums are attached onto the ordered extent record.
1427 *
1428 * At IO completion time the cums attached on the ordered extent record
1429 * are inserted into the btree
1430 */
d397712b
CM
1431static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1432 struct bio *bio, int mirror_num,
1433 unsigned long bio_flags)
065631f6 1434{
065631f6 1435 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1436 int ret = 0;
e015640f 1437
d20f7043 1438 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1439 BUG_ON(ret);
4a69a410
CM
1440 return 0;
1441}
e015640f 1442
4a69a410
CM
1443/*
1444 * in order to insert checksums into the metadata in large chunks,
1445 * we wait until bio submission time. All the pages in the bio are
1446 * checksummed and sums are attached onto the ordered extent record.
1447 *
1448 * At IO completion time the cums attached on the ordered extent record
1449 * are inserted into the btree
1450 */
b2950863 1451static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1452 int mirror_num, unsigned long bio_flags)
1453{
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1455 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1456}
1457
d352ac68 1458/*
cad321ad
CM
1459 * extent_io.c submission hook. This does the right thing for csum calculation
1460 * on write, or reading the csums from the tree before a read
d352ac68 1461 */
b2950863 1462static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1463 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1464{
1465 struct btrfs_root *root = BTRFS_I(inode)->root;
1466 int ret = 0;
19b9bdb0 1467 int skip_sum;
44b8bd7e 1468
6cbff00f 1469 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1470
e6dcd2dc
CM
1471 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1472 BUG_ON(ret);
065631f6 1473
4d1b5fb4 1474 if (!(rw & (1 << BIO_RW))) {
d20f7043 1475 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1476 return btrfs_submit_compressed_read(inode, bio,
1477 mirror_num, bio_flags);
d20f7043
CM
1478 } else if (!skip_sum)
1479 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1480 goto mapit;
19b9bdb0 1481 } else if (!skip_sum) {
17d217fe
YZ
1482 /* csum items have already been cloned */
1483 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1484 goto mapit;
19b9bdb0
CM
1485 /* we're doing a write, do the async checksumming */
1486 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1487 inode, rw, bio, mirror_num,
4a69a410
CM
1488 bio_flags, __btrfs_submit_bio_start,
1489 __btrfs_submit_bio_done);
19b9bdb0
CM
1490 }
1491
0b86a832 1492mapit:
8b712842 1493 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1494}
6885f308 1495
d352ac68
CM
1496/*
1497 * given a list of ordered sums record them in the inode. This happens
1498 * at IO completion time based on sums calculated at bio submission time.
1499 */
ba1da2f4 1500static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1501 struct inode *inode, u64 file_offset,
1502 struct list_head *list)
1503{
e6dcd2dc
CM
1504 struct btrfs_ordered_sum *sum;
1505
1506 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1507
1508 list_for_each_entry(sum, list, list) {
d20f7043
CM
1509 btrfs_csum_file_blocks(trans,
1510 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1511 }
1512 return 0;
1513}
1514
2ac55d41
JB
1515int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1516 struct extent_state **cached_state)
ea8c2819 1517{
d397712b 1518 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1519 WARN_ON(1);
ea8c2819 1520 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1521 cached_state, GFP_NOFS);
ea8c2819
CM
1522}
1523
d352ac68 1524/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1525struct btrfs_writepage_fixup {
1526 struct page *page;
1527 struct btrfs_work work;
1528};
1529
b2950863 1530static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1531{
1532 struct btrfs_writepage_fixup *fixup;
1533 struct btrfs_ordered_extent *ordered;
2ac55d41 1534 struct extent_state *cached_state = NULL;
247e743c
CM
1535 struct page *page;
1536 struct inode *inode;
1537 u64 page_start;
1538 u64 page_end;
1539
1540 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1541 page = fixup->page;
4a096752 1542again:
247e743c
CM
1543 lock_page(page);
1544 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1545 ClearPageChecked(page);
1546 goto out_page;
1547 }
1548
1549 inode = page->mapping->host;
1550 page_start = page_offset(page);
1551 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1552
2ac55d41
JB
1553 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1554 &cached_state, GFP_NOFS);
4a096752
CM
1555
1556 /* already ordered? We're done */
8b62b72b 1557 if (PagePrivate2(page))
247e743c 1558 goto out;
4a096752
CM
1559
1560 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1561 if (ordered) {
2ac55d41
JB
1562 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1563 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1564 unlock_page(page);
1565 btrfs_start_ordered_extent(inode, ordered, 1);
1566 goto again;
1567 }
247e743c 1568
2ac55d41 1569 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1570 ClearPageChecked(page);
1571out:
2ac55d41
JB
1572 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1573 &cached_state, GFP_NOFS);
247e743c
CM
1574out_page:
1575 unlock_page(page);
1576 page_cache_release(page);
1577}
1578
1579/*
1580 * There are a few paths in the higher layers of the kernel that directly
1581 * set the page dirty bit without asking the filesystem if it is a
1582 * good idea. This causes problems because we want to make sure COW
1583 * properly happens and the data=ordered rules are followed.
1584 *
c8b97818 1585 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1586 * hasn't been properly setup for IO. We kick off an async process
1587 * to fix it up. The async helper will wait for ordered extents, set
1588 * the delalloc bit and make it safe to write the page.
1589 */
b2950863 1590static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1591{
1592 struct inode *inode = page->mapping->host;
1593 struct btrfs_writepage_fixup *fixup;
1594 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1595
8b62b72b
CM
1596 /* this page is properly in the ordered list */
1597 if (TestClearPagePrivate2(page))
247e743c
CM
1598 return 0;
1599
1600 if (PageChecked(page))
1601 return -EAGAIN;
1602
1603 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1604 if (!fixup)
1605 return -EAGAIN;
f421950f 1606
247e743c
CM
1607 SetPageChecked(page);
1608 page_cache_get(page);
1609 fixup->work.func = btrfs_writepage_fixup_worker;
1610 fixup->page = page;
1611 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1612 return -EAGAIN;
1613}
1614
d899e052
YZ
1615static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1616 struct inode *inode, u64 file_pos,
1617 u64 disk_bytenr, u64 disk_num_bytes,
1618 u64 num_bytes, u64 ram_bytes,
1619 u8 compression, u8 encryption,
1620 u16 other_encoding, int extent_type)
1621{
1622 struct btrfs_root *root = BTRFS_I(inode)->root;
1623 struct btrfs_file_extent_item *fi;
1624 struct btrfs_path *path;
1625 struct extent_buffer *leaf;
1626 struct btrfs_key ins;
1627 u64 hint;
1628 int ret;
1629
1630 path = btrfs_alloc_path();
1631 BUG_ON(!path);
1632
b9473439 1633 path->leave_spinning = 1;
a1ed835e
CM
1634
1635 /*
1636 * we may be replacing one extent in the tree with another.
1637 * The new extent is pinned in the extent map, and we don't want
1638 * to drop it from the cache until it is completely in the btree.
1639 *
1640 * So, tell btrfs_drop_extents to leave this extent in the cache.
1641 * the caller is expected to unpin it and allow it to be merged
1642 * with the others.
1643 */
920bbbfb
YZ
1644 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1645 &hint, 0);
d899e052
YZ
1646 BUG_ON(ret);
1647
1648 ins.objectid = inode->i_ino;
1649 ins.offset = file_pos;
1650 ins.type = BTRFS_EXTENT_DATA_KEY;
1651 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1652 BUG_ON(ret);
1653 leaf = path->nodes[0];
1654 fi = btrfs_item_ptr(leaf, path->slots[0],
1655 struct btrfs_file_extent_item);
1656 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1657 btrfs_set_file_extent_type(leaf, fi, extent_type);
1658 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1659 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1660 btrfs_set_file_extent_offset(leaf, fi, 0);
1661 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1662 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1663 btrfs_set_file_extent_compression(leaf, fi, compression);
1664 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1665 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1666
1667 btrfs_unlock_up_safe(path, 1);
1668 btrfs_set_lock_blocking(leaf);
1669
d899e052
YZ
1670 btrfs_mark_buffer_dirty(leaf);
1671
1672 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1673
1674 ins.objectid = disk_bytenr;
1675 ins.offset = disk_num_bytes;
1676 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1677 ret = btrfs_alloc_reserved_file_extent(trans, root,
1678 root->root_key.objectid,
1679 inode->i_ino, file_pos, &ins);
d899e052 1680 BUG_ON(ret);
d899e052 1681 btrfs_free_path(path);
b9473439 1682
d899e052
YZ
1683 return 0;
1684}
1685
5d13a98f
CM
1686/*
1687 * helper function for btrfs_finish_ordered_io, this
1688 * just reads in some of the csum leaves to prime them into ram
1689 * before we start the transaction. It limits the amount of btree
1690 * reads required while inside the transaction.
1691 */
d352ac68
CM
1692/* as ordered data IO finishes, this gets called so we can finish
1693 * an ordered extent if the range of bytes in the file it covers are
1694 * fully written.
1695 */
211f90e6 1696static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1697{
e6dcd2dc
CM
1698 struct btrfs_root *root = BTRFS_I(inode)->root;
1699 struct btrfs_trans_handle *trans;
5d13a98f 1700 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1701 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1702 struct extent_state *cached_state = NULL;
d899e052 1703 int compressed = 0;
e6dcd2dc
CM
1704 int ret;
1705
5a1a3df1
JB
1706 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1707 end - start + 1);
ba1da2f4 1708 if (!ret)
e6dcd2dc 1709 return 0;
e6dcd2dc 1710 BUG_ON(!ordered_extent);
efd049fb 1711
c2167754
YZ
1712 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713 BUG_ON(!list_empty(&ordered_extent->list));
1714 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715 if (!ret) {
1716 trans = btrfs_join_transaction(root, 1);
1717 ret = btrfs_update_inode(trans, root, inode);
1718 BUG_ON(ret);
1719 btrfs_end_transaction(trans, root);
1720 }
1721 goto out;
1722 }
e6dcd2dc 1723
2ac55d41
JB
1724 lock_extent_bits(io_tree, ordered_extent->file_offset,
1725 ordered_extent->file_offset + ordered_extent->len - 1,
1726 0, &cached_state, GFP_NOFS);
e6dcd2dc 1727
c2167754
YZ
1728 trans = btrfs_join_transaction(root, 1);
1729
c8b97818 1730 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1731 compressed = 1;
1732 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1733 BUG_ON(compressed);
920bbbfb 1734 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1735 ordered_extent->file_offset,
1736 ordered_extent->file_offset +
1737 ordered_extent->len);
1738 BUG_ON(ret);
1739 } else {
1740 ret = insert_reserved_file_extent(trans, inode,
1741 ordered_extent->file_offset,
1742 ordered_extent->start,
1743 ordered_extent->disk_len,
1744 ordered_extent->len,
1745 ordered_extent->len,
1746 compressed, 0, 0,
1747 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1748 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1749 ordered_extent->file_offset,
1750 ordered_extent->len);
d899e052
YZ
1751 BUG_ON(ret);
1752 }
2ac55d41
JB
1753 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1754 ordered_extent->file_offset +
1755 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1756
e6dcd2dc
CM
1757 add_pending_csums(trans, inode, ordered_extent->file_offset,
1758 &ordered_extent->list);
1759
c2167754
YZ
1760 /* this also removes the ordered extent from the tree */
1761 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1762 ret = btrfs_update_inode(trans, root, inode);
1763 BUG_ON(ret);
1764 btrfs_end_transaction(trans, root);
1765out:
e6dcd2dc
CM
1766 /* once for us */
1767 btrfs_put_ordered_extent(ordered_extent);
1768 /* once for the tree */
1769 btrfs_put_ordered_extent(ordered_extent);
1770
e6dcd2dc
CM
1771 return 0;
1772}
1773
b2950863 1774static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1775 struct extent_state *state, int uptodate)
1776{
8b62b72b 1777 ClearPagePrivate2(page);
211f90e6
CM
1778 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1779}
1780
d352ac68
CM
1781/*
1782 * When IO fails, either with EIO or csum verification fails, we
1783 * try other mirrors that might have a good copy of the data. This
1784 * io_failure_record is used to record state as we go through all the
1785 * mirrors. If another mirror has good data, the page is set up to date
1786 * and things continue. If a good mirror can't be found, the original
1787 * bio end_io callback is called to indicate things have failed.
1788 */
7e38326f
CM
1789struct io_failure_record {
1790 struct page *page;
1791 u64 start;
1792 u64 len;
1793 u64 logical;
d20f7043 1794 unsigned long bio_flags;
7e38326f
CM
1795 int last_mirror;
1796};
1797
b2950863 1798static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1799 struct page *page, u64 start, u64 end,
1800 struct extent_state *state)
7e38326f
CM
1801{
1802 struct io_failure_record *failrec = NULL;
1803 u64 private;
1804 struct extent_map *em;
1805 struct inode *inode = page->mapping->host;
1806 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1807 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1808 struct bio *bio;
1809 int num_copies;
1810 int ret;
1259ab75 1811 int rw;
7e38326f
CM
1812 u64 logical;
1813
1814 ret = get_state_private(failure_tree, start, &private);
1815 if (ret) {
7e38326f
CM
1816 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1817 if (!failrec)
1818 return -ENOMEM;
1819 failrec->start = start;
1820 failrec->len = end - start + 1;
1821 failrec->last_mirror = 0;
d20f7043 1822 failrec->bio_flags = 0;
7e38326f 1823
890871be 1824 read_lock(&em_tree->lock);
3b951516
CM
1825 em = lookup_extent_mapping(em_tree, start, failrec->len);
1826 if (em->start > start || em->start + em->len < start) {
1827 free_extent_map(em);
1828 em = NULL;
1829 }
890871be 1830 read_unlock(&em_tree->lock);
7e38326f
CM
1831
1832 if (!em || IS_ERR(em)) {
1833 kfree(failrec);
1834 return -EIO;
1835 }
1836 logical = start - em->start;
1837 logical = em->block_start + logical;
d20f7043
CM
1838 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1839 logical = em->block_start;
1840 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1841 }
7e38326f
CM
1842 failrec->logical = logical;
1843 free_extent_map(em);
1844 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1845 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1846 set_state_private(failure_tree, start,
1847 (u64)(unsigned long)failrec);
7e38326f 1848 } else {
587f7704 1849 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1850 }
1851 num_copies = btrfs_num_copies(
1852 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1853 failrec->logical, failrec->len);
1854 failrec->last_mirror++;
1855 if (!state) {
cad321ad 1856 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1857 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1858 failrec->start,
1859 EXTENT_LOCKED);
1860 if (state && state->start != failrec->start)
1861 state = NULL;
cad321ad 1862 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1863 }
1864 if (!state || failrec->last_mirror > num_copies) {
1865 set_state_private(failure_tree, failrec->start, 0);
1866 clear_extent_bits(failure_tree, failrec->start,
1867 failrec->start + failrec->len - 1,
1868 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1869 kfree(failrec);
1870 return -EIO;
1871 }
1872 bio = bio_alloc(GFP_NOFS, 1);
1873 bio->bi_private = state;
1874 bio->bi_end_io = failed_bio->bi_end_io;
1875 bio->bi_sector = failrec->logical >> 9;
1876 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1877 bio->bi_size = 0;
d20f7043 1878
7e38326f 1879 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1880 if (failed_bio->bi_rw & (1 << BIO_RW))
1881 rw = WRITE;
1882 else
1883 rw = READ;
1884
1885 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1886 failrec->last_mirror,
d20f7043 1887 failrec->bio_flags);
1259ab75
CM
1888 return 0;
1889}
1890
d352ac68
CM
1891/*
1892 * each time an IO finishes, we do a fast check in the IO failure tree
1893 * to see if we need to process or clean up an io_failure_record
1894 */
b2950863 1895static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1896{
1897 u64 private;
1898 u64 private_failure;
1899 struct io_failure_record *failure;
1900 int ret;
1901
1902 private = 0;
1903 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1904 (u64)-1, 1, EXTENT_DIRTY)) {
1905 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1906 start, &private_failure);
1907 if (ret == 0) {
1908 failure = (struct io_failure_record *)(unsigned long)
1909 private_failure;
1910 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1911 failure->start, 0);
1912 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1913 failure->start,
1914 failure->start + failure->len - 1,
1915 EXTENT_DIRTY | EXTENT_LOCKED,
1916 GFP_NOFS);
1917 kfree(failure);
1918 }
1919 }
7e38326f
CM
1920 return 0;
1921}
1922
d352ac68
CM
1923/*
1924 * when reads are done, we need to check csums to verify the data is correct
1925 * if there's a match, we allow the bio to finish. If not, we go through
1926 * the io_failure_record routines to find good copies
1927 */
b2950863 1928static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1929 struct extent_state *state)
07157aac 1930{
35ebb934 1931 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1932 struct inode *inode = page->mapping->host;
d1310b2e 1933 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1934 char *kaddr;
aadfeb6e 1935 u64 private = ~(u32)0;
07157aac 1936 int ret;
ff79f819
CM
1937 struct btrfs_root *root = BTRFS_I(inode)->root;
1938 u32 csum = ~(u32)0;
d1310b2e 1939
d20f7043
CM
1940 if (PageChecked(page)) {
1941 ClearPageChecked(page);
1942 goto good;
1943 }
6cbff00f
CH
1944
1945 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1946 return 0;
1947
1948 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1949 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1950 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1951 GFP_NOFS);
b6cda9bc 1952 return 0;
17d217fe 1953 }
d20f7043 1954
c2e639f0 1955 if (state && state->start == start) {
70dec807
CM
1956 private = state->private;
1957 ret = 0;
1958 } else {
1959 ret = get_state_private(io_tree, start, &private);
1960 }
9ab86c8e 1961 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1962 if (ret)
07157aac 1963 goto zeroit;
d397712b 1964
ff79f819
CM
1965 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1966 btrfs_csum_final(csum, (char *)&csum);
d397712b 1967 if (csum != private)
07157aac 1968 goto zeroit;
d397712b 1969
9ab86c8e 1970 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1971good:
7e38326f
CM
1972 /* if the io failure tree for this inode is non-empty,
1973 * check to see if we've recovered from a failed IO
1974 */
1259ab75 1975 btrfs_clean_io_failures(inode, start);
07157aac
CM
1976 return 0;
1977
1978zeroit:
193f284d
CM
1979 if (printk_ratelimit()) {
1980 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1981 "private %llu\n", page->mapping->host->i_ino,
1982 (unsigned long long)start, csum,
1983 (unsigned long long)private);
1984 }
db94535d
CM
1985 memset(kaddr + offset, 1, end - start + 1);
1986 flush_dcache_page(page);
9ab86c8e 1987 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1988 if (private == 0)
1989 return 0;
7e38326f 1990 return -EIO;
07157aac 1991}
b888db2b 1992
24bbcf04
YZ
1993struct delayed_iput {
1994 struct list_head list;
1995 struct inode *inode;
1996};
1997
1998void btrfs_add_delayed_iput(struct inode *inode)
1999{
2000 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2001 struct delayed_iput *delayed;
2002
2003 if (atomic_add_unless(&inode->i_count, -1, 1))
2004 return;
2005
2006 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2007 delayed->inode = inode;
2008
2009 spin_lock(&fs_info->delayed_iput_lock);
2010 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2011 spin_unlock(&fs_info->delayed_iput_lock);
2012}
2013
2014void btrfs_run_delayed_iputs(struct btrfs_root *root)
2015{
2016 LIST_HEAD(list);
2017 struct btrfs_fs_info *fs_info = root->fs_info;
2018 struct delayed_iput *delayed;
2019 int empty;
2020
2021 spin_lock(&fs_info->delayed_iput_lock);
2022 empty = list_empty(&fs_info->delayed_iputs);
2023 spin_unlock(&fs_info->delayed_iput_lock);
2024 if (empty)
2025 return;
2026
2027 down_read(&root->fs_info->cleanup_work_sem);
2028 spin_lock(&fs_info->delayed_iput_lock);
2029 list_splice_init(&fs_info->delayed_iputs, &list);
2030 spin_unlock(&fs_info->delayed_iput_lock);
2031
2032 while (!list_empty(&list)) {
2033 delayed = list_entry(list.next, struct delayed_iput, list);
2034 list_del(&delayed->list);
2035 iput(delayed->inode);
2036 kfree(delayed);
2037 }
2038 up_read(&root->fs_info->cleanup_work_sem);
2039}
2040
7b128766
JB
2041/*
2042 * This creates an orphan entry for the given inode in case something goes
2043 * wrong in the middle of an unlink/truncate.
