btrfs: Fix out-of-space bug
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
962a298f 156 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
354877be
WS
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
f79707b0
WS
351static inline int inode_need_compress(struct inode *inode)
352{
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366}
367
d352ac68 368/*
771ed689
CM
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
c8b97818 372 *
771ed689
CM
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
c8b97818 378 *
771ed689
CM
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
382 * are written in the same order that the flusher thread sent them
383 * down.
d352ac68 384 */
c44f649e 385static noinline void compress_file_range(struct inode *inode,
771ed689
CM
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
b888db2b
CM
390{
391 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 392 u64 num_bytes;
db94535d 393 u64 blocksize = root->sectorsize;
c8b97818 394 u64 actual_end;
42dc7bab 395 u64 isize = i_size_read(inode);
e6dcd2dc 396 int ret = 0;
c8b97818
CM
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
771ed689 403 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
404 int i;
405 int will_compress;
261507a0 406 int compress_type = root->fs_info->compress_type;
4adaa611 407 int redirty = 0;
b888db2b 408
4cb13e5d
LB
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
412 btrfs_add_inode_defrag(NULL, inode);
413
42dc7bab 414 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
415again:
416 will_compress = 0;
417 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 419
f03d9301
CM
420 /*
421 * we don't want to send crud past the end of i_size through
422 * compression, that's just a waste of CPU time. So, if the
423 * end of the file is before the start of our current
424 * requested range of bytes, we bail out to the uncompressed
425 * cleanup code that can deal with all of this.
426 *
427 * It isn't really the fastest way to fix things, but this is a
428 * very uncommon corner.
429 */
430 if (actual_end <= start)
431 goto cleanup_and_bail_uncompressed;
432
c8b97818
CM
433 total_compressed = actual_end - start;
434
4bcbb332
SW
435 /*
436 * skip compression for a small file range(<=blocksize) that
437 * isn't an inline extent, since it dosen't save disk space at all.
438 */
439 if (total_compressed <= blocksize &&
440 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441 goto cleanup_and_bail_uncompressed;
442
c8b97818
CM
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
c8b97818
CM
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 454 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 455 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
456 total_in = 0;
457 ret = 0;
db94535d 458
771ed689
CM
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
c8b97818 463 */
f79707b0 464 if (inode_need_compress(inode)) {
c8b97818 465 WARN_ON(pages);
cfbc246e 466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
c8b97818 471
261507a0
LZ
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
4adaa611
CM
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
261507a0
LZ
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
c8b97818
CM
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
7ac687d9 504 kaddr = kmap_atomic(page);
c8b97818
CM
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
7ac687d9 507 kunmap_atomic(kaddr);
c8b97818
CM
508 }
509 will_compress = 1;
510 }
511 }
560f7d75 512cont:
c8b97818
CM
513 if (start == 0) {
514 /* lets try to make an inline extent */
771ed689 515 if (ret || total_in < (actual_end - start)) {
c8b97818 516 /* we didn't compress the entire range, try
771ed689 517 * to make an uncompressed inline extent.
c8b97818 518 */
00361589
JB
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
c8b97818 521 } else {
771ed689 522 /* try making a compressed inline extent */
00361589 523 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
524 total_compressed,
525 compress_type, pages);
c8b97818 526 }
79787eaa 527 if (ret <= 0) {
151a41bc
JB
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
e6eb4314
FM
530 unsigned long page_error_op;
531
151a41bc 532 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 533 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 534
771ed689 535 /*
79787eaa
JM
536 * inline extent creation worked or returned error,
537 * we don't need to create any more async work items.
538 * Unlock and free up our temp pages.
771ed689 539 */
c2790a2e 540 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 541 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
542 PAGE_CLEAR_DIRTY |
543 PAGE_SET_WRITEBACK |
e6eb4314 544 page_error_op |
c2790a2e 545 PAGE_END_WRITEBACK);
c8b97818
CM
546 goto free_pages_out;
547 }
548 }
549
550 if (will_compress) {
551 /*
552 * we aren't doing an inline extent round the compressed size
553 * up to a block size boundary so the allocator does sane
554 * things
555 */
fda2832f 556 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
557
558 /*
559 * one last check to make sure the compression is really a
560 * win, compare the page count read with the blocks on disk
561 */
fda2832f 562 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
563 if (total_compressed >= total_in) {
564 will_compress = 0;
565 } else {
c8b97818
CM
566 num_bytes = total_in;
567 }
568 }
569 if (!will_compress && pages) {
570 /*
571 * the compression code ran but failed to make things smaller,
572 * free any pages it allocated and our page pointer array
573 */
574 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 575 WARN_ON(pages[i]->mapping);
c8b97818
CM
576 page_cache_release(pages[i]);
577 }
578 kfree(pages);
579 pages = NULL;
580 total_compressed = 0;
581 nr_pages_ret = 0;
582
583 /* flag the file so we don't compress in the future */
1e701a32
CM
584 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585 !(BTRFS_I(inode)->force_compress)) {
a555f810 586 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 587 }
c8b97818 588 }
771ed689
CM
589 if (will_compress) {
590 *num_added += 1;
c8b97818 591
771ed689
CM
592 /* the async work queues will take care of doing actual
593 * allocation on disk for these compressed pages,
594 * and will submit them to the elevator.
595 */
596 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
597 total_compressed, pages, nr_pages_ret,
598 compress_type);
179e29e4 599
24ae6365 600 if (start + num_bytes < end) {
771ed689
CM
601 start += num_bytes;
602 pages = NULL;
603 cond_resched();
604 goto again;
605 }
606 } else {
f03d9301 607cleanup_and_bail_uncompressed:
771ed689
CM
608 /*
609 * No compression, but we still need to write the pages in
610 * the file we've been given so far. redirty the locked
611 * page if it corresponds to our extent and set things up
612 * for the async work queue to run cow_file_range to do
613 * the normal delalloc dance
614 */
615 if (page_offset(locked_page) >= start &&
616 page_offset(locked_page) <= end) {
617 __set_page_dirty_nobuffers(locked_page);
618 /* unlocked later on in the async handlers */
619 }
4adaa611
CM
620 if (redirty)
621 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
622 add_async_extent(async_cow, start, end - start + 1,
623 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
624 *num_added += 1;
625 }
3b951516 626
c44f649e 627 return;
771ed689
CM
628
629free_pages_out:
630 for (i = 0; i < nr_pages_ret; i++) {
631 WARN_ON(pages[i]->mapping);
632 page_cache_release(pages[i]);
633 }
d397712b 634 kfree(pages);
771ed689 635}
771ed689 636
40ae837b
FM
637static void free_async_extent_pages(struct async_extent *async_extent)
638{
639 int i;
640
641 if (!async_extent->pages)
642 return;
643
644 for (i = 0; i < async_extent->nr_pages; i++) {
645 WARN_ON(async_extent->pages[i]->mapping);
646 page_cache_release(async_extent->pages[i]);
647 }
648 kfree(async_extent->pages);
649 async_extent->nr_pages = 0;
650 async_extent->pages = NULL;
771ed689
CM
651}
652
653/*
654 * phase two of compressed writeback. This is the ordered portion
655 * of the code, which only gets called in the order the work was
656 * queued. We walk all the async extents created by compress_file_range
657 * and send them down to the disk.
658 */
dec8f175 659static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
660 struct async_cow *async_cow)
661{
662 struct async_extent *async_extent;
663 u64 alloc_hint = 0;
771ed689
CM
664 struct btrfs_key ins;
665 struct extent_map *em;
666 struct btrfs_root *root = BTRFS_I(inode)->root;
667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668 struct extent_io_tree *io_tree;
f5a84ee3 669 int ret = 0;
771ed689 670
3e04e7f1 671again:
d397712b 672 while (!list_empty(&async_cow->extents)) {
771ed689
CM
673 async_extent = list_entry(async_cow->extents.next,
674 struct async_extent, list);
675 list_del(&async_extent->list);
c8b97818 676
771ed689
CM
677 io_tree = &BTRFS_I(inode)->io_tree;
678
f5a84ee3 679retry:
771ed689
CM
680 /* did the compression code fall back to uncompressed IO? */
681 if (!async_extent->pages) {
682 int page_started = 0;
683 unsigned long nr_written = 0;
684
685 lock_extent(io_tree, async_extent->start,
2ac55d41 686 async_extent->start +
d0082371 687 async_extent->ram_size - 1);
771ed689
CM
688
689 /* allocate blocks */
f5a84ee3
JB
690 ret = cow_file_range(inode, async_cow->locked_page,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 &page_started, &nr_written, 0);
771ed689 695
79787eaa
JM
696 /* JDM XXX */
697
771ed689
CM
698 /*
699 * if page_started, cow_file_range inserted an
700 * inline extent and took care of all the unlocking
701 * and IO for us. Otherwise, we need to submit
702 * all those pages down to the drive.
703 */
f5a84ee3 704 if (!page_started && !ret)
771ed689
CM
705 extent_write_locked_range(io_tree,
706 inode, async_extent->start,
d397712b 707 async_extent->start +
771ed689
CM
708 async_extent->ram_size - 1,
709 btrfs_get_extent,
710 WB_SYNC_ALL);
3e04e7f1
JB
711 else if (ret)
712 unlock_page(async_cow->locked_page);
771ed689
CM
713 kfree(async_extent);
714 cond_resched();
715 continue;
716 }
717
718 lock_extent(io_tree, async_extent->start,
d0082371 719 async_extent->start + async_extent->ram_size - 1);
771ed689 720
00361589 721 ret = btrfs_reserve_extent(root,
771ed689
CM
722 async_extent->compressed_size,
723 async_extent->compressed_size,
e570fd27 724 0, alloc_hint, &ins, 1, 1);
f5a84ee3 725 if (ret) {
40ae837b 726 free_async_extent_pages(async_extent);
3e04e7f1 727
fdf8e2ea
JB
728 if (ret == -ENOSPC) {
729 unlock_extent(io_tree, async_extent->start,
730 async_extent->start +
731 async_extent->ram_size - 1);
ce62003f
LB
732
733 /*
734 * we need to redirty the pages if we decide to
735 * fallback to uncompressed IO, otherwise we
736 * will not submit these pages down to lower
737 * layers.
738 */
739 extent_range_redirty_for_io(inode,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1);
743
79787eaa 744 goto retry;
fdf8e2ea 745 }
3e04e7f1 746 goto out_free;
f5a84ee3
JB
747 }
748
c2167754
YZ
749 /*
750 * here we're doing allocation and writeback of the
751 * compressed pages
752 */
753 btrfs_drop_extent_cache(inode, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1, 0);
756
172ddd60 757 em = alloc_extent_map();
b9aa55be
LB
758 if (!em) {
759 ret = -ENOMEM;
3e04e7f1 760 goto out_free_reserve;
b9aa55be 761 }
771ed689
CM
762 em->start = async_extent->start;
763 em->len = async_extent->ram_size;
445a6944 764 em->orig_start = em->start;
2ab28f32
JB
765 em->mod_start = em->start;
766 em->mod_len = em->len;
c8b97818 767
771ed689
CM
768 em->block_start = ins.objectid;
769 em->block_len = ins.offset;
b4939680 770 em->orig_block_len = ins.offset;
cc95bef6 771 em->ram_bytes = async_extent->ram_size;
771ed689 772 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 773 em->compress_type = async_extent->compress_type;
771ed689
CM
774 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 776 em->generation = -1;
771ed689 777
d397712b 778 while (1) {
890871be 779 write_lock(&em_tree->lock);
09a2a8f9 780 ret = add_extent_mapping(em_tree, em, 1);
890871be 781 write_unlock(&em_tree->lock);
771ed689
CM
782 if (ret != -EEXIST) {
783 free_extent_map(em);
784 break;
785 }
786 btrfs_drop_extent_cache(inode, async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1, 0);
789 }
790
3e04e7f1
JB
791 if (ret)
792 goto out_free_reserve;
793
261507a0
LZ
794 ret = btrfs_add_ordered_extent_compress(inode,
795 async_extent->start,
796 ins.objectid,
797 async_extent->ram_size,
798 ins.offset,
799 BTRFS_ORDERED_COMPRESSED,
800 async_extent->compress_type);
d9f85963
FM
801 if (ret) {
802 btrfs_drop_extent_cache(inode, async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1, 0);
3e04e7f1 805 goto out_free_reserve;
d9f85963 806 }
771ed689 807
771ed689
CM
808 /*
809 * clear dirty, set writeback and unlock the pages.
810 */
c2790a2e 811 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
812 async_extent->start +
813 async_extent->ram_size - 1,
151a41bc
JB
814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 816 PAGE_SET_WRITEBACK);
771ed689 817 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
818 async_extent->start,
819 async_extent->ram_size,
820 ins.objectid,
821 ins.offset, async_extent->pages,
822 async_extent->nr_pages);
fce2a4e6
FM
823 if (ret) {
824 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825 struct page *p = async_extent->pages[0];
826 const u64 start = async_extent->start;
827 const u64 end = start + async_extent->ram_size - 1;
828
829 p->mapping = inode->i_mapping;
830 tree->ops->writepage_end_io_hook(p, start, end,
831 NULL, 0);
832 p->mapping = NULL;
833 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834 PAGE_END_WRITEBACK |
835 PAGE_SET_ERROR);
40ae837b 836 free_async_extent_pages(async_extent);
fce2a4e6 837 }
771ed689
CM
838 alloc_hint = ins.objectid + ins.offset;
839 kfree(async_extent);
840 cond_resched();
841 }
dec8f175 842 return;
3e04e7f1 843out_free_reserve:
e570fd27 844 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 845out_free:
c2790a2e 846 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
847 async_extent->start +
848 async_extent->ram_size - 1,
c2790a2e 849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
850 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
852 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853 PAGE_SET_ERROR);
40ae837b 854 free_async_extent_pages(async_extent);
79787eaa 855 kfree(async_extent);
3e04e7f1 856 goto again;
771ed689
CM
857}
858
4b46fce2
JB
859static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860 u64 num_bytes)
861{
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 struct extent_map *em;
864 u64 alloc_hint = 0;
865
866 read_lock(&em_tree->lock);
867 em = search_extent_mapping(em_tree, start, num_bytes);
868 if (em) {
869 /*
870 * if block start isn't an actual block number then find the
871 * first block in this inode and use that as a hint. If that
872 * block is also bogus then just don't worry about it.
873 */
874 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875 free_extent_map(em);
876 em = search_extent_mapping(em_tree, 0, 0);
877 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878 alloc_hint = em->block_start;
879 if (em)
880 free_extent_map(em);
881 } else {
882 alloc_hint = em->block_start;
883 free_extent_map(em);
884 }
885 }
886 read_unlock(&em_tree->lock);
887
888 return alloc_hint;
889}
890
771ed689
CM
891/*
892 * when extent_io.c finds a delayed allocation range in the file,
893 * the call backs end up in this code. The basic idea is to
894 * allocate extents on disk for the range, and create ordered data structs
895 * in ram to track those extents.
896 *
897 * locked_page is the page that writepage had locked already. We use
898 * it to make sure we don't do extra locks or unlocks.
899 *
900 * *page_started is set to one if we unlock locked_page and do everything
901 * required to start IO on it. It may be clean and already done with
902 * IO when we return.
903 */
00361589
JB
904static noinline int cow_file_range(struct inode *inode,
905 struct page *locked_page,
906 u64 start, u64 end, int *page_started,
907 unsigned long *nr_written,
908 int unlock)
771ed689 909{
00361589 910 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
911 u64 alloc_hint = 0;
912 u64 num_bytes;
913 unsigned long ram_size;
914 u64 disk_num_bytes;
915 u64 cur_alloc_size;
916 u64 blocksize = root->sectorsize;
771ed689
CM
917 struct btrfs_key ins;
918 struct extent_map *em;
919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920 int ret = 0;
921
02ecd2c2
JB
922 if (btrfs_is_free_space_inode(inode)) {
923 WARN_ON_ONCE(1);
29bce2f3
JB
924 ret = -EINVAL;
925 goto out_unlock;
02ecd2c2 926 }
771ed689 927
fda2832f 928 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
929 num_bytes = max(blocksize, num_bytes);
930 disk_num_bytes = num_bytes;
771ed689 931
4cb5300b 932 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
933 if (num_bytes < 64 * 1024 &&
934 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 935 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 936
771ed689
CM
937 if (start == 0) {
938 /* lets try to make an inline extent */
00361589
JB
939 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940 NULL);
771ed689 941 if (ret == 0) {
c2790a2e
JB
942 extent_clear_unlock_delalloc(inode, start, end, NULL,
943 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 944 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
945 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946 PAGE_END_WRITEBACK);
c2167754 947
771ed689
CM
948 *nr_written = *nr_written +
949 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950 *page_started = 1;
771ed689 951 goto out;
79787eaa 952 } else if (ret < 0) {
79787eaa 953 goto out_unlock;
771ed689
CM
954 }
955 }
956
957 BUG_ON(disk_num_bytes >
6c41761f 958 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 959
4b46fce2 960 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
961 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
d397712b 963 while (disk_num_bytes > 0) {
a791e35e
CM
964 unsigned long op;
965
287a0ab9 966 cur_alloc_size = disk_num_bytes;
00361589 967 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 968 root->sectorsize, 0, alloc_hint,
e570fd27 969 &ins, 1, 1);
00361589 970 if (ret < 0)
79787eaa 971 goto out_unlock;
d397712b 972
172ddd60 973 em = alloc_extent_map();
b9aa55be
LB
974 if (!em) {
975 ret = -ENOMEM;
ace68bac 976 goto out_reserve;
b9aa55be 977 }
e6dcd2dc 978 em->start = start;
445a6944 979 em->orig_start = em->start;
771ed689
CM
980 ram_size = ins.offset;
981 em->len = ins.offset;
2ab28f32
JB
982 em->mod_start = em->start;
983 em->mod_len = em->len;
c8b97818 984
e6dcd2dc 985 em->block_start = ins.objectid;
c8b97818 986 em->block_len = ins.offset;
b4939680 987 em->orig_block_len = ins.offset;
cc95bef6 988 em->ram_bytes = ram_size;
e6dcd2dc 989 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 990 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 991 em->generation = -1;
c8b97818 992
d397712b 993 while (1) {
890871be 994 write_lock(&em_tree->lock);
09a2a8f9 995 ret = add_extent_mapping(em_tree, em, 1);
890871be 996 write_unlock(&em_tree->lock);
e6dcd2dc
CM
997 if (ret != -EEXIST) {
998 free_extent_map(em);
999 break;
1000 }
1001 btrfs_drop_extent_cache(inode, start,
c8b97818 1002 start + ram_size - 1, 0);
e6dcd2dc 1003 }
ace68bac
LB
1004 if (ret)
1005 goto out_reserve;
e6dcd2dc 1006
98d20f67 1007 cur_alloc_size = ins.offset;
e6dcd2dc 1008 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1009 ram_size, cur_alloc_size, 0);
ace68bac 1010 if (ret)
d9f85963 1011 goto out_drop_extent_cache;
c8b97818 1012
17d217fe
YZ
1013 if (root->root_key.objectid ==
1014 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015 ret = btrfs_reloc_clone_csums(inode, start,
1016 cur_alloc_size);
00361589 1017 if (ret)
d9f85963 1018 goto out_drop_extent_cache;
17d217fe
YZ
1019 }
1020
d397712b 1021 if (disk_num_bytes < cur_alloc_size)
3b951516 1022 break;
d397712b 1023
c8b97818
CM
1024 /* we're not doing compressed IO, don't unlock the first
1025 * page (which the caller expects to stay locked), don't
1026 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1027 *
1028 * Do set the Private2 bit so we know this page was properly
1029 * setup for writepage
c8b97818 1030 */
c2790a2e
JB
1031 op = unlock ? PAGE_UNLOCK : 0;
1032 op |= PAGE_SET_PRIVATE2;
a791e35e 1033
c2790a2e
JB
1034 extent_clear_unlock_delalloc(inode, start,
1035 start + ram_size - 1, locked_page,
1036 EXTENT_LOCKED | EXTENT_DELALLOC,
1037 op);
c8b97818 1038 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1039 num_bytes -= cur_alloc_size;
1040 alloc_hint = ins.objectid + ins.offset;
1041 start += cur_alloc_size;
b888db2b 1042 }
79787eaa 1043out:
be20aa9d 1044 return ret;
b7d5b0a8 1045
d9f85963
FM
1046out_drop_extent_cache:
1047 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1048out_reserve:
e570fd27 1049 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1050out_unlock:
c2790a2e 1051 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053 EXTENT_DELALLOC | EXTENT_DEFRAG,
1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1056 goto out;
771ed689 1057}
c8b97818 1058
771ed689
CM
1059/*
1060 * work queue call back to started compression on a file and pages
1061 */
1062static noinline void async_cow_start(struct btrfs_work *work)
1063{
1064 struct async_cow *async_cow;
1065 int num_added = 0;
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 compress_file_range(async_cow->inode, async_cow->locked_page,
1069 async_cow->start, async_cow->end, async_cow,
1070 &num_added);
8180ef88 1071 if (num_added == 0) {
cb77fcd8 1072 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1073 async_cow->inode = NULL;
8180ef88 1074 }
771ed689
CM
1075}
1076
1077/*
1078 * work queue call back to submit previously compressed pages
1079 */
1080static noinline void async_cow_submit(struct btrfs_work *work)
1081{
1082 struct async_cow *async_cow;
1083 struct btrfs_root *root;
1084 unsigned long nr_pages;
1085
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 root = async_cow->root;
1089 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091
66657b31 1092 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1093 5 * 1024 * 1024 &&
771ed689
CM
1094 waitqueue_active(&root->fs_info->async_submit_wait))
1095 wake_up(&root->fs_info->async_submit_wait);
1096
d397712b 1097 if (async_cow->inode)
771ed689 1098 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1099}
c8b97818 1100
771ed689
CM
1101static noinline void async_cow_free(struct btrfs_work *work)
1102{
1103 struct async_cow *async_cow;
1104 async_cow = container_of(work, struct async_cow, work);
8180ef88 1105 if (async_cow->inode)
cb77fcd8 1106 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1107 kfree(async_cow);
1108}
1109
1110static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111 u64 start, u64 end, int *page_started,
1112 unsigned long *nr_written)
1113{
1114 struct async_cow *async_cow;
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 unsigned long nr_pages;
1117 u64 cur_end;
287082b0 1118 int limit = 10 * 1024 * 1024;
771ed689 1119
a3429ab7
CM
1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121 1, 0, NULL, GFP_NOFS);
d397712b 1122 while (start < end) {
771ed689 1123 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1124 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1125 async_cow->inode = igrab(inode);
771ed689
CM
1126 async_cow->root = root;
1127 async_cow->locked_page = locked_page;
1128 async_cow->start = start;
1129
f79707b0
WS
1130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1132 cur_end = end;
1133 else
1134 cur_end = min(end, start + 512 * 1024 - 1);
1135
1136 async_cow->end = cur_end;
1137 INIT_LIST_HEAD(&async_cow->extents);
1138
9e0af237
LB
1139 btrfs_init_work(&async_cow->work,
1140 btrfs_delalloc_helper,
1141 async_cow_start, async_cow_submit,
1142 async_cow_free);
771ed689 1143
771ed689
CM
1144 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145 PAGE_CACHE_SHIFT;
1146 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
afe3d242
QW
1148 btrfs_queue_work(root->fs_info->delalloc_workers,
1149 &async_cow->work);
771ed689
CM
1150
1151 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152 wait_event(root->fs_info->async_submit_wait,
1153 (atomic_read(&root->fs_info->async_delalloc_pages) <
1154 limit));
1155 }
1156
d397712b 1157 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1158 atomic_read(&root->fs_info->async_delalloc_pages)) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161 0));
1162 }
1163
1164 *nr_written += nr_pages;
1165 start = cur_end + 1;
1166 }
1167 *page_started = 1;
1168 return 0;
be20aa9d
CM
1169}
1170
d397712b 1171static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1172 u64 bytenr, u64 num_bytes)
1173{
1174 int ret;
1175 struct btrfs_ordered_sum *sums;
1176 LIST_HEAD(list);
1177
07d400a6 1178 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1179 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1180 if (ret == 0 && list_empty(&list))
1181 return 0;
1182
1183 while (!list_empty(&list)) {
1184 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185 list_del(&sums->list);
1186 kfree(sums);
1187 }
1188 return 1;
1189}
1190
d352ac68
CM
1191/*
1192 * when nowcow writeback call back. This checks for snapshots or COW copies
1193 * of the extents that exist in the file, and COWs the file as required.
