Btrfs: don't allow a subvol to be deleted if it is the default subovl
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
4b4e25f2 46#include "compat.h"
39279cc3
CM
47#include "ctree.h"
48#include "disk-io.h"
49#include "transaction.h"
50#include "btrfs_inode.h"
39279cc3 51#include "print-tree.h"
e6dcd2dc 52#include "ordered-data.h"
95819c05 53#include "xattr.h"
e02119d5 54#include "tree-log.h"
4a54c8c1 55#include "volumes.h"
c8b97818 56#include "compression.h"
b4ce94de 57#include "locking.h"
dc89e982 58#include "free-space-cache.h"
581bb050 59#include "inode-map.h"
38c227d8 60#include "backref.h"
f23b5a59 61#include "hash.h"
39279cc3
CM
62
63struct btrfs_iget_args {
64 u64 ino;
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
d397712b 128static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
129 struct btrfs_root *root, struct inode *inode,
130 u64 start, size_t size, size_t compressed_size,
fe3f566c 131 int compress_type,
c8b97818
CM
132 struct page **compressed_pages)
133{
134 struct btrfs_key key;
135 struct btrfs_path *path;
136 struct extent_buffer *leaf;
137 struct page *page = NULL;
138 char *kaddr;
139 unsigned long ptr;
140 struct btrfs_file_extent_item *ei;
141 int err = 0;
142 int ret;
143 size_t cur_size = size;
144 size_t datasize;
145 unsigned long offset;
c8b97818 146
fe3f566c 147 if (compressed_size && compressed_pages)
c8b97818 148 cur_size = compressed_size;
c8b97818 149
d397712b
CM
150 path = btrfs_alloc_path();
151 if (!path)
c8b97818
CM
152 return -ENOMEM;
153
b9473439 154 path->leave_spinning = 1;
c8b97818 155
33345d01 156 key.objectid = btrfs_ino(inode);
c8b97818
CM
157 key.offset = start;
158 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
159 datasize = btrfs_file_extent_calc_inline_size(cur_size);
160
161 inode_add_bytes(inode, size);
162 ret = btrfs_insert_empty_item(trans, root, path, &key,
163 datasize);
c8b97818
CM
164 if (ret) {
165 err = ret;
c8b97818
CM
166 goto fail;
167 }
168 leaf = path->nodes[0];
169 ei = btrfs_item_ptr(leaf, path->slots[0],
170 struct btrfs_file_extent_item);
171 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
172 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
173 btrfs_set_file_extent_encryption(leaf, ei, 0);
174 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
175 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
176 ptr = btrfs_file_extent_inline_start(ei);
177
261507a0 178 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
179 struct page *cpage;
180 int i = 0;
d397712b 181 while (compressed_size > 0) {
c8b97818 182 cpage = compressed_pages[i];
5b050f04 183 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
184 PAGE_CACHE_SIZE);
185
7ac687d9 186 kaddr = kmap_atomic(cpage);
c8b97818 187 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 188 kunmap_atomic(kaddr);
c8b97818
CM
189
190 i++;
191 ptr += cur_size;
192 compressed_size -= cur_size;
193 }
194 btrfs_set_file_extent_compression(leaf, ei,
261507a0 195 compress_type);
c8b97818
CM
196 } else {
197 page = find_get_page(inode->i_mapping,
198 start >> PAGE_CACHE_SHIFT);
199 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 200 kaddr = kmap_atomic(page);
c8b97818
CM
201 offset = start & (PAGE_CACHE_SIZE - 1);
202 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 203 kunmap_atomic(kaddr);
c8b97818
CM
204 page_cache_release(page);
205 }
206 btrfs_mark_buffer_dirty(leaf);
207 btrfs_free_path(path);
208
c2167754
YZ
209 /*
210 * we're an inline extent, so nobody can
211 * extend the file past i_size without locking
212 * a page we already have locked.
213 *
214 * We must do any isize and inode updates
215 * before we unlock the pages. Otherwise we
216 * could end up racing with unlink.
217 */
c8b97818 218 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 219 ret = btrfs_update_inode(trans, root, inode);
c2167754 220
79787eaa 221 return ret;
c8b97818
CM
222fail:
223 btrfs_free_path(path);
224 return err;
225}
226
227
228/*
229 * conditionally insert an inline extent into the file. This
230 * does the checks required to make sure the data is small enough
231 * to fit as an inline extent.
232 */
7f366cfe 233static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
234 struct btrfs_root *root,
235 struct inode *inode, u64 start, u64 end,
fe3f566c 236 size_t compressed_size, int compress_type,
c8b97818
CM
237 struct page **compressed_pages)
238{
239 u64 isize = i_size_read(inode);
240 u64 actual_end = min(end + 1, isize);
241 u64 inline_len = actual_end - start;
fda2832f 242 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
243 u64 data_len = inline_len;
244 int ret;
245
246 if (compressed_size)
247 data_len = compressed_size;
248
249 if (start > 0 ||
70b99e69 250 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
251 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
252 (!compressed_size &&
253 (actual_end & (root->sectorsize - 1)) == 0) ||
254 end + 1 < isize ||
255 data_len > root->fs_info->max_inline) {
256 return 1;
257 }
258
2671485d 259 ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
79787eaa
JM
260 if (ret)
261 return ret;
c8b97818
CM
262
263 if (isize > actual_end)
264 inline_len = min_t(u64, isize, actual_end);
265 ret = insert_inline_extent(trans, root, inode, start,
266 inline_len, compressed_size,
fe3f566c 267 compress_type, compressed_pages);
2adcac1a 268 if (ret && ret != -ENOSPC) {
79787eaa
JM
269 btrfs_abort_transaction(trans, root, ret);
270 return ret;
2adcac1a
JB
271 } else if (ret == -ENOSPC) {
272 return 1;
79787eaa 273 }
2adcac1a 274
bdc20e67 275 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 276 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 277 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
278 return 0;
279}
280
771ed689
CM
281struct async_extent {
282 u64 start;
283 u64 ram_size;
284 u64 compressed_size;
285 struct page **pages;
286 unsigned long nr_pages;
261507a0 287 int compress_type;
771ed689
CM
288 struct list_head list;
289};
290
291struct async_cow {
292 struct inode *inode;
293 struct btrfs_root *root;
294 struct page *locked_page;
295 u64 start;
296 u64 end;
297 struct list_head extents;
298 struct btrfs_work work;
299};
300
301static noinline int add_async_extent(struct async_cow *cow,
302 u64 start, u64 ram_size,
303 u64 compressed_size,
304 struct page **pages,
261507a0
LZ
305 unsigned long nr_pages,
306 int compress_type)
771ed689
CM
307{
308 struct async_extent *async_extent;
309
310 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 311 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
312 async_extent->start = start;
313 async_extent->ram_size = ram_size;
314 async_extent->compressed_size = compressed_size;
315 async_extent->pages = pages;
316 async_extent->nr_pages = nr_pages;
261507a0 317 async_extent->compress_type = compress_type;
771ed689
CM
318 list_add_tail(&async_extent->list, &cow->extents);
319 return 0;
320}
321
d352ac68 322/*
771ed689
CM
323 * we create compressed extents in two phases. The first
324 * phase compresses a range of pages that have already been
325 * locked (both pages and state bits are locked).
c8b97818 326 *
771ed689
CM
327 * This is done inside an ordered work queue, and the compression
328 * is spread across many cpus. The actual IO submission is step
329 * two, and the ordered work queue takes care of making sure that
330 * happens in the same order things were put onto the queue by
331 * writepages and friends.
c8b97818 332 *
771ed689
CM
333 * If this code finds it can't get good compression, it puts an
334 * entry onto the work queue to write the uncompressed bytes. This
335 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
336 * are written in the same order that the flusher thread sent them
337 * down.
d352ac68 338 */
771ed689
CM
339static noinline int compress_file_range(struct inode *inode,
340 struct page *locked_page,
341 u64 start, u64 end,
342 struct async_cow *async_cow,
343 int *num_added)
b888db2b
CM
344{
345 struct btrfs_root *root = BTRFS_I(inode)->root;
346 struct btrfs_trans_handle *trans;
db94535d 347 u64 num_bytes;
db94535d 348 u64 blocksize = root->sectorsize;
c8b97818 349 u64 actual_end;
42dc7bab 350 u64 isize = i_size_read(inode);
e6dcd2dc 351 int ret = 0;
c8b97818
CM
352 struct page **pages = NULL;
353 unsigned long nr_pages;
354 unsigned long nr_pages_ret = 0;
355 unsigned long total_compressed = 0;
356 unsigned long total_in = 0;
357 unsigned long max_compressed = 128 * 1024;
771ed689 358 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
359 int i;
360 int will_compress;
261507a0 361 int compress_type = root->fs_info->compress_type;
4adaa611 362 int redirty = 0;
b888db2b 363
4cb13e5d
LB
364 /* if this is a small write inside eof, kick off a defrag */
365 if ((end - start + 1) < 16 * 1024 &&
366 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
367 btrfs_add_inode_defrag(NULL, inode);
368
42dc7bab 369 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
370again:
371 will_compress = 0;
372 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
373 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 374
f03d9301
CM
375 /*
376 * we don't want to send crud past the end of i_size through
377 * compression, that's just a waste of CPU time. So, if the
378 * end of the file is before the start of our current
379 * requested range of bytes, we bail out to the uncompressed
380 * cleanup code that can deal with all of this.
381 *
382 * It isn't really the fastest way to fix things, but this is a
383 * very uncommon corner.
384 */
385 if (actual_end <= start)
386 goto cleanup_and_bail_uncompressed;
387
c8b97818
CM
388 total_compressed = actual_end - start;
389
390 /* we want to make sure that amount of ram required to uncompress
391 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
392 * of a compressed extent to 128k. This is a crucial number
393 * because it also controls how easily we can spread reads across
394 * cpus for decompression.
395 *
396 * We also want to make sure the amount of IO required to do
397 * a random read is reasonably small, so we limit the size of
398 * a compressed extent to 128k.
c8b97818
CM
399 */
400 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 401 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 402 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
403 total_in = 0;
404 ret = 0;
db94535d 405
771ed689
CM
406 /*
407 * we do compression for mount -o compress and when the
408 * inode has not been flagged as nocompress. This flag can
409 * change at any time if we discover bad compression ratios.
c8b97818 410 */
6cbff00f 411 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 412 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
413 (BTRFS_I(inode)->force_compress) ||
414 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 415 WARN_ON(pages);
cfbc246e 416 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
417 if (!pages) {
418 /* just bail out to the uncompressed code */
419 goto cont;
420 }
c8b97818 421
261507a0
LZ
422 if (BTRFS_I(inode)->force_compress)
423 compress_type = BTRFS_I(inode)->force_compress;
424
4adaa611
CM
425 /*
426 * we need to call clear_page_dirty_for_io on each
427 * page in the range. Otherwise applications with the file
428 * mmap'd can wander in and change the page contents while
429 * we are compressing them.
430 *
431 * If the compression fails for any reason, we set the pages
432 * dirty again later on.
433 */
434 extent_range_clear_dirty_for_io(inode, start, end);
435 redirty = 1;
261507a0
LZ
436 ret = btrfs_compress_pages(compress_type,
437 inode->i_mapping, start,
438 total_compressed, pages,
439 nr_pages, &nr_pages_ret,
440 &total_in,
441 &total_compressed,
442 max_compressed);
c8b97818
CM
443
444 if (!ret) {
445 unsigned long offset = total_compressed &
446 (PAGE_CACHE_SIZE - 1);
447 struct page *page = pages[nr_pages_ret - 1];
448 char *kaddr;
449
450 /* zero the tail end of the last page, we might be
451 * sending it down to disk
452 */
453 if (offset) {
7ac687d9 454 kaddr = kmap_atomic(page);
c8b97818
CM
455 memset(kaddr + offset, 0,
456 PAGE_CACHE_SIZE - offset);
7ac687d9 457 kunmap_atomic(kaddr);
c8b97818
CM
458 }
459 will_compress = 1;
460 }
461 }
560f7d75 462cont:
c8b97818 463 if (start == 0) {
7a7eaa40 464 trans = btrfs_join_transaction(root);
79787eaa
JM
465 if (IS_ERR(trans)) {
466 ret = PTR_ERR(trans);
467 trans = NULL;
468 goto cleanup_and_out;
469 }
0ca1f7ce 470 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 471
c8b97818 472 /* lets try to make an inline extent */
771ed689 473 if (ret || total_in < (actual_end - start)) {
c8b97818 474 /* we didn't compress the entire range, try
771ed689 475 * to make an uncompressed inline extent.
c8b97818
CM
476 */
477 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 478 start, end, 0, 0, NULL);
c8b97818 479 } else {
771ed689 480 /* try making a compressed inline extent */
c8b97818
CM
481 ret = cow_file_range_inline(trans, root, inode,
482 start, end,
fe3f566c
LZ
483 total_compressed,
484 compress_type, pages);
c8b97818 485 }
79787eaa 486 if (ret <= 0) {
151a41bc
JB
487 unsigned long clear_flags = EXTENT_DELALLOC |
488 EXTENT_DEFRAG;
489 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
490
771ed689 491 /*
79787eaa
JM
492 * inline extent creation worked or returned error,
493 * we don't need to create any more async work items.
494 * Unlock and free up our temp pages.
771ed689 495 */
c2790a2e 496 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 497 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
498 PAGE_CLEAR_DIRTY |
499 PAGE_SET_WRITEBACK |
500 PAGE_END_WRITEBACK);
c2167754 501 btrfs_end_transaction(trans, root);
c8b97818
CM
502 goto free_pages_out;
503 }
c2167754 504 btrfs_end_transaction(trans, root);
c8b97818
CM
505 }
506
507 if (will_compress) {
508 /*
509 * we aren't doing an inline extent round the compressed size
510 * up to a block size boundary so the allocator does sane
511 * things
512 */
fda2832f 513 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
514
515 /*
516 * one last check to make sure the compression is really a
517 * win, compare the page count read with the blocks on disk
518 */
fda2832f 519 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
520 if (total_compressed >= total_in) {
521 will_compress = 0;
522 } else {
c8b97818
CM
523 num_bytes = total_in;
524 }
525 }
526 if (!will_compress && pages) {
527 /*
528 * the compression code ran but failed to make things smaller,
529 * free any pages it allocated and our page pointer array
530 */
531 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 532 WARN_ON(pages[i]->mapping);
c8b97818
CM
533 page_cache_release(pages[i]);
534 }
535 kfree(pages);
536 pages = NULL;
537 total_compressed = 0;
538 nr_pages_ret = 0;
539
540 /* flag the file so we don't compress in the future */
1e701a32
CM
541 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
542 !(BTRFS_I(inode)->force_compress)) {
a555f810 543 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 544 }
c8b97818 545 }
771ed689
CM
546 if (will_compress) {
547 *num_added += 1;
c8b97818 548
771ed689
CM
549 /* the async work queues will take care of doing actual
550 * allocation on disk for these compressed pages,
551 * and will submit them to the elevator.
552 */
553 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
554 total_compressed, pages, nr_pages_ret,
555 compress_type);
179e29e4 556
24ae6365 557 if (start + num_bytes < end) {
771ed689
CM
558 start += num_bytes;
559 pages = NULL;
560 cond_resched();
561 goto again;
562 }
563 } else {
f03d9301 564cleanup_and_bail_uncompressed:
771ed689
CM
565 /*
566 * No compression, but we still need to write the pages in
567 * the file we've been given so far. redirty the locked
568 * page if it corresponds to our extent and set things up
569 * for the async work queue to run cow_file_range to do
570 * the normal delalloc dance
571 */
572 if (page_offset(locked_page) >= start &&
573 page_offset(locked_page) <= end) {
574 __set_page_dirty_nobuffers(locked_page);
575 /* unlocked later on in the async handlers */
576 }
4adaa611
CM
577 if (redirty)
578 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
579 add_async_extent(async_cow, start, end - start + 1,
580 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
581 *num_added += 1;
582 }
3b951516 583
771ed689 584out:
79787eaa 585 return ret;
771ed689
CM
586
587free_pages_out:
588 for (i = 0; i < nr_pages_ret; i++) {
589 WARN_ON(pages[i]->mapping);
590 page_cache_release(pages[i]);
591 }
d397712b 592 kfree(pages);
771ed689
CM
593
594 goto out;
79787eaa
JM
595
596cleanup_and_out:
c2790a2e 597 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc
JB
598 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
599 EXTENT_DEFRAG, PAGE_UNLOCK |
600 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
601 PAGE_END_WRITEBACK);
79787eaa
JM
602 if (!trans || IS_ERR(trans))
603 btrfs_error(root->fs_info, ret, "Failed to join transaction");
604 else
605 btrfs_abort_transaction(trans, root, ret);
606 goto free_pages_out;
771ed689
CM
607}
608
609/*
610 * phase two of compressed writeback. This is the ordered portion
611 * of the code, which only gets called in the order the work was
612 * queued. We walk all the async extents created by compress_file_range
613 * and send them down to the disk.
614 */
615static noinline int submit_compressed_extents(struct inode *inode,
616 struct async_cow *async_cow)
617{
618 struct async_extent *async_extent;
619 u64 alloc_hint = 0;
620 struct btrfs_trans_handle *trans;
621 struct btrfs_key ins;
622 struct extent_map *em;
623 struct btrfs_root *root = BTRFS_I(inode)->root;
624 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
625 struct extent_io_tree *io_tree;
f5a84ee3 626 int ret = 0;
771ed689
CM
627
628 if (list_empty(&async_cow->extents))
629 return 0;
630
3e04e7f1 631again:
d397712b 632 while (!list_empty(&async_cow->extents)) {
771ed689
CM
633 async_extent = list_entry(async_cow->extents.next,
634 struct async_extent, list);
635 list_del(&async_extent->list);
c8b97818 636
771ed689
CM
637 io_tree = &BTRFS_I(inode)->io_tree;
638
f5a84ee3 639retry:
771ed689
CM
640 /* did the compression code fall back to uncompressed IO? */
641 if (!async_extent->pages) {
642 int page_started = 0;
643 unsigned long nr_written = 0;
644
645 lock_extent(io_tree, async_extent->start,
2ac55d41 646 async_extent->start +
d0082371 647 async_extent->ram_size - 1);
771ed689
CM
648
649 /* allocate blocks */
f5a84ee3
JB
650 ret = cow_file_range(inode, async_cow->locked_page,
651 async_extent->start,
652 async_extent->start +
653 async_extent->ram_size - 1,
654 &page_started, &nr_written, 0);
771ed689 655
79787eaa
JM
656 /* JDM XXX */
657
771ed689
CM
658 /*
659 * if page_started, cow_file_range inserted an
660 * inline extent and took care of all the unlocking
661 * and IO for us. Otherwise, we need to submit
662 * all those pages down to the drive.
663 */
f5a84ee3 664 if (!page_started && !ret)
771ed689
CM
665 extent_write_locked_range(io_tree,
666 inode, async_extent->start,
d397712b 667 async_extent->start +
771ed689
CM
668 async_extent->ram_size - 1,
669 btrfs_get_extent,
670 WB_SYNC_ALL);
3e04e7f1
JB
671 else if (ret)
672 unlock_page(async_cow->locked_page);
771ed689
CM
673 kfree(async_extent);
674 cond_resched();
675 continue;
676 }
677
678 lock_extent(io_tree, async_extent->start,
d0082371 679 async_extent->start + async_extent->ram_size - 1);
771ed689 680
7a7eaa40 681 trans = btrfs_join_transaction(root);
79787eaa
JM
682 if (IS_ERR(trans)) {
683 ret = PTR_ERR(trans);
684 } else {
685 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
686 ret = btrfs_reserve_extent(trans, root,
771ed689
CM
687 async_extent->compressed_size,
688 async_extent->compressed_size,
81c9ad23 689 0, alloc_hint, &ins, 1);
962197ba 690 if (ret && ret != -ENOSPC)
79787eaa
JM
691 btrfs_abort_transaction(trans, root, ret);
692 btrfs_end_transaction(trans, root);
693 }
c2167754 694
f5a84ee3
JB
695 if (ret) {
696 int i;
3e04e7f1 697
f5a84ee3
JB
698 for (i = 0; i < async_extent->nr_pages; i++) {
699 WARN_ON(async_extent->pages[i]->mapping);
700 page_cache_release(async_extent->pages[i]);
701 }
702 kfree(async_extent->pages);
703 async_extent->nr_pages = 0;
704 async_extent->pages = NULL;
3e04e7f1 705
fdf8e2ea
JB
706 if (ret == -ENOSPC) {
707 unlock_extent(io_tree, async_extent->start,
708 async_extent->start +
709 async_extent->ram_size - 1);
79787eaa 710 goto retry;
fdf8e2ea 711 }
3e04e7f1 712 goto out_free;
f5a84ee3
JB
713 }
714
c2167754
YZ
715 /*
716 * here we're doing allocation and writeback of the
717 * compressed pages
718 */
719 btrfs_drop_extent_cache(inode, async_extent->start,
720 async_extent->start +
721 async_extent->ram_size - 1, 0);
722
172ddd60 723 em = alloc_extent_map();
b9aa55be
LB
724 if (!em) {
725 ret = -ENOMEM;
3e04e7f1 726 goto out_free_reserve;
b9aa55be 727 }
771ed689
CM
728 em->start = async_extent->start;
729 em->len = async_extent->ram_size;
445a6944 730 em->orig_start = em->start;
2ab28f32
JB
731 em->mod_start = em->start;
732 em->mod_len = em->len;
c8b97818 733
771ed689
CM
734 em->block_start = ins.objectid;
735 em->block_len = ins.offset;
b4939680 736 em->orig_block_len = ins.offset;
cc95bef6 737 em->ram_bytes = async_extent->ram_size;
771ed689 738 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 739 em->compress_type = async_extent->compress_type;
771ed689
CM
740 set_bit(EXTENT_FLAG_PINNED, &em->flags);
741 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 742 em->generation = -1;
771ed689 743
d397712b 744 while (1) {
890871be 745 write_lock(&em_tree->lock);
09a2a8f9 746 ret = add_extent_mapping(em_tree, em, 1);
890871be 747 write_unlock(&em_tree->lock);
771ed689
CM
748 if (ret != -EEXIST) {
749 free_extent_map(em);
750 break;
751 }
752 btrfs_drop_extent_cache(inode, async_extent->start,
753 async_extent->start +
754 async_extent->ram_size - 1, 0);
755 }
756
3e04e7f1
JB
757 if (ret)
758 goto out_free_reserve;
759
261507a0
LZ
760 ret = btrfs_add_ordered_extent_compress(inode,
761 async_extent->start,
762 ins.objectid,
763 async_extent->ram_size,
764 ins.offset,
765 BTRFS_ORDERED_COMPRESSED,
766 async_extent->compress_type);
3e04e7f1
JB
767 if (ret)
768 goto out_free_reserve;
771ed689 769
771ed689
CM
770 /*
771 * clear dirty, set writeback and unlock the pages.
772 */
c2790a2e 773 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
774 async_extent->start +
775 async_extent->ram_size - 1,
151a41bc
JB
776 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
777 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 778 PAGE_SET_WRITEBACK);
771ed689 779 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
780 async_extent->start,
781 async_extent->ram_size,
782 ins.objectid,
783 ins.offset, async_extent->pages,
784 async_extent->nr_pages);
771ed689
CM
785 alloc_hint = ins.objectid + ins.offset;
786 kfree(async_extent);
3e04e7f1
JB
787 if (ret)
788 goto out;
771ed689
CM
789 cond_resched();
790 }
79787eaa
JM
791 ret = 0;
792out:
793 return ret;
3e04e7f1
JB
794out_free_reserve:
795 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 796out_free:
c2790a2e 797 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
798 async_extent->start +
799 async_extent->ram_size - 1,
c2790a2e 800 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
801 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
802 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
803 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 804 kfree(async_extent);
3e04e7f1 805 goto again;
771ed689
CM
806}
807
4b46fce2
JB
808static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
809 u64 num_bytes)
810{
811 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
812 struct extent_map *em;
813 u64 alloc_hint = 0;
814
815 read_lock(&em_tree->lock);
816 em = search_extent_mapping(em_tree, start, num_bytes);
817 if (em) {
818 /*
819 * if block start isn't an actual block number then find the
820 * first block in this inode and use that as a hint. If that
821 * block is also bogus then just don't worry about it.
822 */
823 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
824 free_extent_map(em);
825 em = search_extent_mapping(em_tree, 0, 0);
826 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
827 alloc_hint = em->block_start;
828 if (em)
829 free_extent_map(em);
830 } else {
831 alloc_hint = em->block_start;
832 free_extent_map(em);
833 }
834 }
835 read_unlock(&em_tree->lock);
836
837 return alloc_hint;
838}
839
771ed689
CM
840/*
841 * when extent_io.c finds a delayed allocation range in the file,
842 * the call backs end up in this code. The basic idea is to
843 * allocate extents on disk for the range, and create ordered data structs
844 * in ram to track those extents.
845 *
846 * locked_page is the page that writepage had locked already. We use
847 * it to make sure we don't do extra locks or unlocks.
848 *
849 * *page_started is set to one if we unlock locked_page and do everything
850 * required to start IO on it. It may be clean and already done with
851 * IO when we return.
852 */
b7d5b0a8
MX
853static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
854 struct inode *inode,
855 struct btrfs_root *root,
856 struct page *locked_page,
857 u64 start, u64 end, int *page_started,
858 unsigned long *nr_written,
859 int unlock)
771ed689 860{
771ed689
CM
861 u64 alloc_hint = 0;
862 u64 num_bytes;
863 unsigned long ram_size;
864 u64 disk_num_bytes;
865 u64 cur_alloc_size;
866 u64 blocksize = root->sectorsize;
771ed689
CM
867 struct btrfs_key ins;
868 struct extent_map *em;
869 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870 int ret = 0;
871
83eea1f1 872 BUG_ON(btrfs_is_free_space_inode(inode));
771ed689 873
fda2832f 874 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
875 num_bytes = max(blocksize, num_bytes);
876 disk_num_bytes = num_bytes;
771ed689 877
4cb5300b 878 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
879 if (num_bytes < 64 * 1024 &&
880 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
881 btrfs_add_inode_defrag(trans, inode);
882
771ed689
CM
883 if (start == 0) {
884 /* lets try to make an inline extent */
885 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 886 start, end, 0, 0, NULL);
771ed689 887 if (ret == 0) {
c2790a2e
JB
888 extent_clear_unlock_delalloc(inode, start, end, NULL,
889 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 890 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
891 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
892 PAGE_END_WRITEBACK);
c2167754 893
771ed689
CM
894 *nr_written = *nr_written +
895 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
896 *page_started = 1;
771ed689 897 goto out;
79787eaa
JM
898 } else if (ret < 0) {
899 btrfs_abort_transaction(trans, root, ret);
900 goto out_unlock;
771ed689
CM
901 }
902 }
903
904 BUG_ON(disk_num_bytes >
6c41761f 905 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 906
4b46fce2 907 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
908 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
909
d397712b 910 while (disk_num_bytes > 0) {
a791e35e
CM
911 unsigned long op;
912
287a0ab9 913 cur_alloc_size = disk_num_bytes;
e6dcd2dc 914 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 915 root->sectorsize, 0, alloc_hint,
81c9ad23 916 &ins, 1);
79787eaa
JM
917 if (ret < 0) {
918 btrfs_abort_transaction(trans, root, ret);
919 goto out_unlock;
920 }
d397712b 921
172ddd60 922 em = alloc_extent_map();
b9aa55be
LB
923 if (!em) {
924 ret = -ENOMEM;
ace68bac 925 goto out_reserve;
b9aa55be 926 }
e6dcd2dc 927 em->start = start;
445a6944 928 em->orig_start = em->start;
771ed689
CM
929 ram_size = ins.offset;
930 em->len = ins.offset;
2ab28f32
JB
931 em->mod_start = em->start;
932 em->mod_len = em->len;
c8b97818 933
e6dcd2dc 934 em->block_start = ins.objectid;
c8b97818 935 em->block_len = ins.offset;
b4939680 936 em->orig_block_len = ins.offset;
cc95bef6 937 em->ram_bytes = ram_size;
e6dcd2dc 938 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 939 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 940 em->generation = -1;
c8b97818 941
d397712b 942 while (1) {
890871be 943 write_lock(&em_tree->lock);
09a2a8f9 944 ret = add_extent_mapping(em_tree, em, 1);
890871be 945 write_unlock(&em_tree->lock);
e6dcd2dc
CM
946 if (ret != -EEXIST) {
947 free_extent_map(em);
948 break;
949 }
950 btrfs_drop_extent_cache(inode, start,
c8b97818 951 start + ram_size - 1, 0);
e6dcd2dc 952 }
ace68bac
LB
953 if (ret)
954 goto out_reserve;
e6dcd2dc 955
98d20f67 956 cur_alloc_size = ins.offset;
e6dcd2dc 957 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 958 ram_size, cur_alloc_size, 0);
ace68bac
LB
959 if (ret)
960 goto out_reserve;
c8b97818 961
17d217fe
YZ
962 if (root->root_key.objectid ==
963 BTRFS_DATA_RELOC_TREE_OBJECTID) {
964 ret = btrfs_reloc_clone_csums(inode, start,
965 cur_alloc_size);
79787eaa
JM
966 if (ret) {
967 btrfs_abort_transaction(trans, root, ret);
ace68bac 968 goto out_reserve;
79787eaa 969 }
17d217fe
YZ
970 }
971
d397712b 972 if (disk_num_bytes < cur_alloc_size)
3b951516 973 break;
d397712b 974
c8b97818
CM
975 /* we're not doing compressed IO, don't unlock the first
976 * page (which the caller expects to stay locked), don't
977 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
978 *
979 * Do set the Private2 bit so we know this page was properly
980 * setup for writepage
c8b97818 981 */
c2790a2e
JB
982 op = unlock ? PAGE_UNLOCK : 0;
983 op |= PAGE_SET_PRIVATE2;
a791e35e 984
c2790a2e
JB
985 extent_clear_unlock_delalloc(inode, start,
986 start + ram_size - 1, locked_page,
987 EXTENT_LOCKED | EXTENT_DELALLOC,
988 op);
c8b97818 989 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
990 num_bytes -= cur_alloc_size;
991 alloc_hint = ins.objectid + ins.offset;
992 start += cur_alloc_size;
b888db2b 993 }
79787eaa 994out:
be20aa9d 995 return ret;
b7d5b0a8 996
ace68bac
LB
997out_reserve:
998 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
79787eaa 999out_unlock:
c2790a2e 1000 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1001 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1002 EXTENT_DELALLOC | EXTENT_DEFRAG,
1003 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1004 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1005 goto out;
771ed689 1006}
c8b97818 1007
b7d5b0a8
MX
1008static noinline int cow_file_range(struct inode *inode,
1009 struct page *locked_page,
1010 u64 start, u64 end, int *page_started,
1011 unsigned long *nr_written,
1012 int unlock)
1013{
1014 struct btrfs_trans_handle *trans;
1015 struct btrfs_root *root = BTRFS_I(inode)->root;
1016 int ret;
1017
1018 trans = btrfs_join_transaction(root);
1019 if (IS_ERR(trans)) {
c2790a2e
JB
1020 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1021 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1022 EXTENT_DO_ACCOUNTING |
1023 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1024 PAGE_CLEAR_DIRTY |
1025 PAGE_SET_WRITEBACK |
1026 PAGE_END_WRITEBACK);
b7d5b0a8
MX
1027 return PTR_ERR(trans);
1028 }
1029 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1030
1031 ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1032 page_started, nr_written, unlock);
1033
1034 btrfs_end_transaction(trans, root);
1035
1036 return ret;
1037}
1038
771ed689
CM
1039/*
1040 * work queue call back to started compression on a file and pages
1041 */
1042static noinline void async_cow_start(struct btrfs_work *work)
1043{
1044 struct async_cow *async_cow;
1045 int num_added = 0;
1046 async_cow = container_of(work, struct async_cow, work);
1047
1048 compress_file_range(async_cow->inode, async_cow->locked_page,
1049 async_cow->start, async_cow->end, async_cow,
1050 &num_added);
8180ef88 1051 if (num_added == 0) {
cb77fcd8 1052 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1053 async_cow->inode = NULL;
8180ef88 1054 }
771ed689
CM
1055}
1056
1057/*
1058 * work queue call back to submit previously compressed pages
1059 */
1060static noinline void async_cow_submit(struct btrfs_work *work)
1061{
1062 struct async_cow *async_cow;
1063 struct btrfs_root *root;
1064 unsigned long nr_pages;
1065
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 root = async_cow->root;
1069 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1070 PAGE_CACHE_SHIFT;
1071
66657b31 1072 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1073 5 * 1024 * 1024 &&
771ed689
CM
1074 waitqueue_active(&root->fs_info->async_submit_wait))
1075 wake_up(&root->fs_info->async_submit_wait);
1076
d397712b 1077 if (async_cow->inode)
771ed689 1078 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1079}
c8b97818 1080
771ed689
CM
1081static noinline void async_cow_free(struct btrfs_work *work)
1082{
1083 struct async_cow *async_cow;
1084 async_cow = container_of(work, struct async_cow, work);
8180ef88 1085 if (async_cow->inode)
cb77fcd8 1086 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1087 kfree(async_cow);
1088}
1089
1090static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1091 u64 start, u64 end, int *page_started,
1092 unsigned long *nr_written)
1093{
1094 struct async_cow *async_cow;
1095 struct btrfs_root *root = BTRFS_I(inode)->root;
1096 unsigned long nr_pages;
1097 u64 cur_end;
287082b0 1098 int limit = 10 * 1024 * 1024;
771ed689 1099
a3429ab7
CM
1100 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1101 1, 0, NULL, GFP_NOFS);
d397712b 1102 while (start < end) {
771ed689 1103 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1104 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1105 async_cow->inode = igrab(inode);
771ed689
CM
1106 async_cow->root = root;
1107 async_cow->locked_page = locked_page;
1108 async_cow->start = start;
1109
6cbff00f 1110 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
1111 cur_end = end;
1112 else
1113 cur_end = min(end, start + 512 * 1024 - 1);
1114
1115 async_cow->end = cur_end;
1116 INIT_LIST_HEAD(&async_cow->extents);
1117
1118 async_cow->work.func = async_cow_start;
1119 async_cow->work.ordered_func = async_cow_submit;
1120 async_cow->work.ordered_free = async_cow_free;
1121 async_cow->work.flags = 0;
1122
771ed689
CM
1123 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1124 PAGE_CACHE_SHIFT;
1125 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1126
1127 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1128 &async_cow->work);
1129
1130 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1131 wait_event(root->fs_info->async_submit_wait,
1132 (atomic_read(&root->fs_info->async_delalloc_pages) <
1133 limit));
1134 }
1135
d397712b 1136 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1137 atomic_read(&root->fs_info->async_delalloc_pages)) {
1138 wait_event(root->fs_info->async_submit_wait,
1139 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1140 0));
1141 }
1142
1143 *nr_written += nr_pages;
1144 start = cur_end + 1;
1145 }
1146 *page_started = 1;
1147 return 0;
be20aa9d
CM
1148}
1149
d397712b 1150static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1151 u64 bytenr, u64 num_bytes)
1152{
1153 int ret;
1154 struct btrfs_ordered_sum *sums;
1155 LIST_HEAD(list);
1156
07d400a6 1157 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1158 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1159 if (ret == 0 && list_empty(&list))
1160 return 0;
1161
1162 while (!list_empty(&list)) {
1163 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1164 list_del(&sums->list);
1165 kfree(sums);
1166 }
1167 return 1;
1168}
1169
d352ac68
CM
1170/*
1171 * when nowcow writeback call back. This checks for snapshots or COW copies
1172 * of the extents that exist in the file, and COWs the file as required.