2044 */
2045int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2046{
2047 struct btrfs_root *root = BTRFS_I(inode)->root;
2048 int ret = 0;
2049
bcc63abb 2050 spin_lock(&root->list_lock);
7b128766
JB
2051
2052 /* already on the orphan list, we're good */
2053 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2054 spin_unlock(&root->list_lock);
7b128766
JB
2055 return 0;
2056 }
2057
2058 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2059
bcc63abb 2060 spin_unlock(&root->list_lock);
7b128766
JB
2061
2062 /*
2063 * insert an orphan item to track this unlinked/truncated file
2064 */
2065 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2066
2067 return ret;
2068}
2069
2070/*
2071 * We have done the truncate/delete so we can go ahead and remove the orphan
2072 * item for this particular inode.
2073 */
2074int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2075{
2076 struct btrfs_root *root = BTRFS_I(inode)->root;
2077 int ret = 0;
2078
bcc63abb 2079 spin_lock(&root->list_lock);
7b128766
JB
2080
2081 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2082 spin_unlock(&root->list_lock);
7b128766
JB
2083 return 0;
2084 }
2085
2086 list_del_init(&BTRFS_I(inode)->i_orphan);
2087 if (!trans) {
bcc63abb 2088 spin_unlock(&root->list_lock);
7b128766
JB
2089 return 0;
2090 }
2091
bcc63abb 2092 spin_unlock(&root->list_lock);
7b128766
JB
2093
2094 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2095
2096 return ret;
2097}
2098
2099/*
2100 * this cleans up any orphans that may be left on the list from the last use
2101 * of this root.
2102 */
2103void btrfs_orphan_cleanup(struct btrfs_root *root)
2104{
2105 struct btrfs_path *path;
2106 struct extent_buffer *leaf;
2107 struct btrfs_item *item;
2108 struct btrfs_key key, found_key;
2109 struct btrfs_trans_handle *trans;
2110 struct inode *inode;
2111 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2112
c71bf099 2113 if (!xchg(&root->clean_orphans, 0))
7b128766 2114 return;
c71bf099
YZ
2115
2116 path = btrfs_alloc_path();
2117 BUG_ON(!path);
7b128766
JB
2118 path->reada = -1;
2119
2120 key.objectid = BTRFS_ORPHAN_OBJECTID;
2121 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2122 key.offset = (u64)-1;
2123
7b128766
JB
2124 while (1) {
2125 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2126 if (ret < 0) {
2127 printk(KERN_ERR "Error searching slot for orphan: %d"
2128 "\n", ret);
2129 break;
2130 }
2131
2132 /*
2133 * if ret == 0 means we found what we were searching for, which
2134 * is weird, but possible, so only screw with path if we didnt
2135 * find the key and see if we have stuff that matches
2136 */
2137 if (ret > 0) {
2138 if (path->slots[0] == 0)
2139 break;
2140 path->slots[0]--;
2141 }
2142
2143 /* pull out the item */
2144 leaf = path->nodes[0];
2145 item = btrfs_item_nr(leaf, path->slots[0]);
2146 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2147
2148 /* make sure the item matches what we want */
2149 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2150 break;
2151 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2152 break;
2153
2154 /* release the path since we're done with it */
2155 btrfs_release_path(root, path);
2156
2157 /*
2158 * this is where we are basically btrfs_lookup, without the
2159 * crossing root thing. we store the inode number in the
2160 * offset of the orphan item.
2161 */
5d4f98a2
YZ
2162 found_key.objectid = found_key.offset;
2163 found_key.type = BTRFS_INODE_ITEM_KEY;
2164 found_key.offset = 0;
73f73415 2165 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
5d4f98a2 2166 if (IS_ERR(inode))
7b128766
JB
2167 break;
2168
7b128766
JB
2169 /*
2170 * add this inode to the orphan list so btrfs_orphan_del does
2171 * the proper thing when we hit it
2172 */
bcc63abb 2173 spin_lock(&root->list_lock);
7b128766 2174 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2175 spin_unlock(&root->list_lock);
7b128766
JB
2176
2177 /*
2178 * if this is a bad inode, means we actually succeeded in
2179 * removing the inode, but not the orphan record, which means
2180 * we need to manually delete the orphan since iput will just
2181 * do a destroy_inode
2182 */
2183 if (is_bad_inode(inode)) {
5b21f2ed 2184 trans = btrfs_start_transaction(root, 1);
7b128766 2185 btrfs_orphan_del(trans, inode);
5b21f2ed 2186 btrfs_end_transaction(trans, root);
7b128766
JB
2187 iput(inode);
2188 continue;
2189 }
2190
2191 /* if we have links, this was a truncate, lets do that */
2192 if (inode->i_nlink) {
2193 nr_truncate++;
2194 btrfs_truncate(inode);
2195 } else {
2196 nr_unlink++;
2197 }
2198
2199 /* this will do delete_inode and everything for us */
2200 iput(inode);
2201 }
2202
2203 if (nr_unlink)
2204 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2205 if (nr_truncate)
2206 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2207
2208 btrfs_free_path(path);
7b128766
JB
2209}
2210
46a53cca
CM
2211/*
2212 * very simple check to peek ahead in the leaf looking for xattrs. If we
2213 * don't find any xattrs, we know there can't be any acls.
2214 *
2215 * slot is the slot the inode is in, objectid is the objectid of the inode
2216 */
2217static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2218 int slot, u64 objectid)
2219{
2220 u32 nritems = btrfs_header_nritems(leaf);
2221 struct btrfs_key found_key;
2222 int scanned = 0;
2223
2224 slot++;
2225 while (slot < nritems) {
2226 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2227
2228 /* we found a different objectid, there must not be acls */
2229 if (found_key.objectid != objectid)
2230 return 0;
2231
2232 /* we found an xattr, assume we've got an acl */
2233 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2234 return 1;
2235
2236 /*
2237 * we found a key greater than an xattr key, there can't
2238 * be any acls later on
2239 */
2240 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2241 return 0;
2242
2243 slot++;
2244 scanned++;
2245
2246 /*
2247 * it goes inode, inode backrefs, xattrs, extents,
2248 * so if there are a ton of hard links to an inode there can
2249 * be a lot of backrefs. Don't waste time searching too hard,
2250 * this is just an optimization
2251 */
2252 if (scanned >= 8)
2253 break;
2254 }
2255 /* we hit the end of the leaf before we found an xattr or
2256 * something larger than an xattr. We have to assume the inode
2257 * has acls
2258 */
2259 return 1;
2260}
2261
d352ac68
CM
2262/*
2263 * read an inode from the btree into the in-memory inode
2264 */
5d4f98a2 2265static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2266{
2267 struct btrfs_path *path;
5f39d397 2268 struct extent_buffer *leaf;
39279cc3 2269 struct btrfs_inode_item *inode_item;
0b86a832 2270 struct btrfs_timespec *tspec;
39279cc3
CM
2271 struct btrfs_root *root = BTRFS_I(inode)->root;
2272 struct btrfs_key location;
46a53cca 2273 int maybe_acls;
39279cc3 2274 u64 alloc_group_block;
618e21d5 2275 u32 rdev;
39279cc3
CM
2276 int ret;
2277
2278 path = btrfs_alloc_path();
2279 BUG_ON(!path);
39279cc3 2280 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2281
39279cc3 2282 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2283 if (ret)
39279cc3 2284 goto make_bad;
39279cc3 2285
5f39d397
CM
2286 leaf = path->nodes[0];
2287 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2288 struct btrfs_inode_item);
2289
2290 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2291 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2292 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2293 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2294 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2295
2296 tspec = btrfs_inode_atime(inode_item);
2297 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2298 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2299
2300 tspec = btrfs_inode_mtime(inode_item);
2301 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2302 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2303
2304 tspec = btrfs_inode_ctime(inode_item);
2305 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2306 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2307
a76a3cd4 2308 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2309 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2310 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2311 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2312 inode->i_rdev = 0;
5f39d397
CM
2313 rdev = btrfs_inode_rdev(leaf, inode_item);
2314
aec7477b 2315 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2316 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2317
5f39d397 2318 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2319
46a53cca
CM
2320 /*
2321 * try to precache a NULL acl entry for files that don't have
2322 * any xattrs or acls
2323 */
2324 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2325 if (!maybe_acls)
2326 cache_no_acl(inode);
46a53cca 2327
d2fb3437
YZ
2328 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2329 alloc_group_block, 0);
39279cc3
CM
2330 btrfs_free_path(path);
2331 inode_item = NULL;
2332
39279cc3 2333 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2334 case S_IFREG:
2335 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2336 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2337 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2338 inode->i_fop = &btrfs_file_operations;
2339 inode->i_op = &btrfs_file_inode_operations;
2340 break;
2341 case S_IFDIR:
2342 inode->i_fop = &btrfs_dir_file_operations;
2343 if (root == root->fs_info->tree_root)
2344 inode->i_op = &btrfs_dir_ro_inode_operations;
2345 else
2346 inode->i_op = &btrfs_dir_inode_operations;
2347 break;
2348 case S_IFLNK:
2349 inode->i_op = &btrfs_symlink_inode_operations;
2350 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2351 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2352 break;
618e21d5 2353 default:
0279b4cd 2354 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2355 init_special_inode(inode, inode->i_mode, rdev);
2356 break;
39279cc3 2357 }
6cbff00f
CH
2358
2359 btrfs_update_iflags(inode);
39279cc3
CM
2360 return;
2361
2362make_bad:
39279cc3 2363 btrfs_free_path(path);
39279cc3
CM
2364 make_bad_inode(inode);
2365}
2366
d352ac68
CM
2367/*
2368 * given a leaf and an inode, copy the inode fields into the leaf
2369 */
e02119d5
CM
2370static void fill_inode_item(struct btrfs_trans_handle *trans,
2371 struct extent_buffer *leaf,
5f39d397 2372 struct btrfs_inode_item *item,
39279cc3
CM
2373 struct inode *inode)
2374{
5f39d397
CM
2375 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2376 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2377 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2378 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2379 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2380
2381 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2382 inode->i_atime.tv_sec);
2383 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2384 inode->i_atime.tv_nsec);
2385
2386 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2387 inode->i_mtime.tv_sec);
2388 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2389 inode->i_mtime.tv_nsec);
2390
2391 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2392 inode->i_ctime.tv_sec);
2393 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2394 inode->i_ctime.tv_nsec);
2395
a76a3cd4 2396 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2397 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2398 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2399 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2400 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2401 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2402 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2403}
2404
d352ac68
CM
2405/*
2406 * copy everything in the in-memory inode into the btree.
2407 */
d397712b
CM
2408noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2409 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2410{
2411 struct btrfs_inode_item *inode_item;
2412 struct btrfs_path *path;
5f39d397 2413 struct extent_buffer *leaf;
39279cc3
CM
2414 int ret;
2415
2416 path = btrfs_alloc_path();
2417 BUG_ON(!path);
b9473439 2418 path->leave_spinning = 1;
39279cc3
CM
2419 ret = btrfs_lookup_inode(trans, root, path,
2420 &BTRFS_I(inode)->location, 1);
2421 if (ret) {
2422 if (ret > 0)
2423 ret = -ENOENT;
2424 goto failed;
2425 }
2426
b4ce94de 2427 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2428 leaf = path->nodes[0];
2429 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2430 struct btrfs_inode_item);
2431
e02119d5 2432 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2433 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2434 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2435 ret = 0;
2436failed:
39279cc3
CM
2437 btrfs_free_path(path);
2438 return ret;
2439}
2440
2441
d352ac68
CM
2442/*
2443 * unlink helper that gets used here in inode.c and in the tree logging
2444 * recovery code. It remove a link in a directory with a given name, and
2445 * also drops the back refs in the inode to the directory
2446 */
e02119d5
CM
2447int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2448 struct btrfs_root *root,
2449 struct inode *dir, struct inode *inode,
2450 const char *name, int name_len)
39279cc3
CM
2451{
2452 struct btrfs_path *path;
39279cc3 2453 int ret = 0;
5f39d397 2454 struct extent_buffer *leaf;
39279cc3 2455 struct btrfs_dir_item *di;
5f39d397 2456 struct btrfs_key key;
aec7477b 2457 u64 index;
39279cc3
CM
2458
2459 path = btrfs_alloc_path();
54aa1f4d
CM
2460 if (!path) {
2461 ret = -ENOMEM;
2462 goto err;
2463 }
2464
b9473439 2465 path->leave_spinning = 1;
39279cc3
CM
2466 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2467 name, name_len, -1);
2468 if (IS_ERR(di)) {
2469 ret = PTR_ERR(di);
2470 goto err;
2471 }
2472 if (!di) {
2473 ret = -ENOENT;
2474 goto err;
2475 }
5f39d397
CM
2476 leaf = path->nodes[0];
2477 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2478 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2479 if (ret)
2480 goto err;
39279cc3
CM
2481 btrfs_release_path(root, path);
2482
aec7477b 2483 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2484 inode->i_ino,
2485 dir->i_ino, &index);
aec7477b 2486 if (ret) {
d397712b 2487 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2488 "inode %lu parent %lu\n", name_len, name,
e02119d5 2489 inode->i_ino, dir->i_ino);
aec7477b
JB
2490 goto err;
2491 }
2492
39279cc3 2493 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2494 index, name, name_len, -1);
39279cc3
CM
2495 if (IS_ERR(di)) {
2496 ret = PTR_ERR(di);
2497 goto err;
2498 }
2499 if (!di) {
2500 ret = -ENOENT;
2501 goto err;
2502 }
2503 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2504 btrfs_release_path(root, path);
39279cc3 2505
e02119d5
CM
2506 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2507 inode, dir->i_ino);
49eb7e46 2508 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2509
2510 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2511 dir, index);
2512 BUG_ON(ret);
39279cc3
CM
2513err:
2514 btrfs_free_path(path);
e02119d5
CM
2515 if (ret)
2516 goto out;
2517
2518 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2519 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2520 btrfs_update_inode(trans, root, dir);
2521 btrfs_drop_nlink(inode);
2522 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2523out:
39279cc3
CM
2524 return ret;
2525}
2526
2527static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2528{
2529 struct btrfs_root *root;
2530 struct btrfs_trans_handle *trans;
7b128766 2531 struct inode *inode = dentry->d_inode;
39279cc3 2532 int ret;
1832a6d5 2533 unsigned long nr = 0;
39279cc3
CM
2534
2535 root = BTRFS_I(dir)->root;
1832a6d5 2536
5df6a9f6
JB
2537 /*
2538 * 5 items for unlink inode
2539 * 1 for orphan
2540 */
2541 ret = btrfs_reserve_metadata_space(root, 6);
2542 if (ret)
2543 return ret;
2544
39279cc3 2545 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2546 if (IS_ERR(trans)) {
2547 btrfs_unreserve_metadata_space(root, 6);
2548 return PTR_ERR(trans);
2549 }
5f39d397 2550
39279cc3 2551 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2552
2553 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2554
e02119d5
CM
2555 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2556 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2557
2558 if (inode->i_nlink == 0)
2559 ret = btrfs_orphan_add(trans, inode);
2560
d3c2fdcf 2561 nr = trans->blocks_used;
5f39d397 2562
89ce8a63 2563 btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2564 btrfs_unreserve_metadata_space(root, 6);
d3c2fdcf 2565 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2566 return ret;
2567}
2568
4df27c4d
YZ
2569int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2570 struct btrfs_root *root,
2571 struct inode *dir, u64 objectid,
2572 const char *name, int name_len)
2573{
2574 struct btrfs_path *path;
2575 struct extent_buffer *leaf;
2576 struct btrfs_dir_item *di;
2577 struct btrfs_key key;
2578 u64 index;
2579 int ret;
2580
2581 path = btrfs_alloc_path();
2582 if (!path)
2583 return -ENOMEM;
2584
2585 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2586 name, name_len, -1);
2587 BUG_ON(!di || IS_ERR(di));
2588
2589 leaf = path->nodes[0];
2590 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2591 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2592 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2593 BUG_ON(ret);
2594 btrfs_release_path(root, path);
2595
2596 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2597 objectid, root->root_key.objectid,
2598 dir->i_ino, &index, name, name_len);
2599 if (ret < 0) {
2600 BUG_ON(ret != -ENOENT);
2601 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2602 name, name_len);
2603 BUG_ON(!di || IS_ERR(di));
2604
2605 leaf = path->nodes[0];
2606 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2607 btrfs_release_path(root, path);
2608 index = key.offset;
2609 }
2610
2611 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2612 index, name, name_len, -1);
2613 BUG_ON(!di || IS_ERR(di));
2614
2615 leaf = path->nodes[0];
2616 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2617 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2618 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2619 BUG_ON(ret);
2620 btrfs_release_path(root, path);
2621
2622 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2623 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2624 ret = btrfs_update_inode(trans, root, dir);
2625 BUG_ON(ret);
2626 dir->i_sb->s_dirt = 1;
2627
2628 btrfs_free_path(path);
2629 return 0;
2630}
2631
39279cc3
CM
2632static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2633{
2634 struct inode *inode = dentry->d_inode;
1832a6d5 2635 int err = 0;
39279cc3
CM
2636 int ret;
2637 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2638 struct btrfs_trans_handle *trans;
1832a6d5 2639 unsigned long nr = 0;
39279cc3 2640
3394e160 2641 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2642 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2643 return -ENOTEMPTY;
2644
5df6a9f6
JB
2645 ret = btrfs_reserve_metadata_space(root, 5);
2646 if (ret)
2647 return ret;
2648
39279cc3 2649 trans = btrfs_start_transaction(root, 1);
5df6a9f6
JB
2650 if (IS_ERR(trans)) {
2651 btrfs_unreserve_metadata_space(root, 5);
2652 return PTR_ERR(trans);
2653 }
2654
39279cc3 2655 btrfs_set_trans_block_group(trans, dir);
39279cc3 2656
4df27c4d
YZ
2657 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2658 err = btrfs_unlink_subvol(trans, root, dir,
2659 BTRFS_I(inode)->location.objectid,
2660 dentry->d_name.name,
2661 dentry->d_name.len);
2662 goto out;
2663 }
2664
7b128766
JB
2665 err = btrfs_orphan_add(trans, inode);
2666 if (err)
4df27c4d 2667 goto out;
7b128766 2668
39279cc3 2669 /* now the directory is empty */
e02119d5
CM
2670 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2671 dentry->d_name.name, dentry->d_name.len);
d397712b 2672 if (!err)
dbe674a9 2673 btrfs_i_size_write(inode, 0);
4df27c4d 2674out:
d3c2fdcf 2675 nr = trans->blocks_used;
89ce8a63 2676 ret = btrfs_end_transaction_throttle(trans, root);
5df6a9f6 2677 btrfs_unreserve_metadata_space(root, 5);
d3c2fdcf 2678 btrfs_btree_balance_dirty(root, nr);
3954401f 2679
39279cc3
CM
2680 if (ret && !err)
2681 err = ret;
2682 return err;
2683}
2684
d20f7043 2685#if 0
323ac95b
CM
2686/*
2687 * when truncating bytes in a file, it is possible to avoid reading
2688 * the leaves that contain only checksum items. This can be the
2689 * majority of the IO required to delete a large file, but it must
2690 * be done carefully.