1194 *
1195 * If no cow copies or snapshots exist, we write directly to the existing
1196 * blocks on disk
1197 */
7f366cfe
CM
1198static noinline int run_delalloc_nocow(struct inode *inode,
1199 struct page *locked_page,
771ed689
CM
1200 u64 start, u64 end, int *page_started, int force,
1201 unsigned long *nr_written)
be20aa9d 1202{
be20aa9d 1203 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1204 struct btrfs_trans_handle *trans;
be20aa9d 1205 struct extent_buffer *leaf;
be20aa9d 1206 struct btrfs_path *path;
80ff3856 1207 struct btrfs_file_extent_item *fi;
be20aa9d 1208 struct btrfs_key found_key;
80ff3856
YZ
1209 u64 cow_start;
1210 u64 cur_offset;
1211 u64 extent_end;
5d4f98a2 1212 u64 extent_offset;
80ff3856
YZ
1213 u64 disk_bytenr;
1214 u64 num_bytes;
b4939680 1215 u64 disk_num_bytes;
cc95bef6 1216 u64 ram_bytes;
80ff3856 1217 int extent_type;
79787eaa 1218 int ret, err;
d899e052 1219 int type;
80ff3856
YZ
1220 int nocow;
1221 int check_prev = 1;
82d5902d 1222 bool nolock;
33345d01 1223 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1224
1225 path = btrfs_alloc_path();
17ca04af 1226 if (!path) {
c2790a2e
JB
1227 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1229 EXTENT_DO_ACCOUNTING |
1230 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1231 PAGE_CLEAR_DIRTY |
1232 PAGE_SET_WRITEBACK |
1233 PAGE_END_WRITEBACK);
d8926bb3 1234 return -ENOMEM;
17ca04af 1235 }
82d5902d 1236
83eea1f1 1237 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1238
1239 if (nolock)
7a7eaa40 1240 trans = btrfs_join_transaction_nolock(root);
82d5902d 1241 else
7a7eaa40 1242 trans = btrfs_join_transaction(root);
ff5714cc 1243
79787eaa 1244 if (IS_ERR(trans)) {
c2790a2e
JB
1245 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1247 EXTENT_DO_ACCOUNTING |
1248 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1249 PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK |
1251 PAGE_END_WRITEBACK);
79787eaa
JM
1252 btrfs_free_path(path);
1253 return PTR_ERR(trans);
1254 }
1255
74b21075 1256 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1257
80ff3856
YZ
1258 cow_start = (u64)-1;
1259 cur_offset = start;
1260 while (1) {
33345d01 1261 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1262 cur_offset, 0);
d788a349 1263 if (ret < 0)
79787eaa 1264 goto error;
80ff3856
YZ
1265 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266 leaf = path->nodes[0];
1267 btrfs_item_key_to_cpu(leaf, &found_key,
1268 path->slots[0] - 1);
33345d01 1269 if (found_key.objectid == ino &&
80ff3856
YZ
1270 found_key.type == BTRFS_EXTENT_DATA_KEY)
1271 path->slots[0]--;
1272 }
1273 check_prev = 0;
1274next_slot:
1275 leaf = path->nodes[0];
1276 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277 ret = btrfs_next_leaf(root, path);
d788a349 1278 if (ret < 0)
79787eaa 1279 goto error;
80ff3856
YZ
1280 if (ret > 0)
1281 break;
1282 leaf = path->nodes[0];
1283 }
be20aa9d 1284
80ff3856
YZ
1285 nocow = 0;
1286 disk_bytenr = 0;
17d217fe 1287 num_bytes = 0;
80ff3856
YZ
1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
33345d01 1290 if (found_key.objectid > ino ||
80ff3856
YZ
1291 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292 found_key.offset > end)
1293 break;
1294
1295 if (found_key.offset > cur_offset) {
1296 extent_end = found_key.offset;
e9061e21 1297 extent_type = 0;
80ff3856
YZ
1298 goto out_check;
1299 }
1300
1301 fi = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_file_extent_item);
1303 extent_type = btrfs_file_extent_type(leaf, fi);
1304
cc95bef6 1305 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1306 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1308 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1309 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1310 extent_end = found_key.offset +
1311 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1312 disk_num_bytes =
1313 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1314 if (extent_end <= start) {
1315 path->slots[0]++;
1316 goto next_slot;
1317 }
17d217fe
YZ
1318 if (disk_bytenr == 0)
1319 goto out_check;
80ff3856
YZ
1320 if (btrfs_file_extent_compression(leaf, fi) ||
1321 btrfs_file_extent_encryption(leaf, fi) ||
1322 btrfs_file_extent_other_encoding(leaf, fi))
1323 goto out_check;
d899e052
YZ
1324 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325 goto out_check;
d2fb3437 1326 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1327 goto out_check;
33345d01 1328 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1329 found_key.offset -
1330 extent_offset, disk_bytenr))
17d217fe 1331 goto out_check;
5d4f98a2 1332 disk_bytenr += extent_offset;
17d217fe
YZ
1333 disk_bytenr += cur_offset - found_key.offset;
1334 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1335 /*
1336 * if there are pending snapshots for this root,
1337 * we fall into common COW way.
1338 */
1339 if (!nolock) {
9ea24bbe 1340 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1341 if (!err)
1342 goto out_check;
1343 }
17d217fe
YZ
1344 /*
1345 * force cow if csum exists in the range.
1346 * this ensure that csum for a given extent are
1347 * either valid or do not exist.
1348 */
1349 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350 goto out_check;
80ff3856
YZ
1351 nocow = 1;
1352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 extent_end = found_key.offset +
514ac8ad
CM
1354 btrfs_file_extent_inline_len(leaf,
1355 path->slots[0], fi);
80ff3856
YZ
1356 extent_end = ALIGN(extent_end, root->sectorsize);
1357 } else {
1358 BUG_ON(1);
1359 }
1360out_check:
1361 if (extent_end <= start) {
1362 path->slots[0]++;
e9894fd3 1363 if (!nolock && nocow)
9ea24bbe 1364 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1365 goto next_slot;
1366 }
1367 if (!nocow) {
1368 if (cow_start == (u64)-1)
1369 cow_start = cur_offset;
1370 cur_offset = extent_end;
1371 if (cur_offset > end)
1372 break;
1373 path->slots[0]++;
1374 goto next_slot;
7ea394f1
YZ
1375 }
1376
b3b4aa74 1377 btrfs_release_path(path);
80ff3856 1378 if (cow_start != (u64)-1) {
00361589
JB
1379 ret = cow_file_range(inode, locked_page,
1380 cow_start, found_key.offset - 1,
1381 page_started, nr_written, 1);
e9894fd3
WS
1382 if (ret) {
1383 if (!nolock && nocow)
9ea24bbe 1384 btrfs_end_write_no_snapshoting(root);
79787eaa 1385 goto error;
e9894fd3 1386 }
80ff3856 1387 cow_start = (u64)-1;
7ea394f1 1388 }
80ff3856 1389
d899e052
YZ
1390 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391 struct extent_map *em;
1392 struct extent_map_tree *em_tree;
1393 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1394 em = alloc_extent_map();
79787eaa 1395 BUG_ON(!em); /* -ENOMEM */
d899e052 1396 em->start = cur_offset;
70c8a91c 1397 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1398 em->len = num_bytes;
1399 em->block_len = num_bytes;
1400 em->block_start = disk_bytenr;
b4939680 1401 em->orig_block_len = disk_num_bytes;
cc95bef6 1402 em->ram_bytes = ram_bytes;
d899e052 1403 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1404 em->mod_start = em->start;
1405 em->mod_len = em->len;
d899e052 1406 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1407 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1408 em->generation = -1;
d899e052 1409 while (1) {
890871be 1410 write_lock(&em_tree->lock);
09a2a8f9 1411 ret = add_extent_mapping(em_tree, em, 1);
890871be 1412 write_unlock(&em_tree->lock);
d899e052
YZ
1413 if (ret != -EEXIST) {
1414 free_extent_map(em);
1415 break;
1416 }
1417 btrfs_drop_extent_cache(inode, em->start,
1418 em->start + em->len - 1, 0);
1419 }
1420 type = BTRFS_ORDERED_PREALLOC;
1421 } else {
1422 type = BTRFS_ORDERED_NOCOW;
1423 }
80ff3856
YZ
1424
1425 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1426 num_bytes, num_bytes, type);
79787eaa 1427 BUG_ON(ret); /* -ENOMEM */
771ed689 1428
efa56464
YZ
1429 if (root->root_key.objectid ==
1430 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432 num_bytes);
e9894fd3
WS
1433 if (ret) {
1434 if (!nolock && nocow)
9ea24bbe 1435 btrfs_end_write_no_snapshoting(root);
79787eaa 1436 goto error;
e9894fd3 1437 }
efa56464
YZ
1438 }
1439
c2790a2e
JB
1440 extent_clear_unlock_delalloc(inode, cur_offset,
1441 cur_offset + num_bytes - 1,
1442 locked_page, EXTENT_LOCKED |
1443 EXTENT_DELALLOC, PAGE_UNLOCK |
1444 PAGE_SET_PRIVATE2);
e9894fd3 1445 if (!nolock && nocow)
9ea24bbe 1446 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1447 cur_offset = extent_end;
1448 if (cur_offset > end)
1449 break;
be20aa9d 1450 }
b3b4aa74 1451 btrfs_release_path(path);
80ff3856 1452
17ca04af 1453 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1454 cow_start = cur_offset;
17ca04af
JB
1455 cur_offset = end;
1456 }
1457
80ff3856 1458 if (cow_start != (u64)-1) {
00361589
JB
1459 ret = cow_file_range(inode, locked_page, cow_start, end,
1460 page_started, nr_written, 1);
d788a349 1461 if (ret)
79787eaa 1462 goto error;
80ff3856
YZ
1463 }
1464
79787eaa 1465error:
a698d075 1466 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1467 if (!ret)
1468 ret = err;
1469
17ca04af 1470 if (ret && cur_offset < end)
c2790a2e
JB
1471 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472 locked_page, EXTENT_LOCKED |
151a41bc
JB
1473 EXTENT_DELALLOC | EXTENT_DEFRAG |
1474 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1476 PAGE_SET_WRITEBACK |
1477 PAGE_END_WRITEBACK);
7ea394f1 1478 btrfs_free_path(path);
79787eaa 1479 return ret;
be20aa9d
CM
1480}
1481
47059d93
WS
1482static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483{
1484
1485 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487 return 0;
1488
1489 /*
1490 * @defrag_bytes is a hint value, no spinlock held here,
1491 * if is not zero, it means the file is defragging.
1492 * Force cow if given extent needs to be defragged.
1493 */
1494 if (BTRFS_I(inode)->defrag_bytes &&
1495 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496 EXTENT_DEFRAG, 0, NULL))
1497 return 1;
1498
1499 return 0;
1500}
1501
d352ac68
CM
1502/*
1503 * extent_io.c call back to do delayed allocation processing
1504 */
c8b97818 1505static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1506 u64 start, u64 end, int *page_started,
1507 unsigned long *nr_written)
be20aa9d 1508{
be20aa9d 1509 int ret;
47059d93 1510 int force_cow = need_force_cow(inode, start, end);
a2135011 1511
47059d93 1512 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1513 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1514 page_started, 1, nr_written);
47059d93 1515 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1516 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1517 page_started, 0, nr_written);
7816030e 1518 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1519 ret = cow_file_range(inode, locked_page, start, end,
1520 page_started, nr_written, 1);
7ddf5a42
JB
1521 } else {
1522 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523 &BTRFS_I(inode)->runtime_flags);
771ed689 1524 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1525 page_started, nr_written);
7ddf5a42 1526 }
b888db2b
CM
1527 return ret;
1528}
1529
1bf85046
JM
1530static void btrfs_split_extent_hook(struct inode *inode,
1531 struct extent_state *orig, u64 split)
9ed74f2d 1532{
0ca1f7ce 1533 /* not delalloc, ignore it */
9ed74f2d 1534 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1535 return;
9ed74f2d 1536
9e0baf60
JB
1537 spin_lock(&BTRFS_I(inode)->lock);
1538 BTRFS_I(inode)->outstanding_extents++;
1539 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1540}
1541
1542/*
1543 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1544 * extents so we can keep track of new extents that are just merged onto old
1545 * extents, such as when we are doing sequential writes, so we can properly
1546 * account for the metadata space we'll need.
1547 */
1bf85046
JM
1548static void btrfs_merge_extent_hook(struct inode *inode,
1549 struct extent_state *new,
1550 struct extent_state *other)
9ed74f2d 1551{
9ed74f2d
JB
1552 /* not delalloc, ignore it */
1553 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1554 return;
9ed74f2d 1555
9e0baf60
JB
1556 spin_lock(&BTRFS_I(inode)->lock);
1557 BTRFS_I(inode)->outstanding_extents--;
1558 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1559}
1560
eb73c1b7
MX
1561static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1562 struct inode *inode)
1563{
1564 spin_lock(&root->delalloc_lock);
1565 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1566 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1567 &root->delalloc_inodes);
1568 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1569 &BTRFS_I(inode)->runtime_flags);
1570 root->nr_delalloc_inodes++;
1571 if (root->nr_delalloc_inodes == 1) {
1572 spin_lock(&root->fs_info->delalloc_root_lock);
1573 BUG_ON(!list_empty(&root->delalloc_root));
1574 list_add_tail(&root->delalloc_root,
1575 &root->fs_info->delalloc_roots);
1576 spin_unlock(&root->fs_info->delalloc_root_lock);
1577 }
1578 }
1579 spin_unlock(&root->delalloc_lock);
1580}
1581
1582static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1583 struct inode *inode)
1584{
1585 spin_lock(&root->delalloc_lock);
1586 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1587 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1588 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1589 &BTRFS_I(inode)->runtime_flags);
1590 root->nr_delalloc_inodes--;
1591 if (!root->nr_delalloc_inodes) {
1592 spin_lock(&root->fs_info->delalloc_root_lock);
1593 BUG_ON(list_empty(&root->delalloc_root));
1594 list_del_init(&root->delalloc_root);
1595 spin_unlock(&root->fs_info->delalloc_root_lock);
1596 }
1597 }
1598 spin_unlock(&root->delalloc_lock);
1599}
1600
d352ac68
CM
1601/*
1602 * extent_io.c set_bit_hook, used to track delayed allocation
1603 * bytes in this file, and to maintain the list of inodes that
1604 * have pending delalloc work to be done.
1605 */
1bf85046 1606static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1607 struct extent_state *state, unsigned *bits)
291d673e 1608{
9ed74f2d 1609
47059d93
WS
1610 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1611 WARN_ON(1);
75eff68e
CM
1612 /*
1613 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1614 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1615 * bit, which is only set or cleared with irqs on
1616 */
0ca1f7ce 1617 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1618 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1619 u64 len = state->end + 1 - state->start;
83eea1f1 1620 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1621
9e0baf60 1622 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1623 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1624 } else {
1625 spin_lock(&BTRFS_I(inode)->lock);
1626 BTRFS_I(inode)->outstanding_extents++;
1627 spin_unlock(&BTRFS_I(inode)->lock);
1628 }
287a0ab9 1629
963d678b
MX
1630 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1631 root->fs_info->delalloc_batch);
df0af1a5 1632 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1633 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1634 if (*bits & EXTENT_DEFRAG)
1635 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1636 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1637 &BTRFS_I(inode)->runtime_flags))
1638 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1639 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1640 }
291d673e
CM
1641}
1642
d352ac68
CM
1643/*
1644 * extent_io.c clear_bit_hook, see set_bit_hook for why
1645 */
1bf85046 1646static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1647 struct extent_state *state,
9ee49a04 1648 unsigned *bits)
291d673e 1649{
47059d93
WS
1650 u64 len = state->end + 1 - state->start;
1651
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1654 BTRFS_I(inode)->defrag_bytes -= len;
1655 spin_unlock(&BTRFS_I(inode)->lock);
1656
75eff68e
CM
1657 /*
1658 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1659 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1660 * bit, which is only set or cleared with irqs on
1661 */
0ca1f7ce 1662 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1663 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1664 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1665
9e0baf60 1666 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1667 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1668 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1669 spin_lock(&BTRFS_I(inode)->lock);
1670 BTRFS_I(inode)->outstanding_extents--;
1671 spin_unlock(&BTRFS_I(inode)->lock);
1672 }
0ca1f7ce 1673
b6d08f06
JB
1674 /*
1675 * We don't reserve metadata space for space cache inodes so we
1676 * don't need to call dellalloc_release_metadata if there is an
1677 * error.
1678 */
1679 if (*bits & EXTENT_DO_ACCOUNTING &&
1680 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1681 btrfs_delalloc_release_metadata(inode, len);
1682
0cb59c99 1683 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1684 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1685 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1686
963d678b
MX
1687 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1688 root->fs_info->delalloc_batch);
df0af1a5 1689 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1690 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1691 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1692 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1693 &BTRFS_I(inode)->runtime_flags))
1694 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1695 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1696 }
291d673e
CM
1697}
1698
d352ac68
CM
1699/*
1700 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1701 * we don't create bios that span stripes or chunks
1702 */
64a16701 1703int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1704 size_t size, struct bio *bio,
1705 unsigned long bio_flags)
239b14b3
CM
1706{
1707 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1708 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1709 u64 length = 0;
1710 u64 map_length;
239b14b3
CM
1711 int ret;
1712
771ed689
CM
1713 if (bio_flags & EXTENT_BIO_COMPRESSED)
1714 return 0;
1715
4f024f37 1716 length = bio->bi_iter.bi_size;
239b14b3 1717 map_length = length;
64a16701 1718 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1719 &map_length, NULL, 0);
3ec706c8 1720 /* Will always return 0 with map_multi == NULL */
3444a972 1721 BUG_ON(ret < 0);
d397712b 1722 if (map_length < length + size)
239b14b3 1723 return 1;
3444a972 1724 return 0;
239b14b3
CM
1725}
1726
d352ac68
CM
1727/*
1728 * in order to insert checksums into the metadata in large chunks,
1729 * we wait until bio submission time. All the pages in the bio are
1730 * checksummed and sums are attached onto the ordered extent record.
1731 *
1732 * At IO completion time the cums attached on the ordered extent record
1733 * are inserted into the btree
1734 */
d397712b
CM
1735static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1736 struct bio *bio, int mirror_num,
eaf25d93
CM
1737 unsigned long bio_flags,
1738 u64 bio_offset)
065631f6 1739{
065631f6 1740 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1741 int ret = 0;
e015640f 1742
d20f7043 1743 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1744 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1745 return 0;
1746}
e015640f 1747
4a69a410
CM
1748/*
1749 * in order to insert checksums into the metadata in large chunks,
1750 * we wait until bio submission time. All the pages in the bio are
1751 * checksummed and sums are attached onto the ordered extent record.
1752 *
1753 * At IO completion time the cums attached on the ordered extent record
1754 * are inserted into the btree
1755 */
b2950863 1756static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1757 int mirror_num, unsigned long bio_flags,
1758 u64 bio_offset)
4a69a410
CM
1759{
1760 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1761 int ret;
1762
1763 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1764 if (ret)
1765 bio_endio(bio, ret);
1766 return ret;
44b8bd7e
CM
1767}
1768
d352ac68 1769/*
cad321ad
CM
1770 * extent_io.c submission hook. This does the right thing for csum calculation
1771 * on write, or reading the csums from the tree before a read
d352ac68 1772 */
b2950863 1773static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1774 int mirror_num, unsigned long bio_flags,
1775 u64 bio_offset)
44b8bd7e
CM
1776{
1777 struct btrfs_root *root = BTRFS_I(inode)->root;
1778 int ret = 0;
19b9bdb0 1779 int skip_sum;
0417341e 1780 int metadata = 0;
b812ce28 1781 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1782
6cbff00f 1783 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1784
83eea1f1 1785 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1786 metadata = 2;
1787
7b6d91da 1788 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1789 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1790 if (ret)
61891923 1791 goto out;
5fd02043 1792
d20f7043 1793 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1794 ret = btrfs_submit_compressed_read(inode, bio,
1795 mirror_num,
1796 bio_flags);
1797 goto out;
c2db1073
TI
1798 } else if (!skip_sum) {
1799 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1800 if (ret)
61891923 1801 goto out;
c2db1073 1802 }
4d1b5fb4 1803 goto mapit;
b812ce28 1804 } else if (async && !skip_sum) {
17d217fe
YZ
1805 /* csum items have already been cloned */
1806 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1807 goto mapit;
19b9bdb0 1808 /* we're doing a write, do the async checksumming */
61891923 1809 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1810 inode, rw, bio, mirror_num,
eaf25d93
CM
1811 bio_flags, bio_offset,
1812 __btrfs_submit_bio_start,
4a69a410 1813 __btrfs_submit_bio_done);
61891923 1814 goto out;
b812ce28
JB
1815 } else if (!skip_sum) {
1816 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1817 if (ret)
1818 goto out;
19b9bdb0
CM
1819 }
1820
0b86a832 1821mapit:
61891923
SB
1822 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1823
1824out:
1825 if (ret < 0)
1826 bio_endio(bio, ret);
1827 return ret;
065631f6 1828}
6885f308 1829
d352ac68
CM
1830/*
1831 * given a list of ordered sums record them in the inode. This happens
1832 * at IO completion time based on sums calculated at bio submission time.
