Btrfs: use the device_list_mutex during write_dev_supers
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818
CM
141 btrfs_set_trans_block_group(trans, inode);
142
33345d01 143 key.objectid = btrfs_ino(inode);
c8b97818
CM
144 key.offset = start;
145 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
146 datasize = btrfs_file_extent_calc_inline_size(cur_size);
147
148 inode_add_bytes(inode, size);
149 ret = btrfs_insert_empty_item(trans, root, path, &key,
150 datasize);
151 BUG_ON(ret);
152 if (ret) {
153 err = ret;
c8b97818
CM
154 goto fail;
155 }
156 leaf = path->nodes[0];
157 ei = btrfs_item_ptr(leaf, path->slots[0],
158 struct btrfs_file_extent_item);
159 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
160 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
161 btrfs_set_file_extent_encryption(leaf, ei, 0);
162 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
163 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
164 ptr = btrfs_file_extent_inline_start(ei);
165
261507a0 166 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
167 struct page *cpage;
168 int i = 0;
d397712b 169 while (compressed_size > 0) {
c8b97818 170 cpage = compressed_pages[i];
5b050f04 171 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
172 PAGE_CACHE_SIZE);
173
b9473439 174 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 175 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 176 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
177
178 i++;
179 ptr += cur_size;
180 compressed_size -= cur_size;
181 }
182 btrfs_set_file_extent_compression(leaf, ei,
261507a0 183 compress_type);
c8b97818
CM
184 } else {
185 page = find_get_page(inode->i_mapping,
186 start >> PAGE_CACHE_SHIFT);
187 btrfs_set_file_extent_compression(leaf, ei, 0);
188 kaddr = kmap_atomic(page, KM_USER0);
189 offset = start & (PAGE_CACHE_SIZE - 1);
190 write_extent_buffer(leaf, kaddr + offset, ptr, size);
191 kunmap_atomic(kaddr, KM_USER0);
192 page_cache_release(page);
193 }
194 btrfs_mark_buffer_dirty(leaf);
195 btrfs_free_path(path);
196
c2167754
YZ
197 /*
198 * we're an inline extent, so nobody can
199 * extend the file past i_size without locking
200 * a page we already have locked.
201 *
202 * We must do any isize and inode updates
203 * before we unlock the pages. Otherwise we
204 * could end up racing with unlink.
205 */
c8b97818
CM
206 BTRFS_I(inode)->disk_i_size = inode->i_size;
207 btrfs_update_inode(trans, root, inode);
c2167754 208
c8b97818
CM
209 return 0;
210fail:
211 btrfs_free_path(path);
212 return err;
213}
214
215
216/*
217 * conditionally insert an inline extent into the file. This
218 * does the checks required to make sure the data is small enough
219 * to fit as an inline extent.
220 */
7f366cfe 221static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
222 struct btrfs_root *root,
223 struct inode *inode, u64 start, u64 end,
fe3f566c 224 size_t compressed_size, int compress_type,
c8b97818
CM
225 struct page **compressed_pages)
226{
227 u64 isize = i_size_read(inode);
228 u64 actual_end = min(end + 1, isize);
229 u64 inline_len = actual_end - start;
230 u64 aligned_end = (end + root->sectorsize - 1) &
231 ~((u64)root->sectorsize - 1);
232 u64 hint_byte;
233 u64 data_len = inline_len;
234 int ret;
235
236 if (compressed_size)
237 data_len = compressed_size;
238
239 if (start > 0 ||
70b99e69 240 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
241 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
242 (!compressed_size &&
243 (actual_end & (root->sectorsize - 1)) == 0) ||
244 end + 1 < isize ||
245 data_len > root->fs_info->max_inline) {
246 return 1;
247 }
248
920bbbfb 249 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 250 &hint_byte, 1);
c8b97818
CM
251 BUG_ON(ret);
252
253 if (isize > actual_end)
254 inline_len = min_t(u64, isize, actual_end);
255 ret = insert_inline_extent(trans, root, inode, start,
256 inline_len, compressed_size,
fe3f566c 257 compress_type, compressed_pages);
c8b97818 258 BUG_ON(ret);
0ca1f7ce 259 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 260 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
261 return 0;
262}
263
771ed689
CM
264struct async_extent {
265 u64 start;
266 u64 ram_size;
267 u64 compressed_size;
268 struct page **pages;
269 unsigned long nr_pages;
261507a0 270 int compress_type;
771ed689
CM
271 struct list_head list;
272};
273
274struct async_cow {
275 struct inode *inode;
276 struct btrfs_root *root;
277 struct page *locked_page;
278 u64 start;
279 u64 end;
280 struct list_head extents;
281 struct btrfs_work work;
282};
283
284static noinline int add_async_extent(struct async_cow *cow,
285 u64 start, u64 ram_size,
286 u64 compressed_size,
287 struct page **pages,
261507a0
LZ
288 unsigned long nr_pages,
289 int compress_type)
771ed689
CM
290{
291 struct async_extent *async_extent;
292
293 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 294 BUG_ON(!async_extent);
771ed689
CM
295 async_extent->start = start;
296 async_extent->ram_size = ram_size;
297 async_extent->compressed_size = compressed_size;
298 async_extent->pages = pages;
299 async_extent->nr_pages = nr_pages;
261507a0 300 async_extent->compress_type = compress_type;
771ed689
CM
301 list_add_tail(&async_extent->list, &cow->extents);
302 return 0;
303}
304
d352ac68 305/*
771ed689
CM
306 * we create compressed extents in two phases. The first
307 * phase compresses a range of pages that have already been
308 * locked (both pages and state bits are locked).
c8b97818 309 *
771ed689
CM
310 * This is done inside an ordered work queue, and the compression
311 * is spread across many cpus. The actual IO submission is step
312 * two, and the ordered work queue takes care of making sure that
313 * happens in the same order things were put onto the queue by
314 * writepages and friends.
c8b97818 315 *
771ed689
CM
316 * If this code finds it can't get good compression, it puts an
317 * entry onto the work queue to write the uncompressed bytes. This
318 * makes sure that both compressed inodes and uncompressed inodes
319 * are written in the same order that pdflush sent them down.
d352ac68 320 */
771ed689
CM
321static noinline int compress_file_range(struct inode *inode,
322 struct page *locked_page,
323 u64 start, u64 end,
324 struct async_cow *async_cow,
325 int *num_added)
b888db2b
CM
326{
327 struct btrfs_root *root = BTRFS_I(inode)->root;
328 struct btrfs_trans_handle *trans;
db94535d 329 u64 num_bytes;
db94535d 330 u64 blocksize = root->sectorsize;
c8b97818 331 u64 actual_end;
42dc7bab 332 u64 isize = i_size_read(inode);
e6dcd2dc 333 int ret = 0;
c8b97818
CM
334 struct page **pages = NULL;
335 unsigned long nr_pages;
336 unsigned long nr_pages_ret = 0;
337 unsigned long total_compressed = 0;
338 unsigned long total_in = 0;
339 unsigned long max_compressed = 128 * 1024;
771ed689 340 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
341 int i;
342 int will_compress;
261507a0 343 int compress_type = root->fs_info->compress_type;
b888db2b 344
4cb5300b
CM
345 /* if this is a small write inside eof, kick off a defragbot */
346 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
347 btrfs_add_inode_defrag(NULL, inode);
348
42dc7bab 349 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
350again:
351 will_compress = 0;
352 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
353 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 354
f03d9301
CM
355 /*
356 * we don't want to send crud past the end of i_size through
357 * compression, that's just a waste of CPU time. So, if the
358 * end of the file is before the start of our current
359 * requested range of bytes, we bail out to the uncompressed
360 * cleanup code that can deal with all of this.
361 *
362 * It isn't really the fastest way to fix things, but this is a
363 * very uncommon corner.
364 */
365 if (actual_end <= start)
366 goto cleanup_and_bail_uncompressed;
367
c8b97818
CM
368 total_compressed = actual_end - start;
369
370 /* we want to make sure that amount of ram required to uncompress
371 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
372 * of a compressed extent to 128k. This is a crucial number
373 * because it also controls how easily we can spread reads across
374 * cpus for decompression.
375 *
376 * We also want to make sure the amount of IO required to do
377 * a random read is reasonably small, so we limit the size of
378 * a compressed extent to 128k.
c8b97818
CM
379 */
380 total_compressed = min(total_compressed, max_uncompressed);
db94535d 381 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 382 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
383 total_in = 0;
384 ret = 0;
db94535d 385
771ed689
CM
386 /*
387 * we do compression for mount -o compress and when the
388 * inode has not been flagged as nocompress. This flag can
389 * change at any time if we discover bad compression ratios.
c8b97818 390 */
6cbff00f 391 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 392 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
393 (BTRFS_I(inode)->force_compress) ||
394 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 395 WARN_ON(pages);
cfbc246e 396 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 397 BUG_ON(!pages);
c8b97818 398
261507a0
LZ
399 if (BTRFS_I(inode)->force_compress)
400 compress_type = BTRFS_I(inode)->force_compress;
401
402 ret = btrfs_compress_pages(compress_type,
403 inode->i_mapping, start,
404 total_compressed, pages,
405 nr_pages, &nr_pages_ret,
406 &total_in,
407 &total_compressed,
408 max_compressed);
c8b97818
CM
409
410 if (!ret) {
411 unsigned long offset = total_compressed &
412 (PAGE_CACHE_SIZE - 1);
413 struct page *page = pages[nr_pages_ret - 1];
414 char *kaddr;
415
416 /* zero the tail end of the last page, we might be
417 * sending it down to disk
418 */
419 if (offset) {
420 kaddr = kmap_atomic(page, KM_USER0);
421 memset(kaddr + offset, 0,
422 PAGE_CACHE_SIZE - offset);
423 kunmap_atomic(kaddr, KM_USER0);
424 }
425 will_compress = 1;
426 }
427 }
428 if (start == 0) {
771ed689 429 trans = btrfs_join_transaction(root, 1);
3612b495 430 BUG_ON(IS_ERR(trans));
771ed689 431 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 432 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 433
c8b97818 434 /* lets try to make an inline extent */
771ed689 435 if (ret || total_in < (actual_end - start)) {
c8b97818 436 /* we didn't compress the entire range, try
771ed689 437 * to make an uncompressed inline extent.
c8b97818
CM
438 */
439 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 440 start, end, 0, 0, NULL);
c8b97818 441 } else {
771ed689 442 /* try making a compressed inline extent */
c8b97818
CM
443 ret = cow_file_range_inline(trans, root, inode,
444 start, end,
fe3f566c
LZ
445 total_compressed,
446 compress_type, pages);
c8b97818
CM
447 }
448 if (ret == 0) {
771ed689
CM
449 /*
450 * inline extent creation worked, we don't need
451 * to create any more async work items. Unlock
452 * and free up our temp pages.
453 */
c8b97818 454 extent_clear_unlock_delalloc(inode,
a791e35e
CM
455 &BTRFS_I(inode)->io_tree,
456 start, end, NULL,
457 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 458 EXTENT_CLEAR_DELALLOC |
a791e35e 459 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
460
461 btrfs_end_transaction(trans, root);
c8b97818
CM
462 goto free_pages_out;
463 }
c2167754 464 btrfs_end_transaction(trans, root);
c8b97818
CM
465 }
466
467 if (will_compress) {
468 /*
469 * we aren't doing an inline extent round the compressed size
470 * up to a block size boundary so the allocator does sane
471 * things
472 */
473 total_compressed = (total_compressed + blocksize - 1) &
474 ~(blocksize - 1);
475
476 /*
477 * one last check to make sure the compression is really a
478 * win, compare the page count read with the blocks on disk
479 */
480 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
481 ~(PAGE_CACHE_SIZE - 1);
482 if (total_compressed >= total_in) {
483 will_compress = 0;
484 } else {
c8b97818
CM
485 num_bytes = total_in;
486 }
487 }
488 if (!will_compress && pages) {
489 /*
490 * the compression code ran but failed to make things smaller,
491 * free any pages it allocated and our page pointer array
492 */
493 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 494 WARN_ON(pages[i]->mapping);
c8b97818
CM
495 page_cache_release(pages[i]);
496 }
497 kfree(pages);
498 pages = NULL;
499 total_compressed = 0;
500 nr_pages_ret = 0;
501
502 /* flag the file so we don't compress in the future */
1e701a32
CM
503 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
504 !(BTRFS_I(inode)->force_compress)) {
a555f810 505 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 506 }
c8b97818 507 }
771ed689
CM
508 if (will_compress) {
509 *num_added += 1;
c8b97818 510
771ed689
CM
511 /* the async work queues will take care of doing actual
512 * allocation on disk for these compressed pages,
513 * and will submit them to the elevator.
514 */
515 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
516 total_compressed, pages, nr_pages_ret,
517 compress_type);
179e29e4 518
24ae6365 519 if (start + num_bytes < end) {
771ed689
CM
520 start += num_bytes;
521 pages = NULL;
522 cond_resched();
523 goto again;
524 }
525 } else {
f03d9301 526cleanup_and_bail_uncompressed:
771ed689
CM
527 /*
528 * No compression, but we still need to write the pages in
529 * the file we've been given so far. redirty the locked
530 * page if it corresponds to our extent and set things up
531 * for the async work queue to run cow_file_range to do
532 * the normal delalloc dance
533 */
534 if (page_offset(locked_page) >= start &&
535 page_offset(locked_page) <= end) {
536 __set_page_dirty_nobuffers(locked_page);
537 /* unlocked later on in the async handlers */
538 }
261507a0
LZ
539 add_async_extent(async_cow, start, end - start + 1,
540 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
541 *num_added += 1;
542 }
3b951516 543
771ed689
CM
544out:
545 return 0;
546
547free_pages_out:
548 for (i = 0; i < nr_pages_ret; i++) {
549 WARN_ON(pages[i]->mapping);
550 page_cache_release(pages[i]);
551 }
d397712b 552 kfree(pages);
771ed689
CM
553
554 goto out;
555}
556
557/*
558 * phase two of compressed writeback. This is the ordered portion
559 * of the code, which only gets called in the order the work was
560 * queued. We walk all the async extents created by compress_file_range
561 * and send them down to the disk.
562 */
563static noinline int submit_compressed_extents(struct inode *inode,
564 struct async_cow *async_cow)
565{
566 struct async_extent *async_extent;
567 u64 alloc_hint = 0;
568 struct btrfs_trans_handle *trans;
569 struct btrfs_key ins;
570 struct extent_map *em;
571 struct btrfs_root *root = BTRFS_I(inode)->root;
572 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
573 struct extent_io_tree *io_tree;
f5a84ee3 574 int ret = 0;
771ed689
CM
575
576 if (list_empty(&async_cow->extents))
577 return 0;
578
771ed689 579
d397712b 580 while (!list_empty(&async_cow->extents)) {
771ed689
CM
581 async_extent = list_entry(async_cow->extents.next,
582 struct async_extent, list);
583 list_del(&async_extent->list);
c8b97818 584
771ed689
CM
585 io_tree = &BTRFS_I(inode)->io_tree;
586
f5a84ee3 587retry:
771ed689
CM
588 /* did the compression code fall back to uncompressed IO? */
589 if (!async_extent->pages) {
590 int page_started = 0;
591 unsigned long nr_written = 0;
592
593 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
594 async_extent->start +
595 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
596
597 /* allocate blocks */
f5a84ee3
JB
598 ret = cow_file_range(inode, async_cow->locked_page,
599 async_extent->start,
600 async_extent->start +
601 async_extent->ram_size - 1,
602 &page_started, &nr_written, 0);
771ed689
CM
603
604 /*
605 * if page_started, cow_file_range inserted an
606 * inline extent and took care of all the unlocking
607 * and IO for us. Otherwise, we need to submit
608 * all those pages down to the drive.
609 */
f5a84ee3 610 if (!page_started && !ret)
771ed689
CM
611 extent_write_locked_range(io_tree,
612 inode, async_extent->start,
d397712b 613 async_extent->start +
771ed689
CM
614 async_extent->ram_size - 1,
615 btrfs_get_extent,
616 WB_SYNC_ALL);
617 kfree(async_extent);
618 cond_resched();
619 continue;
620 }
621
622 lock_extent(io_tree, async_extent->start,
623 async_extent->start + async_extent->ram_size - 1,
624 GFP_NOFS);
771ed689 625
c2167754 626 trans = btrfs_join_transaction(root, 1);
3612b495 627 BUG_ON(IS_ERR(trans));
771ed689
CM
628 ret = btrfs_reserve_extent(trans, root,
629 async_extent->compressed_size,
630 async_extent->compressed_size,
631 0, alloc_hint,
632 (u64)-1, &ins, 1);
c2167754
YZ
633 btrfs_end_transaction(trans, root);
634
f5a84ee3
JB
635 if (ret) {
636 int i;
637 for (i = 0; i < async_extent->nr_pages; i++) {
638 WARN_ON(async_extent->pages[i]->mapping);
639 page_cache_release(async_extent->pages[i]);
640 }
641 kfree(async_extent->pages);
642 async_extent->nr_pages = 0;
643 async_extent->pages = NULL;
644 unlock_extent(io_tree, async_extent->start,
645 async_extent->start +
646 async_extent->ram_size - 1, GFP_NOFS);
647 goto retry;
648 }
649
c2167754
YZ
650 /*
651 * here we're doing allocation and writeback of the
652 * compressed pages
653 */
654 btrfs_drop_extent_cache(inode, async_extent->start,
655 async_extent->start +
656 async_extent->ram_size - 1, 0);
657
172ddd60 658 em = alloc_extent_map();
c26a9203 659 BUG_ON(!em);
771ed689
CM
660 em->start = async_extent->start;
661 em->len = async_extent->ram_size;
445a6944 662 em->orig_start = em->start;
c8b97818 663
771ed689
CM
664 em->block_start = ins.objectid;
665 em->block_len = ins.offset;
666 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 667 em->compress_type = async_extent->compress_type;
771ed689
CM
668 set_bit(EXTENT_FLAG_PINNED, &em->flags);
669 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
670
d397712b 671 while (1) {
890871be 672 write_lock(&em_tree->lock);
771ed689 673 ret = add_extent_mapping(em_tree, em);
890871be 674 write_unlock(&em_tree->lock);
771ed689
CM
675 if (ret != -EEXIST) {
676 free_extent_map(em);
677 break;
678 }
679 btrfs_drop_extent_cache(inode, async_extent->start,
680 async_extent->start +
681 async_extent->ram_size - 1, 0);
682 }
683
261507a0
LZ
684 ret = btrfs_add_ordered_extent_compress(inode,
685 async_extent->start,
686 ins.objectid,
687 async_extent->ram_size,
688 ins.offset,
689 BTRFS_ORDERED_COMPRESSED,
690 async_extent->compress_type);
771ed689
CM
691 BUG_ON(ret);
692
771ed689
CM
693 /*
694 * clear dirty, set writeback and unlock the pages.
695 */
696 extent_clear_unlock_delalloc(inode,
a791e35e
CM
697 &BTRFS_I(inode)->io_tree,
698 async_extent->start,
699 async_extent->start +
700 async_extent->ram_size - 1,
701 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
702 EXTENT_CLEAR_UNLOCK |
a3429ab7 703 EXTENT_CLEAR_DELALLOC |
a791e35e 704 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
705
706 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
707 async_extent->start,
708 async_extent->ram_size,
709 ins.objectid,
710 ins.offset, async_extent->pages,
711 async_extent->nr_pages);
771ed689
CM
712
713 BUG_ON(ret);
771ed689
CM
714 alloc_hint = ins.objectid + ins.offset;
715 kfree(async_extent);
716 cond_resched();
717 }
718
771ed689
CM
719 return 0;
720}
721
4b46fce2
JB
722static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
723 u64 num_bytes)
724{
725 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
726 struct extent_map *em;
727 u64 alloc_hint = 0;
728
729 read_lock(&em_tree->lock);
730 em = search_extent_mapping(em_tree, start, num_bytes);
731 if (em) {
732 /*
733 * if block start isn't an actual block number then find the
734 * first block in this inode and use that as a hint. If that
735 * block is also bogus then just don't worry about it.
736 */
737 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
738 free_extent_map(em);
739 em = search_extent_mapping(em_tree, 0, 0);
740 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
741 alloc_hint = em->block_start;
742 if (em)
743 free_extent_map(em);
744 } else {
745 alloc_hint = em->block_start;
746 free_extent_map(em);
747 }
748 }
749 read_unlock(&em_tree->lock);
750
751 return alloc_hint;
752}
753
82d5902d
LZ
754static inline bool is_free_space_inode(struct btrfs_root *root,
755 struct inode *inode)
756{
757 if (root == root->fs_info->tree_root ||
758 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
759 return true;
760 return false;
761}
762
771ed689
CM
763/*
764 * when extent_io.c finds a delayed allocation range in the file,
765 * the call backs end up in this code. The basic idea is to
766 * allocate extents on disk for the range, and create ordered data structs
767 * in ram to track those extents.
768 *
769 * locked_page is the page that writepage had locked already. We use
770 * it to make sure we don't do extra locks or unlocks.
771 *
772 * *page_started is set to one if we unlock locked_page and do everything
773 * required to start IO on it. It may be clean and already done with
774 * IO when we return.
775 */
776static noinline int cow_file_range(struct inode *inode,
777 struct page *locked_page,
778 u64 start, u64 end, int *page_started,
779 unsigned long *nr_written,
780 int unlock)
781{
782 struct btrfs_root *root = BTRFS_I(inode)->root;
783 struct btrfs_trans_handle *trans;
784 u64 alloc_hint = 0;
785 u64 num_bytes;
786 unsigned long ram_size;
787 u64 disk_num_bytes;
788 u64 cur_alloc_size;
789 u64 blocksize = root->sectorsize;
771ed689
CM
790 struct btrfs_key ins;
791 struct extent_map *em;
792 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
793 int ret = 0;
794
82d5902d 795 BUG_ON(is_free_space_inode(root, inode));
771ed689 796 trans = btrfs_join_transaction(root, 1);
3612b495 797 BUG_ON(IS_ERR(trans));
771ed689 798 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 799 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 800
771ed689
CM
801 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
802 num_bytes = max(blocksize, num_bytes);
803 disk_num_bytes = num_bytes;
804 ret = 0;
805
4cb5300b
CM
806 /* if this is a small write inside eof, kick off defrag */
807 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
808 btrfs_add_inode_defrag(trans, inode);
809
771ed689
CM
810 if (start == 0) {
811 /* lets try to make an inline extent */
812 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 813 start, end, 0, 0, NULL);
771ed689
CM
814 if (ret == 0) {
815 extent_clear_unlock_delalloc(inode,
a791e35e
CM
816 &BTRFS_I(inode)->io_tree,
817 start, end, NULL,
818 EXTENT_CLEAR_UNLOCK_PAGE |
819 EXTENT_CLEAR_UNLOCK |
820 EXTENT_CLEAR_DELALLOC |
821 EXTENT_CLEAR_DIRTY |
822 EXTENT_SET_WRITEBACK |
823 EXTENT_END_WRITEBACK);
c2167754 824
771ed689
CM
825 *nr_written = *nr_written +
826 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
827 *page_started = 1;
828 ret = 0;
829 goto out;
830 }
831 }
832
833 BUG_ON(disk_num_bytes >
834 btrfs_super_total_bytes(&root->fs_info->super_copy));
835
4b46fce2 836 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
837 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
838
d397712b 839 while (disk_num_bytes > 0) {
a791e35e
CM
840 unsigned long op;
841
287a0ab9 842 cur_alloc_size = disk_num_bytes;
e6dcd2dc 843 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 844 root->sectorsize, 0, alloc_hint,
e6dcd2dc 845 (u64)-1, &ins, 1);
d397712b
CM
846 BUG_ON(ret);
847
172ddd60 848 em = alloc_extent_map();
c26a9203 849 BUG_ON(!em);
e6dcd2dc 850 em->start = start;
445a6944 851 em->orig_start = em->start;
771ed689
CM
852 ram_size = ins.offset;
853 em->len = ins.offset;
c8b97818 854
e6dcd2dc 855 em->block_start = ins.objectid;
c8b97818 856 em->block_len = ins.offset;
e6dcd2dc 857 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 858 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 859
d397712b 860 while (1) {
890871be 861 write_lock(&em_tree->lock);
e6dcd2dc 862 ret = add_extent_mapping(em_tree, em);
890871be 863 write_unlock(&em_tree->lock);
e6dcd2dc
CM
864 if (ret != -EEXIST) {
865 free_extent_map(em);
866 break;
867 }
868 btrfs_drop_extent_cache(inode, start,
c8b97818 869 start + ram_size - 1, 0);
e6dcd2dc
CM
870 }
871
98d20f67 872 cur_alloc_size = ins.offset;
e6dcd2dc 873 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 874 ram_size, cur_alloc_size, 0);
e6dcd2dc 875 BUG_ON(ret);
c8b97818 876
17d217fe
YZ
877 if (root->root_key.objectid ==
878 BTRFS_DATA_RELOC_TREE_OBJECTID) {
879 ret = btrfs_reloc_clone_csums(inode, start,
880 cur_alloc_size);
881 BUG_ON(ret);
882 }
883
d397712b 884 if (disk_num_bytes < cur_alloc_size)
3b951516 885 break;
d397712b 886
c8b97818
CM
887 /* we're not doing compressed IO, don't unlock the first
888 * page (which the caller expects to stay locked), don't
889 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
890 *
891 * Do set the Private2 bit so we know this page was properly
892 * setup for writepage
c8b97818 893 */
a791e35e
CM
894 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
895 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
896 EXTENT_SET_PRIVATE2;
897
c8b97818
CM
898 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
899 start, start + ram_size - 1,
a791e35e 900 locked_page, op);
c8b97818 901 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
902 num_bytes -= cur_alloc_size;
903 alloc_hint = ins.objectid + ins.offset;
904 start += cur_alloc_size;
b888db2b 905 }
b888db2b 906out:
771ed689 907 ret = 0;
b888db2b 908 btrfs_end_transaction(trans, root);
c8b97818 909
be20aa9d 910 return ret;
771ed689 911}
c8b97818 912
771ed689
CM
913/*
914 * work queue call back to started compression on a file and pages
915 */
916static noinline void async_cow_start(struct btrfs_work *work)
917{
918 struct async_cow *async_cow;
919 int num_added = 0;
920 async_cow = container_of(work, struct async_cow, work);
921
922 compress_file_range(async_cow->inode, async_cow->locked_page,
923 async_cow->start, async_cow->end, async_cow,
924 &num_added);
925 if (num_added == 0)
926 async_cow->inode = NULL;
927}
928
929/*
930 * work queue call back to submit previously compressed pages
931 */
932static noinline void async_cow_submit(struct btrfs_work *work)
933{
934 struct async_cow *async_cow;
935 struct btrfs_root *root;
936 unsigned long nr_pages;
937
938 async_cow = container_of(work, struct async_cow, work);
939
940 root = async_cow->root;
941 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
942 PAGE_CACHE_SHIFT;
943
944 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
945
946 if (atomic_read(&root->fs_info->async_delalloc_pages) <
947 5 * 1042 * 1024 &&
948 waitqueue_active(&root->fs_info->async_submit_wait))
949 wake_up(&root->fs_info->async_submit_wait);
950
d397712b 951 if (async_cow->inode)
771ed689 952 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 953}
c8b97818 954
771ed689
CM
955static noinline void async_cow_free(struct btrfs_work *work)
956{
957 struct async_cow *async_cow;
958 async_cow = container_of(work, struct async_cow, work);
959 kfree(async_cow);
960}
961
962static int cow_file_range_async(struct inode *inode, struct page *locked_page,
963 u64 start, u64 end, int *page_started,
964 unsigned long *nr_written)
965{
966 struct async_cow *async_cow;
967 struct btrfs_root *root = BTRFS_I(inode)->root;
968 unsigned long nr_pages;
969 u64 cur_end;
970 int limit = 10 * 1024 * 1042;
971
a3429ab7
CM
972 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
973 1, 0, NULL, GFP_NOFS);
d397712b 974 while (start < end) {
771ed689 975 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 976 BUG_ON(!async_cow);
771ed689
CM
977 async_cow->inode = inode;
978 async_cow->root = root;
979 async_cow->locked_page = locked_page;
980 async_cow->start = start;
981
6cbff00f 982 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
983 cur_end = end;
984 else
985 cur_end = min(end, start + 512 * 1024 - 1);
986
987 async_cow->end = cur_end;
988 INIT_LIST_HEAD(&async_cow->extents);
989
990 async_cow->work.func = async_cow_start;
991 async_cow->work.ordered_func = async_cow_submit;
992 async_cow->work.ordered_free = async_cow_free;
993 async_cow->work.flags = 0;
994
771ed689
CM
995 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
996 PAGE_CACHE_SHIFT;
997 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
998
999 btrfs_queue_worker(&root->fs_info->delalloc_workers,
1000 &async_cow->work);
1001
1002 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1003 wait_event(root->fs_info->async_submit_wait,
1004 (atomic_read(&root->fs_info->async_delalloc_pages) <
1005 limit));
1006 }
1007
d397712b 1008 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1009 atomic_read(&root->fs_info->async_delalloc_pages)) {
1010 wait_event(root->fs_info->async_submit_wait,
1011 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1012 0));
1013 }
1014
1015 *nr_written += nr_pages;
1016 start = cur_end + 1;
1017 }
1018 *page_started = 1;
1019 return 0;
be20aa9d
CM
1020}
1021
d397712b 1022static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1023 u64 bytenr, u64 num_bytes)
1024{
1025 int ret;
1026 struct btrfs_ordered_sum *sums;
1027 LIST_HEAD(list);
1028
07d400a6 1029 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1030 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1031 if (ret == 0 && list_empty(&list))
1032 return 0;
1033
1034 while (!list_empty(&list)) {
1035 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1036 list_del(&sums->list);
1037 kfree(sums);
1038 }
1039 return 1;
1040}
1041
d352ac68
CM
1042/*
1043 * when nowcow writeback call back. This checks for snapshots or COW copies
1044 * of the extents that exist in the file, and COWs the file as required.