2691 *
2692 * The keys in the level just above the leaves are checked to make sure
2693 * the lowest key in a given leaf is a csum key, and starts at an offset
2694 * after the new size.
2695 *
2696 * Then the key for the next leaf is checked to make sure it also has
2697 * a checksum item for the same file. If it does, we know our target leaf
2698 * contains only checksum items, and it can be safely freed without reading
2699 * it.
2700 *
2701 * This is just an optimization targeted at large files. It may do
2702 * nothing. It will return 0 unless things went badly.
2703 */
2704static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *root,
2706 struct btrfs_path *path,
2707 struct inode *inode, u64 new_size)
2708{
2709 struct btrfs_key key;
2710 int ret;
2711 int nritems;
2712 struct btrfs_key found_key;
2713 struct btrfs_key other_key;
5b84e8d6
YZ
2714 struct btrfs_leaf_ref *ref;
2715 u64 leaf_gen;
2716 u64 leaf_start;
323ac95b
CM
2717
2718 path->lowest_level = 1;
2719 key.objectid = inode->i_ino;
2720 key.type = BTRFS_CSUM_ITEM_KEY;
2721 key.offset = new_size;
2722again:
2723 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2724 if (ret < 0)
2725 goto out;
2726
2727 if (path->nodes[1] == NULL) {
2728 ret = 0;
2729 goto out;
2730 }
2731 ret = 0;
2732 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2733 nritems = btrfs_header_nritems(path->nodes[1]);
2734
2735 if (!nritems)
2736 goto out;
2737
2738 if (path->slots[1] >= nritems)
2739 goto next_node;
2740
2741 /* did we find a key greater than anything we want to delete? */
2742 if (found_key.objectid > inode->i_ino ||
2743 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2744 goto out;
2745
2746 /* we check the next key in the node to make sure the leave contains
2747 * only checksum items. This comparison doesn't work if our
2748 * leaf is the last one in the node
2749 */
2750 if (path->slots[1] + 1 >= nritems) {
2751next_node:
2752 /* search forward from the last key in the node, this
2753 * will bring us into the next node in the tree
2754 */
2755 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2756
2757 /* unlikely, but we inc below, so check to be safe */
2758 if (found_key.offset == (u64)-1)
2759 goto out;
2760
2761 /* search_forward needs a path with locks held, do the
2762 * search again for the original key. It is possible
2763 * this will race with a balance and return a path that
2764 * we could modify, but this drop is just an optimization
2765 * and is allowed to miss some leaves.
2766 */
2767 btrfs_release_path(root, path);
2768 found_key.offset++;
2769
2770 /* setup a max key for search_forward */
2771 other_key.offset = (u64)-1;
2772 other_key.type = key.type;
2773 other_key.objectid = key.objectid;
2774
2775 path->keep_locks = 1;
2776 ret = btrfs_search_forward(root, &found_key, &other_key,
2777 path, 0, 0);
2778 path->keep_locks = 0;
2779 if (ret || found_key.objectid != key.objectid ||
2780 found_key.type != key.type) {
2781 ret = 0;
2782 goto out;
2783 }
2784
2785 key.offset = found_key.offset;
2786 btrfs_release_path(root, path);
2787 cond_resched();
2788 goto again;
2789 }
2790
2791 /* we know there's one more slot after us in the tree,
2792 * read that key so we can verify it is also a checksum item
2793 */
2794 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2795
2796 if (found_key.objectid < inode->i_ino)
2797 goto next_key;
2798
2799 if (found_key.type != key.type || found_key.offset < new_size)
2800 goto next_key;
2801
2802 /*
2803 * if the key for the next leaf isn't a csum key from this objectid,
2804 * we can't be sure there aren't good items inside this leaf.
2805 * Bail out
2806 */
2807 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2808 goto out;
2809
5b84e8d6
YZ
2810 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2811 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2812 /*
2813 * it is safe to delete this leaf, it contains only
2814 * csum items from this inode at an offset >= new_size
2815 */
5b84e8d6 2816 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2817 BUG_ON(ret);
2818
5b84e8d6
YZ
2819 if (root->ref_cows && leaf_gen < trans->transid) {
2820 ref = btrfs_alloc_leaf_ref(root, 0);
2821 if (ref) {
2822 ref->root_gen = root->root_key.offset;
2823 ref->bytenr = leaf_start;
2824 ref->owner = 0;
2825 ref->generation = leaf_gen;
2826 ref->nritems = 0;
2827
bd56b302
CM
2828 btrfs_sort_leaf_ref(ref);
2829
5b84e8d6
YZ
2830 ret = btrfs_add_leaf_ref(root, ref, 0);
2831 WARN_ON(ret);
2832 btrfs_free_leaf_ref(root, ref);
2833 } else {
2834 WARN_ON(1);
2835 }
2836 }
323ac95b
CM
2837next_key:
2838 btrfs_release_path(root, path);
2839
2840 if (other_key.objectid == inode->i_ino &&
2841 other_key.type == key.type && other_key.offset > key.offset) {
2842 key.offset = other_key.offset;
2843 cond_resched();
2844 goto again;
2845 }
2846 ret = 0;
2847out:
2848 /* fixup any changes we've made to the path */
2849 path->lowest_level = 0;
2850 path->keep_locks = 0;
2851 btrfs_release_path(root, path);
2852 return ret;
2853}
2854
d20f7043
CM
2855#endif
2856
39279cc3
CM
2857/*
2858 * this can truncate away extent items, csum items and directory items.
2859 * It starts at a high offset and removes keys until it can't find
d352ac68 2860 * any higher than new_size
39279cc3
CM
2861 *
2862 * csum items that cross the new i_size are truncated to the new size
2863 * as well.
7b128766
JB
2864 *
2865 * min_type is the minimum key type to truncate down to. If set to 0, this
2866 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2867 */
8082510e
YZ
2868int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 struct inode *inode,
2871 u64 new_size, u32 min_type)
39279cc3 2872{
39279cc3 2873 struct btrfs_path *path;
5f39d397 2874 struct extent_buffer *leaf;
39279cc3 2875 struct btrfs_file_extent_item *fi;
8082510e
YZ
2876 struct btrfs_key key;
2877 struct btrfs_key found_key;
39279cc3 2878 u64 extent_start = 0;
db94535d 2879 u64 extent_num_bytes = 0;
5d4f98a2 2880 u64 extent_offset = 0;
39279cc3 2881 u64 item_end = 0;
8082510e
YZ
2882 u64 mask = root->sectorsize - 1;
2883 u32 found_type = (u8)-1;
39279cc3
CM
2884 int found_extent;
2885 int del_item;
85e21bac
CM
2886 int pending_del_nr = 0;
2887 int pending_del_slot = 0;
179e29e4 2888 int extent_type = -1;
771ed689 2889 int encoding;
8082510e
YZ
2890 int ret;
2891 int err = 0;
2892
2893 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 2894
e02119d5 2895 if (root->ref_cows)
5b21f2ed 2896 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 2897
39279cc3
CM
2898 path = btrfs_alloc_path();
2899 BUG_ON(!path);
33c17ad5 2900 path->reada = -1;
5f39d397 2901
39279cc3
CM
2902 key.objectid = inode->i_ino;
2903 key.offset = (u64)-1;
5f39d397
CM
2904 key.type = (u8)-1;
2905
85e21bac 2906search_again:
b9473439 2907 path->leave_spinning = 1;
85e21bac 2908 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
2909 if (ret < 0) {
2910 err = ret;
2911 goto out;
2912 }
d397712b 2913
85e21bac 2914 if (ret > 0) {
e02119d5
CM
2915 /* there are no items in the tree for us to truncate, we're
2916 * done
2917 */
8082510e
YZ
2918 if (path->slots[0] == 0)
2919 goto out;
85e21bac
CM
2920 path->slots[0]--;
2921 }
2922
d397712b 2923 while (1) {
39279cc3 2924 fi = NULL;
5f39d397
CM
2925 leaf = path->nodes[0];
2926 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2927 found_type = btrfs_key_type(&found_key);
771ed689 2928 encoding = 0;
39279cc3 2929
5f39d397 2930 if (found_key.objectid != inode->i_ino)
39279cc3 2931 break;
5f39d397 2932
85e21bac 2933 if (found_type < min_type)
39279cc3
CM
2934 break;
2935
5f39d397 2936 item_end = found_key.offset;
39279cc3 2937 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2938 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2939 struct btrfs_file_extent_item);
179e29e4 2940 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2941 encoding = btrfs_file_extent_compression(leaf, fi);
2942 encoding |= btrfs_file_extent_encryption(leaf, fi);
2943 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2944
179e29e4 2945 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2946 item_end +=
db94535d 2947 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2948 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2949 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2950 fi);
39279cc3 2951 }
008630c1 2952 item_end--;
39279cc3 2953 }
8082510e
YZ
2954 if (found_type > min_type) {
2955 del_item = 1;
2956 } else {
2957 if (item_end < new_size)
b888db2b 2958 break;
8082510e
YZ
2959 if (found_key.offset >= new_size)
2960 del_item = 1;
2961 else
2962 del_item = 0;
39279cc3 2963 }
39279cc3 2964 found_extent = 0;
39279cc3 2965 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2966 if (found_type != BTRFS_EXTENT_DATA_KEY)
2967 goto delete;
2968
2969 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2970 u64 num_dec;
db94535d 2971 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2972 if (!del_item && !encoding) {
db94535d
CM
2973 u64 orig_num_bytes =
2974 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2975 extent_num_bytes = new_size -
5f39d397 2976 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2977 extent_num_bytes = extent_num_bytes &
2978 ~((u64)root->sectorsize - 1);
db94535d
CM
2979 btrfs_set_file_extent_num_bytes(leaf, fi,
2980 extent_num_bytes);
2981 num_dec = (orig_num_bytes -
9069218d 2982 extent_num_bytes);
e02119d5 2983 if (root->ref_cows && extent_start != 0)
a76a3cd4 2984 inode_sub_bytes(inode, num_dec);
5f39d397 2985 btrfs_mark_buffer_dirty(leaf);
39279cc3 2986 } else {
db94535d
CM
2987 extent_num_bytes =
2988 btrfs_file_extent_disk_num_bytes(leaf,
2989 fi);
5d4f98a2
YZ
2990 extent_offset = found_key.offset -
2991 btrfs_file_extent_offset(leaf, fi);
2992
39279cc3 2993 /* FIXME blocksize != 4096 */
9069218d 2994 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2995 if (extent_start != 0) {
2996 found_extent = 1;
e02119d5 2997 if (root->ref_cows)
a76a3cd4 2998 inode_sub_bytes(inode, num_dec);
e02119d5 2999 }
39279cc3 3000 }
9069218d 3001 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3002 /*
3003 * we can't truncate inline items that have had
3004 * special encodings
3005 */
3006 if (!del_item &&
3007 btrfs_file_extent_compression(leaf, fi) == 0 &&
3008 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3009 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3010 u32 size = new_size - found_key.offset;
3011
3012 if (root->ref_cows) {
a76a3cd4
YZ
3013 inode_sub_bytes(inode, item_end + 1 -
3014 new_size);
e02119d5
CM
3015 }
3016 size =
3017 btrfs_file_extent_calc_inline_size(size);
9069218d 3018 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3019 size, 1);
9069218d 3020 BUG_ON(ret);
e02119d5 3021 } else if (root->ref_cows) {
a76a3cd4
YZ
3022 inode_sub_bytes(inode, item_end + 1 -
3023 found_key.offset);
9069218d 3024 }
39279cc3 3025 }
179e29e4 3026delete:
39279cc3 3027 if (del_item) {
85e21bac
CM
3028 if (!pending_del_nr) {
3029 /* no pending yet, add ourselves */
3030 pending_del_slot = path->slots[0];
3031 pending_del_nr = 1;
3032 } else if (pending_del_nr &&
3033 path->slots[0] + 1 == pending_del_slot) {
3034 /* hop on the pending chunk */
3035 pending_del_nr++;
3036 pending_del_slot = path->slots[0];
3037 } else {
d397712b 3038 BUG();
85e21bac 3039 }
39279cc3
CM
3040 } else {
3041 break;
3042 }
5d4f98a2 3043 if (found_extent && root->ref_cows) {
b9473439 3044 btrfs_set_path_blocking(path);
39279cc3 3045 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3046 extent_num_bytes, 0,
3047 btrfs_header_owner(leaf),
3048 inode->i_ino, extent_offset);
39279cc3
CM
3049 BUG_ON(ret);
3050 }
85e21bac 3051
8082510e
YZ
3052 if (found_type == BTRFS_INODE_ITEM_KEY)
3053 break;
3054
3055 if (path->slots[0] == 0 ||
3056 path->slots[0] != pending_del_slot) {
3057 if (root->ref_cows) {
3058 err = -EAGAIN;
3059 goto out;
3060 }
3061 if (pending_del_nr) {
3062 ret = btrfs_del_items(trans, root, path,
3063 pending_del_slot,
3064 pending_del_nr);
3065 BUG_ON(ret);
3066 pending_del_nr = 0;
3067 }
85e21bac
CM
3068 btrfs_release_path(root, path);
3069 goto search_again;
8082510e
YZ
3070 } else {
3071 path->slots[0]--;
85e21bac 3072 }
39279cc3 3073 }
8082510e 3074out:
85e21bac
CM
3075 if (pending_del_nr) {
3076 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3077 pending_del_nr);
3078 }
39279cc3 3079 btrfs_free_path(path);
8082510e 3080 return err;
39279cc3
CM
3081}
3082
3083/*
3084 * taken from block_truncate_page, but does cow as it zeros out
3085 * any bytes left in the last page in the file.
3086 */
3087static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3088{
3089 struct inode *inode = mapping->host;
db94535d 3090 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3091 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3092 struct btrfs_ordered_extent *ordered;
2ac55d41 3093 struct extent_state *cached_state = NULL;
e6dcd2dc 3094 char *kaddr;
db94535d 3095 u32 blocksize = root->sectorsize;
39279cc3
CM
3096 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3097 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3098 struct page *page;
39279cc3 3099 int ret = 0;
a52d9a80 3100 u64 page_start;
e6dcd2dc 3101 u64 page_end;
39279cc3
CM
3102
3103 if ((offset & (blocksize - 1)) == 0)
3104 goto out;
5d5e103a
JB
3105 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
3106 if (ret)
3107 goto out;
3108
3109 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
3110 if (ret)
3111 goto out;
39279cc3
CM
3112
3113 ret = -ENOMEM;
211c17f5 3114again:
39279cc3 3115 page = grab_cache_page(mapping, index);
5d5e103a
JB
3116 if (!page) {
3117 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3118 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3 3119 goto out;
5d5e103a 3120 }
e6dcd2dc
CM
3121
3122 page_start = page_offset(page);
3123 page_end = page_start + PAGE_CACHE_SIZE - 1;
3124
39279cc3 3125 if (!PageUptodate(page)) {
9ebefb18 3126 ret = btrfs_readpage(NULL, page);
39279cc3 3127 lock_page(page);
211c17f5
CM
3128 if (page->mapping != mapping) {
3129 unlock_page(page);
3130 page_cache_release(page);
3131 goto again;
3132 }
39279cc3
CM
3133 if (!PageUptodate(page)) {
3134 ret = -EIO;
89642229 3135 goto out_unlock;
39279cc3
CM
3136 }
3137 }
211c17f5 3138 wait_on_page_writeback(page);
e6dcd2dc 3139
2ac55d41
JB
3140 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3141 GFP_NOFS);
e6dcd2dc
CM
3142 set_page_extent_mapped(page);
3143
3144 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3145 if (ordered) {
2ac55d41
JB
3146 unlock_extent_cached(io_tree, page_start, page_end,
3147 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3148 unlock_page(page);
3149 page_cache_release(page);
eb84ae03 3150 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3151 btrfs_put_ordered_extent(ordered);
3152 goto again;
3153 }
3154
2ac55d41 3155 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3156 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3157 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3158
2ac55d41
JB
3159 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3160 &cached_state);
9ed74f2d 3161 if (ret) {
2ac55d41
JB
3162 unlock_extent_cached(io_tree, page_start, page_end,
3163 &cached_state, GFP_NOFS);
9ed74f2d
JB
3164 goto out_unlock;
3165 }
3166
e6dcd2dc
CM
3167 ret = 0;
3168 if (offset != PAGE_CACHE_SIZE) {
3169 kaddr = kmap(page);
3170 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3171 flush_dcache_page(page);
3172 kunmap(page);
3173 }
247e743c 3174 ClearPageChecked(page);
e6dcd2dc 3175 set_page_dirty(page);
2ac55d41
JB
3176 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3177 GFP_NOFS);
39279cc3 3178
89642229 3179out_unlock:
5d5e103a
JB
3180 if (ret)
3181 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
3182 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
39279cc3
CM
3183 unlock_page(page);
3184 page_cache_release(page);
3185out:
3186 return ret;
3187}
3188
9036c102 3189int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3190{
9036c102
YZ
3191 struct btrfs_trans_handle *trans;
3192 struct btrfs_root *root = BTRFS_I(inode)->root;
3193 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3194 struct extent_map *em;
2ac55d41 3195 struct extent_state *cached_state = NULL;
9036c102
YZ
3196 u64 mask = root->sectorsize - 1;
3197 u64 hole_start = (inode->i_size + mask) & ~mask;
3198 u64 block_end = (size + mask) & ~mask;
3199 u64 last_byte;
3200 u64 cur_offset;
3201 u64 hole_size;
9ed74f2d 3202 int err = 0;
39279cc3 3203
9036c102
YZ
3204 if (size <= hole_start)
3205 return 0;
3206
9036c102
YZ
3207 while (1) {
3208 struct btrfs_ordered_extent *ordered;
3209 btrfs_wait_ordered_range(inode, hole_start,
3210 block_end - hole_start);
2ac55d41
JB
3211 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3212 &cached_state, GFP_NOFS);
9036c102
YZ
3213 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3214 if (!ordered)
3215 break;
2ac55d41
JB
3216 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3217 &cached_state, GFP_NOFS);
9036c102
YZ
3218 btrfs_put_ordered_extent(ordered);
3219 }
39279cc3 3220
9036c102
YZ
3221 cur_offset = hole_start;
3222 while (1) {
3223 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3224 block_end - cur_offset, 0);
3225 BUG_ON(IS_ERR(em) || !em);
3226 last_byte = min(extent_map_end(em), block_end);
3227 last_byte = (last_byte + mask) & ~mask;
8082510e 3228 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3229 u64 hint_byte = 0;
9036c102 3230 hole_size = last_byte - cur_offset;
9ed74f2d 3231
8082510e 3232 err = btrfs_reserve_metadata_space(root, 2);
9ed74f2d
JB
3233 if (err)
3234 break;
3235
8082510e
YZ
3236 trans = btrfs_start_transaction(root, 1);
3237 btrfs_set_trans_block_group(trans, inode);
3238
3239 err = btrfs_drop_extents(trans, inode, cur_offset,
3240 cur_offset + hole_size,
3241 &hint_byte, 1);
3242 BUG_ON(err);
3243
9036c102
YZ
3244 err = btrfs_insert_file_extent(trans, root,
3245 inode->i_ino, cur_offset, 0,
3246 0, hole_size, 0, hole_size,
3247 0, 0, 0);
8082510e
YZ
3248 BUG_ON(err);
3249
9036c102
YZ
3250 btrfs_drop_extent_cache(inode, hole_start,
3251 last_byte - 1, 0);
8082510e
YZ
3252
3253 btrfs_end_transaction(trans, root);
3254 btrfs_unreserve_metadata_space(root, 2);
9036c102
YZ
3255 }
3256 free_extent_map(em);
3257 cur_offset = last_byte;
8082510e 3258 if (cur_offset >= block_end)
9036c102
YZ
3259 break;
3260 }
1832a6d5 3261
2ac55d41
JB
3262 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3263 GFP_NOFS);
9036c102
YZ
3264 return err;
3265}
39279cc3 3266
8082510e
YZ
3267static int btrfs_setattr_size(struct inode *inode, struct iattr *attr)
3268{
3269 struct btrfs_root *root = BTRFS_I(inode)->root;
3270 struct btrfs_trans_handle *trans;
3271 unsigned long nr;
3272 int ret;
3273
3274 if (attr->ia_size == inode->i_size)
3275 return 0;
3276
3277 if (attr->ia_size > inode->i_size) {
3278 unsigned long limit;
3279 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
3280 if (attr->ia_size > inode->i_sb->s_maxbytes)
3281 return -EFBIG;
3282 if (limit != RLIM_INFINITY && attr->ia_size > limit) {
3283 send_sig(SIGXFSZ, current, 0);
3284 return -EFBIG;
3285 }
3286 }
3287
3288 ret = btrfs_reserve_metadata_space(root, 1);
3289 if (ret)
3290 return ret;
3291
3292 trans = btrfs_start_transaction(root, 1);
3293 btrfs_set_trans_block_group(trans, inode);
3294
3295 ret = btrfs_orphan_add(trans, inode);
3296 BUG_ON(ret);
3297
3298 nr = trans->blocks_used;
3299 btrfs_end_transaction(trans, root);
3300 btrfs_unreserve_metadata_space(root, 1);
3301 btrfs_btree_balance_dirty(root, nr);
3302
3303 if (attr->ia_size > inode->i_size) {
3304 ret = btrfs_cont_expand(inode, attr->ia_size);
3305 if (ret) {
3306 btrfs_truncate(inode);
3307 return ret;
3308 }
3309
3310 i_size_write(inode, attr->ia_size);
3311 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
3312
3313 trans = btrfs_start_transaction(root, 1);
3314 btrfs_set_trans_block_group(trans, inode);
3315
3316 ret = btrfs_update_inode(trans, root, inode);
3317 BUG_ON(ret);
3318 if (inode->i_nlink > 0) {
3319 ret = btrfs_orphan_del(trans, inode);
3320 BUG_ON(ret);
3321 }
3322 nr = trans->blocks_used;
3323 btrfs_end_transaction(trans, root);
3324 btrfs_btree_balance_dirty(root, nr);
3325 return 0;
3326 }
3327
3328 /*
3329 * We're truncating a file that used to have good data down to
3330 * zero. Make sure it gets into the ordered flush list so that
3331 * any new writes get down to disk quickly.