1833 */
ba1da2f4 1834static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1835 struct inode *inode, u64 file_offset,
1836 struct list_head *list)
1837{
e6dcd2dc
CM
1838 struct btrfs_ordered_sum *sum;
1839
c6e30871 1840 list_for_each_entry(sum, list, list) {
39847c4d 1841 trans->adding_csums = 1;
d20f7043
CM
1842 btrfs_csum_file_blocks(trans,
1843 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1844 trans->adding_csums = 0;
e6dcd2dc
CM
1845 }
1846 return 0;
1847}
1848
2ac55d41
JB
1849int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1850 struct extent_state **cached_state)
ea8c2819 1851{
6c1500f2 1852 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1853 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1854 cached_state, GFP_NOFS);
ea8c2819
CM
1855}
1856
d352ac68 1857/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1858struct btrfs_writepage_fixup {
1859 struct page *page;
1860 struct btrfs_work work;
1861};
1862
b2950863 1863static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1864{
1865 struct btrfs_writepage_fixup *fixup;
1866 struct btrfs_ordered_extent *ordered;
2ac55d41 1867 struct extent_state *cached_state = NULL;
247e743c
CM
1868 struct page *page;
1869 struct inode *inode;
1870 u64 page_start;
1871 u64 page_end;
87826df0 1872 int ret;
247e743c
CM
1873
1874 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1875 page = fixup->page;
4a096752 1876again:
247e743c
CM
1877 lock_page(page);
1878 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1879 ClearPageChecked(page);
1880 goto out_page;
1881 }
1882
1883 inode = page->mapping->host;
1884 page_start = page_offset(page);
1885 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1886
2ac55d41 1887 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1888 &cached_state);
4a096752
CM
1889
1890 /* already ordered? We're done */
8b62b72b 1891 if (PagePrivate2(page))
247e743c 1892 goto out;
4a096752
CM
1893
1894 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1895 if (ordered) {
2ac55d41
JB
1896 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1897 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1898 unlock_page(page);
1899 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1900 btrfs_put_ordered_extent(ordered);
4a096752
CM
1901 goto again;
1902 }
247e743c 1903
87826df0
JM
1904 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1905 if (ret) {
1906 mapping_set_error(page->mapping, ret);
1907 end_extent_writepage(page, ret, page_start, page_end);
1908 ClearPageChecked(page);
1909 goto out;
1910 }
1911
2ac55d41 1912 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1913 ClearPageChecked(page);
87826df0 1914 set_page_dirty(page);
247e743c 1915out:
2ac55d41
JB
1916 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1917 &cached_state, GFP_NOFS);
247e743c
CM
1918out_page:
1919 unlock_page(page);
1920 page_cache_release(page);
b897abec 1921 kfree(fixup);
247e743c
CM
1922}
1923
1924/*
1925 * There are a few paths in the higher layers of the kernel that directly
1926 * set the page dirty bit without asking the filesystem if it is a
1927 * good idea. This causes problems because we want to make sure COW
1928 * properly happens and the data=ordered rules are followed.
1929 *
c8b97818 1930 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1931 * hasn't been properly setup for IO. We kick off an async process
1932 * to fix it up. The async helper will wait for ordered extents, set
1933 * the delalloc bit and make it safe to write the page.
1934 */
b2950863 1935static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1936{
1937 struct inode *inode = page->mapping->host;
1938 struct btrfs_writepage_fixup *fixup;
1939 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1940
8b62b72b
CM
1941 /* this page is properly in the ordered list */
1942 if (TestClearPagePrivate2(page))
247e743c
CM
1943 return 0;
1944
1945 if (PageChecked(page))
1946 return -EAGAIN;
1947
1948 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1949 if (!fixup)
1950 return -EAGAIN;
f421950f 1951
247e743c
CM
1952 SetPageChecked(page);
1953 page_cache_get(page);
9e0af237
LB
1954 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1955 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1956 fixup->page = page;
dc6e3209 1957 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1958 return -EBUSY;
247e743c
CM
1959}
1960
d899e052
YZ
1961static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1962 struct inode *inode, u64 file_pos,
1963 u64 disk_bytenr, u64 disk_num_bytes,
1964 u64 num_bytes, u64 ram_bytes,
1965 u8 compression, u8 encryption,
1966 u16 other_encoding, int extent_type)
1967{
1968 struct btrfs_root *root = BTRFS_I(inode)->root;
1969 struct btrfs_file_extent_item *fi;
1970 struct btrfs_path *path;
1971 struct extent_buffer *leaf;
1972 struct btrfs_key ins;
1acae57b 1973 int extent_inserted = 0;
d899e052
YZ
1974 int ret;
1975
1976 path = btrfs_alloc_path();
d8926bb3
MF
1977 if (!path)
1978 return -ENOMEM;
d899e052 1979
a1ed835e
CM
1980 /*
1981 * we may be replacing one extent in the tree with another.
1982 * The new extent is pinned in the extent map, and we don't want
1983 * to drop it from the cache until it is completely in the btree.
1984 *
1985 * So, tell btrfs_drop_extents to leave this extent in the cache.
1986 * the caller is expected to unpin it and allow it to be merged
1987 * with the others.
1988 */
1acae57b
FDBM
1989 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1990 file_pos + num_bytes, NULL, 0,
1991 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1992 if (ret)
1993 goto out;
d899e052 1994
1acae57b
FDBM
1995 if (!extent_inserted) {
1996 ins.objectid = btrfs_ino(inode);
1997 ins.offset = file_pos;
1998 ins.type = BTRFS_EXTENT_DATA_KEY;
1999
2000 path->leave_spinning = 1;
2001 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2002 sizeof(*fi));
2003 if (ret)
2004 goto out;
2005 }
d899e052
YZ
2006 leaf = path->nodes[0];
2007 fi = btrfs_item_ptr(leaf, path->slots[0],
2008 struct btrfs_file_extent_item);
2009 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2010 btrfs_set_file_extent_type(leaf, fi, extent_type);
2011 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2012 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2013 btrfs_set_file_extent_offset(leaf, fi, 0);
2014 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2015 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2016 btrfs_set_file_extent_compression(leaf, fi, compression);
2017 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2018 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2019
d899e052 2020 btrfs_mark_buffer_dirty(leaf);
ce195332 2021 btrfs_release_path(path);
d899e052
YZ
2022
2023 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2024
2025 ins.objectid = disk_bytenr;
2026 ins.offset = disk_num_bytes;
2027 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2028 ret = btrfs_alloc_reserved_file_extent(trans, root,
2029 root->root_key.objectid,
33345d01 2030 btrfs_ino(inode), file_pos, &ins);
79787eaa 2031out:
d899e052 2032 btrfs_free_path(path);
b9473439 2033
79787eaa 2034 return ret;
d899e052
YZ
2035}
2036
38c227d8
LB
2037/* snapshot-aware defrag */
2038struct sa_defrag_extent_backref {
2039 struct rb_node node;
2040 struct old_sa_defrag_extent *old;
2041 u64 root_id;
2042 u64 inum;
2043 u64 file_pos;
2044 u64 extent_offset;
2045 u64 num_bytes;
2046 u64 generation;
2047};
2048
2049struct old_sa_defrag_extent {
2050 struct list_head list;
2051 struct new_sa_defrag_extent *new;
2052
2053 u64 extent_offset;
2054 u64 bytenr;
2055 u64 offset;
2056 u64 len;
2057 int count;
2058};
2059
2060struct new_sa_defrag_extent {
2061 struct rb_root root;
2062 struct list_head head;
2063 struct btrfs_path *path;
2064 struct inode *inode;
2065 u64 file_pos;
2066 u64 len;
2067 u64 bytenr;
2068 u64 disk_len;
2069 u8 compress_type;
2070};
2071
2072static int backref_comp(struct sa_defrag_extent_backref *b1,
2073 struct sa_defrag_extent_backref *b2)
2074{
2075 if (b1->root_id < b2->root_id)
2076 return -1;
2077 else if (b1->root_id > b2->root_id)
2078 return 1;
2079
2080 if (b1->inum < b2->inum)
2081 return -1;
2082 else if (b1->inum > b2->inum)
2083 return 1;
2084
2085 if (b1->file_pos < b2->file_pos)
2086 return -1;
2087 else if (b1->file_pos > b2->file_pos)
2088 return 1;
2089
2090 /*
2091 * [------------------------------] ===> (a range of space)
2092 * |<--->| |<---->| =============> (fs/file tree A)
2093 * |<---------------------------->| ===> (fs/file tree B)
2094 *
2095 * A range of space can refer to two file extents in one tree while
2096 * refer to only one file extent in another tree.
2097 *
2098 * So we may process a disk offset more than one time(two extents in A)
2099 * and locate at the same extent(one extent in B), then insert two same
2100 * backrefs(both refer to the extent in B).
2101 */
2102 return 0;
2103}
2104
2105static void backref_insert(struct rb_root *root,
2106 struct sa_defrag_extent_backref *backref)
2107{
2108 struct rb_node **p = &root->rb_node;
2109 struct rb_node *parent = NULL;
2110 struct sa_defrag_extent_backref *entry;
2111 int ret;
2112
2113 while (*p) {
2114 parent = *p;
2115 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2116
2117 ret = backref_comp(backref, entry);
2118 if (ret < 0)
2119 p = &(*p)->rb_left;
2120 else
2121 p = &(*p)->rb_right;
2122 }
2123
2124 rb_link_node(&backref->node, parent, p);
2125 rb_insert_color(&backref->node, root);
2126}
2127
2128/*
2129 * Note the backref might has changed, and in this case we just return 0.
2130 */
2131static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2132 void *ctx)
2133{
2134 struct btrfs_file_extent_item *extent;
2135 struct btrfs_fs_info *fs_info;
2136 struct old_sa_defrag_extent *old = ctx;
2137 struct new_sa_defrag_extent *new = old->new;
2138 struct btrfs_path *path = new->path;
2139 struct btrfs_key key;
2140 struct btrfs_root *root;
2141 struct sa_defrag_extent_backref *backref;
2142 struct extent_buffer *leaf;
2143 struct inode *inode = new->inode;
2144 int slot;
2145 int ret;
2146 u64 extent_offset;
2147 u64 num_bytes;
2148
2149 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2150 inum == btrfs_ino(inode))
2151 return 0;
2152
2153 key.objectid = root_id;
2154 key.type = BTRFS_ROOT_ITEM_KEY;
2155 key.offset = (u64)-1;
2156
2157 fs_info = BTRFS_I(inode)->root->fs_info;
2158 root = btrfs_read_fs_root_no_name(fs_info, &key);
2159 if (IS_ERR(root)) {
2160 if (PTR_ERR(root) == -ENOENT)
2161 return 0;
2162 WARN_ON(1);
2163 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2164 inum, offset, root_id);
2165 return PTR_ERR(root);
2166 }
2167
2168 key.objectid = inum;
2169 key.type = BTRFS_EXTENT_DATA_KEY;
2170 if (offset > (u64)-1 << 32)
2171 key.offset = 0;
2172 else
2173 key.offset = offset;
2174
2175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2176 if (WARN_ON(ret < 0))
38c227d8 2177 return ret;
50f1319c 2178 ret = 0;
38c227d8
LB
2179
2180 while (1) {
2181 cond_resched();
2182
2183 leaf = path->nodes[0];
2184 slot = path->slots[0];
2185
2186 if (slot >= btrfs_header_nritems(leaf)) {
2187 ret = btrfs_next_leaf(root, path);
2188 if (ret < 0) {
2189 goto out;
2190 } else if (ret > 0) {
2191 ret = 0;
2192 goto out;
2193 }
2194 continue;
2195 }
2196
2197 path->slots[0]++;
2198
2199 btrfs_item_key_to_cpu(leaf, &key, slot);
2200
2201 if (key.objectid > inum)
2202 goto out;
2203
2204 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2205 continue;
2206
2207 extent = btrfs_item_ptr(leaf, slot,
2208 struct btrfs_file_extent_item);
2209
2210 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2211 continue;
2212
e68afa49
LB
2213 /*
2214 * 'offset' refers to the exact key.offset,
2215 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2216 * (key.offset - extent_offset).
2217 */
2218 if (key.offset != offset)
38c227d8
LB
2219 continue;
2220
e68afa49 2221 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2222 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2223
38c227d8
LB
2224 if (extent_offset >= old->extent_offset + old->offset +
2225 old->len || extent_offset + num_bytes <=
2226 old->extent_offset + old->offset)
2227 continue;
38c227d8
LB
2228 break;
2229 }
2230
2231 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2232 if (!backref) {
2233 ret = -ENOENT;
2234 goto out;
2235 }
2236
2237 backref->root_id = root_id;
2238 backref->inum = inum;
e68afa49 2239 backref->file_pos = offset;
38c227d8
LB
2240 backref->num_bytes = num_bytes;
2241 backref->extent_offset = extent_offset;
2242 backref->generation = btrfs_file_extent_generation(leaf, extent);
2243 backref->old = old;
2244 backref_insert(&new->root, backref);
2245 old->count++;
2246out:
2247 btrfs_release_path(path);
2248 WARN_ON(ret);
2249 return ret;
2250}
2251
2252static noinline bool record_extent_backrefs(struct btrfs_path *path,
2253 struct new_sa_defrag_extent *new)
2254{
2255 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2256 struct old_sa_defrag_extent *old, *tmp;
2257 int ret;
2258
2259 new->path = path;
2260
2261 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2262 ret = iterate_inodes_from_logical(old->bytenr +
2263 old->extent_offset, fs_info,
38c227d8
LB
2264 path, record_one_backref,
2265 old);
4724b106
JB
2266 if (ret < 0 && ret != -ENOENT)
2267 return false;
38c227d8
LB
2268
2269 /* no backref to be processed for this extent */
2270 if (!old->count) {
2271 list_del(&old->list);
2272 kfree(old);
2273 }
2274 }
2275
2276 if (list_empty(&new->head))
2277 return false;
2278
2279 return true;
2280}
2281
2282static int relink_is_mergable(struct extent_buffer *leaf,
2283 struct btrfs_file_extent_item *fi,
116e0024 2284 struct new_sa_defrag_extent *new)
38c227d8 2285{
116e0024 2286 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2287 return 0;
2288
2289 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2290 return 0;
2291
116e0024
LB
2292 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2293 return 0;
2294
2295 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2296 btrfs_file_extent_other_encoding(leaf, fi))
2297 return 0;
2298
2299 return 1;
2300}
2301
2302/*
2303 * Note the backref might has changed, and in this case we just return 0.
2304 */
2305static noinline int relink_extent_backref(struct btrfs_path *path,
2306 struct sa_defrag_extent_backref *prev,
2307 struct sa_defrag_extent_backref *backref)
2308{
2309 struct btrfs_file_extent_item *extent;
2310 struct btrfs_file_extent_item *item;
2311 struct btrfs_ordered_extent *ordered;
2312 struct btrfs_trans_handle *trans;
2313 struct btrfs_fs_info *fs_info;
2314 struct btrfs_root *root;
2315 struct btrfs_key key;
2316 struct extent_buffer *leaf;
2317 struct old_sa_defrag_extent *old = backref->old;
2318 struct new_sa_defrag_extent *new = old->new;
2319 struct inode *src_inode = new->inode;
2320 struct inode *inode;
2321 struct extent_state *cached = NULL;
2322 int ret = 0;
2323 u64 start;
2324 u64 len;
2325 u64 lock_start;
2326 u64 lock_end;
2327 bool merge = false;
2328 int index;
2329
2330 if (prev && prev->root_id == backref->root_id &&
2331 prev->inum == backref->inum &&
2332 prev->file_pos + prev->num_bytes == backref->file_pos)
2333 merge = true;
2334
2335 /* step 1: get root */
2336 key.objectid = backref->root_id;
2337 key.type = BTRFS_ROOT_ITEM_KEY;
2338 key.offset = (u64)-1;
2339
2340 fs_info = BTRFS_I(src_inode)->root->fs_info;
2341 index = srcu_read_lock(&fs_info->subvol_srcu);
2342
2343 root = btrfs_read_fs_root_no_name(fs_info, &key);
2344 if (IS_ERR(root)) {
2345 srcu_read_unlock(&fs_info->subvol_srcu, index);
2346 if (PTR_ERR(root) == -ENOENT)
2347 return 0;
2348 return PTR_ERR(root);
2349 }
38c227d8 2350
bcbba5e6
WS
2351 if (btrfs_root_readonly(root)) {
2352 srcu_read_unlock(&fs_info->subvol_srcu, index);
2353 return 0;
2354 }
2355
38c227d8
LB
2356 /* step 2: get inode */
2357 key.objectid = backref->inum;
2358 key.type = BTRFS_INODE_ITEM_KEY;
2359 key.offset = 0;
2360
2361 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2362 if (IS_ERR(inode)) {
2363 srcu_read_unlock(&fs_info->subvol_srcu, index);
2364 return 0;
2365 }
2366
2367 srcu_read_unlock(&fs_info->subvol_srcu, index);
2368
2369 /* step 3: relink backref */
2370 lock_start = backref->file_pos;
2371 lock_end = backref->file_pos + backref->num_bytes - 1;
2372 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2373 0, &cached);
2374
2375 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2376 if (ordered) {
2377 btrfs_put_ordered_extent(ordered);
2378 goto out_unlock;
2379 }
2380
2381 trans = btrfs_join_transaction(root);
2382 if (IS_ERR(trans)) {
2383 ret = PTR_ERR(trans);
2384 goto out_unlock;
2385 }
2386
2387 key.objectid = backref->inum;
2388 key.type = BTRFS_EXTENT_DATA_KEY;
2389 key.offset = backref->file_pos;
2390
2391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2392 if (ret < 0) {
2393 goto out_free_path;
2394 } else if (ret > 0) {
2395 ret = 0;
2396 goto out_free_path;
2397 }
2398
2399 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2400 struct btrfs_file_extent_item);
2401
2402 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2403 backref->generation)
2404 goto out_free_path;
2405
2406 btrfs_release_path(path);
2407
2408 start = backref->file_pos;
2409 if (backref->extent_offset < old->extent_offset + old->offset)
2410 start += old->extent_offset + old->offset -
2411 backref->extent_offset;
2412
2413 len = min(backref->extent_offset + backref->num_bytes,
2414 old->extent_offset + old->offset + old->len);
2415 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2416
2417 ret = btrfs_drop_extents(trans, root, inode, start,
2418 start + len, 1);
2419 if (ret)
2420 goto out_free_path;
2421again:
2422 key.objectid = btrfs_ino(inode);
2423 key.type = BTRFS_EXTENT_DATA_KEY;
2424 key.offset = start;
2425
a09a0a70 2426 path->leave_spinning = 1;
38c227d8
LB
2427 if (merge) {
2428 struct btrfs_file_extent_item *fi;
2429 u64 extent_len;
2430 struct btrfs_key found_key;
2431
3c9665df 2432 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2433 if (ret < 0)
2434 goto out_free_path;
2435
2436 path->slots[0]--;
2437 leaf = path->nodes[0];
2438 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2439
2440 fi = btrfs_item_ptr(leaf, path->slots[0],
2441 struct btrfs_file_extent_item);
2442 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2443
116e0024
LB
2444 if (extent_len + found_key.offset == start &&
2445 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2446 btrfs_set_file_extent_num_bytes(leaf, fi,
2447 extent_len + len);
2448 btrfs_mark_buffer_dirty(leaf);
2449 inode_add_bytes(inode, len);
2450
2451 ret = 1;
2452 goto out_free_path;
2453 } else {
2454 merge = false;
2455 btrfs_release_path(path);
2456 goto again;
2457 }
2458 }
2459
2460 ret = btrfs_insert_empty_item(trans, root, path, &key,
2461 sizeof(*extent));
2462 if (ret) {
2463 btrfs_abort_transaction(trans, root, ret);
2464 goto out_free_path;
2465 }
2466
2467 leaf = path->nodes[0];
2468 item = btrfs_item_ptr(leaf, path->slots[0],
2469 struct btrfs_file_extent_item);
2470 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2471 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2472 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2473 btrfs_set_file_extent_num_bytes(leaf, item, len);
2474 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2475 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2476 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2477 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2478 btrfs_set_file_extent_encryption(leaf, item, 0);
2479 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2480
2481 btrfs_mark_buffer_dirty(leaf);
2482 inode_add_bytes(inode, len);
a09a0a70 2483 btrfs_release_path(path);
38c227d8
LB
2484
2485 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2486 new->disk_len, 0,
2487 backref->root_id, backref->inum,
2488 new->file_pos, 0); /* start - extent_offset */
2489 if (ret) {
2490 btrfs_abort_transaction(trans, root, ret);
2491 goto out_free_path;
2492 }
2493
2494 ret = 1;
2495out_free_path:
2496 btrfs_release_path(path);
a09a0a70 2497 path->leave_spinning = 0;
38c227d8
LB
2498 btrfs_end_transaction(trans, root);
2499out_unlock:
2500 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2501 &cached, GFP_NOFS);
2502 iput(inode);
2503 return ret;
2504}
2505
6f519564
LB
2506static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2507{
2508 struct old_sa_defrag_extent *old, *tmp;
2509
2510 if (!new)
2511 return;
2512
2513 list_for_each_entry_safe(old, tmp, &new->head, list) {
2514 list_del(&old->list);
2515 kfree(old);
2516 }
2517 kfree(new);
2518}
2519
38c227d8
LB
2520static void relink_file_extents(struct new_sa_defrag_extent *new)
2521{
2522 struct btrfs_path *path;
38c227d8
LB
2523 struct sa_defrag_extent_backref *backref;
2524 struct sa_defrag_extent_backref *prev = NULL;
2525 struct inode *inode;
2526 struct btrfs_root *root;
2527 struct rb_node *node;
2528 int ret;
2529
2530 inode = new->inode;
2531 root = BTRFS_I(inode)->root;
2532
2533 path = btrfs_alloc_path();
2534 if (!path)
2535 return;
2536
2537 if (!record_extent_backrefs(path, new)) {
2538 btrfs_free_path(path);
2539 goto out;
2540 }
2541 btrfs_release_path(path);
2542
2543 while (1) {
2544 node = rb_first(&new->root);
2545 if (!node)
2546 break;
2547 rb_erase(node, &new->root);
2548
2549 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2550
2551 ret = relink_extent_backref(path, prev, backref);
2552 WARN_ON(ret < 0);
2553
2554 kfree(prev);
2555
2556 if (ret == 1)
2557 prev = backref;
2558 else
2559 prev = NULL;
2560 cond_resched();
2561 }
2562 kfree(prev);
2563
2564 btrfs_free_path(path);
38c227d8 2565out:
6f519564
LB
2566 free_sa_defrag_extent(new);
2567
38c227d8
LB
2568 atomic_dec(&root->fs_info->defrag_running);
2569 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2570}
2571
2572static struct new_sa_defrag_extent *
2573record_old_file_extents(struct inode *inode,
2574 struct btrfs_ordered_extent *ordered)
2575{
2576 struct btrfs_root *root = BTRFS_I(inode)->root;
2577 struct btrfs_path *path;
2578 struct btrfs_key key;
6f519564 2579 struct old_sa_defrag_extent *old;
38c227d8
LB
2580 struct new_sa_defrag_extent *new;
2581 int ret;
2582
2583 new = kmalloc(sizeof(*new), GFP_NOFS);
2584 if (!new)
2585 return NULL;
2586
2587 new->inode = inode;
2588 new->file_pos = ordered->file_offset;
2589 new->len = ordered->len;
2590 new->bytenr = ordered->start;
2591 new->disk_len = ordered->disk_len;
2592 new->compress_type = ordered->compress_type;
2593 new->root = RB_ROOT;
2594 INIT_LIST_HEAD(&new->head);
2595
2596 path = btrfs_alloc_path();
2597 if (!path)
2598 goto out_kfree;
2599
2600 key.objectid = btrfs_ino(inode);
2601 key.type = BTRFS_EXTENT_DATA_KEY;
2602 key.offset = new->file_pos;
2603
2604 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2605 if (ret < 0)
2606 goto out_free_path;
2607 if (ret > 0 && path->slots[0] > 0)
2608 path->slots[0]--;
2609
2610 /* find out all the old extents for the file range */
2611 while (1) {
2612 struct btrfs_file_extent_item *extent;
2613 struct extent_buffer *l;
2614 int slot;
2615 u64 num_bytes;
2616 u64 offset;
2617 u64 end;
2618 u64 disk_bytenr;
2619 u64 extent_offset;
2620
2621 l = path->nodes[0];
2622 slot = path->slots[0];
2623
2624 if (slot >= btrfs_header_nritems(l)) {
2625 ret = btrfs_next_leaf(root, path);
2626 if (ret < 0)
6f519564 2627 goto out_free_path;
38c227d8
LB
2628 else if (ret > 0)
2629 break;
2630 continue;
2631 }
2632
2633 btrfs_item_key_to_cpu(l, &key, slot);
2634
2635 if (key.objectid != btrfs_ino(inode))
2636 break;
2637 if (key.type != BTRFS_EXTENT_DATA_KEY)
2638 break;
2639 if (key.offset >= new->file_pos + new->len)
2640 break;
2641
2642 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2643
2644 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2645 if (key.offset + num_bytes < new->file_pos)
2646 goto next;
2647
2648 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2649 if (!disk_bytenr)
2650 goto next;
2651
2652 extent_offset = btrfs_file_extent_offset(l, extent);
2653
2654 old = kmalloc(sizeof(*old), GFP_NOFS);
2655 if (!old)
6f519564 2656 goto out_free_path;
38c227d8
LB
2657
2658 offset = max(new->file_pos, key.offset);
2659 end = min(new->file_pos + new->len, key.offset + num_bytes);
2660
2661 old->bytenr = disk_bytenr;
2662 old->extent_offset = extent_offset;
2663 old->offset = offset - key.offset;
2664 old->len = end - offset;
2665 old->new = new;
2666 old->count = 0;
2667 list_add_tail(&old->list, &new->head);
2668next:
2669 path->slots[0]++;
2670 cond_resched();
2671 }
2672
2673 btrfs_free_path(path);
2674 atomic_inc(&root->fs_info->defrag_running);
2675
2676 return new;
2677
38c227d8
LB
2678out_free_path:
2679 btrfs_free_path(path);
2680out_kfree:
6f519564 2681 free_sa_defrag_extent(new);
38c227d8
LB
2682 return NULL;
2683}
2684
e570fd27
MX
2685static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2686 u64 start, u64 len)
2687{
2688 struct btrfs_block_group_cache *cache;
2689
2690 cache = btrfs_lookup_block_group(root->fs_info, start);
2691 ASSERT(cache);
2692
2693 spin_lock(&cache->lock);
2694 cache->delalloc_bytes -= len;
2695 spin_unlock(&cache->lock);
2696
2697 btrfs_put_block_group(cache);
2698}
2699
d352ac68
CM
2700/* as ordered data IO finishes, this gets called so we can finish
2701 * an ordered extent if the range of bytes in the file it covers are
2702 * fully written.