1045 *
1046 * If no cow copies or snapshots exist, we write directly to the existing
1047 * blocks on disk
1048 */
7f366cfe
CM
1049static noinline int run_delalloc_nocow(struct inode *inode,
1050 struct page *locked_page,
771ed689
CM
1051 u64 start, u64 end, int *page_started, int force,
1052 unsigned long *nr_written)
be20aa9d 1053{
be20aa9d 1054 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1055 struct btrfs_trans_handle *trans;
be20aa9d 1056 struct extent_buffer *leaf;
be20aa9d 1057 struct btrfs_path *path;
80ff3856 1058 struct btrfs_file_extent_item *fi;
be20aa9d 1059 struct btrfs_key found_key;
80ff3856
YZ
1060 u64 cow_start;
1061 u64 cur_offset;
1062 u64 extent_end;
5d4f98a2 1063 u64 extent_offset;
80ff3856
YZ
1064 u64 disk_bytenr;
1065 u64 num_bytes;
1066 int extent_type;
1067 int ret;
d899e052 1068 int type;
80ff3856
YZ
1069 int nocow;
1070 int check_prev = 1;
82d5902d 1071 bool nolock;
33345d01 1072 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1073
1074 path = btrfs_alloc_path();
1075 BUG_ON(!path);
82d5902d
LZ
1076
1077 nolock = is_free_space_inode(root, inode);
1078
1079 if (nolock)
0cb59c99 1080 trans = btrfs_join_transaction_nolock(root, 1);
82d5902d 1081 else
0cb59c99 1082 trans = btrfs_join_transaction(root, 1);
3612b495 1083 BUG_ON(IS_ERR(trans));
be20aa9d 1084
80ff3856
YZ
1085 cow_start = (u64)-1;
1086 cur_offset = start;
1087 while (1) {
33345d01 1088 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1089 cur_offset, 0);
1090 BUG_ON(ret < 0);
1091 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1092 leaf = path->nodes[0];
1093 btrfs_item_key_to_cpu(leaf, &found_key,
1094 path->slots[0] - 1);
33345d01 1095 if (found_key.objectid == ino &&
80ff3856
YZ
1096 found_key.type == BTRFS_EXTENT_DATA_KEY)
1097 path->slots[0]--;
1098 }
1099 check_prev = 0;
1100next_slot:
1101 leaf = path->nodes[0];
1102 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1103 ret = btrfs_next_leaf(root, path);
1104 if (ret < 0)
1105 BUG_ON(1);
1106 if (ret > 0)
1107 break;
1108 leaf = path->nodes[0];
1109 }
be20aa9d 1110
80ff3856
YZ
1111 nocow = 0;
1112 disk_bytenr = 0;
17d217fe 1113 num_bytes = 0;
80ff3856
YZ
1114 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1115
33345d01 1116 if (found_key.objectid > ino ||
80ff3856
YZ
1117 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1118 found_key.offset > end)
1119 break;
1120
1121 if (found_key.offset > cur_offset) {
1122 extent_end = found_key.offset;
e9061e21 1123 extent_type = 0;
80ff3856
YZ
1124 goto out_check;
1125 }
1126
1127 fi = btrfs_item_ptr(leaf, path->slots[0],
1128 struct btrfs_file_extent_item);
1129 extent_type = btrfs_file_extent_type(leaf, fi);
1130
d899e052
YZ
1131 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1132 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1133 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1134 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1135 extent_end = found_key.offset +
1136 btrfs_file_extent_num_bytes(leaf, fi);
1137 if (extent_end <= start) {
1138 path->slots[0]++;
1139 goto next_slot;
1140 }
17d217fe
YZ
1141 if (disk_bytenr == 0)
1142 goto out_check;
80ff3856
YZ
1143 if (btrfs_file_extent_compression(leaf, fi) ||
1144 btrfs_file_extent_encryption(leaf, fi) ||
1145 btrfs_file_extent_other_encoding(leaf, fi))
1146 goto out_check;
d899e052
YZ
1147 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1148 goto out_check;
d2fb3437 1149 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1150 goto out_check;
33345d01 1151 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1152 found_key.offset -
1153 extent_offset, disk_bytenr))
17d217fe 1154 goto out_check;
5d4f98a2 1155 disk_bytenr += extent_offset;
17d217fe
YZ
1156 disk_bytenr += cur_offset - found_key.offset;
1157 num_bytes = min(end + 1, extent_end) - cur_offset;
1158 /*
1159 * force cow if csum exists in the range.
1160 * this ensure that csum for a given extent are
1161 * either valid or do not exist.
1162 */
1163 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1164 goto out_check;
80ff3856
YZ
1165 nocow = 1;
1166 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1167 extent_end = found_key.offset +
1168 btrfs_file_extent_inline_len(leaf, fi);
1169 extent_end = ALIGN(extent_end, root->sectorsize);
1170 } else {
1171 BUG_ON(1);
1172 }
1173out_check:
1174 if (extent_end <= start) {
1175 path->slots[0]++;
1176 goto next_slot;
1177 }
1178 if (!nocow) {
1179 if (cow_start == (u64)-1)
1180 cow_start = cur_offset;
1181 cur_offset = extent_end;
1182 if (cur_offset > end)
1183 break;
1184 path->slots[0]++;
1185 goto next_slot;
7ea394f1
YZ
1186 }
1187
b3b4aa74 1188 btrfs_release_path(path);
80ff3856
YZ
1189 if (cow_start != (u64)-1) {
1190 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1191 found_key.offset - 1, page_started,
1192 nr_written, 1);
80ff3856
YZ
1193 BUG_ON(ret);
1194 cow_start = (u64)-1;
7ea394f1 1195 }
80ff3856 1196
d899e052
YZ
1197 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1198 struct extent_map *em;
1199 struct extent_map_tree *em_tree;
1200 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1201 em = alloc_extent_map();
c26a9203 1202 BUG_ON(!em);
d899e052 1203 em->start = cur_offset;
445a6944 1204 em->orig_start = em->start;
d899e052
YZ
1205 em->len = num_bytes;
1206 em->block_len = num_bytes;
1207 em->block_start = disk_bytenr;
1208 em->bdev = root->fs_info->fs_devices->latest_bdev;
1209 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1210 while (1) {
890871be 1211 write_lock(&em_tree->lock);
d899e052 1212 ret = add_extent_mapping(em_tree, em);
890871be 1213 write_unlock(&em_tree->lock);
d899e052
YZ
1214 if (ret != -EEXIST) {
1215 free_extent_map(em);
1216 break;
1217 }
1218 btrfs_drop_extent_cache(inode, em->start,
1219 em->start + em->len - 1, 0);
1220 }
1221 type = BTRFS_ORDERED_PREALLOC;
1222 } else {
1223 type = BTRFS_ORDERED_NOCOW;
1224 }
80ff3856
YZ
1225
1226 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1227 num_bytes, num_bytes, type);
1228 BUG_ON(ret);
771ed689 1229
efa56464
YZ
1230 if (root->root_key.objectid ==
1231 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1232 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1233 num_bytes);
1234 BUG_ON(ret);
1235 }
1236
d899e052 1237 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1238 cur_offset, cur_offset + num_bytes - 1,
1239 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1240 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1241 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1242 cur_offset = extent_end;
1243 if (cur_offset > end)
1244 break;
be20aa9d 1245 }
b3b4aa74 1246 btrfs_release_path(path);
80ff3856
YZ
1247
1248 if (cur_offset <= end && cow_start == (u64)-1)
1249 cow_start = cur_offset;
1250 if (cow_start != (u64)-1) {
1251 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1252 page_started, nr_written, 1);
80ff3856
YZ
1253 BUG_ON(ret);
1254 }
1255
0cb59c99
JB
1256 if (nolock) {
1257 ret = btrfs_end_transaction_nolock(trans, root);
1258 BUG_ON(ret);
1259 } else {
1260 ret = btrfs_end_transaction(trans, root);
1261 BUG_ON(ret);
1262 }
7ea394f1 1263 btrfs_free_path(path);
80ff3856 1264 return 0;
be20aa9d
CM
1265}
1266
d352ac68
CM
1267/*
1268 * extent_io.c call back to do delayed allocation processing
1269 */
c8b97818 1270static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1271 u64 start, u64 end, int *page_started,
1272 unsigned long *nr_written)
be20aa9d 1273{
be20aa9d 1274 int ret;
7f366cfe 1275 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1276
6cbff00f 1277 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1278 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1279 page_started, 1, nr_written);
6cbff00f 1280 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1281 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1282 page_started, 0, nr_written);
1e701a32 1283 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1284 !(BTRFS_I(inode)->force_compress) &&
1285 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1286 ret = cow_file_range(inode, locked_page, start, end,
1287 page_started, nr_written, 1);
be20aa9d 1288 else
771ed689 1289 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1290 page_started, nr_written);
b888db2b
CM
1291 return ret;
1292}
1293
9ed74f2d 1294static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1295 struct extent_state *orig, u64 split)
9ed74f2d 1296{
0ca1f7ce 1297 /* not delalloc, ignore it */
9ed74f2d
JB
1298 if (!(orig->state & EXTENT_DELALLOC))
1299 return 0;
1300
0ca1f7ce 1301 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1302 return 0;
1303}
1304
1305/*
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1310 */
1311static int btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
1314{
9ed74f2d
JB
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1317 return 0;
1318
0ca1f7ce 1319 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1320 return 0;
1321}
1322
d352ac68
CM
1323/*
1324 * extent_io.c set_bit_hook, used to track delayed allocation
1325 * bytes in this file, and to maintain the list of inodes that
1326 * have pending delalloc work to be done.
1327 */
0ca1f7ce
YZ
1328static int btrfs_set_bit_hook(struct inode *inode,
1329 struct extent_state *state, int *bits)
291d673e 1330{
9ed74f2d 1331
75eff68e
CM
1332 /*
1333 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1334 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1335 * bit, which is only set or cleared with irqs on
1336 */
0ca1f7ce 1337 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1338 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1339 u64 len = state->end + 1 - state->start;
82d5902d 1340 bool do_list = !is_free_space_inode(root, inode);
9ed74f2d 1341
0ca1f7ce
YZ
1342 if (*bits & EXTENT_FIRST_DELALLOC)
1343 *bits &= ~EXTENT_FIRST_DELALLOC;
1344 else
1345 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1346
75eff68e 1347 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1348 BTRFS_I(inode)->delalloc_bytes += len;
1349 root->fs_info->delalloc_bytes += len;
0cb59c99 1350 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1351 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1352 &root->fs_info->delalloc_inodes);
1353 }
75eff68e 1354 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1355 }
1356 return 0;
1357}
1358
d352ac68
CM
1359/*
1360 * extent_io.c clear_bit_hook, see set_bit_hook for why
1361 */
9ed74f2d 1362static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1363 struct extent_state *state, int *bits)
291d673e 1364{
75eff68e
CM
1365 /*
1366 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1367 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1368 * bit, which is only set or cleared with irqs on
1369 */
0ca1f7ce 1370 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1371 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1372 u64 len = state->end + 1 - state->start;
82d5902d 1373 bool do_list = !is_free_space_inode(root, inode);
bcbfce8a 1374
0ca1f7ce
YZ
1375 if (*bits & EXTENT_FIRST_DELALLOC)
1376 *bits &= ~EXTENT_FIRST_DELALLOC;
1377 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1378 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1379
1380 if (*bits & EXTENT_DO_ACCOUNTING)
1381 btrfs_delalloc_release_metadata(inode, len);
1382
0cb59c99
JB
1383 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1384 && do_list)
0ca1f7ce 1385 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1386
75eff68e 1387 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1388 root->fs_info->delalloc_bytes -= len;
1389 BTRFS_I(inode)->delalloc_bytes -= len;
1390
0cb59c99 1391 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1392 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1393 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1394 }
75eff68e 1395 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1396 }
1397 return 0;
1398}
1399
d352ac68
CM
1400/*
1401 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1402 * we don't create bios that span stripes or chunks
1403 */
239b14b3 1404int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1405 size_t size, struct bio *bio,
1406 unsigned long bio_flags)
239b14b3
CM
1407{
1408 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1409 struct btrfs_mapping_tree *map_tree;
a62b9401 1410 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1411 u64 length = 0;
1412 u64 map_length;
239b14b3
CM
1413 int ret;
1414
771ed689
CM
1415 if (bio_flags & EXTENT_BIO_COMPRESSED)
1416 return 0;
1417
f2d8d74d 1418 length = bio->bi_size;
239b14b3
CM
1419 map_tree = &root->fs_info->mapping_tree;
1420 map_length = length;
cea9e445 1421 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1422 &map_length, NULL, 0);
cea9e445 1423
d397712b 1424 if (map_length < length + size)
239b14b3 1425 return 1;
411fc6bc 1426 return ret;
239b14b3
CM
1427}
1428
d352ac68
CM
1429/*
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1433 *
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1436 */
d397712b
CM
1437static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1438 struct bio *bio, int mirror_num,
eaf25d93
CM
1439 unsigned long bio_flags,
1440 u64 bio_offset)
065631f6 1441{
065631f6 1442 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1443 int ret = 0;
e015640f 1444
d20f7043 1445 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1446 BUG_ON(ret);
4a69a410
CM
1447 return 0;
1448}
e015640f 1449
4a69a410
CM
1450/*
1451 * in order to insert checksums into the metadata in large chunks,
1452 * we wait until bio submission time. All the pages in the bio are
1453 * checksummed and sums are attached onto the ordered extent record.
1454 *
1455 * At IO completion time the cums attached on the ordered extent record
1456 * are inserted into the btree
1457 */
b2950863 1458static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1459 int mirror_num, unsigned long bio_flags,
1460 u64 bio_offset)
4a69a410
CM
1461{
1462 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1463 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1464}
1465
d352ac68 1466/*
cad321ad
CM
1467 * extent_io.c submission hook. This does the right thing for csum calculation
1468 * on write, or reading the csums from the tree before a read
d352ac68 1469 */
b2950863 1470static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1471 int mirror_num, unsigned long bio_flags,
1472 u64 bio_offset)
44b8bd7e
CM
1473{
1474 struct btrfs_root *root = BTRFS_I(inode)->root;
1475 int ret = 0;
19b9bdb0 1476 int skip_sum;
44b8bd7e 1477
6cbff00f 1478 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1479
82d5902d 1480 if (is_free_space_inode(root, inode))
0cb59c99
JB
1481 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1482 else
1483 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1484 BUG_ON(ret);
065631f6 1485
7b6d91da 1486 if (!(rw & REQ_WRITE)) {
d20f7043 1487 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1488 return btrfs_submit_compressed_read(inode, bio,
1489 mirror_num, bio_flags);
c2db1073
TI
1490 } else if (!skip_sum) {
1491 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1492 if (ret)
1493 return ret;
1494 }
4d1b5fb4 1495 goto mapit;
19b9bdb0 1496 } else if (!skip_sum) {
17d217fe
YZ
1497 /* csum items have already been cloned */
1498 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1499 goto mapit;
19b9bdb0
CM
1500 /* we're doing a write, do the async checksumming */
1501 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1502 inode, rw, bio, mirror_num,
eaf25d93
CM
1503 bio_flags, bio_offset,
1504 __btrfs_submit_bio_start,
4a69a410 1505 __btrfs_submit_bio_done);
19b9bdb0
CM
1506 }
1507
0b86a832 1508mapit:
8b712842 1509 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1510}
6885f308 1511
d352ac68
CM
1512/*
1513 * given a list of ordered sums record them in the inode. This happens
1514 * at IO completion time based on sums calculated at bio submission time.
1515 */
ba1da2f4 1516static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1517 struct inode *inode, u64 file_offset,
1518 struct list_head *list)
1519{
e6dcd2dc
CM
1520 struct btrfs_ordered_sum *sum;
1521
1522 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1523
1524 list_for_each_entry(sum, list, list) {
d20f7043
CM
1525 btrfs_csum_file_blocks(trans,
1526 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1527 }
1528 return 0;
1529}
1530
2ac55d41
JB
1531int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1532 struct extent_state **cached_state)
ea8c2819 1533{
d397712b 1534 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1535 WARN_ON(1);
ea8c2819 1536 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1537 cached_state, GFP_NOFS);
ea8c2819
CM
1538}
1539
d352ac68 1540/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1541struct btrfs_writepage_fixup {
1542 struct page *page;
1543 struct btrfs_work work;
1544};
1545
b2950863 1546static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1547{
1548 struct btrfs_writepage_fixup *fixup;
1549 struct btrfs_ordered_extent *ordered;
2ac55d41 1550 struct extent_state *cached_state = NULL;
247e743c
CM
1551 struct page *page;
1552 struct inode *inode;
1553 u64 page_start;
1554 u64 page_end;
1555
1556 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1557 page = fixup->page;
4a096752 1558again:
247e743c
CM
1559 lock_page(page);
1560 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1561 ClearPageChecked(page);
1562 goto out_page;
1563 }
1564
1565 inode = page->mapping->host;
1566 page_start = page_offset(page);
1567 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568
2ac55d41
JB
1569 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1570 &cached_state, GFP_NOFS);
4a096752
CM
1571
1572 /* already ordered? We're done */
8b62b72b 1573 if (PagePrivate2(page))
247e743c 1574 goto out;
4a096752
CM
1575
1576 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1577 if (ordered) {
2ac55d41
JB
1578 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1579 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1580 unlock_page(page);
1581 btrfs_start_ordered_extent(inode, ordered, 1);
1582 goto again;
1583 }
247e743c 1584
0ca1f7ce 1585 BUG();
2ac55d41 1586 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1587 ClearPageChecked(page);
1588out:
2ac55d41
JB
1589 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1590 &cached_state, GFP_NOFS);
247e743c
CM
1591out_page:
1592 unlock_page(page);
1593 page_cache_release(page);
b897abec 1594 kfree(fixup);
247e743c
CM
1595}
1596
1597/*
1598 * There are a few paths in the higher layers of the kernel that directly
1599 * set the page dirty bit without asking the filesystem if it is a
1600 * good idea. This causes problems because we want to make sure COW
1601 * properly happens and the data=ordered rules are followed.
1602 *
c8b97818 1603 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1604 * hasn't been properly setup for IO. We kick off an async process
1605 * to fix it up. The async helper will wait for ordered extents, set
1606 * the delalloc bit and make it safe to write the page.
1607 */
b2950863 1608static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1609{
1610 struct inode *inode = page->mapping->host;
1611 struct btrfs_writepage_fixup *fixup;
1612 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1613
8b62b72b
CM
1614 /* this page is properly in the ordered list */
1615 if (TestClearPagePrivate2(page))
247e743c
CM
1616 return 0;
1617
1618 if (PageChecked(page))
1619 return -EAGAIN;
1620
1621 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1622 if (!fixup)
1623 return -EAGAIN;
f421950f 1624
247e743c
CM
1625 SetPageChecked(page);
1626 page_cache_get(page);
1627 fixup->work.func = btrfs_writepage_fixup_worker;
1628 fixup->page = page;
1629 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1630 return -EAGAIN;
1631}
1632
d899e052
YZ
1633static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1634 struct inode *inode, u64 file_pos,
1635 u64 disk_bytenr, u64 disk_num_bytes,
1636 u64 num_bytes, u64 ram_bytes,
1637 u8 compression, u8 encryption,
1638 u16 other_encoding, int extent_type)
1639{
1640 struct btrfs_root *root = BTRFS_I(inode)->root;
1641 struct btrfs_file_extent_item *fi;
1642 struct btrfs_path *path;
1643 struct extent_buffer *leaf;
1644 struct btrfs_key ins;
1645 u64 hint;
1646 int ret;
1647
1648 path = btrfs_alloc_path();
1649 BUG_ON(!path);
1650
b9473439 1651 path->leave_spinning = 1;
a1ed835e
CM
1652
1653 /*
1654 * we may be replacing one extent in the tree with another.
1655 * The new extent is pinned in the extent map, and we don't want
1656 * to drop it from the cache until it is completely in the btree.
1657 *
1658 * So, tell btrfs_drop_extents to leave this extent in the cache.
1659 * the caller is expected to unpin it and allow it to be merged
1660 * with the others.
1661 */
920bbbfb
YZ
1662 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1663 &hint, 0);
d899e052
YZ
1664 BUG_ON(ret);
1665
33345d01 1666 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1667 ins.offset = file_pos;
1668 ins.type = BTRFS_EXTENT_DATA_KEY;
1669 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1670 BUG_ON(ret);
1671 leaf = path->nodes[0];
1672 fi = btrfs_item_ptr(leaf, path->slots[0],
1673 struct btrfs_file_extent_item);
1674 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1675 btrfs_set_file_extent_type(leaf, fi, extent_type);
1676 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1677 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1678 btrfs_set_file_extent_offset(leaf, fi, 0);
1679 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1680 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1681 btrfs_set_file_extent_compression(leaf, fi, compression);
1682 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1683 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1684
1685 btrfs_unlock_up_safe(path, 1);
1686 btrfs_set_lock_blocking(leaf);
1687
d899e052
YZ
1688 btrfs_mark_buffer_dirty(leaf);
1689
1690 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1691
1692 ins.objectid = disk_bytenr;
1693 ins.offset = disk_num_bytes;
1694 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1695 ret = btrfs_alloc_reserved_file_extent(trans, root,
1696 root->root_key.objectid,
33345d01 1697 btrfs_ino(inode), file_pos, &ins);
d899e052 1698 BUG_ON(ret);
d899e052 1699 btrfs_free_path(path);
b9473439 1700
d899e052
YZ
1701 return 0;
1702}
1703
5d13a98f
CM
1704/*
1705 * helper function for btrfs_finish_ordered_io, this
1706 * just reads in some of the csum leaves to prime them into ram
1707 * before we start the transaction. It limits the amount of btree
1708 * reads required while inside the transaction.
1709 */
d352ac68
CM
1710/* as ordered data IO finishes, this gets called so we can finish
1711 * an ordered extent if the range of bytes in the file it covers are
1712 * fully written.
1713 */
211f90e6 1714static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1715{
e6dcd2dc 1716 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1717 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1718 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1719 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1720 struct extent_state *cached_state = NULL;
261507a0 1721 int compress_type = 0;
e6dcd2dc 1722 int ret;
82d5902d 1723 bool nolock;
e6dcd2dc 1724
5a1a3df1
JB
1725 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1726 end - start + 1);
ba1da2f4 1727 if (!ret)
e6dcd2dc 1728 return 0;
e6dcd2dc 1729 BUG_ON(!ordered_extent);
efd049fb 1730
82d5902d 1731 nolock = is_free_space_inode(root, inode);
0cb59c99 1732
c2167754
YZ
1733 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1734 BUG_ON(!list_empty(&ordered_extent->list));
1735 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1736 if (!ret) {
0cb59c99
JB
1737 if (nolock)
1738 trans = btrfs_join_transaction_nolock(root, 1);
1739 else
1740 trans = btrfs_join_transaction(root, 1);
3612b495 1741 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1742 btrfs_set_trans_block_group(trans, inode);
1743 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1744 ret = btrfs_update_inode(trans, root, inode);
1745 BUG_ON(ret);
c2167754
YZ
1746 }
1747 goto out;
1748 }
e6dcd2dc 1749
2ac55d41
JB
1750 lock_extent_bits(io_tree, ordered_extent->file_offset,
1751 ordered_extent->file_offset + ordered_extent->len - 1,
1752 0, &cached_state, GFP_NOFS);
e6dcd2dc 1753
0cb59c99
JB
1754 if (nolock)
1755 trans = btrfs_join_transaction_nolock(root, 1);
1756 else
1757 trans = btrfs_join_transaction(root, 1);
3612b495 1758 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1759 btrfs_set_trans_block_group(trans, inode);
1760 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1761
c8b97818 1762 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1763 compress_type = ordered_extent->compress_type;
d899e052 1764 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1765 BUG_ON(compress_type);
920bbbfb 1766 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1767 ordered_extent->file_offset,
1768 ordered_extent->file_offset +
1769 ordered_extent->len);
1770 BUG_ON(ret);
1771 } else {
0af3d00b 1772 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1773 ret = insert_reserved_file_extent(trans, inode,
1774 ordered_extent->file_offset,
1775 ordered_extent->start,
1776 ordered_extent->disk_len,
1777 ordered_extent->len,
1778 ordered_extent->len,
261507a0 1779 compress_type, 0, 0,
d899e052 1780 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1781 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1782 ordered_extent->file_offset,
1783 ordered_extent->len);
d899e052
YZ
1784 BUG_ON(ret);
1785 }
2ac55d41
JB
1786 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1787 ordered_extent->file_offset +
1788 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1789
e6dcd2dc
CM
1790 add_pending_csums(trans, inode, ordered_extent->file_offset,
1791 &ordered_extent->list);
1792
1ef30be1
JB
1793 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1794 if (!ret) {
1795 ret = btrfs_update_inode(trans, root, inode);
1796 BUG_ON(ret);
1797 }
1798 ret = 0;
c2167754 1799out:
0cb59c99
JB
1800 if (nolock) {
1801 if (trans)
1802 btrfs_end_transaction_nolock(trans, root);
1803 } else {
1804 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1805 if (trans)
1806 btrfs_end_transaction(trans, root);
1807 }
1808
e6dcd2dc
CM
1809 /* once for us */
1810 btrfs_put_ordered_extent(ordered_extent);
1811 /* once for the tree */
1812 btrfs_put_ordered_extent(ordered_extent);
1813
e6dcd2dc
CM
1814 return 0;
1815}
1816
b2950863 1817static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1818 struct extent_state *state, int uptodate)
1819{
1abe9b8a 1820 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1821
8b62b72b 1822 ClearPagePrivate2(page);
211f90e6
CM
1823 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1824}
1825
d352ac68
CM
1826/*
1827 * When IO fails, either with EIO or csum verification fails, we
1828 * try other mirrors that might have a good copy of the data. This
1829 * io_failure_record is used to record state as we go through all the
1830 * mirrors. If another mirror has good data, the page is set up to date
1831 * and things continue. If a good mirror can't be found, the original
1832 * bio end_io callback is called to indicate things have failed.