1173 *
1174 * If no cow copies or snapshots exist, we write directly to the existing
1175 * blocks on disk
1176 */
7f366cfe
CM
1177static noinline int run_delalloc_nocow(struct inode *inode,
1178 struct page *locked_page,
771ed689
CM
1179 u64 start, u64 end, int *page_started, int force,
1180 unsigned long *nr_written)
be20aa9d 1181{
be20aa9d 1182 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1183 struct btrfs_trans_handle *trans;
be20aa9d 1184 struct extent_buffer *leaf;
be20aa9d 1185 struct btrfs_path *path;
80ff3856 1186 struct btrfs_file_extent_item *fi;
be20aa9d 1187 struct btrfs_key found_key;
80ff3856
YZ
1188 u64 cow_start;
1189 u64 cur_offset;
1190 u64 extent_end;
5d4f98a2 1191 u64 extent_offset;
80ff3856
YZ
1192 u64 disk_bytenr;
1193 u64 num_bytes;
b4939680 1194 u64 disk_num_bytes;
cc95bef6 1195 u64 ram_bytes;
80ff3856 1196 int extent_type;
79787eaa 1197 int ret, err;
d899e052 1198 int type;
80ff3856
YZ
1199 int nocow;
1200 int check_prev = 1;
82d5902d 1201 bool nolock;
33345d01 1202 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1203
1204 path = btrfs_alloc_path();
17ca04af 1205 if (!path) {
c2790a2e
JB
1206 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1207 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1208 EXTENT_DO_ACCOUNTING |
1209 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1210 PAGE_CLEAR_DIRTY |
1211 PAGE_SET_WRITEBACK |
1212 PAGE_END_WRITEBACK);
d8926bb3 1213 return -ENOMEM;
17ca04af 1214 }
82d5902d 1215
83eea1f1 1216 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1217
1218 if (nolock)
7a7eaa40 1219 trans = btrfs_join_transaction_nolock(root);
82d5902d 1220 else
7a7eaa40 1221 trans = btrfs_join_transaction(root);
ff5714cc 1222
79787eaa 1223 if (IS_ERR(trans)) {
c2790a2e
JB
1224 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1225 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1226 EXTENT_DO_ACCOUNTING |
1227 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1228 PAGE_CLEAR_DIRTY |
1229 PAGE_SET_WRITEBACK |
1230 PAGE_END_WRITEBACK);
79787eaa
JM
1231 btrfs_free_path(path);
1232 return PTR_ERR(trans);
1233 }
1234
74b21075 1235 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1236
80ff3856
YZ
1237 cow_start = (u64)-1;
1238 cur_offset = start;
1239 while (1) {
33345d01 1240 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1241 cur_offset, 0);
79787eaa
JM
1242 if (ret < 0) {
1243 btrfs_abort_transaction(trans, root, ret);
1244 goto error;
1245 }
80ff3856
YZ
1246 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &found_key,
1249 path->slots[0] - 1);
33345d01 1250 if (found_key.objectid == ino &&
80ff3856
YZ
1251 found_key.type == BTRFS_EXTENT_DATA_KEY)
1252 path->slots[0]--;
1253 }
1254 check_prev = 0;
1255next_slot:
1256 leaf = path->nodes[0];
1257 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1258 ret = btrfs_next_leaf(root, path);
79787eaa
JM
1259 if (ret < 0) {
1260 btrfs_abort_transaction(trans, root, ret);
1261 goto error;
1262 }
80ff3856
YZ
1263 if (ret > 0)
1264 break;
1265 leaf = path->nodes[0];
1266 }
be20aa9d 1267
80ff3856
YZ
1268 nocow = 0;
1269 disk_bytenr = 0;
17d217fe 1270 num_bytes = 0;
80ff3856
YZ
1271 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1272
33345d01 1273 if (found_key.objectid > ino ||
80ff3856
YZ
1274 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1275 found_key.offset > end)
1276 break;
1277
1278 if (found_key.offset > cur_offset) {
1279 extent_end = found_key.offset;
e9061e21 1280 extent_type = 0;
80ff3856
YZ
1281 goto out_check;
1282 }
1283
1284 fi = btrfs_item_ptr(leaf, path->slots[0],
1285 struct btrfs_file_extent_item);
1286 extent_type = btrfs_file_extent_type(leaf, fi);
1287
cc95bef6 1288 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1289 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1290 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1291 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1292 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1293 extent_end = found_key.offset +
1294 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1295 disk_num_bytes =
1296 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1297 if (extent_end <= start) {
1298 path->slots[0]++;
1299 goto next_slot;
1300 }
17d217fe
YZ
1301 if (disk_bytenr == 0)
1302 goto out_check;
80ff3856
YZ
1303 if (btrfs_file_extent_compression(leaf, fi) ||
1304 btrfs_file_extent_encryption(leaf, fi) ||
1305 btrfs_file_extent_other_encoding(leaf, fi))
1306 goto out_check;
d899e052
YZ
1307 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1308 goto out_check;
d2fb3437 1309 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1310 goto out_check;
33345d01 1311 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1312 found_key.offset -
1313 extent_offset, disk_bytenr))
17d217fe 1314 goto out_check;
5d4f98a2 1315 disk_bytenr += extent_offset;
17d217fe
YZ
1316 disk_bytenr += cur_offset - found_key.offset;
1317 num_bytes = min(end + 1, extent_end) - cur_offset;
1318 /*
1319 * force cow if csum exists in the range.
1320 * this ensure that csum for a given extent are
1321 * either valid or do not exist.
1322 */
1323 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1324 goto out_check;
80ff3856
YZ
1325 nocow = 1;
1326 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1327 extent_end = found_key.offset +
1328 btrfs_file_extent_inline_len(leaf, fi);
1329 extent_end = ALIGN(extent_end, root->sectorsize);
1330 } else {
1331 BUG_ON(1);
1332 }
1333out_check:
1334 if (extent_end <= start) {
1335 path->slots[0]++;
1336 goto next_slot;
1337 }
1338 if (!nocow) {
1339 if (cow_start == (u64)-1)
1340 cow_start = cur_offset;
1341 cur_offset = extent_end;
1342 if (cur_offset > end)
1343 break;
1344 path->slots[0]++;
1345 goto next_slot;
7ea394f1
YZ
1346 }
1347
b3b4aa74 1348 btrfs_release_path(path);
80ff3856 1349 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1350 ret = __cow_file_range(trans, inode, root, locked_page,
1351 cow_start, found_key.offset - 1,
1352 page_started, nr_written, 1);
79787eaa
JM
1353 if (ret) {
1354 btrfs_abort_transaction(trans, root, ret);
1355 goto error;
1356 }
80ff3856 1357 cow_start = (u64)-1;
7ea394f1 1358 }
80ff3856 1359
d899e052
YZ
1360 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1361 struct extent_map *em;
1362 struct extent_map_tree *em_tree;
1363 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1364 em = alloc_extent_map();
79787eaa 1365 BUG_ON(!em); /* -ENOMEM */
d899e052 1366 em->start = cur_offset;
70c8a91c 1367 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1368 em->len = num_bytes;
1369 em->block_len = num_bytes;
1370 em->block_start = disk_bytenr;
b4939680 1371 em->orig_block_len = disk_num_bytes;
cc95bef6 1372 em->ram_bytes = ram_bytes;
d899e052 1373 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1374 em->mod_start = em->start;
1375 em->mod_len = em->len;
d899e052 1376 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1377 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1378 em->generation = -1;
d899e052 1379 while (1) {
890871be 1380 write_lock(&em_tree->lock);
09a2a8f9 1381 ret = add_extent_mapping(em_tree, em, 1);
890871be 1382 write_unlock(&em_tree->lock);
d899e052
YZ
1383 if (ret != -EEXIST) {
1384 free_extent_map(em);
1385 break;
1386 }
1387 btrfs_drop_extent_cache(inode, em->start,
1388 em->start + em->len - 1, 0);
1389 }
1390 type = BTRFS_ORDERED_PREALLOC;
1391 } else {
1392 type = BTRFS_ORDERED_NOCOW;
1393 }
80ff3856
YZ
1394
1395 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1396 num_bytes, num_bytes, type);
79787eaa 1397 BUG_ON(ret); /* -ENOMEM */
771ed689 1398
efa56464
YZ
1399 if (root->root_key.objectid ==
1400 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1401 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1402 num_bytes);
79787eaa
JM
1403 if (ret) {
1404 btrfs_abort_transaction(trans, root, ret);
1405 goto error;
1406 }
efa56464
YZ
1407 }
1408
c2790a2e
JB
1409 extent_clear_unlock_delalloc(inode, cur_offset,
1410 cur_offset + num_bytes - 1,
1411 locked_page, EXTENT_LOCKED |
1412 EXTENT_DELALLOC, PAGE_UNLOCK |
1413 PAGE_SET_PRIVATE2);
80ff3856
YZ
1414 cur_offset = extent_end;
1415 if (cur_offset > end)
1416 break;
be20aa9d 1417 }
b3b4aa74 1418 btrfs_release_path(path);
80ff3856 1419
17ca04af 1420 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1421 cow_start = cur_offset;
17ca04af
JB
1422 cur_offset = end;
1423 }
1424
80ff3856 1425 if (cow_start != (u64)-1) {
b7d5b0a8
MX
1426 ret = __cow_file_range(trans, inode, root, locked_page,
1427 cow_start, end,
1428 page_started, nr_written, 1);
79787eaa
JM
1429 if (ret) {
1430 btrfs_abort_transaction(trans, root, ret);
1431 goto error;
1432 }
80ff3856
YZ
1433 }
1434
79787eaa 1435error:
a698d075 1436 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1437 if (!ret)
1438 ret = err;
1439
17ca04af 1440 if (ret && cur_offset < end)
c2790a2e
JB
1441 extent_clear_unlock_delalloc(inode, cur_offset, end,
1442 locked_page, EXTENT_LOCKED |
151a41bc
JB
1443 EXTENT_DELALLOC | EXTENT_DEFRAG |
1444 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1445 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1446 PAGE_SET_WRITEBACK |
1447 PAGE_END_WRITEBACK);
7ea394f1 1448 btrfs_free_path(path);
79787eaa 1449 return ret;
be20aa9d
CM
1450}
1451
d352ac68
CM
1452/*
1453 * extent_io.c call back to do delayed allocation processing
1454 */
c8b97818 1455static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1456 u64 start, u64 end, int *page_started,
1457 unsigned long *nr_written)
be20aa9d 1458{
be20aa9d 1459 int ret;
7f366cfe 1460 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1461
7ddf5a42 1462 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
c8b97818 1463 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1464 page_started, 1, nr_written);
7ddf5a42 1465 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
d899e052 1466 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1467 page_started, 0, nr_written);
7ddf5a42
JB
1468 } else if (!btrfs_test_opt(root, COMPRESS) &&
1469 !(BTRFS_I(inode)->force_compress) &&
1470 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
7f366cfe
CM
1471 ret = cow_file_range(inode, locked_page, start, end,
1472 page_started, nr_written, 1);
7ddf5a42
JB
1473 } else {
1474 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1475 &BTRFS_I(inode)->runtime_flags);
771ed689 1476 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1477 page_started, nr_written);
7ddf5a42 1478 }
b888db2b
CM
1479 return ret;
1480}
1481
1bf85046
JM
1482static void btrfs_split_extent_hook(struct inode *inode,
1483 struct extent_state *orig, u64 split)
9ed74f2d 1484{
0ca1f7ce 1485 /* not delalloc, ignore it */
9ed74f2d 1486 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1487 return;
9ed74f2d 1488
9e0baf60
JB
1489 spin_lock(&BTRFS_I(inode)->lock);
1490 BTRFS_I(inode)->outstanding_extents++;
1491 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1492}
1493
1494/*
1495 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1496 * extents so we can keep track of new extents that are just merged onto old
1497 * extents, such as when we are doing sequential writes, so we can properly
1498 * account for the metadata space we'll need.
1499 */
1bf85046
JM
1500static void btrfs_merge_extent_hook(struct inode *inode,
1501 struct extent_state *new,
1502 struct extent_state *other)
9ed74f2d 1503{
9ed74f2d
JB
1504 /* not delalloc, ignore it */
1505 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1506 return;
9ed74f2d 1507
9e0baf60
JB
1508 spin_lock(&BTRFS_I(inode)->lock);
1509 BTRFS_I(inode)->outstanding_extents--;
1510 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1511}
1512
eb73c1b7
MX
1513static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1514 struct inode *inode)
1515{
1516 spin_lock(&root->delalloc_lock);
1517 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1518 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1519 &root->delalloc_inodes);
1520 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1521 &BTRFS_I(inode)->runtime_flags);
1522 root->nr_delalloc_inodes++;
1523 if (root->nr_delalloc_inodes == 1) {
1524 spin_lock(&root->fs_info->delalloc_root_lock);
1525 BUG_ON(!list_empty(&root->delalloc_root));
1526 list_add_tail(&root->delalloc_root,
1527 &root->fs_info->delalloc_roots);
1528 spin_unlock(&root->fs_info->delalloc_root_lock);
1529 }
1530 }
1531 spin_unlock(&root->delalloc_lock);
1532}
1533
1534static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1535 struct inode *inode)
1536{
1537 spin_lock(&root->delalloc_lock);
1538 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1539 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1540 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1541 &BTRFS_I(inode)->runtime_flags);
1542 root->nr_delalloc_inodes--;
1543 if (!root->nr_delalloc_inodes) {
1544 spin_lock(&root->fs_info->delalloc_root_lock);
1545 BUG_ON(list_empty(&root->delalloc_root));
1546 list_del_init(&root->delalloc_root);
1547 spin_unlock(&root->fs_info->delalloc_root_lock);
1548 }
1549 }
1550 spin_unlock(&root->delalloc_lock);
1551}
1552
d352ac68
CM
1553/*
1554 * extent_io.c set_bit_hook, used to track delayed allocation
1555 * bytes in this file, and to maintain the list of inodes that
1556 * have pending delalloc work to be done.
1557 */
1bf85046 1558static void btrfs_set_bit_hook(struct inode *inode,
41074888 1559 struct extent_state *state, unsigned long *bits)
291d673e 1560{
9ed74f2d 1561
75eff68e
CM
1562 /*
1563 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1564 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1565 * bit, which is only set or cleared with irqs on
1566 */
0ca1f7ce 1567 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1568 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1569 u64 len = state->end + 1 - state->start;
83eea1f1 1570 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1571
9e0baf60 1572 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1573 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1574 } else {
1575 spin_lock(&BTRFS_I(inode)->lock);
1576 BTRFS_I(inode)->outstanding_extents++;
1577 spin_unlock(&BTRFS_I(inode)->lock);
1578 }
287a0ab9 1579
963d678b
MX
1580 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1581 root->fs_info->delalloc_batch);
df0af1a5 1582 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1583 BTRFS_I(inode)->delalloc_bytes += len;
df0af1a5 1584 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1585 &BTRFS_I(inode)->runtime_flags))
1586 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1587 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1588 }
291d673e
CM
1589}
1590
d352ac68
CM
1591/*
1592 * extent_io.c clear_bit_hook, see set_bit_hook for why
1593 */
1bf85046 1594static void btrfs_clear_bit_hook(struct inode *inode,
41074888
DS
1595 struct extent_state *state,
1596 unsigned long *bits)
291d673e 1597{
75eff68e
CM
1598 /*
1599 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1600 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1601 * bit, which is only set or cleared with irqs on
1602 */
0ca1f7ce 1603 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1604 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1605 u64 len = state->end + 1 - state->start;
83eea1f1 1606 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1607
9e0baf60 1608 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1609 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1610 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1611 spin_lock(&BTRFS_I(inode)->lock);
1612 BTRFS_I(inode)->outstanding_extents--;
1613 spin_unlock(&BTRFS_I(inode)->lock);
1614 }
0ca1f7ce
YZ
1615
1616 if (*bits & EXTENT_DO_ACCOUNTING)
1617 btrfs_delalloc_release_metadata(inode, len);
1618
0cb59c99 1619 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1620 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1621 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1622
963d678b
MX
1623 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1624 root->fs_info->delalloc_batch);
df0af1a5 1625 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1626 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1627 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1628 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1629 &BTRFS_I(inode)->runtime_flags))
1630 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1631 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1632 }
291d673e
CM
1633}
1634
d352ac68
CM
1635/*
1636 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1637 * we don't create bios that span stripes or chunks
1638 */
64a16701 1639int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1640 size_t size, struct bio *bio,
1641 unsigned long bio_flags)
239b14b3
CM
1642{
1643 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
a62b9401 1644 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1645 u64 length = 0;
1646 u64 map_length;
239b14b3
CM
1647 int ret;
1648
771ed689
CM
1649 if (bio_flags & EXTENT_BIO_COMPRESSED)
1650 return 0;
1651
f2d8d74d 1652 length = bio->bi_size;
239b14b3 1653 map_length = length;
64a16701 1654 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1655 &map_length, NULL, 0);
3ec706c8 1656 /* Will always return 0 with map_multi == NULL */
3444a972 1657 BUG_ON(ret < 0);
d397712b 1658 if (map_length < length + size)
239b14b3 1659 return 1;
3444a972 1660 return 0;
239b14b3
CM
1661}
1662
d352ac68
CM
1663/*
1664 * in order to insert checksums into the metadata in large chunks,
1665 * we wait until bio submission time. All the pages in the bio are
1666 * checksummed and sums are attached onto the ordered extent record.
1667 *
1668 * At IO completion time the cums attached on the ordered extent record
1669 * are inserted into the btree
1670 */
d397712b
CM
1671static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1672 struct bio *bio, int mirror_num,
eaf25d93
CM
1673 unsigned long bio_flags,
1674 u64 bio_offset)
065631f6 1675{
065631f6 1676 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1677 int ret = 0;
e015640f 1678
d20f7043 1679 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1680 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1681 return 0;
1682}
e015640f 1683
4a69a410
CM
1684/*
1685 * in order to insert checksums into the metadata in large chunks,
1686 * we wait until bio submission time. All the pages in the bio are
1687 * checksummed and sums are attached onto the ordered extent record.
1688 *
1689 * At IO completion time the cums attached on the ordered extent record
1690 * are inserted into the btree
1691 */
b2950863 1692static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1693 int mirror_num, unsigned long bio_flags,
1694 u64 bio_offset)
4a69a410
CM
1695{
1696 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1697 int ret;
1698
1699 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1700 if (ret)
1701 bio_endio(bio, ret);
1702 return ret;
44b8bd7e
CM
1703}
1704
d352ac68 1705/*
cad321ad
CM
1706 * extent_io.c submission hook. This does the right thing for csum calculation
1707 * on write, or reading the csums from the tree before a read
d352ac68 1708 */
b2950863 1709static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1710 int mirror_num, unsigned long bio_flags,
1711 u64 bio_offset)
44b8bd7e
CM
1712{
1713 struct btrfs_root *root = BTRFS_I(inode)->root;
1714 int ret = 0;
19b9bdb0 1715 int skip_sum;
0417341e 1716 int metadata = 0;
b812ce28 1717 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1718
6cbff00f 1719 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1720
83eea1f1 1721 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1722 metadata = 2;
1723
7b6d91da 1724 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1725 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1726 if (ret)
61891923 1727 goto out;
5fd02043 1728
d20f7043 1729 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1730 ret = btrfs_submit_compressed_read(inode, bio,
1731 mirror_num,
1732 bio_flags);
1733 goto out;
c2db1073
TI
1734 } else if (!skip_sum) {
1735 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1736 if (ret)
61891923 1737 goto out;
c2db1073 1738 }
4d1b5fb4 1739 goto mapit;
b812ce28 1740 } else if (async && !skip_sum) {
17d217fe
YZ
1741 /* csum items have already been cloned */
1742 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1743 goto mapit;
19b9bdb0 1744 /* we're doing a write, do the async checksumming */
61891923 1745 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1746 inode, rw, bio, mirror_num,
eaf25d93
CM
1747 bio_flags, bio_offset,
1748 __btrfs_submit_bio_start,
4a69a410 1749 __btrfs_submit_bio_done);
61891923 1750 goto out;
b812ce28
JB
1751 } else if (!skip_sum) {
1752 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1753 if (ret)
1754 goto out;
19b9bdb0
CM
1755 }
1756
0b86a832 1757mapit:
61891923
SB
1758 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1759
1760out:
1761 if (ret < 0)
1762 bio_endio(bio, ret);
1763 return ret;
065631f6 1764}
6885f308 1765
d352ac68
CM
1766/*
1767 * given a list of ordered sums record them in the inode. This happens
1768 * at IO completion time based on sums calculated at bio submission time.
1769 */
ba1da2f4 1770static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1771 struct inode *inode, u64 file_offset,
1772 struct list_head *list)
1773{
e6dcd2dc
CM
1774 struct btrfs_ordered_sum *sum;
1775
c6e30871 1776 list_for_each_entry(sum, list, list) {
39847c4d 1777 trans->adding_csums = 1;
d20f7043
CM
1778 btrfs_csum_file_blocks(trans,
1779 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1780 trans->adding_csums = 0;
e6dcd2dc
CM
1781 }
1782 return 0;
1783}
1784
2ac55d41
JB
1785int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1786 struct extent_state **cached_state)
ea8c2819 1787{
6c1500f2 1788 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1789 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1790 cached_state, GFP_NOFS);
ea8c2819
CM
1791}
1792
d352ac68 1793/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1794struct btrfs_writepage_fixup {
1795 struct page *page;
1796 struct btrfs_work work;
1797};
1798
b2950863 1799static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1800{
1801 struct btrfs_writepage_fixup *fixup;
1802 struct btrfs_ordered_extent *ordered;
2ac55d41 1803 struct extent_state *cached_state = NULL;
247e743c
CM
1804 struct page *page;
1805 struct inode *inode;
1806 u64 page_start;
1807 u64 page_end;
87826df0 1808 int ret;
247e743c
CM
1809
1810 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1811 page = fixup->page;
4a096752 1812again:
247e743c
CM
1813 lock_page(page);
1814 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1815 ClearPageChecked(page);
1816 goto out_page;
1817 }
1818
1819 inode = page->mapping->host;
1820 page_start = page_offset(page);
1821 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1822
2ac55d41 1823 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1824 &cached_state);
4a096752
CM
1825
1826 /* already ordered? We're done */
8b62b72b 1827 if (PagePrivate2(page))
247e743c 1828 goto out;
4a096752
CM
1829
1830 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1831 if (ordered) {
2ac55d41
JB
1832 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1833 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1834 unlock_page(page);
1835 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1836 btrfs_put_ordered_extent(ordered);
4a096752
CM
1837 goto again;
1838 }
247e743c 1839
87826df0
JM
1840 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1841 if (ret) {
1842 mapping_set_error(page->mapping, ret);
1843 end_extent_writepage(page, ret, page_start, page_end);
1844 ClearPageChecked(page);
1845 goto out;
1846 }
1847
2ac55d41 1848 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1849 ClearPageChecked(page);
87826df0 1850 set_page_dirty(page);
247e743c 1851out:
2ac55d41
JB
1852 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1853 &cached_state, GFP_NOFS);
247e743c
CM
1854out_page:
1855 unlock_page(page);
1856 page_cache_release(page);
b897abec 1857 kfree(fixup);
247e743c
CM
1858}
1859
1860/*
1861 * There are a few paths in the higher layers of the kernel that directly
1862 * set the page dirty bit without asking the filesystem if it is a
1863 * good idea. This causes problems because we want to make sure COW
1864 * properly happens and the data=ordered rules are followed.
1865 *
c8b97818 1866 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1867 * hasn't been properly setup for IO. We kick off an async process
1868 * to fix it up. The async helper will wait for ordered extents, set
1869 * the delalloc bit and make it safe to write the page.
1870 */
b2950863 1871static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1872{
1873 struct inode *inode = page->mapping->host;
1874 struct btrfs_writepage_fixup *fixup;
1875 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1876
8b62b72b
CM
1877 /* this page is properly in the ordered list */
1878 if (TestClearPagePrivate2(page))
247e743c
CM
1879 return 0;
1880
1881 if (PageChecked(page))
1882 return -EAGAIN;
1883
1884 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1885 if (!fixup)
1886 return -EAGAIN;
f421950f 1887
247e743c
CM
1888 SetPageChecked(page);
1889 page_cache_get(page);
1890 fixup->work.func = btrfs_writepage_fixup_worker;
1891 fixup->page = page;
1892 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1893 return -EBUSY;
247e743c
CM
1894}
1895
d899e052
YZ
1896static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1897 struct inode *inode, u64 file_pos,
1898 u64 disk_bytenr, u64 disk_num_bytes,
1899 u64 num_bytes, u64 ram_bytes,
1900 u8 compression, u8 encryption,
1901 u16 other_encoding, int extent_type)
1902{
1903 struct btrfs_root *root = BTRFS_I(inode)->root;
1904 struct btrfs_file_extent_item *fi;
1905 struct btrfs_path *path;
1906 struct extent_buffer *leaf;
1907 struct btrfs_key ins;
d899e052
YZ
1908 int ret;
1909
1910 path = btrfs_alloc_path();
d8926bb3
MF
1911 if (!path)
1912 return -ENOMEM;
d899e052 1913
b9473439 1914 path->leave_spinning = 1;
a1ed835e
CM
1915
1916 /*
1917 * we may be replacing one extent in the tree with another.
1918 * The new extent is pinned in the extent map, and we don't want
1919 * to drop it from the cache until it is completely in the btree.
1920 *
1921 * So, tell btrfs_drop_extents to leave this extent in the cache.
1922 * the caller is expected to unpin it and allow it to be merged
1923 * with the others.
1924 */
5dc562c5 1925 ret = btrfs_drop_extents(trans, root, inode, file_pos,
2671485d 1926 file_pos + num_bytes, 0);
79787eaa
JM
1927 if (ret)
1928 goto out;
d899e052 1929
33345d01 1930 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1931 ins.offset = file_pos;
1932 ins.type = BTRFS_EXTENT_DATA_KEY;
1933 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
79787eaa
JM
1934 if (ret)
1935 goto out;
d899e052
YZ
1936 leaf = path->nodes[0];
1937 fi = btrfs_item_ptr(leaf, path->slots[0],
1938 struct btrfs_file_extent_item);
1939 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1940 btrfs_set_file_extent_type(leaf, fi, extent_type);
1941 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1942 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1943 btrfs_set_file_extent_offset(leaf, fi, 0);
1944 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1945 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1946 btrfs_set_file_extent_compression(leaf, fi, compression);
1947 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1948 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 1949
d899e052 1950 btrfs_mark_buffer_dirty(leaf);
ce195332 1951 btrfs_release_path(path);
d899e052
YZ
1952
1953 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1954
1955 ins.objectid = disk_bytenr;
1956 ins.offset = disk_num_bytes;
1957 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1958 ret = btrfs_alloc_reserved_file_extent(trans, root,
1959 root->root_key.objectid,
33345d01 1960 btrfs_ino(inode), file_pos, &ins);
79787eaa 1961out:
d899e052 1962 btrfs_free_path(path);
b9473439 1963
79787eaa 1964 return ret;
d899e052
YZ
1965}
1966
38c227d8
LB
1967/* snapshot-aware defrag */
1968struct sa_defrag_extent_backref {
1969 struct rb_node node;
1970 struct old_sa_defrag_extent *old;
1971 u64 root_id;
1972 u64 inum;
1973 u64 file_pos;
1974 u64 extent_offset;
1975 u64 num_bytes;
1976 u64 generation;
1977};
1978
1979struct old_sa_defrag_extent {
1980 struct list_head list;
1981 struct new_sa_defrag_extent *new;
1982
1983 u64 extent_offset;
1984 u64 bytenr;
1985 u64 offset;
1986 u64 len;
1987 int count;
1988};
1989
1990struct new_sa_defrag_extent {
1991 struct rb_root root;
1992 struct list_head head;
1993 struct btrfs_path *path;
1994 struct inode *inode;
1995 u64 file_pos;
1996 u64 len;
1997 u64 bytenr;
1998 u64 disk_len;
1999 u8 compress_type;
2000};
2001
2002static int backref_comp(struct sa_defrag_extent_backref *b1,
2003 struct sa_defrag_extent_backref *b2)
2004{
2005 if (b1->root_id < b2->root_id)
2006 return -1;
2007 else if (b1->root_id > b2->root_id)
2008 return 1;
2009
2010 if (b1->inum < b2->inum)
2011 return -1;
2012 else if (b1->inum > b2->inum)
2013 return 1;
2014
2015 if (b1->file_pos < b2->file_pos)
2016 return -1;
2017 else if (b1->file_pos > b2->file_pos)
2018 return 1;
2019
2020 /*
2021 * [------------------------------] ===> (a range of space)
2022 * |<--->| |<---->| =============> (fs/file tree A)
2023 * |<---------------------------->| ===> (fs/file tree B)
2024 *
2025 * A range of space can refer to two file extents in one tree while
2026 * refer to only one file extent in another tree.
2027 *
2028 * So we may process a disk offset more than one time(two extents in A)
2029 * and locate at the same extent(one extent in B), then insert two same
2030 * backrefs(both refer to the extent in B).
2031 */
2032 return 0;
2033}
2034
2035static void backref_insert(struct rb_root *root,
2036 struct sa_defrag_extent_backref *backref)
2037{
2038 struct rb_node **p = &root->rb_node;
2039 struct rb_node *parent = NULL;
2040 struct sa_defrag_extent_backref *entry;
2041 int ret;
2042
2043 while (*p) {
2044 parent = *p;
2045 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2046
2047 ret = backref_comp(backref, entry);
2048 if (ret < 0)
2049 p = &(*p)->rb_left;
2050 else
2051 p = &(*p)->rb_right;
2052 }
2053
2054 rb_link_node(&backref->node, parent, p);
2055 rb_insert_color(&backref->node, root);
2056}
2057
2058/*
2059 * Note the backref might has changed, and in this case we just return 0.
2060 */
2061static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2062 void *ctx)
2063{
2064 struct btrfs_file_extent_item *extent;
2065 struct btrfs_fs_info *fs_info;
2066 struct old_sa_defrag_extent *old = ctx;
2067 struct new_sa_defrag_extent *new = old->new;
2068 struct btrfs_path *path = new->path;
2069 struct btrfs_key key;
2070 struct btrfs_root *root;
2071 struct sa_defrag_extent_backref *backref;
2072 struct extent_buffer *leaf;
2073 struct inode *inode = new->inode;
2074 int slot;
2075 int ret;
2076 u64 extent_offset;
2077 u64 num_bytes;
2078
2079 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2080 inum == btrfs_ino(inode))
2081 return 0;
2082
2083 key.objectid = root_id;
2084 key.type = BTRFS_ROOT_ITEM_KEY;
2085 key.offset = (u64)-1;
2086
2087 fs_info = BTRFS_I(inode)->root->fs_info;
2088 root = btrfs_read_fs_root_no_name(fs_info, &key);
2089 if (IS_ERR(root)) {
2090 if (PTR_ERR(root) == -ENOENT)
2091 return 0;
2092 WARN_ON(1);
2093 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2094 inum, offset, root_id);
2095 return PTR_ERR(root);
2096 }
2097
2098 key.objectid = inum;
2099 key.type = BTRFS_EXTENT_DATA_KEY;
2100 if (offset > (u64)-1 << 32)
2101 key.offset = 0;
2102 else
2103 key.offset = offset;
2104
2105 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2106 if (ret < 0) {
2107 WARN_ON(1);
2108 return ret;
2109 }
50f1319c 2110 ret = 0;
38c227d8
LB
2111
2112 while (1) {
2113 cond_resched();
2114
2115 leaf = path->nodes[0];
2116 slot = path->slots[0];
2117
2118 if (slot >= btrfs_header_nritems(leaf)) {
2119 ret = btrfs_next_leaf(root, path);
2120 if (ret < 0) {
2121 goto out;
2122 } else if (ret > 0) {
2123 ret = 0;
2124 goto out;
2125 }
2126 continue;
2127 }
2128
2129 path->slots[0]++;
2130
2131 btrfs_item_key_to_cpu(leaf, &key, slot);
2132
2133 if (key.objectid > inum)
2134 goto out;
2135
2136 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2137 continue;
2138
2139 extent = btrfs_item_ptr(leaf, slot,
2140 struct btrfs_file_extent_item);
2141
2142 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2143 continue;
2144
e68afa49
LB
2145 /*
2146 * 'offset' refers to the exact key.offset,
2147 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2148 * (key.offset - extent_offset).
2149 */
2150 if (key.offset != offset)
38c227d8
LB
2151 continue;
2152
e68afa49 2153 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2154 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2155
38c227d8
LB
2156 if (extent_offset >= old->extent_offset + old->offset +
2157 old->len || extent_offset + num_bytes <=
2158 old->extent_offset + old->offset)
2159 continue;
38c227d8
LB
2160 break;
2161 }
2162
2163 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2164 if (!backref) {
2165 ret = -ENOENT;
2166 goto out;
2167 }
2168
2169 backref->root_id = root_id;
2170 backref->inum = inum;
e68afa49 2171 backref->file_pos = offset;
38c227d8
LB
2172 backref->num_bytes = num_bytes;
2173 backref->extent_offset = extent_offset;
2174 backref->generation = btrfs_file_extent_generation(leaf, extent);
2175 backref->old = old;
2176 backref_insert(&new->root, backref);
2177 old->count++;
2178out:
2179 btrfs_release_path(path);
2180 WARN_ON(ret);
2181 return ret;
2182}
2183
2184static noinline bool record_extent_backrefs(struct btrfs_path *path,
2185 struct new_sa_defrag_extent *new)
2186{
2187 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2188 struct old_sa_defrag_extent *old, *tmp;
2189 int ret;
2190
2191 new->path = path;
2192
2193 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2194 ret = iterate_inodes_from_logical(old->bytenr +
2195 old->extent_offset, fs_info,
38c227d8
LB
2196 path, record_one_backref,
2197 old);
2198 BUG_ON(ret < 0 && ret != -ENOENT);
2199
2200 /* no backref to be processed for this extent */
2201 if (!old->count) {
2202 list_del(&old->list);
2203 kfree(old);
2204 }
2205 }
2206
2207 if (list_empty(&new->head))
2208 return false;
2209
2210 return true;
2211}
2212
2213static int relink_is_mergable(struct extent_buffer *leaf,
2214 struct btrfs_file_extent_item *fi,
116e0024 2215 struct new_sa_defrag_extent *new)
38c227d8 2216{
116e0024 2217 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2218 return 0;
2219
2220 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2221 return 0;
2222
116e0024
LB
2223 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2224 return 0;
2225
2226 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2227 btrfs_file_extent_other_encoding(leaf, fi))
2228 return 0;
2229
2230 return 1;
2231}
2232
2233/*
2234 * Note the backref might has changed, and in this case we just return 0.