2703 */
5fd02043 2704static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2705{
5fd02043 2706 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2707 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2708 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2709 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2710 struct extent_state *cached_state = NULL;
38c227d8 2711 struct new_sa_defrag_extent *new = NULL;
261507a0 2712 int compress_type = 0;
77cef2ec
JB
2713 int ret = 0;
2714 u64 logical_len = ordered_extent->len;
82d5902d 2715 bool nolock;
77cef2ec 2716 bool truncated = false;
e6dcd2dc 2717
83eea1f1 2718 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2719
5fd02043
JB
2720 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2721 ret = -EIO;
2722 goto out;
2723 }
2724
f612496b
MX
2725 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2726 ordered_extent->file_offset +
2727 ordered_extent->len - 1);
2728
77cef2ec
JB
2729 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2730 truncated = true;
2731 logical_len = ordered_extent->truncated_len;
2732 /* Truncated the entire extent, don't bother adding */
2733 if (!logical_len)
2734 goto out;
2735 }
2736
c2167754 2737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2738 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2739 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740 if (nolock)
2741 trans = btrfs_join_transaction_nolock(root);
2742 else
2743 trans = btrfs_join_transaction(root);
2744 if (IS_ERR(trans)) {
2745 ret = PTR_ERR(trans);
2746 trans = NULL;
2747 goto out;
c2167754 2748 }
6c760c07
JB
2749 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2750 ret = btrfs_update_inode_fallback(trans, root, inode);
2751 if (ret) /* -ENOMEM or corruption */
2752 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2753 goto out;
2754 }
e6dcd2dc 2755
2ac55d41
JB
2756 lock_extent_bits(io_tree, ordered_extent->file_offset,
2757 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2758 0, &cached_state);
e6dcd2dc 2759
38c227d8
LB
2760 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2761 ordered_extent->file_offset + ordered_extent->len - 1,
2762 EXTENT_DEFRAG, 1, cached_state);
2763 if (ret) {
2764 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2765 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2766 /* the inode is shared */
2767 new = record_old_file_extents(inode, ordered_extent);
2768
2769 clear_extent_bit(io_tree, ordered_extent->file_offset,
2770 ordered_extent->file_offset + ordered_extent->len - 1,
2771 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2772 }
2773
0cb59c99 2774 if (nolock)
7a7eaa40 2775 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2776 else
7a7eaa40 2777 trans = btrfs_join_transaction(root);
79787eaa
JM
2778 if (IS_ERR(trans)) {
2779 ret = PTR_ERR(trans);
2780 trans = NULL;
2781 goto out_unlock;
2782 }
a79b7d4b 2783
0ca1f7ce 2784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2785
c8b97818 2786 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2787 compress_type = ordered_extent->compress_type;
d899e052 2788 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2789 BUG_ON(compress_type);
920bbbfb 2790 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2791 ordered_extent->file_offset,
2792 ordered_extent->file_offset +
77cef2ec 2793 logical_len);
d899e052 2794 } else {
0af3d00b 2795 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2796 ret = insert_reserved_file_extent(trans, inode,
2797 ordered_extent->file_offset,
2798 ordered_extent->start,
2799 ordered_extent->disk_len,
77cef2ec 2800 logical_len, logical_len,
261507a0 2801 compress_type, 0, 0,
d899e052 2802 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2803 if (!ret)
2804 btrfs_release_delalloc_bytes(root,
2805 ordered_extent->start,
2806 ordered_extent->disk_len);
d899e052 2807 }
5dc562c5
JB
2808 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2809 ordered_extent->file_offset, ordered_extent->len,
2810 trans->transid);
79787eaa
JM
2811 if (ret < 0) {
2812 btrfs_abort_transaction(trans, root, ret);
5fd02043 2813 goto out_unlock;
79787eaa 2814 }
2ac55d41 2815
e6dcd2dc
CM
2816 add_pending_csums(trans, inode, ordered_extent->file_offset,
2817 &ordered_extent->list);
2818
6c760c07
JB
2819 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2820 ret = btrfs_update_inode_fallback(trans, root, inode);
2821 if (ret) { /* -ENOMEM or corruption */
2822 btrfs_abort_transaction(trans, root, ret);
2823 goto out_unlock;
1ef30be1
JB
2824 }
2825 ret = 0;
5fd02043
JB
2826out_unlock:
2827 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2828 ordered_extent->file_offset +
2829 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2830out:
5b0e95bf 2831 if (root != root->fs_info->tree_root)
0cb59c99 2832 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2833 if (trans)
2834 btrfs_end_transaction(trans, root);
0cb59c99 2835
77cef2ec
JB
2836 if (ret || truncated) {
2837 u64 start, end;
2838
2839 if (truncated)
2840 start = ordered_extent->file_offset + logical_len;
2841 else
2842 start = ordered_extent->file_offset;
2843 end = ordered_extent->file_offset + ordered_extent->len - 1;
2844 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2845
2846 /* Drop the cache for the part of the extent we didn't write. */
2847 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2848
0bec9ef5
JB
2849 /*
2850 * If the ordered extent had an IOERR or something else went
2851 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2852 * back to the allocator. We only free the extent in the
2853 * truncated case if we didn't write out the extent at all.
0bec9ef5 2854 */
77cef2ec
JB
2855 if ((ret || !logical_len) &&
2856 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2857 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2858 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2859 ordered_extent->disk_len, 1);
0bec9ef5
JB
2860 }
2861
2862
5fd02043 2863 /*
8bad3c02
LB
2864 * This needs to be done to make sure anybody waiting knows we are done
2865 * updating everything for this ordered extent.
5fd02043
JB
2866 */
2867 btrfs_remove_ordered_extent(inode, ordered_extent);
2868
38c227d8 2869 /* for snapshot-aware defrag */
6f519564
LB
2870 if (new) {
2871 if (ret) {
2872 free_sa_defrag_extent(new);
2873 atomic_dec(&root->fs_info->defrag_running);
2874 } else {
2875 relink_file_extents(new);
2876 }
2877 }
38c227d8 2878
e6dcd2dc
CM
2879 /* once for us */
2880 btrfs_put_ordered_extent(ordered_extent);
2881 /* once for the tree */
2882 btrfs_put_ordered_extent(ordered_extent);
2883
5fd02043
JB
2884 return ret;
2885}
2886
2887static void finish_ordered_fn(struct btrfs_work *work)
2888{
2889 struct btrfs_ordered_extent *ordered_extent;
2890 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2891 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2892}
2893
b2950863 2894static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2895 struct extent_state *state, int uptodate)
2896{
5fd02043
JB
2897 struct inode *inode = page->mapping->host;
2898 struct btrfs_root *root = BTRFS_I(inode)->root;
2899 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2900 struct btrfs_workqueue *wq;
2901 btrfs_work_func_t func;
5fd02043 2902
1abe9b8a 2903 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2904
8b62b72b 2905 ClearPagePrivate2(page);
5fd02043
JB
2906 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2907 end - start + 1, uptodate))
2908 return 0;
2909
9e0af237
LB
2910 if (btrfs_is_free_space_inode(inode)) {
2911 wq = root->fs_info->endio_freespace_worker;
2912 func = btrfs_freespace_write_helper;
2913 } else {
2914 wq = root->fs_info->endio_write_workers;
2915 func = btrfs_endio_write_helper;
2916 }
5fd02043 2917
9e0af237
LB
2918 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2919 NULL);
2920 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
2921
2922 return 0;
211f90e6
CM
2923}
2924
dc380aea
MX
2925static int __readpage_endio_check(struct inode *inode,
2926 struct btrfs_io_bio *io_bio,
2927 int icsum, struct page *page,
2928 int pgoff, u64 start, size_t len)
2929{
2930 char *kaddr;
2931 u32 csum_expected;
2932 u32 csum = ~(u32)0;
2933 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2934 DEFAULT_RATELIMIT_BURST);
2935
2936 csum_expected = *(((u32 *)io_bio->csum) + icsum);
2937
2938 kaddr = kmap_atomic(page);
2939 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
2940 btrfs_csum_final(csum, (char *)&csum);
2941 if (csum != csum_expected)
2942 goto zeroit;
2943
2944 kunmap_atomic(kaddr);
2945 return 0;
2946zeroit:
2947 if (__ratelimit(&_rs))
f0954c66 2948 btrfs_warn(BTRFS_I(inode)->root->fs_info,
dc380aea
MX
2949 "csum failed ino %llu off %llu csum %u expected csum %u",
2950 btrfs_ino(inode), start, csum, csum_expected);
2951 memset(kaddr + pgoff, 1, len);
2952 flush_dcache_page(page);
2953 kunmap_atomic(kaddr);
2954 if (csum_expected == 0)
2955 return 0;
2956 return -EIO;
2957}
2958
d352ac68
CM
2959/*
2960 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2961 * if there's a match, we allow the bio to finish. If not, the code in
2962 * extent_io.c will try to find good copies for us.
d352ac68 2963 */
facc8a22
MX
2964static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2965 u64 phy_offset, struct page *page,
2966 u64 start, u64 end, int mirror)
07157aac 2967{
4eee4fa4 2968 size_t offset = start - page_offset(page);
07157aac 2969 struct inode *inode = page->mapping->host;
d1310b2e 2970 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2971 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2972
d20f7043
CM
2973 if (PageChecked(page)) {
2974 ClearPageChecked(page);
dc380aea 2975 return 0;
d20f7043 2976 }
6cbff00f
CH
2977
2978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2979 return 0;
17d217fe
YZ
2980
2981 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2982 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2983 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2984 GFP_NOFS);
b6cda9bc 2985 return 0;
17d217fe 2986 }
d20f7043 2987
facc8a22 2988 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
2989 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2990 start, (size_t)(end - start + 1));
07157aac 2991}
b888db2b 2992
24bbcf04
YZ
2993struct delayed_iput {
2994 struct list_head list;
2995 struct inode *inode;
2996};
2997
79787eaa
JM
2998/* JDM: If this is fs-wide, why can't we add a pointer to
2999 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3000void btrfs_add_delayed_iput(struct inode *inode)
3001{
3002 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3003 struct delayed_iput *delayed;
3004
3005 if (atomic_add_unless(&inode->i_count, -1, 1))
3006 return;
3007
3008 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3009 delayed->inode = inode;
3010
3011 spin_lock(&fs_info->delayed_iput_lock);
3012 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3013 spin_unlock(&fs_info->delayed_iput_lock);
3014}
3015
3016void btrfs_run_delayed_iputs(struct btrfs_root *root)
3017{
3018 LIST_HEAD(list);
3019 struct btrfs_fs_info *fs_info = root->fs_info;
3020 struct delayed_iput *delayed;
3021 int empty;
3022
3023 spin_lock(&fs_info->delayed_iput_lock);
3024 empty = list_empty(&fs_info->delayed_iputs);
3025 spin_unlock(&fs_info->delayed_iput_lock);
3026 if (empty)
3027 return;
3028
24bbcf04
YZ
3029 spin_lock(&fs_info->delayed_iput_lock);
3030 list_splice_init(&fs_info->delayed_iputs, &list);
3031 spin_unlock(&fs_info->delayed_iput_lock);
3032
3033 while (!list_empty(&list)) {
3034 delayed = list_entry(list.next, struct delayed_iput, list);
3035 list_del(&delayed->list);
3036 iput(delayed->inode);
3037 kfree(delayed);
3038 }
24bbcf04
YZ
3039}
3040
d68fc57b 3041/*
42b2aa86 3042 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3043 * files in the subvolume, it removes orphan item and frees block_rsv
3044 * structure.
3045 */
3046void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root)
3048{
90290e19 3049 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3050 int ret;
3051
8a35d95f 3052 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3053 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3054 return;
3055
90290e19 3056 spin_lock(&root->orphan_lock);
8a35d95f 3057 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3058 spin_unlock(&root->orphan_lock);
3059 return;
3060 }
3061
3062 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3063 spin_unlock(&root->orphan_lock);
3064 return;
3065 }
3066
3067 block_rsv = root->orphan_block_rsv;
3068 root->orphan_block_rsv = NULL;
3069 spin_unlock(&root->orphan_lock);
3070
27cdeb70 3071 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3072 btrfs_root_refs(&root->root_item) > 0) {
3073 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3074 root->root_key.objectid);
4ef31a45
JB
3075 if (ret)
3076 btrfs_abort_transaction(trans, root, ret);
3077 else
27cdeb70
MX
3078 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3079 &root->state);
d68fc57b
YZ
3080 }
3081
90290e19
JB
3082 if (block_rsv) {
3083 WARN_ON(block_rsv->size > 0);
3084 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3085 }
3086}
3087
7b128766
JB
3088/*
3089 * This creates an orphan entry for the given inode in case something goes
3090 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3091 *
3092 * NOTE: caller of this function should reserve 5 units of metadata for
3093 * this function.
7b128766
JB
3094 */
3095int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3096{
3097 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3098 struct btrfs_block_rsv *block_rsv = NULL;
3099 int reserve = 0;
3100 int insert = 0;
3101 int ret;
7b128766 3102
d68fc57b 3103 if (!root->orphan_block_rsv) {
66d8f3dd 3104 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3105 if (!block_rsv)
3106 return -ENOMEM;
d68fc57b 3107 }
7b128766 3108
d68fc57b
YZ
3109 spin_lock(&root->orphan_lock);
3110 if (!root->orphan_block_rsv) {
3111 root->orphan_block_rsv = block_rsv;
3112 } else if (block_rsv) {
3113 btrfs_free_block_rsv(root, block_rsv);
3114 block_rsv = NULL;
7b128766 3115 }
7b128766 3116
8a35d95f
JB
3117 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3118 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3119#if 0
3120 /*
3121 * For proper ENOSPC handling, we should do orphan
3122 * cleanup when mounting. But this introduces backward
3123 * compatibility issue.
3124 */
3125 if (!xchg(&root->orphan_item_inserted, 1))
3126 insert = 2;
3127 else
3128 insert = 1;
3129#endif
3130 insert = 1;
321f0e70 3131 atomic_inc(&root->orphan_inodes);
7b128766
JB
3132 }
3133
72ac3c0d
JB
3134 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3135 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3136 reserve = 1;
d68fc57b 3137 spin_unlock(&root->orphan_lock);
7b128766 3138
d68fc57b
YZ
3139 /* grab metadata reservation from transaction handle */
3140 if (reserve) {
3141 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3142 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3143 }
7b128766 3144
d68fc57b
YZ
3145 /* insert an orphan item to track this unlinked/truncated file */
3146 if (insert >= 1) {
33345d01 3147 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3148 if (ret) {
703c88e0 3149 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3150 if (reserve) {
3151 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3152 &BTRFS_I(inode)->runtime_flags);
3153 btrfs_orphan_release_metadata(inode);
3154 }
3155 if (ret != -EEXIST) {
e8e7cff6
JB
3156 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3157 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3158 btrfs_abort_transaction(trans, root, ret);
3159 return ret;
3160 }
79787eaa
JM
3161 }
3162 ret = 0;
d68fc57b
YZ
3163 }
3164
3165 /* insert an orphan item to track subvolume contains orphan files */
3166 if (insert >= 2) {
3167 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3168 root->root_key.objectid);
79787eaa
JM
3169 if (ret && ret != -EEXIST) {
3170 btrfs_abort_transaction(trans, root, ret);
3171 return ret;
3172 }
d68fc57b
YZ
3173 }
3174 return 0;
7b128766
JB
3175}
3176
3177/*
3178 * We have done the truncate/delete so we can go ahead and remove the orphan
3179 * item for this particular inode.
3180 */
48a3b636
ES
3181static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3182 struct inode *inode)
7b128766
JB
3183{
3184 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3185 int delete_item = 0;
3186 int release_rsv = 0;
7b128766
JB
3187 int ret = 0;
3188
d68fc57b 3189 spin_lock(&root->orphan_lock);
8a35d95f
JB
3190 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3191 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3192 delete_item = 1;
7b128766 3193
72ac3c0d
JB
3194 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3195 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3196 release_rsv = 1;
d68fc57b 3197 spin_unlock(&root->orphan_lock);
7b128766 3198
703c88e0 3199 if (delete_item) {
8a35d95f 3200 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3201 if (trans)
3202 ret = btrfs_del_orphan_item(trans, root,
3203 btrfs_ino(inode));
8a35d95f 3204 }
7b128766 3205
703c88e0
FDBM
3206 if (release_rsv)
3207 btrfs_orphan_release_metadata(inode);
3208
4ef31a45 3209 return ret;
7b128766
JB
3210}
3211
3212/*
3213 * this cleans up any orphans that may be left on the list from the last use
3214 * of this root.
3215 */
66b4ffd1 3216int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3217{
3218 struct btrfs_path *path;
3219 struct extent_buffer *leaf;
7b128766
JB
3220 struct btrfs_key key, found_key;
3221 struct btrfs_trans_handle *trans;
3222 struct inode *inode;
8f6d7f4f 3223 u64 last_objectid = 0;
7b128766
JB
3224 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3225
d68fc57b 3226 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3227 return 0;
c71bf099
YZ
3228
3229 path = btrfs_alloc_path();
66b4ffd1
JB
3230 if (!path) {
3231 ret = -ENOMEM;
3232 goto out;
3233 }
7b128766
JB
3234 path->reada = -1;
3235
3236 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3237 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3238 key.offset = (u64)-1;
3239
7b128766
JB
3240 while (1) {
3241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3242 if (ret < 0)
3243 goto out;
7b128766
JB
3244
3245 /*
3246 * if ret == 0 means we found what we were searching for, which
25985edc 3247 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3248 * find the key and see if we have stuff that matches
3249 */
3250 if (ret > 0) {
66b4ffd1 3251 ret = 0;
7b128766
JB
3252 if (path->slots[0] == 0)
3253 break;
3254 path->slots[0]--;
3255 }
3256
3257 /* pull out the item */
3258 leaf = path->nodes[0];
7b128766
JB
3259 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3260
3261 /* make sure the item matches what we want */
3262 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3263 break;
962a298f 3264 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3265 break;
3266
3267 /* release the path since we're done with it */
b3b4aa74 3268 btrfs_release_path(path);
7b128766
JB
3269
3270 /*
3271 * this is where we are basically btrfs_lookup, without the
3272 * crossing root thing. we store the inode number in the
3273 * offset of the orphan item.
3274 */
8f6d7f4f
JB
3275
3276 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3277 btrfs_err(root->fs_info,
3278 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3279 ret = -EINVAL;
3280 goto out;
3281 }
3282
3283 last_objectid = found_key.offset;
3284
5d4f98a2
YZ
3285 found_key.objectid = found_key.offset;
3286 found_key.type = BTRFS_INODE_ITEM_KEY;
3287 found_key.offset = 0;
73f73415 3288 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3289 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3290 if (ret && ret != -ESTALE)
66b4ffd1 3291 goto out;
7b128766 3292
f8e9e0b0
AJ
3293 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3294 struct btrfs_root *dead_root;
3295 struct btrfs_fs_info *fs_info = root->fs_info;
3296 int is_dead_root = 0;
3297
3298 /*
3299 * this is an orphan in the tree root. Currently these
3300 * could come from 2 sources:
3301 * a) a snapshot deletion in progress
3302 * b) a free space cache inode
3303 * We need to distinguish those two, as the snapshot
3304 * orphan must not get deleted.
3305 * find_dead_roots already ran before us, so if this
3306 * is a snapshot deletion, we should find the root
3307 * in the dead_roots list
3308 */
3309 spin_lock(&fs_info->trans_lock);
3310 list_for_each_entry(dead_root, &fs_info->dead_roots,
3311 root_list) {
3312 if (dead_root->root_key.objectid ==
3313 found_key.objectid) {
3314 is_dead_root = 1;
3315 break;
3316 }
3317 }
3318 spin_unlock(&fs_info->trans_lock);
3319 if (is_dead_root) {
3320 /* prevent this orphan from being found again */
3321 key.offset = found_key.objectid - 1;
3322 continue;
3323 }
3324 }
7b128766 3325 /*
a8c9e576
JB
3326 * Inode is already gone but the orphan item is still there,
3327 * kill the orphan item.
