btrfs: return void in functions without error conditions
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
22c44fe6 41#include <linux/mount.h>
4b4e25f2 42#include "compat.h"
39279cc3
CM
43#include "ctree.h"
44#include "disk-io.h"
45#include "transaction.h"
46#include "btrfs_inode.h"
47#include "ioctl.h"
48#include "print-tree.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
4a54c8c1 52#include "volumes.h"
c8b97818 53#include "compression.h"
b4ce94de 54#include "locking.h"
dc89e982 55#include "free-space-cache.h"
581bb050 56#include "inode-map.h"
39279cc3
CM
57
58struct btrfs_iget_args {
59 u64 ino;
60 struct btrfs_root *root;
61};
62
6e1d5dcc
AD
63static const struct inode_operations btrfs_dir_inode_operations;
64static const struct inode_operations btrfs_symlink_inode_operations;
65static const struct inode_operations btrfs_dir_ro_inode_operations;
66static const struct inode_operations btrfs_special_inode_operations;
67static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
68static const struct address_space_operations btrfs_aops;
69static const struct address_space_operations btrfs_symlink_aops;
828c0950 70static const struct file_operations btrfs_dir_file_operations;
d1310b2e 71static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
72
73static struct kmem_cache *btrfs_inode_cachep;
74struct kmem_cache *btrfs_trans_handle_cachep;
75struct kmem_cache *btrfs_transaction_cachep;
39279cc3 76struct kmem_cache *btrfs_path_cachep;
dc89e982 77struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
78
79#define S_SHIFT 12
80static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
81 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
82 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
83 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
84 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
85 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
86 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
87 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
88};
89
a41ad394
JB
90static int btrfs_setsize(struct inode *inode, loff_t newsize);
91static int btrfs_truncate(struct inode *inode);
c8b97818 92static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
93static noinline int cow_file_range(struct inode *inode,
94 struct page *locked_page,
95 u64 start, u64 end, int *page_started,
96 unsigned long *nr_written, int unlock);
2115133f
CM
97static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root, struct inode *inode);
7b128766 99
f34f57a3 100static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
101 struct inode *inode, struct inode *dir,
102 const struct qstr *qstr)
0279b4cd
JO
103{
104 int err;
105
f34f57a3 106 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 107 if (!err)
2a7dba39 108 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
109 return err;
110}
111
c8b97818
CM
112/*
113 * this does all the hard work for inserting an inline extent into
114 * the btree. The caller should have done a btrfs_drop_extents so that
115 * no overlapping inline items exist in the btree
116 */
d397712b 117static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
118 struct btrfs_root *root, struct inode *inode,
119 u64 start, size_t size, size_t compressed_size,
fe3f566c 120 int compress_type,
c8b97818
CM
121 struct page **compressed_pages)
122{
123 struct btrfs_key key;
124 struct btrfs_path *path;
125 struct extent_buffer *leaf;
126 struct page *page = NULL;
127 char *kaddr;
128 unsigned long ptr;
129 struct btrfs_file_extent_item *ei;
130 int err = 0;
131 int ret;
132 size_t cur_size = size;
133 size_t datasize;
134 unsigned long offset;
c8b97818 135
fe3f566c 136 if (compressed_size && compressed_pages)
c8b97818 137 cur_size = compressed_size;
c8b97818 138
d397712b
CM
139 path = btrfs_alloc_path();
140 if (!path)
c8b97818
CM
141 return -ENOMEM;
142
b9473439 143 path->leave_spinning = 1;
c8b97818 144
33345d01 145 key.objectid = btrfs_ino(inode);
c8b97818
CM
146 key.offset = start;
147 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
148 datasize = btrfs_file_extent_calc_inline_size(cur_size);
149
150 inode_add_bytes(inode, size);
151 ret = btrfs_insert_empty_item(trans, root, path, &key,
152 datasize);
153 BUG_ON(ret);
154 if (ret) {
155 err = ret;
c8b97818
CM
156 goto fail;
157 }
158 leaf = path->nodes[0];
159 ei = btrfs_item_ptr(leaf, path->slots[0],
160 struct btrfs_file_extent_item);
161 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
162 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
163 btrfs_set_file_extent_encryption(leaf, ei, 0);
164 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
165 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
166 ptr = btrfs_file_extent_inline_start(ei);
167
261507a0 168 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
169 struct page *cpage;
170 int i = 0;
d397712b 171 while (compressed_size > 0) {
c8b97818 172 cpage = compressed_pages[i];
5b050f04 173 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
174 PAGE_CACHE_SIZE);
175
b9473439 176 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 177 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 178 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
179
180 i++;
181 ptr += cur_size;
182 compressed_size -= cur_size;
183 }
184 btrfs_set_file_extent_compression(leaf, ei,
261507a0 185 compress_type);
c8b97818
CM
186 } else {
187 page = find_get_page(inode->i_mapping,
188 start >> PAGE_CACHE_SHIFT);
189 btrfs_set_file_extent_compression(leaf, ei, 0);
190 kaddr = kmap_atomic(page, KM_USER0);
191 offset = start & (PAGE_CACHE_SIZE - 1);
192 write_extent_buffer(leaf, kaddr + offset, ptr, size);
193 kunmap_atomic(kaddr, KM_USER0);
194 page_cache_release(page);
195 }
196 btrfs_mark_buffer_dirty(leaf);
197 btrfs_free_path(path);
198
c2167754
YZ
199 /*
200 * we're an inline extent, so nobody can
201 * extend the file past i_size without locking
202 * a page we already have locked.
203 *
204 * We must do any isize and inode updates
205 * before we unlock the pages. Otherwise we
206 * could end up racing with unlink.
207 */
c8b97818
CM
208 BTRFS_I(inode)->disk_i_size = inode->i_size;
209 btrfs_update_inode(trans, root, inode);
c2167754 210
c8b97818
CM
211 return 0;
212fail:
213 btrfs_free_path(path);
214 return err;
215}
216
217
218/*
219 * conditionally insert an inline extent into the file. This
220 * does the checks required to make sure the data is small enough
221 * to fit as an inline extent.
222 */
7f366cfe 223static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
224 struct btrfs_root *root,
225 struct inode *inode, u64 start, u64 end,
fe3f566c 226 size_t compressed_size, int compress_type,
c8b97818
CM
227 struct page **compressed_pages)
228{
229 u64 isize = i_size_read(inode);
230 u64 actual_end = min(end + 1, isize);
231 u64 inline_len = actual_end - start;
232 u64 aligned_end = (end + root->sectorsize - 1) &
233 ~((u64)root->sectorsize - 1);
234 u64 hint_byte;
235 u64 data_len = inline_len;
236 int ret;
237
238 if (compressed_size)
239 data_len = compressed_size;
240
241 if (start > 0 ||
70b99e69 242 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
243 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
244 (!compressed_size &&
245 (actual_end & (root->sectorsize - 1)) == 0) ||
246 end + 1 < isize ||
247 data_len > root->fs_info->max_inline) {
248 return 1;
249 }
250
920bbbfb 251 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 252 &hint_byte, 1);
c8b97818
CM
253 BUG_ON(ret);
254
255 if (isize > actual_end)
256 inline_len = min_t(u64, isize, actual_end);
257 ret = insert_inline_extent(trans, root, inode, start,
258 inline_len, compressed_size,
fe3f566c 259 compress_type, compressed_pages);
c8b97818 260 BUG_ON(ret);
0ca1f7ce 261 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 262 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
263 return 0;
264}
265
771ed689
CM
266struct async_extent {
267 u64 start;
268 u64 ram_size;
269 u64 compressed_size;
270 struct page **pages;
271 unsigned long nr_pages;
261507a0 272 int compress_type;
771ed689
CM
273 struct list_head list;
274};
275
276struct async_cow {
277 struct inode *inode;
278 struct btrfs_root *root;
279 struct page *locked_page;
280 u64 start;
281 u64 end;
282 struct list_head extents;
283 struct btrfs_work work;
284};
285
286static noinline int add_async_extent(struct async_cow *cow,
287 u64 start, u64 ram_size,
288 u64 compressed_size,
289 struct page **pages,
261507a0
LZ
290 unsigned long nr_pages,
291 int compress_type)
771ed689
CM
292{
293 struct async_extent *async_extent;
294
295 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 296 BUG_ON(!async_extent);
771ed689
CM
297 async_extent->start = start;
298 async_extent->ram_size = ram_size;
299 async_extent->compressed_size = compressed_size;
300 async_extent->pages = pages;
301 async_extent->nr_pages = nr_pages;
261507a0 302 async_extent->compress_type = compress_type;
771ed689
CM
303 list_add_tail(&async_extent->list, &cow->extents);
304 return 0;
305}
306
d352ac68 307/*
771ed689
CM
308 * we create compressed extents in two phases. The first
309 * phase compresses a range of pages that have already been
310 * locked (both pages and state bits are locked).
c8b97818 311 *
771ed689
CM
312 * This is done inside an ordered work queue, and the compression
313 * is spread across many cpus. The actual IO submission is step
314 * two, and the ordered work queue takes care of making sure that
315 * happens in the same order things were put onto the queue by
316 * writepages and friends.
c8b97818 317 *
771ed689
CM
318 * If this code finds it can't get good compression, it puts an
319 * entry onto the work queue to write the uncompressed bytes. This
320 * makes sure that both compressed inodes and uncompressed inodes
321 * are written in the same order that pdflush sent them down.
d352ac68 322 */
771ed689
CM
323static noinline int compress_file_range(struct inode *inode,
324 struct page *locked_page,
325 u64 start, u64 end,
326 struct async_cow *async_cow,
327 int *num_added)
b888db2b
CM
328{
329 struct btrfs_root *root = BTRFS_I(inode)->root;
330 struct btrfs_trans_handle *trans;
db94535d 331 u64 num_bytes;
db94535d 332 u64 blocksize = root->sectorsize;
c8b97818 333 u64 actual_end;
42dc7bab 334 u64 isize = i_size_read(inode);
e6dcd2dc 335 int ret = 0;
c8b97818
CM
336 struct page **pages = NULL;
337 unsigned long nr_pages;
338 unsigned long nr_pages_ret = 0;
339 unsigned long total_compressed = 0;
340 unsigned long total_in = 0;
341 unsigned long max_compressed = 128 * 1024;
771ed689 342 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
343 int i;
344 int will_compress;
261507a0 345 int compress_type = root->fs_info->compress_type;
b888db2b 346
4cb5300b
CM
347 /* if this is a small write inside eof, kick off a defragbot */
348 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
349 btrfs_add_inode_defrag(NULL, inode);
350
42dc7bab 351 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
352again:
353 will_compress = 0;
354 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
355 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 356
f03d9301
CM
357 /*
358 * we don't want to send crud past the end of i_size through
359 * compression, that's just a waste of CPU time. So, if the
360 * end of the file is before the start of our current
361 * requested range of bytes, we bail out to the uncompressed
362 * cleanup code that can deal with all of this.
363 *
364 * It isn't really the fastest way to fix things, but this is a
365 * very uncommon corner.
366 */
367 if (actual_end <= start)
368 goto cleanup_and_bail_uncompressed;
369
c8b97818
CM
370 total_compressed = actual_end - start;
371
372 /* we want to make sure that amount of ram required to uncompress
373 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
374 * of a compressed extent to 128k. This is a crucial number
375 * because it also controls how easily we can spread reads across
376 * cpus for decompression.
377 *
378 * We also want to make sure the amount of IO required to do
379 * a random read is reasonably small, so we limit the size of
380 * a compressed extent to 128k.
c8b97818
CM
381 */
382 total_compressed = min(total_compressed, max_uncompressed);
db94535d 383 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 384 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
385 total_in = 0;
386 ret = 0;
db94535d 387
771ed689
CM
388 /*
389 * we do compression for mount -o compress and when the
390 * inode has not been flagged as nocompress. This flag can
391 * change at any time if we discover bad compression ratios.
c8b97818 392 */
6cbff00f 393 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 394 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
395 (BTRFS_I(inode)->force_compress) ||
396 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 397 WARN_ON(pages);
cfbc246e 398 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
399 if (!pages) {
400 /* just bail out to the uncompressed code */
401 goto cont;
402 }
c8b97818 403
261507a0
LZ
404 if (BTRFS_I(inode)->force_compress)
405 compress_type = BTRFS_I(inode)->force_compress;
406
407 ret = btrfs_compress_pages(compress_type,
408 inode->i_mapping, start,
409 total_compressed, pages,
410 nr_pages, &nr_pages_ret,
411 &total_in,
412 &total_compressed,
413 max_compressed);
c8b97818
CM
414
415 if (!ret) {
416 unsigned long offset = total_compressed &
417 (PAGE_CACHE_SIZE - 1);
418 struct page *page = pages[nr_pages_ret - 1];
419 char *kaddr;
420
421 /* zero the tail end of the last page, we might be
422 * sending it down to disk
423 */
424 if (offset) {
425 kaddr = kmap_atomic(page, KM_USER0);
426 memset(kaddr + offset, 0,
427 PAGE_CACHE_SIZE - offset);
428 kunmap_atomic(kaddr, KM_USER0);
429 }
430 will_compress = 1;
431 }
432 }
560f7d75 433cont:
c8b97818 434 if (start == 0) {
7a7eaa40 435 trans = btrfs_join_transaction(root);
3612b495 436 BUG_ON(IS_ERR(trans));
0ca1f7ce 437 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 438
c8b97818 439 /* lets try to make an inline extent */
771ed689 440 if (ret || total_in < (actual_end - start)) {
c8b97818 441 /* we didn't compress the entire range, try
771ed689 442 * to make an uncompressed inline extent.
c8b97818
CM
443 */
444 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 445 start, end, 0, 0, NULL);
c8b97818 446 } else {
771ed689 447 /* try making a compressed inline extent */
c8b97818
CM
448 ret = cow_file_range_inline(trans, root, inode,
449 start, end,
fe3f566c
LZ
450 total_compressed,
451 compress_type, pages);
c8b97818
CM
452 }
453 if (ret == 0) {
771ed689
CM
454 /*
455 * inline extent creation worked, we don't need
456 * to create any more async work items. Unlock
457 * and free up our temp pages.
458 */
c8b97818 459 extent_clear_unlock_delalloc(inode,
a791e35e
CM
460 &BTRFS_I(inode)->io_tree,
461 start, end, NULL,
462 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 463 EXTENT_CLEAR_DELALLOC |
a791e35e 464 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
465
466 btrfs_end_transaction(trans, root);
c8b97818
CM
467 goto free_pages_out;
468 }
c2167754 469 btrfs_end_transaction(trans, root);
c8b97818
CM
470 }
471
472 if (will_compress) {
473 /*
474 * we aren't doing an inline extent round the compressed size
475 * up to a block size boundary so the allocator does sane
476 * things
477 */
478 total_compressed = (total_compressed + blocksize - 1) &
479 ~(blocksize - 1);
480
481 /*
482 * one last check to make sure the compression is really a
483 * win, compare the page count read with the blocks on disk
484 */
485 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
486 ~(PAGE_CACHE_SIZE - 1);
487 if (total_compressed >= total_in) {
488 will_compress = 0;
489 } else {
c8b97818
CM
490 num_bytes = total_in;
491 }
492 }
493 if (!will_compress && pages) {
494 /*
495 * the compression code ran but failed to make things smaller,
496 * free any pages it allocated and our page pointer array
497 */
498 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 499 WARN_ON(pages[i]->mapping);
c8b97818
CM
500 page_cache_release(pages[i]);
501 }
502 kfree(pages);
503 pages = NULL;
504 total_compressed = 0;
505 nr_pages_ret = 0;
506
507 /* flag the file so we don't compress in the future */
1e701a32
CM
508 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
509 !(BTRFS_I(inode)->force_compress)) {
a555f810 510 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 511 }
c8b97818 512 }
771ed689
CM
513 if (will_compress) {
514 *num_added += 1;
c8b97818 515
771ed689
CM
516 /* the async work queues will take care of doing actual
517 * allocation on disk for these compressed pages,
518 * and will submit them to the elevator.
519 */
520 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
521 total_compressed, pages, nr_pages_ret,
522 compress_type);
179e29e4 523
24ae6365 524 if (start + num_bytes < end) {
771ed689
CM
525 start += num_bytes;
526 pages = NULL;
527 cond_resched();
528 goto again;
529 }
530 } else {
f03d9301 531cleanup_and_bail_uncompressed:
771ed689
CM
532 /*
533 * No compression, but we still need to write the pages in
534 * the file we've been given so far. redirty the locked
535 * page if it corresponds to our extent and set things up
536 * for the async work queue to run cow_file_range to do
537 * the normal delalloc dance
538 */
539 if (page_offset(locked_page) >= start &&
540 page_offset(locked_page) <= end) {
541 __set_page_dirty_nobuffers(locked_page);
542 /* unlocked later on in the async handlers */
543 }
261507a0
LZ
544 add_async_extent(async_cow, start, end - start + 1,
545 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
546 *num_added += 1;
547 }
3b951516 548
771ed689
CM
549out:
550 return 0;
551
552free_pages_out:
553 for (i = 0; i < nr_pages_ret; i++) {
554 WARN_ON(pages[i]->mapping);
555 page_cache_release(pages[i]);
556 }
d397712b 557 kfree(pages);
771ed689
CM
558
559 goto out;
560}
561
562/*
563 * phase two of compressed writeback. This is the ordered portion
564 * of the code, which only gets called in the order the work was
565 * queued. We walk all the async extents created by compress_file_range
566 * and send them down to the disk.
567 */
568static noinline int submit_compressed_extents(struct inode *inode,
569 struct async_cow *async_cow)
570{
571 struct async_extent *async_extent;
572 u64 alloc_hint = 0;
573 struct btrfs_trans_handle *trans;
574 struct btrfs_key ins;
575 struct extent_map *em;
576 struct btrfs_root *root = BTRFS_I(inode)->root;
577 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
578 struct extent_io_tree *io_tree;
f5a84ee3 579 int ret = 0;
771ed689
CM
580
581 if (list_empty(&async_cow->extents))
582 return 0;
583
771ed689 584
d397712b 585 while (!list_empty(&async_cow->extents)) {
771ed689
CM
586 async_extent = list_entry(async_cow->extents.next,
587 struct async_extent, list);
588 list_del(&async_extent->list);
c8b97818 589
771ed689
CM
590 io_tree = &BTRFS_I(inode)->io_tree;
591
f5a84ee3 592retry:
771ed689
CM
593 /* did the compression code fall back to uncompressed IO? */
594 if (!async_extent->pages) {
595 int page_started = 0;
596 unsigned long nr_written = 0;
597
598 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
599 async_extent->start +
600 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
601
602 /* allocate blocks */
f5a84ee3
JB
603 ret = cow_file_range(inode, async_cow->locked_page,
604 async_extent->start,
605 async_extent->start +
606 async_extent->ram_size - 1,
607 &page_started, &nr_written, 0);
771ed689
CM
608
609 /*
610 * if page_started, cow_file_range inserted an
611 * inline extent and took care of all the unlocking
612 * and IO for us. Otherwise, we need to submit
613 * all those pages down to the drive.
614 */
f5a84ee3 615 if (!page_started && !ret)
771ed689
CM
616 extent_write_locked_range(io_tree,
617 inode, async_extent->start,
d397712b 618 async_extent->start +
771ed689
CM
619 async_extent->ram_size - 1,
620 btrfs_get_extent,
621 WB_SYNC_ALL);
622 kfree(async_extent);
623 cond_resched();
624 continue;
625 }
626
627 lock_extent(io_tree, async_extent->start,
628 async_extent->start + async_extent->ram_size - 1,
629 GFP_NOFS);
771ed689 630
7a7eaa40 631 trans = btrfs_join_transaction(root);
3612b495 632 BUG_ON(IS_ERR(trans));
74b21075 633 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
634 ret = btrfs_reserve_extent(trans, root,
635 async_extent->compressed_size,
636 async_extent->compressed_size,
637 0, alloc_hint,
638 (u64)-1, &ins, 1);
c2167754
YZ
639 btrfs_end_transaction(trans, root);
640
f5a84ee3
JB
641 if (ret) {
642 int i;
643 for (i = 0; i < async_extent->nr_pages; i++) {
644 WARN_ON(async_extent->pages[i]->mapping);
645 page_cache_release(async_extent->pages[i]);
646 }
647 kfree(async_extent->pages);
648 async_extent->nr_pages = 0;
649 async_extent->pages = NULL;
650 unlock_extent(io_tree, async_extent->start,
651 async_extent->start +
652 async_extent->ram_size - 1, GFP_NOFS);
653 goto retry;
654 }
655
c2167754
YZ
656 /*
657 * here we're doing allocation and writeback of the
658 * compressed pages
659 */
660 btrfs_drop_extent_cache(inode, async_extent->start,
661 async_extent->start +
662 async_extent->ram_size - 1, 0);
663
172ddd60 664 em = alloc_extent_map();
c26a9203 665 BUG_ON(!em);
771ed689
CM
666 em->start = async_extent->start;
667 em->len = async_extent->ram_size;
445a6944 668 em->orig_start = em->start;
c8b97818 669
771ed689
CM
670 em->block_start = ins.objectid;
671 em->block_len = ins.offset;
672 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 673 em->compress_type = async_extent->compress_type;
771ed689
CM
674 set_bit(EXTENT_FLAG_PINNED, &em->flags);
675 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
676
d397712b 677 while (1) {
890871be 678 write_lock(&em_tree->lock);
771ed689 679 ret = add_extent_mapping(em_tree, em);
890871be 680 write_unlock(&em_tree->lock);
771ed689
CM
681 if (ret != -EEXIST) {
682 free_extent_map(em);
683 break;
684 }
685 btrfs_drop_extent_cache(inode, async_extent->start,
686 async_extent->start +
687 async_extent->ram_size - 1, 0);
688 }
689
261507a0
LZ
690 ret = btrfs_add_ordered_extent_compress(inode,
691 async_extent->start,
692 ins.objectid,
693 async_extent->ram_size,
694 ins.offset,
695 BTRFS_ORDERED_COMPRESSED,
696 async_extent->compress_type);
771ed689
CM
697 BUG_ON(ret);
698
771ed689
CM
699 /*
700 * clear dirty, set writeback and unlock the pages.
701 */
702 extent_clear_unlock_delalloc(inode,
a791e35e
CM
703 &BTRFS_I(inode)->io_tree,
704 async_extent->start,
705 async_extent->start +
706 async_extent->ram_size - 1,
707 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
708 EXTENT_CLEAR_UNLOCK |
a3429ab7 709 EXTENT_CLEAR_DELALLOC |
a791e35e 710 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
711
712 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
713 async_extent->start,
714 async_extent->ram_size,
715 ins.objectid,
716 ins.offset, async_extent->pages,
717 async_extent->nr_pages);
771ed689
CM
718
719 BUG_ON(ret);
771ed689
CM
720 alloc_hint = ins.objectid + ins.offset;
721 kfree(async_extent);
722 cond_resched();
723 }
724
771ed689
CM
725 return 0;
726}
727
4b46fce2
JB
728static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
729 u64 num_bytes)
730{
731 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
732 struct extent_map *em;
733 u64 alloc_hint = 0;
734
735 read_lock(&em_tree->lock);
736 em = search_extent_mapping(em_tree, start, num_bytes);
737 if (em) {
738 /*
739 * if block start isn't an actual block number then find the
740 * first block in this inode and use that as a hint. If that
741 * block is also bogus then just don't worry about it.
742 */
743 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
744 free_extent_map(em);
745 em = search_extent_mapping(em_tree, 0, 0);
746 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
747 alloc_hint = em->block_start;
748 if (em)
749 free_extent_map(em);
750 } else {
751 alloc_hint = em->block_start;
752 free_extent_map(em);
753 }
754 }
755 read_unlock(&em_tree->lock);
756
757 return alloc_hint;
758}
759
771ed689
CM
760/*
761 * when extent_io.c finds a delayed allocation range in the file,
762 * the call backs end up in this code. The basic idea is to
763 * allocate extents on disk for the range, and create ordered data structs
764 * in ram to track those extents.
765 *
766 * locked_page is the page that writepage had locked already. We use
767 * it to make sure we don't do extra locks or unlocks.
768 *
769 * *page_started is set to one if we unlock locked_page and do everything
770 * required to start IO on it. It may be clean and already done with
771 * IO when we return.
772 */
773static noinline int cow_file_range(struct inode *inode,
774 struct page *locked_page,
775 u64 start, u64 end, int *page_started,
776 unsigned long *nr_written,
777 int unlock)
778{
779 struct btrfs_root *root = BTRFS_I(inode)->root;
780 struct btrfs_trans_handle *trans;
781 u64 alloc_hint = 0;
782 u64 num_bytes;
783 unsigned long ram_size;
784 u64 disk_num_bytes;
785 u64 cur_alloc_size;
786 u64 blocksize = root->sectorsize;
771ed689
CM
787 struct btrfs_key ins;
788 struct extent_map *em;
789 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
790 int ret = 0;
791
2cf8572d 792 BUG_ON(btrfs_is_free_space_inode(root, inode));
7a7eaa40 793 trans = btrfs_join_transaction(root);
3612b495 794 BUG_ON(IS_ERR(trans));
0ca1f7ce 795 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 796
771ed689
CM
797 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
798 num_bytes = max(blocksize, num_bytes);
799 disk_num_bytes = num_bytes;
800 ret = 0;
801
4cb5300b
CM
802 /* if this is a small write inside eof, kick off defrag */
803 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
804 btrfs_add_inode_defrag(trans, inode);
805
771ed689
CM
806 if (start == 0) {
807 /* lets try to make an inline extent */
808 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 809 start, end, 0, 0, NULL);
771ed689
CM
810 if (ret == 0) {
811 extent_clear_unlock_delalloc(inode,
a791e35e
CM
812 &BTRFS_I(inode)->io_tree,
813 start, end, NULL,
814 EXTENT_CLEAR_UNLOCK_PAGE |
815 EXTENT_CLEAR_UNLOCK |
816 EXTENT_CLEAR_DELALLOC |
817 EXTENT_CLEAR_DIRTY |
818 EXTENT_SET_WRITEBACK |
819 EXTENT_END_WRITEBACK);
c2167754 820
771ed689
CM
821 *nr_written = *nr_written +
822 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
823 *page_started = 1;
824 ret = 0;
825 goto out;
826 }
827 }
828
829 BUG_ON(disk_num_bytes >
6c41761f 830 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 831
4b46fce2 832 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
833 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
834
d397712b 835 while (disk_num_bytes > 0) {
a791e35e
CM
836 unsigned long op;
837
287a0ab9 838 cur_alloc_size = disk_num_bytes;
e6dcd2dc 839 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 840 root->sectorsize, 0, alloc_hint,
e6dcd2dc 841 (u64)-1, &ins, 1);
d397712b
CM
842 BUG_ON(ret);
843
172ddd60 844 em = alloc_extent_map();
c26a9203 845 BUG_ON(!em);
e6dcd2dc 846 em->start = start;
445a6944 847 em->orig_start = em->start;
771ed689
CM
848 ram_size = ins.offset;
849 em->len = ins.offset;
c8b97818 850
e6dcd2dc 851 em->block_start = ins.objectid;
c8b97818 852 em->block_len = ins.offset;
e6dcd2dc 853 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 854 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 855
d397712b 856 while (1) {
890871be 857 write_lock(&em_tree->lock);
e6dcd2dc 858 ret = add_extent_mapping(em_tree, em);
890871be 859 write_unlock(&em_tree->lock);
e6dcd2dc
CM
860 if (ret != -EEXIST) {
861 free_extent_map(em);
862 break;
863 }
864 btrfs_drop_extent_cache(inode, start,
c8b97818 865 start + ram_size - 1, 0);
e6dcd2dc
CM
866 }
867
98d20f67 868 cur_alloc_size = ins.offset;
e6dcd2dc 869 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 870 ram_size, cur_alloc_size, 0);
e6dcd2dc 871 BUG_ON(ret);
c8b97818 872
17d217fe
YZ
873 if (root->root_key.objectid ==
874 BTRFS_DATA_RELOC_TREE_OBJECTID) {
875 ret = btrfs_reloc_clone_csums(inode, start,
876 cur_alloc_size);
877 BUG_ON(ret);
878 }
879
d397712b 880 if (disk_num_bytes < cur_alloc_size)
3b951516 881 break;
d397712b 882
c8b97818
CM
883 /* we're not doing compressed IO, don't unlock the first
884 * page (which the caller expects to stay locked), don't
885 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
886 *
887 * Do set the Private2 bit so we know this page was properly
888 * setup for writepage
c8b97818 889 */
a791e35e
CM
890 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
891 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
892 EXTENT_SET_PRIVATE2;
893
c8b97818
CM
894 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
895 start, start + ram_size - 1,
a791e35e 896 locked_page, op);
c8b97818 897 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
898 num_bytes -= cur_alloc_size;
899 alloc_hint = ins.objectid + ins.offset;
900 start += cur_alloc_size;
b888db2b 901 }
b888db2b 902out:
771ed689 903 ret = 0;
b888db2b 904 btrfs_end_transaction(trans, root);
c8b97818 905
be20aa9d 906 return ret;
771ed689 907}
c8b97818 908
771ed689
CM
909/*
910 * work queue call back to started compression on a file and pages
911 */
912static noinline void async_cow_start(struct btrfs_work *work)
913{
914 struct async_cow *async_cow;
915 int num_added = 0;
916 async_cow = container_of(work, struct async_cow, work);
917
918 compress_file_range(async_cow->inode, async_cow->locked_page,
919 async_cow->start, async_cow->end, async_cow,
920 &num_added);
921 if (num_added == 0)
922 async_cow->inode = NULL;
923}
924
925/*
926 * work queue call back to submit previously compressed pages
927 */
928static noinline void async_cow_submit(struct btrfs_work *work)
929{
930 struct async_cow *async_cow;
931 struct btrfs_root *root;
932 unsigned long nr_pages;
933
934 async_cow = container_of(work, struct async_cow, work);
935
936 root = async_cow->root;
937 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
938 PAGE_CACHE_SHIFT;
939
940 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
941
942 if (atomic_read(&root->fs_info->async_delalloc_pages) <
943 5 * 1042 * 1024 &&
944 waitqueue_active(&root->fs_info->async_submit_wait))
945 wake_up(&root->fs_info->async_submit_wait);
946
d397712b 947 if (async_cow->inode)
771ed689 948 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 949}
c8b97818 950
771ed689
CM
951static noinline void async_cow_free(struct btrfs_work *work)
952{
953 struct async_cow *async_cow;
954 async_cow = container_of(work, struct async_cow, work);
955 kfree(async_cow);
956}
957
958static int cow_file_range_async(struct inode *inode, struct page *locked_page,
959 u64 start, u64 end, int *page_started,
960 unsigned long *nr_written)
961{
962 struct async_cow *async_cow;
963 struct btrfs_root *root = BTRFS_I(inode)->root;
964 unsigned long nr_pages;
965 u64 cur_end;
966 int limit = 10 * 1024 * 1042;
967
a3429ab7
CM
968 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
969 1, 0, NULL, GFP_NOFS);
d397712b 970 while (start < end) {
771ed689 971 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 972 BUG_ON(!async_cow);
771ed689
CM
973 async_cow->inode = inode;
974 async_cow->root = root;
975 async_cow->locked_page = locked_page;
976 async_cow->start = start;
977
6cbff00f 978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
979 cur_end = end;
980 else
981 cur_end = min(end, start + 512 * 1024 - 1);
982
983 async_cow->end = cur_end;
984 INIT_LIST_HEAD(&async_cow->extents);
985
986 async_cow->work.func = async_cow_start;
987 async_cow->work.ordered_func = async_cow_submit;
988 async_cow->work.ordered_free = async_cow_free;
989 async_cow->work.flags = 0;
990
771ed689
CM
991 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
992 PAGE_CACHE_SHIFT;
993 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
994
995 btrfs_queue_worker(&root->fs_info->delalloc_workers,
996 &async_cow->work);
997
998 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) <
1001 limit));
1002 }
1003
d397712b 1004 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1005 atomic_read(&root->fs_info->async_delalloc_pages)) {
1006 wait_event(root->fs_info->async_submit_wait,
1007 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1008 0));
1009 }
1010
1011 *nr_written += nr_pages;
1012 start = cur_end + 1;
1013 }
1014 *page_started = 1;
1015 return 0;
be20aa9d
CM
1016}
1017
d397712b 1018static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1019 u64 bytenr, u64 num_bytes)
1020{
1021 int ret;
1022 struct btrfs_ordered_sum *sums;
1023 LIST_HEAD(list);
1024
07d400a6 1025 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1026 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1027 if (ret == 0 && list_empty(&list))
1028 return 0;
1029
1030 while (!list_empty(&list)) {
1031 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1032 list_del(&sums->list);
1033 kfree(sums);
1034 }
1035 return 1;
1036}
1037
d352ac68
CM
1038/*
1039 * when nowcow writeback call back. This checks for snapshots or COW copies
1040 * of the extents that exist in the file, and COWs the file as required.