3332 */
3333 if (attr->ia_size == 0)
3334 BTRFS_I(inode)->ordered_data_close = 1;
3335
3336 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3337 ret = vmtruncate(inode, attr->ia_size);
3338 BUG_ON(ret);
3339
3340 return 0;
3341}
3342
9036c102
YZ
3343static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3344{
3345 struct inode *inode = dentry->d_inode;
3346 int err;
39279cc3 3347
9036c102
YZ
3348 err = inode_change_ok(inode, attr);
3349 if (err)
3350 return err;
2bf5a725 3351
5a3f23d5 3352 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
8082510e
YZ
3353 err = btrfs_setattr_size(inode, attr);
3354 if (err)
3355 return err;
39279cc3 3356 }
8082510e 3357 attr->ia_valid &= ~ATTR_SIZE;
9036c102 3358
8082510e
YZ
3359 if (attr->ia_valid)
3360 err = inode_setattr(inode, attr);
33268eaf
JB
3361
3362 if (!err && ((attr->ia_valid & ATTR_MODE)))
3363 err = btrfs_acl_chmod(inode);
39279cc3
CM
3364 return err;
3365}
61295eb8 3366
39279cc3
CM
3367void btrfs_delete_inode(struct inode *inode)
3368{
3369 struct btrfs_trans_handle *trans;
3370 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3371 unsigned long nr;
39279cc3
CM
3372 int ret;
3373
3374 truncate_inode_pages(&inode->i_data, 0);
3375 if (is_bad_inode(inode)) {
7b128766 3376 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3377 goto no_delete;
3378 }
4a096752 3379 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3380
c71bf099
YZ
3381 if (root->fs_info->log_root_recovering) {
3382 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3383 goto no_delete;
3384 }
3385
76dda93c
YZ
3386 if (inode->i_nlink > 0) {
3387 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3388 goto no_delete;
3389 }
3390
dbe674a9 3391 btrfs_i_size_write(inode, 0);
5f39d397 3392
8082510e
YZ
3393 while (1) {
3394 trans = btrfs_start_transaction(root, 1);
3395 btrfs_set_trans_block_group(trans, inode);
3396 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
7b128766 3397
8082510e
YZ
3398 if (ret != -EAGAIN)
3399 break;
85e21bac 3400
8082510e
YZ
3401 nr = trans->blocks_used;
3402 btrfs_end_transaction(trans, root);
3403 trans = NULL;
3404 btrfs_btree_balance_dirty(root, nr);
3405 }
5f39d397 3406
8082510e
YZ
3407 if (ret == 0) {
3408 ret = btrfs_orphan_del(trans, inode);
3409 BUG_ON(ret);
3410 }
54aa1f4d 3411
d3c2fdcf 3412 nr = trans->blocks_used;
54aa1f4d 3413 btrfs_end_transaction(trans, root);
d3c2fdcf 3414 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3415no_delete:
3416 clear_inode(inode);
8082510e 3417 return;
39279cc3
CM
3418}
3419
3420/*
3421 * this returns the key found in the dir entry in the location pointer.
3422 * If no dir entries were found, location->objectid is 0.
3423 */
3424static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3425 struct btrfs_key *location)
3426{
3427 const char *name = dentry->d_name.name;
3428 int namelen = dentry->d_name.len;
3429 struct btrfs_dir_item *di;
3430 struct btrfs_path *path;
3431 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3432 int ret = 0;
39279cc3
CM
3433
3434 path = btrfs_alloc_path();
3435 BUG_ON(!path);
3954401f 3436
39279cc3
CM
3437 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3438 namelen, 0);
0d9f7f3e
Y
3439 if (IS_ERR(di))
3440 ret = PTR_ERR(di);
d397712b
CM
3441
3442 if (!di || IS_ERR(di))
3954401f 3443 goto out_err;
d397712b 3444
5f39d397 3445 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3446out:
39279cc3
CM
3447 btrfs_free_path(path);
3448 return ret;
3954401f
CM
3449out_err:
3450 location->objectid = 0;
3451 goto out;
39279cc3
CM
3452}
3453
3454/*
3455 * when we hit a tree root in a directory, the btrfs part of the inode
3456 * needs to be changed to reflect the root directory of the tree root. This
3457 * is kind of like crossing a mount point.
3458 */
3459static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3460 struct inode *dir,
3461 struct dentry *dentry,
3462 struct btrfs_key *location,
3463 struct btrfs_root **sub_root)
39279cc3 3464{
4df27c4d
YZ
3465 struct btrfs_path *path;
3466 struct btrfs_root *new_root;
3467 struct btrfs_root_ref *ref;
3468 struct extent_buffer *leaf;
3469 int ret;
3470 int err = 0;
39279cc3 3471
4df27c4d
YZ
3472 path = btrfs_alloc_path();
3473 if (!path) {
3474 err = -ENOMEM;
3475 goto out;
3476 }
39279cc3 3477
4df27c4d
YZ
3478 err = -ENOENT;
3479 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3480 BTRFS_I(dir)->root->root_key.objectid,
3481 location->objectid);
3482 if (ret) {
3483 if (ret < 0)
3484 err = ret;
3485 goto out;
3486 }
39279cc3 3487
4df27c4d
YZ
3488 leaf = path->nodes[0];
3489 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3490 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3491 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3492 goto out;
39279cc3 3493
4df27c4d
YZ
3494 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3495 (unsigned long)(ref + 1),
3496 dentry->d_name.len);
3497 if (ret)
3498 goto out;
3499
3500 btrfs_release_path(root->fs_info->tree_root, path);
3501
3502 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3503 if (IS_ERR(new_root)) {
3504 err = PTR_ERR(new_root);
3505 goto out;
3506 }
3507
3508 if (btrfs_root_refs(&new_root->root_item) == 0) {
3509 err = -ENOENT;
3510 goto out;
3511 }
3512
3513 *sub_root = new_root;
3514 location->objectid = btrfs_root_dirid(&new_root->root_item);
3515 location->type = BTRFS_INODE_ITEM_KEY;
3516 location->offset = 0;
3517 err = 0;
3518out:
3519 btrfs_free_path(path);
3520 return err;
39279cc3
CM
3521}
3522
5d4f98a2
YZ
3523static void inode_tree_add(struct inode *inode)
3524{
3525 struct btrfs_root *root = BTRFS_I(inode)->root;
3526 struct btrfs_inode *entry;
03e860bd
FNP
3527 struct rb_node **p;
3528 struct rb_node *parent;
03e860bd
FNP
3529again:
3530 p = &root->inode_tree.rb_node;
3531 parent = NULL;
5d4f98a2 3532
76dda93c
YZ
3533 if (hlist_unhashed(&inode->i_hash))
3534 return;
3535
5d4f98a2
YZ
3536 spin_lock(&root->inode_lock);
3537 while (*p) {
3538 parent = *p;
3539 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3540
3541 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3542 p = &parent->rb_left;
5d4f98a2 3543 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3544 p = &parent->rb_right;
5d4f98a2
YZ
3545 else {
3546 WARN_ON(!(entry->vfs_inode.i_state &
3547 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3548 rb_erase(parent, &root->inode_tree);
3549 RB_CLEAR_NODE(parent);
3550 spin_unlock(&root->inode_lock);
3551 goto again;
5d4f98a2
YZ
3552 }
3553 }
3554 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3555 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3556 spin_unlock(&root->inode_lock);
3557}
3558
3559static void inode_tree_del(struct inode *inode)
3560{
3561 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3562 int empty = 0;
5d4f98a2 3563
03e860bd 3564 spin_lock(&root->inode_lock);
5d4f98a2 3565 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3566 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3567 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3568 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3569 }
03e860bd 3570 spin_unlock(&root->inode_lock);
76dda93c
YZ
3571
3572 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3573 synchronize_srcu(&root->fs_info->subvol_srcu);
3574 spin_lock(&root->inode_lock);
3575 empty = RB_EMPTY_ROOT(&root->inode_tree);
3576 spin_unlock(&root->inode_lock);
3577 if (empty)
3578 btrfs_add_dead_root(root);
3579 }
3580}
3581
3582int btrfs_invalidate_inodes(struct btrfs_root *root)
3583{
3584 struct rb_node *node;
3585 struct rb_node *prev;
3586 struct btrfs_inode *entry;
3587 struct inode *inode;
3588 u64 objectid = 0;
3589
3590 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3591
3592 spin_lock(&root->inode_lock);
3593again:
3594 node = root->inode_tree.rb_node;
3595 prev = NULL;
3596 while (node) {
3597 prev = node;
3598 entry = rb_entry(node, struct btrfs_inode, rb_node);
3599
3600 if (objectid < entry->vfs_inode.i_ino)
3601 node = node->rb_left;
3602 else if (objectid > entry->vfs_inode.i_ino)
3603 node = node->rb_right;
3604 else
3605 break;
3606 }
3607 if (!node) {
3608 while (prev) {
3609 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3610 if (objectid <= entry->vfs_inode.i_ino) {
3611 node = prev;
3612 break;
3613 }
3614 prev = rb_next(prev);
3615 }
3616 }
3617 while (node) {
3618 entry = rb_entry(node, struct btrfs_inode, rb_node);
3619 objectid = entry->vfs_inode.i_ino + 1;
3620 inode = igrab(&entry->vfs_inode);
3621 if (inode) {
3622 spin_unlock(&root->inode_lock);
3623 if (atomic_read(&inode->i_count) > 1)
3624 d_prune_aliases(inode);
3625 /*
3626 * btrfs_drop_inode will remove it from
3627 * the inode cache when its usage count
3628 * hits zero.
3629 */
3630 iput(inode);
3631 cond_resched();
3632 spin_lock(&root->inode_lock);
3633 goto again;
3634 }
3635
3636 if (cond_resched_lock(&root->inode_lock))
3637 goto again;
3638
3639 node = rb_next(node);
3640 }
3641 spin_unlock(&root->inode_lock);
3642 return 0;
5d4f98a2
YZ
3643}
3644
e02119d5 3645static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3646{
e02119d5
CM
3647 struct btrfs_inode *bi = BTRFS_I(inode);
3648
e02119d5 3649 bi->generation = 0;
c3027eb5 3650 bi->sequence = 0;
e02119d5 3651 bi->last_trans = 0;
257c62e1 3652 bi->last_sub_trans = 0;
e02119d5
CM
3653 bi->logged_trans = 0;
3654 bi->delalloc_bytes = 0;
6a63209f 3655 bi->reserved_bytes = 0;
e02119d5
CM
3656 bi->disk_i_size = 0;
3657 bi->flags = 0;
3658 bi->index_cnt = (u64)-1;
12fcfd22 3659 bi->last_unlink_trans = 0;
2757495c 3660 bi->ordered_data_close = 0;
1e701a32 3661 bi->force_compress = 0;
d1310b2e
CM
3662 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3663 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3664 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3665 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3666 inode->i_mapping, GFP_NOFS);
ea8c2819 3667 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3668 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3669 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3670 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
e02119d5
CM
3671 mutex_init(&BTRFS_I(inode)->log_mutex);
3672}
3673
3674static int btrfs_init_locked_inode(struct inode *inode, void *p)
3675{
3676 struct btrfs_iget_args *args = p;
3677 inode->i_ino = args->ino;
3678 init_btrfs_i(inode);
3679 BTRFS_I(inode)->root = args->root;
6a63209f 3680 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3681 return 0;
3682}
3683
3684static int btrfs_find_actor(struct inode *inode, void *opaque)
3685{
3686 struct btrfs_iget_args *args = opaque;
d397712b
CM
3687 return args->ino == inode->i_ino &&
3688 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3689}
3690
5d4f98a2
YZ
3691static struct inode *btrfs_iget_locked(struct super_block *s,
3692 u64 objectid,
3693 struct btrfs_root *root)
39279cc3
CM
3694{
3695 struct inode *inode;
3696 struct btrfs_iget_args args;
3697 args.ino = objectid;
3698 args.root = root;
3699
3700 inode = iget5_locked(s, objectid, btrfs_find_actor,
3701 btrfs_init_locked_inode,
3702 (void *)&args);
3703 return inode;
3704}
3705
1a54ef8c
BR
3706/* Get an inode object given its location and corresponding root.