7b128766 3328 */
a8c9e576
JB
3329 if (ret == -ESTALE) {
3330 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3331 if (IS_ERR(trans)) {
3332 ret = PTR_ERR(trans);
3333 goto out;
3334 }
c2cf52eb
SK
3335 btrfs_debug(root->fs_info, "auto deleting %Lu",
3336 found_key.objectid);
a8c9e576
JB
3337 ret = btrfs_del_orphan_item(trans, root,
3338 found_key.objectid);
5b21f2ed 3339 btrfs_end_transaction(trans, root);
4ef31a45
JB
3340 if (ret)
3341 goto out;
7b128766
JB
3342 continue;
3343 }
3344
a8c9e576
JB
3345 /*
3346 * add this inode to the orphan list so btrfs_orphan_del does
3347 * the proper thing when we hit it
3348 */
8a35d95f
JB
3349 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3350 &BTRFS_I(inode)->runtime_flags);
925396ec 3351 atomic_inc(&root->orphan_inodes);
a8c9e576 3352
7b128766
JB
3353 /* if we have links, this was a truncate, lets do that */
3354 if (inode->i_nlink) {
fae7f21c 3355 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3356 iput(inode);
3357 continue;
3358 }
7b128766 3359 nr_truncate++;
f3fe820c
JB
3360
3361 /* 1 for the orphan item deletion. */
3362 trans = btrfs_start_transaction(root, 1);
3363 if (IS_ERR(trans)) {
c69b26b0 3364 iput(inode);
f3fe820c
JB
3365 ret = PTR_ERR(trans);
3366 goto out;
3367 }
3368 ret = btrfs_orphan_add(trans, inode);
3369 btrfs_end_transaction(trans, root);
c69b26b0
JB
3370 if (ret) {
3371 iput(inode);
f3fe820c 3372 goto out;
c69b26b0 3373 }
f3fe820c 3374
66b4ffd1 3375 ret = btrfs_truncate(inode);
4a7d0f68
JB
3376 if (ret)
3377 btrfs_orphan_del(NULL, inode);
7b128766
JB
3378 } else {
3379 nr_unlink++;
3380 }
3381
3382 /* this will do delete_inode and everything for us */
3383 iput(inode);
66b4ffd1
JB
3384 if (ret)
3385 goto out;
7b128766 3386 }
3254c876
MX
3387 /* release the path since we're done with it */
3388 btrfs_release_path(path);
3389
d68fc57b
YZ
3390 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3391
3392 if (root->orphan_block_rsv)
3393 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3394 (u64)-1);
3395
27cdeb70
MX
3396 if (root->orphan_block_rsv ||
3397 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3398 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3399 if (!IS_ERR(trans))
3400 btrfs_end_transaction(trans, root);
d68fc57b 3401 }
7b128766
JB
3402
3403 if (nr_unlink)
4884b476 3404 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3405 if (nr_truncate)
4884b476 3406 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3407
3408out:
3409 if (ret)
68b663d1 3410 btrfs_err(root->fs_info,
c2cf52eb 3411 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3412 btrfs_free_path(path);
3413 return ret;
7b128766
JB
3414}
3415
46a53cca
CM
3416/*
3417 * very simple check to peek ahead in the leaf looking for xattrs. If we
3418 * don't find any xattrs, we know there can't be any acls.
3419 *
3420 * slot is the slot the inode is in, objectid is the objectid of the inode
3421 */
3422static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3423 int slot, u64 objectid,
3424 int *first_xattr_slot)
46a53cca
CM
3425{
3426 u32 nritems = btrfs_header_nritems(leaf);
3427 struct btrfs_key found_key;
f23b5a59
JB
3428 static u64 xattr_access = 0;
3429 static u64 xattr_default = 0;
46a53cca
CM
3430 int scanned = 0;
3431
f23b5a59
JB
3432 if (!xattr_access) {
3433 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3434 strlen(POSIX_ACL_XATTR_ACCESS));
3435 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3436 strlen(POSIX_ACL_XATTR_DEFAULT));
3437 }
3438
46a53cca 3439 slot++;
63541927 3440 *first_xattr_slot = -1;
46a53cca
CM
3441 while (slot < nritems) {
3442 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3443
3444 /* we found a different objectid, there must not be acls */
3445 if (found_key.objectid != objectid)
3446 return 0;
3447
3448 /* we found an xattr, assume we've got an acl */
f23b5a59 3449 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3450 if (*first_xattr_slot == -1)
3451 *first_xattr_slot = slot;
f23b5a59
JB
3452 if (found_key.offset == xattr_access ||
3453 found_key.offset == xattr_default)
3454 return 1;
3455 }
46a53cca
CM
3456
3457 /*
3458 * we found a key greater than an xattr key, there can't
3459 * be any acls later on
3460 */
3461 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3462 return 0;
3463
3464 slot++;
3465 scanned++;
3466
3467 /*
3468 * it goes inode, inode backrefs, xattrs, extents,
3469 * so if there are a ton of hard links to an inode there can
3470 * be a lot of backrefs. Don't waste time searching too hard,
3471 * this is just an optimization
3472 */
3473 if (scanned >= 8)
3474 break;
3475 }
3476 /* we hit the end of the leaf before we found an xattr or
3477 * something larger than an xattr. We have to assume the inode
3478 * has acls
3479 */
63541927
FDBM
3480 if (*first_xattr_slot == -1)
3481 *first_xattr_slot = slot;
46a53cca
CM
3482 return 1;
3483}
3484
d352ac68
CM
3485/*
3486 * read an inode from the btree into the in-memory inode
3487 */
5d4f98a2 3488static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3489{
3490 struct btrfs_path *path;
5f39d397 3491 struct extent_buffer *leaf;
39279cc3
CM
3492 struct btrfs_inode_item *inode_item;
3493 struct btrfs_root *root = BTRFS_I(inode)->root;
3494 struct btrfs_key location;
67de1176 3495 unsigned long ptr;
46a53cca 3496 int maybe_acls;
618e21d5 3497 u32 rdev;
39279cc3 3498 int ret;
2f7e33d4 3499 bool filled = false;
63541927 3500 int first_xattr_slot;
2f7e33d4
MX
3501
3502 ret = btrfs_fill_inode(inode, &rdev);
3503 if (!ret)
3504 filled = true;
39279cc3
CM
3505
3506 path = btrfs_alloc_path();
1748f843
MF
3507 if (!path)
3508 goto make_bad;
3509
39279cc3 3510 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3511
39279cc3 3512 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3513 if (ret)
39279cc3 3514 goto make_bad;
39279cc3 3515
5f39d397 3516 leaf = path->nodes[0];
2f7e33d4
MX
3517
3518 if (filled)
67de1176 3519 goto cache_index;
2f7e33d4 3520
5f39d397
CM
3521 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3522 struct btrfs_inode_item);
5f39d397 3523 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3524 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3525 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3526 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3527 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397 3528
a937b979
DS
3529 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3530 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3531
a937b979
DS
3532 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3533 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3534
a937b979
DS
3535 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3536 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3537
9cc97d64 3538 BTRFS_I(inode)->i_otime.tv_sec =
3539 btrfs_timespec_sec(leaf, &inode_item->otime);
3540 BTRFS_I(inode)->i_otime.tv_nsec =
3541 btrfs_timespec_nsec(leaf, &inode_item->otime);
3542
a76a3cd4 3543 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3544 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3545 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3546
3547 /*
3548 * If we were modified in the current generation and evicted from memory
3549 * and then re-read we need to do a full sync since we don't have any
3550 * idea about which extents were modified before we were evicted from
3551 * cache.
3552 */
3553 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3554 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3555 &BTRFS_I(inode)->runtime_flags);
3556
0c4d2d95 3557 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3558 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3559 inode->i_rdev = 0;
5f39d397
CM
3560 rdev = btrfs_inode_rdev(leaf, inode_item);
3561
aec7477b 3562 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3563 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3564
3565cache_index:
3566 path->slots[0]++;
3567 if (inode->i_nlink != 1 ||
3568 path->slots[0] >= btrfs_header_nritems(leaf))
3569 goto cache_acl;
3570
3571 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3572 if (location.objectid != btrfs_ino(inode))
3573 goto cache_acl;
3574
3575 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3576 if (location.type == BTRFS_INODE_REF_KEY) {
3577 struct btrfs_inode_ref *ref;
3578
3579 ref = (struct btrfs_inode_ref *)ptr;
3580 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3581 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3582 struct btrfs_inode_extref *extref;
3583
3584 extref = (struct btrfs_inode_extref *)ptr;
3585 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3586 extref);
3587 }
2f7e33d4 3588cache_acl:
46a53cca
CM
3589 /*
3590 * try to precache a NULL acl entry for files that don't have
3591 * any xattrs or acls
3592 */
33345d01 3593 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3594 btrfs_ino(inode), &first_xattr_slot);
3595 if (first_xattr_slot != -1) {
3596 path->slots[0] = first_xattr_slot;
3597 ret = btrfs_load_inode_props(inode, path);
3598 if (ret)
3599 btrfs_err(root->fs_info,
351fd353 3600 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3601 btrfs_ino(inode),
3602 root->root_key.objectid, ret);
3603 }
3604 btrfs_free_path(path);
3605
72c04902
AV
3606 if (!maybe_acls)
3607 cache_no_acl(inode);
46a53cca 3608
39279cc3 3609 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3610 case S_IFREG:
3611 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3612 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3613 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3614 inode->i_fop = &btrfs_file_operations;
3615 inode->i_op = &btrfs_file_inode_operations;
3616 break;
3617 case S_IFDIR:
3618 inode->i_fop = &btrfs_dir_file_operations;
3619 if (root == root->fs_info->tree_root)
3620 inode->i_op = &btrfs_dir_ro_inode_operations;
3621 else
3622 inode->i_op = &btrfs_dir_inode_operations;
3623 break;
3624 case S_IFLNK:
3625 inode->i_op = &btrfs_symlink_inode_operations;
3626 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3627 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3628 break;
618e21d5 3629 default:
0279b4cd 3630 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3631 init_special_inode(inode, inode->i_mode, rdev);
3632 break;
39279cc3 3633 }
6cbff00f
CH
3634
3635 btrfs_update_iflags(inode);
39279cc3
CM
3636 return;
3637
3638make_bad:
39279cc3 3639 btrfs_free_path(path);
39279cc3
CM
3640 make_bad_inode(inode);
3641}
3642
d352ac68
CM
3643/*
3644 * given a leaf and an inode, copy the inode fields into the leaf
3645 */
e02119d5
CM
3646static void fill_inode_item(struct btrfs_trans_handle *trans,
3647 struct extent_buffer *leaf,
5f39d397 3648 struct btrfs_inode_item *item,
39279cc3
CM
3649 struct inode *inode)
3650{
51fab693
LB
3651 struct btrfs_map_token token;
3652
3653 btrfs_init_map_token(&token);
5f39d397 3654
51fab693
LB
3655 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3656 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3657 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3658 &token);
3659 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3660 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3661
a937b979 3662 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3663 inode->i_atime.tv_sec, &token);
a937b979 3664 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3665 inode->i_atime.tv_nsec, &token);
5f39d397 3666
a937b979 3667 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3668 inode->i_mtime.tv_sec, &token);
a937b979 3669 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3670 inode->i_mtime.tv_nsec, &token);
5f39d397 3671
a937b979 3672 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3673 inode->i_ctime.tv_sec, &token);
a937b979 3674 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3675 inode->i_ctime.tv_nsec, &token);
5f39d397 3676
9cc97d64 3677 btrfs_set_token_timespec_sec(leaf, &item->otime,
3678 BTRFS_I(inode)->i_otime.tv_sec, &token);
3679 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3680 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3681
51fab693
LB
3682 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3683 &token);
3684 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3685 &token);
3686 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3687 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3688 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3689 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3690 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3691}
3692
d352ac68
CM
3693/*
3694 * copy everything in the in-memory inode into the btree.
3695 */
2115133f 3696static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3697 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3698{
3699 struct btrfs_inode_item *inode_item;
3700 struct btrfs_path *path;
5f39d397 3701 struct extent_buffer *leaf;
39279cc3
CM
3702 int ret;
3703
3704 path = btrfs_alloc_path();
16cdcec7
MX
3705 if (!path)
3706 return -ENOMEM;
3707
b9473439 3708 path->leave_spinning = 1;
16cdcec7
MX
3709 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3710 1);
39279cc3
CM
3711 if (ret) {
3712 if (ret > 0)
3713 ret = -ENOENT;
3714 goto failed;
3715 }
3716
5f39d397
CM
3717 leaf = path->nodes[0];
3718 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3719 struct btrfs_inode_item);
39279cc3 3720
e02119d5 3721 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3722 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3723 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3724 ret = 0;
3725failed:
39279cc3
CM
3726 btrfs_free_path(path);
3727 return ret;
3728}
3729
2115133f
CM
3730/*
3731 * copy everything in the in-memory inode into the btree.
3732 */
3733noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3734 struct btrfs_root *root, struct inode *inode)
3735{
3736 int ret;
3737
3738 /*
3739 * If the inode is a free space inode, we can deadlock during commit
3740 * if we put it into the delayed code.
3741 *
3742 * The data relocation inode should also be directly updated
3743 * without delay
3744 */
83eea1f1 3745 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3746 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3747 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3748 btrfs_update_root_times(trans, root);
3749
2115133f
CM
3750 ret = btrfs_delayed_update_inode(trans, root, inode);
3751 if (!ret)
3752 btrfs_set_inode_last_trans(trans, inode);
3753 return ret;
3754 }
3755
3756 return btrfs_update_inode_item(trans, root, inode);
3757}
3758
be6aef60
JB
3759noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3760 struct btrfs_root *root,
3761 struct inode *inode)
2115133f
CM
3762{
3763 int ret;
3764
3765 ret = btrfs_update_inode(trans, root, inode);
3766 if (ret == -ENOSPC)
3767 return btrfs_update_inode_item(trans, root, inode);
3768 return ret;
3769}
3770
d352ac68
CM
3771/*
3772 * unlink helper that gets used here in inode.c and in the tree logging
3773 * recovery code. It remove a link in a directory with a given name, and
3774 * also drops the back refs in the inode to the directory
3775 */
92986796
AV
3776static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3777 struct btrfs_root *root,
3778 struct inode *dir, struct inode *inode,
3779 const char *name, int name_len)
39279cc3
CM
3780{
3781 struct btrfs_path *path;
39279cc3 3782 int ret = 0;
5f39d397 3783 struct extent_buffer *leaf;
39279cc3 3784 struct btrfs_dir_item *di;
5f39d397 3785 struct btrfs_key key;
aec7477b 3786 u64 index;
33345d01
LZ
3787 u64 ino = btrfs_ino(inode);
3788 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3789
3790 path = btrfs_alloc_path();
54aa1f4d
CM
3791 if (!path) {
3792 ret = -ENOMEM;
554233a6 3793 goto out;
54aa1f4d
CM
3794 }
3795
b9473439 3796 path->leave_spinning = 1;
33345d01 3797 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3798 name, name_len, -1);
3799 if (IS_ERR(di)) {
3800 ret = PTR_ERR(di);
3801 goto err;
3802 }
3803 if (!di) {
3804 ret = -ENOENT;
3805 goto err;
3806 }
5f39d397
CM
3807 leaf = path->nodes[0];
3808 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3809 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3810 if (ret)
3811 goto err;
b3b4aa74 3812 btrfs_release_path(path);
39279cc3 3813
67de1176
MX
3814 /*
3815 * If we don't have dir index, we have to get it by looking up
3816 * the inode ref, since we get the inode ref, remove it directly,
3817 * it is unnecessary to do delayed deletion.
3818 *
3819 * But if we have dir index, needn't search inode ref to get it.
3820 * Since the inode ref is close to the inode item, it is better
3821 * that we delay to delete it, and just do this deletion when
3822 * we update the inode item.
3823 */
3824 if (BTRFS_I(inode)->dir_index) {
3825 ret = btrfs_delayed_delete_inode_ref(inode);
3826 if (!ret) {
3827 index = BTRFS_I(inode)->dir_index;
3828 goto skip_backref;
3829 }
3830 }
3831
33345d01
LZ
3832 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3833 dir_ino, &index);
aec7477b 3834 if (ret) {
c2cf52eb
SK
3835 btrfs_info(root->fs_info,
3836 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3837 name_len, name, ino, dir_ino);
79787eaa 3838 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3839 goto err;
3840 }
67de1176 3841skip_backref:
16cdcec7 3842 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3843 if (ret) {
3844 btrfs_abort_transaction(trans, root, ret);
39279cc3 3845 goto err;
79787eaa 3846 }
39279cc3 3847
e02119d5 3848 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3849 inode, dir_ino);
79787eaa
JM
3850 if (ret != 0 && ret != -ENOENT) {
3851 btrfs_abort_transaction(trans, root, ret);
3852 goto err;
3853 }
e02119d5
CM
3854
3855 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3856 dir, index);
6418c961
CM
3857 if (ret == -ENOENT)
3858 ret = 0;
d4e3991b
ZB
3859 else if (ret)
3860 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3861err:
3862 btrfs_free_path(path);
e02119d5
CM
3863 if (ret)
3864 goto out;
3865
3866 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3867 inode_inc_iversion(inode);
3868 inode_inc_iversion(dir);
e02119d5 3869 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3870 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3871out:
39279cc3
CM
3872 return ret;
3873}
3874
92986796
AV
3875int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3876 struct btrfs_root *root,
3877 struct inode *dir, struct inode *inode,
3878 const char *name, int name_len)
3879{
3880 int ret;
3881 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3882 if (!ret) {
8b558c5f 3883 drop_nlink(inode);
92986796
AV
3884 ret = btrfs_update_inode(trans, root, inode);
3885 }
3886 return ret;
3887}
39279cc3 3888
a22285a6
YZ
3889/*
3890 * helper to start transaction for unlink and rmdir.
3891 *
d52be818
JB
3892 * unlink and rmdir are special in btrfs, they do not always free space, so
3893 * if we cannot make our reservations the normal way try and see if there is
3894 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3895 * allow the unlink to occur.
a22285a6 3896 */
d52be818 3897static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3898{
39279cc3 3899 struct btrfs_trans_handle *trans;
a22285a6 3900 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3901 int ret;
3902
e70bea5f
JB
3903 /*
3904 * 1 for the possible orphan item
3905 * 1 for the dir item
3906 * 1 for the dir index
3907 * 1 for the inode ref
e70bea5f
JB
3908 * 1 for the inode
3909 */
6e137ed3 3910 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3911 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3912 return trans;
4df27c4d 3913
d52be818
JB
3914 if (PTR_ERR(trans) == -ENOSPC) {
3915 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3916
d52be818
JB
3917 trans = btrfs_start_transaction(root, 0);
3918 if (IS_ERR(trans))
3919 return trans;
3920 ret = btrfs_cond_migrate_bytes(root->fs_info,
3921 &root->fs_info->trans_block_rsv,
3922 num_bytes, 5);
3923 if (ret) {
3924 btrfs_end_transaction(trans, root);
3925 return ERR_PTR(ret);
a22285a6 3926 }
5a77d76c 3927 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3928 trans->bytes_reserved = num_bytes;
a22285a6 3929 }
d52be818 3930 return trans;
a22285a6
YZ
3931}
3932
3933static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3934{
3935 struct btrfs_root *root = BTRFS_I(dir)->root;
3936 struct btrfs_trans_handle *trans;
3937 struct inode *inode = dentry->d_inode;
3938 int ret;
a22285a6 3939
d52be818 3940 trans = __unlink_start_trans(dir);
a22285a6
YZ
3941 if (IS_ERR(trans))
3942 return PTR_ERR(trans);
5f39d397 3943
12fcfd22
CM
3944 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3945
e02119d5
CM
3946 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3947 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3948 if (ret)
3949 goto out;
7b128766 3950
a22285a6 3951 if (inode->i_nlink == 0) {
7b128766 3952 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3953 if (ret)
3954 goto out;
a22285a6 3955 }
7b128766 3956
b532402e 3957out:
d52be818 3958 btrfs_end_transaction(trans, root);
b53d3f5d 3959 btrfs_btree_balance_dirty(root);
39279cc3
CM
3960 return ret;
3961}
3962
4df27c4d
YZ
3963int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3964 struct btrfs_root *root,
3965 struct inode *dir, u64 objectid,
3966 const char *name, int name_len)
3967{
3968 struct btrfs_path *path;
3969 struct extent_buffer *leaf;
3970 struct btrfs_dir_item *di;
3971 struct btrfs_key key;
3972 u64 index;
3973 int ret;
33345d01 3974 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3975
3976 path = btrfs_alloc_path();
3977 if (!path)
3978 return -ENOMEM;
3979
33345d01 3980 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3981 name, name_len, -1);
79787eaa
JM
3982 if (IS_ERR_OR_NULL(di)) {
3983 if (!di)
3984 ret = -ENOENT;
3985 else
3986 ret = PTR_ERR(di);
3987 goto out;
3988 }
4df27c4d
YZ
3989
3990 leaf = path->nodes[0];
3991 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3992 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3993 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3994 if (ret) {
3995 btrfs_abort_transaction(trans, root, ret);
3996 goto out;
3997 }
b3b4aa74 3998 btrfs_release_path(path);
4df27c4d
YZ
3999
4000 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4001 objectid, root->root_key.objectid,
33345d01 4002 dir_ino, &index, name, name_len);
4df27c4d 4003 if (ret < 0) {
79787eaa
JM
4004 if (ret != -ENOENT) {
4005 btrfs_abort_transaction(trans, root, ret);
4006 goto out;
4007 }
33345d01 4008 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4009 name, name_len);
79787eaa
JM
4010 if (IS_ERR_OR_NULL(di)) {
4011 if (!di)
4012 ret = -ENOENT;
4013 else
4014 ret = PTR_ERR(di);
4015 btrfs_abort_transaction(trans, root, ret);
4016 goto out;
4017 }
4df27c4d
YZ
4018
4019 leaf = path->nodes[0];
4020 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4021 btrfs_release_path(path);
4df27c4d
YZ
4022 index = key.offset;
4023 }
945d8962 4024 btrfs_release_path(path);
4df27c4d 4025
16cdcec7 4026 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4027 if (ret) {
4028 btrfs_abort_transaction(trans, root, ret);
4029 goto out;
4030 }
4df27c4d
YZ
4031
4032 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4033 inode_inc_iversion(dir);
4df27c4d 4034 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4035 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4036 if (ret)
4037 btrfs_abort_transaction(trans, root, ret);
4038out:
71d7aed0 4039 btrfs_free_path(path);
79787eaa 4040 return ret;
4df27c4d
YZ
4041}
4042
39279cc3
CM
4043static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4044{
4045 struct inode *inode = dentry->d_inode;
1832a6d5 4046 int err = 0;
39279cc3 4047 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4048 struct btrfs_trans_handle *trans;
39279cc3 4049
b3ae244e 4050 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4051 return -ENOTEMPTY;
b3ae244e
DS
4052 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4053 return -EPERM;
134d4512 4054
d52be818 4055 trans = __unlink_start_trans(dir);
a22285a6 4056 if (IS_ERR(trans))
5df6a9f6 4057 return PTR_ERR(trans);
5df6a9f6 4058
33345d01 4059 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4060 err = btrfs_unlink_subvol(trans, root, dir,
4061 BTRFS_I(inode)->location.objectid,
4062 dentry->d_name.name,
4063 dentry->d_name.len);
4064 goto out;
4065 }
4066
7b128766
JB
4067 err = btrfs_orphan_add(trans, inode);
4068 if (err)
4df27c4d 4069 goto out;
7b128766 4070
39279cc3 4071 /* now the directory is empty */
e02119d5
CM
4072 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4073 dentry->d_name.name, dentry->d_name.len);
d397712b 4074 if (!err)
dbe674a9 4075 btrfs_i_size_write(inode, 0);
4df27c4d 4076out:
d52be818 4077 btrfs_end_transaction(trans, root);
b53d3f5d 4078 btrfs_btree_balance_dirty(root);
3954401f 4079
39279cc3
CM
4080 return err;
4081}
4082
39279cc3
CM
4083/*
4084 * this can truncate away extent items, csum items and directory items.