1833 */
7e38326f
CM
1834struct io_failure_record {
1835 struct page *page;
1836 u64 start;
1837 u64 len;
1838 u64 logical;
d20f7043 1839 unsigned long bio_flags;
7e38326f
CM
1840 int last_mirror;
1841};
1842
b2950863 1843static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1844 struct page *page, u64 start, u64 end,
1845 struct extent_state *state)
7e38326f
CM
1846{
1847 struct io_failure_record *failrec = NULL;
1848 u64 private;
1849 struct extent_map *em;
1850 struct inode *inode = page->mapping->host;
1851 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1852 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1853 struct bio *bio;
1854 int num_copies;
1855 int ret;
1259ab75 1856 int rw;
7e38326f
CM
1857 u64 logical;
1858
1859 ret = get_state_private(failure_tree, start, &private);
1860 if (ret) {
7e38326f
CM
1861 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1862 if (!failrec)
1863 return -ENOMEM;
1864 failrec->start = start;
1865 failrec->len = end - start + 1;
1866 failrec->last_mirror = 0;
d20f7043 1867 failrec->bio_flags = 0;
7e38326f 1868
890871be 1869 read_lock(&em_tree->lock);
3b951516
CM
1870 em = lookup_extent_mapping(em_tree, start, failrec->len);
1871 if (em->start > start || em->start + em->len < start) {
1872 free_extent_map(em);
1873 em = NULL;
1874 }
890871be 1875 read_unlock(&em_tree->lock);
7e38326f 1876
c704005d 1877 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1878 kfree(failrec);
1879 return -EIO;
1880 }
1881 logical = start - em->start;
1882 logical = em->block_start + logical;
d20f7043
CM
1883 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1884 logical = em->block_start;
1885 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1886 extent_set_compress_type(&failrec->bio_flags,
1887 em->compress_type);
d20f7043 1888 }
7e38326f
CM
1889 failrec->logical = logical;
1890 free_extent_map(em);
1891 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1892 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1893 set_state_private(failure_tree, start,
1894 (u64)(unsigned long)failrec);
7e38326f 1895 } else {
587f7704 1896 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1897 }
1898 num_copies = btrfs_num_copies(
1899 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1900 failrec->logical, failrec->len);
1901 failrec->last_mirror++;
1902 if (!state) {
cad321ad 1903 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1904 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1905 failrec->start,
1906 EXTENT_LOCKED);
1907 if (state && state->start != failrec->start)
1908 state = NULL;
cad321ad 1909 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1910 }
1911 if (!state || failrec->last_mirror > num_copies) {
1912 set_state_private(failure_tree, failrec->start, 0);
1913 clear_extent_bits(failure_tree, failrec->start,
1914 failrec->start + failrec->len - 1,
1915 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1916 kfree(failrec);
1917 return -EIO;
1918 }
1919 bio = bio_alloc(GFP_NOFS, 1);
1920 bio->bi_private = state;
1921 bio->bi_end_io = failed_bio->bi_end_io;
1922 bio->bi_sector = failrec->logical >> 9;
1923 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1924 bio->bi_size = 0;
d20f7043 1925
7e38326f 1926 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1927 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1928 rw = WRITE;
1929 else
1930 rw = READ;
1931
c2db1073 1932 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1933 failrec->last_mirror,
eaf25d93 1934 failrec->bio_flags, 0);
c2db1073 1935 return ret;
1259ab75
CM
1936}
1937
d352ac68
CM
1938/*
1939 * each time an IO finishes, we do a fast check in the IO failure tree
1940 * to see if we need to process or clean up an io_failure_record
1941 */
b2950863 1942static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1943{
1944 u64 private;
1945 u64 private_failure;
1946 struct io_failure_record *failure;
1947 int ret;
1948
1949 private = 0;
1950 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1951 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1952 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1953 start, &private_failure);
1954 if (ret == 0) {
1955 failure = (struct io_failure_record *)(unsigned long)
1956 private_failure;
1957 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1958 failure->start, 0);
1959 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1960 failure->start,
1961 failure->start + failure->len - 1,
1962 EXTENT_DIRTY | EXTENT_LOCKED,
1963 GFP_NOFS);
1964 kfree(failure);
1965 }
1966 }
7e38326f
CM
1967 return 0;
1968}
1969
d352ac68
CM
1970/*
1971 * when reads are done, we need to check csums to verify the data is correct
1972 * if there's a match, we allow the bio to finish. If not, we go through
1973 * the io_failure_record routines to find good copies
1974 */
b2950863 1975static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1976 struct extent_state *state)
07157aac 1977{
35ebb934 1978 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1979 struct inode *inode = page->mapping->host;
d1310b2e 1980 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1981 char *kaddr;
aadfeb6e 1982 u64 private = ~(u32)0;
07157aac 1983 int ret;
ff79f819
CM
1984 struct btrfs_root *root = BTRFS_I(inode)->root;
1985 u32 csum = ~(u32)0;
d1310b2e 1986
d20f7043
CM
1987 if (PageChecked(page)) {
1988 ClearPageChecked(page);
1989 goto good;
1990 }
6cbff00f
CH
1991
1992 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1993 return 0;
1994
1995 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1996 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1997 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1998 GFP_NOFS);
b6cda9bc 1999 return 0;
17d217fe 2000 }
d20f7043 2001
c2e639f0 2002 if (state && state->start == start) {
70dec807
CM
2003 private = state->private;
2004 ret = 0;
2005 } else {
2006 ret = get_state_private(io_tree, start, &private);
2007 }
9ab86c8e 2008 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2009 if (ret)
07157aac 2010 goto zeroit;
d397712b 2011
ff79f819
CM
2012 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2013 btrfs_csum_final(csum, (char *)&csum);
d397712b 2014 if (csum != private)
07157aac 2015 goto zeroit;
d397712b 2016
9ab86c8e 2017 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2018good:
7e38326f
CM
2019 /* if the io failure tree for this inode is non-empty,
2020 * check to see if we've recovered from a failed IO
2021 */
1259ab75 2022 btrfs_clean_io_failures(inode, start);
07157aac
CM
2023 return 0;
2024
2025zeroit:
945d8962 2026 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2027 "private %llu\n",
2028 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2029 (unsigned long long)start, csum,
2030 (unsigned long long)private);
db94535d
CM
2031 memset(kaddr + offset, 1, end - start + 1);
2032 flush_dcache_page(page);
9ab86c8e 2033 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2034 if (private == 0)
2035 return 0;
7e38326f 2036 return -EIO;
07157aac 2037}
b888db2b 2038
24bbcf04
YZ
2039struct delayed_iput {
2040 struct list_head list;
2041 struct inode *inode;
2042};
2043
2044void btrfs_add_delayed_iput(struct inode *inode)
2045{
2046 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2047 struct delayed_iput *delayed;
2048
2049 if (atomic_add_unless(&inode->i_count, -1, 1))
2050 return;
2051
2052 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2053 delayed->inode = inode;
2054
2055 spin_lock(&fs_info->delayed_iput_lock);
2056 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2057 spin_unlock(&fs_info->delayed_iput_lock);
2058}
2059
2060void btrfs_run_delayed_iputs(struct btrfs_root *root)
2061{
2062 LIST_HEAD(list);
2063 struct btrfs_fs_info *fs_info = root->fs_info;
2064 struct delayed_iput *delayed;
2065 int empty;
2066
2067 spin_lock(&fs_info->delayed_iput_lock);
2068 empty = list_empty(&fs_info->delayed_iputs);
2069 spin_unlock(&fs_info->delayed_iput_lock);
2070 if (empty)
2071 return;
2072
2073 down_read(&root->fs_info->cleanup_work_sem);
2074 spin_lock(&fs_info->delayed_iput_lock);
2075 list_splice_init(&fs_info->delayed_iputs, &list);
2076 spin_unlock(&fs_info->delayed_iput_lock);
2077
2078 while (!list_empty(&list)) {
2079 delayed = list_entry(list.next, struct delayed_iput, list);
2080 list_del(&delayed->list);
2081 iput(delayed->inode);
2082 kfree(delayed);
2083 }
2084 up_read(&root->fs_info->cleanup_work_sem);
2085}
2086
d68fc57b
YZ
2087/*
2088 * calculate extra metadata reservation when snapshotting a subvolume
2089 * contains orphan files.
2090 */
2091void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2092 struct btrfs_pending_snapshot *pending,
2093 u64 *bytes_to_reserve)
2094{
2095 struct btrfs_root *root;
2096 struct btrfs_block_rsv *block_rsv;
2097 u64 num_bytes;
2098 int index;
2099
2100 root = pending->root;
2101 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2102 return;
2103
2104 block_rsv = root->orphan_block_rsv;
2105
2106 /* orphan block reservation for the snapshot */
2107 num_bytes = block_rsv->size;
2108
2109 /*
2110 * after the snapshot is created, COWing tree blocks may use more
2111 * space than it frees. So we should make sure there is enough
2112 * reserved space.
2113 */
2114 index = trans->transid & 0x1;
2115 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2116 num_bytes += block_rsv->size -
2117 (block_rsv->reserved + block_rsv->freed[index]);
2118 }
2119
2120 *bytes_to_reserve += num_bytes;
2121}
2122
2123void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2124 struct btrfs_pending_snapshot *pending)
2125{
2126 struct btrfs_root *root = pending->root;
2127 struct btrfs_root *snap = pending->snap;
2128 struct btrfs_block_rsv *block_rsv;
2129 u64 num_bytes;
2130 int index;
2131 int ret;
2132
2133 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2134 return;
2135
2136 /* refill source subvolume's orphan block reservation */
2137 block_rsv = root->orphan_block_rsv;
2138 index = trans->transid & 0x1;
2139 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2140 num_bytes = block_rsv->size -
2141 (block_rsv->reserved + block_rsv->freed[index]);
2142 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2143 root->orphan_block_rsv,
2144 num_bytes);
2145 BUG_ON(ret);
2146 }
2147
2148 /* setup orphan block reservation for the snapshot */
2149 block_rsv = btrfs_alloc_block_rsv(snap);
2150 BUG_ON(!block_rsv);
2151
2152 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2153 snap->orphan_block_rsv = block_rsv;
2154
2155 num_bytes = root->orphan_block_rsv->size;
2156 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2157 block_rsv, num_bytes);
2158 BUG_ON(ret);
2159
2160#if 0
2161 /* insert orphan item for the snapshot */
2162 WARN_ON(!root->orphan_item_inserted);
2163 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2164 snap->root_key.objectid);
2165 BUG_ON(ret);
2166 snap->orphan_item_inserted = 1;
2167#endif
2168}
2169
2170enum btrfs_orphan_cleanup_state {
2171 ORPHAN_CLEANUP_STARTED = 1,
2172 ORPHAN_CLEANUP_DONE = 2,
2173};
2174
2175/*
2176 * This is called in transaction commmit time. If there are no orphan
2177 * files in the subvolume, it removes orphan item and frees block_rsv
2178 * structure.
2179 */
2180void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2181 struct btrfs_root *root)
2182{
2183 int ret;
2184
2185 if (!list_empty(&root->orphan_list) ||
2186 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2187 return;
2188
2189 if (root->orphan_item_inserted &&
2190 btrfs_root_refs(&root->root_item) > 0) {
2191 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2192 root->root_key.objectid);
2193 BUG_ON(ret);
2194 root->orphan_item_inserted = 0;
2195 }
2196
2197 if (root->orphan_block_rsv) {
2198 WARN_ON(root->orphan_block_rsv->size > 0);
2199 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2200 root->orphan_block_rsv = NULL;
2201 }
2202}
2203
7b128766
JB
2204/*
2205 * This creates an orphan entry for the given inode in case something goes
2206 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2207 *
2208 * NOTE: caller of this function should reserve 5 units of metadata for
2209 * this function.
7b128766
JB
2210 */
2211int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2212{
2213 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2214 struct btrfs_block_rsv *block_rsv = NULL;
2215 int reserve = 0;
2216 int insert = 0;
2217 int ret;
7b128766 2218
d68fc57b
YZ
2219 if (!root->orphan_block_rsv) {
2220 block_rsv = btrfs_alloc_block_rsv(root);
2221 BUG_ON(!block_rsv);
2222 }
7b128766 2223
d68fc57b
YZ
2224 spin_lock(&root->orphan_lock);
2225 if (!root->orphan_block_rsv) {
2226 root->orphan_block_rsv = block_rsv;
2227 } else if (block_rsv) {
2228 btrfs_free_block_rsv(root, block_rsv);
2229 block_rsv = NULL;
7b128766 2230 }
7b128766 2231
d68fc57b
YZ
2232 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2233 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2234#if 0
2235 /*
2236 * For proper ENOSPC handling, we should do orphan
2237 * cleanup when mounting. But this introduces backward
2238 * compatibility issue.
2239 */
2240 if (!xchg(&root->orphan_item_inserted, 1))
2241 insert = 2;
2242 else
2243 insert = 1;
2244#endif
2245 insert = 1;
7b128766
JB
2246 }
2247
d68fc57b
YZ
2248 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2249 BTRFS_I(inode)->orphan_meta_reserved = 1;
2250 reserve = 1;
2251 }
2252 spin_unlock(&root->orphan_lock);
7b128766 2253
d68fc57b
YZ
2254 if (block_rsv)
2255 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2256
d68fc57b
YZ
2257 /* grab metadata reservation from transaction handle */
2258 if (reserve) {
2259 ret = btrfs_orphan_reserve_metadata(trans, inode);
2260 BUG_ON(ret);
2261 }
7b128766 2262
d68fc57b
YZ
2263 /* insert an orphan item to track this unlinked/truncated file */
2264 if (insert >= 1) {
33345d01 2265 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2266 BUG_ON(ret);
2267 }
2268
2269 /* insert an orphan item to track subvolume contains orphan files */
2270 if (insert >= 2) {
2271 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2272 root->root_key.objectid);
2273 BUG_ON(ret);
2274 }
2275 return 0;
7b128766
JB
2276}
2277
2278/*
2279 * We have done the truncate/delete so we can go ahead and remove the orphan
2280 * item for this particular inode.
2281 */
2282int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2283{
2284 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2285 int delete_item = 0;
2286 int release_rsv = 0;
7b128766
JB
2287 int ret = 0;
2288
d68fc57b
YZ
2289 spin_lock(&root->orphan_lock);
2290 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2291 list_del_init(&BTRFS_I(inode)->i_orphan);
2292 delete_item = 1;
7b128766
JB
2293 }
2294
d68fc57b
YZ
2295 if (BTRFS_I(inode)->orphan_meta_reserved) {
2296 BTRFS_I(inode)->orphan_meta_reserved = 0;
2297 release_rsv = 1;
7b128766 2298 }
d68fc57b 2299 spin_unlock(&root->orphan_lock);
7b128766 2300
d68fc57b 2301 if (trans && delete_item) {
33345d01 2302 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2303 BUG_ON(ret);
2304 }
7b128766 2305
d68fc57b
YZ
2306 if (release_rsv)
2307 btrfs_orphan_release_metadata(inode);
7b128766 2308
d68fc57b 2309 return 0;
7b128766
JB
2310}
2311
2312/*
2313 * this cleans up any orphans that may be left on the list from the last use
2314 * of this root.
2315 */
66b4ffd1 2316int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2317{
2318 struct btrfs_path *path;
2319 struct extent_buffer *leaf;
7b128766
JB
2320 struct btrfs_key key, found_key;
2321 struct btrfs_trans_handle *trans;
2322 struct inode *inode;
2323 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2324
d68fc57b 2325 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2326 return 0;
c71bf099
YZ
2327
2328 path = btrfs_alloc_path();
66b4ffd1
JB
2329 if (!path) {
2330 ret = -ENOMEM;
2331 goto out;
2332 }
7b128766
JB
2333 path->reada = -1;
2334
2335 key.objectid = BTRFS_ORPHAN_OBJECTID;
2336 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2337 key.offset = (u64)-1;
2338
7b128766
JB
2339 while (1) {
2340 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2341 if (ret < 0)
2342 goto out;
7b128766
JB
2343
2344 /*
2345 * if ret == 0 means we found what we were searching for, which
25985edc 2346 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2347 * find the key and see if we have stuff that matches
2348 */
2349 if (ret > 0) {
66b4ffd1 2350 ret = 0;
7b128766
JB
2351 if (path->slots[0] == 0)
2352 break;
2353 path->slots[0]--;
2354 }
2355
2356 /* pull out the item */
2357 leaf = path->nodes[0];
7b128766
JB
2358 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2359
2360 /* make sure the item matches what we want */
2361 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2362 break;
2363 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2364 break;
2365
2366 /* release the path since we're done with it */
b3b4aa74 2367 btrfs_release_path(path);
7b128766
JB
2368
2369 /*
2370 * this is where we are basically btrfs_lookup, without the
2371 * crossing root thing. we store the inode number in the
2372 * offset of the orphan item.
2373 */
5d4f98a2
YZ
2374 found_key.objectid = found_key.offset;
2375 found_key.type = BTRFS_INODE_ITEM_KEY;
2376 found_key.offset = 0;
73f73415 2377 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2378 if (IS_ERR(inode)) {
2379 ret = PTR_ERR(inode);
2380 goto out;
2381 }
7b128766 2382
7b128766
JB
2383 /*
2384 * add this inode to the orphan list so btrfs_orphan_del does
2385 * the proper thing when we hit it
2386 */
d68fc57b 2387 spin_lock(&root->orphan_lock);
7b128766 2388 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2389 spin_unlock(&root->orphan_lock);
7b128766
JB
2390
2391 /*
2392 * if this is a bad inode, means we actually succeeded in
2393 * removing the inode, but not the orphan record, which means
2394 * we need to manually delete the orphan since iput will just
2395 * do a destroy_inode
2396 */
2397 if (is_bad_inode(inode)) {
a22285a6 2398 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2399 if (IS_ERR(trans)) {
2400 ret = PTR_ERR(trans);
2401 goto out;
2402 }
7b128766 2403 btrfs_orphan_del(trans, inode);
5b21f2ed 2404 btrfs_end_transaction(trans, root);
7b128766
JB
2405 iput(inode);
2406 continue;
2407 }
2408
2409 /* if we have links, this was a truncate, lets do that */
2410 if (inode->i_nlink) {
a41ad394
JB
2411 if (!S_ISREG(inode->i_mode)) {
2412 WARN_ON(1);
2413 iput(inode);
2414 continue;
2415 }
7b128766 2416 nr_truncate++;
66b4ffd1 2417 ret = btrfs_truncate(inode);
7b128766
JB
2418 } else {
2419 nr_unlink++;
2420 }
2421
2422 /* this will do delete_inode and everything for us */
2423 iput(inode);
66b4ffd1
JB
2424 if (ret)
2425 goto out;
7b128766 2426 }
d68fc57b
YZ
2427 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2428
2429 if (root->orphan_block_rsv)
2430 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2431 (u64)-1);
2432
2433 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2434 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2435 if (!IS_ERR(trans))
2436 btrfs_end_transaction(trans, root);
d68fc57b 2437 }
7b128766
JB
2438
2439 if (nr_unlink)
2440 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2441 if (nr_truncate)
2442 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2443
2444out:
2445 if (ret)
2446 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2447 btrfs_free_path(path);
2448 return ret;
7b128766
JB
2449}
2450
46a53cca
CM
2451/*
2452 * very simple check to peek ahead in the leaf looking for xattrs. If we
2453 * don't find any xattrs, we know there can't be any acls.
2454 *
2455 * slot is the slot the inode is in, objectid is the objectid of the inode
2456 */
2457static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2458 int slot, u64 objectid)
2459{
2460 u32 nritems = btrfs_header_nritems(leaf);
2461 struct btrfs_key found_key;
2462 int scanned = 0;
2463
2464 slot++;
2465 while (slot < nritems) {
2466 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2467
2468 /* we found a different objectid, there must not be acls */
2469 if (found_key.objectid != objectid)
2470 return 0;
2471
2472 /* we found an xattr, assume we've got an acl */
2473 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2474 return 1;
2475
2476 /*
2477 * we found a key greater than an xattr key, there can't
2478 * be any acls later on
2479 */
2480 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2481 return 0;
2482
2483 slot++;
2484 scanned++;
2485
2486 /*
2487 * it goes inode, inode backrefs, xattrs, extents,
2488 * so if there are a ton of hard links to an inode there can
2489 * be a lot of backrefs. Don't waste time searching too hard,
2490 * this is just an optimization
2491 */
2492 if (scanned >= 8)
2493 break;
2494 }
2495 /* we hit the end of the leaf before we found an xattr or
2496 * something larger than an xattr. We have to assume the inode
2497 * has acls
2498 */
2499 return 1;
2500}
2501
d352ac68
CM
2502/*
2503 * read an inode from the btree into the in-memory inode
2504 */
5d4f98a2 2505static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2506{
2507 struct btrfs_path *path;
5f39d397 2508 struct extent_buffer *leaf;
39279cc3 2509 struct btrfs_inode_item *inode_item;
0b86a832 2510 struct btrfs_timespec *tspec;
39279cc3
CM
2511 struct btrfs_root *root = BTRFS_I(inode)->root;
2512 struct btrfs_key location;
46a53cca 2513 int maybe_acls;
39279cc3 2514 u64 alloc_group_block;
618e21d5 2515 u32 rdev;
39279cc3
CM
2516 int ret;
2517
2518 path = btrfs_alloc_path();
2519 BUG_ON(!path);
39279cc3 2520 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2521
39279cc3 2522 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2523 if (ret)
39279cc3 2524 goto make_bad;
39279cc3 2525
5f39d397
CM
2526 leaf = path->nodes[0];
2527 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2528 struct btrfs_inode_item);
2529
2530 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2531 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2532 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2533 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2534 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2535
2536 tspec = btrfs_inode_atime(inode_item);
2537 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2538 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2539
2540 tspec = btrfs_inode_mtime(inode_item);
2541 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2542 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2543
2544 tspec = btrfs_inode_ctime(inode_item);
2545 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2546 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2547
a76a3cd4 2548 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2549 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2550 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2551 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2552 inode->i_rdev = 0;
5f39d397
CM
2553 rdev = btrfs_inode_rdev(leaf, inode_item);
2554
aec7477b 2555 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2556 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2557
5f39d397 2558 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2559
46a53cca
CM
2560 /*
2561 * try to precache a NULL acl entry for files that don't have
2562 * any xattrs or acls
2563 */
33345d01
LZ
2564 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2565 btrfs_ino(inode));
72c04902
AV
2566 if (!maybe_acls)
2567 cache_no_acl(inode);
46a53cca 2568
d2fb3437
YZ
2569 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2570 alloc_group_block, 0);
39279cc3
CM
2571 btrfs_free_path(path);
2572 inode_item = NULL;
2573
39279cc3 2574 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2575 case S_IFREG:
2576 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2577 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2578 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2579 inode->i_fop = &btrfs_file_operations;
2580 inode->i_op = &btrfs_file_inode_operations;
2581 break;
2582 case S_IFDIR:
2583 inode->i_fop = &btrfs_dir_file_operations;
2584 if (root == root->fs_info->tree_root)
2585 inode->i_op = &btrfs_dir_ro_inode_operations;
2586 else
2587 inode->i_op = &btrfs_dir_inode_operations;
2588 break;
2589 case S_IFLNK:
2590 inode->i_op = &btrfs_symlink_inode_operations;
2591 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2592 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2593 break;
618e21d5 2594 default:
0279b4cd 2595 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2596 init_special_inode(inode, inode->i_mode, rdev);
2597 break;
39279cc3 2598 }
6cbff00f
CH
2599
2600 btrfs_update_iflags(inode);
39279cc3
CM
2601 return;
2602
2603make_bad:
39279cc3 2604 btrfs_free_path(path);
39279cc3
CM
2605 make_bad_inode(inode);
2606}
2607
d352ac68
CM
2608/*
2609 * given a leaf and an inode, copy the inode fields into the leaf
2610 */
e02119d5
CM
2611static void fill_inode_item(struct btrfs_trans_handle *trans,
2612 struct extent_buffer *leaf,
5f39d397 2613 struct btrfs_inode_item *item,
39279cc3
CM
2614 struct inode *inode)
2615{
12ddb96c
JB
2616 if (!leaf->map_token)
2617 map_private_extent_buffer(leaf, (unsigned long)item,
2618 sizeof(struct btrfs_inode_item),
2619 &leaf->map_token, &leaf->kaddr,
2620 &leaf->map_start, &leaf->map_len,
2621 KM_USER1);
2622
5f39d397
CM
2623 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2624 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2625 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2626 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2627 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2628
2629 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2630 inode->i_atime.tv_sec);
2631 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2632 inode->i_atime.tv_nsec);
2633
2634 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2635 inode->i_mtime.tv_sec);
2636 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2637 inode->i_mtime.tv_nsec);
2638
2639 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2640 inode->i_ctime.tv_sec);
2641 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2642 inode->i_ctime.tv_nsec);
2643
a76a3cd4 2644 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2645 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2646 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2647 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2648 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2649 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2650 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
12ddb96c
JB
2651
2652 if (leaf->map_token) {
2653 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2654 leaf->map_token = NULL;
2655 }
39279cc3
CM
2656}
2657
d352ac68
CM
2658/*
2659 * copy everything in the in-memory inode into the btree.
2660 */
d397712b
CM
2661noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2662 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2663{
2664 struct btrfs_inode_item *inode_item;
2665 struct btrfs_path *path;
5f39d397 2666 struct extent_buffer *leaf;
39279cc3
CM
2667 int ret;
2668
16cdcec7
MX
2669 /*
2670 * If root is tree root, it means this inode is used to
2671 * store free space information. And these inodes are updated
2672 * when committing the transaction, so they needn't delaye to
2673 * be updated, or deadlock will occured.
2674 */
dcc6d073 2675 if (!is_free_space_inode(root, inode)) {
16cdcec7
MX
2676 ret = btrfs_delayed_update_inode(trans, root, inode);
2677 if (!ret)
2678 btrfs_set_inode_last_trans(trans, inode);
2679 return ret;
2680 }
2681
39279cc3 2682 path = btrfs_alloc_path();
16cdcec7
MX
2683 if (!path)
2684 return -ENOMEM;
2685
b9473439 2686 path->leave_spinning = 1;
16cdcec7
MX
2687 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2688 1);
39279cc3
CM
2689 if (ret) {
2690 if (ret > 0)
2691 ret = -ENOENT;
2692 goto failed;
2693 }
2694
b4ce94de 2695 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2696 leaf = path->nodes[0];
2697 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2698 struct btrfs_inode_item);
39279cc3 2699
e02119d5 2700 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2701 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2702 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2703 ret = 0;
2704failed:
39279cc3
CM
2705 btrfs_free_path(path);
2706 return ret;
2707}
2708
d352ac68
CM
2709/*
2710 * unlink helper that gets used here in inode.c and in the tree logging
2711 * recovery code. It remove a link in a directory with a given name, and
2712 * also drops the back refs in the inode to the directory
2713 */
92986796
AV
2714static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2715 struct btrfs_root *root,
2716 struct inode *dir, struct inode *inode,
2717 const char *name, int name_len)
39279cc3
CM
2718{
2719 struct btrfs_path *path;
39279cc3 2720 int ret = 0;
5f39d397 2721 struct extent_buffer *leaf;
39279cc3 2722 struct btrfs_dir_item *di;
5f39d397 2723 struct btrfs_key key;
aec7477b 2724 u64 index;
33345d01
LZ
2725 u64 ino = btrfs_ino(inode);
2726 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2727
2728 path = btrfs_alloc_path();
54aa1f4d
CM
2729 if (!path) {
2730 ret = -ENOMEM;
554233a6 2731 goto out;
54aa1f4d
CM
2732 }
2733
b9473439 2734 path->leave_spinning = 1;
33345d01 2735 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2736 name, name_len, -1);
2737 if (IS_ERR(di)) {
2738 ret = PTR_ERR(di);
2739 goto err;
2740 }
2741 if (!di) {
2742 ret = -ENOENT;
2743 goto err;
2744 }
5f39d397
CM
2745 leaf = path->nodes[0];
2746 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2747 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2748 if (ret)
2749 goto err;
b3b4aa74 2750 btrfs_release_path(path);
39279cc3 2751
33345d01
LZ
2752 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2753 dir_ino, &index);
aec7477b 2754 if (ret) {
d397712b 2755 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2756 "inode %llu parent %llu\n", name_len, name,
2757 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2758 goto err;
2759 }
2760
16cdcec7
MX
2761 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2762 if (ret)
39279cc3 2763 goto err;
39279cc3 2764
e02119d5 2765 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2766 inode, dir_ino);
49eb7e46 2767 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2768
2769 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2770 dir, index);
6418c961
CM
2771 if (ret == -ENOENT)
2772 ret = 0;
39279cc3
CM
2773err:
2774 btrfs_free_path(path);
e02119d5
CM
2775 if (ret)
2776 goto out;
2777
2778 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2779 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2780 btrfs_update_inode(trans, root, dir);
e02119d5 2781out:
39279cc3
CM
2782 return ret;
2783}
2784
92986796
AV
2785int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2786 struct btrfs_root *root,
2787 struct inode *dir, struct inode *inode,
2788 const char *name, int name_len)
2789{
2790 int ret;
2791 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2792 if (!ret) {
2793 btrfs_drop_nlink(inode);
2794 ret = btrfs_update_inode(trans, root, inode);
2795 }
2796 return ret;
2797}
2798
2799
a22285a6
YZ
2800/* helper to check if there is any shared block in the path */
2801static int check_path_shared(struct btrfs_root *root,
2802 struct btrfs_path *path)
39279cc3 2803{
a22285a6
YZ
2804 struct extent_buffer *eb;
2805 int level;
0e4dcbef 2806 u64 refs = 1;
5df6a9f6 2807
a22285a6 2808 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2809 int ret;
2810
a22285a6
YZ
2811 if (!path->nodes[level])
2812 break;
2813 eb = path->nodes[level];
2814 if (!btrfs_block_can_be_shared(root, eb))
2815 continue;
2816 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2817 &refs, NULL);
2818 if (refs > 1)
2819 return 1;
5df6a9f6 2820 }
dedefd72 2821 return 0;
39279cc3
CM
2822}
2823
a22285a6
YZ
2824/*
2825 * helper to start transaction for unlink and rmdir.
2826 *
2827 * unlink and rmdir are special in btrfs, they do not always free space.
2828 * so in enospc case, we should make sure they will free space before
2829 * allowing them to use the global metadata reservation.
2830 */
2831static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2832 struct dentry *dentry)
4df27c4d 2833{
39279cc3 2834 struct btrfs_trans_handle *trans;
a22285a6 2835 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2836 struct btrfs_path *path;
a22285a6 2837 struct btrfs_inode_ref *ref;
4df27c4d 2838 struct btrfs_dir_item *di;
7b128766 2839 struct inode *inode = dentry->d_inode;
4df27c4d 2840 u64 index;
a22285a6
YZ
2841 int check_link = 1;
2842 int err = -ENOSPC;
4df27c4d 2843 int ret;
33345d01
LZ
2844 u64 ino = btrfs_ino(inode);
2845 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2846
a22285a6
YZ
2847 trans = btrfs_start_transaction(root, 10);
2848 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2849 return trans;
4df27c4d 2850
33345d01 2851 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2852 return ERR_PTR(-ENOSPC);
4df27c4d 2853
a22285a6
YZ
2854 /* check if there is someone else holds reference */
2855 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2856 return ERR_PTR(-ENOSPC);
4df27c4d 2857
a22285a6
YZ
2858 if (atomic_read(&inode->i_count) > 2)
2859 return ERR_PTR(-ENOSPC);
4df27c4d 2860
a22285a6
YZ
2861 if (xchg(&root->fs_info->enospc_unlink, 1))
2862 return ERR_PTR(-ENOSPC);
2863
2864 path = btrfs_alloc_path();
2865 if (!path) {
2866 root->fs_info->enospc_unlink = 0;
2867 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2868 }
2869
a22285a6 2870 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2871 if (IS_ERR(trans)) {
a22285a6
YZ
2872 btrfs_free_path(path);
2873 root->fs_info->enospc_unlink = 0;
2874 return trans;
2875 }
4df27c4d 2876
a22285a6
YZ
2877 path->skip_locking = 1;
2878 path->search_commit_root = 1;
4df27c4d 2879
a22285a6
YZ
2880 ret = btrfs_lookup_inode(trans, root, path,
2881 &BTRFS_I(dir)->location, 0);
2882 if (ret < 0) {
2883 err = ret;
2884 goto out;
2885 }
2886 if (ret == 0) {
2887 if (check_path_shared(root, path))
2888 goto out;
2889 } else {
2890 check_link = 0;
5df6a9f6 2891 }
b3b4aa74 2892 btrfs_release_path(path);
a22285a6
YZ
2893
2894 ret = btrfs_lookup_inode(trans, root, path,
2895 &BTRFS_I(inode)->location, 0);
2896 if (ret < 0) {
2897 err = ret;
2898 goto out;
2899 }
2900 if (ret == 0) {
2901 if (check_path_shared(root, path))
2902 goto out;
2903 } else {
2904 check_link = 0;
2905 }
b3b4aa74 2906 btrfs_release_path(path);
a22285a6
YZ
2907
2908 if (ret == 0 && S_ISREG(inode->i_mode)) {
2909 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2910 ino, (u64)-1, 0);
a22285a6
YZ
2911 if (ret < 0) {
2912 err = ret;
2913 goto out;
2914 }
2915 BUG_ON(ret == 0);
2916 if (check_path_shared(root, path))
2917 goto out;
b3b4aa74 2918 btrfs_release_path(path);
a22285a6
YZ
2919 }
2920
2921 if (!check_link) {
2922 err = 0;
2923 goto out;
2924 }
2925
33345d01 2926 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2927 dentry->d_name.name, dentry->d_name.len, 0);
2928 if (IS_ERR(di)) {
2929 err = PTR_ERR(di);
2930 goto out;
2931 }
2932 if (di) {
2933 if (check_path_shared(root, path))
2934 goto out;
2935 } else {
2936 err = 0;
2937 goto out;
2938 }
b3b4aa74 2939 btrfs_release_path(path);
a22285a6
YZ
2940
2941 ref = btrfs_lookup_inode_ref(trans, root, path,
2942 dentry->d_name.name, dentry->d_name.len,
33345d01 2943 ino, dir_ino, 0);
a22285a6
YZ
2944 if (IS_ERR(ref)) {
2945 err = PTR_ERR(ref);
2946 goto out;
2947 }
2948 BUG_ON(!ref);
2949 if (check_path_shared(root, path))
2950 goto out;
2951 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2952 btrfs_release_path(path);
a22285a6 2953
16cdcec7
MX
2954 /*
2955 * This is a commit root search, if we can lookup inode item and other
2956 * relative items in the commit root, it means the transaction of
2957 * dir/file creation has been committed, and the dir index item that we
2958 * delay to insert has also been inserted into the commit root. So
2959 * we needn't worry about the delayed insertion of the dir index item
2960 * here.