1041 *
1042 * If no cow copies or snapshots exist, we write directly to the existing
1043 * blocks on disk
1044 */
7f366cfe
CM
1045static noinline int run_delalloc_nocow(struct inode *inode,
1046 struct page *locked_page,
771ed689
CM
1047 u64 start, u64 end, int *page_started, int force,
1048 unsigned long *nr_written)
be20aa9d 1049{
be20aa9d 1050 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1051 struct btrfs_trans_handle *trans;
be20aa9d 1052 struct extent_buffer *leaf;
be20aa9d 1053 struct btrfs_path *path;
80ff3856 1054 struct btrfs_file_extent_item *fi;
be20aa9d 1055 struct btrfs_key found_key;
80ff3856
YZ
1056 u64 cow_start;
1057 u64 cur_offset;
1058 u64 extent_end;
5d4f98a2 1059 u64 extent_offset;
80ff3856
YZ
1060 u64 disk_bytenr;
1061 u64 num_bytes;
1062 int extent_type;
1063 int ret;
d899e052 1064 int type;
80ff3856
YZ
1065 int nocow;
1066 int check_prev = 1;
82d5902d 1067 bool nolock;
33345d01 1068 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1069
1070 path = btrfs_alloc_path();
d8926bb3
MF
1071 if (!path)
1072 return -ENOMEM;
82d5902d 1073
2cf8572d 1074 nolock = btrfs_is_free_space_inode(root, inode);
82d5902d
LZ
1075
1076 if (nolock)
7a7eaa40 1077 trans = btrfs_join_transaction_nolock(root);
82d5902d 1078 else
7a7eaa40 1079 trans = btrfs_join_transaction(root);
ff5714cc 1080
3612b495 1081 BUG_ON(IS_ERR(trans));
74b21075 1082 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1083
80ff3856
YZ
1084 cow_start = (u64)-1;
1085 cur_offset = start;
1086 while (1) {
33345d01 1087 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1088 cur_offset, 0);
1089 BUG_ON(ret < 0);
1090 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1091 leaf = path->nodes[0];
1092 btrfs_item_key_to_cpu(leaf, &found_key,
1093 path->slots[0] - 1);
33345d01 1094 if (found_key.objectid == ino &&
80ff3856
YZ
1095 found_key.type == BTRFS_EXTENT_DATA_KEY)
1096 path->slots[0]--;
1097 }
1098 check_prev = 0;
1099next_slot:
1100 leaf = path->nodes[0];
1101 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1102 ret = btrfs_next_leaf(root, path);
1103 if (ret < 0)
1104 BUG_ON(1);
1105 if (ret > 0)
1106 break;
1107 leaf = path->nodes[0];
1108 }
be20aa9d 1109
80ff3856
YZ
1110 nocow = 0;
1111 disk_bytenr = 0;
17d217fe 1112 num_bytes = 0;
80ff3856
YZ
1113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1114
33345d01 1115 if (found_key.objectid > ino ||
80ff3856
YZ
1116 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1117 found_key.offset > end)
1118 break;
1119
1120 if (found_key.offset > cur_offset) {
1121 extent_end = found_key.offset;
e9061e21 1122 extent_type = 0;
80ff3856
YZ
1123 goto out_check;
1124 }
1125
1126 fi = btrfs_item_ptr(leaf, path->slots[0],
1127 struct btrfs_file_extent_item);
1128 extent_type = btrfs_file_extent_type(leaf, fi);
1129
d899e052
YZ
1130 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1131 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1132 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1133 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1134 extent_end = found_key.offset +
1135 btrfs_file_extent_num_bytes(leaf, fi);
1136 if (extent_end <= start) {
1137 path->slots[0]++;
1138 goto next_slot;
1139 }
17d217fe
YZ
1140 if (disk_bytenr == 0)
1141 goto out_check;
80ff3856
YZ
1142 if (btrfs_file_extent_compression(leaf, fi) ||
1143 btrfs_file_extent_encryption(leaf, fi) ||
1144 btrfs_file_extent_other_encoding(leaf, fi))
1145 goto out_check;
d899e052
YZ
1146 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1147 goto out_check;
d2fb3437 1148 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1149 goto out_check;
33345d01 1150 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1151 found_key.offset -
1152 extent_offset, disk_bytenr))
17d217fe 1153 goto out_check;
5d4f98a2 1154 disk_bytenr += extent_offset;
17d217fe
YZ
1155 disk_bytenr += cur_offset - found_key.offset;
1156 num_bytes = min(end + 1, extent_end) - cur_offset;
1157 /*
1158 * force cow if csum exists in the range.
1159 * this ensure that csum for a given extent are
1160 * either valid or do not exist.
1161 */
1162 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1163 goto out_check;
80ff3856
YZ
1164 nocow = 1;
1165 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1166 extent_end = found_key.offset +
1167 btrfs_file_extent_inline_len(leaf, fi);
1168 extent_end = ALIGN(extent_end, root->sectorsize);
1169 } else {
1170 BUG_ON(1);
1171 }
1172out_check:
1173 if (extent_end <= start) {
1174 path->slots[0]++;
1175 goto next_slot;
1176 }
1177 if (!nocow) {
1178 if (cow_start == (u64)-1)
1179 cow_start = cur_offset;
1180 cur_offset = extent_end;
1181 if (cur_offset > end)
1182 break;
1183 path->slots[0]++;
1184 goto next_slot;
7ea394f1
YZ
1185 }
1186
b3b4aa74 1187 btrfs_release_path(path);
80ff3856
YZ
1188 if (cow_start != (u64)-1) {
1189 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1190 found_key.offset - 1, page_started,
1191 nr_written, 1);
80ff3856
YZ
1192 BUG_ON(ret);
1193 cow_start = (u64)-1;
7ea394f1 1194 }
80ff3856 1195
d899e052
YZ
1196 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1197 struct extent_map *em;
1198 struct extent_map_tree *em_tree;
1199 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1200 em = alloc_extent_map();
c26a9203 1201 BUG_ON(!em);
d899e052 1202 em->start = cur_offset;
445a6944 1203 em->orig_start = em->start;
d899e052
YZ
1204 em->len = num_bytes;
1205 em->block_len = num_bytes;
1206 em->block_start = disk_bytenr;
1207 em->bdev = root->fs_info->fs_devices->latest_bdev;
1208 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1209 while (1) {
890871be 1210 write_lock(&em_tree->lock);
d899e052 1211 ret = add_extent_mapping(em_tree, em);
890871be 1212 write_unlock(&em_tree->lock);
d899e052
YZ
1213 if (ret != -EEXIST) {
1214 free_extent_map(em);
1215 break;
1216 }
1217 btrfs_drop_extent_cache(inode, em->start,
1218 em->start + em->len - 1, 0);
1219 }
1220 type = BTRFS_ORDERED_PREALLOC;
1221 } else {
1222 type = BTRFS_ORDERED_NOCOW;
1223 }
80ff3856
YZ
1224
1225 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1226 num_bytes, num_bytes, type);
1227 BUG_ON(ret);
771ed689 1228
efa56464
YZ
1229 if (root->root_key.objectid ==
1230 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1231 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1232 num_bytes);
1233 BUG_ON(ret);
1234 }
1235
d899e052 1236 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1237 cur_offset, cur_offset + num_bytes - 1,
1238 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1239 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1240 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1241 cur_offset = extent_end;
1242 if (cur_offset > end)
1243 break;
be20aa9d 1244 }
b3b4aa74 1245 btrfs_release_path(path);
80ff3856
YZ
1246
1247 if (cur_offset <= end && cow_start == (u64)-1)
1248 cow_start = cur_offset;
1249 if (cow_start != (u64)-1) {
1250 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1251 page_started, nr_written, 1);
80ff3856
YZ
1252 BUG_ON(ret);
1253 }
1254
0cb59c99
JB
1255 if (nolock) {
1256 ret = btrfs_end_transaction_nolock(trans, root);
1257 BUG_ON(ret);
1258 } else {
1259 ret = btrfs_end_transaction(trans, root);
1260 BUG_ON(ret);
1261 }
7ea394f1 1262 btrfs_free_path(path);
80ff3856 1263 return 0;
be20aa9d
CM
1264}
1265
d352ac68
CM
1266/*
1267 * extent_io.c call back to do delayed allocation processing
1268 */
c8b97818 1269static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1270 u64 start, u64 end, int *page_started,
1271 unsigned long *nr_written)
be20aa9d 1272{
be20aa9d 1273 int ret;
7f366cfe 1274 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1275
6cbff00f 1276 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1277 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1278 page_started, 1, nr_written);
6cbff00f 1279 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1280 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1281 page_started, 0, nr_written);
1e701a32 1282 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1283 !(BTRFS_I(inode)->force_compress) &&
1284 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1285 ret = cow_file_range(inode, locked_page, start, end,
1286 page_started, nr_written, 1);
be20aa9d 1287 else
771ed689 1288 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1289 page_started, nr_written);
b888db2b
CM
1290 return ret;
1291}
1292
1bf85046
JM
1293static void btrfs_split_extent_hook(struct inode *inode,
1294 struct extent_state *orig, u64 split)
9ed74f2d 1295{
0ca1f7ce 1296 /* not delalloc, ignore it */
9ed74f2d 1297 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1298 return;
9ed74f2d 1299
9e0baf60
JB
1300 spin_lock(&BTRFS_I(inode)->lock);
1301 BTRFS_I(inode)->outstanding_extents++;
1302 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1303}
1304
1305/*
1306 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1307 * extents so we can keep track of new extents that are just merged onto old
1308 * extents, such as when we are doing sequential writes, so we can properly
1309 * account for the metadata space we'll need.
1310 */
1bf85046
JM
1311static void btrfs_merge_extent_hook(struct inode *inode,
1312 struct extent_state *new,
1313 struct extent_state *other)
9ed74f2d 1314{
9ed74f2d
JB
1315 /* not delalloc, ignore it */
1316 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1317 return;
9ed74f2d 1318
9e0baf60
JB
1319 spin_lock(&BTRFS_I(inode)->lock);
1320 BTRFS_I(inode)->outstanding_extents--;
1321 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1322}
1323
d352ac68
CM
1324/*
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1328 */
1bf85046
JM
1329static void btrfs_set_bit_hook(struct inode *inode,
1330 struct extent_state *state, int *bits)
291d673e 1331{
9ed74f2d 1332
75eff68e
CM
1333 /*
1334 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1335 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1336 * bit, which is only set or cleared with irqs on
1337 */
0ca1f7ce 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1339 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1340 u64 len = state->end + 1 - state->start;
2cf8572d 1341 bool do_list = !btrfs_is_free_space_inode(root, inode);
9ed74f2d 1342
9e0baf60 1343 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1344 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1345 } else {
1346 spin_lock(&BTRFS_I(inode)->lock);
1347 BTRFS_I(inode)->outstanding_extents++;
1348 spin_unlock(&BTRFS_I(inode)->lock);
1349 }
287a0ab9 1350
75eff68e 1351 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1352 BTRFS_I(inode)->delalloc_bytes += len;
1353 root->fs_info->delalloc_bytes += len;
0cb59c99 1354 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1355 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1356 &root->fs_info->delalloc_inodes);
1357 }
75eff68e 1358 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1359 }
291d673e
CM
1360}
1361
d352ac68
CM
1362/*
1363 * extent_io.c clear_bit_hook, see set_bit_hook for why
1364 */
1bf85046
JM
1365static void btrfs_clear_bit_hook(struct inode *inode,
1366 struct extent_state *state, int *bits)
291d673e 1367{
75eff68e
CM
1368 /*
1369 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1370 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1371 * bit, which is only set or cleared with irqs on
1372 */
0ca1f7ce 1373 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1374 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1375 u64 len = state->end + 1 - state->start;
2cf8572d 1376 bool do_list = !btrfs_is_free_space_inode(root, inode);
bcbfce8a 1377
9e0baf60 1378 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1379 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1380 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1381 spin_lock(&BTRFS_I(inode)->lock);
1382 BTRFS_I(inode)->outstanding_extents--;
1383 spin_unlock(&BTRFS_I(inode)->lock);
1384 }
0ca1f7ce
YZ
1385
1386 if (*bits & EXTENT_DO_ACCOUNTING)
1387 btrfs_delalloc_release_metadata(inode, len);
1388
0cb59c99
JB
1389 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1390 && do_list)
0ca1f7ce 1391 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1392
75eff68e 1393 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1394 root->fs_info->delalloc_bytes -= len;
1395 BTRFS_I(inode)->delalloc_bytes -= len;
1396
0cb59c99 1397 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1398 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1399 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1400 }
75eff68e 1401 spin_unlock(&root->fs_info->delalloc_lock);
291d673e 1402 }
291d673e
CM
1403}
1404
d352ac68
CM
1405/*
1406 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1407 * we don't create bios that span stripes or chunks
1408 */
239b14b3 1409int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1410 size_t size, struct bio *bio,
1411 unsigned long bio_flags)
239b14b3
CM
1412{
1413 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1414 struct btrfs_mapping_tree *map_tree;
a62b9401 1415 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1416 u64 length = 0;
1417 u64 map_length;
239b14b3
CM
1418 int ret;
1419
771ed689
CM
1420 if (bio_flags & EXTENT_BIO_COMPRESSED)
1421 return 0;
1422
f2d8d74d 1423 length = bio->bi_size;
239b14b3
CM
1424 map_tree = &root->fs_info->mapping_tree;
1425 map_length = length;
cea9e445 1426 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1427 &map_length, NULL, 0);
3444a972
JM
1428 /* Will always return 0 or 1 with map_multi == NULL */
1429 BUG_ON(ret < 0);
d397712b 1430 if (map_length < length + size)
239b14b3 1431 return 1;
3444a972 1432 return 0;
239b14b3
CM
1433}
1434
d352ac68
CM
1435/*
1436 * in order to insert checksums into the metadata in large chunks,
1437 * we wait until bio submission time. All the pages in the bio are
1438 * checksummed and sums are attached onto the ordered extent record.
1439 *
1440 * At IO completion time the cums attached on the ordered extent record
1441 * are inserted into the btree
1442 */
d397712b
CM
1443static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1444 struct bio *bio, int mirror_num,
eaf25d93
CM
1445 unsigned long bio_flags,
1446 u64 bio_offset)
065631f6 1447{
065631f6 1448 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1449 int ret = 0;
e015640f 1450
d20f7043 1451 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1452 BUG_ON(ret);
4a69a410
CM
1453 return 0;
1454}
e015640f 1455
4a69a410
CM
1456/*
1457 * in order to insert checksums into the metadata in large chunks,
1458 * we wait until bio submission time. All the pages in the bio are
1459 * checksummed and sums are attached onto the ordered extent record.
1460 *
1461 * At IO completion time the cums attached on the ordered extent record
1462 * are inserted into the btree
1463 */
b2950863 1464static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1465 int mirror_num, unsigned long bio_flags,
1466 u64 bio_offset)
4a69a410
CM
1467{
1468 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1469 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1470}
1471
d352ac68 1472/*
cad321ad
CM
1473 * extent_io.c submission hook. This does the right thing for csum calculation
1474 * on write, or reading the csums from the tree before a read
d352ac68 1475 */
b2950863 1476static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1477 int mirror_num, unsigned long bio_flags,
1478 u64 bio_offset)
44b8bd7e
CM
1479{
1480 struct btrfs_root *root = BTRFS_I(inode)->root;
1481 int ret = 0;
19b9bdb0 1482 int skip_sum;
0417341e 1483 int metadata = 0;
44b8bd7e 1484
6cbff00f 1485 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1486
2cf8572d 1487 if (btrfs_is_free_space_inode(root, inode))
0417341e
JM
1488 metadata = 2;
1489
1490 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
355808c2
JM
1491 if (ret)
1492 return ret;
065631f6 1493
7b6d91da 1494 if (!(rw & REQ_WRITE)) {
d20f7043 1495 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1496 return btrfs_submit_compressed_read(inode, bio,
1497 mirror_num, bio_flags);
c2db1073
TI
1498 } else if (!skip_sum) {
1499 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1500 if (ret)
1501 return ret;
1502 }
4d1b5fb4 1503 goto mapit;
19b9bdb0 1504 } else if (!skip_sum) {
17d217fe
YZ
1505 /* csum items have already been cloned */
1506 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1507 goto mapit;
19b9bdb0
CM
1508 /* we're doing a write, do the async checksumming */
1509 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1510 inode, rw, bio, mirror_num,
eaf25d93
CM
1511 bio_flags, bio_offset,
1512 __btrfs_submit_bio_start,
4a69a410 1513 __btrfs_submit_bio_done);
19b9bdb0
CM
1514 }
1515
0b86a832 1516mapit:
8b712842 1517 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1518}
6885f308 1519
d352ac68
CM
1520/*
1521 * given a list of ordered sums record them in the inode. This happens
1522 * at IO completion time based on sums calculated at bio submission time.
1523 */
ba1da2f4 1524static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1525 struct inode *inode, u64 file_offset,
1526 struct list_head *list)
1527{
e6dcd2dc
CM
1528 struct btrfs_ordered_sum *sum;
1529
c6e30871 1530 list_for_each_entry(sum, list, list) {
d20f7043
CM
1531 btrfs_csum_file_blocks(trans,
1532 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1533 }
1534 return 0;
1535}
1536
2ac55d41
JB
1537int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1538 struct extent_state **cached_state)
ea8c2819 1539{
d397712b 1540 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1541 WARN_ON(1);
ea8c2819 1542 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1543 cached_state, GFP_NOFS);
ea8c2819
CM
1544}
1545
d352ac68 1546/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1547struct btrfs_writepage_fixup {
1548 struct page *page;
1549 struct btrfs_work work;
1550};
1551
b2950863 1552static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1553{
1554 struct btrfs_writepage_fixup *fixup;
1555 struct btrfs_ordered_extent *ordered;
2ac55d41 1556 struct extent_state *cached_state = NULL;
247e743c
CM
1557 struct page *page;
1558 struct inode *inode;
1559 u64 page_start;
1560 u64 page_end;
87826df0 1561 int ret;
247e743c
CM
1562
1563 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1564 page = fixup->page;
4a096752 1565again:
247e743c
CM
1566 lock_page(page);
1567 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1568 ClearPageChecked(page);
1569 goto out_page;
1570 }
1571
1572 inode = page->mapping->host;
1573 page_start = page_offset(page);
1574 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1575
2ac55d41
JB
1576 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1577 &cached_state, GFP_NOFS);
4a096752
CM
1578
1579 /* already ordered? We're done */
8b62b72b 1580 if (PagePrivate2(page))
247e743c 1581 goto out;
4a096752
CM
1582
1583 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1584 if (ordered) {
2ac55d41
JB
1585 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1586 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1587 unlock_page(page);
1588 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1589 btrfs_put_ordered_extent(ordered);
4a096752
CM
1590 goto again;
1591 }
247e743c 1592
87826df0
JM
1593 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1594 if (ret) {
1595 mapping_set_error(page->mapping, ret);
1596 end_extent_writepage(page, ret, page_start, page_end);
1597 ClearPageChecked(page);
1598 goto out;
1599 }
1600
2ac55d41 1601 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1602 ClearPageChecked(page);
87826df0 1603 set_page_dirty(page);
247e743c 1604out:
2ac55d41
JB
1605 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1606 &cached_state, GFP_NOFS);
247e743c
CM
1607out_page:
1608 unlock_page(page);
1609 page_cache_release(page);
b897abec 1610 kfree(fixup);
247e743c
CM
1611}
1612
1613/*
1614 * There are a few paths in the higher layers of the kernel that directly
1615 * set the page dirty bit without asking the filesystem if it is a
1616 * good idea. This causes problems because we want to make sure COW
1617 * properly happens and the data=ordered rules are followed.
1618 *
c8b97818 1619 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1620 * hasn't been properly setup for IO. We kick off an async process
1621 * to fix it up. The async helper will wait for ordered extents, set
1622 * the delalloc bit and make it safe to write the page.
1623 */
b2950863 1624static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1625{
1626 struct inode *inode = page->mapping->host;
1627 struct btrfs_writepage_fixup *fixup;
1628 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1629
8b62b72b
CM
1630 /* this page is properly in the ordered list */
1631 if (TestClearPagePrivate2(page))
247e743c
CM
1632 return 0;
1633
1634 if (PageChecked(page))
1635 return -EAGAIN;
1636
1637 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1638 if (!fixup)
1639 return -EAGAIN;
f421950f 1640
247e743c
CM
1641 SetPageChecked(page);
1642 page_cache_get(page);
1643 fixup->work.func = btrfs_writepage_fixup_worker;
1644 fixup->page = page;
1645 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
87826df0 1646 return -EBUSY;
247e743c
CM
1647}
1648
d899e052
YZ
1649static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1650 struct inode *inode, u64 file_pos,
1651 u64 disk_bytenr, u64 disk_num_bytes,
1652 u64 num_bytes, u64 ram_bytes,
1653 u8 compression, u8 encryption,
1654 u16 other_encoding, int extent_type)
1655{
1656 struct btrfs_root *root = BTRFS_I(inode)->root;
1657 struct btrfs_file_extent_item *fi;
1658 struct btrfs_path *path;
1659 struct extent_buffer *leaf;
1660 struct btrfs_key ins;
1661 u64 hint;
1662 int ret;
1663
1664 path = btrfs_alloc_path();
d8926bb3
MF
1665 if (!path)
1666 return -ENOMEM;
d899e052 1667
b9473439 1668 path->leave_spinning = 1;
a1ed835e
CM
1669
1670 /*
1671 * we may be replacing one extent in the tree with another.
1672 * The new extent is pinned in the extent map, and we don't want
1673 * to drop it from the cache until it is completely in the btree.
1674 *
1675 * So, tell btrfs_drop_extents to leave this extent in the cache.
1676 * the caller is expected to unpin it and allow it to be merged
1677 * with the others.
1678 */
920bbbfb
YZ
1679 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1680 &hint, 0);
d899e052
YZ
1681 BUG_ON(ret);
1682
33345d01 1683 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1684 ins.offset = file_pos;
1685 ins.type = BTRFS_EXTENT_DATA_KEY;
1686 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1687 BUG_ON(ret);
1688 leaf = path->nodes[0];
1689 fi = btrfs_item_ptr(leaf, path->slots[0],
1690 struct btrfs_file_extent_item);
1691 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1692 btrfs_set_file_extent_type(leaf, fi, extent_type);
1693 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1694 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1695 btrfs_set_file_extent_offset(leaf, fi, 0);
1696 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1697 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1698 btrfs_set_file_extent_compression(leaf, fi, compression);
1699 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1700 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1701
1702 btrfs_unlock_up_safe(path, 1);
1703 btrfs_set_lock_blocking(leaf);
1704
d899e052
YZ
1705 btrfs_mark_buffer_dirty(leaf);
1706
1707 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1708
1709 ins.objectid = disk_bytenr;
1710 ins.offset = disk_num_bytes;
1711 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1712 ret = btrfs_alloc_reserved_file_extent(trans, root,
1713 root->root_key.objectid,
33345d01 1714 btrfs_ino(inode), file_pos, &ins);
d899e052 1715 BUG_ON(ret);
d899e052 1716 btrfs_free_path(path);
b9473439 1717
d899e052
YZ
1718 return 0;
1719}
1720
5d13a98f
CM
1721/*
1722 * helper function for btrfs_finish_ordered_io, this
1723 * just reads in some of the csum leaves to prime them into ram
1724 * before we start the transaction. It limits the amount of btree
1725 * reads required while inside the transaction.
1726 */
d352ac68
CM
1727/* as ordered data IO finishes, this gets called so we can finish
1728 * an ordered extent if the range of bytes in the file it covers are
1729 * fully written.
1730 */
211f90e6 1731static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1732{
e6dcd2dc 1733 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1734 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1735 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1736 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1737 struct extent_state *cached_state = NULL;
261507a0 1738 int compress_type = 0;
e6dcd2dc 1739 int ret;
82d5902d 1740 bool nolock;
e6dcd2dc 1741
5a1a3df1
JB
1742 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1743 end - start + 1);
ba1da2f4 1744 if (!ret)
e6dcd2dc 1745 return 0;
e6dcd2dc 1746 BUG_ON(!ordered_extent);
efd049fb 1747
2cf8572d 1748 nolock = btrfs_is_free_space_inode(root, inode);
0cb59c99 1749
c2167754
YZ
1750 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1751 BUG_ON(!list_empty(&ordered_extent->list));
1752 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1753 if (!ret) {
0cb59c99 1754 if (nolock)
7a7eaa40 1755 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1756 else
7a7eaa40 1757 trans = btrfs_join_transaction(root);
3612b495 1758 BUG_ON(IS_ERR(trans));
0ca1f7ce 1759 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2115133f 1760 ret = btrfs_update_inode_fallback(trans, root, inode);
c2167754 1761 BUG_ON(ret);
c2167754
YZ
1762 }
1763 goto out;
1764 }
e6dcd2dc 1765
2ac55d41
JB
1766 lock_extent_bits(io_tree, ordered_extent->file_offset,
1767 ordered_extent->file_offset + ordered_extent->len - 1,
1768 0, &cached_state, GFP_NOFS);
e6dcd2dc 1769
0cb59c99 1770 if (nolock)
7a7eaa40 1771 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1772 else
7a7eaa40 1773 trans = btrfs_join_transaction(root);
3612b495 1774 BUG_ON(IS_ERR(trans));
0ca1f7ce 1775 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1776
c8b97818 1777 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1778 compress_type = ordered_extent->compress_type;
d899e052 1779 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1780 BUG_ON(compress_type);
920bbbfb 1781 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1782 ordered_extent->file_offset,
1783 ordered_extent->file_offset +
1784 ordered_extent->len);
1785 BUG_ON(ret);
1786 } else {
0af3d00b 1787 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1788 ret = insert_reserved_file_extent(trans, inode,
1789 ordered_extent->file_offset,
1790 ordered_extent->start,
1791 ordered_extent->disk_len,
1792 ordered_extent->len,
1793 ordered_extent->len,
261507a0 1794 compress_type, 0, 0,
d899e052 1795 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1796 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1797 ordered_extent->file_offset,
1798 ordered_extent->len);
d899e052
YZ
1799 BUG_ON(ret);
1800 }
2ac55d41
JB
1801 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1802 ordered_extent->file_offset +
1803 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1804
e6dcd2dc
CM
1805 add_pending_csums(trans, inode, ordered_extent->file_offset,
1806 &ordered_extent->list);
1807
1ef30be1 1808 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
a39f7521 1809 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2115133f 1810 ret = btrfs_update_inode_fallback(trans, root, inode);
1ef30be1
JB
1811 BUG_ON(ret);
1812 }
1813 ret = 0;
c2167754 1814out:
5b0e95bf 1815 if (root != root->fs_info->tree_root)
0cb59c99 1816 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
5b0e95bf
JB
1817 if (trans) {
1818 if (nolock)
0cb59c99 1819 btrfs_end_transaction_nolock(trans, root);
5b0e95bf 1820 else
0cb59c99
JB
1821 btrfs_end_transaction(trans, root);
1822 }
1823
e6dcd2dc
CM
1824 /* once for us */
1825 btrfs_put_ordered_extent(ordered_extent);
1826 /* once for the tree */
1827 btrfs_put_ordered_extent(ordered_extent);
1828
e6dcd2dc
CM
1829 return 0;
1830}
1831
b2950863 1832static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1833 struct extent_state *state, int uptodate)
1834{
1abe9b8a 1835 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1836
8b62b72b 1837 ClearPagePrivate2(page);
211f90e6
CM
1838 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1839}
1840
d352ac68
CM
1841/*
1842 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
1843 * if there's a match, we allow the bio to finish. If not, the code in
1844 * extent_io.c will try to find good copies for us.
d352ac68 1845 */
b2950863 1846static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1847 struct extent_state *state)
07157aac 1848{
35ebb934 1849 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1850 struct inode *inode = page->mapping->host;
d1310b2e 1851 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1852 char *kaddr;
aadfeb6e 1853 u64 private = ~(u32)0;
07157aac 1854 int ret;
ff79f819
CM
1855 struct btrfs_root *root = BTRFS_I(inode)->root;
1856 u32 csum = ~(u32)0;
d1310b2e 1857
d20f7043
CM
1858 if (PageChecked(page)) {
1859 ClearPageChecked(page);
1860 goto good;
1861 }
6cbff00f
CH
1862
1863 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1864 goto good;
17d217fe
YZ
1865
1866 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1867 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1868 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1869 GFP_NOFS);
b6cda9bc 1870 return 0;
17d217fe 1871 }
d20f7043 1872
c2e639f0 1873 if (state && state->start == start) {
70dec807
CM
1874 private = state->private;
1875 ret = 0;
1876 } else {
1877 ret = get_state_private(io_tree, start, &private);
1878 }
9ab86c8e 1879 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1880 if (ret)
07157aac 1881 goto zeroit;
d397712b 1882
ff79f819
CM
1883 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1884 btrfs_csum_final(csum, (char *)&csum);
d397712b 1885 if (csum != private)
07157aac 1886 goto zeroit;
d397712b 1887
9ab86c8e 1888 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1889good:
07157aac
CM
1890 return 0;
1891
1892zeroit:
945d8962 1893 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
1894 "private %llu\n",
1895 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
1896 (unsigned long long)start, csum,
1897 (unsigned long long)private);
db94535d
CM
1898 memset(kaddr + offset, 1, end - start + 1);
1899 flush_dcache_page(page);
9ab86c8e 1900 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1901 if (private == 0)
1902 return 0;
7e38326f 1903 return -EIO;
07157aac 1904}
b888db2b 1905
24bbcf04
YZ
1906struct delayed_iput {
1907 struct list_head list;
1908 struct inode *inode;
1909};
1910
1911void btrfs_add_delayed_iput(struct inode *inode)
1912{
1913 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1914 struct delayed_iput *delayed;
1915
1916 if (atomic_add_unless(&inode->i_count, -1, 1))
1917 return;
1918
1919 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
1920 delayed->inode = inode;
1921
1922 spin_lock(&fs_info->delayed_iput_lock);
1923 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
1924 spin_unlock(&fs_info->delayed_iput_lock);
1925}
1926
1927void btrfs_run_delayed_iputs(struct btrfs_root *root)
1928{
1929 LIST_HEAD(list);
1930 struct btrfs_fs_info *fs_info = root->fs_info;
1931 struct delayed_iput *delayed;
1932 int empty;
1933
1934 spin_lock(&fs_info->delayed_iput_lock);
1935 empty = list_empty(&fs_info->delayed_iputs);
1936 spin_unlock(&fs_info->delayed_iput_lock);
1937 if (empty)
1938 return;
1939
1940 down_read(&root->fs_info->cleanup_work_sem);
1941 spin_lock(&fs_info->delayed_iput_lock);
1942 list_splice_init(&fs_info->delayed_iputs, &list);
1943 spin_unlock(&fs_info->delayed_iput_lock);
1944
1945 while (!list_empty(&list)) {
1946 delayed = list_entry(list.next, struct delayed_iput, list);
1947 list_del(&delayed->list);
1948 iput(delayed->inode);
1949 kfree(delayed);
1950 }
1951 up_read(&root->fs_info->cleanup_work_sem);
1952}
1953
d68fc57b
YZ
1954enum btrfs_orphan_cleanup_state {
1955 ORPHAN_CLEANUP_STARTED = 1,
1956 ORPHAN_CLEANUP_DONE = 2,
1957};
1958
1959/*
42b2aa86 1960 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
1961 * files in the subvolume, it removes orphan item and frees block_rsv
1962 * structure.