4085 * It starts at a high offset and removes keys until it can't find
d352ac68 4086 * any higher than new_size
39279cc3
CM
4087 *
4088 * csum items that cross the new i_size are truncated to the new size
4089 * as well.
7b128766
JB
4090 *
4091 * min_type is the minimum key type to truncate down to. If set to 0, this
4092 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4093 */
8082510e
YZ
4094int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4095 struct btrfs_root *root,
4096 struct inode *inode,
4097 u64 new_size, u32 min_type)
39279cc3 4098{
39279cc3 4099 struct btrfs_path *path;
5f39d397 4100 struct extent_buffer *leaf;
39279cc3 4101 struct btrfs_file_extent_item *fi;
8082510e
YZ
4102 struct btrfs_key key;
4103 struct btrfs_key found_key;
39279cc3 4104 u64 extent_start = 0;
db94535d 4105 u64 extent_num_bytes = 0;
5d4f98a2 4106 u64 extent_offset = 0;
39279cc3 4107 u64 item_end = 0;
7f4f6e0a 4108 u64 last_size = (u64)-1;
8082510e 4109 u32 found_type = (u8)-1;
39279cc3
CM
4110 int found_extent;
4111 int del_item;
85e21bac
CM
4112 int pending_del_nr = 0;
4113 int pending_del_slot = 0;
179e29e4 4114 int extent_type = -1;
8082510e
YZ
4115 int ret;
4116 int err = 0;
33345d01 4117 u64 ino = btrfs_ino(inode);
8082510e
YZ
4118
4119 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4120
0eb0e19c
MF
4121 path = btrfs_alloc_path();
4122 if (!path)
4123 return -ENOMEM;
4124 path->reada = -1;
4125
5dc562c5
JB
4126 /*
4127 * We want to drop from the next block forward in case this new size is
4128 * not block aligned since we will be keeping the last block of the
4129 * extent just the way it is.
4130 */
27cdeb70
MX
4131 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4132 root == root->fs_info->tree_root)
fda2832f
QW
4133 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4134 root->sectorsize), (u64)-1, 0);
8082510e 4135
16cdcec7
MX
4136 /*
4137 * This function is also used to drop the items in the log tree before
4138 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4139 * it is used to drop the loged items. So we shouldn't kill the delayed
4140 * items.
4141 */
4142 if (min_type == 0 && root == BTRFS_I(inode)->root)
4143 btrfs_kill_delayed_inode_items(inode);
4144
33345d01 4145 key.objectid = ino;
39279cc3 4146 key.offset = (u64)-1;
5f39d397
CM
4147 key.type = (u8)-1;
4148
85e21bac 4149search_again:
b9473439 4150 path->leave_spinning = 1;
85e21bac 4151 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4152 if (ret < 0) {
4153 err = ret;
4154 goto out;
4155 }
d397712b 4156
85e21bac 4157 if (ret > 0) {
e02119d5
CM
4158 /* there are no items in the tree for us to truncate, we're
4159 * done
4160 */
8082510e
YZ
4161 if (path->slots[0] == 0)
4162 goto out;
85e21bac
CM
4163 path->slots[0]--;
4164 }
4165
d397712b 4166 while (1) {
39279cc3 4167 fi = NULL;
5f39d397
CM
4168 leaf = path->nodes[0];
4169 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4170 found_type = found_key.type;
39279cc3 4171
33345d01 4172 if (found_key.objectid != ino)
39279cc3 4173 break;
5f39d397 4174
85e21bac 4175 if (found_type < min_type)
39279cc3
CM
4176 break;
4177
5f39d397 4178 item_end = found_key.offset;
39279cc3 4179 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4180 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4181 struct btrfs_file_extent_item);
179e29e4
CM
4182 extent_type = btrfs_file_extent_type(leaf, fi);
4183 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4184 item_end +=
db94535d 4185 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4186 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4187 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4188 path->slots[0], fi);
39279cc3 4189 }
008630c1 4190 item_end--;
39279cc3 4191 }
8082510e
YZ
4192 if (found_type > min_type) {
4193 del_item = 1;
4194 } else {
4195 if (item_end < new_size)
b888db2b 4196 break;
8082510e
YZ
4197 if (found_key.offset >= new_size)
4198 del_item = 1;
4199 else
4200 del_item = 0;
39279cc3 4201 }
39279cc3 4202 found_extent = 0;
39279cc3 4203 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4204 if (found_type != BTRFS_EXTENT_DATA_KEY)
4205 goto delete;
4206
7f4f6e0a
JB
4207 if (del_item)
4208 last_size = found_key.offset;
4209 else
4210 last_size = new_size;
4211
179e29e4 4212 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4213 u64 num_dec;
db94535d 4214 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4215 if (!del_item) {
db94535d
CM
4216 u64 orig_num_bytes =
4217 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4218 extent_num_bytes = ALIGN(new_size -
4219 found_key.offset,
4220 root->sectorsize);
db94535d
CM
4221 btrfs_set_file_extent_num_bytes(leaf, fi,
4222 extent_num_bytes);
4223 num_dec = (orig_num_bytes -
9069218d 4224 extent_num_bytes);
27cdeb70
MX
4225 if (test_bit(BTRFS_ROOT_REF_COWS,
4226 &root->state) &&
4227 extent_start != 0)
a76a3cd4 4228 inode_sub_bytes(inode, num_dec);
5f39d397 4229 btrfs_mark_buffer_dirty(leaf);
39279cc3 4230 } else {
db94535d
CM
4231 extent_num_bytes =
4232 btrfs_file_extent_disk_num_bytes(leaf,
4233 fi);
5d4f98a2
YZ
4234 extent_offset = found_key.offset -
4235 btrfs_file_extent_offset(leaf, fi);
4236
39279cc3 4237 /* FIXME blocksize != 4096 */
9069218d 4238 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4239 if (extent_start != 0) {
4240 found_extent = 1;
27cdeb70
MX
4241 if (test_bit(BTRFS_ROOT_REF_COWS,
4242 &root->state))
a76a3cd4 4243 inode_sub_bytes(inode, num_dec);
e02119d5 4244 }
39279cc3 4245 }
9069218d 4246 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4247 /*
4248 * we can't truncate inline items that have had
4249 * special encodings
4250 */
4251 if (!del_item &&
4252 btrfs_file_extent_compression(leaf, fi) == 0 &&
4253 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4254 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4255 u32 size = new_size - found_key.offset;
4256
27cdeb70 4257 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4258 inode_sub_bytes(inode, item_end + 1 -
4259 new_size);
514ac8ad
CM
4260
4261 /*
4262 * update the ram bytes to properly reflect
4263 * the new size of our item
4264 */
4265 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4266 size =
4267 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4268 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4269 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4270 &root->state)) {
a76a3cd4
YZ
4271 inode_sub_bytes(inode, item_end + 1 -
4272 found_key.offset);
9069218d 4273 }
39279cc3 4274 }
179e29e4 4275delete:
39279cc3 4276 if (del_item) {
85e21bac
CM
4277 if (!pending_del_nr) {
4278 /* no pending yet, add ourselves */
4279 pending_del_slot = path->slots[0];
4280 pending_del_nr = 1;
4281 } else if (pending_del_nr &&
4282 path->slots[0] + 1 == pending_del_slot) {
4283 /* hop on the pending chunk */
4284 pending_del_nr++;
4285 pending_del_slot = path->slots[0];
4286 } else {
d397712b 4287 BUG();
85e21bac 4288 }
39279cc3
CM
4289 } else {
4290 break;
4291 }
27cdeb70
MX
4292 if (found_extent &&
4293 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4294 root == root->fs_info->tree_root)) {
b9473439 4295 btrfs_set_path_blocking(path);
39279cc3 4296 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4297 extent_num_bytes, 0,
4298 btrfs_header_owner(leaf),
66d7e7f0 4299 ino, extent_offset, 0);
39279cc3
CM
4300 BUG_ON(ret);
4301 }
85e21bac 4302
8082510e
YZ
4303 if (found_type == BTRFS_INODE_ITEM_KEY)
4304 break;
4305
4306 if (path->slots[0] == 0 ||
4307 path->slots[0] != pending_del_slot) {
8082510e
YZ
4308 if (pending_del_nr) {
4309 ret = btrfs_del_items(trans, root, path,
4310 pending_del_slot,
4311 pending_del_nr);
79787eaa
JM
4312 if (ret) {
4313 btrfs_abort_transaction(trans,
4314 root, ret);
4315 goto error;
4316 }
8082510e
YZ
4317 pending_del_nr = 0;
4318 }
b3b4aa74 4319 btrfs_release_path(path);
85e21bac 4320 goto search_again;
8082510e
YZ
4321 } else {
4322 path->slots[0]--;
85e21bac 4323 }
39279cc3 4324 }
8082510e 4325out:
85e21bac
CM
4326 if (pending_del_nr) {
4327 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4328 pending_del_nr);
79787eaa
JM
4329 if (ret)
4330 btrfs_abort_transaction(trans, root, ret);
85e21bac 4331 }
79787eaa 4332error:
dac5705c
FM
4333 if (last_size != (u64)-1 &&
4334 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4335 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4336 btrfs_free_path(path);
8082510e 4337 return err;
39279cc3
CM
4338}
4339
4340/*
2aaa6655
JB
4341 * btrfs_truncate_page - read, zero a chunk and write a page
4342 * @inode - inode that we're zeroing
4343 * @from - the offset to start zeroing
4344 * @len - the length to zero, 0 to zero the entire range respective to the
4345 * offset
4346 * @front - zero up to the offset instead of from the offset on
4347 *
4348 * This will find the page for the "from" offset and cow the page and zero the
4349 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4350 */
2aaa6655
JB
4351int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4352 int front)
39279cc3 4353{
2aaa6655 4354 struct address_space *mapping = inode->i_mapping;
db94535d 4355 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4356 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4357 struct btrfs_ordered_extent *ordered;
2ac55d41 4358 struct extent_state *cached_state = NULL;
e6dcd2dc 4359 char *kaddr;
db94535d 4360 u32 blocksize = root->sectorsize;
39279cc3
CM
4361 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4362 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4363 struct page *page;
3b16a4e3 4364 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4365 int ret = 0;
a52d9a80 4366 u64 page_start;
e6dcd2dc 4367 u64 page_end;
39279cc3 4368
2aaa6655
JB
4369 if ((offset & (blocksize - 1)) == 0 &&
4370 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4371 goto out;
0ca1f7ce 4372 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4373 if (ret)
4374 goto out;
39279cc3 4375
211c17f5 4376again:
3b16a4e3 4377 page = find_or_create_page(mapping, index, mask);
5d5e103a 4378 if (!page) {
0ca1f7ce 4379 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4380 ret = -ENOMEM;
39279cc3 4381 goto out;
5d5e103a 4382 }
e6dcd2dc
CM
4383
4384 page_start = page_offset(page);
4385 page_end = page_start + PAGE_CACHE_SIZE - 1;
4386
39279cc3 4387 if (!PageUptodate(page)) {
9ebefb18 4388 ret = btrfs_readpage(NULL, page);
39279cc3 4389 lock_page(page);
211c17f5
CM
4390 if (page->mapping != mapping) {
4391 unlock_page(page);
4392 page_cache_release(page);
4393 goto again;
4394 }
39279cc3
CM
4395 if (!PageUptodate(page)) {
4396 ret = -EIO;
89642229 4397 goto out_unlock;
39279cc3
CM
4398 }
4399 }
211c17f5 4400 wait_on_page_writeback(page);
e6dcd2dc 4401
d0082371 4402 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4403 set_page_extent_mapped(page);
4404
4405 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4406 if (ordered) {
2ac55d41
JB
4407 unlock_extent_cached(io_tree, page_start, page_end,
4408 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4409 unlock_page(page);
4410 page_cache_release(page);
eb84ae03 4411 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4412 btrfs_put_ordered_extent(ordered);
4413 goto again;
4414 }
4415
2ac55d41 4416 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4417 EXTENT_DIRTY | EXTENT_DELALLOC |
4418 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4419 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4420
2ac55d41
JB
4421 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4422 &cached_state);
9ed74f2d 4423 if (ret) {
2ac55d41
JB
4424 unlock_extent_cached(io_tree, page_start, page_end,
4425 &cached_state, GFP_NOFS);
9ed74f2d
JB
4426 goto out_unlock;
4427 }
4428
e6dcd2dc 4429 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4430 if (!len)
4431 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4432 kaddr = kmap(page);
2aaa6655
JB
4433 if (front)
4434 memset(kaddr, 0, offset);
4435 else
4436 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4437 flush_dcache_page(page);
4438 kunmap(page);
4439 }
247e743c 4440 ClearPageChecked(page);
e6dcd2dc 4441 set_page_dirty(page);
2ac55d41
JB
4442 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4443 GFP_NOFS);
39279cc3 4444
89642229 4445out_unlock:
5d5e103a 4446 if (ret)
0ca1f7ce 4447 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4448 unlock_page(page);
4449 page_cache_release(page);
4450out:
4451 return ret;
4452}
4453
16e7549f
JB
4454static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4455 u64 offset, u64 len)
4456{
4457 struct btrfs_trans_handle *trans;
4458 int ret;
4459
4460 /*
4461 * Still need to make sure the inode looks like it's been updated so
4462 * that any holes get logged if we fsync.
4463 */
4464 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4465 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4466 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4467 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4468 return 0;
4469 }
4470
4471 /*
4472 * 1 - for the one we're dropping
4473 * 1 - for the one we're adding
4474 * 1 - for updating the inode.
4475 */
4476 trans = btrfs_start_transaction(root, 3);
4477 if (IS_ERR(trans))
4478 return PTR_ERR(trans);
4479
4480 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4481 if (ret) {
4482 btrfs_abort_transaction(trans, root, ret);
4483 btrfs_end_transaction(trans, root);
4484 return ret;
4485 }
4486
4487 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4488 0, 0, len, 0, len, 0, 0, 0);
4489 if (ret)
4490 btrfs_abort_transaction(trans, root, ret);
4491 else
4492 btrfs_update_inode(trans, root, inode);
4493 btrfs_end_transaction(trans, root);
4494 return ret;
4495}
4496
695a0d0d
JB
4497/*
4498 * This function puts in dummy file extents for the area we're creating a hole
4499 * for. So if we are truncating this file to a larger size we need to insert
4500 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4501 * the range between oldsize and size
4502 */
a41ad394 4503int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4504{
9036c102
YZ
4505 struct btrfs_root *root = BTRFS_I(inode)->root;
4506 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4507 struct extent_map *em = NULL;
2ac55d41 4508 struct extent_state *cached_state = NULL;
5dc562c5 4509 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4510 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4511 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4512 u64 last_byte;
4513 u64 cur_offset;
4514 u64 hole_size;
9ed74f2d 4515 int err = 0;
39279cc3 4516
a71754fc
JB
4517 /*
4518 * If our size started in the middle of a page we need to zero out the
4519 * rest of the page before we expand the i_size, otherwise we could
4520 * expose stale data.
4521 */
4522 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4523 if (err)
4524 return err;
4525
9036c102
YZ
4526 if (size <= hole_start)
4527 return 0;
4528
9036c102
YZ
4529 while (1) {
4530 struct btrfs_ordered_extent *ordered;
fa7c1494 4531
2ac55d41 4532 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4533 &cached_state);
fa7c1494
MX
4534 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4535 block_end - hole_start);
9036c102
YZ
4536 if (!ordered)
4537 break;
2ac55d41
JB
4538 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4539 &cached_state, GFP_NOFS);
fa7c1494 4540 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4541 btrfs_put_ordered_extent(ordered);
4542 }
39279cc3 4543
9036c102
YZ
4544 cur_offset = hole_start;
4545 while (1) {
4546 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4547 block_end - cur_offset, 0);
79787eaa
JM
4548 if (IS_ERR(em)) {
4549 err = PTR_ERR(em);
f2767956 4550 em = NULL;
79787eaa
JM
4551 break;
4552 }
9036c102 4553 last_byte = min(extent_map_end(em), block_end);
fda2832f 4554 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4555 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4556 struct extent_map *hole_em;
9036c102 4557 hole_size = last_byte - cur_offset;
9ed74f2d 4558
16e7549f
JB
4559 err = maybe_insert_hole(root, inode, cur_offset,
4560 hole_size);
4561 if (err)
3893e33b 4562 break;
5dc562c5
JB
4563 btrfs_drop_extent_cache(inode, cur_offset,
4564 cur_offset + hole_size - 1, 0);
4565 hole_em = alloc_extent_map();
4566 if (!hole_em) {
4567 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4568 &BTRFS_I(inode)->runtime_flags);
4569 goto next;
4570 }
4571 hole_em->start = cur_offset;
4572 hole_em->len = hole_size;
4573 hole_em->orig_start = cur_offset;
8082510e 4574
5dc562c5
JB
4575 hole_em->block_start = EXTENT_MAP_HOLE;
4576 hole_em->block_len = 0;
b4939680 4577 hole_em->orig_block_len = 0;
cc95bef6 4578 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4579 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4580 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4581 hole_em->generation = root->fs_info->generation;
8082510e 4582
5dc562c5
JB
4583 while (1) {
4584 write_lock(&em_tree->lock);
09a2a8f9 4585 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4586 write_unlock(&em_tree->lock);
4587 if (err != -EEXIST)
4588 break;
4589 btrfs_drop_extent_cache(inode, cur_offset,
4590 cur_offset +
4591 hole_size - 1, 0);
4592 }
4593 free_extent_map(hole_em);
9036c102 4594 }
16e7549f 4595next:
9036c102 4596 free_extent_map(em);
a22285a6 4597 em = NULL;
9036c102 4598 cur_offset = last_byte;
8082510e 4599 if (cur_offset >= block_end)
9036c102
YZ
4600 break;
4601 }
a22285a6 4602 free_extent_map(em);
2ac55d41
JB
4603 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4604 GFP_NOFS);
9036c102
YZ
4605 return err;
4606}
39279cc3 4607
9ea24bbe
FM
4608static int wait_snapshoting_atomic_t(atomic_t *a)
4609{
4610 schedule();
4611 return 0;
4612}
4613
4614static void wait_for_snapshot_creation(struct btrfs_root *root)
4615{
4616 while (true) {
4617 int ret;
4618
4619 ret = btrfs_start_write_no_snapshoting(root);
4620 if (ret)
4621 break;
4622 wait_on_atomic_t(&root->will_be_snapshoted,
4623 wait_snapshoting_atomic_t,
4624 TASK_UNINTERRUPTIBLE);
4625 }
4626}
4627
3972f260 4628static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4629{
f4a2f4c5
MX
4630 struct btrfs_root *root = BTRFS_I(inode)->root;
4631 struct btrfs_trans_handle *trans;
a41ad394 4632 loff_t oldsize = i_size_read(inode);
3972f260
ES
4633 loff_t newsize = attr->ia_size;
4634 int mask = attr->ia_valid;
8082510e
YZ
4635 int ret;
4636
3972f260
ES
4637 /*
4638 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4639 * special case where we need to update the times despite not having
4640 * these flags set. For all other operations the VFS set these flags
4641 * explicitly if it wants a timestamp update.
4642 */
dff6efc3
CH
4643 if (newsize != oldsize) {
4644 inode_inc_iversion(inode);
4645 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4646 inode->i_ctime = inode->i_mtime =
4647 current_fs_time(inode->i_sb);
4648 }
3972f260 4649
a41ad394 4650 if (newsize > oldsize) {
7caef267 4651 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4652 /*
4653 * Don't do an expanding truncate while snapshoting is ongoing.
4654 * This is to ensure the snapshot captures a fully consistent
4655 * state of this file - if the snapshot captures this expanding
4656 * truncation, it must capture all writes that happened before
4657 * this truncation.
4658 */
4659 wait_for_snapshot_creation(root);
a41ad394 4660 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4661 if (ret) {
4662 btrfs_end_write_no_snapshoting(root);
8082510e 4663 return ret;
9ea24bbe 4664 }
8082510e 4665
f4a2f4c5 4666 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4667 if (IS_ERR(trans)) {
4668 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4669 return PTR_ERR(trans);
9ea24bbe 4670 }
f4a2f4c5
MX
4671
4672 i_size_write(inode, newsize);
4673 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4674 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4675 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4676 btrfs_end_transaction(trans, root);
a41ad394 4677 } else {
8082510e 4678
a41ad394
JB
4679 /*
4680 * We're truncating a file that used to have good data down to
4681 * zero. Make sure it gets into the ordered flush list so that
4682 * any new writes get down to disk quickly.
4683 */
4684 if (newsize == 0)
72ac3c0d
JB
4685 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4686 &BTRFS_I(inode)->runtime_flags);
8082510e 4687
f3fe820c
JB
4688 /*
4689 * 1 for the orphan item we're going to add
4690 * 1 for the orphan item deletion.
4691 */
4692 trans = btrfs_start_transaction(root, 2);
4693 if (IS_ERR(trans))
4694 return PTR_ERR(trans);
4695
4696 /*
4697 * We need to do this in case we fail at _any_ point during the
4698 * actual truncate. Once we do the truncate_setsize we could
4699 * invalidate pages which forces any outstanding ordered io to
4700 * be instantly completed which will give us extents that need
4701 * to be truncated. If we fail to get an orphan inode down we
4702 * could have left over extents that were never meant to live,
4703 * so we need to garuntee from this point on that everything
4704 * will be consistent.
4705 */
4706 ret = btrfs_orphan_add(trans, inode);
4707 btrfs_end_transaction(trans, root);
4708 if (ret)
4709 return ret;
4710
a41ad394
JB
4711 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4712 truncate_setsize(inode, newsize);
2e60a51e
MX
4713
4714 /* Disable nonlocked read DIO to avoid the end less truncate */
4715 btrfs_inode_block_unlocked_dio(inode);
4716 inode_dio_wait(inode);
4717 btrfs_inode_resume_unlocked_dio(inode);
4718
a41ad394 4719 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4720 if (ret && inode->i_nlink) {
4721 int err;
4722
4723 /*
4724 * failed to truncate, disk_i_size is only adjusted down
4725 * as we remove extents, so it should represent the true
4726 * size of the inode, so reset the in memory size and
4727 * delete our orphan entry.
