Btrfs: faster file extent item replace operations
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
39279cc3
CM
61
62struct btrfs_iget_args {
63 u64 ino;
64 struct btrfs_root *root;
65};
66
6e1d5dcc
AD
67static const struct inode_operations btrfs_dir_inode_operations;
68static const struct inode_operations btrfs_symlink_inode_operations;
69static const struct inode_operations btrfs_dir_ro_inode_operations;
70static const struct inode_operations btrfs_special_inode_operations;
71static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
72static const struct address_space_operations btrfs_aops;
73static const struct address_space_operations btrfs_symlink_aops;
828c0950 74static const struct file_operations btrfs_dir_file_operations;
d1310b2e 75static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
76
77static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 78static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
79struct kmem_cache *btrfs_trans_handle_cachep;
80struct kmem_cache *btrfs_transaction_cachep;
39279cc3 81struct kmem_cache *btrfs_path_cachep;
dc89e982 82struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
83
84#define S_SHIFT 12
85static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
86 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
87 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
88 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
89 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
90 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
91 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
92 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
93};
94
3972f260 95static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 96static int btrfs_truncate(struct inode *inode);
5fd02043 97static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
98static noinline int cow_file_range(struct inode *inode,
99 struct page *locked_page,
100 u64 start, u64 end, int *page_started,
101 unsigned long *nr_written, int unlock);
70c8a91c
JB
102static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
103 u64 len, u64 orig_start,
104 u64 block_start, u64 block_len,
cc95bef6
JB
105 u64 orig_block_len, u64 ram_bytes,
106 int type);
7b128766 107
48a3b636 108static int btrfs_dirty_inode(struct inode *inode);
7b128766 109
f34f57a3 110static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
111 struct inode *inode, struct inode *dir,
112 const struct qstr *qstr)
0279b4cd
JO
113{
114 int err;
115
f34f57a3 116 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 117 if (!err)
2a7dba39 118 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
119 return err;
120}
121
c8b97818
CM
122/*
123 * this does all the hard work for inserting an inline extent into
124 * the btree. The caller should have done a btrfs_drop_extents so that
125 * no overlapping inline items exist in the btree
126 */
d397712b 127static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 128 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
c8b97818
CM
134 struct extent_buffer *leaf;
135 struct page *page = NULL;
136 char *kaddr;
137 unsigned long ptr;
138 struct btrfs_file_extent_item *ei;
139 int err = 0;
140 int ret;
141 size_t cur_size = size;
c8b97818 142 unsigned long offset;
c8b97818 143
fe3f566c 144 if (compressed_size && compressed_pages)
c8b97818 145 cur_size = compressed_size;
c8b97818 146
1acae57b 147 inode_add_bytes(inode, size);
c8b97818 148
1acae57b
FDBM
149 if (!extent_inserted) {
150 struct btrfs_key key;
151 size_t datasize;
c8b97818 152
1acae57b
FDBM
153 key.objectid = btrfs_ino(inode);
154 key.offset = start;
155 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818 156
1acae57b
FDBM
157 datasize = btrfs_file_extent_calc_inline_size(cur_size);
158 path->leave_spinning = 1;
159 ret = btrfs_insert_empty_item(trans, root, path, &key,
160 datasize);
161 if (ret) {
162 err = ret;
163 goto fail;
164 }
c8b97818
CM
165 }
166 leaf = path->nodes[0];
167 ei = btrfs_item_ptr(leaf, path->slots[0],
168 struct btrfs_file_extent_item);
169 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
170 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
171 btrfs_set_file_extent_encryption(leaf, ei, 0);
172 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
173 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
174 ptr = btrfs_file_extent_inline_start(ei);
175
261507a0 176 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
177 struct page *cpage;
178 int i = 0;
d397712b 179 while (compressed_size > 0) {
c8b97818 180 cpage = compressed_pages[i];
5b050f04 181 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
182 PAGE_CACHE_SIZE);
183
7ac687d9 184 kaddr = kmap_atomic(cpage);
c8b97818 185 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 186 kunmap_atomic(kaddr);
c8b97818
CM
187
188 i++;
189 ptr += cur_size;
190 compressed_size -= cur_size;
191 }
192 btrfs_set_file_extent_compression(leaf, ei,
261507a0 193 compress_type);
c8b97818
CM
194 } else {
195 page = find_get_page(inode->i_mapping,
196 start >> PAGE_CACHE_SHIFT);
197 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 198 kaddr = kmap_atomic(page);
c8b97818
CM
199 offset = start & (PAGE_CACHE_SIZE - 1);
200 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 201 kunmap_atomic(kaddr);
c8b97818
CM
202 page_cache_release(page);
203 }
204 btrfs_mark_buffer_dirty(leaf);
1acae57b 205 btrfs_release_path(path);
c8b97818 206
c2167754
YZ
207 /*
208 * we're an inline extent, so nobody can
209 * extend the file past i_size without locking
210 * a page we already have locked.
211 *
212 * We must do any isize and inode updates
213 * before we unlock the pages. Otherwise we
214 * could end up racing with unlink.
215 */
c8b97818 216 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 217 ret = btrfs_update_inode(trans, root, inode);
c2167754 218
79787eaa 219 return ret;
c8b97818 220fail:
c8b97818
CM
221 return err;
222}
223
224
225/*
226 * conditionally insert an inline extent into the file. This
227 * does the checks required to make sure the data is small enough
228 * to fit as an inline extent.
229 */
00361589
JB
230static noinline int cow_file_range_inline(struct btrfs_root *root,
231 struct inode *inode, u64 start,
232 u64 end, size_t compressed_size,
233 int compress_type,
234 struct page **compressed_pages)
c8b97818 235{
00361589 236 struct btrfs_trans_handle *trans;
c8b97818
CM
237 u64 isize = i_size_read(inode);
238 u64 actual_end = min(end + 1, isize);
239 u64 inline_len = actual_end - start;
fda2832f 240 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
241 u64 data_len = inline_len;
242 int ret;
1acae57b
FDBM
243 struct btrfs_path *path;
244 int extent_inserted = 0;
245 u32 extent_item_size;
c8b97818
CM
246
247 if (compressed_size)
248 data_len = compressed_size;
249
250 if (start > 0 ||
70b99e69 251 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
252 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
253 (!compressed_size &&
254 (actual_end & (root->sectorsize - 1)) == 0) ||
255 end + 1 < isize ||
256 data_len > root->fs_info->max_inline) {
257 return 1;
258 }
259
1acae57b
FDBM
260 path = btrfs_alloc_path();
261 if (!path)
262 return -ENOMEM;
263
00361589 264 trans = btrfs_join_transaction(root);
1acae57b
FDBM
265 if (IS_ERR(trans)) {
266 btrfs_free_path(path);
00361589 267 return PTR_ERR(trans);
1acae57b 268 }
00361589
JB
269 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
270
1acae57b
FDBM
271 if (compressed_size && compressed_pages)
272 extent_item_size = btrfs_file_extent_calc_inline_size(
273 compressed_size);
274 else
275 extent_item_size = btrfs_file_extent_calc_inline_size(
276 inline_len);
277
278 ret = __btrfs_drop_extents(trans, root, inode, path,
279 start, aligned_end, NULL,
280 1, 1, extent_item_size, &extent_inserted);
00361589
JB
281 if (ret) {
282 btrfs_abort_transaction(trans, root, ret);
283 goto out;
284 }
c8b97818
CM
285
286 if (isize > actual_end)
287 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
288 ret = insert_inline_extent(trans, path, extent_inserted,
289 root, inode, start,
c8b97818 290 inline_len, compressed_size,
fe3f566c 291 compress_type, compressed_pages);
2adcac1a 292 if (ret && ret != -ENOSPC) {
79787eaa 293 btrfs_abort_transaction(trans, root, ret);
00361589 294 goto out;
2adcac1a 295 } else if (ret == -ENOSPC) {
00361589
JB
296 ret = 1;
297 goto out;
79787eaa 298 }
2adcac1a 299
bdc20e67 300 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 301 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 302 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 303out:
1acae57b 304 btrfs_free_path(path);
00361589
JB
305 btrfs_end_transaction(trans, root);
306 return ret;
c8b97818
CM
307}
308
771ed689
CM
309struct async_extent {
310 u64 start;
311 u64 ram_size;
312 u64 compressed_size;
313 struct page **pages;
314 unsigned long nr_pages;
261507a0 315 int compress_type;
771ed689
CM
316 struct list_head list;
317};
318
319struct async_cow {
320 struct inode *inode;
321 struct btrfs_root *root;
322 struct page *locked_page;
323 u64 start;
324 u64 end;
325 struct list_head extents;
326 struct btrfs_work work;
327};
328
329static noinline int add_async_extent(struct async_cow *cow,
330 u64 start, u64 ram_size,
331 u64 compressed_size,
332 struct page **pages,
261507a0
LZ
333 unsigned long nr_pages,
334 int compress_type)
771ed689
CM
335{
336 struct async_extent *async_extent;
337
338 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 339 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
340 async_extent->start = start;
341 async_extent->ram_size = ram_size;
342 async_extent->compressed_size = compressed_size;
343 async_extent->pages = pages;
344 async_extent->nr_pages = nr_pages;
261507a0 345 async_extent->compress_type = compress_type;
771ed689
CM
346 list_add_tail(&async_extent->list, &cow->extents);
347 return 0;
348}
349
d352ac68 350/*
771ed689
CM
351 * we create compressed extents in two phases. The first
352 * phase compresses a range of pages that have already been
353 * locked (both pages and state bits are locked).
c8b97818 354 *
771ed689
CM
355 * This is done inside an ordered work queue, and the compression
356 * is spread across many cpus. The actual IO submission is step
357 * two, and the ordered work queue takes care of making sure that
358 * happens in the same order things were put onto the queue by
359 * writepages and friends.
c8b97818 360 *
771ed689
CM
361 * If this code finds it can't get good compression, it puts an
362 * entry onto the work queue to write the uncompressed bytes. This
363 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
364 * are written in the same order that the flusher thread sent them
365 * down.
d352ac68 366 */
771ed689
CM
367static noinline int compress_file_range(struct inode *inode,
368 struct page *locked_page,
369 u64 start, u64 end,
370 struct async_cow *async_cow,
371 int *num_added)
b888db2b
CM
372{
373 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 374 u64 num_bytes;
db94535d 375 u64 blocksize = root->sectorsize;
c8b97818 376 u64 actual_end;
42dc7bab 377 u64 isize = i_size_read(inode);
e6dcd2dc 378 int ret = 0;
c8b97818
CM
379 struct page **pages = NULL;
380 unsigned long nr_pages;
381 unsigned long nr_pages_ret = 0;
382 unsigned long total_compressed = 0;
383 unsigned long total_in = 0;
384 unsigned long max_compressed = 128 * 1024;
771ed689 385 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
386 int i;
387 int will_compress;
261507a0 388 int compress_type = root->fs_info->compress_type;
4adaa611 389 int redirty = 0;
b888db2b 390
4cb13e5d
LB
391 /* if this is a small write inside eof, kick off a defrag */
392 if ((end - start + 1) < 16 * 1024 &&
393 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
394 btrfs_add_inode_defrag(NULL, inode);
395
42dc7bab 396 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
397again:
398 will_compress = 0;
399 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
400 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 401
f03d9301
CM
402 /*
403 * we don't want to send crud past the end of i_size through
404 * compression, that's just a waste of CPU time. So, if the
405 * end of the file is before the start of our current
406 * requested range of bytes, we bail out to the uncompressed
407 * cleanup code that can deal with all of this.
408 *
409 * It isn't really the fastest way to fix things, but this is a
410 * very uncommon corner.
411 */
412 if (actual_end <= start)
413 goto cleanup_and_bail_uncompressed;
414
c8b97818
CM
415 total_compressed = actual_end - start;
416
417 /* we want to make sure that amount of ram required to uncompress
418 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
419 * of a compressed extent to 128k. This is a crucial number
420 * because it also controls how easily we can spread reads across
421 * cpus for decompression.
422 *
423 * We also want to make sure the amount of IO required to do
424 * a random read is reasonably small, so we limit the size of
425 * a compressed extent to 128k.
c8b97818
CM
426 */
427 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 428 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 429 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
430 total_in = 0;
431 ret = 0;
db94535d 432
771ed689
CM
433 /*
434 * we do compression for mount -o compress and when the
435 * inode has not been flagged as nocompress. This flag can
436 * change at any time if we discover bad compression ratios.
c8b97818 437 */
6cbff00f 438 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 439 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
440 (BTRFS_I(inode)->force_compress) ||
441 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 442 WARN_ON(pages);
cfbc246e 443 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
444 if (!pages) {
445 /* just bail out to the uncompressed code */
446 goto cont;
447 }
c8b97818 448
261507a0
LZ
449 if (BTRFS_I(inode)->force_compress)
450 compress_type = BTRFS_I(inode)->force_compress;
451
4adaa611
CM
452 /*
453 * we need to call clear_page_dirty_for_io on each
454 * page in the range. Otherwise applications with the file
455 * mmap'd can wander in and change the page contents while
456 * we are compressing them.
457 *
458 * If the compression fails for any reason, we set the pages
459 * dirty again later on.
460 */
461 extent_range_clear_dirty_for_io(inode, start, end);
462 redirty = 1;
261507a0
LZ
463 ret = btrfs_compress_pages(compress_type,
464 inode->i_mapping, start,
465 total_compressed, pages,
466 nr_pages, &nr_pages_ret,
467 &total_in,
468 &total_compressed,
469 max_compressed);
c8b97818
CM
470
471 if (!ret) {
472 unsigned long offset = total_compressed &
473 (PAGE_CACHE_SIZE - 1);
474 struct page *page = pages[nr_pages_ret - 1];
475 char *kaddr;
476
477 /* zero the tail end of the last page, we might be
478 * sending it down to disk
479 */
480 if (offset) {
7ac687d9 481 kaddr = kmap_atomic(page);
c8b97818
CM
482 memset(kaddr + offset, 0,
483 PAGE_CACHE_SIZE - offset);
7ac687d9 484 kunmap_atomic(kaddr);
c8b97818
CM
485 }
486 will_compress = 1;
487 }
488 }
560f7d75 489cont:
c8b97818
CM
490 if (start == 0) {
491 /* lets try to make an inline extent */
771ed689 492 if (ret || total_in < (actual_end - start)) {
c8b97818 493 /* we didn't compress the entire range, try
771ed689 494 * to make an uncompressed inline extent.
c8b97818 495 */
00361589
JB
496 ret = cow_file_range_inline(root, inode, start, end,
497 0, 0, NULL);
c8b97818 498 } else {
771ed689 499 /* try making a compressed inline extent */
00361589 500 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
501 total_compressed,
502 compress_type, pages);
c8b97818 503 }
79787eaa 504 if (ret <= 0) {
151a41bc
JB
505 unsigned long clear_flags = EXTENT_DELALLOC |
506 EXTENT_DEFRAG;
507 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
508
771ed689 509 /*
79787eaa
JM
510 * inline extent creation worked or returned error,
511 * we don't need to create any more async work items.
512 * Unlock and free up our temp pages.
771ed689 513 */
c2790a2e 514 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 515 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
516 PAGE_CLEAR_DIRTY |
517 PAGE_SET_WRITEBACK |
518 PAGE_END_WRITEBACK);
c8b97818
CM
519 goto free_pages_out;
520 }
521 }
522
523 if (will_compress) {
524 /*
525 * we aren't doing an inline extent round the compressed size
526 * up to a block size boundary so the allocator does sane
527 * things
528 */
fda2832f 529 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
530
531 /*
532 * one last check to make sure the compression is really a
533 * win, compare the page count read with the blocks on disk
534 */
fda2832f 535 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
536 if (total_compressed >= total_in) {
537 will_compress = 0;
538 } else {
c8b97818
CM
539 num_bytes = total_in;
540 }
541 }
542 if (!will_compress && pages) {
543 /*
544 * the compression code ran but failed to make things smaller,
545 * free any pages it allocated and our page pointer array
546 */
547 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 548 WARN_ON(pages[i]->mapping);
c8b97818
CM
549 page_cache_release(pages[i]);
550 }
551 kfree(pages);
552 pages = NULL;
553 total_compressed = 0;
554 nr_pages_ret = 0;
555
556 /* flag the file so we don't compress in the future */
1e701a32
CM
557 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
558 !(BTRFS_I(inode)->force_compress)) {
a555f810 559 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 560 }
c8b97818 561 }
771ed689
CM
562 if (will_compress) {
563 *num_added += 1;
c8b97818 564
771ed689
CM
565 /* the async work queues will take care of doing actual
566 * allocation on disk for these compressed pages,
567 * and will submit them to the elevator.
568 */
569 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
570 total_compressed, pages, nr_pages_ret,
571 compress_type);
179e29e4 572
24ae6365 573 if (start + num_bytes < end) {
771ed689
CM
574 start += num_bytes;
575 pages = NULL;
576 cond_resched();
577 goto again;
578 }
579 } else {
f03d9301 580cleanup_and_bail_uncompressed:
771ed689
CM
581 /*
582 * No compression, but we still need to write the pages in
583 * the file we've been given so far. redirty the locked
584 * page if it corresponds to our extent and set things up
585 * for the async work queue to run cow_file_range to do
586 * the normal delalloc dance
587 */
588 if (page_offset(locked_page) >= start &&
589 page_offset(locked_page) <= end) {
590 __set_page_dirty_nobuffers(locked_page);
591 /* unlocked later on in the async handlers */
592 }
4adaa611
CM
593 if (redirty)
594 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
595 add_async_extent(async_cow, start, end - start + 1,
596 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
597 *num_added += 1;
598 }
3b951516 599
771ed689 600out:
79787eaa 601 return ret;
771ed689
CM
602
603free_pages_out:
604 for (i = 0; i < nr_pages_ret; i++) {
605 WARN_ON(pages[i]->mapping);
606 page_cache_release(pages[i]);
607 }
d397712b 608 kfree(pages);
771ed689
CM
609
610 goto out;
611}
612
613/*
614 * phase two of compressed writeback. This is the ordered portion
615 * of the code, which only gets called in the order the work was
616 * queued. We walk all the async extents created by compress_file_range
617 * and send them down to the disk.
618 */
619static noinline int submit_compressed_extents(struct inode *inode,
620 struct async_cow *async_cow)
621{
622 struct async_extent *async_extent;
623 u64 alloc_hint = 0;
771ed689
CM
624 struct btrfs_key ins;
625 struct extent_map *em;
626 struct btrfs_root *root = BTRFS_I(inode)->root;
627 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
628 struct extent_io_tree *io_tree;
f5a84ee3 629 int ret = 0;
771ed689
CM
630
631 if (list_empty(&async_cow->extents))
632 return 0;
633
3e04e7f1 634again:
d397712b 635 while (!list_empty(&async_cow->extents)) {
771ed689
CM
636 async_extent = list_entry(async_cow->extents.next,
637 struct async_extent, list);
638 list_del(&async_extent->list);
c8b97818 639
771ed689
CM
640 io_tree = &BTRFS_I(inode)->io_tree;
641
f5a84ee3 642retry:
771ed689
CM
643 /* did the compression code fall back to uncompressed IO? */
644 if (!async_extent->pages) {
645 int page_started = 0;
646 unsigned long nr_written = 0;
647
648 lock_extent(io_tree, async_extent->start,
2ac55d41 649 async_extent->start +
d0082371 650 async_extent->ram_size - 1);
771ed689
CM
651
652 /* allocate blocks */
f5a84ee3
JB
653 ret = cow_file_range(inode, async_cow->locked_page,
654 async_extent->start,
655 async_extent->start +
656 async_extent->ram_size - 1,
657 &page_started, &nr_written, 0);
771ed689 658
79787eaa
JM
659 /* JDM XXX */
660
771ed689
CM
661 /*
662 * if page_started, cow_file_range inserted an
663 * inline extent and took care of all the unlocking
664 * and IO for us. Otherwise, we need to submit
665 * all those pages down to the drive.
666 */
f5a84ee3 667 if (!page_started && !ret)
771ed689
CM
668 extent_write_locked_range(io_tree,
669 inode, async_extent->start,
d397712b 670 async_extent->start +
771ed689
CM
671 async_extent->ram_size - 1,
672 btrfs_get_extent,
673 WB_SYNC_ALL);
3e04e7f1
JB
674 else if (ret)
675 unlock_page(async_cow->locked_page);
771ed689
CM
676 kfree(async_extent);
677 cond_resched();
678 continue;
679 }
680
681 lock_extent(io_tree, async_extent->start,
d0082371 682 async_extent->start + async_extent->ram_size - 1);
771ed689 683
00361589 684 ret = btrfs_reserve_extent(root,
771ed689
CM
685 async_extent->compressed_size,
686 async_extent->compressed_size,
81c9ad23 687 0, alloc_hint, &ins, 1);
f5a84ee3
JB
688 if (ret) {
689 int i;
3e04e7f1 690
f5a84ee3
JB
691 for (i = 0; i < async_extent->nr_pages; i++) {
692 WARN_ON(async_extent->pages[i]->mapping);
693 page_cache_release(async_extent->pages[i]);
694 }
695 kfree(async_extent->pages);
696 async_extent->nr_pages = 0;
697 async_extent->pages = NULL;
3e04e7f1 698
fdf8e2ea
JB
699 if (ret == -ENOSPC) {
700 unlock_extent(io_tree, async_extent->start,
701 async_extent->start +
702 async_extent->ram_size - 1);
79787eaa 703 goto retry;
fdf8e2ea 704 }
3e04e7f1 705 goto out_free;
f5a84ee3
JB
706 }
707
c2167754
YZ
708 /*
709 * here we're doing allocation and writeback of the
710 * compressed pages
711 */
712 btrfs_drop_extent_cache(inode, async_extent->start,
713 async_extent->start +
714 async_extent->ram_size - 1, 0);
715
172ddd60 716 em = alloc_extent_map();
b9aa55be
LB
717 if (!em) {
718 ret = -ENOMEM;
3e04e7f1 719 goto out_free_reserve;
b9aa55be 720 }
771ed689
CM
721 em->start = async_extent->start;
722 em->len = async_extent->ram_size;
445a6944 723 em->orig_start = em->start;
2ab28f32
JB
724 em->mod_start = em->start;
725 em->mod_len = em->len;
c8b97818 726
771ed689
CM
727 em->block_start = ins.objectid;
728 em->block_len = ins.offset;
b4939680 729 em->orig_block_len = ins.offset;
cc95bef6 730 em->ram_bytes = async_extent->ram_size;
771ed689 731 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 732 em->compress_type = async_extent->compress_type;
771ed689
CM
733 set_bit(EXTENT_FLAG_PINNED, &em->flags);
734 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 735 em->generation = -1;
771ed689 736
d397712b 737 while (1) {
890871be 738 write_lock(&em_tree->lock);
09a2a8f9 739 ret = add_extent_mapping(em_tree, em, 1);
890871be 740 write_unlock(&em_tree->lock);
771ed689
CM
741 if (ret != -EEXIST) {
742 free_extent_map(em);
743 break;
744 }
745 btrfs_drop_extent_cache(inode, async_extent->start,
746 async_extent->start +
747 async_extent->ram_size - 1, 0);
748 }
749
3e04e7f1
JB
750 if (ret)
751 goto out_free_reserve;
752
261507a0
LZ
753 ret = btrfs_add_ordered_extent_compress(inode,
754 async_extent->start,
755 ins.objectid,
756 async_extent->ram_size,
757 ins.offset,
758 BTRFS_ORDERED_COMPRESSED,
759 async_extent->compress_type);
3e04e7f1
JB
760 if (ret)
761 goto out_free_reserve;
771ed689 762
771ed689
CM
763 /*
764 * clear dirty, set writeback and unlock the pages.
765 */
c2790a2e 766 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
767 async_extent->start +
768 async_extent->ram_size - 1,
151a41bc
JB
769 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
770 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 771 PAGE_SET_WRITEBACK);
771ed689 772 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
773 async_extent->start,
774 async_extent->ram_size,
775 ins.objectid,
776 ins.offset, async_extent->pages,
777 async_extent->nr_pages);
771ed689
CM
778 alloc_hint = ins.objectid + ins.offset;
779 kfree(async_extent);
3e04e7f1
JB
780 if (ret)
781 goto out;
771ed689
CM
782 cond_resched();
783 }
79787eaa
JM
784 ret = 0;
785out:
786 return ret;
3e04e7f1
JB
787out_free_reserve:
788 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 789out_free:
c2790a2e 790 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
791 async_extent->start +
792 async_extent->ram_size - 1,
c2790a2e 793 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
794 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
795 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
796 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 797 kfree(async_extent);
3e04e7f1 798 goto again;
771ed689
CM
799}
800
4b46fce2
JB
801static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
802 u64 num_bytes)
803{
804 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
805 struct extent_map *em;
806 u64 alloc_hint = 0;
807
808 read_lock(&em_tree->lock);
809 em = search_extent_mapping(em_tree, start, num_bytes);
810 if (em) {
811 /*
812 * if block start isn't an actual block number then find the
813 * first block in this inode and use that as a hint. If that
814 * block is also bogus then just don't worry about it.
815 */
816 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
817 free_extent_map(em);
818 em = search_extent_mapping(em_tree, 0, 0);
819 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
820 alloc_hint = em->block_start;
821 if (em)
822 free_extent_map(em);
823 } else {
824 alloc_hint = em->block_start;
825 free_extent_map(em);
826 }
827 }
828 read_unlock(&em_tree->lock);
829
830 return alloc_hint;
831}
832
771ed689
CM
833/*
834 * when extent_io.c finds a delayed allocation range in the file,
835 * the call backs end up in this code. The basic idea is to
836 * allocate extents on disk for the range, and create ordered data structs
837 * in ram to track those extents.
838 *
839 * locked_page is the page that writepage had locked already. We use
840 * it to make sure we don't do extra locks or unlocks.
841 *
842 * *page_started is set to one if we unlock locked_page and do everything
843 * required to start IO on it. It may be clean and already done with
844 * IO when we return.
845 */
00361589
JB
846static noinline int cow_file_range(struct inode *inode,
847 struct page *locked_page,
848 u64 start, u64 end, int *page_started,
849 unsigned long *nr_written,
850 int unlock)
771ed689 851{
00361589 852 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
853 u64 alloc_hint = 0;
854 u64 num_bytes;
855 unsigned long ram_size;
856 u64 disk_num_bytes;
857 u64 cur_alloc_size;
858 u64 blocksize = root->sectorsize;
771ed689
CM
859 struct btrfs_key ins;
860 struct extent_map *em;
861 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
862 int ret = 0;
863
02ecd2c2
JB
864 if (btrfs_is_free_space_inode(inode)) {
865 WARN_ON_ONCE(1);
866 return -EINVAL;
867 }
771ed689 868
fda2832f 869 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
870 num_bytes = max(blocksize, num_bytes);
871 disk_num_bytes = num_bytes;
771ed689 872
4cb5300b 873 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
874 if (num_bytes < 64 * 1024 &&
875 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 876 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 877
771ed689
CM
878 if (start == 0) {
879 /* lets try to make an inline extent */
00361589
JB
880 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
881 NULL);
771ed689 882 if (ret == 0) {
c2790a2e
JB
883 extent_clear_unlock_delalloc(inode, start, end, NULL,
884 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 885 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
886 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
887 PAGE_END_WRITEBACK);
c2167754 888
771ed689
CM
889 *nr_written = *nr_written +
890 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
891 *page_started = 1;
771ed689 892 goto out;
79787eaa 893 } else if (ret < 0) {
79787eaa 894 goto out_unlock;
771ed689
CM
895 }
896 }
897
898 BUG_ON(disk_num_bytes >
6c41761f 899 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 900
4b46fce2 901 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
902 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
903
d397712b 904 while (disk_num_bytes > 0) {
a791e35e
CM
905 unsigned long op;
906
287a0ab9 907 cur_alloc_size = disk_num_bytes;
00361589 908 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 909 root->sectorsize, 0, alloc_hint,
81c9ad23 910 &ins, 1);
00361589 911 if (ret < 0)
79787eaa 912 goto out_unlock;
d397712b 913
172ddd60 914 em = alloc_extent_map();
b9aa55be
LB
915 if (!em) {
916 ret = -ENOMEM;
ace68bac 917 goto out_reserve;
b9aa55be 918 }
e6dcd2dc 919 em->start = start;
445a6944 920 em->orig_start = em->start;
771ed689
CM
921 ram_size = ins.offset;
922 em->len = ins.offset;
2ab28f32
JB
923 em->mod_start = em->start;
924 em->mod_len = em->len;
c8b97818 925
e6dcd2dc 926 em->block_start = ins.objectid;
c8b97818 927 em->block_len = ins.offset;
b4939680 928 em->orig_block_len = ins.offset;
cc95bef6 929 em->ram_bytes = ram_size;
e6dcd2dc 930 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 931 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 932 em->generation = -1;
c8b97818 933
d397712b 934 while (1) {
890871be 935 write_lock(&em_tree->lock);
09a2a8f9 936 ret = add_extent_mapping(em_tree, em, 1);
890871be 937 write_unlock(&em_tree->lock);
e6dcd2dc
CM
938 if (ret != -EEXIST) {
939 free_extent_map(em);
940 break;
941 }
942 btrfs_drop_extent_cache(inode, start,
c8b97818 943 start + ram_size - 1, 0);
e6dcd2dc 944 }
ace68bac
LB
945 if (ret)
946 goto out_reserve;
e6dcd2dc 947
98d20f67 948 cur_alloc_size = ins.offset;
e6dcd2dc 949 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 950 ram_size, cur_alloc_size, 0);
ace68bac
LB
951 if (ret)
952 goto out_reserve;
c8b97818 953
17d217fe
YZ
954 if (root->root_key.objectid ==
955 BTRFS_DATA_RELOC_TREE_OBJECTID) {
956 ret = btrfs_reloc_clone_csums(inode, start,
957 cur_alloc_size);
00361589 958 if (ret)
ace68bac 959 goto out_reserve;
17d217fe
YZ
960 }
961
d397712b 962 if (disk_num_bytes < cur_alloc_size)
3b951516 963 break;
d397712b 964
c8b97818
CM
965 /* we're not doing compressed IO, don't unlock the first
966 * page (which the caller expects to stay locked), don't
967 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
968 *
969 * Do set the Private2 bit so we know this page was properly
970 * setup for writepage
c8b97818 971 */
c2790a2e
JB
972 op = unlock ? PAGE_UNLOCK : 0;
973 op |= PAGE_SET_PRIVATE2;
a791e35e 974
c2790a2e
JB
975 extent_clear_unlock_delalloc(inode, start,
976 start + ram_size - 1, locked_page,
977 EXTENT_LOCKED | EXTENT_DELALLOC,
978 op);
c8b97818 979 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
980 num_bytes -= cur_alloc_size;
981 alloc_hint = ins.objectid + ins.offset;
982 start += cur_alloc_size;
b888db2b 983 }
79787eaa 984out:
be20aa9d 985 return ret;
b7d5b0a8 986
ace68bac
LB
987out_reserve:
988 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 989out_unlock:
c2790a2e 990 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
991 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
992 EXTENT_DELALLOC | EXTENT_DEFRAG,
993 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
994 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 995 goto out;
771ed689 996}
c8b97818 997
771ed689
CM
998/*
999 * work queue call back to started compression on a file and pages
1000 */
1001static noinline void async_cow_start(struct btrfs_work *work)
1002{
1003 struct async_cow *async_cow;
1004 int num_added = 0;
1005 async_cow = container_of(work, struct async_cow, work);
1006
1007 compress_file_range(async_cow->inode, async_cow->locked_page,
1008 async_cow->start, async_cow->end, async_cow,
1009 &num_added);
8180ef88 1010 if (num_added == 0) {
cb77fcd8 1011 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1012 async_cow->inode = NULL;
8180ef88 1013 }
771ed689
CM
1014}
1015
1016/*
1017 * work queue call back to submit previously compressed pages
1018 */
1019static noinline void async_cow_submit(struct btrfs_work *work)
1020{
1021 struct async_cow *async_cow;
1022 struct btrfs_root *root;
1023 unsigned long nr_pages;
1024
1025 async_cow = container_of(work, struct async_cow, work);
1026
1027 root = async_cow->root;
1028 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1029 PAGE_CACHE_SHIFT;
1030
66657b31 1031 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1032 5 * 1024 * 1024 &&
771ed689
CM
1033 waitqueue_active(&root->fs_info->async_submit_wait))
1034 wake_up(&root->fs_info->async_submit_wait);
1035
d397712b 1036 if (async_cow->inode)
771ed689 1037 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1038}
c8b97818 1039
771ed689
CM
1040static noinline void async_cow_free(struct btrfs_work *work)
1041{
1042 struct async_cow *async_cow;
1043 async_cow = container_of(work, struct async_cow, work);
8180ef88 1044 if (async_cow->inode)
cb77fcd8 1045 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1046 kfree(async_cow);
1047}
1048
1049static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1050 u64 start, u64 end, int *page_started,
1051 unsigned long *nr_written)
1052{
1053 struct async_cow *async_cow;
1054 struct btrfs_root *root = BTRFS_I(inode)->root;
1055 unsigned long nr_pages;
1056 u64 cur_end;
287082b0 1057 int limit = 10 * 1024 * 1024;
771ed689 1058
a3429ab7
CM
1059 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1060 1, 0, NULL, GFP_NOFS);
d397712b 1061 while (start < end) {
771ed689 1062 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1063 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1064 async_cow->inode = igrab(inode);
771ed689
CM
1065 async_cow->root = root;
1066 async_cow->locked_page = locked_page;
1067 async_cow->start = start;
1068
6cbff00f 1069 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1070 cur_end = end;
1071 else
1072 cur_end = min(end, start + 512 * 1024 - 1);
1073
1074 async_cow->end = cur_end;
1075 INIT_LIST_HEAD(&async_cow->extents);
1076
1077 async_cow->work.func = async_cow_start;
1078 async_cow->work.ordered_func = async_cow_submit;
1079 async_cow->work.ordered_free = async_cow_free;
1080 async_cow->work.flags = 0;
1081
771ed689
CM
1082 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1083 PAGE_CACHE_SHIFT;
1084 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1085
1086 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1087 &async_cow->work);
1088
1089 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1090 wait_event(root->fs_info->async_submit_wait,
1091 (atomic_read(&root->fs_info->async_delalloc_pages) <
1092 limit));
1093 }
1094
d397712b 1095 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1096 atomic_read(&root->fs_info->async_delalloc_pages)) {
1097 wait_event(root->fs_info->async_submit_wait,
1098 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1099 0));
1100 }
1101
1102 *nr_written += nr_pages;
1103 start = cur_end + 1;
1104 }
1105 *page_started = 1;
1106 return 0;
be20aa9d
CM
1107}
1108
d397712b 1109static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1110 u64 bytenr, u64 num_bytes)
1111{
1112 int ret;
1113 struct btrfs_ordered_sum *sums;
1114 LIST_HEAD(list);
1115
07d400a6 1116 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1117 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1118 if (ret == 0 && list_empty(&list))
1119 return 0;
1120
1121 while (!list_empty(&list)) {
1122 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1123 list_del(&sums->list);
1124 kfree(sums);
1125 }
1126 return 1;
1127}
1128
d352ac68
CM
1129/*
1130 * when nowcow writeback call back. This checks for snapshots or COW copies
1131 * of the extents that exist in the file, and COWs the file as required.