1963 */
1964void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
1965 struct btrfs_root *root)
1966{
90290e19 1967 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
1968 int ret;
1969
1970 if (!list_empty(&root->orphan_list) ||
1971 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
1972 return;
1973
90290e19
JB
1974 spin_lock(&root->orphan_lock);
1975 if (!list_empty(&root->orphan_list)) {
1976 spin_unlock(&root->orphan_lock);
1977 return;
1978 }
1979
1980 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
1981 spin_unlock(&root->orphan_lock);
1982 return;
1983 }
1984
1985 block_rsv = root->orphan_block_rsv;
1986 root->orphan_block_rsv = NULL;
1987 spin_unlock(&root->orphan_lock);
1988
d68fc57b
YZ
1989 if (root->orphan_item_inserted &&
1990 btrfs_root_refs(&root->root_item) > 0) {
1991 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
1992 root->root_key.objectid);
1993 BUG_ON(ret);
1994 root->orphan_item_inserted = 0;
1995 }
1996
90290e19
JB
1997 if (block_rsv) {
1998 WARN_ON(block_rsv->size > 0);
1999 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
2000 }
2001}
2002
7b128766
JB
2003/*
2004 * This creates an orphan entry for the given inode in case something goes
2005 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2006 *
2007 * NOTE: caller of this function should reserve 5 units of metadata for
2008 * this function.
7b128766
JB
2009 */
2010int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2011{
2012 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2013 struct btrfs_block_rsv *block_rsv = NULL;
2014 int reserve = 0;
2015 int insert = 0;
2016 int ret;
7b128766 2017
d68fc57b
YZ
2018 if (!root->orphan_block_rsv) {
2019 block_rsv = btrfs_alloc_block_rsv(root);
b532402e
TI
2020 if (!block_rsv)
2021 return -ENOMEM;
d68fc57b 2022 }
7b128766 2023
d68fc57b
YZ
2024 spin_lock(&root->orphan_lock);
2025 if (!root->orphan_block_rsv) {
2026 root->orphan_block_rsv = block_rsv;
2027 } else if (block_rsv) {
2028 btrfs_free_block_rsv(root, block_rsv);
2029 block_rsv = NULL;
7b128766 2030 }
7b128766 2031
d68fc57b
YZ
2032 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2033 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2034#if 0
2035 /*
2036 * For proper ENOSPC handling, we should do orphan
2037 * cleanup when mounting. But this introduces backward
2038 * compatibility issue.
2039 */
2040 if (!xchg(&root->orphan_item_inserted, 1))
2041 insert = 2;
2042 else
2043 insert = 1;
2044#endif
2045 insert = 1;
7b128766
JB
2046 }
2047
d68fc57b
YZ
2048 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2049 BTRFS_I(inode)->orphan_meta_reserved = 1;
2050 reserve = 1;
2051 }
2052 spin_unlock(&root->orphan_lock);
7b128766 2053
d68fc57b
YZ
2054 /* grab metadata reservation from transaction handle */
2055 if (reserve) {
2056 ret = btrfs_orphan_reserve_metadata(trans, inode);
2057 BUG_ON(ret);
2058 }
7b128766 2059
d68fc57b
YZ
2060 /* insert an orphan item to track this unlinked/truncated file */
2061 if (insert >= 1) {
33345d01 2062 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
ee4d89f0 2063 BUG_ON(ret && ret != -EEXIST);
d68fc57b
YZ
2064 }
2065
2066 /* insert an orphan item to track subvolume contains orphan files */
2067 if (insert >= 2) {
2068 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2069 root->root_key.objectid);
2070 BUG_ON(ret);
2071 }
2072 return 0;
7b128766
JB
2073}
2074
2075/*
2076 * We have done the truncate/delete so we can go ahead and remove the orphan
2077 * item for this particular inode.
2078 */
2079int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2080{
2081 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2082 int delete_item = 0;
2083 int release_rsv = 0;
7b128766
JB
2084 int ret = 0;
2085
d68fc57b
YZ
2086 spin_lock(&root->orphan_lock);
2087 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2088 list_del_init(&BTRFS_I(inode)->i_orphan);
2089 delete_item = 1;
7b128766
JB
2090 }
2091
d68fc57b
YZ
2092 if (BTRFS_I(inode)->orphan_meta_reserved) {
2093 BTRFS_I(inode)->orphan_meta_reserved = 0;
2094 release_rsv = 1;
7b128766 2095 }
d68fc57b 2096 spin_unlock(&root->orphan_lock);
7b128766 2097
d68fc57b 2098 if (trans && delete_item) {
33345d01 2099 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2100 BUG_ON(ret);
2101 }
7b128766 2102
d68fc57b
YZ
2103 if (release_rsv)
2104 btrfs_orphan_release_metadata(inode);
7b128766 2105
d68fc57b 2106 return 0;
7b128766
JB
2107}
2108
2109/*
2110 * this cleans up any orphans that may be left on the list from the last use
2111 * of this root.
2112 */
66b4ffd1 2113int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2114{
2115 struct btrfs_path *path;
2116 struct extent_buffer *leaf;
7b128766
JB
2117 struct btrfs_key key, found_key;
2118 struct btrfs_trans_handle *trans;
2119 struct inode *inode;
8f6d7f4f 2120 u64 last_objectid = 0;
7b128766
JB
2121 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2122
d68fc57b 2123 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2124 return 0;
c71bf099
YZ
2125
2126 path = btrfs_alloc_path();
66b4ffd1
JB
2127 if (!path) {
2128 ret = -ENOMEM;
2129 goto out;
2130 }
7b128766
JB
2131 path->reada = -1;
2132
2133 key.objectid = BTRFS_ORPHAN_OBJECTID;
2134 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2135 key.offset = (u64)-1;
2136
7b128766
JB
2137 while (1) {
2138 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2139 if (ret < 0)
2140 goto out;
7b128766
JB
2141
2142 /*
2143 * if ret == 0 means we found what we were searching for, which
25985edc 2144 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2145 * find the key and see if we have stuff that matches
2146 */
2147 if (ret > 0) {
66b4ffd1 2148 ret = 0;
7b128766
JB
2149 if (path->slots[0] == 0)
2150 break;
2151 path->slots[0]--;
2152 }
2153
2154 /* pull out the item */
2155 leaf = path->nodes[0];
7b128766
JB
2156 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2157
2158 /* make sure the item matches what we want */
2159 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2160 break;
2161 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2162 break;
2163
2164 /* release the path since we're done with it */
b3b4aa74 2165 btrfs_release_path(path);
7b128766
JB
2166
2167 /*
2168 * this is where we are basically btrfs_lookup, without the
2169 * crossing root thing. we store the inode number in the
2170 * offset of the orphan item.
2171 */
8f6d7f4f
JB
2172
2173 if (found_key.offset == last_objectid) {
2174 printk(KERN_ERR "btrfs: Error removing orphan entry, "
2175 "stopping orphan cleanup\n");
2176 ret = -EINVAL;
2177 goto out;
2178 }
2179
2180 last_objectid = found_key.offset;
2181
5d4f98a2
YZ
2182 found_key.objectid = found_key.offset;
2183 found_key.type = BTRFS_INODE_ITEM_KEY;
2184 found_key.offset = 0;
73f73415 2185 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
a8c9e576
JB
2186 ret = PTR_RET(inode);
2187 if (ret && ret != -ESTALE)
66b4ffd1 2188 goto out;
7b128766 2189
f8e9e0b0
AJ
2190 if (ret == -ESTALE && root == root->fs_info->tree_root) {
2191 struct btrfs_root *dead_root;
2192 struct btrfs_fs_info *fs_info = root->fs_info;
2193 int is_dead_root = 0;
2194
2195 /*
2196 * this is an orphan in the tree root. Currently these
2197 * could come from 2 sources:
2198 * a) a snapshot deletion in progress
2199 * b) a free space cache inode
2200 * We need to distinguish those two, as the snapshot
2201 * orphan must not get deleted.
2202 * find_dead_roots already ran before us, so if this
2203 * is a snapshot deletion, we should find the root
2204 * in the dead_roots list
2205 */
2206 spin_lock(&fs_info->trans_lock);
2207 list_for_each_entry(dead_root, &fs_info->dead_roots,
2208 root_list) {
2209 if (dead_root->root_key.objectid ==
2210 found_key.objectid) {
2211 is_dead_root = 1;
2212 break;
2213 }
2214 }
2215 spin_unlock(&fs_info->trans_lock);
2216 if (is_dead_root) {
2217 /* prevent this orphan from being found again */
2218 key.offset = found_key.objectid - 1;
2219 continue;
2220 }
2221 }
7b128766 2222 /*
a8c9e576
JB
2223 * Inode is already gone but the orphan item is still there,
2224 * kill the orphan item.
7b128766 2225 */
a8c9e576
JB
2226 if (ret == -ESTALE) {
2227 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
2228 if (IS_ERR(trans)) {
2229 ret = PTR_ERR(trans);
2230 goto out;
2231 }
a8c9e576
JB
2232 ret = btrfs_del_orphan_item(trans, root,
2233 found_key.objectid);
2234 BUG_ON(ret);
5b21f2ed 2235 btrfs_end_transaction(trans, root);
7b128766
JB
2236 continue;
2237 }
2238
a8c9e576
JB
2239 /*
2240 * add this inode to the orphan list so btrfs_orphan_del does
2241 * the proper thing when we hit it
2242 */
2243 spin_lock(&root->orphan_lock);
2244 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2245 spin_unlock(&root->orphan_lock);
2246
7b128766
JB
2247 /* if we have links, this was a truncate, lets do that */
2248 if (inode->i_nlink) {
a41ad394
JB
2249 if (!S_ISREG(inode->i_mode)) {
2250 WARN_ON(1);
2251 iput(inode);
2252 continue;
2253 }
7b128766 2254 nr_truncate++;
66b4ffd1 2255 ret = btrfs_truncate(inode);
7b128766
JB
2256 } else {
2257 nr_unlink++;
2258 }
2259
2260 /* this will do delete_inode and everything for us */
2261 iput(inode);
66b4ffd1
JB
2262 if (ret)
2263 goto out;
7b128766 2264 }
3254c876
MX
2265 /* release the path since we're done with it */
2266 btrfs_release_path(path);
2267
d68fc57b
YZ
2268 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2269
2270 if (root->orphan_block_rsv)
2271 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2272 (u64)-1);
2273
2274 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2275 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2276 if (!IS_ERR(trans))
2277 btrfs_end_transaction(trans, root);
d68fc57b 2278 }
7b128766
JB
2279
2280 if (nr_unlink)
2281 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2282 if (nr_truncate)
2283 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2284
2285out:
2286 if (ret)
2287 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2288 btrfs_free_path(path);
2289 return ret;
7b128766
JB
2290}
2291
46a53cca
CM
2292/*
2293 * very simple check to peek ahead in the leaf looking for xattrs. If we
2294 * don't find any xattrs, we know there can't be any acls.
2295 *
2296 * slot is the slot the inode is in, objectid is the objectid of the inode
2297 */
2298static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2299 int slot, u64 objectid)
2300{
2301 u32 nritems = btrfs_header_nritems(leaf);
2302 struct btrfs_key found_key;
2303 int scanned = 0;
2304
2305 slot++;
2306 while (slot < nritems) {
2307 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2308
2309 /* we found a different objectid, there must not be acls */
2310 if (found_key.objectid != objectid)
2311 return 0;
2312
2313 /* we found an xattr, assume we've got an acl */
2314 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2315 return 1;
2316
2317 /*
2318 * we found a key greater than an xattr key, there can't
2319 * be any acls later on
2320 */
2321 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2322 return 0;
2323
2324 slot++;
2325 scanned++;
2326
2327 /*
2328 * it goes inode, inode backrefs, xattrs, extents,
2329 * so if there are a ton of hard links to an inode there can
2330 * be a lot of backrefs. Don't waste time searching too hard,
2331 * this is just an optimization
2332 */
2333 if (scanned >= 8)
2334 break;
2335 }
2336 /* we hit the end of the leaf before we found an xattr or
2337 * something larger than an xattr. We have to assume the inode
2338 * has acls
2339 */
2340 return 1;
2341}
2342
d352ac68
CM
2343/*
2344 * read an inode from the btree into the in-memory inode
2345 */
5d4f98a2 2346static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2347{
2348 struct btrfs_path *path;
5f39d397 2349 struct extent_buffer *leaf;
39279cc3 2350 struct btrfs_inode_item *inode_item;
0b86a832 2351 struct btrfs_timespec *tspec;
39279cc3
CM
2352 struct btrfs_root *root = BTRFS_I(inode)->root;
2353 struct btrfs_key location;
46a53cca 2354 int maybe_acls;
618e21d5 2355 u32 rdev;
39279cc3 2356 int ret;
2f7e33d4
MX
2357 bool filled = false;
2358
2359 ret = btrfs_fill_inode(inode, &rdev);
2360 if (!ret)
2361 filled = true;
39279cc3
CM
2362
2363 path = btrfs_alloc_path();
1748f843
MF
2364 if (!path)
2365 goto make_bad;
2366
d90c7321 2367 path->leave_spinning = 1;
39279cc3 2368 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2369
39279cc3 2370 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2371 if (ret)
39279cc3 2372 goto make_bad;
39279cc3 2373
5f39d397 2374 leaf = path->nodes[0];
2f7e33d4
MX
2375
2376 if (filled)
2377 goto cache_acl;
2378
5f39d397
CM
2379 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2380 struct btrfs_inode_item);
5f39d397 2381 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 2382 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
5f39d397
CM
2383 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2384 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2385 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2386
2387 tspec = btrfs_inode_atime(inode_item);
2388 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2389 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2390
2391 tspec = btrfs_inode_mtime(inode_item);
2392 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2393 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2394
2395 tspec = btrfs_inode_ctime(inode_item);
2396 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2397 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2398
a76a3cd4 2399 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2400 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2401 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2402 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2403 inode->i_rdev = 0;
5f39d397
CM
2404 rdev = btrfs_inode_rdev(leaf, inode_item);
2405
aec7477b 2406 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2407 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2408cache_acl:
46a53cca
CM
2409 /*
2410 * try to precache a NULL acl entry for files that don't have
2411 * any xattrs or acls
2412 */
33345d01
LZ
2413 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2414 btrfs_ino(inode));
72c04902
AV
2415 if (!maybe_acls)
2416 cache_no_acl(inode);
46a53cca 2417
39279cc3 2418 btrfs_free_path(path);
39279cc3 2419
39279cc3 2420 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2421 case S_IFREG:
2422 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2423 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2424 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2425 inode->i_fop = &btrfs_file_operations;
2426 inode->i_op = &btrfs_file_inode_operations;
2427 break;
2428 case S_IFDIR:
2429 inode->i_fop = &btrfs_dir_file_operations;
2430 if (root == root->fs_info->tree_root)
2431 inode->i_op = &btrfs_dir_ro_inode_operations;
2432 else
2433 inode->i_op = &btrfs_dir_inode_operations;
2434 break;
2435 case S_IFLNK:
2436 inode->i_op = &btrfs_symlink_inode_operations;
2437 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2438 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2439 break;
618e21d5 2440 default:
0279b4cd 2441 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2442 init_special_inode(inode, inode->i_mode, rdev);
2443 break;
39279cc3 2444 }
6cbff00f
CH
2445
2446 btrfs_update_iflags(inode);
39279cc3
CM
2447 return;
2448
2449make_bad:
39279cc3 2450 btrfs_free_path(path);
39279cc3
CM
2451 make_bad_inode(inode);
2452}
2453
d352ac68
CM
2454/*
2455 * given a leaf and an inode, copy the inode fields into the leaf
2456 */
e02119d5
CM
2457static void fill_inode_item(struct btrfs_trans_handle *trans,
2458 struct extent_buffer *leaf,
5f39d397 2459 struct btrfs_inode_item *item,
39279cc3
CM
2460 struct inode *inode)
2461{
5f39d397
CM
2462 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2463 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2464 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2465 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2466 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2467
2468 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2469 inode->i_atime.tv_sec);
2470 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2471 inode->i_atime.tv_nsec);
2472
2473 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2474 inode->i_mtime.tv_sec);
2475 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2476 inode->i_mtime.tv_nsec);
2477
2478 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2479 inode->i_ctime.tv_sec);
2480 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2481 inode->i_ctime.tv_nsec);
2482
a76a3cd4 2483 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2484 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2485 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2486 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2487 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2488 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2489 btrfs_set_inode_block_group(leaf, item, 0);
39279cc3
CM
2490}
2491
d352ac68
CM
2492/*
2493 * copy everything in the in-memory inode into the btree.
2494 */
2115133f 2495static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 2496 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2497{
2498 struct btrfs_inode_item *inode_item;
2499 struct btrfs_path *path;
5f39d397 2500 struct extent_buffer *leaf;
39279cc3
CM
2501 int ret;
2502
2503 path = btrfs_alloc_path();
16cdcec7
MX
2504 if (!path)
2505 return -ENOMEM;
2506
b9473439 2507 path->leave_spinning = 1;
16cdcec7
MX
2508 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2509 1);
39279cc3
CM
2510 if (ret) {
2511 if (ret > 0)
2512 ret = -ENOENT;
2513 goto failed;
2514 }
2515
b4ce94de 2516 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2517 leaf = path->nodes[0];
2518 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2519 struct btrfs_inode_item);
39279cc3 2520
e02119d5 2521 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2522 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2523 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2524 ret = 0;
2525failed:
39279cc3
CM
2526 btrfs_free_path(path);
2527 return ret;
2528}
2529
2115133f
CM
2530/*
2531 * copy everything in the in-memory inode into the btree.
2532 */
2533noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2534 struct btrfs_root *root, struct inode *inode)
2535{
2536 int ret;
2537
2538 /*
2539 * If the inode is a free space inode, we can deadlock during commit
2540 * if we put it into the delayed code.
2541 *
2542 * The data relocation inode should also be directly updated
2543 * without delay
2544 */
2545 if (!btrfs_is_free_space_inode(root, inode)
2546 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2547 ret = btrfs_delayed_update_inode(trans, root, inode);
2548 if (!ret)
2549 btrfs_set_inode_last_trans(trans, inode);
2550 return ret;
2551 }
2552
2553 return btrfs_update_inode_item(trans, root, inode);
2554}
2555
2556static noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2557 struct btrfs_root *root, struct inode *inode)
2558{
2559 int ret;
2560
2561 ret = btrfs_update_inode(trans, root, inode);
2562 if (ret == -ENOSPC)
2563 return btrfs_update_inode_item(trans, root, inode);
2564 return ret;
2565}
2566
d352ac68
CM
2567/*
2568 * unlink helper that gets used here in inode.c and in the tree logging
2569 * recovery code. It remove a link in a directory with a given name, and
2570 * also drops the back refs in the inode to the directory
2571 */
92986796
AV
2572static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2573 struct btrfs_root *root,
2574 struct inode *dir, struct inode *inode,
2575 const char *name, int name_len)
39279cc3
CM
2576{
2577 struct btrfs_path *path;
39279cc3 2578 int ret = 0;
5f39d397 2579 struct extent_buffer *leaf;
39279cc3 2580 struct btrfs_dir_item *di;
5f39d397 2581 struct btrfs_key key;
aec7477b 2582 u64 index;
33345d01
LZ
2583 u64 ino = btrfs_ino(inode);
2584 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2585
2586 path = btrfs_alloc_path();
54aa1f4d
CM
2587 if (!path) {
2588 ret = -ENOMEM;
554233a6 2589 goto out;
54aa1f4d
CM
2590 }
2591
b9473439 2592 path->leave_spinning = 1;
33345d01 2593 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2594 name, name_len, -1);
2595 if (IS_ERR(di)) {
2596 ret = PTR_ERR(di);
2597 goto err;
2598 }
2599 if (!di) {
2600 ret = -ENOENT;
2601 goto err;
2602 }
5f39d397
CM
2603 leaf = path->nodes[0];
2604 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2605 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2606 if (ret)
2607 goto err;
b3b4aa74 2608 btrfs_release_path(path);
39279cc3 2609
33345d01
LZ
2610 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2611 dir_ino, &index);
aec7477b 2612 if (ret) {
d397712b 2613 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2614 "inode %llu parent %llu\n", name_len, name,
2615 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2616 goto err;
2617 }
2618
16cdcec7
MX
2619 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2620 if (ret)
39279cc3 2621 goto err;
39279cc3 2622
e02119d5 2623 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2624 inode, dir_ino);
49eb7e46 2625 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2626
2627 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2628 dir, index);
6418c961
CM
2629 if (ret == -ENOENT)
2630 ret = 0;
39279cc3
CM
2631err:
2632 btrfs_free_path(path);
e02119d5
CM
2633 if (ret)
2634 goto out;
2635
2636 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2637 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2638 btrfs_update_inode(trans, root, dir);
e02119d5 2639out:
39279cc3
CM
2640 return ret;
2641}
2642
92986796
AV
2643int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2644 struct btrfs_root *root,
2645 struct inode *dir, struct inode *inode,
2646 const char *name, int name_len)
2647{
2648 int ret;
2649 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2650 if (!ret) {
2651 btrfs_drop_nlink(inode);
2652 ret = btrfs_update_inode(trans, root, inode);
2653 }
2654 return ret;
2655}
2656
2657
a22285a6
YZ
2658/* helper to check if there is any shared block in the path */
2659static int check_path_shared(struct btrfs_root *root,
2660 struct btrfs_path *path)
39279cc3 2661{
a22285a6
YZ
2662 struct extent_buffer *eb;
2663 int level;
0e4dcbef 2664 u64 refs = 1;
5df6a9f6 2665
a22285a6 2666 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2667 int ret;
2668
a22285a6
YZ
2669 if (!path->nodes[level])
2670 break;
2671 eb = path->nodes[level];
2672 if (!btrfs_block_can_be_shared(root, eb))
2673 continue;
2674 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2675 &refs, NULL);
2676 if (refs > 1)
2677 return 1;
5df6a9f6 2678 }
dedefd72 2679 return 0;
39279cc3
CM
2680}
2681
a22285a6
YZ
2682/*
2683 * helper to start transaction for unlink and rmdir.
2684 *
2685 * unlink and rmdir are special in btrfs, they do not always free space.
2686 * so in enospc case, we should make sure they will free space before
2687 * allowing them to use the global metadata reservation.
2688 */
2689static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2690 struct dentry *dentry)
4df27c4d 2691{
39279cc3 2692 struct btrfs_trans_handle *trans;
a22285a6 2693 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2694 struct btrfs_path *path;
a22285a6 2695 struct btrfs_inode_ref *ref;
4df27c4d 2696 struct btrfs_dir_item *di;
7b128766 2697 struct inode *inode = dentry->d_inode;
4df27c4d 2698 u64 index;
a22285a6
YZ
2699 int check_link = 1;
2700 int err = -ENOSPC;
4df27c4d 2701 int ret;
33345d01
LZ
2702 u64 ino = btrfs_ino(inode);
2703 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2704
e70bea5f
JB
2705 /*
2706 * 1 for the possible orphan item
2707 * 1 for the dir item
2708 * 1 for the dir index
2709 * 1 for the inode ref
2710 * 1 for the inode ref in the tree log
2711 * 2 for the dir entries in the log
2712 * 1 for the inode
2713 */
2714 trans = btrfs_start_transaction(root, 8);
a22285a6
YZ
2715 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2716 return trans;
4df27c4d 2717
33345d01 2718 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2719 return ERR_PTR(-ENOSPC);
4df27c4d 2720
a22285a6
YZ
2721 /* check if there is someone else holds reference */
2722 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2723 return ERR_PTR(-ENOSPC);
4df27c4d 2724
a22285a6
YZ
2725 if (atomic_read(&inode->i_count) > 2)
2726 return ERR_PTR(-ENOSPC);
4df27c4d 2727
a22285a6
YZ
2728 if (xchg(&root->fs_info->enospc_unlink, 1))
2729 return ERR_PTR(-ENOSPC);
2730
2731 path = btrfs_alloc_path();
2732 if (!path) {
2733 root->fs_info->enospc_unlink = 0;
2734 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2735 }
2736
3880a1b4
JB
2737 /* 1 for the orphan item */
2738 trans = btrfs_start_transaction(root, 1);
5df6a9f6 2739 if (IS_ERR(trans)) {
a22285a6
YZ
2740 btrfs_free_path(path);
2741 root->fs_info->enospc_unlink = 0;
2742 return trans;
2743 }
4df27c4d 2744
a22285a6
YZ
2745 path->skip_locking = 1;
2746 path->search_commit_root = 1;
4df27c4d 2747
a22285a6
YZ
2748 ret = btrfs_lookup_inode(trans, root, path,
2749 &BTRFS_I(dir)->location, 0);
2750 if (ret < 0) {
2751 err = ret;
2752 goto out;
2753 }
2754 if (ret == 0) {
2755 if (check_path_shared(root, path))
2756 goto out;
2757 } else {
2758 check_link = 0;
5df6a9f6 2759 }
b3b4aa74 2760 btrfs_release_path(path);
a22285a6
YZ
2761
2762 ret = btrfs_lookup_inode(trans, root, path,
2763 &BTRFS_I(inode)->location, 0);
2764 if (ret < 0) {
2765 err = ret;
2766 goto out;
2767 }
2768 if (ret == 0) {
2769 if (check_path_shared(root, path))
2770 goto out;
2771 } else {
2772 check_link = 0;
2773 }
b3b4aa74 2774 btrfs_release_path(path);
a22285a6
YZ
2775
2776 if (ret == 0 && S_ISREG(inode->i_mode)) {
2777 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2778 ino, (u64)-1, 0);
a22285a6
YZ
2779 if (ret < 0) {
2780 err = ret;
2781 goto out;
2782 }
2783 BUG_ON(ret == 0);
2784 if (check_path_shared(root, path))
2785 goto out;
b3b4aa74 2786 btrfs_release_path(path);
a22285a6
YZ
2787 }
2788
2789 if (!check_link) {
2790 err = 0;
2791 goto out;
2792 }
2793
33345d01 2794 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2795 dentry->d_name.name, dentry->d_name.len, 0);
2796 if (IS_ERR(di)) {
2797 err = PTR_ERR(di);
2798 goto out;
2799 }
2800 if (di) {
2801 if (check_path_shared(root, path))
2802 goto out;
2803 } else {
2804 err = 0;
2805 goto out;
2806 }
b3b4aa74 2807 btrfs_release_path(path);
a22285a6
YZ
2808
2809 ref = btrfs_lookup_inode_ref(trans, root, path,
2810 dentry->d_name.name, dentry->d_name.len,
33345d01 2811 ino, dir_ino, 0);
a22285a6
YZ
2812 if (IS_ERR(ref)) {
2813 err = PTR_ERR(ref);
2814 goto out;
2815 }
2816 BUG_ON(!ref);
2817 if (check_path_shared(root, path))
2818 goto out;
2819 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2820 btrfs_release_path(path);
a22285a6 2821
16cdcec7
MX
2822 /*
2823 * This is a commit root search, if we can lookup inode item and other
2824 * relative items in the commit root, it means the transaction of
2825 * dir/file creation has been committed, and the dir index item that we
2826 * delay to insert has also been inserted into the commit root. So
2827 * we needn't worry about the delayed insertion of the dir index item
2828 * here.