4728 */
4729 trans = btrfs_join_transaction(root);
4730 if (IS_ERR(trans)) {
4731 btrfs_orphan_del(NULL, inode);
4732 return ret;
4733 }
4734 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4735 err = btrfs_orphan_del(trans, inode);
4736 if (err)
4737 btrfs_abort_transaction(trans, root, err);
4738 btrfs_end_transaction(trans, root);
4739 }
8082510e
YZ
4740 }
4741
a41ad394 4742 return ret;
8082510e
YZ
4743}
4744
9036c102
YZ
4745static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4746{
4747 struct inode *inode = dentry->d_inode;
b83cc969 4748 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4749 int err;
39279cc3 4750
b83cc969
LZ
4751 if (btrfs_root_readonly(root))
4752 return -EROFS;
4753
9036c102
YZ
4754 err = inode_change_ok(inode, attr);
4755 if (err)
4756 return err;
2bf5a725 4757
5a3f23d5 4758 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4759 err = btrfs_setsize(inode, attr);
8082510e
YZ
4760 if (err)
4761 return err;
39279cc3 4762 }
9036c102 4763
1025774c
CH
4764 if (attr->ia_valid) {
4765 setattr_copy(inode, attr);
0c4d2d95 4766 inode_inc_iversion(inode);
22c44fe6 4767 err = btrfs_dirty_inode(inode);
1025774c 4768
22c44fe6 4769 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4770 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4771 }
33268eaf 4772
39279cc3
CM
4773 return err;
4774}
61295eb8 4775
131e404a
FDBM
4776/*
4777 * While truncating the inode pages during eviction, we get the VFS calling
4778 * btrfs_invalidatepage() against each page of the inode. This is slow because
4779 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4780 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4781 * extent_state structures over and over, wasting lots of time.
4782 *
4783 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4784 * those expensive operations on a per page basis and do only the ordered io
4785 * finishing, while we release here the extent_map and extent_state structures,
4786 * without the excessive merging and splitting.
4787 */
4788static void evict_inode_truncate_pages(struct inode *inode)
4789{
4790 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4791 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4792 struct rb_node *node;
4793
4794 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4795 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4796
4797 write_lock(&map_tree->lock);
4798 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4799 struct extent_map *em;
4800
4801 node = rb_first(&map_tree->map);
4802 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4803 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4804 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4805 remove_extent_mapping(map_tree, em);
4806 free_extent_map(em);
7064dd5c
FM
4807 if (need_resched()) {
4808 write_unlock(&map_tree->lock);
4809 cond_resched();
4810 write_lock(&map_tree->lock);
4811 }
131e404a
FDBM
4812 }
4813 write_unlock(&map_tree->lock);
4814
4815 spin_lock(&io_tree->lock);
4816 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4817 struct extent_state *state;
4818 struct extent_state *cached_state = NULL;
4819
4820 node = rb_first(&io_tree->state);
4821 state = rb_entry(node, struct extent_state, rb_node);
4822 atomic_inc(&state->refs);
4823 spin_unlock(&io_tree->lock);
4824
4825 lock_extent_bits(io_tree, state->start, state->end,
4826 0, &cached_state);
4827 clear_extent_bit(io_tree, state->start, state->end,
4828 EXTENT_LOCKED | EXTENT_DIRTY |
4829 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4830 EXTENT_DEFRAG, 1, 1,
4831 &cached_state, GFP_NOFS);
4832 free_extent_state(state);
4833
7064dd5c 4834 cond_resched();
131e404a
FDBM
4835 spin_lock(&io_tree->lock);
4836 }
4837 spin_unlock(&io_tree->lock);
4838}
4839
bd555975 4840void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4841{
4842 struct btrfs_trans_handle *trans;
4843 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4844 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4845 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4846 int ret;
4847
1abe9b8a 4848 trace_btrfs_inode_evict(inode);
4849
131e404a
FDBM
4850 evict_inode_truncate_pages(inode);
4851
69e9c6c6
SB
4852 if (inode->i_nlink &&
4853 ((btrfs_root_refs(&root->root_item) != 0 &&
4854 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4855 btrfs_is_free_space_inode(inode)))
bd555975
AV
4856 goto no_delete;
4857
39279cc3 4858 if (is_bad_inode(inode)) {
7b128766 4859 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4860 goto no_delete;
4861 }
bd555975 4862 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4863 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4864
f612496b
MX
4865 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4866
c71bf099 4867 if (root->fs_info->log_root_recovering) {
6bf02314 4868 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4869 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4870 goto no_delete;
4871 }
4872
76dda93c 4873 if (inode->i_nlink > 0) {
69e9c6c6
SB
4874 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4875 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4876 goto no_delete;
4877 }
4878
0e8c36a9
MX
4879 ret = btrfs_commit_inode_delayed_inode(inode);
4880 if (ret) {
4881 btrfs_orphan_del(NULL, inode);
4882 goto no_delete;
4883 }
4884
66d8f3dd 4885 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4886 if (!rsv) {
4887 btrfs_orphan_del(NULL, inode);
4888 goto no_delete;
4889 }
4a338542 4890 rsv->size = min_size;
ca7e70f5 4891 rsv->failfast = 1;
726c35fa 4892 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4893
dbe674a9 4894 btrfs_i_size_write(inode, 0);
5f39d397 4895
4289a667 4896 /*
8407aa46
MX
4897 * This is a bit simpler than btrfs_truncate since we've already
4898 * reserved our space for our orphan item in the unlink, so we just
4899 * need to reserve some slack space in case we add bytes and update
4900 * inode item when doing the truncate.
4289a667 4901 */
8082510e 4902 while (1) {
08e007d2
MX
4903 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4904 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4905
4906 /*
4907 * Try and steal from the global reserve since we will
4908 * likely not use this space anyway, we want to try as
4909 * hard as possible to get this to work.
4910 */
4911 if (ret)
4912 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4913
d68fc57b 4914 if (ret) {
c2cf52eb
SK
4915 btrfs_warn(root->fs_info,
4916 "Could not get space for a delete, will truncate on mount %d",
4917 ret);
4289a667
JB
4918 btrfs_orphan_del(NULL, inode);
4919 btrfs_free_block_rsv(root, rsv);
4920 goto no_delete;
d68fc57b 4921 }
7b128766 4922
0e8c36a9 4923 trans = btrfs_join_transaction(root);
4289a667
JB
4924 if (IS_ERR(trans)) {
4925 btrfs_orphan_del(NULL, inode);
4926 btrfs_free_block_rsv(root, rsv);
4927 goto no_delete;
d68fc57b 4928 }
7b128766 4929
4289a667
JB
4930 trans->block_rsv = rsv;
4931
d68fc57b 4932 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4933 if (ret != -ENOSPC)
8082510e 4934 break;
85e21bac 4935
8407aa46 4936 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4937 btrfs_end_transaction(trans, root);
4938 trans = NULL;
b53d3f5d 4939 btrfs_btree_balance_dirty(root);
8082510e 4940 }
5f39d397 4941
4289a667
JB
4942 btrfs_free_block_rsv(root, rsv);
4943
4ef31a45
JB
4944 /*
4945 * Errors here aren't a big deal, it just means we leave orphan items
4946 * in the tree. They will be cleaned up on the next mount.
4947 */
8082510e 4948 if (ret == 0) {
4289a667 4949 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4950 btrfs_orphan_del(trans, inode);
4951 } else {
4952 btrfs_orphan_del(NULL, inode);
8082510e 4953 }
54aa1f4d 4954
4289a667 4955 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4956 if (!(root == root->fs_info->tree_root ||
4957 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4958 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4959
54aa1f4d 4960 btrfs_end_transaction(trans, root);
b53d3f5d 4961 btrfs_btree_balance_dirty(root);
39279cc3 4962no_delete:
89042e5a 4963 btrfs_remove_delayed_node(inode);
dbd5768f 4964 clear_inode(inode);
8082510e 4965 return;
39279cc3
CM
4966}
4967
4968/*
4969 * this returns the key found in the dir entry in the location pointer.
4970 * If no dir entries were found, location->objectid is 0.
4971 */
4972static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4973 struct btrfs_key *location)
4974{
4975 const char *name = dentry->d_name.name;
4976 int namelen = dentry->d_name.len;
4977 struct btrfs_dir_item *di;
4978 struct btrfs_path *path;
4979 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4980 int ret = 0;
39279cc3
CM
4981
4982 path = btrfs_alloc_path();
d8926bb3
MF
4983 if (!path)
4984 return -ENOMEM;
3954401f 4985
33345d01 4986 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4987 namelen, 0);
0d9f7f3e
Y
4988 if (IS_ERR(di))
4989 ret = PTR_ERR(di);
d397712b 4990
c704005d 4991 if (IS_ERR_OR_NULL(di))
3954401f 4992 goto out_err;
d397712b 4993
5f39d397 4994 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4995out:
39279cc3
CM
4996 btrfs_free_path(path);
4997 return ret;
3954401f
CM
4998out_err:
4999 location->objectid = 0;
5000 goto out;
39279cc3
CM
5001}
5002
5003/*
5004 * when we hit a tree root in a directory, the btrfs part of the inode
5005 * needs to be changed to reflect the root directory of the tree root. This
5006 * is kind of like crossing a mount point.
5007 */
5008static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5009 struct inode *dir,
5010 struct dentry *dentry,
5011 struct btrfs_key *location,
5012 struct btrfs_root **sub_root)
39279cc3 5013{
4df27c4d
YZ
5014 struct btrfs_path *path;
5015 struct btrfs_root *new_root;
5016 struct btrfs_root_ref *ref;
5017 struct extent_buffer *leaf;
1d4c08e0 5018 struct btrfs_key key;
4df27c4d
YZ
5019 int ret;
5020 int err = 0;
39279cc3 5021
4df27c4d
YZ
5022 path = btrfs_alloc_path();
5023 if (!path) {
5024 err = -ENOMEM;
5025 goto out;
5026 }
39279cc3 5027
4df27c4d 5028 err = -ENOENT;
1d4c08e0
DS
5029 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5030 key.type = BTRFS_ROOT_REF_KEY;
5031 key.offset = location->objectid;
5032
5033 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5034 0, 0);
4df27c4d
YZ
5035 if (ret) {
5036 if (ret < 0)
5037 err = ret;
5038 goto out;
5039 }
39279cc3 5040
4df27c4d
YZ
5041 leaf = path->nodes[0];
5042 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5043 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5044 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5045 goto out;
39279cc3 5046
4df27c4d
YZ
5047 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5048 (unsigned long)(ref + 1),
5049 dentry->d_name.len);
5050 if (ret)
5051 goto out;
5052
b3b4aa74 5053 btrfs_release_path(path);
4df27c4d
YZ
5054
5055 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5056 if (IS_ERR(new_root)) {
5057 err = PTR_ERR(new_root);
5058 goto out;
5059 }
5060
4df27c4d
YZ
5061 *sub_root = new_root;
5062 location->objectid = btrfs_root_dirid(&new_root->root_item);
5063 location->type = BTRFS_INODE_ITEM_KEY;
5064 location->offset = 0;
5065 err = 0;
5066out:
5067 btrfs_free_path(path);
5068 return err;
39279cc3
CM
5069}
5070
5d4f98a2
YZ
5071static void inode_tree_add(struct inode *inode)
5072{
5073 struct btrfs_root *root = BTRFS_I(inode)->root;
5074 struct btrfs_inode *entry;
03e860bd
FNP
5075 struct rb_node **p;
5076 struct rb_node *parent;
cef21937 5077 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5078 u64 ino = btrfs_ino(inode);
5d4f98a2 5079
1d3382cb 5080 if (inode_unhashed(inode))
76dda93c 5081 return;
e1409cef 5082 parent = NULL;
5d4f98a2 5083 spin_lock(&root->inode_lock);
e1409cef 5084 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5085 while (*p) {
5086 parent = *p;
5087 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5088
33345d01 5089 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5090 p = &parent->rb_left;
33345d01 5091 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5092 p = &parent->rb_right;
5d4f98a2
YZ
5093 else {
5094 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5095 (I_WILL_FREE | I_FREEING)));
cef21937 5096 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5097 RB_CLEAR_NODE(parent);
5098 spin_unlock(&root->inode_lock);
cef21937 5099 return;
5d4f98a2
YZ
5100 }
5101 }
cef21937
FDBM
5102 rb_link_node(new, parent, p);
5103 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5104 spin_unlock(&root->inode_lock);
5105}
5106
5107static void inode_tree_del(struct inode *inode)
5108{
5109 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5110 int empty = 0;
5d4f98a2 5111
03e860bd 5112 spin_lock(&root->inode_lock);
5d4f98a2 5113 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5114 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5115 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5116 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5117 }
03e860bd 5118 spin_unlock(&root->inode_lock);
76dda93c 5119
69e9c6c6 5120 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5121 synchronize_srcu(&root->fs_info->subvol_srcu);
5122 spin_lock(&root->inode_lock);
5123 empty = RB_EMPTY_ROOT(&root->inode_tree);
5124 spin_unlock(&root->inode_lock);
5125 if (empty)
5126 btrfs_add_dead_root(root);
5127 }
5128}
5129
143bede5 5130void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5131{
5132 struct rb_node *node;
5133 struct rb_node *prev;
5134 struct btrfs_inode *entry;
5135 struct inode *inode;
5136 u64 objectid = 0;
5137
7813b3db
LB
5138 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5139 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5140
5141 spin_lock(&root->inode_lock);
5142again:
5143 node = root->inode_tree.rb_node;
5144 prev = NULL;
5145 while (node) {
5146 prev = node;
5147 entry = rb_entry(node, struct btrfs_inode, rb_node);
5148
33345d01 5149 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5150 node = node->rb_left;
33345d01 5151 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5152 node = node->rb_right;
5153 else
5154 break;
5155 }
5156 if (!node) {
5157 while (prev) {
5158 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5159 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5160 node = prev;
5161 break;
5162 }
5163 prev = rb_next(prev);
5164 }
5165 }
5166 while (node) {
5167 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5168 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5169 inode = igrab(&entry->vfs_inode);
5170 if (inode) {
5171 spin_unlock(&root->inode_lock);
5172 if (atomic_read(&inode->i_count) > 1)
5173 d_prune_aliases(inode);
5174 /*
45321ac5 5175 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5176 * the inode cache when its usage count
5177 * hits zero.
5178 */
5179 iput(inode);
5180 cond_resched();
5181 spin_lock(&root->inode_lock);
5182 goto again;
5183 }
5184
5185 if (cond_resched_lock(&root->inode_lock))
5186 goto again;
5187
5188 node = rb_next(node);
5189 }
5190 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5191}
5192
e02119d5
CM
5193static int btrfs_init_locked_inode(struct inode *inode, void *p)
5194{
5195 struct btrfs_iget_args *args = p;
90d3e592
CM
5196 inode->i_ino = args->location->objectid;
5197 memcpy(&BTRFS_I(inode)->location, args->location,
5198 sizeof(*args->location));
e02119d5 5199 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5200 return 0;
5201}
5202
5203static int btrfs_find_actor(struct inode *inode, void *opaque)
5204{
5205 struct btrfs_iget_args *args = opaque;
90d3e592 5206 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5207 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5208}
5209
5d4f98a2 5210static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5211 struct btrfs_key *location,
5d4f98a2 5212 struct btrfs_root *root)
39279cc3
CM
5213{
5214 struct inode *inode;
5215 struct btrfs_iget_args args;
90d3e592 5216 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5217
90d3e592 5218 args.location = location;
39279cc3
CM
5219 args.root = root;
5220
778ba82b 5221 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5222 btrfs_init_locked_inode,
5223 (void *)&args);
5224 return inode;
5225}
5226
1a54ef8c
BR
5227/* Get an inode object given its location and corresponding root.
5228 * Returns in *is_new if the inode was read from disk
5229 */
5230struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5231 struct btrfs_root *root, int *new)
1a54ef8c
BR
5232{
5233 struct inode *inode;
5234
90d3e592 5235 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5236 if (!inode)
5d4f98a2 5237 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5238
5239 if (inode->i_state & I_NEW) {
1a54ef8c 5240 btrfs_read_locked_inode(inode);
1748f843
MF
5241 if (!is_bad_inode(inode)) {
5242 inode_tree_add(inode);
5243 unlock_new_inode(inode);
5244 if (new)
5245 *new = 1;
5246 } else {
e0b6d65b
ST
5247 unlock_new_inode(inode);
5248 iput(inode);
5249 inode = ERR_PTR(-ESTALE);
1748f843
MF
5250 }
5251 }
5252
1a54ef8c
BR
5253 return inode;
5254}
5255
4df27c4d
YZ
5256static struct inode *new_simple_dir(struct super_block *s,
5257 struct btrfs_key *key,
5258 struct btrfs_root *root)
5259{
5260 struct inode *inode = new_inode(s);
5261
5262 if (!inode)
5263 return ERR_PTR(-ENOMEM);
5264
4df27c4d
YZ
5265 BTRFS_I(inode)->root = root;
5266 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5267 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5268
5269 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5270 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5271 inode->i_fop = &simple_dir_operations;
5272 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
9cc97d64 5273 inode->i_mtime = CURRENT_TIME;
5274 inode->i_atime = inode->i_mtime;
5275 inode->i_ctime = inode->i_mtime;
5276 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5277
5278 return inode;
5279}
5280
3de4586c 5281struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5282{
d397712b 5283 struct inode *inode;
4df27c4d 5284 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5285 struct btrfs_root *sub_root = root;
5286 struct btrfs_key location;
76dda93c 5287 int index;
b4aff1f8 5288 int ret = 0;
39279cc3
CM
5289
5290 if (dentry->d_name.len > BTRFS_NAME_LEN)
5291 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5292
39e3c955 5293 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5294 if (ret < 0)
5295 return ERR_PTR(ret);
5f39d397 5296
4df27c4d 5297 if (location.objectid == 0)
5662344b 5298 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5299
5300 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5301 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5302 return inode;
5303 }
5304
5305 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5306
76dda93c 5307 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5308 ret = fixup_tree_root_location(root, dir, dentry,
5309 &location, &sub_root);
5310 if (ret < 0) {
5311 if (ret != -ENOENT)
5312 inode = ERR_PTR(ret);
5313 else
5314 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5315 } else {
73f73415 5316 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5317 }
76dda93c
YZ
5318 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5319
34d19bad 5320 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5321 down_read(&root->fs_info->cleanup_work_sem);
5322 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5323 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5324 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5325 if (ret) {
5326 iput(inode);
66b4ffd1 5327 inode = ERR_PTR(ret);
01cd3367 5328 }
c71bf099
YZ
5329 }
5330
3de4586c
CM
5331 return inode;
5332}
5333
fe15ce44 5334static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5335{
5336 struct btrfs_root *root;
848cce0d 5337 struct inode *inode = dentry->d_inode;
76dda93c 5338
848cce0d
LZ
5339 if (!inode && !IS_ROOT(dentry))
5340 inode = dentry->d_parent->d_inode;
76dda93c 5341
848cce0d
LZ
5342 if (inode) {
5343 root = BTRFS_I(inode)->root;
efefb143
YZ
5344 if (btrfs_root_refs(&root->root_item) == 0)
5345 return 1;
848cce0d
LZ
5346
5347 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5348 return 1;
efefb143 5349 }
76dda93c
YZ
5350 return 0;
5351}
5352
b4aff1f8
JB
5353static void btrfs_dentry_release(struct dentry *dentry)
5354{
944a4515 5355 kfree(dentry->d_fsdata);
b4aff1f8
JB
5356}
5357
3de4586c 5358static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5359 unsigned int flags)
3de4586c 5360{
5662344b 5361 struct inode *inode;
a66e7cc6 5362
5662344b
TI
5363 inode = btrfs_lookup_dentry(dir, dentry);
5364 if (IS_ERR(inode)) {
5365 if (PTR_ERR(inode) == -ENOENT)
5366 inode = NULL;
5367 else
5368 return ERR_CAST(inode);
5369 }
5370
41d28bca 5371 return d_splice_alias(inode, dentry);
39279cc3
CM
5372}
5373
16cdcec7 5374unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5375 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5376};
5377
9cdda8d3 5378static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5379{
9cdda8d3 5380 struct inode *inode = file_inode(file);
39279cc3
CM
5381 struct btrfs_root *root = BTRFS_I(inode)->root;
5382 struct btrfs_item *item;
5383 struct btrfs_dir_item *di;
5384 struct btrfs_key key;
5f39d397 5385 struct btrfs_key found_key;
39279cc3 5386 struct btrfs_path *path;
16cdcec7
MX
5387 struct list_head ins_list;
5388 struct list_head del_list;
39279cc3 5389 int ret;
5f39d397 5390 struct extent_buffer *leaf;
39279cc3 5391 int slot;
39279cc3
CM
5392 unsigned char d_type;
5393 int over = 0;
5394 u32 di_cur;
5395 u32 di_total;
5396 u32 di_len;
5397 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5398 char tmp_name[32];
5399 char *name_ptr;
5400 int name_len;
9cdda8d3 5401 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5402
5403 /* FIXME, use a real flag for deciding about the key type */
5404 if (root->fs_info->tree_root == root)
5405 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5406
9cdda8d3
AV
5407 if (!dir_emit_dots(file, ctx))
5408 return 0;
5409
49593bfa 5410 path = btrfs_alloc_path();
16cdcec7
MX
5411 if (!path)
5412 return -ENOMEM;
ff5714cc 5413
026fd317 5414 path->reada = 1;
49593bfa 5415
16cdcec7
MX
5416 if (key_type == BTRFS_DIR_INDEX_KEY) {
5417 INIT_LIST_HEAD(&ins_list);
5418 INIT_LIST_HEAD(&del_list);
5419 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5420 }
5421
962a298f 5422 key.type = key_type;
9cdda8d3 5423 key.offset = ctx->pos;
33345d01 5424 key.objectid = btrfs_ino(inode);
5f39d397 5425
39279cc3
CM
5426 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5427 if (ret < 0)
5428 goto err;
49593bfa
DW
5429
5430 while (1) {
5f39d397 5431 leaf = path->nodes[0];
39279cc3 5432 slot = path->slots[0];
b9e03af0
LZ
5433 if (slot >= btrfs_header_nritems(leaf)) {
5434 ret = btrfs_next_leaf(root, path);
5435 if (ret < 0)
5436 goto err;
5437 else if (ret > 0)
5438 break;
5439 continue;
39279cc3 5440 }
3de4586c 5441
dd3cc16b 5442 item = btrfs_item_nr(slot);
5f39d397
CM
5443 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5444
5445 if (found_key.objectid != key.objectid)
39279cc3 5446 break;
962a298f 5447 if (found_key.type != key_type)
39279cc3 5448 break;
9cdda8d3 5449 if (found_key.offset < ctx->pos)
b9e03af0 5450 goto next;
16cdcec7
MX
5451 if (key_type == BTRFS_DIR_INDEX_KEY &&
5452 btrfs_should_delete_dir_index(&del_list,
5453 found_key.offset))
5454 goto next;
5f39d397 5455
9cdda8d3 5456 ctx->pos = found_key.offset;
16cdcec7 5457 is_curr = 1;
49593bfa 5458
39279cc3
CM
5459 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5460 di_cur = 0;
5f39d397 5461 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5462
5463 while (di_cur < di_total) {
5f39d397
CM
5464 struct btrfs_key location;
5465
22a94d44
JB
5466 if (verify_dir_item(root, leaf, di))
5467 break;
5468
5f39d397 5469 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5470 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5471 name_ptr = tmp_name;
5472 } else {
5473 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5474 if (!name_ptr) {
5475 ret = -ENOMEM;
5476 goto err;
5477 }
5f39d397
CM
5478 }
5479 read_extent_buffer(leaf, name_ptr,
5480 (unsigned long)(di + 1), name_len);
5481
5482 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5483 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5484
fede766f 5485
3de4586c 5486 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5487 * skip it.