1132 *
1133 * If no cow copies or snapshots exist, we write directly to the existing
1134 * blocks on disk
1135 */
7f366cfe
CM
1136static noinline int run_delalloc_nocow(struct inode *inode,
1137 struct page *locked_page,
771ed689
CM
1138 u64 start, u64 end, int *page_started, int force,
1139 unsigned long *nr_written)
be20aa9d 1140{
be20aa9d 1141 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1142 struct btrfs_trans_handle *trans;
be20aa9d 1143 struct extent_buffer *leaf;
be20aa9d 1144 struct btrfs_path *path;
80ff3856 1145 struct btrfs_file_extent_item *fi;
be20aa9d 1146 struct btrfs_key found_key;
80ff3856
YZ
1147 u64 cow_start;
1148 u64 cur_offset;
1149 u64 extent_end;
5d4f98a2 1150 u64 extent_offset;
80ff3856
YZ
1151 u64 disk_bytenr;
1152 u64 num_bytes;
b4939680 1153 u64 disk_num_bytes;
cc95bef6 1154 u64 ram_bytes;
80ff3856 1155 int extent_type;
79787eaa 1156 int ret, err;
d899e052 1157 int type;
80ff3856
YZ
1158 int nocow;
1159 int check_prev = 1;
82d5902d 1160 bool nolock;
33345d01 1161 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1162
1163 path = btrfs_alloc_path();
17ca04af 1164 if (!path) {
c2790a2e
JB
1165 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1166 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1167 EXTENT_DO_ACCOUNTING |
1168 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1169 PAGE_CLEAR_DIRTY |
1170 PAGE_SET_WRITEBACK |
1171 PAGE_END_WRITEBACK);
d8926bb3 1172 return -ENOMEM;
17ca04af 1173 }
82d5902d 1174
83eea1f1 1175 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1176
1177 if (nolock)
7a7eaa40 1178 trans = btrfs_join_transaction_nolock(root);
82d5902d 1179 else
7a7eaa40 1180 trans = btrfs_join_transaction(root);
ff5714cc 1181
79787eaa 1182 if (IS_ERR(trans)) {
c2790a2e
JB
1183 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1184 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1185 EXTENT_DO_ACCOUNTING |
1186 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1187 PAGE_CLEAR_DIRTY |
1188 PAGE_SET_WRITEBACK |
1189 PAGE_END_WRITEBACK);
79787eaa
JM
1190 btrfs_free_path(path);
1191 return PTR_ERR(trans);
1192 }
1193
74b21075 1194 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1195
80ff3856
YZ
1196 cow_start = (u64)-1;
1197 cur_offset = start;
1198 while (1) {
33345d01 1199 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1200 cur_offset, 0);
d788a349 1201 if (ret < 0)
79787eaa 1202 goto error;
80ff3856
YZ
1203 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1204 leaf = path->nodes[0];
1205 btrfs_item_key_to_cpu(leaf, &found_key,
1206 path->slots[0] - 1);
33345d01 1207 if (found_key.objectid == ino &&
80ff3856
YZ
1208 found_key.type == BTRFS_EXTENT_DATA_KEY)
1209 path->slots[0]--;
1210 }
1211 check_prev = 0;
1212next_slot:
1213 leaf = path->nodes[0];
1214 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1215 ret = btrfs_next_leaf(root, path);
d788a349 1216 if (ret < 0)
79787eaa 1217 goto error;
80ff3856
YZ
1218 if (ret > 0)
1219 break;
1220 leaf = path->nodes[0];
1221 }
be20aa9d 1222
80ff3856
YZ
1223 nocow = 0;
1224 disk_bytenr = 0;
17d217fe 1225 num_bytes = 0;
80ff3856
YZ
1226 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1227
33345d01 1228 if (found_key.objectid > ino ||
80ff3856
YZ
1229 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1230 found_key.offset > end)
1231 break;
1232
1233 if (found_key.offset > cur_offset) {
1234 extent_end = found_key.offset;
e9061e21 1235 extent_type = 0;
80ff3856
YZ
1236 goto out_check;
1237 }
1238
1239 fi = btrfs_item_ptr(leaf, path->slots[0],
1240 struct btrfs_file_extent_item);
1241 extent_type = btrfs_file_extent_type(leaf, fi);
1242
cc95bef6 1243 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1244 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1245 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1246 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1247 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1248 extent_end = found_key.offset +
1249 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1250 disk_num_bytes =
1251 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1252 if (extent_end <= start) {
1253 path->slots[0]++;
1254 goto next_slot;
1255 }
17d217fe
YZ
1256 if (disk_bytenr == 0)
1257 goto out_check;
80ff3856
YZ
1258 if (btrfs_file_extent_compression(leaf, fi) ||
1259 btrfs_file_extent_encryption(leaf, fi) ||
1260 btrfs_file_extent_other_encoding(leaf, fi))
1261 goto out_check;
d899e052
YZ
1262 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1263 goto out_check;
d2fb3437 1264 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1265 goto out_check;
33345d01 1266 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1267 found_key.offset -
1268 extent_offset, disk_bytenr))
17d217fe 1269 goto out_check;
5d4f98a2 1270 disk_bytenr += extent_offset;
17d217fe
YZ
1271 disk_bytenr += cur_offset - found_key.offset;
1272 num_bytes = min(end + 1, extent_end) - cur_offset;
1273 /*
1274 * force cow if csum exists in the range.
1275 * this ensure that csum for a given extent are
1276 * either valid or do not exist.
1277 */
1278 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1279 goto out_check;
80ff3856
YZ
1280 nocow = 1;
1281 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1282 extent_end = found_key.offset +
1283 btrfs_file_extent_inline_len(leaf, fi);
1284 extent_end = ALIGN(extent_end, root->sectorsize);
1285 } else {
1286 BUG_ON(1);
1287 }
1288out_check:
1289 if (extent_end <= start) {
1290 path->slots[0]++;
1291 goto next_slot;
1292 }
1293 if (!nocow) {
1294 if (cow_start == (u64)-1)
1295 cow_start = cur_offset;
1296 cur_offset = extent_end;
1297 if (cur_offset > end)
1298 break;
1299 path->slots[0]++;
1300 goto next_slot;
7ea394f1
YZ
1301 }
1302
b3b4aa74 1303 btrfs_release_path(path);
80ff3856 1304 if (cow_start != (u64)-1) {
00361589
JB
1305 ret = cow_file_range(inode, locked_page,
1306 cow_start, found_key.offset - 1,
1307 page_started, nr_written, 1);
d788a349 1308 if (ret)
79787eaa 1309 goto error;
80ff3856 1310 cow_start = (u64)-1;
7ea394f1 1311 }
80ff3856 1312
d899e052
YZ
1313 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1314 struct extent_map *em;
1315 struct extent_map_tree *em_tree;
1316 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1317 em = alloc_extent_map();
79787eaa 1318 BUG_ON(!em); /* -ENOMEM */
d899e052 1319 em->start = cur_offset;
70c8a91c 1320 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1321 em->len = num_bytes;
1322 em->block_len = num_bytes;
1323 em->block_start = disk_bytenr;
b4939680 1324 em->orig_block_len = disk_num_bytes;
cc95bef6 1325 em->ram_bytes = ram_bytes;
d899e052 1326 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1327 em->mod_start = em->start;
1328 em->mod_len = em->len;
d899e052 1329 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1330 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1331 em->generation = -1;
d899e052 1332 while (1) {
890871be 1333 write_lock(&em_tree->lock);
09a2a8f9 1334 ret = add_extent_mapping(em_tree, em, 1);
890871be 1335 write_unlock(&em_tree->lock);
d899e052
YZ
1336 if (ret != -EEXIST) {
1337 free_extent_map(em);
1338 break;
1339 }
1340 btrfs_drop_extent_cache(inode, em->start,
1341 em->start + em->len - 1, 0);
1342 }
1343 type = BTRFS_ORDERED_PREALLOC;
1344 } else {
1345 type = BTRFS_ORDERED_NOCOW;
1346 }
80ff3856
YZ
1347
1348 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1349 num_bytes, num_bytes, type);
79787eaa 1350 BUG_ON(ret); /* -ENOMEM */
771ed689 1351
efa56464
YZ
1352 if (root->root_key.objectid ==
1353 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1354 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1355 num_bytes);
d788a349 1356 if (ret)
79787eaa 1357 goto error;
efa56464
YZ
1358 }
1359
c2790a2e
JB
1360 extent_clear_unlock_delalloc(inode, cur_offset,
1361 cur_offset + num_bytes - 1,
1362 locked_page, EXTENT_LOCKED |
1363 EXTENT_DELALLOC, PAGE_UNLOCK |
1364 PAGE_SET_PRIVATE2);
80ff3856
YZ
1365 cur_offset = extent_end;
1366 if (cur_offset > end)
1367 break;
be20aa9d 1368 }
b3b4aa74 1369 btrfs_release_path(path);
80ff3856 1370
17ca04af 1371 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1372 cow_start = cur_offset;
17ca04af
JB
1373 cur_offset = end;
1374 }
1375
80ff3856 1376 if (cow_start != (u64)-1) {
00361589
JB
1377 ret = cow_file_range(inode, locked_page, cow_start, end,
1378 page_started, nr_written, 1);
d788a349 1379 if (ret)
79787eaa 1380 goto error;
80ff3856
YZ
1381 }
1382
79787eaa 1383error:
a698d075 1384 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1385 if (!ret)
1386 ret = err;
1387
17ca04af 1388 if (ret && cur_offset < end)
c2790a2e
JB
1389 extent_clear_unlock_delalloc(inode, cur_offset, end,
1390 locked_page, EXTENT_LOCKED |
151a41bc
JB
1391 EXTENT_DELALLOC | EXTENT_DEFRAG |
1392 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1393 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1394 PAGE_SET_WRITEBACK |
1395 PAGE_END_WRITEBACK);
7ea394f1 1396 btrfs_free_path(path);
79787eaa 1397 return ret;
be20aa9d
CM
1398}
1399
d352ac68
CM
1400/*
1401 * extent_io.c call back to do delayed allocation processing
1402 */
c8b97818 1403static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1404 u64 start, u64 end, int *page_started,
1405 unsigned long *nr_written)
be20aa9d 1406{
be20aa9d 1407 int ret;
7f366cfe 1408 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1409
7ddf5a42 1410 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1411 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1412 page_started, 1, nr_written);
7ddf5a42 1413 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1414 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1415 page_started, 0, nr_written);
7ddf5a42
JB
1416 } else if (!btrfs_test_opt(root, COMPRESS) &&
1417 !(BTRFS_I(inode)->force_compress) &&
1418 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1419 ret = cow_file_range(inode, locked_page, start, end,
1420 page_started, nr_written, 1);
7ddf5a42
JB
1421 } else {
1422 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1423 &BTRFS_I(inode)->runtime_flags);
771ed689 1424 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1425 page_started, nr_written);
7ddf5a42 1426 }
b888db2b
CM
1427 return ret;
1428}
1429
1bf85046
JM
1430static void btrfs_split_extent_hook(struct inode *inode,
1431 struct extent_state *orig, u64 split)
9ed74f2d 1432{
0ca1f7ce 1433 /* not delalloc, ignore it */
9ed74f2d 1434 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1435 return;
9ed74f2d 1436
9e0baf60
JB
1437 spin_lock(&BTRFS_I(inode)->lock);
1438 BTRFS_I(inode)->outstanding_extents++;
1439 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1440}
1441
1442/*
1443 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1444 * extents so we can keep track of new extents that are just merged onto old
1445 * extents, such as when we are doing sequential writes, so we can properly
1446 * account for the metadata space we'll need.
1447 */
1bf85046
JM
1448static void btrfs_merge_extent_hook(struct inode *inode,
1449 struct extent_state *new,
1450 struct extent_state *other)
9ed74f2d 1451{
9ed74f2d
JB
1452 /* not delalloc, ignore it */
1453 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1454 return;
9ed74f2d 1455
9e0baf60
JB
1456 spin_lock(&BTRFS_I(inode)->lock);
1457 BTRFS_I(inode)->outstanding_extents--;
1458 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1459}
1460
eb73c1b7
MX
1461static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1462 struct inode *inode)
1463{
1464 spin_lock(&root->delalloc_lock);
1465 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1466 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1467 &root->delalloc_inodes);
1468 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1469 &BTRFS_I(inode)->runtime_flags);
1470 root->nr_delalloc_inodes++;
1471 if (root->nr_delalloc_inodes == 1) {
1472 spin_lock(&root->fs_info->delalloc_root_lock);
1473 BUG_ON(!list_empty(&root->delalloc_root));
1474 list_add_tail(&root->delalloc_root,
1475 &root->fs_info->delalloc_roots);
1476 spin_unlock(&root->fs_info->delalloc_root_lock);
1477 }
1478 }
1479 spin_unlock(&root->delalloc_lock);
1480}
1481
1482static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1483 struct inode *inode)
1484{
1485 spin_lock(&root->delalloc_lock);
1486 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1487 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1488 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1489 &BTRFS_I(inode)->runtime_flags);
1490 root->nr_delalloc_inodes--;
1491 if (!root->nr_delalloc_inodes) {
1492 spin_lock(&root->fs_info->delalloc_root_lock);
1493 BUG_ON(list_empty(&root->delalloc_root));
1494 list_del_init(&root->delalloc_root);
1495 spin_unlock(&root->fs_info->delalloc_root_lock);
1496 }
1497 }
1498 spin_unlock(&root->delalloc_lock);
1499}
1500
d352ac68
CM
1501/*
1502 * extent_io.c set_bit_hook, used to track delayed allocation
1503 * bytes in this file, and to maintain the list of inodes that
1504 * have pending delalloc work to be done.
1505 */
1bf85046 1506static void btrfs_set_bit_hook(struct inode *inode,
41074888 1507 struct extent_state *state, unsigned long *bits)
291d673e 1508{
9ed74f2d 1509
75eff68e
CM
1510 /*
1511 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1512 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1513 * bit, which is only set or cleared with irqs on
1514 */
0ca1f7ce 1515 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1516 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1517 u64 len = state->end + 1 - state->start;
83eea1f1 1518 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1519
9e0baf60 1520 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1521 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1522 } else {
1523 spin_lock(&BTRFS_I(inode)->lock);
1524 BTRFS_I(inode)->outstanding_extents++;
1525 spin_unlock(&BTRFS_I(inode)->lock);
1526 }
287a0ab9 1527
963d678b
MX
1528 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1529 root->fs_info->delalloc_batch);
df0af1a5 1530 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1531 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1532 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1533 &BTRFS_I(inode)->runtime_flags))
1534 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1535 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1536 }
291d673e
CM
1537}
1538
d352ac68
CM
1539/*
1540 * extent_io.c clear_bit_hook, see set_bit_hook for why
1541 */
1bf85046 1542static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1543 struct extent_state *state,
1544 unsigned long *bits)
291d673e 1545{
75eff68e
CM
1546 /*
1547 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1548 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1549 * bit, which is only set or cleared with irqs on
1550 */
0ca1f7ce 1551 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1552 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1553 u64 len = state->end + 1 - state->start;
83eea1f1 1554 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1555
9e0baf60 1556 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1557 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1558 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1559 spin_lock(&BTRFS_I(inode)->lock);
1560 BTRFS_I(inode)->outstanding_extents--;
1561 spin_unlock(&BTRFS_I(inode)->lock);
1562 }
0ca1f7ce 1563
b6d08f06
JB
1564 /*
1565 * We don't reserve metadata space for space cache inodes so we
1566 * don't need to call dellalloc_release_metadata if there is an
1567 * error.
1568 */
1569 if (*bits & EXTENT_DO_ACCOUNTING &&
1570 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1571 btrfs_delalloc_release_metadata(inode, len);
1572
0cb59c99 1573 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1574 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1575 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1576
963d678b
MX
1577 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1578 root->fs_info->delalloc_batch);
df0af1a5 1579 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1580 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1581 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1582 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1583 &BTRFS_I(inode)->runtime_flags))
1584 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1585 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1586 }
291d673e
CM
1587}
1588
d352ac68
CM
1589/*
1590 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1591 * we don't create bios that span stripes or chunks
1592 */
64a16701 1593int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1594 size_t size, struct bio *bio,
1595 unsigned long bio_flags)
239b14b3
CM
1596{
1597 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1598 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1599 u64 length = 0;
1600 u64 map_length;
239b14b3
CM
1601 int ret;
1602
771ed689
CM
1603 if (bio_flags & EXTENT_BIO_COMPRESSED)
1604 return 0;
1605
f2d8d74d 1606 length = bio->bi_size;
239b14b3 1607 map_length = length;
64a16701 1608 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1609 &map_length, NULL, 0);
3ec706c8 1610 /* Will always return 0 with map_multi == NULL */
3444a972 1611 BUG_ON(ret < 0);
d397712b 1612 if (map_length < length + size)
239b14b3 1613 return 1;
3444a972 1614 return 0;
239b14b3
CM
1615}
1616
d352ac68
CM
1617/*
1618 * in order to insert checksums into the metadata in large chunks,
1619 * we wait until bio submission time. All the pages in the bio are
1620 * checksummed and sums are attached onto the ordered extent record.
1621 *
1622 * At IO completion time the cums attached on the ordered extent record
1623 * are inserted into the btree
1624 */
d397712b
CM
1625static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1626 struct bio *bio, int mirror_num,
eaf25d93
CM
1627 unsigned long bio_flags,
1628 u64 bio_offset)
065631f6 1629{
065631f6 1630 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1631 int ret = 0;
e015640f 1632
d20f7043 1633 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1634 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1635 return 0;
1636}
e015640f 1637
4a69a410
CM
1638/*
1639 * in order to insert checksums into the metadata in large chunks,
1640 * we wait until bio submission time. All the pages in the bio are
1641 * checksummed and sums are attached onto the ordered extent record.
1642 *
1643 * At IO completion time the cums attached on the ordered extent record
1644 * are inserted into the btree
1645 */
b2950863 1646static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1647 int mirror_num, unsigned long bio_flags,
1648 u64 bio_offset)
4a69a410
CM
1649{
1650 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1651 int ret;
1652
1653 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1654 if (ret)
1655 bio_endio(bio, ret);
1656 return ret;
44b8bd7e
CM
1657}
1658
d352ac68 1659/*
cad321ad
CM
1660 * extent_io.c submission hook. This does the right thing for csum calculation
1661 * on write, or reading the csums from the tree before a read
d352ac68 1662 */
b2950863 1663static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1664 int mirror_num, unsigned long bio_flags,
1665 u64 bio_offset)
44b8bd7e
CM
1666{
1667 struct btrfs_root *root = BTRFS_I(inode)->root;
1668 int ret = 0;
19b9bdb0 1669 int skip_sum;
0417341e 1670 int metadata = 0;
b812ce28 1671 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1672
6cbff00f 1673 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1674
83eea1f1 1675 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1676 metadata = 2;
1677
7b6d91da 1678 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1679 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1680 if (ret)
61891923 1681 goto out;
5fd02043 1682
d20f7043 1683 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1684 ret = btrfs_submit_compressed_read(inode, bio,
1685 mirror_num,
1686 bio_flags);
1687 goto out;
c2db1073
TI
1688 } else if (!skip_sum) {
1689 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1690 if (ret)
61891923 1691 goto out;
c2db1073 1692 }
4d1b5fb4 1693 goto mapit;
b812ce28 1694 } else if (async && !skip_sum) {
17d217fe
YZ
1695 /* csum items have already been cloned */
1696 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1697 goto mapit;
19b9bdb0 1698 /* we're doing a write, do the async checksumming */
61891923 1699 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1700 inode, rw, bio, mirror_num,
eaf25d93
CM
1701 bio_flags, bio_offset,
1702 __btrfs_submit_bio_start,
4a69a410 1703 __btrfs_submit_bio_done);
61891923 1704 goto out;
b812ce28
JB
1705 } else if (!skip_sum) {
1706 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1707 if (ret)
1708 goto out;
19b9bdb0
CM
1709 }
1710
0b86a832 1711mapit:
61891923
SB
1712 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1713
1714out:
1715 if (ret < 0)
1716 bio_endio(bio, ret);
1717 return ret;
065631f6 1718}
6885f308 1719
d352ac68
CM
1720/*
1721 * given a list of ordered sums record them in the inode. This happens
1722 * at IO completion time based on sums calculated at bio submission time.
1723 */
ba1da2f4 1724static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1725 struct inode *inode, u64 file_offset,
1726 struct list_head *list)
1727{
e6dcd2dc
CM
1728 struct btrfs_ordered_sum *sum;
1729
c6e30871 1730 list_for_each_entry(sum, list, list) {
39847c4d 1731 trans->adding_csums = 1;
d20f7043
CM
1732 btrfs_csum_file_blocks(trans,
1733 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1734 trans->adding_csums = 0;
e6dcd2dc
CM
1735 }
1736 return 0;
1737}
1738
2ac55d41
JB
1739int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1740 struct extent_state **cached_state)
ea8c2819 1741{
6c1500f2 1742 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1743 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1744 cached_state, GFP_NOFS);
ea8c2819
CM
1745}
1746
d352ac68 1747/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1748struct btrfs_writepage_fixup {
1749 struct page *page;
1750 struct btrfs_work work;
1751};
1752
b2950863 1753static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1754{
1755 struct btrfs_writepage_fixup *fixup;
1756 struct btrfs_ordered_extent *ordered;
2ac55d41 1757 struct extent_state *cached_state = NULL;
247e743c
CM
1758 struct page *page;
1759 struct inode *inode;
1760 u64 page_start;
1761 u64 page_end;
87826df0 1762 int ret;
247e743c
CM
1763
1764 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1765 page = fixup->page;
4a096752 1766again:
247e743c
CM
1767 lock_page(page);
1768 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1769 ClearPageChecked(page);
1770 goto out_page;
1771 }
1772
1773 inode = page->mapping->host;
1774 page_start = page_offset(page);
1775 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1776
2ac55d41 1777 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1778 &cached_state);
4a096752
CM
1779
1780 /* already ordered? We're done */
8b62b72b 1781 if (PagePrivate2(page))
247e743c 1782 goto out;
4a096752
CM
1783
1784 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1785 if (ordered) {
2ac55d41
JB
1786 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1787 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1788 unlock_page(page);
1789 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1790 btrfs_put_ordered_extent(ordered);
4a096752
CM
1791 goto again;
1792 }
247e743c 1793
87826df0
JM
1794 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1795 if (ret) {
1796 mapping_set_error(page->mapping, ret);
1797 end_extent_writepage(page, ret, page_start, page_end);
1798 ClearPageChecked(page);
1799 goto out;
1800 }
1801
2ac55d41 1802 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1803 ClearPageChecked(page);
87826df0 1804 set_page_dirty(page);
247e743c 1805out:
2ac55d41
JB
1806 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1807 &cached_state, GFP_NOFS);
247e743c
CM
1808out_page:
1809 unlock_page(page);
1810 page_cache_release(page);
b897abec 1811 kfree(fixup);
247e743c
CM
1812}
1813
1814/*
1815 * There are a few paths in the higher layers of the kernel that directly
1816 * set the page dirty bit without asking the filesystem if it is a
1817 * good idea. This causes problems because we want to make sure COW
1818 * properly happens and the data=ordered rules are followed.
1819 *
c8b97818 1820 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1821 * hasn't been properly setup for IO. We kick off an async process
1822 * to fix it up. The async helper will wait for ordered extents, set
1823 * the delalloc bit and make it safe to write the page.
1824 */
b2950863 1825static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1826{
1827 struct inode *inode = page->mapping->host;
1828 struct btrfs_writepage_fixup *fixup;
1829 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1830
8b62b72b
CM
1831 /* this page is properly in the ordered list */
1832 if (TestClearPagePrivate2(page))
247e743c
CM
1833 return 0;
1834
1835 if (PageChecked(page))
1836 return -EAGAIN;
1837
1838 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1839 if (!fixup)
1840 return -EAGAIN;
f421950f 1841
247e743c
CM
1842 SetPageChecked(page);
1843 page_cache_get(page);
1844 fixup->work.func = btrfs_writepage_fixup_worker;
1845 fixup->page = page;
1846 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1847 return -EBUSY;
247e743c
CM
1848}
1849
d899e052
YZ
1850static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1851 struct inode *inode, u64 file_pos,
1852 u64 disk_bytenr, u64 disk_num_bytes,
1853 u64 num_bytes, u64 ram_bytes,
1854 u8 compression, u8 encryption,
1855 u16 other_encoding, int extent_type)
1856{
1857 struct btrfs_root *root = BTRFS_I(inode)->root;
1858 struct btrfs_file_extent_item *fi;
1859 struct btrfs_path *path;
1860 struct extent_buffer *leaf;
1861 struct btrfs_key ins;
1acae57b 1862 int extent_inserted = 0;
d899e052
YZ
1863 int ret;
1864
1865 path = btrfs_alloc_path();
d8926bb3
MF
1866 if (!path)
1867 return -ENOMEM;
d899e052 1868
a1ed835e
CM
1869 /*
1870 * we may be replacing one extent in the tree with another.
1871 * The new extent is pinned in the extent map, and we don't want
1872 * to drop it from the cache until it is completely in the btree.
1873 *
1874 * So, tell btrfs_drop_extents to leave this extent in the cache.
1875 * the caller is expected to unpin it and allow it to be merged
1876 * with the others.
1877 */
1acae57b
FDBM
1878 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1879 file_pos + num_bytes, NULL, 0,
1880 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1881 if (ret)
1882 goto out;
d899e052 1883
1acae57b
FDBM
1884 if (!extent_inserted) {
1885 ins.objectid = btrfs_ino(inode);
1886 ins.offset = file_pos;
1887 ins.type = BTRFS_EXTENT_DATA_KEY;
1888
1889 path->leave_spinning = 1;
1890 ret = btrfs_insert_empty_item(trans, root, path, &ins,
1891 sizeof(*fi));
1892 if (ret)
1893 goto out;
1894 }
d899e052
YZ
1895 leaf = path->nodes[0];
1896 fi = btrfs_item_ptr(leaf, path->slots[0],
1897 struct btrfs_file_extent_item);
1898 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1899 btrfs_set_file_extent_type(leaf, fi, extent_type);
1900 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1901 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1902 btrfs_set_file_extent_offset(leaf, fi, 0);
1903 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1904 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1905 btrfs_set_file_extent_compression(leaf, fi, compression);
1906 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1907 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1908
d899e052 1909 btrfs_mark_buffer_dirty(leaf);
ce195332 1910 btrfs_release_path(path);
d899e052
YZ
1911
1912 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1913
1914 ins.objectid = disk_bytenr;
1915 ins.offset = disk_num_bytes;
1916 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1917 ret = btrfs_alloc_reserved_file_extent(trans, root,
1918 root->root_key.objectid,
33345d01 1919 btrfs_ino(inode), file_pos, &ins);
79787eaa 1920out:
d899e052 1921 btrfs_free_path(path);
b9473439 1922
79787eaa 1923 return ret;
d899e052
YZ
1924}
1925
38c227d8
LB
1926/* snapshot-aware defrag */
1927struct sa_defrag_extent_backref {
1928 struct rb_node node;
1929 struct old_sa_defrag_extent *old;
1930 u64 root_id;
1931 u64 inum;
1932 u64 file_pos;
1933 u64 extent_offset;
1934 u64 num_bytes;
1935 u64 generation;
1936};
1937
1938struct old_sa_defrag_extent {
1939 struct list_head list;
1940 struct new_sa_defrag_extent *new;
1941
1942 u64 extent_offset;
1943 u64 bytenr;
1944 u64 offset;
1945 u64 len;
1946 int count;
1947};
1948
1949struct new_sa_defrag_extent {
1950 struct rb_root root;
1951 struct list_head head;
1952 struct btrfs_path *path;
1953 struct inode *inode;
1954 u64 file_pos;
1955 u64 len;
1956 u64 bytenr;
1957 u64 disk_len;
1958 u8 compress_type;
1959};
1960
1961static int backref_comp(struct sa_defrag_extent_backref *b1,
1962 struct sa_defrag_extent_backref *b2)
1963{
1964 if (b1->root_id < b2->root_id)
1965 return -1;
1966 else if (b1->root_id > b2->root_id)
1967 return 1;
1968
1969 if (b1->inum < b2->inum)
1970 return -1;
1971 else if (b1->inum > b2->inum)
1972 return 1;
1973
1974 if (b1->file_pos < b2->file_pos)
1975 return -1;
1976 else if (b1->file_pos > b2->file_pos)
1977 return 1;
1978
1979 /*
1980 * [------------------------------] ===> (a range of space)
1981 * |<--->| |<---->| =============> (fs/file tree A)
1982 * |<---------------------------->| ===> (fs/file tree B)
1983 *
1984 * A range of space can refer to two file extents in one tree while
1985 * refer to only one file extent in another tree.
1986 *
1987 * So we may process a disk offset more than one time(two extents in A)
1988 * and locate at the same extent(one extent in B), then insert two same
1989 * backrefs(both refer to the extent in B).
1990 */
1991 return 0;
1992}
1993
1994static void backref_insert(struct rb_root *root,
1995 struct sa_defrag_extent_backref *backref)
1996{
1997 struct rb_node **p = &root->rb_node;
1998 struct rb_node *parent = NULL;
1999 struct sa_defrag_extent_backref *entry;
2000 int ret;
2001
2002 while (*p) {
2003 parent = *p;
2004 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2005
2006 ret = backref_comp(backref, entry);
2007 if (ret < 0)
2008 p = &(*p)->rb_left;
2009 else
2010 p = &(*p)->rb_right;
2011 }
2012
2013 rb_link_node(&backref->node, parent, p);
2014 rb_insert_color(&backref->node, root);
2015}
2016
2017/*
2018 * Note the backref might has changed, and in this case we just return 0.
2019 */
2020static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2021 void *ctx)
2022{
2023 struct btrfs_file_extent_item *extent;
2024 struct btrfs_fs_info *fs_info;
2025 struct old_sa_defrag_extent *old = ctx;
2026 struct new_sa_defrag_extent *new = old->new;
2027 struct btrfs_path *path = new->path;
2028 struct btrfs_key key;
2029 struct btrfs_root *root;
2030 struct sa_defrag_extent_backref *backref;
2031 struct extent_buffer *leaf;
2032 struct inode *inode = new->inode;
2033 int slot;
2034 int ret;
2035 u64 extent_offset;
2036 u64 num_bytes;
2037
2038 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2039 inum == btrfs_ino(inode))
2040 return 0;
2041
2042 key.objectid = root_id;
2043 key.type = BTRFS_ROOT_ITEM_KEY;
2044 key.offset = (u64)-1;
2045
2046 fs_info = BTRFS_I(inode)->root->fs_info;
2047 root = btrfs_read_fs_root_no_name(fs_info, &key);
2048 if (IS_ERR(root)) {
2049 if (PTR_ERR(root) == -ENOENT)
2050 return 0;
2051 WARN_ON(1);
2052 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2053 inum, offset, root_id);
2054 return PTR_ERR(root);
2055 }
2056
2057 key.objectid = inum;
2058 key.type = BTRFS_EXTENT_DATA_KEY;
2059 if (offset > (u64)-1 << 32)
2060 key.offset = 0;
2061 else
2062 key.offset = offset;
2063
2064 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2065 if (WARN_ON(ret < 0))
38c227d8 2066 return ret;
50f1319c 2067 ret = 0;
38c227d8
LB
2068
2069 while (1) {
2070 cond_resched();
2071
2072 leaf = path->nodes[0];
2073 slot = path->slots[0];
2074
2075 if (slot >= btrfs_header_nritems(leaf)) {
2076 ret = btrfs_next_leaf(root, path);
2077 if (ret < 0) {
2078 goto out;
2079 } else if (ret > 0) {
2080 ret = 0;
2081 goto out;
2082 }
2083 continue;
2084 }
2085
2086 path->slots[0]++;
2087
2088 btrfs_item_key_to_cpu(leaf, &key, slot);
2089
2090 if (key.objectid > inum)
2091 goto out;
2092
2093 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2094 continue;
2095
2096 extent = btrfs_item_ptr(leaf, slot,
2097 struct btrfs_file_extent_item);
2098
2099 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2100 continue;
2101
e68afa49
LB
2102 /*
2103 * 'offset' refers to the exact key.offset,
2104 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2105 * (key.offset - extent_offset).
2106 */
2107 if (key.offset != offset)
38c227d8
LB
2108 continue;
2109
e68afa49 2110 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2111 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2112
38c227d8
LB
2113 if (extent_offset >= old->extent_offset + old->offset +
2114 old->len || extent_offset + num_bytes <=
2115 old->extent_offset + old->offset)
2116 continue;
38c227d8
LB
2117 break;
2118 }
2119
2120 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2121 if (!backref) {
2122 ret = -ENOENT;
2123 goto out;
2124 }
2125
2126 backref->root_id = root_id;
2127 backref->inum = inum;
e68afa49 2128 backref->file_pos = offset;
38c227d8
LB
2129 backref->num_bytes = num_bytes;
2130 backref->extent_offset = extent_offset;
2131 backref->generation = btrfs_file_extent_generation(leaf, extent);
2132 backref->old = old;
2133 backref_insert(&new->root, backref);
2134 old->count++;
2135out:
2136 btrfs_release_path(path);
2137 WARN_ON(ret);
2138 return ret;
2139}
2140
2141static noinline bool record_extent_backrefs(struct btrfs_path *path,
2142 struct new_sa_defrag_extent *new)
2143{
2144 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2145 struct old_sa_defrag_extent *old, *tmp;
2146 int ret;
2147
2148 new->path = path;
2149
2150 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2151 ret = iterate_inodes_from_logical(old->bytenr +
2152 old->extent_offset, fs_info,
38c227d8
LB
2153 path, record_one_backref,
2154 old);
4724b106
JB
2155 if (ret < 0 && ret != -ENOENT)
2156 return false;
38c227d8
LB
2157
2158 /* no backref to be processed for this extent */
2159 if (!old->count) {
2160 list_del(&old->list);
2161 kfree(old);
2162 }
2163 }
2164
2165 if (list_empty(&new->head))
2166 return false;
2167
2168 return true;
2169}
2170
2171static int relink_is_mergable(struct extent_buffer *leaf,
2172 struct btrfs_file_extent_item *fi,
116e0024 2173 struct new_sa_defrag_extent *new)
38c227d8 2174{
116e0024 2175 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2176 return 0;
2177
2178 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2179 return 0;
2180
116e0024
LB
2181 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2182 return 0;
2183
2184 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2185 btrfs_file_extent_other_encoding(leaf, fi))
2186 return 0;
2187
2188 return 1;
2189}
2190
2191/*
2192 * Note the backref might has changed, and in this case we just return 0.