2961 */
33345d01 2962 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2963 dentry->d_name.name, dentry->d_name.len, 0);
2964 if (IS_ERR(di)) {
2965 err = PTR_ERR(di);
2966 goto out;
2967 }
2968 BUG_ON(ret == -ENOENT);
2969 if (check_path_shared(root, path))
2970 goto out;
2971
2972 err = 0;
2973out:
2974 btrfs_free_path(path);
2975 if (err) {
2976 btrfs_end_transaction(trans, root);
2977 root->fs_info->enospc_unlink = 0;
2978 return ERR_PTR(err);
2979 }
2980
2981 trans->block_rsv = &root->fs_info->global_block_rsv;
2982 return trans;
2983}
2984
2985static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2986 struct btrfs_root *root)
2987{
2988 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2989 BUG_ON(!root->fs_info->enospc_unlink);
2990 root->fs_info->enospc_unlink = 0;
2991 }
2992 btrfs_end_transaction_throttle(trans, root);
2993}
2994
2995static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2996{
2997 struct btrfs_root *root = BTRFS_I(dir)->root;
2998 struct btrfs_trans_handle *trans;
2999 struct inode *inode = dentry->d_inode;
3000 int ret;
3001 unsigned long nr = 0;
3002
3003 trans = __unlink_start_trans(dir, dentry);
3004 if (IS_ERR(trans))
3005 return PTR_ERR(trans);
5f39d397 3006
39279cc3 3007 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
3008
3009 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3010
e02119d5
CM
3011 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3012 dentry->d_name.name, dentry->d_name.len);
a22285a6 3013 BUG_ON(ret);
7b128766 3014
a22285a6 3015 if (inode->i_nlink == 0) {
7b128766 3016 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
3017 BUG_ON(ret);
3018 }
7b128766 3019
d3c2fdcf 3020 nr = trans->blocks_used;
a22285a6 3021 __unlink_end_trans(trans, root);
d3c2fdcf 3022 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3023 return ret;
3024}
3025
4df27c4d
YZ
3026int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3027 struct btrfs_root *root,
3028 struct inode *dir, u64 objectid,
3029 const char *name, int name_len)
3030{
3031 struct btrfs_path *path;
3032 struct extent_buffer *leaf;
3033 struct btrfs_dir_item *di;
3034 struct btrfs_key key;
3035 u64 index;
3036 int ret;
33345d01 3037 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3038
3039 path = btrfs_alloc_path();
3040 if (!path)
3041 return -ENOMEM;
3042
33345d01 3043 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3044 name, name_len, -1);
c704005d 3045 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3046
3047 leaf = path->nodes[0];
3048 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3049 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3050 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3051 BUG_ON(ret);
b3b4aa74 3052 btrfs_release_path(path);
4df27c4d
YZ
3053
3054 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3055 objectid, root->root_key.objectid,
33345d01 3056 dir_ino, &index, name, name_len);
4df27c4d
YZ
3057 if (ret < 0) {
3058 BUG_ON(ret != -ENOENT);
33345d01 3059 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3060 name, name_len);
c704005d 3061 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3062
3063 leaf = path->nodes[0];
3064 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3065 btrfs_release_path(path);
4df27c4d
YZ
3066 index = key.offset;
3067 }
945d8962 3068 btrfs_release_path(path);
4df27c4d 3069
16cdcec7 3070 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3071 BUG_ON(ret);
4df27c4d
YZ
3072
3073 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3074 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3075 ret = btrfs_update_inode(trans, root, dir);
3076 BUG_ON(ret);
4df27c4d 3077
4df27c4d
YZ
3078 return 0;
3079}
3080
39279cc3
CM
3081static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3082{
3083 struct inode *inode = dentry->d_inode;
1832a6d5 3084 int err = 0;
39279cc3 3085 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3086 struct btrfs_trans_handle *trans;
1832a6d5 3087 unsigned long nr = 0;
39279cc3 3088
3394e160 3089 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3090 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3091 return -ENOTEMPTY;
3092
a22285a6
YZ
3093 trans = __unlink_start_trans(dir, dentry);
3094 if (IS_ERR(trans))
5df6a9f6 3095 return PTR_ERR(trans);
5df6a9f6 3096
39279cc3 3097 btrfs_set_trans_block_group(trans, dir);
39279cc3 3098
33345d01 3099 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3100 err = btrfs_unlink_subvol(trans, root, dir,
3101 BTRFS_I(inode)->location.objectid,
3102 dentry->d_name.name,
3103 dentry->d_name.len);
3104 goto out;
3105 }
3106
7b128766
JB
3107 err = btrfs_orphan_add(trans, inode);
3108 if (err)
4df27c4d 3109 goto out;
7b128766 3110
39279cc3 3111 /* now the directory is empty */
e02119d5
CM
3112 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3113 dentry->d_name.name, dentry->d_name.len);
d397712b 3114 if (!err)
dbe674a9 3115 btrfs_i_size_write(inode, 0);
4df27c4d 3116out:
d3c2fdcf 3117 nr = trans->blocks_used;
a22285a6 3118 __unlink_end_trans(trans, root);
d3c2fdcf 3119 btrfs_btree_balance_dirty(root, nr);
3954401f 3120
39279cc3
CM
3121 return err;
3122}
3123
39279cc3
CM
3124/*
3125 * this can truncate away extent items, csum items and directory items.
3126 * It starts at a high offset and removes keys until it can't find
d352ac68 3127 * any higher than new_size
39279cc3
CM
3128 *
3129 * csum items that cross the new i_size are truncated to the new size
3130 * as well.
7b128766
JB
3131 *
3132 * min_type is the minimum key type to truncate down to. If set to 0, this
3133 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3134 */
8082510e
YZ
3135int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3136 struct btrfs_root *root,
3137 struct inode *inode,
3138 u64 new_size, u32 min_type)
39279cc3 3139{
39279cc3 3140 struct btrfs_path *path;
5f39d397 3141 struct extent_buffer *leaf;
39279cc3 3142 struct btrfs_file_extent_item *fi;
8082510e
YZ
3143 struct btrfs_key key;
3144 struct btrfs_key found_key;
39279cc3 3145 u64 extent_start = 0;
db94535d 3146 u64 extent_num_bytes = 0;
5d4f98a2 3147 u64 extent_offset = 0;
39279cc3 3148 u64 item_end = 0;
8082510e
YZ
3149 u64 mask = root->sectorsize - 1;
3150 u32 found_type = (u8)-1;
39279cc3
CM
3151 int found_extent;
3152 int del_item;
85e21bac
CM
3153 int pending_del_nr = 0;
3154 int pending_del_slot = 0;
179e29e4 3155 int extent_type = -1;
771ed689 3156 int encoding;
8082510e
YZ
3157 int ret;
3158 int err = 0;
33345d01 3159 u64 ino = btrfs_ino(inode);
8082510e
YZ
3160
3161 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3162
0af3d00b 3163 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3164 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3165
16cdcec7
MX
3166 /*
3167 * This function is also used to drop the items in the log tree before
3168 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3169 * it is used to drop the loged items. So we shouldn't kill the delayed
3170 * items.
3171 */
3172 if (min_type == 0 && root == BTRFS_I(inode)->root)
3173 btrfs_kill_delayed_inode_items(inode);
3174
39279cc3
CM
3175 path = btrfs_alloc_path();
3176 BUG_ON(!path);
33c17ad5 3177 path->reada = -1;
5f39d397 3178
33345d01 3179 key.objectid = ino;
39279cc3 3180 key.offset = (u64)-1;
5f39d397
CM
3181 key.type = (u8)-1;
3182
85e21bac 3183search_again:
b9473439 3184 path->leave_spinning = 1;
85e21bac 3185 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3186 if (ret < 0) {
3187 err = ret;
3188 goto out;
3189 }
d397712b 3190
85e21bac 3191 if (ret > 0) {
e02119d5
CM
3192 /* there are no items in the tree for us to truncate, we're
3193 * done
3194 */
8082510e
YZ
3195 if (path->slots[0] == 0)
3196 goto out;
85e21bac
CM
3197 path->slots[0]--;
3198 }
3199
d397712b 3200 while (1) {
39279cc3 3201 fi = NULL;
5f39d397
CM
3202 leaf = path->nodes[0];
3203 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3204 found_type = btrfs_key_type(&found_key);
771ed689 3205 encoding = 0;
39279cc3 3206
33345d01 3207 if (found_key.objectid != ino)
39279cc3 3208 break;
5f39d397 3209
85e21bac 3210 if (found_type < min_type)
39279cc3
CM
3211 break;
3212
5f39d397 3213 item_end = found_key.offset;
39279cc3 3214 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3215 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3216 struct btrfs_file_extent_item);
179e29e4 3217 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3218 encoding = btrfs_file_extent_compression(leaf, fi);
3219 encoding |= btrfs_file_extent_encryption(leaf, fi);
3220 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3221
179e29e4 3222 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3223 item_end +=
db94535d 3224 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3225 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3226 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3227 fi);
39279cc3 3228 }
008630c1 3229 item_end--;
39279cc3 3230 }
8082510e
YZ
3231 if (found_type > min_type) {
3232 del_item = 1;
3233 } else {
3234 if (item_end < new_size)
b888db2b 3235 break;
8082510e
YZ
3236 if (found_key.offset >= new_size)
3237 del_item = 1;
3238 else
3239 del_item = 0;
39279cc3 3240 }
39279cc3 3241 found_extent = 0;
39279cc3 3242 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3243 if (found_type != BTRFS_EXTENT_DATA_KEY)
3244 goto delete;
3245
3246 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3247 u64 num_dec;
db94535d 3248 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3249 if (!del_item && !encoding) {
db94535d
CM
3250 u64 orig_num_bytes =
3251 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3252 extent_num_bytes = new_size -
5f39d397 3253 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3254 extent_num_bytes = extent_num_bytes &
3255 ~((u64)root->sectorsize - 1);
db94535d
CM
3256 btrfs_set_file_extent_num_bytes(leaf, fi,
3257 extent_num_bytes);
3258 num_dec = (orig_num_bytes -
9069218d 3259 extent_num_bytes);
e02119d5 3260 if (root->ref_cows && extent_start != 0)
a76a3cd4 3261 inode_sub_bytes(inode, num_dec);
5f39d397 3262 btrfs_mark_buffer_dirty(leaf);
39279cc3 3263 } else {
db94535d
CM
3264 extent_num_bytes =
3265 btrfs_file_extent_disk_num_bytes(leaf,
3266 fi);
5d4f98a2
YZ
3267 extent_offset = found_key.offset -
3268 btrfs_file_extent_offset(leaf, fi);
3269
39279cc3 3270 /* FIXME blocksize != 4096 */
9069218d 3271 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3272 if (extent_start != 0) {
3273 found_extent = 1;
e02119d5 3274 if (root->ref_cows)
a76a3cd4 3275 inode_sub_bytes(inode, num_dec);
e02119d5 3276 }
39279cc3 3277 }
9069218d 3278 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3279 /*
3280 * we can't truncate inline items that have had
3281 * special encodings
3282 */
3283 if (!del_item &&
3284 btrfs_file_extent_compression(leaf, fi) == 0 &&
3285 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3286 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3287 u32 size = new_size - found_key.offset;
3288
3289 if (root->ref_cows) {
a76a3cd4
YZ
3290 inode_sub_bytes(inode, item_end + 1 -
3291 new_size);
e02119d5
CM
3292 }
3293 size =
3294 btrfs_file_extent_calc_inline_size(size);
9069218d 3295 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3296 size, 1);
e02119d5 3297 } else if (root->ref_cows) {
a76a3cd4
YZ
3298 inode_sub_bytes(inode, item_end + 1 -
3299 found_key.offset);
9069218d 3300 }
39279cc3 3301 }
179e29e4 3302delete:
39279cc3 3303 if (del_item) {
85e21bac
CM
3304 if (!pending_del_nr) {
3305 /* no pending yet, add ourselves */
3306 pending_del_slot = path->slots[0];
3307 pending_del_nr = 1;
3308 } else if (pending_del_nr &&
3309 path->slots[0] + 1 == pending_del_slot) {
3310 /* hop on the pending chunk */
3311 pending_del_nr++;
3312 pending_del_slot = path->slots[0];
3313 } else {
d397712b 3314 BUG();
85e21bac 3315 }
39279cc3
CM
3316 } else {
3317 break;
3318 }
0af3d00b
JB
3319 if (found_extent && (root->ref_cows ||
3320 root == root->fs_info->tree_root)) {
b9473439 3321 btrfs_set_path_blocking(path);
39279cc3 3322 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3323 extent_num_bytes, 0,
3324 btrfs_header_owner(leaf),
33345d01 3325 ino, extent_offset);
39279cc3
CM
3326 BUG_ON(ret);
3327 }
85e21bac 3328
8082510e
YZ
3329 if (found_type == BTRFS_INODE_ITEM_KEY)
3330 break;
3331
3332 if (path->slots[0] == 0 ||
3333 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3334 if (root->ref_cows &&
3335 BTRFS_I(inode)->location.objectid !=
3336 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3337 err = -EAGAIN;
3338 goto out;
3339 }
3340 if (pending_del_nr) {
3341 ret = btrfs_del_items(trans, root, path,
3342 pending_del_slot,
3343 pending_del_nr);
3344 BUG_ON(ret);
3345 pending_del_nr = 0;
3346 }
b3b4aa74 3347 btrfs_release_path(path);
85e21bac 3348 goto search_again;
8082510e
YZ
3349 } else {
3350 path->slots[0]--;
85e21bac 3351 }
39279cc3 3352 }
8082510e 3353out:
85e21bac
CM
3354 if (pending_del_nr) {
3355 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3356 pending_del_nr);
d68fc57b 3357 BUG_ON(ret);
85e21bac 3358 }
39279cc3 3359 btrfs_free_path(path);
8082510e 3360 return err;
39279cc3
CM
3361}
3362
3363/*
3364 * taken from block_truncate_page, but does cow as it zeros out
3365 * any bytes left in the last page in the file.
3366 */
3367static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3368{
3369 struct inode *inode = mapping->host;
db94535d 3370 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3371 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3372 struct btrfs_ordered_extent *ordered;
2ac55d41 3373 struct extent_state *cached_state = NULL;
e6dcd2dc 3374 char *kaddr;
db94535d 3375 u32 blocksize = root->sectorsize;
39279cc3
CM
3376 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3377 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3378 struct page *page;
39279cc3 3379 int ret = 0;
a52d9a80 3380 u64 page_start;
e6dcd2dc 3381 u64 page_end;
39279cc3
CM
3382
3383 if ((offset & (blocksize - 1)) == 0)
3384 goto out;
0ca1f7ce 3385 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3386 if (ret)
3387 goto out;
39279cc3
CM
3388
3389 ret = -ENOMEM;
211c17f5 3390again:
39279cc3 3391 page = grab_cache_page(mapping, index);
5d5e103a 3392 if (!page) {
0ca1f7ce 3393 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3394 goto out;
5d5e103a 3395 }
e6dcd2dc
CM
3396
3397 page_start = page_offset(page);
3398 page_end = page_start + PAGE_CACHE_SIZE - 1;
3399
39279cc3 3400 if (!PageUptodate(page)) {
9ebefb18 3401 ret = btrfs_readpage(NULL, page);
39279cc3 3402 lock_page(page);
211c17f5
CM
3403 if (page->mapping != mapping) {
3404 unlock_page(page);
3405 page_cache_release(page);
3406 goto again;
3407 }
39279cc3
CM
3408 if (!PageUptodate(page)) {
3409 ret = -EIO;
89642229 3410 goto out_unlock;
39279cc3
CM
3411 }
3412 }
211c17f5 3413 wait_on_page_writeback(page);
e6dcd2dc 3414
2ac55d41
JB
3415 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3416 GFP_NOFS);
e6dcd2dc
CM
3417 set_page_extent_mapped(page);
3418
3419 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3420 if (ordered) {
2ac55d41
JB
3421 unlock_extent_cached(io_tree, page_start, page_end,
3422 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3423 unlock_page(page);
3424 page_cache_release(page);
eb84ae03 3425 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3426 btrfs_put_ordered_extent(ordered);
3427 goto again;
3428 }
3429
2ac55d41 3430 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3431 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3432 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3433
2ac55d41
JB
3434 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3435 &cached_state);
9ed74f2d 3436 if (ret) {
2ac55d41
JB
3437 unlock_extent_cached(io_tree, page_start, page_end,
3438 &cached_state, GFP_NOFS);
9ed74f2d
JB
3439 goto out_unlock;
3440 }
3441
e6dcd2dc
CM
3442 ret = 0;
3443 if (offset != PAGE_CACHE_SIZE) {
3444 kaddr = kmap(page);
3445 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3446 flush_dcache_page(page);
3447 kunmap(page);
3448 }
247e743c 3449 ClearPageChecked(page);
e6dcd2dc 3450 set_page_dirty(page);
2ac55d41
JB
3451 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3452 GFP_NOFS);
39279cc3 3453
89642229 3454out_unlock:
5d5e103a 3455 if (ret)
0ca1f7ce 3456 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3457 unlock_page(page);
3458 page_cache_release(page);
3459out:
3460 return ret;
3461}
3462
695a0d0d
JB
3463/*
3464 * This function puts in dummy file extents for the area we're creating a hole
3465 * for. So if we are truncating this file to a larger size we need to insert
3466 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3467 * the range between oldsize and size
3468 */
a41ad394 3469int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3470{
9036c102
YZ
3471 struct btrfs_trans_handle *trans;
3472 struct btrfs_root *root = BTRFS_I(inode)->root;
3473 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3474 struct extent_map *em = NULL;
2ac55d41 3475 struct extent_state *cached_state = NULL;
9036c102 3476 u64 mask = root->sectorsize - 1;
a41ad394 3477 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3478 u64 block_end = (size + mask) & ~mask;
3479 u64 last_byte;
3480 u64 cur_offset;
3481 u64 hole_size;
9ed74f2d 3482 int err = 0;
39279cc3 3483
9036c102
YZ
3484 if (size <= hole_start)
3485 return 0;
3486
9036c102
YZ
3487 while (1) {
3488 struct btrfs_ordered_extent *ordered;
3489 btrfs_wait_ordered_range(inode, hole_start,
3490 block_end - hole_start);
2ac55d41
JB
3491 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3492 &cached_state, GFP_NOFS);
9036c102
YZ
3493 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3494 if (!ordered)
3495 break;
2ac55d41
JB
3496 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3497 &cached_state, GFP_NOFS);
9036c102
YZ
3498 btrfs_put_ordered_extent(ordered);
3499 }
39279cc3 3500
9036c102
YZ
3501 cur_offset = hole_start;
3502 while (1) {
3503 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3504 block_end - cur_offset, 0);
c704005d 3505 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3506 last_byte = min(extent_map_end(em), block_end);
3507 last_byte = (last_byte + mask) & ~mask;
8082510e 3508 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3509 u64 hint_byte = 0;
9036c102 3510 hole_size = last_byte - cur_offset;
9ed74f2d 3511
a22285a6
YZ
3512 trans = btrfs_start_transaction(root, 2);
3513 if (IS_ERR(trans)) {
3514 err = PTR_ERR(trans);
9ed74f2d 3515 break;
a22285a6 3516 }
8082510e
YZ
3517 btrfs_set_trans_block_group(trans, inode);
3518
3519 err = btrfs_drop_extents(trans, inode, cur_offset,
3520 cur_offset + hole_size,
3521 &hint_byte, 1);
3893e33b
JB
3522 if (err)
3523 break;
8082510e 3524
9036c102 3525 err = btrfs_insert_file_extent(trans, root,
33345d01 3526 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3527 0, hole_size, 0, hole_size,
3528 0, 0, 0);
3893e33b
JB
3529 if (err)
3530 break;
8082510e 3531
9036c102
YZ
3532 btrfs_drop_extent_cache(inode, hole_start,
3533 last_byte - 1, 0);
8082510e
YZ
3534
3535 btrfs_end_transaction(trans, root);
9036c102
YZ
3536 }
3537 free_extent_map(em);
a22285a6 3538 em = NULL;
9036c102 3539 cur_offset = last_byte;
8082510e 3540 if (cur_offset >= block_end)
9036c102
YZ
3541 break;
3542 }
1832a6d5 3543
a22285a6 3544 free_extent_map(em);
2ac55d41
JB
3545 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3546 GFP_NOFS);
9036c102
YZ
3547 return err;
3548}
39279cc3 3549
a41ad394 3550static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3551{
a41ad394 3552 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3553 int ret;
3554
a41ad394 3555 if (newsize == oldsize)
8082510e
YZ
3556 return 0;
3557
a41ad394
JB
3558 if (newsize > oldsize) {
3559 i_size_write(inode, newsize);
3560 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3561 truncate_pagecache(inode, oldsize, newsize);
3562 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3563 if (ret) {
a41ad394 3564 btrfs_setsize(inode, oldsize);
8082510e
YZ
3565 return ret;
3566 }
3567
930f028a 3568 mark_inode_dirty(inode);
a41ad394 3569 } else {
8082510e 3570
a41ad394
JB
3571 /*
3572 * We're truncating a file that used to have good data down to
3573 * zero. Make sure it gets into the ordered flush list so that
3574 * any new writes get down to disk quickly.
3575 */
3576 if (newsize == 0)
3577 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3578
a41ad394
JB
3579 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3580 truncate_setsize(inode, newsize);
3581 ret = btrfs_truncate(inode);
8082510e
YZ
3582 }
3583
a41ad394 3584 return ret;
8082510e
YZ
3585}
3586
9036c102
YZ
3587static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3588{
3589 struct inode *inode = dentry->d_inode;
b83cc969 3590 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3591 int err;
39279cc3 3592
b83cc969
LZ
3593 if (btrfs_root_readonly(root))
3594 return -EROFS;
3595
9036c102
YZ
3596 err = inode_change_ok(inode, attr);
3597 if (err)
3598 return err;
2bf5a725 3599
5a3f23d5 3600 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3601 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3602 if (err)
3603 return err;
39279cc3 3604 }
9036c102 3605
1025774c
CH
3606 if (attr->ia_valid) {
3607 setattr_copy(inode, attr);
3608 mark_inode_dirty(inode);
3609
3610 if (attr->ia_valid & ATTR_MODE)
3611 err = btrfs_acl_chmod(inode);
3612 }
33268eaf 3613
39279cc3
CM
3614 return err;
3615}
61295eb8 3616
bd555975 3617void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3618{
3619 struct btrfs_trans_handle *trans;
3620 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3621 unsigned long nr;
39279cc3
CM
3622 int ret;
3623
1abe9b8a 3624 trace_btrfs_inode_evict(inode);
3625
39279cc3 3626 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3627 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
82d5902d 3628 is_free_space_inode(root, inode)))
bd555975
AV
3629 goto no_delete;
3630
39279cc3 3631 if (is_bad_inode(inode)) {
7b128766 3632 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3633 goto no_delete;
3634 }
bd555975 3635 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3636 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3637
c71bf099
YZ
3638 if (root->fs_info->log_root_recovering) {
3639 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3640 goto no_delete;
3641 }
3642
76dda93c
YZ
3643 if (inode->i_nlink > 0) {
3644 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3645 goto no_delete;
3646 }
3647
dbe674a9 3648 btrfs_i_size_write(inode, 0);
5f39d397 3649
8082510e 3650 while (1) {
d68fc57b
YZ
3651 trans = btrfs_start_transaction(root, 0);
3652 BUG_ON(IS_ERR(trans));
8082510e 3653 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3654 trans->block_rsv = root->orphan_block_rsv;
3655
3656 ret = btrfs_block_rsv_check(trans, root,
3657 root->orphan_block_rsv, 0, 5);
3658 if (ret) {
3659 BUG_ON(ret != -EAGAIN);
3660 ret = btrfs_commit_transaction(trans, root);
3661 BUG_ON(ret);
3662 continue;
3663 }
7b128766 3664
d68fc57b 3665 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3666 if (ret != -EAGAIN)
3667 break;
85e21bac 3668
8082510e
YZ
3669 nr = trans->blocks_used;
3670 btrfs_end_transaction(trans, root);
3671 trans = NULL;
3672 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3673
8082510e 3674 }
5f39d397 3675
8082510e
YZ
3676 if (ret == 0) {
3677 ret = btrfs_orphan_del(trans, inode);
3678 BUG_ON(ret);
3679 }
54aa1f4d 3680
581bb050
LZ
3681 if (!(root == root->fs_info->tree_root ||
3682 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3683 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3684
d3c2fdcf 3685 nr = trans->blocks_used;
54aa1f4d 3686 btrfs_end_transaction(trans, root);
d3c2fdcf 3687 btrfs_btree_balance_dirty(root, nr);
39279cc3 3688no_delete:
bd555975 3689 end_writeback(inode);
8082510e 3690 return;
39279cc3
CM
3691}
3692
3693/*
3694 * this returns the key found in the dir entry in the location pointer.
3695 * If no dir entries were found, location->objectid is 0.
3696 */
3697static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3698 struct btrfs_key *location)
3699{
3700 const char *name = dentry->d_name.name;
3701 int namelen = dentry->d_name.len;
3702 struct btrfs_dir_item *di;
3703 struct btrfs_path *path;
3704 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3705 int ret = 0;
39279cc3
CM
3706
3707 path = btrfs_alloc_path();
3708 BUG_ON(!path);
3954401f 3709
33345d01 3710 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3711 namelen, 0);
0d9f7f3e
Y
3712 if (IS_ERR(di))
3713 ret = PTR_ERR(di);
d397712b 3714
c704005d 3715 if (IS_ERR_OR_NULL(di))
3954401f 3716 goto out_err;
d397712b 3717
5f39d397 3718 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3719out:
39279cc3
CM
3720 btrfs_free_path(path);
3721 return ret;
3954401f
CM
3722out_err:
3723 location->objectid = 0;
3724 goto out;
39279cc3
CM
3725}
3726
3727/*
3728 * when we hit a tree root in a directory, the btrfs part of the inode
3729 * needs to be changed to reflect the root directory of the tree root. This
3730 * is kind of like crossing a mount point.