3707 * Returns in *is_new if the inode was read from disk
3708 */
3709struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3710 struct btrfs_root *root, int *new)
1a54ef8c
BR
3711{
3712 struct inode *inode;
3713
3714 inode = btrfs_iget_locked(s, location->objectid, root);
3715 if (!inode)
5d4f98a2 3716 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3717
3718 if (inode->i_state & I_NEW) {
3719 BTRFS_I(inode)->root = root;
3720 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3721 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3722
3723 inode_tree_add(inode);
1a54ef8c 3724 unlock_new_inode(inode);
73f73415
JB
3725 if (new)
3726 *new = 1;
1a54ef8c
BR
3727 }
3728
3729 return inode;
3730}
3731
4df27c4d
YZ
3732static struct inode *new_simple_dir(struct super_block *s,
3733 struct btrfs_key *key,
3734 struct btrfs_root *root)
3735{
3736 struct inode *inode = new_inode(s);
3737
3738 if (!inode)
3739 return ERR_PTR(-ENOMEM);
3740
3741 init_btrfs_i(inode);
3742
3743 BTRFS_I(inode)->root = root;
3744 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3745 BTRFS_I(inode)->dummy_inode = 1;
3746
3747 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3748 inode->i_op = &simple_dir_inode_operations;
3749 inode->i_fop = &simple_dir_operations;
3750 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3751 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3752
3753 return inode;
3754}
3755
3de4586c 3756struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3757{
d397712b 3758 struct inode *inode;
4df27c4d 3759 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3760 struct btrfs_root *sub_root = root;
3761 struct btrfs_key location;
76dda93c 3762 int index;
5d4f98a2 3763 int ret;
39279cc3 3764
76dda93c
YZ
3765 dentry->d_op = &btrfs_dentry_operations;
3766
39279cc3
CM
3767 if (dentry->d_name.len > BTRFS_NAME_LEN)
3768 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3769
39279cc3 3770 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3771
39279cc3
CM
3772 if (ret < 0)
3773 return ERR_PTR(ret);
5f39d397 3774
4df27c4d
YZ
3775 if (location.objectid == 0)
3776 return NULL;
3777
3778 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3779 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3780 return inode;
3781 }
3782
3783 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3784
76dda93c 3785 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3786 ret = fixup_tree_root_location(root, dir, dentry,
3787 &location, &sub_root);
3788 if (ret < 0) {
3789 if (ret != -ENOENT)
3790 inode = ERR_PTR(ret);
3791 else
3792 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3793 } else {
73f73415 3794 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3795 }
76dda93c
YZ
3796 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3797
c71bf099
YZ
3798 if (root != sub_root) {
3799 down_read(&root->fs_info->cleanup_work_sem);
3800 if (!(inode->i_sb->s_flags & MS_RDONLY))
3801 btrfs_orphan_cleanup(sub_root);
3802 up_read(&root->fs_info->cleanup_work_sem);
3803 }
3804
3de4586c
CM
3805 return inode;
3806}
3807
76dda93c
YZ
3808static int btrfs_dentry_delete(struct dentry *dentry)
3809{
3810 struct btrfs_root *root;
3811
efefb143
YZ
3812 if (!dentry->d_inode && !IS_ROOT(dentry))
3813 dentry = dentry->d_parent;
76dda93c 3814
efefb143
YZ
3815 if (dentry->d_inode) {
3816 root = BTRFS_I(dentry->d_inode)->root;
3817 if (btrfs_root_refs(&root->root_item) == 0)
3818 return 1;
3819 }
76dda93c
YZ
3820 return 0;
3821}
3822
3de4586c
CM
3823static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3824 struct nameidata *nd)
3825{
3826 struct inode *inode;
3827
3de4586c
CM
3828 inode = btrfs_lookup_dentry(dir, dentry);
3829 if (IS_ERR(inode))
3830 return ERR_CAST(inode);
7b128766 3831
39279cc3
CM
3832 return d_splice_alias(inode, dentry);
3833}
3834
39279cc3
CM
3835static unsigned char btrfs_filetype_table[] = {
3836 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3837};
3838
cbdf5a24
DW
3839static int btrfs_real_readdir(struct file *filp, void *dirent,
3840 filldir_t filldir)
39279cc3 3841{
6da6abae 3842 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3843 struct btrfs_root *root = BTRFS_I(inode)->root;
3844 struct btrfs_item *item;
3845 struct btrfs_dir_item *di;
3846 struct btrfs_key key;
5f39d397 3847 struct btrfs_key found_key;
39279cc3
CM
3848 struct btrfs_path *path;
3849 int ret;
3850 u32 nritems;
5f39d397 3851 struct extent_buffer *leaf;
39279cc3
CM
3852 int slot;
3853 int advance;
3854 unsigned char d_type;
3855 int over = 0;
3856 u32 di_cur;
3857 u32 di_total;
3858 u32 di_len;
3859 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3860 char tmp_name[32];
3861 char *name_ptr;
3862 int name_len;
39279cc3
CM
3863
3864 /* FIXME, use a real flag for deciding about the key type */
3865 if (root->fs_info->tree_root == root)
3866 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3867
3954401f
CM
3868 /* special case for "." */
3869 if (filp->f_pos == 0) {
3870 over = filldir(dirent, ".", 1,
3871 1, inode->i_ino,
3872 DT_DIR);
3873 if (over)
3874 return 0;
3875 filp->f_pos = 1;
3876 }
3954401f
CM
3877 /* special case for .., just use the back ref */
3878 if (filp->f_pos == 1) {
5ecc7e5d 3879 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3880 over = filldir(dirent, "..", 2,
5ecc7e5d 3881 2, pino, DT_DIR);
3954401f 3882 if (over)
49593bfa 3883 return 0;
3954401f
CM
3884 filp->f_pos = 2;
3885 }
49593bfa
DW
3886 path = btrfs_alloc_path();
3887 path->reada = 2;
3888
39279cc3
CM
3889 btrfs_set_key_type(&key, key_type);
3890 key.offset = filp->f_pos;
49593bfa 3891 key.objectid = inode->i_ino;
5f39d397 3892
39279cc3
CM
3893 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3894 if (ret < 0)
3895 goto err;
3896 advance = 0;
49593bfa
DW
3897
3898 while (1) {
5f39d397
CM
3899 leaf = path->nodes[0];
3900 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3901 slot = path->slots[0];
3902 if (advance || slot >= nritems) {
49593bfa 3903 if (slot >= nritems - 1) {
39279cc3
CM
3904 ret = btrfs_next_leaf(root, path);
3905 if (ret)
3906 break;
5f39d397
CM
3907 leaf = path->nodes[0];
3908 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3909 slot = path->slots[0];
3910 } else {
3911 slot++;
3912 path->slots[0]++;
3913 }
3914 }
3de4586c 3915
39279cc3 3916 advance = 1;
5f39d397
CM
3917 item = btrfs_item_nr(leaf, slot);
3918 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3919
3920 if (found_key.objectid != key.objectid)
39279cc3 3921 break;
5f39d397 3922 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3923 break;
5f39d397 3924 if (found_key.offset < filp->f_pos)
39279cc3 3925 continue;
5f39d397
CM
3926
3927 filp->f_pos = found_key.offset;
49593bfa 3928
39279cc3
CM
3929 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3930 di_cur = 0;
5f39d397 3931 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3932
3933 while (di_cur < di_total) {
5f39d397
CM
3934 struct btrfs_key location;
3935
3936 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3937 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3938 name_ptr = tmp_name;
3939 } else {
3940 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3941 if (!name_ptr) {
3942 ret = -ENOMEM;
3943 goto err;
3944 }
5f39d397
CM
3945 }
3946 read_extent_buffer(leaf, name_ptr,
3947 (unsigned long)(di + 1), name_len);
3948
3949 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3950 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3951
3952 /* is this a reference to our own snapshot? If so
3953 * skip it
3954 */
3955 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3956 location.objectid == root->root_key.objectid) {
3957 over = 0;
3958 goto skip;
3959 }
5f39d397 3960 over = filldir(dirent, name_ptr, name_len,
49593bfa 3961 found_key.offset, location.objectid,
39279cc3 3962 d_type);
5f39d397 3963
3de4586c 3964skip:
5f39d397
CM
3965 if (name_ptr != tmp_name)
3966 kfree(name_ptr);
3967
39279cc3
CM
3968 if (over)
3969 goto nopos;
5103e947 3970 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3971 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3972 di_cur += di_len;
3973 di = (struct btrfs_dir_item *)((char *)di + di_len);
3974 }
3975 }
49593bfa
DW
3976
3977 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3978 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
3979 /*
3980 * 32-bit glibc will use getdents64, but then strtol -
3981 * so the last number we can serve is this.
3982 */
3983 filp->f_pos = 0x7fffffff;
5e591a07
YZ
3984 else
3985 filp->f_pos++;
39279cc3
CM
3986nopos:
3987 ret = 0;
3988err:
39279cc3 3989 btrfs_free_path(path);
39279cc3
CM
3990 return ret;
3991}
3992
3993int btrfs_write_inode(struct inode *inode, int wait)
3994{
3995 struct btrfs_root *root = BTRFS_I(inode)->root;
3996 struct btrfs_trans_handle *trans;
3997 int ret = 0;
3998
c146afad 3999 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
4000 return 0;
4001
39279cc3 4002 if (wait) {
f9295749 4003 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4004 btrfs_set_trans_block_group(trans, inode);
4005 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4006 }
4007 return ret;
4008}
4009
4010/*
54aa1f4d 4011 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4012 * inode changes. But, it is most likely to find the inode in cache.
4013 * FIXME, needs more benchmarking...there are no reasons other than performance
4014 * to keep or drop this code.
4015 */
4016void btrfs_dirty_inode(struct inode *inode)
4017{
4018 struct btrfs_root *root = BTRFS_I(inode)->root;
4019 struct btrfs_trans_handle *trans;
4020
f9295749 4021 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
4022 btrfs_set_trans_block_group(trans, inode);
4023 btrfs_update_inode(trans, root, inode);
4024 btrfs_end_transaction(trans, root);
39279cc3
CM
4025}
4026
d352ac68
CM
4027/*
4028 * find the highest existing sequence number in a directory
4029 * and then set the in-memory index_cnt variable to reflect
4030 * free sequence numbers
4031 */
aec7477b
JB
4032static int btrfs_set_inode_index_count(struct inode *inode)
4033{
4034 struct btrfs_root *root = BTRFS_I(inode)->root;
4035 struct btrfs_key key, found_key;
4036 struct btrfs_path *path;
4037 struct extent_buffer *leaf;
4038 int ret;
4039
4040 key.objectid = inode->i_ino;
4041 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4042 key.offset = (u64)-1;
4043
4044 path = btrfs_alloc_path();
4045 if (!path)
4046 return -ENOMEM;
4047
4048 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4049 if (ret < 0)
4050 goto out;
4051 /* FIXME: we should be able to handle this */
4052 if (ret == 0)
4053 goto out;
4054 ret = 0;
4055
4056 /*
4057 * MAGIC NUMBER EXPLANATION:
4058 * since we search a directory based on f_pos we have to start at 2
4059 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4060 * else has to start at 2
4061 */
4062 if (path->slots[0] == 0) {
4063 BTRFS_I(inode)->index_cnt = 2;
4064 goto out;
4065 }
4066
4067 path->slots[0]--;
4068
4069 leaf = path->nodes[0];
4070 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4071
4072 if (found_key.objectid != inode->i_ino ||
4073 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4074 BTRFS_I(inode)->index_cnt = 2;
4075 goto out;
4076 }
4077
4078 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4079out:
4080 btrfs_free_path(path);
4081 return ret;
4082}
4083
d352ac68
CM
4084/*
4085 * helper to find a free sequence number in a given directory. This current
4086 * code is very simple, later versions will do smarter things in the btree
4087 */
3de4586c 4088int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4089{
4090 int ret = 0;
4091
4092 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4093 ret = btrfs_set_inode_index_count(dir);
d397712b 4094 if (ret)
aec7477b
JB
4095 return ret;
4096 }
4097
00e4e6b3 4098 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4099 BTRFS_I(dir)->index_cnt++;
4100
4101 return ret;
4102}
4103
39279cc3
CM
4104static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4105 struct btrfs_root *root,
aec7477b 4106 struct inode *dir,
9c58309d 4107 const char *name, int name_len,
d2fb3437
YZ
4108 u64 ref_objectid, u64 objectid,
4109 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4110{
4111 struct inode *inode;
5f39d397 4112 struct btrfs_inode_item *inode_item;
39279cc3 4113 struct btrfs_key *location;
5f39d397 4114 struct btrfs_path *path;
9c58309d
CM
4115 struct btrfs_inode_ref *ref;
4116 struct btrfs_key key[2];
4117 u32 sizes[2];
4118 unsigned long ptr;
39279cc3
CM
4119 int ret;
4120 int owner;
4121
5f39d397
CM
4122 path = btrfs_alloc_path();
4123 BUG_ON(!path);
4124
39279cc3
CM
4125 inode = new_inode(root->fs_info->sb);
4126 if (!inode)
4127 return ERR_PTR(-ENOMEM);
4128
aec7477b 4129 if (dir) {
3de4586c 4130 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4131 if (ret) {
4132 iput(inode);
aec7477b 4133 return ERR_PTR(ret);
09771430 4134 }
aec7477b
JB
4135 }
4136 /*
4137 * index_cnt is ignored for everything but a dir,
4138 * btrfs_get_inode_index_count has an explanation for the magic
4139 * number
4140 */
e02119d5 4141 init_btrfs_i(inode);
aec7477b 4142 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4143 BTRFS_I(inode)->root = root;
e02119d5 4144 BTRFS_I(inode)->generation = trans->transid;
6a63209f 4145 btrfs_set_inode_space_info(root, inode);
b888db2b 4146
39279cc3
CM
4147 if (mode & S_IFDIR)
4148 owner = 0;
4149 else
4150 owner = 1;
d2fb3437
YZ
4151 BTRFS_I(inode)->block_group =
4152 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4153
4154 key[0].objectid = objectid;
4155 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4156 key[0].offset = 0;
4157
4158 key[1].objectid = objectid;
4159 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4160 key[1].offset = ref_objectid;
4161
4162 sizes[0] = sizeof(struct btrfs_inode_item);
4163 sizes[1] = name_len + sizeof(*ref);
4164
b9473439 4165 path->leave_spinning = 1;
9c58309d
CM
4166 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4167 if (ret != 0)
5f39d397
CM
4168 goto fail;
4169
79683f2d 4170 inode->i_uid = current_fsuid();
8c087b51 4171
42f15d77 4172 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
4173 inode->i_gid = dir->i_gid;
4174 if (S_ISDIR(mode))
4175 mode |= S_ISGID;
4176 } else
4177 inode->i_gid = current_fsgid();
4178
39279cc3
CM
4179 inode->i_mode = mode;
4180 inode->i_ino = objectid;
a76a3cd4 4181 inode_set_bytes(inode, 0);
39279cc3 4182 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4183 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4184 struct btrfs_inode_item);
e02119d5 4185 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4186
4187 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4188 struct btrfs_inode_ref);
4189 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4190 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4191 ptr = (unsigned long)(ref + 1);
4192 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4193
5f39d397
CM
4194 btrfs_mark_buffer_dirty(path->nodes[0]);
4195 btrfs_free_path(path);
4196
39279cc3
CM
4197 location = &BTRFS_I(inode)->location;
4198 location->objectid = objectid;
39279cc3
CM
4199 location->offset = 0;
4200 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4201
6cbff00f
CH
4202 btrfs_inherit_iflags(inode, dir);
4203
94272164
CM
4204 if ((mode & S_IFREG)) {
4205 if (btrfs_test_opt(root, NODATASUM))
4206 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4207 if (btrfs_test_opt(root, NODATACOW))
4208 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4209 }
4210
39279cc3 4211 insert_inode_hash(inode);
5d4f98a2 4212 inode_tree_add(inode);
39279cc3 4213 return inode;
5f39d397 4214fail:
aec7477b
JB
4215 if (dir)
4216 BTRFS_I(dir)->index_cnt--;
5f39d397 4217 btrfs_free_path(path);
09771430 4218 iput(inode);
5f39d397 4219 return ERR_PTR(ret);
39279cc3
CM
4220}
4221
4222static inline u8 btrfs_inode_type(struct inode *inode)
4223{
4224 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4225}
4226
d352ac68
CM
4227/*
4228 * utility function to add 'inode' into 'parent_inode' with
4229 * a give name and a given sequence number.
4230 * if 'add_backref' is true, also insert a backref from the
4231 * inode to the parent directory.
4232 */
e02119d5
CM
4233int btrfs_add_link(struct btrfs_trans_handle *trans,
4234 struct inode *parent_inode, struct inode *inode,
4235 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4236{
4df27c4d 4237 int ret = 0;
39279cc3 4238 struct btrfs_key key;
e02119d5 4239 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4240
4df27c4d
YZ
4241 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4242 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4243 } else {
4244 key.objectid = inode->i_ino;
4245 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4246 key.offset = 0;
4247 }
4248
4249 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4250 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4251 key.objectid, root->root_key.objectid,
4252 parent_inode->i_ino,
4253 index, name, name_len);
4254 } else if (add_backref) {
4255 ret = btrfs_insert_inode_ref(trans, root,
4256 name, name_len, inode->i_ino,
4257 parent_inode->i_ino, index);
4258 }
39279cc3 4259
39279cc3 4260 if (ret == 0) {
4df27c4d
YZ
4261 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4262 parent_inode->i_ino, &key,
4263 btrfs_inode_type(inode), index);
4264 BUG_ON(ret);
4265
dbe674a9 4266 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4267 name_len * 2);
79c44584 4268 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4269 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4270 }
4271 return ret;
4272}
4273
4274static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4275 struct dentry *dentry, struct inode *inode,
00e4e6b3 4276 int backref, u64 index)
39279cc3 4277{
e02119d5
CM
4278 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4279 inode, dentry->d_name.name,
4280 dentry->d_name.len, backref, index);
39279cc3
CM
4281 if (!err) {
4282 d_instantiate(dentry, inode);
4283 return 0;
4284 }
4285 if (err > 0)
4286 err = -EEXIST;
4287 return err;
4288}
4289
618e21d5
JB
4290static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4291 int mode, dev_t rdev)
4292{
4293 struct btrfs_trans_handle *trans;
4294 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4295 struct inode *inode = NULL;
618e21d5
JB
4296 int err;
4297 int drop_inode = 0;
4298 u64 objectid;
1832a6d5 4299 unsigned long nr = 0;
00e4e6b3 4300 u64 index = 0;
618e21d5
JB
4301
4302 if (!new_valid_dev(rdev))
4303 return -EINVAL;
4304
9ed74f2d
JB
4305 /*
4306 * 2 for inode item and ref
4307 * 2 for dir items
4308 * 1 for xattr if selinux is on
4309 */
4310 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4311 if (err)
9ed74f2d 4312 return err;
1832a6d5 4313
618e21d5 4314 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4315 if (!trans)
4316 goto fail;
618e21d5
JB
4317 btrfs_set_trans_block_group(trans, dir);
4318
4319 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4320 if (err) {
4321 err = -ENOSPC;
4322 goto out_unlock;
4323 }
4324
aec7477b 4325 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4326 dentry->d_name.len,
4327 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4328 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4329 err = PTR_ERR(inode);
4330 if (IS_ERR(inode))
4331 goto out_unlock;
4332
f34f57a3 4333 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4334 if (err) {
4335 drop_inode = 1;
4336 goto out_unlock;
4337 }
4338
618e21d5 4339 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4340 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4341 if (err)
4342 drop_inode = 1;
4343 else {
4344 inode->i_op = &btrfs_special_inode_operations;
4345 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4346 btrfs_update_inode(trans, root, inode);
618e21d5 4347 }
618e21d5
JB
4348 btrfs_update_inode_block_group(trans, inode);
4349 btrfs_update_inode_block_group(trans, dir);
4350out_unlock:
d3c2fdcf 4351 nr = trans->blocks_used;
89ce8a63 4352 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4353fail:
9ed74f2d 4354 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4355 if (drop_inode) {
4356 inode_dec_link_count(inode);
4357 iput(inode);
4358 }
d3c2fdcf 4359 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4360 return err;
4361}
4362
39279cc3
CM
4363static int btrfs_create(struct inode *dir, struct dentry *dentry,
4364 int mode, struct nameidata *nd)
4365{
4366 struct btrfs_trans_handle *trans;
4367 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4368 struct inode *inode = NULL;
39279cc3
CM
4369 int err;
4370 int drop_inode = 0;
1832a6d5 4371 unsigned long nr = 0;
39279cc3 4372 u64 objectid;
00e4e6b3 4373 u64 index = 0;
39279cc3 4374
9ed74f2d
JB
4375 /*
4376 * 2 for inode item and ref
4377 * 2 for dir items
4378 * 1 for xattr if selinux is on
4379 */
4380 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4381 if (err)
9ed74f2d
JB
4382 return err;
4383
39279cc3 4384 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4385 if (!trans)
4386 goto fail;
39279cc3
CM
4387 btrfs_set_trans_block_group(trans, dir);
4388
4389 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4390 if (err) {
4391 err = -ENOSPC;
4392 goto out_unlock;
4393 }
4394
aec7477b 4395 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4396 dentry->d_name.len,
4397 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4398 objectid, BTRFS_I(dir)->block_group, mode,
4399 &index);
39279cc3
CM
4400 err = PTR_ERR(inode);
4401 if (IS_ERR(inode))
4402 goto out_unlock;
4403
f34f57a3 4404 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4405 if (err) {
4406 drop_inode = 1;
4407 goto out_unlock;
4408 }
4409
39279cc3 4410 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4411 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4412 if (err)
4413 drop_inode = 1;
4414 else {
4415 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4416 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4417 inode->i_fop = &btrfs_file_operations;
4418 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4419 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4420 }
39279cc3
CM
4421 btrfs_update_inode_block_group(trans, inode);
4422 btrfs_update_inode_block_group(trans, dir);
4423out_unlock:
d3c2fdcf 4424 nr = trans->blocks_used;
ab78c84d 4425 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4426fail:
9ed74f2d 4427 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4428 if (drop_inode) {
4429 inode_dec_link_count(inode);
4430 iput(inode);
4431 }
d3c2fdcf 4432 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4433 return err;
4434}
4435
4436static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4437 struct dentry *dentry)
4438{
4439 struct btrfs_trans_handle *trans;
4440 struct btrfs_root *root = BTRFS_I(dir)->root;
4441 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4442 u64 index;
1832a6d5 4443 unsigned long nr = 0;
39279cc3
CM
4444 int err;
4445 int drop_inode = 0;
4446
4447 if (inode->i_nlink == 0)
4448 return -ENOENT;
4449
4a8be425
TH
4450 /* do not allow sys_link's with other subvols of the same device */
4451 if (root->objectid != BTRFS_I(inode)->root->objectid)
4452 return -EPERM;
4453
9ed74f2d
JB
4454 /*
4455 * 1 item for inode ref
4456 * 2 items for dir items
4457 */
4458 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4459 if (err)
9ed74f2d
JB
4460 return err;
4461
4462 btrfs_inc_nlink(inode);
4463
3de4586c 4464 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4465 if (err)
4466 goto fail;
4467
39279cc3 4468 trans = btrfs_start_transaction(root, 1);
5f39d397 4469
39279cc3
CM
4470 btrfs_set_trans_block_group(trans, dir);
4471 atomic_inc(&inode->i_count);
aec7477b 4472
00e4e6b3 4473 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4474
a5719521 4475 if (err) {
54aa1f4d 4476 drop_inode = 1;
a5719521
YZ
4477 } else {
4478 btrfs_update_inode_block_group(trans, dir);
4479 err = btrfs_update_inode(trans, root, inode);
4480 BUG_ON(err);
4481 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4482 }
39279cc3 4483
d3c2fdcf 4484 nr = trans->blocks_used;
ab78c84d 4485 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4486fail:
9ed74f2d 4487 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4488 if (drop_inode) {
4489 inode_dec_link_count(inode);
4490 iput(inode);
4491 }
d3c2fdcf 4492 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4493 return err;
4494}
4495
39279cc3
CM
4496static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4497{
b9d86667 4498 struct inode *inode = NULL;
39279cc3
CM
4499 struct btrfs_trans_handle *trans;
4500 struct btrfs_root *root = BTRFS_I(dir)->root;
4501 int err = 0;
4502 int drop_on_err = 0;
b9d86667 4503 u64 objectid = 0;
00e4e6b3 4504 u64 index = 0;
d3c2fdcf 4505 unsigned long nr = 1;
39279cc3 4506
9ed74f2d
JB
4507 /*
4508 * 2 items for inode and ref
4509 * 2 items for dir items
4510 * 1 for xattr if selinux is on
4511 */
4512 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4513 if (err)
9ed74f2d 4514 return err;
1832a6d5 4515
39279cc3 4516 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4517 if (!trans) {
4518 err = -ENOMEM;
39279cc3
CM
4519 goto out_unlock;
4520 }
9ed74f2d 4521 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4522
4523 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4524 if (err) {
4525 err = -ENOSPC;
0be2e981 4526 goto out_fail;
39279cc3
CM
4527 }
4528
aec7477b 4529 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4530 dentry->d_name.len,
4531 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4532 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4533 &index);
39279cc3
CM
4534 if (IS_ERR(inode)) {
4535 err = PTR_ERR(inode);
4536 goto out_fail;
4537 }
5f39d397 4538
39279cc3 4539 drop_on_err = 1;
33268eaf 4540
f34f57a3 4541 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4542 if (err)
4543 goto out_fail;
4544
39279cc3
CM
4545 inode->i_op = &btrfs_dir_inode_operations;
4546 inode->i_fop = &btrfs_dir_file_operations;
4547 btrfs_set_trans_block_group(trans, inode);
4548
dbe674a9 4549 btrfs_i_size_write(inode, 0);
39279cc3
CM
4550 err = btrfs_update_inode(trans, root, inode);
4551 if (err)
4552 goto out_fail;
5f39d397 4553
e02119d5
CM
4554 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4555 inode, dentry->d_name.name,
4556 dentry->d_name.len, 0, index);
39279cc3
CM
4557 if (err)
4558 goto out_fail;
5f39d397 4559
39279cc3
CM
4560 d_instantiate(dentry, inode);
4561 drop_on_err = 0;
39279cc3
CM
4562 btrfs_update_inode_block_group(trans, inode);
4563 btrfs_update_inode_block_group(trans, dir);
4564
4565out_fail:
d3c2fdcf 4566 nr = trans->blocks_used;
ab78c84d 4567 btrfs_end_transaction_throttle(trans, root);
5f39d397 4568
39279cc3 4569out_unlock:
9ed74f2d 4570 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4571 if (drop_on_err)
4572 iput(inode);
d3c2fdcf 4573 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4574 return err;
4575}
4576
d352ac68
CM
4577/* helper for btfs_get_extent. Given an existing extent in the tree,
4578 * and an extent that you want to insert, deal with overlap and insert
4579 * the new extent into the tree.