2193 */
2194static noinline int relink_extent_backref(struct btrfs_path *path,
2195 struct sa_defrag_extent_backref *prev,
2196 struct sa_defrag_extent_backref *backref)
2197{
2198 struct btrfs_file_extent_item *extent;
2199 struct btrfs_file_extent_item *item;
2200 struct btrfs_ordered_extent *ordered;
2201 struct btrfs_trans_handle *trans;
2202 struct btrfs_fs_info *fs_info;
2203 struct btrfs_root *root;
2204 struct btrfs_key key;
2205 struct extent_buffer *leaf;
2206 struct old_sa_defrag_extent *old = backref->old;
2207 struct new_sa_defrag_extent *new = old->new;
2208 struct inode *src_inode = new->inode;
2209 struct inode *inode;
2210 struct extent_state *cached = NULL;
2211 int ret = 0;
2212 u64 start;
2213 u64 len;
2214 u64 lock_start;
2215 u64 lock_end;
2216 bool merge = false;
2217 int index;
2218
2219 if (prev && prev->root_id == backref->root_id &&
2220 prev->inum == backref->inum &&
2221 prev->file_pos + prev->num_bytes == backref->file_pos)
2222 merge = true;
2223
2224 /* step 1: get root */
2225 key.objectid = backref->root_id;
2226 key.type = BTRFS_ROOT_ITEM_KEY;
2227 key.offset = (u64)-1;
2228
2229 fs_info = BTRFS_I(src_inode)->root->fs_info;
2230 index = srcu_read_lock(&fs_info->subvol_srcu);
2231
2232 root = btrfs_read_fs_root_no_name(fs_info, &key);
2233 if (IS_ERR(root)) {
2234 srcu_read_unlock(&fs_info->subvol_srcu, index);
2235 if (PTR_ERR(root) == -ENOENT)
2236 return 0;
2237 return PTR_ERR(root);
2238 }
38c227d8
LB
2239
2240 /* step 2: get inode */
2241 key.objectid = backref->inum;
2242 key.type = BTRFS_INODE_ITEM_KEY;
2243 key.offset = 0;
2244
2245 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2246 if (IS_ERR(inode)) {
2247 srcu_read_unlock(&fs_info->subvol_srcu, index);
2248 return 0;
2249 }
2250
2251 srcu_read_unlock(&fs_info->subvol_srcu, index);
2252
2253 /* step 3: relink backref */
2254 lock_start = backref->file_pos;
2255 lock_end = backref->file_pos + backref->num_bytes - 1;
2256 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2257 0, &cached);
2258
2259 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2260 if (ordered) {
2261 btrfs_put_ordered_extent(ordered);
2262 goto out_unlock;
2263 }
2264
2265 trans = btrfs_join_transaction(root);
2266 if (IS_ERR(trans)) {
2267 ret = PTR_ERR(trans);
2268 goto out_unlock;
2269 }
2270
2271 key.objectid = backref->inum;
2272 key.type = BTRFS_EXTENT_DATA_KEY;
2273 key.offset = backref->file_pos;
2274
2275 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2276 if (ret < 0) {
2277 goto out_free_path;
2278 } else if (ret > 0) {
2279 ret = 0;
2280 goto out_free_path;
2281 }
2282
2283 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2284 struct btrfs_file_extent_item);
2285
2286 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2287 backref->generation)
2288 goto out_free_path;
2289
2290 btrfs_release_path(path);
2291
2292 start = backref->file_pos;
2293 if (backref->extent_offset < old->extent_offset + old->offset)
2294 start += old->extent_offset + old->offset -
2295 backref->extent_offset;
2296
2297 len = min(backref->extent_offset + backref->num_bytes,
2298 old->extent_offset + old->offset + old->len);
2299 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2300
2301 ret = btrfs_drop_extents(trans, root, inode, start,
2302 start + len, 1);
2303 if (ret)
2304 goto out_free_path;
2305again:
2306 key.objectid = btrfs_ino(inode);
2307 key.type = BTRFS_EXTENT_DATA_KEY;
2308 key.offset = start;
2309
a09a0a70 2310 path->leave_spinning = 1;
38c227d8
LB
2311 if (merge) {
2312 struct btrfs_file_extent_item *fi;
2313 u64 extent_len;
2314 struct btrfs_key found_key;
2315
2316 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2317 if (ret < 0)
2318 goto out_free_path;
2319
2320 path->slots[0]--;
2321 leaf = path->nodes[0];
2322 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2323
2324 fi = btrfs_item_ptr(leaf, path->slots[0],
2325 struct btrfs_file_extent_item);
2326 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2327
116e0024
LB
2328 if (extent_len + found_key.offset == start &&
2329 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2330 btrfs_set_file_extent_num_bytes(leaf, fi,
2331 extent_len + len);
2332 btrfs_mark_buffer_dirty(leaf);
2333 inode_add_bytes(inode, len);
2334
2335 ret = 1;
2336 goto out_free_path;
2337 } else {
2338 merge = false;
2339 btrfs_release_path(path);
2340 goto again;
2341 }
2342 }
2343
2344 ret = btrfs_insert_empty_item(trans, root, path, &key,
2345 sizeof(*extent));
2346 if (ret) {
2347 btrfs_abort_transaction(trans, root, ret);
2348 goto out_free_path;
2349 }
2350
2351 leaf = path->nodes[0];
2352 item = btrfs_item_ptr(leaf, path->slots[0],
2353 struct btrfs_file_extent_item);
2354 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2355 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2356 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2357 btrfs_set_file_extent_num_bytes(leaf, item, len);
2358 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2359 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2360 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2361 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2362 btrfs_set_file_extent_encryption(leaf, item, 0);
2363 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2364
2365 btrfs_mark_buffer_dirty(leaf);
2366 inode_add_bytes(inode, len);
a09a0a70 2367 btrfs_release_path(path);
38c227d8
LB
2368
2369 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2370 new->disk_len, 0,
2371 backref->root_id, backref->inum,
2372 new->file_pos, 0); /* start - extent_offset */
2373 if (ret) {
2374 btrfs_abort_transaction(trans, root, ret);
2375 goto out_free_path;
2376 }
2377
2378 ret = 1;
2379out_free_path:
2380 btrfs_release_path(path);
a09a0a70 2381 path->leave_spinning = 0;
38c227d8
LB
2382 btrfs_end_transaction(trans, root);
2383out_unlock:
2384 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2385 &cached, GFP_NOFS);
2386 iput(inode);
2387 return ret;
2388}
2389
6f519564
LB
2390static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2391{
2392 struct old_sa_defrag_extent *old, *tmp;
2393
2394 if (!new)
2395 return;
2396
2397 list_for_each_entry_safe(old, tmp, &new->head, list) {
2398 list_del(&old->list);
2399 kfree(old);
2400 }
2401 kfree(new);
2402}
2403
38c227d8
LB
2404static void relink_file_extents(struct new_sa_defrag_extent *new)
2405{
2406 struct btrfs_path *path;
38c227d8
LB
2407 struct sa_defrag_extent_backref *backref;
2408 struct sa_defrag_extent_backref *prev = NULL;
2409 struct inode *inode;
2410 struct btrfs_root *root;
2411 struct rb_node *node;
2412 int ret;
2413
2414 inode = new->inode;
2415 root = BTRFS_I(inode)->root;
2416
2417 path = btrfs_alloc_path();
2418 if (!path)
2419 return;
2420
2421 if (!record_extent_backrefs(path, new)) {
2422 btrfs_free_path(path);
2423 goto out;
2424 }
2425 btrfs_release_path(path);
2426
2427 while (1) {
2428 node = rb_first(&new->root);
2429 if (!node)
2430 break;
2431 rb_erase(node, &new->root);
2432
2433 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2434
2435 ret = relink_extent_backref(path, prev, backref);
2436 WARN_ON(ret < 0);
2437
2438 kfree(prev);
2439
2440 if (ret == 1)
2441 prev = backref;
2442 else
2443 prev = NULL;
2444 cond_resched();
2445 }
2446 kfree(prev);
2447
2448 btrfs_free_path(path);
38c227d8 2449out:
6f519564
LB
2450 free_sa_defrag_extent(new);
2451
38c227d8
LB
2452 atomic_dec(&root->fs_info->defrag_running);
2453 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2454}
2455
2456static struct new_sa_defrag_extent *
2457record_old_file_extents(struct inode *inode,
2458 struct btrfs_ordered_extent *ordered)
2459{
2460 struct btrfs_root *root = BTRFS_I(inode)->root;
2461 struct btrfs_path *path;
2462 struct btrfs_key key;
6f519564 2463 struct old_sa_defrag_extent *old;
38c227d8
LB
2464 struct new_sa_defrag_extent *new;
2465 int ret;
2466
2467 new = kmalloc(sizeof(*new), GFP_NOFS);
2468 if (!new)
2469 return NULL;
2470
2471 new->inode = inode;
2472 new->file_pos = ordered->file_offset;
2473 new->len = ordered->len;
2474 new->bytenr = ordered->start;
2475 new->disk_len = ordered->disk_len;
2476 new->compress_type = ordered->compress_type;
2477 new->root = RB_ROOT;
2478 INIT_LIST_HEAD(&new->head);
2479
2480 path = btrfs_alloc_path();
2481 if (!path)
2482 goto out_kfree;
2483
2484 key.objectid = btrfs_ino(inode);
2485 key.type = BTRFS_EXTENT_DATA_KEY;
2486 key.offset = new->file_pos;
2487
2488 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2489 if (ret < 0)
2490 goto out_free_path;
2491 if (ret > 0 && path->slots[0] > 0)
2492 path->slots[0]--;
2493
2494 /* find out all the old extents for the file range */
2495 while (1) {
2496 struct btrfs_file_extent_item *extent;
2497 struct extent_buffer *l;
2498 int slot;
2499 u64 num_bytes;
2500 u64 offset;
2501 u64 end;
2502 u64 disk_bytenr;
2503 u64 extent_offset;
2504
2505 l = path->nodes[0];
2506 slot = path->slots[0];
2507
2508 if (slot >= btrfs_header_nritems(l)) {
2509 ret = btrfs_next_leaf(root, path);
2510 if (ret < 0)
6f519564 2511 goto out_free_path;
38c227d8
LB
2512 else if (ret > 0)
2513 break;
2514 continue;
2515 }
2516
2517 btrfs_item_key_to_cpu(l, &key, slot);
2518
2519 if (key.objectid != btrfs_ino(inode))
2520 break;
2521 if (key.type != BTRFS_EXTENT_DATA_KEY)
2522 break;
2523 if (key.offset >= new->file_pos + new->len)
2524 break;
2525
2526 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2527
2528 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2529 if (key.offset + num_bytes < new->file_pos)
2530 goto next;
2531
2532 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2533 if (!disk_bytenr)
2534 goto next;
2535
2536 extent_offset = btrfs_file_extent_offset(l, extent);
2537
2538 old = kmalloc(sizeof(*old), GFP_NOFS);
2539 if (!old)
6f519564 2540 goto out_free_path;
38c227d8
LB
2541
2542 offset = max(new->file_pos, key.offset);
2543 end = min(new->file_pos + new->len, key.offset + num_bytes);
2544
2545 old->bytenr = disk_bytenr;
2546 old->extent_offset = extent_offset;
2547 old->offset = offset - key.offset;
2548 old->len = end - offset;
2549 old->new = new;
2550 old->count = 0;
2551 list_add_tail(&old->list, &new->head);
2552next:
2553 path->slots[0]++;
2554 cond_resched();
2555 }
2556
2557 btrfs_free_path(path);
2558 atomic_inc(&root->fs_info->defrag_running);
2559
2560 return new;
2561
38c227d8
LB
2562out_free_path:
2563 btrfs_free_path(path);
2564out_kfree:
6f519564 2565 free_sa_defrag_extent(new);
38c227d8
LB
2566 return NULL;
2567}
2568
d352ac68
CM
2569/* as ordered data IO finishes, this gets called so we can finish
2570 * an ordered extent if the range of bytes in the file it covers are
2571 * fully written.
2572 */
5fd02043 2573static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2574{
5fd02043 2575 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2576 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2577 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2578 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2579 struct extent_state *cached_state = NULL;
38c227d8 2580 struct new_sa_defrag_extent *new = NULL;
261507a0 2581 int compress_type = 0;
77cef2ec
JB
2582 int ret = 0;
2583 u64 logical_len = ordered_extent->len;
82d5902d 2584 bool nolock;
77cef2ec 2585 bool truncated = false;
e6dcd2dc 2586
83eea1f1 2587 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2588
5fd02043
JB
2589 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2590 ret = -EIO;
2591 goto out;
2592 }
2593
77cef2ec
JB
2594 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2595 truncated = true;
2596 logical_len = ordered_extent->truncated_len;
2597 /* Truncated the entire extent, don't bother adding */
2598 if (!logical_len)
2599 goto out;
2600 }
2601
c2167754 2602 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2603 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2604 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2605 if (nolock)
2606 trans = btrfs_join_transaction_nolock(root);
2607 else
2608 trans = btrfs_join_transaction(root);
2609 if (IS_ERR(trans)) {
2610 ret = PTR_ERR(trans);
2611 trans = NULL;
2612 goto out;
c2167754 2613 }
6c760c07
JB
2614 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2615 ret = btrfs_update_inode_fallback(trans, root, inode);
2616 if (ret) /* -ENOMEM or corruption */
2617 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2618 goto out;
2619 }
e6dcd2dc 2620
2ac55d41
JB
2621 lock_extent_bits(io_tree, ordered_extent->file_offset,
2622 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2623 0, &cached_state);
e6dcd2dc 2624
38c227d8
LB
2625 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2626 ordered_extent->file_offset + ordered_extent->len - 1,
2627 EXTENT_DEFRAG, 1, cached_state);
2628 if (ret) {
2629 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2630 if (last_snapshot >= BTRFS_I(inode)->generation)
2631 /* the inode is shared */
2632 new = record_old_file_extents(inode, ordered_extent);
2633
2634 clear_extent_bit(io_tree, ordered_extent->file_offset,
2635 ordered_extent->file_offset + ordered_extent->len - 1,
2636 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2637 }
2638
0cb59c99 2639 if (nolock)
7a7eaa40 2640 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2641 else
7a7eaa40 2642 trans = btrfs_join_transaction(root);
79787eaa
JM
2643 if (IS_ERR(trans)) {
2644 ret = PTR_ERR(trans);
2645 trans = NULL;
2646 goto out_unlock;
2647 }
0ca1f7ce 2648 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2649
c8b97818 2650 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2651 compress_type = ordered_extent->compress_type;
d899e052 2652 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2653 BUG_ON(compress_type);
920bbbfb 2654 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2655 ordered_extent->file_offset,
2656 ordered_extent->file_offset +
77cef2ec 2657 logical_len);
d899e052 2658 } else {
0af3d00b 2659 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2660 ret = insert_reserved_file_extent(trans, inode,
2661 ordered_extent->file_offset,
2662 ordered_extent->start,
2663 ordered_extent->disk_len,
77cef2ec 2664 logical_len, logical_len,
261507a0 2665 compress_type, 0, 0,
d899e052 2666 BTRFS_FILE_EXTENT_REG);
d899e052 2667 }
5dc562c5
JB
2668 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2669 ordered_extent->file_offset, ordered_extent->len,
2670 trans->transid);
79787eaa
JM
2671 if (ret < 0) {
2672 btrfs_abort_transaction(trans, root, ret);
5fd02043 2673 goto out_unlock;
79787eaa 2674 }
2ac55d41 2675
e6dcd2dc
CM
2676 add_pending_csums(trans, inode, ordered_extent->file_offset,
2677 &ordered_extent->list);
2678
6c760c07
JB
2679 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2680 ret = btrfs_update_inode_fallback(trans, root, inode);
2681 if (ret) { /* -ENOMEM or corruption */
2682 btrfs_abort_transaction(trans, root, ret);
2683 goto out_unlock;
1ef30be1
JB
2684 }
2685 ret = 0;
5fd02043
JB
2686out_unlock:
2687 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2688 ordered_extent->file_offset +
2689 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2690out:
5b0e95bf 2691 if (root != root->fs_info->tree_root)
0cb59c99 2692 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2693 if (trans)
2694 btrfs_end_transaction(trans, root);
0cb59c99 2695
77cef2ec
JB
2696 if (ret || truncated) {
2697 u64 start, end;
2698
2699 if (truncated)
2700 start = ordered_extent->file_offset + logical_len;
2701 else
2702 start = ordered_extent->file_offset;
2703 end = ordered_extent->file_offset + ordered_extent->len - 1;
2704 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2705
2706 /* Drop the cache for the part of the extent we didn't write. */
2707 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2708
0bec9ef5
JB
2709 /*
2710 * If the ordered extent had an IOERR or something else went
2711 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2712 * back to the allocator. We only free the extent in the
2713 * truncated case if we didn't write out the extent at all.
0bec9ef5 2714 */
77cef2ec
JB
2715 if ((ret || !logical_len) &&
2716 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2717 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2718 btrfs_free_reserved_extent(root, ordered_extent->start,
2719 ordered_extent->disk_len);
2720 }
2721
2722
5fd02043 2723 /*
8bad3c02
LB
2724 * This needs to be done to make sure anybody waiting knows we are done
2725 * updating everything for this ordered extent.
5fd02043
JB
2726 */
2727 btrfs_remove_ordered_extent(inode, ordered_extent);
2728
38c227d8 2729 /* for snapshot-aware defrag */
6f519564
LB
2730 if (new) {
2731 if (ret) {
2732 free_sa_defrag_extent(new);
2733 atomic_dec(&root->fs_info->defrag_running);
2734 } else {
2735 relink_file_extents(new);
2736 }
2737 }
38c227d8 2738
e6dcd2dc
CM
2739 /* once for us */
2740 btrfs_put_ordered_extent(ordered_extent);
2741 /* once for the tree */
2742 btrfs_put_ordered_extent(ordered_extent);
2743
5fd02043
JB
2744 return ret;
2745}
2746
2747static void finish_ordered_fn(struct btrfs_work *work)
2748{
2749 struct btrfs_ordered_extent *ordered_extent;
2750 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2751 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2752}
2753
b2950863 2754static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2755 struct extent_state *state, int uptodate)
2756{
5fd02043
JB
2757 struct inode *inode = page->mapping->host;
2758 struct btrfs_root *root = BTRFS_I(inode)->root;
2759 struct btrfs_ordered_extent *ordered_extent = NULL;
2760 struct btrfs_workers *workers;
2761
1abe9b8a 2762 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2763
8b62b72b 2764 ClearPagePrivate2(page);
5fd02043
JB
2765 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2766 end - start + 1, uptodate))
2767 return 0;
2768
2769 ordered_extent->work.func = finish_ordered_fn;
2770 ordered_extent->work.flags = 0;
2771
83eea1f1 2772 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2773 workers = &root->fs_info->endio_freespace_worker;
2774 else
2775 workers = &root->fs_info->endio_write_workers;
2776 btrfs_queue_worker(workers, &ordered_extent->work);
2777
2778 return 0;
211f90e6
CM
2779}
2780
d352ac68
CM
2781/*
2782 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2783 * if there's a match, we allow the bio to finish. If not, the code in
2784 * extent_io.c will try to find good copies for us.
d352ac68 2785 */
facc8a22
MX
2786static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2787 u64 phy_offset, struct page *page,
2788 u64 start, u64 end, int mirror)
07157aac 2789{
4eee4fa4 2790 size_t offset = start - page_offset(page);
07157aac 2791 struct inode *inode = page->mapping->host;
d1310b2e 2792 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2793 char *kaddr;
ff79f819 2794 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2795 u32 csum_expected;
ff79f819 2796 u32 csum = ~(u32)0;
c2cf52eb
SK
2797 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2798 DEFAULT_RATELIMIT_BURST);
d1310b2e 2799
d20f7043
CM
2800 if (PageChecked(page)) {
2801 ClearPageChecked(page);
2802 goto good;
2803 }
6cbff00f
CH
2804
2805 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2806 goto good;
17d217fe
YZ
2807
2808 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2809 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2810 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2811 GFP_NOFS);
b6cda9bc 2812 return 0;
17d217fe 2813 }
d20f7043 2814
facc8a22
MX
2815 phy_offset >>= inode->i_sb->s_blocksize_bits;
2816 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2817
facc8a22 2818 kaddr = kmap_atomic(page);
b0496686 2819 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2820 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2821 if (csum != csum_expected)
07157aac 2822 goto zeroit;
d397712b 2823
7ac687d9 2824 kunmap_atomic(kaddr);
d20f7043 2825good:
07157aac
CM
2826 return 0;
2827
2828zeroit:
c2cf52eb 2829 if (__ratelimit(&_rs))
facc8a22 2830 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c 2831 btrfs_ino(page->mapping->host), start, csum, csum_expected);
db94535d
CM
2832 memset(kaddr + offset, 1, end - start + 1);
2833 flush_dcache_page(page);
7ac687d9 2834 kunmap_atomic(kaddr);
facc8a22 2835 if (csum_expected == 0)
3b951516 2836 return 0;
7e38326f 2837 return -EIO;
07157aac 2838}
b888db2b 2839
24bbcf04
YZ
2840struct delayed_iput {
2841 struct list_head list;
2842 struct inode *inode;
2843};
2844
79787eaa
JM
2845/* JDM: If this is fs-wide, why can't we add a pointer to
2846 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2847void btrfs_add_delayed_iput(struct inode *inode)
2848{
2849 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2850 struct delayed_iput *delayed;
2851
2852 if (atomic_add_unless(&inode->i_count, -1, 1))
2853 return;
2854
2855 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2856 delayed->inode = inode;
2857
2858 spin_lock(&fs_info->delayed_iput_lock);
2859 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2860 spin_unlock(&fs_info->delayed_iput_lock);
2861}
2862
2863void btrfs_run_delayed_iputs(struct btrfs_root *root)
2864{
2865 LIST_HEAD(list);
2866 struct btrfs_fs_info *fs_info = root->fs_info;
2867 struct delayed_iput *delayed;
2868 int empty;
2869
2870 spin_lock(&fs_info->delayed_iput_lock);
2871 empty = list_empty(&fs_info->delayed_iputs);
2872 spin_unlock(&fs_info->delayed_iput_lock);
2873 if (empty)
2874 return;
2875
24bbcf04
YZ
2876 spin_lock(&fs_info->delayed_iput_lock);
2877 list_splice_init(&fs_info->delayed_iputs, &list);
2878 spin_unlock(&fs_info->delayed_iput_lock);
2879
2880 while (!list_empty(&list)) {
2881 delayed = list_entry(list.next, struct delayed_iput, list);
2882 list_del(&delayed->list);
2883 iput(delayed->inode);
2884 kfree(delayed);
2885 }
24bbcf04
YZ
2886}
2887
d68fc57b 2888/*
42b2aa86 2889 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2890 * files in the subvolume, it removes orphan item and frees block_rsv
2891 * structure.
2892 */
2893void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2894 struct btrfs_root *root)
2895{
90290e19 2896 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2897 int ret;
2898
8a35d95f 2899 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2900 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2901 return;
2902
90290e19 2903 spin_lock(&root->orphan_lock);
8a35d95f 2904 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2905 spin_unlock(&root->orphan_lock);
2906 return;
2907 }
2908
2909 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2910 spin_unlock(&root->orphan_lock);
2911 return;
2912 }
2913
2914 block_rsv = root->orphan_block_rsv;
2915 root->orphan_block_rsv = NULL;
2916 spin_unlock(&root->orphan_lock);
2917
d68fc57b
YZ
2918 if (root->orphan_item_inserted &&
2919 btrfs_root_refs(&root->root_item) > 0) {
2920 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2921 root->root_key.objectid);
4ef31a45
JB
2922 if (ret)
2923 btrfs_abort_transaction(trans, root, ret);
2924 else
2925 root->orphan_item_inserted = 0;
d68fc57b
YZ
2926 }
2927
90290e19
JB
2928 if (block_rsv) {
2929 WARN_ON(block_rsv->size > 0);
2930 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2931 }
2932}
2933
7b128766
JB
2934/*
2935 * This creates an orphan entry for the given inode in case something goes
2936 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2937 *
2938 * NOTE: caller of this function should reserve 5 units of metadata for
2939 * this function.
7b128766
JB
2940 */
2941int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2942{
2943 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2944 struct btrfs_block_rsv *block_rsv = NULL;
2945 int reserve = 0;
2946 int insert = 0;
2947 int ret;
7b128766 2948
d68fc57b 2949 if (!root->orphan_block_rsv) {
66d8f3dd 2950 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2951 if (!block_rsv)
2952 return -ENOMEM;
d68fc57b 2953 }
7b128766 2954
d68fc57b
YZ
2955 spin_lock(&root->orphan_lock);
2956 if (!root->orphan_block_rsv) {
2957 root->orphan_block_rsv = block_rsv;
2958 } else if (block_rsv) {
2959 btrfs_free_block_rsv(root, block_rsv);
2960 block_rsv = NULL;
7b128766 2961 }
7b128766 2962
8a35d95f
JB
2963 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2964 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2965#if 0
2966 /*
2967 * For proper ENOSPC handling, we should do orphan
2968 * cleanup when mounting. But this introduces backward
2969 * compatibility issue.
2970 */
2971 if (!xchg(&root->orphan_item_inserted, 1))
2972 insert = 2;
2973 else
2974 insert = 1;
2975#endif
2976 insert = 1;
321f0e70 2977 atomic_inc(&root->orphan_inodes);
7b128766
JB
2978 }
2979
72ac3c0d
JB
2980 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2981 &BTRFS_I(inode)->runtime_flags))
d68fc57b 2982 reserve = 1;
d68fc57b 2983 spin_unlock(&root->orphan_lock);
7b128766 2984
d68fc57b
YZ
2985 /* grab metadata reservation from transaction handle */
2986 if (reserve) {
2987 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 2988 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 2989 }
7b128766 2990
d68fc57b
YZ
2991 /* insert an orphan item to track this unlinked/truncated file */
2992 if (insert >= 1) {
33345d01 2993 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 2994 if (ret) {
703c88e0 2995 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
2996 if (reserve) {
2997 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2998 &BTRFS_I(inode)->runtime_flags);
2999 btrfs_orphan_release_metadata(inode);
3000 }
3001 if (ret != -EEXIST) {
e8e7cff6
JB
3002 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3003 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3004 btrfs_abort_transaction(trans, root, ret);
3005 return ret;
3006 }
79787eaa
JM
3007 }
3008 ret = 0;
d68fc57b
YZ
3009 }
3010
3011 /* insert an orphan item to track subvolume contains orphan files */
3012 if (insert >= 2) {
3013 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3014 root->root_key.objectid);
79787eaa
JM
3015 if (ret && ret != -EEXIST) {
3016 btrfs_abort_transaction(trans, root, ret);
3017 return ret;
3018 }
d68fc57b
YZ
3019 }
3020 return 0;
7b128766
JB
3021}
3022
3023/*
3024 * We have done the truncate/delete so we can go ahead and remove the orphan
3025 * item for this particular inode.
3026 */
48a3b636
ES
3027static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3028 struct inode *inode)
7b128766
JB
3029{
3030 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3031 int delete_item = 0;
3032 int release_rsv = 0;
7b128766
JB
3033 int ret = 0;
3034
d68fc57b 3035 spin_lock(&root->orphan_lock);
8a35d95f
JB
3036 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3037 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3038 delete_item = 1;
7b128766 3039
72ac3c0d
JB
3040 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3041 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3042 release_rsv = 1;
d68fc57b 3043 spin_unlock(&root->orphan_lock);
7b128766 3044
703c88e0 3045 if (delete_item) {
8a35d95f 3046 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3047 if (trans)
3048 ret = btrfs_del_orphan_item(trans, root,
3049 btrfs_ino(inode));
8a35d95f 3050 }
7b128766 3051
703c88e0
FDBM
3052 if (release_rsv)
3053 btrfs_orphan_release_metadata(inode);
3054
4ef31a45 3055 return ret;
7b128766
JB
3056}
3057
3058/*
3059 * this cleans up any orphans that may be left on the list from the last use
3060 * of this root.
3061 */
66b4ffd1 3062int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3063{
3064 struct btrfs_path *path;
3065 struct extent_buffer *leaf;
7b128766
JB
3066 struct btrfs_key key, found_key;
3067 struct btrfs_trans_handle *trans;
3068 struct inode *inode;
8f6d7f4f 3069 u64 last_objectid = 0;
7b128766
JB
3070 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3071
d68fc57b 3072 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3073 return 0;
c71bf099
YZ
3074
3075 path = btrfs_alloc_path();
66b4ffd1
JB
3076 if (!path) {
3077 ret = -ENOMEM;
3078 goto out;
3079 }
7b128766
JB
3080 path->reada = -1;
3081
3082 key.objectid = BTRFS_ORPHAN_OBJECTID;
3083 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3084 key.offset = (u64)-1;
3085
7b128766
JB
3086 while (1) {
3087 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3088 if (ret < 0)
3089 goto out;
7b128766
JB
3090
3091 /*
3092 * if ret == 0 means we found what we were searching for, which
25985edc 3093 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3094 * find the key and see if we have stuff that matches
3095 */
3096 if (ret > 0) {
66b4ffd1 3097 ret = 0;
7b128766
JB
3098 if (path->slots[0] == 0)
3099 break;
3100 path->slots[0]--;
3101 }
3102
3103 /* pull out the item */
3104 leaf = path->nodes[0];
7b128766
JB
3105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3106
3107 /* make sure the item matches what we want */
3108 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3109 break;
3110 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3111 break;
3112
3113 /* release the path since we're done with it */
b3b4aa74 3114 btrfs_release_path(path);
7b128766
JB
3115
3116 /*
3117 * this is where we are basically btrfs_lookup, without the
3118 * crossing root thing. we store the inode number in the
3119 * offset of the orphan item.
3120 */
8f6d7f4f
JB
3121
3122 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3123 btrfs_err(root->fs_info,
3124 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3125 ret = -EINVAL;
3126 goto out;
3127 }
3128
3129 last_objectid = found_key.offset;
3130
5d4f98a2
YZ
3131 found_key.objectid = found_key.offset;
3132 found_key.type = BTRFS_INODE_ITEM_KEY;
3133 found_key.offset = 0;
73f73415 3134 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3135 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3136 if (ret && ret != -ESTALE)
66b4ffd1 3137 goto out;
7b128766 3138
f8e9e0b0
AJ
3139 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3140 struct btrfs_root *dead_root;
3141 struct btrfs_fs_info *fs_info = root->fs_info;
3142 int is_dead_root = 0;
3143
3144 /*
3145 * this is an orphan in the tree root. Currently these
3146 * could come from 2 sources:
3147 * a) a snapshot deletion in progress
3148 * b) a free space cache inode
3149 * We need to distinguish those two, as the snapshot
3150 * orphan must not get deleted.
3151 * find_dead_roots already ran before us, so if this
3152 * is a snapshot deletion, we should find the root
3153 * in the dead_roots list
3154 */
3155 spin_lock(&fs_info->trans_lock);
3156 list_for_each_entry(dead_root, &fs_info->dead_roots,
3157 root_list) {
3158 if (dead_root->root_key.objectid ==
3159 found_key.objectid) {
3160 is_dead_root = 1;
3161 break;
3162 }
3163 }
3164 spin_unlock(&fs_info->trans_lock);
3165 if (is_dead_root) {
3166 /* prevent this orphan from being found again */
3167 key.offset = found_key.objectid - 1;
3168 continue;
3169 }
3170 }
7b128766 3171 /*
a8c9e576
JB
3172 * Inode is already gone but the orphan item is still there,
3173 * kill the orphan item.
7b128766 3174 */
a8c9e576
JB
3175 if (ret == -ESTALE) {
3176 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3177 if (IS_ERR(trans)) {
3178 ret = PTR_ERR(trans);
3179 goto out;
3180 }
c2cf52eb
SK
3181 btrfs_debug(root->fs_info, "auto deleting %Lu",
3182 found_key.objectid);
a8c9e576
JB
3183 ret = btrfs_del_orphan_item(trans, root,
3184 found_key.objectid);
5b21f2ed 3185 btrfs_end_transaction(trans, root);
4ef31a45
JB
3186 if (ret)
3187 goto out;
7b128766
JB
3188 continue;
3189 }
3190
a8c9e576
JB
3191 /*
3192 * add this inode to the orphan list so btrfs_orphan_del does
3193 * the proper thing when we hit it
3194 */
8a35d95f
JB
3195 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3196 &BTRFS_I(inode)->runtime_flags);
925396ec 3197 atomic_inc(&root->orphan_inodes);
a8c9e576 3198
7b128766
JB
3199 /* if we have links, this was a truncate, lets do that */
3200 if (inode->i_nlink) {
fae7f21c 3201 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3202 iput(inode);
3203 continue;
3204 }
7b128766 3205 nr_truncate++;
f3fe820c
JB
3206
3207 /* 1 for the orphan item deletion. */
3208 trans = btrfs_start_transaction(root, 1);
3209 if (IS_ERR(trans)) {
c69b26b0 3210 iput(inode);
f3fe820c
JB
3211 ret = PTR_ERR(trans);
3212 goto out;
3213 }
3214 ret = btrfs_orphan_add(trans, inode);
3215 btrfs_end_transaction(trans, root);
c69b26b0
JB
3216 if (ret) {
3217 iput(inode);
f3fe820c 3218 goto out;
c69b26b0 3219 }
f3fe820c 3220
66b4ffd1 3221 ret = btrfs_truncate(inode);
4a7d0f68
JB
3222 if (ret)
3223 btrfs_orphan_del(NULL, inode);
7b128766
JB
3224 } else {
3225 nr_unlink++;
3226 }
3227
3228 /* this will do delete_inode and everything for us */
3229 iput(inode);
66b4ffd1
JB
3230 if (ret)
3231 goto out;
7b128766 3232 }
3254c876
MX
3233 /* release the path since we're done with it */
3234 btrfs_release_path(path);
3235
d68fc57b
YZ
3236 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3237
3238 if (root->orphan_block_rsv)
3239 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3240 (u64)-1);
3241
3242 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3243 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3244 if (!IS_ERR(trans))
3245 btrfs_end_transaction(trans, root);
d68fc57b 3246 }
7b128766
JB
3247
3248 if (nr_unlink)
4884b476 3249 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3250 if (nr_truncate)
4884b476 3251 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3252
3253out:
3254 if (ret)
c2cf52eb
SK
3255 btrfs_crit(root->fs_info,
3256 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3257 btrfs_free_path(path);
3258 return ret;
7b128766
JB
3259}
3260
46a53cca
CM
3261/*
3262 * very simple check to peek ahead in the leaf looking for xattrs. If we
3263 * don't find any xattrs, we know there can't be any acls.
3264 *
3265 * slot is the slot the inode is in, objectid is the objectid of the inode
3266 */
3267static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3268 int slot, u64 objectid)
3269{
3270 u32 nritems = btrfs_header_nritems(leaf);
3271 struct btrfs_key found_key;
f23b5a59
JB
3272 static u64 xattr_access = 0;
3273 static u64 xattr_default = 0;
46a53cca
CM
3274 int scanned = 0;
3275
f23b5a59
JB
3276 if (!xattr_access) {
3277 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3278 strlen(POSIX_ACL_XATTR_ACCESS));
3279 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3280 strlen(POSIX_ACL_XATTR_DEFAULT));
3281 }
3282
46a53cca
CM
3283 slot++;
3284 while (slot < nritems) {
3285 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3286
3287 /* we found a different objectid, there must not be acls */
3288 if (found_key.objectid != objectid)
3289 return 0;
3290
3291 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3292 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3293 if (found_key.offset == xattr_access ||
3294 found_key.offset == xattr_default)
3295 return 1;
3296 }
46a53cca
CM
3297
3298 /*
3299 * we found a key greater than an xattr key, there can't
3300 * be any acls later on
3301 */
3302 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3303 return 0;
3304
3305 slot++;
3306 scanned++;
3307
3308 /*
3309 * it goes inode, inode backrefs, xattrs, extents,
3310 * so if there are a ton of hard links to an inode there can
3311 * be a lot of backrefs. Don't waste time searching too hard,
3312 * this is just an optimization
3313 */
3314 if (scanned >= 8)
3315 break;
3316 }
3317 /* we hit the end of the leaf before we found an xattr or
3318 * something larger than an xattr. We have to assume the inode
3319 * has acls
3320 */
3321 return 1;
3322}
3323
d352ac68
CM
3324/*
3325 * read an inode from the btree into the in-memory inode
3326 */
5d4f98a2 3327static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3328{
3329 struct btrfs_path *path;
5f39d397 3330 struct extent_buffer *leaf;
39279cc3 3331 struct btrfs_inode_item *inode_item;
0b86a832 3332 struct btrfs_timespec *tspec;
39279cc3
CM
3333 struct btrfs_root *root = BTRFS_I(inode)->root;
3334 struct btrfs_key location;
67de1176 3335 unsigned long ptr;
46a53cca 3336 int maybe_acls;
618e21d5 3337 u32 rdev;
39279cc3 3338 int ret;
2f7e33d4
MX
3339 bool filled = false;
3340
3341 ret = btrfs_fill_inode(inode, &rdev);
3342 if (!ret)
3343 filled = true;
39279cc3
CM
3344
3345 path = btrfs_alloc_path();
1748f843
MF
3346 if (!path)
3347 goto make_bad;
3348
d90c7321 3349 path->leave_spinning = 1;
39279cc3 3350 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3351
39279cc3 3352 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3353 if (ret)
39279cc3 3354 goto make_bad;
39279cc3 3355
5f39d397 3356 leaf = path->nodes[0];
2f7e33d4
MX
3357
3358 if (filled)
67de1176 3359 goto cache_index;
2f7e33d4 3360
5f39d397
CM
3361 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3362 struct btrfs_inode_item);
5f39d397 3363 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3364 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3365 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3366 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3367 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3368
3369 tspec = btrfs_inode_atime(inode_item);
3370 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3371 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3372
3373 tspec = btrfs_inode_mtime(inode_item);
3374 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3375 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3376
3377 tspec = btrfs_inode_ctime(inode_item);
3378 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3379 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3380
a76a3cd4 3381 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3382 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3383 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3384
3385 /*
3386 * If we were modified in the current generation and evicted from memory
3387 * and then re-read we need to do a full sync since we don't have any
3388 * idea about which extents were modified before we were evicted from
3389 * cache.