2235 */
2236static noinline int relink_extent_backref(struct btrfs_path *path,
2237 struct sa_defrag_extent_backref *prev,
2238 struct sa_defrag_extent_backref *backref)
2239{
2240 struct btrfs_file_extent_item *extent;
2241 struct btrfs_file_extent_item *item;
2242 struct btrfs_ordered_extent *ordered;
2243 struct btrfs_trans_handle *trans;
2244 struct btrfs_fs_info *fs_info;
2245 struct btrfs_root *root;
2246 struct btrfs_key key;
2247 struct extent_buffer *leaf;
2248 struct old_sa_defrag_extent *old = backref->old;
2249 struct new_sa_defrag_extent *new = old->new;
2250 struct inode *src_inode = new->inode;
2251 struct inode *inode;
2252 struct extent_state *cached = NULL;
2253 int ret = 0;
2254 u64 start;
2255 u64 len;
2256 u64 lock_start;
2257 u64 lock_end;
2258 bool merge = false;
2259 int index;
2260
2261 if (prev && prev->root_id == backref->root_id &&
2262 prev->inum == backref->inum &&
2263 prev->file_pos + prev->num_bytes == backref->file_pos)
2264 merge = true;
2265
2266 /* step 1: get root */
2267 key.objectid = backref->root_id;
2268 key.type = BTRFS_ROOT_ITEM_KEY;
2269 key.offset = (u64)-1;
2270
2271 fs_info = BTRFS_I(src_inode)->root->fs_info;
2272 index = srcu_read_lock(&fs_info->subvol_srcu);
2273
2274 root = btrfs_read_fs_root_no_name(fs_info, &key);
2275 if (IS_ERR(root)) {
2276 srcu_read_unlock(&fs_info->subvol_srcu, index);
2277 if (PTR_ERR(root) == -ENOENT)
2278 return 0;
2279 return PTR_ERR(root);
2280 }
38c227d8
LB
2281
2282 /* step 2: get inode */
2283 key.objectid = backref->inum;
2284 key.type = BTRFS_INODE_ITEM_KEY;
2285 key.offset = 0;
2286
2287 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2288 if (IS_ERR(inode)) {
2289 srcu_read_unlock(&fs_info->subvol_srcu, index);
2290 return 0;
2291 }
2292
2293 srcu_read_unlock(&fs_info->subvol_srcu, index);
2294
2295 /* step 3: relink backref */
2296 lock_start = backref->file_pos;
2297 lock_end = backref->file_pos + backref->num_bytes - 1;
2298 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2299 0, &cached);
2300
2301 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2302 if (ordered) {
2303 btrfs_put_ordered_extent(ordered);
2304 goto out_unlock;
2305 }
2306
2307 trans = btrfs_join_transaction(root);
2308 if (IS_ERR(trans)) {
2309 ret = PTR_ERR(trans);
2310 goto out_unlock;
2311 }
2312
2313 key.objectid = backref->inum;
2314 key.type = BTRFS_EXTENT_DATA_KEY;
2315 key.offset = backref->file_pos;
2316
2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2318 if (ret < 0) {
2319 goto out_free_path;
2320 } else if (ret > 0) {
2321 ret = 0;
2322 goto out_free_path;
2323 }
2324
2325 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2326 struct btrfs_file_extent_item);
2327
2328 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2329 backref->generation)
2330 goto out_free_path;
2331
2332 btrfs_release_path(path);
2333
2334 start = backref->file_pos;
2335 if (backref->extent_offset < old->extent_offset + old->offset)
2336 start += old->extent_offset + old->offset -
2337 backref->extent_offset;
2338
2339 len = min(backref->extent_offset + backref->num_bytes,
2340 old->extent_offset + old->offset + old->len);
2341 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2342
2343 ret = btrfs_drop_extents(trans, root, inode, start,
2344 start + len, 1);
2345 if (ret)
2346 goto out_free_path;
2347again:
2348 key.objectid = btrfs_ino(inode);
2349 key.type = BTRFS_EXTENT_DATA_KEY;
2350 key.offset = start;
2351
a09a0a70 2352 path->leave_spinning = 1;
38c227d8
LB
2353 if (merge) {
2354 struct btrfs_file_extent_item *fi;
2355 u64 extent_len;
2356 struct btrfs_key found_key;
2357
2358 ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2359 if (ret < 0)
2360 goto out_free_path;
2361
2362 path->slots[0]--;
2363 leaf = path->nodes[0];
2364 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2365
2366 fi = btrfs_item_ptr(leaf, path->slots[0],
2367 struct btrfs_file_extent_item);
2368 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2369
116e0024
LB
2370 if (extent_len + found_key.offset == start &&
2371 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2372 btrfs_set_file_extent_num_bytes(leaf, fi,
2373 extent_len + len);
2374 btrfs_mark_buffer_dirty(leaf);
2375 inode_add_bytes(inode, len);
2376
2377 ret = 1;
2378 goto out_free_path;
2379 } else {
2380 merge = false;
2381 btrfs_release_path(path);
2382 goto again;
2383 }
2384 }
2385
2386 ret = btrfs_insert_empty_item(trans, root, path, &key,
2387 sizeof(*extent));
2388 if (ret) {
2389 btrfs_abort_transaction(trans, root, ret);
2390 goto out_free_path;
2391 }
2392
2393 leaf = path->nodes[0];
2394 item = btrfs_item_ptr(leaf, path->slots[0],
2395 struct btrfs_file_extent_item);
2396 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2397 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2398 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2399 btrfs_set_file_extent_num_bytes(leaf, item, len);
2400 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2401 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2402 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2403 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2404 btrfs_set_file_extent_encryption(leaf, item, 0);
2405 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2406
2407 btrfs_mark_buffer_dirty(leaf);
2408 inode_add_bytes(inode, len);
a09a0a70 2409 btrfs_release_path(path);
38c227d8
LB
2410
2411 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2412 new->disk_len, 0,
2413 backref->root_id, backref->inum,
2414 new->file_pos, 0); /* start - extent_offset */
2415 if (ret) {
2416 btrfs_abort_transaction(trans, root, ret);
2417 goto out_free_path;
2418 }
2419
2420 ret = 1;
2421out_free_path:
2422 btrfs_release_path(path);
a09a0a70 2423 path->leave_spinning = 0;
38c227d8
LB
2424 btrfs_end_transaction(trans, root);
2425out_unlock:
2426 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2427 &cached, GFP_NOFS);
2428 iput(inode);
2429 return ret;
2430}
2431
2432static void relink_file_extents(struct new_sa_defrag_extent *new)
2433{
2434 struct btrfs_path *path;
2435 struct old_sa_defrag_extent *old, *tmp;
2436 struct sa_defrag_extent_backref *backref;
2437 struct sa_defrag_extent_backref *prev = NULL;
2438 struct inode *inode;
2439 struct btrfs_root *root;
2440 struct rb_node *node;
2441 int ret;
2442
2443 inode = new->inode;
2444 root = BTRFS_I(inode)->root;
2445
2446 path = btrfs_alloc_path();
2447 if (!path)
2448 return;
2449
2450 if (!record_extent_backrefs(path, new)) {
2451 btrfs_free_path(path);
2452 goto out;
2453 }
2454 btrfs_release_path(path);
2455
2456 while (1) {
2457 node = rb_first(&new->root);
2458 if (!node)
2459 break;
2460 rb_erase(node, &new->root);
2461
2462 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2463
2464 ret = relink_extent_backref(path, prev, backref);
2465 WARN_ON(ret < 0);
2466
2467 kfree(prev);
2468
2469 if (ret == 1)
2470 prev = backref;
2471 else
2472 prev = NULL;
2473 cond_resched();
2474 }
2475 kfree(prev);
2476
2477 btrfs_free_path(path);
2478
2479 list_for_each_entry_safe(old, tmp, &new->head, list) {
2480 list_del(&old->list);
2481 kfree(old);
2482 }
2483out:
2484 atomic_dec(&root->fs_info->defrag_running);
2485 wake_up(&root->fs_info->transaction_wait);
2486
2487 kfree(new);
2488}
2489
2490static struct new_sa_defrag_extent *
2491record_old_file_extents(struct inode *inode,
2492 struct btrfs_ordered_extent *ordered)
2493{
2494 struct btrfs_root *root = BTRFS_I(inode)->root;
2495 struct btrfs_path *path;
2496 struct btrfs_key key;
2497 struct old_sa_defrag_extent *old, *tmp;
2498 struct new_sa_defrag_extent *new;
2499 int ret;
2500
2501 new = kmalloc(sizeof(*new), GFP_NOFS);
2502 if (!new)
2503 return NULL;
2504
2505 new->inode = inode;
2506 new->file_pos = ordered->file_offset;
2507 new->len = ordered->len;
2508 new->bytenr = ordered->start;
2509 new->disk_len = ordered->disk_len;
2510 new->compress_type = ordered->compress_type;
2511 new->root = RB_ROOT;
2512 INIT_LIST_HEAD(&new->head);
2513
2514 path = btrfs_alloc_path();
2515 if (!path)
2516 goto out_kfree;
2517
2518 key.objectid = btrfs_ino(inode);
2519 key.type = BTRFS_EXTENT_DATA_KEY;
2520 key.offset = new->file_pos;
2521
2522 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2523 if (ret < 0)
2524 goto out_free_path;
2525 if (ret > 0 && path->slots[0] > 0)
2526 path->slots[0]--;
2527
2528 /* find out all the old extents for the file range */
2529 while (1) {
2530 struct btrfs_file_extent_item *extent;
2531 struct extent_buffer *l;
2532 int slot;
2533 u64 num_bytes;
2534 u64 offset;
2535 u64 end;
2536 u64 disk_bytenr;
2537 u64 extent_offset;
2538
2539 l = path->nodes[0];
2540 slot = path->slots[0];
2541
2542 if (slot >= btrfs_header_nritems(l)) {
2543 ret = btrfs_next_leaf(root, path);
2544 if (ret < 0)
2545 goto out_free_list;
2546 else if (ret > 0)
2547 break;
2548 continue;
2549 }
2550
2551 btrfs_item_key_to_cpu(l, &key, slot);
2552
2553 if (key.objectid != btrfs_ino(inode))
2554 break;
2555 if (key.type != BTRFS_EXTENT_DATA_KEY)
2556 break;
2557 if (key.offset >= new->file_pos + new->len)
2558 break;
2559
2560 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2561
2562 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2563 if (key.offset + num_bytes < new->file_pos)
2564 goto next;
2565
2566 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2567 if (!disk_bytenr)
2568 goto next;
2569
2570 extent_offset = btrfs_file_extent_offset(l, extent);
2571
2572 old = kmalloc(sizeof(*old), GFP_NOFS);
2573 if (!old)
2574 goto out_free_list;
2575
2576 offset = max(new->file_pos, key.offset);
2577 end = min(new->file_pos + new->len, key.offset + num_bytes);
2578
2579 old->bytenr = disk_bytenr;
2580 old->extent_offset = extent_offset;
2581 old->offset = offset - key.offset;
2582 old->len = end - offset;
2583 old->new = new;
2584 old->count = 0;
2585 list_add_tail(&old->list, &new->head);
2586next:
2587 path->slots[0]++;
2588 cond_resched();
2589 }
2590
2591 btrfs_free_path(path);
2592 atomic_inc(&root->fs_info->defrag_running);
2593
2594 return new;
2595
2596out_free_list:
2597 list_for_each_entry_safe(old, tmp, &new->head, list) {
2598 list_del(&old->list);
2599 kfree(old);
2600 }
2601out_free_path:
2602 btrfs_free_path(path);
2603out_kfree:
2604 kfree(new);
2605 return NULL;
2606}
2607
5d13a98f
CM
2608/*
2609 * helper function for btrfs_finish_ordered_io, this
2610 * just reads in some of the csum leaves to prime them into ram
2611 * before we start the transaction. It limits the amount of btree
2612 * reads required while inside the transaction.
2613 */
d352ac68
CM
2614/* as ordered data IO finishes, this gets called so we can finish
2615 * an ordered extent if the range of bytes in the file it covers are
2616 * fully written.
2617 */
5fd02043 2618static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2619{
5fd02043 2620 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2621 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2622 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2623 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2624 struct extent_state *cached_state = NULL;
38c227d8 2625 struct new_sa_defrag_extent *new = NULL;
261507a0 2626 int compress_type = 0;
e6dcd2dc 2627 int ret;
82d5902d 2628 bool nolock;
e6dcd2dc 2629
83eea1f1 2630 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2631
5fd02043
JB
2632 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2633 ret = -EIO;
2634 goto out;
2635 }
2636
c2167754 2637 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2638 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2639 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2640 if (nolock)
2641 trans = btrfs_join_transaction_nolock(root);
2642 else
2643 trans = btrfs_join_transaction(root);
2644 if (IS_ERR(trans)) {
2645 ret = PTR_ERR(trans);
2646 trans = NULL;
2647 goto out;
c2167754 2648 }
6c760c07
JB
2649 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2650 ret = btrfs_update_inode_fallback(trans, root, inode);
2651 if (ret) /* -ENOMEM or corruption */
2652 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2653 goto out;
2654 }
e6dcd2dc 2655
2ac55d41
JB
2656 lock_extent_bits(io_tree, ordered_extent->file_offset,
2657 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2658 0, &cached_state);
e6dcd2dc 2659
38c227d8
LB
2660 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2661 ordered_extent->file_offset + ordered_extent->len - 1,
2662 EXTENT_DEFRAG, 1, cached_state);
2663 if (ret) {
2664 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2665 if (last_snapshot >= BTRFS_I(inode)->generation)
2666 /* the inode is shared */
2667 new = record_old_file_extents(inode, ordered_extent);
2668
2669 clear_extent_bit(io_tree, ordered_extent->file_offset,
2670 ordered_extent->file_offset + ordered_extent->len - 1,
2671 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2672 }
2673
0cb59c99 2674 if (nolock)
7a7eaa40 2675 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2676 else
7a7eaa40 2677 trans = btrfs_join_transaction(root);
79787eaa
JM
2678 if (IS_ERR(trans)) {
2679 ret = PTR_ERR(trans);
2680 trans = NULL;
2681 goto out_unlock;
2682 }
0ca1f7ce 2683 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2684
c8b97818 2685 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2686 compress_type = ordered_extent->compress_type;
d899e052 2687 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2688 BUG_ON(compress_type);
920bbbfb 2689 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2690 ordered_extent->file_offset,
2691 ordered_extent->file_offset +
2692 ordered_extent->len);
d899e052 2693 } else {
0af3d00b 2694 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2695 ret = insert_reserved_file_extent(trans, inode,
2696 ordered_extent->file_offset,
2697 ordered_extent->start,
2698 ordered_extent->disk_len,
2699 ordered_extent->len,
2700 ordered_extent->len,
261507a0 2701 compress_type, 0, 0,
d899e052 2702 BTRFS_FILE_EXTENT_REG);
d899e052 2703 }
5dc562c5
JB
2704 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2705 ordered_extent->file_offset, ordered_extent->len,
2706 trans->transid);
79787eaa
JM
2707 if (ret < 0) {
2708 btrfs_abort_transaction(trans, root, ret);
5fd02043 2709 goto out_unlock;
79787eaa 2710 }
2ac55d41 2711
e6dcd2dc
CM
2712 add_pending_csums(trans, inode, ordered_extent->file_offset,
2713 &ordered_extent->list);
2714
6c760c07
JB
2715 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2716 ret = btrfs_update_inode_fallback(trans, root, inode);
2717 if (ret) { /* -ENOMEM or corruption */
2718 btrfs_abort_transaction(trans, root, ret);
2719 goto out_unlock;
1ef30be1
JB
2720 }
2721 ret = 0;
5fd02043
JB
2722out_unlock:
2723 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2724 ordered_extent->file_offset +
2725 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2726out:
5b0e95bf 2727 if (root != root->fs_info->tree_root)
0cb59c99 2728 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2729 if (trans)
2730 btrfs_end_transaction(trans, root);
0cb59c99 2731
0bec9ef5 2732 if (ret) {
5fd02043
JB
2733 clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2734 ordered_extent->file_offset +
2735 ordered_extent->len - 1, NULL, GFP_NOFS);
2736
0bec9ef5
JB
2737 /*
2738 * If the ordered extent had an IOERR or something else went
2739 * wrong we need to return the space for this ordered extent
2740 * back to the allocator.
2741 */
2742 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2743 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2744 btrfs_free_reserved_extent(root, ordered_extent->start,
2745 ordered_extent->disk_len);
2746 }
2747
2748
5fd02043 2749 /*
8bad3c02
LB
2750 * This needs to be done to make sure anybody waiting knows we are done
2751 * updating everything for this ordered extent.
5fd02043
JB
2752 */
2753 btrfs_remove_ordered_extent(inode, ordered_extent);
2754
38c227d8
LB
2755 /* for snapshot-aware defrag */
2756 if (new)
2757 relink_file_extents(new);
2758
e6dcd2dc
CM
2759 /* once for us */
2760 btrfs_put_ordered_extent(ordered_extent);
2761 /* once for the tree */
2762 btrfs_put_ordered_extent(ordered_extent);
2763
5fd02043
JB
2764 return ret;
2765}
2766
2767static void finish_ordered_fn(struct btrfs_work *work)
2768{
2769 struct btrfs_ordered_extent *ordered_extent;
2770 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2771 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2772}
2773
b2950863 2774static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2775 struct extent_state *state, int uptodate)
2776{
5fd02043
JB
2777 struct inode *inode = page->mapping->host;
2778 struct btrfs_root *root = BTRFS_I(inode)->root;
2779 struct btrfs_ordered_extent *ordered_extent = NULL;
2780 struct btrfs_workers *workers;
2781
1abe9b8a 2782 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2783
8b62b72b 2784 ClearPagePrivate2(page);
5fd02043
JB
2785 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2786 end - start + 1, uptodate))
2787 return 0;
2788
2789 ordered_extent->work.func = finish_ordered_fn;
2790 ordered_extent->work.flags = 0;
2791
83eea1f1 2792 if (btrfs_is_free_space_inode(inode))
5fd02043
JB
2793 workers = &root->fs_info->endio_freespace_worker;
2794 else
2795 workers = &root->fs_info->endio_write_workers;
2796 btrfs_queue_worker(workers, &ordered_extent->work);
2797
2798 return 0;
211f90e6
CM
2799}
2800
d352ac68
CM
2801/*
2802 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2803 * if there's a match, we allow the bio to finish. If not, the code in
2804 * extent_io.c will try to find good copies for us.
d352ac68 2805 */
facc8a22
MX
2806static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2807 u64 phy_offset, struct page *page,
2808 u64 start, u64 end, int mirror)
07157aac 2809{
4eee4fa4 2810 size_t offset = start - page_offset(page);
07157aac 2811 struct inode *inode = page->mapping->host;
d1310b2e 2812 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 2813 char *kaddr;
ff79f819 2814 struct btrfs_root *root = BTRFS_I(inode)->root;
facc8a22 2815 u32 csum_expected;
ff79f819 2816 u32 csum = ~(u32)0;
c2cf52eb
SK
2817 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2818 DEFAULT_RATELIMIT_BURST);
d1310b2e 2819
d20f7043
CM
2820 if (PageChecked(page)) {
2821 ClearPageChecked(page);
2822 goto good;
2823 }
6cbff00f
CH
2824
2825 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 2826 goto good;
17d217fe
YZ
2827
2828 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2829 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2830 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2831 GFP_NOFS);
b6cda9bc 2832 return 0;
17d217fe 2833 }
d20f7043 2834
facc8a22
MX
2835 phy_offset >>= inode->i_sb->s_blocksize_bits;
2836 csum_expected = *(((u32 *)io_bio->csum) + phy_offset);
d397712b 2837
facc8a22 2838 kaddr = kmap_atomic(page);
b0496686 2839 csum = btrfs_csum_data(kaddr + offset, csum, end - start + 1);
ff79f819 2840 btrfs_csum_final(csum, (char *)&csum);
facc8a22 2841 if (csum != csum_expected)
07157aac 2842 goto zeroit;
d397712b 2843
7ac687d9 2844 kunmap_atomic(kaddr);
d20f7043 2845good:
07157aac
CM
2846 return 0;
2847
2848zeroit:
c2cf52eb 2849 if (__ratelimit(&_rs))
facc8a22 2850 btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
c2cf52eb 2851 (unsigned long long)btrfs_ino(page->mapping->host),
facc8a22 2852 (unsigned long long)start, csum, csum_expected);
db94535d
CM
2853 memset(kaddr + offset, 1, end - start + 1);
2854 flush_dcache_page(page);
7ac687d9 2855 kunmap_atomic(kaddr);
facc8a22 2856 if (csum_expected == 0)
3b951516 2857 return 0;
7e38326f 2858 return -EIO;
07157aac 2859}
b888db2b 2860
24bbcf04
YZ
2861struct delayed_iput {
2862 struct list_head list;
2863 struct inode *inode;
2864};
2865
79787eaa
JM
2866/* JDM: If this is fs-wide, why can't we add a pointer to
2867 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
2868void btrfs_add_delayed_iput(struct inode *inode)
2869{
2870 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2871 struct delayed_iput *delayed;
2872
2873 if (atomic_add_unless(&inode->i_count, -1, 1))
2874 return;
2875
2876 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2877 delayed->inode = inode;
2878
2879 spin_lock(&fs_info->delayed_iput_lock);
2880 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2881 spin_unlock(&fs_info->delayed_iput_lock);
2882}
2883
2884void btrfs_run_delayed_iputs(struct btrfs_root *root)
2885{
2886 LIST_HEAD(list);
2887 struct btrfs_fs_info *fs_info = root->fs_info;
2888 struct delayed_iput *delayed;
2889 int empty;
2890
2891 spin_lock(&fs_info->delayed_iput_lock);
2892 empty = list_empty(&fs_info->delayed_iputs);
2893 spin_unlock(&fs_info->delayed_iput_lock);
2894 if (empty)
2895 return;
2896
24bbcf04
YZ
2897 spin_lock(&fs_info->delayed_iput_lock);
2898 list_splice_init(&fs_info->delayed_iputs, &list);
2899 spin_unlock(&fs_info->delayed_iput_lock);
2900
2901 while (!list_empty(&list)) {
2902 delayed = list_entry(list.next, struct delayed_iput, list);
2903 list_del(&delayed->list);
2904 iput(delayed->inode);
2905 kfree(delayed);
2906 }
24bbcf04
YZ
2907}
2908
d68fc57b 2909/*
42b2aa86 2910 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
2911 * files in the subvolume, it removes orphan item and frees block_rsv
2912 * structure.
2913 */
2914void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2915 struct btrfs_root *root)
2916{
90290e19 2917 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
2918 int ret;
2919
8a35d95f 2920 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
2921 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2922 return;
2923
90290e19 2924 spin_lock(&root->orphan_lock);
8a35d95f 2925 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
2926 spin_unlock(&root->orphan_lock);
2927 return;
2928 }
2929
2930 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2931 spin_unlock(&root->orphan_lock);
2932 return;
2933 }
2934
2935 block_rsv = root->orphan_block_rsv;
2936 root->orphan_block_rsv = NULL;
2937 spin_unlock(&root->orphan_lock);
2938
d68fc57b
YZ
2939 if (root->orphan_item_inserted &&
2940 btrfs_root_refs(&root->root_item) > 0) {
2941 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2942 root->root_key.objectid);
2943 BUG_ON(ret);
2944 root->orphan_item_inserted = 0;
2945 }
2946
90290e19
JB
2947 if (block_rsv) {
2948 WARN_ON(block_rsv->size > 0);
2949 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2950 }
2951}
2952
7b128766
JB
2953/*
2954 * This creates an orphan entry for the given inode in case something goes
2955 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2956 *
2957 * NOTE: caller of this function should reserve 5 units of metadata for
2958 * this function.
7b128766
JB
2959 */
2960int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2961{
2962 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2963 struct btrfs_block_rsv *block_rsv = NULL;
2964 int reserve = 0;
2965 int insert = 0;
2966 int ret;
7b128766 2967
d68fc57b 2968 if (!root->orphan_block_rsv) {
66d8f3dd 2969 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
2970 if (!block_rsv)
2971 return -ENOMEM;
d68fc57b 2972 }
7b128766 2973
d68fc57b
YZ
2974 spin_lock(&root->orphan_lock);
2975 if (!root->orphan_block_rsv) {
2976 root->orphan_block_rsv = block_rsv;
2977 } else if (block_rsv) {
2978 btrfs_free_block_rsv(root, block_rsv);
2979 block_rsv = NULL;
7b128766 2980 }
7b128766 2981
8a35d95f
JB
2982 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2983 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
2984#if 0
2985 /*
2986 * For proper ENOSPC handling, we should do orphan
2987 * cleanup when mounting. But this introduces backward
2988 * compatibility issue.
2989 */
2990 if (!xchg(&root->orphan_item_inserted, 1))
2991 insert = 2;
2992 else
2993 insert = 1;
2994#endif
2995 insert = 1;
321f0e70 2996 atomic_inc(&root->orphan_inodes);
7b128766
JB
2997 }
2998
72ac3c0d
JB
2999 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3000 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3001 reserve = 1;
d68fc57b 3002 spin_unlock(&root->orphan_lock);
7b128766 3003
d68fc57b
YZ
3004 /* grab metadata reservation from transaction handle */
3005 if (reserve) {
3006 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3007 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3008 }
7b128766 3009
d68fc57b
YZ
3010 /* insert an orphan item to track this unlinked/truncated file */
3011 if (insert >= 1) {
33345d01 3012 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3013 if (ret && ret != -EEXIST) {
8a35d95f
JB
3014 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3015 &BTRFS_I(inode)->runtime_flags);
79787eaa
JM
3016 btrfs_abort_transaction(trans, root, ret);
3017 return ret;
3018 }
3019 ret = 0;
d68fc57b
YZ
3020 }
3021
3022 /* insert an orphan item to track subvolume contains orphan files */
3023 if (insert >= 2) {
3024 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3025 root->root_key.objectid);
79787eaa
JM
3026 if (ret && ret != -EEXIST) {
3027 btrfs_abort_transaction(trans, root, ret);
3028 return ret;
3029 }
d68fc57b
YZ
3030 }
3031 return 0;
7b128766
JB
3032}
3033
3034/*
3035 * We have done the truncate/delete so we can go ahead and remove the orphan
3036 * item for this particular inode.
3037 */
48a3b636
ES
3038static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3039 struct inode *inode)
7b128766
JB
3040{
3041 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3042 int delete_item = 0;
3043 int release_rsv = 0;
7b128766
JB
3044 int ret = 0;
3045
d68fc57b 3046 spin_lock(&root->orphan_lock);
8a35d95f
JB
3047 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3048 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3049 delete_item = 1;
7b128766 3050
72ac3c0d
JB
3051 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3052 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3053 release_rsv = 1;
d68fc57b 3054 spin_unlock(&root->orphan_lock);
7b128766 3055
d68fc57b 3056 if (trans && delete_item) {
33345d01 3057 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
79787eaa 3058 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
d68fc57b 3059 }
7b128766 3060
8a35d95f 3061 if (release_rsv) {
d68fc57b 3062 btrfs_orphan_release_metadata(inode);
8a35d95f
JB
3063 atomic_dec(&root->orphan_inodes);
3064 }
7b128766 3065
d68fc57b 3066 return 0;
7b128766
JB
3067}
3068
3069/*
3070 * this cleans up any orphans that may be left on the list from the last use
3071 * of this root.
3072 */
66b4ffd1 3073int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3074{
3075 struct btrfs_path *path;
3076 struct extent_buffer *leaf;
7b128766
JB
3077 struct btrfs_key key, found_key;
3078 struct btrfs_trans_handle *trans;
3079 struct inode *inode;
8f6d7f4f 3080 u64 last_objectid = 0;
7b128766
JB
3081 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3082
d68fc57b 3083 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3084 return 0;
c71bf099
YZ
3085
3086 path = btrfs_alloc_path();
66b4ffd1
JB
3087 if (!path) {
3088 ret = -ENOMEM;
3089 goto out;
3090 }
7b128766
JB
3091 path->reada = -1;
3092
3093 key.objectid = BTRFS_ORPHAN_OBJECTID;
3094 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3095 key.offset = (u64)-1;
3096
7b128766
JB
3097 while (1) {
3098 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3099 if (ret < 0)
3100 goto out;
7b128766
JB
3101
3102 /*
3103 * if ret == 0 means we found what we were searching for, which
25985edc 3104 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3105 * find the key and see if we have stuff that matches
3106 */
3107 if (ret > 0) {
66b4ffd1 3108 ret = 0;
7b128766
JB
3109 if (path->slots[0] == 0)
3110 break;
3111 path->slots[0]--;
3112 }
3113
3114 /* pull out the item */
3115 leaf = path->nodes[0];
7b128766
JB
3116 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3117
3118 /* make sure the item matches what we want */
3119 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3120 break;
3121 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3122 break;
3123
3124 /* release the path since we're done with it */
b3b4aa74 3125 btrfs_release_path(path);
7b128766
JB
3126
3127 /*
3128 * this is where we are basically btrfs_lookup, without the
3129 * crossing root thing. we store the inode number in the
3130 * offset of the orphan item.
3131 */
8f6d7f4f
JB
3132
3133 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3134 btrfs_err(root->fs_info,
3135 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3136 ret = -EINVAL;
3137 goto out;
3138 }
3139
3140 last_objectid = found_key.offset;
3141
5d4f98a2
YZ
3142 found_key.objectid = found_key.offset;
3143 found_key.type = BTRFS_INODE_ITEM_KEY;
3144 found_key.offset = 0;
73f73415 3145 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
3146 ret = PTR_RET(inode);
3147 if (ret && ret != -ESTALE)
66b4ffd1 3148 goto out;
7b128766 3149
f8e9e0b0
AJ
3150 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3151 struct btrfs_root *dead_root;
3152 struct btrfs_fs_info *fs_info = root->fs_info;
3153 int is_dead_root = 0;
3154
3155 /*
3156 * this is an orphan in the tree root. Currently these
3157 * could come from 2 sources:
3158 * a) a snapshot deletion in progress
3159 * b) a free space cache inode
3160 * We need to distinguish those two, as the snapshot
3161 * orphan must not get deleted.
3162 * find_dead_roots already ran before us, so if this
3163 * is a snapshot deletion, we should find the root
3164 * in the dead_roots list
3165 */
3166 spin_lock(&fs_info->trans_lock);
3167 list_for_each_entry(dead_root, &fs_info->dead_roots,
3168 root_list) {
3169 if (dead_root->root_key.objectid ==
3170 found_key.objectid) {
3171 is_dead_root = 1;
3172 break;
3173 }
3174 }
3175 spin_unlock(&fs_info->trans_lock);
3176 if (is_dead_root) {
3177 /* prevent this orphan from being found again */
3178 key.offset = found_key.objectid - 1;
3179 continue;
3180 }
3181 }
7b128766 3182 /*
a8c9e576
JB
3183 * Inode is already gone but the orphan item is still there,
3184 * kill the orphan item.
7b128766 3185 */
a8c9e576
JB
3186 if (ret == -ESTALE) {
3187 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3188 if (IS_ERR(trans)) {
3189 ret = PTR_ERR(trans);
3190 goto out;
3191 }
c2cf52eb
SK
3192 btrfs_debug(root->fs_info, "auto deleting %Lu",
3193 found_key.objectid);
a8c9e576
JB
3194 ret = btrfs_del_orphan_item(trans, root,
3195 found_key.objectid);
79787eaa 3196 BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
5b21f2ed 3197 btrfs_end_transaction(trans, root);
7b128766
JB
3198 continue;
3199 }
3200
a8c9e576
JB
3201 /*
3202 * add this inode to the orphan list so btrfs_orphan_del does
3203 * the proper thing when we hit it
3204 */
8a35d95f
JB
3205 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3206 &BTRFS_I(inode)->runtime_flags);
925396ec 3207 atomic_inc(&root->orphan_inodes);
a8c9e576 3208
7b128766
JB
3209 /* if we have links, this was a truncate, lets do that */
3210 if (inode->i_nlink) {
a41ad394
JB
3211 if (!S_ISREG(inode->i_mode)) {
3212 WARN_ON(1);
3213 iput(inode);
3214 continue;
3215 }
7b128766 3216 nr_truncate++;
f3fe820c
JB
3217
3218 /* 1 for the orphan item deletion. */
3219 trans = btrfs_start_transaction(root, 1);
3220 if (IS_ERR(trans)) {
c69b26b0 3221 iput(inode);
f3fe820c
JB
3222 ret = PTR_ERR(trans);
3223 goto out;
3224 }
3225 ret = btrfs_orphan_add(trans, inode);
3226 btrfs_end_transaction(trans, root);
c69b26b0
JB
3227 if (ret) {
3228 iput(inode);
f3fe820c 3229 goto out;
c69b26b0 3230 }
f3fe820c 3231
66b4ffd1 3232 ret = btrfs_truncate(inode);
4a7d0f68
JB
3233 if (ret)
3234 btrfs_orphan_del(NULL, inode);
7b128766
JB
3235 } else {
3236 nr_unlink++;
3237 }
3238
3239 /* this will do delete_inode and everything for us */
3240 iput(inode);
66b4ffd1
JB
3241 if (ret)
3242 goto out;
7b128766 3243 }
3254c876
MX
3244 /* release the path since we're done with it */
3245 btrfs_release_path(path);
3246
d68fc57b
YZ
3247 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3248
3249 if (root->orphan_block_rsv)
3250 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3251 (u64)-1);
3252
3253 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 3254 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3255 if (!IS_ERR(trans))
3256 btrfs_end_transaction(trans, root);
d68fc57b 3257 }
7b128766
JB
3258
3259 if (nr_unlink)
4884b476 3260 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3261 if (nr_truncate)
4884b476 3262 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3263
3264out:
3265 if (ret)
c2cf52eb
SK
3266 btrfs_crit(root->fs_info,
3267 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3268 btrfs_free_path(path);
3269 return ret;
7b128766
JB
3270}
3271
46a53cca
CM
3272/*
3273 * very simple check to peek ahead in the leaf looking for xattrs. If we
3274 * don't find any xattrs, we know there can't be any acls.
3275 *
3276 * slot is the slot the inode is in, objectid is the objectid of the inode
3277 */
3278static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3279 int slot, u64 objectid)
3280{
3281 u32 nritems = btrfs_header_nritems(leaf);
3282 struct btrfs_key found_key;
f23b5a59
JB
3283 static u64 xattr_access = 0;
3284 static u64 xattr_default = 0;
46a53cca
CM
3285 int scanned = 0;
3286
f23b5a59
JB
3287 if (!xattr_access) {
3288 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3289 strlen(POSIX_ACL_XATTR_ACCESS));
3290 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3291 strlen(POSIX_ACL_XATTR_DEFAULT));
3292 }
3293
46a53cca
CM
3294 slot++;
3295 while (slot < nritems) {
3296 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3297
3298 /* we found a different objectid, there must not be acls */
3299 if (found_key.objectid != objectid)
3300 return 0;
3301
3302 /* we found an xattr, assume we've got an acl */
f23b5a59
JB
3303 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3304 if (found_key.offset == xattr_access ||
3305 found_key.offset == xattr_default)
3306 return 1;
3307 }
46a53cca
CM
3308
3309 /*
3310 * we found a key greater than an xattr key, there can't
3311 * be any acls later on
3312 */
3313 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3314 return 0;
3315
3316 slot++;
3317 scanned++;
3318
3319 /*
3320 * it goes inode, inode backrefs, xattrs, extents,
3321 * so if there are a ton of hard links to an inode there can
3322 * be a lot of backrefs. Don't waste time searching too hard,
3323 * this is just an optimization
3324 */
3325 if (scanned >= 8)
3326 break;
3327 }
3328 /* we hit the end of the leaf before we found an xattr or
3329 * something larger than an xattr. We have to assume the inode
3330 * has acls
3331 */
3332 return 1;
3333}
3334
d352ac68
CM
3335/*
3336 * read an inode from the btree into the in-memory inode
3337 */
5d4f98a2 3338static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3339{
3340 struct btrfs_path *path;
5f39d397 3341 struct extent_buffer *leaf;
39279cc3 3342 struct btrfs_inode_item *inode_item;
0b86a832 3343 struct btrfs_timespec *tspec;
39279cc3
CM
3344 struct btrfs_root *root = BTRFS_I(inode)->root;
3345 struct btrfs_key location;
46a53cca 3346 int maybe_acls;
618e21d5 3347 u32 rdev;
39279cc3 3348 int ret;
2f7e33d4
MX
3349 bool filled = false;
3350
3351 ret = btrfs_fill_inode(inode, &rdev);
3352 if (!ret)
3353 filled = true;
39279cc3
CM
3354
3355 path = btrfs_alloc_path();
1748f843
MF
3356 if (!path)
3357 goto make_bad;
3358
d90c7321 3359 path->leave_spinning = 1;
39279cc3 3360 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3361
39279cc3 3362 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3363 if (ret)
39279cc3 3364 goto make_bad;
39279cc3 3365
5f39d397 3366 leaf = path->nodes[0];
2f7e33d4
MX
3367
3368 if (filled)
3369 goto cache_acl;
3370
5f39d397
CM
3371 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3372 struct btrfs_inode_item);
5f39d397 3373 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3374 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3375 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3376 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3377 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3378
3379 tspec = btrfs_inode_atime(inode_item);
3380 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3381 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3382
3383 tspec = btrfs_inode_mtime(inode_item);
3384 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3385 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3386
3387 tspec = btrfs_inode_ctime(inode_item);
3388 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3389 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3390
a76a3cd4 3391 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3392 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3393 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3394
3395 /*
3396 * If we were modified in the current generation and evicted from memory
3397 * and then re-read we need to do a full sync since we don't have any
3398 * idea about which extents were modified before we were evicted from
3399 * cache.