2829 */
33345d01 2830 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2831 dentry->d_name.name, dentry->d_name.len, 0);
2832 if (IS_ERR(di)) {
2833 err = PTR_ERR(di);
2834 goto out;
2835 }
2836 BUG_ON(ret == -ENOENT);
2837 if (check_path_shared(root, path))
2838 goto out;
2839
2840 err = 0;
2841out:
2842 btrfs_free_path(path);
3880a1b4
JB
2843 /* Migrate the orphan reservation over */
2844 if (!err)
2845 err = btrfs_block_rsv_migrate(trans->block_rsv,
2846 &root->fs_info->global_block_rsv,
5a77d76c 2847 trans->bytes_reserved);
3880a1b4 2848
a22285a6
YZ
2849 if (err) {
2850 btrfs_end_transaction(trans, root);
2851 root->fs_info->enospc_unlink = 0;
2852 return ERR_PTR(err);
2853 }
2854
2855 trans->block_rsv = &root->fs_info->global_block_rsv;
2856 return trans;
2857}
2858
2859static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2860 struct btrfs_root *root)
2861{
2862 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
5a77d76c
JB
2863 btrfs_block_rsv_release(root, trans->block_rsv,
2864 trans->bytes_reserved);
2865 trans->block_rsv = &root->fs_info->trans_block_rsv;
a22285a6
YZ
2866 BUG_ON(!root->fs_info->enospc_unlink);
2867 root->fs_info->enospc_unlink = 0;
2868 }
7ad85bb7 2869 btrfs_end_transaction(trans, root);
a22285a6
YZ
2870}
2871
2872static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2873{
2874 struct btrfs_root *root = BTRFS_I(dir)->root;
2875 struct btrfs_trans_handle *trans;
2876 struct inode *inode = dentry->d_inode;
2877 int ret;
2878 unsigned long nr = 0;
2879
2880 trans = __unlink_start_trans(dir, dentry);
2881 if (IS_ERR(trans))
2882 return PTR_ERR(trans);
5f39d397 2883
12fcfd22
CM
2884 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2885
e02119d5
CM
2886 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2887 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
2888 if (ret)
2889 goto out;
7b128766 2890
a22285a6 2891 if (inode->i_nlink == 0) {
7b128766 2892 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
2893 if (ret)
2894 goto out;
a22285a6 2895 }
7b128766 2896
b532402e 2897out:
d3c2fdcf 2898 nr = trans->blocks_used;
a22285a6 2899 __unlink_end_trans(trans, root);
d3c2fdcf 2900 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2901 return ret;
2902}
2903
4df27c4d
YZ
2904int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2905 struct btrfs_root *root,
2906 struct inode *dir, u64 objectid,
2907 const char *name, int name_len)
2908{
2909 struct btrfs_path *path;
2910 struct extent_buffer *leaf;
2911 struct btrfs_dir_item *di;
2912 struct btrfs_key key;
2913 u64 index;
2914 int ret;
33345d01 2915 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
2916
2917 path = btrfs_alloc_path();
2918 if (!path)
2919 return -ENOMEM;
2920
33345d01 2921 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 2922 name, name_len, -1);
c704005d 2923 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2924
2925 leaf = path->nodes[0];
2926 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2927 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2928 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2929 BUG_ON(ret);
b3b4aa74 2930 btrfs_release_path(path);
4df27c4d
YZ
2931
2932 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2933 objectid, root->root_key.objectid,
33345d01 2934 dir_ino, &index, name, name_len);
4df27c4d
YZ
2935 if (ret < 0) {
2936 BUG_ON(ret != -ENOENT);
33345d01 2937 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 2938 name, name_len);
c704005d 2939 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
2940
2941 leaf = path->nodes[0];
2942 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 2943 btrfs_release_path(path);
4df27c4d
YZ
2944 index = key.offset;
2945 }
945d8962 2946 btrfs_release_path(path);
4df27c4d 2947
16cdcec7 2948 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 2949 BUG_ON(ret);
4df27c4d
YZ
2950
2951 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2952 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2953 ret = btrfs_update_inode(trans, root, dir);
2954 BUG_ON(ret);
4df27c4d 2955
71d7aed0 2956 btrfs_free_path(path);
4df27c4d
YZ
2957 return 0;
2958}
2959
39279cc3
CM
2960static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2961{
2962 struct inode *inode = dentry->d_inode;
1832a6d5 2963 int err = 0;
39279cc3 2964 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2965 struct btrfs_trans_handle *trans;
1832a6d5 2966 unsigned long nr = 0;
39279cc3 2967
3394e160 2968 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 2969 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2970 return -ENOTEMPTY;
2971
a22285a6
YZ
2972 trans = __unlink_start_trans(dir, dentry);
2973 if (IS_ERR(trans))
5df6a9f6 2974 return PTR_ERR(trans);
5df6a9f6 2975
33345d01 2976 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
2977 err = btrfs_unlink_subvol(trans, root, dir,
2978 BTRFS_I(inode)->location.objectid,
2979 dentry->d_name.name,
2980 dentry->d_name.len);
2981 goto out;
2982 }
2983
7b128766
JB
2984 err = btrfs_orphan_add(trans, inode);
2985 if (err)
4df27c4d 2986 goto out;
7b128766 2987
39279cc3 2988 /* now the directory is empty */
e02119d5
CM
2989 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2990 dentry->d_name.name, dentry->d_name.len);
d397712b 2991 if (!err)
dbe674a9 2992 btrfs_i_size_write(inode, 0);
4df27c4d 2993out:
d3c2fdcf 2994 nr = trans->blocks_used;
a22285a6 2995 __unlink_end_trans(trans, root);
d3c2fdcf 2996 btrfs_btree_balance_dirty(root, nr);
3954401f 2997
39279cc3
CM
2998 return err;
2999}
3000
39279cc3
CM
3001/*
3002 * this can truncate away extent items, csum items and directory items.
3003 * It starts at a high offset and removes keys until it can't find
d352ac68 3004 * any higher than new_size
39279cc3
CM
3005 *
3006 * csum items that cross the new i_size are truncated to the new size
3007 * as well.
7b128766
JB
3008 *
3009 * min_type is the minimum key type to truncate down to. If set to 0, this
3010 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3011 */
8082510e
YZ
3012int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3013 struct btrfs_root *root,
3014 struct inode *inode,
3015 u64 new_size, u32 min_type)
39279cc3 3016{
39279cc3 3017 struct btrfs_path *path;
5f39d397 3018 struct extent_buffer *leaf;
39279cc3 3019 struct btrfs_file_extent_item *fi;
8082510e
YZ
3020 struct btrfs_key key;
3021 struct btrfs_key found_key;
39279cc3 3022 u64 extent_start = 0;
db94535d 3023 u64 extent_num_bytes = 0;
5d4f98a2 3024 u64 extent_offset = 0;
39279cc3 3025 u64 item_end = 0;
8082510e
YZ
3026 u64 mask = root->sectorsize - 1;
3027 u32 found_type = (u8)-1;
39279cc3
CM
3028 int found_extent;
3029 int del_item;
85e21bac
CM
3030 int pending_del_nr = 0;
3031 int pending_del_slot = 0;
179e29e4 3032 int extent_type = -1;
8082510e
YZ
3033 int ret;
3034 int err = 0;
33345d01 3035 u64 ino = btrfs_ino(inode);
8082510e
YZ
3036
3037 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3038
0eb0e19c
MF
3039 path = btrfs_alloc_path();
3040 if (!path)
3041 return -ENOMEM;
3042 path->reada = -1;
3043
0af3d00b 3044 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3045 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3046
16cdcec7
MX
3047 /*
3048 * This function is also used to drop the items in the log tree before
3049 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3050 * it is used to drop the loged items. So we shouldn't kill the delayed
3051 * items.
3052 */
3053 if (min_type == 0 && root == BTRFS_I(inode)->root)
3054 btrfs_kill_delayed_inode_items(inode);
3055
33345d01 3056 key.objectid = ino;
39279cc3 3057 key.offset = (u64)-1;
5f39d397
CM
3058 key.type = (u8)-1;
3059
85e21bac 3060search_again:
b9473439 3061 path->leave_spinning = 1;
85e21bac 3062 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3063 if (ret < 0) {
3064 err = ret;
3065 goto out;
3066 }
d397712b 3067
85e21bac 3068 if (ret > 0) {
e02119d5
CM
3069 /* there are no items in the tree for us to truncate, we're
3070 * done
3071 */
8082510e
YZ
3072 if (path->slots[0] == 0)
3073 goto out;
85e21bac
CM
3074 path->slots[0]--;
3075 }
3076
d397712b 3077 while (1) {
39279cc3 3078 fi = NULL;
5f39d397
CM
3079 leaf = path->nodes[0];
3080 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3081 found_type = btrfs_key_type(&found_key);
39279cc3 3082
33345d01 3083 if (found_key.objectid != ino)
39279cc3 3084 break;
5f39d397 3085
85e21bac 3086 if (found_type < min_type)
39279cc3
CM
3087 break;
3088
5f39d397 3089 item_end = found_key.offset;
39279cc3 3090 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3091 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3092 struct btrfs_file_extent_item);
179e29e4
CM
3093 extent_type = btrfs_file_extent_type(leaf, fi);
3094 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3095 item_end +=
db94535d 3096 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3097 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3098 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3099 fi);
39279cc3 3100 }
008630c1 3101 item_end--;
39279cc3 3102 }
8082510e
YZ
3103 if (found_type > min_type) {
3104 del_item = 1;
3105 } else {
3106 if (item_end < new_size)
b888db2b 3107 break;
8082510e
YZ
3108 if (found_key.offset >= new_size)
3109 del_item = 1;
3110 else
3111 del_item = 0;
39279cc3 3112 }
39279cc3 3113 found_extent = 0;
39279cc3 3114 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3115 if (found_type != BTRFS_EXTENT_DATA_KEY)
3116 goto delete;
3117
3118 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3119 u64 num_dec;
db94535d 3120 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 3121 if (!del_item) {
db94535d
CM
3122 u64 orig_num_bytes =
3123 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3124 extent_num_bytes = new_size -
5f39d397 3125 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3126 extent_num_bytes = extent_num_bytes &
3127 ~((u64)root->sectorsize - 1);
db94535d
CM
3128 btrfs_set_file_extent_num_bytes(leaf, fi,
3129 extent_num_bytes);
3130 num_dec = (orig_num_bytes -
9069218d 3131 extent_num_bytes);
e02119d5 3132 if (root->ref_cows && extent_start != 0)
a76a3cd4 3133 inode_sub_bytes(inode, num_dec);
5f39d397 3134 btrfs_mark_buffer_dirty(leaf);
39279cc3 3135 } else {
db94535d
CM
3136 extent_num_bytes =
3137 btrfs_file_extent_disk_num_bytes(leaf,
3138 fi);
5d4f98a2
YZ
3139 extent_offset = found_key.offset -
3140 btrfs_file_extent_offset(leaf, fi);
3141
39279cc3 3142 /* FIXME blocksize != 4096 */
9069218d 3143 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3144 if (extent_start != 0) {
3145 found_extent = 1;
e02119d5 3146 if (root->ref_cows)
a76a3cd4 3147 inode_sub_bytes(inode, num_dec);
e02119d5 3148 }
39279cc3 3149 }
9069218d 3150 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3151 /*
3152 * we can't truncate inline items that have had
3153 * special encodings
3154 */
3155 if (!del_item &&
3156 btrfs_file_extent_compression(leaf, fi) == 0 &&
3157 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3158 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3159 u32 size = new_size - found_key.offset;
3160
3161 if (root->ref_cows) {
a76a3cd4
YZ
3162 inode_sub_bytes(inode, item_end + 1 -
3163 new_size);
e02119d5
CM
3164 }
3165 size =
3166 btrfs_file_extent_calc_inline_size(size);
143bede5
JM
3167 btrfs_truncate_item(trans, root, path,
3168 size, 1);
e02119d5 3169 } else if (root->ref_cows) {
a76a3cd4
YZ
3170 inode_sub_bytes(inode, item_end + 1 -
3171 found_key.offset);
9069218d 3172 }
39279cc3 3173 }
179e29e4 3174delete:
39279cc3 3175 if (del_item) {
85e21bac
CM
3176 if (!pending_del_nr) {
3177 /* no pending yet, add ourselves */
3178 pending_del_slot = path->slots[0];
3179 pending_del_nr = 1;
3180 } else if (pending_del_nr &&
3181 path->slots[0] + 1 == pending_del_slot) {
3182 /* hop on the pending chunk */
3183 pending_del_nr++;
3184 pending_del_slot = path->slots[0];
3185 } else {
d397712b 3186 BUG();
85e21bac 3187 }
39279cc3
CM
3188 } else {
3189 break;
3190 }
0af3d00b
JB
3191 if (found_extent && (root->ref_cows ||
3192 root == root->fs_info->tree_root)) {
b9473439 3193 btrfs_set_path_blocking(path);
39279cc3 3194 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3195 extent_num_bytes, 0,
3196 btrfs_header_owner(leaf),
66d7e7f0 3197 ino, extent_offset, 0);
39279cc3
CM
3198 BUG_ON(ret);
3199 }
85e21bac 3200
8082510e
YZ
3201 if (found_type == BTRFS_INODE_ITEM_KEY)
3202 break;
3203
3204 if (path->slots[0] == 0 ||
3205 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3206 if (root->ref_cows &&
3207 BTRFS_I(inode)->location.objectid !=
3208 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3209 err = -EAGAIN;
3210 goto out;
3211 }
3212 if (pending_del_nr) {
3213 ret = btrfs_del_items(trans, root, path,
3214 pending_del_slot,
3215 pending_del_nr);
3216 BUG_ON(ret);
3217 pending_del_nr = 0;
3218 }
b3b4aa74 3219 btrfs_release_path(path);
85e21bac 3220 goto search_again;
8082510e
YZ
3221 } else {
3222 path->slots[0]--;
85e21bac 3223 }
39279cc3 3224 }
8082510e 3225out:
85e21bac
CM
3226 if (pending_del_nr) {
3227 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3228 pending_del_nr);
d68fc57b 3229 BUG_ON(ret);
85e21bac 3230 }
39279cc3 3231 btrfs_free_path(path);
8082510e 3232 return err;
39279cc3
CM
3233}
3234
3235/*
3236 * taken from block_truncate_page, but does cow as it zeros out
3237 * any bytes left in the last page in the file.
3238 */
3239static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3240{
3241 struct inode *inode = mapping->host;
db94535d 3242 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3243 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3244 struct btrfs_ordered_extent *ordered;
2ac55d41 3245 struct extent_state *cached_state = NULL;
e6dcd2dc 3246 char *kaddr;
db94535d 3247 u32 blocksize = root->sectorsize;
39279cc3
CM
3248 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3249 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3250 struct page *page;
3b16a4e3 3251 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 3252 int ret = 0;
a52d9a80 3253 u64 page_start;
e6dcd2dc 3254 u64 page_end;
39279cc3
CM
3255
3256 if ((offset & (blocksize - 1)) == 0)
3257 goto out;
0ca1f7ce 3258 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3259 if (ret)
3260 goto out;
39279cc3
CM
3261
3262 ret = -ENOMEM;
211c17f5 3263again:
3b16a4e3 3264 page = find_or_create_page(mapping, index, mask);
5d5e103a 3265 if (!page) {
0ca1f7ce 3266 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3267 goto out;
5d5e103a 3268 }
e6dcd2dc
CM
3269
3270 page_start = page_offset(page);
3271 page_end = page_start + PAGE_CACHE_SIZE - 1;
3272
39279cc3 3273 if (!PageUptodate(page)) {
9ebefb18 3274 ret = btrfs_readpage(NULL, page);
39279cc3 3275 lock_page(page);
211c17f5
CM
3276 if (page->mapping != mapping) {
3277 unlock_page(page);
3278 page_cache_release(page);
3279 goto again;
3280 }
39279cc3
CM
3281 if (!PageUptodate(page)) {
3282 ret = -EIO;
89642229 3283 goto out_unlock;
39279cc3
CM
3284 }
3285 }
211c17f5 3286 wait_on_page_writeback(page);
e6dcd2dc 3287
2ac55d41
JB
3288 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3289 GFP_NOFS);
e6dcd2dc
CM
3290 set_page_extent_mapped(page);
3291
3292 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3293 if (ordered) {
2ac55d41
JB
3294 unlock_extent_cached(io_tree, page_start, page_end,
3295 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3296 unlock_page(page);
3297 page_cache_release(page);
eb84ae03 3298 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3299 btrfs_put_ordered_extent(ordered);
3300 goto again;
3301 }
3302
2ac55d41 3303 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3304 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3305 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3306
2ac55d41
JB
3307 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3308 &cached_state);
9ed74f2d 3309 if (ret) {
2ac55d41
JB
3310 unlock_extent_cached(io_tree, page_start, page_end,
3311 &cached_state, GFP_NOFS);
9ed74f2d
JB
3312 goto out_unlock;
3313 }
3314
e6dcd2dc
CM
3315 ret = 0;
3316 if (offset != PAGE_CACHE_SIZE) {
3317 kaddr = kmap(page);
3318 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3319 flush_dcache_page(page);
3320 kunmap(page);
3321 }
247e743c 3322 ClearPageChecked(page);
e6dcd2dc 3323 set_page_dirty(page);
2ac55d41
JB
3324 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3325 GFP_NOFS);
39279cc3 3326
89642229 3327out_unlock:
5d5e103a 3328 if (ret)
0ca1f7ce 3329 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3330 unlock_page(page);
3331 page_cache_release(page);
3332out:
3333 return ret;
3334}
3335
695a0d0d
JB
3336/*
3337 * This function puts in dummy file extents for the area we're creating a hole
3338 * for. So if we are truncating this file to a larger size we need to insert
3339 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3340 * the range between oldsize and size
3341 */
a41ad394 3342int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3343{
9036c102
YZ
3344 struct btrfs_trans_handle *trans;
3345 struct btrfs_root *root = BTRFS_I(inode)->root;
3346 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3347 struct extent_map *em = NULL;
2ac55d41 3348 struct extent_state *cached_state = NULL;
9036c102 3349 u64 mask = root->sectorsize - 1;
a41ad394 3350 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3351 u64 block_end = (size + mask) & ~mask;
3352 u64 last_byte;
3353 u64 cur_offset;
3354 u64 hole_size;
9ed74f2d 3355 int err = 0;
39279cc3 3356
9036c102
YZ
3357 if (size <= hole_start)
3358 return 0;
3359
9036c102
YZ
3360 while (1) {
3361 struct btrfs_ordered_extent *ordered;
3362 btrfs_wait_ordered_range(inode, hole_start,
3363 block_end - hole_start);
2ac55d41
JB
3364 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3365 &cached_state, GFP_NOFS);
9036c102
YZ
3366 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3367 if (!ordered)
3368 break;
2ac55d41
JB
3369 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3370 &cached_state, GFP_NOFS);
9036c102
YZ
3371 btrfs_put_ordered_extent(ordered);
3372 }
39279cc3 3373
9036c102
YZ
3374 cur_offset = hole_start;
3375 while (1) {
3376 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3377 block_end - cur_offset, 0);
c704005d 3378 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3379 last_byte = min(extent_map_end(em), block_end);
3380 last_byte = (last_byte + mask) & ~mask;
8082510e 3381 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3382 u64 hint_byte = 0;
9036c102 3383 hole_size = last_byte - cur_offset;
9ed74f2d 3384
3642320e 3385 trans = btrfs_start_transaction(root, 3);
a22285a6
YZ
3386 if (IS_ERR(trans)) {
3387 err = PTR_ERR(trans);
9ed74f2d 3388 break;
a22285a6 3389 }
8082510e
YZ
3390
3391 err = btrfs_drop_extents(trans, inode, cur_offset,
3392 cur_offset + hole_size,
3393 &hint_byte, 1);
5b397377 3394 if (err) {
3642320e 3395 btrfs_update_inode(trans, root, inode);
5b397377 3396 btrfs_end_transaction(trans, root);
3893e33b 3397 break;
5b397377 3398 }
8082510e 3399
9036c102 3400 err = btrfs_insert_file_extent(trans, root,
33345d01 3401 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3402 0, hole_size, 0, hole_size,
3403 0, 0, 0);
5b397377 3404 if (err) {
3642320e 3405 btrfs_update_inode(trans, root, inode);
5b397377 3406 btrfs_end_transaction(trans, root);
3893e33b 3407 break;
5b397377 3408 }
8082510e 3409
9036c102
YZ
3410 btrfs_drop_extent_cache(inode, hole_start,
3411 last_byte - 1, 0);
8082510e 3412
3642320e 3413 btrfs_update_inode(trans, root, inode);
8082510e 3414 btrfs_end_transaction(trans, root);
9036c102
YZ
3415 }
3416 free_extent_map(em);
a22285a6 3417 em = NULL;
9036c102 3418 cur_offset = last_byte;
8082510e 3419 if (cur_offset >= block_end)
9036c102
YZ
3420 break;
3421 }
1832a6d5 3422
a22285a6 3423 free_extent_map(em);
2ac55d41
JB
3424 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3425 GFP_NOFS);
9036c102
YZ
3426 return err;
3427}
39279cc3 3428
a41ad394 3429static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3430{
f4a2f4c5
MX
3431 struct btrfs_root *root = BTRFS_I(inode)->root;
3432 struct btrfs_trans_handle *trans;
a41ad394 3433 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3434 int ret;
3435
a41ad394 3436 if (newsize == oldsize)
8082510e
YZ
3437 return 0;
3438
a41ad394 3439 if (newsize > oldsize) {
a41ad394
JB
3440 truncate_pagecache(inode, oldsize, newsize);
3441 ret = btrfs_cont_expand(inode, oldsize, newsize);
f4a2f4c5 3442 if (ret)
8082510e 3443 return ret;
8082510e 3444
f4a2f4c5
MX
3445 trans = btrfs_start_transaction(root, 1);
3446 if (IS_ERR(trans))
3447 return PTR_ERR(trans);
3448
3449 i_size_write(inode, newsize);
3450 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3451 ret = btrfs_update_inode(trans, root, inode);
7ad85bb7 3452 btrfs_end_transaction(trans, root);
a41ad394 3453 } else {
8082510e 3454
a41ad394
JB
3455 /*
3456 * We're truncating a file that used to have good data down to
3457 * zero. Make sure it gets into the ordered flush list so that
3458 * any new writes get down to disk quickly.
3459 */
3460 if (newsize == 0)
3461 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3462
a41ad394
JB
3463 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3464 truncate_setsize(inode, newsize);
3465 ret = btrfs_truncate(inode);
8082510e
YZ
3466 }
3467
a41ad394 3468 return ret;
8082510e
YZ
3469}
3470
9036c102
YZ
3471static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3472{
3473 struct inode *inode = dentry->d_inode;
b83cc969 3474 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3475 int err;
39279cc3 3476
b83cc969
LZ
3477 if (btrfs_root_readonly(root))
3478 return -EROFS;
3479
9036c102
YZ
3480 err = inode_change_ok(inode, attr);
3481 if (err)
3482 return err;
2bf5a725 3483
5a3f23d5 3484 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3485 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3486 if (err)
3487 return err;
39279cc3 3488 }
9036c102 3489
1025774c
CH
3490 if (attr->ia_valid) {
3491 setattr_copy(inode, attr);
22c44fe6 3492 err = btrfs_dirty_inode(inode);
1025774c 3493
22c44fe6 3494 if (!err && attr->ia_valid & ATTR_MODE)
1025774c
CH
3495 err = btrfs_acl_chmod(inode);
3496 }
33268eaf 3497
39279cc3
CM
3498 return err;
3499}
61295eb8 3500
bd555975 3501void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3502{
3503 struct btrfs_trans_handle *trans;
3504 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 3505 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 3506 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
d3c2fdcf 3507 unsigned long nr;
39279cc3
CM
3508 int ret;
3509
1abe9b8a 3510 trace_btrfs_inode_evict(inode);
3511
39279cc3 3512 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3513 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
2cf8572d 3514 btrfs_is_free_space_inode(root, inode)))
bd555975
AV
3515 goto no_delete;
3516
39279cc3 3517 if (is_bad_inode(inode)) {
7b128766 3518 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3519 goto no_delete;
3520 }
bd555975 3521 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3522 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3523
c71bf099
YZ
3524 if (root->fs_info->log_root_recovering) {
3525 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3526 goto no_delete;
3527 }
3528
76dda93c
YZ
3529 if (inode->i_nlink > 0) {
3530 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3531 goto no_delete;
3532 }
3533
4289a667
JB
3534 rsv = btrfs_alloc_block_rsv(root);
3535 if (!rsv) {
3536 btrfs_orphan_del(NULL, inode);
3537 goto no_delete;
3538 }
4a338542 3539 rsv->size = min_size;
726c35fa 3540 global_rsv = &root->fs_info->global_block_rsv;
4289a667 3541
dbe674a9 3542 btrfs_i_size_write(inode, 0);
5f39d397 3543
4289a667
JB
3544 /*
3545 * This is a bit simpler than btrfs_truncate since
3546 *
3547 * 1) We've already reserved our space for our orphan item in the
3548 * unlink.
3549 * 2) We're going to delete the inode item, so we don't need to update
3550 * it at all.
3551 *
3552 * So we just need to reserve some slack space in case we add bytes when
3553 * doing the truncate.
3554 */
8082510e 3555 while (1) {
aa38a711 3556 ret = btrfs_block_rsv_refill_noflush(root, rsv, min_size);
726c35fa
JB
3557
3558 /*
3559 * Try and steal from the global reserve since we will
3560 * likely not use this space anyway, we want to try as
3561 * hard as possible to get this to work.
3562 */
3563 if (ret)
3564 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 3565
d68fc57b 3566 if (ret) {
4289a667 3567 printk(KERN_WARNING "Could not get space for a "
482e6dc5 3568 "delete, will truncate on mount %d\n", ret);
4289a667
JB
3569 btrfs_orphan_del(NULL, inode);
3570 btrfs_free_block_rsv(root, rsv);
3571 goto no_delete;
d68fc57b 3572 }
7b128766 3573
4289a667
JB
3574 trans = btrfs_start_transaction(root, 0);
3575 if (IS_ERR(trans)) {
3576 btrfs_orphan_del(NULL, inode);
3577 btrfs_free_block_rsv(root, rsv);
3578 goto no_delete;
d68fc57b 3579 }
7b128766 3580
4289a667
JB
3581 trans->block_rsv = rsv;
3582
d68fc57b 3583 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3584 if (ret != -EAGAIN)
3585 break;
85e21bac 3586
8082510e
YZ
3587 nr = trans->blocks_used;
3588 btrfs_end_transaction(trans, root);
3589 trans = NULL;
3590 btrfs_btree_balance_dirty(root, nr);
3591 }
5f39d397 3592
4289a667
JB
3593 btrfs_free_block_rsv(root, rsv);
3594
8082510e 3595 if (ret == 0) {
4289a667 3596 trans->block_rsv = root->orphan_block_rsv;
8082510e
YZ
3597 ret = btrfs_orphan_del(trans, inode);
3598 BUG_ON(ret);
3599 }
54aa1f4d 3600
4289a667 3601 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
3602 if (!(root == root->fs_info->tree_root ||
3603 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3604 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3605
d3c2fdcf 3606 nr = trans->blocks_used;
54aa1f4d 3607 btrfs_end_transaction(trans, root);
d3c2fdcf 3608 btrfs_btree_balance_dirty(root, nr);
39279cc3 3609no_delete:
bd555975 3610 end_writeback(inode);
8082510e 3611 return;
39279cc3
CM
3612}
3613
3614/*
3615 * this returns the key found in the dir entry in the location pointer.
3616 * If no dir entries were found, location->objectid is 0.
3617 */
3618static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3619 struct btrfs_key *location)
3620{
3621 const char *name = dentry->d_name.name;
3622 int namelen = dentry->d_name.len;
3623 struct btrfs_dir_item *di;
3624 struct btrfs_path *path;
3625 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3626 int ret = 0;
39279cc3
CM
3627
3628 path = btrfs_alloc_path();
d8926bb3
MF
3629 if (!path)
3630 return -ENOMEM;
3954401f 3631
33345d01 3632 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3633 namelen, 0);
0d9f7f3e
Y
3634 if (IS_ERR(di))
3635 ret = PTR_ERR(di);
d397712b 3636
c704005d 3637 if (IS_ERR_OR_NULL(di))
3954401f 3638 goto out_err;
d397712b 3639
5f39d397 3640 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3641out:
39279cc3
CM
3642 btrfs_free_path(path);
3643 return ret;
3954401f
CM
3644out_err:
3645 location->objectid = 0;
3646 goto out;
39279cc3
CM
3647}
3648
3649/*
3650 * when we hit a tree root in a directory, the btrfs part of the inode
3651 * needs to be changed to reflect the root directory of the tree root. This
3652 * is kind of like crossing a mount point.
3653 */
3654static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3655 struct inode *dir,
3656 struct dentry *dentry,
3657 struct btrfs_key *location,
3658 struct btrfs_root **sub_root)
39279cc3 3659{
4df27c4d
YZ
3660 struct btrfs_path *path;
3661 struct btrfs_root *new_root;
3662 struct btrfs_root_ref *ref;
3663 struct extent_buffer *leaf;
3664 int ret;
3665 int err = 0;
39279cc3 3666
4df27c4d
YZ
3667 path = btrfs_alloc_path();
3668 if (!path) {
3669 err = -ENOMEM;
3670 goto out;
3671 }
39279cc3 3672
4df27c4d
YZ
3673 err = -ENOENT;
3674 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3675 BTRFS_I(dir)->root->root_key.objectid,
3676 location->objectid);
3677 if (ret) {
3678 if (ret < 0)
3679 err = ret;
3680 goto out;
3681 }
39279cc3 3682
4df27c4d
YZ
3683 leaf = path->nodes[0];
3684 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3685 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3686 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3687 goto out;
39279cc3 3688
4df27c4d
YZ
3689 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3690 (unsigned long)(ref + 1),
3691 dentry->d_name.len);
3692 if (ret)
3693 goto out;
3694
b3b4aa74 3695 btrfs_release_path(path);
4df27c4d
YZ
3696
3697 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3698 if (IS_ERR(new_root)) {
3699 err = PTR_ERR(new_root);
3700 goto out;
3701 }
3702
3703 if (btrfs_root_refs(&new_root->root_item) == 0) {
3704 err = -ENOENT;
3705 goto out;
3706 }
3707
3708 *sub_root = new_root;
3709 location->objectid = btrfs_root_dirid(&new_root->root_item);
3710 location->type = BTRFS_INODE_ITEM_KEY;
3711 location->offset = 0;
3712 err = 0;
3713out:
3714 btrfs_free_path(path);
3715 return err;
39279cc3
CM
3716}
3717
5d4f98a2
YZ
3718static void inode_tree_add(struct inode *inode)
3719{
3720 struct btrfs_root *root = BTRFS_I(inode)->root;
3721 struct btrfs_inode *entry;
03e860bd
FNP
3722 struct rb_node **p;
3723 struct rb_node *parent;
33345d01 3724 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3725again:
3726 p = &root->inode_tree.rb_node;
3727 parent = NULL;
5d4f98a2 3728
1d3382cb 3729 if (inode_unhashed(inode))
76dda93c
YZ
3730 return;
3731
5d4f98a2
YZ
3732 spin_lock(&root->inode_lock);
3733 while (*p) {
3734 parent = *p;
3735 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3736
33345d01 3737 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3738 p = &parent->rb_left;
33345d01 3739 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3740 p = &parent->rb_right;
5d4f98a2
YZ
3741 else {
3742 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3743 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3744 rb_erase(parent, &root->inode_tree);
3745 RB_CLEAR_NODE(parent);
3746 spin_unlock(&root->inode_lock);
3747 goto again;
5d4f98a2
YZ
3748 }
3749 }
3750 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3751 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3752 spin_unlock(&root->inode_lock);
3753}
3754
3755static void inode_tree_del(struct inode *inode)
3756{
3757 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3758 int empty = 0;
5d4f98a2 3759
03e860bd 3760 spin_lock(&root->inode_lock);
5d4f98a2 3761 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3762 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3763 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3764 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3765 }
03e860bd 3766 spin_unlock(&root->inode_lock);
76dda93c 3767
0af3d00b
JB
3768 /*
3769 * Free space cache has inodes in the tree root, but the tree root has a
3770 * root_refs of 0, so this could end up dropping the tree root as a
3771 * snapshot, so we need the extra !root->fs_info->tree_root check to
3772 * make sure we don't drop it.