3731 */
3732static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3733 struct inode *dir,
3734 struct dentry *dentry,
3735 struct btrfs_key *location,
3736 struct btrfs_root **sub_root)
39279cc3 3737{
4df27c4d
YZ
3738 struct btrfs_path *path;
3739 struct btrfs_root *new_root;
3740 struct btrfs_root_ref *ref;
3741 struct extent_buffer *leaf;
3742 int ret;
3743 int err = 0;
39279cc3 3744
4df27c4d
YZ
3745 path = btrfs_alloc_path();
3746 if (!path) {
3747 err = -ENOMEM;
3748 goto out;
3749 }
39279cc3 3750
4df27c4d
YZ
3751 err = -ENOENT;
3752 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3753 BTRFS_I(dir)->root->root_key.objectid,
3754 location->objectid);
3755 if (ret) {
3756 if (ret < 0)
3757 err = ret;
3758 goto out;
3759 }
39279cc3 3760
4df27c4d
YZ
3761 leaf = path->nodes[0];
3762 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3763 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3764 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3765 goto out;
39279cc3 3766
4df27c4d
YZ
3767 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3768 (unsigned long)(ref + 1),
3769 dentry->d_name.len);
3770 if (ret)
3771 goto out;
3772
b3b4aa74 3773 btrfs_release_path(path);
4df27c4d
YZ
3774
3775 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3776 if (IS_ERR(new_root)) {
3777 err = PTR_ERR(new_root);
3778 goto out;
3779 }
3780
3781 if (btrfs_root_refs(&new_root->root_item) == 0) {
3782 err = -ENOENT;
3783 goto out;
3784 }
3785
3786 *sub_root = new_root;
3787 location->objectid = btrfs_root_dirid(&new_root->root_item);
3788 location->type = BTRFS_INODE_ITEM_KEY;
3789 location->offset = 0;
3790 err = 0;
3791out:
3792 btrfs_free_path(path);
3793 return err;
39279cc3
CM
3794}
3795
5d4f98a2
YZ
3796static void inode_tree_add(struct inode *inode)
3797{
3798 struct btrfs_root *root = BTRFS_I(inode)->root;
3799 struct btrfs_inode *entry;
03e860bd
FNP
3800 struct rb_node **p;
3801 struct rb_node *parent;
33345d01 3802 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3803again:
3804 p = &root->inode_tree.rb_node;
3805 parent = NULL;
5d4f98a2 3806
1d3382cb 3807 if (inode_unhashed(inode))
76dda93c
YZ
3808 return;
3809
5d4f98a2
YZ
3810 spin_lock(&root->inode_lock);
3811 while (*p) {
3812 parent = *p;
3813 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3814
33345d01 3815 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3816 p = &parent->rb_left;
33345d01 3817 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3818 p = &parent->rb_right;
5d4f98a2
YZ
3819 else {
3820 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3821 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3822 rb_erase(parent, &root->inode_tree);
3823 RB_CLEAR_NODE(parent);
3824 spin_unlock(&root->inode_lock);
3825 goto again;
5d4f98a2
YZ
3826 }
3827 }
3828 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3829 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3830 spin_unlock(&root->inode_lock);
3831}
3832
3833static void inode_tree_del(struct inode *inode)
3834{
3835 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3836 int empty = 0;
5d4f98a2 3837
03e860bd 3838 spin_lock(&root->inode_lock);
5d4f98a2 3839 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3840 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3841 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3842 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3843 }
03e860bd 3844 spin_unlock(&root->inode_lock);
76dda93c 3845
0af3d00b
JB
3846 /*
3847 * Free space cache has inodes in the tree root, but the tree root has a
3848 * root_refs of 0, so this could end up dropping the tree root as a
3849 * snapshot, so we need the extra !root->fs_info->tree_root check to
3850 * make sure we don't drop it.
3851 */
3852 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3853 root != root->fs_info->tree_root) {
76dda93c
YZ
3854 synchronize_srcu(&root->fs_info->subvol_srcu);
3855 spin_lock(&root->inode_lock);
3856 empty = RB_EMPTY_ROOT(&root->inode_tree);
3857 spin_unlock(&root->inode_lock);
3858 if (empty)
3859 btrfs_add_dead_root(root);
3860 }
3861}
3862
3863int btrfs_invalidate_inodes(struct btrfs_root *root)
3864{
3865 struct rb_node *node;
3866 struct rb_node *prev;
3867 struct btrfs_inode *entry;
3868 struct inode *inode;
3869 u64 objectid = 0;
3870
3871 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3872
3873 spin_lock(&root->inode_lock);
3874again:
3875 node = root->inode_tree.rb_node;
3876 prev = NULL;
3877 while (node) {
3878 prev = node;
3879 entry = rb_entry(node, struct btrfs_inode, rb_node);
3880
33345d01 3881 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3882 node = node->rb_left;
33345d01 3883 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3884 node = node->rb_right;
3885 else
3886 break;
3887 }
3888 if (!node) {
3889 while (prev) {
3890 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3891 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3892 node = prev;
3893 break;
3894 }
3895 prev = rb_next(prev);
3896 }
3897 }
3898 while (node) {
3899 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3900 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3901 inode = igrab(&entry->vfs_inode);
3902 if (inode) {
3903 spin_unlock(&root->inode_lock);
3904 if (atomic_read(&inode->i_count) > 1)
3905 d_prune_aliases(inode);
3906 /*
45321ac5 3907 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3908 * the inode cache when its usage count
3909 * hits zero.
3910 */
3911 iput(inode);
3912 cond_resched();
3913 spin_lock(&root->inode_lock);
3914 goto again;
3915 }
3916
3917 if (cond_resched_lock(&root->inode_lock))
3918 goto again;
3919
3920 node = rb_next(node);
3921 }
3922 spin_unlock(&root->inode_lock);
3923 return 0;
5d4f98a2
YZ
3924}
3925
e02119d5
CM
3926static int btrfs_init_locked_inode(struct inode *inode, void *p)
3927{
3928 struct btrfs_iget_args *args = p;
3929 inode->i_ino = args->ino;
e02119d5 3930 BTRFS_I(inode)->root = args->root;
6a63209f 3931 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3932 return 0;
3933}
3934
3935static int btrfs_find_actor(struct inode *inode, void *opaque)
3936{
3937 struct btrfs_iget_args *args = opaque;
33345d01 3938 return args->ino == btrfs_ino(inode) &&
d397712b 3939 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3940}
3941
5d4f98a2
YZ
3942static struct inode *btrfs_iget_locked(struct super_block *s,
3943 u64 objectid,
3944 struct btrfs_root *root)
39279cc3
CM
3945{
3946 struct inode *inode;
3947 struct btrfs_iget_args args;
3948 args.ino = objectid;
3949 args.root = root;
3950
3951 inode = iget5_locked(s, objectid, btrfs_find_actor,
3952 btrfs_init_locked_inode,
3953 (void *)&args);
3954 return inode;
3955}
3956
1a54ef8c
BR
3957/* Get an inode object given its location and corresponding root.
3958 * Returns in *is_new if the inode was read from disk
3959 */
3960struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3961 struct btrfs_root *root, int *new)
1a54ef8c
BR
3962{
3963 struct inode *inode;
3964
3965 inode = btrfs_iget_locked(s, location->objectid, root);
3966 if (!inode)
5d4f98a2 3967 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3968
3969 if (inode->i_state & I_NEW) {
3970 BTRFS_I(inode)->root = root;
3971 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3972 btrfs_read_locked_inode(inode);
5d4f98a2 3973 inode_tree_add(inode);
1a54ef8c 3974 unlock_new_inode(inode);
73f73415
JB
3975 if (new)
3976 *new = 1;
1a54ef8c
BR
3977 }
3978
3979 return inode;
3980}
3981
4df27c4d
YZ
3982static struct inode *new_simple_dir(struct super_block *s,
3983 struct btrfs_key *key,
3984 struct btrfs_root *root)
3985{
3986 struct inode *inode = new_inode(s);
3987
3988 if (!inode)
3989 return ERR_PTR(-ENOMEM);
3990
4df27c4d
YZ
3991 BTRFS_I(inode)->root = root;
3992 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3993 BTRFS_I(inode)->dummy_inode = 1;
3994
3995 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3996 inode->i_op = &simple_dir_inode_operations;
3997 inode->i_fop = &simple_dir_operations;
3998 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3999 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4000
4001 return inode;
4002}
4003
3de4586c 4004struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4005{
d397712b 4006 struct inode *inode;
4df27c4d 4007 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4008 struct btrfs_root *sub_root = root;
4009 struct btrfs_key location;
76dda93c 4010 int index;
5d4f98a2 4011 int ret;
39279cc3
CM
4012
4013 if (dentry->d_name.len > BTRFS_NAME_LEN)
4014 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4015
39279cc3 4016 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4017
39279cc3
CM
4018 if (ret < 0)
4019 return ERR_PTR(ret);
5f39d397 4020
4df27c4d
YZ
4021 if (location.objectid == 0)
4022 return NULL;
4023
4024 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4025 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4026 return inode;
4027 }
4028
4029 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4030
76dda93c 4031 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4032 ret = fixup_tree_root_location(root, dir, dentry,
4033 &location, &sub_root);
4034 if (ret < 0) {
4035 if (ret != -ENOENT)
4036 inode = ERR_PTR(ret);
4037 else
4038 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4039 } else {
73f73415 4040 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4041 }
76dda93c
YZ
4042 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4043
34d19bad 4044 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4045 down_read(&root->fs_info->cleanup_work_sem);
4046 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4047 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4048 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4049 if (ret)
4050 inode = ERR_PTR(ret);
c71bf099
YZ
4051 }
4052
3de4586c
CM
4053 return inode;
4054}
4055
fe15ce44 4056static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4057{
4058 struct btrfs_root *root;
4059
efefb143
YZ
4060 if (!dentry->d_inode && !IS_ROOT(dentry))
4061 dentry = dentry->d_parent;
76dda93c 4062
efefb143
YZ
4063 if (dentry->d_inode) {
4064 root = BTRFS_I(dentry->d_inode)->root;
4065 if (btrfs_root_refs(&root->root_item) == 0)
4066 return 1;
4067 }
76dda93c
YZ
4068 return 0;
4069}
4070
3de4586c
CM
4071static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4072 struct nameidata *nd)
4073{
4074 struct inode *inode;
4075
3de4586c
CM
4076 inode = btrfs_lookup_dentry(dir, dentry);
4077 if (IS_ERR(inode))
4078 return ERR_CAST(inode);
7b128766 4079
39279cc3
CM
4080 return d_splice_alias(inode, dentry);
4081}
4082
16cdcec7 4083unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4084 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4085};
4086
cbdf5a24
DW
4087static int btrfs_real_readdir(struct file *filp, void *dirent,
4088 filldir_t filldir)
39279cc3 4089{
6da6abae 4090 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4091 struct btrfs_root *root = BTRFS_I(inode)->root;
4092 struct btrfs_item *item;
4093 struct btrfs_dir_item *di;
4094 struct btrfs_key key;
5f39d397 4095 struct btrfs_key found_key;
39279cc3 4096 struct btrfs_path *path;
16cdcec7
MX
4097 struct list_head ins_list;
4098 struct list_head del_list;
39279cc3 4099 int ret;
5f39d397 4100 struct extent_buffer *leaf;
39279cc3 4101 int slot;
39279cc3
CM
4102 unsigned char d_type;
4103 int over = 0;
4104 u32 di_cur;
4105 u32 di_total;
4106 u32 di_len;
4107 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4108 char tmp_name[32];
4109 char *name_ptr;
4110 int name_len;
16cdcec7 4111 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4112
4113 /* FIXME, use a real flag for deciding about the key type */
4114 if (root->fs_info->tree_root == root)
4115 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4116
3954401f
CM
4117 /* special case for "." */
4118 if (filp->f_pos == 0) {
33345d01 4119 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
3954401f
CM
4120 if (over)
4121 return 0;
4122 filp->f_pos = 1;
4123 }
3954401f
CM
4124 /* special case for .., just use the back ref */
4125 if (filp->f_pos == 1) {
5ecc7e5d 4126 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4127 over = filldir(dirent, "..", 2,
5ecc7e5d 4128 2, pino, DT_DIR);
3954401f 4129 if (over)
49593bfa 4130 return 0;
3954401f
CM
4131 filp->f_pos = 2;
4132 }
49593bfa 4133 path = btrfs_alloc_path();
16cdcec7
MX
4134 if (!path)
4135 return -ENOMEM;
49593bfa
DW
4136 path->reada = 2;
4137
16cdcec7
MX
4138 if (key_type == BTRFS_DIR_INDEX_KEY) {
4139 INIT_LIST_HEAD(&ins_list);
4140 INIT_LIST_HEAD(&del_list);
4141 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4142 }
4143
39279cc3
CM
4144 btrfs_set_key_type(&key, key_type);
4145 key.offset = filp->f_pos;
33345d01 4146 key.objectid = btrfs_ino(inode);
5f39d397 4147
39279cc3
CM
4148 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4149 if (ret < 0)
4150 goto err;
49593bfa
DW
4151
4152 while (1) {
5f39d397 4153 leaf = path->nodes[0];
39279cc3 4154 slot = path->slots[0];
b9e03af0
LZ
4155 if (slot >= btrfs_header_nritems(leaf)) {
4156 ret = btrfs_next_leaf(root, path);
4157 if (ret < 0)
4158 goto err;
4159 else if (ret > 0)
4160 break;
4161 continue;
39279cc3 4162 }
3de4586c 4163
5f39d397
CM
4164 item = btrfs_item_nr(leaf, slot);
4165 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4166
4167 if (found_key.objectid != key.objectid)
39279cc3 4168 break;
5f39d397 4169 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4170 break;
5f39d397 4171 if (found_key.offset < filp->f_pos)
b9e03af0 4172 goto next;
16cdcec7
MX
4173 if (key_type == BTRFS_DIR_INDEX_KEY &&
4174 btrfs_should_delete_dir_index(&del_list,
4175 found_key.offset))
4176 goto next;
5f39d397
CM
4177
4178 filp->f_pos = found_key.offset;
16cdcec7 4179 is_curr = 1;
49593bfa 4180
39279cc3
CM
4181 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4182 di_cur = 0;
5f39d397 4183 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4184
4185 while (di_cur < di_total) {
5f39d397
CM
4186 struct btrfs_key location;
4187
22a94d44
JB
4188 if (verify_dir_item(root, leaf, di))
4189 break;
4190
5f39d397 4191 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4192 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4193 name_ptr = tmp_name;
4194 } else {
4195 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4196 if (!name_ptr) {
4197 ret = -ENOMEM;
4198 goto err;
4199 }
5f39d397
CM
4200 }
4201 read_extent_buffer(leaf, name_ptr,
4202 (unsigned long)(di + 1), name_len);
4203
4204 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4205 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4206
4207 /* is this a reference to our own snapshot? If so
4208 * skip it
4209 */
4210 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4211 location.objectid == root->root_key.objectid) {
4212 over = 0;
4213 goto skip;
4214 }
5f39d397 4215 over = filldir(dirent, name_ptr, name_len,
49593bfa 4216 found_key.offset, location.objectid,
39279cc3 4217 d_type);
5f39d397 4218
3de4586c 4219skip:
5f39d397
CM
4220 if (name_ptr != tmp_name)
4221 kfree(name_ptr);
4222
39279cc3
CM
4223 if (over)
4224 goto nopos;
5103e947 4225 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4226 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4227 di_cur += di_len;
4228 di = (struct btrfs_dir_item *)((char *)di + di_len);
4229 }
b9e03af0
LZ
4230next:
4231 path->slots[0]++;
39279cc3 4232 }
49593bfa 4233
16cdcec7
MX
4234 if (key_type == BTRFS_DIR_INDEX_KEY) {
4235 if (is_curr)
4236 filp->f_pos++;
4237 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4238 &ins_list);
4239 if (ret)
4240 goto nopos;
4241 }
4242
49593bfa 4243 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4244 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4245 /*
4246 * 32-bit glibc will use getdents64, but then strtol -
4247 * so the last number we can serve is this.
4248 */
4249 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4250 else
4251 filp->f_pos++;
39279cc3
CM
4252nopos:
4253 ret = 0;
4254err:
16cdcec7
MX
4255 if (key_type == BTRFS_DIR_INDEX_KEY)
4256 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4257 btrfs_free_path(path);
39279cc3
CM
4258 return ret;
4259}
4260
a9185b41 4261int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4262{
4263 struct btrfs_root *root = BTRFS_I(inode)->root;
4264 struct btrfs_trans_handle *trans;
4265 int ret = 0;
0af3d00b 4266 bool nolock = false;
39279cc3 4267
8929ecfa 4268 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4269 return 0;
4270
0af3d00b 4271 smp_mb();
82d5902d
LZ
4272 if (root->fs_info->closing && is_free_space_inode(root, inode))
4273 nolock = true;
0af3d00b 4274
a9185b41 4275 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4276 if (nolock)
4277 trans = btrfs_join_transaction_nolock(root, 1);
4278 else
4279 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4280 if (IS_ERR(trans))
4281 return PTR_ERR(trans);
39279cc3 4282 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4283 if (nolock)
4284 ret = btrfs_end_transaction_nolock(trans, root);
4285 else
4286 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4287 }
4288 return ret;
4289}
4290
4291/*
54aa1f4d 4292 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4293 * inode changes. But, it is most likely to find the inode in cache.
4294 * FIXME, needs more benchmarking...there are no reasons other than performance
4295 * to keep or drop this code.
4296 */
4297void btrfs_dirty_inode(struct inode *inode)
4298{
4299 struct btrfs_root *root = BTRFS_I(inode)->root;
4300 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4301 int ret;
4302
4303 if (BTRFS_I(inode)->dummy_inode)
4304 return;
39279cc3 4305
f9295749 4306 trans = btrfs_join_transaction(root, 1);
3612b495 4307 BUG_ON(IS_ERR(trans));
39279cc3 4308 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4309
4310 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4311 if (ret && ret == -ENOSPC) {
4312 /* whoops, lets try again with the full transaction */
4313 btrfs_end_transaction(trans, root);
4314 trans = btrfs_start_transaction(root, 1);
9aeead73 4315 if (IS_ERR(trans)) {
7a36ddec 4316 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4317 "dirty inode %llu error %ld\n",
4318 (unsigned long long)btrfs_ino(inode),
4319 PTR_ERR(trans));
9aeead73
CM
4320 return;
4321 }
94b60442 4322 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4323
94b60442
CM
4324 ret = btrfs_update_inode(trans, root, inode);
4325 if (ret) {
7a36ddec 4326 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4327 "dirty inode %llu error %d\n",
4328 (unsigned long long)btrfs_ino(inode),
4329 ret);
94b60442
CM
4330 }
4331 }
39279cc3 4332 btrfs_end_transaction(trans, root);
16cdcec7
MX
4333 if (BTRFS_I(inode)->delayed_node)
4334 btrfs_balance_delayed_items(root);
39279cc3
CM
4335}
4336
d352ac68
CM
4337/*
4338 * find the highest existing sequence number in a directory
4339 * and then set the in-memory index_cnt variable to reflect
4340 * free sequence numbers
4341 */
aec7477b
JB
4342static int btrfs_set_inode_index_count(struct inode *inode)
4343{
4344 struct btrfs_root *root = BTRFS_I(inode)->root;
4345 struct btrfs_key key, found_key;
4346 struct btrfs_path *path;
4347 struct extent_buffer *leaf;
4348 int ret;
4349
33345d01 4350 key.objectid = btrfs_ino(inode);
aec7477b
JB
4351 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4352 key.offset = (u64)-1;
4353
4354 path = btrfs_alloc_path();
4355 if (!path)
4356 return -ENOMEM;
4357
4358 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4359 if (ret < 0)
4360 goto out;
4361 /* FIXME: we should be able to handle this */
4362 if (ret == 0)
4363 goto out;
4364 ret = 0;
4365
4366 /*
4367 * MAGIC NUMBER EXPLANATION:
4368 * since we search a directory based on f_pos we have to start at 2
4369 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4370 * else has to start at 2
4371 */
4372 if (path->slots[0] == 0) {
4373 BTRFS_I(inode)->index_cnt = 2;
4374 goto out;
4375 }
4376
4377 path->slots[0]--;
4378
4379 leaf = path->nodes[0];
4380 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4381
33345d01 4382 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4383 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4384 BTRFS_I(inode)->index_cnt = 2;
4385 goto out;
4386 }
4387
4388 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4389out:
4390 btrfs_free_path(path);
4391 return ret;
4392}
4393
d352ac68
CM
4394/*
4395 * helper to find a free sequence number in a given directory. This current
4396 * code is very simple, later versions will do smarter things in the btree
4397 */
3de4586c 4398int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4399{
4400 int ret = 0;
4401
4402 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4403 ret = btrfs_inode_delayed_dir_index_count(dir);
4404 if (ret) {
4405 ret = btrfs_set_inode_index_count(dir);
4406 if (ret)
4407 return ret;
4408 }
aec7477b
JB
4409 }
4410
00e4e6b3 4411 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4412 BTRFS_I(dir)->index_cnt++;
4413
4414 return ret;
4415}
4416
39279cc3
CM
4417static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4418 struct btrfs_root *root,
aec7477b 4419 struct inode *dir,
9c58309d 4420 const char *name, int name_len,
d2fb3437
YZ
4421 u64 ref_objectid, u64 objectid,
4422 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4423{
4424 struct inode *inode;
5f39d397 4425 struct btrfs_inode_item *inode_item;
39279cc3 4426 struct btrfs_key *location;
5f39d397 4427 struct btrfs_path *path;
9c58309d
CM
4428 struct btrfs_inode_ref *ref;
4429 struct btrfs_key key[2];
4430 u32 sizes[2];
4431 unsigned long ptr;
39279cc3
CM
4432 int ret;
4433 int owner;
4434
5f39d397
CM
4435 path = btrfs_alloc_path();
4436 BUG_ON(!path);
4437
39279cc3 4438 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4439 if (!inode) {
4440 btrfs_free_path(path);
39279cc3 4441 return ERR_PTR(-ENOMEM);
8fb27640 4442 }
39279cc3 4443
581bb050
LZ
4444 /*
4445 * we have to initialize this early, so we can reclaim the inode
4446 * number if we fail afterwards in this function.
4447 */
4448 inode->i_ino = objectid;
4449
aec7477b 4450 if (dir) {
1abe9b8a 4451 trace_btrfs_inode_request(dir);
4452
3de4586c 4453 ret = btrfs_set_inode_index(dir, index);
09771430 4454 if (ret) {
8fb27640 4455 btrfs_free_path(path);
09771430 4456 iput(inode);
aec7477b 4457 return ERR_PTR(ret);
09771430 4458 }
aec7477b
JB
4459 }
4460 /*
4461 * index_cnt is ignored for everything but a dir,
4462 * btrfs_get_inode_index_count has an explanation for the magic
4463 * number
4464 */
4465 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4466 BTRFS_I(inode)->root = root;
e02119d5 4467 BTRFS_I(inode)->generation = trans->transid;
76195853 4468 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4469 btrfs_set_inode_space_info(root, inode);
b888db2b 4470
39279cc3
CM
4471 if (mode & S_IFDIR)
4472 owner = 0;
4473 else
4474 owner = 1;
d2fb3437
YZ
4475 BTRFS_I(inode)->block_group =
4476 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4477
4478 key[0].objectid = objectid;
4479 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4480 key[0].offset = 0;
4481
4482 key[1].objectid = objectid;
4483 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4484 key[1].offset = ref_objectid;
4485
4486 sizes[0] = sizeof(struct btrfs_inode_item);
4487 sizes[1] = name_len + sizeof(*ref);
4488
b9473439 4489 path->leave_spinning = 1;
9c58309d
CM
4490 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4491 if (ret != 0)
5f39d397
CM
4492 goto fail;
4493
ecc11fab 4494 inode_init_owner(inode, dir, mode);
a76a3cd4 4495 inode_set_bytes(inode, 0);
39279cc3 4496 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4497 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4498 struct btrfs_inode_item);
e02119d5 4499 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4500
4501 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4502 struct btrfs_inode_ref);
4503 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4504 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4505 ptr = (unsigned long)(ref + 1);
4506 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4507
5f39d397
CM
4508 btrfs_mark_buffer_dirty(path->nodes[0]);
4509 btrfs_free_path(path);
4510
39279cc3
CM
4511 location = &BTRFS_I(inode)->location;
4512 location->objectid = objectid;
39279cc3
CM
4513 location->offset = 0;
4514 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4515
6cbff00f
CH
4516 btrfs_inherit_iflags(inode, dir);
4517
94272164
CM
4518 if ((mode & S_IFREG)) {
4519 if (btrfs_test_opt(root, NODATASUM))
4520 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4521 if (btrfs_test_opt(root, NODATACOW) ||
4522 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4523 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4524 }
4525
39279cc3 4526 insert_inode_hash(inode);
5d4f98a2 4527 inode_tree_add(inode);
1abe9b8a 4528
4529 trace_btrfs_inode_new(inode);
4530
39279cc3 4531 return inode;
5f39d397 4532fail:
aec7477b
JB
4533 if (dir)
4534 BTRFS_I(dir)->index_cnt--;
5f39d397 4535 btrfs_free_path(path);
09771430 4536 iput(inode);
5f39d397 4537 return ERR_PTR(ret);
39279cc3
CM
4538}
4539
4540static inline u8 btrfs_inode_type(struct inode *inode)
4541{
4542 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4543}
4544
d352ac68
CM
4545/*
4546 * utility function to add 'inode' into 'parent_inode' with
4547 * a give name and a given sequence number.
4548 * if 'add_backref' is true, also insert a backref from the
4549 * inode to the parent directory.
4550 */
e02119d5
CM
4551int btrfs_add_link(struct btrfs_trans_handle *trans,
4552 struct inode *parent_inode, struct inode *inode,
4553 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4554{
4df27c4d 4555 int ret = 0;
39279cc3 4556 struct btrfs_key key;
e02119d5 4557 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4558 u64 ino = btrfs_ino(inode);
4559 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4560
33345d01 4561 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4562 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4563 } else {
33345d01 4564 key.objectid = ino;
4df27c4d
YZ
4565 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4566 key.offset = 0;
4567 }
4568
33345d01 4569 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4570 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4571 key.objectid, root->root_key.objectid,
33345d01 4572 parent_ino, index, name, name_len);
4df27c4d 4573 } else if (add_backref) {
33345d01
LZ
4574 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4575 parent_ino, index);
4df27c4d 4576 }
39279cc3 4577
39279cc3 4578 if (ret == 0) {
4df27c4d 4579 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4580 parent_inode, &key,
4df27c4d
YZ
4581 btrfs_inode_type(inode), index);
4582 BUG_ON(ret);
4583
dbe674a9 4584 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4585 name_len * 2);
79c44584 4586 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4587 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4588 }
4589 return ret;
4590}
4591
4592static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4593 struct inode *dir, struct dentry *dentry,
4594 struct inode *inode, int backref, u64 index)
39279cc3 4595{
a1b075d2
JB
4596 int err = btrfs_add_link(trans, dir, inode,
4597 dentry->d_name.name, dentry->d_name.len,
4598 backref, index);
39279cc3
CM
4599 if (!err) {
4600 d_instantiate(dentry, inode);
4601 return 0;
4602 }
4603 if (err > 0)
4604 err = -EEXIST;
4605 return err;
4606}
4607
618e21d5
JB
4608static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4609 int mode, dev_t rdev)
4610{
4611 struct btrfs_trans_handle *trans;
4612 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4613 struct inode *inode = NULL;
618e21d5
JB
4614 int err;
4615 int drop_inode = 0;
4616 u64 objectid;
1832a6d5 4617 unsigned long nr = 0;
00e4e6b3 4618 u64 index = 0;
618e21d5
JB
4619
4620 if (!new_valid_dev(rdev))
4621 return -EINVAL;
4622
9ed74f2d
JB
4623 /*
4624 * 2 for inode item and ref
4625 * 2 for dir items
4626 * 1 for xattr if selinux is on
4627 */
a22285a6
YZ
4628 trans = btrfs_start_transaction(root, 5);
4629 if (IS_ERR(trans))
4630 return PTR_ERR(trans);
1832a6d5 4631
618e21d5
JB
4632 btrfs_set_trans_block_group(trans, dir);
4633
581bb050
LZ
4634 err = btrfs_find_free_ino(root, &objectid);
4635 if (err)
4636 goto out_unlock;
4637
aec7477b 4638 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4639 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3 4640 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4641 if (IS_ERR(inode)) {
4642 err = PTR_ERR(inode);
618e21d5 4643 goto out_unlock;
7cf96da3 4644 }
618e21d5 4645
2a7dba39 4646 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4647 if (err) {
4648 drop_inode = 1;
4649 goto out_unlock;
4650 }
4651
618e21d5 4652 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4653 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4654 if (err)
4655 drop_inode = 1;
4656 else {
4657 inode->i_op = &btrfs_special_inode_operations;
4658 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4659 btrfs_update_inode(trans, root, inode);
618e21d5 4660 }
618e21d5
JB
4661 btrfs_update_inode_block_group(trans, inode);
4662 btrfs_update_inode_block_group(trans, dir);
4663out_unlock:
d3c2fdcf 4664 nr = trans->blocks_used;
89ce8a63 4665 btrfs_end_transaction_throttle(trans, root);
a22285a6 4666 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4667 if (drop_inode) {
4668 inode_dec_link_count(inode);
4669 iput(inode);
4670 }
618e21d5
JB
4671 return err;
4672}
4673
39279cc3
CM
4674static int btrfs_create(struct inode *dir, struct dentry *dentry,
4675 int mode, struct nameidata *nd)
4676{
4677 struct btrfs_trans_handle *trans;
4678 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4679 struct inode *inode = NULL;
39279cc3 4680 int drop_inode = 0;
a22285a6 4681 int err;
1832a6d5 4682 unsigned long nr = 0;
39279cc3 4683 u64 objectid;
00e4e6b3 4684 u64 index = 0;
39279cc3 4685
9ed74f2d
JB
4686 /*
4687 * 2 for inode item and ref
4688 * 2 for dir items
4689 * 1 for xattr if selinux is on
4690 */
a22285a6
YZ
4691 trans = btrfs_start_transaction(root, 5);
4692 if (IS_ERR(trans))
4693 return PTR_ERR(trans);
9ed74f2d 4694
39279cc3
CM
4695 btrfs_set_trans_block_group(trans, dir);
4696
581bb050
LZ
4697 err = btrfs_find_free_ino(root, &objectid);
4698 if (err)
4699 goto out_unlock;
4700
aec7477b 4701 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4702 dentry->d_name.len, btrfs_ino(dir), objectid,
a1b075d2 4703 BTRFS_I(dir)->block_group, mode, &index);
7cf96da3
TI
4704 if (IS_ERR(inode)) {
4705 err = PTR_ERR(inode);
39279cc3 4706 goto out_unlock;
7cf96da3 4707 }
39279cc3 4708
2a7dba39 4709 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4710 if (err) {
4711 drop_inode = 1;
4712 goto out_unlock;
4713 }
4714
39279cc3 4715 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4716 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4717 if (err)
4718 drop_inode = 1;
4719 else {
4720 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4721 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4722 inode->i_fop = &btrfs_file_operations;
4723 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4724 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4725 }
39279cc3
CM
4726 btrfs_update_inode_block_group(trans, inode);
4727 btrfs_update_inode_block_group(trans, dir);
4728out_unlock:
d3c2fdcf 4729 nr = trans->blocks_used;
ab78c84d 4730 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4731 if (drop_inode) {
4732 inode_dec_link_count(inode);
4733 iput(inode);
4734 }
d3c2fdcf 4735 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4736 return err;
4737}
4738
4739static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4740 struct dentry *dentry)
4741{
4742 struct btrfs_trans_handle *trans;
4743 struct btrfs_root *root = BTRFS_I(dir)->root;
4744 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4745 u64 index;
1832a6d5 4746 unsigned long nr = 0;
39279cc3
CM
4747 int err;
4748 int drop_inode = 0;
4749
4a8be425
TH
4750 /* do not allow sys_link's with other subvols of the same device */
4751 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4752 return -EXDEV;
4a8be425 4753
c055e99e
AV
4754 if (inode->i_nlink == ~0U)
4755 return -EMLINK;
4a8be425 4756
3de4586c 4757 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4758 if (err)
4759 goto fail;
4760
a22285a6 4761 /*
7e6b6465 4762 * 2 items for inode and inode ref
a22285a6 4763 * 2 items for dir items
7e6b6465 4764 * 1 item for parent inode
a22285a6 4765 */
7e6b6465 4766 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4767 if (IS_ERR(trans)) {
4768 err = PTR_ERR(trans);
4769 goto fail;
4770 }
5f39d397 4771
3153495d
MX
4772 btrfs_inc_nlink(inode);
4773 inode->i_ctime = CURRENT_TIME;
4774
39279cc3 4775 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4776 ihold(inode);
aec7477b 4777
a1b075d2 4778 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4779
a5719521 4780 if (err) {
54aa1f4d 4781 drop_inode = 1;
a5719521 4782 } else {
6a912213 4783 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4784 btrfs_update_inode_block_group(trans, dir);
4785 err = btrfs_update_inode(trans, root, inode);
4786 BUG_ON(err);
6a912213
JB
4787 btrfs_log_new_name(trans, inode, NULL, parent);
4788 dput(parent);
a5719521 4789 }
39279cc3 4790
d3c2fdcf 4791 nr = trans->blocks_used;
ab78c84d 4792 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4793fail:
39279cc3
CM
4794 if (drop_inode) {
4795 inode_dec_link_count(inode);
4796 iput(inode);
4797 }
d3c2fdcf 4798 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4799 return err;
4800}
4801
39279cc3
CM
4802static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4803{
b9d86667 4804 struct inode *inode = NULL;
39279cc3
CM
4805 struct btrfs_trans_handle *trans;
4806 struct btrfs_root *root = BTRFS_I(dir)->root;
4807 int err = 0;
4808 int drop_on_err = 0;
b9d86667 4809 u64 objectid = 0;
00e4e6b3 4810 u64 index = 0;
d3c2fdcf 4811 unsigned long nr = 1;
39279cc3 4812
9ed74f2d
JB
4813 /*
4814 * 2 items for inode and ref
4815 * 2 items for dir items
4816 * 1 for xattr if selinux is on
4817 */
a22285a6
YZ
4818 trans = btrfs_start_transaction(root, 5);
4819 if (IS_ERR(trans))
4820 return PTR_ERR(trans);
9ed74f2d 4821 btrfs_set_trans_block_group(trans, dir);
39279cc3 4822
581bb050
LZ
4823 err = btrfs_find_free_ino(root, &objectid);
4824 if (err)
4825 goto out_fail;
4826
aec7477b 4827 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4828 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3
CM
4829 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4830 &index);
39279cc3
CM
4831 if (IS_ERR(inode)) {
4832 err = PTR_ERR(inode);
4833 goto out_fail;
4834 }
5f39d397 4835
39279cc3 4836 drop_on_err = 1;
33268eaf 4837
2a7dba39 4838 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4839 if (err)
4840 goto out_fail;
4841
39279cc3
CM
4842 inode->i_op = &btrfs_dir_inode_operations;
4843 inode->i_fop = &btrfs_dir_file_operations;
4844 btrfs_set_trans_block_group(trans, inode);
4845
dbe674a9 4846 btrfs_i_size_write(inode, 0);
39279cc3
CM
4847 err = btrfs_update_inode(trans, root, inode);
4848 if (err)
4849 goto out_fail;
5f39d397 4850
a1b075d2
JB
4851 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4852 dentry->d_name.len, 0, index);
39279cc3
CM
4853 if (err)
4854 goto out_fail;
5f39d397 4855
39279cc3
CM
4856 d_instantiate(dentry, inode);
4857 drop_on_err = 0;
39279cc3
CM
4858 btrfs_update_inode_block_group(trans, inode);
4859 btrfs_update_inode_block_group(trans, dir);
4860
4861out_fail:
d3c2fdcf 4862 nr = trans->blocks_used;
ab78c84d 4863 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4864 if (drop_on_err)
4865 iput(inode);
d3c2fdcf 4866 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4867 return err;
4868}
4869
d352ac68
CM
4870/* helper for btfs_get_extent. Given an existing extent in the tree,
4871 * and an extent that you want to insert, deal with overlap and insert
4872 * the new extent into the tree.