3400 */
3401 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3402 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3403 &BTRFS_I(inode)->runtime_flags);
3404
0c4d2d95 3405 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3406 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3407 inode->i_rdev = 0;
5f39d397
CM
3408 rdev = btrfs_inode_rdev(leaf, inode_item);
3409
aec7477b 3410 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3411 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 3412cache_acl:
46a53cca
CM
3413 /*
3414 * try to precache a NULL acl entry for files that don't have
3415 * any xattrs or acls
3416 */
33345d01
LZ
3417 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3418 btrfs_ino(inode));
72c04902
AV
3419 if (!maybe_acls)
3420 cache_no_acl(inode);
46a53cca 3421
39279cc3 3422 btrfs_free_path(path);
39279cc3 3423
39279cc3 3424 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3425 case S_IFREG:
3426 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3427 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3428 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3429 inode->i_fop = &btrfs_file_operations;
3430 inode->i_op = &btrfs_file_inode_operations;
3431 break;
3432 case S_IFDIR:
3433 inode->i_fop = &btrfs_dir_file_operations;
3434 if (root == root->fs_info->tree_root)
3435 inode->i_op = &btrfs_dir_ro_inode_operations;
3436 else
3437 inode->i_op = &btrfs_dir_inode_operations;
3438 break;
3439 case S_IFLNK:
3440 inode->i_op = &btrfs_symlink_inode_operations;
3441 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3442 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3443 break;
618e21d5 3444 default:
0279b4cd 3445 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3446 init_special_inode(inode, inode->i_mode, rdev);
3447 break;
39279cc3 3448 }
6cbff00f
CH
3449
3450 btrfs_update_iflags(inode);
39279cc3
CM
3451 return;
3452
3453make_bad:
39279cc3 3454 btrfs_free_path(path);
39279cc3
CM
3455 make_bad_inode(inode);
3456}
3457
d352ac68
CM
3458/*
3459 * given a leaf and an inode, copy the inode fields into the leaf
3460 */
e02119d5
CM
3461static void fill_inode_item(struct btrfs_trans_handle *trans,
3462 struct extent_buffer *leaf,
5f39d397 3463 struct btrfs_inode_item *item,
39279cc3
CM
3464 struct inode *inode)
3465{
51fab693
LB
3466 struct btrfs_map_token token;
3467
3468 btrfs_init_map_token(&token);
5f39d397 3469
51fab693
LB
3470 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3471 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3472 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3473 &token);
3474 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3475 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3476
51fab693
LB
3477 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3478 inode->i_atime.tv_sec, &token);
3479 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3480 inode->i_atime.tv_nsec, &token);
5f39d397 3481
51fab693
LB
3482 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3483 inode->i_mtime.tv_sec, &token);
3484 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3485 inode->i_mtime.tv_nsec, &token);
5f39d397 3486
51fab693
LB
3487 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3488 inode->i_ctime.tv_sec, &token);
3489 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3490 inode->i_ctime.tv_nsec, &token);
5f39d397 3491
51fab693
LB
3492 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3493 &token);
3494 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3495 &token);
3496 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3497 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3498 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3499 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3500 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3501}
3502
d352ac68
CM
3503/*
3504 * copy everything in the in-memory inode into the btree.
3505 */
2115133f 3506static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3507 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3508{
3509 struct btrfs_inode_item *inode_item;
3510 struct btrfs_path *path;
5f39d397 3511 struct extent_buffer *leaf;
39279cc3
CM
3512 int ret;
3513
3514 path = btrfs_alloc_path();
16cdcec7
MX
3515 if (!path)
3516 return -ENOMEM;
3517
b9473439 3518 path->leave_spinning = 1;
16cdcec7
MX
3519 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3520 1);
39279cc3
CM
3521 if (ret) {
3522 if (ret > 0)
3523 ret = -ENOENT;
3524 goto failed;
3525 }
3526
b4ce94de 3527 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
3528 leaf = path->nodes[0];
3529 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3530 struct btrfs_inode_item);
39279cc3 3531
e02119d5 3532 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3533 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3534 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3535 ret = 0;
3536failed:
39279cc3
CM
3537 btrfs_free_path(path);
3538 return ret;
3539}
3540
2115133f
CM
3541/*
3542 * copy everything in the in-memory inode into the btree.
3543 */
3544noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3545 struct btrfs_root *root, struct inode *inode)
3546{
3547 int ret;
3548
3549 /*
3550 * If the inode is a free space inode, we can deadlock during commit
3551 * if we put it into the delayed code.
3552 *
3553 * The data relocation inode should also be directly updated
3554 * without delay
3555 */
83eea1f1 3556 if (!btrfs_is_free_space_inode(inode)
2115133f 3557 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
8ea05e3a
AB
3558 btrfs_update_root_times(trans, root);
3559
2115133f
CM
3560 ret = btrfs_delayed_update_inode(trans, root, inode);
3561 if (!ret)
3562 btrfs_set_inode_last_trans(trans, inode);
3563 return ret;
3564 }
3565
3566 return btrfs_update_inode_item(trans, root, inode);
3567}
3568
be6aef60
JB
3569noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3570 struct btrfs_root *root,
3571 struct inode *inode)
2115133f
CM
3572{
3573 int ret;
3574
3575 ret = btrfs_update_inode(trans, root, inode);
3576 if (ret == -ENOSPC)
3577 return btrfs_update_inode_item(trans, root, inode);
3578 return ret;
3579}
3580
d352ac68
CM
3581/*
3582 * unlink helper that gets used here in inode.c and in the tree logging
3583 * recovery code. It remove a link in a directory with a given name, and
3584 * also drops the back refs in the inode to the directory
3585 */
92986796
AV
3586static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3587 struct btrfs_root *root,
3588 struct inode *dir, struct inode *inode,
3589 const char *name, int name_len)
39279cc3
CM
3590{
3591 struct btrfs_path *path;
39279cc3 3592 int ret = 0;
5f39d397 3593 struct extent_buffer *leaf;
39279cc3 3594 struct btrfs_dir_item *di;
5f39d397 3595 struct btrfs_key key;
aec7477b 3596 u64 index;
33345d01
LZ
3597 u64 ino = btrfs_ino(inode);
3598 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3599
3600 path = btrfs_alloc_path();
54aa1f4d
CM
3601 if (!path) {
3602 ret = -ENOMEM;
554233a6 3603 goto out;
54aa1f4d
CM
3604 }
3605
b9473439 3606 path->leave_spinning = 1;
33345d01 3607 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3608 name, name_len, -1);
3609 if (IS_ERR(di)) {
3610 ret = PTR_ERR(di);
3611 goto err;
3612 }
3613 if (!di) {
3614 ret = -ENOENT;
3615 goto err;
3616 }
5f39d397
CM
3617 leaf = path->nodes[0];
3618 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3619 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3620 if (ret)
3621 goto err;
b3b4aa74 3622 btrfs_release_path(path);
39279cc3 3623
33345d01
LZ
3624 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3625 dir_ino, &index);
aec7477b 3626 if (ret) {
c2cf52eb
SK
3627 btrfs_info(root->fs_info,
3628 "failed to delete reference to %.*s, inode %llu parent %llu",
3629 name_len, name,
3630 (unsigned long long)ino, (unsigned long long)dir_ino);
79787eaa 3631 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3632 goto err;
3633 }
3634
16cdcec7 3635 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3636 if (ret) {
3637 btrfs_abort_transaction(trans, root, ret);
39279cc3 3638 goto err;
79787eaa 3639 }
39279cc3 3640
e02119d5 3641 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3642 inode, dir_ino);
79787eaa
JM
3643 if (ret != 0 && ret != -ENOENT) {
3644 btrfs_abort_transaction(trans, root, ret);
3645 goto err;
3646 }
e02119d5
CM
3647
3648 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3649 dir, index);
6418c961
CM
3650 if (ret == -ENOENT)
3651 ret = 0;
d4e3991b
ZB
3652 else if (ret)
3653 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3654err:
3655 btrfs_free_path(path);
e02119d5
CM
3656 if (ret)
3657 goto out;
3658
3659 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3660 inode_inc_iversion(inode);
3661 inode_inc_iversion(dir);
e02119d5 3662 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3663 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3664out:
39279cc3
CM
3665 return ret;
3666}
3667
92986796
AV
3668int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3669 struct btrfs_root *root,
3670 struct inode *dir, struct inode *inode,
3671 const char *name, int name_len)
3672{
3673 int ret;
3674 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3675 if (!ret) {
3676 btrfs_drop_nlink(inode);
3677 ret = btrfs_update_inode(trans, root, inode);
3678 }
3679 return ret;
3680}
39279cc3 3681
a22285a6
YZ
3682/*
3683 * helper to start transaction for unlink and rmdir.
3684 *
d52be818
JB
3685 * unlink and rmdir are special in btrfs, they do not always free space, so
3686 * if we cannot make our reservations the normal way try and see if there is
3687 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3688 * allow the unlink to occur.
a22285a6 3689 */
d52be818 3690static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3691{
39279cc3 3692 struct btrfs_trans_handle *trans;
a22285a6 3693 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3694 int ret;
3695
e70bea5f
JB
3696 /*
3697 * 1 for the possible orphan item
3698 * 1 for the dir item
3699 * 1 for the dir index
3700 * 1 for the inode ref
e70bea5f
JB
3701 * 1 for the inode
3702 */
6e137ed3 3703 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3704 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3705 return trans;
4df27c4d 3706
d52be818
JB
3707 if (PTR_ERR(trans) == -ENOSPC) {
3708 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3709
d52be818
JB
3710 trans = btrfs_start_transaction(root, 0);
3711 if (IS_ERR(trans))
3712 return trans;
3713 ret = btrfs_cond_migrate_bytes(root->fs_info,
3714 &root->fs_info->trans_block_rsv,
3715 num_bytes, 5);
3716 if (ret) {
3717 btrfs_end_transaction(trans, root);
3718 return ERR_PTR(ret);
a22285a6 3719 }
5a77d76c 3720 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3721 trans->bytes_reserved = num_bytes;
a22285a6 3722 }
d52be818 3723 return trans;
a22285a6
YZ
3724}
3725
3726static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3727{
3728 struct btrfs_root *root = BTRFS_I(dir)->root;
3729 struct btrfs_trans_handle *trans;
3730 struct inode *inode = dentry->d_inode;
3731 int ret;
a22285a6 3732
d52be818 3733 trans = __unlink_start_trans(dir);
a22285a6
YZ
3734 if (IS_ERR(trans))
3735 return PTR_ERR(trans);
5f39d397 3736
12fcfd22
CM
3737 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3738
e02119d5
CM
3739 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3740 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3741 if (ret)
3742 goto out;
7b128766 3743
a22285a6 3744 if (inode->i_nlink == 0) {
7b128766 3745 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3746 if (ret)
3747 goto out;
a22285a6 3748 }
7b128766 3749
b532402e 3750out:
d52be818 3751 btrfs_end_transaction(trans, root);
b53d3f5d 3752 btrfs_btree_balance_dirty(root);
39279cc3
CM
3753 return ret;
3754}
3755
4df27c4d
YZ
3756int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3757 struct btrfs_root *root,
3758 struct inode *dir, u64 objectid,
3759 const char *name, int name_len)
3760{
3761 struct btrfs_path *path;
3762 struct extent_buffer *leaf;
3763 struct btrfs_dir_item *di;
3764 struct btrfs_key key;
3765 u64 index;
3766 int ret;
33345d01 3767 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3768
3769 path = btrfs_alloc_path();
3770 if (!path)
3771 return -ENOMEM;
3772
33345d01 3773 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3774 name, name_len, -1);
79787eaa
JM
3775 if (IS_ERR_OR_NULL(di)) {
3776 if (!di)
3777 ret = -ENOENT;
3778 else
3779 ret = PTR_ERR(di);
3780 goto out;
3781 }
4df27c4d
YZ
3782
3783 leaf = path->nodes[0];
3784 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3785 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3786 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3787 if (ret) {
3788 btrfs_abort_transaction(trans, root, ret);
3789 goto out;
3790 }
b3b4aa74 3791 btrfs_release_path(path);
4df27c4d
YZ
3792
3793 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3794 objectid, root->root_key.objectid,
33345d01 3795 dir_ino, &index, name, name_len);
4df27c4d 3796 if (ret < 0) {
79787eaa
JM
3797 if (ret != -ENOENT) {
3798 btrfs_abort_transaction(trans, root, ret);
3799 goto out;
3800 }
33345d01 3801 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3802 name, name_len);
79787eaa
JM
3803 if (IS_ERR_OR_NULL(di)) {
3804 if (!di)
3805 ret = -ENOENT;
3806 else
3807 ret = PTR_ERR(di);
3808 btrfs_abort_transaction(trans, root, ret);
3809 goto out;
3810 }
4df27c4d
YZ
3811
3812 leaf = path->nodes[0];
3813 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3814 btrfs_release_path(path);
4df27c4d
YZ
3815 index = key.offset;
3816 }
945d8962 3817 btrfs_release_path(path);
4df27c4d 3818
16cdcec7 3819 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3820 if (ret) {
3821 btrfs_abort_transaction(trans, root, ret);
3822 goto out;
3823 }
4df27c4d
YZ
3824
3825 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 3826 inode_inc_iversion(dir);
4df27c4d 3827 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 3828 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
3829 if (ret)
3830 btrfs_abort_transaction(trans, root, ret);
3831out:
71d7aed0 3832 btrfs_free_path(path);
79787eaa 3833 return ret;
4df27c4d
YZ
3834}
3835
39279cc3
CM
3836static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3837{
3838 struct inode *inode = dentry->d_inode;
1832a6d5 3839 int err = 0;
39279cc3 3840 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3841 struct btrfs_trans_handle *trans;
39279cc3 3842
b3ae244e 3843 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 3844 return -ENOTEMPTY;
b3ae244e
DS
3845 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3846 return -EPERM;
134d4512 3847
d52be818 3848 trans = __unlink_start_trans(dir);
a22285a6 3849 if (IS_ERR(trans))
5df6a9f6 3850 return PTR_ERR(trans);
5df6a9f6 3851
33345d01 3852 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3853 err = btrfs_unlink_subvol(trans, root, dir,
3854 BTRFS_I(inode)->location.objectid,
3855 dentry->d_name.name,
3856 dentry->d_name.len);
3857 goto out;
3858 }
3859
7b128766
JB
3860 err = btrfs_orphan_add(trans, inode);
3861 if (err)
4df27c4d 3862 goto out;
7b128766 3863
39279cc3 3864 /* now the directory is empty */
e02119d5
CM
3865 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3866 dentry->d_name.name, dentry->d_name.len);
d397712b 3867 if (!err)
dbe674a9 3868 btrfs_i_size_write(inode, 0);
4df27c4d 3869out:
d52be818 3870 btrfs_end_transaction(trans, root);
b53d3f5d 3871 btrfs_btree_balance_dirty(root);
3954401f 3872
39279cc3
CM
3873 return err;
3874}
3875
39279cc3
CM
3876/*
3877 * this can truncate away extent items, csum items and directory items.
3878 * It starts at a high offset and removes keys until it can't find
d352ac68 3879 * any higher than new_size
39279cc3
CM
3880 *
3881 * csum items that cross the new i_size are truncated to the new size
3882 * as well.
7b128766
JB
3883 *
3884 * min_type is the minimum key type to truncate down to. If set to 0, this
3885 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3886 */
8082510e
YZ
3887int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3888 struct btrfs_root *root,
3889 struct inode *inode,
3890 u64 new_size, u32 min_type)
39279cc3 3891{
39279cc3 3892 struct btrfs_path *path;
5f39d397 3893 struct extent_buffer *leaf;
39279cc3 3894 struct btrfs_file_extent_item *fi;
8082510e
YZ
3895 struct btrfs_key key;
3896 struct btrfs_key found_key;
39279cc3 3897 u64 extent_start = 0;
db94535d 3898 u64 extent_num_bytes = 0;
5d4f98a2 3899 u64 extent_offset = 0;
39279cc3 3900 u64 item_end = 0;
8082510e 3901 u32 found_type = (u8)-1;
39279cc3
CM
3902 int found_extent;
3903 int del_item;
85e21bac
CM
3904 int pending_del_nr = 0;
3905 int pending_del_slot = 0;
179e29e4 3906 int extent_type = -1;
8082510e
YZ
3907 int ret;
3908 int err = 0;
33345d01 3909 u64 ino = btrfs_ino(inode);
8082510e
YZ
3910
3911 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3912
0eb0e19c
MF
3913 path = btrfs_alloc_path();
3914 if (!path)
3915 return -ENOMEM;
3916 path->reada = -1;
3917
5dc562c5
JB
3918 /*
3919 * We want to drop from the next block forward in case this new size is
3920 * not block aligned since we will be keeping the last block of the
3921 * extent just the way it is.
3922 */
0af3d00b 3923 if (root->ref_cows || root == root->fs_info->tree_root)
fda2832f
QW
3924 btrfs_drop_extent_cache(inode, ALIGN(new_size,
3925 root->sectorsize), (u64)-1, 0);
8082510e 3926
16cdcec7
MX
3927 /*
3928 * This function is also used to drop the items in the log tree before
3929 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3930 * it is used to drop the loged items. So we shouldn't kill the delayed
3931 * items.
3932 */
3933 if (min_type == 0 && root == BTRFS_I(inode)->root)
3934 btrfs_kill_delayed_inode_items(inode);
3935
33345d01 3936 key.objectid = ino;
39279cc3 3937 key.offset = (u64)-1;
5f39d397
CM
3938 key.type = (u8)-1;
3939
85e21bac 3940search_again:
b9473439 3941 path->leave_spinning = 1;
85e21bac 3942 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3943 if (ret < 0) {
3944 err = ret;
3945 goto out;
3946 }
d397712b 3947
85e21bac 3948 if (ret > 0) {
e02119d5
CM
3949 /* there are no items in the tree for us to truncate, we're
3950 * done
3951 */
8082510e
YZ
3952 if (path->slots[0] == 0)
3953 goto out;
85e21bac
CM
3954 path->slots[0]--;
3955 }
3956
d397712b 3957 while (1) {
39279cc3 3958 fi = NULL;
5f39d397
CM
3959 leaf = path->nodes[0];
3960 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3961 found_type = btrfs_key_type(&found_key);
39279cc3 3962
33345d01 3963 if (found_key.objectid != ino)
39279cc3 3964 break;
5f39d397 3965
85e21bac 3966 if (found_type < min_type)
39279cc3
CM
3967 break;
3968
5f39d397 3969 item_end = found_key.offset;
39279cc3 3970 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3971 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3972 struct btrfs_file_extent_item);
179e29e4
CM
3973 extent_type = btrfs_file_extent_type(leaf, fi);
3974 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3975 item_end +=
db94535d 3976 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3977 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3978 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3979 fi);
39279cc3 3980 }
008630c1 3981 item_end--;
39279cc3 3982 }
8082510e
YZ
3983 if (found_type > min_type) {
3984 del_item = 1;
3985 } else {
3986 if (item_end < new_size)
b888db2b 3987 break;
8082510e
YZ
3988 if (found_key.offset >= new_size)
3989 del_item = 1;
3990 else
3991 del_item = 0;
39279cc3 3992 }
39279cc3 3993 found_extent = 0;
39279cc3 3994 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3995 if (found_type != BTRFS_EXTENT_DATA_KEY)
3996 goto delete;
3997
3998 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3999 u64 num_dec;
db94535d 4000 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4001 if (!del_item) {
db94535d
CM
4002 u64 orig_num_bytes =
4003 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4004 extent_num_bytes = ALIGN(new_size -
4005 found_key.offset,
4006 root->sectorsize);
db94535d
CM
4007 btrfs_set_file_extent_num_bytes(leaf, fi,
4008 extent_num_bytes);
4009 num_dec = (orig_num_bytes -
9069218d 4010 extent_num_bytes);
e02119d5 4011 if (root->ref_cows && extent_start != 0)
a76a3cd4 4012 inode_sub_bytes(inode, num_dec);
5f39d397 4013 btrfs_mark_buffer_dirty(leaf);
39279cc3 4014 } else {
db94535d
CM
4015 extent_num_bytes =
4016 btrfs_file_extent_disk_num_bytes(leaf,
4017 fi);
5d4f98a2
YZ
4018 extent_offset = found_key.offset -
4019 btrfs_file_extent_offset(leaf, fi);
4020
39279cc3 4021 /* FIXME blocksize != 4096 */
9069218d 4022 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4023 if (extent_start != 0) {
4024 found_extent = 1;
e02119d5 4025 if (root->ref_cows)
a76a3cd4 4026 inode_sub_bytes(inode, num_dec);
e02119d5 4027 }
39279cc3 4028 }
9069218d 4029 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4030 /*
4031 * we can't truncate inline items that have had
4032 * special encodings
4033 */
4034 if (!del_item &&
4035 btrfs_file_extent_compression(leaf, fi) == 0 &&
4036 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4037 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4038 u32 size = new_size - found_key.offset;
4039
4040 if (root->ref_cows) {
a76a3cd4
YZ
4041 inode_sub_bytes(inode, item_end + 1 -
4042 new_size);
e02119d5
CM
4043 }
4044 size =
4045 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4046 btrfs_truncate_item(root, path, size, 1);
e02119d5 4047 } else if (root->ref_cows) {
a76a3cd4
YZ
4048 inode_sub_bytes(inode, item_end + 1 -
4049 found_key.offset);
9069218d 4050 }
39279cc3 4051 }
179e29e4 4052delete:
39279cc3 4053 if (del_item) {
85e21bac
CM
4054 if (!pending_del_nr) {
4055 /* no pending yet, add ourselves */
4056 pending_del_slot = path->slots[0];
4057 pending_del_nr = 1;
4058 } else if (pending_del_nr &&
4059 path->slots[0] + 1 == pending_del_slot) {
4060 /* hop on the pending chunk */
4061 pending_del_nr++;
4062 pending_del_slot = path->slots[0];
4063 } else {
d397712b 4064 BUG();
85e21bac 4065 }
39279cc3
CM
4066 } else {
4067 break;
4068 }
0af3d00b
JB
4069 if (found_extent && (root->ref_cows ||
4070 root == root->fs_info->tree_root)) {
b9473439 4071 btrfs_set_path_blocking(path);
39279cc3 4072 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4073 extent_num_bytes, 0,
4074 btrfs_header_owner(leaf),
66d7e7f0 4075 ino, extent_offset, 0);
39279cc3
CM
4076 BUG_ON(ret);
4077 }
85e21bac 4078
8082510e
YZ
4079 if (found_type == BTRFS_INODE_ITEM_KEY)
4080 break;
4081
4082 if (path->slots[0] == 0 ||
4083 path->slots[0] != pending_del_slot) {
8082510e
YZ
4084 if (pending_del_nr) {
4085 ret = btrfs_del_items(trans, root, path,
4086 pending_del_slot,
4087 pending_del_nr);
79787eaa
JM
4088 if (ret) {
4089 btrfs_abort_transaction(trans,
4090 root, ret);
4091 goto error;
4092 }
8082510e
YZ
4093 pending_del_nr = 0;
4094 }
b3b4aa74 4095 btrfs_release_path(path);
85e21bac 4096 goto search_again;
8082510e
YZ
4097 } else {
4098 path->slots[0]--;
85e21bac 4099 }
39279cc3 4100 }
8082510e 4101out:
85e21bac
CM
4102 if (pending_del_nr) {
4103 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4104 pending_del_nr);
79787eaa
JM
4105 if (ret)
4106 btrfs_abort_transaction(trans, root, ret);
85e21bac 4107 }
79787eaa 4108error:
39279cc3 4109 btrfs_free_path(path);
8082510e 4110 return err;
39279cc3
CM
4111}
4112
4113/*
2aaa6655
JB
4114 * btrfs_truncate_page - read, zero a chunk and write a page
4115 * @inode - inode that we're zeroing
4116 * @from - the offset to start zeroing
4117 * @len - the length to zero, 0 to zero the entire range respective to the
4118 * offset
4119 * @front - zero up to the offset instead of from the offset on
4120 *
4121 * This will find the page for the "from" offset and cow the page and zero the
4122 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4123 */
2aaa6655
JB
4124int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4125 int front)
39279cc3 4126{
2aaa6655 4127 struct address_space *mapping = inode->i_mapping;
db94535d 4128 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4129 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4130 struct btrfs_ordered_extent *ordered;
2ac55d41 4131 struct extent_state *cached_state = NULL;
e6dcd2dc 4132 char *kaddr;
db94535d 4133 u32 blocksize = root->sectorsize;
39279cc3
CM
4134 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4135 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4136 struct page *page;
3b16a4e3 4137 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4138 int ret = 0;
a52d9a80 4139 u64 page_start;
e6dcd2dc 4140 u64 page_end;
39279cc3 4141
2aaa6655
JB
4142 if ((offset & (blocksize - 1)) == 0 &&
4143 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4144 goto out;
0ca1f7ce 4145 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4146 if (ret)
4147 goto out;
39279cc3 4148
211c17f5 4149again:
3b16a4e3 4150 page = find_or_create_page(mapping, index, mask);
5d5e103a 4151 if (!page) {
0ca1f7ce 4152 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4153 ret = -ENOMEM;
39279cc3 4154 goto out;
5d5e103a 4155 }
e6dcd2dc
CM
4156
4157 page_start = page_offset(page);
4158 page_end = page_start + PAGE_CACHE_SIZE - 1;
4159
39279cc3 4160 if (!PageUptodate(page)) {
9ebefb18 4161 ret = btrfs_readpage(NULL, page);
39279cc3 4162 lock_page(page);
211c17f5
CM
4163 if (page->mapping != mapping) {
4164 unlock_page(page);
4165 page_cache_release(page);
4166 goto again;
4167 }
39279cc3
CM
4168 if (!PageUptodate(page)) {
4169 ret = -EIO;
89642229 4170 goto out_unlock;
39279cc3
CM
4171 }
4172 }
211c17f5 4173 wait_on_page_writeback(page);
e6dcd2dc 4174
d0082371 4175 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4176 set_page_extent_mapped(page);
4177
4178 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4179 if (ordered) {
2ac55d41
JB
4180 unlock_extent_cached(io_tree, page_start, page_end,
4181 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4182 unlock_page(page);
4183 page_cache_release(page);
eb84ae03 4184 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4185 btrfs_put_ordered_extent(ordered);
4186 goto again;
4187 }
4188
2ac55d41 4189 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4190 EXTENT_DIRTY | EXTENT_DELALLOC |
4191 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4192 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4193
2ac55d41
JB
4194 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4195 &cached_state);
9ed74f2d 4196 if (ret) {
2ac55d41
JB
4197 unlock_extent_cached(io_tree, page_start, page_end,
4198 &cached_state, GFP_NOFS);
9ed74f2d
JB
4199 goto out_unlock;
4200 }
4201
e6dcd2dc 4202 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4203 if (!len)
4204 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4205 kaddr = kmap(page);
2aaa6655
JB
4206 if (front)
4207 memset(kaddr, 0, offset);
4208 else
4209 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4210 flush_dcache_page(page);
4211 kunmap(page);
4212 }
247e743c 4213 ClearPageChecked(page);
e6dcd2dc 4214 set_page_dirty(page);
2ac55d41
JB
4215 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4216 GFP_NOFS);
39279cc3 4217
89642229 4218out_unlock:
5d5e103a 4219 if (ret)
0ca1f7ce 4220 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4221 unlock_page(page);
4222 page_cache_release(page);
4223out:
4224 return ret;
4225}
4226
695a0d0d
JB
4227/*
4228 * This function puts in dummy file extents for the area we're creating a hole
4229 * for. So if we are truncating this file to a larger size we need to insert
4230 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4231 * the range between oldsize and size
4232 */
a41ad394 4233int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4234{
9036c102
YZ
4235 struct btrfs_trans_handle *trans;
4236 struct btrfs_root *root = BTRFS_I(inode)->root;
4237 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4238 struct extent_map *em = NULL;
2ac55d41 4239 struct extent_state *cached_state = NULL;
5dc562c5 4240 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4241 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4242 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4243 u64 last_byte;
4244 u64 cur_offset;
4245 u64 hole_size;
9ed74f2d 4246 int err = 0;
39279cc3 4247
a71754fc
JB
4248 /*
4249 * If our size started in the middle of a page we need to zero out the
4250 * rest of the page before we expand the i_size, otherwise we could
4251 * expose stale data.
4252 */
4253 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4254 if (err)
4255 return err;
4256
9036c102
YZ
4257 if (size <= hole_start)
4258 return 0;
4259
9036c102
YZ
4260 while (1) {
4261 struct btrfs_ordered_extent *ordered;
4262 btrfs_wait_ordered_range(inode, hole_start,
4263 block_end - hole_start);
2ac55d41 4264 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4265 &cached_state);
9036c102
YZ
4266 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4267 if (!ordered)
4268 break;
2ac55d41
JB
4269 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4270 &cached_state, GFP_NOFS);
9036c102
YZ
4271 btrfs_put_ordered_extent(ordered);
4272 }
39279cc3 4273
9036c102
YZ
4274 cur_offset = hole_start;
4275 while (1) {
4276 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4277 block_end - cur_offset, 0);
79787eaa
JM
4278 if (IS_ERR(em)) {
4279 err = PTR_ERR(em);
f2767956 4280 em = NULL;
79787eaa
JM
4281 break;
4282 }
9036c102 4283 last_byte = min(extent_map_end(em), block_end);
fda2832f 4284 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4285 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4286 struct extent_map *hole_em;
9036c102 4287 hole_size = last_byte - cur_offset;
9ed74f2d 4288
3642320e 4289 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
4290 if (IS_ERR(trans)) {
4291 err = PTR_ERR(trans);
9ed74f2d 4292 break;
a22285a6 4293 }
8082510e 4294
5dc562c5
JB
4295 err = btrfs_drop_extents(trans, root, inode,
4296 cur_offset,
2671485d 4297 cur_offset + hole_size, 1);
5b397377 4298 if (err) {
79787eaa 4299 btrfs_abort_transaction(trans, root, err);
5b397377 4300 btrfs_end_transaction(trans, root);
3893e33b 4301 break;
5b397377 4302 }
8082510e 4303
9036c102 4304 err = btrfs_insert_file_extent(trans, root,
33345d01 4305 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
4306 0, hole_size, 0, hole_size,
4307 0, 0, 0);
5b397377 4308 if (err) {
79787eaa 4309 btrfs_abort_transaction(trans, root, err);
5b397377 4310 btrfs_end_transaction(trans, root);
3893e33b 4311 break;
5b397377 4312 }
8082510e 4313
5dc562c5
JB
4314 btrfs_drop_extent_cache(inode, cur_offset,
4315 cur_offset + hole_size - 1, 0);
4316 hole_em = alloc_extent_map();
4317 if (!hole_em) {
4318 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4319 &BTRFS_I(inode)->runtime_flags);
4320 goto next;
4321 }
4322 hole_em->start = cur_offset;
4323 hole_em->len = hole_size;
4324 hole_em->orig_start = cur_offset;
8082510e 4325
5dc562c5
JB
4326 hole_em->block_start = EXTENT_MAP_HOLE;
4327 hole_em->block_len = 0;
b4939680 4328 hole_em->orig_block_len = 0;
cc95bef6 4329 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4330 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4331 hole_em->compress_type = BTRFS_COMPRESS_NONE;
4332 hole_em->generation = trans->transid;
8082510e 4333
5dc562c5
JB
4334 while (1) {
4335 write_lock(&em_tree->lock);
09a2a8f9 4336 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4337 write_unlock(&em_tree->lock);
4338 if (err != -EEXIST)
4339 break;
4340 btrfs_drop_extent_cache(inode, cur_offset,
4341 cur_offset +
4342 hole_size - 1, 0);
4343 }
4344 free_extent_map(hole_em);
4345next:
3642320e 4346 btrfs_update_inode(trans, root, inode);
8082510e 4347 btrfs_end_transaction(trans, root);
9036c102
YZ
4348 }
4349 free_extent_map(em);
a22285a6 4350 em = NULL;
9036c102 4351 cur_offset = last_byte;
8082510e 4352 if (cur_offset >= block_end)
9036c102
YZ
4353 break;
4354 }
1832a6d5 4355
a22285a6 4356 free_extent_map(em);
2ac55d41
JB
4357 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4358 GFP_NOFS);
9036c102
YZ
4359 return err;
4360}
39279cc3 4361
3972f260 4362static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4363{
f4a2f4c5
MX
4364 struct btrfs_root *root = BTRFS_I(inode)->root;
4365 struct btrfs_trans_handle *trans;
a41ad394 4366 loff_t oldsize = i_size_read(inode);
3972f260
ES
4367 loff_t newsize = attr->ia_size;
4368 int mask = attr->ia_valid;
8082510e
YZ
4369 int ret;
4370
3972f260
ES
4371 /*
4372 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4373 * special case where we need to update the times despite not having
4374 * these flags set. For all other operations the VFS set these flags
4375 * explicitly if it wants a timestamp update.
4376 */
4377 if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4378 inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4379
a41ad394 4380 if (newsize > oldsize) {
a41ad394
JB
4381 truncate_pagecache(inode, oldsize, newsize);
4382 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 4383 if (ret)
8082510e 4384 return ret;
8082510e 4385
f4a2f4c5
MX
4386 trans = btrfs_start_transaction(root, 1);
4387 if (IS_ERR(trans))
4388 return PTR_ERR(trans);
4389
4390 i_size_write(inode, newsize);
4391 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4392 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 4393 btrfs_end_transaction(trans, root);
a41ad394 4394 } else {
8082510e 4395
a41ad394
JB
4396 /*
4397 * We're truncating a file that used to have good data down to
4398 * zero. Make sure it gets into the ordered flush list so that
4399 * any new writes get down to disk quickly.
4400 */
4401 if (newsize == 0)
72ac3c0d
JB
4402 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4403 &BTRFS_I(inode)->runtime_flags);
8082510e 4404
f3fe820c
JB
4405 /*
4406 * 1 for the orphan item we're going to add
4407 * 1 for the orphan item deletion.
4408 */
4409 trans = btrfs_start_transaction(root, 2);
4410 if (IS_ERR(trans))
4411 return PTR_ERR(trans);
4412
4413 /*
4414 * We need to do this in case we fail at _any_ point during the
4415 * actual truncate. Once we do the truncate_setsize we could
4416 * invalidate pages which forces any outstanding ordered io to
4417 * be instantly completed which will give us extents that need
4418 * to be truncated. If we fail to get an orphan inode down we
4419 * could have left over extents that were never meant to live,
4420 * so we need to garuntee from this point on that everything
4421 * will be consistent.
4422 */
4423 ret = btrfs_orphan_add(trans, inode);
4424 btrfs_end_transaction(trans, root);
4425 if (ret)
4426 return ret;
4427
a41ad394
JB
4428 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4429 truncate_setsize(inode, newsize);
2e60a51e
MX
4430
4431 /* Disable nonlocked read DIO to avoid the end less truncate */
4432 btrfs_inode_block_unlocked_dio(inode);
4433 inode_dio_wait(inode);
4434 btrfs_inode_resume_unlocked_dio(inode);
4435
a41ad394 4436 ret = btrfs_truncate(inode);
f3fe820c
JB
4437 if (ret && inode->i_nlink)
4438 btrfs_orphan_del(NULL, inode);
8082510e
YZ
4439 }
4440
a41ad394 4441 return ret;
8082510e
YZ
4442}
4443
9036c102
YZ
4444static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4445{
4446 struct inode *inode = dentry->d_inode;
b83cc969 4447 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4448 int err;
39279cc3 4449
b83cc969
LZ
4450 if (btrfs_root_readonly(root))
4451 return -EROFS;
4452
9036c102
YZ
4453 err = inode_change_ok(inode, attr);
4454 if (err)
4455 return err;
2bf5a725 4456
5a3f23d5 4457 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4458 err = btrfs_setsize(inode, attr);
8082510e
YZ
4459 if (err)
4460 return err;
39279cc3 4461 }
9036c102 4462
1025774c
CH
4463 if (attr->ia_valid) {
4464 setattr_copy(inode, attr);
0c4d2d95 4465 inode_inc_iversion(inode);
22c44fe6 4466 err = btrfs_dirty_inode(inode);
1025774c 4467
22c44fe6 4468 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
4469 err = btrfs_acl_chmod(inode);
4470 }
33268eaf 4471
39279cc3
CM
4472 return err;
4473}
61295eb8 4474
bd555975 4475void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4476{
4477 struct btrfs_trans_handle *trans;
4478 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4479 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4480 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4481 int ret;
4482
1abe9b8a 4483 trace_btrfs_inode_evict(inode);
4484
39279cc3 4485 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 4486 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
83eea1f1 4487 btrfs_is_free_space_inode(inode)))
bd555975
AV
4488 goto no_delete;
4489
39279cc3 4490 if (is_bad_inode(inode)) {
7b128766 4491 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4492 goto no_delete;
4493 }
bd555975 4494 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4495 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4496
c71bf099 4497 if (root->fs_info->log_root_recovering) {
6bf02314 4498 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4499 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4500 goto no_delete;
4501 }
4502
76dda93c
YZ
4503 if (inode->i_nlink > 0) {
4504 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4505 goto no_delete;
4506 }
4507
0e8c36a9
MX
4508 ret = btrfs_commit_inode_delayed_inode(inode);
4509 if (ret) {
4510 btrfs_orphan_del(NULL, inode);
4511 goto no_delete;
4512 }
4513
66d8f3dd 4514 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4515 if (!rsv) {
4516 btrfs_orphan_del(NULL, inode);
4517 goto no_delete;
4518 }
4a338542 4519 rsv->size = min_size;
ca7e70f5 4520 rsv->failfast = 1;
726c35fa 4521 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4522
dbe674a9 4523 btrfs_i_size_write(inode, 0);
5f39d397 4524
4289a667 4525 /*
8407aa46
MX
4526 * This is a bit simpler than btrfs_truncate since we've already
4527 * reserved our space for our orphan item in the unlink, so we just
4528 * need to reserve some slack space in case we add bytes and update
4529 * inode item when doing the truncate.