3773 */
3774 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3775 root != root->fs_info->tree_root) {
76dda93c
YZ
3776 synchronize_srcu(&root->fs_info->subvol_srcu);
3777 spin_lock(&root->inode_lock);
3778 empty = RB_EMPTY_ROOT(&root->inode_tree);
3779 spin_unlock(&root->inode_lock);
3780 if (empty)
3781 btrfs_add_dead_root(root);
3782 }
3783}
3784
143bede5 3785void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
3786{
3787 struct rb_node *node;
3788 struct rb_node *prev;
3789 struct btrfs_inode *entry;
3790 struct inode *inode;
3791 u64 objectid = 0;
3792
3793 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3794
3795 spin_lock(&root->inode_lock);
3796again:
3797 node = root->inode_tree.rb_node;
3798 prev = NULL;
3799 while (node) {
3800 prev = node;
3801 entry = rb_entry(node, struct btrfs_inode, rb_node);
3802
33345d01 3803 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3804 node = node->rb_left;
33345d01 3805 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3806 node = node->rb_right;
3807 else
3808 break;
3809 }
3810 if (!node) {
3811 while (prev) {
3812 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3813 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3814 node = prev;
3815 break;
3816 }
3817 prev = rb_next(prev);
3818 }
3819 }
3820 while (node) {
3821 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3822 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3823 inode = igrab(&entry->vfs_inode);
3824 if (inode) {
3825 spin_unlock(&root->inode_lock);
3826 if (atomic_read(&inode->i_count) > 1)
3827 d_prune_aliases(inode);
3828 /*
45321ac5 3829 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3830 * the inode cache when its usage count
3831 * hits zero.
3832 */
3833 iput(inode);
3834 cond_resched();
3835 spin_lock(&root->inode_lock);
3836 goto again;
3837 }
3838
3839 if (cond_resched_lock(&root->inode_lock))
3840 goto again;
3841
3842 node = rb_next(node);
3843 }
3844 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
3845}
3846
e02119d5
CM
3847static int btrfs_init_locked_inode(struct inode *inode, void *p)
3848{
3849 struct btrfs_iget_args *args = p;
3850 inode->i_ino = args->ino;
e02119d5 3851 BTRFS_I(inode)->root = args->root;
6a63209f 3852 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3853 return 0;
3854}
3855
3856static int btrfs_find_actor(struct inode *inode, void *opaque)
3857{
3858 struct btrfs_iget_args *args = opaque;
33345d01 3859 return args->ino == btrfs_ino(inode) &&
d397712b 3860 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3861}
3862
5d4f98a2
YZ
3863static struct inode *btrfs_iget_locked(struct super_block *s,
3864 u64 objectid,
3865 struct btrfs_root *root)
39279cc3
CM
3866{
3867 struct inode *inode;
3868 struct btrfs_iget_args args;
3869 args.ino = objectid;
3870 args.root = root;
3871
3872 inode = iget5_locked(s, objectid, btrfs_find_actor,
3873 btrfs_init_locked_inode,
3874 (void *)&args);
3875 return inode;
3876}
3877
1a54ef8c
BR
3878/* Get an inode object given its location and corresponding root.
3879 * Returns in *is_new if the inode was read from disk
3880 */
3881struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3882 struct btrfs_root *root, int *new)
1a54ef8c
BR
3883{
3884 struct inode *inode;
3885
3886 inode = btrfs_iget_locked(s, location->objectid, root);
3887 if (!inode)
5d4f98a2 3888 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3889
3890 if (inode->i_state & I_NEW) {
3891 BTRFS_I(inode)->root = root;
3892 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3893 btrfs_read_locked_inode(inode);
1748f843
MF
3894 if (!is_bad_inode(inode)) {
3895 inode_tree_add(inode);
3896 unlock_new_inode(inode);
3897 if (new)
3898 *new = 1;
3899 } else {
e0b6d65b
ST
3900 unlock_new_inode(inode);
3901 iput(inode);
3902 inode = ERR_PTR(-ESTALE);
1748f843
MF
3903 }
3904 }
3905
1a54ef8c
BR
3906 return inode;
3907}
3908
4df27c4d
YZ
3909static struct inode *new_simple_dir(struct super_block *s,
3910 struct btrfs_key *key,
3911 struct btrfs_root *root)
3912{
3913 struct inode *inode = new_inode(s);
3914
3915 if (!inode)
3916 return ERR_PTR(-ENOMEM);
3917
4df27c4d
YZ
3918 BTRFS_I(inode)->root = root;
3919 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3920 BTRFS_I(inode)->dummy_inode = 1;
3921
3922 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3923 inode->i_op = &simple_dir_inode_operations;
3924 inode->i_fop = &simple_dir_operations;
3925 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3926 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3927
3928 return inode;
3929}
3930
3de4586c 3931struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3932{
d397712b 3933 struct inode *inode;
4df27c4d 3934 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3935 struct btrfs_root *sub_root = root;
3936 struct btrfs_key location;
76dda93c 3937 int index;
b4aff1f8 3938 int ret = 0;
39279cc3
CM
3939
3940 if (dentry->d_name.len > BTRFS_NAME_LEN)
3941 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3942
b4aff1f8
JB
3943 if (unlikely(d_need_lookup(dentry))) {
3944 memcpy(&location, dentry->d_fsdata, sizeof(struct btrfs_key));
3945 kfree(dentry->d_fsdata);
3946 dentry->d_fsdata = NULL;
a66e7cc6
JB
3947 /* This thing is hashed, drop it for now */
3948 d_drop(dentry);
b4aff1f8
JB
3949 } else {
3950 ret = btrfs_inode_by_name(dir, dentry, &location);
3951 }
5f39d397 3952
39279cc3
CM
3953 if (ret < 0)
3954 return ERR_PTR(ret);
5f39d397 3955
4df27c4d
YZ
3956 if (location.objectid == 0)
3957 return NULL;
3958
3959 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 3960 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
3961 return inode;
3962 }
3963
3964 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3965
76dda93c 3966 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3967 ret = fixup_tree_root_location(root, dir, dentry,
3968 &location, &sub_root);
3969 if (ret < 0) {
3970 if (ret != -ENOENT)
3971 inode = ERR_PTR(ret);
3972 else
3973 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3974 } else {
73f73415 3975 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 3976 }
76dda93c
YZ
3977 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3978
34d19bad 3979 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
3980 down_read(&root->fs_info->cleanup_work_sem);
3981 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 3982 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 3983 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
3984 if (ret)
3985 inode = ERR_PTR(ret);
c71bf099
YZ
3986 }
3987
3de4586c
CM
3988 return inode;
3989}
3990
fe15ce44 3991static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
3992{
3993 struct btrfs_root *root;
3994
efefb143
YZ
3995 if (!dentry->d_inode && !IS_ROOT(dentry))
3996 dentry = dentry->d_parent;
76dda93c 3997
efefb143
YZ
3998 if (dentry->d_inode) {
3999 root = BTRFS_I(dentry->d_inode)->root;
4000 if (btrfs_root_refs(&root->root_item) == 0)
4001 return 1;
4002 }
76dda93c
YZ
4003 return 0;
4004}
4005
b4aff1f8
JB
4006static void btrfs_dentry_release(struct dentry *dentry)
4007{
4008 if (dentry->d_fsdata)
4009 kfree(dentry->d_fsdata);
4010}
4011
3de4586c
CM
4012static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4013 struct nameidata *nd)
4014{
a66e7cc6
JB
4015 struct dentry *ret;
4016
4017 ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4018 if (unlikely(d_need_lookup(dentry))) {
4019 spin_lock(&dentry->d_lock);
4020 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
4021 spin_unlock(&dentry->d_lock);
4022 }
4023 return ret;
39279cc3
CM
4024}
4025
16cdcec7 4026unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4027 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4028};
4029
cbdf5a24
DW
4030static int btrfs_real_readdir(struct file *filp, void *dirent,
4031 filldir_t filldir)
39279cc3 4032{
6da6abae 4033 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4034 struct btrfs_root *root = BTRFS_I(inode)->root;
4035 struct btrfs_item *item;
4036 struct btrfs_dir_item *di;
4037 struct btrfs_key key;
5f39d397 4038 struct btrfs_key found_key;
39279cc3 4039 struct btrfs_path *path;
16cdcec7
MX
4040 struct list_head ins_list;
4041 struct list_head del_list;
b4aff1f8 4042 struct qstr q;
39279cc3 4043 int ret;
5f39d397 4044 struct extent_buffer *leaf;
39279cc3 4045 int slot;
39279cc3
CM
4046 unsigned char d_type;
4047 int over = 0;
4048 u32 di_cur;
4049 u32 di_total;
4050 u32 di_len;
4051 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4052 char tmp_name[32];
4053 char *name_ptr;
4054 int name_len;
16cdcec7 4055 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4056
4057 /* FIXME, use a real flag for deciding about the key type */
4058 if (root->fs_info->tree_root == root)
4059 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4060
3954401f
CM
4061 /* special case for "." */
4062 if (filp->f_pos == 0) {
3765fefa
HS
4063 over = filldir(dirent, ".", 1,
4064 filp->f_pos, btrfs_ino(inode), DT_DIR);
3954401f
CM
4065 if (over)
4066 return 0;
4067 filp->f_pos = 1;
4068 }
3954401f
CM
4069 /* special case for .., just use the back ref */
4070 if (filp->f_pos == 1) {
5ecc7e5d 4071 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4072 over = filldir(dirent, "..", 2,
3765fefa 4073 filp->f_pos, pino, DT_DIR);
3954401f 4074 if (over)
49593bfa 4075 return 0;
3954401f
CM
4076 filp->f_pos = 2;
4077 }
49593bfa 4078 path = btrfs_alloc_path();
16cdcec7
MX
4079 if (!path)
4080 return -ENOMEM;
ff5714cc 4081
026fd317 4082 path->reada = 1;
49593bfa 4083
16cdcec7
MX
4084 if (key_type == BTRFS_DIR_INDEX_KEY) {
4085 INIT_LIST_HEAD(&ins_list);
4086 INIT_LIST_HEAD(&del_list);
4087 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4088 }
4089
39279cc3
CM
4090 btrfs_set_key_type(&key, key_type);
4091 key.offset = filp->f_pos;
33345d01 4092 key.objectid = btrfs_ino(inode);
5f39d397 4093
39279cc3
CM
4094 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4095 if (ret < 0)
4096 goto err;
49593bfa
DW
4097
4098 while (1) {
5f39d397 4099 leaf = path->nodes[0];
39279cc3 4100 slot = path->slots[0];
b9e03af0
LZ
4101 if (slot >= btrfs_header_nritems(leaf)) {
4102 ret = btrfs_next_leaf(root, path);
4103 if (ret < 0)
4104 goto err;
4105 else if (ret > 0)
4106 break;
4107 continue;
39279cc3 4108 }
3de4586c 4109
5f39d397
CM
4110 item = btrfs_item_nr(leaf, slot);
4111 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4112
4113 if (found_key.objectid != key.objectid)
39279cc3 4114 break;
5f39d397 4115 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4116 break;
5f39d397 4117 if (found_key.offset < filp->f_pos)
b9e03af0 4118 goto next;
16cdcec7
MX
4119 if (key_type == BTRFS_DIR_INDEX_KEY &&
4120 btrfs_should_delete_dir_index(&del_list,
4121 found_key.offset))
4122 goto next;
5f39d397
CM
4123
4124 filp->f_pos = found_key.offset;
16cdcec7 4125 is_curr = 1;
49593bfa 4126
39279cc3
CM
4127 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4128 di_cur = 0;
5f39d397 4129 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4130
4131 while (di_cur < di_total) {
5f39d397 4132 struct btrfs_key location;
b4aff1f8 4133 struct dentry *tmp;
5f39d397 4134
22a94d44
JB
4135 if (verify_dir_item(root, leaf, di))
4136 break;
4137
5f39d397 4138 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4139 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4140 name_ptr = tmp_name;
4141 } else {
4142 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4143 if (!name_ptr) {
4144 ret = -ENOMEM;
4145 goto err;
4146 }
5f39d397
CM
4147 }
4148 read_extent_buffer(leaf, name_ptr,
4149 (unsigned long)(di + 1), name_len);
4150
4151 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4152 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 4153
b4aff1f8
JB
4154 q.name = name_ptr;
4155 q.len = name_len;
4156 q.hash = full_name_hash(q.name, q.len);
4157 tmp = d_lookup(filp->f_dentry, &q);
4158 if (!tmp) {
4159 struct btrfs_key *newkey;
4160
4161 newkey = kzalloc(sizeof(struct btrfs_key),
4162 GFP_NOFS);
4163 if (!newkey)
4164 goto no_dentry;
4165 tmp = d_alloc(filp->f_dentry, &q);
4166 if (!tmp) {
4167 kfree(newkey);
4168 dput(tmp);
4169 goto no_dentry;
4170 }
4171 memcpy(newkey, &location,
4172 sizeof(struct btrfs_key));
4173 tmp->d_fsdata = newkey;
4174 tmp->d_flags |= DCACHE_NEED_LOOKUP;
4175 d_rehash(tmp);
4176 dput(tmp);
4177 } else {
4178 dput(tmp);
4179 }
4180no_dentry:
3de4586c
CM
4181 /* is this a reference to our own snapshot? If so
4182 * skip it
4183 */
4184 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4185 location.objectid == root->root_key.objectid) {
4186 over = 0;
4187 goto skip;
4188 }
5f39d397 4189 over = filldir(dirent, name_ptr, name_len,
49593bfa 4190 found_key.offset, location.objectid,
39279cc3 4191 d_type);
5f39d397 4192
3de4586c 4193skip:
5f39d397
CM
4194 if (name_ptr != tmp_name)
4195 kfree(name_ptr);
4196
39279cc3
CM
4197 if (over)
4198 goto nopos;
5103e947 4199 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4200 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4201 di_cur += di_len;
4202 di = (struct btrfs_dir_item *)((char *)di + di_len);
4203 }
b9e03af0
LZ
4204next:
4205 path->slots[0]++;
39279cc3 4206 }
49593bfa 4207
16cdcec7
MX
4208 if (key_type == BTRFS_DIR_INDEX_KEY) {
4209 if (is_curr)
4210 filp->f_pos++;
4211 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4212 &ins_list);
4213 if (ret)
4214 goto nopos;
4215 }
4216
49593bfa 4217 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4218 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4219 /*
4220 * 32-bit glibc will use getdents64, but then strtol -
4221 * so the last number we can serve is this.
4222 */
4223 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4224 else
4225 filp->f_pos++;
39279cc3
CM
4226nopos:
4227 ret = 0;
4228err:
16cdcec7
MX
4229 if (key_type == BTRFS_DIR_INDEX_KEY)
4230 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4231 btrfs_free_path(path);
39279cc3
CM
4232 return ret;
4233}
4234
a9185b41 4235int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4236{
4237 struct btrfs_root *root = BTRFS_I(inode)->root;
4238 struct btrfs_trans_handle *trans;
4239 int ret = 0;
0af3d00b 4240 bool nolock = false;
39279cc3 4241
8929ecfa 4242 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4243 return 0;
4244
2cf8572d 4245 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
82d5902d 4246 nolock = true;
0af3d00b 4247
a9185b41 4248 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4249 if (nolock)
7a7eaa40 4250 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4251 else
7a7eaa40 4252 trans = btrfs_join_transaction(root);
3612b495
TI
4253 if (IS_ERR(trans))
4254 return PTR_ERR(trans);
0af3d00b
JB
4255 if (nolock)
4256 ret = btrfs_end_transaction_nolock(trans, root);
4257 else
4258 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4259 }
4260 return ret;
4261}
4262
4263/*
54aa1f4d 4264 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4265 * inode changes. But, it is most likely to find the inode in cache.
4266 * FIXME, needs more benchmarking...there are no reasons other than performance
4267 * to keep or drop this code.
4268 */
22c44fe6 4269int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
4270{
4271 struct btrfs_root *root = BTRFS_I(inode)->root;
4272 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4273 int ret;
4274
4275 if (BTRFS_I(inode)->dummy_inode)
22c44fe6 4276 return 0;
39279cc3 4277
7a7eaa40 4278 trans = btrfs_join_transaction(root);
22c44fe6
JB
4279 if (IS_ERR(trans))
4280 return PTR_ERR(trans);
8929ecfa
YZ
4281
4282 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4283 if (ret && ret == -ENOSPC) {
4284 /* whoops, lets try again with the full transaction */
4285 btrfs_end_transaction(trans, root);
4286 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
4287 if (IS_ERR(trans))
4288 return PTR_ERR(trans);
8929ecfa 4289
94b60442 4290 ret = btrfs_update_inode(trans, root, inode);
94b60442 4291 }
39279cc3 4292 btrfs_end_transaction(trans, root);
16cdcec7
MX
4293 if (BTRFS_I(inode)->delayed_node)
4294 btrfs_balance_delayed_items(root);
22c44fe6
JB
4295
4296 return ret;
4297}
4298
4299/*
4300 * This is a copy of file_update_time. We need this so we can return error on
4301 * ENOSPC for updating the inode in the case of file write and mmap writes.
4302 */
4303int btrfs_update_time(struct file *file)
4304{
4305 struct inode *inode = file->f_path.dentry->d_inode;
4306 struct timespec now;
4307 int ret;
4308 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
4309
4310 /* First try to exhaust all avenues to not sync */
4311 if (IS_NOCMTIME(inode))
4312 return 0;
4313
4314 now = current_fs_time(inode->i_sb);
4315 if (!timespec_equal(&inode->i_mtime, &now))
4316 sync_it = S_MTIME;
4317
4318 if (!timespec_equal(&inode->i_ctime, &now))
4319 sync_it |= S_CTIME;
4320
4321 if (IS_I_VERSION(inode))
4322 sync_it |= S_VERSION;
4323
4324 if (!sync_it)
4325 return 0;
4326
4327 /* Finally allowed to write? Takes lock. */
4328 if (mnt_want_write_file(file))
4329 return 0;
4330
4331 /* Only change inode inside the lock region */
4332 if (sync_it & S_VERSION)
4333 inode_inc_iversion(inode);
4334 if (sync_it & S_CTIME)
4335 inode->i_ctime = now;
4336 if (sync_it & S_MTIME)
4337 inode->i_mtime = now;
4338 ret = btrfs_dirty_inode(inode);
4339 if (!ret)
4340 mark_inode_dirty_sync(inode);
4341 mnt_drop_write(file->f_path.mnt);
4342 return ret;
39279cc3
CM
4343}
4344
d352ac68
CM
4345/*
4346 * find the highest existing sequence number in a directory
4347 * and then set the in-memory index_cnt variable to reflect
4348 * free sequence numbers
4349 */
aec7477b
JB
4350static int btrfs_set_inode_index_count(struct inode *inode)
4351{
4352 struct btrfs_root *root = BTRFS_I(inode)->root;
4353 struct btrfs_key key, found_key;
4354 struct btrfs_path *path;
4355 struct extent_buffer *leaf;
4356 int ret;
4357
33345d01 4358 key.objectid = btrfs_ino(inode);
aec7477b
JB
4359 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4360 key.offset = (u64)-1;
4361
4362 path = btrfs_alloc_path();
4363 if (!path)
4364 return -ENOMEM;
4365
4366 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4367 if (ret < 0)
4368 goto out;
4369 /* FIXME: we should be able to handle this */
4370 if (ret == 0)
4371 goto out;
4372 ret = 0;
4373
4374 /*
4375 * MAGIC NUMBER EXPLANATION:
4376 * since we search a directory based on f_pos we have to start at 2
4377 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4378 * else has to start at 2
4379 */
4380 if (path->slots[0] == 0) {
4381 BTRFS_I(inode)->index_cnt = 2;
4382 goto out;
4383 }
4384
4385 path->slots[0]--;
4386
4387 leaf = path->nodes[0];
4388 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4389
33345d01 4390 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4391 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4392 BTRFS_I(inode)->index_cnt = 2;
4393 goto out;
4394 }
4395
4396 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4397out:
4398 btrfs_free_path(path);
4399 return ret;
4400}
4401
d352ac68
CM
4402/*
4403 * helper to find a free sequence number in a given directory. This current
4404 * code is very simple, later versions will do smarter things in the btree
4405 */
3de4586c 4406int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4407{
4408 int ret = 0;
4409
4410 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4411 ret = btrfs_inode_delayed_dir_index_count(dir);
4412 if (ret) {
4413 ret = btrfs_set_inode_index_count(dir);
4414 if (ret)
4415 return ret;
4416 }
aec7477b
JB
4417 }
4418
00e4e6b3 4419 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4420 BTRFS_I(dir)->index_cnt++;
4421
4422 return ret;
4423}
4424
39279cc3
CM
4425static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4426 struct btrfs_root *root,
aec7477b 4427 struct inode *dir,
9c58309d 4428 const char *name, int name_len,
175a4eb7
AV
4429 u64 ref_objectid, u64 objectid,
4430 umode_t mode, u64 *index)
39279cc3
CM
4431{
4432 struct inode *inode;
5f39d397 4433 struct btrfs_inode_item *inode_item;
39279cc3 4434 struct btrfs_key *location;
5f39d397 4435 struct btrfs_path *path;
9c58309d
CM
4436 struct btrfs_inode_ref *ref;
4437 struct btrfs_key key[2];
4438 u32 sizes[2];
4439 unsigned long ptr;
39279cc3
CM
4440 int ret;
4441 int owner;
4442
5f39d397 4443 path = btrfs_alloc_path();
d8926bb3
MF
4444 if (!path)
4445 return ERR_PTR(-ENOMEM);
5f39d397 4446
39279cc3 4447 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4448 if (!inode) {
4449 btrfs_free_path(path);
39279cc3 4450 return ERR_PTR(-ENOMEM);
8fb27640 4451 }
39279cc3 4452
581bb050
LZ
4453 /*
4454 * we have to initialize this early, so we can reclaim the inode
4455 * number if we fail afterwards in this function.
4456 */
4457 inode->i_ino = objectid;
4458
aec7477b 4459 if (dir) {
1abe9b8a 4460 trace_btrfs_inode_request(dir);
4461
3de4586c 4462 ret = btrfs_set_inode_index(dir, index);
09771430 4463 if (ret) {
8fb27640 4464 btrfs_free_path(path);
09771430 4465 iput(inode);
aec7477b 4466 return ERR_PTR(ret);
09771430 4467 }
aec7477b
JB
4468 }
4469 /*
4470 * index_cnt is ignored for everything but a dir,
4471 * btrfs_get_inode_index_count has an explanation for the magic
4472 * number
4473 */
4474 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4475 BTRFS_I(inode)->root = root;
e02119d5 4476 BTRFS_I(inode)->generation = trans->transid;
76195853 4477 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4478 btrfs_set_inode_space_info(root, inode);
b888db2b 4479
569254b0 4480 if (S_ISDIR(mode))
39279cc3
CM
4481 owner = 0;
4482 else
4483 owner = 1;
9c58309d
CM
4484
4485 key[0].objectid = objectid;
4486 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4487 key[0].offset = 0;
4488
4489 key[1].objectid = objectid;
4490 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4491 key[1].offset = ref_objectid;
4492
4493 sizes[0] = sizeof(struct btrfs_inode_item);
4494 sizes[1] = name_len + sizeof(*ref);
4495
b9473439 4496 path->leave_spinning = 1;
9c58309d
CM
4497 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4498 if (ret != 0)
5f39d397
CM
4499 goto fail;
4500
ecc11fab 4501 inode_init_owner(inode, dir, mode);
a76a3cd4 4502 inode_set_bytes(inode, 0);
39279cc3 4503 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4504 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4505 struct btrfs_inode_item);
e02119d5 4506 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4507
4508 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4509 struct btrfs_inode_ref);
4510 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4511 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4512 ptr = (unsigned long)(ref + 1);
4513 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4514
5f39d397
CM
4515 btrfs_mark_buffer_dirty(path->nodes[0]);
4516 btrfs_free_path(path);
4517
39279cc3
CM
4518 location = &BTRFS_I(inode)->location;
4519 location->objectid = objectid;
39279cc3
CM
4520 location->offset = 0;
4521 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4522
6cbff00f
CH
4523 btrfs_inherit_iflags(inode, dir);
4524
569254b0 4525 if (S_ISREG(mode)) {
94272164
CM
4526 if (btrfs_test_opt(root, NODATASUM))
4527 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4528 if (btrfs_test_opt(root, NODATACOW) ||
4529 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4530 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4531 }
4532
39279cc3 4533 insert_inode_hash(inode);
5d4f98a2 4534 inode_tree_add(inode);
1abe9b8a 4535
4536 trace_btrfs_inode_new(inode);
1973f0fa 4537 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4538
39279cc3 4539 return inode;
5f39d397 4540fail:
aec7477b
JB
4541 if (dir)
4542 BTRFS_I(dir)->index_cnt--;
5f39d397 4543 btrfs_free_path(path);
09771430 4544 iput(inode);
5f39d397 4545 return ERR_PTR(ret);
39279cc3
CM
4546}
4547
4548static inline u8 btrfs_inode_type(struct inode *inode)
4549{
4550 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4551}
4552
d352ac68
CM
4553/*
4554 * utility function to add 'inode' into 'parent_inode' with
4555 * a give name and a given sequence number.
4556 * if 'add_backref' is true, also insert a backref from the
4557 * inode to the parent directory.
4558 */
e02119d5
CM
4559int btrfs_add_link(struct btrfs_trans_handle *trans,
4560 struct inode *parent_inode, struct inode *inode,
4561 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4562{
4df27c4d 4563 int ret = 0;
39279cc3 4564 struct btrfs_key key;
e02119d5 4565 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4566 u64 ino = btrfs_ino(inode);
4567 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4568
33345d01 4569 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4570 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4571 } else {
33345d01 4572 key.objectid = ino;
4df27c4d
YZ
4573 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4574 key.offset = 0;
4575 }
4576
33345d01 4577 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4578 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4579 key.objectid, root->root_key.objectid,
33345d01 4580 parent_ino, index, name, name_len);
4df27c4d 4581 } else if (add_backref) {
33345d01
LZ
4582 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4583 parent_ino, index);
4df27c4d 4584 }
39279cc3 4585
39279cc3 4586 if (ret == 0) {
4df27c4d 4587 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4588 parent_inode, &key,
4df27c4d 4589 btrfs_inode_type(inode), index);
fe66a05a
CM
4590 if (ret)
4591 goto fail_dir_item;
4df27c4d 4592
dbe674a9 4593 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4594 name_len * 2);
79c44584 4595 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4596 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4597 }
4598 return ret;
fe66a05a
CM
4599
4600fail_dir_item:
4601 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4602 u64 local_index;
4603 int err;
4604 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4605 key.objectid, root->root_key.objectid,
4606 parent_ino, &local_index, name, name_len);
4607
4608 } else if (add_backref) {
4609 u64 local_index;
4610 int err;
4611
4612 err = btrfs_del_inode_ref(trans, root, name, name_len,
4613 ino, parent_ino, &local_index);
4614 }
4615 return ret;
39279cc3
CM
4616}
4617
4618static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4619 struct inode *dir, struct dentry *dentry,
4620 struct inode *inode, int backref, u64 index)
39279cc3 4621{
a1b075d2
JB
4622 int err = btrfs_add_link(trans, dir, inode,
4623 dentry->d_name.name, dentry->d_name.len,
4624 backref, index);
39279cc3
CM
4625 if (err > 0)
4626 err = -EEXIST;
4627 return err;
4628}
4629
618e21d5 4630static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 4631 umode_t mode, dev_t rdev)
618e21d5
JB
4632{
4633 struct btrfs_trans_handle *trans;
4634 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4635 struct inode *inode = NULL;
618e21d5
JB
4636 int err;
4637 int drop_inode = 0;
4638 u64 objectid;
1832a6d5 4639 unsigned long nr = 0;
00e4e6b3 4640 u64 index = 0;
618e21d5
JB
4641
4642 if (!new_valid_dev(rdev))
4643 return -EINVAL;
4644
9ed74f2d
JB
4645 /*
4646 * 2 for inode item and ref
4647 * 2 for dir items
4648 * 1 for xattr if selinux is on
4649 */
a22285a6
YZ
4650 trans = btrfs_start_transaction(root, 5);
4651 if (IS_ERR(trans))
4652 return PTR_ERR(trans);
1832a6d5 4653
581bb050
LZ
4654 err = btrfs_find_free_ino(root, &objectid);
4655 if (err)
4656 goto out_unlock;
4657
aec7477b 4658 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4659 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4660 mode, &index);
7cf96da3
TI
4661 if (IS_ERR(inode)) {
4662 err = PTR_ERR(inode);
618e21d5 4663 goto out_unlock;
7cf96da3 4664 }
618e21d5 4665
2a7dba39 4666 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4667 if (err) {
4668 drop_inode = 1;
4669 goto out_unlock;
4670 }
4671
ad19db71
CS
4672 /*
4673 * If the active LSM wants to access the inode during
4674 * d_instantiate it needs these. Smack checks to see
4675 * if the filesystem supports xattrs by looking at the
4676 * ops vector.
4677 */
4678
4679 inode->i_op = &btrfs_special_inode_operations;
a1b075d2 4680 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4681 if (err)
4682 drop_inode = 1;
4683 else {
618e21d5 4684 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4685 btrfs_update_inode(trans, root, inode);
08c422c2 4686 d_instantiate(dentry, inode);
618e21d5 4687 }
618e21d5 4688out_unlock:
d3c2fdcf 4689 nr = trans->blocks_used;
7ad85bb7 4690 btrfs_end_transaction(trans, root);
a22285a6 4691 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4692 if (drop_inode) {
4693 inode_dec_link_count(inode);
4694 iput(inode);
4695 }
618e21d5
JB
4696 return err;
4697}
4698
39279cc3 4699static int btrfs_create(struct inode *dir, struct dentry *dentry,
4acdaf27 4700 umode_t mode, struct nameidata *nd)
39279cc3
CM
4701{
4702 struct btrfs_trans_handle *trans;
4703 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4704 struct inode *inode = NULL;
39279cc3 4705 int drop_inode = 0;
a22285a6 4706 int err;
1832a6d5 4707 unsigned long nr = 0;
39279cc3 4708 u64 objectid;
00e4e6b3 4709 u64 index = 0;
39279cc3 4710
9ed74f2d
JB
4711 /*
4712 * 2 for inode item and ref
4713 * 2 for dir items
4714 * 1 for xattr if selinux is on
4715 */
a22285a6
YZ
4716 trans = btrfs_start_transaction(root, 5);
4717 if (IS_ERR(trans))
4718 return PTR_ERR(trans);
9ed74f2d 4719
581bb050
LZ
4720 err = btrfs_find_free_ino(root, &objectid);
4721 if (err)
4722 goto out_unlock;
4723
aec7477b 4724 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4725 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4726 mode, &index);
7cf96da3
TI
4727 if (IS_ERR(inode)) {
4728 err = PTR_ERR(inode);
39279cc3 4729 goto out_unlock;
7cf96da3 4730 }
39279cc3 4731
2a7dba39 4732 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4733 if (err) {
4734 drop_inode = 1;
4735 goto out_unlock;
4736 }
4737
ad19db71
CS
4738 /*
4739 * If the active LSM wants to access the inode during
4740 * d_instantiate it needs these. Smack checks to see
4741 * if the filesystem supports xattrs by looking at the
4742 * ops vector.