3390 */
3391 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3392 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3393 &BTRFS_I(inode)->runtime_flags);
3394
0c4d2d95 3395 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3396 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3397 inode->i_rdev = 0;
5f39d397
CM
3398 rdev = btrfs_inode_rdev(leaf, inode_item);
3399
aec7477b 3400 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3401 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3402
3403cache_index:
3404 path->slots[0]++;
3405 if (inode->i_nlink != 1 ||
3406 path->slots[0] >= btrfs_header_nritems(leaf))
3407 goto cache_acl;
3408
3409 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3410 if (location.objectid != btrfs_ino(inode))
3411 goto cache_acl;
3412
3413 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3414 if (location.type == BTRFS_INODE_REF_KEY) {
3415 struct btrfs_inode_ref *ref;
3416
3417 ref = (struct btrfs_inode_ref *)ptr;
3418 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3419 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3420 struct btrfs_inode_extref *extref;
3421
3422 extref = (struct btrfs_inode_extref *)ptr;
3423 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3424 extref);
3425 }
2f7e33d4 3426cache_acl:
46a53cca
CM
3427 /*
3428 * try to precache a NULL acl entry for files that don't have
3429 * any xattrs or acls
3430 */
33345d01
LZ
3431 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3432 btrfs_ino(inode));
72c04902
AV
3433 if (!maybe_acls)
3434 cache_no_acl(inode);
46a53cca 3435
39279cc3 3436 btrfs_free_path(path);
39279cc3 3437
39279cc3 3438 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3439 case S_IFREG:
3440 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3441 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3442 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3443 inode->i_fop = &btrfs_file_operations;
3444 inode->i_op = &btrfs_file_inode_operations;
3445 break;
3446 case S_IFDIR:
3447 inode->i_fop = &btrfs_dir_file_operations;
3448 if (root == root->fs_info->tree_root)
3449 inode->i_op = &btrfs_dir_ro_inode_operations;
3450 else
3451 inode->i_op = &btrfs_dir_inode_operations;
3452 break;
3453 case S_IFLNK:
3454 inode->i_op = &btrfs_symlink_inode_operations;
3455 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3456 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3457 break;
618e21d5 3458 default:
0279b4cd 3459 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3460 init_special_inode(inode, inode->i_mode, rdev);
3461 break;
39279cc3 3462 }
6cbff00f
CH
3463
3464 btrfs_update_iflags(inode);
39279cc3
CM
3465 return;
3466
3467make_bad:
39279cc3 3468 btrfs_free_path(path);
39279cc3
CM
3469 make_bad_inode(inode);
3470}
3471
d352ac68
CM
3472/*
3473 * given a leaf and an inode, copy the inode fields into the leaf
3474 */
e02119d5
CM
3475static void fill_inode_item(struct btrfs_trans_handle *trans,
3476 struct extent_buffer *leaf,
5f39d397 3477 struct btrfs_inode_item *item,
39279cc3
CM
3478 struct inode *inode)
3479{
51fab693
LB
3480 struct btrfs_map_token token;
3481
3482 btrfs_init_map_token(&token);
5f39d397 3483
51fab693
LB
3484 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3485 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3486 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3487 &token);
3488 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3489 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3490
51fab693
LB
3491 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3492 inode->i_atime.tv_sec, &token);
3493 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3494 inode->i_atime.tv_nsec, &token);
5f39d397 3495
51fab693
LB
3496 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3497 inode->i_mtime.tv_sec, &token);
3498 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3499 inode->i_mtime.tv_nsec, &token);
5f39d397 3500
51fab693
LB
3501 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3502 inode->i_ctime.tv_sec, &token);
3503 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3504 inode->i_ctime.tv_nsec, &token);
5f39d397 3505
51fab693
LB
3506 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3507 &token);
3508 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3509 &token);
3510 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3511 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3512 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3513 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3514 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3515}
3516
d352ac68
CM
3517/*
3518 * copy everything in the in-memory inode into the btree.
3519 */
2115133f 3520static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3521 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3522{
3523 struct btrfs_inode_item *inode_item;
3524 struct btrfs_path *path;
5f39d397 3525 struct extent_buffer *leaf;
39279cc3
CM
3526 int ret;
3527
3528 path = btrfs_alloc_path();
16cdcec7
MX
3529 if (!path)
3530 return -ENOMEM;
3531
b9473439 3532 path->leave_spinning = 1;
16cdcec7
MX
3533 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3534 1);
39279cc3
CM
3535 if (ret) {
3536 if (ret > 0)
3537 ret = -ENOENT;
3538 goto failed;
3539 }
3540
5f39d397
CM
3541 leaf = path->nodes[0];
3542 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3543 struct btrfs_inode_item);
39279cc3 3544
e02119d5 3545 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3546 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3547 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3548 ret = 0;
3549failed:
39279cc3
CM
3550 btrfs_free_path(path);
3551 return ret;
3552}
3553
2115133f
CM
3554/*
3555 * copy everything in the in-memory inode into the btree.
3556 */
3557noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3558 struct btrfs_root *root, struct inode *inode)
3559{
3560 int ret;
3561
3562 /*
3563 * If the inode is a free space inode, we can deadlock during commit
3564 * if we put it into the delayed code.
3565 *
3566 * The data relocation inode should also be directly updated
3567 * without delay
3568 */
83eea1f1 3569 if (!btrfs_is_free_space_inode(inode)
2115133f 3570 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3571 btrfs_update_root_times(trans, root);
3572
2115133f
CM
3573 ret = btrfs_delayed_update_inode(trans, root, inode);
3574 if (!ret)
3575 btrfs_set_inode_last_trans(trans, inode);
3576 return ret;
3577 }
3578
3579 return btrfs_update_inode_item(trans, root, inode);
3580}
3581
be6aef60
JB
3582noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3583 struct btrfs_root *root,
3584 struct inode *inode)
2115133f
CM
3585{
3586 int ret;
3587
3588 ret = btrfs_update_inode(trans, root, inode);
3589 if (ret == -ENOSPC)
3590 return btrfs_update_inode_item(trans, root, inode);
3591 return ret;
3592}
3593
d352ac68
CM
3594/*
3595 * unlink helper that gets used here in inode.c and in the tree logging
3596 * recovery code. It remove a link in a directory with a given name, and
3597 * also drops the back refs in the inode to the directory
3598 */
92986796
AV
3599static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3600 struct btrfs_root *root,
3601 struct inode *dir, struct inode *inode,
3602 const char *name, int name_len)
39279cc3
CM
3603{
3604 struct btrfs_path *path;
39279cc3 3605 int ret = 0;
5f39d397 3606 struct extent_buffer *leaf;
39279cc3 3607 struct btrfs_dir_item *di;
5f39d397 3608 struct btrfs_key key;
aec7477b 3609 u64 index;
33345d01
LZ
3610 u64 ino = btrfs_ino(inode);
3611 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3612
3613 path = btrfs_alloc_path();
54aa1f4d
CM
3614 if (!path) {
3615 ret = -ENOMEM;
554233a6 3616 goto out;
54aa1f4d
CM
3617 }
3618
b9473439 3619 path->leave_spinning = 1;
33345d01 3620 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3621 name, name_len, -1);
3622 if (IS_ERR(di)) {
3623 ret = PTR_ERR(di);
3624 goto err;
3625 }
3626 if (!di) {
3627 ret = -ENOENT;
3628 goto err;
3629 }
5f39d397
CM
3630 leaf = path->nodes[0];
3631 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3632 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3633 if (ret)
3634 goto err;
b3b4aa74 3635 btrfs_release_path(path);
39279cc3 3636
67de1176
MX
3637 /*
3638 * If we don't have dir index, we have to get it by looking up
3639 * the inode ref, since we get the inode ref, remove it directly,
3640 * it is unnecessary to do delayed deletion.
3641 *
3642 * But if we have dir index, needn't search inode ref to get it.
3643 * Since the inode ref is close to the inode item, it is better
3644 * that we delay to delete it, and just do this deletion when
3645 * we update the inode item.
3646 */
3647 if (BTRFS_I(inode)->dir_index) {
3648 ret = btrfs_delayed_delete_inode_ref(inode);
3649 if (!ret) {
3650 index = BTRFS_I(inode)->dir_index;
3651 goto skip_backref;
3652 }
3653 }
3654
33345d01
LZ
3655 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3656 dir_ino, &index);
aec7477b 3657 if (ret) {
c2cf52eb
SK
3658 btrfs_info(root->fs_info,
3659 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3660 name_len, name, ino, dir_ino);
79787eaa 3661 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3662 goto err;
3663 }
67de1176 3664skip_backref:
16cdcec7 3665 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3666 if (ret) {
3667 btrfs_abort_transaction(trans, root, ret);
39279cc3 3668 goto err;
79787eaa 3669 }
39279cc3 3670
e02119d5 3671 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3672 inode, dir_ino);
79787eaa
JM
3673 if (ret != 0 && ret != -ENOENT) {
3674 btrfs_abort_transaction(trans, root, ret);
3675 goto err;
3676 }
e02119d5
CM
3677
3678 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3679 dir, index);
6418c961
CM
3680 if (ret == -ENOENT)
3681 ret = 0;
d4e3991b
ZB
3682 else if (ret)
3683 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3684err:
3685 btrfs_free_path(path);
e02119d5
CM
3686 if (ret)
3687 goto out;
3688
3689 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3690 inode_inc_iversion(inode);
3691 inode_inc_iversion(dir);
e02119d5 3692 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3693 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3694out:
39279cc3
CM
3695 return ret;
3696}
3697
92986796
AV
3698int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3699 struct btrfs_root *root,
3700 struct inode *dir, struct inode *inode,
3701 const char *name, int name_len)
3702{
3703 int ret;
3704 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3705 if (!ret) {
8b558c5f 3706 drop_nlink(inode);
92986796
AV
3707 ret = btrfs_update_inode(trans, root, inode);
3708 }
3709 return ret;
3710}
39279cc3 3711
a22285a6
YZ
3712/*
3713 * helper to start transaction for unlink and rmdir.
3714 *
d52be818
JB
3715 * unlink and rmdir are special in btrfs, they do not always free space, so
3716 * if we cannot make our reservations the normal way try and see if there is
3717 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3718 * allow the unlink to occur.
a22285a6 3719 */
d52be818 3720static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3721{
39279cc3 3722 struct btrfs_trans_handle *trans;
a22285a6 3723 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3724 int ret;
3725
e70bea5f
JB
3726 /*
3727 * 1 for the possible orphan item
3728 * 1 for the dir item
3729 * 1 for the dir index
3730 * 1 for the inode ref
e70bea5f
JB
3731 * 1 for the inode
3732 */
6e137ed3 3733 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3734 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3735 return trans;
4df27c4d 3736
d52be818
JB
3737 if (PTR_ERR(trans) == -ENOSPC) {
3738 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3739
d52be818
JB
3740 trans = btrfs_start_transaction(root, 0);
3741 if (IS_ERR(trans))
3742 return trans;
3743 ret = btrfs_cond_migrate_bytes(root->fs_info,
3744 &root->fs_info->trans_block_rsv,
3745 num_bytes, 5);
3746 if (ret) {
3747 btrfs_end_transaction(trans, root);
3748 return ERR_PTR(ret);
a22285a6 3749 }
5a77d76c 3750 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3751 trans->bytes_reserved = num_bytes;
a22285a6 3752 }
d52be818 3753 return trans;
a22285a6
YZ
3754}
3755
3756static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3757{
3758 struct btrfs_root *root = BTRFS_I(dir)->root;
3759 struct btrfs_trans_handle *trans;
3760 struct inode *inode = dentry->d_inode;
3761 int ret;
a22285a6 3762
d52be818 3763 trans = __unlink_start_trans(dir);
a22285a6
YZ
3764 if (IS_ERR(trans))
3765 return PTR_ERR(trans);
5f39d397 3766
12fcfd22
CM
3767 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3768
e02119d5
CM
3769 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3770 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3771 if (ret)
3772 goto out;
7b128766 3773
a22285a6 3774 if (inode->i_nlink == 0) {
7b128766 3775 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3776 if (ret)
3777 goto out;
a22285a6 3778 }
7b128766 3779
b532402e 3780out:
d52be818 3781 btrfs_end_transaction(trans, root);
b53d3f5d 3782 btrfs_btree_balance_dirty(root);
39279cc3
CM
3783 return ret;
3784}
3785
4df27c4d
YZ
3786int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3787 struct btrfs_root *root,
3788 struct inode *dir, u64 objectid,
3789 const char *name, int name_len)
3790{
3791 struct btrfs_path *path;
3792 struct extent_buffer *leaf;
3793 struct btrfs_dir_item *di;
3794 struct btrfs_key key;
3795 u64 index;
3796 int ret;
33345d01 3797 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3798
3799 path = btrfs_alloc_path();
3800 if (!path)
3801 return -ENOMEM;
3802
33345d01 3803 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3804 name, name_len, -1);
79787eaa
JM
3805 if (IS_ERR_OR_NULL(di)) {
3806 if (!di)
3807 ret = -ENOENT;
3808 else
3809 ret = PTR_ERR(di);
3810 goto out;
3811 }
4df27c4d
YZ
3812
3813 leaf = path->nodes[0];
3814 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3815 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3816 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3817 if (ret) {
3818 btrfs_abort_transaction(trans, root, ret);
3819 goto out;
3820 }
b3b4aa74 3821 btrfs_release_path(path);
4df27c4d
YZ
3822
3823 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3824 objectid, root->root_key.objectid,
33345d01 3825 dir_ino, &index, name, name_len);
4df27c4d 3826 if (ret < 0) {
79787eaa
JM
3827 if (ret != -ENOENT) {
3828 btrfs_abort_transaction(trans, root, ret);
3829 goto out;
3830 }
33345d01 3831 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3832 name, name_len);
79787eaa
JM
3833 if (IS_ERR_OR_NULL(di)) {
3834 if (!di)
3835 ret = -ENOENT;
3836 else
3837 ret = PTR_ERR(di);
3838 btrfs_abort_transaction(trans, root, ret);
3839 goto out;
3840 }
4df27c4d
YZ
3841
3842 leaf = path->nodes[0];
3843 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3844 btrfs_release_path(path);
4df27c4d
YZ
3845 index = key.offset;
3846 }
945d8962 3847 btrfs_release_path(path);
4df27c4d 3848
16cdcec7 3849 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3850 if (ret) {
3851 btrfs_abort_transaction(trans, root, ret);
3852 goto out;
3853 }
4df27c4d
YZ
3854
3855 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3856 inode_inc_iversion(dir);
4df27c4d 3857 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3858 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3859 if (ret)
3860 btrfs_abort_transaction(trans, root, ret);
3861out:
71d7aed0 3862 btrfs_free_path(path);
79787eaa 3863 return ret;
4df27c4d
YZ
3864}
3865
39279cc3
CM
3866static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3867{
3868 struct inode *inode = dentry->d_inode;
1832a6d5 3869 int err = 0;
39279cc3 3870 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3871 struct btrfs_trans_handle *trans;
39279cc3 3872
b3ae244e 3873 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3874 return -ENOTEMPTY;
b3ae244e
DS
3875 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3876 return -EPERM;
134d4512 3877
d52be818 3878 trans = __unlink_start_trans(dir);
a22285a6 3879 if (IS_ERR(trans))
5df6a9f6 3880 return PTR_ERR(trans);
5df6a9f6 3881
33345d01 3882 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3883 err = btrfs_unlink_subvol(trans, root, dir,
3884 BTRFS_I(inode)->location.objectid,
3885 dentry->d_name.name,
3886 dentry->d_name.len);
3887 goto out;
3888 }
3889
7b128766
JB
3890 err = btrfs_orphan_add(trans, inode);
3891 if (err)
4df27c4d 3892 goto out;
7b128766 3893
39279cc3 3894 /* now the directory is empty */
e02119d5
CM
3895 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3896 dentry->d_name.name, dentry->d_name.len);
d397712b 3897 if (!err)
dbe674a9 3898 btrfs_i_size_write(inode, 0);
4df27c4d 3899out:
d52be818 3900 btrfs_end_transaction(trans, root);
b53d3f5d 3901 btrfs_btree_balance_dirty(root);
3954401f 3902
39279cc3
CM
3903 return err;
3904}
3905
39279cc3
CM
3906/*
3907 * this can truncate away extent items, csum items and directory items.
3908 * It starts at a high offset and removes keys until it can't find
d352ac68 3909 * any higher than new_size
39279cc3
CM
3910 *
3911 * csum items that cross the new i_size are truncated to the new size
3912 * as well.
7b128766
JB
3913 *
3914 * min_type is the minimum key type to truncate down to. If set to 0, this
3915 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3916 */
8082510e
YZ
3917int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3918 struct btrfs_root *root,
3919 struct inode *inode,
3920 u64 new_size, u32 min_type)
39279cc3 3921{
39279cc3 3922 struct btrfs_path *path;
5f39d397 3923 struct extent_buffer *leaf;
39279cc3 3924 struct btrfs_file_extent_item *fi;
8082510e
YZ
3925 struct btrfs_key key;
3926 struct btrfs_key found_key;
39279cc3 3927 u64 extent_start = 0;
db94535d 3928 u64 extent_num_bytes = 0;
5d4f98a2 3929 u64 extent_offset = 0;
39279cc3 3930 u64 item_end = 0;
7f4f6e0a 3931 u64 last_size = (u64)-1;
8082510e 3932 u32 found_type = (u8)-1;
39279cc3
CM
3933 int found_extent;
3934 int del_item;
85e21bac
CM
3935 int pending_del_nr = 0;
3936 int pending_del_slot = 0;
179e29e4 3937 int extent_type = -1;
8082510e
YZ
3938 int ret;
3939 int err = 0;
33345d01 3940 u64 ino = btrfs_ino(inode);
8082510e
YZ
3941
3942 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3943
0eb0e19c
MF
3944 path = btrfs_alloc_path();
3945 if (!path)
3946 return -ENOMEM;
3947 path->reada = -1;
3948
5dc562c5
JB
3949 /*
3950 * We want to drop from the next block forward in case this new size is
3951 * not block aligned since we will be keeping the last block of the
3952 * extent just the way it is.
3953 */
0af3d00b 3954 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3955 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3956 root->sectorsize), (u64)-1, 0);
8082510e 3957
16cdcec7
MX
3958 /*
3959 * This function is also used to drop the items in the log tree before
3960 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3961 * it is used to drop the loged items. So we shouldn't kill the delayed
3962 * items.
3963 */
3964 if (min_type == 0 && root == BTRFS_I(inode)->root)
3965 btrfs_kill_delayed_inode_items(inode);
3966
33345d01 3967 key.objectid = ino;
39279cc3 3968 key.offset = (u64)-1;
5f39d397
CM
3969 key.type = (u8)-1;
3970
85e21bac 3971search_again:
b9473439 3972 path->leave_spinning = 1;
85e21bac 3973 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3974 if (ret < 0) {
3975 err = ret;
3976 goto out;
3977 }
d397712b 3978
85e21bac 3979 if (ret > 0) {
e02119d5
CM
3980 /* there are no items in the tree for us to truncate, we're
3981 * done
3982 */
8082510e
YZ
3983 if (path->slots[0] == 0)
3984 goto out;
85e21bac
CM
3985 path->slots[0]--;
3986 }
3987
d397712b 3988 while (1) {
39279cc3 3989 fi = NULL;
5f39d397
CM
3990 leaf = path->nodes[0];
3991 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3992 found_type = btrfs_key_type(&found_key);
39279cc3 3993
33345d01 3994 if (found_key.objectid != ino)
39279cc3 3995 break;
5f39d397 3996
85e21bac 3997 if (found_type < min_type)
39279cc3
CM
3998 break;
3999
5f39d397 4000 item_end = found_key.offset;
39279cc3 4001 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4002 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4003 struct btrfs_file_extent_item);
179e29e4
CM
4004 extent_type = btrfs_file_extent_type(leaf, fi);
4005 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4006 item_end +=
db94535d 4007 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4008 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4009 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 4010 fi);
39279cc3 4011 }
008630c1 4012 item_end--;
39279cc3 4013 }
8082510e
YZ
4014 if (found_type > min_type) {
4015 del_item = 1;
4016 } else {
4017 if (item_end < new_size)
b888db2b 4018 break;
8082510e
YZ
4019 if (found_key.offset >= new_size)
4020 del_item = 1;
4021 else
4022 del_item = 0;
39279cc3 4023 }
39279cc3 4024 found_extent = 0;
39279cc3 4025 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4026 if (found_type != BTRFS_EXTENT_DATA_KEY)
4027 goto delete;
4028
7f4f6e0a
JB
4029 if (del_item)
4030 last_size = found_key.offset;
4031 else
4032 last_size = new_size;
4033
179e29e4 4034 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4035 u64 num_dec;
db94535d 4036 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4037 if (!del_item) {
db94535d
CM
4038 u64 orig_num_bytes =
4039 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4040 extent_num_bytes = ALIGN(new_size -
4041 found_key.offset,
4042 root->sectorsize);
db94535d
CM
4043 btrfs_set_file_extent_num_bytes(leaf, fi,
4044 extent_num_bytes);
4045 num_dec = (orig_num_bytes -
9069218d 4046 extent_num_bytes);
e02119d5 4047 if (root->ref_cows && extent_start != 0)
a76a3cd4 4048 inode_sub_bytes(inode, num_dec);
5f39d397 4049 btrfs_mark_buffer_dirty(leaf);
39279cc3 4050 } else {
db94535d
CM
4051 extent_num_bytes =
4052 btrfs_file_extent_disk_num_bytes(leaf,
4053 fi);
5d4f98a2
YZ
4054 extent_offset = found_key.offset -
4055 btrfs_file_extent_offset(leaf, fi);
4056
39279cc3 4057 /* FIXME blocksize != 4096 */
9069218d 4058 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4059 if (extent_start != 0) {
4060 found_extent = 1;
e02119d5 4061 if (root->ref_cows)
a76a3cd4 4062 inode_sub_bytes(inode, num_dec);
e02119d5 4063 }
39279cc3 4064 }
9069218d 4065 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4066 /*
4067 * we can't truncate inline items that have had
4068 * special encodings
4069 */
4070 if (!del_item &&
4071 btrfs_file_extent_compression(leaf, fi) == 0 &&
4072 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4073 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4074 u32 size = new_size - found_key.offset;
4075
4076 if (root->ref_cows) {
a76a3cd4
YZ
4077 inode_sub_bytes(inode, item_end + 1 -
4078 new_size);
e02119d5
CM
4079 }
4080 size =
4081 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4082 btrfs_truncate_item(root, path, size, 1);
e02119d5 4083 } else if (root->ref_cows) {
a76a3cd4
YZ
4084 inode_sub_bytes(inode, item_end + 1 -
4085 found_key.offset);
9069218d 4086 }
39279cc3 4087 }
179e29e4 4088delete:
39279cc3 4089 if (del_item) {
85e21bac
CM
4090 if (!pending_del_nr) {
4091 /* no pending yet, add ourselves */
4092 pending_del_slot = path->slots[0];
4093 pending_del_nr = 1;
4094 } else if (pending_del_nr &&
4095 path->slots[0] + 1 == pending_del_slot) {
4096 /* hop on the pending chunk */
4097 pending_del_nr++;
4098 pending_del_slot = path->slots[0];
4099 } else {
d397712b 4100 BUG();
85e21bac 4101 }
39279cc3
CM
4102 } else {
4103 break;
4104 }
0af3d00b
JB
4105 if (found_extent && (root->ref_cows ||
4106 root == root->fs_info->tree_root)) {
b9473439 4107 btrfs_set_path_blocking(path);
39279cc3 4108 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4109 extent_num_bytes, 0,
4110 btrfs_header_owner(leaf),
66d7e7f0 4111 ino, extent_offset, 0);
39279cc3
CM
4112 BUG_ON(ret);
4113 }
85e21bac 4114
8082510e
YZ
4115 if (found_type == BTRFS_INODE_ITEM_KEY)
4116 break;
4117
4118 if (path->slots[0] == 0 ||
4119 path->slots[0] != pending_del_slot) {
8082510e
YZ
4120 if (pending_del_nr) {
4121 ret = btrfs_del_items(trans, root, path,
4122 pending_del_slot,
4123 pending_del_nr);
79787eaa
JM
4124 if (ret) {
4125 btrfs_abort_transaction(trans,
4126 root, ret);
4127 goto error;
4128 }
8082510e
YZ
4129 pending_del_nr = 0;
4130 }
b3b4aa74 4131 btrfs_release_path(path);
85e21bac 4132 goto search_again;
8082510e
YZ
4133 } else {
4134 path->slots[0]--;
85e21bac 4135 }
39279cc3 4136 }
8082510e 4137out:
85e21bac
CM
4138 if (pending_del_nr) {
4139 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4140 pending_del_nr);
79787eaa
JM
4141 if (ret)
4142 btrfs_abort_transaction(trans, root, ret);
85e21bac 4143 }
79787eaa 4144error:
7f4f6e0a
JB
4145 if (last_size != (u64)-1)
4146 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4147 btrfs_free_path(path);
8082510e 4148 return err;
39279cc3
CM
4149}
4150
4151/*
2aaa6655
JB
4152 * btrfs_truncate_page - read, zero a chunk and write a page
4153 * @inode - inode that we're zeroing
4154 * @from - the offset to start zeroing
4155 * @len - the length to zero, 0 to zero the entire range respective to the
4156 * offset
4157 * @front - zero up to the offset instead of from the offset on
4158 *
4159 * This will find the page for the "from" offset and cow the page and zero the
4160 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4161 */
2aaa6655
JB
4162int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4163 int front)
39279cc3 4164{
2aaa6655 4165 struct address_space *mapping = inode->i_mapping;
db94535d 4166 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4167 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4168 struct btrfs_ordered_extent *ordered;
2ac55d41 4169 struct extent_state *cached_state = NULL;
e6dcd2dc 4170 char *kaddr;
db94535d 4171 u32 blocksize = root->sectorsize;
39279cc3
CM
4172 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4173 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4174 struct page *page;
3b16a4e3 4175 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4176 int ret = 0;
a52d9a80 4177 u64 page_start;
e6dcd2dc 4178 u64 page_end;
39279cc3 4179
2aaa6655
JB
4180 if ((offset & (blocksize - 1)) == 0 &&
4181 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4182 goto out;
0ca1f7ce 4183 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4184 if (ret)
4185 goto out;
39279cc3 4186
211c17f5 4187again:
3b16a4e3 4188 page = find_or_create_page(mapping, index, mask);
5d5e103a 4189 if (!page) {
0ca1f7ce 4190 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4191 ret = -ENOMEM;
39279cc3 4192 goto out;
5d5e103a 4193 }
e6dcd2dc
CM
4194
4195 page_start = page_offset(page);
4196 page_end = page_start + PAGE_CACHE_SIZE - 1;
4197
39279cc3 4198 if (!PageUptodate(page)) {
9ebefb18 4199 ret = btrfs_readpage(NULL, page);
39279cc3 4200 lock_page(page);
211c17f5
CM
4201 if (page->mapping != mapping) {
4202 unlock_page(page);
4203 page_cache_release(page);
4204 goto again;
4205 }
39279cc3
CM
4206 if (!PageUptodate(page)) {
4207 ret = -EIO;
89642229 4208 goto out_unlock;
39279cc3
CM
4209 }
4210 }
211c17f5 4211 wait_on_page_writeback(page);
e6dcd2dc 4212
d0082371 4213 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4214 set_page_extent_mapped(page);
4215
4216 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4217 if (ordered) {
2ac55d41
JB
4218 unlock_extent_cached(io_tree, page_start, page_end,
4219 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4220 unlock_page(page);
4221 page_cache_release(page);
eb84ae03 4222 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4223 btrfs_put_ordered_extent(ordered);
4224 goto again;
4225 }
4226
2ac55d41 4227 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4228 EXTENT_DIRTY | EXTENT_DELALLOC |
4229 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4230 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4231
2ac55d41
JB
4232 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4233 &cached_state);
9ed74f2d 4234 if (ret) {
2ac55d41
JB
4235 unlock_extent_cached(io_tree, page_start, page_end,
4236 &cached_state, GFP_NOFS);
9ed74f2d
JB
4237 goto out_unlock;
4238 }
4239
e6dcd2dc 4240 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4241 if (!len)
4242 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4243 kaddr = kmap(page);
2aaa6655
JB
4244 if (front)
4245 memset(kaddr, 0, offset);
4246 else
4247 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4248 flush_dcache_page(page);
4249 kunmap(page);
4250 }
247e743c 4251 ClearPageChecked(page);
e6dcd2dc 4252 set_page_dirty(page);
2ac55d41
JB
4253 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4254 GFP_NOFS);
39279cc3 4255
89642229 4256out_unlock:
5d5e103a 4257 if (ret)
0ca1f7ce 4258 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4259 unlock_page(page);
4260 page_cache_release(page);
4261out:
4262 return ret;
4263}
4264
16e7549f
JB
4265static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4266 u64 offset, u64 len)
4267{
4268 struct btrfs_trans_handle *trans;
4269 int ret;
4270
4271 /*
4272 * Still need to make sure the inode looks like it's been updated so
4273 * that any holes get logged if we fsync.
4274 */
4275 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4276 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4277 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4278 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4279 return 0;
4280 }
4281
4282 /*
4283 * 1 - for the one we're dropping
4284 * 1 - for the one we're adding
4285 * 1 - for updating the inode.
4286 */
4287 trans = btrfs_start_transaction(root, 3);
4288 if (IS_ERR(trans))
4289 return PTR_ERR(trans);
4290
4291 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4292 if (ret) {
4293 btrfs_abort_transaction(trans, root, ret);
4294 btrfs_end_transaction(trans, root);
4295 return ret;
4296 }
4297
4298 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4299 0, 0, len, 0, len, 0, 0, 0);
4300 if (ret)
4301 btrfs_abort_transaction(trans, root, ret);
4302 else
4303 btrfs_update_inode(trans, root, inode);
4304 btrfs_end_transaction(trans, root);
4305 return ret;
4306}
4307
695a0d0d
JB
4308/*
4309 * This function puts in dummy file extents for the area we're creating a hole
4310 * for. So if we are truncating this file to a larger size we need to insert
4311 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4312 * the range between oldsize and size
4313 */
a41ad394 4314int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4315{
9036c102
YZ
4316 struct btrfs_root *root = BTRFS_I(inode)->root;
4317 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4318 struct extent_map *em = NULL;
2ac55d41 4319 struct extent_state *cached_state = NULL;
5dc562c5 4320 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4321 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4322 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4323 u64 last_byte;
4324 u64 cur_offset;
4325 u64 hole_size;
9ed74f2d 4326 int err = 0;
39279cc3 4327
a71754fc
JB
4328 /*
4329 * If our size started in the middle of a page we need to zero out the
4330 * rest of the page before we expand the i_size, otherwise we could
4331 * expose stale data.
4332 */
4333 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4334 if (err)
4335 return err;
4336
9036c102
YZ
4337 if (size <= hole_start)
4338 return 0;
4339
9036c102
YZ
4340 while (1) {
4341 struct btrfs_ordered_extent *ordered;
fa7c1494 4342
2ac55d41 4343 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4344 &cached_state);
fa7c1494
MX
4345 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4346 block_end - hole_start);
9036c102
YZ
4347 if (!ordered)
4348 break;
2ac55d41
JB
4349 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4350 &cached_state, GFP_NOFS);
fa7c1494 4351 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4352 btrfs_put_ordered_extent(ordered);
4353 }
39279cc3 4354
9036c102
YZ
4355 cur_offset = hole_start;
4356 while (1) {
4357 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4358 block_end - cur_offset, 0);
79787eaa
JM
4359 if (IS_ERR(em)) {
4360 err = PTR_ERR(em);
f2767956 4361 em = NULL;
79787eaa
JM
4362 break;
4363 }
9036c102 4364 last_byte = min(extent_map_end(em), block_end);
fda2832f 4365 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4366 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4367 struct extent_map *hole_em;
9036c102 4368 hole_size = last_byte - cur_offset;
9ed74f2d 4369
16e7549f
JB
4370 err = maybe_insert_hole(root, inode, cur_offset,
4371 hole_size);
4372 if (err)
3893e33b 4373 break;
5dc562c5
JB
4374 btrfs_drop_extent_cache(inode, cur_offset,
4375 cur_offset + hole_size - 1, 0);
4376 hole_em = alloc_extent_map();
4377 if (!hole_em) {
4378 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4379 &BTRFS_I(inode)->runtime_flags);
4380 goto next;
4381 }
4382 hole_em->start = cur_offset;
4383 hole_em->len = hole_size;
4384 hole_em->orig_start = cur_offset;
8082510e 4385
5dc562c5
JB
4386 hole_em->block_start = EXTENT_MAP_HOLE;
4387 hole_em->block_len = 0;
b4939680 4388 hole_em->orig_block_len = 0;
cc95bef6 4389 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4390 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4391 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4392 hole_em->generation = root->fs_info->generation;
8082510e 4393
5dc562c5
JB
4394 while (1) {
4395 write_lock(&em_tree->lock);
09a2a8f9 4396 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4397 write_unlock(&em_tree->lock);
4398 if (err != -EEXIST)
4399 break;
4400 btrfs_drop_extent_cache(inode, cur_offset,
4401 cur_offset +
4402 hole_size - 1, 0);
4403 }
4404 free_extent_map(hole_em);
9036c102 4405 }
16e7549f 4406next:
9036c102 4407 free_extent_map(em);
a22285a6 4408 em = NULL;
9036c102 4409 cur_offset = last_byte;
8082510e 4410 if (cur_offset >= block_end)
9036c102
YZ
4411 break;
4412 }
a22285a6 4413 free_extent_map(em);
2ac55d41
JB
4414 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4415 GFP_NOFS);
9036c102
YZ
4416 return err;
4417}
39279cc3 4418
3972f260 4419static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4420{
f4a2f4c5
MX
4421 struct btrfs_root *root = BTRFS_I(inode)->root;
4422 struct btrfs_trans_handle *trans;
a41ad394 4423 loff_t oldsize = i_size_read(inode);
3972f260
ES
4424 loff_t newsize = attr->ia_size;
4425 int mask = attr->ia_valid;
8082510e
YZ
4426 int ret;
4427
3972f260
ES
4428 /*
4429 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4430 * special case where we need to update the times despite not having
4431 * these flags set. For all other operations the VFS set these flags
4432 * explicitly if it wants a timestamp update.
4433 */
4434 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4435 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4436
a41ad394 4437 if (newsize > oldsize) {
7caef267 4438 truncate_pagecache(inode, newsize);
a41ad394 4439 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4440 if (ret)
8082510e 4441 return ret;
8082510e 4442
f4a2f4c5
MX
4443 trans = btrfs_start_transaction(root, 1);
4444 if (IS_ERR(trans))
4445 return PTR_ERR(trans);
4446
4447 i_size_write(inode, newsize);
4448 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4449 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4450 btrfs_end_transaction(trans, root);
a41ad394 4451 } else {
8082510e 4452
a41ad394
JB
4453 /*
4454 * We're truncating a file that used to have good data down to
4455 * zero. Make sure it gets into the ordered flush list so that
4456 * any new writes get down to disk quickly.
4457 */
4458 if (newsize == 0)
72ac3c0d
JB
4459 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4460 &BTRFS_I(inode)->runtime_flags);
8082510e 4461
f3fe820c
JB
4462 /*
4463 * 1 for the orphan item we're going to add
4464 * 1 for the orphan item deletion.
4465 */
4466 trans = btrfs_start_transaction(root, 2);
4467 if (IS_ERR(trans))
4468 return PTR_ERR(trans);
4469
4470 /*
4471 * We need to do this in case we fail at _any_ point during the
4472 * actual truncate. Once we do the truncate_setsize we could
4473 * invalidate pages which forces any outstanding ordered io to
4474 * be instantly completed which will give us extents that need
4475 * to be truncated. If we fail to get an orphan inode down we
4476 * could have left over extents that were never meant to live,
4477 * so we need to garuntee from this point on that everything
4478 * will be consistent.
4479 */
4480 ret = btrfs_orphan_add(trans, inode);
4481 btrfs_end_transaction(trans, root);
4482 if (ret)
4483 return ret;
4484
a41ad394
JB
4485 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4486 truncate_setsize(inode, newsize);
2e60a51e
MX
4487
4488 /* Disable nonlocked read DIO to avoid the end less truncate */
4489 btrfs_inode_block_unlocked_dio(inode);
4490 inode_dio_wait(inode);
4491 btrfs_inode_resume_unlocked_dio(inode);
4492
a41ad394 4493 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4494 if (ret && inode->i_nlink) {
4495 int err;
4496
4497 /*
4498 * failed to truncate, disk_i_size is only adjusted down
4499 * as we remove extents, so it should represent the true
4500 * size of the inode, so reset the in memory size and
4501 * delete our orphan entry.