4873 */
3b951516
CM
4874static int merge_extent_mapping(struct extent_map_tree *em_tree,
4875 struct extent_map *existing,
e6dcd2dc
CM
4876 struct extent_map *em,
4877 u64 map_start, u64 map_len)
3b951516
CM
4878{
4879 u64 start_diff;
3b951516 4880
e6dcd2dc
CM
4881 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4882 start_diff = map_start - em->start;
4883 em->start = map_start;
4884 em->len = map_len;
c8b97818
CM
4885 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4886 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4887 em->block_start += start_diff;
c8b97818
CM
4888 em->block_len -= start_diff;
4889 }
e6dcd2dc 4890 return add_extent_mapping(em_tree, em);
3b951516
CM
4891}
4892
c8b97818
CM
4893static noinline int uncompress_inline(struct btrfs_path *path,
4894 struct inode *inode, struct page *page,
4895 size_t pg_offset, u64 extent_offset,
4896 struct btrfs_file_extent_item *item)
4897{
4898 int ret;
4899 struct extent_buffer *leaf = path->nodes[0];
4900 char *tmp;
4901 size_t max_size;
4902 unsigned long inline_size;
4903 unsigned long ptr;
261507a0 4904 int compress_type;
c8b97818
CM
4905
4906 WARN_ON(pg_offset != 0);
261507a0 4907 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4908 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4909 inline_size = btrfs_file_extent_inline_item_len(leaf,
4910 btrfs_item_nr(leaf, path->slots[0]));
4911 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4912 if (!tmp)
4913 return -ENOMEM;
c8b97818
CM
4914 ptr = btrfs_file_extent_inline_start(item);
4915
4916 read_extent_buffer(leaf, tmp, ptr, inline_size);
4917
5b050f04 4918 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4919 ret = btrfs_decompress(compress_type, tmp, page,
4920 extent_offset, inline_size, max_size);
c8b97818
CM
4921 if (ret) {
4922 char *kaddr = kmap_atomic(page, KM_USER0);
4923 unsigned long copy_size = min_t(u64,
4924 PAGE_CACHE_SIZE - pg_offset,
4925 max_size - extent_offset);
4926 memset(kaddr + pg_offset, 0, copy_size);
4927 kunmap_atomic(kaddr, KM_USER0);
4928 }
4929 kfree(tmp);
4930 return 0;
4931}
4932
d352ac68
CM
4933/*
4934 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4935 * the ugly parts come from merging extents from the disk with the in-ram
4936 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4937 * where the in-ram extents might be locked pending data=ordered completion.
4938 *
4939 * This also copies inline extents directly into the page.
4940 */
d397712b 4941
a52d9a80 4942struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4943 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4944 int create)
4945{
4946 int ret;
4947 int err = 0;
db94535d 4948 u64 bytenr;
a52d9a80
CM
4949 u64 extent_start = 0;
4950 u64 extent_end = 0;
33345d01 4951 u64 objectid = btrfs_ino(inode);
a52d9a80 4952 u32 found_type;
f421950f 4953 struct btrfs_path *path = NULL;
a52d9a80
CM
4954 struct btrfs_root *root = BTRFS_I(inode)->root;
4955 struct btrfs_file_extent_item *item;
5f39d397
CM
4956 struct extent_buffer *leaf;
4957 struct btrfs_key found_key;
a52d9a80
CM
4958 struct extent_map *em = NULL;
4959 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4961 struct btrfs_trans_handle *trans = NULL;
261507a0 4962 int compress_type;
a52d9a80 4963
a52d9a80 4964again:
890871be 4965 read_lock(&em_tree->lock);
d1310b2e 4966 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4967 if (em)
4968 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4969 read_unlock(&em_tree->lock);
d1310b2e 4970
a52d9a80 4971 if (em) {
e1c4b745
CM
4972 if (em->start > start || em->start + em->len <= start)
4973 free_extent_map(em);
4974 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4975 free_extent_map(em);
4976 else
4977 goto out;
a52d9a80 4978 }
172ddd60 4979 em = alloc_extent_map();
a52d9a80 4980 if (!em) {
d1310b2e
CM
4981 err = -ENOMEM;
4982 goto out;
a52d9a80 4983 }
e6dcd2dc 4984 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4985 em->start = EXTENT_MAP_HOLE;
445a6944 4986 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4987 em->len = (u64)-1;
c8b97818 4988 em->block_len = (u64)-1;
f421950f
CM
4989
4990 if (!path) {
4991 path = btrfs_alloc_path();
4992 BUG_ON(!path);
4993 }
4994
179e29e4
CM
4995 ret = btrfs_lookup_file_extent(trans, root, path,
4996 objectid, start, trans != NULL);
a52d9a80
CM
4997 if (ret < 0) {
4998 err = ret;
4999 goto out;
5000 }
5001
5002 if (ret != 0) {
5003 if (path->slots[0] == 0)
5004 goto not_found;
5005 path->slots[0]--;
5006 }
5007
5f39d397
CM
5008 leaf = path->nodes[0];
5009 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5010 struct btrfs_file_extent_item);
a52d9a80 5011 /* are we inside the extent that was found? */
5f39d397
CM
5012 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5013 found_type = btrfs_key_type(&found_key);
5014 if (found_key.objectid != objectid ||
a52d9a80
CM
5015 found_type != BTRFS_EXTENT_DATA_KEY) {
5016 goto not_found;
5017 }
5018
5f39d397
CM
5019 found_type = btrfs_file_extent_type(leaf, item);
5020 extent_start = found_key.offset;
261507a0 5021 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5022 if (found_type == BTRFS_FILE_EXTENT_REG ||
5023 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5024 extent_end = extent_start +
db94535d 5025 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5026 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5027 size_t size;
5028 size = btrfs_file_extent_inline_len(leaf, item);
5029 extent_end = (extent_start + size + root->sectorsize - 1) &
5030 ~((u64)root->sectorsize - 1);
5031 }
5032
5033 if (start >= extent_end) {
5034 path->slots[0]++;
5035 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5036 ret = btrfs_next_leaf(root, path);
5037 if (ret < 0) {
5038 err = ret;
5039 goto out;
a52d9a80 5040 }
9036c102
YZ
5041 if (ret > 0)
5042 goto not_found;
5043 leaf = path->nodes[0];
a52d9a80 5044 }
9036c102
YZ
5045 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5046 if (found_key.objectid != objectid ||
5047 found_key.type != BTRFS_EXTENT_DATA_KEY)
5048 goto not_found;
5049 if (start + len <= found_key.offset)
5050 goto not_found;
5051 em->start = start;
5052 em->len = found_key.offset - start;
5053 goto not_found_em;
5054 }
5055
d899e052
YZ
5056 if (found_type == BTRFS_FILE_EXTENT_REG ||
5057 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5058 em->start = extent_start;
5059 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5060 em->orig_start = extent_start -
5061 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5062 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5063 if (bytenr == 0) {
5f39d397 5064 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5065 goto insert;
5066 }
261507a0 5067 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5068 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5069 em->compress_type = compress_type;
c8b97818
CM
5070 em->block_start = bytenr;
5071 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5072 item);
5073 } else {
5074 bytenr += btrfs_file_extent_offset(leaf, item);
5075 em->block_start = bytenr;
5076 em->block_len = em->len;
d899e052
YZ
5077 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5078 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5079 }
a52d9a80
CM
5080 goto insert;
5081 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5082 unsigned long ptr;
a52d9a80 5083 char *map;
3326d1b0
CM
5084 size_t size;
5085 size_t extent_offset;
5086 size_t copy_size;
a52d9a80 5087
689f9346 5088 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5089 if (!page || create) {
689f9346 5090 em->start = extent_start;
9036c102 5091 em->len = extent_end - extent_start;
689f9346
Y
5092 goto out;
5093 }
5f39d397 5094
9036c102
YZ
5095 size = btrfs_file_extent_inline_len(leaf, item);
5096 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5097 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5098 size - extent_offset);
3326d1b0 5099 em->start = extent_start + extent_offset;
70dec807
CM
5100 em->len = (copy_size + root->sectorsize - 1) &
5101 ~((u64)root->sectorsize - 1);
ff5b7ee3 5102 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5103 if (compress_type) {
c8b97818 5104 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5105 em->compress_type = compress_type;
5106 }
689f9346 5107 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5108 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5109 if (btrfs_file_extent_compression(leaf, item) !=
5110 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5111 ret = uncompress_inline(path, inode, page,
5112 pg_offset,
5113 extent_offset, item);
5114 BUG_ON(ret);
5115 } else {
5116 map = kmap(page);
5117 read_extent_buffer(leaf, map + pg_offset, ptr,
5118 copy_size);
93c82d57
CM
5119 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5120 memset(map + pg_offset + copy_size, 0,
5121 PAGE_CACHE_SIZE - pg_offset -
5122 copy_size);
5123 }
c8b97818
CM
5124 kunmap(page);
5125 }
179e29e4
CM
5126 flush_dcache_page(page);
5127 } else if (create && PageUptodate(page)) {
0ca1f7ce 5128 WARN_ON(1);
179e29e4
CM
5129 if (!trans) {
5130 kunmap(page);
5131 free_extent_map(em);
5132 em = NULL;
b3b4aa74 5133 btrfs_release_path(path);
f9295749 5134 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5135 if (IS_ERR(trans))
5136 return ERR_CAST(trans);
179e29e4
CM
5137 goto again;
5138 }
c8b97818 5139 map = kmap(page);
70dec807 5140 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5141 copy_size);
c8b97818 5142 kunmap(page);
179e29e4 5143 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5144 }
d1310b2e 5145 set_extent_uptodate(io_tree, em->start,
507903b8 5146 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5147 goto insert;
5148 } else {
d397712b 5149 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5150 WARN_ON(1);
5151 }
5152not_found:
5153 em->start = start;
d1310b2e 5154 em->len = len;
a52d9a80 5155not_found_em:
5f39d397 5156 em->block_start = EXTENT_MAP_HOLE;
9036c102 5157 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5158insert:
b3b4aa74 5159 btrfs_release_path(path);
d1310b2e 5160 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5161 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5162 "[%llu %llu]\n", (unsigned long long)em->start,
5163 (unsigned long long)em->len,
5164 (unsigned long long)start,
5165 (unsigned long long)len);
a52d9a80
CM
5166 err = -EIO;
5167 goto out;
5168 }
d1310b2e
CM
5169
5170 err = 0;
890871be 5171 write_lock(&em_tree->lock);
a52d9a80 5172 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5173 /* it is possible that someone inserted the extent into the tree
5174 * while we had the lock dropped. It is also possible that
5175 * an overlapping map exists in the tree
5176 */
a52d9a80 5177 if (ret == -EEXIST) {
3b951516 5178 struct extent_map *existing;
e6dcd2dc
CM
5179
5180 ret = 0;
5181
3b951516 5182 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5183 if (existing && (existing->start > start ||
5184 existing->start + existing->len <= start)) {
5185 free_extent_map(existing);
5186 existing = NULL;
5187 }
3b951516
CM
5188 if (!existing) {
5189 existing = lookup_extent_mapping(em_tree, em->start,
5190 em->len);
5191 if (existing) {
5192 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5193 em, start,
5194 root->sectorsize);
3b951516
CM
5195 free_extent_map(existing);
5196 if (err) {
5197 free_extent_map(em);
5198 em = NULL;
5199 }
5200 } else {
5201 err = -EIO;
3b951516
CM
5202 free_extent_map(em);
5203 em = NULL;
5204 }
5205 } else {
5206 free_extent_map(em);
5207 em = existing;
e6dcd2dc 5208 err = 0;
a52d9a80 5209 }
a52d9a80 5210 }
890871be 5211 write_unlock(&em_tree->lock);
a52d9a80 5212out:
1abe9b8a 5213
5214 trace_btrfs_get_extent(root, em);
5215
f421950f
CM
5216 if (path)
5217 btrfs_free_path(path);
a52d9a80
CM
5218 if (trans) {
5219 ret = btrfs_end_transaction(trans, root);
d397712b 5220 if (!err)
a52d9a80
CM
5221 err = ret;
5222 }
a52d9a80
CM
5223 if (err) {
5224 free_extent_map(em);
a52d9a80
CM
5225 return ERR_PTR(err);
5226 }
5227 return em;
5228}
5229
ec29ed5b
CM
5230struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5231 size_t pg_offset, u64 start, u64 len,
5232 int create)
5233{
5234 struct extent_map *em;
5235 struct extent_map *hole_em = NULL;
5236 u64 range_start = start;
5237 u64 end;
5238 u64 found;
5239 u64 found_end;
5240 int err = 0;
5241
5242 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5243 if (IS_ERR(em))
5244 return em;
5245 if (em) {
5246 /*
5247 * if our em maps to a hole, there might
5248 * actually be delalloc bytes behind it
5249 */
5250 if (em->block_start != EXTENT_MAP_HOLE)
5251 return em;
5252 else
5253 hole_em = em;
5254 }
5255
5256 /* check to see if we've wrapped (len == -1 or similar) */
5257 end = start + len;
5258 if (end < start)
5259 end = (u64)-1;
5260 else
5261 end -= 1;
5262
5263 em = NULL;
5264
5265 /* ok, we didn't find anything, lets look for delalloc */
5266 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5267 end, len, EXTENT_DELALLOC, 1);
5268 found_end = range_start + found;
5269 if (found_end < range_start)
5270 found_end = (u64)-1;
5271
5272 /*
5273 * we didn't find anything useful, return
5274 * the original results from get_extent()
5275 */
5276 if (range_start > end || found_end <= start) {
5277 em = hole_em;
5278 hole_em = NULL;
5279 goto out;
5280 }
5281
5282 /* adjust the range_start to make sure it doesn't
5283 * go backwards from the start they passed in
5284 */
5285 range_start = max(start,range_start);
5286 found = found_end - range_start;
5287
5288 if (found > 0) {
5289 u64 hole_start = start;
5290 u64 hole_len = len;
5291
172ddd60 5292 em = alloc_extent_map();
ec29ed5b
CM
5293 if (!em) {
5294 err = -ENOMEM;
5295 goto out;
5296 }
5297 /*
5298 * when btrfs_get_extent can't find anything it
5299 * returns one huge hole
5300 *
5301 * make sure what it found really fits our range, and
5302 * adjust to make sure it is based on the start from
5303 * the caller
5304 */
5305 if (hole_em) {
5306 u64 calc_end = extent_map_end(hole_em);
5307
5308 if (calc_end <= start || (hole_em->start > end)) {
5309 free_extent_map(hole_em);
5310 hole_em = NULL;
5311 } else {
5312 hole_start = max(hole_em->start, start);
5313 hole_len = calc_end - hole_start;
5314 }
5315 }
5316 em->bdev = NULL;
5317 if (hole_em && range_start > hole_start) {
5318 /* our hole starts before our delalloc, so we
5319 * have to return just the parts of the hole
5320 * that go until the delalloc starts
5321 */
5322 em->len = min(hole_len,
5323 range_start - hole_start);
5324 em->start = hole_start;
5325 em->orig_start = hole_start;
5326 /*
5327 * don't adjust block start at all,
5328 * it is fixed at EXTENT_MAP_HOLE
5329 */
5330 em->block_start = hole_em->block_start;
5331 em->block_len = hole_len;
5332 } else {
5333 em->start = range_start;
5334 em->len = found;
5335 em->orig_start = range_start;
5336 em->block_start = EXTENT_MAP_DELALLOC;
5337 em->block_len = found;
5338 }
5339 } else if (hole_em) {
5340 return hole_em;
5341 }
5342out:
5343
5344 free_extent_map(hole_em);
5345 if (err) {
5346 free_extent_map(em);
5347 return ERR_PTR(err);
5348 }
5349 return em;
5350}
5351
4b46fce2 5352static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5353 struct extent_map *em,
4b46fce2
JB
5354 u64 start, u64 len)
5355{
5356 struct btrfs_root *root = BTRFS_I(inode)->root;
5357 struct btrfs_trans_handle *trans;
4b46fce2
JB
5358 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5359 struct btrfs_key ins;
5360 u64 alloc_hint;
5361 int ret;
16d299ac 5362 bool insert = false;
4b46fce2 5363
16d299ac
JB
5364 /*
5365 * Ok if the extent map we looked up is a hole and is for the exact
5366 * range we want, there is no reason to allocate a new one, however if
5367 * it is not right then we need to free this one and drop the cache for
5368 * our range.
5369 */
5370 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5371 em->len != len) {
5372 free_extent_map(em);
5373 em = NULL;
5374 insert = true;
5375 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5376 }
4b46fce2
JB
5377
5378 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5379 if (IS_ERR(trans))
5380 return ERR_CAST(trans);
4b46fce2 5381
4cb5300b
CM
5382 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5383 btrfs_add_inode_defrag(trans, inode);
5384
4b46fce2
JB
5385 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5386
5387 alloc_hint = get_extent_allocation_hint(inode, start, len);
5388 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5389 alloc_hint, (u64)-1, &ins, 1);
5390 if (ret) {
5391 em = ERR_PTR(ret);
5392 goto out;
5393 }
5394
4b46fce2 5395 if (!em) {
172ddd60 5396 em = alloc_extent_map();
16d299ac
JB
5397 if (!em) {
5398 em = ERR_PTR(-ENOMEM);
5399 goto out;
5400 }
4b46fce2
JB
5401 }
5402
5403 em->start = start;
5404 em->orig_start = em->start;
5405 em->len = ins.offset;
5406
5407 em->block_start = ins.objectid;
5408 em->block_len = ins.offset;
5409 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5410
5411 /*
5412 * We need to do this because if we're using the original em we searched
5413 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5414 */
5415 em->flags = 0;
4b46fce2
JB
5416 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5417
16d299ac 5418 while (insert) {
4b46fce2
JB
5419 write_lock(&em_tree->lock);
5420 ret = add_extent_mapping(em_tree, em);
5421 write_unlock(&em_tree->lock);
5422 if (ret != -EEXIST)
5423 break;
5424 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5425 }
5426
5427 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5428 ins.offset, ins.offset, 0);
5429 if (ret) {
5430 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5431 em = ERR_PTR(ret);
5432 }
5433out:
5434 btrfs_end_transaction(trans, root);
5435 return em;
5436}
5437
46bfbb5c
CM
5438/*
5439 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5440 * block must be cow'd
5441 */
5442static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5443 struct inode *inode, u64 offset, u64 len)
5444{
5445 struct btrfs_path *path;
5446 int ret;
5447 struct extent_buffer *leaf;
5448 struct btrfs_root *root = BTRFS_I(inode)->root;
5449 struct btrfs_file_extent_item *fi;
5450 struct btrfs_key key;
5451 u64 disk_bytenr;
5452 u64 backref_offset;
5453 u64 extent_end;
5454 u64 num_bytes;
5455 int slot;
5456 int found_type;
5457
5458 path = btrfs_alloc_path();
5459 if (!path)
5460 return -ENOMEM;
5461
33345d01 5462 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5463 offset, 0);
5464 if (ret < 0)
5465 goto out;
5466
5467 slot = path->slots[0];
5468 if (ret == 1) {
5469 if (slot == 0) {
5470 /* can't find the item, must cow */
5471 ret = 0;
5472 goto out;
5473 }
5474 slot--;
5475 }
5476 ret = 0;
5477 leaf = path->nodes[0];
5478 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5479 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5480 key.type != BTRFS_EXTENT_DATA_KEY) {
5481 /* not our file or wrong item type, must cow */
5482 goto out;
5483 }
5484
5485 if (key.offset > offset) {
5486 /* Wrong offset, must cow */
5487 goto out;
5488 }
5489
5490 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5491 found_type = btrfs_file_extent_type(leaf, fi);
5492 if (found_type != BTRFS_FILE_EXTENT_REG &&
5493 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5494 /* not a regular extent, must cow */
5495 goto out;
5496 }
5497 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5498 backref_offset = btrfs_file_extent_offset(leaf, fi);
5499
5500 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5501 if (extent_end < offset + len) {
5502 /* extent doesn't include our full range, must cow */
5503 goto out;
5504 }
5505
5506 if (btrfs_extent_readonly(root, disk_bytenr))
5507 goto out;
5508
5509 /*
5510 * look for other files referencing this extent, if we
5511 * find any we must cow
5512 */
33345d01 5513 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5514 key.offset - backref_offset, disk_bytenr))
5515 goto out;
5516
5517 /*
5518 * adjust disk_bytenr and num_bytes to cover just the bytes
5519 * in this extent we are about to write. If there
5520 * are any csums in that range we have to cow in order
5521 * to keep the csums correct
5522 */
5523 disk_bytenr += backref_offset;
5524 disk_bytenr += offset - key.offset;
5525 num_bytes = min(offset + len, extent_end) - offset;
5526 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5527 goto out;
5528 /*
5529 * all of the above have passed, it is safe to overwrite this extent
5530 * without cow
5531 */
5532 ret = 1;
5533out:
5534 btrfs_free_path(path);
5535 return ret;
5536}
5537
4b46fce2
JB
5538static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5539 struct buffer_head *bh_result, int create)
5540{
5541 struct extent_map *em;
5542 struct btrfs_root *root = BTRFS_I(inode)->root;
5543 u64 start = iblock << inode->i_blkbits;
5544 u64 len = bh_result->b_size;
46bfbb5c 5545 struct btrfs_trans_handle *trans;
4b46fce2
JB
5546
5547 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5548 if (IS_ERR(em))
5549 return PTR_ERR(em);
5550
5551 /*
5552 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5553 * io. INLINE is special, and we could probably kludge it in here, but
5554 * it's still buffered so for safety lets just fall back to the generic
5555 * buffered path.
5556 *
5557 * For COMPRESSED we _have_ to read the entire extent in so we can
5558 * decompress it, so there will be buffering required no matter what we
5559 * do, so go ahead and fallback to buffered.
5560 *
5561 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5562 * to buffered IO. Don't blame me, this is the price we pay for using
5563 * the generic code.
5564 */
5565 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5566 em->block_start == EXTENT_MAP_INLINE) {
5567 free_extent_map(em);
5568 return -ENOTBLK;
5569 }
5570
5571 /* Just a good old fashioned hole, return */
5572 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5573 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5574 free_extent_map(em);
5575 /* DIO will do one hole at a time, so just unlock a sector */
5576 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5577 start + root->sectorsize - 1, GFP_NOFS);
5578 return 0;
5579 }
5580
5581 /*
5582 * We don't allocate a new extent in the following cases
5583 *
5584 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5585 * existing extent.
5586 * 2) The extent is marked as PREALLOC. We're good to go here and can
5587 * just use the extent.