4289a667 4530 */
8082510e 4531 while (1) {
08e007d2
MX
4532 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4533 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4534
4535 /*
4536 * Try and steal from the global reserve since we will
4537 * likely not use this space anyway, we want to try as
4538 * hard as possible to get this to work.
4539 */
4540 if (ret)
4541 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4542
d68fc57b 4543 if (ret) {
c2cf52eb
SK
4544 btrfs_warn(root->fs_info,
4545 "Could not get space for a delete, will truncate on mount %d",
4546 ret);
4289a667
JB
4547 btrfs_orphan_del(NULL, inode);
4548 btrfs_free_block_rsv(root, rsv);
4549 goto no_delete;
d68fc57b 4550 }
7b128766 4551
0e8c36a9 4552 trans = btrfs_join_transaction(root);
4289a667
JB
4553 if (IS_ERR(trans)) {
4554 btrfs_orphan_del(NULL, inode);
4555 btrfs_free_block_rsv(root, rsv);
4556 goto no_delete;
d68fc57b 4557 }
7b128766 4558
4289a667
JB
4559 trans->block_rsv = rsv;
4560
d68fc57b 4561 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4562 if (ret != -ENOSPC)
8082510e 4563 break;
85e21bac 4564
8407aa46 4565 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4566 btrfs_end_transaction(trans, root);
4567 trans = NULL;
b53d3f5d 4568 btrfs_btree_balance_dirty(root);
8082510e 4569 }
5f39d397 4570
4289a667
JB
4571 btrfs_free_block_rsv(root, rsv);
4572
8082510e 4573 if (ret == 0) {
4289a667 4574 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
4575 ret = btrfs_orphan_del(trans, inode);
4576 BUG_ON(ret);
4577 }
54aa1f4d 4578
4289a667 4579 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4580 if (!(root == root->fs_info->tree_root ||
4581 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4582 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4583
54aa1f4d 4584 btrfs_end_transaction(trans, root);
b53d3f5d 4585 btrfs_btree_balance_dirty(root);
39279cc3 4586no_delete:
89042e5a 4587 btrfs_remove_delayed_node(inode);
dbd5768f 4588 clear_inode(inode);
8082510e 4589 return;
39279cc3
CM
4590}
4591
4592/*
4593 * this returns the key found in the dir entry in the location pointer.
4594 * If no dir entries were found, location->objectid is 0.
4595 */
4596static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4597 struct btrfs_key *location)
4598{
4599 const char *name = dentry->d_name.name;
4600 int namelen = dentry->d_name.len;
4601 struct btrfs_dir_item *di;
4602 struct btrfs_path *path;
4603 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4604 int ret = 0;
39279cc3
CM
4605
4606 path = btrfs_alloc_path();
d8926bb3
MF
4607 if (!path)
4608 return -ENOMEM;
3954401f 4609
33345d01 4610 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4611 namelen, 0);
0d9f7f3e
Y
4612 if (IS_ERR(di))
4613 ret = PTR_ERR(di);
d397712b 4614
c704005d 4615 if (IS_ERR_OR_NULL(di))
3954401f 4616 goto out_err;
d397712b 4617
5f39d397 4618 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4619out:
39279cc3
CM
4620 btrfs_free_path(path);
4621 return ret;
3954401f
CM
4622out_err:
4623 location->objectid = 0;
4624 goto out;
39279cc3
CM
4625}
4626
4627/*
4628 * when we hit a tree root in a directory, the btrfs part of the inode
4629 * needs to be changed to reflect the root directory of the tree root. This
4630 * is kind of like crossing a mount point.
4631 */
4632static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
4633 struct inode *dir,
4634 struct dentry *dentry,
4635 struct btrfs_key *location,
4636 struct btrfs_root **sub_root)
39279cc3 4637{
4df27c4d
YZ
4638 struct btrfs_path *path;
4639 struct btrfs_root *new_root;
4640 struct btrfs_root_ref *ref;
4641 struct extent_buffer *leaf;
4642 int ret;
4643 int err = 0;
39279cc3 4644
4df27c4d
YZ
4645 path = btrfs_alloc_path();
4646 if (!path) {
4647 err = -ENOMEM;
4648 goto out;
4649 }
39279cc3 4650
4df27c4d
YZ
4651 err = -ENOENT;
4652 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4653 BTRFS_I(dir)->root->root_key.objectid,
4654 location->objectid);
4655 if (ret) {
4656 if (ret < 0)
4657 err = ret;
4658 goto out;
4659 }
39279cc3 4660
4df27c4d
YZ
4661 leaf = path->nodes[0];
4662 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 4663 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
4664 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4665 goto out;
39279cc3 4666
4df27c4d
YZ
4667 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4668 (unsigned long)(ref + 1),
4669 dentry->d_name.len);
4670 if (ret)
4671 goto out;
4672
b3b4aa74 4673 btrfs_release_path(path);
4df27c4d
YZ
4674
4675 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4676 if (IS_ERR(new_root)) {
4677 err = PTR_ERR(new_root);
4678 goto out;
4679 }
4680
4df27c4d
YZ
4681 *sub_root = new_root;
4682 location->objectid = btrfs_root_dirid(&new_root->root_item);
4683 location->type = BTRFS_INODE_ITEM_KEY;
4684 location->offset = 0;
4685 err = 0;
4686out:
4687 btrfs_free_path(path);
4688 return err;
39279cc3
CM
4689}
4690
5d4f98a2
YZ
4691static void inode_tree_add(struct inode *inode)
4692{
4693 struct btrfs_root *root = BTRFS_I(inode)->root;
4694 struct btrfs_inode *entry;
03e860bd
FNP
4695 struct rb_node **p;
4696 struct rb_node *parent;
33345d01 4697 u64 ino = btrfs_ino(inode);
5d4f98a2 4698
1d3382cb 4699 if (inode_unhashed(inode))
76dda93c 4700 return;
e1409cef
MX
4701again:
4702 parent = NULL;
5d4f98a2 4703 spin_lock(&root->inode_lock);
e1409cef 4704 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
4705 while (*p) {
4706 parent = *p;
4707 entry = rb_entry(parent, struct btrfs_inode, rb_node);
4708
33345d01 4709 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 4710 p = &parent->rb_left;
33345d01 4711 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 4712 p = &parent->rb_right;
5d4f98a2
YZ
4713 else {
4714 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 4715 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
4716 rb_erase(parent, &root->inode_tree);
4717 RB_CLEAR_NODE(parent);
4718 spin_unlock(&root->inode_lock);
4719 goto again;
5d4f98a2
YZ
4720 }
4721 }
4722 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4723 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4724 spin_unlock(&root->inode_lock);
4725}
4726
4727static void inode_tree_del(struct inode *inode)
4728{
4729 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 4730 int empty = 0;
5d4f98a2 4731
03e860bd 4732 spin_lock(&root->inode_lock);
5d4f98a2 4733 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 4734 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 4735 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 4736 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 4737 }
03e860bd 4738 spin_unlock(&root->inode_lock);
76dda93c 4739
0af3d00b
JB
4740 /*
4741 * Free space cache has inodes in the tree root, but the tree root has a
4742 * root_refs of 0, so this could end up dropping the tree root as a
4743 * snapshot, so we need the extra !root->fs_info->tree_root check to
4744 * make sure we don't drop it.
4745 */
4746 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4747 root != root->fs_info->tree_root) {
76dda93c
YZ
4748 synchronize_srcu(&root->fs_info->subvol_srcu);
4749 spin_lock(&root->inode_lock);
4750 empty = RB_EMPTY_ROOT(&root->inode_tree);
4751 spin_unlock(&root->inode_lock);
4752 if (empty)
4753 btrfs_add_dead_root(root);
4754 }
4755}
4756
143bede5 4757void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
4758{
4759 struct rb_node *node;
4760 struct rb_node *prev;
4761 struct btrfs_inode *entry;
4762 struct inode *inode;
4763 u64 objectid = 0;
4764
4765 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4766
4767 spin_lock(&root->inode_lock);
4768again:
4769 node = root->inode_tree.rb_node;
4770 prev = NULL;
4771 while (node) {
4772 prev = node;
4773 entry = rb_entry(node, struct btrfs_inode, rb_node);
4774
33345d01 4775 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 4776 node = node->rb_left;
33345d01 4777 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
4778 node = node->rb_right;
4779 else
4780 break;
4781 }
4782 if (!node) {
4783 while (prev) {
4784 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 4785 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
4786 node = prev;
4787 break;
4788 }
4789 prev = rb_next(prev);
4790 }
4791 }
4792 while (node) {
4793 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 4794 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
4795 inode = igrab(&entry->vfs_inode);
4796 if (inode) {
4797 spin_unlock(&root->inode_lock);
4798 if (atomic_read(&inode->i_count) > 1)
4799 d_prune_aliases(inode);
4800 /*
45321ac5 4801 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4802 * the inode cache when its usage count
4803 * hits zero.
4804 */
4805 iput(inode);
4806 cond_resched();
4807 spin_lock(&root->inode_lock);
4808 goto again;
4809 }
4810
4811 if (cond_resched_lock(&root->inode_lock))
4812 goto again;
4813
4814 node = rb_next(node);
4815 }
4816 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
4817}
4818
e02119d5
CM
4819static int btrfs_init_locked_inode(struct inode *inode, void *p)
4820{
4821 struct btrfs_iget_args *args = p;
4822 inode->i_ino = args->ino;
e02119d5 4823 BTRFS_I(inode)->root = args->root;
39279cc3
CM
4824 return 0;
4825}
4826
4827static int btrfs_find_actor(struct inode *inode, void *opaque)
4828{
4829 struct btrfs_iget_args *args = opaque;
33345d01 4830 return args->ino == btrfs_ino(inode) &&
d397712b 4831 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4832}
4833
5d4f98a2
YZ
4834static struct inode *btrfs_iget_locked(struct super_block *s,
4835 u64 objectid,
4836 struct btrfs_root *root)
39279cc3
CM
4837{
4838 struct inode *inode;
4839 struct btrfs_iget_args args;
4840 args.ino = objectid;
4841 args.root = root;
4842
4843 inode = iget5_locked(s, objectid, btrfs_find_actor,
4844 btrfs_init_locked_inode,
4845 (void *)&args);
4846 return inode;
4847}
4848
1a54ef8c
BR
4849/* Get an inode object given its location and corresponding root.
4850 * Returns in *is_new if the inode was read from disk
4851 */
4852struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4853 struct btrfs_root *root, int *new)
1a54ef8c
BR
4854{
4855 struct inode *inode;
4856
4857 inode = btrfs_iget_locked(s, location->objectid, root);
4858 if (!inode)
5d4f98a2 4859 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4860
4861 if (inode->i_state & I_NEW) {
4862 BTRFS_I(inode)->root = root;
4863 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4864 btrfs_read_locked_inode(inode);
1748f843
MF
4865 if (!is_bad_inode(inode)) {
4866 inode_tree_add(inode);
4867 unlock_new_inode(inode);
4868 if (new)
4869 *new = 1;
4870 } else {
e0b6d65b
ST
4871 unlock_new_inode(inode);
4872 iput(inode);
4873 inode = ERR_PTR(-ESTALE);
1748f843
MF
4874 }
4875 }
4876
1a54ef8c
BR
4877 return inode;
4878}
4879
4df27c4d
YZ
4880static struct inode *new_simple_dir(struct super_block *s,
4881 struct btrfs_key *key,
4882 struct btrfs_root *root)
4883{
4884 struct inode *inode = new_inode(s);
4885
4886 if (!inode)
4887 return ERR_PTR(-ENOMEM);
4888
4df27c4d
YZ
4889 BTRFS_I(inode)->root = root;
4890 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 4891 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
4892
4893 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 4894 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
4895 inode->i_fop = &simple_dir_operations;
4896 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4897 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4898
4899 return inode;
4900}
4901
3de4586c 4902struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4903{
d397712b 4904 struct inode *inode;
4df27c4d 4905 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4906 struct btrfs_root *sub_root = root;
4907 struct btrfs_key location;
76dda93c 4908 int index;
b4aff1f8 4909 int ret = 0;
39279cc3
CM
4910
4911 if (dentry->d_name.len > BTRFS_NAME_LEN)
4912 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4913
39e3c955 4914 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
4915 if (ret < 0)
4916 return ERR_PTR(ret);
5f39d397 4917
4df27c4d
YZ
4918 if (location.objectid == 0)
4919 return NULL;
4920
4921 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4922 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4923 return inode;
4924 }
4925
4926 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4927
76dda93c 4928 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4929 ret = fixup_tree_root_location(root, dir, dentry,
4930 &location, &sub_root);
4931 if (ret < 0) {
4932 if (ret != -ENOENT)
4933 inode = ERR_PTR(ret);
4934 else
4935 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4936 } else {
73f73415 4937 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4938 }
76dda93c
YZ
4939 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4940
34d19bad 4941 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4942 down_read(&root->fs_info->cleanup_work_sem);
4943 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4944 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4945 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
4946 if (ret) {
4947 iput(inode);
66b4ffd1 4948 inode = ERR_PTR(ret);
01cd3367 4949 }
c71bf099
YZ
4950 }
4951
3de4586c
CM
4952 return inode;
4953}
4954
fe15ce44 4955static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4956{
4957 struct btrfs_root *root;
848cce0d 4958 struct inode *inode = dentry->d_inode;
76dda93c 4959
848cce0d
LZ
4960 if (!inode && !IS_ROOT(dentry))
4961 inode = dentry->d_parent->d_inode;
76dda93c 4962
848cce0d
LZ
4963 if (inode) {
4964 root = BTRFS_I(inode)->root;
efefb143
YZ
4965 if (btrfs_root_refs(&root->root_item) == 0)
4966 return 1;
848cce0d
LZ
4967
4968 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
4969 return 1;
efefb143 4970 }
76dda93c
YZ
4971 return 0;
4972}
4973
b4aff1f8
JB
4974static void btrfs_dentry_release(struct dentry *dentry)
4975{
4976 if (dentry->d_fsdata)
4977 kfree(dentry->d_fsdata);
4978}
4979
3de4586c 4980static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 4981 unsigned int flags)
3de4586c 4982{
a66e7cc6
JB
4983 struct dentry *ret;
4984
4985 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
a66e7cc6 4986 return ret;
39279cc3
CM
4987}
4988
16cdcec7 4989unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4990 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4991};
4992
9cdda8d3 4993static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 4994{
9cdda8d3 4995 struct inode *inode = file_inode(file);
39279cc3
CM
4996 struct btrfs_root *root = BTRFS_I(inode)->root;
4997 struct btrfs_item *item;
4998 struct btrfs_dir_item *di;
4999 struct btrfs_key key;
5f39d397 5000 struct btrfs_key found_key;
39279cc3 5001 struct btrfs_path *path;
16cdcec7
MX
5002 struct list_head ins_list;
5003 struct list_head del_list;
39279cc3 5004 int ret;
5f39d397 5005 struct extent_buffer *leaf;
39279cc3 5006 int slot;
39279cc3
CM
5007 unsigned char d_type;
5008 int over = 0;
5009 u32 di_cur;
5010 u32 di_total;
5011 u32 di_len;
5012 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5013 char tmp_name[32];
5014 char *name_ptr;
5015 int name_len;
9cdda8d3 5016 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5017
5018 /* FIXME, use a real flag for deciding about the key type */
5019 if (root->fs_info->tree_root == root)
5020 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5021
9cdda8d3
AV
5022 if (!dir_emit_dots(file, ctx))
5023 return 0;
5024
49593bfa 5025 path = btrfs_alloc_path();
16cdcec7
MX
5026 if (!path)
5027 return -ENOMEM;
ff5714cc 5028
026fd317 5029 path->reada = 1;
49593bfa 5030
16cdcec7
MX
5031 if (key_type == BTRFS_DIR_INDEX_KEY) {
5032 INIT_LIST_HEAD(&ins_list);
5033 INIT_LIST_HEAD(&del_list);
5034 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5035 }
5036
39279cc3 5037 btrfs_set_key_type(&key, key_type);
9cdda8d3 5038 key.offset = ctx->pos;
33345d01 5039 key.objectid = btrfs_ino(inode);
5f39d397 5040
39279cc3
CM
5041 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5042 if (ret < 0)
5043 goto err;
49593bfa
DW
5044
5045 while (1) {
5f39d397 5046 leaf = path->nodes[0];
39279cc3 5047 slot = path->slots[0];
b9e03af0
LZ
5048 if (slot >= btrfs_header_nritems(leaf)) {
5049 ret = btrfs_next_leaf(root, path);
5050 if (ret < 0)
5051 goto err;
5052 else if (ret > 0)
5053 break;
5054 continue;
39279cc3 5055 }
3de4586c 5056
5f39d397
CM
5057 item = btrfs_item_nr(leaf, slot);
5058 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5059
5060 if (found_key.objectid != key.objectid)
39279cc3 5061 break;
5f39d397 5062 if (btrfs_key_type(&found_key) != key_type)
39279cc3 5063 break;
9cdda8d3 5064 if (found_key.offset < ctx->pos)
b9e03af0 5065 goto next;
16cdcec7
MX
5066 if (key_type == BTRFS_DIR_INDEX_KEY &&
5067 btrfs_should_delete_dir_index(&del_list,
5068 found_key.offset))
5069 goto next;
5f39d397 5070
9cdda8d3 5071 ctx->pos = found_key.offset;
16cdcec7 5072 is_curr = 1;
49593bfa 5073
39279cc3
CM
5074 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5075 di_cur = 0;
5f39d397 5076 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5077
5078 while (di_cur < di_total) {
5f39d397
CM
5079 struct btrfs_key location;
5080
22a94d44
JB
5081 if (verify_dir_item(root, leaf, di))
5082 break;
5083
5f39d397 5084 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5085 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5086 name_ptr = tmp_name;
5087 } else {
5088 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5089 if (!name_ptr) {
5090 ret = -ENOMEM;
5091 goto err;
5092 }
5f39d397
CM
5093 }
5094 read_extent_buffer(leaf, name_ptr,
5095 (unsigned long)(di + 1), name_len);
5096
5097 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5098 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5099
fede766f 5100
3de4586c 5101 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5102 * skip it.
5103 *
5104 * In contrast to old kernels, we insert the snapshot's
5105 * dir item and dir index after it has been created, so
5106 * we won't find a reference to our own snapshot. We
5107 * still keep the following code for backward
5108 * compatibility.
3de4586c
CM
5109 */
5110 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5111 location.objectid == root->root_key.objectid) {
5112 over = 0;
5113 goto skip;
5114 }
9cdda8d3
AV
5115 over = !dir_emit(ctx, name_ptr, name_len,
5116 location.objectid, d_type);
5f39d397 5117
3de4586c 5118skip:
5f39d397
CM
5119 if (name_ptr != tmp_name)
5120 kfree(name_ptr);
5121
39279cc3
CM
5122 if (over)
5123 goto nopos;
5103e947 5124 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5125 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5126 di_cur += di_len;
5127 di = (struct btrfs_dir_item *)((char *)di + di_len);
5128 }
b9e03af0
LZ
5129next:
5130 path->slots[0]++;
39279cc3 5131 }
49593bfa 5132
16cdcec7
MX
5133 if (key_type == BTRFS_DIR_INDEX_KEY) {
5134 if (is_curr)
9cdda8d3
AV
5135 ctx->pos++;
5136 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5137 if (ret)
5138 goto nopos;
5139 }
5140
49593bfa 5141 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5142 ctx->pos++;
5143
5144 /*
5145 * Stop new entries from being returned after we return the last
5146 * entry.
5147 *
5148 * New directory entries are assigned a strictly increasing
5149 * offset. This means that new entries created during readdir
5150 * are *guaranteed* to be seen in the future by that readdir.
5151 * This has broken buggy programs which operate on names as
5152 * they're returned by readdir. Until we re-use freed offsets
5153 * we have this hack to stop new entries from being returned
5154 * under the assumption that they'll never reach this huge
5155 * offset.
5156 *
5157 * This is being careful not to overflow 32bit loff_t unless the
5158 * last entry requires it because doing so has broken 32bit apps
5159 * in the past.
5160 */
5161 if (key_type == BTRFS_DIR_INDEX_KEY) {
5162 if (ctx->pos >= INT_MAX)
5163 ctx->pos = LLONG_MAX;
5164 else
5165 ctx->pos = INT_MAX;
5166 }
39279cc3
CM
5167nopos:
5168 ret = 0;
5169err:
16cdcec7
MX
5170 if (key_type == BTRFS_DIR_INDEX_KEY)
5171 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5172 btrfs_free_path(path);
39279cc3
CM
5173 return ret;
5174}
5175
a9185b41 5176int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5177{
5178 struct btrfs_root *root = BTRFS_I(inode)->root;
5179 struct btrfs_trans_handle *trans;
5180 int ret = 0;
0af3d00b 5181 bool nolock = false;
39279cc3 5182
72ac3c0d 5183 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5184 return 0;
5185
83eea1f1 5186 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5187 nolock = true;
0af3d00b 5188
a9185b41 5189 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5190 if (nolock)
7a7eaa40 5191 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5192 else
7a7eaa40 5193 trans = btrfs_join_transaction(root);
3612b495
TI
5194 if (IS_ERR(trans))
5195 return PTR_ERR(trans);
a698d075 5196 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5197 }
5198 return ret;
5199}
5200
5201/*
54aa1f4d 5202 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5203 * inode changes. But, it is most likely to find the inode in cache.
5204 * FIXME, needs more benchmarking...there are no reasons other than performance
5205 * to keep or drop this code.
5206 */
48a3b636 5207static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5208{
5209 struct btrfs_root *root = BTRFS_I(inode)->root;
5210 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5211 int ret;
5212
72ac3c0d 5213 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5214 return 0;
39279cc3 5215
7a7eaa40 5216 trans = btrfs_join_transaction(root);
22c44fe6
JB
5217 if (IS_ERR(trans))
5218 return PTR_ERR(trans);
8929ecfa
YZ
5219
5220 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5221 if (ret && ret == -ENOSPC) {
5222 /* whoops, lets try again with the full transaction */
5223 btrfs_end_transaction(trans, root);
5224 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5225 if (IS_ERR(trans))
5226 return PTR_ERR(trans);
8929ecfa 5227
94b60442 5228 ret = btrfs_update_inode(trans, root, inode);
94b60442 5229 }
39279cc3 5230 btrfs_end_transaction(trans, root);
16cdcec7
MX
5231 if (BTRFS_I(inode)->delayed_node)
5232 btrfs_balance_delayed_items(root);
22c44fe6
JB
5233
5234 return ret;
5235}
5236
5237/*
5238 * This is a copy of file_update_time. We need this so we can return error on
5239 * ENOSPC for updating the inode in the case of file write and mmap writes.
5240 */
e41f941a
JB
5241static int btrfs_update_time(struct inode *inode, struct timespec *now,
5242 int flags)
22c44fe6 5243{
2bc55652
AB
5244 struct btrfs_root *root = BTRFS_I(inode)->root;
5245
5246 if (btrfs_root_readonly(root))
5247 return -EROFS;
5248
e41f941a 5249 if (flags & S_VERSION)
22c44fe6 5250 inode_inc_iversion(inode);
e41f941a
JB
5251 if (flags & S_CTIME)
5252 inode->i_ctime = *now;
5253 if (flags & S_MTIME)
5254 inode->i_mtime = *now;
5255 if (flags & S_ATIME)
5256 inode->i_atime = *now;
5257 return btrfs_dirty_inode(inode);
39279cc3
CM
5258}
5259
d352ac68
CM
5260/*
5261 * find the highest existing sequence number in a directory
5262 * and then set the in-memory index_cnt variable to reflect
5263 * free sequence numbers
5264 */
aec7477b
JB
5265static int btrfs_set_inode_index_count(struct inode *inode)
5266{
5267 struct btrfs_root *root = BTRFS_I(inode)->root;
5268 struct btrfs_key key, found_key;
5269 struct btrfs_path *path;
5270 struct extent_buffer *leaf;
5271 int ret;
5272
33345d01 5273 key.objectid = btrfs_ino(inode);
aec7477b
JB
5274 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5275 key.offset = (u64)-1;
5276
5277 path = btrfs_alloc_path();
5278 if (!path)
5279 return -ENOMEM;
5280
5281 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5282 if (ret < 0)
5283 goto out;
5284 /* FIXME: we should be able to handle this */
5285 if (ret == 0)
5286 goto out;
5287 ret = 0;
5288
5289 /*
5290 * MAGIC NUMBER EXPLANATION:
5291 * since we search a directory based on f_pos we have to start at 2
5292 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5293 * else has to start at 2
5294 */
5295 if (path->slots[0] == 0) {
5296 BTRFS_I(inode)->index_cnt = 2;
5297 goto out;
5298 }
5299
5300 path->slots[0]--;
5301
5302 leaf = path->nodes[0];
5303 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5304
33345d01 5305 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
5306 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5307 BTRFS_I(inode)->index_cnt = 2;
5308 goto out;
5309 }
5310
5311 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5312out:
5313 btrfs_free_path(path);
5314 return ret;
5315}
5316
d352ac68
CM
5317/*
5318 * helper to find a free sequence number in a given directory. This current
5319 * code is very simple, later versions will do smarter things in the btree
5320 */
3de4586c 5321int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5322{
5323 int ret = 0;
5324
5325 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5326 ret = btrfs_inode_delayed_dir_index_count(dir);
5327 if (ret) {
5328 ret = btrfs_set_inode_index_count(dir);
5329 if (ret)
5330 return ret;
5331 }
aec7477b
JB
5332 }
5333
00e4e6b3 5334 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5335 BTRFS_I(dir)->index_cnt++;
5336
5337 return ret;
5338}
5339
39279cc3
CM
5340static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5341 struct btrfs_root *root,
aec7477b 5342 struct inode *dir,
9c58309d 5343 const char *name, int name_len,
175a4eb7
AV
5344 u64 ref_objectid, u64 objectid,
5345 umode_t mode, u64 *index)
39279cc3
CM
5346{
5347 struct inode *inode;
5f39d397 5348 struct btrfs_inode_item *inode_item;
39279cc3 5349 struct btrfs_key *location;
5f39d397 5350 struct btrfs_path *path;
9c58309d
CM
5351 struct btrfs_inode_ref *ref;
5352 struct btrfs_key key[2];
5353 u32 sizes[2];
5354 unsigned long ptr;
39279cc3
CM
5355 int ret;
5356 int owner;
5357
5f39d397 5358 path = btrfs_alloc_path();
d8926bb3
MF
5359 if (!path)
5360 return ERR_PTR(-ENOMEM);
5f39d397 5361
39279cc3 5362 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5363 if (!inode) {
5364 btrfs_free_path(path);
39279cc3 5365 return ERR_PTR(-ENOMEM);
8fb27640 5366 }
39279cc3 5367
581bb050
LZ
5368 /*
5369 * we have to initialize this early, so we can reclaim the inode
5370 * number if we fail afterwards in this function.
5371 */
5372 inode->i_ino = objectid;
5373
aec7477b 5374 if (dir) {
1abe9b8a 5375 trace_btrfs_inode_request(dir);
5376
3de4586c 5377 ret = btrfs_set_inode_index(dir, index);
09771430 5378 if (ret) {
8fb27640 5379 btrfs_free_path(path);
09771430 5380 iput(inode);
aec7477b 5381 return ERR_PTR(ret);
09771430 5382 }
aec7477b
JB
5383 }
5384 /*
5385 * index_cnt is ignored for everything but a dir,
5386 * btrfs_get_inode_index_count has an explanation for the magic
5387 * number
5388 */
5389 BTRFS_I(inode)->index_cnt = 2;
39279cc3 5390 BTRFS_I(inode)->root = root;
e02119d5 5391 BTRFS_I(inode)->generation = trans->transid;
76195853 5392 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5393
5dc562c5
JB
5394 /*
5395 * We could have gotten an inode number from somebody who was fsynced
5396 * and then removed in this same transaction, so let's just set full
5397 * sync since it will be a full sync anyway and this will blow away the
5398 * old info in the log.
5399 */
5400 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5401
569254b0 5402 if (S_ISDIR(mode))
39279cc3
CM
5403 owner = 0;
5404 else
5405 owner = 1;
9c58309d
CM
5406
5407 key[0].objectid = objectid;
5408 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5409 key[0].offset = 0;
5410
f186373f
MF
5411 /*
5412 * Start new inodes with an inode_ref. This is slightly more
5413 * efficient for small numbers of hard links since they will
5414 * be packed into one item. Extended refs will kick in if we
5415 * add more hard links than can fit in the ref item.
5416 */
9c58309d
CM
5417 key[1].objectid = objectid;
5418 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5419 key[1].offset = ref_objectid;
5420
5421 sizes[0] = sizeof(struct btrfs_inode_item);
5422 sizes[1] = name_len + sizeof(*ref);
5423
b9473439 5424 path->leave_spinning = 1;
9c58309d
CM
5425 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5426 if (ret != 0)
5f39d397
CM
5427 goto fail;
5428
ecc11fab 5429 inode_init_owner(inode, dir, mode);
a76a3cd4 5430 inode_set_bytes(inode, 0);
39279cc3 5431 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5432 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5433 struct btrfs_inode_item);
293f7e07
LZ
5434 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5435 sizeof(*inode_item));
e02119d5 5436 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
5437
5438 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5439 struct btrfs_inode_ref);
5440 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 5441 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
5442 ptr = (unsigned long)(ref + 1);
5443 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5444
5f39d397
CM
5445 btrfs_mark_buffer_dirty(path->nodes[0]);
5446 btrfs_free_path(path);
5447
39279cc3
CM
5448 location = &BTRFS_I(inode)->location;
5449 location->objectid = objectid;
39279cc3
CM
5450 location->offset = 0;
5451 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5452
6cbff00f
CH
5453 btrfs_inherit_iflags(inode, dir);
5454
569254b0 5455 if (S_ISREG(mode)) {
94272164
CM
5456 if (btrfs_test_opt(root, NODATASUM))
5457 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5458 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5459 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5460 BTRFS_INODE_NODATASUM;
94272164
CM
5461 }
5462
39279cc3 5463 insert_inode_hash(inode);
5d4f98a2 5464 inode_tree_add(inode);
1abe9b8a 5465
5466 trace_btrfs_inode_new(inode);
1973f0fa 5467 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5468
8ea05e3a
AB
5469 btrfs_update_root_times(trans, root);
5470
39279cc3 5471 return inode;
5f39d397 5472fail:
aec7477b
JB
5473 if (dir)
5474 BTRFS_I(dir)->index_cnt--;
5f39d397 5475 btrfs_free_path(path);
09771430 5476 iput(inode);
5f39d397 5477 return ERR_PTR(ret);
39279cc3
CM
5478}
5479
5480static inline u8 btrfs_inode_type(struct inode *inode)
5481{
5482 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5483}
5484
d352ac68
CM
5485/*
5486 * utility function to add 'inode' into 'parent_inode' with
5487 * a give name and a given sequence number.
5488 * if 'add_backref' is true, also insert a backref from the
5489 * inode to the parent directory.
5490 */
e02119d5
CM
5491int btrfs_add_link(struct btrfs_trans_handle *trans,
5492 struct inode *parent_inode, struct inode *inode,
5493 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5494{
4df27c4d 5495 int ret = 0;
39279cc3 5496 struct btrfs_key key;
e02119d5 5497 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5498 u64 ino = btrfs_ino(inode);
5499 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5500
33345d01 5501 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5502 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5503 } else {
33345d01 5504 key.objectid = ino;
4df27c4d
YZ
5505 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5506 key.offset = 0;
5507 }
5508
33345d01 5509 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5510 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5511 key.objectid, root->root_key.objectid,
33345d01 5512 parent_ino, index, name, name_len);
4df27c4d 5513 } else if (add_backref) {
33345d01
LZ
5514 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5515 parent_ino, index);
4df27c4d 5516 }
39279cc3 5517
79787eaa
JM
5518 /* Nothing to clean up yet */
5519 if (ret)
5520 return ret;
4df27c4d 5521
79787eaa
JM
5522 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5523 parent_inode, &key,
5524 btrfs_inode_type(inode), index);
9c52057c 5525 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5526 goto fail_dir_item;
5527 else if (ret) {
5528 btrfs_abort_transaction(trans, root, ret);
5529 return ret;
39279cc3 5530 }
79787eaa
JM
5531
5532 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5533 name_len * 2);
0c4d2d95 5534 inode_inc_iversion(parent_inode);
79787eaa
JM
5535 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5536 ret = btrfs_update_inode(trans, root, parent_inode);
5537 if (ret)
5538 btrfs_abort_transaction(trans, root, ret);
39279cc3 5539 return ret;
fe66a05a
CM
5540
5541fail_dir_item:
5542 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5543 u64 local_index;
5544 int err;
5545 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5546 key.objectid, root->root_key.objectid,
5547 parent_ino, &local_index, name, name_len);
5548
5549 } else if (add_backref) {
5550 u64 local_index;
5551 int err;
5552
5553 err = btrfs_del_inode_ref(trans, root, name, name_len,
5554 ino, parent_ino, &local_index);
5555 }
5556 return ret;
39279cc3
CM
5557}
5558
5559static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5560 struct inode *dir, struct dentry *dentry,
5561 struct inode *inode, int backref, u64 index)
39279cc3 5562{
a1b075d2
JB
5563 int err = btrfs_add_link(trans, dir, inode,
5564 dentry->d_name.name, dentry->d_name.len,
5565 backref, index);
39279cc3
CM
5566 if (err > 0)
5567 err = -EEXIST;
5568 return err;
5569}
5570
618e21d5 5571static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5572 umode_t mode, dev_t rdev)
618e21d5
JB
5573{
5574 struct btrfs_trans_handle *trans;
5575 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5576 struct inode *inode = NULL;
618e21d5
JB
5577 int err;
5578 int drop_inode = 0;
5579 u64 objectid;
00e4e6b3 5580 u64 index = 0;
618e21d5
JB
5581
5582 if (!new_valid_dev(rdev))
5583 return -EINVAL;
5584
9ed74f2d
JB
5585 /*
5586 * 2 for inode item and ref
5587 * 2 for dir items
5588 * 1 for xattr if selinux is on
5589 */
a22285a6
YZ
5590 trans = btrfs_start_transaction(root, 5);
5591 if (IS_ERR(trans))
5592 return PTR_ERR(trans);
1832a6d5 5593
581bb050
LZ
5594 err = btrfs_find_free_ino(root, &objectid);
5595 if (err)
5596 goto out_unlock;
5597
aec7477b 5598 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5599 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5600 mode, &index);
7cf96da3
TI
5601 if (IS_ERR(inode)) {
5602 err = PTR_ERR(inode);
618e21d5 5603 goto out_unlock;
7cf96da3 5604 }
618e21d5 5605
2a7dba39 5606 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5607 if (err) {
5608 drop_inode = 1;
5609 goto out_unlock;
5610 }
5611
ad19db71
CS
5612 /*
5613 * If the active LSM wants to access the inode during
5614 * d_instantiate it needs these. Smack checks to see
5615 * if the filesystem supports xattrs by looking at the
5616 * ops vector.