4502 */
4503 trans = btrfs_join_transaction(root);
4504 if (IS_ERR(trans)) {
4505 btrfs_orphan_del(NULL, inode);
4506 return ret;
4507 }
4508 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4509 err = btrfs_orphan_del(trans, inode);
4510 if (err)
4511 btrfs_abort_transaction(trans, root, err);
4512 btrfs_end_transaction(trans, root);
4513 }
8082510e
YZ
4514 }
4515
a41ad394 4516 return ret;
8082510e
YZ
4517}
4518
9036c102
YZ
4519static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4520{
4521 struct inode *inode = dentry->d_inode;
b83cc969 4522 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4523 int err;
39279cc3 4524
b83cc969
LZ
4525 if (btrfs_root_readonly(root))
4526 return -EROFS;
4527
9036c102
YZ
4528 err = inode_change_ok(inode, attr);
4529 if (err)
4530 return err;
2bf5a725 4531
5a3f23d5 4532 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4533 err = btrfs_setsize(inode, attr);
8082510e
YZ
4534 if (err)
4535 return err;
39279cc3 4536 }
9036c102 4537
1025774c
CH
4538 if (attr->ia_valid) {
4539 setattr_copy(inode, attr);
0c4d2d95 4540 inode_inc_iversion(inode);
22c44fe6 4541 err = btrfs_dirty_inode(inode);
1025774c 4542
22c44fe6 4543 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4544 err = btrfs_acl_chmod(inode);
4545 }
33268eaf 4546
39279cc3
CM
4547 return err;
4548}
61295eb8 4549
131e404a
FDBM
4550/*
4551 * While truncating the inode pages during eviction, we get the VFS calling
4552 * btrfs_invalidatepage() against each page of the inode. This is slow because
4553 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4554 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4555 * extent_state structures over and over, wasting lots of time.
4556 *
4557 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4558 * those expensive operations on a per page basis and do only the ordered io
4559 * finishing, while we release here the extent_map and extent_state structures,
4560 * without the excessive merging and splitting.
4561 */
4562static void evict_inode_truncate_pages(struct inode *inode)
4563{
4564 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4565 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4566 struct rb_node *node;
4567
4568 ASSERT(inode->i_state & I_FREEING);
4569 truncate_inode_pages(&inode->i_data, 0);
4570
4571 write_lock(&map_tree->lock);
4572 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4573 struct extent_map *em;
4574
4575 node = rb_first(&map_tree->map);
4576 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4577 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4578 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4579 remove_extent_mapping(map_tree, em);
4580 free_extent_map(em);
4581 }
4582 write_unlock(&map_tree->lock);
4583
4584 spin_lock(&io_tree->lock);
4585 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4586 struct extent_state *state;
4587 struct extent_state *cached_state = NULL;
4588
4589 node = rb_first(&io_tree->state);
4590 state = rb_entry(node, struct extent_state, rb_node);
4591 atomic_inc(&state->refs);
4592 spin_unlock(&io_tree->lock);
4593
4594 lock_extent_bits(io_tree, state->start, state->end,
4595 0, &cached_state);
4596 clear_extent_bit(io_tree, state->start, state->end,
4597 EXTENT_LOCKED | EXTENT_DIRTY |
4598 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4599 EXTENT_DEFRAG, 1, 1,
4600 &cached_state, GFP_NOFS);
4601 free_extent_state(state);
4602
4603 spin_lock(&io_tree->lock);
4604 }
4605 spin_unlock(&io_tree->lock);
4606}
4607
bd555975 4608void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4609{
4610 struct btrfs_trans_handle *trans;
4611 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4612 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4613 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4614 int ret;
4615
1abe9b8a 4616 trace_btrfs_inode_evict(inode);
4617
131e404a
FDBM
4618 evict_inode_truncate_pages(inode);
4619
69e9c6c6
SB
4620 if (inode->i_nlink &&
4621 ((btrfs_root_refs(&root->root_item) != 0 &&
4622 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4623 btrfs_is_free_space_inode(inode)))
bd555975
AV
4624 goto no_delete;
4625
39279cc3 4626 if (is_bad_inode(inode)) {
7b128766 4627 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4628 goto no_delete;
4629 }
bd555975 4630 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4631 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4632
c71bf099 4633 if (root->fs_info->log_root_recovering) {
6bf02314 4634 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4635 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4636 goto no_delete;
4637 }
4638
76dda93c 4639 if (inode->i_nlink > 0) {
69e9c6c6
SB
4640 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4641 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4642 goto no_delete;
4643 }
4644
0e8c36a9
MX
4645 ret = btrfs_commit_inode_delayed_inode(inode);
4646 if (ret) {
4647 btrfs_orphan_del(NULL, inode);
4648 goto no_delete;
4649 }
4650
66d8f3dd 4651 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4652 if (!rsv) {
4653 btrfs_orphan_del(NULL, inode);
4654 goto no_delete;
4655 }
4a338542 4656 rsv->size = min_size;
ca7e70f5 4657 rsv->failfast = 1;
726c35fa 4658 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4659
dbe674a9 4660 btrfs_i_size_write(inode, 0);
5f39d397 4661
4289a667 4662 /*
8407aa46
MX
4663 * This is a bit simpler than btrfs_truncate since we've already
4664 * reserved our space for our orphan item in the unlink, so we just
4665 * need to reserve some slack space in case we add bytes and update
4666 * inode item when doing the truncate.
4289a667 4667 */
8082510e 4668 while (1) {
08e007d2
MX
4669 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4670 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4671
4672 /*
4673 * Try and steal from the global reserve since we will
4674 * likely not use this space anyway, we want to try as
4675 * hard as possible to get this to work.
4676 */
4677 if (ret)
4678 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4679
d68fc57b 4680 if (ret) {
c2cf52eb
SK
4681 btrfs_warn(root->fs_info,
4682 "Could not get space for a delete, will truncate on mount %d",
4683 ret);
4289a667
JB
4684 btrfs_orphan_del(NULL, inode);
4685 btrfs_free_block_rsv(root, rsv);
4686 goto no_delete;
d68fc57b 4687 }
7b128766 4688
0e8c36a9 4689 trans = btrfs_join_transaction(root);
4289a667
JB
4690 if (IS_ERR(trans)) {
4691 btrfs_orphan_del(NULL, inode);
4692 btrfs_free_block_rsv(root, rsv);
4693 goto no_delete;
d68fc57b 4694 }
7b128766 4695
4289a667
JB
4696 trans->block_rsv = rsv;
4697
d68fc57b 4698 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4699 if (ret != -ENOSPC)
8082510e 4700 break;
85e21bac 4701
8407aa46 4702 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4703 btrfs_end_transaction(trans, root);
4704 trans = NULL;
b53d3f5d 4705 btrfs_btree_balance_dirty(root);
8082510e 4706 }
5f39d397 4707
4289a667
JB
4708 btrfs_free_block_rsv(root, rsv);
4709
4ef31a45
JB
4710 /*
4711 * Errors here aren't a big deal, it just means we leave orphan items
4712 * in the tree. They will be cleaned up on the next mount.
4713 */
8082510e 4714 if (ret == 0) {
4289a667 4715 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4716 btrfs_orphan_del(trans, inode);
4717 } else {
4718 btrfs_orphan_del(NULL, inode);
8082510e 4719 }
54aa1f4d 4720
4289a667 4721 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4722 if (!(root == root->fs_info->tree_root ||
4723 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4724 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4725
54aa1f4d 4726 btrfs_end_transaction(trans, root);
b53d3f5d 4727 btrfs_btree_balance_dirty(root);
39279cc3 4728no_delete:
89042e5a 4729 btrfs_remove_delayed_node(inode);
dbd5768f 4730 clear_inode(inode);
8082510e 4731 return;
39279cc3
CM
4732}
4733
4734/*
4735 * this returns the key found in the dir entry in the location pointer.
4736 * If no dir entries were found, location->objectid is 0.
4737 */
4738static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4739 struct btrfs_key *location)
4740{
4741 const char *name = dentry->d_name.name;
4742 int namelen = dentry->d_name.len;
4743 struct btrfs_dir_item *di;
4744 struct btrfs_path *path;
4745 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4746 int ret = 0;
39279cc3
CM
4747
4748 path = btrfs_alloc_path();
d8926bb3
MF
4749 if (!path)
4750 return -ENOMEM;
3954401f 4751
33345d01 4752 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4753 namelen, 0);
0d9f7f3e
Y
4754 if (IS_ERR(di))
4755 ret = PTR_ERR(di);
d397712b 4756
c704005d 4757 if (IS_ERR_OR_NULL(di))
3954401f 4758 goto out_err;
d397712b 4759
5f39d397 4760 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4761out:
39279cc3
CM
4762 btrfs_free_path(path);
4763 return ret;
3954401f
CM
4764out_err:
4765 location->objectid = 0;
4766 goto out;
39279cc3
CM
4767}
4768
4769/*
4770 * when we hit a tree root in a directory, the btrfs part of the inode
4771 * needs to be changed to reflect the root directory of the tree root. This
4772 * is kind of like crossing a mount point.
4773 */
4774static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4775 struct inode *dir,
4776 struct dentry *dentry,
4777 struct btrfs_key *location,
4778 struct btrfs_root **sub_root)
39279cc3 4779{
4df27c4d
YZ
4780 struct btrfs_path *path;
4781 struct btrfs_root *new_root;
4782 struct btrfs_root_ref *ref;
4783 struct extent_buffer *leaf;
4784 int ret;
4785 int err = 0;
39279cc3 4786
4df27c4d
YZ
4787 path = btrfs_alloc_path();
4788 if (!path) {
4789 err = -ENOMEM;
4790 goto out;
4791 }
39279cc3 4792
4df27c4d 4793 err = -ENOENT;
75ac2dd9
KN
4794 ret = btrfs_find_item(root->fs_info->tree_root, path,
4795 BTRFS_I(dir)->root->root_key.objectid,
4796 location->objectid, BTRFS_ROOT_REF_KEY, NULL);
4df27c4d
YZ
4797 if (ret) {
4798 if (ret < 0)
4799 err = ret;
4800 goto out;
4801 }
39279cc3 4802
4df27c4d
YZ
4803 leaf = path->nodes[0];
4804 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4805 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4806 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4807 goto out;
39279cc3 4808
4df27c4d
YZ
4809 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4810 (unsigned long)(ref + 1),
4811 dentry->d_name.len);
4812 if (ret)
4813 goto out;
4814
b3b4aa74 4815 btrfs_release_path(path);
4df27c4d
YZ
4816
4817 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4818 if (IS_ERR(new_root)) {
4819 err = PTR_ERR(new_root);
4820 goto out;
4821 }
4822
4df27c4d
YZ
4823 *sub_root = new_root;
4824 location->objectid = btrfs_root_dirid(&new_root->root_item);
4825 location->type = BTRFS_INODE_ITEM_KEY;
4826 location->offset = 0;
4827 err = 0;
4828out:
4829 btrfs_free_path(path);
4830 return err;
39279cc3
CM
4831}
4832
5d4f98a2
YZ
4833static void inode_tree_add(struct inode *inode)
4834{
4835 struct btrfs_root *root = BTRFS_I(inode)->root;
4836 struct btrfs_inode *entry;
03e860bd
FNP
4837 struct rb_node **p;
4838 struct rb_node *parent;
cef21937 4839 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 4840 u64 ino = btrfs_ino(inode);
5d4f98a2 4841
1d3382cb 4842 if (inode_unhashed(inode))
76dda93c 4843 return;
e1409cef 4844 parent = NULL;
5d4f98a2 4845 spin_lock(&root->inode_lock);
e1409cef 4846 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4847 while (*p) {
4848 parent = *p;
4849 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4850
33345d01 4851 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4852 p = &parent->rb_left;
33345d01 4853 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4854 p = &parent->rb_right;
5d4f98a2
YZ
4855 else {
4856 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4857 (I_WILL_FREE | I_FREEING)));
cef21937 4858 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
4859 RB_CLEAR_NODE(parent);
4860 spin_unlock(&root->inode_lock);
cef21937 4861 return;
5d4f98a2
YZ
4862 }
4863 }
cef21937
FDBM
4864 rb_link_node(new, parent, p);
4865 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
4866 spin_unlock(&root->inode_lock);
4867}
4868
4869static void inode_tree_del(struct inode *inode)
4870{
4871 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4872 int empty = 0;
5d4f98a2 4873
03e860bd 4874 spin_lock(&root->inode_lock);
5d4f98a2 4875 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4876 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4877 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4878 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4879 }
03e860bd 4880 spin_unlock(&root->inode_lock);
76dda93c 4881
69e9c6c6 4882 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
4883 synchronize_srcu(&root->fs_info->subvol_srcu);
4884 spin_lock(&root->inode_lock);
4885 empty = RB_EMPTY_ROOT(&root->inode_tree);
4886 spin_unlock(&root->inode_lock);
4887 if (empty)
4888 btrfs_add_dead_root(root);
4889 }
4890}
4891
143bede5 4892void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4893{
4894 struct rb_node *node;
4895 struct rb_node *prev;
4896 struct btrfs_inode *entry;
4897 struct inode *inode;
4898 u64 objectid = 0;
4899
4900 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4901
4902 spin_lock(&root->inode_lock);
4903again:
4904 node = root->inode_tree.rb_node;
4905 prev = NULL;
4906 while (node) {
4907 prev = node;
4908 entry = rb_entry(node, struct btrfs_inode, rb_node);
4909
33345d01 4910 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4911 node = node->rb_left;
33345d01 4912 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4913 node = node->rb_right;
4914 else
4915 break;
4916 }
4917 if (!node) {
4918 while (prev) {
4919 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4920 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4921 node = prev;
4922 break;
4923 }
4924 prev = rb_next(prev);
4925 }
4926 }
4927 while (node) {
4928 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4929 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4930 inode = igrab(&entry->vfs_inode);
4931 if (inode) {
4932 spin_unlock(&root->inode_lock);
4933 if (atomic_read(&inode->i_count) > 1)
4934 d_prune_aliases(inode);
4935 /*
45321ac5 4936 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4937 * the inode cache when its usage count
4938 * hits zero.
4939 */
4940 iput(inode);
4941 cond_resched();
4942 spin_lock(&root->inode_lock);
4943 goto again;
4944 }
4945
4946 if (cond_resched_lock(&root->inode_lock))
4947 goto again;
4948
4949 node = rb_next(node);
4950 }
4951 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4952}
4953
e02119d5
CM
4954static int btrfs_init_locked_inode(struct inode *inode, void *p)
4955{
4956 struct btrfs_iget_args *args = p;
4957 inode->i_ino = args->ino;
e02119d5 4958 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4959 return 0;
4960}
4961
4962static int btrfs_find_actor(struct inode *inode, void *opaque)
4963{
4964 struct btrfs_iget_args *args = opaque;
33345d01 4965 return args->ino == btrfs_ino(inode) &&
d397712b 4966 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4967}
4968
5d4f98a2
YZ
4969static struct inode *btrfs_iget_locked(struct super_block *s,
4970 u64 objectid,
4971 struct btrfs_root *root)
39279cc3
CM
4972{
4973 struct inode *inode;
4974 struct btrfs_iget_args args;
778ba82b
FDBM
4975 unsigned long hashval = btrfs_inode_hash(objectid, root);
4976
39279cc3
CM
4977 args.ino = objectid;
4978 args.root = root;
4979
778ba82b 4980 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
4981 btrfs_init_locked_inode,
4982 (void *)&args);
4983 return inode;
4984}
4985
1a54ef8c
BR
4986/* Get an inode object given its location and corresponding root.
4987 * Returns in *is_new if the inode was read from disk
4988 */
4989struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4990 struct btrfs_root *root, int *new)
1a54ef8c
BR
4991{
4992 struct inode *inode;
4993
4994 inode = btrfs_iget_locked(s, location->objectid, root);
4995 if (!inode)
5d4f98a2 4996 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4997
4998 if (inode->i_state & I_NEW) {
4999 BTRFS_I(inode)->root = root;
5000 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
5001 btrfs_read_locked_inode(inode);
1748f843
MF
5002 if (!is_bad_inode(inode)) {
5003 inode_tree_add(inode);
5004 unlock_new_inode(inode);
5005 if (new)
5006 *new = 1;
5007 } else {
e0b6d65b
ST
5008 unlock_new_inode(inode);
5009 iput(inode);
5010 inode = ERR_PTR(-ESTALE);
1748f843
MF
5011 }
5012 }
5013
1a54ef8c
BR
5014 return inode;
5015}
5016
4df27c4d
YZ
5017static struct inode *new_simple_dir(struct super_block *s,
5018 struct btrfs_key *key,
5019 struct btrfs_root *root)
5020{
5021 struct inode *inode = new_inode(s);
5022
5023 if (!inode)
5024 return ERR_PTR(-ENOMEM);
5025
4df27c4d
YZ
5026 BTRFS_I(inode)->root = root;
5027 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5028 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5029
5030 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5031 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5032 inode->i_fop = &simple_dir_operations;
5033 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5034 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5035
5036 return inode;
5037}
5038
3de4586c 5039struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5040{
d397712b 5041 struct inode *inode;
4df27c4d 5042 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5043 struct btrfs_root *sub_root = root;
5044 struct btrfs_key location;
76dda93c 5045 int index;
b4aff1f8 5046 int ret = 0;
39279cc3
CM
5047
5048 if (dentry->d_name.len > BTRFS_NAME_LEN)
5049 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5050
39e3c955 5051 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5052 if (ret < 0)
5053 return ERR_PTR(ret);
5f39d397 5054
4df27c4d 5055 if (location.objectid == 0)
5662344b 5056 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5057
5058 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5059 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5060 return inode;
5061 }
5062
5063 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5064
76dda93c 5065 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5066 ret = fixup_tree_root_location(root, dir, dentry,
5067 &location, &sub_root);
5068 if (ret < 0) {
5069 if (ret != -ENOENT)
5070 inode = ERR_PTR(ret);
5071 else
5072 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5073 } else {
73f73415 5074 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5075 }
76dda93c
YZ
5076 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5077
34d19bad 5078 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5079 down_read(&root->fs_info->cleanup_work_sem);
5080 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5081 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5082 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5083 if (ret) {
5084 iput(inode);
66b4ffd1 5085 inode = ERR_PTR(ret);
01cd3367 5086 }
c71bf099
YZ
5087 }
5088
3de4586c
CM
5089 return inode;
5090}
5091
fe15ce44 5092static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5093{
5094 struct btrfs_root *root;
848cce0d 5095 struct inode *inode = dentry->d_inode;
76dda93c 5096
848cce0d
LZ
5097 if (!inode && !IS_ROOT(dentry))
5098 inode = dentry->d_parent->d_inode;
76dda93c 5099
848cce0d
LZ
5100 if (inode) {
5101 root = BTRFS_I(inode)->root;
efefb143
YZ
5102 if (btrfs_root_refs(&root->root_item) == 0)
5103 return 1;
848cce0d
LZ
5104
5105 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5106 return 1;
efefb143 5107 }
76dda93c
YZ
5108 return 0;
5109}
5110
b4aff1f8
JB
5111static void btrfs_dentry_release(struct dentry *dentry)
5112{
5113 if (dentry->d_fsdata)
5114 kfree(dentry->d_fsdata);
5115}
5116
3de4586c 5117static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5118 unsigned int flags)
3de4586c 5119{
5662344b 5120 struct inode *inode;
a66e7cc6 5121
5662344b
TI
5122 inode = btrfs_lookup_dentry(dir, dentry);
5123 if (IS_ERR(inode)) {
5124 if (PTR_ERR(inode) == -ENOENT)
5125 inode = NULL;
5126 else
5127 return ERR_CAST(inode);
5128 }
5129
5130 return d_splice_alias(inode, dentry);
39279cc3
CM
5131}
5132
16cdcec7 5133unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5134 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5135};
5136
9cdda8d3 5137static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5138{
9cdda8d3 5139 struct inode *inode = file_inode(file);
39279cc3
CM
5140 struct btrfs_root *root = BTRFS_I(inode)->root;
5141 struct btrfs_item *item;
5142 struct btrfs_dir_item *di;
5143 struct btrfs_key key;
5f39d397 5144 struct btrfs_key found_key;
39279cc3 5145 struct btrfs_path *path;
16cdcec7
MX
5146 struct list_head ins_list;
5147 struct list_head del_list;
39279cc3 5148 int ret;
5f39d397 5149 struct extent_buffer *leaf;
39279cc3 5150 int slot;
39279cc3
CM
5151 unsigned char d_type;
5152 int over = 0;
5153 u32 di_cur;
5154 u32 di_total;
5155 u32 di_len;
5156 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5157 char tmp_name[32];
5158 char *name_ptr;
5159 int name_len;
9cdda8d3 5160 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5161
5162 /* FIXME, use a real flag for deciding about the key type */
5163 if (root->fs_info->tree_root == root)
5164 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5165
9cdda8d3
AV
5166 if (!dir_emit_dots(file, ctx))
5167 return 0;
5168
49593bfa 5169 path = btrfs_alloc_path();
16cdcec7
MX
5170 if (!path)
5171 return -ENOMEM;
ff5714cc 5172
026fd317 5173 path->reada = 1;
49593bfa 5174
16cdcec7
MX
5175 if (key_type == BTRFS_DIR_INDEX_KEY) {
5176 INIT_LIST_HEAD(&ins_list);
5177 INIT_LIST_HEAD(&del_list);
5178 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5179 }
5180
39279cc3 5181 btrfs_set_key_type(&key, key_type);
9cdda8d3 5182 key.offset = ctx->pos;
33345d01 5183 key.objectid = btrfs_ino(inode);
5f39d397 5184
39279cc3
CM
5185 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5186 if (ret < 0)
5187 goto err;
49593bfa
DW
5188
5189 while (1) {
5f39d397 5190 leaf = path->nodes[0];
39279cc3 5191 slot = path->slots[0];
b9e03af0
LZ
5192 if (slot >= btrfs_header_nritems(leaf)) {
5193 ret = btrfs_next_leaf(root, path);
5194 if (ret < 0)
5195 goto err;
5196 else if (ret > 0)
5197 break;
5198 continue;
39279cc3 5199 }
3de4586c 5200
dd3cc16b 5201 item = btrfs_item_nr(slot);
5f39d397
CM
5202 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5203
5204 if (found_key.objectid != key.objectid)
39279cc3 5205 break;
5f39d397 5206 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5207 break;
9cdda8d3 5208 if (found_key.offset < ctx->pos)
b9e03af0 5209 goto next;
16cdcec7
MX
5210 if (key_type == BTRFS_DIR_INDEX_KEY &&
5211 btrfs_should_delete_dir_index(&del_list,
5212 found_key.offset))
5213 goto next;
5f39d397 5214
9cdda8d3 5215 ctx->pos = found_key.offset;
16cdcec7 5216 is_curr = 1;
49593bfa 5217
39279cc3
CM
5218 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5219 di_cur = 0;
5f39d397 5220 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5221
5222 while (di_cur < di_total) {
5f39d397
CM
5223 struct btrfs_key location;
5224
22a94d44
JB
5225 if (verify_dir_item(root, leaf, di))
5226 break;
5227
5f39d397 5228 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5229 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5230 name_ptr = tmp_name;
5231 } else {
5232 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5233 if (!name_ptr) {
5234 ret = -ENOMEM;
5235 goto err;
5236 }
5f39d397
CM
5237 }
5238 read_extent_buffer(leaf, name_ptr,
5239 (unsigned long)(di + 1), name_len);
5240
5241 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5242 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5243
fede766f 5244
3de4586c 5245 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5246 * skip it.
5247 *
5248 * In contrast to old kernels, we insert the snapshot's
5249 * dir item and dir index after it has been created, so
5250 * we won't find a reference to our own snapshot. We
5251 * still keep the following code for backward
5252 * compatibility.
3de4586c
CM
5253 */
5254 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5255 location.objectid == root->root_key.objectid) {
5256 over = 0;
5257 goto skip;
5258 }
9cdda8d3
AV
5259 over = !dir_emit(ctx, name_ptr, name_len,
5260 location.objectid, d_type);
5f39d397 5261
3de4586c 5262skip:
5f39d397
CM
5263 if (name_ptr != tmp_name)
5264 kfree(name_ptr);
5265
39279cc3
CM
5266 if (over)
5267 goto nopos;
5103e947 5268 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5269 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5270 di_cur += di_len;
5271 di = (struct btrfs_dir_item *)((char *)di + di_len);
5272 }
b9e03af0
LZ
5273next:
5274 path->slots[0]++;
39279cc3 5275 }
49593bfa 5276
16cdcec7
MX
5277 if (key_type == BTRFS_DIR_INDEX_KEY) {
5278 if (is_curr)
9cdda8d3
AV
5279 ctx->pos++;
5280 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5281 if (ret)
5282 goto nopos;
5283 }
5284
49593bfa 5285 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5286 ctx->pos++;
5287
5288 /*
5289 * Stop new entries from being returned after we return the last
5290 * entry.
5291 *
5292 * New directory entries are assigned a strictly increasing
5293 * offset. This means that new entries created during readdir
5294 * are *guaranteed* to be seen in the future by that readdir.
5295 * This has broken buggy programs which operate on names as
5296 * they're returned by readdir. Until we re-use freed offsets
5297 * we have this hack to stop new entries from being returned
5298 * under the assumption that they'll never reach this huge
5299 * offset.
5300 *
5301 * This is being careful not to overflow 32bit loff_t unless the
5302 * last entry requires it because doing so has broken 32bit apps
5303 * in the past.
5304 */
5305 if (key_type == BTRFS_DIR_INDEX_KEY) {
5306 if (ctx->pos >= INT_MAX)
5307 ctx->pos = LLONG_MAX;
5308 else
5309 ctx->pos = INT_MAX;
5310 }
39279cc3
CM
5311nopos:
5312 ret = 0;
5313err:
16cdcec7
MX
5314 if (key_type == BTRFS_DIR_INDEX_KEY)
5315 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5316 btrfs_free_path(path);
39279cc3
CM
5317 return ret;
5318}
5319
a9185b41 5320int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5321{
5322 struct btrfs_root *root = BTRFS_I(inode)->root;
5323 struct btrfs_trans_handle *trans;
5324 int ret = 0;
0af3d00b 5325 bool nolock = false;
39279cc3 5326
72ac3c0d 5327 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5328 return 0;
5329
83eea1f1 5330 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5331 nolock = true;
0af3d00b 5332
a9185b41 5333 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5334 if (nolock)
7a7eaa40 5335 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5336 else
7a7eaa40 5337 trans = btrfs_join_transaction(root);
3612b495
TI
5338 if (IS_ERR(trans))
5339 return PTR_ERR(trans);
a698d075 5340 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5341 }
5342 return ret;
5343}
5344
5345/*
54aa1f4d 5346 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5347 * inode changes. But, it is most likely to find the inode in cache.
5348 * FIXME, needs more benchmarking...there are no reasons other than performance
5349 * to keep or drop this code.
5350 */
48a3b636 5351static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5352{
5353 struct btrfs_root *root = BTRFS_I(inode)->root;
5354 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5355 int ret;
5356
72ac3c0d 5357 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5358 return 0;
39279cc3 5359
7a7eaa40 5360 trans = btrfs_join_transaction(root);
22c44fe6
JB
5361 if (IS_ERR(trans))
5362 return PTR_ERR(trans);
8929ecfa
YZ
5363
5364 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5365 if (ret && ret == -ENOSPC) {
5366 /* whoops, lets try again with the full transaction */
5367 btrfs_end_transaction(trans, root);
5368 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5369 if (IS_ERR(trans))
5370 return PTR_ERR(trans);
8929ecfa 5371
94b60442 5372 ret = btrfs_update_inode(trans, root, inode);
94b60442 5373 }
39279cc3 5374 btrfs_end_transaction(trans, root);
16cdcec7
MX
5375 if (BTRFS_I(inode)->delayed_node)
5376 btrfs_balance_delayed_items(root);
22c44fe6
JB
5377
5378 return ret;
5379}
5380
5381/*
5382 * This is a copy of file_update_time. We need this so we can return error on
5383 * ENOSPC for updating the inode in the case of file write and mmap writes.
5384 */
e41f941a
JB
5385static int btrfs_update_time(struct inode *inode, struct timespec *now,
5386 int flags)
22c44fe6 5387{
2bc55652
AB
5388 struct btrfs_root *root = BTRFS_I(inode)->root;
5389
5390 if (btrfs_root_readonly(root))
5391 return -EROFS;
5392
e41f941a 5393 if (flags & S_VERSION)
22c44fe6 5394 inode_inc_iversion(inode);
e41f941a
JB
5395 if (flags & S_CTIME)
5396 inode->i_ctime = *now;
5397 if (flags & S_MTIME)
5398 inode->i_mtime = *now;
5399 if (flags & S_ATIME)
5400 inode->i_atime = *now;
5401 return btrfs_dirty_inode(inode);
39279cc3
CM
5402}
5403
d352ac68
CM
5404/*
5405 * find the highest existing sequence number in a directory
5406 * and then set the in-memory index_cnt variable to reflect
5407 * free sequence numbers
5408 */
aec7477b
JB
5409static int btrfs_set_inode_index_count(struct inode *inode)
5410{
5411 struct btrfs_root *root = BTRFS_I(inode)->root;
5412 struct btrfs_key key, found_key;
5413 struct btrfs_path *path;
5414 struct extent_buffer *leaf;
5415 int ret;
5416
33345d01 5417 key.objectid = btrfs_ino(inode);
aec7477b
JB
5418 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5419 key.offset = (u64)-1;
5420
5421 path = btrfs_alloc_path();
5422 if (!path)
5423 return -ENOMEM;
5424
5425 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5426 if (ret < 0)
5427 goto out;
5428 /* FIXME: we should be able to handle this */
5429 if (ret == 0)
5430 goto out;
5431 ret = 0;
5432
5433 /*
5434 * MAGIC NUMBER EXPLANATION:
5435 * since we search a directory based on f_pos we have to start at 2
5436 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5437 * else has to start at 2
5438 */
5439 if (path->slots[0] == 0) {
5440 BTRFS_I(inode)->index_cnt = 2;
5441 goto out;
5442 }
5443
5444 path->slots[0]--;
5445
5446 leaf = path->nodes[0];
5447 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5448
33345d01 5449 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5450 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5451 BTRFS_I(inode)->index_cnt = 2;
5452 goto out;
5453 }
5454
5455 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5456out:
5457 btrfs_free_path(path);
5458 return ret;
5459}
5460
d352ac68
CM
5461/*
5462 * helper to find a free sequence number in a given directory. This current
5463 * code is very simple, later versions will do smarter things in the btree
5464 */
3de4586c 5465int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5466{
5467 int ret = 0;
5468
5469 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5470 ret = btrfs_inode_delayed_dir_index_count(dir);
5471 if (ret) {
5472 ret = btrfs_set_inode_index_count(dir);
5473 if (ret)
5474 return ret;
5475 }
aec7477b
JB
5476 }
5477
00e4e6b3 5478 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5479 BTRFS_I(dir)->index_cnt++;
5480
5481 return ret;
5482}
5483
39279cc3
CM
5484static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5485 struct btrfs_root *root,
aec7477b 5486 struct inode *dir,
9c58309d 5487 const char *name, int name_len,
175a4eb7
AV
5488 u64 ref_objectid, u64 objectid,
5489 umode_t mode, u64 *index)
39279cc3
CM
5490{
5491 struct inode *inode;
5f39d397 5492 struct btrfs_inode_item *inode_item;
39279cc3 5493 struct btrfs_key *location;
5f39d397 5494 struct btrfs_path *path;
9c58309d
CM
5495 struct btrfs_inode_ref *ref;
5496 struct btrfs_key key[2];
5497 u32 sizes[2];
5498 unsigned long ptr;
39279cc3 5499 int ret;
39279cc3 5500
5f39d397 5501 path = btrfs_alloc_path();
d8926bb3
MF
5502 if (!path)
5503 return ERR_PTR(-ENOMEM);
5f39d397 5504
39279cc3 5505 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5506 if (!inode) {
5507 btrfs_free_path(path);
39279cc3 5508 return ERR_PTR(-ENOMEM);
8fb27640 5509 }
39279cc3 5510
581bb050
LZ
5511 /*
5512 * we have to initialize this early, so we can reclaim the inode
5513 * number if we fail afterwards in this function.
5514 */
5515 inode->i_ino = objectid;
5516
aec7477b 5517 if (dir) {
1abe9b8a 5518 trace_btrfs_inode_request(dir);
5519
3de4586c 5520 ret = btrfs_set_inode_index(dir, index);
09771430 5521 if (ret) {
8fb27640 5522 btrfs_free_path(path);
09771430 5523 iput(inode);
aec7477b 5524 return ERR_PTR(ret);
09771430 5525 }
aec7477b
JB
5526 }
5527 /*
5528 * index_cnt is ignored for everything but a dir,
5529 * btrfs_get_inode_index_count has an explanation for the magic
5530 * number
5531 */
5532 BTRFS_I(inode)->index_cnt = 2;
67de1176 5533 BTRFS_I(inode)->dir_index = *index;
39279cc3 5534 BTRFS_I(inode)->root = root;
e02119d5 5535 BTRFS_I(inode)->generation = trans->transid;
76195853 5536 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5537
5dc562c5
JB
5538 /*
5539 * We could have gotten an inode number from somebody who was fsynced
5540 * and then removed in this same transaction, so let's just set full
5541 * sync since it will be a full sync anyway and this will blow away the
5542 * old info in the log.
5543 */
5544 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5545
9c58309d
CM
5546 key[0].objectid = objectid;
5547 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5548 key[0].offset = 0;
5549
f186373f
MF
5550 /*
5551 * Start new inodes with an inode_ref. This is slightly more
5552 * efficient for small numbers of hard links since they will
5553 * be packed into one item. Extended refs will kick in if we
5554 * add more hard links than can fit in the ref item.
5555 */
9c58309d
CM
5556 key[1].objectid = objectid;
5557 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5558 key[1].offset = ref_objectid;
5559
5560 sizes[0] = sizeof(struct btrfs_inode_item);
5561 sizes[1] = name_len + sizeof(*ref);
5562
b9473439 5563 path->leave_spinning = 1;
9c58309d
CM
5564 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5565 if (ret != 0)
5f39d397
CM
5566 goto fail;
5567
ecc11fab 5568 inode_init_owner(inode, dir, mode);
a76a3cd4 5569 inode_set_bytes(inode, 0);
39279cc3 5570 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5571 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5572 struct btrfs_inode_item);
293f7e07
LZ
5573 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5574 sizeof(*inode_item));
e02119d5 5575 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5576
5577 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5578 struct btrfs_inode_ref);
5579 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5580 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5581 ptr = (unsigned long)(ref + 1);
5582 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5583
5f39d397
CM
5584 btrfs_mark_buffer_dirty(path->nodes[0]);
5585 btrfs_free_path(path);
5586
39279cc3
CM
5587 location = &BTRFS_I(inode)->location;
5588 location->objectid = objectid;
39279cc3
CM
5589 location->offset = 0;
5590 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5591
6cbff00f
CH
5592 btrfs_inherit_iflags(inode, dir);
5593
569254b0 5594 if (S_ISREG(mode)) {
94272164
CM
5595 if (btrfs_test_opt(root, NODATASUM))
5596 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5597 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5598 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5599 BTRFS_INODE_NODATASUM;
94272164
CM
5600 }
5601
778ba82b 5602 btrfs_insert_inode_hash(inode);
5d4f98a2 5603 inode_tree_add(inode);
1abe9b8a 5604
5605 trace_btrfs_inode_new(inode);
1973f0fa 5606 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5607
8ea05e3a
AB
5608 btrfs_update_root_times(trans, root);
5609
39279cc3 5610 return inode;
5f39d397 5611fail:
aec7477b
JB
5612 if (dir)
5613 BTRFS_I(dir)->index_cnt--;
5f39d397 5614 btrfs_free_path(path);
09771430 5615 iput(inode);
5f39d397 5616 return ERR_PTR(ret);
39279cc3
CM
5617}
5618
5619static inline u8 btrfs_inode_type(struct inode *inode)
5620{
5621 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5622}
5623
d352ac68
CM
5624/*
5625 * utility function to add 'inode' into 'parent_inode' with
5626 * a give name and a given sequence number.
5627 * if 'add_backref' is true, also insert a backref from the
5628 * inode to the parent directory.