4743 */
4744 inode->i_fop = &btrfs_file_operations;
4745 inode->i_op = &btrfs_file_inode_operations;
4746
a1b075d2 4747 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4748 if (err)
4749 drop_inode = 1;
4750 else {
4751 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4752 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 4753 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
08c422c2 4754 d_instantiate(dentry, inode);
39279cc3 4755 }
39279cc3 4756out_unlock:
d3c2fdcf 4757 nr = trans->blocks_used;
7ad85bb7 4758 btrfs_end_transaction(trans, root);
39279cc3
CM
4759 if (drop_inode) {
4760 inode_dec_link_count(inode);
4761 iput(inode);
4762 }
d3c2fdcf 4763 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4764 return err;
4765}
4766
4767static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4768 struct dentry *dentry)
4769{
4770 struct btrfs_trans_handle *trans;
4771 struct btrfs_root *root = BTRFS_I(dir)->root;
4772 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4773 u64 index;
1832a6d5 4774 unsigned long nr = 0;
39279cc3
CM
4775 int err;
4776 int drop_inode = 0;
4777
4a8be425
TH
4778 /* do not allow sys_link's with other subvols of the same device */
4779 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4780 return -EXDEV;
4a8be425 4781
c055e99e
AV
4782 if (inode->i_nlink == ~0U)
4783 return -EMLINK;
4a8be425 4784
3de4586c 4785 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4786 if (err)
4787 goto fail;
4788
a22285a6 4789 /*
7e6b6465 4790 * 2 items for inode and inode ref
a22285a6 4791 * 2 items for dir items
7e6b6465 4792 * 1 item for parent inode
a22285a6 4793 */
7e6b6465 4794 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4795 if (IS_ERR(trans)) {
4796 err = PTR_ERR(trans);
4797 goto fail;
4798 }
5f39d397 4799
3153495d
MX
4800 btrfs_inc_nlink(inode);
4801 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4802 ihold(inode);
aec7477b 4803
a1b075d2 4804 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4805
a5719521 4806 if (err) {
54aa1f4d 4807 drop_inode = 1;
a5719521 4808 } else {
10d9f309 4809 struct dentry *parent = dentry->d_parent;
a5719521
YZ
4810 err = btrfs_update_inode(trans, root, inode);
4811 BUG_ON(err);
08c422c2 4812 d_instantiate(dentry, inode);
6a912213 4813 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 4814 }
39279cc3 4815
d3c2fdcf 4816 nr = trans->blocks_used;
7ad85bb7 4817 btrfs_end_transaction(trans, root);
1832a6d5 4818fail:
39279cc3
CM
4819 if (drop_inode) {
4820 inode_dec_link_count(inode);
4821 iput(inode);
4822 }
d3c2fdcf 4823 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4824 return err;
4825}
4826
18bb1db3 4827static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 4828{
b9d86667 4829 struct inode *inode = NULL;
39279cc3
CM
4830 struct btrfs_trans_handle *trans;
4831 struct btrfs_root *root = BTRFS_I(dir)->root;
4832 int err = 0;
4833 int drop_on_err = 0;
b9d86667 4834 u64 objectid = 0;
00e4e6b3 4835 u64 index = 0;
d3c2fdcf 4836 unsigned long nr = 1;
39279cc3 4837
9ed74f2d
JB
4838 /*
4839 * 2 items for inode and ref
4840 * 2 items for dir items
4841 * 1 for xattr if selinux is on
4842 */
a22285a6
YZ
4843 trans = btrfs_start_transaction(root, 5);
4844 if (IS_ERR(trans))
4845 return PTR_ERR(trans);
39279cc3 4846
581bb050
LZ
4847 err = btrfs_find_free_ino(root, &objectid);
4848 if (err)
4849 goto out_fail;
4850
aec7477b 4851 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4852 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4853 S_IFDIR | mode, &index);
39279cc3
CM
4854 if (IS_ERR(inode)) {
4855 err = PTR_ERR(inode);
4856 goto out_fail;
4857 }
5f39d397 4858
39279cc3 4859 drop_on_err = 1;
33268eaf 4860
2a7dba39 4861 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4862 if (err)
4863 goto out_fail;
4864
39279cc3
CM
4865 inode->i_op = &btrfs_dir_inode_operations;
4866 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4867
dbe674a9 4868 btrfs_i_size_write(inode, 0);
39279cc3
CM
4869 err = btrfs_update_inode(trans, root, inode);
4870 if (err)
4871 goto out_fail;
5f39d397 4872
a1b075d2
JB
4873 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4874 dentry->d_name.len, 0, index);
39279cc3
CM
4875 if (err)
4876 goto out_fail;
5f39d397 4877
39279cc3
CM
4878 d_instantiate(dentry, inode);
4879 drop_on_err = 0;
39279cc3
CM
4880
4881out_fail:
d3c2fdcf 4882 nr = trans->blocks_used;
7ad85bb7 4883 btrfs_end_transaction(trans, root);
39279cc3
CM
4884 if (drop_on_err)
4885 iput(inode);
d3c2fdcf 4886 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4887 return err;
4888}
4889
d352ac68
CM
4890/* helper for btfs_get_extent. Given an existing extent in the tree,
4891 * and an extent that you want to insert, deal with overlap and insert
4892 * the new extent into the tree.
4893 */
3b951516
CM
4894static int merge_extent_mapping(struct extent_map_tree *em_tree,
4895 struct extent_map *existing,
e6dcd2dc
CM
4896 struct extent_map *em,
4897 u64 map_start, u64 map_len)
3b951516
CM
4898{
4899 u64 start_diff;
3b951516 4900
e6dcd2dc
CM
4901 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4902 start_diff = map_start - em->start;
4903 em->start = map_start;
4904 em->len = map_len;
c8b97818
CM
4905 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4906 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4907 em->block_start += start_diff;
c8b97818
CM
4908 em->block_len -= start_diff;
4909 }
e6dcd2dc 4910 return add_extent_mapping(em_tree, em);
3b951516
CM
4911}
4912
c8b97818
CM
4913static noinline int uncompress_inline(struct btrfs_path *path,
4914 struct inode *inode, struct page *page,
4915 size_t pg_offset, u64 extent_offset,
4916 struct btrfs_file_extent_item *item)
4917{
4918 int ret;
4919 struct extent_buffer *leaf = path->nodes[0];
4920 char *tmp;
4921 size_t max_size;
4922 unsigned long inline_size;
4923 unsigned long ptr;
261507a0 4924 int compress_type;
c8b97818
CM
4925
4926 WARN_ON(pg_offset != 0);
261507a0 4927 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4928 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4929 inline_size = btrfs_file_extent_inline_item_len(leaf,
4930 btrfs_item_nr(leaf, path->slots[0]));
4931 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4932 if (!tmp)
4933 return -ENOMEM;
c8b97818
CM
4934 ptr = btrfs_file_extent_inline_start(item);
4935
4936 read_extent_buffer(leaf, tmp, ptr, inline_size);
4937
5b050f04 4938 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4939 ret = btrfs_decompress(compress_type, tmp, page,
4940 extent_offset, inline_size, max_size);
c8b97818
CM
4941 if (ret) {
4942 char *kaddr = kmap_atomic(page, KM_USER0);
4943 unsigned long copy_size = min_t(u64,
4944 PAGE_CACHE_SIZE - pg_offset,
4945 max_size - extent_offset);
4946 memset(kaddr + pg_offset, 0, copy_size);
4947 kunmap_atomic(kaddr, KM_USER0);
4948 }
4949 kfree(tmp);
4950 return 0;
4951}
4952
d352ac68
CM
4953/*
4954 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4955 * the ugly parts come from merging extents from the disk with the in-ram
4956 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4957 * where the in-ram extents might be locked pending data=ordered completion.
4958 *
4959 * This also copies inline extents directly into the page.
4960 */
d397712b 4961
a52d9a80 4962struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4963 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4964 int create)
4965{
4966 int ret;
4967 int err = 0;
db94535d 4968 u64 bytenr;
a52d9a80
CM
4969 u64 extent_start = 0;
4970 u64 extent_end = 0;
33345d01 4971 u64 objectid = btrfs_ino(inode);
a52d9a80 4972 u32 found_type;
f421950f 4973 struct btrfs_path *path = NULL;
a52d9a80
CM
4974 struct btrfs_root *root = BTRFS_I(inode)->root;
4975 struct btrfs_file_extent_item *item;
5f39d397
CM
4976 struct extent_buffer *leaf;
4977 struct btrfs_key found_key;
a52d9a80
CM
4978 struct extent_map *em = NULL;
4979 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4980 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4981 struct btrfs_trans_handle *trans = NULL;
261507a0 4982 int compress_type;
a52d9a80 4983
a52d9a80 4984again:
890871be 4985 read_lock(&em_tree->lock);
d1310b2e 4986 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4987 if (em)
4988 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4989 read_unlock(&em_tree->lock);
d1310b2e 4990
a52d9a80 4991 if (em) {
e1c4b745
CM
4992 if (em->start > start || em->start + em->len <= start)
4993 free_extent_map(em);
4994 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4995 free_extent_map(em);
4996 else
4997 goto out;
a52d9a80 4998 }
172ddd60 4999 em = alloc_extent_map();
a52d9a80 5000 if (!em) {
d1310b2e
CM
5001 err = -ENOMEM;
5002 goto out;
a52d9a80 5003 }
e6dcd2dc 5004 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5005 em->start = EXTENT_MAP_HOLE;
445a6944 5006 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5007 em->len = (u64)-1;
c8b97818 5008 em->block_len = (u64)-1;
f421950f
CM
5009
5010 if (!path) {
5011 path = btrfs_alloc_path();
026fd317
JB
5012 if (!path) {
5013 err = -ENOMEM;
5014 goto out;
5015 }
5016 /*
5017 * Chances are we'll be called again, so go ahead and do
5018 * readahead
5019 */
5020 path->reada = 1;
f421950f
CM
5021 }
5022
179e29e4
CM
5023 ret = btrfs_lookup_file_extent(trans, root, path,
5024 objectid, start, trans != NULL);
a52d9a80
CM
5025 if (ret < 0) {
5026 err = ret;
5027 goto out;
5028 }
5029
5030 if (ret != 0) {
5031 if (path->slots[0] == 0)
5032 goto not_found;
5033 path->slots[0]--;
5034 }
5035
5f39d397
CM
5036 leaf = path->nodes[0];
5037 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5038 struct btrfs_file_extent_item);
a52d9a80 5039 /* are we inside the extent that was found? */
5f39d397
CM
5040 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5041 found_type = btrfs_key_type(&found_key);
5042 if (found_key.objectid != objectid ||
a52d9a80
CM
5043 found_type != BTRFS_EXTENT_DATA_KEY) {
5044 goto not_found;
5045 }
5046
5f39d397
CM
5047 found_type = btrfs_file_extent_type(leaf, item);
5048 extent_start = found_key.offset;
261507a0 5049 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5050 if (found_type == BTRFS_FILE_EXTENT_REG ||
5051 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5052 extent_end = extent_start +
db94535d 5053 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5054 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5055 size_t size;
5056 size = btrfs_file_extent_inline_len(leaf, item);
5057 extent_end = (extent_start + size + root->sectorsize - 1) &
5058 ~((u64)root->sectorsize - 1);
5059 }
5060
5061 if (start >= extent_end) {
5062 path->slots[0]++;
5063 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5064 ret = btrfs_next_leaf(root, path);
5065 if (ret < 0) {
5066 err = ret;
5067 goto out;
a52d9a80 5068 }
9036c102
YZ
5069 if (ret > 0)
5070 goto not_found;
5071 leaf = path->nodes[0];
a52d9a80 5072 }
9036c102
YZ
5073 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5074 if (found_key.objectid != objectid ||
5075 found_key.type != BTRFS_EXTENT_DATA_KEY)
5076 goto not_found;
5077 if (start + len <= found_key.offset)
5078 goto not_found;
5079 em->start = start;
5080 em->len = found_key.offset - start;
5081 goto not_found_em;
5082 }
5083
d899e052
YZ
5084 if (found_type == BTRFS_FILE_EXTENT_REG ||
5085 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5086 em->start = extent_start;
5087 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5088 em->orig_start = extent_start -
5089 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5090 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5091 if (bytenr == 0) {
5f39d397 5092 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5093 goto insert;
5094 }
261507a0 5095 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5096 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5097 em->compress_type = compress_type;
c8b97818
CM
5098 em->block_start = bytenr;
5099 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5100 item);
5101 } else {
5102 bytenr += btrfs_file_extent_offset(leaf, item);
5103 em->block_start = bytenr;
5104 em->block_len = em->len;
d899e052
YZ
5105 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5106 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5107 }
a52d9a80
CM
5108 goto insert;
5109 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5110 unsigned long ptr;
a52d9a80 5111 char *map;
3326d1b0
CM
5112 size_t size;
5113 size_t extent_offset;
5114 size_t copy_size;
a52d9a80 5115
689f9346 5116 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5117 if (!page || create) {
689f9346 5118 em->start = extent_start;
9036c102 5119 em->len = extent_end - extent_start;
689f9346
Y
5120 goto out;
5121 }
5f39d397 5122
9036c102
YZ
5123 size = btrfs_file_extent_inline_len(leaf, item);
5124 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5125 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5126 size - extent_offset);
3326d1b0 5127 em->start = extent_start + extent_offset;
70dec807
CM
5128 em->len = (copy_size + root->sectorsize - 1) &
5129 ~((u64)root->sectorsize - 1);
ff5b7ee3 5130 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5131 if (compress_type) {
c8b97818 5132 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5133 em->compress_type = compress_type;
5134 }
689f9346 5135 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5136 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5137 if (btrfs_file_extent_compression(leaf, item) !=
5138 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5139 ret = uncompress_inline(path, inode, page,
5140 pg_offset,
5141 extent_offset, item);
5142 BUG_ON(ret);
5143 } else {
5144 map = kmap(page);
5145 read_extent_buffer(leaf, map + pg_offset, ptr,
5146 copy_size);
93c82d57
CM
5147 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5148 memset(map + pg_offset + copy_size, 0,
5149 PAGE_CACHE_SIZE - pg_offset -
5150 copy_size);
5151 }
c8b97818
CM
5152 kunmap(page);
5153 }
179e29e4
CM
5154 flush_dcache_page(page);
5155 } else if (create && PageUptodate(page)) {
6bf7e080 5156 BUG();
179e29e4
CM
5157 if (!trans) {
5158 kunmap(page);
5159 free_extent_map(em);
5160 em = NULL;
ff5714cc 5161
b3b4aa74 5162 btrfs_release_path(path);
7a7eaa40 5163 trans = btrfs_join_transaction(root);
ff5714cc 5164
3612b495
TI
5165 if (IS_ERR(trans))
5166 return ERR_CAST(trans);
179e29e4
CM
5167 goto again;
5168 }
c8b97818 5169 map = kmap(page);
70dec807 5170 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5171 copy_size);
c8b97818 5172 kunmap(page);
179e29e4 5173 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5174 }
d1310b2e 5175 set_extent_uptodate(io_tree, em->start,
507903b8 5176 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5177 goto insert;
5178 } else {
d397712b 5179 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5180 WARN_ON(1);
5181 }
5182not_found:
5183 em->start = start;
d1310b2e 5184 em->len = len;
a52d9a80 5185not_found_em:
5f39d397 5186 em->block_start = EXTENT_MAP_HOLE;
9036c102 5187 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5188insert:
b3b4aa74 5189 btrfs_release_path(path);
d1310b2e 5190 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5191 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5192 "[%llu %llu]\n", (unsigned long long)em->start,
5193 (unsigned long long)em->len,
5194 (unsigned long long)start,
5195 (unsigned long long)len);
a52d9a80
CM
5196 err = -EIO;
5197 goto out;
5198 }
d1310b2e
CM
5199
5200 err = 0;
890871be 5201 write_lock(&em_tree->lock);
a52d9a80 5202 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5203 /* it is possible that someone inserted the extent into the tree
5204 * while we had the lock dropped. It is also possible that
5205 * an overlapping map exists in the tree
5206 */
a52d9a80 5207 if (ret == -EEXIST) {
3b951516 5208 struct extent_map *existing;
e6dcd2dc
CM
5209
5210 ret = 0;
5211
3b951516 5212 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5213 if (existing && (existing->start > start ||
5214 existing->start + existing->len <= start)) {
5215 free_extent_map(existing);
5216 existing = NULL;
5217 }
3b951516
CM
5218 if (!existing) {
5219 existing = lookup_extent_mapping(em_tree, em->start,
5220 em->len);
5221 if (existing) {
5222 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5223 em, start,
5224 root->sectorsize);
3b951516
CM
5225 free_extent_map(existing);
5226 if (err) {
5227 free_extent_map(em);
5228 em = NULL;
5229 }
5230 } else {
5231 err = -EIO;
3b951516
CM
5232 free_extent_map(em);
5233 em = NULL;
5234 }
5235 } else {
5236 free_extent_map(em);
5237 em = existing;
e6dcd2dc 5238 err = 0;
a52d9a80 5239 }
a52d9a80 5240 }
890871be 5241 write_unlock(&em_tree->lock);
a52d9a80 5242out:
1abe9b8a 5243
5244 trace_btrfs_get_extent(root, em);
5245
f421950f
CM
5246 if (path)
5247 btrfs_free_path(path);
a52d9a80
CM
5248 if (trans) {
5249 ret = btrfs_end_transaction(trans, root);
d397712b 5250 if (!err)
a52d9a80
CM
5251 err = ret;
5252 }
a52d9a80
CM
5253 if (err) {
5254 free_extent_map(em);
a52d9a80
CM
5255 return ERR_PTR(err);
5256 }
5257 return em;
5258}
5259
ec29ed5b
CM
5260struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5261 size_t pg_offset, u64 start, u64 len,
5262 int create)
5263{
5264 struct extent_map *em;
5265 struct extent_map *hole_em = NULL;
5266 u64 range_start = start;
5267 u64 end;
5268 u64 found;
5269 u64 found_end;
5270 int err = 0;
5271
5272 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5273 if (IS_ERR(em))
5274 return em;
5275 if (em) {
5276 /*
5277 * if our em maps to a hole, there might
5278 * actually be delalloc bytes behind it
5279 */
5280 if (em->block_start != EXTENT_MAP_HOLE)
5281 return em;
5282 else
5283 hole_em = em;
5284 }
5285
5286 /* check to see if we've wrapped (len == -1 or similar) */
5287 end = start + len;
5288 if (end < start)
5289 end = (u64)-1;
5290 else
5291 end -= 1;
5292
5293 em = NULL;
5294
5295 /* ok, we didn't find anything, lets look for delalloc */
5296 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5297 end, len, EXTENT_DELALLOC, 1);
5298 found_end = range_start + found;
5299 if (found_end < range_start)
5300 found_end = (u64)-1;
5301
5302 /*
5303 * we didn't find anything useful, return
5304 * the original results from get_extent()
5305 */
5306 if (range_start > end || found_end <= start) {
5307 em = hole_em;
5308 hole_em = NULL;
5309 goto out;
5310 }
5311
5312 /* adjust the range_start to make sure it doesn't
5313 * go backwards from the start they passed in
5314 */
5315 range_start = max(start,range_start);
5316 found = found_end - range_start;
5317
5318 if (found > 0) {
5319 u64 hole_start = start;
5320 u64 hole_len = len;
5321
172ddd60 5322 em = alloc_extent_map();
ec29ed5b
CM
5323 if (!em) {
5324 err = -ENOMEM;
5325 goto out;
5326 }
5327 /*
5328 * when btrfs_get_extent can't find anything it
5329 * returns one huge hole
5330 *
5331 * make sure what it found really fits our range, and
5332 * adjust to make sure it is based on the start from
5333 * the caller
5334 */
5335 if (hole_em) {
5336 u64 calc_end = extent_map_end(hole_em);
5337
5338 if (calc_end <= start || (hole_em->start > end)) {
5339 free_extent_map(hole_em);
5340 hole_em = NULL;
5341 } else {
5342 hole_start = max(hole_em->start, start);
5343 hole_len = calc_end - hole_start;
5344 }
5345 }
5346 em->bdev = NULL;
5347 if (hole_em && range_start > hole_start) {
5348 /* our hole starts before our delalloc, so we
5349 * have to return just the parts of the hole
5350 * that go until the delalloc starts
5351 */
5352 em->len = min(hole_len,
5353 range_start - hole_start);
5354 em->start = hole_start;
5355 em->orig_start = hole_start;
5356 /*
5357 * don't adjust block start at all,
5358 * it is fixed at EXTENT_MAP_HOLE
5359 */
5360 em->block_start = hole_em->block_start;
5361 em->block_len = hole_len;
5362 } else {
5363 em->start = range_start;
5364 em->len = found;
5365 em->orig_start = range_start;
5366 em->block_start = EXTENT_MAP_DELALLOC;
5367 em->block_len = found;
5368 }
5369 } else if (hole_em) {
5370 return hole_em;
5371 }
5372out:
5373
5374 free_extent_map(hole_em);
5375 if (err) {
5376 free_extent_map(em);
5377 return ERR_PTR(err);
5378 }
5379 return em;
5380}
5381
4b46fce2 5382static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5383 struct extent_map *em,
4b46fce2
JB
5384 u64 start, u64 len)
5385{
5386 struct btrfs_root *root = BTRFS_I(inode)->root;
5387 struct btrfs_trans_handle *trans;
4b46fce2
JB
5388 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5389 struct btrfs_key ins;
5390 u64 alloc_hint;
5391 int ret;
16d299ac 5392 bool insert = false;
4b46fce2 5393
16d299ac
JB
5394 /*
5395 * Ok if the extent map we looked up is a hole and is for the exact
5396 * range we want, there is no reason to allocate a new one, however if
5397 * it is not right then we need to free this one and drop the cache for
5398 * our range.
5399 */
5400 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5401 em->len != len) {
5402 free_extent_map(em);
5403 em = NULL;
5404 insert = true;
5405 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5406 }
4b46fce2 5407
7a7eaa40 5408 trans = btrfs_join_transaction(root);
3612b495
TI
5409 if (IS_ERR(trans))
5410 return ERR_CAST(trans);
4b46fce2 5411
4cb5300b
CM
5412 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5413 btrfs_add_inode_defrag(trans, inode);
5414
4b46fce2
JB
5415 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5416
5417 alloc_hint = get_extent_allocation_hint(inode, start, len);
5418 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5419 alloc_hint, (u64)-1, &ins, 1);
5420 if (ret) {
5421 em = ERR_PTR(ret);
5422 goto out;
5423 }
5424
4b46fce2 5425 if (!em) {
172ddd60 5426 em = alloc_extent_map();
16d299ac
JB
5427 if (!em) {
5428 em = ERR_PTR(-ENOMEM);
5429 goto out;
5430 }
4b46fce2
JB
5431 }
5432
5433 em->start = start;
5434 em->orig_start = em->start;
5435 em->len = ins.offset;
5436
5437 em->block_start = ins.objectid;
5438 em->block_len = ins.offset;
5439 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5440
5441 /*
5442 * We need to do this because if we're using the original em we searched
5443 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5444 */
5445 em->flags = 0;
4b46fce2
JB
5446 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5447
16d299ac 5448 while (insert) {
4b46fce2
JB
5449 write_lock(&em_tree->lock);
5450 ret = add_extent_mapping(em_tree, em);
5451 write_unlock(&em_tree->lock);
5452 if (ret != -EEXIST)
5453 break;
5454 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5455 }
5456
5457 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5458 ins.offset, ins.offset, 0);
5459 if (ret) {
5460 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5461 em = ERR_PTR(ret);
5462 }
5463out:
5464 btrfs_end_transaction(trans, root);
5465 return em;
5466}
5467
46bfbb5c
CM
5468/*
5469 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5470 * block must be cow'd
5471 */
5472static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5473 struct inode *inode, u64 offset, u64 len)
5474{
5475 struct btrfs_path *path;
5476 int ret;
5477 struct extent_buffer *leaf;
5478 struct btrfs_root *root = BTRFS_I(inode)->root;
5479 struct btrfs_file_extent_item *fi;
5480 struct btrfs_key key;
5481 u64 disk_bytenr;
5482 u64 backref_offset;
5483 u64 extent_end;
5484 u64 num_bytes;
5485 int slot;
5486 int found_type;
5487
5488 path = btrfs_alloc_path();
5489 if (!path)
5490 return -ENOMEM;
5491
33345d01 5492 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5493 offset, 0);
5494 if (ret < 0)
5495 goto out;
5496
5497 slot = path->slots[0];
5498 if (ret == 1) {
5499 if (slot == 0) {
5500 /* can't find the item, must cow */
5501 ret = 0;
5502 goto out;
5503 }
5504 slot--;
5505 }
5506 ret = 0;
5507 leaf = path->nodes[0];
5508 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5509 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5510 key.type != BTRFS_EXTENT_DATA_KEY) {
5511 /* not our file or wrong item type, must cow */
5512 goto out;
5513 }
5514
5515 if (key.offset > offset) {
5516 /* Wrong offset, must cow */
5517 goto out;
5518 }
5519
5520 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5521 found_type = btrfs_file_extent_type(leaf, fi);
5522 if (found_type != BTRFS_FILE_EXTENT_REG &&
5523 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5524 /* not a regular extent, must cow */
5525 goto out;
5526 }
5527 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5528 backref_offset = btrfs_file_extent_offset(leaf, fi);
5529
5530 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5531 if (extent_end < offset + len) {
5532 /* extent doesn't include our full range, must cow */
5533 goto out;
5534 }
5535
5536 if (btrfs_extent_readonly(root, disk_bytenr))
5537 goto out;
5538
5539 /*
5540 * look for other files referencing this extent, if we
5541 * find any we must cow
5542 */
33345d01 5543 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5544 key.offset - backref_offset, disk_bytenr))
5545 goto out;
5546
5547 /*
5548 * adjust disk_bytenr and num_bytes to cover just the bytes
5549 * in this extent we are about to write. If there
5550 * are any csums in that range we have to cow in order
5551 * to keep the csums correct
5552 */
5553 disk_bytenr += backref_offset;
5554 disk_bytenr += offset - key.offset;
5555 num_bytes = min(offset + len, extent_end) - offset;
5556 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5557 goto out;
5558 /*
5559 * all of the above have passed, it is safe to overwrite this extent
5560 * without cow
5561 */
5562 ret = 1;
5563out:
5564 btrfs_free_path(path);
5565 return ret;
5566}
5567
4b46fce2
JB
5568static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5569 struct buffer_head *bh_result, int create)
5570{
5571 struct extent_map *em;
5572 struct btrfs_root *root = BTRFS_I(inode)->root;
5573 u64 start = iblock << inode->i_blkbits;
5574 u64 len = bh_result->b_size;
46bfbb5c 5575 struct btrfs_trans_handle *trans;
4b46fce2
JB
5576
5577 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5578 if (IS_ERR(em))
5579 return PTR_ERR(em);
5580
5581 /*
5582 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5583 * io. INLINE is special, and we could probably kludge it in here, but
5584 * it's still buffered so for safety lets just fall back to the generic
5585 * buffered path.
5586 *
5587 * For COMPRESSED we _have_ to read the entire extent in so we can
5588 * decompress it, so there will be buffering required no matter what we
5589 * do, so go ahead and fallback to buffered.
5590 *
5591 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5592 * to buffered IO. Don't blame me, this is the price we pay for using
5593 * the generic code.
5594 */
5595 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5596 em->block_start == EXTENT_MAP_INLINE) {
5597 free_extent_map(em);
5598 return -ENOTBLK;
5599 }
5600
5601 /* Just a good old fashioned hole, return */
5602 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5603 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5604 free_extent_map(em);
5605 /* DIO will do one hole at a time, so just unlock a sector */
5606 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5607 start + root->sectorsize - 1, GFP_NOFS);
5608 return 0;
5609 }
5610
5611 /*
5612 * We don't allocate a new extent in the following cases
5613 *
5614 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5615 * existing extent.
5616 * 2) The extent is marked as PREALLOC. We're good to go here and can
5617 * just use the extent.