5617 */
5618
5619 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 5620 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
5621 if (err)
5622 drop_inode = 1;
5623 else {
618e21d5 5624 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 5625 btrfs_update_inode(trans, root, inode);
08c422c2 5626 d_instantiate(dentry, inode);
618e21d5 5627 }
618e21d5 5628out_unlock:
7ad85bb7 5629 btrfs_end_transaction(trans, root);
b53d3f5d 5630 btrfs_btree_balance_dirty(root);
618e21d5
JB
5631 if (drop_inode) {
5632 inode_dec_link_count(inode);
5633 iput(inode);
5634 }
618e21d5
JB
5635 return err;
5636}
5637
39279cc3 5638static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 5639 umode_t mode, bool excl)
39279cc3
CM
5640{
5641 struct btrfs_trans_handle *trans;
5642 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5643 struct inode *inode = NULL;
43baa579 5644 int drop_inode_on_err = 0;
a22285a6 5645 int err;
39279cc3 5646 u64 objectid;
00e4e6b3 5647 u64 index = 0;
39279cc3 5648
9ed74f2d
JB
5649 /*
5650 * 2 for inode item and ref
5651 * 2 for dir items
5652 * 1 for xattr if selinux is on
5653 */
a22285a6
YZ
5654 trans = btrfs_start_transaction(root, 5);
5655 if (IS_ERR(trans))
5656 return PTR_ERR(trans);
9ed74f2d 5657
581bb050
LZ
5658 err = btrfs_find_free_ino(root, &objectid);
5659 if (err)
5660 goto out_unlock;
5661
aec7477b 5662 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5663 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5664 mode, &index);
7cf96da3
TI
5665 if (IS_ERR(inode)) {
5666 err = PTR_ERR(inode);
39279cc3 5667 goto out_unlock;
7cf96da3 5668 }
43baa579 5669 drop_inode_on_err = 1;
39279cc3 5670
2a7dba39 5671 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
43baa579 5672 if (err)
33268eaf 5673 goto out_unlock;
33268eaf 5674
9185aa58
FB
5675 err = btrfs_update_inode(trans, root, inode);
5676 if (err)
5677 goto out_unlock;
5678
ad19db71
CS
5679 /*
5680 * If the active LSM wants to access the inode during
5681 * d_instantiate it needs these. Smack checks to see
5682 * if the filesystem supports xattrs by looking at the
5683 * ops vector.
5684 */
5685 inode->i_fop = &btrfs_file_operations;
5686 inode->i_op = &btrfs_file_inode_operations;
5687
a1b075d2 5688 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 5689 if (err)
43baa579
FB
5690 goto out_unlock;
5691
5692 inode->i_mapping->a_ops = &btrfs_aops;
5693 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5694 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5695 d_instantiate(dentry, inode);
5696
39279cc3 5697out_unlock:
7ad85bb7 5698 btrfs_end_transaction(trans, root);
43baa579 5699 if (err && drop_inode_on_err) {
39279cc3
CM
5700 inode_dec_link_count(inode);
5701 iput(inode);
5702 }
b53d3f5d 5703 btrfs_btree_balance_dirty(root);
39279cc3
CM
5704 return err;
5705}
5706
5707static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5708 struct dentry *dentry)
5709{
5710 struct btrfs_trans_handle *trans;
5711 struct btrfs_root *root = BTRFS_I(dir)->root;
5712 struct inode *inode = old_dentry->d_inode;
00e4e6b3 5713 u64 index;
39279cc3
CM
5714 int err;
5715 int drop_inode = 0;
5716
4a8be425
TH
5717 /* do not allow sys_link's with other subvols of the same device */
5718 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 5719 return -EXDEV;
4a8be425 5720
f186373f 5721 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 5722 return -EMLINK;
4a8be425 5723
3de4586c 5724 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
5725 if (err)
5726 goto fail;
5727
a22285a6 5728 /*
7e6b6465 5729 * 2 items for inode and inode ref
a22285a6 5730 * 2 items for dir items
7e6b6465 5731 * 1 item for parent inode
a22285a6 5732 */
7e6b6465 5733 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
5734 if (IS_ERR(trans)) {
5735 err = PTR_ERR(trans);
5736 goto fail;
5737 }
5f39d397 5738
3153495d 5739 btrfs_inc_nlink(inode);
0c4d2d95 5740 inode_inc_iversion(inode);
3153495d 5741 inode->i_ctime = CURRENT_TIME;
7de9c6ee 5742 ihold(inode);
e9976151 5743 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 5744
a1b075d2 5745 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 5746
a5719521 5747 if (err) {
54aa1f4d 5748 drop_inode = 1;
a5719521 5749 } else {
10d9f309 5750 struct dentry *parent = dentry->d_parent;
a5719521 5751 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
5752 if (err)
5753 goto fail;
08c422c2 5754 d_instantiate(dentry, inode);
6a912213 5755 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 5756 }
39279cc3 5757
7ad85bb7 5758 btrfs_end_transaction(trans, root);
1832a6d5 5759fail:
39279cc3
CM
5760 if (drop_inode) {
5761 inode_dec_link_count(inode);
5762 iput(inode);
5763 }
b53d3f5d 5764 btrfs_btree_balance_dirty(root);
39279cc3
CM
5765 return err;
5766}
5767
18bb1db3 5768static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 5769{
b9d86667 5770 struct inode *inode = NULL;
39279cc3
CM
5771 struct btrfs_trans_handle *trans;
5772 struct btrfs_root *root = BTRFS_I(dir)->root;
5773 int err = 0;
5774 int drop_on_err = 0;
b9d86667 5775 u64 objectid = 0;
00e4e6b3 5776 u64 index = 0;
39279cc3 5777
9ed74f2d
JB
5778 /*
5779 * 2 items for inode and ref
5780 * 2 items for dir items
5781 * 1 for xattr if selinux is on
5782 */
a22285a6
YZ
5783 trans = btrfs_start_transaction(root, 5);
5784 if (IS_ERR(trans))
5785 return PTR_ERR(trans);
39279cc3 5786
581bb050
LZ
5787 err = btrfs_find_free_ino(root, &objectid);
5788 if (err)
5789 goto out_fail;
5790
aec7477b 5791 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 5792 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 5793 S_IFDIR | mode, &index);
39279cc3
CM
5794 if (IS_ERR(inode)) {
5795 err = PTR_ERR(inode);
5796 goto out_fail;
5797 }
5f39d397 5798
39279cc3 5799 drop_on_err = 1;
33268eaf 5800
2a7dba39 5801 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
5802 if (err)
5803 goto out_fail;
5804
39279cc3
CM
5805 inode->i_op = &btrfs_dir_inode_operations;
5806 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 5807
dbe674a9 5808 btrfs_i_size_write(inode, 0);
39279cc3
CM
5809 err = btrfs_update_inode(trans, root, inode);
5810 if (err)
5811 goto out_fail;
5f39d397 5812
a1b075d2
JB
5813 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5814 dentry->d_name.len, 0, index);
39279cc3
CM
5815 if (err)
5816 goto out_fail;
5f39d397 5817
39279cc3
CM
5818 d_instantiate(dentry, inode);
5819 drop_on_err = 0;
39279cc3
CM
5820
5821out_fail:
7ad85bb7 5822 btrfs_end_transaction(trans, root);
39279cc3
CM
5823 if (drop_on_err)
5824 iput(inode);
b53d3f5d 5825 btrfs_btree_balance_dirty(root);
39279cc3
CM
5826 return err;
5827}
5828
d352ac68
CM
5829/* helper for btfs_get_extent. Given an existing extent in the tree,
5830 * and an extent that you want to insert, deal with overlap and insert
5831 * the new extent into the tree.
5832 */
3b951516
CM
5833static int merge_extent_mapping(struct extent_map_tree *em_tree,
5834 struct extent_map *existing,
e6dcd2dc
CM
5835 struct extent_map *em,
5836 u64 map_start, u64 map_len)
3b951516
CM
5837{
5838 u64 start_diff;
3b951516 5839
e6dcd2dc
CM
5840 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5841 start_diff = map_start - em->start;
5842 em->start = map_start;
5843 em->len = map_len;
c8b97818
CM
5844 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5845 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 5846 em->block_start += start_diff;
c8b97818
CM
5847 em->block_len -= start_diff;
5848 }
09a2a8f9 5849 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
5850}
5851
c8b97818
CM
5852static noinline int uncompress_inline(struct btrfs_path *path,
5853 struct inode *inode, struct page *page,
5854 size_t pg_offset, u64 extent_offset,
5855 struct btrfs_file_extent_item *item)
5856{
5857 int ret;
5858 struct extent_buffer *leaf = path->nodes[0];
5859 char *tmp;
5860 size_t max_size;
5861 unsigned long inline_size;
5862 unsigned long ptr;
261507a0 5863 int compress_type;
c8b97818
CM
5864
5865 WARN_ON(pg_offset != 0);
261507a0 5866 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5867 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5868 inline_size = btrfs_file_extent_inline_item_len(leaf,
5869 btrfs_item_nr(leaf, path->slots[0]));
5870 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
5871 if (!tmp)
5872 return -ENOMEM;
c8b97818
CM
5873 ptr = btrfs_file_extent_inline_start(item);
5874
5875 read_extent_buffer(leaf, tmp, ptr, inline_size);
5876
5b050f04 5877 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5878 ret = btrfs_decompress(compress_type, tmp, page,
5879 extent_offset, inline_size, max_size);
c8b97818 5880 if (ret) {
7ac687d9 5881 char *kaddr = kmap_atomic(page);
c8b97818
CM
5882 unsigned long copy_size = min_t(u64,
5883 PAGE_CACHE_SIZE - pg_offset,
5884 max_size - extent_offset);
5885 memset(kaddr + pg_offset, 0, copy_size);
7ac687d9 5886 kunmap_atomic(kaddr);
c8b97818
CM
5887 }
5888 kfree(tmp);
5889 return 0;
5890}
5891
d352ac68
CM
5892/*
5893 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5894 * the ugly parts come from merging extents from the disk with the in-ram
5895 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5896 * where the in-ram extents might be locked pending data=ordered completion.
5897 *
5898 * This also copies inline extents directly into the page.
5899 */
d397712b 5900
a52d9a80 5901struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5902 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5903 int create)
5904{
5905 int ret;
5906 int err = 0;
db94535d 5907 u64 bytenr;
a52d9a80
CM
5908 u64 extent_start = 0;
5909 u64 extent_end = 0;
33345d01 5910 u64 objectid = btrfs_ino(inode);
a52d9a80 5911 u32 found_type;
f421950f 5912 struct btrfs_path *path = NULL;
a52d9a80
CM
5913 struct btrfs_root *root = BTRFS_I(inode)->root;
5914 struct btrfs_file_extent_item *item;
5f39d397
CM
5915 struct extent_buffer *leaf;
5916 struct btrfs_key found_key;
a52d9a80
CM
5917 struct extent_map *em = NULL;
5918 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5919 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5920 struct btrfs_trans_handle *trans = NULL;
261507a0 5921 int compress_type;
a52d9a80 5922
a52d9a80 5923again:
890871be 5924 read_lock(&em_tree->lock);
d1310b2e 5925 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5926 if (em)
5927 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5928 read_unlock(&em_tree->lock);
d1310b2e 5929
a52d9a80 5930 if (em) {
e1c4b745
CM
5931 if (em->start > start || em->start + em->len <= start)
5932 free_extent_map(em);
5933 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5934 free_extent_map(em);
5935 else
5936 goto out;
a52d9a80 5937 }
172ddd60 5938 em = alloc_extent_map();
a52d9a80 5939 if (!em) {
d1310b2e
CM
5940 err = -ENOMEM;
5941 goto out;
a52d9a80 5942 }
e6dcd2dc 5943 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5944 em->start = EXTENT_MAP_HOLE;
445a6944 5945 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5946 em->len = (u64)-1;
c8b97818 5947 em->block_len = (u64)-1;
f421950f
CM
5948
5949 if (!path) {
5950 path = btrfs_alloc_path();
026fd317
JB
5951 if (!path) {
5952 err = -ENOMEM;
5953 goto out;
5954 }
5955 /*
5956 * Chances are we'll be called again, so go ahead and do
5957 * readahead
5958 */
5959 path->reada = 1;
f421950f
CM
5960 }
5961
179e29e4
CM
5962 ret = btrfs_lookup_file_extent(trans, root, path,
5963 objectid, start, trans != NULL);
a52d9a80
CM
5964 if (ret < 0) {
5965 err = ret;
5966 goto out;
5967 }
5968
5969 if (ret != 0) {
5970 if (path->slots[0] == 0)
5971 goto not_found;
5972 path->slots[0]--;
5973 }
5974
5f39d397
CM
5975 leaf = path->nodes[0];
5976 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5977 struct btrfs_file_extent_item);
a52d9a80 5978 /* are we inside the extent that was found? */
5f39d397
CM
5979 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5980 found_type = btrfs_key_type(&found_key);
5981 if (found_key.objectid != objectid ||
a52d9a80
CM
5982 found_type != BTRFS_EXTENT_DATA_KEY) {
5983 goto not_found;
5984 }
5985
5f39d397
CM
5986 found_type = btrfs_file_extent_type(leaf, item);
5987 extent_start = found_key.offset;
261507a0 5988 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5989 if (found_type == BTRFS_FILE_EXTENT_REG ||
5990 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5991 extent_end = extent_start +
db94535d 5992 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5993 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5994 size_t size;
5995 size = btrfs_file_extent_inline_len(leaf, item);
fda2832f 5996 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102
YZ
5997 }
5998
5999 if (start >= extent_end) {
6000 path->slots[0]++;
6001 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6002 ret = btrfs_next_leaf(root, path);
6003 if (ret < 0) {
6004 err = ret;
6005 goto out;
a52d9a80 6006 }
9036c102
YZ
6007 if (ret > 0)
6008 goto not_found;
6009 leaf = path->nodes[0];
a52d9a80 6010 }
9036c102
YZ
6011 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6012 if (found_key.objectid != objectid ||
6013 found_key.type != BTRFS_EXTENT_DATA_KEY)
6014 goto not_found;
6015 if (start + len <= found_key.offset)
6016 goto not_found;
6017 em->start = start;
70c8a91c 6018 em->orig_start = start;
9036c102
YZ
6019 em->len = found_key.offset - start;
6020 goto not_found_em;
6021 }
6022
cc95bef6 6023 em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
d899e052
YZ
6024 if (found_type == BTRFS_FILE_EXTENT_REG ||
6025 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
6026 em->start = extent_start;
6027 em->len = extent_end - extent_start;
ff5b7ee3
YZ
6028 em->orig_start = extent_start -
6029 btrfs_file_extent_offset(leaf, item);
b4939680
JB
6030 em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6031 item);
db94535d
CM
6032 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6033 if (bytenr == 0) {
5f39d397 6034 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
6035 goto insert;
6036 }
261507a0 6037 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 6038 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 6039 em->compress_type = compress_type;
c8b97818 6040 em->block_start = bytenr;
b4939680 6041 em->block_len = em->orig_block_len;
c8b97818
CM
6042 } else {
6043 bytenr += btrfs_file_extent_offset(leaf, item);
6044 em->block_start = bytenr;
6045 em->block_len = em->len;
d899e052
YZ
6046 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6047 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 6048 }
a52d9a80
CM
6049 goto insert;
6050 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6051 unsigned long ptr;
a52d9a80 6052 char *map;
3326d1b0
CM
6053 size_t size;
6054 size_t extent_offset;
6055 size_t copy_size;
a52d9a80 6056
689f9346 6057 em->block_start = EXTENT_MAP_INLINE;
c8b97818 6058 if (!page || create) {
689f9346 6059 em->start = extent_start;
9036c102 6060 em->len = extent_end - extent_start;
689f9346
Y
6061 goto out;
6062 }
5f39d397 6063
9036c102
YZ
6064 size = btrfs_file_extent_inline_len(leaf, item);
6065 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6066 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6067 size - extent_offset);
3326d1b0 6068 em->start = extent_start + extent_offset;
fda2832f 6069 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6070 em->orig_block_len = em->len;
70c8a91c 6071 em->orig_start = em->start;
261507a0 6072 if (compress_type) {
c8b97818 6073 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
6074 em->compress_type = compress_type;
6075 }
689f9346 6076 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6077 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6078 if (btrfs_file_extent_compression(leaf, item) !=
6079 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6080 ret = uncompress_inline(path, inode, page,
6081 pg_offset,
6082 extent_offset, item);
79787eaa 6083 BUG_ON(ret); /* -ENOMEM */
c8b97818
CM
6084 } else {
6085 map = kmap(page);
6086 read_extent_buffer(leaf, map + pg_offset, ptr,
6087 copy_size);
93c82d57
CM
6088 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6089 memset(map + pg_offset + copy_size, 0,
6090 PAGE_CACHE_SIZE - pg_offset -
6091 copy_size);
6092 }
c8b97818
CM
6093 kunmap(page);
6094 }
179e29e4
CM
6095 flush_dcache_page(page);
6096 } else if (create && PageUptodate(page)) {
6bf7e080 6097 BUG();
179e29e4
CM
6098 if (!trans) {
6099 kunmap(page);
6100 free_extent_map(em);
6101 em = NULL;
ff5714cc 6102
b3b4aa74 6103 btrfs_release_path(path);
7a7eaa40 6104 trans = btrfs_join_transaction(root);
ff5714cc 6105
3612b495
TI
6106 if (IS_ERR(trans))
6107 return ERR_CAST(trans);
179e29e4
CM
6108 goto again;
6109 }
c8b97818 6110 map = kmap(page);
70dec807 6111 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6112 copy_size);
c8b97818 6113 kunmap(page);
179e29e4 6114 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6115 }
d1310b2e 6116 set_extent_uptodate(io_tree, em->start,
507903b8 6117 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
6118 goto insert;
6119 } else {
31b1a2bd 6120 WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
6121 }
6122not_found:
6123 em->start = start;
70c8a91c 6124 em->orig_start = start;
d1310b2e 6125 em->len = len;
a52d9a80 6126not_found_em:
5f39d397 6127 em->block_start = EXTENT_MAP_HOLE;
9036c102 6128 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6129insert:
b3b4aa74 6130 btrfs_release_path(path);
d1310b2e 6131 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb
SK
6132 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6133 (unsigned long long)em->start,
6134 (unsigned long long)em->len,
6135 (unsigned long long)start,
6136 (unsigned long long)len);
a52d9a80
CM
6137 err = -EIO;
6138 goto out;
6139 }
d1310b2e
CM
6140
6141 err = 0;
890871be 6142 write_lock(&em_tree->lock);
09a2a8f9 6143 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6144 /* it is possible that someone inserted the extent into the tree
6145 * while we had the lock dropped. It is also possible that
6146 * an overlapping map exists in the tree
6147 */
a52d9a80 6148 if (ret == -EEXIST) {
3b951516 6149 struct extent_map *existing;
e6dcd2dc
CM
6150
6151 ret = 0;
6152
3b951516 6153 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
6154 if (existing && (existing->start > start ||
6155 existing->start + existing->len <= start)) {
6156 free_extent_map(existing);
6157 existing = NULL;
6158 }
3b951516
CM
6159 if (!existing) {
6160 existing = lookup_extent_mapping(em_tree, em->start,
6161 em->len);
6162 if (existing) {
6163 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
6164 em, start,
6165 root->sectorsize);
3b951516
CM
6166 free_extent_map(existing);
6167 if (err) {
6168 free_extent_map(em);
6169 em = NULL;
6170 }
6171 } else {
6172 err = -EIO;
3b951516
CM
6173 free_extent_map(em);
6174 em = NULL;
6175 }
6176 } else {
6177 free_extent_map(em);
6178 em = existing;
e6dcd2dc 6179 err = 0;
a52d9a80 6180 }
a52d9a80 6181 }
890871be 6182 write_unlock(&em_tree->lock);
a52d9a80 6183out:
1abe9b8a 6184
f0bd95ea
TI
6185 if (em)
6186 trace_btrfs_get_extent(root, em);
1abe9b8a 6187
f421950f
CM
6188 if (path)
6189 btrfs_free_path(path);
a52d9a80
CM
6190 if (trans) {
6191 ret = btrfs_end_transaction(trans, root);
d397712b 6192 if (!err)
a52d9a80
CM
6193 err = ret;
6194 }
a52d9a80
CM
6195 if (err) {
6196 free_extent_map(em);
a52d9a80
CM
6197 return ERR_PTR(err);
6198 }
79787eaa 6199 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6200 return em;
6201}
6202
ec29ed5b
CM
6203struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6204 size_t pg_offset, u64 start, u64 len,
6205 int create)
6206{
6207 struct extent_map *em;
6208 struct extent_map *hole_em = NULL;
6209 u64 range_start = start;
6210 u64 end;
6211 u64 found;
6212 u64 found_end;
6213 int err = 0;
6214
6215 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6216 if (IS_ERR(em))
6217 return em;
6218 if (em) {
6219 /*
f9e4fb53
LB
6220 * if our em maps to
6221 * - a hole or
6222 * - a pre-alloc extent,
6223 * there might actually be delalloc bytes behind it.
ec29ed5b 6224 */
f9e4fb53
LB
6225 if (em->block_start != EXTENT_MAP_HOLE &&
6226 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6227 return em;
6228 else
6229 hole_em = em;
6230 }
6231
6232 /* check to see if we've wrapped (len == -1 or similar) */
6233 end = start + len;
6234 if (end < start)
6235 end = (u64)-1;
6236 else
6237 end -= 1;
6238
6239 em = NULL;
6240
6241 /* ok, we didn't find anything, lets look for delalloc */
6242 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6243 end, len, EXTENT_DELALLOC, 1);
6244 found_end = range_start + found;
6245 if (found_end < range_start)
6246 found_end = (u64)-1;
6247
6248 /*
6249 * we didn't find anything useful, return
6250 * the original results from get_extent()
6251 */
6252 if (range_start > end || found_end <= start) {
6253 em = hole_em;
6254 hole_em = NULL;
6255 goto out;
6256 }
6257
6258 /* adjust the range_start to make sure it doesn't
6259 * go backwards from the start they passed in
6260 */
6261 range_start = max(start,range_start);
6262 found = found_end - range_start;
6263
6264 if (found > 0) {
6265 u64 hole_start = start;
6266 u64 hole_len = len;
6267
172ddd60 6268 em = alloc_extent_map();
ec29ed5b
CM
6269 if (!em) {
6270 err = -ENOMEM;
6271 goto out;
6272 }
6273 /*
6274 * when btrfs_get_extent can't find anything it
6275 * returns one huge hole
6276 *
6277 * make sure what it found really fits our range, and
6278 * adjust to make sure it is based on the start from
6279 * the caller
6280 */
6281 if (hole_em) {
6282 u64 calc_end = extent_map_end(hole_em);
6283
6284 if (calc_end <= start || (hole_em->start > end)) {
6285 free_extent_map(hole_em);
6286 hole_em = NULL;
6287 } else {
6288 hole_start = max(hole_em->start, start);
6289 hole_len = calc_end - hole_start;
6290 }
6291 }
6292 em->bdev = NULL;
6293 if (hole_em && range_start > hole_start) {
6294 /* our hole starts before our delalloc, so we
6295 * have to return just the parts of the hole
6296 * that go until the delalloc starts
6297 */
6298 em->len = min(hole_len,
6299 range_start - hole_start);
6300 em->start = hole_start;
6301 em->orig_start = hole_start;
6302 /*
6303 * don't adjust block start at all,
6304 * it is fixed at EXTENT_MAP_HOLE
6305 */
6306 em->block_start = hole_em->block_start;
6307 em->block_len = hole_len;
f9e4fb53
LB
6308 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6309 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6310 } else {
6311 em->start = range_start;
6312 em->len = found;
6313 em->orig_start = range_start;
6314 em->block_start = EXTENT_MAP_DELALLOC;
6315 em->block_len = found;
6316 }
6317 } else if (hole_em) {
6318 return hole_em;
6319 }
6320out:
6321
6322 free_extent_map(hole_em);
6323 if (err) {
6324 free_extent_map(em);
6325 return ERR_PTR(err);
6326 }
6327 return em;
6328}
6329
4b46fce2
JB
6330static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6331 u64 start, u64 len)
6332{
6333 struct btrfs_root *root = BTRFS_I(inode)->root;
6334 struct btrfs_trans_handle *trans;
70c8a91c 6335 struct extent_map *em;
4b46fce2
JB
6336 struct btrfs_key ins;
6337 u64 alloc_hint;
6338 int ret;
4b46fce2 6339
7a7eaa40 6340 trans = btrfs_join_transaction(root);
3612b495
TI
6341 if (IS_ERR(trans))
6342 return ERR_CAST(trans);
4b46fce2
JB
6343
6344 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6345
6346 alloc_hint = get_extent_allocation_hint(inode, start, len);
6347 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
81c9ad23 6348 alloc_hint, &ins, 1);
4b46fce2
JB
6349 if (ret) {
6350 em = ERR_PTR(ret);
6351 goto out;
6352 }
6353
70c8a91c 6354 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6355 ins.offset, ins.offset, ins.offset, 0);
70c8a91c
JB
6356 if (IS_ERR(em))
6357 goto out;
4b46fce2
JB
6358
6359 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6360 ins.offset, ins.offset, 0);
6361 if (ret) {
6362 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6363 em = ERR_PTR(ret);
6364 }
6365out:
6366 btrfs_end_transaction(trans, root);
6367 return em;
6368}
6369
46bfbb5c
CM
6370/*
6371 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6372 * block must be cow'd
6373 */
7ee9e440
JB
6374noinline int can_nocow_extent(struct btrfs_trans_handle *trans,
6375 struct inode *inode, u64 offset, u64 *len,
6376 u64 *orig_start, u64 *orig_block_len,
6377 u64 *ram_bytes)
46bfbb5c
CM
6378{
6379 struct btrfs_path *path;
6380 int ret;
6381 struct extent_buffer *leaf;
6382 struct btrfs_root *root = BTRFS_I(inode)->root;
6383 struct btrfs_file_extent_item *fi;
6384 struct btrfs_key key;
6385 u64 disk_bytenr;
6386 u64 backref_offset;
6387 u64 extent_end;
6388 u64 num_bytes;
6389 int slot;
6390 int found_type;
7ee9e440 6391 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
46bfbb5c
CM
6392 path = btrfs_alloc_path();
6393 if (!path)
6394 return -ENOMEM;
6395
33345d01 6396 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
6397 offset, 0);
6398 if (ret < 0)
6399 goto out;
6400
6401 slot = path->slots[0];
6402 if (ret == 1) {
6403 if (slot == 0) {
6404 /* can't find the item, must cow */
6405 ret = 0;
6406 goto out;
6407 }
6408 slot--;
6409 }
6410 ret = 0;
6411 leaf = path->nodes[0];
6412 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6413 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6414 key.type != BTRFS_EXTENT_DATA_KEY) {
6415 /* not our file or wrong item type, must cow */
6416 goto out;
6417 }
6418
6419 if (key.offset > offset) {
6420 /* Wrong offset, must cow */
6421 goto out;
6422 }
6423
6424 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6425 found_type = btrfs_file_extent_type(leaf, fi);
6426 if (found_type != BTRFS_FILE_EXTENT_REG &&
6427 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6428 /* not a regular extent, must cow */
6429 goto out;
6430 }
7ee9e440
JB
6431
6432 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6433 goto out;
6434
46bfbb5c 6435 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6436 if (disk_bytenr == 0)
6437 goto out;
6438
6439 if (btrfs_file_extent_compression(leaf, fi) ||
6440 btrfs_file_extent_encryption(leaf, fi) ||
6441 btrfs_file_extent_other_encoding(leaf, fi))
6442 goto out;
6443
46bfbb5c
CM
6444 backref_offset = btrfs_file_extent_offset(leaf, fi);
6445
7ee9e440
JB
6446 if (orig_start) {
6447 *orig_start = key.offset - backref_offset;
6448 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6449 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6450 }
eb384b55 6451
46bfbb5c 6452 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
46bfbb5c
CM
6453
6454 if (btrfs_extent_readonly(root, disk_bytenr))
6455 goto out;
6456
6457 /*
6458 * look for other files referencing this extent, if we
6459 * find any we must cow
6460 */
33345d01 6461 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
6462 key.offset - backref_offset, disk_bytenr))
6463 goto out;
6464
6465 /*
6466 * adjust disk_bytenr and num_bytes to cover just the bytes
6467 * in this extent we are about to write. If there
6468 * are any csums in that range we have to cow in order
6469 * to keep the csums correct
6470 */
6471 disk_bytenr += backref_offset;
6472 disk_bytenr += offset - key.offset;
eb384b55 6473 num_bytes = min(offset + *len, extent_end) - offset;
46bfbb5c
CM
6474 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6475 goto out;
6476 /*
6477 * all of the above have passed, it is safe to overwrite this extent
6478 * without cow
6479 */
eb384b55 6480 *len = num_bytes;
46bfbb5c
CM
6481 ret = 1;
6482out:
6483 btrfs_free_path(path);
6484 return ret;
6485}
6486
eb838e73
JB
6487static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6488 struct extent_state **cached_state, int writing)
6489{
6490 struct btrfs_ordered_extent *ordered;
6491 int ret = 0;
6492
6493 while (1) {
6494 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6495 0, cached_state);
6496 /*
6497 * We're concerned with the entire range that we're going to be
6498 * doing DIO to, so we need to make sure theres no ordered
6499 * extents in this range.
6500 */
6501 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6502 lockend - lockstart + 1);
6503
6504 /*
6505 * We need to make sure there are no buffered pages in this
6506 * range either, we could have raced between the invalidate in
6507 * generic_file_direct_write and locking the extent. The
6508 * invalidate needs to happen so that reads after a write do not
6509 * get stale data.
6510 */
6511 if (!ordered && (!writing ||
6512 !test_range_bit(&BTRFS_I(inode)->io_tree,
6513 lockstart, lockend, EXTENT_UPTODATE, 0,
6514 *cached_state)))
6515 break;
6516
6517 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6518 cached_state, GFP_NOFS);
6519
6520 if (ordered) {
6521 btrfs_start_ordered_extent(inode, ordered, 1);
6522 btrfs_put_ordered_extent(ordered);
6523 } else {
6524 /* Screw you mmap */
6525 ret = filemap_write_and_wait_range(inode->i_mapping,
6526 lockstart,
6527 lockend);
6528 if (ret)
6529 break;
6530
6531 /*
6532 * If we found a page that couldn't be invalidated just
6533 * fall back to buffered.
6534 */
6535 ret = invalidate_inode_pages2_range(inode->i_mapping,
6536 lockstart >> PAGE_CACHE_SHIFT,
6537 lockend >> PAGE_CACHE_SHIFT);
6538 if (ret)
6539 break;
6540 }
6541
6542 cond_resched();
6543 }
6544
6545 return ret;
6546}
6547
69ffb543
JB
6548static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6549 u64 len, u64 orig_start,
6550 u64 block_start, u64 block_len,
cc95bef6
JB
6551 u64 orig_block_len, u64 ram_bytes,
6552 int type)
69ffb543
JB
6553{
6554 struct extent_map_tree *em_tree;
6555 struct extent_map *em;
6556 struct btrfs_root *root = BTRFS_I(inode)->root;
6557 int ret;
6558
6559 em_tree = &BTRFS_I(inode)->extent_tree;
6560 em = alloc_extent_map();
6561 if (!em)
6562 return ERR_PTR(-ENOMEM);
6563
6564 em->start = start;
6565 em->orig_start = orig_start;
2ab28f32
JB
6566 em->mod_start = start;
6567 em->mod_len = len;
69ffb543
JB
6568 em->len = len;
6569 em->block_len = block_len;
6570 em->block_start = block_start;
6571 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 6572 em->orig_block_len = orig_block_len;
cc95bef6 6573 em->ram_bytes = ram_bytes;
70c8a91c 6574 em->generation = -1;
69ffb543
JB
6575 set_bit(EXTENT_FLAG_PINNED, &em->flags);
6576 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 6577 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
6578
6579 do {
6580 btrfs_drop_extent_cache(inode, em->start,
6581 em->start + em->len - 1, 0);
6582 write_lock(&em_tree->lock);
09a2a8f9 6583 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
6584 write_unlock(&em_tree->lock);
6585 } while (ret == -EEXIST);
6586
6587 if (ret) {
6588 free_extent_map(em);
6589 return ERR_PTR(ret);
6590 }
6591
6592 return em;
6593}
6594
6595
4b46fce2
JB
6596static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6597 struct buffer_head *bh_result, int create)
6598{
6599 struct extent_map *em;
6600 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 6601 struct extent_state *cached_state = NULL;
4b46fce2 6602 u64 start = iblock << inode->i_blkbits;
eb838e73 6603 u64 lockstart, lockend;
4b46fce2 6604 u64 len = bh_result->b_size;
46bfbb5c 6605 struct btrfs_trans_handle *trans;
eb838e73 6606 int unlock_bits = EXTENT_LOCKED;
0934856d 6607 int ret = 0;
eb838e73 6608
172a5049 6609 if (create)
eb838e73 6610 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 6611 else
c329861d 6612 len = min_t(u64, len, root->sectorsize);
eb838e73 6613
c329861d
JB
6614 lockstart = start;
6615 lockend = start + len - 1;
6616
eb838e73
JB
6617 /*
6618 * If this errors out it's because we couldn't invalidate pagecache for
6619 * this range and we need to fallback to buffered.
6620 */
6621 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6622 return -ENOTBLK;
6623
4b46fce2 6624 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
6625 if (IS_ERR(em)) {
6626 ret = PTR_ERR(em);
6627 goto unlock_err;
6628 }
4b46fce2
JB
6629
6630 /*
6631 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6632 * io. INLINE is special, and we could probably kludge it in here, but
6633 * it's still buffered so for safety lets just fall back to the generic
6634 * buffered path.
6635 *
6636 * For COMPRESSED we _have_ to read the entire extent in so we can
6637 * decompress it, so there will be buffering required no matter what we
6638 * do, so go ahead and fallback to buffered.
6639 *
6640 * We return -ENOTBLK because thats what makes DIO go ahead and go back
6641 * to buffered IO. Don't blame me, this is the price we pay for using
6642 * the generic code.
6643 */
6644 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6645 em->block_start == EXTENT_MAP_INLINE) {
6646 free_extent_map(em);
eb838e73
JB
6647 ret = -ENOTBLK;
6648 goto unlock_err;
4b46fce2
JB
6649 }
6650
6651 /* Just a good old fashioned hole, return */
6652 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6653 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6654 free_extent_map(em);
eb838e73 6655 goto unlock_err;
4b46fce2
JB
6656 }
6657
6658 /*
6659 * We don't allocate a new extent in the following cases
6660 *
6661 * 1) The inode is marked as NODATACOW. In this case we'll just use the
6662 * existing extent.
6663 * 2) The extent is marked as PREALLOC. We're good to go here and can
6664 * just use the extent.