5588 *
5589 */
46bfbb5c
CM
5590 if (!create) {
5591 len = em->len - (start - em->start);
4b46fce2 5592 goto map;
46bfbb5c 5593 }
4b46fce2
JB
5594
5595 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5596 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5597 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5598 int type;
5599 int ret;
46bfbb5c 5600 u64 block_start;
4b46fce2
JB
5601
5602 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5603 type = BTRFS_ORDERED_PREALLOC;
5604 else
5605 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5606 len = min(len, em->len - (start - em->start));
4b46fce2 5607 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5608
5609 /*
5610 * we're not going to log anything, but we do need
5611 * to make sure the current transaction stays open
5612 * while we look for nocow cross refs
5613 */
5614 trans = btrfs_join_transaction(root, 0);
3612b495 5615 if (IS_ERR(trans))
46bfbb5c
CM
5616 goto must_cow;
5617
5618 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5619 ret = btrfs_add_ordered_extent_dio(inode, start,
5620 block_start, len, len, type);
5621 btrfs_end_transaction(trans, root);
5622 if (ret) {
5623 free_extent_map(em);
5624 return ret;
5625 }
5626 goto unlock;
4b46fce2 5627 }
46bfbb5c 5628 btrfs_end_transaction(trans, root);
4b46fce2 5629 }
46bfbb5c
CM
5630must_cow:
5631 /*
5632 * this will cow the extent, reset the len in case we changed
5633 * it above
5634 */
5635 len = bh_result->b_size;
16d299ac 5636 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5637 if (IS_ERR(em))
5638 return PTR_ERR(em);
5639 len = min(len, em->len - (start - em->start));
5640unlock:
4845e44f
CM
5641 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5642 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5643 0, NULL, GFP_NOFS);
4b46fce2
JB
5644map:
5645 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5646 inode->i_blkbits;
46bfbb5c 5647 bh_result->b_size = len;
4b46fce2
JB
5648 bh_result->b_bdev = em->bdev;
5649 set_buffer_mapped(bh_result);
5650 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5651 set_buffer_new(bh_result);
5652
5653 free_extent_map(em);
5654
5655 return 0;
5656}
5657
5658struct btrfs_dio_private {
5659 struct inode *inode;
5660 u64 logical_offset;
5661 u64 disk_bytenr;
5662 u64 bytes;
5663 u32 *csums;
5664 void *private;
e65e1535
MX
5665
5666 /* number of bios pending for this dio */
5667 atomic_t pending_bios;
5668
5669 /* IO errors */
5670 int errors;
5671
5672 struct bio *orig_bio;
4b46fce2
JB
5673};
5674
5675static void btrfs_endio_direct_read(struct bio *bio, int err)
5676{
e65e1535 5677 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5678 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5679 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5680 struct inode *inode = dip->inode;
5681 struct btrfs_root *root = BTRFS_I(inode)->root;
5682 u64 start;
5683 u32 *private = dip->csums;
5684
5685 start = dip->logical_offset;
5686 do {
5687 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5688 struct page *page = bvec->bv_page;
5689 char *kaddr;
5690 u32 csum = ~(u32)0;
5691 unsigned long flags;
5692
5693 local_irq_save(flags);
5694 kaddr = kmap_atomic(page, KM_IRQ0);
5695 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5696 csum, bvec->bv_len);
5697 btrfs_csum_final(csum, (char *)&csum);
5698 kunmap_atomic(kaddr, KM_IRQ0);
5699 local_irq_restore(flags);
5700
5701 flush_dcache_page(bvec->bv_page);
5702 if (csum != *private) {
33345d01 5703 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5704 " %llu csum %u private %u\n",
33345d01
LZ
5705 (unsigned long long)btrfs_ino(inode),
5706 (unsigned long long)start,
4b46fce2
JB
5707 csum, *private);
5708 err = -EIO;
5709 }
5710 }
5711
5712 start += bvec->bv_len;
5713 private++;
5714 bvec++;
5715 } while (bvec <= bvec_end);
5716
5717 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5718 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5719 bio->bi_private = dip->private;
5720
5721 kfree(dip->csums);
5722 kfree(dip);
c0da7aa1
JB
5723
5724 /* If we had a csum failure make sure to clear the uptodate flag */
5725 if (err)
5726 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5727 dio_end_io(bio, err);
5728}
5729
5730static void btrfs_endio_direct_write(struct bio *bio, int err)
5731{
5732 struct btrfs_dio_private *dip = bio->bi_private;
5733 struct inode *inode = dip->inode;
5734 struct btrfs_root *root = BTRFS_I(inode)->root;
5735 struct btrfs_trans_handle *trans;
5736 struct btrfs_ordered_extent *ordered = NULL;
5737 struct extent_state *cached_state = NULL;
163cf09c
CM
5738 u64 ordered_offset = dip->logical_offset;
5739 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5740 int ret;
5741
5742 if (err)
5743 goto out_done;
163cf09c
CM
5744again:
5745 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5746 &ordered_offset,
5747 ordered_bytes);
4b46fce2 5748 if (!ret)
163cf09c 5749 goto out_test;
4b46fce2
JB
5750
5751 BUG_ON(!ordered);
5752
5753 trans = btrfs_join_transaction(root, 1);
3612b495 5754 if (IS_ERR(trans)) {
4b46fce2
JB
5755 err = -ENOMEM;
5756 goto out;
5757 }
5758 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5759
5760 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5761 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5762 if (!ret)
5763 ret = btrfs_update_inode(trans, root, inode);
5764 err = ret;
5765 goto out;
5766 }
5767
5768 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5769 ordered->file_offset + ordered->len - 1, 0,
5770 &cached_state, GFP_NOFS);
5771
5772 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5773 ret = btrfs_mark_extent_written(trans, inode,
5774 ordered->file_offset,
5775 ordered->file_offset +
5776 ordered->len);
5777 if (ret) {
5778 err = ret;
5779 goto out_unlock;
5780 }
5781 } else {
5782 ret = insert_reserved_file_extent(trans, inode,
5783 ordered->file_offset,
5784 ordered->start,
5785 ordered->disk_len,
5786 ordered->len,
5787 ordered->len,
5788 0, 0, 0,
5789 BTRFS_FILE_EXTENT_REG);
5790 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5791 ordered->file_offset, ordered->len);
5792 if (ret) {
5793 err = ret;
5794 WARN_ON(1);
5795 goto out_unlock;
5796 }
5797 }
5798
5799 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5800 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5801 if (!ret)
5802 btrfs_update_inode(trans, root, inode);
5803 ret = 0;
4b46fce2
JB
5804out_unlock:
5805 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5806 ordered->file_offset + ordered->len - 1,
5807 &cached_state, GFP_NOFS);
5808out:
5809 btrfs_delalloc_release_metadata(inode, ordered->len);
5810 btrfs_end_transaction(trans, root);
163cf09c 5811 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5812 btrfs_put_ordered_extent(ordered);
5813 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5814
5815out_test:
5816 /*
5817 * our bio might span multiple ordered extents. If we haven't
5818 * completed the accounting for the whole dio, go back and try again
5819 */
5820 if (ordered_offset < dip->logical_offset + dip->bytes) {
5821 ordered_bytes = dip->logical_offset + dip->bytes -
5822 ordered_offset;
5823 goto again;
5824 }
4b46fce2
JB
5825out_done:
5826 bio->bi_private = dip->private;
5827
5828 kfree(dip->csums);
5829 kfree(dip);
c0da7aa1
JB
5830
5831 /* If we had an error make sure to clear the uptodate flag */
5832 if (err)
5833 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5834 dio_end_io(bio, err);
5835}
5836
eaf25d93
CM
5837static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5838 struct bio *bio, int mirror_num,
5839 unsigned long bio_flags, u64 offset)
5840{
5841 int ret;
5842 struct btrfs_root *root = BTRFS_I(inode)->root;
5843 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5844 BUG_ON(ret);
5845 return 0;
5846}
5847
e65e1535
MX
5848static void btrfs_end_dio_bio(struct bio *bio, int err)
5849{
5850 struct btrfs_dio_private *dip = bio->bi_private;
5851
5852 if (err) {
33345d01 5853 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5854 "sector %#Lx len %u err no %d\n",
33345d01 5855 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5856 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5857 dip->errors = 1;
5858
5859 /*
5860 * before atomic variable goto zero, we must make sure
5861 * dip->errors is perceived to be set.
5862 */
5863 smp_mb__before_atomic_dec();
5864 }
5865
5866 /* if there are more bios still pending for this dio, just exit */
5867 if (!atomic_dec_and_test(&dip->pending_bios))
5868 goto out;
5869
5870 if (dip->errors)
5871 bio_io_error(dip->orig_bio);
5872 else {
5873 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5874 bio_endio(dip->orig_bio, 0);
5875 }
5876out:
5877 bio_put(bio);
5878}
5879
5880static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5881 u64 first_sector, gfp_t gfp_flags)
5882{
5883 int nr_vecs = bio_get_nr_vecs(bdev);
5884 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5885}
5886
5887static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5888 int rw, u64 file_offset, int skip_sum,
1ae39938 5889 u32 *csums, int async_submit)
e65e1535
MX
5890{
5891 int write = rw & REQ_WRITE;
5892 struct btrfs_root *root = BTRFS_I(inode)->root;
5893 int ret;
5894
5895 bio_get(bio);
5896 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5897 if (ret)
5898 goto err;
5899
1ae39938
JB
5900 if (skip_sum)
5901 goto map;
5902
5903 if (write && async_submit) {
e65e1535
MX
5904 ret = btrfs_wq_submit_bio(root->fs_info,
5905 inode, rw, bio, 0, 0,
5906 file_offset,
5907 __btrfs_submit_bio_start_direct_io,
5908 __btrfs_submit_bio_done);
5909 goto err;
1ae39938
JB
5910 } else if (write) {
5911 /*
5912 * If we aren't doing async submit, calculate the csum of the
5913 * bio now.
5914 */
5915 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5916 if (ret)
5917 goto err;
c2db1073
TI
5918 } else if (!skip_sum) {
5919 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5920 file_offset, csums);
c2db1073
TI
5921 if (ret)
5922 goto err;
5923 }
e65e1535 5924
1ae39938
JB
5925map:
5926 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5927err:
5928 bio_put(bio);
5929 return ret;
5930}
5931
5932static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5933 int skip_sum)
5934{
5935 struct inode *inode = dip->inode;
5936 struct btrfs_root *root = BTRFS_I(inode)->root;
5937 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5938 struct bio *bio;
5939 struct bio *orig_bio = dip->orig_bio;
5940 struct bio_vec *bvec = orig_bio->bi_io_vec;
5941 u64 start_sector = orig_bio->bi_sector;
5942 u64 file_offset = dip->logical_offset;
5943 u64 submit_len = 0;
5944 u64 map_length;
5945 int nr_pages = 0;
5946 u32 *csums = dip->csums;
5947 int ret = 0;
1ae39938 5948 int async_submit = 0;
98bc3149 5949 int write = rw & REQ_WRITE;
e65e1535 5950
e65e1535
MX
5951 map_length = orig_bio->bi_size;
5952 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5953 &map_length, NULL, 0);
5954 if (ret) {
64728bbb 5955 bio_put(orig_bio);
e65e1535
MX
5956 return -EIO;
5957 }
5958
02f57c7a
JB
5959 if (map_length >= orig_bio->bi_size) {
5960 bio = orig_bio;
5961 goto submit;
5962 }
5963
1ae39938 5964 async_submit = 1;
02f57c7a
JB
5965 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5966 if (!bio)
5967 return -ENOMEM;
5968 bio->bi_private = dip;
5969 bio->bi_end_io = btrfs_end_dio_bio;
5970 atomic_inc(&dip->pending_bios);
5971
e65e1535
MX
5972 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5973 if (unlikely(map_length < submit_len + bvec->bv_len ||
5974 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5975 bvec->bv_offset) < bvec->bv_len)) {
5976 /*
5977 * inc the count before we submit the bio so
5978 * we know the end IO handler won't happen before
5979 * we inc the count. Otherwise, the dip might get freed
5980 * before we're done setting it up
5981 */
5982 atomic_inc(&dip->pending_bios);
5983 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5984 file_offset, skip_sum,
1ae39938 5985 csums, async_submit);
e65e1535
MX
5986 if (ret) {
5987 bio_put(bio);
5988 atomic_dec(&dip->pending_bios);
5989 goto out_err;
5990 }
5991
98bc3149
JB
5992 /* Write's use the ordered csums */
5993 if (!write && !skip_sum)
e65e1535
MX
5994 csums = csums + nr_pages;
5995 start_sector += submit_len >> 9;
5996 file_offset += submit_len;
5997
5998 submit_len = 0;
5999 nr_pages = 0;
6000
6001 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6002 start_sector, GFP_NOFS);
6003 if (!bio)
6004 goto out_err;
6005 bio->bi_private = dip;
6006 bio->bi_end_io = btrfs_end_dio_bio;
6007
6008 map_length = orig_bio->bi_size;
6009 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6010 &map_length, NULL, 0);
6011 if (ret) {
6012 bio_put(bio);
6013 goto out_err;
6014 }
6015 } else {
6016 submit_len += bvec->bv_len;
6017 nr_pages ++;
6018 bvec++;
6019 }
6020 }
6021
02f57c7a 6022submit:
e65e1535 6023 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6024 csums, async_submit);
e65e1535
MX
6025 if (!ret)
6026 return 0;
6027
6028 bio_put(bio);
6029out_err:
6030 dip->errors = 1;
6031 /*
6032 * before atomic variable goto zero, we must
6033 * make sure dip->errors is perceived to be set.
6034 */
6035 smp_mb__before_atomic_dec();
6036 if (atomic_dec_and_test(&dip->pending_bios))
6037 bio_io_error(dip->orig_bio);
6038
6039 /* bio_end_io() will handle error, so we needn't return it */
6040 return 0;
6041}
6042
4b46fce2
JB
6043static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6044 loff_t file_offset)
6045{
6046 struct btrfs_root *root = BTRFS_I(inode)->root;
6047 struct btrfs_dio_private *dip;
6048 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6049 int skip_sum;
7b6d91da 6050 int write = rw & REQ_WRITE;
4b46fce2
JB
6051 int ret = 0;
6052
6053 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6054
6055 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6056 if (!dip) {
6057 ret = -ENOMEM;
6058 goto free_ordered;
6059 }
6060 dip->csums = NULL;
6061
98bc3149
JB
6062 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6063 if (!write && !skip_sum) {
4b46fce2
JB
6064 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6065 if (!dip->csums) {
b4966b77 6066 kfree(dip);
4b46fce2
JB
6067 ret = -ENOMEM;
6068 goto free_ordered;
6069 }
6070 }
6071
6072 dip->private = bio->bi_private;
6073 dip->inode = inode;
6074 dip->logical_offset = file_offset;
6075
4b46fce2
JB
6076 dip->bytes = 0;
6077 do {
6078 dip->bytes += bvec->bv_len;
6079 bvec++;
6080 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6081
46bfbb5c 6082 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6083 bio->bi_private = dip;
e65e1535
MX
6084 dip->errors = 0;
6085 dip->orig_bio = bio;
6086 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6087
6088 if (write)
6089 bio->bi_end_io = btrfs_endio_direct_write;
6090 else
6091 bio->bi_end_io = btrfs_endio_direct_read;
6092
e65e1535
MX
6093 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6094 if (!ret)
eaf25d93 6095 return;
4b46fce2
JB
6096free_ordered:
6097 /*
6098 * If this is a write, we need to clean up the reserved space and kill
6099 * the ordered extent.
6100 */
6101 if (write) {
6102 struct btrfs_ordered_extent *ordered;
955256f2 6103 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6104 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6105 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6106 btrfs_free_reserved_extent(root, ordered->start,
6107 ordered->disk_len);
6108 btrfs_put_ordered_extent(ordered);
6109 btrfs_put_ordered_extent(ordered);
6110 }
6111 bio_endio(bio, ret);
6112}
6113
5a5f79b5
CM
6114static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6115 const struct iovec *iov, loff_t offset,
6116 unsigned long nr_segs)
6117{
6118 int seg;
a1b75f7d 6119 int i;
5a5f79b5
CM
6120 size_t size;
6121 unsigned long addr;
6122 unsigned blocksize_mask = root->sectorsize - 1;
6123 ssize_t retval = -EINVAL;
6124 loff_t end = offset;
6125
6126 if (offset & blocksize_mask)
6127 goto out;
6128
6129 /* Check the memory alignment. Blocks cannot straddle pages */
6130 for (seg = 0; seg < nr_segs; seg++) {
6131 addr = (unsigned long)iov[seg].iov_base;
6132 size = iov[seg].iov_len;
6133 end += size;
a1b75f7d 6134 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6135 goto out;
a1b75f7d
JB
6136
6137 /* If this is a write we don't need to check anymore */
6138 if (rw & WRITE)
6139 continue;
6140
6141 /*
6142 * Check to make sure we don't have duplicate iov_base's in this
6143 * iovec, if so return EINVAL, otherwise we'll get csum errors
6144 * when reading back.
6145 */
6146 for (i = seg + 1; i < nr_segs; i++) {
6147 if (iov[seg].iov_base == iov[i].iov_base)
6148 goto out;
6149 }
5a5f79b5
CM
6150 }
6151 retval = 0;
6152out:
6153 return retval;
6154}
16432985
CM
6155static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6156 const struct iovec *iov, loff_t offset,
6157 unsigned long nr_segs)
6158{
4b46fce2
JB
6159 struct file *file = iocb->ki_filp;
6160 struct inode *inode = file->f_mapping->host;
6161 struct btrfs_ordered_extent *ordered;
4845e44f 6162 struct extent_state *cached_state = NULL;
4b46fce2
JB
6163 u64 lockstart, lockend;
6164 ssize_t ret;
4845e44f
CM
6165 int writing = rw & WRITE;
6166 int write_bits = 0;
3f7c579c 6167 size_t count = iov_length(iov, nr_segs);
4b46fce2 6168
5a5f79b5
CM
6169 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6170 offset, nr_segs)) {
6171 return 0;
6172 }
6173
4b46fce2 6174 lockstart = offset;
3f7c579c
CM
6175 lockend = offset + count - 1;
6176
6177 if (writing) {
6178 ret = btrfs_delalloc_reserve_space(inode, count);
6179 if (ret)
6180 goto out;
6181 }
4845e44f 6182
4b46fce2 6183 while (1) {
4845e44f
CM
6184 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6185 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6186 /*
6187 * We're concerned with the entire range that we're going to be
6188 * doing DIO to, so we need to make sure theres no ordered
6189 * extents in this range.
6190 */
6191 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6192 lockend - lockstart + 1);
6193 if (!ordered)
6194 break;
4845e44f
CM
6195 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6196 &cached_state, GFP_NOFS);
4b46fce2
JB
6197 btrfs_start_ordered_extent(inode, ordered, 1);
6198 btrfs_put_ordered_extent(ordered);
6199 cond_resched();
6200 }
6201
4845e44f
CM
6202 /*
6203 * we don't use btrfs_set_extent_delalloc because we don't want
6204 * the dirty or uptodate bits
6205 */
6206 if (writing) {
6207 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6208 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6209 EXTENT_DELALLOC, 0, NULL, &cached_state,
6210 GFP_NOFS);
6211 if (ret) {
6212 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6213 lockend, EXTENT_LOCKED | write_bits,
6214 1, 0, &cached_state, GFP_NOFS);
6215 goto out;
6216 }
6217 }
6218
6219 free_extent_state(cached_state);
6220 cached_state = NULL;
6221
5a5f79b5
CM
6222 ret = __blockdev_direct_IO(rw, iocb, inode,
6223 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6224 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6225 btrfs_submit_direct, 0);
4b46fce2
JB
6226
6227 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6228 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6229 offset + iov_length(iov, nr_segs) - 1,
6230 EXTENT_LOCKED | write_bits, 1, 0,
6231 &cached_state, GFP_NOFS);
4b46fce2
JB
6232 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6233 /*
6234 * We're falling back to buffered, unlock the section we didn't
6235 * do IO on.
6236 */
4845e44f
CM
6237 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6238 offset + iov_length(iov, nr_segs) - 1,
6239 EXTENT_LOCKED | write_bits, 1, 0,
6240 &cached_state, GFP_NOFS);
4b46fce2 6241 }
4845e44f
CM
6242out:
6243 free_extent_state(cached_state);
4b46fce2 6244 return ret;
16432985
CM
6245}
6246
1506fcc8
YS
6247static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6248 __u64 start, __u64 len)
6249{
ec29ed5b 6250 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6251}
6252
a52d9a80 6253int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6254{
d1310b2e
CM
6255 struct extent_io_tree *tree;
6256 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6257 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6258}
1832a6d5 6259
a52d9a80 6260static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6261{
d1310b2e 6262 struct extent_io_tree *tree;
b888db2b
CM
6263
6264
6265 if (current->flags & PF_MEMALLOC) {
6266 redirty_page_for_writepage(wbc, page);
6267 unlock_page(page);
6268 return 0;
6269 }
d1310b2e 6270 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6271 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6272}
6273
f421950f
CM
6274int btrfs_writepages(struct address_space *mapping,
6275 struct writeback_control *wbc)
b293f02e 6276{
d1310b2e 6277 struct extent_io_tree *tree;
771ed689 6278
d1310b2e 6279 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6280 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6281}
6282
3ab2fb5a
CM
6283static int
6284btrfs_readpages(struct file *file, struct address_space *mapping,
6285 struct list_head *pages, unsigned nr_pages)
6286{
d1310b2e
CM
6287 struct extent_io_tree *tree;
6288 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6289 return extent_readpages(tree, mapping, pages, nr_pages,
6290 btrfs_get_extent);
6291}
e6dcd2dc 6292static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6293{
d1310b2e
CM
6294 struct extent_io_tree *tree;
6295 struct extent_map_tree *map;
a52d9a80 6296 int ret;
8c2383c3 6297
d1310b2e
CM
6298 tree = &BTRFS_I(page->mapping->host)->io_tree;
6299 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6300 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6301 if (ret == 1) {
6302 ClearPagePrivate(page);
6303 set_page_private(page, 0);
6304 page_cache_release(page);
39279cc3 6305 }
a52d9a80 6306 return ret;
39279cc3
CM
6307}
6308
e6dcd2dc
CM
6309static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6310{
98509cfc
CM
6311 if (PageWriteback(page) || PageDirty(page))
6312 return 0;
b335b003 6313 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6314}
6315
a52d9a80 6316static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6317{
d1310b2e 6318 struct extent_io_tree *tree;
e6dcd2dc 6319 struct btrfs_ordered_extent *ordered;
2ac55d41 6320 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6321 u64 page_start = page_offset(page);
6322 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6323
8b62b72b
CM
6324
6325 /*
6326 * we have the page locked, so new writeback can't start,
6327 * and the dirty bit won't be cleared while we are here.
6328 *
6329 * Wait for IO on this page so that we can safely clear
6330 * the PagePrivate2 bit and do ordered accounting
6331 */
e6dcd2dc 6332 wait_on_page_writeback(page);
8b62b72b 6333
d1310b2e 6334 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6335 if (offset) {
6336 btrfs_releasepage(page, GFP_NOFS);
6337 return;
6338 }
2ac55d41
JB
6339 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6340 GFP_NOFS);
e6dcd2dc
CM
6341 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6342 page_offset(page));
6343 if (ordered) {
eb84ae03
CM
6344 /*
6345 * IO on this page will never be started, so we need
6346 * to account for any ordered extents now
6347 */
e6dcd2dc
CM
6348 clear_extent_bit(tree, page_start, page_end,
6349 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6350 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6351 &cached_state, GFP_NOFS);
8b62b72b
CM
6352 /*
6353 * whoever cleared the private bit is responsible
6354 * for the finish_ordered_io
6355 */
6356 if (TestClearPagePrivate2(page)) {
6357 btrfs_finish_ordered_io(page->mapping->host,
6358 page_start, page_end);
6359 }
e6dcd2dc 6360 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6361 cached_state = NULL;
6362 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6363 GFP_NOFS);
e6dcd2dc
CM
6364 }
6365 clear_extent_bit(tree, page_start, page_end,
32c00aff 6366 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6367 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6368 __btrfs_releasepage(page, GFP_NOFS);
6369
4a096752 6370 ClearPageChecked(page);
9ad6b7bc 6371 if (PagePrivate(page)) {
9ad6b7bc
CM
6372 ClearPagePrivate(page);
6373 set_page_private(page, 0);
6374 page_cache_release(page);
6375 }
39279cc3
CM
6376}
6377
9ebefb18
CM
6378/*
6379 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6380 * called from a page fault handler when a page is first dirtied. Hence we must
6381 * be careful to check for EOF conditions here. We set the page up correctly
6382 * for a written page which means we get ENOSPC checking when writing into
6383 * holes and correct delalloc and unwritten extent mapping on filesystems that
6384 * support these features.
6385 *
6386 * We are not allowed to take the i_mutex here so we have to play games to
6387 * protect against truncate races as the page could now be beyond EOF. Because
6388 * vmtruncate() writes the inode size before removing pages, once we have the
6389 * page lock we can determine safely if the page is beyond EOF. If it is not
6390 * beyond EOF, then the page is guaranteed safe against truncation until we
6391 * unlock the page.
6392 */
c2ec175c 6393int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6394{
c2ec175c 6395 struct page *page = vmf->page;
6da6abae 6396 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6397 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6398 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6399 struct btrfs_ordered_extent *ordered;
2ac55d41 6400 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6401 char *kaddr;
6402 unsigned long zero_start;
9ebefb18 6403 loff_t size;
1832a6d5 6404 int ret;
a52d9a80 6405 u64 page_start;
e6dcd2dc 6406 u64 page_end;
9ebefb18 6407
0ca1f7ce 6408 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6409 if (ret) {
6410 if (ret == -ENOMEM)
6411 ret = VM_FAULT_OOM;
6412 else /* -ENOSPC, -EIO, etc */
6413 ret = VM_FAULT_SIGBUS;
1832a6d5 6414 goto out;
56a76f82 6415 }
1832a6d5 6416
56a76f82 6417 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6418again:
9ebefb18 6419 lock_page(page);
9ebefb18 6420 size = i_size_read(inode);
e6dcd2dc
CM
6421 page_start = page_offset(page);
6422 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6423
9ebefb18 6424 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6425 (page_start >= size)) {
9ebefb18
CM
6426 /* page got truncated out from underneath us */
6427 goto out_unlock;
6428 }
e6dcd2dc
CM
6429 wait_on_page_writeback(page);
6430
2ac55d41
JB
6431 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6432 GFP_NOFS);
e6dcd2dc
CM
6433 set_page_extent_mapped(page);
6434
eb84ae03
CM
6435 /*
6436 * we can't set the delalloc bits if there are pending ordered
6437 * extents. Drop our locks and wait for them to finish
6438 */
e6dcd2dc
CM
6439 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6440 if (ordered) {
2ac55d41
JB
6441 unlock_extent_cached(io_tree, page_start, page_end,
6442 &cached_state, GFP_NOFS);
e6dcd2dc 6443 unlock_page(page);
eb84ae03 6444 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6445 btrfs_put_ordered_extent(ordered);
6446 goto again;
6447 }
6448
fbf19087
JB
6449 /*
6450 * XXX - page_mkwrite gets called every time the page is dirtied, even
6451 * if it was already dirty, so for space accounting reasons we need to
6452 * clear any delalloc bits for the range we are fixing to save. There
6453 * is probably a better way to do this, but for now keep consistent with
6454 * prepare_pages in the normal write path.
6455 */
2ac55d41 6456 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6457 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6458 0, 0, &cached_state, GFP_NOFS);
fbf19087 6459
2ac55d41
JB
6460 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6461 &cached_state);
9ed74f2d 6462 if (ret) {
2ac55d41
JB
6463 unlock_extent_cached(io_tree, page_start, page_end,
6464 &cached_state, GFP_NOFS);
9ed74f2d
JB
6465 ret = VM_FAULT_SIGBUS;
6466 goto out_unlock;
6467 }
e6dcd2dc 6468 ret = 0;
9ebefb18
CM
6469
6470 /* page is wholly or partially inside EOF */
a52d9a80 6471 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6472 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6473 else
e6dcd2dc 6474 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6475
e6dcd2dc
CM
6476 if (zero_start != PAGE_CACHE_SIZE) {
6477 kaddr = kmap(page);
6478 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6479 flush_dcache_page(page);
6480 kunmap(page);
6481 }
247e743c 6482 ClearPageChecked(page);
e6dcd2dc 6483 set_page_dirty(page);
50a9b214 6484 SetPageUptodate(page);
5a3f23d5 6485
257c62e1
CM
6486 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6487 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6488
2ac55d41 6489 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6490
6491out_unlock:
50a9b214
CM
6492 if (!ret)
6493 return VM_FAULT_LOCKED;
9ebefb18 6494 unlock_page(page);
0ca1f7ce 6495 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6496out:
9ebefb18
CM
6497 return ret;
6498}
6499
a41ad394 6500static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6501{
6502 struct btrfs_root *root = BTRFS_I(inode)->root;
6503 int ret;
3893e33b 6504 int err = 0;
39279cc3 6505 struct btrfs_trans_handle *trans;
d3c2fdcf 6506 unsigned long nr;
dbe674a9 6507 u64 mask = root->sectorsize - 1;
39279cc3 6508
5d5e103a
JB
6509 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6510 if (ret)
a41ad394 6511 return ret;
8082510e 6512
4a096752 6513 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6514 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6515
f0cd846e
JB
6516 trans = btrfs_start_transaction(root, 5);
6517 if (IS_ERR(trans))
6518 return PTR_ERR(trans);
6519
6520 btrfs_set_trans_block_group(trans, inode);
6521
6522 ret = btrfs_orphan_add(trans, inode);
6523 if (ret) {
6524 btrfs_end_transaction(trans, root);
6525 return ret;
6526 }
6527
6528 nr = trans->blocks_used;
6529 btrfs_end_transaction(trans, root);
6530 btrfs_btree_balance_dirty(root, nr);
6531
6532 /* Now start a transaction for the truncate */
d68fc57b 6533 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6534 if (IS_ERR(trans))
6535 return PTR_ERR(trans);
8082510e 6536 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6537 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6538
6539 /*
6540 * setattr is responsible for setting the ordered_data_close flag,
6541 * but that is only tested during the last file release. That
6542 * could happen well after the next commit, leaving a great big
6543 * window where new writes may get lost if someone chooses to write
6544 * to this file after truncating to zero
6545 *
6546 * The inode doesn't have any dirty data here, and so if we commit
6547 * this is a noop. If someone immediately starts writing to the inode
6548 * it is very likely we'll catch some of their writes in this
6549 * transaction, and the commit will find this file on the ordered
6550 * data list with good things to send down.
6551 *
6552 * This is a best effort solution, there is still a window where
6553 * using truncate to replace the contents of the file will
6554 * end up with a zero length file after a crash.