5618 *
5619 */
46bfbb5c
CM
5620 if (!create) {
5621 len = em->len - (start - em->start);
4b46fce2 5622 goto map;
46bfbb5c 5623 }
4b46fce2
JB
5624
5625 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5626 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5627 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5628 int type;
5629 int ret;
46bfbb5c 5630 u64 block_start;
4b46fce2
JB
5631
5632 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5633 type = BTRFS_ORDERED_PREALLOC;
5634 else
5635 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5636 len = min(len, em->len - (start - em->start));
4b46fce2 5637 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5638
5639 /*
5640 * we're not going to log anything, but we do need
5641 * to make sure the current transaction stays open
5642 * while we look for nocow cross refs
5643 */
7a7eaa40 5644 trans = btrfs_join_transaction(root);
3612b495 5645 if (IS_ERR(trans))
46bfbb5c
CM
5646 goto must_cow;
5647
5648 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5649 ret = btrfs_add_ordered_extent_dio(inode, start,
5650 block_start, len, len, type);
5651 btrfs_end_transaction(trans, root);
5652 if (ret) {
5653 free_extent_map(em);
5654 return ret;
5655 }
5656 goto unlock;
4b46fce2 5657 }
46bfbb5c 5658 btrfs_end_transaction(trans, root);
4b46fce2 5659 }
46bfbb5c
CM
5660must_cow:
5661 /*
5662 * this will cow the extent, reset the len in case we changed
5663 * it above
5664 */
5665 len = bh_result->b_size;
16d299ac 5666 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5667 if (IS_ERR(em))
5668 return PTR_ERR(em);
5669 len = min(len, em->len - (start - em->start));
5670unlock:
4845e44f
CM
5671 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5672 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5673 0, NULL, GFP_NOFS);
4b46fce2
JB
5674map:
5675 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5676 inode->i_blkbits;
46bfbb5c 5677 bh_result->b_size = len;
4b46fce2
JB
5678 bh_result->b_bdev = em->bdev;
5679 set_buffer_mapped(bh_result);
5680 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5681 set_buffer_new(bh_result);
5682
5683 free_extent_map(em);
5684
5685 return 0;
5686}
5687
5688struct btrfs_dio_private {
5689 struct inode *inode;
5690 u64 logical_offset;
5691 u64 disk_bytenr;
5692 u64 bytes;
5693 u32 *csums;
5694 void *private;
e65e1535
MX
5695
5696 /* number of bios pending for this dio */
5697 atomic_t pending_bios;
5698
5699 /* IO errors */
5700 int errors;
5701
5702 struct bio *orig_bio;
4b46fce2
JB
5703};
5704
5705static void btrfs_endio_direct_read(struct bio *bio, int err)
5706{
e65e1535 5707 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5708 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5709 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5710 struct inode *inode = dip->inode;
5711 struct btrfs_root *root = BTRFS_I(inode)->root;
5712 u64 start;
5713 u32 *private = dip->csums;
5714
5715 start = dip->logical_offset;
5716 do {
5717 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5718 struct page *page = bvec->bv_page;
5719 char *kaddr;
5720 u32 csum = ~(u32)0;
5721 unsigned long flags;
5722
5723 local_irq_save(flags);
5724 kaddr = kmap_atomic(page, KM_IRQ0);
5725 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5726 csum, bvec->bv_len);
5727 btrfs_csum_final(csum, (char *)&csum);
5728 kunmap_atomic(kaddr, KM_IRQ0);
5729 local_irq_restore(flags);
5730
5731 flush_dcache_page(bvec->bv_page);
5732 if (csum != *private) {
33345d01 5733 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5734 " %llu csum %u private %u\n",
33345d01
LZ
5735 (unsigned long long)btrfs_ino(inode),
5736 (unsigned long long)start,
4b46fce2
JB
5737 csum, *private);
5738 err = -EIO;
5739 }
5740 }
5741
5742 start += bvec->bv_len;
5743 private++;
5744 bvec++;
5745 } while (bvec <= bvec_end);
5746
5747 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5748 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5749 bio->bi_private = dip->private;
5750
5751 kfree(dip->csums);
5752 kfree(dip);
c0da7aa1
JB
5753
5754 /* If we had a csum failure make sure to clear the uptodate flag */
5755 if (err)
5756 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5757 dio_end_io(bio, err);
5758}
5759
5760static void btrfs_endio_direct_write(struct bio *bio, int err)
5761{
5762 struct btrfs_dio_private *dip = bio->bi_private;
5763 struct inode *inode = dip->inode;
5764 struct btrfs_root *root = BTRFS_I(inode)->root;
5765 struct btrfs_trans_handle *trans;
5766 struct btrfs_ordered_extent *ordered = NULL;
5767 struct extent_state *cached_state = NULL;
163cf09c
CM
5768 u64 ordered_offset = dip->logical_offset;
5769 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5770 int ret;
5771
5772 if (err)
5773 goto out_done;
163cf09c
CM
5774again:
5775 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5776 &ordered_offset,
5777 ordered_bytes);
4b46fce2 5778 if (!ret)
163cf09c 5779 goto out_test;
4b46fce2
JB
5780
5781 BUG_ON(!ordered);
5782
7a7eaa40 5783 trans = btrfs_join_transaction(root);
3612b495 5784 if (IS_ERR(trans)) {
4b46fce2
JB
5785 err = -ENOMEM;
5786 goto out;
5787 }
5788 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5789
5790 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5791 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5792 if (!ret)
2115133f 5793 err = btrfs_update_inode_fallback(trans, root, inode);
4b46fce2
JB
5794 goto out;
5795 }
5796
5797 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5798 ordered->file_offset + ordered->len - 1, 0,
5799 &cached_state, GFP_NOFS);
5800
5801 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5802 ret = btrfs_mark_extent_written(trans, inode,
5803 ordered->file_offset,
5804 ordered->file_offset +
5805 ordered->len);
5806 if (ret) {
5807 err = ret;
5808 goto out_unlock;
5809 }
5810 } else {
5811 ret = insert_reserved_file_extent(trans, inode,
5812 ordered->file_offset,
5813 ordered->start,
5814 ordered->disk_len,
5815 ordered->len,
5816 ordered->len,
5817 0, 0, 0,
5818 BTRFS_FILE_EXTENT_REG);
5819 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5820 ordered->file_offset, ordered->len);
5821 if (ret) {
5822 err = ret;
5823 WARN_ON(1);
5824 goto out_unlock;
5825 }
5826 }
5827
5828 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1 5829 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
a39f7521 5830 if (!ret || !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags))
2115133f 5831 btrfs_update_inode_fallback(trans, root, inode);
1ef30be1 5832 ret = 0;
4b46fce2
JB
5833out_unlock:
5834 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5835 ordered->file_offset + ordered->len - 1,
5836 &cached_state, GFP_NOFS);
5837out:
5838 btrfs_delalloc_release_metadata(inode, ordered->len);
5839 btrfs_end_transaction(trans, root);
163cf09c 5840 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5841 btrfs_put_ordered_extent(ordered);
5842 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5843
5844out_test:
5845 /*
5846 * our bio might span multiple ordered extents. If we haven't
5847 * completed the accounting for the whole dio, go back and try again
5848 */
5849 if (ordered_offset < dip->logical_offset + dip->bytes) {
5850 ordered_bytes = dip->logical_offset + dip->bytes -
5851 ordered_offset;
5852 goto again;
5853 }
4b46fce2
JB
5854out_done:
5855 bio->bi_private = dip->private;
5856
5857 kfree(dip->csums);
5858 kfree(dip);
c0da7aa1
JB
5859
5860 /* If we had an error make sure to clear the uptodate flag */
5861 if (err)
5862 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5863 dio_end_io(bio, err);
5864}
5865
eaf25d93
CM
5866static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5867 struct bio *bio, int mirror_num,
5868 unsigned long bio_flags, u64 offset)
5869{
5870 int ret;
5871 struct btrfs_root *root = BTRFS_I(inode)->root;
5872 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5873 BUG_ON(ret);
5874 return 0;
5875}
5876
e65e1535
MX
5877static void btrfs_end_dio_bio(struct bio *bio, int err)
5878{
5879 struct btrfs_dio_private *dip = bio->bi_private;
5880
5881 if (err) {
33345d01 5882 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5883 "sector %#Lx len %u err no %d\n",
33345d01 5884 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5885 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5886 dip->errors = 1;
5887
5888 /*
5889 * before atomic variable goto zero, we must make sure
5890 * dip->errors is perceived to be set.
5891 */
5892 smp_mb__before_atomic_dec();
5893 }
5894
5895 /* if there are more bios still pending for this dio, just exit */
5896 if (!atomic_dec_and_test(&dip->pending_bios))
5897 goto out;
5898
5899 if (dip->errors)
5900 bio_io_error(dip->orig_bio);
5901 else {
5902 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5903 bio_endio(dip->orig_bio, 0);
5904 }
5905out:
5906 bio_put(bio);
5907}
5908
5909static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5910 u64 first_sector, gfp_t gfp_flags)
5911{
5912 int nr_vecs = bio_get_nr_vecs(bdev);
5913 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5914}
5915
5916static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5917 int rw, u64 file_offset, int skip_sum,
1ae39938 5918 u32 *csums, int async_submit)
e65e1535
MX
5919{
5920 int write = rw & REQ_WRITE;
5921 struct btrfs_root *root = BTRFS_I(inode)->root;
5922 int ret;
5923
5924 bio_get(bio);
5925 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5926 if (ret)
5927 goto err;
5928
1ae39938
JB
5929 if (skip_sum)
5930 goto map;
5931
5932 if (write && async_submit) {
e65e1535
MX
5933 ret = btrfs_wq_submit_bio(root->fs_info,
5934 inode, rw, bio, 0, 0,
5935 file_offset,
5936 __btrfs_submit_bio_start_direct_io,
5937 __btrfs_submit_bio_done);
5938 goto err;
1ae39938
JB
5939 } else if (write) {
5940 /*
5941 * If we aren't doing async submit, calculate the csum of the
5942 * bio now.
5943 */
5944 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5945 if (ret)
5946 goto err;
c2db1073
TI
5947 } else if (!skip_sum) {
5948 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5949 file_offset, csums);
c2db1073
TI
5950 if (ret)
5951 goto err;
5952 }
e65e1535 5953
1ae39938
JB
5954map:
5955 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5956err:
5957 bio_put(bio);
5958 return ret;
5959}
5960
5961static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5962 int skip_sum)
5963{
5964 struct inode *inode = dip->inode;
5965 struct btrfs_root *root = BTRFS_I(inode)->root;
5966 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5967 struct bio *bio;
5968 struct bio *orig_bio = dip->orig_bio;
5969 struct bio_vec *bvec = orig_bio->bi_io_vec;
5970 u64 start_sector = orig_bio->bi_sector;
5971 u64 file_offset = dip->logical_offset;
5972 u64 submit_len = 0;
5973 u64 map_length;
5974 int nr_pages = 0;
5975 u32 *csums = dip->csums;
5976 int ret = 0;
1ae39938 5977 int async_submit = 0;
98bc3149 5978 int write = rw & REQ_WRITE;
e65e1535 5979
e65e1535
MX
5980 map_length = orig_bio->bi_size;
5981 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5982 &map_length, NULL, 0);
5983 if (ret) {
64728bbb 5984 bio_put(orig_bio);
e65e1535
MX
5985 return -EIO;
5986 }
5987
02f57c7a
JB
5988 if (map_length >= orig_bio->bi_size) {
5989 bio = orig_bio;
5990 goto submit;
5991 }
5992
1ae39938 5993 async_submit = 1;
02f57c7a
JB
5994 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5995 if (!bio)
5996 return -ENOMEM;
5997 bio->bi_private = dip;
5998 bio->bi_end_io = btrfs_end_dio_bio;
5999 atomic_inc(&dip->pending_bios);
6000
e65e1535
MX
6001 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6002 if (unlikely(map_length < submit_len + bvec->bv_len ||
6003 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6004 bvec->bv_offset) < bvec->bv_len)) {
6005 /*
6006 * inc the count before we submit the bio so
6007 * we know the end IO handler won't happen before
6008 * we inc the count. Otherwise, the dip might get freed
6009 * before we're done setting it up
6010 */
6011 atomic_inc(&dip->pending_bios);
6012 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6013 file_offset, skip_sum,
1ae39938 6014 csums, async_submit);
e65e1535
MX
6015 if (ret) {
6016 bio_put(bio);
6017 atomic_dec(&dip->pending_bios);
6018 goto out_err;
6019 }
6020
98bc3149
JB
6021 /* Write's use the ordered csums */
6022 if (!write && !skip_sum)
e65e1535
MX
6023 csums = csums + nr_pages;
6024 start_sector += submit_len >> 9;
6025 file_offset += submit_len;
6026
6027 submit_len = 0;
6028 nr_pages = 0;
6029
6030 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6031 start_sector, GFP_NOFS);
6032 if (!bio)
6033 goto out_err;
6034 bio->bi_private = dip;
6035 bio->bi_end_io = btrfs_end_dio_bio;
6036
6037 map_length = orig_bio->bi_size;
6038 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6039 &map_length, NULL, 0);
6040 if (ret) {
6041 bio_put(bio);
6042 goto out_err;
6043 }
6044 } else {
6045 submit_len += bvec->bv_len;
6046 nr_pages ++;
6047 bvec++;
6048 }
6049 }
6050
02f57c7a 6051submit:
e65e1535 6052 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6053 csums, async_submit);
e65e1535
MX
6054 if (!ret)
6055 return 0;
6056
6057 bio_put(bio);
6058out_err:
6059 dip->errors = 1;
6060 /*
6061 * before atomic variable goto zero, we must
6062 * make sure dip->errors is perceived to be set.
6063 */
6064 smp_mb__before_atomic_dec();
6065 if (atomic_dec_and_test(&dip->pending_bios))
6066 bio_io_error(dip->orig_bio);
6067
6068 /* bio_end_io() will handle error, so we needn't return it */
6069 return 0;
6070}
6071
4b46fce2
JB
6072static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6073 loff_t file_offset)
6074{
6075 struct btrfs_root *root = BTRFS_I(inode)->root;
6076 struct btrfs_dio_private *dip;
6077 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6078 int skip_sum;
7b6d91da 6079 int write = rw & REQ_WRITE;
4b46fce2
JB
6080 int ret = 0;
6081
6082 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6083
6084 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6085 if (!dip) {
6086 ret = -ENOMEM;
6087 goto free_ordered;
6088 }
6089 dip->csums = NULL;
6090
98bc3149
JB
6091 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6092 if (!write && !skip_sum) {
4b46fce2
JB
6093 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6094 if (!dip->csums) {
b4966b77 6095 kfree(dip);
4b46fce2
JB
6096 ret = -ENOMEM;
6097 goto free_ordered;
6098 }
6099 }
6100
6101 dip->private = bio->bi_private;
6102 dip->inode = inode;
6103 dip->logical_offset = file_offset;
6104
4b46fce2
JB
6105 dip->bytes = 0;
6106 do {
6107 dip->bytes += bvec->bv_len;
6108 bvec++;
6109 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6110
46bfbb5c 6111 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6112 bio->bi_private = dip;
e65e1535
MX
6113 dip->errors = 0;
6114 dip->orig_bio = bio;
6115 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6116
6117 if (write)
6118 bio->bi_end_io = btrfs_endio_direct_write;
6119 else
6120 bio->bi_end_io = btrfs_endio_direct_read;
6121
e65e1535
MX
6122 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6123 if (!ret)
eaf25d93 6124 return;
4b46fce2
JB
6125free_ordered:
6126 /*
6127 * If this is a write, we need to clean up the reserved space and kill
6128 * the ordered extent.
6129 */
6130 if (write) {
6131 struct btrfs_ordered_extent *ordered;
955256f2 6132 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6133 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6134 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6135 btrfs_free_reserved_extent(root, ordered->start,
6136 ordered->disk_len);
6137 btrfs_put_ordered_extent(ordered);
6138 btrfs_put_ordered_extent(ordered);
6139 }
6140 bio_endio(bio, ret);
6141}
6142
5a5f79b5
CM
6143static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6144 const struct iovec *iov, loff_t offset,
6145 unsigned long nr_segs)
6146{
6147 int seg;
a1b75f7d 6148 int i;
5a5f79b5
CM
6149 size_t size;
6150 unsigned long addr;
6151 unsigned blocksize_mask = root->sectorsize - 1;
6152 ssize_t retval = -EINVAL;
6153 loff_t end = offset;
6154
6155 if (offset & blocksize_mask)
6156 goto out;
6157
6158 /* Check the memory alignment. Blocks cannot straddle pages */
6159 for (seg = 0; seg < nr_segs; seg++) {
6160 addr = (unsigned long)iov[seg].iov_base;
6161 size = iov[seg].iov_len;
6162 end += size;
a1b75f7d 6163 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6164 goto out;
a1b75f7d
JB
6165
6166 /* If this is a write we don't need to check anymore */
6167 if (rw & WRITE)
6168 continue;
6169
6170 /*
6171 * Check to make sure we don't have duplicate iov_base's in this
6172 * iovec, if so return EINVAL, otherwise we'll get csum errors
6173 * when reading back.
6174 */
6175 for (i = seg + 1; i < nr_segs; i++) {
6176 if (iov[seg].iov_base == iov[i].iov_base)
6177 goto out;
6178 }
5a5f79b5
CM
6179 }
6180 retval = 0;
6181out:
6182 return retval;
6183}
16432985
CM
6184static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6185 const struct iovec *iov, loff_t offset,
6186 unsigned long nr_segs)
6187{
4b46fce2
JB
6188 struct file *file = iocb->ki_filp;
6189 struct inode *inode = file->f_mapping->host;
6190 struct btrfs_ordered_extent *ordered;
4845e44f 6191 struct extent_state *cached_state = NULL;
4b46fce2
JB
6192 u64 lockstart, lockend;
6193 ssize_t ret;
4845e44f
CM
6194 int writing = rw & WRITE;
6195 int write_bits = 0;
3f7c579c 6196 size_t count = iov_length(iov, nr_segs);
4b46fce2 6197
5a5f79b5
CM
6198 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6199 offset, nr_segs)) {
6200 return 0;
6201 }
6202
4b46fce2 6203 lockstart = offset;
3f7c579c
CM
6204 lockend = offset + count - 1;
6205
6206 if (writing) {
6207 ret = btrfs_delalloc_reserve_space(inode, count);
6208 if (ret)
6209 goto out;
6210 }
4845e44f 6211
4b46fce2 6212 while (1) {
4845e44f
CM
6213 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6214 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6215 /*
6216 * We're concerned with the entire range that we're going to be
6217 * doing DIO to, so we need to make sure theres no ordered
6218 * extents in this range.
6219 */
6220 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6221 lockend - lockstart + 1);
6222 if (!ordered)
6223 break;
4845e44f
CM
6224 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6225 &cached_state, GFP_NOFS);
4b46fce2
JB
6226 btrfs_start_ordered_extent(inode, ordered, 1);
6227 btrfs_put_ordered_extent(ordered);
6228 cond_resched();
6229 }
6230
4845e44f
CM
6231 /*
6232 * we don't use btrfs_set_extent_delalloc because we don't want
6233 * the dirty or uptodate bits
6234 */
6235 if (writing) {
6236 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6237 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6238 EXTENT_DELALLOC, 0, NULL, &cached_state,
6239 GFP_NOFS);
6240 if (ret) {
6241 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6242 lockend, EXTENT_LOCKED | write_bits,
6243 1, 0, &cached_state, GFP_NOFS);
6244 goto out;
6245 }
6246 }
6247
6248 free_extent_state(cached_state);
6249 cached_state = NULL;
6250
5a5f79b5
CM
6251 ret = __blockdev_direct_IO(rw, iocb, inode,
6252 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6253 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6254 btrfs_submit_direct, 0);
4b46fce2
JB
6255
6256 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6257 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6258 offset + iov_length(iov, nr_segs) - 1,
6259 EXTENT_LOCKED | write_bits, 1, 0,
6260 &cached_state, GFP_NOFS);
4b46fce2
JB
6261 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6262 /*
6263 * We're falling back to buffered, unlock the section we didn't
6264 * do IO on.
6265 */
4845e44f
CM
6266 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6267 offset + iov_length(iov, nr_segs) - 1,
6268 EXTENT_LOCKED | write_bits, 1, 0,
6269 &cached_state, GFP_NOFS);
4b46fce2 6270 }
4845e44f
CM
6271out:
6272 free_extent_state(cached_state);
4b46fce2 6273 return ret;
16432985
CM
6274}
6275
1506fcc8
YS
6276static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6277 __u64 start, __u64 len)
6278{
ec29ed5b 6279 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6280}
6281
a52d9a80 6282int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6283{
d1310b2e
CM
6284 struct extent_io_tree *tree;
6285 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 6286 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 6287}
1832a6d5 6288
a52d9a80 6289static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6290{
d1310b2e 6291 struct extent_io_tree *tree;
b888db2b
CM
6292
6293
6294 if (current->flags & PF_MEMALLOC) {
6295 redirty_page_for_writepage(wbc, page);
6296 unlock_page(page);
6297 return 0;
6298 }
d1310b2e 6299 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6300 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6301}
6302
f421950f
CM
6303int btrfs_writepages(struct address_space *mapping,
6304 struct writeback_control *wbc)
b293f02e 6305{
d1310b2e 6306 struct extent_io_tree *tree;
771ed689 6307
d1310b2e 6308 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6309 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6310}
6311
3ab2fb5a
CM
6312static int
6313btrfs_readpages(struct file *file, struct address_space *mapping,
6314 struct list_head *pages, unsigned nr_pages)
6315{
d1310b2e
CM
6316 struct extent_io_tree *tree;
6317 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6318 return extent_readpages(tree, mapping, pages, nr_pages,
6319 btrfs_get_extent);
6320}
e6dcd2dc 6321static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6322{
d1310b2e
CM
6323 struct extent_io_tree *tree;
6324 struct extent_map_tree *map;
a52d9a80 6325 int ret;
8c2383c3 6326
d1310b2e
CM
6327 tree = &BTRFS_I(page->mapping->host)->io_tree;
6328 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6329 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6330 if (ret == 1) {
6331 ClearPagePrivate(page);
6332 set_page_private(page, 0);
6333 page_cache_release(page);
39279cc3 6334 }
a52d9a80 6335 return ret;
39279cc3
CM
6336}
6337
e6dcd2dc
CM
6338static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6339{
98509cfc
CM
6340 if (PageWriteback(page) || PageDirty(page))
6341 return 0;
b335b003 6342 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6343}
6344
a52d9a80 6345static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6346{
d1310b2e 6347 struct extent_io_tree *tree;
e6dcd2dc 6348 struct btrfs_ordered_extent *ordered;
2ac55d41 6349 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6350 u64 page_start = page_offset(page);
6351 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6352
8b62b72b
CM
6353
6354 /*
6355 * we have the page locked, so new writeback can't start,
6356 * and the dirty bit won't be cleared while we are here.
6357 *
6358 * Wait for IO on this page so that we can safely clear
6359 * the PagePrivate2 bit and do ordered accounting
6360 */
e6dcd2dc 6361 wait_on_page_writeback(page);
8b62b72b 6362
d1310b2e 6363 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6364 if (offset) {
6365 btrfs_releasepage(page, GFP_NOFS);
6366 return;
6367 }
2ac55d41
JB
6368 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6369 GFP_NOFS);
e6dcd2dc
CM
6370 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6371 page_offset(page));
6372 if (ordered) {
eb84ae03
CM
6373 /*
6374 * IO on this page will never be started, so we need
6375 * to account for any ordered extents now
6376 */
e6dcd2dc
CM
6377 clear_extent_bit(tree, page_start, page_end,
6378 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6379 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6380 &cached_state, GFP_NOFS);
8b62b72b
CM
6381 /*
6382 * whoever cleared the private bit is responsible
6383 * for the finish_ordered_io
6384 */
6385 if (TestClearPagePrivate2(page)) {
6386 btrfs_finish_ordered_io(page->mapping->host,
6387 page_start, page_end);
6388 }
e6dcd2dc 6389 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6390 cached_state = NULL;
6391 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6392 GFP_NOFS);
e6dcd2dc
CM
6393 }
6394 clear_extent_bit(tree, page_start, page_end,
32c00aff 6395 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6396 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6397 __btrfs_releasepage(page, GFP_NOFS);
6398
4a096752 6399 ClearPageChecked(page);
9ad6b7bc 6400 if (PagePrivate(page)) {
9ad6b7bc
CM
6401 ClearPagePrivate(page);
6402 set_page_private(page, 0);
6403 page_cache_release(page);
6404 }
39279cc3
CM
6405}
6406
9ebefb18
CM
6407/*
6408 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6409 * called from a page fault handler when a page is first dirtied. Hence we must
6410 * be careful to check for EOF conditions here. We set the page up correctly
6411 * for a written page which means we get ENOSPC checking when writing into
6412 * holes and correct delalloc and unwritten extent mapping on filesystems that
6413 * support these features.
6414 *
6415 * We are not allowed to take the i_mutex here so we have to play games to
6416 * protect against truncate races as the page could now be beyond EOF. Because
6417 * vmtruncate() writes the inode size before removing pages, once we have the
6418 * page lock we can determine safely if the page is beyond EOF. If it is not
6419 * beyond EOF, then the page is guaranteed safe against truncation until we
6420 * unlock the page.
6421 */
c2ec175c 6422int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6423{
c2ec175c 6424 struct page *page = vmf->page;
6da6abae 6425 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6426 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6427 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6428 struct btrfs_ordered_extent *ordered;
2ac55d41 6429 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6430 char *kaddr;
6431 unsigned long zero_start;
9ebefb18 6432 loff_t size;
1832a6d5 6433 int ret;
9998eb70 6434 int reserved = 0;
a52d9a80 6435 u64 page_start;
e6dcd2dc 6436 u64 page_end;
9ebefb18 6437
0ca1f7ce 6438 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 6439 if (!ret) {
22c44fe6 6440 ret = btrfs_update_time(vma->vm_file);
9998eb70
CM
6441 reserved = 1;
6442 }
56a76f82
NP
6443 if (ret) {
6444 if (ret == -ENOMEM)
6445 ret = VM_FAULT_OOM;
6446 else /* -ENOSPC, -EIO, etc */
6447 ret = VM_FAULT_SIGBUS;
9998eb70
CM
6448 if (reserved)
6449 goto out;
6450 goto out_noreserve;
56a76f82 6451 }
1832a6d5 6452
56a76f82 6453 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6454again:
9ebefb18 6455 lock_page(page);
9ebefb18 6456 size = i_size_read(inode);
e6dcd2dc
CM
6457 page_start = page_offset(page);
6458 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6459
9ebefb18 6460 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6461 (page_start >= size)) {
9ebefb18
CM
6462 /* page got truncated out from underneath us */
6463 goto out_unlock;
6464 }
e6dcd2dc
CM
6465 wait_on_page_writeback(page);
6466
2ac55d41
JB
6467 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6468 GFP_NOFS);
e6dcd2dc
CM
6469 set_page_extent_mapped(page);
6470
eb84ae03
CM
6471 /*
6472 * we can't set the delalloc bits if there are pending ordered
6473 * extents. Drop our locks and wait for them to finish
6474 */
e6dcd2dc
CM
6475 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6476 if (ordered) {
2ac55d41
JB
6477 unlock_extent_cached(io_tree, page_start, page_end,
6478 &cached_state, GFP_NOFS);
e6dcd2dc 6479 unlock_page(page);
eb84ae03 6480 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6481 btrfs_put_ordered_extent(ordered);
6482 goto again;
6483 }
6484
fbf19087
JB
6485 /*
6486 * XXX - page_mkwrite gets called every time the page is dirtied, even
6487 * if it was already dirty, so for space accounting reasons we need to
6488 * clear any delalloc bits for the range we are fixing to save. There
6489 * is probably a better way to do this, but for now keep consistent with
6490 * prepare_pages in the normal write path.
6491 */
2ac55d41 6492 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6493 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6494 0, 0, &cached_state, GFP_NOFS);
fbf19087 6495
2ac55d41
JB
6496 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6497 &cached_state);
9ed74f2d 6498 if (ret) {
2ac55d41
JB
6499 unlock_extent_cached(io_tree, page_start, page_end,
6500 &cached_state, GFP_NOFS);
9ed74f2d
JB
6501 ret = VM_FAULT_SIGBUS;
6502 goto out_unlock;
6503 }
e6dcd2dc 6504 ret = 0;
9ebefb18
CM
6505
6506 /* page is wholly or partially inside EOF */
a52d9a80 6507 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6508 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6509 else
e6dcd2dc 6510 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6511
e6dcd2dc
CM
6512 if (zero_start != PAGE_CACHE_SIZE) {
6513 kaddr = kmap(page);
6514 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6515 flush_dcache_page(page);
6516 kunmap(page);
6517 }
247e743c 6518 ClearPageChecked(page);
e6dcd2dc 6519 set_page_dirty(page);
50a9b214 6520 SetPageUptodate(page);
5a3f23d5 6521
257c62e1
CM
6522 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6523 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6524
2ac55d41 6525 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6526
6527out_unlock:
50a9b214
CM
6528 if (!ret)
6529 return VM_FAULT_LOCKED;
9ebefb18 6530 unlock_page(page);
1832a6d5 6531out:
ec39e180 6532 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 6533out_noreserve:
9ebefb18
CM
6534 return ret;
6535}
6536
a41ad394 6537static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6538{
6539 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6540 struct btrfs_block_rsv *rsv;
39279cc3 6541 int ret;
3893e33b 6542 int err = 0;
39279cc3 6543 struct btrfs_trans_handle *trans;
d3c2fdcf 6544 unsigned long nr;
dbe674a9 6545 u64 mask = root->sectorsize - 1;
07127184 6546 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 6547
5d5e103a
JB
6548 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6549 if (ret)
a41ad394 6550 return ret;
8082510e 6551
4a096752 6552 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6553 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6554
fcb80c2a
JB
6555 /*
6556 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6557 * 3 things going on here
6558 *
6559 * 1) We need to reserve space for our orphan item and the space to
6560 * delete our orphan item. Lord knows we don't want to have a dangling
6561 * orphan item because we didn't reserve space to remove it.
6562 *
6563 * 2) We need to reserve space to update our inode.
6564 *
6565 * 3) We need to have something to cache all the space that is going to
6566 * be free'd up by the truncate operation, but also have some slack
6567 * space reserved in case it uses space during the truncate (thank you
6568 * very much snapshotting).
6569 *
6570 * And we need these to all be seperate. The fact is we can use alot of
6571 * space doing the truncate, and we have no earthly idea how much space
6572 * we will use, so we need the truncate reservation to be seperate so it
6573 * doesn't end up using space reserved for updating the inode or
6574 * removing the orphan item. We also need to be able to stop the
6575 * transaction and start a new one, which means we need to be able to
6576 * update the inode several times, and we have no idea of knowing how
6577 * many times that will be, so we can't just reserve 1 item for the
6578 * entirety of the opration, so that has to be done seperately as well.
6579 * Then there is the orphan item, which does indeed need to be held on
6580 * to for the whole operation, and we need nobody to touch this reserved
6581 * space except the orphan code.
6582 *
6583 * So that leaves us with
6584 *
6585 * 1) root->orphan_block_rsv - for the orphan deletion.
6586 * 2) rsv - for the truncate reservation, which we will steal from the
6587 * transaction reservation.
6588 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6589 * updating the inode.
6590 */
6591 rsv = btrfs_alloc_block_rsv(root);
6592 if (!rsv)
6593 return -ENOMEM;
4a338542 6594 rsv->size = min_size;
f0cd846e 6595
907cbceb 6596 /*
07127184 6597 * 1 for the truncate slack space
907cbceb
JB
6598 * 1 for the orphan item we're going to add
6599 * 1 for the orphan item deletion
6600 * 1 for updating the inode.
6601 */
fcb80c2a
JB
6602 trans = btrfs_start_transaction(root, 4);
6603 if (IS_ERR(trans)) {
6604 err = PTR_ERR(trans);
6605 goto out;
6606 }
f0cd846e 6607
907cbceb
JB
6608 /* Migrate the slack space for the truncate to our reserve */
6609 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
6610 min_size);
fcb80c2a 6611 BUG_ON(ret);
f0cd846e
JB
6612
6613 ret = btrfs_orphan_add(trans, inode);
6614 if (ret) {
6615 btrfs_end_transaction(trans, root);
fcb80c2a 6616 goto out;
f0cd846e
JB
6617 }
6618
5a3f23d5
CM
6619 /*
6620 * setattr is responsible for setting the ordered_data_close flag,
6621 * but that is only tested during the last file release. That
6622 * could happen well after the next commit, leaving a great big
6623 * window where new writes may get lost if someone chooses to write
6624 * to this file after truncating to zero
6625 *
6626 * The inode doesn't have any dirty data here, and so if we commit
6627 * this is a noop. If someone immediately starts writing to the inode
6628 * it is very likely we'll catch some of their writes in this
6629 * transaction, and the commit will find this file on the ordered
6630 * data list with good things to send down.
6631 *
6632 * This is a best effort solution, there is still a window where
6633 * using truncate to replace the contents of the file will
6634 * end up with a zero length file after a crash.
6635 */
6636 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6637 btrfs_add_ordered_operation(trans, root, inode);
6638
8082510e 6639 while (1) {
36ba022a 6640 ret = btrfs_block_rsv_refill(root, rsv, min_size);
907cbceb
JB
6641 if (ret) {
6642 /*
6643 * This can only happen with the original transaction we
6644 * started above, every other time we shouldn't have a
6645 * transaction started yet.