5629 */
e02119d5
CM
5630int btrfs_add_link(struct btrfs_trans_handle *trans,
5631 struct inode *parent_inode, struct inode *inode,
5632 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5633{
4df27c4d 5634 int ret = 0;
39279cc3 5635 struct btrfs_key key;
e02119d5 5636 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5637 u64 ino = btrfs_ino(inode);
5638 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5639
33345d01 5640 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5641 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5642 } else {
33345d01 5643 key.objectid = ino;
4df27c4d
YZ
5644 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5645 key.offset = 0;
5646 }
5647
33345d01 5648 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5649 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5650 key.objectid, root->root_key.objectid,
33345d01 5651 parent_ino, index, name, name_len);
4df27c4d 5652 } else if (add_backref) {
33345d01
LZ
5653 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5654 parent_ino, index);
4df27c4d 5655 }
39279cc3 5656
79787eaa
JM
5657 /* Nothing to clean up yet */
5658 if (ret)
5659 return ret;
4df27c4d 5660
79787eaa
JM
5661 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5662 parent_inode, &key,
5663 btrfs_inode_type(inode), index);
9c52057c 5664 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5665 goto fail_dir_item;
5666 else if (ret) {
5667 btrfs_abort_transaction(trans, root, ret);
5668 return ret;
39279cc3 5669 }
79787eaa
JM
5670
5671 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5672 name_len * 2);
0c4d2d95 5673 inode_inc_iversion(parent_inode);
79787eaa
JM
5674 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5675 ret = btrfs_update_inode(trans, root, parent_inode);
5676 if (ret)
5677 btrfs_abort_transaction(trans, root, ret);
39279cc3 5678 return ret;
fe66a05a
CM
5679
5680fail_dir_item:
5681 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5682 u64 local_index;
5683 int err;
5684 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5685 key.objectid, root->root_key.objectid,
5686 parent_ino, &local_index, name, name_len);
5687
5688 } else if (add_backref) {
5689 u64 local_index;
5690 int err;
5691
5692 err = btrfs_del_inode_ref(trans, root, name, name_len,
5693 ino, parent_ino, &local_index);
5694 }
5695 return ret;
39279cc3
CM
5696}
5697
5698static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5699 struct inode *dir, struct dentry *dentry,
5700 struct inode *inode, int backref, u64 index)
39279cc3 5701{
a1b075d2
JB
5702 int err = btrfs_add_link(trans, dir, inode,
5703 dentry->d_name.name, dentry->d_name.len,
5704 backref, index);
39279cc3
CM
5705 if (err > 0)
5706 err = -EEXIST;
5707 return err;
5708}
5709
618e21d5 5710static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5711 umode_t mode, dev_t rdev)
618e21d5
JB
5712{
5713 struct btrfs_trans_handle *trans;
5714 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5715 struct inode *inode = NULL;
618e21d5
JB
5716 int err;
5717 int drop_inode = 0;
5718 u64 objectid;
00e4e6b3 5719 u64 index = 0;
618e21d5
JB
5720
5721 if (!new_valid_dev(rdev))
5722 return -EINVAL;
5723
9ed74f2d
JB
5724 /*
5725 * 2 for inode item and ref
5726 * 2 for dir items
5727 * 1 for xattr if selinux is on
5728 */
a22285a6
YZ
5729 trans = btrfs_start_transaction(root, 5);
5730 if (IS_ERR(trans))
5731 return PTR_ERR(trans);
1832a6d5 5732
581bb050
LZ
5733 err = btrfs_find_free_ino(root, &objectid);
5734 if (err)
5735 goto out_unlock;
5736
aec7477b 5737 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5738 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5739 mode, &index);
7cf96da3
TI
5740 if (IS_ERR(inode)) {
5741 err = PTR_ERR(inode);
618e21d5 5742 goto out_unlock;
7cf96da3 5743 }
618e21d5 5744
2a7dba39 5745 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5746 if (err) {
5747 drop_inode = 1;
5748 goto out_unlock;
5749 }
5750
ad19db71
CS
5751 /*
5752 * If the active LSM wants to access the inode during
5753 * d_instantiate it needs these. Smack checks to see
5754 * if the filesystem supports xattrs by looking at the
5755 * ops vector.
5756 */
5757
5758 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5759 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5760 if (err)
5761 drop_inode = 1;
5762 else {
618e21d5 5763 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5764 btrfs_update_inode(trans, root, inode);
08c422c2 5765 d_instantiate(dentry, inode);
618e21d5 5766 }
618e21d5 5767out_unlock:
7ad85bb7 5768 btrfs_end_transaction(trans, root);
b53d3f5d 5769 btrfs_btree_balance_dirty(root);
618e21d5
JB
5770 if (drop_inode) {
5771 inode_dec_link_count(inode);
5772 iput(inode);
5773 }
618e21d5
JB
5774 return err;
5775}
5776
39279cc3 5777static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5778 umode_t mode, bool excl)
39279cc3
CM
5779{
5780 struct btrfs_trans_handle *trans;
5781 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5782 struct inode *inode = NULL;
43baa579 5783 int drop_inode_on_err = 0;
a22285a6 5784 int err;
39279cc3 5785 u64 objectid;
00e4e6b3 5786 u64 index = 0;
39279cc3 5787
9ed74f2d
JB
5788 /*
5789 * 2 for inode item and ref
5790 * 2 for dir items
5791 * 1 for xattr if selinux is on
5792 */
a22285a6
YZ
5793 trans = btrfs_start_transaction(root, 5);
5794 if (IS_ERR(trans))
5795 return PTR_ERR(trans);
9ed74f2d 5796
581bb050
LZ
5797 err = btrfs_find_free_ino(root, &objectid);
5798 if (err)
5799 goto out_unlock;
5800
aec7477b 5801 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5802 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5803 mode, &index);
7cf96da3
TI
5804 if (IS_ERR(inode)) {
5805 err = PTR_ERR(inode);
39279cc3 5806 goto out_unlock;
7cf96da3 5807 }
43baa579 5808 drop_inode_on_err = 1;
39279cc3 5809
2a7dba39 5810 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5811 if (err)
33268eaf 5812 goto out_unlock;
33268eaf 5813
9185aa58
FB
5814 err = btrfs_update_inode(trans, root, inode);
5815 if (err)
5816 goto out_unlock;
5817
ad19db71
CS
5818 /*
5819 * If the active LSM wants to access the inode during
5820 * d_instantiate it needs these. Smack checks to see
5821 * if the filesystem supports xattrs by looking at the
5822 * ops vector.
5823 */
5824 inode->i_fop = &btrfs_file_operations;
5825 inode->i_op = &btrfs_file_inode_operations;
5826
a1b075d2 5827 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5828 if (err)
43baa579
FB
5829 goto out_unlock;
5830
5831 inode->i_mapping->a_ops = &btrfs_aops;
5832 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5833 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5834 d_instantiate(dentry, inode);
5835
39279cc3 5836out_unlock:
7ad85bb7 5837 btrfs_end_transaction(trans, root);
43baa579 5838 if (err && drop_inode_on_err) {
39279cc3
CM
5839 inode_dec_link_count(inode);
5840 iput(inode);
5841 }
b53d3f5d 5842 btrfs_btree_balance_dirty(root);
39279cc3
CM
5843 return err;
5844}
5845
5846static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5847 struct dentry *dentry)
5848{
5849 struct btrfs_trans_handle *trans;
5850 struct btrfs_root *root = BTRFS_I(dir)->root;
5851 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5852 u64 index;
39279cc3
CM
5853 int err;
5854 int drop_inode = 0;
5855
4a8be425
TH
5856 /* do not allow sys_link's with other subvols of the same device */
5857 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5858 return -EXDEV;
4a8be425 5859
f186373f 5860 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5861 return -EMLINK;
4a8be425 5862
3de4586c 5863 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5864 if (err)
5865 goto fail;
5866
a22285a6 5867 /*
7e6b6465 5868 * 2 items for inode and inode ref
a22285a6 5869 * 2 items for dir items
7e6b6465 5870 * 1 item for parent inode
a22285a6 5871 */
7e6b6465 5872 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5873 if (IS_ERR(trans)) {
5874 err = PTR_ERR(trans);
5875 goto fail;
5876 }
5f39d397 5877
67de1176
MX
5878 /* There are several dir indexes for this inode, clear the cache. */
5879 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 5880 inc_nlink(inode);
0c4d2d95 5881 inode_inc_iversion(inode);
3153495d 5882 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5883 ihold(inode);
e9976151 5884 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5885
a1b075d2 5886 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5887
a5719521 5888 if (err) {
54aa1f4d 5889 drop_inode = 1;
a5719521 5890 } else {
10d9f309 5891 struct dentry *parent = dentry->d_parent;
a5719521 5892 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5893 if (err)
5894 goto fail;
08c422c2 5895 d_instantiate(dentry, inode);
6a912213 5896 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5897 }
39279cc3 5898
7ad85bb7 5899 btrfs_end_transaction(trans, root);
1832a6d5 5900fail:
39279cc3
CM
5901 if (drop_inode) {
5902 inode_dec_link_count(inode);
5903 iput(inode);
5904 }
b53d3f5d 5905 btrfs_btree_balance_dirty(root);
39279cc3
CM
5906 return err;
5907}
5908
18bb1db3 5909static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5910{
b9d86667 5911 struct inode *inode = NULL;
39279cc3
CM
5912 struct btrfs_trans_handle *trans;
5913 struct btrfs_root *root = BTRFS_I(dir)->root;
5914 int err = 0;
5915 int drop_on_err = 0;
b9d86667 5916 u64 objectid = 0;
00e4e6b3 5917 u64 index = 0;
39279cc3 5918
9ed74f2d
JB
5919 /*
5920 * 2 items for inode and ref
5921 * 2 items for dir items
5922 * 1 for xattr if selinux is on
5923 */
a22285a6
YZ
5924 trans = btrfs_start_transaction(root, 5);
5925 if (IS_ERR(trans))
5926 return PTR_ERR(trans);
39279cc3 5927
581bb050
LZ
5928 err = btrfs_find_free_ino(root, &objectid);
5929 if (err)
5930 goto out_fail;
5931
aec7477b 5932 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5933 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5934 S_IFDIR | mode, &index);
39279cc3
CM
5935 if (IS_ERR(inode)) {
5936 err = PTR_ERR(inode);
5937 goto out_fail;
5938 }
5f39d397 5939
39279cc3 5940 drop_on_err = 1;
33268eaf 5941
2a7dba39 5942 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5943 if (err)
5944 goto out_fail;
5945
39279cc3
CM
5946 inode->i_op = &btrfs_dir_inode_operations;
5947 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5948
dbe674a9 5949 btrfs_i_size_write(inode, 0);
39279cc3
CM
5950 err = btrfs_update_inode(trans, root, inode);
5951 if (err)
5952 goto out_fail;
5f39d397 5953
a1b075d2
JB
5954 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5955 dentry->d_name.len, 0, index);
39279cc3
CM
5956 if (err)
5957 goto out_fail;
5f39d397 5958
39279cc3
CM
5959 d_instantiate(dentry, inode);
5960 drop_on_err = 0;
39279cc3
CM
5961
5962out_fail:
7ad85bb7 5963 btrfs_end_transaction(trans, root);
39279cc3
CM
5964 if (drop_on_err)
5965 iput(inode);
b53d3f5d 5966 btrfs_btree_balance_dirty(root);
39279cc3
CM
5967 return err;
5968}
5969
d352ac68
CM
5970/* helper for btfs_get_extent. Given an existing extent in the tree,
5971 * and an extent that you want to insert, deal with overlap and insert
5972 * the new extent into the tree.
5973 */
3b951516
CM
5974static int merge_extent_mapping(struct extent_map_tree *em_tree,
5975 struct extent_map *existing,
e6dcd2dc
CM
5976 struct extent_map *em,
5977 u64 map_start, u64 map_len)
3b951516
CM
5978{
5979 u64 start_diff;
3b951516 5980
e6dcd2dc
CM
5981 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5982 start_diff = map_start - em->start;
5983 em->start = map_start;
5984 em->len = map_len;
c8b97818
CM
5985 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5986 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5987 em->block_start += start_diff;
c8b97818
CM
5988 em->block_len -= start_diff;
5989 }
09a2a8f9 5990 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5991}
5992
c8b97818
CM
5993static noinline int uncompress_inline(struct btrfs_path *path,
5994 struct inode *inode, struct page *page,
5995 size_t pg_offset, u64 extent_offset,
5996 struct btrfs_file_extent_item *item)
5997{
5998 int ret;
5999 struct extent_buffer *leaf = path->nodes[0];
6000 char *tmp;
6001 size_t max_size;
6002 unsigned long inline_size;
6003 unsigned long ptr;
261507a0 6004 int compress_type;
c8b97818
CM
6005
6006 WARN_ON(pg_offset != 0);
261507a0 6007 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6008 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6009 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6010 btrfs_item_nr(path->slots[0]));
c8b97818 6011 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6012 if (!tmp)
6013 return -ENOMEM;
c8b97818
CM
6014 ptr = btrfs_file_extent_inline_start(item);
6015
6016 read_extent_buffer(leaf, tmp, ptr, inline_size);
6017
5b050f04 6018 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6019 ret = btrfs_decompress(compress_type, tmp, page,
6020 extent_offset, inline_size, max_size);
c8b97818 6021 if (ret) {
7ac687d9 6022 char *kaddr = kmap_atomic(page);
c8b97818
CM
6023 unsigned long copy_size = min_t(u64,
6024 PAGE_CACHE_SIZE - pg_offset,
6025 max_size - extent_offset);
6026 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 6027 kunmap_atomic(kaddr);
c8b97818
CM
6028 }
6029 kfree(tmp);
6030 return 0;
6031}
6032
d352ac68
CM
6033/*
6034 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6035 * the ugly parts come from merging extents from the disk with the in-ram
6036 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6037 * where the in-ram extents might be locked pending data=ordered completion.
6038 *
6039 * This also copies inline extents directly into the page.
6040 */
d397712b 6041
a52d9a80 6042struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6043 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6044 int create)
6045{
6046 int ret;
6047 int err = 0;
db94535d 6048 u64 bytenr;
a52d9a80
CM
6049 u64 extent_start = 0;
6050 u64 extent_end = 0;
33345d01 6051 u64 objectid = btrfs_ino(inode);
a52d9a80 6052 u32 found_type;
f421950f 6053 struct btrfs_path *path = NULL;
a52d9a80
CM
6054 struct btrfs_root *root = BTRFS_I(inode)->root;
6055 struct btrfs_file_extent_item *item;
5f39d397
CM
6056 struct extent_buffer *leaf;
6057 struct btrfs_key found_key;
a52d9a80
CM
6058 struct extent_map *em = NULL;
6059 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6060 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6061 struct btrfs_trans_handle *trans = NULL;
261507a0 6062 int compress_type;
a52d9a80 6063
a52d9a80 6064again:
890871be 6065 read_lock(&em_tree->lock);
d1310b2e 6066 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6067 if (em)
6068 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6069 read_unlock(&em_tree->lock);
d1310b2e 6070
a52d9a80 6071 if (em) {
e1c4b745
CM
6072 if (em->start > start || em->start + em->len <= start)
6073 free_extent_map(em);
6074 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6075 free_extent_map(em);
6076 else
6077 goto out;
a52d9a80 6078 }
172ddd60 6079 em = alloc_extent_map();
a52d9a80 6080 if (!em) {
d1310b2e
CM
6081 err = -ENOMEM;
6082 goto out;
a52d9a80 6083 }
e6dcd2dc 6084 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6085 em->start = EXTENT_MAP_HOLE;
445a6944 6086 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6087 em->len = (u64)-1;
c8b97818 6088 em->block_len = (u64)-1;
f421950f
CM
6089
6090 if (!path) {
6091 path = btrfs_alloc_path();
026fd317
JB
6092 if (!path) {
6093 err = -ENOMEM;
6094 goto out;
6095 }
6096 /*
6097 * Chances are we'll be called again, so go ahead and do
6098 * readahead
6099 */
6100 path->reada = 1;
f421950f
CM
6101 }
6102
179e29e4
CM
6103 ret = btrfs_lookup_file_extent(trans, root, path,
6104 objectid, start, trans != NULL);
a52d9a80
CM
6105 if (ret < 0) {
6106 err = ret;
6107 goto out;
6108 }
6109
6110 if (ret != 0) {
6111 if (path->slots[0] == 0)
6112 goto not_found;
6113 path->slots[0]--;
6114 }
6115
5f39d397
CM
6116 leaf = path->nodes[0];
6117 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6118 struct btrfs_file_extent_item);
a52d9a80 6119 /* are we inside the extent that was found? */
5f39d397
CM
6120 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6121 found_type = btrfs_key_type(&found_key);
6122 if (found_key.objectid != objectid ||
a52d9a80 6123 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6124 /*
6125 * If we backup past the first extent we want to move forward
6126 * and see if there is an extent in front of us, otherwise we'll
6127 * say there is a hole for our whole search range which can
6128 * cause problems.
6129 */
6130 extent_end = start;
6131 goto next;
a52d9a80
CM
6132 }
6133
5f39d397
CM
6134 found_type = btrfs_file_extent_type(leaf, item);
6135 extent_start = found_key.offset;
261507a0 6136 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
6137 if (found_type == BTRFS_FILE_EXTENT_REG ||
6138 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6139 extent_end = extent_start +
db94535d 6140 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6141 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6142 size_t size;
6143 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 6144 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6145 }
25a50341 6146next:
9036c102
YZ
6147 if (start >= extent_end) {
6148 path->slots[0]++;
6149 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6150 ret = btrfs_next_leaf(root, path);
6151 if (ret < 0) {
6152 err = ret;
6153 goto out;
a52d9a80 6154 }
9036c102
YZ
6155 if (ret > 0)
6156 goto not_found;
6157 leaf = path->nodes[0];
a52d9a80 6158 }
9036c102
YZ
6159 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6160 if (found_key.objectid != objectid ||
6161 found_key.type != BTRFS_EXTENT_DATA_KEY)
6162 goto not_found;
6163 if (start + len <= found_key.offset)
6164 goto not_found;
6165 em->start = start;
70c8a91c 6166 em->orig_start = start;
9036c102
YZ
6167 em->len = found_key.offset - start;
6168 goto not_found_em;
6169 }
6170
cc95bef6 6171 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6172 if (found_type == BTRFS_FILE_EXTENT_REG ||
6173 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6174 em->start = extent_start;
6175 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6176 em->orig_start = extent_start -
6177 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6178 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6179 item);
db94535d
CM
6180 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6181 if (bytenr == 0) {
5f39d397 6182 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6183 goto insert;
6184 }
261507a0 6185 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6186 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6187 em->compress_type = compress_type;
c8b97818 6188 em->block_start = bytenr;
b4939680 6189 em->block_len = em->orig_block_len;
c8b97818
CM
6190 } else {
6191 bytenr += btrfs_file_extent_offset(leaf, item);
6192 em->block_start = bytenr;
6193 em->block_len = em->len;
d899e052
YZ
6194 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6195 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6196 }
a52d9a80
CM
6197 goto insert;
6198 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6199 unsigned long ptr;
a52d9a80 6200 char *map;
3326d1b0
CM
6201 size_t size;
6202 size_t extent_offset;
6203 size_t copy_size;
a52d9a80 6204
689f9346 6205 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6206 if (!page || create) {
689f9346 6207 em->start = extent_start;
9036c102 6208 em->len = extent_end - extent_start;
689f9346
Y
6209 goto out;
6210 }
5f39d397 6211
9036c102
YZ
6212 size = btrfs_file_extent_inline_len(leaf, item);
6213 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6214 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6215 size - extent_offset);
3326d1b0 6216 em->start = extent_start + extent_offset;
fda2832f 6217 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6218 em->orig_block_len = em->len;
70c8a91c 6219 em->orig_start = em->start;
261507a0 6220 if (compress_type) {
c8b97818 6221 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6222 em->compress_type = compress_type;
6223 }
689f9346 6224 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6225 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6226 if (btrfs_file_extent_compression(leaf, item) !=
6227 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6228 ret = uncompress_inline(path, inode, page,
6229 pg_offset,
6230 extent_offset, item);
79787eaa 6231 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6232 } else {
6233 map = kmap(page);
6234 read_extent_buffer(leaf, map + pg_offset, ptr,
6235 copy_size);
93c82d57
CM
6236 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6237 memset(map + pg_offset + copy_size, 0,
6238 PAGE_CACHE_SIZE - pg_offset -
6239 copy_size);
6240 }
c8b97818
CM
6241 kunmap(page);
6242 }
179e29e4
CM
6243 flush_dcache_page(page);
6244 } else if (create && PageUptodate(page)) {
6bf7e080 6245 BUG();
179e29e4
CM
6246 if (!trans) {
6247 kunmap(page);
6248 free_extent_map(em);
6249 em = NULL;
ff5714cc 6250
b3b4aa74 6251 btrfs_release_path(path);
7a7eaa40 6252 trans = btrfs_join_transaction(root);
ff5714cc 6253
3612b495
TI
6254 if (IS_ERR(trans))
6255 return ERR_CAST(trans);
179e29e4
CM
6256 goto again;
6257 }
c8b97818 6258 map = kmap(page);
70dec807 6259 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6260 copy_size);
c8b97818 6261 kunmap(page);
179e29e4 6262 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6263 }
d1310b2e 6264 set_extent_uptodate(io_tree, em->start,
507903b8 6265 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6266 goto insert;
6267 } else {
31b1a2bd 6268 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6269 }
6270not_found:
6271 em->start = start;
70c8a91c 6272 em->orig_start = start;
d1310b2e 6273 em->len = len;
a52d9a80 6274not_found_em:
5f39d397 6275 em->block_start = EXTENT_MAP_HOLE;
9036c102 6276 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6277insert:
b3b4aa74 6278 btrfs_release_path(path);
d1310b2e 6279 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6280 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6281 em->start, em->len, start, len);
a52d9a80
CM
6282 err = -EIO;
6283 goto out;
6284 }
d1310b2e
CM
6285
6286 err = 0;
890871be 6287 write_lock(&em_tree->lock);
09a2a8f9 6288 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6289 /* it is possible that someone inserted the extent into the tree
6290 * while we had the lock dropped. It is also possible that
6291 * an overlapping map exists in the tree
6292 */
a52d9a80 6293 if (ret == -EEXIST) {
3b951516 6294 struct extent_map *existing;
e6dcd2dc
CM
6295
6296 ret = 0;
6297
3b951516 6298 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6299 if (existing && (existing->start > start ||
6300 existing->start + existing->len <= start)) {
6301 free_extent_map(existing);
6302 existing = NULL;
6303 }
3b951516
CM
6304 if (!existing) {
6305 existing = lookup_extent_mapping(em_tree, em->start,
6306 em->len);
6307 if (existing) {
6308 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6309 em, start,
6310 root->sectorsize);
3b951516
CM
6311 free_extent_map(existing);
6312 if (err) {
6313 free_extent_map(em);
6314 em = NULL;
6315 }
6316 } else {
6317 err = -EIO;
3b951516
CM
6318 free_extent_map(em);
6319 em = NULL;
6320 }
6321 } else {
6322 free_extent_map(em);
6323 em = existing;
e6dcd2dc 6324 err = 0;
a52d9a80 6325 }
a52d9a80 6326 }
890871be 6327 write_unlock(&em_tree->lock);
a52d9a80 6328out:
1abe9b8a 6329
4cd8587c 6330 trace_btrfs_get_extent(root, em);
1abe9b8a 6331
f421950f
CM
6332 if (path)
6333 btrfs_free_path(path);
a52d9a80
CM
6334 if (trans) {
6335 ret = btrfs_end_transaction(trans, root);
d397712b 6336 if (!err)
a52d9a80
CM
6337 err = ret;
6338 }
a52d9a80
CM
6339 if (err) {
6340 free_extent_map(em);
a52d9a80
CM
6341 return ERR_PTR(err);
6342 }
79787eaa 6343 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6344 return em;
6345}
6346
ec29ed5b
CM
6347struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6348 size_t pg_offset, u64 start, u64 len,
6349 int create)
6350{
6351 struct extent_map *em;
6352 struct extent_map *hole_em = NULL;
6353 u64 range_start = start;
6354 u64 end;
6355 u64 found;
6356 u64 found_end;
6357 int err = 0;
6358
6359 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6360 if (IS_ERR(em))
6361 return em;
6362 if (em) {
6363 /*
f9e4fb53
LB
6364 * if our em maps to
6365 * - a hole or
6366 * - a pre-alloc extent,
6367 * there might actually be delalloc bytes behind it.
ec29ed5b 6368 */
f9e4fb53
LB
6369 if (em->block_start != EXTENT_MAP_HOLE &&
6370 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6371 return em;
6372 else
6373 hole_em = em;
6374 }
6375
6376 /* check to see if we've wrapped (len == -1 or similar) */
6377 end = start + len;
6378 if (end < start)
6379 end = (u64)-1;
6380 else
6381 end -= 1;
6382
6383 em = NULL;
6384
6385 /* ok, we didn't find anything, lets look for delalloc */
6386 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6387 end, len, EXTENT_DELALLOC, 1);
6388 found_end = range_start + found;
6389 if (found_end < range_start)
6390 found_end = (u64)-1;
6391
6392 /*
6393 * we didn't find anything useful, return
6394 * the original results from get_extent()
6395 */
6396 if (range_start > end || found_end <= start) {
6397 em = hole_em;
6398 hole_em = NULL;
6399 goto out;
6400 }
6401
6402 /* adjust the range_start to make sure it doesn't
6403 * go backwards from the start they passed in
6404 */
67871254 6405 range_start = max(start, range_start);
ec29ed5b
CM
6406 found = found_end - range_start;
6407
6408 if (found > 0) {
6409 u64 hole_start = start;
6410 u64 hole_len = len;
6411
172ddd60 6412 em = alloc_extent_map();
ec29ed5b
CM
6413 if (!em) {
6414 err = -ENOMEM;
6415 goto out;
6416 }
6417 /*
6418 * when btrfs_get_extent can't find anything it
6419 * returns one huge hole
6420 *
6421 * make sure what it found really fits our range, and
6422 * adjust to make sure it is based on the start from
6423 * the caller
6424 */
6425 if (hole_em) {
6426 u64 calc_end = extent_map_end(hole_em);
6427
6428 if (calc_end <= start || (hole_em->start > end)) {
6429 free_extent_map(hole_em);
6430 hole_em = NULL;
6431 } else {
6432 hole_start = max(hole_em->start, start);
6433 hole_len = calc_end - hole_start;
6434 }
6435 }
6436 em->bdev = NULL;
6437 if (hole_em && range_start > hole_start) {
6438 /* our hole starts before our delalloc, so we
6439 * have to return just the parts of the hole
6440 * that go until the delalloc starts
6441 */
6442 em->len = min(hole_len,
6443 range_start - hole_start);
6444 em->start = hole_start;
6445 em->orig_start = hole_start;
6446 /*
6447 * don't adjust block start at all,
6448 * it is fixed at EXTENT_MAP_HOLE
6449 */
6450 em->block_start = hole_em->block_start;
6451 em->block_len = hole_len;
f9e4fb53
LB
6452 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6453 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6454 } else {
6455 em->start = range_start;
6456 em->len = found;
6457 em->orig_start = range_start;
6458 em->block_start = EXTENT_MAP_DELALLOC;
6459 em->block_len = found;
6460 }
6461 } else if (hole_em) {
6462 return hole_em;
6463 }
6464out:
6465
6466 free_extent_map(hole_em);
6467 if (err) {
6468 free_extent_map(em);
6469 return ERR_PTR(err);
6470 }
6471 return em;
6472}
6473
4b46fce2
JB
6474static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6475 u64 start, u64 len)
6476{
6477 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6478 struct extent_map *em;
4b46fce2
JB
6479 struct btrfs_key ins;
6480 u64 alloc_hint;
6481 int ret;
4b46fce2 6482
4b46fce2 6483 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6484 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
81c9ad23 6485 alloc_hint, &ins, 1);
00361589
JB
6486 if (ret)
6487 return ERR_PTR(ret);
4b46fce2 6488
70c8a91c 6489 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6490 ins.offset, ins.offset, ins.offset, 0);
00361589
JB
6491 if (IS_ERR(em)) {
6492 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6493 return em;
6494 }
4b46fce2
JB
6495
6496 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6497 ins.offset, ins.offset, 0);
6498 if (ret) {
6499 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
00361589
JB
6500 free_extent_map(em);
6501 return ERR_PTR(ret);
4b46fce2 6502 }
00361589 6503
4b46fce2
JB
6504 return em;
6505}
6506
46bfbb5c
CM
6507/*
6508 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6509 * block must be cow'd
6510 */
00361589 6511noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6512 u64 *orig_start, u64 *orig_block_len,
6513 u64 *ram_bytes)
46bfbb5c 6514{
00361589 6515 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6516 struct btrfs_path *path;
6517 int ret;
6518 struct extent_buffer *leaf;
6519 struct btrfs_root *root = BTRFS_I(inode)->root;
6520 struct btrfs_file_extent_item *fi;
6521 struct btrfs_key key;
6522 u64 disk_bytenr;
6523 u64 backref_offset;
6524 u64 extent_end;
6525 u64 num_bytes;
6526 int slot;
6527 int found_type;
7ee9e440 6528 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6529
46bfbb5c
CM
6530 path = btrfs_alloc_path();
6531 if (!path)
6532 return -ENOMEM;
6533
00361589 6534 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6535 offset, 0);
6536 if (ret < 0)
6537 goto out;
6538
6539 slot = path->slots[0];
6540 if (ret == 1) {
6541 if (slot == 0) {
6542 /* can't find the item, must cow */
6543 ret = 0;
6544 goto out;
6545 }
6546 slot--;
6547 }
6548 ret = 0;
6549 leaf = path->nodes[0];
6550 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6551 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6552 key.type != BTRFS_EXTENT_DATA_KEY) {
6553 /* not our file or wrong item type, must cow */
6554 goto out;
6555 }
6556
6557 if (key.offset > offset) {
6558 /* Wrong offset, must cow */
6559 goto out;
6560 }
6561
6562 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6563 found_type = btrfs_file_extent_type(leaf, fi);
6564 if (found_type != BTRFS_FILE_EXTENT_REG &&
6565 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6566 /* not a regular extent, must cow */
6567 goto out;
6568 }
7ee9e440
JB
6569
6570 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6571 goto out;
6572
e77751aa
MX
6573 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6574 if (extent_end <= offset)
6575 goto out;
6576
46bfbb5c 6577 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6578 if (disk_bytenr == 0)
6579 goto out;
6580
6581 if (btrfs_file_extent_compression(leaf, fi) ||
6582 btrfs_file_extent_encryption(leaf, fi) ||
6583 btrfs_file_extent_other_encoding(leaf, fi))
6584 goto out;
6585
46bfbb5c
CM
6586 backref_offset = btrfs_file_extent_offset(leaf, fi);
6587
7ee9e440
JB
6588 if (orig_start) {
6589 *orig_start = key.offset - backref_offset;
6590 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6591 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6592 }
eb384b55 6593
46bfbb5c
CM
6594 if (btrfs_extent_readonly(root, disk_bytenr))
6595 goto out;
1bda19eb 6596 btrfs_release_path(path);
46bfbb5c
CM
6597
6598 /*
6599 * look for other files referencing this extent, if we
6600 * find any we must cow
6601 */
00361589
JB
6602 trans = btrfs_join_transaction(root);
6603 if (IS_ERR(trans)) {
6604 ret = 0;
46bfbb5c 6605 goto out;
00361589
JB
6606 }
6607
6608 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6609 key.offset - backref_offset, disk_bytenr);
6610 btrfs_end_transaction(trans, root);
6611 if (ret) {
6612 ret = 0;
6613 goto out;
6614 }
46bfbb5c
CM
6615
6616 /*
6617 * adjust disk_bytenr and num_bytes to cover just the bytes
6618 * in this extent we are about to write. If there
6619 * are any csums in that range we have to cow in order
6620 * to keep the csums correct
6621 */
6622 disk_bytenr += backref_offset;
6623 disk_bytenr += offset - key.offset;
eb384b55 6624 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6625 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6626 goto out;
6627 /*
6628 * all of the above have passed, it is safe to overwrite this extent
6629 * without cow
6630 */
eb384b55 6631 *len = num_bytes;
46bfbb5c
CM
6632 ret = 1;
6633out:
6634 btrfs_free_path(path);
6635 return ret;
6636}
6637
eb838e73
JB
6638static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6639 struct extent_state **cached_state, int writing)
6640{
6641 struct btrfs_ordered_extent *ordered;
6642 int ret = 0;
6643
6644 while (1) {
6645 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6646 0, cached_state);
6647 /*
6648 * We're concerned with the entire range that we're going to be
6649 * doing DIO to, so we need to make sure theres no ordered
6650 * extents in this range.
6651 */
6652 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6653 lockend - lockstart + 1);
6654
6655 /*
6656 * We need to make sure there are no buffered pages in this
6657 * range either, we could have raced between the invalidate in
6658 * generic_file_direct_write and locking the extent. The
6659 * invalidate needs to happen so that reads after a write do not
6660 * get stale data.
6661 */
6662 if (!ordered && (!writing ||
6663 !test_range_bit(&BTRFS_I(inode)->io_tree,
6664 lockstart, lockend, EXTENT_UPTODATE, 0,
6665 *cached_state)))
6666 break;
6667
6668 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6669 cached_state, GFP_NOFS);
6670
6671 if (ordered) {
6672 btrfs_start_ordered_extent(inode, ordered, 1);
6673 btrfs_put_ordered_extent(ordered);
6674 } else {
6675 /* Screw you mmap */
6676 ret = filemap_write_and_wait_range(inode->i_mapping,
6677 lockstart,
6678 lockend);
6679 if (ret)
6680 break;
6681
6682 /*
6683 * If we found a page that couldn't be invalidated just
6684 * fall back to buffered.
6685 */
6686 ret = invalidate_inode_pages2_range(inode->i_mapping,
6687 lockstart >> PAGE_CACHE_SHIFT,
6688 lockend >> PAGE_CACHE_SHIFT);
6689 if (ret)
6690 break;
6691 }
6692
6693 cond_resched();
6694 }
6695
6696 return ret;
6697}
6698
69ffb543
JB
6699static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6700 u64 len, u64 orig_start,
6701 u64 block_start, u64 block_len,
cc95bef6
JB
6702 u64 orig_block_len, u64 ram_bytes,
6703 int type)
69ffb543
JB
6704{
6705 struct extent_map_tree *em_tree;
6706 struct extent_map *em;
6707 struct btrfs_root *root = BTRFS_I(inode)->root;
6708 int ret;
6709
6710 em_tree = &BTRFS_I(inode)->extent_tree;
6711 em = alloc_extent_map();
6712 if (!em)
6713 return ERR_PTR(-ENOMEM);
6714
6715 em->start = start;
6716 em->orig_start = orig_start;
2ab28f32
JB
6717 em->mod_start = start;
6718 em->mod_len = len;
69ffb543
JB
6719 em->len = len;
6720 em->block_len = block_len;
6721 em->block_start = block_start;
6722 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6723 em->orig_block_len = orig_block_len;
cc95bef6 6724 em->ram_bytes = ram_bytes;
70c8a91c 6725 em->generation = -1;
69ffb543
JB
6726 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6727 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6728 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6729
6730 do {
6731 btrfs_drop_extent_cache(inode, em->start,
6732 em->start + em->len - 1, 0);
6733 write_lock(&em_tree->lock);
09a2a8f9 6734 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6735 write_unlock(&em_tree->lock);
6736 } while (ret == -EEXIST);
6737
6738 if (ret) {
6739 free_extent_map(em);
6740 return ERR_PTR(ret);
6741 }
6742
6743 return em;
6744}
6745
6746
4b46fce2
JB
6747static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6748 struct buffer_head *bh_result, int create)
6749{
6750 struct extent_map *em;
6751 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6752 struct extent_state *cached_state = NULL;
4b46fce2 6753 u64 start = iblock << inode->i_blkbits;
eb838e73 6754 u64 lockstart, lockend;
4b46fce2 6755 u64 len = bh_result->b_size;
eb838e73 6756 int unlock_bits = EXTENT_LOCKED;
0934856d 6757 int ret = 0;
eb838e73 6758
172a5049 6759 if (create)
eb838e73 6760 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6761 else
c329861d 6762 len = min_t(u64, len, root->sectorsize);
eb838e73 6763
c329861d
JB
6764 lockstart = start;
6765 lockend = start + len - 1;
6766
eb838e73
JB
6767 /*
6768 * If this errors out it's because we couldn't invalidate pagecache for
6769 * this range and we need to fallback to buffered.