6555 */
6556 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6557 btrfs_add_ordered_operation(trans, root, inode);
6558
8082510e 6559 while (1) {
d68fc57b
YZ
6560 if (!trans) {
6561 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6562 if (IS_ERR(trans))
6563 return PTR_ERR(trans);
d68fc57b
YZ
6564 btrfs_set_trans_block_group(trans, inode);
6565 trans->block_rsv = root->orphan_block_rsv;
6566 }
6567
6568 ret = btrfs_block_rsv_check(trans, root,
6569 root->orphan_block_rsv, 0, 5);
3893e33b 6570 if (ret == -EAGAIN) {
d68fc57b 6571 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6572 if (ret)
6573 return ret;
d68fc57b
YZ
6574 trans = NULL;
6575 continue;
3893e33b
JB
6576 } else if (ret) {
6577 err = ret;
6578 break;
d68fc57b
YZ
6579 }
6580
8082510e
YZ
6581 ret = btrfs_truncate_inode_items(trans, root, inode,
6582 inode->i_size,
6583 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6584 if (ret != -EAGAIN) {
6585 err = ret;
8082510e 6586 break;
3893e33b 6587 }
39279cc3 6588
8082510e 6589 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6590 if (ret) {
6591 err = ret;
6592 break;
6593 }
5f39d397 6594
8082510e
YZ
6595 nr = trans->blocks_used;
6596 btrfs_end_transaction(trans, root);
d68fc57b 6597 trans = NULL;
8082510e 6598 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6599 }
6600
6601 if (ret == 0 && inode->i_nlink > 0) {
6602 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6603 if (ret)
6604 err = ret;
ded5db9d
JB
6605 } else if (ret && inode->i_nlink > 0) {
6606 /*
6607 * Failed to do the truncate, remove us from the in memory
6608 * orphan list.
6609 */
6610 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6611 }
6612
6613 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6614 if (ret && !err)
6615 err = ret;
7b128766 6616
7b128766 6617 nr = trans->blocks_used;
89ce8a63 6618 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6619 if (ret && !err)
6620 err = ret;
d3c2fdcf 6621 btrfs_btree_balance_dirty(root, nr);
a41ad394 6622
3893e33b 6623 return err;
39279cc3
CM
6624}
6625
d352ac68
CM
6626/*
6627 * create a new subvolume directory/inode (helper for the ioctl).
6628 */
d2fb3437 6629int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6630 struct btrfs_root *new_root,
d2fb3437 6631 u64 new_dirid, u64 alloc_hint)
39279cc3 6632{
39279cc3 6633 struct inode *inode;
76dda93c 6634 int err;
00e4e6b3 6635 u64 index = 0;
39279cc3 6636
aec7477b 6637 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6638 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6639 if (IS_ERR(inode))
f46b5a66 6640 return PTR_ERR(inode);
39279cc3
CM
6641 inode->i_op = &btrfs_dir_inode_operations;
6642 inode->i_fop = &btrfs_dir_file_operations;
6643
39279cc3 6644 inode->i_nlink = 1;
dbe674a9 6645 btrfs_i_size_write(inode, 0);
3b96362c 6646
76dda93c
YZ
6647 err = btrfs_update_inode(trans, new_root, inode);
6648 BUG_ON(err);
cb8e7090 6649
76dda93c 6650 iput(inode);
cb8e7090 6651 return 0;
39279cc3
CM
6652}
6653
d352ac68
CM
6654/* helper function for file defrag and space balancing. This
6655 * forces readahead on a given range of bytes in an inode
6656 */
edbd8d4e 6657unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6658 struct file_ra_state *ra, struct file *file,
6659 pgoff_t offset, pgoff_t last_index)
6660{
8e7bf94f 6661 pgoff_t req_size = last_index - offset + 1;
86479a04 6662
86479a04
CM
6663 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6664 return offset + req_size;
86479a04
CM
6665}
6666
39279cc3
CM
6667struct inode *btrfs_alloc_inode(struct super_block *sb)
6668{
6669 struct btrfs_inode *ei;
2ead6ae7 6670 struct inode *inode;
39279cc3
CM
6671
6672 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6673 if (!ei)
6674 return NULL;
2ead6ae7
YZ
6675
6676 ei->root = NULL;
6677 ei->space_info = NULL;
6678 ei->generation = 0;
6679 ei->sequence = 0;
15ee9bc7 6680 ei->last_trans = 0;
257c62e1 6681 ei->last_sub_trans = 0;
e02119d5 6682 ei->logged_trans = 0;
2ead6ae7
YZ
6683 ei->delalloc_bytes = 0;
6684 ei->reserved_bytes = 0;
6685 ei->disk_i_size = 0;
6686 ei->flags = 0;
6687 ei->index_cnt = (u64)-1;
6688 ei->last_unlink_trans = 0;
6689
0ca1f7ce 6690 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6691 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6692
6693 ei->ordered_data_close = 0;
d68fc57b 6694 ei->orphan_meta_reserved = 0;
2ead6ae7 6695 ei->dummy_inode = 0;
4cb5300b 6696 ei->in_defrag = 0;
261507a0 6697 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6698
16cdcec7
MX
6699 ei->delayed_node = NULL;
6700
2ead6ae7 6701 inode = &ei->vfs_inode;
a8067e02 6702 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6703 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6704 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6705 mutex_init(&ei->log_mutex);
e6dcd2dc 6706 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6707 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6708 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6709 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6710 RB_CLEAR_NODE(&ei->rb_node);
6711
6712 return inode;
39279cc3
CM
6713}
6714
fa0d7e3d
NP
6715static void btrfs_i_callback(struct rcu_head *head)
6716{
6717 struct inode *inode = container_of(head, struct inode, i_rcu);
6718 INIT_LIST_HEAD(&inode->i_dentry);
6719 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6720}
6721
39279cc3
CM
6722void btrfs_destroy_inode(struct inode *inode)
6723{
e6dcd2dc 6724 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6725 struct btrfs_root *root = BTRFS_I(inode)->root;
6726
39279cc3
CM
6727 WARN_ON(!list_empty(&inode->i_dentry));
6728 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6729 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6730 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6731
a6dbd429
JB
6732 /*
6733 * This can happen where we create an inode, but somebody else also
6734 * created the same inode and we need to destroy the one we already
6735 * created.
6736 */
6737 if (!root)
6738 goto free;
6739
5a3f23d5
CM
6740 /*
6741 * Make sure we're properly removed from the ordered operation
6742 * lists.
6743 */
6744 smp_mb();
6745 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6746 spin_lock(&root->fs_info->ordered_extent_lock);
6747 list_del_init(&BTRFS_I(inode)->ordered_operations);
6748 spin_unlock(&root->fs_info->ordered_extent_lock);
6749 }
6750
0af3d00b
JB
6751 if (root == root->fs_info->tree_root) {
6752 struct btrfs_block_group_cache *block_group;
6753
6754 block_group = btrfs_lookup_block_group(root->fs_info,
6755 BTRFS_I(inode)->block_group);
6756 if (block_group && block_group->inode == inode) {
6757 spin_lock(&block_group->lock);
6758 block_group->inode = NULL;
6759 spin_unlock(&block_group->lock);
6760 btrfs_put_block_group(block_group);
6761 } else if (block_group) {
6762 btrfs_put_block_group(block_group);
6763 }
6764 }
6765
d68fc57b 6766 spin_lock(&root->orphan_lock);
7b128766 6767 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6768 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6769 (unsigned long long)btrfs_ino(inode));
8082510e 6770 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6771 }
d68fc57b 6772 spin_unlock(&root->orphan_lock);
7b128766 6773
d397712b 6774 while (1) {
e6dcd2dc
CM
6775 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6776 if (!ordered)
6777 break;
6778 else {
d397712b
CM
6779 printk(KERN_ERR "btrfs found ordered "
6780 "extent %llu %llu on inode cleanup\n",
6781 (unsigned long long)ordered->file_offset,
6782 (unsigned long long)ordered->len);
e6dcd2dc
CM
6783 btrfs_remove_ordered_extent(inode, ordered);
6784 btrfs_put_ordered_extent(ordered);
6785 btrfs_put_ordered_extent(ordered);
6786 }
6787 }
5d4f98a2 6788 inode_tree_del(inode);
5b21f2ed 6789 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6790free:
16cdcec7 6791 btrfs_remove_delayed_node(inode);
fa0d7e3d 6792 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6793}
6794
45321ac5 6795int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6796{
6797 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6798
0af3d00b 6799 if (btrfs_root_refs(&root->root_item) == 0 &&
82d5902d 6800 !is_free_space_inode(root, inode))
45321ac5 6801 return 1;
76dda93c 6802 else
45321ac5 6803 return generic_drop_inode(inode);
76dda93c
YZ
6804}
6805
0ee0fda0 6806static void init_once(void *foo)
39279cc3
CM
6807{
6808 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6809
6810 inode_init_once(&ei->vfs_inode);
6811}
6812
6813void btrfs_destroy_cachep(void)
6814{
6815 if (btrfs_inode_cachep)
6816 kmem_cache_destroy(btrfs_inode_cachep);
6817 if (btrfs_trans_handle_cachep)
6818 kmem_cache_destroy(btrfs_trans_handle_cachep);
6819 if (btrfs_transaction_cachep)
6820 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6821 if (btrfs_path_cachep)
6822 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6823 if (btrfs_free_space_cachep)
6824 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6825}
6826
6827int btrfs_init_cachep(void)
6828{
9601e3f6
CH
6829 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6830 sizeof(struct btrfs_inode), 0,
6831 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6832 if (!btrfs_inode_cachep)
6833 goto fail;
9601e3f6
CH
6834
6835 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6836 sizeof(struct btrfs_trans_handle), 0,
6837 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6838 if (!btrfs_trans_handle_cachep)
6839 goto fail;
9601e3f6
CH
6840
6841 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6842 sizeof(struct btrfs_transaction), 0,
6843 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6844 if (!btrfs_transaction_cachep)
6845 goto fail;
9601e3f6
CH
6846
6847 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6848 sizeof(struct btrfs_path), 0,
6849 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6850 if (!btrfs_path_cachep)
6851 goto fail;
9601e3f6 6852
dc89e982
JB
6853 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6854 sizeof(struct btrfs_free_space), 0,
6855 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6856 if (!btrfs_free_space_cachep)
6857 goto fail;
6858
39279cc3
CM
6859 return 0;
6860fail:
6861 btrfs_destroy_cachep();
6862 return -ENOMEM;
6863}
6864
6865static int btrfs_getattr(struct vfsmount *mnt,
6866 struct dentry *dentry, struct kstat *stat)
6867{
6868 struct inode *inode = dentry->d_inode;
6869 generic_fillattr(inode, stat);
3394e160 6870 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6871 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6872 stat->blocks = (inode_get_bytes(inode) +
6873 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6874 return 0;
6875}
6876
75e7cb7f
LB
6877/*
6878 * If a file is moved, it will inherit the cow and compression flags of the new
6879 * directory.
6880 */
6881static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6882{
6883 struct btrfs_inode *b_dir = BTRFS_I(dir);
6884 struct btrfs_inode *b_inode = BTRFS_I(inode);
6885
6886 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6887 b_inode->flags |= BTRFS_INODE_NODATACOW;
6888 else
6889 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6890
6891 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6892 b_inode->flags |= BTRFS_INODE_COMPRESS;
6893 else
6894 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6895}
6896
d397712b
CM
6897static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6898 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6899{
6900 struct btrfs_trans_handle *trans;
6901 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6902 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6903 struct inode *new_inode = new_dentry->d_inode;
6904 struct inode *old_inode = old_dentry->d_inode;
6905 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6906 u64 index = 0;
4df27c4d 6907 u64 root_objectid;
39279cc3 6908 int ret;
33345d01 6909 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6910
33345d01 6911 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6912 return -EPERM;
6913
4df27c4d 6914 /* we only allow rename subvolume link between subvolumes */
33345d01 6915 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6916 return -EXDEV;
6917
33345d01
LZ
6918 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6919 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6920 return -ENOTEMPTY;
5f39d397 6921
4df27c4d
YZ
6922 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6923 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6924 return -ENOTEMPTY;
5a3f23d5
CM
6925 /*
6926 * we're using rename to replace one file with another.
6927 * and the replacement file is large. Start IO on it now so
6928 * we don't add too much work to the end of the transaction
6929 */
4baf8c92 6930 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6931 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6932 filemap_flush(old_inode->i_mapping);
6933
76dda93c 6934 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6935 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6936 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6937 /*
6938 * We want to reserve the absolute worst case amount of items. So if
6939 * both inodes are subvols and we need to unlink them then that would
6940 * require 4 item modifications, but if they are both normal inodes it
6941 * would require 5 item modifications, so we'll assume their normal
6942 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6943 * should cover the worst case number of items we'll modify.
6944 */
6945 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6946 if (IS_ERR(trans)) {
6947 ret = PTR_ERR(trans);
6948 goto out_notrans;
6949 }
76dda93c 6950
a5719521 6951 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6952
4df27c4d
YZ
6953 if (dest != root)
6954 btrfs_record_root_in_trans(trans, dest);
5f39d397 6955
a5719521
YZ
6956 ret = btrfs_set_inode_index(new_dir, &index);
6957 if (ret)
6958 goto out_fail;
5a3f23d5 6959
33345d01 6960 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6961 /* force full log commit if subvolume involved. */
6962 root->fs_info->last_trans_log_full_commit = trans->transid;
6963 } else {
a5719521
YZ
6964 ret = btrfs_insert_inode_ref(trans, dest,
6965 new_dentry->d_name.name,
6966 new_dentry->d_name.len,
33345d01
LZ
6967 old_ino,
6968 btrfs_ino(new_dir), index);
a5719521
YZ
6969 if (ret)
6970 goto out_fail;
4df27c4d
YZ
6971 /*
6972 * this is an ugly little race, but the rename is required
6973 * to make sure that if we crash, the inode is either at the
6974 * old name or the new one. pinning the log transaction lets
6975 * us make sure we don't allow a log commit to come in after
6976 * we unlink the name but before we add the new name back in.
6977 */
6978 btrfs_pin_log_trans(root);
6979 }
5a3f23d5
CM
6980 /*
6981 * make sure the inode gets flushed if it is replacing
6982 * something.
6983 */
33345d01 6984 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 6985 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 6986
39279cc3
CM
6987 old_dir->i_ctime = old_dir->i_mtime = ctime;
6988 new_dir->i_ctime = new_dir->i_mtime = ctime;
6989 old_inode->i_ctime = ctime;
5f39d397 6990
12fcfd22
CM
6991 if (old_dentry->d_parent != new_dentry->d_parent)
6992 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6993
33345d01 6994 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6995 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6996 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6997 old_dentry->d_name.name,
6998 old_dentry->d_name.len);
6999 } else {
92986796
AV
7000 ret = __btrfs_unlink_inode(trans, root, old_dir,
7001 old_dentry->d_inode,
7002 old_dentry->d_name.name,
7003 old_dentry->d_name.len);
7004 if (!ret)
7005 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7006 }
7007 BUG_ON(ret);
39279cc3
CM
7008
7009 if (new_inode) {
7010 new_inode->i_ctime = CURRENT_TIME;
33345d01 7011 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7012 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7013 root_objectid = BTRFS_I(new_inode)->location.objectid;
7014 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7015 root_objectid,
7016 new_dentry->d_name.name,
7017 new_dentry->d_name.len);
7018 BUG_ON(new_inode->i_nlink == 0);
7019 } else {
7020 ret = btrfs_unlink_inode(trans, dest, new_dir,
7021 new_dentry->d_inode,
7022 new_dentry->d_name.name,
7023 new_dentry->d_name.len);
7024 }
7025 BUG_ON(ret);
7b128766 7026 if (new_inode->i_nlink == 0) {
e02119d5 7027 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7028 BUG_ON(ret);
7b128766 7029 }
39279cc3 7030 }
aec7477b 7031
75e7cb7f
LB
7032 fixup_inode_flags(new_dir, old_inode);
7033
4df27c4d
YZ
7034 ret = btrfs_add_link(trans, new_dir, old_inode,
7035 new_dentry->d_name.name,
a5719521 7036 new_dentry->d_name.len, 0, index);
4df27c4d 7037 BUG_ON(ret);
39279cc3 7038
33345d01 7039 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7040 struct dentry *parent = dget_parent(new_dentry);
7041 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7042 dput(parent);
4df27c4d
YZ
7043 btrfs_end_log_trans(root);
7044 }
39279cc3 7045out_fail:
ab78c84d 7046 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7047out_notrans:
33345d01 7048 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7049 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7050
39279cc3
CM
7051 return ret;
7052}
7053
d352ac68
CM
7054/*
7055 * some fairly slow code that needs optimization. This walks the list
7056 * of all the inodes with pending delalloc and forces them to disk.
7057 */
24bbcf04 7058int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7059{
7060 struct list_head *head = &root->fs_info->delalloc_inodes;
7061 struct btrfs_inode *binode;
5b21f2ed 7062 struct inode *inode;
ea8c2819 7063
c146afad
YZ
7064 if (root->fs_info->sb->s_flags & MS_RDONLY)
7065 return -EROFS;
7066
75eff68e 7067 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7068 while (!list_empty(head)) {
ea8c2819
CM
7069 binode = list_entry(head->next, struct btrfs_inode,
7070 delalloc_inodes);
5b21f2ed
ZY
7071 inode = igrab(&binode->vfs_inode);
7072 if (!inode)
7073 list_del_init(&binode->delalloc_inodes);
75eff68e 7074 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7075 if (inode) {
8c8bee1d 7076 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7077 if (delay_iput)
7078 btrfs_add_delayed_iput(inode);
7079 else
7080 iput(inode);
5b21f2ed
ZY
7081 }
7082 cond_resched();
75eff68e 7083 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7084 }
75eff68e 7085 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7086
7087 /* the filemap_flush will queue IO into the worker threads, but
7088 * we have to make sure the IO is actually started and that
7089 * ordered extents get created before we return
7090 */
7091 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7092 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7093 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7094 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7095 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7096 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7097 }
7098 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7099 return 0;
7100}
7101
39279cc3
CM
7102static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7103 const char *symname)
7104{
7105 struct btrfs_trans_handle *trans;
7106 struct btrfs_root *root = BTRFS_I(dir)->root;
7107 struct btrfs_path *path;
7108 struct btrfs_key key;
1832a6d5 7109 struct inode *inode = NULL;
39279cc3
CM
7110 int err;
7111 int drop_inode = 0;
7112 u64 objectid;
00e4e6b3 7113 u64 index = 0 ;
39279cc3
CM
7114 int name_len;
7115 int datasize;
5f39d397 7116 unsigned long ptr;
39279cc3 7117 struct btrfs_file_extent_item *ei;
5f39d397 7118 struct extent_buffer *leaf;
1832a6d5 7119 unsigned long nr = 0;
39279cc3
CM
7120
7121 name_len = strlen(symname) + 1;
7122 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7123 return -ENAMETOOLONG;
1832a6d5 7124
9ed74f2d
JB
7125 /*
7126 * 2 items for inode item and ref
7127 * 2 items for dir items
7128 * 1 item for xattr if selinux is on
7129 */
a22285a6
YZ
7130 trans = btrfs_start_transaction(root, 5);
7131 if (IS_ERR(trans))
7132 return PTR_ERR(trans);
1832a6d5 7133
39279cc3
CM
7134 btrfs_set_trans_block_group(trans, dir);
7135
581bb050
LZ
7136 err = btrfs_find_free_ino(root, &objectid);
7137 if (err)
7138 goto out_unlock;
7139
aec7477b 7140 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7141 dentry->d_name.len, btrfs_ino(dir), objectid,
00e4e6b3
CM
7142 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7143 &index);
7cf96da3
TI
7144 if (IS_ERR(inode)) {
7145 err = PTR_ERR(inode);
39279cc3 7146 goto out_unlock;
7cf96da3 7147 }
39279cc3 7148
2a7dba39 7149 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7150 if (err) {
7151 drop_inode = 1;
7152 goto out_unlock;
7153 }
7154
39279cc3 7155 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7156 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7157 if (err)
7158 drop_inode = 1;
7159 else {
7160 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7161 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7162 inode->i_fop = &btrfs_file_operations;
7163 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7164 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7165 }
39279cc3
CM
7166 btrfs_update_inode_block_group(trans, inode);
7167 btrfs_update_inode_block_group(trans, dir);
7168 if (drop_inode)
7169 goto out_unlock;
7170
7171 path = btrfs_alloc_path();
7172 BUG_ON(!path);
33345d01 7173 key.objectid = btrfs_ino(inode);
39279cc3 7174 key.offset = 0;
39279cc3
CM
7175 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7176 datasize = btrfs_file_extent_calc_inline_size(name_len);
7177 err = btrfs_insert_empty_item(trans, root, path, &key,
7178 datasize);
54aa1f4d
CM
7179 if (err) {
7180 drop_inode = 1;
b0839166 7181 btrfs_free_path(path);
54aa1f4d
CM
7182 goto out_unlock;
7183 }
5f39d397
CM
7184 leaf = path->nodes[0];
7185 ei = btrfs_item_ptr(leaf, path->slots[0],
7186 struct btrfs_file_extent_item);
7187 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7188 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7189 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7190 btrfs_set_file_extent_encryption(leaf, ei, 0);
7191 btrfs_set_file_extent_compression(leaf, ei, 0);
7192 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7193 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7194
39279cc3 7195 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7196 write_extent_buffer(leaf, symname, ptr, name_len);
7197 btrfs_mark_buffer_dirty(leaf);
39279cc3 7198 btrfs_free_path(path);
5f39d397 7199
39279cc3
CM
7200 inode->i_op = &btrfs_symlink_inode_operations;
7201 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7202 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7203 inode_set_bytes(inode, name_len);
dbe674a9 7204 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7205 err = btrfs_update_inode(trans, root, inode);
7206 if (err)
7207 drop_inode = 1;
39279cc3
CM
7208
7209out_unlock:
d3c2fdcf 7210 nr = trans->blocks_used;
ab78c84d 7211 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7212 if (drop_inode) {
7213 inode_dec_link_count(inode);
7214 iput(inode);
7215 }
d3c2fdcf 7216 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7217 return err;
7218}
16432985 7219
0af3d00b
JB
7220static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7221 u64 start, u64 num_bytes, u64 min_size,
7222 loff_t actual_len, u64 *alloc_hint,
7223 struct btrfs_trans_handle *trans)
d899e052 7224{
d899e052
YZ
7225 struct btrfs_root *root = BTRFS_I(inode)->root;
7226 struct btrfs_key ins;
d899e052 7227 u64 cur_offset = start;
55a61d1d 7228 u64 i_size;
d899e052 7229 int ret = 0;
0af3d00b 7230 bool own_trans = true;
d899e052 7231
0af3d00b
JB
7232 if (trans)
7233 own_trans = false;
d899e052 7234 while (num_bytes > 0) {
0af3d00b
JB
7235 if (own_trans) {
7236 trans = btrfs_start_transaction(root, 3);
7237 if (IS_ERR(trans)) {
7238 ret = PTR_ERR(trans);
7239 break;
7240 }
5a303d5d
YZ
7241 }
7242
efa56464
YZ
7243 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7244 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7245 if (ret) {
0af3d00b
JB
7246 if (own_trans)
7247 btrfs_end_transaction(trans, root);
a22285a6 7248 break;
d899e052 7249 }
5a303d5d 7250
d899e052
YZ
7251 ret = insert_reserved_file_extent(trans, inode,
7252 cur_offset, ins.objectid,
7253 ins.offset, ins.offset,
920bbbfb 7254 ins.offset, 0, 0, 0,
d899e052
YZ
7255 BTRFS_FILE_EXTENT_PREALLOC);
7256 BUG_ON(ret);
a1ed835e
CM
7257 btrfs_drop_extent_cache(inode, cur_offset,
7258 cur_offset + ins.offset -1, 0);
5a303d5d 7259
d899e052
YZ
7260 num_bytes -= ins.offset;
7261 cur_offset += ins.offset;
efa56464 7262 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7263
d899e052 7264 inode->i_ctime = CURRENT_TIME;
6cbff00f 7265 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7266 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7267 (actual_len > inode->i_size) &&
7268 (cur_offset > inode->i_size)) {
d1ea6a61 7269 if (cur_offset > actual_len)
55a61d1d 7270 i_size = actual_len;
d1ea6a61 7271 else
55a61d1d
JB
7272 i_size = cur_offset;
7273 i_size_write(inode, i_size);
7274 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7275 }
7276
d899e052
YZ
7277 ret = btrfs_update_inode(trans, root, inode);
7278 BUG_ON(ret);
d899e052 7279
0af3d00b
JB
7280 if (own_trans)
7281 btrfs_end_transaction(trans, root);
5a303d5d 7282 }
d899e052
YZ
7283 return ret;
7284}
7285
0af3d00b
JB
7286int btrfs_prealloc_file_range(struct inode *inode, int mode,
7287 u64 start, u64 num_bytes, u64 min_size,
7288 loff_t actual_len, u64 *alloc_hint)
7289{
7290 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7291 min_size, actual_len, alloc_hint,
7292 NULL);
7293}
7294
7295int btrfs_prealloc_file_range_trans(struct inode *inode,
7296 struct btrfs_trans_handle *trans, int mode,
7297 u64 start, u64 num_bytes, u64 min_size,
7298 loff_t actual_len, u64 *alloc_hint)
7299{
7300 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7301 min_size, actual_len, alloc_hint, trans);
7302}
7303
e6dcd2dc
CM
7304static int btrfs_set_page_dirty(struct page *page)
7305{
e6dcd2dc
CM
7306 return __set_page_dirty_nobuffers(page);
7307}
7308
b74c79e9 7309static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7310{
b83cc969
LZ
7311 struct btrfs_root *root = BTRFS_I(inode)->root;
7312
7313 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7314 return -EROFS;
6cbff00f 7315 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7316 return -EACCES;
b74c79e9 7317 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7318}
39279cc3 7319
6e1d5dcc 7320static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7321 .getattr = btrfs_getattr,
39279cc3
CM
7322 .lookup = btrfs_lookup,
7323 .create = btrfs_create,
7324 .unlink = btrfs_unlink,
7325 .link = btrfs_link,
7326 .mkdir = btrfs_mkdir,
7327 .rmdir = btrfs_rmdir,
7328 .rename = btrfs_rename,
7329 .symlink = btrfs_symlink,
7330 .setattr = btrfs_setattr,
618e21d5 7331 .mknod = btrfs_mknod,
95819c05
CH
7332 .setxattr = btrfs_setxattr,
7333 .getxattr = btrfs_getxattr,
5103e947 7334 .listxattr = btrfs_listxattr,
95819c05 7335 .removexattr = btrfs_removexattr,
fdebe2bd 7336 .permission = btrfs_permission,
39279cc3 7337};
6e1d5dcc 7338static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7339 .lookup = btrfs_lookup,
fdebe2bd 7340 .permission = btrfs_permission,
39279cc3 7341};
76dda93c 7342
828c0950 7343static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7344 .llseek = generic_file_llseek,
7345 .read = generic_read_dir,
cbdf5a24 7346 .readdir = btrfs_real_readdir,
34287aa3 7347 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7348#ifdef CONFIG_COMPAT
34287aa3 7349 .compat_ioctl = btrfs_ioctl,
39279cc3 7350#endif
6bf13c0c 7351 .release = btrfs_release_file,
e02119d5 7352 .fsync = btrfs_sync_file,
39279cc3
CM
7353};
7354
d1310b2e 7355static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7356 .fill_delalloc = run_delalloc_range,
065631f6 7357 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7358 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7359 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7360 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7361 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7362 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7363 .set_bit_hook = btrfs_set_bit_hook,
7364 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7365 .merge_extent_hook = btrfs_merge_extent_hook,
7366 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7367};
7368
35054394
CM
7369/*
7370 * btrfs doesn't support the bmap operation because swapfiles
7371 * use bmap to make a mapping of extents in the file. They assume
7372 * these extents won't change over the life of the file and they
7373 * use the bmap result to do IO directly to the drive.
7374 *
7375 * the btrfs bmap call would return logical addresses that aren't
7376 * suitable for IO and they also will change frequently as COW
7377 * operations happen. So, swapfile + btrfs == corruption.
7378 *
7379 * For now we're avoiding this by dropping bmap.
7380 */
7f09410b 7381static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7382 .readpage = btrfs_readpage,
7383 .writepage = btrfs_writepage,
b293f02e 7384 .writepages = btrfs_writepages,
3ab2fb5a 7385 .readpages = btrfs_readpages,
16432985 7386 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7387 .invalidatepage = btrfs_invalidatepage,
7388 .releasepage = btrfs_releasepage,
e6dcd2dc 7389 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7390 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7391};
7392
7f09410b 7393static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7394 .readpage = btrfs_readpage,
7395 .writepage = btrfs_writepage,
2bf5a725
CM
7396 .invalidatepage = btrfs_invalidatepage,
7397 .releasepage = btrfs_releasepage,
39279cc3
CM
7398};
7399
6e1d5dcc 7400static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7401 .getattr = btrfs_getattr,
7402 .setattr = btrfs_setattr,
95819c05
CH
7403 .setxattr = btrfs_setxattr,
7404 .getxattr = btrfs_getxattr,
5103e947 7405 .listxattr = btrfs_listxattr,
95819c05 7406 .removexattr = btrfs_removexattr,
fdebe2bd 7407 .permission = btrfs_permission,
1506fcc8 7408 .fiemap = btrfs_fiemap,
39279cc3 7409};
6e1d5dcc 7410static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7411 .getattr = btrfs_getattr,
7412 .setattr = btrfs_setattr,
fdebe2bd 7413 .permission = btrfs_permission,
95819c05
CH
7414 .setxattr = btrfs_setxattr,
7415 .getxattr = btrfs_getxattr,
33268eaf 7416 .listxattr = btrfs_listxattr,
95819c05 7417 .removexattr = btrfs_removexattr,
618e21d5 7418};
6e1d5dcc 7419static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7420 .readlink = generic_readlink,
7421 .follow_link = page_follow_link_light,
7422 .put_link = page_put_link,
f209561a 7423 .getattr = btrfs_getattr,
fdebe2bd 7424 .permission = btrfs_permission,
0279b4cd
JO
7425 .setxattr = btrfs_setxattr,
7426 .getxattr = btrfs_getxattr,
7427 .listxattr = btrfs_listxattr,
7428 .removexattr = btrfs_removexattr,
39279cc3 7429};
76dda93c 7430
82d339d9 7431const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7432 .d_delete = btrfs_dentry_delete,
7433};