6665 *
6666 */
46bfbb5c 6667 if (!create) {
eb838e73
JB
6668 len = min(len, em->len - (start - em->start));
6669 lockstart = start + len;
6670 goto unlock;
46bfbb5c 6671 }
4b46fce2
JB
6672
6673 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6674 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6675 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
6676 int type;
6677 int ret;
eb384b55 6678 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
6679
6680 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6681 type = BTRFS_ORDERED_PREALLOC;
6682 else
6683 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 6684 len = min(len, em->len - (start - em->start));
4b46fce2 6685 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
6686
6687 /*
6688 * we're not going to log anything, but we do need
6689 * to make sure the current transaction stays open
6690 * while we look for nocow cross refs
6691 */
7a7eaa40 6692 trans = btrfs_join_transaction(root);
3612b495 6693 if (IS_ERR(trans))
46bfbb5c
CM
6694 goto must_cow;
6695
7ee9e440
JB
6696 if (can_nocow_extent(trans, inode, start, &len, &orig_start,
6697 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
6698 if (type == BTRFS_ORDERED_PREALLOC) {
6699 free_extent_map(em);
6700 em = create_pinned_em(inode, start, len,
6701 orig_start,
b4939680 6702 block_start, len,
cc95bef6
JB
6703 orig_block_len,
6704 ram_bytes, type);
69ffb543
JB
6705 if (IS_ERR(em)) {
6706 btrfs_end_transaction(trans, root);
6707 goto unlock_err;
6708 }
6709 }
6710
46bfbb5c
CM
6711 ret = btrfs_add_ordered_extent_dio(inode, start,
6712 block_start, len, len, type);
6713 btrfs_end_transaction(trans, root);
6714 if (ret) {
6715 free_extent_map(em);
eb838e73 6716 goto unlock_err;
46bfbb5c
CM
6717 }
6718 goto unlock;
4b46fce2 6719 }
46bfbb5c 6720 btrfs_end_transaction(trans, root);
4b46fce2 6721 }
46bfbb5c
CM
6722must_cow:
6723 /*
6724 * this will cow the extent, reset the len in case we changed
6725 * it above
6726 */
6727 len = bh_result->b_size;
70c8a91c
JB
6728 free_extent_map(em);
6729 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
6730 if (IS_ERR(em)) {
6731 ret = PTR_ERR(em);
6732 goto unlock_err;
6733 }
46bfbb5c
CM
6734 len = min(len, em->len - (start - em->start));
6735unlock:
4b46fce2
JB
6736 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6737 inode->i_blkbits;
46bfbb5c 6738 bh_result->b_size = len;
4b46fce2
JB
6739 bh_result->b_bdev = em->bdev;
6740 set_buffer_mapped(bh_result);
c3473e83
JB
6741 if (create) {
6742 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6743 set_buffer_new(bh_result);
6744
6745 /*
6746 * Need to update the i_size under the extent lock so buffered
6747 * readers will get the updated i_size when we unlock.
6748 */
6749 if (start + len > i_size_read(inode))
6750 i_size_write(inode, start + len);
0934856d 6751
172a5049
MX
6752 spin_lock(&BTRFS_I(inode)->lock);
6753 BTRFS_I(inode)->outstanding_extents++;
6754 spin_unlock(&BTRFS_I(inode)->lock);
6755
0934856d
MX
6756 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6757 lockstart + len - 1, EXTENT_DELALLOC, NULL,
6758 &cached_state, GFP_NOFS);
6759 BUG_ON(ret);
c3473e83 6760 }
4b46fce2 6761
eb838e73
JB
6762 /*
6763 * In the case of write we need to clear and unlock the entire range,
6764 * in the case of read we need to unlock only the end area that we
6765 * aren't using if there is any left over space.
6766 */
24c03fa5 6767 if (lockstart < lockend) {
0934856d
MX
6768 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6769 lockend, unlock_bits, 1, 0,
6770 &cached_state, GFP_NOFS);
24c03fa5 6771 } else {
eb838e73 6772 free_extent_state(cached_state);
24c03fa5 6773 }
eb838e73 6774
4b46fce2
JB
6775 free_extent_map(em);
6776
6777 return 0;
eb838e73
JB
6778
6779unlock_err:
eb838e73
JB
6780 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6781 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6782 return ret;
4b46fce2
JB
6783}
6784
4b46fce2
JB
6785static void btrfs_endio_direct_read(struct bio *bio, int err)
6786{
e65e1535 6787 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
6788 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6789 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
6790 struct inode *inode = dip->inode;
6791 struct btrfs_root *root = BTRFS_I(inode)->root;
9be3395b 6792 struct bio *dio_bio;
facc8a22
MX
6793 u32 *csums = (u32 *)dip->csum;
6794 int index = 0;
4b46fce2 6795 u64 start;
4b46fce2
JB
6796
6797 start = dip->logical_offset;
6798 do {
6799 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6800 struct page *page = bvec->bv_page;
6801 char *kaddr;
6802 u32 csum = ~(u32)0;
6803 unsigned long flags;
6804
6805 local_irq_save(flags);
7ac687d9 6806 kaddr = kmap_atomic(page);
b0496686 6807 csum = btrfs_csum_data(kaddr + bvec->bv_offset,
4b46fce2
JB
6808 csum, bvec->bv_len);
6809 btrfs_csum_final(csum, (char *)&csum);
7ac687d9 6810 kunmap_atomic(kaddr);
4b46fce2
JB
6811 local_irq_restore(flags);
6812
6813 flush_dcache_page(bvec->bv_page);
facc8a22
MX
6814 if (csum != csums[index]) {
6815 btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u expected csum %u",
6816 (unsigned long long)btrfs_ino(inode),
6817 (unsigned long long)start,
6818 csum, csums[index]);
4b46fce2
JB
6819 err = -EIO;
6820 }
6821 }
6822
6823 start += bvec->bv_len;
4b46fce2 6824 bvec++;
facc8a22 6825 index++;
4b46fce2
JB
6826 } while (bvec <= bvec_end);
6827
6828 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 6829 dip->logical_offset + dip->bytes - 1);
9be3395b 6830 dio_bio = dip->dio_bio;
4b46fce2 6831
4b46fce2 6832 kfree(dip);
c0da7aa1
JB
6833
6834 /* If we had a csum failure make sure to clear the uptodate flag */
6835 if (err)
9be3395b
CM
6836 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6837 dio_end_io(dio_bio, err);
6838 bio_put(bio);
4b46fce2
JB
6839}
6840
6841static void btrfs_endio_direct_write(struct bio *bio, int err)
6842{
6843 struct btrfs_dio_private *dip = bio->bi_private;
6844 struct inode *inode = dip->inode;
6845 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 6846 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
6847 u64 ordered_offset = dip->logical_offset;
6848 u64 ordered_bytes = dip->bytes;
9be3395b 6849 struct bio *dio_bio;
4b46fce2
JB
6850 int ret;
6851
6852 if (err)
6853 goto out_done;
163cf09c
CM
6854again:
6855 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
6856 &ordered_offset,
5fd02043 6857 ordered_bytes, !err);
4b46fce2 6858 if (!ret)
163cf09c 6859 goto out_test;
4b46fce2 6860
5fd02043
JB
6861 ordered->work.func = finish_ordered_fn;
6862 ordered->work.flags = 0;
6863 btrfs_queue_worker(&root->fs_info->endio_write_workers,
6864 &ordered->work);
163cf09c
CM
6865out_test:
6866 /*
6867 * our bio might span multiple ordered extents. If we haven't
6868 * completed the accounting for the whole dio, go back and try again
6869 */
6870 if (ordered_offset < dip->logical_offset + dip->bytes) {
6871 ordered_bytes = dip->logical_offset + dip->bytes -
6872 ordered_offset;
5fd02043 6873 ordered = NULL;
163cf09c
CM
6874 goto again;
6875 }
4b46fce2 6876out_done:
9be3395b 6877 dio_bio = dip->dio_bio;
4b46fce2 6878
4b46fce2 6879 kfree(dip);
c0da7aa1
JB
6880
6881 /* If we had an error make sure to clear the uptodate flag */
6882 if (err)
9be3395b
CM
6883 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6884 dio_end_io(dio_bio, err);
6885 bio_put(bio);
4b46fce2
JB
6886}
6887
eaf25d93
CM
6888static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
6889 struct bio *bio, int mirror_num,
6890 unsigned long bio_flags, u64 offset)
6891{
6892 int ret;
6893 struct btrfs_root *root = BTRFS_I(inode)->root;
6894 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 6895 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
6896 return 0;
6897}
6898
e65e1535
MX
6899static void btrfs_end_dio_bio(struct bio *bio, int err)
6900{
6901 struct btrfs_dio_private *dip = bio->bi_private;
6902
6903 if (err) {
33345d01 6904 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 6905 "sector %#Lx len %u err no %d\n",
33345d01 6906 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 6907 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
6908 dip->errors = 1;
6909
6910 /*
6911 * before atomic variable goto zero, we must make sure
6912 * dip->errors is perceived to be set.
6913 */
6914 smp_mb__before_atomic_dec();
6915 }
6916
6917 /* if there are more bios still pending for this dio, just exit */
6918 if (!atomic_dec_and_test(&dip->pending_bios))
6919 goto out;
6920
9be3395b 6921 if (dip->errors) {
e65e1535 6922 bio_io_error(dip->orig_bio);
9be3395b
CM
6923 } else {
6924 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
6925 bio_endio(dip->orig_bio, 0);
6926 }
6927out:
6928 bio_put(bio);
6929}
6930
6931static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
6932 u64 first_sector, gfp_t gfp_flags)
6933{
6934 int nr_vecs = bio_get_nr_vecs(bdev);
6935 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
6936}
6937
6938static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
6939 int rw, u64 file_offset, int skip_sum,
c329861d 6940 int async_submit)
e65e1535 6941{
facc8a22 6942 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
6943 int write = rw & REQ_WRITE;
6944 struct btrfs_root *root = BTRFS_I(inode)->root;
6945 int ret;
6946
b812ce28
JB
6947 if (async_submit)
6948 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
6949
e65e1535 6950 bio_get(bio);
5fd02043
JB
6951
6952 if (!write) {
6953 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
6954 if (ret)
6955 goto err;
6956 }
e65e1535 6957
1ae39938
JB
6958 if (skip_sum)
6959 goto map;
6960
6961 if (write && async_submit) {
e65e1535
MX
6962 ret = btrfs_wq_submit_bio(root->fs_info,
6963 inode, rw, bio, 0, 0,
6964 file_offset,
6965 __btrfs_submit_bio_start_direct_io,
6966 __btrfs_submit_bio_done);
6967 goto err;
1ae39938
JB
6968 } else if (write) {
6969 /*
6970 * If we aren't doing async submit, calculate the csum of the
6971 * bio now.
6972 */
6973 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6974 if (ret)
6975 goto err;
c2db1073 6976 } else if (!skip_sum) {
facc8a22
MX
6977 ret = btrfs_lookup_bio_sums_dio(root, inode, dip, bio,
6978 file_offset);
c2db1073
TI
6979 if (ret)
6980 goto err;
6981 }
e65e1535 6982
1ae39938
JB
6983map:
6984 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6985err:
6986 bio_put(bio);
6987 return ret;
6988}
6989
6990static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6991 int skip_sum)
6992{
6993 struct inode *inode = dip->inode;
6994 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
6995 struct bio *bio;
6996 struct bio *orig_bio = dip->orig_bio;
6997 struct bio_vec *bvec = orig_bio->bi_io_vec;
6998 u64 start_sector = orig_bio->bi_sector;
6999 u64 file_offset = dip->logical_offset;
7000 u64 submit_len = 0;
7001 u64 map_length;
7002 int nr_pages = 0;
e65e1535 7003 int ret = 0;
1ae39938 7004 int async_submit = 0;
e65e1535 7005
e65e1535 7006 map_length = orig_bio->bi_size;
53b381b3 7007 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535
MX
7008 &map_length, NULL, 0);
7009 if (ret) {
64728bbb 7010 bio_put(orig_bio);
e65e1535
MX
7011 return -EIO;
7012 }
facc8a22 7013
02f57c7a
JB
7014 if (map_length >= orig_bio->bi_size) {
7015 bio = orig_bio;
7016 goto submit;
7017 }
7018
53b381b3
DW
7019 /* async crcs make it difficult to collect full stripe writes. */
7020 if (btrfs_get_alloc_profile(root, 1) &
7021 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7022 async_submit = 0;
7023 else
7024 async_submit = 1;
7025
02f57c7a
JB
7026 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7027 if (!bio)
7028 return -ENOMEM;
7029 bio->bi_private = dip;
7030 bio->bi_end_io = btrfs_end_dio_bio;
7031 atomic_inc(&dip->pending_bios);
7032
e65e1535
MX
7033 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7034 if (unlikely(map_length < submit_len + bvec->bv_len ||
7035 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7036 bvec->bv_offset) < bvec->bv_len)) {
7037 /*
7038 * inc the count before we submit the bio so
7039 * we know the end IO handler won't happen before
7040 * we inc the count. Otherwise, the dip might get freed
7041 * before we're done setting it up
7042 */
7043 atomic_inc(&dip->pending_bios);
7044 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7045 file_offset, skip_sum,
c329861d 7046 async_submit);
e65e1535
MX
7047 if (ret) {
7048 bio_put(bio);
7049 atomic_dec(&dip->pending_bios);
7050 goto out_err;
7051 }
7052
e65e1535
MX
7053 start_sector += submit_len >> 9;
7054 file_offset += submit_len;
7055
7056 submit_len = 0;
7057 nr_pages = 0;
7058
7059 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7060 start_sector, GFP_NOFS);
7061 if (!bio)
7062 goto out_err;
7063 bio->bi_private = dip;
7064 bio->bi_end_io = btrfs_end_dio_bio;
7065
7066 map_length = orig_bio->bi_size;
53b381b3 7067 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7068 start_sector << 9,
e65e1535
MX
7069 &map_length, NULL, 0);
7070 if (ret) {
7071 bio_put(bio);
7072 goto out_err;
7073 }
7074 } else {
7075 submit_len += bvec->bv_len;
7076 nr_pages ++;
7077 bvec++;
7078 }
7079 }
7080
02f57c7a 7081submit:
e65e1535 7082 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7083 async_submit);
e65e1535
MX
7084 if (!ret)
7085 return 0;
7086
7087 bio_put(bio);
7088out_err:
7089 dip->errors = 1;
7090 /*
7091 * before atomic variable goto zero, we must
7092 * make sure dip->errors is perceived to be set.
7093 */
7094 smp_mb__before_atomic_dec();
7095 if (atomic_dec_and_test(&dip->pending_bios))
7096 bio_io_error(dip->orig_bio);
7097
7098 /* bio_end_io() will handle error, so we needn't return it */
7099 return 0;
7100}
7101
9be3395b
CM
7102static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7103 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7104{
7105 struct btrfs_root *root = BTRFS_I(inode)->root;
7106 struct btrfs_dio_private *dip;
9be3395b 7107 struct bio *io_bio;
4b46fce2 7108 int skip_sum;
facc8a22 7109 int sum_len;
7b6d91da 7110 int write = rw & REQ_WRITE;
4b46fce2 7111 int ret = 0;
facc8a22 7112 u16 csum_size;
4b46fce2
JB
7113
7114 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7115
9be3395b 7116 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7117 if (!io_bio) {
7118 ret = -ENOMEM;
7119 goto free_ordered;
7120 }
7121
facc8a22
MX
7122 if (!skip_sum && !write) {
7123 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
7124 sum_len = dio_bio->bi_size >> inode->i_sb->s_blocksize_bits;
7125 sum_len *= csum_size;
7126 } else {
7127 sum_len = 0;
7128 }
7129
7130 dip = kmalloc(sizeof(*dip) + sum_len, GFP_NOFS);
4b46fce2
JB
7131 if (!dip) {
7132 ret = -ENOMEM;
9be3395b 7133 goto free_io_bio;
4b46fce2 7134 }
4b46fce2 7135
9be3395b 7136 dip->private = dio_bio->bi_private;
4b46fce2
JB
7137 dip->inode = inode;
7138 dip->logical_offset = file_offset;
e6da5d2e 7139 dip->bytes = dio_bio->bi_size;
9be3395b
CM
7140 dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7141 io_bio->bi_private = dip;
e65e1535 7142 dip->errors = 0;
9be3395b
CM
7143 dip->orig_bio = io_bio;
7144 dip->dio_bio = dio_bio;
e65e1535 7145 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
7146
7147 if (write)
9be3395b 7148 io_bio->bi_end_io = btrfs_endio_direct_write;
4b46fce2 7149 else
9be3395b 7150 io_bio->bi_end_io = btrfs_endio_direct_read;
4b46fce2 7151
e65e1535
MX
7152 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7153 if (!ret)
eaf25d93 7154 return;
9be3395b
CM
7155
7156free_io_bio:
7157 bio_put(io_bio);
7158
4b46fce2
JB
7159free_ordered:
7160 /*
7161 * If this is a write, we need to clean up the reserved space and kill
7162 * the ordered extent.
7163 */
7164 if (write) {
7165 struct btrfs_ordered_extent *ordered;
955256f2 7166 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7167 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7168 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7169 btrfs_free_reserved_extent(root, ordered->start,
7170 ordered->disk_len);
7171 btrfs_put_ordered_extent(ordered);
7172 btrfs_put_ordered_extent(ordered);
7173 }
9be3395b 7174 bio_endio(dio_bio, ret);
4b46fce2
JB
7175}
7176
5a5f79b5
CM
7177static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7178 const struct iovec *iov, loff_t offset,
7179 unsigned long nr_segs)
7180{
7181 int seg;
a1b75f7d 7182 int i;
5a5f79b5
CM
7183 size_t size;
7184 unsigned long addr;
7185 unsigned blocksize_mask = root->sectorsize - 1;
7186 ssize_t retval = -EINVAL;
7187 loff_t end = offset;
7188
7189 if (offset & blocksize_mask)
7190 goto out;
7191
7192 /* Check the memory alignment. Blocks cannot straddle pages */
7193 for (seg = 0; seg < nr_segs; seg++) {
7194 addr = (unsigned long)iov[seg].iov_base;
7195 size = iov[seg].iov_len;
7196 end += size;
a1b75f7d 7197 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 7198 goto out;
a1b75f7d
JB
7199
7200 /* If this is a write we don't need to check anymore */
7201 if (rw & WRITE)
7202 continue;
7203
7204 /*
7205 * Check to make sure we don't have duplicate iov_base's in this
7206 * iovec, if so return EINVAL, otherwise we'll get csum errors
7207 * when reading back.
7208 */
7209 for (i = seg + 1; i < nr_segs; i++) {
7210 if (iov[seg].iov_base == iov[i].iov_base)
7211 goto out;
7212 }
5a5f79b5
CM
7213 }
7214 retval = 0;
7215out:
7216 return retval;
7217}
eb838e73 7218
16432985
CM
7219static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7220 const struct iovec *iov, loff_t offset,
7221 unsigned long nr_segs)
7222{
4b46fce2
JB
7223 struct file *file = iocb->ki_filp;
7224 struct inode *inode = file->f_mapping->host;
0934856d 7225 size_t count = 0;
2e60a51e 7226 int flags = 0;
38851cc1
MX
7227 bool wakeup = true;
7228 bool relock = false;
0934856d 7229 ssize_t ret;
4b46fce2 7230
5a5f79b5 7231 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
eb838e73 7232 offset, nr_segs))
5a5f79b5 7233 return 0;
3f7c579c 7234
38851cc1
MX
7235 atomic_inc(&inode->i_dio_count);
7236 smp_mb__after_atomic_inc();
7237
0e267c44
JB
7238 /*
7239 * The generic stuff only does filemap_write_and_wait_range, which isn't
7240 * enough if we've written compressed pages to this area, so we need to
7241 * call btrfs_wait_ordered_range to make absolutely sure that any
7242 * outstanding dirty pages are on disk.
7243 */
7244 count = iov_length(iov, nr_segs);
7245 btrfs_wait_ordered_range(inode, offset, count);
7246
0934856d 7247 if (rw & WRITE) {
38851cc1
MX
7248 /*
7249 * If the write DIO is beyond the EOF, we need update
7250 * the isize, but it is protected by i_mutex. So we can
7251 * not unlock the i_mutex at this case.
7252 */
7253 if (offset + count <= inode->i_size) {
7254 mutex_unlock(&inode->i_mutex);
7255 relock = true;
7256 }
0934856d
MX
7257 ret = btrfs_delalloc_reserve_space(inode, count);
7258 if (ret)
38851cc1
MX
7259 goto out;
7260 } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7261 &BTRFS_I(inode)->runtime_flags))) {
7262 inode_dio_done(inode);
7263 flags = DIO_LOCKING | DIO_SKIP_HOLES;
7264 wakeup = false;
0934856d
MX
7265 }
7266
7267 ret = __blockdev_direct_IO(rw, iocb, inode,
7268 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7269 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
2e60a51e 7270 btrfs_submit_direct, flags);
0934856d
MX
7271 if (rw & WRITE) {
7272 if (ret < 0 && ret != -EIOCBQUEUED)
7273 btrfs_delalloc_release_space(inode, count);
172a5049 7274 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
7275 btrfs_delalloc_release_space(inode,
7276 count - (size_t)ret);
172a5049
MX
7277 else
7278 btrfs_delalloc_release_metadata(inode, 0);
0934856d 7279 }
38851cc1 7280out:
2e60a51e
MX
7281 if (wakeup)
7282 inode_dio_done(inode);
38851cc1
MX
7283 if (relock)
7284 mutex_lock(&inode->i_mutex);
0934856d
MX
7285
7286 return ret;
16432985
CM
7287}
7288
05dadc09
TI
7289#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
7290
1506fcc8
YS
7291static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7292 __u64 start, __u64 len)
7293{
05dadc09
TI
7294 int ret;
7295
7296 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7297 if (ret)
7298 return ret;
7299
ec29ed5b 7300 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
7301}
7302
a52d9a80 7303int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 7304{
d1310b2e
CM
7305 struct extent_io_tree *tree;
7306 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 7307 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 7308}
1832a6d5 7309
a52d9a80 7310static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 7311{
d1310b2e 7312 struct extent_io_tree *tree;
b888db2b
CM
7313
7314
7315 if (current->flags & PF_MEMALLOC) {
7316 redirty_page_for_writepage(wbc, page);
7317 unlock_page(page);
7318 return 0;
7319 }
d1310b2e 7320 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 7321 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
7322}
7323
48a3b636
ES
7324static int btrfs_writepages(struct address_space *mapping,
7325 struct writeback_control *wbc)
b293f02e 7326{
d1310b2e 7327 struct extent_io_tree *tree;
771ed689 7328
d1310b2e 7329 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
7330 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7331}
7332
3ab2fb5a
CM
7333static int
7334btrfs_readpages(struct file *file, struct address_space *mapping,
7335 struct list_head *pages, unsigned nr_pages)
7336{
d1310b2e
CM
7337 struct extent_io_tree *tree;
7338 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
7339 return extent_readpages(tree, mapping, pages, nr_pages,
7340 btrfs_get_extent);
7341}
e6dcd2dc 7342static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 7343{
d1310b2e
CM
7344 struct extent_io_tree *tree;
7345 struct extent_map_tree *map;
a52d9a80 7346 int ret;
8c2383c3 7347
d1310b2e
CM
7348 tree = &BTRFS_I(page->mapping->host)->io_tree;
7349 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 7350 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
7351 if (ret == 1) {
7352 ClearPagePrivate(page);
7353 set_page_private(page, 0);
7354 page_cache_release(page);
39279cc3 7355 }
a52d9a80 7356 return ret;
39279cc3
CM
7357}
7358
e6dcd2dc
CM
7359static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7360{
98509cfc
CM
7361 if (PageWriteback(page) || PageDirty(page))
7362 return 0;
b335b003 7363 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
7364}
7365
d47992f8
LC
7366static void btrfs_invalidatepage(struct page *page, unsigned int offset,
7367 unsigned int length)
39279cc3 7368{
5fd02043 7369 struct inode *inode = page->mapping->host;
d1310b2e 7370 struct extent_io_tree *tree;
e6dcd2dc 7371 struct btrfs_ordered_extent *ordered;
2ac55d41 7372 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7373 u64 page_start = page_offset(page);
7374 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 7375
8b62b72b
CM
7376 /*
7377 * we have the page locked, so new writeback can't start,
7378 * and the dirty bit won't be cleared while we are here.
7379 *
7380 * Wait for IO on this page so that we can safely clear
7381 * the PagePrivate2 bit and do ordered accounting
7382 */
e6dcd2dc 7383 wait_on_page_writeback(page);
8b62b72b 7384
5fd02043 7385 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
7386 if (offset) {
7387 btrfs_releasepage(page, GFP_NOFS);
7388 return;
7389 }
d0082371 7390 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
4eee4fa4 7391 ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
e6dcd2dc 7392 if (ordered) {
eb84ae03
CM
7393 /*
7394 * IO on this page will never be started, so we need
7395 * to account for any ordered extents now
7396 */
e6dcd2dc
CM
7397 clear_extent_bit(tree, page_start, page_end,
7398 EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7399 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7400 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
8b62b72b
CM
7401 /*
7402 * whoever cleared the private bit is responsible
7403 * for the finish_ordered_io
7404 */
5fd02043
JB
7405 if (TestClearPagePrivate2(page) &&
7406 btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7407 PAGE_CACHE_SIZE, 1)) {
7408 btrfs_finish_ordered_io(ordered);
8b62b72b 7409 }
e6dcd2dc 7410 btrfs_put_ordered_extent(ordered);
2ac55d41 7411 cached_state = NULL;
d0082371 7412 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7413 }
7414 clear_extent_bit(tree, page_start, page_end,
32c00aff 7415 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
9e8a4a8b
LB
7416 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7417 &cached_state, GFP_NOFS);
e6dcd2dc
CM
7418 __btrfs_releasepage(page, GFP_NOFS);
7419
4a096752 7420 ClearPageChecked(page);
9ad6b7bc 7421 if (PagePrivate(page)) {
9ad6b7bc
CM
7422 ClearPagePrivate(page);
7423 set_page_private(page, 0);
7424 page_cache_release(page);
7425 }
39279cc3
CM
7426}
7427
9ebefb18
CM
7428/*
7429 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7430 * called from a page fault handler when a page is first dirtied. Hence we must
7431 * be careful to check for EOF conditions here. We set the page up correctly
7432 * for a written page which means we get ENOSPC checking when writing into
7433 * holes and correct delalloc and unwritten extent mapping on filesystems that
7434 * support these features.
7435 *
7436 * We are not allowed to take the i_mutex here so we have to play games to
7437 * protect against truncate races as the page could now be beyond EOF. Because
7438 * vmtruncate() writes the inode size before removing pages, once we have the
7439 * page lock we can determine safely if the page is beyond EOF. If it is not
7440 * beyond EOF, then the page is guaranteed safe against truncation until we
7441 * unlock the page.
7442 */
c2ec175c 7443int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 7444{
c2ec175c 7445 struct page *page = vmf->page;
496ad9aa 7446 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 7447 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
7448 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7449 struct btrfs_ordered_extent *ordered;
2ac55d41 7450 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
7451 char *kaddr;
7452 unsigned long zero_start;
9ebefb18 7453 loff_t size;
1832a6d5 7454 int ret;
9998eb70 7455 int reserved = 0;
a52d9a80 7456 u64 page_start;
e6dcd2dc 7457 u64 page_end;
9ebefb18 7458
b2b5ef5c 7459 sb_start_pagefault(inode->i_sb);
0ca1f7ce 7460 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 7461 if (!ret) {
e41f941a 7462 ret = file_update_time(vma->vm_file);
9998eb70
CM
7463 reserved = 1;
7464 }
56a76f82
NP
7465 if (ret) {
7466 if (ret == -ENOMEM)
7467 ret = VM_FAULT_OOM;
7468 else /* -ENOSPC, -EIO, etc */
7469 ret = VM_FAULT_SIGBUS;
9998eb70
CM
7470 if (reserved)
7471 goto out;
7472 goto out_noreserve;
56a76f82 7473 }
1832a6d5 7474
56a76f82 7475 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 7476again:
9ebefb18 7477 lock_page(page);
9ebefb18 7478 size = i_size_read(inode);
e6dcd2dc
CM
7479 page_start = page_offset(page);
7480 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 7481
9ebefb18 7482 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 7483 (page_start >= size)) {
9ebefb18
CM
7484 /* page got truncated out from underneath us */
7485 goto out_unlock;
7486 }
e6dcd2dc
CM
7487 wait_on_page_writeback(page);
7488
d0082371 7489 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
7490 set_page_extent_mapped(page);
7491
eb84ae03
CM
7492 /*
7493 * we can't set the delalloc bits if there are pending ordered
7494 * extents. Drop our locks and wait for them to finish
7495 */
e6dcd2dc
CM
7496 ordered = btrfs_lookup_ordered_extent(inode, page_start);
7497 if (ordered) {
2ac55d41
JB
7498 unlock_extent_cached(io_tree, page_start, page_end,
7499 &cached_state, GFP_NOFS);
e6dcd2dc 7500 unlock_page(page);
eb84ae03 7501 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
7502 btrfs_put_ordered_extent(ordered);
7503 goto again;
7504 }
7505
fbf19087
JB
7506 /*
7507 * XXX - page_mkwrite gets called every time the page is dirtied, even
7508 * if it was already dirty, so for space accounting reasons we need to
7509 * clear any delalloc bits for the range we are fixing to save. There
7510 * is probably a better way to do this, but for now keep consistent with
7511 * prepare_pages in the normal write path.
7512 */
2ac55d41 7513 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
7514 EXTENT_DIRTY | EXTENT_DELALLOC |
7515 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 7516 0, 0, &cached_state, GFP_NOFS);
fbf19087 7517
2ac55d41
JB
7518 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7519 &cached_state);
9ed74f2d 7520 if (ret) {
2ac55d41
JB
7521 unlock_extent_cached(io_tree, page_start, page_end,
7522 &cached_state, GFP_NOFS);
9ed74f2d
JB
7523 ret = VM_FAULT_SIGBUS;
7524 goto out_unlock;
7525 }
e6dcd2dc 7526 ret = 0;
9ebefb18
CM
7527
7528 /* page is wholly or partially inside EOF */
a52d9a80 7529 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 7530 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 7531 else
e6dcd2dc 7532 zero_start = PAGE_CACHE_SIZE;
9ebefb18 7533
e6dcd2dc
CM
7534 if (zero_start != PAGE_CACHE_SIZE) {
7535 kaddr = kmap(page);
7536 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7537 flush_dcache_page(page);
7538 kunmap(page);
7539 }
247e743c 7540 ClearPageChecked(page);
e6dcd2dc 7541 set_page_dirty(page);
50a9b214 7542 SetPageUptodate(page);
5a3f23d5 7543
257c62e1
CM
7544 BTRFS_I(inode)->last_trans = root->fs_info->generation;
7545 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 7546 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 7547
2ac55d41 7548 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
7549
7550out_unlock:
b2b5ef5c
JK
7551 if (!ret) {
7552 sb_end_pagefault(inode->i_sb);
50a9b214 7553 return VM_FAULT_LOCKED;
b2b5ef5c 7554 }
9ebefb18 7555 unlock_page(page);
1832a6d5 7556out:
ec39e180 7557 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 7558out_noreserve:
b2b5ef5c 7559 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
7560 return ret;
7561}
7562
a41ad394 7563static int btrfs_truncate(struct inode *inode)
39279cc3
CM
7564{
7565 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 7566 struct btrfs_block_rsv *rsv;
a71754fc 7567 int ret = 0;
3893e33b 7568 int err = 0;
39279cc3 7569 struct btrfs_trans_handle *trans;
dbe674a9 7570 u64 mask = root->sectorsize - 1;
07127184 7571 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 7572
4a096752 7573 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 7574 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 7575
fcb80c2a
JB
7576 /*
7577 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
7578 * 3 things going on here
7579 *
7580 * 1) We need to reserve space for our orphan item and the space to
7581 * delete our orphan item. Lord knows we don't want to have a dangling
7582 * orphan item because we didn't reserve space to remove it.
7583 *
7584 * 2) We need to reserve space to update our inode.
7585 *
7586 * 3) We need to have something to cache all the space that is going to
7587 * be free'd up by the truncate operation, but also have some slack
7588 * space reserved in case it uses space during the truncate (thank you
7589 * very much snapshotting).
7590 *
7591 * And we need these to all be seperate. The fact is we can use alot of
7592 * space doing the truncate, and we have no earthly idea how much space
7593 * we will use, so we need the truncate reservation to be seperate so it
7594 * doesn't end up using space reserved for updating the inode or
7595 * removing the orphan item. We also need to be able to stop the
7596 * transaction and start a new one, which means we need to be able to
7597 * update the inode several times, and we have no idea of knowing how
7598 * many times that will be, so we can't just reserve 1 item for the
7599 * entirety of the opration, so that has to be done seperately as well.
7600 * Then there is the orphan item, which does indeed need to be held on
7601 * to for the whole operation, and we need nobody to touch this reserved
7602 * space except the orphan code.
7603 *
7604 * So that leaves us with
7605 *
7606 * 1) root->orphan_block_rsv - for the orphan deletion.
7607 * 2) rsv - for the truncate reservation, which we will steal from the
7608 * transaction reservation.
7609 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7610 * updating the inode.
7611 */
66d8f3dd 7612 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
7613 if (!rsv)
7614 return -ENOMEM;
4a338542 7615 rsv->size = min_size;
ca7e70f5 7616 rsv->failfast = 1;
f0cd846e 7617
907cbceb 7618 /*
07127184 7619 * 1 for the truncate slack space
907cbceb
JB
7620 * 1 for updating the inode.
7621 */
f3fe820c 7622 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
7623 if (IS_ERR(trans)) {
7624 err = PTR_ERR(trans);
7625 goto out;
7626 }
f0cd846e 7627
907cbceb
JB
7628 /* Migrate the slack space for the truncate to our reserve */
7629 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7630 min_size);
fcb80c2a 7631 BUG_ON(ret);
f0cd846e 7632
5a3f23d5
CM
7633 /*
7634 * setattr is responsible for setting the ordered_data_close flag,
7635 * but that is only tested during the last file release. That
7636 * could happen well after the next commit, leaving a great big
7637 * window where new writes may get lost if someone chooses to write
7638 * to this file after truncating to zero
7639 *
7640 * The inode doesn't have any dirty data here, and so if we commit
7641 * this is a noop. If someone immediately starts writing to the inode
7642 * it is very likely we'll catch some of their writes in this
7643 * transaction, and the commit will find this file on the ordered
7644 * data list with good things to send down.
7645 *
7646 * This is a best effort solution, there is still a window where
7647 * using truncate to replace the contents of the file will
7648 * end up with a zero length file after a crash.
7649 */
72ac3c0d
JB
7650 if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7651 &BTRFS_I(inode)->runtime_flags))
5a3f23d5
CM
7652 btrfs_add_ordered_operation(trans, root, inode);
7653
5dc562c5
JB
7654 /*
7655 * So if we truncate and then write and fsync we normally would just
7656 * write the extents that changed, which is a problem if we need to
7657 * first truncate that entire inode. So set this flag so we write out
7658 * all of the extents in the inode to the sync log so we're completely
7659 * safe.
7660 */
7661 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 7662 trans->block_rsv = rsv;
907cbceb 7663
8082510e
YZ
7664 while (1) {
7665 ret = btrfs_truncate_inode_items(trans, root, inode,
7666 inode->i_size,
7667 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 7668 if (ret != -ENOSPC) {
3893e33b 7669 err = ret;
8082510e 7670 break;
3893e33b 7671 }
39279cc3 7672
fcb80c2a 7673 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 7674 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
7675 if (ret) {
7676 err = ret;
7677 break;
7678 }
ca7e70f5 7679
8082510e 7680 btrfs_end_transaction(trans, root);
b53d3f5d 7681 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
7682
7683 trans = btrfs_start_transaction(root, 2);
7684 if (IS_ERR(trans)) {
7685 ret = err = PTR_ERR(trans);
7686 trans = NULL;
7687 break;
7688 }
7689
7690 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7691 rsv, min_size);
7692 BUG_ON(ret); /* shouldn't happen */
7693 trans->block_rsv = rsv;
8082510e
YZ
7694 }
7695
7696 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 7697 trans->block_rsv = root->orphan_block_rsv;
8082510e 7698 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
7699 if (ret)
7700 err = ret;
8082510e
YZ
7701 }
7702
917c16b2
CM
7703 if (trans) {
7704 trans->block_rsv = &root->fs_info->trans_block_rsv;
7705 ret = btrfs_update_inode(trans, root, inode);
7706 if (ret && !err)
7707 err = ret;
7b128766 7708
7ad85bb7 7709 ret = btrfs_end_transaction(trans, root);
b53d3f5d 7710 btrfs_btree_balance_dirty(root);
917c16b2 7711 }
fcb80c2a
JB
7712
7713out:
7714 btrfs_free_block_rsv(root, rsv);
7715
3893e33b
JB
7716 if (ret && !err)
7717 err = ret;
a41ad394 7718
3893e33b 7719 return err;
39279cc3
CM
7720}
7721
d352ac68
CM
7722/*
7723 * create a new subvolume directory/inode (helper for the ioctl).