4580 */
3b951516
CM
4581static int merge_extent_mapping(struct extent_map_tree *em_tree,
4582 struct extent_map *existing,
e6dcd2dc
CM
4583 struct extent_map *em,
4584 u64 map_start, u64 map_len)
3b951516
CM
4585{
4586 u64 start_diff;
3b951516 4587
e6dcd2dc
CM
4588 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4589 start_diff = map_start - em->start;
4590 em->start = map_start;
4591 em->len = map_len;
c8b97818
CM
4592 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4593 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4594 em->block_start += start_diff;
c8b97818
CM
4595 em->block_len -= start_diff;
4596 }
e6dcd2dc 4597 return add_extent_mapping(em_tree, em);
3b951516
CM
4598}
4599
c8b97818
CM
4600static noinline int uncompress_inline(struct btrfs_path *path,
4601 struct inode *inode, struct page *page,
4602 size_t pg_offset, u64 extent_offset,
4603 struct btrfs_file_extent_item *item)
4604{
4605 int ret;
4606 struct extent_buffer *leaf = path->nodes[0];
4607 char *tmp;
4608 size_t max_size;
4609 unsigned long inline_size;
4610 unsigned long ptr;
4611
4612 WARN_ON(pg_offset != 0);
4613 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4614 inline_size = btrfs_file_extent_inline_item_len(leaf,
4615 btrfs_item_nr(leaf, path->slots[0]));
4616 tmp = kmalloc(inline_size, GFP_NOFS);
4617 ptr = btrfs_file_extent_inline_start(item);
4618
4619 read_extent_buffer(leaf, tmp, ptr, inline_size);
4620
5b050f04 4621 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4622 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4623 inline_size, max_size);
4624 if (ret) {
4625 char *kaddr = kmap_atomic(page, KM_USER0);
4626 unsigned long copy_size = min_t(u64,
4627 PAGE_CACHE_SIZE - pg_offset,
4628 max_size - extent_offset);
4629 memset(kaddr + pg_offset, 0, copy_size);
4630 kunmap_atomic(kaddr, KM_USER0);
4631 }
4632 kfree(tmp);
4633 return 0;
4634}
4635
d352ac68
CM
4636/*
4637 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4638 * the ugly parts come from merging extents from the disk with the in-ram
4639 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4640 * where the in-ram extents might be locked pending data=ordered completion.
4641 *
4642 * This also copies inline extents directly into the page.
4643 */
d397712b 4644
a52d9a80 4645struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4646 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4647 int create)
4648{
4649 int ret;
4650 int err = 0;
db94535d 4651 u64 bytenr;
a52d9a80
CM
4652 u64 extent_start = 0;
4653 u64 extent_end = 0;
4654 u64 objectid = inode->i_ino;
4655 u32 found_type;
f421950f 4656 struct btrfs_path *path = NULL;
a52d9a80
CM
4657 struct btrfs_root *root = BTRFS_I(inode)->root;
4658 struct btrfs_file_extent_item *item;
5f39d397
CM
4659 struct extent_buffer *leaf;
4660 struct btrfs_key found_key;
a52d9a80
CM
4661 struct extent_map *em = NULL;
4662 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4663 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4664 struct btrfs_trans_handle *trans = NULL;
c8b97818 4665 int compressed;
a52d9a80 4666
a52d9a80 4667again:
890871be 4668 read_lock(&em_tree->lock);
d1310b2e 4669 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4670 if (em)
4671 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4672 read_unlock(&em_tree->lock);
d1310b2e 4673
a52d9a80 4674 if (em) {
e1c4b745
CM
4675 if (em->start > start || em->start + em->len <= start)
4676 free_extent_map(em);
4677 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4678 free_extent_map(em);
4679 else
4680 goto out;
a52d9a80 4681 }
d1310b2e 4682 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4683 if (!em) {
d1310b2e
CM
4684 err = -ENOMEM;
4685 goto out;
a52d9a80 4686 }
e6dcd2dc 4687 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4688 em->start = EXTENT_MAP_HOLE;
445a6944 4689 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4690 em->len = (u64)-1;
c8b97818 4691 em->block_len = (u64)-1;
f421950f
CM
4692
4693 if (!path) {
4694 path = btrfs_alloc_path();
4695 BUG_ON(!path);
4696 }
4697
179e29e4
CM
4698 ret = btrfs_lookup_file_extent(trans, root, path,
4699 objectid, start, trans != NULL);
a52d9a80
CM
4700 if (ret < 0) {
4701 err = ret;
4702 goto out;
4703 }
4704
4705 if (ret != 0) {
4706 if (path->slots[0] == 0)
4707 goto not_found;
4708 path->slots[0]--;
4709 }
4710
5f39d397
CM
4711 leaf = path->nodes[0];
4712 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4713 struct btrfs_file_extent_item);
a52d9a80 4714 /* are we inside the extent that was found? */
5f39d397
CM
4715 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4716 found_type = btrfs_key_type(&found_key);
4717 if (found_key.objectid != objectid ||
a52d9a80
CM
4718 found_type != BTRFS_EXTENT_DATA_KEY) {
4719 goto not_found;
4720 }
4721
5f39d397
CM
4722 found_type = btrfs_file_extent_type(leaf, item);
4723 extent_start = found_key.offset;
c8b97818 4724 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4725 if (found_type == BTRFS_FILE_EXTENT_REG ||
4726 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4727 extent_end = extent_start +
db94535d 4728 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4729 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4730 size_t size;
4731 size = btrfs_file_extent_inline_len(leaf, item);
4732 extent_end = (extent_start + size + root->sectorsize - 1) &
4733 ~((u64)root->sectorsize - 1);
4734 }
4735
4736 if (start >= extent_end) {
4737 path->slots[0]++;
4738 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4739 ret = btrfs_next_leaf(root, path);
4740 if (ret < 0) {
4741 err = ret;
4742 goto out;
a52d9a80 4743 }
9036c102
YZ
4744 if (ret > 0)
4745 goto not_found;
4746 leaf = path->nodes[0];
a52d9a80 4747 }
9036c102
YZ
4748 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4749 if (found_key.objectid != objectid ||
4750 found_key.type != BTRFS_EXTENT_DATA_KEY)
4751 goto not_found;
4752 if (start + len <= found_key.offset)
4753 goto not_found;
4754 em->start = start;
4755 em->len = found_key.offset - start;
4756 goto not_found_em;
4757 }
4758
d899e052
YZ
4759 if (found_type == BTRFS_FILE_EXTENT_REG ||
4760 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4761 em->start = extent_start;
4762 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4763 em->orig_start = extent_start -
4764 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4765 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4766 if (bytenr == 0) {
5f39d397 4767 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4768 goto insert;
4769 }
c8b97818
CM
4770 if (compressed) {
4771 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4772 em->block_start = bytenr;
4773 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4774 item);
4775 } else {
4776 bytenr += btrfs_file_extent_offset(leaf, item);
4777 em->block_start = bytenr;
4778 em->block_len = em->len;
d899e052
YZ
4779 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4780 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4781 }
a52d9a80
CM
4782 goto insert;
4783 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4784 unsigned long ptr;
a52d9a80 4785 char *map;
3326d1b0
CM
4786 size_t size;
4787 size_t extent_offset;
4788 size_t copy_size;
a52d9a80 4789
689f9346 4790 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4791 if (!page || create) {
689f9346 4792 em->start = extent_start;
9036c102 4793 em->len = extent_end - extent_start;
689f9346
Y
4794 goto out;
4795 }
5f39d397 4796
9036c102
YZ
4797 size = btrfs_file_extent_inline_len(leaf, item);
4798 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4799 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4800 size - extent_offset);
3326d1b0 4801 em->start = extent_start + extent_offset;
70dec807
CM
4802 em->len = (copy_size + root->sectorsize - 1) &
4803 ~((u64)root->sectorsize - 1);
ff5b7ee3 4804 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4805 if (compressed)
4806 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4807 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4808 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4809 if (btrfs_file_extent_compression(leaf, item) ==
4810 BTRFS_COMPRESS_ZLIB) {
4811 ret = uncompress_inline(path, inode, page,
4812 pg_offset,
4813 extent_offset, item);
4814 BUG_ON(ret);
4815 } else {
4816 map = kmap(page);
4817 read_extent_buffer(leaf, map + pg_offset, ptr,
4818 copy_size);
93c82d57
CM
4819 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4820 memset(map + pg_offset + copy_size, 0,
4821 PAGE_CACHE_SIZE - pg_offset -
4822 copy_size);
4823 }
c8b97818
CM
4824 kunmap(page);
4825 }
179e29e4
CM
4826 flush_dcache_page(page);
4827 } else if (create && PageUptodate(page)) {
4828 if (!trans) {
4829 kunmap(page);
4830 free_extent_map(em);
4831 em = NULL;
4832 btrfs_release_path(root, path);
f9295749 4833 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4834 goto again;
4835 }
c8b97818 4836 map = kmap(page);
70dec807 4837 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4838 copy_size);
c8b97818 4839 kunmap(page);
179e29e4 4840 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4841 }
d1310b2e
CM
4842 set_extent_uptodate(io_tree, em->start,
4843 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4844 goto insert;
4845 } else {
d397712b 4846 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4847 WARN_ON(1);
4848 }
4849not_found:
4850 em->start = start;
d1310b2e 4851 em->len = len;
a52d9a80 4852not_found_em:
5f39d397 4853 em->block_start = EXTENT_MAP_HOLE;
9036c102 4854 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4855insert:
4856 btrfs_release_path(root, path);
d1310b2e 4857 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4858 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4859 "[%llu %llu]\n", (unsigned long long)em->start,
4860 (unsigned long long)em->len,
4861 (unsigned long long)start,
4862 (unsigned long long)len);
a52d9a80
CM
4863 err = -EIO;
4864 goto out;
4865 }
d1310b2e
CM
4866
4867 err = 0;
890871be 4868 write_lock(&em_tree->lock);
a52d9a80 4869 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4870 /* it is possible that someone inserted the extent into the tree
4871 * while we had the lock dropped. It is also possible that
4872 * an overlapping map exists in the tree
4873 */
a52d9a80 4874 if (ret == -EEXIST) {
3b951516 4875 struct extent_map *existing;
e6dcd2dc
CM
4876
4877 ret = 0;
4878
3b951516 4879 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4880 if (existing && (existing->start > start ||
4881 existing->start + existing->len <= start)) {
4882 free_extent_map(existing);
4883 existing = NULL;
4884 }
3b951516
CM
4885 if (!existing) {
4886 existing = lookup_extent_mapping(em_tree, em->start,
4887 em->len);
4888 if (existing) {
4889 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4890 em, start,
4891 root->sectorsize);
3b951516
CM
4892 free_extent_map(existing);
4893 if (err) {
4894 free_extent_map(em);
4895 em = NULL;
4896 }
4897 } else {
4898 err = -EIO;
3b951516
CM
4899 free_extent_map(em);
4900 em = NULL;
4901 }
4902 } else {
4903 free_extent_map(em);
4904 em = existing;
e6dcd2dc 4905 err = 0;
a52d9a80 4906 }
a52d9a80 4907 }
890871be 4908 write_unlock(&em_tree->lock);
a52d9a80 4909out:
f421950f
CM
4910 if (path)
4911 btrfs_free_path(path);
a52d9a80
CM
4912 if (trans) {
4913 ret = btrfs_end_transaction(trans, root);
d397712b 4914 if (!err)
a52d9a80
CM
4915 err = ret;
4916 }
a52d9a80
CM
4917 if (err) {
4918 free_extent_map(em);
a52d9a80
CM
4919 return ERR_PTR(err);
4920 }
4921 return em;
4922}
4923
16432985
CM
4924static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4925 const struct iovec *iov, loff_t offset,
4926 unsigned long nr_segs)
4927{
e1c4b745 4928 return -EINVAL;
16432985
CM
4929}
4930
1506fcc8
YS
4931static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4932 __u64 start, __u64 len)
4933{
4934 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4935}
4936
a52d9a80 4937int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4938{
d1310b2e
CM
4939 struct extent_io_tree *tree;
4940 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4941 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4942}
1832a6d5 4943
a52d9a80 4944static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4945{
d1310b2e 4946 struct extent_io_tree *tree;
b888db2b
CM
4947
4948
4949 if (current->flags & PF_MEMALLOC) {
4950 redirty_page_for_writepage(wbc, page);
4951 unlock_page(page);
4952 return 0;
4953 }
d1310b2e 4954 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4955 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4956}
4957
f421950f
CM
4958int btrfs_writepages(struct address_space *mapping,
4959 struct writeback_control *wbc)
b293f02e 4960{
d1310b2e 4961 struct extent_io_tree *tree;
771ed689 4962
d1310b2e 4963 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4964 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4965}
4966
3ab2fb5a
CM
4967static int
4968btrfs_readpages(struct file *file, struct address_space *mapping,
4969 struct list_head *pages, unsigned nr_pages)
4970{
d1310b2e
CM
4971 struct extent_io_tree *tree;
4972 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4973 return extent_readpages(tree, mapping, pages, nr_pages,
4974 btrfs_get_extent);
4975}
e6dcd2dc 4976static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4977{
d1310b2e
CM
4978 struct extent_io_tree *tree;
4979 struct extent_map_tree *map;
a52d9a80 4980 int ret;
8c2383c3 4981
d1310b2e
CM
4982 tree = &BTRFS_I(page->mapping->host)->io_tree;
4983 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4984 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4985 if (ret == 1) {
4986 ClearPagePrivate(page);
4987 set_page_private(page, 0);
4988 page_cache_release(page);
39279cc3 4989 }
a52d9a80 4990 return ret;
39279cc3
CM
4991}
4992
e6dcd2dc
CM
4993static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4994{
98509cfc
CM
4995 if (PageWriteback(page) || PageDirty(page))
4996 return 0;
b335b003 4997 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4998}
4999
a52d9a80 5000static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 5001{
d1310b2e 5002 struct extent_io_tree *tree;
e6dcd2dc 5003 struct btrfs_ordered_extent *ordered;
2ac55d41 5004 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
5005 u64 page_start = page_offset(page);
5006 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 5007
8b62b72b
CM
5008
5009 /*
5010 * we have the page locked, so new writeback can't start,
5011 * and the dirty bit won't be cleared while we are here.