6770 */
6771 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6772 return -ENOTBLK;
6773
4b46fce2 6774 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6775 if (IS_ERR(em)) {
6776 ret = PTR_ERR(em);
6777 goto unlock_err;
6778 }
4b46fce2
JB
6779
6780 /*
6781 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6782 * io. INLINE is special, and we could probably kludge it in here, but
6783 * it's still buffered so for safety lets just fall back to the generic
6784 * buffered path.
6785 *
6786 * For COMPRESSED we _have_ to read the entire extent in so we can
6787 * decompress it, so there will be buffering required no matter what we
6788 * do, so go ahead and fallback to buffered.
6789 *
6790 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6791 * to buffered IO. Don't blame me, this is the price we pay for using
6792 * the generic code.
6793 */
6794 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6795 em->block_start == EXTENT_MAP_INLINE) {
6796 free_extent_map(em);
eb838e73
JB
6797 ret = -ENOTBLK;
6798 goto unlock_err;
4b46fce2
JB
6799 }
6800
6801 /* Just a good old fashioned hole, return */
6802 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6803 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6804 free_extent_map(em);
eb838e73 6805 goto unlock_err;
4b46fce2
JB
6806 }
6807
6808 /*
6809 * We don't allocate a new extent in the following cases
6810 *
6811 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6812 * existing extent.
6813 * 2) The extent is marked as PREALLOC. We're good to go here and can
6814 * just use the extent.
6815 *
6816 */
46bfbb5c 6817 if (!create) {
eb838e73
JB
6818 len = min(len, em->len - (start - em->start));
6819 lockstart = start + len;
6820 goto unlock;
46bfbb5c 6821 }
4b46fce2
JB
6822
6823 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6824 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6825 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6826 int type;
6827 int ret;
eb384b55 6828 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6829
6830 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6831 type = BTRFS_ORDERED_PREALLOC;
6832 else
6833 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6834 len = min(len, em->len - (start - em->start));
4b46fce2 6835 block_start = em->block_start + (start - em->start);
46bfbb5c 6836
00361589 6837 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 6838 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6839 if (type == BTRFS_ORDERED_PREALLOC) {
6840 free_extent_map(em);
6841 em = create_pinned_em(inode, start, len,
6842 orig_start,
b4939680 6843 block_start, len,
cc95bef6
JB
6844 orig_block_len,
6845 ram_bytes, type);
00361589 6846 if (IS_ERR(em))
69ffb543 6847 goto unlock_err;
69ffb543
JB
6848 }
6849
46bfbb5c
CM
6850 ret = btrfs_add_ordered_extent_dio(inode, start,
6851 block_start, len, len, type);
46bfbb5c
CM
6852 if (ret) {
6853 free_extent_map(em);
eb838e73 6854 goto unlock_err;
46bfbb5c
CM
6855 }
6856 goto unlock;
4b46fce2 6857 }
4b46fce2 6858 }
00361589 6859
46bfbb5c
CM
6860 /*
6861 * this will cow the extent, reset the len in case we changed
6862 * it above
6863 */
6864 len = bh_result->b_size;
70c8a91c
JB
6865 free_extent_map(em);
6866 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6867 if (IS_ERR(em)) {
6868 ret = PTR_ERR(em);
6869 goto unlock_err;
6870 }
46bfbb5c
CM
6871 len = min(len, em->len - (start - em->start));
6872unlock:
4b46fce2
JB
6873 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6874 inode->i_blkbits;
46bfbb5c 6875 bh_result->b_size = len;
4b46fce2
JB
6876 bh_result->b_bdev = em->bdev;
6877 set_buffer_mapped(bh_result);
c3473e83
JB
6878 if (create) {
6879 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6880 set_buffer_new(bh_result);
6881
6882 /*
6883 * Need to update the i_size under the extent lock so buffered
6884 * readers will get the updated i_size when we unlock.
6885 */
6886 if (start + len > i_size_read(inode))
6887 i_size_write(inode, start + len);
0934856d 6888
172a5049
MX
6889 spin_lock(&BTRFS_I(inode)->lock);
6890 BTRFS_I(inode)->outstanding_extents++;
6891 spin_unlock(&BTRFS_I(inode)->lock);
6892
0934856d
MX
6893 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6894 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6895 &cached_state, GFP_NOFS);
6896 BUG_ON(ret);
c3473e83 6897 }
4b46fce2 6898
eb838e73
JB
6899 /*
6900 * In the case of write we need to clear and unlock the entire range,
6901 * in the case of read we need to unlock only the end area that we
6902 * aren't using if there is any left over space.
6903 */
24c03fa5 6904 if (lockstart < lockend) {
0934856d
MX
6905 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6906 lockend, unlock_bits, 1, 0,
6907 &cached_state, GFP_NOFS);
24c03fa5 6908 } else {
eb838e73 6909 free_extent_state(cached_state);
24c03fa5 6910 }
eb838e73 6911
4b46fce2
JB
6912 free_extent_map(em);
6913
6914 return 0;
eb838e73
JB
6915
6916unlock_err:
eb838e73
JB
6917 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6918 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6919 return ret;
4b46fce2
JB
6920}
6921
4b46fce2
JB
6922static void btrfs_endio_direct_read(struct bio *bio, int err)
6923{
e65e1535 6924 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6925 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6926 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6927 struct inode *inode = dip->inode;
6928 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6929 struct bio *dio_bio;
facc8a22
MX
6930 u32 *csums = (u32 *)dip->csum;
6931 int index = 0;
4b46fce2 6932 u64 start;
4b46fce2
JB
6933
6934 start = dip->logical_offset;
6935 do {
6936 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6937 struct page *page = bvec->bv_page;
6938 char *kaddr;
6939 u32 csum = ~(u32)0;
6940 unsigned long flags;
6941
6942 local_irq_save(flags);
7ac687d9 6943 kaddr = kmap_atomic(page);
b0496686 6944 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6945 csum, bvec->bv_len);
6946 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6947 kunmap_atomic(kaddr);
4b46fce2
JB
6948 local_irq_restore(flags);
6949
6950 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6951 if (csum != csums[index]) {
6952 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c1c9ff7c
GU
6953 btrfs_ino(inode), start, csum,
6954 csums[index]);
4b46fce2
JB
6955 err = -EIO;
6956 }
6957 }
6958
6959 start += bvec->bv_len;
4b46fce2 6960 bvec++;
facc8a22 6961 index++;
4b46fce2
JB
6962 } while (bvec <= bvec_end);
6963
6964 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6965 dip->logical_offset + dip->bytes - 1);
9be3395b 6966 dio_bio = dip->dio_bio;
4b46fce2 6967
4b46fce2 6968 kfree(dip);
c0da7aa1
JB
6969
6970 /* If we had a csum failure make sure to clear the uptodate flag */
6971 if (err)
9be3395b
CM
6972 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6973 dio_end_io(dio_bio, err);
6974 bio_put(bio);
4b46fce2
JB
6975}
6976
6977static void btrfs_endio_direct_write(struct bio *bio, int err)
6978{
6979 struct btrfs_dio_private *dip = bio->bi_private;
6980 struct inode *inode = dip->inode;
6981 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6982 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6983 u64 ordered_offset = dip->logical_offset;
6984 u64 ordered_bytes = dip->bytes;
9be3395b 6985 struct bio *dio_bio;
4b46fce2
JB
6986 int ret;
6987
6988 if (err)
6989 goto out_done;
163cf09c
CM
6990again:
6991 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6992 &ordered_offset,
5fd02043 6993 ordered_bytes, !err);
4b46fce2 6994 if (!ret)
163cf09c 6995 goto out_test;
4b46fce2 6996
5fd02043
JB
6997 ordered->work.func = finish_ordered_fn;
6998 ordered->work.flags = 0;
6999 btrfs_queue_worker(&root->fs_info->endio_write_workers,
7000 &ordered->work);
163cf09c
CM
7001out_test:
7002 /*
7003 * our bio might span multiple ordered extents. If we haven't
7004 * completed the accounting for the whole dio, go back and try again
7005 */
7006 if (ordered_offset < dip->logical_offset + dip->bytes) {
7007 ordered_bytes = dip->logical_offset + dip->bytes -
7008 ordered_offset;
5fd02043 7009 ordered = NULL;
163cf09c
CM
7010 goto again;
7011 }
4b46fce2 7012out_done:
9be3395b 7013 dio_bio = dip->dio_bio;
4b46fce2 7014
4b46fce2 7015 kfree(dip);
c0da7aa1
JB
7016
7017 /* If we had an error make sure to clear the uptodate flag */
7018 if (err)
9be3395b
CM
7019 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7020 dio_end_io(dio_bio, err);
7021 bio_put(bio);
4b46fce2
JB
7022}
7023
eaf25d93
CM
7024static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7025 struct bio *bio, int mirror_num,
7026 unsigned long bio_flags, u64 offset)
7027{
7028 int ret;
7029 struct btrfs_root *root = BTRFS_I(inode)->root;
7030 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7031 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7032 return 0;
7033}
7034
e65e1535
MX
7035static void btrfs_end_dio_bio(struct bio *bio, int err)
7036{
7037 struct btrfs_dio_private *dip = bio->bi_private;
7038
7039 if (err) {
efe120a0
FH
7040 btrfs_err(BTRFS_I(dip->inode)->root->fs_info,
7041 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
c1c9ff7c 7042 btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 7043 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
7044 dip->errors = 1;
7045
7046 /*
7047 * before atomic variable goto zero, we must make sure
7048 * dip->errors is perceived to be set.
7049 */
7050 smp_mb__before_atomic_dec();
7051 }
7052
7053 /* if there are more bios still pending for this dio, just exit */
7054 if (!atomic_dec_and_test(&dip->pending_bios))
7055 goto out;
7056
9be3395b 7057 if (dip->errors) {
e65e1535 7058 bio_io_error(dip->orig_bio);
9be3395b
CM
7059 } else {
7060 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7061 bio_endio(dip->orig_bio, 0);
7062 }
7063out:
7064 bio_put(bio);
7065}
7066
7067static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7068 u64 first_sector, gfp_t gfp_flags)
7069{
7070 int nr_vecs = bio_get_nr_vecs(bdev);
7071 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7072}
7073
7074static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7075 int rw, u64 file_offset, int skip_sum,
c329861d 7076 int async_submit)
e65e1535 7077{
facc8a22 7078 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7079 int write = rw & REQ_WRITE;
7080 struct btrfs_root *root = BTRFS_I(inode)->root;
7081 int ret;
7082
b812ce28
JB
7083 if (async_submit)
7084 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7085
e65e1535 7086 bio_get(bio);
5fd02043
JB
7087
7088 if (!write) {
7089 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7090 if (ret)
7091 goto err;
7092 }
e65e1535 7093
1ae39938
JB
7094 if (skip_sum)
7095 goto map;
7096
7097 if (write && async_submit) {
e65e1535
MX
7098 ret = btrfs_wq_submit_bio(root->fs_info,
7099 inode, rw, bio, 0, 0,
7100 file_offset,
7101 __btrfs_submit_bio_start_direct_io,
7102 __btrfs_submit_bio_done);
7103 goto err;
1ae39938
JB
7104 } else if (write) {
7105 /*
7106 * If we aren't doing async submit, calculate the csum of the
7107 * bio now.
7108 */
7109 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7110 if (ret)
7111 goto err;
c2db1073 7112 } else if (!skip_sum) {
facc8a22
MX
7113 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
7114 file_offset);
c2db1073
TI
7115 if (ret)
7116 goto err;
7117 }
e65e1535 7118
1ae39938
JB
7119map:
7120 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7121err:
7122 bio_put(bio);
7123 return ret;
7124}
7125
7126static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7127 int skip_sum)
7128{
7129 struct inode *inode = dip->inode;
7130 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7131 struct bio *bio;
7132 struct bio *orig_bio = dip->orig_bio;
7133 struct bio_vec *bvec = orig_bio->bi_io_vec;
7134 u64 start_sector = orig_bio->bi_sector;
7135 u64 file_offset = dip->logical_offset;
7136 u64 submit_len = 0;
7137 u64 map_length;
7138 int nr_pages = 0;
e65e1535 7139 int ret = 0;
1ae39938 7140 int async_submit = 0;
e65e1535 7141
e65e1535 7142 map_length = orig_bio->bi_size;
53b381b3 7143 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7144 &map_length, NULL, 0);
7145 if (ret) {
64728bbb 7146 bio_put(orig_bio);
e65e1535
MX
7147 return -EIO;
7148 }
facc8a22 7149
02f57c7a
JB
7150 if (map_length >= orig_bio->bi_size) {
7151 bio = orig_bio;
7152 goto submit;
7153 }
7154
53b381b3
DW
7155 /* async crcs make it difficult to collect full stripe writes. */
7156 if (btrfs_get_alloc_profile(root, 1) &
7157 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7158 async_submit = 0;
7159 else
7160 async_submit = 1;
7161
02f57c7a
JB
7162 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7163 if (!bio)
7164 return -ENOMEM;
7165 bio->bi_private = dip;
7166 bio->bi_end_io = btrfs_end_dio_bio;
7167 atomic_inc(&dip->pending_bios);
7168
e65e1535
MX
7169 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7170 if (unlikely(map_length < submit_len + bvec->bv_len ||
7171 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7172 bvec->bv_offset) < bvec->bv_len)) {
7173 /*
7174 * inc the count before we submit the bio so
7175 * we know the end IO handler won't happen before
7176 * we inc the count. Otherwise, the dip might get freed
7177 * before we're done setting it up
7178 */
7179 atomic_inc(&dip->pending_bios);
7180 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7181 file_offset, skip_sum,
c329861d 7182 async_submit);
e65e1535
MX
7183 if (ret) {
7184 bio_put(bio);
7185 atomic_dec(&dip->pending_bios);
7186 goto out_err;
7187 }
7188
e65e1535
MX
7189 start_sector += submit_len >> 9;
7190 file_offset += submit_len;
7191
7192 submit_len = 0;
7193 nr_pages = 0;
7194
7195 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7196 start_sector, GFP_NOFS);
7197 if (!bio)
7198 goto out_err;
7199 bio->bi_private = dip;
7200 bio->bi_end_io = btrfs_end_dio_bio;
7201
7202 map_length = orig_bio->bi_size;
53b381b3 7203 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7204 start_sector << 9,
e65e1535
MX
7205 &map_length, NULL, 0);
7206 if (ret) {
7207 bio_put(bio);
7208 goto out_err;
7209 }
7210 } else {
7211 submit_len += bvec->bv_len;
67871254 7212 nr_pages++;
e65e1535
MX
7213 bvec++;
7214 }
7215 }
7216
02f57c7a 7217submit:
e65e1535 7218 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7219 async_submit);
e65e1535
MX
7220 if (!ret)
7221 return 0;
7222
7223 bio_put(bio);
7224out_err:
7225 dip->errors = 1;
7226 /*
7227 * before atomic variable goto zero, we must
7228 * make sure dip->errors is perceived to be set.
7229 */
7230 smp_mb__before_atomic_dec();
7231 if (atomic_dec_and_test(&dip->pending_bios))
7232 bio_io_error(dip->orig_bio);
7233
7234 /* bio_end_io() will handle error, so we needn't return it */
7235 return 0;
7236}
7237
9be3395b
CM
7238static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7239 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7240{
7241 struct btrfs_root *root = BTRFS_I(inode)->root;
7242 struct btrfs_dio_private *dip;
9be3395b 7243 struct bio *io_bio;
4b46fce2 7244 int skip_sum;
facc8a22 7245 int sum_len;
7b6d91da 7246 int write = rw & REQ_WRITE;
4b46fce2 7247 int ret = 0;
facc8a22 7248 u16 csum_size;
4b46fce2
JB
7249
7250 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7251
9be3395b 7252 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7253 if (!io_bio) {
7254 ret = -ENOMEM;
7255 goto free_ordered;
7256 }
7257
facc8a22
MX
7258 if (!skip_sum && !write) {
7259 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7260 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7261 sum_len *= csum_size;
7262 } else {
7263 sum_len = 0;
7264 }
7265
7266 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7267 if (!dip) {
7268 ret = -ENOMEM;
9be3395b 7269 goto free_io_bio;
4b46fce2 7270 }
4b46fce2 7271
9be3395b 7272 dip->private = dio_bio->bi_private;
4b46fce2
JB
7273 dip->inode = inode;
7274 dip->logical_offset = file_offset;
e6da5d2e 7275 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7276 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7277 io_bio->bi_private = dip;
e65e1535 7278 dip->errors = 0;
9be3395b
CM
7279 dip->orig_bio = io_bio;
7280 dip->dio_bio = dio_bio;
e65e1535 7281 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7282
7283 if (write)
9be3395b 7284 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7285 else
9be3395b 7286 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7287
e65e1535
MX
7288 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7289 if (!ret)
eaf25d93 7290 return;
9be3395b
CM
7291
7292free_io_bio:
7293 bio_put(io_bio);
7294
4b46fce2
JB
7295free_ordered:
7296 /*
7297 * If this is a write, we need to clean up the reserved space and kill
7298 * the ordered extent.
7299 */
7300 if (write) {
7301 struct btrfs_ordered_extent *ordered;
955256f2 7302 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7303 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7304 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7305 btrfs_free_reserved_extent(root, ordered->start,
7306 ordered->disk_len);
7307 btrfs_put_ordered_extent(ordered);
7308 btrfs_put_ordered_extent(ordered);
7309 }
9be3395b 7310 bio_endio(dio_bio, ret);
4b46fce2
JB
7311}
7312
5a5f79b5
CM
7313static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7314 const struct iovec *iov, loff_t offset,
7315 unsigned long nr_segs)
7316{
7317 int seg;
a1b75f7d 7318 int i;
5a5f79b5
CM
7319 size_t size;
7320 unsigned long addr;
7321 unsigned blocksize_mask = root->sectorsize - 1;
7322 ssize_t retval = -EINVAL;
7323 loff_t end = offset;
7324
7325 if (offset & blocksize_mask)
7326 goto out;
7327
7328 /* Check the memory alignment. Blocks cannot straddle pages */
7329 for (seg = 0; seg < nr_segs; seg++) {
7330 addr = (unsigned long)iov[seg].iov_base;
7331 size = iov[seg].iov_len;
7332 end += size;
a1b75f7d 7333 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7334 goto out;
a1b75f7d
JB
7335
7336 /* If this is a write we don't need to check anymore */
7337 if (rw & WRITE)
7338 continue;
7339
7340 /*
7341 * Check to make sure we don't have duplicate iov_base's in this
7342 * iovec, if so return EINVAL, otherwise we'll get csum errors
7343 * when reading back.
7344 */
7345 for (i = seg + 1; i < nr_segs; i++) {
7346 if (iov[seg].iov_base == iov[i].iov_base)
7347 goto out;
7348 }
5a5f79b5
CM
7349 }
7350 retval = 0;
7351out:
7352 return retval;
7353}
eb838e73 7354
16432985
CM
7355static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7356 const struct iovec *iov, loff_t offset,
7357 unsigned long nr_segs)
7358{
4b46fce2
JB
7359 struct file *file = iocb->ki_filp;
7360 struct inode *inode = file->f_mapping->host;
0934856d 7361 size_t count = 0;
2e60a51e 7362 int flags = 0;
38851cc1
MX
7363 bool wakeup = true;
7364 bool relock = false;
0934856d 7365 ssize_t ret;
4b46fce2 7366
5a5f79b5 7367 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7368 offset, nr_segs))
5a5f79b5 7369 return 0;
3f7c579c 7370
38851cc1
MX
7371 atomic_inc(&inode->i_dio_count);
7372 smp_mb__after_atomic_inc();
7373
0e267c44
JB
7374 /*
7375 * The generic stuff only does filemap_write_and_wait_range, which isn't
7376 * enough if we've written compressed pages to this area, so we need to
7377 * call btrfs_wait_ordered_range to make absolutely sure that any
7378 * outstanding dirty pages are on disk.
7379 */
7380 count = iov_length(iov, nr_segs);
0ef8b726
JB
7381 ret = btrfs_wait_ordered_range(inode, offset, count);
7382 if (ret)
7383 return ret;
0e267c44 7384
0934856d 7385 if (rw & WRITE) {
38851cc1
MX
7386 /*
7387 * If the write DIO is beyond the EOF, we need update
7388 * the isize, but it is protected by i_mutex. So we can
7389 * not unlock the i_mutex at this case.
7390 */
7391 if (offset + count <= inode->i_size) {
7392 mutex_unlock(&inode->i_mutex);
7393 relock = true;
7394 }
0934856d
MX
7395 ret = btrfs_delalloc_reserve_space(inode, count);
7396 if (ret)
38851cc1
MX
7397 goto out;
7398 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7399 &BTRFS_I(inode)->runtime_flags))) {
7400 inode_dio_done(inode);
7401 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7402 wakeup = false;
0934856d
MX
7403 }
7404
7405 ret = __blockdev_direct_IO(rw, iocb, inode,
7406 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7407 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7408 btrfs_submit_direct, flags);
0934856d
MX
7409 if (rw & WRITE) {
7410 if (ret < 0 && ret != -EIOCBQUEUED)
7411 btrfs_delalloc_release_space(inode, count);
172a5049 7412 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7413 btrfs_delalloc_release_space(inode,
7414 count - (size_t)ret);
172a5049
MX
7415 else
7416 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7417 }
38851cc1 7418out:
2e60a51e
MX
7419 if (wakeup)
7420 inode_dio_done(inode);
38851cc1
MX
7421 if (relock)
7422 mutex_lock(&inode->i_mutex);
0934856d
MX
7423
7424 return ret;
16432985
CM
7425}
7426
05dadc09
TI
7427#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7428
1506fcc8
YS
7429static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7430 __u64 start, __u64 len)
7431{
05dadc09
TI
7432 int ret;
7433
7434 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7435 if (ret)
7436 return ret;
7437
ec29ed5b 7438 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7439}
7440
a52d9a80 7441int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7442{
d1310b2e
CM
7443 struct extent_io_tree *tree;
7444 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7445 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7446}
1832a6d5 7447
a52d9a80 7448static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7449{
d1310b2e 7450 struct extent_io_tree *tree;
b888db2b
CM
7451
7452
7453 if (current->flags & PF_MEMALLOC) {
7454 redirty_page_for_writepage(wbc, page);
7455 unlock_page(page);
7456 return 0;
7457 }
d1310b2e 7458 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7459 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7460}
7461
48a3b636
ES
7462static int btrfs_writepages(struct address_space *mapping,
7463 struct writeback_control *wbc)
b293f02e 7464{
d1310b2e 7465 struct extent_io_tree *tree;
771ed689 7466
d1310b2e 7467 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7468 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7469}
7470
3ab2fb5a
CM
7471static int
7472btrfs_readpages(struct file *file, struct address_space *mapping,
7473 struct list_head *pages, unsigned nr_pages)
7474{
d1310b2e
CM
7475 struct extent_io_tree *tree;
7476 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7477 return extent_readpages(tree, mapping, pages, nr_pages,
7478 btrfs_get_extent);
7479}
e6dcd2dc 7480static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7481{
d1310b2e
CM
7482 struct extent_io_tree *tree;
7483 struct extent_map_tree *map;
a52d9a80 7484 int ret;
8c2383c3 7485
d1310b2e
CM
7486 tree = &BTRFS_I(page->mapping->host)->io_tree;
7487 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7488 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7489 if (ret == 1) {
7490 ClearPagePrivate(page);
7491 set_page_private(page, 0);
7492 page_cache_release(page);
39279cc3 7493 }
a52d9a80 7494 return ret;
39279cc3
CM
7495}
7496
e6dcd2dc
CM
7497static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7498{
98509cfc
CM
7499 if (PageWriteback(page) || PageDirty(page))
7500 return 0;
b335b003 7501 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7502}
7503
d47992f8
LC
7504static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7505 unsigned int length)
39279cc3 7506{
5fd02043 7507 struct inode *inode = page->mapping->host;
d1310b2e 7508 struct extent_io_tree *tree;
e6dcd2dc 7509 struct btrfs_ordered_extent *ordered;
2ac55d41 7510 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7511 u64 page_start = page_offset(page);
7512 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 7513 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 7514
8b62b72b
CM
7515 /*
7516 * we have the page locked, so new writeback can't start,
7517 * and the dirty bit won't be cleared while we are here.
7518 *
7519 * Wait for IO on this page so that we can safely clear
7520 * the PagePrivate2 bit and do ordered accounting
7521 */
e6dcd2dc 7522 wait_on_page_writeback(page);
8b62b72b 7523
5fd02043 7524 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7525 if (offset) {
7526 btrfs_releasepage(page, GFP_NOFS);
7527 return;
7528 }
131e404a
FDBM
7529
7530 if (!inode_evicting)
7531 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7532 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 7533 if (ordered) {
eb84ae03
CM
7534 /*
7535 * IO on this page will never be started, so we need
7536 * to account for any ordered extents now
7537 */
131e404a
FDBM
7538 if (!inode_evicting)
7539 clear_extent_bit(tree, page_start, page_end,
7540 EXTENT_DIRTY | EXTENT_DELALLOC |
7541 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7542 EXTENT_DEFRAG, 1, 0, &cached_state,
7543 GFP_NOFS);
8b62b72b
CM
7544 /*
7545 * whoever cleared the private bit is responsible
7546 * for the finish_ordered_io
7547 */
77cef2ec
JB
7548 if (TestClearPagePrivate2(page)) {
7549 struct btrfs_ordered_inode_tree *tree;
7550 u64 new_len;
7551
7552 tree = &BTRFS_I(inode)->ordered_tree;
7553
7554 spin_lock_irq(&tree->lock);
7555 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
7556 new_len = page_start - ordered->file_offset;
7557 if (new_len < ordered->truncated_len)
7558 ordered->truncated_len = new_len;
7559 spin_unlock_irq(&tree->lock);
7560
7561 if (btrfs_dec_test_ordered_pending(inode, &ordered,
7562 page_start,
7563 PAGE_CACHE_SIZE, 1))
7564 btrfs_finish_ordered_io(ordered);
8b62b72b 7565 }
e6dcd2dc 7566 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
7567 if (!inode_evicting) {
7568 cached_state = NULL;
7569 lock_extent_bits(tree, page_start, page_end, 0,
7570 &cached_state);
7571 }
7572 }
7573
7574 if (!inode_evicting) {
7575 clear_extent_bit(tree, page_start, page_end,
7576 EXTENT_LOCKED | EXTENT_DIRTY |
7577 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
7578 EXTENT_DEFRAG, 1, 1,
7579 &cached_state, GFP_NOFS);
7580
7581 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 7582 }
e6dcd2dc 7583
4a096752 7584 ClearPageChecked(page);
9ad6b7bc 7585 if (PagePrivate(page)) {
9ad6b7bc
CM
7586 ClearPagePrivate(page);
7587 set_page_private(page, 0);
7588 page_cache_release(page);
7589 }
39279cc3
CM
7590}
7591
9ebefb18
CM
7592/*
7593 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7594 * called from a page fault handler when a page is first dirtied. Hence we must
7595 * be careful to check for EOF conditions here. We set the page up correctly
7596 * for a written page which means we get ENOSPC checking when writing into
7597 * holes and correct delalloc and unwritten extent mapping on filesystems that
7598 * support these features.
7599 *
7600 * We are not allowed to take the i_mutex here so we have to play games to
7601 * protect against truncate races as the page could now be beyond EOF. Because
7602 * vmtruncate() writes the inode size before removing pages, once we have the
7603 * page lock we can determine safely if the page is beyond EOF. If it is not
7604 * beyond EOF, then the page is guaranteed safe against truncation until we
7605 * unlock the page.
7606 */
c2ec175c 7607int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7608{
c2ec175c 7609 struct page *page = vmf->page;
496ad9aa 7610 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7611 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7612 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7613 struct btrfs_ordered_extent *ordered;
2ac55d41 7614 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7615 char *kaddr;
7616 unsigned long zero_start;
9ebefb18 7617 loff_t size;
1832a6d5 7618 int ret;
9998eb70 7619 int reserved = 0;
a52d9a80 7620 u64 page_start;
e6dcd2dc 7621 u64 page_end;
9ebefb18 7622
b2b5ef5c 7623 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7624 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7625 if (!ret) {
e41f941a 7626 ret = file_update_time(vma->vm_file);
9998eb70
CM
7627 reserved = 1;
7628 }
56a76f82
NP
7629 if (ret) {
7630 if (ret == -ENOMEM)
7631 ret = VM_FAULT_OOM;
7632 else /* -ENOSPC, -EIO, etc */
7633 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7634 if (reserved)
7635 goto out;
7636 goto out_noreserve;
56a76f82 7637 }
1832a6d5 7638
56a76f82 7639 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7640again:
9ebefb18 7641 lock_page(page);
9ebefb18 7642 size = i_size_read(inode);
e6dcd2dc
CM
7643 page_start = page_offset(page);
7644 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7645
9ebefb18 7646 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7647 (page_start >= size)) {
9ebefb18
CM
7648 /* page got truncated out from underneath us */
7649 goto out_unlock;
7650 }
e6dcd2dc
CM
7651 wait_on_page_writeback(page);
7652
d0082371 7653 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7654 set_page_extent_mapped(page);
7655
eb84ae03
CM
7656 /*
7657 * we can't set the delalloc bits if there are pending ordered
7658 * extents. Drop our locks and wait for them to finish
7659 */
e6dcd2dc
CM
7660 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7661 if (ordered) {
2ac55d41
JB
7662 unlock_extent_cached(io_tree, page_start, page_end,
7663 &cached_state, GFP_NOFS);
e6dcd2dc 7664 unlock_page(page);
eb84ae03 7665 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7666 btrfs_put_ordered_extent(ordered);
7667 goto again;
7668 }
7669
fbf19087
JB
7670 /*
7671 * XXX - page_mkwrite gets called every time the page is dirtied, even
7672 * if it was already dirty, so for space accounting reasons we need to
7673 * clear any delalloc bits for the range we are fixing to save. There
7674 * is probably a better way to do this, but for now keep consistent with
7675 * prepare_pages in the normal write path.
7676 */
2ac55d41 7677 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7678 EXTENT_DIRTY | EXTENT_DELALLOC |
7679 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7680 0, 0, &cached_state, GFP_NOFS);
fbf19087 7681
2ac55d41
JB
7682 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7683 &cached_state);
9ed74f2d 7684 if (ret) {
2ac55d41
JB
7685 unlock_extent_cached(io_tree, page_start, page_end,
7686 &cached_state, GFP_NOFS);
9ed74f2d
JB
7687 ret = VM_FAULT_SIGBUS;
7688 goto out_unlock;
7689 }
e6dcd2dc 7690 ret = 0;
9ebefb18
CM
7691
7692 /* page is wholly or partially inside EOF */
a52d9a80 7693 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7694 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7695 else
e6dcd2dc 7696 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7697
e6dcd2dc
CM
7698 if (zero_start != PAGE_CACHE_SIZE) {
7699 kaddr = kmap(page);
7700 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7701 flush_dcache_page(page);
7702 kunmap(page);
7703 }
247e743c 7704 ClearPageChecked(page);
e6dcd2dc 7705 set_page_dirty(page);
50a9b214 7706 SetPageUptodate(page);
5a3f23d5 7707
257c62e1
CM
7708 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7709 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7710 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7711
2ac55d41 7712 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7713
7714out_unlock:
b2b5ef5c
JK
7715 if (!ret) {
7716 sb_end_pagefault(inode->i_sb);
50a9b214 7717 return VM_FAULT_LOCKED;
b2b5ef5c 7718 }
9ebefb18 7719 unlock_page(page);
1832a6d5 7720out:
ec39e180 7721 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7722out_noreserve:
b2b5ef5c 7723 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7724 return ret;
7725}
7726
a41ad394 7727static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7728{
7729 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7730 struct btrfs_block_rsv *rsv;
a71754fc 7731 int ret = 0;
3893e33b 7732 int err = 0;
39279cc3 7733 struct btrfs_trans_handle *trans;
dbe674a9 7734 u64 mask = root->sectorsize - 1;
07127184 7735 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7736
0ef8b726
JB
7737 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
7738 (u64)-1);
7739 if (ret)
7740 return ret;
39279cc3 7741
fcb80c2a
JB
7742 /*
7743 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7744 * 3 things going on here
7745 *
7746 * 1) We need to reserve space for our orphan item and the space to
7747 * delete our orphan item. Lord knows we don't want to have a dangling
7748 * orphan item because we didn't reserve space to remove it.
7749 *
7750 * 2) We need to reserve space to update our inode.
7751 *
7752 * 3) We need to have something to cache all the space that is going to
7753 * be free'd up by the truncate operation, but also have some slack
7754 * space reserved in case it uses space during the truncate (thank you
7755 * very much snapshotting).
7756 *
7757 * And we need these to all be seperate. The fact is we can use alot of
7758 * space doing the truncate, and we have no earthly idea how much space
7759 * we will use, so we need the truncate reservation to be seperate so it
7760 * doesn't end up using space reserved for updating the inode or
7761 * removing the orphan item. We also need to be able to stop the
7762 * transaction and start a new one, which means we need to be able to
7763 * update the inode several times, and we have no idea of knowing how
7764 * many times that will be, so we can't just reserve 1 item for the
7765 * entirety of the opration, so that has to be done seperately as well.
7766 * Then there is the orphan item, which does indeed need to be held on
7767 * to for the whole operation, and we need nobody to touch this reserved
7768 * space except the orphan code.
7769 *
7770 * So that leaves us with
7771 *
7772 * 1) root->orphan_block_rsv - for the orphan deletion.
7773 * 2) rsv - for the truncate reservation, which we will steal from the
7774 * transaction reservation.
7775 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7776 * updating the inode.
7777 */
66d8f3dd 7778 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7779 if (!rsv)
7780 return -ENOMEM;
4a338542 7781 rsv->size = min_size;
ca7e70f5 7782 rsv->failfast = 1;
f0cd846e 7783
907cbceb 7784 /*
07127184 7785 * 1 for the truncate slack space
907cbceb
JB
7786 * 1 for updating the inode.
7787 */
f3fe820c 7788 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7789 if (IS_ERR(trans)) {
7790 err = PTR_ERR(trans);
7791 goto out;
7792 }
f0cd846e 7793
907cbceb
JB
7794 /* Migrate the slack space for the truncate to our reserve */
7795 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7796 min_size);
fcb80c2a 7797 BUG_ON(ret);
f0cd846e 7798
5a3f23d5
CM
7799 /*
7800 * setattr is responsible for setting the ordered_data_close flag,
7801 * but that is only tested during the last file release. That
7802 * could happen well after the next commit, leaving a great big
7803 * window where new writes may get lost if someone chooses to write
7804 * to this file after truncating to zero
7805 *
7806 * The inode doesn't have any dirty data here, and so if we commit
7807 * this is a noop. If someone immediately starts writing to the inode
7808 * it is very likely we'll catch some of their writes in this
7809 * transaction, and the commit will find this file on the ordered
7810 * data list with good things to send down.
7811 *
7812 * This is a best effort solution, there is still a window where
7813 * using truncate to replace the contents of the file will
7814 * end up with a zero length file after a crash.
7815 */
72ac3c0d
JB
7816 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7817 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7818 btrfs_add_ordered_operation(trans, root, inode);
7819
5dc562c5
JB
7820 /*
7821 * So if we truncate and then write and fsync we normally would just
7822 * write the extents that changed, which is a problem if we need to
7823 * first truncate that entire inode. So set this flag so we write out
7824 * all of the extents in the inode to the sync log so we're completely
7825 * safe.
7826 */
7827 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7828 trans->block_rsv = rsv;
907cbceb 7829
8082510e
YZ
7830 while (1) {
7831 ret = btrfs_truncate_inode_items(trans, root, inode,
7832 inode->i_size,
7833 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7834 if (ret != -ENOSPC) {
3893e33b 7835 err = ret;
8082510e 7836 break;
3893e33b 7837 }
39279cc3 7838
fcb80c2a 7839 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7840 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7841 if (ret) {
7842 err = ret;
7843 break;
7844 }
ca7e70f5 7845
8082510e 7846 btrfs_end_transaction(trans, root);
b53d3f5d 7847 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7848
7849 trans = btrfs_start_transaction(root, 2);
7850 if (IS_ERR(trans)) {
7851 ret = err = PTR_ERR(trans);
7852 trans = NULL;
7853 break;
7854 }
7855
7856 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7857 rsv, min_size);
7858 BUG_ON(ret); /* shouldn't happen */
7859 trans->block_rsv = rsv;
8082510e
YZ
7860 }
7861
7862 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7863 trans->block_rsv = root->orphan_block_rsv;
8082510e 7864 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7865 if (ret)
7866 err = ret;
8082510e
YZ
7867 }
7868
917c16b2
CM
7869 if (trans) {
7870 trans->block_rsv = &root->fs_info->trans_block_rsv;
7871 ret = btrfs_update_inode(trans, root, inode);
7872 if (ret && !err)
7873 err = ret;
7b128766 7874
7ad85bb7 7875 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7876 btrfs_btree_balance_dirty(root);
917c16b2 7877 }
fcb80c2a
JB
7878
7879out:
7880 btrfs_free_block_rsv(root, rsv);
7881
3893e33b
JB
7882 if (ret && !err)
7883 err = ret;
a41ad394 7884
3893e33b 7885 return err;
39279cc3
CM
7886}
7887
d352ac68
CM
7888/*
7889 * create a new subvolume directory/inode (helper for the ioctl).