7724 */
d2fb3437 7725int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 7726 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 7727{
39279cc3 7728 struct inode *inode;
76dda93c 7729 int err;
00e4e6b3 7730 u64 index = 0;
39279cc3 7731
12fc9d09
FA
7732 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7733 new_dirid, new_dirid,
7734 S_IFDIR | (~current_umask() & S_IRWXUGO),
7735 &index);
54aa1f4d 7736 if (IS_ERR(inode))
f46b5a66 7737 return PTR_ERR(inode);
39279cc3
CM
7738 inode->i_op = &btrfs_dir_inode_operations;
7739 inode->i_fop = &btrfs_dir_file_operations;
7740
bfe86848 7741 set_nlink(inode, 1);
dbe674a9 7742 btrfs_i_size_write(inode, 0);
3b96362c 7743
76dda93c 7744 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 7745
76dda93c 7746 iput(inode);
ce598979 7747 return err;
39279cc3
CM
7748}
7749
39279cc3
CM
7750struct inode *btrfs_alloc_inode(struct super_block *sb)
7751{
7752 struct btrfs_inode *ei;
2ead6ae7 7753 struct inode *inode;
39279cc3
CM
7754
7755 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7756 if (!ei)
7757 return NULL;
2ead6ae7
YZ
7758
7759 ei->root = NULL;
2ead6ae7 7760 ei->generation = 0;
15ee9bc7 7761 ei->last_trans = 0;
257c62e1 7762 ei->last_sub_trans = 0;
e02119d5 7763 ei->logged_trans = 0;
2ead6ae7 7764 ei->delalloc_bytes = 0;
2ead6ae7
YZ
7765 ei->disk_i_size = 0;
7766 ei->flags = 0;
7709cde3 7767 ei->csum_bytes = 0;
2ead6ae7
YZ
7768 ei->index_cnt = (u64)-1;
7769 ei->last_unlink_trans = 0;
46d8bc34 7770 ei->last_log_commit = 0;
2ead6ae7 7771
9e0baf60
JB
7772 spin_lock_init(&ei->lock);
7773 ei->outstanding_extents = 0;
7774 ei->reserved_extents = 0;
2ead6ae7 7775
72ac3c0d 7776 ei->runtime_flags = 0;
261507a0 7777 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 7778
16cdcec7
MX
7779 ei->delayed_node = NULL;
7780
2ead6ae7 7781 inode = &ei->vfs_inode;
a8067e02 7782 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
7783 extent_io_tree_init(&ei->io_tree, &inode->i_data);
7784 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
7785 ei->io_tree.track_uptodate = 1;
7786 ei->io_failure_tree.track_uptodate = 1;
b812ce28 7787 atomic_set(&ei->sync_writers, 0);
2ead6ae7 7788 mutex_init(&ei->log_mutex);
f248679e 7789 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 7790 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 7791 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 7792 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
7793 RB_CLEAR_NODE(&ei->rb_node);
7794
7795 return inode;
39279cc3
CM
7796}
7797
fa0d7e3d
NP
7798static void btrfs_i_callback(struct rcu_head *head)
7799{
7800 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
7801 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7802}
7803
39279cc3
CM
7804void btrfs_destroy_inode(struct inode *inode)
7805{
e6dcd2dc 7806 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
7807 struct btrfs_root *root = BTRFS_I(inode)->root;
7808
b3d9b7a3 7809 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 7810 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
7811 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7812 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
7813 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7814 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 7815
a6dbd429
JB
7816 /*
7817 * This can happen where we create an inode, but somebody else also
7818 * created the same inode and we need to destroy the one we already
7819 * created.
7820 */
7821 if (!root)
7822 goto free;
7823
5a3f23d5
CM
7824 /*
7825 * Make sure we're properly removed from the ordered operation
7826 * lists.
7827 */
7828 smp_mb();
7829 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
199c2a9c 7830 spin_lock(&root->fs_info->ordered_root_lock);
5a3f23d5 7831 list_del_init(&BTRFS_I(inode)->ordered_operations);
199c2a9c 7832 spin_unlock(&root->fs_info->ordered_root_lock);
5a3f23d5
CM
7833 }
7834
8a35d95f
JB
7835 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7836 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb
SK
7837 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7838 (unsigned long long)btrfs_ino(inode));
8a35d95f 7839 atomic_dec(&root->orphan_inodes);
7b128766 7840 }
7b128766 7841
d397712b 7842 while (1) {
e6dcd2dc
CM
7843 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7844 if (!ordered)
7845 break;
7846 else {
c2cf52eb
SK
7847 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7848 (unsigned long long)ordered->file_offset,
7849 (unsigned long long)ordered->len);
e6dcd2dc
CM
7850 btrfs_remove_ordered_extent(inode, ordered);
7851 btrfs_put_ordered_extent(ordered);
7852 btrfs_put_ordered_extent(ordered);
7853 }
7854 }
5d4f98a2 7855 inode_tree_del(inode);
5b21f2ed 7856 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 7857free:
fa0d7e3d 7858 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
7859}
7860
45321ac5 7861int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
7862{
7863 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 7864
6379ef9f
NA
7865 if (root == NULL)
7866 return 1;
7867
fa6ac876 7868 /* the snap/subvol tree is on deleting */
0af3d00b 7869 if (btrfs_root_refs(&root->root_item) == 0 &&
fa6ac876 7870 root != root->fs_info->tree_root)
45321ac5 7871 return 1;
76dda93c 7872 else
45321ac5 7873 return generic_drop_inode(inode);
76dda93c
YZ
7874}
7875
0ee0fda0 7876static void init_once(void *foo)
39279cc3
CM
7877{
7878 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
7879
7880 inode_init_once(&ei->vfs_inode);
7881}
7882
7883void btrfs_destroy_cachep(void)
7884{
8c0a8537
KS
7885 /*
7886 * Make sure all delayed rcu free inodes are flushed before we
7887 * destroy cache.
7888 */
7889 rcu_barrier();
39279cc3
CM
7890 if (btrfs_inode_cachep)
7891 kmem_cache_destroy(btrfs_inode_cachep);
7892 if (btrfs_trans_handle_cachep)
7893 kmem_cache_destroy(btrfs_trans_handle_cachep);
7894 if (btrfs_transaction_cachep)
7895 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
7896 if (btrfs_path_cachep)
7897 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
7898 if (btrfs_free_space_cachep)
7899 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
7900 if (btrfs_delalloc_work_cachep)
7901 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
7902}
7903
7904int btrfs_init_cachep(void)
7905{
837e1972 7906 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
7907 sizeof(struct btrfs_inode), 0,
7908 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
7909 if (!btrfs_inode_cachep)
7910 goto fail;
9601e3f6 7911
837e1972 7912 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
7913 sizeof(struct btrfs_trans_handle), 0,
7914 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7915 if (!btrfs_trans_handle_cachep)
7916 goto fail;
9601e3f6 7917
837e1972 7918 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
7919 sizeof(struct btrfs_transaction), 0,
7920 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7921 if (!btrfs_transaction_cachep)
7922 goto fail;
9601e3f6 7923
837e1972 7924 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
7925 sizeof(struct btrfs_path), 0,
7926 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
7927 if (!btrfs_path_cachep)
7928 goto fail;
9601e3f6 7929
837e1972 7930 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
7931 sizeof(struct btrfs_free_space), 0,
7932 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
7933 if (!btrfs_free_space_cachep)
7934 goto fail;
7935
8ccf6f19
MX
7936 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
7937 sizeof(struct btrfs_delalloc_work), 0,
7938 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
7939 NULL);
7940 if (!btrfs_delalloc_work_cachep)
7941 goto fail;
7942
39279cc3
CM
7943 return 0;
7944fail:
7945 btrfs_destroy_cachep();
7946 return -ENOMEM;
7947}
7948
7949static int btrfs_getattr(struct vfsmount *mnt,
7950 struct dentry *dentry, struct kstat *stat)
7951{
df0af1a5 7952 u64 delalloc_bytes;
39279cc3 7953 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
7954 u32 blocksize = inode->i_sb->s_blocksize;
7955
39279cc3 7956 generic_fillattr(inode, stat);
0ee5dc67 7957 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 7958 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
7959
7960 spin_lock(&BTRFS_I(inode)->lock);
7961 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
7962 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 7963 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 7964 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
7965 return 0;
7966}
7967
d397712b
CM
7968static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
7969 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
7970{
7971 struct btrfs_trans_handle *trans;
7972 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 7973 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
7974 struct inode *new_inode = new_dentry->d_inode;
7975 struct inode *old_inode = old_dentry->d_inode;
7976 struct timespec ctime = CURRENT_TIME;
00e4e6b3 7977 u64 index = 0;
4df27c4d 7978 u64 root_objectid;
39279cc3 7979 int ret;
33345d01 7980 u64 old_ino = btrfs_ino(old_inode);
39279cc3 7981
33345d01 7982 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
7983 return -EPERM;
7984
4df27c4d 7985 /* we only allow rename subvolume link between subvolumes */
33345d01 7986 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7987 return -EXDEV;
7988
33345d01
LZ
7989 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7990 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7991 return -ENOTEMPTY;
5f39d397 7992
4df27c4d
YZ
7993 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7994 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7995 return -ENOTEMPTY;
9c52057c
CM
7996
7997
7998 /* check for collisions, even if the name isn't there */
7999 ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8000 new_dentry->d_name.name,
8001 new_dentry->d_name.len);
8002
8003 if (ret) {
8004 if (ret == -EEXIST) {
8005 /* we shouldn't get
8006 * eexist without a new_inode */
8007 if (!new_inode) {
8008 WARN_ON(1);
8009 return ret;
8010 }
8011 } else {
8012 /* maybe -EOVERFLOW */
8013 return ret;
8014 }
8015 }
8016 ret = 0;
8017
5a3f23d5
CM
8018 /*
8019 * we're using rename to replace one file with another.
8020 * and the replacement file is large. Start IO on it now so
8021 * we don't add too much work to the end of the transaction
8022 */
4baf8c92 8023 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
8024 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8025 filemap_flush(old_inode->i_mapping);
8026
76dda93c 8027 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8028 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8029 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8030 /*
8031 * We want to reserve the absolute worst case amount of items. So if
8032 * both inodes are subvols and we need to unlink them then that would
8033 * require 4 item modifications, but if they are both normal inodes it
8034 * would require 5 item modifications, so we'll assume their normal
8035 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8036 * should cover the worst case number of items we'll modify.
8037 */
6e137ed3 8038 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8039 if (IS_ERR(trans)) {
8040 ret = PTR_ERR(trans);
8041 goto out_notrans;
8042 }
76dda93c 8043
4df27c4d
YZ
8044 if (dest != root)
8045 btrfs_record_root_in_trans(trans, dest);
5f39d397 8046
a5719521
YZ
8047 ret = btrfs_set_inode_index(new_dir, &index);
8048 if (ret)
8049 goto out_fail;
5a3f23d5 8050
33345d01 8051 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8052 /* force full log commit if subvolume involved. */
8053 root->fs_info->last_trans_log_full_commit = trans->transid;
8054 } else {
a5719521
YZ
8055 ret = btrfs_insert_inode_ref(trans, dest,
8056 new_dentry->d_name.name,
8057 new_dentry->d_name.len,
33345d01
LZ
8058 old_ino,
8059 btrfs_ino(new_dir), index);
a5719521
YZ
8060 if (ret)
8061 goto out_fail;
4df27c4d
YZ
8062 /*
8063 * this is an ugly little race, but the rename is required
8064 * to make sure that if we crash, the inode is either at the
8065 * old name or the new one. pinning the log transaction lets
8066 * us make sure we don't allow a log commit to come in after
8067 * we unlink the name but before we add the new name back in.
8068 */
8069 btrfs_pin_log_trans(root);
8070 }
5a3f23d5
CM
8071 /*
8072 * make sure the inode gets flushed if it is replacing
8073 * something.
8074 */
33345d01 8075 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 8076 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 8077
0c4d2d95
JB
8078 inode_inc_iversion(old_dir);
8079 inode_inc_iversion(new_dir);
8080 inode_inc_iversion(old_inode);
39279cc3
CM
8081 old_dir->i_ctime = old_dir->i_mtime = ctime;
8082 new_dir->i_ctime = new_dir->i_mtime = ctime;
8083 old_inode->i_ctime = ctime;
5f39d397 8084
12fcfd22
CM
8085 if (old_dentry->d_parent != new_dentry->d_parent)
8086 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8087
33345d01 8088 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8089 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8090 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8091 old_dentry->d_name.name,
8092 old_dentry->d_name.len);
8093 } else {
92986796
AV
8094 ret = __btrfs_unlink_inode(trans, root, old_dir,
8095 old_dentry->d_inode,
8096 old_dentry->d_name.name,
8097 old_dentry->d_name.len);
8098 if (!ret)
8099 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8100 }
79787eaa
JM
8101 if (ret) {
8102 btrfs_abort_transaction(trans, root, ret);
8103 goto out_fail;
8104 }
39279cc3
CM
8105
8106 if (new_inode) {
0c4d2d95 8107 inode_inc_iversion(new_inode);
39279cc3 8108 new_inode->i_ctime = CURRENT_TIME;
33345d01 8109 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8110 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8111 root_objectid = BTRFS_I(new_inode)->location.objectid;
8112 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8113 root_objectid,
8114 new_dentry->d_name.name,
8115 new_dentry->d_name.len);
8116 BUG_ON(new_inode->i_nlink == 0);
8117 } else {
8118 ret = btrfs_unlink_inode(trans, dest, new_dir,
8119 new_dentry->d_inode,
8120 new_dentry->d_name.name,
8121 new_dentry->d_name.len);
8122 }
79787eaa 8123 if (!ret && new_inode->i_nlink == 0) {
e02119d5 8124 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 8125 BUG_ON(ret);
7b128766 8126 }
79787eaa
JM
8127 if (ret) {
8128 btrfs_abort_transaction(trans, root, ret);
8129 goto out_fail;
8130 }
39279cc3 8131 }
aec7477b 8132
4df27c4d
YZ
8133 ret = btrfs_add_link(trans, new_dir, old_inode,
8134 new_dentry->d_name.name,
a5719521 8135 new_dentry->d_name.len, 0, index);
79787eaa
JM
8136 if (ret) {
8137 btrfs_abort_transaction(trans, root, ret);
8138 goto out_fail;
8139 }
39279cc3 8140
33345d01 8141 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8142 struct dentry *parent = new_dentry->d_parent;
6a912213 8143 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8144 btrfs_end_log_trans(root);
8145 }
39279cc3 8146out_fail:
7ad85bb7 8147 btrfs_end_transaction(trans, root);
b44c59a8 8148out_notrans:
33345d01 8149 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8150 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8151
39279cc3
CM
8152 return ret;
8153}
8154
8ccf6f19
MX
8155static void btrfs_run_delalloc_work(struct btrfs_work *work)
8156{
8157 struct btrfs_delalloc_work *delalloc_work;
8158
8159 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8160 work);
8161 if (delalloc_work->wait)
8162 btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8163 else
8164 filemap_flush(delalloc_work->inode->i_mapping);
8165
8166 if (delalloc_work->delay_iput)
8167 btrfs_add_delayed_iput(delalloc_work->inode);
8168 else
8169 iput(delalloc_work->inode);
8170 complete(&delalloc_work->completion);
8171}
8172
8173struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8174 int wait, int delay_iput)
8175{
8176 struct btrfs_delalloc_work *work;
8177
8178 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8179 if (!work)
8180 return NULL;
8181
8182 init_completion(&work->completion);
8183 INIT_LIST_HEAD(&work->list);
8184 work->inode = inode;
8185 work->wait = wait;
8186 work->delay_iput = delay_iput;
8187 work->work.func = btrfs_run_delalloc_work;
8188
8189 return work;
8190}
8191
8192void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8193{
8194 wait_for_completion(&work->completion);
8195 kmem_cache_free(btrfs_delalloc_work_cachep, work);
8196}
8197
d352ac68
CM
8198/*
8199 * some fairly slow code that needs optimization. This walks the list
8200 * of all the inodes with pending delalloc and forces them to disk.
8201 */
eb73c1b7 8202static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819 8203{
ea8c2819 8204 struct btrfs_inode *binode;
5b21f2ed 8205 struct inode *inode;
8ccf6f19
MX
8206 struct btrfs_delalloc_work *work, *next;
8207 struct list_head works;
1eafa6c7 8208 struct list_head splice;
8ccf6f19 8209 int ret = 0;
ea8c2819 8210
8ccf6f19 8211 INIT_LIST_HEAD(&works);
1eafa6c7 8212 INIT_LIST_HEAD(&splice);
63607cc8 8213
eb73c1b7
MX
8214 spin_lock(&root->delalloc_lock);
8215 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
8216 while (!list_empty(&splice)) {
8217 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 8218 delalloc_inodes);
1eafa6c7 8219
eb73c1b7
MX
8220 list_move_tail(&binode->delalloc_inodes,
8221 &root->delalloc_inodes);
5b21f2ed 8222 inode = igrab(&binode->vfs_inode);
df0af1a5 8223 if (!inode) {
eb73c1b7 8224 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 8225 continue;
df0af1a5 8226 }
eb73c1b7 8227 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
8228
8229 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8230 if (unlikely(!work)) {
8231 ret = -ENOMEM;
8232 goto out;
5b21f2ed 8233 }
1eafa6c7
MX
8234 list_add_tail(&work->list, &works);
8235 btrfs_queue_worker(&root->fs_info->flush_workers,
8236 &work->work);
8237
5b21f2ed 8238 cond_resched();
eb73c1b7 8239 spin_lock(&root->delalloc_lock);
ea8c2819 8240 }
eb73c1b7 8241 spin_unlock(&root->delalloc_lock);
8c8bee1d 8242
1eafa6c7
MX
8243 list_for_each_entry_safe(work, next, &works, list) {
8244 list_del_init(&work->list);
8245 btrfs_wait_and_free_delalloc_work(work);
8246 }
eb73c1b7
MX
8247 return 0;
8248out:
8249 list_for_each_entry_safe(work, next, &works, list) {
8250 list_del_init(&work->list);
8251 btrfs_wait_and_free_delalloc_work(work);
8252 }
8253
8254 if (!list_empty_careful(&splice)) {
8255 spin_lock(&root->delalloc_lock);
8256 list_splice_tail(&splice, &root->delalloc_inodes);
8257 spin_unlock(&root->delalloc_lock);
8258 }
8259 return ret;
8260}
1eafa6c7 8261
eb73c1b7
MX
8262int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8263{
8264 int ret;
1eafa6c7 8265
eb73c1b7
MX
8266 if (root->fs_info->sb->s_flags & MS_RDONLY)
8267 return -EROFS;
8268
8269 ret = __start_delalloc_inodes(root, delay_iput);
8270 /*
8271 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
8272 * we have to make sure the IO is actually started and that
8273 * ordered extents get created before we return
8274 */
8275 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 8276 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 8277 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 8278 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
8279 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8280 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
8281 }
8282 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
8283 return ret;
8284}
8285
8286int btrfs_start_all_delalloc_inodes(struct btrfs_fs_info *fs_info,
8287 int delay_iput)
8288{
8289 struct btrfs_root *root;
8290 struct list_head splice;
8291 int ret;
8292
8293 if (fs_info->sb->s_flags & MS_RDONLY)
8294 return -EROFS;
8295
8296 INIT_LIST_HEAD(&splice);
8297
8298 spin_lock(&fs_info->delalloc_root_lock);
8299 list_splice_init(&fs_info->delalloc_roots, &splice);
8300 while (!list_empty(&splice)) {
8301 root = list_first_entry(&splice, struct btrfs_root,
8302 delalloc_root);
8303 root = btrfs_grab_fs_root(root);
8304 BUG_ON(!root);
8305 list_move_tail(&root->delalloc_root,
8306 &fs_info->delalloc_roots);
8307 spin_unlock(&fs_info->delalloc_root_lock);
8308
8309 ret = __start_delalloc_inodes(root, delay_iput);
8310 btrfs_put_fs_root(root);
8311 if (ret)
8312 goto out;
8313
8314 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 8315 }
eb73c1b7 8316 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8317
eb73c1b7
MX
8318 atomic_inc(&fs_info->async_submit_draining);
8319 while (atomic_read(&fs_info->nr_async_submits) ||
8320 atomic_read(&fs_info->async_delalloc_pages)) {
8321 wait_event(fs_info->async_submit_wait,
8322 (atomic_read(&fs_info->nr_async_submits) == 0 &&
8323 atomic_read(&fs_info->async_delalloc_pages) == 0));
8324 }
8325 atomic_dec(&fs_info->async_submit_draining);
8326 return 0;
8327out:
1eafa6c7 8328 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
8329 spin_lock(&fs_info->delalloc_root_lock);
8330 list_splice_tail(&splice, &fs_info->delalloc_roots);
8331 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 8332 }
8ccf6f19 8333 return ret;
ea8c2819
CM
8334}
8335
39279cc3
CM
8336static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8337 const char *symname)
8338{
8339 struct btrfs_trans_handle *trans;
8340 struct btrfs_root *root = BTRFS_I(dir)->root;
8341 struct btrfs_path *path;
8342 struct btrfs_key key;
1832a6d5 8343 struct inode *inode = NULL;
39279cc3
CM
8344 int err;
8345 int drop_inode = 0;
8346 u64 objectid;
00e4e6b3 8347 u64 index = 0 ;
39279cc3
CM
8348 int name_len;
8349 int datasize;
5f39d397 8350 unsigned long ptr;
39279cc3 8351 struct btrfs_file_extent_item *ei;
5f39d397 8352 struct extent_buffer *leaf;
39279cc3
CM
8353
8354 name_len = strlen(symname) + 1;
8355 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8356 return -ENAMETOOLONG;
1832a6d5 8357
9ed74f2d
JB
8358 /*
8359 * 2 items for inode item and ref
8360 * 2 items for dir items
8361 * 1 item for xattr if selinux is on
8362 */
a22285a6
YZ
8363 trans = btrfs_start_transaction(root, 5);
8364 if (IS_ERR(trans))
8365 return PTR_ERR(trans);
1832a6d5 8366
581bb050
LZ
8367 err = btrfs_find_free_ino(root, &objectid);
8368 if (err)
8369 goto out_unlock;
8370
aec7477b 8371 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 8372 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 8373 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
8374 if (IS_ERR(inode)) {
8375 err = PTR_ERR(inode);
39279cc3 8376 goto out_unlock;
7cf96da3 8377 }
39279cc3 8378
2a7dba39 8379 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
8380 if (err) {
8381 drop_inode = 1;
8382 goto out_unlock;
8383 }
8384
ad19db71
CS
8385 /*
8386 * If the active LSM wants to access the inode during
8387 * d_instantiate it needs these. Smack checks to see
8388 * if the filesystem supports xattrs by looking at the
8389 * ops vector.
8390 */
8391 inode->i_fop = &btrfs_file_operations;
8392 inode->i_op = &btrfs_file_inode_operations;
8393
a1b075d2 8394 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
8395 if (err)
8396 drop_inode = 1;
8397 else {
8398 inode->i_mapping->a_ops = &btrfs_aops;
04160088 8399 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 8400 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 8401 }
39279cc3
CM
8402 if (drop_inode)
8403 goto out_unlock;
8404
8405 path = btrfs_alloc_path();
d8926bb3
MF
8406 if (!path) {
8407 err = -ENOMEM;
8408 drop_inode = 1;
8409 goto out_unlock;
8410 }
33345d01 8411 key.objectid = btrfs_ino(inode);
39279cc3 8412 key.offset = 0;
39279cc3
CM
8413 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8414 datasize = btrfs_file_extent_calc_inline_size(name_len);
8415 err = btrfs_insert_empty_item(trans, root, path, &key,
8416 datasize);
54aa1f4d
CM
8417 if (err) {
8418 drop_inode = 1;
b0839166 8419 btrfs_free_path(path);
54aa1f4d
CM
8420 goto out_unlock;
8421 }
5f39d397
CM
8422 leaf = path->nodes[0];
8423 ei = btrfs_item_ptr(leaf, path->slots[0],
8424 struct btrfs_file_extent_item);
8425 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8426 btrfs_set_file_extent_type(leaf, ei,
39279cc3 8427 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
8428 btrfs_set_file_extent_encryption(leaf, ei, 0);
8429 btrfs_set_file_extent_compression(leaf, ei, 0);
8430 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8431 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8432
39279cc3 8433 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
8434 write_extent_buffer(leaf, symname, ptr, name_len);
8435 btrfs_mark_buffer_dirty(leaf);
39279cc3 8436 btrfs_free_path(path);
5f39d397 8437
39279cc3
CM
8438 inode->i_op = &btrfs_symlink_inode_operations;
8439 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 8440 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 8441 inode_set_bytes(inode, name_len);
dbe674a9 8442 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
8443 err = btrfs_update_inode(trans, root, inode);
8444 if (err)
8445 drop_inode = 1;
39279cc3
CM
8446
8447out_unlock:
08c422c2
AV
8448 if (!err)
8449 d_instantiate(dentry, inode);
7ad85bb7 8450 btrfs_end_transaction(trans, root);
39279cc3
CM
8451 if (drop_inode) {
8452 inode_dec_link_count(inode);
8453 iput(inode);
8454 }
b53d3f5d 8455 btrfs_btree_balance_dirty(root);
39279cc3
CM
8456 return err;
8457}
16432985 8458
0af3d00b
JB
8459static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8460 u64 start, u64 num_bytes, u64 min_size,
8461 loff_t actual_len, u64 *alloc_hint,
8462 struct btrfs_trans_handle *trans)
d899e052 8463{
5dc562c5
JB
8464 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8465 struct extent_map *em;
d899e052
YZ
8466 struct btrfs_root *root = BTRFS_I(inode)->root;
8467 struct btrfs_key ins;
d899e052 8468 u64 cur_offset = start;
55a61d1d 8469 u64 i_size;
154ea289 8470 u64 cur_bytes;
d899e052 8471 int ret = 0;
0af3d00b 8472 bool own_trans = true;
d899e052 8473
0af3d00b
JB
8474 if (trans)
8475 own_trans = false;
d899e052 8476 while (num_bytes > 0) {
0af3d00b
JB
8477 if (own_trans) {
8478 trans = btrfs_start_transaction(root, 3);
8479 if (IS_ERR(trans)) {
8480 ret = PTR_ERR(trans);
8481 break;
8482 }
5a303d5d
YZ
8483 }
8484
154ea289
CM
8485 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8486 cur_bytes = max(cur_bytes, min_size);
8487 ret = btrfs_reserve_extent(trans, root, cur_bytes,
24542bf7 8488 min_size, 0, *alloc_hint, &ins, 1);
5a303d5d 8489 if (ret) {
0af3d00b
JB
8490 if (own_trans)
8491 btrfs_end_transaction(trans, root);
a22285a6 8492 break;
d899e052 8493 }
5a303d5d 8494
d899e052
YZ
8495 ret = insert_reserved_file_extent(trans, inode,
8496 cur_offset, ins.objectid,
8497 ins.offset, ins.offset,
920bbbfb 8498 ins.offset, 0, 0, 0,
d899e052 8499 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa
JM
8500 if (ret) {
8501 btrfs_abort_transaction(trans, root, ret);
8502 if (own_trans)
8503 btrfs_end_transaction(trans, root);
8504 break;
8505 }
a1ed835e
CM
8506 btrfs_drop_extent_cache(inode, cur_offset,
8507 cur_offset + ins.offset -1, 0);
5a303d5d 8508
5dc562c5
JB
8509 em = alloc_extent_map();
8510 if (!em) {
8511 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8512 &BTRFS_I(inode)->runtime_flags);
8513 goto next;
8514 }
8515
8516 em->start = cur_offset;
8517 em->orig_start = cur_offset;
8518 em->len = ins.offset;
8519 em->block_start = ins.objectid;
8520 em->block_len = ins.offset;
b4939680 8521 em->orig_block_len = ins.offset;
cc95bef6 8522 em->ram_bytes = ins.offset;
5dc562c5
JB
8523 em->bdev = root->fs_info->fs_devices->latest_bdev;
8524 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8525 em->generation = trans->transid;
8526
8527 while (1) {
8528 write_lock(&em_tree->lock);
09a2a8f9 8529 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
8530 write_unlock(&em_tree->lock);
8531 if (ret != -EEXIST)
8532 break;
8533 btrfs_drop_extent_cache(inode, cur_offset,
8534 cur_offset + ins.offset - 1,
8535 0);
8536 }
8537 free_extent_map(em);
8538next:
d899e052
YZ
8539 num_bytes -= ins.offset;
8540 cur_offset += ins.offset;
efa56464 8541 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 8542
0c4d2d95 8543 inode_inc_iversion(inode);
d899e052 8544 inode->i_ctime = CURRENT_TIME;
6cbff00f 8545 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 8546 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
8547 (actual_len > inode->i_size) &&
8548 (cur_offset > inode->i_size)) {
d1ea6a61 8549 if (cur_offset > actual_len)
55a61d1d 8550 i_size = actual_len;
d1ea6a61 8551 else
55a61d1d
JB
8552 i_size = cur_offset;
8553 i_size_write(inode, i_size);
8554 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
8555 }
8556
d899e052 8557 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
8558
8559 if (ret) {
8560 btrfs_abort_transaction(trans, root, ret);
8561 if (own_trans)
8562 btrfs_end_transaction(trans, root);
8563 break;
8564 }
d899e052 8565
0af3d00b
JB
8566 if (own_trans)
8567 btrfs_end_transaction(trans, root);
5a303d5d 8568 }
d899e052
YZ
8569 return ret;
8570}
8571
0af3d00b
JB
8572int btrfs_prealloc_file_range(struct inode *inode, int mode,
8573 u64 start, u64 num_bytes, u64 min_size,
8574 loff_t actual_len, u64 *alloc_hint)
8575{
8576 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8577 min_size, actual_len, alloc_hint,
8578 NULL);
8579}
8580
8581int btrfs_prealloc_file_range_trans(struct inode *inode,
8582 struct btrfs_trans_handle *trans, int mode,
8583 u64 start, u64 num_bytes, u64 min_size,
8584 loff_t actual_len, u64 *alloc_hint)
8585{
8586 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8587 min_size, actual_len, alloc_hint, trans);
8588}
8589
e6dcd2dc
CM
8590static int btrfs_set_page_dirty(struct page *page)
8591{
e6dcd2dc
CM
8592 return __set_page_dirty_nobuffers(page);
8593}
8594
10556cb2 8595static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 8596{
b83cc969 8597 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 8598 umode_t mode = inode->i_mode;
b83cc969 8599
cb6db4e5
JM
8600 if (mask & MAY_WRITE &&
8601 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8602 if (btrfs_root_readonly(root))
8603 return -EROFS;
8604 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8605 return -EACCES;
8606 }
2830ba7f 8607 return generic_permission(inode, mask);
fdebe2bd 8608}
39279cc3 8609
6e1d5dcc 8610static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 8611 .getattr = btrfs_getattr,
39279cc3
CM
8612 .lookup = btrfs_lookup,
8613 .create = btrfs_create,
8614 .unlink = btrfs_unlink,
8615 .link = btrfs_link,
8616 .mkdir = btrfs_mkdir,
8617 .rmdir = btrfs_rmdir,
8618 .rename = btrfs_rename,
8619 .symlink = btrfs_symlink,
8620 .setattr = btrfs_setattr,
618e21d5 8621 .mknod = btrfs_mknod,
95819c05
CH
8622 .setxattr = btrfs_setxattr,
8623 .getxattr = btrfs_getxattr,
5103e947 8624 .listxattr = btrfs_listxattr,
95819c05 8625 .removexattr = btrfs_removexattr,
fdebe2bd 8626 .permission = btrfs_permission,
4e34e719 8627 .get_acl = btrfs_get_acl,
39279cc3 8628};
6e1d5dcc 8629static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 8630 .lookup = btrfs_lookup,
fdebe2bd 8631 .permission = btrfs_permission,
4e34e719 8632 .get_acl = btrfs_get_acl,
39279cc3 8633};
76dda93c 8634
828c0950 8635static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
8636 .llseek = generic_file_llseek,
8637 .read = generic_read_dir,
9cdda8d3 8638 .iterate = btrfs_real_readdir,
34287aa3 8639 .unlocked_ioctl = btrfs_ioctl,
39279cc3 8640#ifdef CONFIG_COMPAT
34287aa3 8641 .compat_ioctl = btrfs_ioctl,
39279cc3 8642#endif
6bf13c0c 8643 .release = btrfs_release_file,
e02119d5 8644 .fsync = btrfs_sync_file,
39279cc3
CM
8645};
8646
d1310b2e 8647static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 8648 .fill_delalloc = run_delalloc_range,
065631f6 8649 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 8650 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 8651 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 8652 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 8653 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
8654 .set_bit_hook = btrfs_set_bit_hook,
8655 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
8656 .merge_extent_hook = btrfs_merge_extent_hook,
8657 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
8658};
8659
35054394
CM
8660/*
8661 * btrfs doesn't support the bmap operation because swapfiles
8662 * use bmap to make a mapping of extents in the file. They assume
8663 * these extents won't change over the life of the file and they
8664 * use the bmap result to do IO directly to the drive.
8665 *
8666 * the btrfs bmap call would return logical addresses that aren't
8667 * suitable for IO and they also will change frequently as COW
8668 * operations happen. So, swapfile + btrfs == corruption.
8669 *
8670 * For now we're avoiding this by dropping bmap.
8671 */
7f09410b 8672static const struct address_space_operations btrfs_aops = {
39279cc3
CM
8673 .readpage = btrfs_readpage,
8674 .writepage = btrfs_writepage,
b293f02e 8675 .writepages = btrfs_writepages,
3ab2fb5a 8676 .readpages = btrfs_readpages,
16432985 8677 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
8678 .invalidatepage = btrfs_invalidatepage,
8679 .releasepage = btrfs_releasepage,
e6dcd2dc 8680 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 8681 .error_remove_page = generic_error_remove_page,
39279cc3
CM
8682};
8683
7f09410b 8684static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
8685 .readpage = btrfs_readpage,
8686 .writepage = btrfs_writepage,
2bf5a725
CM
8687 .invalidatepage = btrfs_invalidatepage,
8688 .releasepage = btrfs_releasepage,
39279cc3
CM
8689};
8690
6e1d5dcc 8691static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
8692 .getattr = btrfs_getattr,
8693 .setattr = btrfs_setattr,
95819c05
CH
8694 .setxattr = btrfs_setxattr,
8695 .getxattr = btrfs_getxattr,
5103e947 8696 .listxattr = btrfs_listxattr,
95819c05 8697 .removexattr = btrfs_removexattr,
fdebe2bd 8698 .permission = btrfs_permission,
1506fcc8 8699 .fiemap = btrfs_fiemap,
4e34e719 8700 .get_acl = btrfs_get_acl,
e41f941a 8701 .update_time = btrfs_update_time,
39279cc3 8702};
6e1d5dcc 8703static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
8704 .getattr = btrfs_getattr,
8705 .setattr = btrfs_setattr,
fdebe2bd 8706 .permission = btrfs_permission,
95819c05
CH
8707 .setxattr = btrfs_setxattr,
8708 .getxattr = btrfs_getxattr,
33268eaf 8709 .listxattr = btrfs_listxattr,
95819c05 8710 .removexattr = btrfs_removexattr,
4e34e719 8711 .get_acl = btrfs_get_acl,
e41f941a 8712 .update_time = btrfs_update_time,
618e21d5 8713};
6e1d5dcc 8714static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
8715 .readlink = generic_readlink,
8716 .follow_link = page_follow_link_light,
8717 .put_link = page_put_link,
f209561a 8718 .getattr = btrfs_getattr,
22c44fe6 8719 .setattr = btrfs_setattr,
fdebe2bd 8720 .permission = btrfs_permission,
0279b4cd
JO
8721 .setxattr = btrfs_setxattr,
8722 .getxattr = btrfs_getxattr,
8723 .listxattr = btrfs_listxattr,
8724 .removexattr = btrfs_removexattr,
4e34e719 8725 .get_acl = btrfs_get_acl,
e41f941a 8726 .update_time = btrfs_update_time,
39279cc3 8727};
76dda93c 8728
82d339d9 8729const struct dentry_operations btrfs_dentry_operations = {
76dda93c 8730 .d_delete = btrfs_dentry_delete,
b4aff1f8 8731 .d_release = btrfs_dentry_release,
76dda93c 8732};