5012 *
5013 * Wait for IO on this page so that we can safely clear
5014 * the PagePrivate2 bit and do ordered accounting
5015 */
e6dcd2dc 5016 wait_on_page_writeback(page);
8b62b72b 5017
d1310b2e 5018 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
5019 if (offset) {
5020 btrfs_releasepage(page, GFP_NOFS);
5021 return;
5022 }
2ac55d41
JB
5023 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5024 GFP_NOFS);
e6dcd2dc
CM
5025 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
5026 page_offset(page));
5027 if (ordered) {
eb84ae03
CM
5028 /*
5029 * IO on this page will never be started, so we need
5030 * to account for any ordered extents now
5031 */
e6dcd2dc
CM
5032 clear_extent_bit(tree, page_start, page_end,
5033 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 5034 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 5035 &cached_state, GFP_NOFS);
8b62b72b
CM
5036 /*
5037 * whoever cleared the private bit is responsible
5038 * for the finish_ordered_io
5039 */
5040 if (TestClearPagePrivate2(page)) {
5041 btrfs_finish_ordered_io(page->mapping->host,
5042 page_start, page_end);
5043 }
e6dcd2dc 5044 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
5045 cached_state = NULL;
5046 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
5047 GFP_NOFS);
e6dcd2dc
CM
5048 }
5049 clear_extent_bit(tree, page_start, page_end,
32c00aff 5050 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 5051 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
5052 __btrfs_releasepage(page, GFP_NOFS);
5053
4a096752 5054 ClearPageChecked(page);
9ad6b7bc 5055 if (PagePrivate(page)) {
9ad6b7bc
CM
5056 ClearPagePrivate(page);
5057 set_page_private(page, 0);
5058 page_cache_release(page);
5059 }
39279cc3
CM
5060}
5061
9ebefb18
CM
5062/*
5063 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
5064 * called from a page fault handler when a page is first dirtied. Hence we must
5065 * be careful to check for EOF conditions here. We set the page up correctly
5066 * for a written page which means we get ENOSPC checking when writing into
5067 * holes and correct delalloc and unwritten extent mapping on filesystems that
5068 * support these features.
5069 *
5070 * We are not allowed to take the i_mutex here so we have to play games to
5071 * protect against truncate races as the page could now be beyond EOF. Because
5072 * vmtruncate() writes the inode size before removing pages, once we have the
5073 * page lock we can determine safely if the page is beyond EOF. If it is not
5074 * beyond EOF, then the page is guaranteed safe against truncation until we
5075 * unlock the page.
5076 */
c2ec175c 5077int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 5078{
c2ec175c 5079 struct page *page = vmf->page;
6da6abae 5080 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 5081 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
5082 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5083 struct btrfs_ordered_extent *ordered;
2ac55d41 5084 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
5085 char *kaddr;
5086 unsigned long zero_start;
9ebefb18 5087 loff_t size;
1832a6d5 5088 int ret;
a52d9a80 5089 u64 page_start;
e6dcd2dc 5090 u64 page_end;
9ebefb18 5091
6a63209f 5092 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
5093 if (ret) {
5094 if (ret == -ENOMEM)
5095 ret = VM_FAULT_OOM;
5096 else /* -ENOSPC, -EIO, etc */
5097 ret = VM_FAULT_SIGBUS;
1832a6d5 5098 goto out;
56a76f82 5099 }
1832a6d5 5100
9ed74f2d
JB
5101 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
5102 if (ret) {
5103 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
5104 ret = VM_FAULT_SIGBUS;
5105 goto out;
5106 }
5107
56a76f82 5108 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 5109again:
9ebefb18 5110 lock_page(page);
9ebefb18 5111 size = i_size_read(inode);
e6dcd2dc
CM
5112 page_start = page_offset(page);
5113 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 5114
9ebefb18 5115 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 5116 (page_start >= size)) {
6a63209f 5117 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
5118 /* page got truncated out from underneath us */
5119 goto out_unlock;
5120 }
e6dcd2dc
CM
5121 wait_on_page_writeback(page);
5122
2ac55d41
JB
5123 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
5124 GFP_NOFS);
e6dcd2dc
CM
5125 set_page_extent_mapped(page);
5126
eb84ae03
CM
5127 /*
5128 * we can't set the delalloc bits if there are pending ordered
5129 * extents. Drop our locks and wait for them to finish
5130 */
e6dcd2dc
CM
5131 ordered = btrfs_lookup_ordered_extent(inode, page_start);
5132 if (ordered) {
2ac55d41
JB
5133 unlock_extent_cached(io_tree, page_start, page_end,
5134 &cached_state, GFP_NOFS);
e6dcd2dc 5135 unlock_page(page);
eb84ae03 5136 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
5137 btrfs_put_ordered_extent(ordered);
5138 goto again;
5139 }
5140
fbf19087
JB
5141 /*
5142 * XXX - page_mkwrite gets called every time the page is dirtied, even
5143 * if it was already dirty, so for space accounting reasons we need to
5144 * clear any delalloc bits for the range we are fixing to save. There
5145 * is probably a better way to do this, but for now keep consistent with
5146 * prepare_pages in the normal write path.
5147 */
2ac55d41 5148 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 5149 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 5150 0, 0, &cached_state, GFP_NOFS);
fbf19087 5151
2ac55d41
JB
5152 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
5153 &cached_state);
9ed74f2d 5154 if (ret) {
2ac55d41
JB
5155 unlock_extent_cached(io_tree, page_start, page_end,
5156 &cached_state, GFP_NOFS);
9ed74f2d 5157 ret = VM_FAULT_SIGBUS;
fbf19087 5158 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
5159 goto out_unlock;
5160 }
e6dcd2dc 5161 ret = 0;
9ebefb18
CM
5162
5163 /* page is wholly or partially inside EOF */
a52d9a80 5164 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 5165 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 5166 else
e6dcd2dc 5167 zero_start = PAGE_CACHE_SIZE;
9ebefb18 5168
e6dcd2dc
CM
5169 if (zero_start != PAGE_CACHE_SIZE) {
5170 kaddr = kmap(page);
5171 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
5172 flush_dcache_page(page);
5173 kunmap(page);
5174 }
247e743c 5175 ClearPageChecked(page);
e6dcd2dc 5176 set_page_dirty(page);
50a9b214 5177 SetPageUptodate(page);
5a3f23d5 5178
257c62e1
CM
5179 BTRFS_I(inode)->last_trans = root->fs_info->generation;
5180 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
5181
2ac55d41 5182 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
5183
5184out_unlock:
9ed74f2d 5185 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
5186 if (!ret)
5187 return VM_FAULT_LOCKED;
9ebefb18 5188 unlock_page(page);
1832a6d5 5189out:
9ebefb18
CM
5190 return ret;
5191}
5192
39279cc3
CM
5193static void btrfs_truncate(struct inode *inode)
5194{
5195 struct btrfs_root *root = BTRFS_I(inode)->root;
5196 int ret;
5197 struct btrfs_trans_handle *trans;
d3c2fdcf 5198 unsigned long nr;
dbe674a9 5199 u64 mask = root->sectorsize - 1;
39279cc3 5200
8082510e
YZ
5201 if (!S_ISREG(inode->i_mode)) {
5202 WARN_ON(1);
39279cc3 5203 return;
8082510e 5204 }
39279cc3 5205
5d5e103a
JB
5206 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
5207 if (ret)
5208 return;
8082510e 5209
4a096752 5210 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 5211 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 5212
39279cc3 5213 trans = btrfs_start_transaction(root, 1);
8082510e 5214 btrfs_set_trans_block_group(trans, inode);
5a3f23d5
CM
5215
5216 /*
5217 * setattr is responsible for setting the ordered_data_close flag,
5218 * but that is only tested during the last file release. That
5219 * could happen well after the next commit, leaving a great big
5220 * window where new writes may get lost if someone chooses to write
5221 * to this file after truncating to zero
5222 *
5223 * The inode doesn't have any dirty data here, and so if we commit
5224 * this is a noop. If someone immediately starts writing to the inode
5225 * it is very likely we'll catch some of their writes in this
5226 * transaction, and the commit will find this file on the ordered
5227 * data list with good things to send down.
5228 *
5229 * This is a best effort solution, there is still a window where
5230 * using truncate to replace the contents of the file will
5231 * end up with a zero length file after a crash.
5232 */
5233 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5234 btrfs_add_ordered_operation(trans, root, inode);
5235
8082510e
YZ
5236 while (1) {
5237 ret = btrfs_truncate_inode_items(trans, root, inode,
5238 inode->i_size,
5239 BTRFS_EXTENT_DATA_KEY);
5240 if (ret != -EAGAIN)
5241 break;
39279cc3 5242
8082510e
YZ
5243 ret = btrfs_update_inode(trans, root, inode);
5244 BUG_ON(ret);
5f39d397 5245
8082510e
YZ
5246 nr = trans->blocks_used;
5247 btrfs_end_transaction(trans, root);
5248 btrfs_btree_balance_dirty(root, nr);
5249
5250 trans = btrfs_start_transaction(root, 1);
5251 btrfs_set_trans_block_group(trans, inode);
5252 }
5253
5254 if (ret == 0 && inode->i_nlink > 0) {
5255 ret = btrfs_orphan_del(trans, inode);
5256 BUG_ON(ret);
5257 }
5258
5259 ret = btrfs_update_inode(trans, root, inode);
7b128766
JB
5260 BUG_ON(ret);
5261
7b128766 5262 nr = trans->blocks_used;
89ce8a63 5263 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5264 BUG_ON(ret);
d3c2fdcf 5265 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5266}
5267
d352ac68
CM
5268/*
5269 * create a new subvolume directory/inode (helper for the ioctl).
5270 */
d2fb3437 5271int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5272 struct btrfs_root *new_root,
d2fb3437 5273 u64 new_dirid, u64 alloc_hint)
39279cc3 5274{
39279cc3 5275 struct inode *inode;
76dda93c 5276 int err;
00e4e6b3 5277 u64 index = 0;
39279cc3 5278
aec7477b 5279 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5280 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5281 if (IS_ERR(inode))
f46b5a66 5282 return PTR_ERR(inode);
39279cc3
CM
5283 inode->i_op = &btrfs_dir_inode_operations;
5284 inode->i_fop = &btrfs_dir_file_operations;
5285
39279cc3 5286 inode->i_nlink = 1;
dbe674a9 5287 btrfs_i_size_write(inode, 0);
3b96362c 5288
76dda93c
YZ
5289 err = btrfs_update_inode(trans, new_root, inode);
5290 BUG_ON(err);
cb8e7090 5291
76dda93c 5292 iput(inode);
cb8e7090 5293 return 0;
39279cc3
CM
5294}
5295
d352ac68
CM
5296/* helper function for file defrag and space balancing. This
5297 * forces readahead on a given range of bytes in an inode
5298 */
edbd8d4e 5299unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5300 struct file_ra_state *ra, struct file *file,
5301 pgoff_t offset, pgoff_t last_index)
5302{
8e7bf94f 5303 pgoff_t req_size = last_index - offset + 1;
86479a04 5304
86479a04
CM
5305 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5306 return offset + req_size;
86479a04
CM
5307}
5308
39279cc3
CM
5309struct inode *btrfs_alloc_inode(struct super_block *sb)
5310{
5311 struct btrfs_inode *ei;
5312
5313 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5314 if (!ei)
5315 return NULL;
15ee9bc7 5316 ei->last_trans = 0;
257c62e1 5317 ei->last_sub_trans = 0;
e02119d5 5318 ei->logged_trans = 0;
32c00aff
JB
5319 ei->outstanding_extents = 0;
5320 ei->reserved_extents = 0;
a6dbd429 5321 ei->root = NULL;
32c00aff 5322 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5323 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5324 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5325 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5326 return &ei->vfs_inode;
5327}
5328
5329void btrfs_destroy_inode(struct inode *inode)
5330{
e6dcd2dc 5331 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5332 struct btrfs_root *root = BTRFS_I(inode)->root;
5333
39279cc3
CM
5334 WARN_ON(!list_empty(&inode->i_dentry));
5335 WARN_ON(inode->i_data.nrpages);
5336
a6dbd429
JB
5337 /*
5338 * This can happen where we create an inode, but somebody else also
5339 * created the same inode and we need to destroy the one we already
5340 * created.
5341 */
5342 if (!root)
5343 goto free;
5344
5a3f23d5
CM
5345 /*
5346 * Make sure we're properly removed from the ordered operation
5347 * lists.
5348 */
5349 smp_mb();
5350 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5351 spin_lock(&root->fs_info->ordered_extent_lock);
5352 list_del_init(&BTRFS_I(inode)->ordered_operations);
5353 spin_unlock(&root->fs_info->ordered_extent_lock);
5354 }
5355
5356 spin_lock(&root->list_lock);
7b128766 5357 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
5358 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
5359 inode->i_ino);
5360 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 5361 }
5a3f23d5 5362 spin_unlock(&root->list_lock);
7b128766 5363
d397712b 5364 while (1) {
e6dcd2dc
CM
5365 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5366 if (!ordered)
5367 break;
5368 else {
d397712b
CM
5369 printk(KERN_ERR "btrfs found ordered "
5370 "extent %llu %llu on inode cleanup\n",
5371 (unsigned long long)ordered->file_offset,
5372 (unsigned long long)ordered->len);
e6dcd2dc
CM
5373 btrfs_remove_ordered_extent(inode, ordered);
5374 btrfs_put_ordered_extent(ordered);
5375 btrfs_put_ordered_extent(ordered);
5376 }
5377 }
5d4f98a2 5378 inode_tree_del(inode);
5b21f2ed 5379 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 5380free:
39279cc3
CM
5381 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5382}
5383
76dda93c
YZ
5384void btrfs_drop_inode(struct inode *inode)
5385{
5386 struct btrfs_root *root = BTRFS_I(inode)->root;
5387
5388 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5389 generic_delete_inode(inode);
5390 else
5391 generic_drop_inode(inode);
5392}
5393
0ee0fda0 5394static void init_once(void *foo)
39279cc3
CM
5395{
5396 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5397
5398 inode_init_once(&ei->vfs_inode);
5399}
5400
5401void btrfs_destroy_cachep(void)
5402{
5403 if (btrfs_inode_cachep)
5404 kmem_cache_destroy(btrfs_inode_cachep);
5405 if (btrfs_trans_handle_cachep)
5406 kmem_cache_destroy(btrfs_trans_handle_cachep);
5407 if (btrfs_transaction_cachep)
5408 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5409 if (btrfs_path_cachep)
5410 kmem_cache_destroy(btrfs_path_cachep);
5411}
5412
5413int btrfs_init_cachep(void)
5414{
9601e3f6
CH
5415 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5416 sizeof(struct btrfs_inode), 0,
5417 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5418 if (!btrfs_inode_cachep)
5419 goto fail;
9601e3f6
CH
5420
5421 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5422 sizeof(struct btrfs_trans_handle), 0,
5423 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5424 if (!btrfs_trans_handle_cachep)
5425 goto fail;
9601e3f6
CH
5426
5427 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5428 sizeof(struct btrfs_transaction), 0,
5429 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5430 if (!btrfs_transaction_cachep)
5431 goto fail;
9601e3f6
CH
5432
5433 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5434 sizeof(struct btrfs_path), 0,
5435 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5436 if (!btrfs_path_cachep)
5437 goto fail;
9601e3f6 5438
39279cc3
CM
5439 return 0;
5440fail:
5441 btrfs_destroy_cachep();
5442 return -ENOMEM;
5443}
5444
5445static int btrfs_getattr(struct vfsmount *mnt,
5446 struct dentry *dentry, struct kstat *stat)
5447{
5448 struct inode *inode = dentry->d_inode;
5449 generic_fillattr(inode, stat);
3394e160 5450 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5451 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5452 stat->blocks = (inode_get_bytes(inode) +
5453 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5454 return 0;
5455}
5456
d397712b
CM
5457static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5458 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5459{
5460 struct btrfs_trans_handle *trans;
5461 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5462 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5463 struct inode *new_inode = new_dentry->d_inode;
5464 struct inode *old_inode = old_dentry->d_inode;
5465 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5466 u64 index = 0;
4df27c4d 5467 u64 root_objectid;
39279cc3
CM
5468 int ret;
5469
f679a840
YZ
5470 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5471 return -EPERM;
5472
4df27c4d
YZ
5473 /* we only allow rename subvolume link between subvolumes */
5474 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5475 return -EXDEV;
5476
4df27c4d
YZ
5477 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5478 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5479 return -ENOTEMPTY;
5f39d397 5480
4df27c4d
YZ
5481 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5482 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5483 return -ENOTEMPTY;
0660b5af 5484
9ed74f2d 5485 /*
5df6a9f6
JB
5486 * We want to reserve the absolute worst case amount of items. So if
5487 * both inodes are subvols and we need to unlink them then that would
5488 * require 4 item modifications, but if they are both normal inodes it
5489 * would require 5 item modifications, so we'll assume their normal
5490 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
5491 * should cover the worst case number of items we'll modify.
9ed74f2d 5492 */
5df6a9f6 5493 ret = btrfs_reserve_metadata_space(root, 11);
1832a6d5 5494 if (ret)
4df27c4d 5495 return ret;
1832a6d5 5496
5a3f23d5
CM
5497 /*
5498 * we're using rename to replace one file with another.
5499 * and the replacement file is large. Start IO on it now so
5500 * we don't add too much work to the end of the transaction
5501 */
4baf8c92 5502 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5503 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5504 filemap_flush(old_inode->i_mapping);
5505
76dda93c
YZ
5506 /* close the racy window with snapshot create/destroy ioctl */
5507 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5508 down_read(&root->fs_info->subvol_sem);
5509
39279cc3 5510 trans = btrfs_start_transaction(root, 1);
a5719521 5511 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5512
4df27c4d
YZ
5513 if (dest != root)
5514 btrfs_record_root_in_trans(trans, dest);
5f39d397 5515
a5719521
YZ
5516 ret = btrfs_set_inode_index(new_dir, &index);
5517 if (ret)
5518 goto out_fail;
5a3f23d5 5519
a5719521 5520 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5521 /* force full log commit if subvolume involved. */
5522 root->fs_info->last_trans_log_full_commit = trans->transid;
5523 } else {
a5719521
YZ
5524 ret = btrfs_insert_inode_ref(trans, dest,
5525 new_dentry->d_name.name,
5526 new_dentry->d_name.len,
5527 old_inode->i_ino,
5528 new_dir->i_ino, index);
5529 if (ret)
5530 goto out_fail;
4df27c4d
YZ
5531 /*
5532 * this is an ugly little race, but the rename is required
5533 * to make sure that if we crash, the inode is either at the
5534 * old name or the new one. pinning the log transaction lets
5535 * us make sure we don't allow a log commit to come in after
5536 * we unlink the name but before we add the new name back in.
5537 */
5538 btrfs_pin_log_trans(root);
5539 }
5a3f23d5
CM
5540 /*
5541 * make sure the inode gets flushed if it is replacing
5542 * something.