7890 */
d2fb3437 7891int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7892 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7893{
39279cc3 7894 struct inode *inode;
76dda93c 7895 int err;
00e4e6b3 7896 u64 index = 0;
39279cc3 7897
12fc9d09
FA
7898 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7899 new_dirid, new_dirid,
7900 S_IFDIR | (~current_umask() & S_IRWXUGO),
7901 &index);
54aa1f4d 7902 if (IS_ERR(inode))
f46b5a66 7903 return PTR_ERR(inode);
39279cc3
CM
7904 inode->i_op = &btrfs_dir_inode_operations;
7905 inode->i_fop = &btrfs_dir_file_operations;
7906
bfe86848 7907 set_nlink(inode, 1);
dbe674a9 7908 btrfs_i_size_write(inode, 0);
3b96362c 7909
76dda93c 7910 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7911
76dda93c 7912 iput(inode);
ce598979 7913 return err;
39279cc3
CM
7914}
7915
39279cc3
CM
7916struct inode *btrfs_alloc_inode(struct super_block *sb)
7917{
7918 struct btrfs_inode *ei;
2ead6ae7 7919 struct inode *inode;
39279cc3
CM
7920
7921 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7922 if (!ei)
7923 return NULL;
2ead6ae7
YZ
7924
7925 ei->root = NULL;
2ead6ae7 7926 ei->generation = 0;
15ee9bc7 7927 ei->last_trans = 0;
257c62e1 7928 ei->last_sub_trans = 0;
e02119d5 7929 ei->logged_trans = 0;
2ead6ae7 7930 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7931 ei->disk_i_size = 0;
7932 ei->flags = 0;
7709cde3 7933 ei->csum_bytes = 0;
2ead6ae7 7934 ei->index_cnt = (u64)-1;
67de1176 7935 ei->dir_index = 0;
2ead6ae7 7936 ei->last_unlink_trans = 0;
46d8bc34 7937 ei->last_log_commit = 0;
2ead6ae7 7938
9e0baf60
JB
7939 spin_lock_init(&ei->lock);
7940 ei->outstanding_extents = 0;
7941 ei->reserved_extents = 0;
2ead6ae7 7942
72ac3c0d 7943 ei->runtime_flags = 0;
261507a0 7944 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7945
16cdcec7
MX
7946 ei->delayed_node = NULL;
7947
2ead6ae7 7948 inode = &ei->vfs_inode;
a8067e02 7949 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7950 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7951 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7952 ei->io_tree.track_uptodate = 1;
7953 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7954 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7955 mutex_init(&ei->log_mutex);
f248679e 7956 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7957 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7958 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7959 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7960 RB_CLEAR_NODE(&ei->rb_node);
7961
7962 return inode;
39279cc3
CM
7963}
7964
aaedb55b
JB
7965#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
7966void btrfs_test_destroy_inode(struct inode *inode)
7967{
7968 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
7969 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7970}
7971#endif
7972
fa0d7e3d
NP
7973static void btrfs_i_callback(struct rcu_head *head)
7974{
7975 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7976 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7977}
7978
39279cc3
CM
7979void btrfs_destroy_inode(struct inode *inode)
7980{
e6dcd2dc 7981 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7982 struct btrfs_root *root = BTRFS_I(inode)->root;
7983
b3d9b7a3 7984 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7985 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7986 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7987 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7988 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7989 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7990
a6dbd429
JB
7991 /*
7992 * This can happen where we create an inode, but somebody else also
7993 * created the same inode and we need to destroy the one we already
7994 * created.
7995 */
7996 if (!root)
7997 goto free;
7998
5a3f23d5
CM
7999 /*
8000 * Make sure we're properly removed from the ordered operation
8001 * lists.
8002 */
8003 smp_mb();
8004 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 8005 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 8006 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 8007 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
8008 }
8009
8a35d95f
JB
8010 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8011 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8012 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8013 btrfs_ino(inode));
8a35d95f 8014 atomic_dec(&root->orphan_inodes);
7b128766 8015 }
7b128766 8016
d397712b 8017 while (1) {
e6dcd2dc
CM
8018 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8019 if (!ordered)
8020 break;
8021 else {
c2cf52eb 8022 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8023 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8024 btrfs_remove_ordered_extent(inode, ordered);
8025 btrfs_put_ordered_extent(ordered);
8026 btrfs_put_ordered_extent(ordered);
8027 }
8028 }
5d4f98a2 8029 inode_tree_del(inode);
5b21f2ed 8030 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8031free:
fa0d7e3d 8032 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8033}
8034
45321ac5 8035int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8036{
8037 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8038
6379ef9f
NA
8039 if (root == NULL)
8040 return 1;
8041
fa6ac876 8042 /* the snap/subvol tree is on deleting */
69e9c6c6 8043 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8044 return 1;
76dda93c 8045 else
45321ac5 8046 return generic_drop_inode(inode);
76dda93c
YZ
8047}
8048
0ee0fda0 8049static void init_once(void *foo)
39279cc3
CM
8050{
8051 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8052
8053 inode_init_once(&ei->vfs_inode);
8054}
8055
8056void btrfs_destroy_cachep(void)
8057{
8c0a8537
KS
8058 /*
8059 * Make sure all delayed rcu free inodes are flushed before we
8060 * destroy cache.
8061 */
8062 rcu_barrier();
39279cc3
CM
8063 if (btrfs_inode_cachep)
8064 kmem_cache_destroy(btrfs_inode_cachep);
8065 if (btrfs_trans_handle_cachep)
8066 kmem_cache_destroy(btrfs_trans_handle_cachep);
8067 if (btrfs_transaction_cachep)
8068 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8069 if (btrfs_path_cachep)
8070 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8071 if (btrfs_free_space_cachep)
8072 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8073 if (btrfs_delalloc_work_cachep)
8074 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8075}
8076
8077int btrfs_init_cachep(void)
8078{
837e1972 8079 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8080 sizeof(struct btrfs_inode), 0,
8081 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8082 if (!btrfs_inode_cachep)
8083 goto fail;
9601e3f6 8084
837e1972 8085 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8086 sizeof(struct btrfs_trans_handle), 0,
8087 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8088 if (!btrfs_trans_handle_cachep)
8089 goto fail;
9601e3f6 8090
837e1972 8091 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8092 sizeof(struct btrfs_transaction), 0,
8093 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8094 if (!btrfs_transaction_cachep)
8095 goto fail;
9601e3f6 8096
837e1972 8097 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8098 sizeof(struct btrfs_path), 0,
8099 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8100 if (!btrfs_path_cachep)
8101 goto fail;
9601e3f6 8102
837e1972 8103 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8104 sizeof(struct btrfs_free_space), 0,
8105 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8106 if (!btrfs_free_space_cachep)
8107 goto fail;
8108
8ccf6f19
MX
8109 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8110 sizeof(struct btrfs_delalloc_work), 0,
8111 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8112 NULL);
8113 if (!btrfs_delalloc_work_cachep)
8114 goto fail;
8115
39279cc3
CM
8116 return 0;
8117fail:
8118 btrfs_destroy_cachep();
8119 return -ENOMEM;
8120}
8121
8122static int btrfs_getattr(struct vfsmount *mnt,
8123 struct dentry *dentry, struct kstat *stat)
8124{
df0af1a5 8125 u64 delalloc_bytes;
39279cc3 8126 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8127 u32 blocksize = inode->i_sb->s_blocksize;
8128
39279cc3 8129 generic_fillattr(inode, stat);
0ee5dc67 8130 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8131 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8132
8133 spin_lock(&BTRFS_I(inode)->lock);
8134 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8135 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8136 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8137 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8138 return 0;
8139}
8140
d397712b
CM
8141static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8142 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8143{
8144 struct btrfs_trans_handle *trans;
8145 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8146 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8147 struct inode *new_inode = new_dentry->d_inode;
8148 struct inode *old_inode = old_dentry->d_inode;
8149 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8150 u64 index = 0;
4df27c4d 8151 u64 root_objectid;
39279cc3 8152 int ret;
33345d01 8153 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8154
33345d01 8155 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8156 return -EPERM;
8157
4df27c4d 8158 /* we only allow rename subvolume link between subvolumes */
33345d01 8159 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8160 return -EXDEV;
8161
33345d01
LZ
8162 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8163 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8164 return -ENOTEMPTY;
5f39d397 8165
4df27c4d
YZ
8166 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8167 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8168 return -ENOTEMPTY;
9c52057c
CM
8169
8170
8171 /* check for collisions, even if the name isn't there */
4871c158 8172 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8173 new_dentry->d_name.name,
8174 new_dentry->d_name.len);
8175
8176 if (ret) {
8177 if (ret == -EEXIST) {
8178 /* we shouldn't get
8179 * eexist without a new_inode */
fae7f21c 8180 if (WARN_ON(!new_inode)) {
9c52057c
CM
8181 return ret;
8182 }
8183 } else {
8184 /* maybe -EOVERFLOW */
8185 return ret;
8186 }
8187 }
8188 ret = 0;
8189
5a3f23d5
CM
8190 /*
8191 * we're using rename to replace one file with another.
8192 * and the replacement file is large. Start IO on it now so
8193 * we don't add too much work to the end of the transaction
8194 */
4baf8c92 8195 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8196 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8197 filemap_flush(old_inode->i_mapping);
8198
76dda93c 8199 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8200 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8201 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8202 /*
8203 * We want to reserve the absolute worst case amount of items. So if
8204 * both inodes are subvols and we need to unlink them then that would
8205 * require 4 item modifications, but if they are both normal inodes it
8206 * would require 5 item modifications, so we'll assume their normal
8207 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8208 * should cover the worst case number of items we'll modify.
8209 */
6e137ed3 8210 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8211 if (IS_ERR(trans)) {
8212 ret = PTR_ERR(trans);
8213 goto out_notrans;
8214 }
76dda93c 8215
4df27c4d
YZ
8216 if (dest != root)
8217 btrfs_record_root_in_trans(trans, dest);
5f39d397 8218
a5719521
YZ
8219 ret = btrfs_set_inode_index(new_dir, &index);
8220 if (ret)
8221 goto out_fail;
5a3f23d5 8222
67de1176 8223 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8224 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8225 /* force full log commit if subvolume involved. */
8226 root->fs_info->last_trans_log_full_commit = trans->transid;
8227 } else {
a5719521
YZ
8228 ret = btrfs_insert_inode_ref(trans, dest,
8229 new_dentry->d_name.name,
8230 new_dentry->d_name.len,
33345d01
LZ
8231 old_ino,
8232 btrfs_ino(new_dir), index);
a5719521
YZ
8233 if (ret)
8234 goto out_fail;
4df27c4d
YZ
8235 /*
8236 * this is an ugly little race, but the rename is required
8237 * to make sure that if we crash, the inode is either at the
8238 * old name or the new one. pinning the log transaction lets
8239 * us make sure we don't allow a log commit to come in after
8240 * we unlink the name but before we add the new name back in.
8241 */
8242 btrfs_pin_log_trans(root);
8243 }
5a3f23d5
CM
8244 /*
8245 * make sure the inode gets flushed if it is replacing
8246 * something.
8247 */
33345d01 8248 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8249 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8250
0c4d2d95
JB
8251 inode_inc_iversion(old_dir);
8252 inode_inc_iversion(new_dir);
8253 inode_inc_iversion(old_inode);
39279cc3
CM
8254 old_dir->i_ctime = old_dir->i_mtime = ctime;
8255 new_dir->i_ctime = new_dir->i_mtime = ctime;
8256 old_inode->i_ctime = ctime;
5f39d397 8257
12fcfd22
CM
8258 if (old_dentry->d_parent != new_dentry->d_parent)
8259 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8260
33345d01 8261 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8262 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8263 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8264 old_dentry->d_name.name,
8265 old_dentry->d_name.len);
8266 } else {
92986796
AV
8267 ret = __btrfs_unlink_inode(trans, root, old_dir,
8268 old_dentry->d_inode,
8269 old_dentry->d_name.name,
8270 old_dentry->d_name.len);
8271 if (!ret)
8272 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8273 }
79787eaa
JM
8274 if (ret) {
8275 btrfs_abort_transaction(trans, root, ret);
8276 goto out_fail;
8277 }
39279cc3
CM
8278
8279 if (new_inode) {
0c4d2d95 8280 inode_inc_iversion(new_inode);
39279cc3 8281 new_inode->i_ctime = CURRENT_TIME;
33345d01 8282 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8283 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8284 root_objectid = BTRFS_I(new_inode)->location.objectid;
8285 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8286 root_objectid,
8287 new_dentry->d_name.name,
8288 new_dentry->d_name.len);
8289 BUG_ON(new_inode->i_nlink == 0);
8290 } else {
8291 ret = btrfs_unlink_inode(trans, dest, new_dir,
8292 new_dentry->d_inode,
8293 new_dentry->d_name.name,
8294 new_dentry->d_name.len);
8295 }
4ef31a45 8296 if (!ret && new_inode->i_nlink == 0)
e02119d5 8297 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8298 if (ret) {
8299 btrfs_abort_transaction(trans, root, ret);
8300 goto out_fail;
8301 }
39279cc3 8302 }
aec7477b 8303
4df27c4d
YZ
8304 ret = btrfs_add_link(trans, new_dir, old_inode,
8305 new_dentry->d_name.name,
a5719521 8306 new_dentry->d_name.len, 0, index);
79787eaa
JM
8307 if (ret) {
8308 btrfs_abort_transaction(trans, root, ret);
8309 goto out_fail;
8310 }
39279cc3 8311
67de1176
MX
8312 if (old_inode->i_nlink == 1)
8313 BTRFS_I(old_inode)->dir_index = index;
8314
33345d01 8315 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8316 struct dentry *parent = new_dentry->d_parent;
6a912213 8317 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8318 btrfs_end_log_trans(root);
8319 }
39279cc3 8320out_fail:
7ad85bb7 8321 btrfs_end_transaction(trans, root);
b44c59a8 8322out_notrans:
33345d01 8323 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8324 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8325
39279cc3
CM
8326 return ret;
8327}
8328
8ccf6f19
MX
8329static void btrfs_run_delalloc_work(struct btrfs_work *work)
8330{
8331 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8332 struct inode *inode;
8ccf6f19
MX
8333
8334 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8335 work);
9f23e289
JB
8336 inode = delalloc_work->inode;
8337 if (delalloc_work->wait) {
8338 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8339 } else {
8340 filemap_flush(inode->i_mapping);
8341 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8342 &BTRFS_I(inode)->runtime_flags))
8343 filemap_flush(inode->i_mapping);
8344 }
8ccf6f19
MX
8345
8346 if (delalloc_work->delay_iput)
9f23e289 8347 btrfs_add_delayed_iput(inode);
8ccf6f19 8348 else
9f23e289 8349 iput(inode);
8ccf6f19
MX
8350 complete(&delalloc_work->completion);
8351}
8352
8353struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8354 int wait, int delay_iput)
8355{
8356 struct btrfs_delalloc_work *work;
8357
8358 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8359 if (!work)
8360 return NULL;
8361
8362 init_completion(&work->completion);
8363 INIT_LIST_HEAD(&work->list);
8364 work->inode = inode;
8365 work->wait = wait;
8366 work->delay_iput = delay_iput;
8367 work->work.func = btrfs_run_delalloc_work;
8368
8369 return work;
8370}
8371
8372void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8373{
8374 wait_for_completion(&work->completion);
8375 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8376}
8377
d352ac68
CM
8378/*
8379 * some fairly slow code that needs optimization. This walks the list
8380 * of all the inodes with pending delalloc and forces them to disk.
8381 */
eb73c1b7 8382static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8383{
ea8c2819 8384 struct btrfs_inode *binode;
5b21f2ed 8385 struct inode *inode;
8ccf6f19
MX
8386 struct btrfs_delalloc_work *work, *next;
8387 struct list_head works;
1eafa6c7 8388 struct list_head splice;
8ccf6f19 8389 int ret = 0;
ea8c2819 8390
8ccf6f19 8391 INIT_LIST_HEAD(&works);
1eafa6c7 8392 INIT_LIST_HEAD(&splice);
63607cc8 8393
eb73c1b7
MX
8394 spin_lock(&root->delalloc_lock);
8395 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8396 while (!list_empty(&splice)) {
8397 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8398 delalloc_inodes);
1eafa6c7 8399
eb73c1b7
MX
8400 list_move_tail(&binode->delalloc_inodes,
8401 &root->delalloc_inodes);
5b21f2ed 8402 inode = igrab(&binode->vfs_inode);
df0af1a5 8403 if (!inode) {
eb73c1b7 8404 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8405 continue;
df0af1a5 8406 }
eb73c1b7 8407 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8408
8409 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8410 if (unlikely(!work)) {
f4ab9ea7
JB
8411 if (delay_iput)
8412 btrfs_add_delayed_iput(inode);
8413 else
8414 iput(inode);
1eafa6c7
MX
8415 ret = -ENOMEM;
8416 goto out;
5b21f2ed 8417 }
1eafa6c7
MX
8418 list_add_tail(&work->list, &works);
8419 btrfs_queue_worker(&root->fs_info->flush_workers,
8420 &work->work);
8421
5b21f2ed 8422 cond_resched();
eb73c1b7 8423 spin_lock(&root->delalloc_lock);
ea8c2819 8424 }
eb73c1b7 8425 spin_unlock(&root->delalloc_lock);
8c8bee1d 8426
1eafa6c7
MX
8427 list_for_each_entry_safe(work, next, &works, list) {
8428 list_del_init(&work->list);
8429 btrfs_wait_and_free_delalloc_work(work);
8430 }
eb73c1b7
MX
8431 return 0;
8432out:
8433 list_for_each_entry_safe(work, next, &works, list) {
8434 list_del_init(&work->list);
8435 btrfs_wait_and_free_delalloc_work(work);
8436 }
8437
8438 if (!list_empty_careful(&splice)) {
8439 spin_lock(&root->delalloc_lock);
8440 list_splice_tail(&splice, &root->delalloc_inodes);
8441 spin_unlock(&root->delalloc_lock);
8442 }
8443 return ret;
8444}
1eafa6c7 8445
eb73c1b7
MX
8446int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8447{
8448 int ret;
1eafa6c7 8449
eb73c1b7
MX
8450 if (root->fs_info->sb->s_flags & MS_RDONLY)
8451 return -EROFS;
8452
8453 ret = __start_delalloc_inodes(root, delay_iput);
8454 /*
8455 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8456 * we have to make sure the IO is actually started and that
8457 * ordered extents get created before we return
8458 */
8459 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8460 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8461 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8462 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8463 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8464 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8465 }
8466 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8467 return ret;
8468}
8469
91aef86f 8470int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput)
eb73c1b7
MX
8471{
8472 struct btrfs_root *root;
8473 struct list_head splice;
8474 int ret;
8475
8476 if (fs_info->sb->s_flags & MS_RDONLY)
8477 return -EROFS;
8478
8479 INIT_LIST_HEAD(&splice);
8480
8481 spin_lock(&fs_info->delalloc_root_lock);
8482 list_splice_init(&fs_info->delalloc_roots, &splice);
8483 while (!list_empty(&splice)) {
8484 root = list_first_entry(&splice, struct btrfs_root,
8485 delalloc_root);
8486 root = btrfs_grab_fs_root(root);
8487 BUG_ON(!root);
8488 list_move_tail(&root->delalloc_root,
8489 &fs_info->delalloc_roots);
8490 spin_unlock(&fs_info->delalloc_root_lock);
8491
8492 ret = __start_delalloc_inodes(root, delay_iput);
8493 btrfs_put_fs_root(root);
8494 if (ret)
8495 goto out;
8496
8497 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8498 }
eb73c1b7 8499 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8500
eb73c1b7
MX
8501 atomic_inc(&fs_info->async_submit_draining);
8502 while (atomic_read(&fs_info->nr_async_submits) ||
8503 atomic_read(&fs_info->async_delalloc_pages)) {
8504 wait_event(fs_info->async_submit_wait,
8505 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8506 atomic_read(&fs_info->async_delalloc_pages) == 0));
8507 }
8508 atomic_dec(&fs_info->async_submit_draining);
8509 return 0;
8510out:
1eafa6c7 8511 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8512 spin_lock(&fs_info->delalloc_root_lock);
8513 list_splice_tail(&splice, &fs_info->delalloc_roots);
8514 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8515 }
8ccf6f19 8516 return ret;
ea8c2819
CM
8517}
8518
39279cc3
CM
8519static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8520 const char *symname)
8521{
8522 struct btrfs_trans_handle *trans;
8523 struct btrfs_root *root = BTRFS_I(dir)->root;
8524 struct btrfs_path *path;
8525 struct btrfs_key key;
1832a6d5 8526 struct inode *inode = NULL;
39279cc3
CM
8527 int err;
8528 int drop_inode = 0;
8529 u64 objectid;
67871254 8530 u64 index = 0;
39279cc3
CM
8531 int name_len;
8532 int datasize;
5f39d397 8533 unsigned long ptr;
39279cc3 8534 struct btrfs_file_extent_item *ei;
5f39d397 8535 struct extent_buffer *leaf;
39279cc3 8536
f06becc4 8537 name_len = strlen(symname);
39279cc3
CM
8538 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8539 return -ENAMETOOLONG;
1832a6d5 8540
9ed74f2d
JB
8541 /*
8542 * 2 items for inode item and ref
8543 * 2 items for dir items
8544 * 1 item for xattr if selinux is on
8545 */
a22285a6
YZ
8546 trans = btrfs_start_transaction(root, 5);
8547 if (IS_ERR(trans))
8548 return PTR_ERR(trans);
1832a6d5 8549
581bb050
LZ
8550 err = btrfs_find_free_ino(root, &objectid);
8551 if (err)
8552 goto out_unlock;
8553
aec7477b 8554 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8555 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8556 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8557 if (IS_ERR(inode)) {
8558 err = PTR_ERR(inode);
39279cc3 8559 goto out_unlock;
7cf96da3 8560 }
39279cc3 8561
2a7dba39 8562 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8563 if (err) {
8564 drop_inode = 1;
8565 goto out_unlock;
8566 }
8567
ad19db71
CS
8568 /*
8569 * If the active LSM wants to access the inode during
8570 * d_instantiate it needs these. Smack checks to see
8571 * if the filesystem supports xattrs by looking at the
8572 * ops vector.
8573 */
8574 inode->i_fop = &btrfs_file_operations;
8575 inode->i_op = &btrfs_file_inode_operations;
8576
a1b075d2 8577 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8578 if (err)
8579 drop_inode = 1;
8580 else {
8581 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8582 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8583 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8584 }
39279cc3
CM
8585 if (drop_inode)
8586 goto out_unlock;
8587
8588 path = btrfs_alloc_path();
d8926bb3
MF
8589 if (!path) {
8590 err = -ENOMEM;
8591 drop_inode = 1;
8592 goto out_unlock;
8593 }
33345d01 8594 key.objectid = btrfs_ino(inode);
39279cc3 8595 key.offset = 0;
39279cc3
CM
8596 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8597 datasize = btrfs_file_extent_calc_inline_size(name_len);
8598 err = btrfs_insert_empty_item(trans, root, path, &key,
8599 datasize);
54aa1f4d
CM
8600 if (err) {
8601 drop_inode = 1;
b0839166 8602 btrfs_free_path(path);
54aa1f4d
CM
8603 goto out_unlock;
8604 }
5f39d397
CM
8605 leaf = path->nodes[0];
8606 ei = btrfs_item_ptr(leaf, path->slots[0],
8607 struct btrfs_file_extent_item);
8608 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8609 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8610 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8611 btrfs_set_file_extent_encryption(leaf, ei, 0);
8612 btrfs_set_file_extent_compression(leaf, ei, 0);
8613 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8614 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8615
39279cc3 8616 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8617 write_extent_buffer(leaf, symname, ptr, name_len);
8618 btrfs_mark_buffer_dirty(leaf);
39279cc3 8619 btrfs_free_path(path);
5f39d397 8620
39279cc3
CM
8621 inode->i_op = &btrfs_symlink_inode_operations;
8622 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8623 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8624 inode_set_bytes(inode, name_len);
f06becc4 8625 btrfs_i_size_write(inode, name_len);
54aa1f4d
CM
8626 err = btrfs_update_inode(trans, root, inode);
8627 if (err)
8628 drop_inode = 1;
39279cc3
CM
8629
8630out_unlock:
08c422c2
AV
8631 if (!err)
8632 d_instantiate(dentry, inode);
7ad85bb7 8633 btrfs_end_transaction(trans, root);
39279cc3
CM
8634 if (drop_inode) {
8635 inode_dec_link_count(inode);
8636 iput(inode);
8637 }
b53d3f5d 8638 btrfs_btree_balance_dirty(root);
39279cc3
CM
8639 return err;
8640}
16432985 8641
0af3d00b
JB
8642static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8643 u64 start, u64 num_bytes, u64 min_size,
8644 loff_t actual_len, u64 *alloc_hint,
8645 struct btrfs_trans_handle *trans)
d899e052 8646{
5dc562c5
JB
8647 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8648 struct extent_map *em;
d899e052
YZ
8649 struct btrfs_root *root = BTRFS_I(inode)->root;
8650 struct btrfs_key ins;
d899e052 8651 u64 cur_offset = start;
55a61d1d 8652 u64 i_size;
154ea289 8653 u64 cur_bytes;
d899e052 8654 int ret = 0;
0af3d00b 8655 bool own_trans = true;
d899e052 8656
0af3d00b
JB
8657 if (trans)
8658 own_trans = false;
d899e052 8659 while (num_bytes > 0) {
0af3d00b
JB
8660 if (own_trans) {
8661 trans = btrfs_start_transaction(root, 3);
8662 if (IS_ERR(trans)) {
8663 ret = PTR_ERR(trans);
8664 break;
8665 }
5a303d5d
YZ
8666 }
8667
154ea289
CM
8668 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8669 cur_bytes = max(cur_bytes, min_size);
00361589
JB
8670 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
8671 *alloc_hint, &ins, 1);
5a303d5d 8672 if (ret) {
0af3d00b
JB
8673 if (own_trans)
8674 btrfs_end_transaction(trans, root);
a22285a6 8675 break;
d899e052 8676 }
5a303d5d 8677
d899e052
YZ
8678 ret = insert_reserved_file_extent(trans, inode,
8679 cur_offset, ins.objectid,
8680 ins.offset, ins.offset,
920bbbfb 8681 ins.offset, 0, 0, 0,
d899e052 8682 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 8683 if (ret) {
857cc2fc
JB
8684 btrfs_free_reserved_extent(root, ins.objectid,
8685 ins.offset);
79787eaa
JM
8686 btrfs_abort_transaction(trans, root, ret);
8687 if (own_trans)
8688 btrfs_end_transaction(trans, root);
8689 break;
8690 }
a1ed835e
CM
8691 btrfs_drop_extent_cache(inode, cur_offset,
8692 cur_offset + ins.offset -1, 0);
5a303d5d 8693
5dc562c5
JB
8694 em = alloc_extent_map();
8695 if (!em) {
8696 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8697 &BTRFS_I(inode)->runtime_flags);
8698 goto next;
8699 }
8700
8701 em->start = cur_offset;
8702 em->orig_start = cur_offset;
8703 em->len = ins.offset;
8704 em->block_start = ins.objectid;
8705 em->block_len = ins.offset;
b4939680 8706 em->orig_block_len = ins.offset;
cc95bef6 8707 em->ram_bytes = ins.offset;
5dc562c5
JB
8708 em->bdev = root->fs_info->fs_devices->latest_bdev;
8709 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8710 em->generation = trans->transid;
8711
8712 while (1) {
8713 write_lock(&em_tree->lock);
09a2a8f9 8714 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8715 write_unlock(&em_tree->lock);
8716 if (ret != -EEXIST)
8717 break;
8718 btrfs_drop_extent_cache(inode, cur_offset,
8719 cur_offset + ins.offset - 1,
8720 0);
8721 }
8722 free_extent_map(em);
8723next:
d899e052
YZ
8724 num_bytes -= ins.offset;
8725 cur_offset += ins.offset;
efa56464 8726 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8727
0c4d2d95 8728 inode_inc_iversion(inode);
d899e052 8729 inode->i_ctime = CURRENT_TIME;
6cbff00f 8730 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8731 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8732 (actual_len > inode->i_size) &&
8733 (cur_offset > inode->i_size)) {
d1ea6a61 8734 if (cur_offset > actual_len)
55a61d1d 8735 i_size = actual_len;
d1ea6a61 8736 else
55a61d1d
JB
8737 i_size = cur_offset;
8738 i_size_write(inode, i_size);
8739 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8740 }
8741
d899e052 8742 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8743
8744 if (ret) {
8745 btrfs_abort_transaction(trans, root, ret);
8746 if (own_trans)
8747 btrfs_end_transaction(trans, root);
8748 break;
8749 }
d899e052 8750
0af3d00b
JB
8751 if (own_trans)
8752 btrfs_end_transaction(trans, root);
5a303d5d 8753 }
d899e052
YZ
8754 return ret;
8755}
8756
0af3d00b
JB
8757int btrfs_prealloc_file_range(struct inode *inode, int mode,
8758 u64 start, u64 num_bytes, u64 min_size,
8759 loff_t actual_len, u64 *alloc_hint)
8760{
8761 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8762 min_size, actual_len, alloc_hint,
8763 NULL);
8764}
8765
8766int btrfs_prealloc_file_range_trans(struct inode *inode,
8767 struct btrfs_trans_handle *trans, int mode,
8768 u64 start, u64 num_bytes, u64 min_size,
8769 loff_t actual_len, u64 *alloc_hint)
8770{
8771 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8772 min_size, actual_len, alloc_hint, trans);
8773}
8774
e6dcd2dc
CM
8775static int btrfs_set_page_dirty(struct page *page)
8776{
e6dcd2dc
CM
8777 return __set_page_dirty_nobuffers(page);
8778}
8779
10556cb2 8780static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8781{
b83cc969 8782 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8783 umode_t mode = inode->i_mode;
b83cc969 8784
cb6db4e5
JM
8785 if (mask & MAY_WRITE &&
8786 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8787 if (btrfs_root_readonly(root))
8788 return -EROFS;
8789 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8790 return -EACCES;
8791 }
2830ba7f 8792 return generic_permission(inode, mask);
fdebe2bd 8793}
39279cc3 8794
6e1d5dcc 8795static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8796 .getattr = btrfs_getattr,
39279cc3
CM
8797 .lookup = btrfs_lookup,
8798 .create = btrfs_create,
8799 .unlink = btrfs_unlink,
8800 .link = btrfs_link,
8801 .mkdir = btrfs_mkdir,
8802 .rmdir = btrfs_rmdir,
8803 .rename = btrfs_rename,
8804 .symlink = btrfs_symlink,
8805 .setattr = btrfs_setattr,
618e21d5 8806 .mknod = btrfs_mknod,
95819c05
CH
8807 .setxattr = btrfs_setxattr,
8808 .getxattr = btrfs_getxattr,
5103e947 8809 .listxattr = btrfs_listxattr,
95819c05 8810 .removexattr = btrfs_removexattr,
fdebe2bd 8811 .permission = btrfs_permission,
4e34e719 8812 .get_acl = btrfs_get_acl,
93fd63c2 8813 .update_time = btrfs_update_time,
39279cc3 8814};
6e1d5dcc 8815static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8816 .lookup = btrfs_lookup,
fdebe2bd 8817 .permission = btrfs_permission,
4e34e719 8818 .get_acl = btrfs_get_acl,
93fd63c2 8819 .update_time = btrfs_update_time,
39279cc3 8820};
76dda93c 8821
828c0950 8822static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8823 .llseek = generic_file_llseek,
8824 .read = generic_read_dir,
9cdda8d3 8825 .iterate = btrfs_real_readdir,
34287aa3 8826 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8827#ifdef CONFIG_COMPAT
34287aa3 8828 .compat_ioctl = btrfs_ioctl,
39279cc3 8829#endif
6bf13c0c 8830 .release = btrfs_release_file,
e02119d5 8831 .fsync = btrfs_sync_file,
39279cc3
CM
8832};
8833
d1310b2e 8834static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8835 .fill_delalloc = run_delalloc_range,
065631f6 8836 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8837 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8838 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8839 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8840 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8841 .set_bit_hook = btrfs_set_bit_hook,
8842 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8843 .merge_extent_hook = btrfs_merge_extent_hook,
8844 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8845};
8846
35054394
CM
8847/*
8848 * btrfs doesn't support the bmap operation because swapfiles
8849 * use bmap to make a mapping of extents in the file. They assume
8850 * these extents won't change over the life of the file and they
8851 * use the bmap result to do IO directly to the drive.
8852 *
8853 * the btrfs bmap call would return logical addresses that aren't
8854 * suitable for IO and they also will change frequently as COW
8855 * operations happen. So, swapfile + btrfs == corruption.
8856 *
8857 * For now we're avoiding this by dropping bmap.
8858 */
7f09410b 8859static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8860 .readpage = btrfs_readpage,
8861 .writepage = btrfs_writepage,
b293f02e 8862 .writepages = btrfs_writepages,
3ab2fb5a 8863 .readpages = btrfs_readpages,
16432985 8864 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8865 .invalidatepage = btrfs_invalidatepage,
8866 .releasepage = btrfs_releasepage,
e6dcd2dc 8867 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8868 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8869};
8870
7f09410b 8871static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8872 .readpage = btrfs_readpage,
8873 .writepage = btrfs_writepage,
2bf5a725
CM
8874 .invalidatepage = btrfs_invalidatepage,
8875 .releasepage = btrfs_releasepage,
39279cc3
CM
8876};
8877
6e1d5dcc 8878static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8879 .getattr = btrfs_getattr,
8880 .setattr = btrfs_setattr,
95819c05
CH
8881 .setxattr = btrfs_setxattr,
8882 .getxattr = btrfs_getxattr,
5103e947 8883 .listxattr = btrfs_listxattr,
95819c05 8884 .removexattr = btrfs_removexattr,
fdebe2bd 8885 .permission = btrfs_permission,
1506fcc8 8886 .fiemap = btrfs_fiemap,
4e34e719 8887 .get_acl = btrfs_get_acl,
e41f941a 8888 .update_time = btrfs_update_time,
39279cc3 8889};
6e1d5dcc 8890static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8891 .getattr = btrfs_getattr,
8892 .setattr = btrfs_setattr,
fdebe2bd 8893 .permission = btrfs_permission,
95819c05
CH
8894 .setxattr = btrfs_setxattr,
8895 .getxattr = btrfs_getxattr,
33268eaf 8896 .listxattr = btrfs_listxattr,
95819c05 8897 .removexattr = btrfs_removexattr,
4e34e719 8898 .get_acl = btrfs_get_acl,
e41f941a 8899 .update_time = btrfs_update_time,
618e21d5 8900};
6e1d5dcc 8901static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8902 .readlink = generic_readlink,
8903 .follow_link = page_follow_link_light,
8904 .put_link = page_put_link,
f209561a 8905 .getattr = btrfs_getattr,
22c44fe6 8906 .setattr = btrfs_setattr,
fdebe2bd 8907 .permission = btrfs_permission,
0279b4cd
JO
8908 .setxattr = btrfs_setxattr,
8909 .getxattr = btrfs_getxattr,
8910 .listxattr = btrfs_listxattr,
8911 .removexattr = btrfs_removexattr,
4e34e719 8912 .get_acl = btrfs_get_acl,
e41f941a 8913 .update_time = btrfs_update_time,
39279cc3 8914};
76dda93c 8915
82d339d9 8916const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8917 .d_delete = btrfs_dentry_delete,
b4aff1f8 8918 .d_release = btrfs_dentry_release,
76dda93c 8919};