6646 */
6647 if (ret == -EAGAIN)
6648 goto end_trans;
6649 err = ret;
6650 break;
6651 }
6652
d68fc57b 6653 if (!trans) {
907cbceb
JB
6654 /* Just need the 1 for updating the inode */
6655 trans = btrfs_start_transaction(root, 1);
fcb80c2a 6656 if (IS_ERR(trans)) {
7041ee97
JB
6657 ret = err = PTR_ERR(trans);
6658 trans = NULL;
6659 break;
fcb80c2a 6660 }
d68fc57b
YZ
6661 }
6662
907cbceb
JB
6663 trans->block_rsv = rsv;
6664
8082510e
YZ
6665 ret = btrfs_truncate_inode_items(trans, root, inode,
6666 inode->i_size,
6667 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6668 if (ret != -EAGAIN) {
6669 err = ret;
8082510e 6670 break;
3893e33b 6671 }
39279cc3 6672
fcb80c2a 6673 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6674 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6675 if (ret) {
6676 err = ret;
6677 break;
6678 }
907cbceb 6679end_trans:
8082510e
YZ
6680 nr = trans->blocks_used;
6681 btrfs_end_transaction(trans, root);
d68fc57b 6682 trans = NULL;
8082510e 6683 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6684 }
6685
6686 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6687 trans->block_rsv = root->orphan_block_rsv;
8082510e 6688 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6689 if (ret)
6690 err = ret;
ded5db9d
JB
6691 } else if (ret && inode->i_nlink > 0) {
6692 /*
6693 * Failed to do the truncate, remove us from the in memory
6694 * orphan list.
6695 */
6696 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6697 }
6698
917c16b2
CM
6699 if (trans) {
6700 trans->block_rsv = &root->fs_info->trans_block_rsv;
6701 ret = btrfs_update_inode(trans, root, inode);
6702 if (ret && !err)
6703 err = ret;
7b128766 6704
917c16b2 6705 nr = trans->blocks_used;
7ad85bb7 6706 ret = btrfs_end_transaction(trans, root);
917c16b2
CM
6707 btrfs_btree_balance_dirty(root, nr);
6708 }
fcb80c2a
JB
6709
6710out:
6711 btrfs_free_block_rsv(root, rsv);
6712
3893e33b
JB
6713 if (ret && !err)
6714 err = ret;
a41ad394 6715
3893e33b 6716 return err;
39279cc3
CM
6717}
6718
d352ac68
CM
6719/*
6720 * create a new subvolume directory/inode (helper for the ioctl).
6721 */
d2fb3437 6722int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6723 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6724{
39279cc3 6725 struct inode *inode;
76dda93c 6726 int err;
00e4e6b3 6727 u64 index = 0;
39279cc3 6728
12fc9d09
FA
6729 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
6730 new_dirid, new_dirid,
6731 S_IFDIR | (~current_umask() & S_IRWXUGO),
6732 &index);
54aa1f4d 6733 if (IS_ERR(inode))
f46b5a66 6734 return PTR_ERR(inode);
39279cc3
CM
6735 inode->i_op = &btrfs_dir_inode_operations;
6736 inode->i_fop = &btrfs_dir_file_operations;
6737
bfe86848 6738 set_nlink(inode, 1);
dbe674a9 6739 btrfs_i_size_write(inode, 0);
3b96362c 6740
76dda93c
YZ
6741 err = btrfs_update_inode(trans, new_root, inode);
6742 BUG_ON(err);
cb8e7090 6743
76dda93c 6744 iput(inode);
cb8e7090 6745 return 0;
39279cc3
CM
6746}
6747
39279cc3
CM
6748struct inode *btrfs_alloc_inode(struct super_block *sb)
6749{
6750 struct btrfs_inode *ei;
2ead6ae7 6751 struct inode *inode;
39279cc3
CM
6752
6753 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6754 if (!ei)
6755 return NULL;
2ead6ae7
YZ
6756
6757 ei->root = NULL;
6758 ei->space_info = NULL;
6759 ei->generation = 0;
6760 ei->sequence = 0;
15ee9bc7 6761 ei->last_trans = 0;
257c62e1 6762 ei->last_sub_trans = 0;
e02119d5 6763 ei->logged_trans = 0;
2ead6ae7 6764 ei->delalloc_bytes = 0;
2ead6ae7
YZ
6765 ei->disk_i_size = 0;
6766 ei->flags = 0;
7709cde3 6767 ei->csum_bytes = 0;
2ead6ae7
YZ
6768 ei->index_cnt = (u64)-1;
6769 ei->last_unlink_trans = 0;
6770
9e0baf60
JB
6771 spin_lock_init(&ei->lock);
6772 ei->outstanding_extents = 0;
6773 ei->reserved_extents = 0;
2ead6ae7
YZ
6774
6775 ei->ordered_data_close = 0;
d68fc57b 6776 ei->orphan_meta_reserved = 0;
2ead6ae7 6777 ei->dummy_inode = 0;
4cb5300b 6778 ei->in_defrag = 0;
7fd2ae21 6779 ei->delalloc_meta_reserved = 0;
261507a0 6780 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6781
16cdcec7
MX
6782 ei->delayed_node = NULL;
6783
2ead6ae7 6784 inode = &ei->vfs_inode;
a8067e02 6785 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6786 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6787 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6788 mutex_init(&ei->log_mutex);
f248679e 6789 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 6790 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6791 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6792 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6793 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6794 RB_CLEAR_NODE(&ei->rb_node);
6795
6796 return inode;
39279cc3
CM
6797}
6798
fa0d7e3d
NP
6799static void btrfs_i_callback(struct rcu_head *head)
6800{
6801 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
6802 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6803}
6804
39279cc3
CM
6805void btrfs_destroy_inode(struct inode *inode)
6806{
e6dcd2dc 6807 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6808 struct btrfs_root *root = BTRFS_I(inode)->root;
6809
39279cc3
CM
6810 WARN_ON(!list_empty(&inode->i_dentry));
6811 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
6812 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6813 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
6814 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
6815 WARN_ON(BTRFS_I(inode)->csum_bytes);
39279cc3 6816
a6dbd429
JB
6817 /*
6818 * This can happen where we create an inode, but somebody else also
6819 * created the same inode and we need to destroy the one we already
6820 * created.
6821 */
6822 if (!root)
6823 goto free;
6824
5a3f23d5
CM
6825 /*
6826 * Make sure we're properly removed from the ordered operation
6827 * lists.
6828 */
6829 smp_mb();
6830 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6831 spin_lock(&root->fs_info->ordered_extent_lock);
6832 list_del_init(&BTRFS_I(inode)->ordered_operations);
6833 spin_unlock(&root->fs_info->ordered_extent_lock);
6834 }
6835
d68fc57b 6836 spin_lock(&root->orphan_lock);
7b128766 6837 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6838 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6839 (unsigned long long)btrfs_ino(inode));
8082510e 6840 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6841 }
d68fc57b 6842 spin_unlock(&root->orphan_lock);
7b128766 6843
d397712b 6844 while (1) {
e6dcd2dc
CM
6845 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6846 if (!ordered)
6847 break;
6848 else {
d397712b
CM
6849 printk(KERN_ERR "btrfs found ordered "
6850 "extent %llu %llu on inode cleanup\n",
6851 (unsigned long long)ordered->file_offset,
6852 (unsigned long long)ordered->len);
e6dcd2dc
CM
6853 btrfs_remove_ordered_extent(inode, ordered);
6854 btrfs_put_ordered_extent(ordered);
6855 btrfs_put_ordered_extent(ordered);
6856 }
6857 }
5d4f98a2 6858 inode_tree_del(inode);
5b21f2ed 6859 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6860free:
16cdcec7 6861 btrfs_remove_delayed_node(inode);
fa0d7e3d 6862 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6863}
6864
45321ac5 6865int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6866{
6867 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6868
0af3d00b 6869 if (btrfs_root_refs(&root->root_item) == 0 &&
2cf8572d 6870 !btrfs_is_free_space_inode(root, inode))
45321ac5 6871 return 1;
76dda93c 6872 else
45321ac5 6873 return generic_drop_inode(inode);
76dda93c
YZ
6874}
6875
0ee0fda0 6876static void init_once(void *foo)
39279cc3
CM
6877{
6878 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6879
6880 inode_init_once(&ei->vfs_inode);
6881}
6882
6883void btrfs_destroy_cachep(void)
6884{
6885 if (btrfs_inode_cachep)
6886 kmem_cache_destroy(btrfs_inode_cachep);
6887 if (btrfs_trans_handle_cachep)
6888 kmem_cache_destroy(btrfs_trans_handle_cachep);
6889 if (btrfs_transaction_cachep)
6890 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6891 if (btrfs_path_cachep)
6892 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6893 if (btrfs_free_space_cachep)
6894 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6895}
6896
6897int btrfs_init_cachep(void)
6898{
9601e3f6
CH
6899 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6900 sizeof(struct btrfs_inode), 0,
6901 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6902 if (!btrfs_inode_cachep)
6903 goto fail;
9601e3f6
CH
6904
6905 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6906 sizeof(struct btrfs_trans_handle), 0,
6907 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6908 if (!btrfs_trans_handle_cachep)
6909 goto fail;
9601e3f6
CH
6910
6911 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6912 sizeof(struct btrfs_transaction), 0,
6913 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6914 if (!btrfs_transaction_cachep)
6915 goto fail;
9601e3f6
CH
6916
6917 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6918 sizeof(struct btrfs_path), 0,
6919 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6920 if (!btrfs_path_cachep)
6921 goto fail;
9601e3f6 6922
dc89e982
JB
6923 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6924 sizeof(struct btrfs_free_space), 0,
6925 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6926 if (!btrfs_free_space_cachep)
6927 goto fail;
6928
39279cc3
CM
6929 return 0;
6930fail:
6931 btrfs_destroy_cachep();
6932 return -ENOMEM;
6933}
6934
6935static int btrfs_getattr(struct vfsmount *mnt,
6936 struct dentry *dentry, struct kstat *stat)
6937{
6938 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
6939 u32 blocksize = inode->i_sb->s_blocksize;
6940
39279cc3 6941 generic_fillattr(inode, stat);
0ee5dc67 6942 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 6943 stat->blksize = PAGE_CACHE_SIZE;
fadc0d8b
DS
6944 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
6945 ALIGN(BTRFS_I(inode)->delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
6946 return 0;
6947}
6948
75e7cb7f
LB
6949/*
6950 * If a file is moved, it will inherit the cow and compression flags of the new
6951 * directory.
6952 */
6953static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6954{
6955 struct btrfs_inode *b_dir = BTRFS_I(dir);
6956 struct btrfs_inode *b_inode = BTRFS_I(inode);
6957
6958 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6959 b_inode->flags |= BTRFS_INODE_NODATACOW;
6960 else
6961 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6962
6963 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6964 b_inode->flags |= BTRFS_INODE_COMPRESS;
6965 else
6966 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6967}
6968
d397712b
CM
6969static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6970 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6971{
6972 struct btrfs_trans_handle *trans;
6973 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6974 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6975 struct inode *new_inode = new_dentry->d_inode;
6976 struct inode *old_inode = old_dentry->d_inode;
6977 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6978 u64 index = 0;
4df27c4d 6979 u64 root_objectid;
39279cc3 6980 int ret;
33345d01 6981 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6982
33345d01 6983 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6984 return -EPERM;
6985
4df27c4d 6986 /* we only allow rename subvolume link between subvolumes */
33345d01 6987 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6988 return -EXDEV;
6989
33345d01
LZ
6990 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6991 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6992 return -ENOTEMPTY;
5f39d397 6993
4df27c4d
YZ
6994 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6995 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6996 return -ENOTEMPTY;
5a3f23d5
CM
6997 /*
6998 * we're using rename to replace one file with another.
6999 * and the replacement file is large. Start IO on it now so
7000 * we don't add too much work to the end of the transaction
7001 */
4baf8c92 7002 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7003 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7004 filemap_flush(old_inode->i_mapping);
7005
76dda93c 7006 /* close the racy window with snapshot create/destroy ioctl */
33345d01 7007 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7008 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7009 /*
7010 * We want to reserve the absolute worst case amount of items. So if
7011 * both inodes are subvols and we need to unlink them then that would
7012 * require 4 item modifications, but if they are both normal inodes it
7013 * would require 5 item modifications, so we'll assume their normal
7014 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7015 * should cover the worst case number of items we'll modify.
7016 */
7017 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7018 if (IS_ERR(trans)) {
7019 ret = PTR_ERR(trans);
7020 goto out_notrans;
7021 }
76dda93c 7022
4df27c4d
YZ
7023 if (dest != root)
7024 btrfs_record_root_in_trans(trans, dest);
5f39d397 7025
a5719521
YZ
7026 ret = btrfs_set_inode_index(new_dir, &index);
7027 if (ret)
7028 goto out_fail;
5a3f23d5 7029
33345d01 7030 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7031 /* force full log commit if subvolume involved. */
7032 root->fs_info->last_trans_log_full_commit = trans->transid;
7033 } else {
a5719521
YZ
7034 ret = btrfs_insert_inode_ref(trans, dest,
7035 new_dentry->d_name.name,
7036 new_dentry->d_name.len,
33345d01
LZ
7037 old_ino,
7038 btrfs_ino(new_dir), index);
a5719521
YZ
7039 if (ret)
7040 goto out_fail;
4df27c4d
YZ
7041 /*
7042 * this is an ugly little race, but the rename is required
7043 * to make sure that if we crash, the inode is either at the
7044 * old name or the new one. pinning the log transaction lets
7045 * us make sure we don't allow a log commit to come in after
7046 * we unlink the name but before we add the new name back in.
7047 */
7048 btrfs_pin_log_trans(root);
7049 }
5a3f23d5
CM
7050 /*
7051 * make sure the inode gets flushed if it is replacing
7052 * something.
7053 */
33345d01 7054 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7055 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7056
39279cc3
CM
7057 old_dir->i_ctime = old_dir->i_mtime = ctime;
7058 new_dir->i_ctime = new_dir->i_mtime = ctime;
7059 old_inode->i_ctime = ctime;
5f39d397 7060
12fcfd22
CM
7061 if (old_dentry->d_parent != new_dentry->d_parent)
7062 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7063
33345d01 7064 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7065 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7066 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7067 old_dentry->d_name.name,
7068 old_dentry->d_name.len);
7069 } else {
92986796
AV
7070 ret = __btrfs_unlink_inode(trans, root, old_dir,
7071 old_dentry->d_inode,
7072 old_dentry->d_name.name,
7073 old_dentry->d_name.len);
7074 if (!ret)
7075 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7076 }
7077 BUG_ON(ret);
39279cc3
CM
7078
7079 if (new_inode) {
7080 new_inode->i_ctime = CURRENT_TIME;
33345d01 7081 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7082 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7083 root_objectid = BTRFS_I(new_inode)->location.objectid;
7084 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7085 root_objectid,
7086 new_dentry->d_name.name,
7087 new_dentry->d_name.len);
7088 BUG_ON(new_inode->i_nlink == 0);
7089 } else {
7090 ret = btrfs_unlink_inode(trans, dest, new_dir,
7091 new_dentry->d_inode,
7092 new_dentry->d_name.name,
7093 new_dentry->d_name.len);
7094 }
7095 BUG_ON(ret);
7b128766 7096 if (new_inode->i_nlink == 0) {
e02119d5 7097 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7098 BUG_ON(ret);
7b128766 7099 }
39279cc3 7100 }
aec7477b 7101
75e7cb7f
LB
7102 fixup_inode_flags(new_dir, old_inode);
7103
4df27c4d
YZ
7104 ret = btrfs_add_link(trans, new_dir, old_inode,
7105 new_dentry->d_name.name,
a5719521 7106 new_dentry->d_name.len, 0, index);
4df27c4d 7107 BUG_ON(ret);
39279cc3 7108
33345d01 7109 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 7110 struct dentry *parent = new_dentry->d_parent;
6a912213 7111 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
7112 btrfs_end_log_trans(root);
7113 }
39279cc3 7114out_fail:
7ad85bb7 7115 btrfs_end_transaction(trans, root);
b44c59a8 7116out_notrans:
33345d01 7117 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7118 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7119
39279cc3
CM
7120 return ret;
7121}
7122
d352ac68
CM
7123/*
7124 * some fairly slow code that needs optimization. This walks the list
7125 * of all the inodes with pending delalloc and forces them to disk.
7126 */
24bbcf04 7127int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7128{
7129 struct list_head *head = &root->fs_info->delalloc_inodes;
7130 struct btrfs_inode *binode;
5b21f2ed 7131 struct inode *inode;
ea8c2819 7132
c146afad
YZ
7133 if (root->fs_info->sb->s_flags & MS_RDONLY)
7134 return -EROFS;
7135
75eff68e 7136 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7137 while (!list_empty(head)) {
ea8c2819
CM
7138 binode = list_entry(head->next, struct btrfs_inode,
7139 delalloc_inodes);
5b21f2ed
ZY
7140 inode = igrab(&binode->vfs_inode);
7141 if (!inode)
7142 list_del_init(&binode->delalloc_inodes);
75eff68e 7143 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7144 if (inode) {
8c8bee1d 7145 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7146 if (delay_iput)
7147 btrfs_add_delayed_iput(inode);
7148 else
7149 iput(inode);
5b21f2ed
ZY
7150 }
7151 cond_resched();
75eff68e 7152 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7153 }
75eff68e 7154 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7155
7156 /* the filemap_flush will queue IO into the worker threads, but
7157 * we have to make sure the IO is actually started and that
7158 * ordered extents get created before we return
7159 */
7160 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7161 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7162 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7163 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7164 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7165 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7166 }
7167 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7168 return 0;
7169}
7170
39279cc3
CM
7171static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7172 const char *symname)
7173{
7174 struct btrfs_trans_handle *trans;
7175 struct btrfs_root *root = BTRFS_I(dir)->root;
7176 struct btrfs_path *path;
7177 struct btrfs_key key;
1832a6d5 7178 struct inode *inode = NULL;
39279cc3
CM
7179 int err;
7180 int drop_inode = 0;
7181 u64 objectid;
00e4e6b3 7182 u64 index = 0 ;
39279cc3
CM
7183 int name_len;
7184 int datasize;
5f39d397 7185 unsigned long ptr;
39279cc3 7186 struct btrfs_file_extent_item *ei;
5f39d397 7187 struct extent_buffer *leaf;
1832a6d5 7188 unsigned long nr = 0;
39279cc3
CM
7189
7190 name_len = strlen(symname) + 1;
7191 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7192 return -ENAMETOOLONG;
1832a6d5 7193
9ed74f2d
JB
7194 /*
7195 * 2 items for inode item and ref
7196 * 2 items for dir items
7197 * 1 item for xattr if selinux is on
7198 */
a22285a6
YZ
7199 trans = btrfs_start_transaction(root, 5);
7200 if (IS_ERR(trans))
7201 return PTR_ERR(trans);
1832a6d5 7202
581bb050
LZ
7203 err = btrfs_find_free_ino(root, &objectid);
7204 if (err)
7205 goto out_unlock;
7206
aec7477b 7207 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7208 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7209 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7210 if (IS_ERR(inode)) {
7211 err = PTR_ERR(inode);
39279cc3 7212 goto out_unlock;
7cf96da3 7213 }
39279cc3 7214
2a7dba39 7215 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7216 if (err) {
7217 drop_inode = 1;
7218 goto out_unlock;
7219 }
7220
ad19db71
CS
7221 /*
7222 * If the active LSM wants to access the inode during
7223 * d_instantiate it needs these. Smack checks to see
7224 * if the filesystem supports xattrs by looking at the
7225 * ops vector.
7226 */
7227 inode->i_fop = &btrfs_file_operations;
7228 inode->i_op = &btrfs_file_inode_operations;
7229
a1b075d2 7230 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7231 if (err)
7232 drop_inode = 1;
7233 else {
7234 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7235 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 7236 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7237 }
39279cc3
CM
7238 if (drop_inode)
7239 goto out_unlock;
7240
7241 path = btrfs_alloc_path();
d8926bb3
MF
7242 if (!path) {
7243 err = -ENOMEM;
7244 drop_inode = 1;
7245 goto out_unlock;
7246 }
33345d01 7247 key.objectid = btrfs_ino(inode);
39279cc3 7248 key.offset = 0;
39279cc3
CM
7249 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7250 datasize = btrfs_file_extent_calc_inline_size(name_len);
7251 err = btrfs_insert_empty_item(trans, root, path, &key,
7252 datasize);
54aa1f4d
CM
7253 if (err) {
7254 drop_inode = 1;
b0839166 7255 btrfs_free_path(path);
54aa1f4d
CM
7256 goto out_unlock;
7257 }
5f39d397
CM
7258 leaf = path->nodes[0];
7259 ei = btrfs_item_ptr(leaf, path->slots[0],
7260 struct btrfs_file_extent_item);
7261 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7262 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7263 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7264 btrfs_set_file_extent_encryption(leaf, ei, 0);
7265 btrfs_set_file_extent_compression(leaf, ei, 0);
7266 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7267 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7268
39279cc3 7269 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7270 write_extent_buffer(leaf, symname, ptr, name_len);
7271 btrfs_mark_buffer_dirty(leaf);
39279cc3 7272 btrfs_free_path(path);
5f39d397 7273
39279cc3
CM
7274 inode->i_op = &btrfs_symlink_inode_operations;
7275 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7276 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7277 inode_set_bytes(inode, name_len);
dbe674a9 7278 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7279 err = btrfs_update_inode(trans, root, inode);
7280 if (err)
7281 drop_inode = 1;
39279cc3
CM
7282
7283out_unlock:
08c422c2
AV
7284 if (!err)
7285 d_instantiate(dentry, inode);
d3c2fdcf 7286 nr = trans->blocks_used;
7ad85bb7 7287 btrfs_end_transaction(trans, root);
39279cc3
CM
7288 if (drop_inode) {
7289 inode_dec_link_count(inode);
7290 iput(inode);
7291 }
d3c2fdcf 7292 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7293 return err;
7294}
16432985 7295
0af3d00b
JB
7296static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7297 u64 start, u64 num_bytes, u64 min_size,
7298 loff_t actual_len, u64 *alloc_hint,
7299 struct btrfs_trans_handle *trans)
d899e052 7300{
d899e052
YZ
7301 struct btrfs_root *root = BTRFS_I(inode)->root;
7302 struct btrfs_key ins;
d899e052 7303 u64 cur_offset = start;
55a61d1d 7304 u64 i_size;
d899e052 7305 int ret = 0;
0af3d00b 7306 bool own_trans = true;
d899e052 7307
0af3d00b
JB
7308 if (trans)
7309 own_trans = false;
d899e052 7310 while (num_bytes > 0) {
0af3d00b
JB
7311 if (own_trans) {
7312 trans = btrfs_start_transaction(root, 3);
7313 if (IS_ERR(trans)) {
7314 ret = PTR_ERR(trans);
7315 break;
7316 }
5a303d5d
YZ
7317 }
7318
efa56464
YZ
7319 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7320 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7321 if (ret) {
0af3d00b
JB
7322 if (own_trans)
7323 btrfs_end_transaction(trans, root);
a22285a6 7324 break;
d899e052 7325 }
5a303d5d 7326
d899e052
YZ
7327 ret = insert_reserved_file_extent(trans, inode,
7328 cur_offset, ins.objectid,
7329 ins.offset, ins.offset,
920bbbfb 7330 ins.offset, 0, 0, 0,
d899e052
YZ
7331 BTRFS_FILE_EXTENT_PREALLOC);
7332 BUG_ON(ret);
a1ed835e
CM
7333 btrfs_drop_extent_cache(inode, cur_offset,
7334 cur_offset + ins.offset -1, 0);
5a303d5d 7335
d899e052
YZ
7336 num_bytes -= ins.offset;
7337 cur_offset += ins.offset;
efa56464 7338 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7339
d899e052 7340 inode->i_ctime = CURRENT_TIME;
6cbff00f 7341 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7342 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7343 (actual_len > inode->i_size) &&
7344 (cur_offset > inode->i_size)) {
d1ea6a61 7345 if (cur_offset > actual_len)
55a61d1d 7346 i_size = actual_len;
d1ea6a61 7347 else
55a61d1d
JB
7348 i_size = cur_offset;
7349 i_size_write(inode, i_size);
7350 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7351 }
7352
d899e052
YZ
7353 ret = btrfs_update_inode(trans, root, inode);
7354 BUG_ON(ret);
d899e052 7355
0af3d00b
JB
7356 if (own_trans)
7357 btrfs_end_transaction(trans, root);
5a303d5d 7358 }
d899e052
YZ
7359 return ret;
7360}
7361
0af3d00b
JB
7362int btrfs_prealloc_file_range(struct inode *inode, int mode,
7363 u64 start, u64 num_bytes, u64 min_size,
7364 loff_t actual_len, u64 *alloc_hint)
7365{
7366 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7367 min_size, actual_len, alloc_hint,
7368 NULL);
7369}
7370
7371int btrfs_prealloc_file_range_trans(struct inode *inode,
7372 struct btrfs_trans_handle *trans, int mode,
7373 u64 start, u64 num_bytes, u64 min_size,
7374 loff_t actual_len, u64 *alloc_hint)
7375{
7376 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7377 min_size, actual_len, alloc_hint, trans);
7378}
7379
e6dcd2dc
CM
7380static int btrfs_set_page_dirty(struct page *page)
7381{
e6dcd2dc
CM
7382 return __set_page_dirty_nobuffers(page);
7383}
7384
10556cb2 7385static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 7386{
b83cc969 7387 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 7388 umode_t mode = inode->i_mode;
b83cc969 7389
cb6db4e5
JM
7390 if (mask & MAY_WRITE &&
7391 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
7392 if (btrfs_root_readonly(root))
7393 return -EROFS;
7394 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
7395 return -EACCES;
7396 }
2830ba7f 7397 return generic_permission(inode, mask);
fdebe2bd 7398}
39279cc3 7399
6e1d5dcc 7400static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7401 .getattr = btrfs_getattr,
39279cc3
CM
7402 .lookup = btrfs_lookup,
7403 .create = btrfs_create,
7404 .unlink = btrfs_unlink,
7405 .link = btrfs_link,
7406 .mkdir = btrfs_mkdir,
7407 .rmdir = btrfs_rmdir,
7408 .rename = btrfs_rename,
7409 .symlink = btrfs_symlink,
7410 .setattr = btrfs_setattr,
618e21d5 7411 .mknod = btrfs_mknod,
95819c05
CH
7412 .setxattr = btrfs_setxattr,
7413 .getxattr = btrfs_getxattr,
5103e947 7414 .listxattr = btrfs_listxattr,
95819c05 7415 .removexattr = btrfs_removexattr,
fdebe2bd 7416 .permission = btrfs_permission,
4e34e719 7417 .get_acl = btrfs_get_acl,
39279cc3 7418};
6e1d5dcc 7419static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7420 .lookup = btrfs_lookup,
fdebe2bd 7421 .permission = btrfs_permission,
4e34e719 7422 .get_acl = btrfs_get_acl,
39279cc3 7423};
76dda93c 7424
828c0950 7425static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7426 .llseek = generic_file_llseek,
7427 .read = generic_read_dir,
cbdf5a24 7428 .readdir = btrfs_real_readdir,
34287aa3 7429 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7430#ifdef CONFIG_COMPAT
34287aa3 7431 .compat_ioctl = btrfs_ioctl,
39279cc3 7432#endif
6bf13c0c 7433 .release = btrfs_release_file,
e02119d5 7434 .fsync = btrfs_sync_file,
39279cc3
CM
7435};
7436
d1310b2e 7437static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7438 .fill_delalloc = run_delalloc_range,
065631f6 7439 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7440 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7441 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7442 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7443 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
7444 .set_bit_hook = btrfs_set_bit_hook,
7445 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7446 .merge_extent_hook = btrfs_merge_extent_hook,
7447 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7448};
7449
35054394
CM
7450/*
7451 * btrfs doesn't support the bmap operation because swapfiles
7452 * use bmap to make a mapping of extents in the file. They assume
7453 * these extents won't change over the life of the file and they
7454 * use the bmap result to do IO directly to the drive.
7455 *
7456 * the btrfs bmap call would return logical addresses that aren't
7457 * suitable for IO and they also will change frequently as COW
7458 * operations happen. So, swapfile + btrfs == corruption.
7459 *
7460 * For now we're avoiding this by dropping bmap.
7461 */
7f09410b 7462static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7463 .readpage = btrfs_readpage,
7464 .writepage = btrfs_writepage,
b293f02e 7465 .writepages = btrfs_writepages,
3ab2fb5a 7466 .readpages = btrfs_readpages,
16432985 7467 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7468 .invalidatepage = btrfs_invalidatepage,
7469 .releasepage = btrfs_releasepage,
e6dcd2dc 7470 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7471 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7472};
7473
7f09410b 7474static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7475 .readpage = btrfs_readpage,
7476 .writepage = btrfs_writepage,
2bf5a725
CM
7477 .invalidatepage = btrfs_invalidatepage,
7478 .releasepage = btrfs_releasepage,
39279cc3
CM
7479};
7480
6e1d5dcc 7481static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7482 .getattr = btrfs_getattr,
7483 .setattr = btrfs_setattr,
95819c05
CH
7484 .setxattr = btrfs_setxattr,
7485 .getxattr = btrfs_getxattr,
5103e947 7486 .listxattr = btrfs_listxattr,
95819c05 7487 .removexattr = btrfs_removexattr,
fdebe2bd 7488 .permission = btrfs_permission,
1506fcc8 7489 .fiemap = btrfs_fiemap,
4e34e719 7490 .get_acl = btrfs_get_acl,
39279cc3 7491};
6e1d5dcc 7492static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7493 .getattr = btrfs_getattr,
7494 .setattr = btrfs_setattr,
fdebe2bd 7495 .permission = btrfs_permission,
95819c05
CH
7496 .setxattr = btrfs_setxattr,
7497 .getxattr = btrfs_getxattr,
33268eaf 7498 .listxattr = btrfs_listxattr,
95819c05 7499 .removexattr = btrfs_removexattr,
4e34e719 7500 .get_acl = btrfs_get_acl,
618e21d5 7501};
6e1d5dcc 7502static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7503 .readlink = generic_readlink,
7504 .follow_link = page_follow_link_light,
7505 .put_link = page_put_link,
f209561a 7506 .getattr = btrfs_getattr,
22c44fe6 7507 .setattr = btrfs_setattr,
fdebe2bd 7508 .permission = btrfs_permission,
0279b4cd
JO
7509 .setxattr = btrfs_setxattr,
7510 .getxattr = btrfs_getxattr,
7511 .listxattr = btrfs_listxattr,
7512 .removexattr = btrfs_removexattr,
4e34e719 7513 .get_acl = btrfs_get_acl,
39279cc3 7514};
76dda93c 7515
82d339d9 7516const struct dentry_operations btrfs_dentry_operations = {
76dda93c 7517 .d_delete = btrfs_dentry_delete,
b4aff1f8 7518 .d_release = btrfs_dentry_release,
76dda93c 7519};