5543 */
5544 if (new_inode && new_inode->i_size &&
5545 old_inode && S_ISREG(old_inode->i_mode)) {
5546 btrfs_add_ordered_operation(trans, root, old_inode);
5547 }
5548
39279cc3
CM
5549 old_dir->i_ctime = old_dir->i_mtime = ctime;
5550 new_dir->i_ctime = new_dir->i_mtime = ctime;
5551 old_inode->i_ctime = ctime;
5f39d397 5552
12fcfd22
CM
5553 if (old_dentry->d_parent != new_dentry->d_parent)
5554 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5555
4df27c4d
YZ
5556 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5557 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5558 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5559 old_dentry->d_name.name,
5560 old_dentry->d_name.len);
5561 } else {
5562 btrfs_inc_nlink(old_dentry->d_inode);
5563 ret = btrfs_unlink_inode(trans, root, old_dir,
5564 old_dentry->d_inode,
5565 old_dentry->d_name.name,
5566 old_dentry->d_name.len);
5567 }
5568 BUG_ON(ret);
39279cc3
CM
5569
5570 if (new_inode) {
5571 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5572 if (unlikely(new_inode->i_ino ==
5573 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5574 root_objectid = BTRFS_I(new_inode)->location.objectid;
5575 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5576 root_objectid,
5577 new_dentry->d_name.name,
5578 new_dentry->d_name.len);
5579 BUG_ON(new_inode->i_nlink == 0);
5580 } else {
5581 ret = btrfs_unlink_inode(trans, dest, new_dir,
5582 new_dentry->d_inode,
5583 new_dentry->d_name.name,
5584 new_dentry->d_name.len);
5585 }
5586 BUG_ON(ret);
7b128766 5587 if (new_inode->i_nlink == 0) {
e02119d5 5588 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5589 BUG_ON(ret);
7b128766 5590 }
39279cc3 5591 }
aec7477b 5592
4df27c4d
YZ
5593 ret = btrfs_add_link(trans, new_dir, old_inode,
5594 new_dentry->d_name.name,
a5719521 5595 new_dentry->d_name.len, 0, index);
4df27c4d 5596 BUG_ON(ret);
39279cc3 5597
4df27c4d
YZ
5598 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5599 btrfs_log_new_name(trans, old_inode, old_dir,
5600 new_dentry->d_parent);
5601 btrfs_end_log_trans(root);
5602 }
39279cc3 5603out_fail:
ab78c84d 5604 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5605
76dda93c
YZ
5606 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5607 up_read(&root->fs_info->subvol_sem);
9ed74f2d 5608
5df6a9f6 5609 btrfs_unreserve_metadata_space(root, 11);
39279cc3
CM
5610 return ret;
5611}
5612
d352ac68
CM
5613/*
5614 * some fairly slow code that needs optimization. This walks the list
5615 * of all the inodes with pending delalloc and forces them to disk.
5616 */
24bbcf04 5617int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
5618{
5619 struct list_head *head = &root->fs_info->delalloc_inodes;
5620 struct btrfs_inode *binode;
5b21f2ed 5621 struct inode *inode;
ea8c2819 5622
c146afad
YZ
5623 if (root->fs_info->sb->s_flags & MS_RDONLY)
5624 return -EROFS;
5625
75eff68e 5626 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5627 while (!list_empty(head)) {
ea8c2819
CM
5628 binode = list_entry(head->next, struct btrfs_inode,
5629 delalloc_inodes);
5b21f2ed
ZY
5630 inode = igrab(&binode->vfs_inode);
5631 if (!inode)
5632 list_del_init(&binode->delalloc_inodes);
75eff68e 5633 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5634 if (inode) {
8c8bee1d 5635 filemap_flush(inode->i_mapping);
24bbcf04
YZ
5636 if (delay_iput)
5637 btrfs_add_delayed_iput(inode);
5638 else
5639 iput(inode);
5b21f2ed
ZY
5640 }
5641 cond_resched();
75eff68e 5642 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5643 }
75eff68e 5644 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5645
5646 /* the filemap_flush will queue IO into the worker threads, but
5647 * we have to make sure the IO is actually started and that
5648 * ordered extents get created before we return
5649 */
5650 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5651 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5652 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5653 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5654 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5655 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5656 }
5657 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5658 return 0;
5659}
5660
39279cc3
CM
5661static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5662 const char *symname)
5663{
5664 struct btrfs_trans_handle *trans;
5665 struct btrfs_root *root = BTRFS_I(dir)->root;
5666 struct btrfs_path *path;
5667 struct btrfs_key key;
1832a6d5 5668 struct inode *inode = NULL;
39279cc3
CM
5669 int err;
5670 int drop_inode = 0;
5671 u64 objectid;
00e4e6b3 5672 u64 index = 0 ;
39279cc3
CM
5673 int name_len;
5674 int datasize;
5f39d397 5675 unsigned long ptr;
39279cc3 5676 struct btrfs_file_extent_item *ei;
5f39d397 5677 struct extent_buffer *leaf;
1832a6d5 5678 unsigned long nr = 0;
39279cc3
CM
5679
5680 name_len = strlen(symname) + 1;
5681 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5682 return -ENAMETOOLONG;
1832a6d5 5683
9ed74f2d
JB
5684 /*
5685 * 2 items for inode item and ref
5686 * 2 items for dir items
5687 * 1 item for xattr if selinux is on
5688 */
5689 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5690 if (err)
9ed74f2d 5691 return err;
1832a6d5 5692
39279cc3 5693 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5694 if (!trans)
5695 goto out_fail;
39279cc3
CM
5696 btrfs_set_trans_block_group(trans, dir);
5697
5698 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5699 if (err) {
5700 err = -ENOSPC;
5701 goto out_unlock;
5702 }
5703
aec7477b 5704 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5705 dentry->d_name.len,
5706 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5707 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5708 &index);
39279cc3
CM
5709 err = PTR_ERR(inode);
5710 if (IS_ERR(inode))
5711 goto out_unlock;
5712
f34f57a3 5713 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
5714 if (err) {
5715 drop_inode = 1;
5716 goto out_unlock;
5717 }
5718
39279cc3 5719 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5720 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5721 if (err)
5722 drop_inode = 1;
5723 else {
5724 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5725 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5726 inode->i_fop = &btrfs_file_operations;
5727 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5728 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5729 }
39279cc3
CM
5730 btrfs_update_inode_block_group(trans, inode);
5731 btrfs_update_inode_block_group(trans, dir);
5732 if (drop_inode)
5733 goto out_unlock;
5734
5735 path = btrfs_alloc_path();
5736 BUG_ON(!path);
5737 key.objectid = inode->i_ino;
5738 key.offset = 0;
39279cc3
CM
5739 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5740 datasize = btrfs_file_extent_calc_inline_size(name_len);
5741 err = btrfs_insert_empty_item(trans, root, path, &key,
5742 datasize);
54aa1f4d
CM
5743 if (err) {
5744 drop_inode = 1;
5745 goto out_unlock;
5746 }
5f39d397
CM
5747 leaf = path->nodes[0];
5748 ei = btrfs_item_ptr(leaf, path->slots[0],
5749 struct btrfs_file_extent_item);
5750 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5751 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5752 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5753 btrfs_set_file_extent_encryption(leaf, ei, 0);
5754 btrfs_set_file_extent_compression(leaf, ei, 0);
5755 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5756 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5757
39279cc3 5758 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5759 write_extent_buffer(leaf, symname, ptr, name_len);
5760 btrfs_mark_buffer_dirty(leaf);
39279cc3 5761 btrfs_free_path(path);
5f39d397 5762
39279cc3
CM
5763 inode->i_op = &btrfs_symlink_inode_operations;
5764 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5765 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5766 inode_set_bytes(inode, name_len);
dbe674a9 5767 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5768 err = btrfs_update_inode(trans, root, inode);
5769 if (err)
5770 drop_inode = 1;
39279cc3
CM
5771
5772out_unlock:
d3c2fdcf 5773 nr = trans->blocks_used;
ab78c84d 5774 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5775out_fail:
9ed74f2d 5776 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5777 if (drop_inode) {
5778 inode_dec_link_count(inode);
5779 iput(inode);
5780 }
d3c2fdcf 5781 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5782 return err;
5783}
16432985 5784
5a303d5d 5785static int prealloc_file_range(struct inode *inode, u64 start, u64 end,
d1ea6a61 5786 u64 alloc_hint, int mode, loff_t actual_len)
d899e052 5787{
5a303d5d 5788 struct btrfs_trans_handle *trans;
d899e052
YZ
5789 struct btrfs_root *root = BTRFS_I(inode)->root;
5790 struct btrfs_key ins;
5791 u64 alloc_size;
5792 u64 cur_offset = start;
5793 u64 num_bytes = end - start;
5794 int ret = 0;
d1ea6a61 5795 u64 i_size;
d899e052 5796
d899e052
YZ
5797 while (num_bytes > 0) {
5798 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d 5799
3a1abec9
CM
5800 trans = btrfs_start_transaction(root, 1);
5801
d899e052
YZ
5802 ret = btrfs_reserve_extent(trans, root, alloc_size,
5803 root->sectorsize, 0, alloc_hint,
5804 (u64)-1, &ins, 1);
5805 if (ret) {
5806 WARN_ON(1);
3a1abec9 5807 goto stop_trans;
5a303d5d
YZ
5808 }
5809
5810 ret = btrfs_reserve_metadata_space(root, 3);
5811 if (ret) {
5812 btrfs_free_reserved_extent(root, ins.objectid,
5813 ins.offset);
3a1abec9 5814 goto stop_trans;
d899e052 5815 }
5a303d5d 5816
d899e052
YZ
5817 ret = insert_reserved_file_extent(trans, inode,
5818 cur_offset, ins.objectid,
5819 ins.offset, ins.offset,
920bbbfb 5820 ins.offset, 0, 0, 0,
d899e052
YZ
5821 BTRFS_FILE_EXTENT_PREALLOC);
5822 BUG_ON(ret);
a1ed835e
CM
5823 btrfs_drop_extent_cache(inode, cur_offset,
5824 cur_offset + ins.offset -1, 0);
5a303d5d 5825
d899e052
YZ
5826 num_bytes -= ins.offset;
5827 cur_offset += ins.offset;
5828 alloc_hint = ins.objectid + ins.offset;
5a303d5d 5829
d899e052 5830 inode->i_ctime = CURRENT_TIME;
6cbff00f 5831 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 5832 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
23b5c509
AK
5833 (actual_len > inode->i_size) &&
5834 (cur_offset > inode->i_size)) {
5835
d1ea6a61
AK
5836 if (cur_offset > actual_len)
5837 i_size = actual_len;
5838 else
5839 i_size = cur_offset;
5840 i_size_write(inode, i_size);
5841 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
5842 }
5843
d899e052
YZ
5844 ret = btrfs_update_inode(trans, root, inode);
5845 BUG_ON(ret);
d899e052 5846
5a303d5d
YZ
5847 btrfs_end_transaction(trans, root);
5848 btrfs_unreserve_metadata_space(root, 3);
5849 }
d899e052 5850 return ret;
3a1abec9
CM
5851
5852stop_trans:
5853 btrfs_end_transaction(trans, root);
5854 return ret;
5855
d899e052
YZ
5856}
5857
5858static long btrfs_fallocate(struct inode *inode, int mode,
5859 loff_t offset, loff_t len)
5860{
2ac55d41 5861 struct extent_state *cached_state = NULL;
d899e052
YZ
5862 u64 cur_offset;
5863 u64 last_byte;
5864 u64 alloc_start;
5865 u64 alloc_end;
5866 u64 alloc_hint = 0;
e980b50c 5867 u64 locked_end;
d899e052
YZ
5868 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5869 struct extent_map *em;
5870 int ret;
5871
5872 alloc_start = offset & ~mask;
5873 alloc_end = (offset + len + mask) & ~mask;
5874
546888da
CM
5875 /*
5876 * wait for ordered IO before we have any locks. We'll loop again
5877 * below with the locks held.
5878 */
5879 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5880
d899e052
YZ
5881 mutex_lock(&inode->i_mutex);
5882 if (alloc_start > inode->i_size) {
5883 ret = btrfs_cont_expand(inode, alloc_start);
5884 if (ret)
5885 goto out;
5886 }
5887
5a303d5d 5888 ret = btrfs_check_data_free_space(BTRFS_I(inode)->root, inode,
a970b0a1
JB
5889 alloc_end - alloc_start);
5890 if (ret)
5891 goto out;
5892
e980b50c 5893 locked_end = alloc_end - 1;
d899e052
YZ
5894 while (1) {
5895 struct btrfs_ordered_extent *ordered;
546888da 5896
546888da
CM
5897 /* the extent lock is ordered inside the running
5898 * transaction
5899 */
2ac55d41
JB
5900 lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
5901 locked_end, 0, &cached_state, GFP_NOFS);
d899e052
YZ
5902 ordered = btrfs_lookup_first_ordered_extent(inode,
5903 alloc_end - 1);
5904 if (ordered &&
5905 ordered->file_offset + ordered->len > alloc_start &&
5906 ordered->file_offset < alloc_end) {
5907 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
5908 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
5909 alloc_start, locked_end,
5910 &cached_state, GFP_NOFS);
546888da
CM
5911 /*
5912 * we can't wait on the range with the transaction
5913 * running or with the extent lock held
5914 */
d899e052
YZ
5915 btrfs_wait_ordered_range(inode, alloc_start,
5916 alloc_end - alloc_start);
5917 } else {
5918 if (ordered)
5919 btrfs_put_ordered_extent(ordered);
5920 break;
5921 }
5922 }
5923
5924 cur_offset = alloc_start;
5925 while (1) {
5926 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5927 alloc_end - cur_offset, 0);
5928 BUG_ON(IS_ERR(em) || !em);
5929 last_byte = min(extent_map_end(em), alloc_end);
5930 last_byte = (last_byte + mask) & ~mask;
5a303d5d
YZ
5931 if (em->block_start == EXTENT_MAP_HOLE ||
5932 (cur_offset >= inode->i_size &&
5933 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5934 ret = prealloc_file_range(inode,
5935 cur_offset, last_byte,
d1ea6a61 5936 alloc_hint, mode, offset+len);
d899e052
YZ
5937 if (ret < 0) {
5938 free_extent_map(em);
5939 break;
5940 }
5941 }
5942 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5943 alloc_hint = em->block_start;
5944 free_extent_map(em);
5945
5946 cur_offset = last_byte;
5947 if (cur_offset >= alloc_end) {
5948 ret = 0;
5949 break;
5950 }
5951 }
2ac55d41
JB
5952 unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5953 &cached_state, GFP_NOFS);
546888da 5954
5a303d5d
YZ
5955 btrfs_free_reserved_data_space(BTRFS_I(inode)->root, inode,
5956 alloc_end - alloc_start);
d899e052
YZ
5957out:
5958 mutex_unlock(&inode->i_mutex);
5959 return ret;
5960}
5961
e6dcd2dc
CM
5962static int btrfs_set_page_dirty(struct page *page)
5963{
e6dcd2dc
CM
5964 return __set_page_dirty_nobuffers(page);
5965}
5966
0ee0fda0 5967static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5968{
6cbff00f 5969 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5970 return -EACCES;
33268eaf 5971 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5972}
39279cc3 5973
6e1d5dcc 5974static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 5975 .getattr = btrfs_getattr,
39279cc3
CM
5976 .lookup = btrfs_lookup,
5977 .create = btrfs_create,
5978 .unlink = btrfs_unlink,
5979 .link = btrfs_link,
5980 .mkdir = btrfs_mkdir,
5981 .rmdir = btrfs_rmdir,
5982 .rename = btrfs_rename,
5983 .symlink = btrfs_symlink,
5984 .setattr = btrfs_setattr,
618e21d5 5985 .mknod = btrfs_mknod,
95819c05
CH
5986 .setxattr = btrfs_setxattr,
5987 .getxattr = btrfs_getxattr,
5103e947 5988 .listxattr = btrfs_listxattr,
95819c05 5989 .removexattr = btrfs_removexattr,
fdebe2bd 5990 .permission = btrfs_permission,
39279cc3 5991};
6e1d5dcc 5992static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 5993 .lookup = btrfs_lookup,
fdebe2bd 5994 .permission = btrfs_permission,
39279cc3 5995};
76dda93c 5996
828c0950 5997static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
5998 .llseek = generic_file_llseek,
5999 .read = generic_read_dir,
cbdf5a24 6000 .readdir = btrfs_real_readdir,
34287aa3 6001 .unlocked_ioctl = btrfs_ioctl,
39279cc3 6002#ifdef CONFIG_COMPAT
34287aa3 6003 .compat_ioctl = btrfs_ioctl,
39279cc3 6004#endif
6bf13c0c 6005 .release = btrfs_release_file,
e02119d5 6006 .fsync = btrfs_sync_file,
39279cc3
CM
6007};
6008
d1310b2e 6009static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 6010 .fill_delalloc = run_delalloc_range,
065631f6 6011 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 6012 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 6013 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 6014 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 6015 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 6016 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
6017 .set_bit_hook = btrfs_set_bit_hook,
6018 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
6019 .merge_extent_hook = btrfs_merge_extent_hook,
6020 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
6021};
6022
35054394
CM
6023/*
6024 * btrfs doesn't support the bmap operation because swapfiles
6025 * use bmap to make a mapping of extents in the file. They assume
6026 * these extents won't change over the life of the file and they
6027 * use the bmap result to do IO directly to the drive.
6028 *
6029 * the btrfs bmap call would return logical addresses that aren't
6030 * suitable for IO and they also will change frequently as COW
6031 * operations happen. So, swapfile + btrfs == corruption.
6032 *
6033 * For now we're avoiding this by dropping bmap.
6034 */
7f09410b 6035static const struct address_space_operations btrfs_aops = {
39279cc3
CM
6036 .readpage = btrfs_readpage,
6037 .writepage = btrfs_writepage,
b293f02e 6038 .writepages = btrfs_writepages,
3ab2fb5a 6039 .readpages = btrfs_readpages,
39279cc3 6040 .sync_page = block_sync_page,
16432985 6041 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
6042 .invalidatepage = btrfs_invalidatepage,
6043 .releasepage = btrfs_releasepage,
e6dcd2dc 6044 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 6045 .error_remove_page = generic_error_remove_page,
39279cc3
CM
6046};
6047
7f09410b 6048static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
6049 .readpage = btrfs_readpage,
6050 .writepage = btrfs_writepage,
2bf5a725
CM
6051 .invalidatepage = btrfs_invalidatepage,
6052 .releasepage = btrfs_releasepage,
39279cc3
CM
6053};
6054
6e1d5dcc 6055static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
6056 .truncate = btrfs_truncate,
6057 .getattr = btrfs_getattr,
6058 .setattr = btrfs_setattr,
95819c05
CH
6059 .setxattr = btrfs_setxattr,
6060 .getxattr = btrfs_getxattr,
5103e947 6061 .listxattr = btrfs_listxattr,
95819c05 6062 .removexattr = btrfs_removexattr,
fdebe2bd 6063 .permission = btrfs_permission,
d899e052 6064 .fallocate = btrfs_fallocate,
1506fcc8 6065 .fiemap = btrfs_fiemap,
39279cc3 6066};
6e1d5dcc 6067static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
6068 .getattr = btrfs_getattr,
6069 .setattr = btrfs_setattr,
fdebe2bd 6070 .permission = btrfs_permission,
95819c05
CH
6071 .setxattr = btrfs_setxattr,
6072 .getxattr = btrfs_getxattr,
33268eaf 6073 .listxattr = btrfs_listxattr,
95819c05 6074 .removexattr = btrfs_removexattr,
618e21d5 6075};
6e1d5dcc 6076static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
6077 .readlink = generic_readlink,
6078 .follow_link = page_follow_link_light,
6079 .put_link = page_put_link,
fdebe2bd 6080 .permission = btrfs_permission,
0279b4cd
JO
6081 .setxattr = btrfs_setxattr,
6082 .getxattr = btrfs_getxattr,
6083 .listxattr = btrfs_listxattr,
6084 .removexattr = btrfs_removexattr,
39279cc3 6085};
76dda93c 6086
82d339d9 6087const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
6088 .d_delete = btrfs_dentry_delete,
6089};