5488 *
5489 * In contrast to old kernels, we insert the snapshot's
5490 * dir item and dir index after it has been created, so
5491 * we won't find a reference to our own snapshot. We
5492 * still keep the following code for backward
5493 * compatibility.
3de4586c
CM
5494 */
5495 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5496 location.objectid == root->root_key.objectid) {
5497 over = 0;
5498 goto skip;
5499 }
9cdda8d3
AV
5500 over = !dir_emit(ctx, name_ptr, name_len,
5501 location.objectid, d_type);
5f39d397 5502
3de4586c 5503skip:
5f39d397
CM
5504 if (name_ptr != tmp_name)
5505 kfree(name_ptr);
5506
39279cc3
CM
5507 if (over)
5508 goto nopos;
5103e947 5509 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5510 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5511 di_cur += di_len;
5512 di = (struct btrfs_dir_item *)((char *)di + di_len);
5513 }
b9e03af0
LZ
5514next:
5515 path->slots[0]++;
39279cc3 5516 }
49593bfa 5517
16cdcec7
MX
5518 if (key_type == BTRFS_DIR_INDEX_KEY) {
5519 if (is_curr)
9cdda8d3
AV
5520 ctx->pos++;
5521 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5522 if (ret)
5523 goto nopos;
5524 }
5525
49593bfa 5526 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5527 ctx->pos++;
5528
5529 /*
5530 * Stop new entries from being returned after we return the last
5531 * entry.
5532 *
5533 * New directory entries are assigned a strictly increasing
5534 * offset. This means that new entries created during readdir
5535 * are *guaranteed* to be seen in the future by that readdir.
5536 * This has broken buggy programs which operate on names as
5537 * they're returned by readdir. Until we re-use freed offsets
5538 * we have this hack to stop new entries from being returned
5539 * under the assumption that they'll never reach this huge
5540 * offset.
5541 *
5542 * This is being careful not to overflow 32bit loff_t unless the
5543 * last entry requires it because doing so has broken 32bit apps
5544 * in the past.
5545 */
5546 if (key_type == BTRFS_DIR_INDEX_KEY) {
5547 if (ctx->pos >= INT_MAX)
5548 ctx->pos = LLONG_MAX;
5549 else
5550 ctx->pos = INT_MAX;
5551 }
39279cc3
CM
5552nopos:
5553 ret = 0;
5554err:
16cdcec7
MX
5555 if (key_type == BTRFS_DIR_INDEX_KEY)
5556 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5557 btrfs_free_path(path);
39279cc3
CM
5558 return ret;
5559}
5560
a9185b41 5561int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5562{
5563 struct btrfs_root *root = BTRFS_I(inode)->root;
5564 struct btrfs_trans_handle *trans;
5565 int ret = 0;
0af3d00b 5566 bool nolock = false;
39279cc3 5567
72ac3c0d 5568 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5569 return 0;
5570
83eea1f1 5571 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5572 nolock = true;
0af3d00b 5573
a9185b41 5574 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5575 if (nolock)
7a7eaa40 5576 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5577 else
7a7eaa40 5578 trans = btrfs_join_transaction(root);
3612b495
TI
5579 if (IS_ERR(trans))
5580 return PTR_ERR(trans);
a698d075 5581 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5582 }
5583 return ret;
5584}
5585
5586/*
54aa1f4d 5587 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5588 * inode changes. But, it is most likely to find the inode in cache.
5589 * FIXME, needs more benchmarking...there are no reasons other than performance
5590 * to keep or drop this code.
5591 */
48a3b636 5592static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5593{
5594 struct btrfs_root *root = BTRFS_I(inode)->root;
5595 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5596 int ret;
5597
72ac3c0d 5598 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5599 return 0;
39279cc3 5600
7a7eaa40 5601 trans = btrfs_join_transaction(root);
22c44fe6
JB
5602 if (IS_ERR(trans))
5603 return PTR_ERR(trans);
8929ecfa
YZ
5604
5605 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5606 if (ret && ret == -ENOSPC) {
5607 /* whoops, lets try again with the full transaction */
5608 btrfs_end_transaction(trans, root);
5609 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5610 if (IS_ERR(trans))
5611 return PTR_ERR(trans);
8929ecfa 5612
94b60442 5613 ret = btrfs_update_inode(trans, root, inode);
94b60442 5614 }
39279cc3 5615 btrfs_end_transaction(trans, root);
16cdcec7
MX
5616 if (BTRFS_I(inode)->delayed_node)
5617 btrfs_balance_delayed_items(root);
22c44fe6
JB
5618
5619 return ret;
5620}
5621
5622/*
5623 * This is a copy of file_update_time. We need this so we can return error on
5624 * ENOSPC for updating the inode in the case of file write and mmap writes.
5625 */
e41f941a
JB
5626static int btrfs_update_time(struct inode *inode, struct timespec *now,
5627 int flags)
22c44fe6 5628{
2bc55652
AB
5629 struct btrfs_root *root = BTRFS_I(inode)->root;
5630
5631 if (btrfs_root_readonly(root))
5632 return -EROFS;
5633
e41f941a 5634 if (flags & S_VERSION)
22c44fe6 5635 inode_inc_iversion(inode);
e41f941a
JB
5636 if (flags & S_CTIME)
5637 inode->i_ctime = *now;
5638 if (flags & S_MTIME)
5639 inode->i_mtime = *now;
5640 if (flags & S_ATIME)
5641 inode->i_atime = *now;
5642 return btrfs_dirty_inode(inode);
39279cc3
CM
5643}
5644
d352ac68
CM
5645/*
5646 * find the highest existing sequence number in a directory
5647 * and then set the in-memory index_cnt variable to reflect
5648 * free sequence numbers
5649 */
aec7477b
JB
5650static int btrfs_set_inode_index_count(struct inode *inode)
5651{
5652 struct btrfs_root *root = BTRFS_I(inode)->root;
5653 struct btrfs_key key, found_key;
5654 struct btrfs_path *path;
5655 struct extent_buffer *leaf;
5656 int ret;
5657
33345d01 5658 key.objectid = btrfs_ino(inode);
962a298f 5659 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5660 key.offset = (u64)-1;
5661
5662 path = btrfs_alloc_path();
5663 if (!path)
5664 return -ENOMEM;
5665
5666 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5667 if (ret < 0)
5668 goto out;
5669 /* FIXME: we should be able to handle this */
5670 if (ret == 0)
5671 goto out;
5672 ret = 0;
5673
5674 /*
5675 * MAGIC NUMBER EXPLANATION:
5676 * since we search a directory based on f_pos we have to start at 2
5677 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5678 * else has to start at 2
5679 */
5680 if (path->slots[0] == 0) {
5681 BTRFS_I(inode)->index_cnt = 2;
5682 goto out;
5683 }
5684
5685 path->slots[0]--;
5686
5687 leaf = path->nodes[0];
5688 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5689
33345d01 5690 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5691 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
5692 BTRFS_I(inode)->index_cnt = 2;
5693 goto out;
5694 }
5695
5696 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5697out:
5698 btrfs_free_path(path);
5699 return ret;
5700}
5701
d352ac68
CM
5702/*
5703 * helper to find a free sequence number in a given directory. This current
5704 * code is very simple, later versions will do smarter things in the btree
5705 */
3de4586c 5706int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5707{
5708 int ret = 0;
5709
5710 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5711 ret = btrfs_inode_delayed_dir_index_count(dir);
5712 if (ret) {
5713 ret = btrfs_set_inode_index_count(dir);
5714 if (ret)
5715 return ret;
5716 }
aec7477b
JB
5717 }
5718
00e4e6b3 5719 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5720 BTRFS_I(dir)->index_cnt++;
5721
5722 return ret;
5723}
5724
b0d5d10f
CM
5725static int btrfs_insert_inode_locked(struct inode *inode)
5726{
5727 struct btrfs_iget_args args;
5728 args.location = &BTRFS_I(inode)->location;
5729 args.root = BTRFS_I(inode)->root;
5730
5731 return insert_inode_locked4(inode,
5732 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5733 btrfs_find_actor, &args);
5734}
5735
39279cc3
CM
5736static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5737 struct btrfs_root *root,
aec7477b 5738 struct inode *dir,
9c58309d 5739 const char *name, int name_len,
175a4eb7
AV
5740 u64 ref_objectid, u64 objectid,
5741 umode_t mode, u64 *index)
39279cc3
CM
5742{
5743 struct inode *inode;
5f39d397 5744 struct btrfs_inode_item *inode_item;
39279cc3 5745 struct btrfs_key *location;
5f39d397 5746 struct btrfs_path *path;
9c58309d
CM
5747 struct btrfs_inode_ref *ref;
5748 struct btrfs_key key[2];
5749 u32 sizes[2];
ef3b9af5 5750 int nitems = name ? 2 : 1;
9c58309d 5751 unsigned long ptr;
39279cc3 5752 int ret;
39279cc3 5753
5f39d397 5754 path = btrfs_alloc_path();
d8926bb3
MF
5755 if (!path)
5756 return ERR_PTR(-ENOMEM);
5f39d397 5757
39279cc3 5758 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5759 if (!inode) {
5760 btrfs_free_path(path);
39279cc3 5761 return ERR_PTR(-ENOMEM);
8fb27640 5762 }
39279cc3 5763
5762b5c9
FM
5764 /*
5765 * O_TMPFILE, set link count to 0, so that after this point,
5766 * we fill in an inode item with the correct link count.
5767 */
5768 if (!name)
5769 set_nlink(inode, 0);
5770
581bb050
LZ
5771 /*
5772 * we have to initialize this early, so we can reclaim the inode
5773 * number if we fail afterwards in this function.
5774 */
5775 inode->i_ino = objectid;
5776
ef3b9af5 5777 if (dir && name) {
1abe9b8a 5778 trace_btrfs_inode_request(dir);
5779
3de4586c 5780 ret = btrfs_set_inode_index(dir, index);
09771430 5781 if (ret) {
8fb27640 5782 btrfs_free_path(path);
09771430 5783 iput(inode);
aec7477b 5784 return ERR_PTR(ret);
09771430 5785 }
ef3b9af5
FM
5786 } else if (dir) {
5787 *index = 0;
aec7477b
JB
5788 }
5789 /*
5790 * index_cnt is ignored for everything but a dir,
5791 * btrfs_get_inode_index_count has an explanation for the magic
5792 * number
5793 */
5794 BTRFS_I(inode)->index_cnt = 2;
67de1176 5795 BTRFS_I(inode)->dir_index = *index;
39279cc3 5796 BTRFS_I(inode)->root = root;
e02119d5 5797 BTRFS_I(inode)->generation = trans->transid;
76195853 5798 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5799
5dc562c5
JB
5800 /*
5801 * We could have gotten an inode number from somebody who was fsynced
5802 * and then removed in this same transaction, so let's just set full
5803 * sync since it will be a full sync anyway and this will blow away the
5804 * old info in the log.
5805 */
5806 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5807
9c58309d 5808 key[0].objectid = objectid;
962a298f 5809 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5810 key[0].offset = 0;
5811
9c58309d 5812 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5813
5814 if (name) {
5815 /*
5816 * Start new inodes with an inode_ref. This is slightly more
5817 * efficient for small numbers of hard links since they will
5818 * be packed into one item. Extended refs will kick in if we
5819 * add more hard links than can fit in the ref item.
5820 */
5821 key[1].objectid = objectid;
962a298f 5822 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5823 key[1].offset = ref_objectid;
5824
5825 sizes[1] = name_len + sizeof(*ref);
5826 }
9c58309d 5827
b0d5d10f
CM
5828 location = &BTRFS_I(inode)->location;
5829 location->objectid = objectid;
5830 location->offset = 0;
962a298f 5831 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
5832
5833 ret = btrfs_insert_inode_locked(inode);
5834 if (ret < 0)
5835 goto fail;
5836
b9473439 5837 path->leave_spinning = 1;
ef3b9af5 5838 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5839 if (ret != 0)
b0d5d10f 5840 goto fail_unlock;
5f39d397 5841
ecc11fab 5842 inode_init_owner(inode, dir, mode);
a76a3cd4 5843 inode_set_bytes(inode, 0);
9cc97d64 5844
5845 inode->i_mtime = CURRENT_TIME;
5846 inode->i_atime = inode->i_mtime;
5847 inode->i_ctime = inode->i_mtime;
5848 BTRFS_I(inode)->i_otime = inode->i_mtime;
5849
5f39d397
CM
5850 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5851 struct btrfs_inode_item);
293f7e07
LZ
5852 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5853 sizeof(*inode_item));
e02119d5 5854 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5855
ef3b9af5
FM
5856 if (name) {
5857 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5858 struct btrfs_inode_ref);
5859 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5860 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5861 ptr = (unsigned long)(ref + 1);
5862 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5863 }
9c58309d 5864
5f39d397
CM
5865 btrfs_mark_buffer_dirty(path->nodes[0]);
5866 btrfs_free_path(path);
5867
6cbff00f
CH
5868 btrfs_inherit_iflags(inode, dir);
5869
569254b0 5870 if (S_ISREG(mode)) {
94272164
CM
5871 if (btrfs_test_opt(root, NODATASUM))
5872 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5873 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5874 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5875 BTRFS_INODE_NODATASUM;
94272164
CM
5876 }
5877
5d4f98a2 5878 inode_tree_add(inode);
1abe9b8a 5879
5880 trace_btrfs_inode_new(inode);
1973f0fa 5881 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5882
8ea05e3a
AB
5883 btrfs_update_root_times(trans, root);
5884
63541927
FDBM
5885 ret = btrfs_inode_inherit_props(trans, inode, dir);
5886 if (ret)
5887 btrfs_err(root->fs_info,
5888 "error inheriting props for ino %llu (root %llu): %d",
5889 btrfs_ino(inode), root->root_key.objectid, ret);
5890
39279cc3 5891 return inode;
b0d5d10f
CM
5892
5893fail_unlock:
5894 unlock_new_inode(inode);
5f39d397 5895fail:
ef3b9af5 5896 if (dir && name)
aec7477b 5897 BTRFS_I(dir)->index_cnt--;
5f39d397 5898 btrfs_free_path(path);
09771430 5899 iput(inode);
5f39d397 5900 return ERR_PTR(ret);
39279cc3
CM
5901}
5902
5903static inline u8 btrfs_inode_type(struct inode *inode)
5904{
5905 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5906}
5907
d352ac68
CM
5908/*
5909 * utility function to add 'inode' into 'parent_inode' with
5910 * a give name and a given sequence number.
5911 * if 'add_backref' is true, also insert a backref from the
5912 * inode to the parent directory.
5913 */
e02119d5
CM
5914int btrfs_add_link(struct btrfs_trans_handle *trans,
5915 struct inode *parent_inode, struct inode *inode,
5916 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5917{
4df27c4d 5918 int ret = 0;
39279cc3 5919 struct btrfs_key key;
e02119d5 5920 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5921 u64 ino = btrfs_ino(inode);
5922 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5923
33345d01 5924 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5925 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5926 } else {
33345d01 5927 key.objectid = ino;
962a298f 5928 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
5929 key.offset = 0;
5930 }
5931
33345d01 5932 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5933 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5934 key.objectid, root->root_key.objectid,
33345d01 5935 parent_ino, index, name, name_len);
4df27c4d 5936 } else if (add_backref) {
33345d01
LZ
5937 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5938 parent_ino, index);
4df27c4d 5939 }
39279cc3 5940
79787eaa
JM
5941 /* Nothing to clean up yet */
5942 if (ret)
5943 return ret;
4df27c4d 5944
79787eaa
JM
5945 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5946 parent_inode, &key,
5947 btrfs_inode_type(inode), index);
9c52057c 5948 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5949 goto fail_dir_item;
5950 else if (ret) {
5951 btrfs_abort_transaction(trans, root, ret);
5952 return ret;
39279cc3 5953 }
79787eaa
JM
5954
5955 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5956 name_len * 2);
0c4d2d95 5957 inode_inc_iversion(parent_inode);
79787eaa
JM
5958 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5959 ret = btrfs_update_inode(trans, root, parent_inode);
5960 if (ret)
5961 btrfs_abort_transaction(trans, root, ret);
39279cc3 5962 return ret;
fe66a05a
CM
5963
5964fail_dir_item:
5965 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5966 u64 local_index;
5967 int err;
5968 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5969 key.objectid, root->root_key.objectid,
5970 parent_ino, &local_index, name, name_len);
5971
5972 } else if (add_backref) {
5973 u64 local_index;
5974 int err;
5975
5976 err = btrfs_del_inode_ref(trans, root, name, name_len,
5977 ino, parent_ino, &local_index);
5978 }
5979 return ret;
39279cc3
CM
5980}
5981
5982static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5983 struct inode *dir, struct dentry *dentry,
5984 struct inode *inode, int backref, u64 index)
39279cc3 5985{
a1b075d2
JB
5986 int err = btrfs_add_link(trans, dir, inode,
5987 dentry->d_name.name, dentry->d_name.len,
5988 backref, index);
39279cc3
CM
5989 if (err > 0)
5990 err = -EEXIST;
5991 return err;
5992}
5993
618e21d5 5994static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5995 umode_t mode, dev_t rdev)
618e21d5
JB
5996{
5997 struct btrfs_trans_handle *trans;
5998 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5999 struct inode *inode = NULL;
618e21d5
JB
6000 int err;
6001 int drop_inode = 0;
6002 u64 objectid;
00e4e6b3 6003 u64 index = 0;
618e21d5
JB
6004
6005 if (!new_valid_dev(rdev))
6006 return -EINVAL;
6007
9ed74f2d
JB
6008 /*
6009 * 2 for inode item and ref
6010 * 2 for dir items
6011 * 1 for xattr if selinux is on
6012 */
a22285a6
YZ
6013 trans = btrfs_start_transaction(root, 5);
6014 if (IS_ERR(trans))
6015 return PTR_ERR(trans);
1832a6d5 6016
581bb050
LZ
6017 err = btrfs_find_free_ino(root, &objectid);
6018 if (err)
6019 goto out_unlock;
6020
aec7477b 6021 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6022 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6023 mode, &index);
7cf96da3
TI
6024 if (IS_ERR(inode)) {
6025 err = PTR_ERR(inode);
618e21d5 6026 goto out_unlock;
7cf96da3 6027 }
618e21d5 6028
ad19db71
CS
6029 /*
6030 * If the active LSM wants to access the inode during
6031 * d_instantiate it needs these. Smack checks to see
6032 * if the filesystem supports xattrs by looking at the
6033 * ops vector.
6034 */
ad19db71 6035 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6036 init_special_inode(inode, inode->i_mode, rdev);
6037
6038 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6039 if (err)
b0d5d10f
CM
6040 goto out_unlock_inode;
6041
6042 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6043 if (err) {
6044 goto out_unlock_inode;
6045 } else {
1b4ab1bb 6046 btrfs_update_inode(trans, root, inode);
b0d5d10f 6047 unlock_new_inode(inode);
08c422c2 6048 d_instantiate(dentry, inode);
618e21d5 6049 }
b0d5d10f 6050
618e21d5 6051out_unlock:
7ad85bb7 6052 btrfs_end_transaction(trans, root);
c581afc8 6053 btrfs_balance_delayed_items(root);
b53d3f5d 6054 btrfs_btree_balance_dirty(root);
618e21d5
JB
6055 if (drop_inode) {
6056 inode_dec_link_count(inode);
6057 iput(inode);
6058 }
618e21d5 6059 return err;
b0d5d10f
CM
6060
6061out_unlock_inode:
6062 drop_inode = 1;
6063 unlock_new_inode(inode);
6064 goto out_unlock;
6065
618e21d5
JB
6066}
6067
39279cc3 6068static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6069 umode_t mode, bool excl)
39279cc3
CM
6070{
6071 struct btrfs_trans_handle *trans;
6072 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6073 struct inode *inode = NULL;
43baa579 6074 int drop_inode_on_err = 0;
a22285a6 6075 int err;
39279cc3 6076 u64 objectid;
00e4e6b3 6077 u64 index = 0;
39279cc3 6078
9ed74f2d
JB
6079 /*
6080 * 2 for inode item and ref
6081 * 2 for dir items
6082 * 1 for xattr if selinux is on
6083 */
a22285a6
YZ
6084 trans = btrfs_start_transaction(root, 5);
6085 if (IS_ERR(trans))
6086 return PTR_ERR(trans);
9ed74f2d 6087
581bb050
LZ
6088 err = btrfs_find_free_ino(root, &objectid);
6089 if (err)
6090 goto out_unlock;
6091
aec7477b 6092 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6093 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6094 mode, &index);
7cf96da3
TI
6095 if (IS_ERR(inode)) {
6096 err = PTR_ERR(inode);
39279cc3 6097 goto out_unlock;
7cf96da3 6098 }
43baa579 6099 drop_inode_on_err = 1;
ad19db71
CS
6100 /*
6101 * If the active LSM wants to access the inode during
6102 * d_instantiate it needs these. Smack checks to see
6103 * if the filesystem supports xattrs by looking at the
6104 * ops vector.
6105 */
6106 inode->i_fop = &btrfs_file_operations;
6107 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
6108 inode->i_mapping->a_ops = &btrfs_aops;
6109 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6110
6111 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6112 if (err)
6113 goto out_unlock_inode;
6114
6115 err = btrfs_update_inode(trans, root, inode);
6116 if (err)
6117 goto out_unlock_inode;
ad19db71 6118
a1b075d2 6119 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6120 if (err)
b0d5d10f 6121 goto out_unlock_inode;
43baa579 6122
43baa579 6123 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6124 unlock_new_inode(inode);
43baa579
FB
6125 d_instantiate(dentry, inode);
6126
39279cc3 6127out_unlock:
7ad85bb7 6128 btrfs_end_transaction(trans, root);
43baa579 6129 if (err && drop_inode_on_err) {
39279cc3
CM
6130 inode_dec_link_count(inode);
6131 iput(inode);
6132 }
c581afc8 6133 btrfs_balance_delayed_items(root);
b53d3f5d 6134 btrfs_btree_balance_dirty(root);
39279cc3 6135 return err;
b0d5d10f
CM
6136
6137out_unlock_inode:
6138 unlock_new_inode(inode);
6139 goto out_unlock;
6140
39279cc3
CM
6141}
6142
6143static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6144 struct dentry *dentry)
6145{
6146 struct btrfs_trans_handle *trans;
6147 struct btrfs_root *root = BTRFS_I(dir)->root;
6148 struct inode *inode = old_dentry->d_inode;
00e4e6b3 6149 u64 index;
39279cc3
CM
6150 int err;
6151 int drop_inode = 0;
6152
4a8be425
TH
6153 /* do not allow sys_link's with other subvols of the same device */
6154 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6155 return -EXDEV;
4a8be425 6156
f186373f 6157 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6158 return -EMLINK;
4a8be425 6159
3de4586c 6160 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6161 if (err)
6162 goto fail;
6163
a22285a6 6164 /*
7e6b6465 6165 * 2 items for inode and inode ref
a22285a6 6166 * 2 items for dir items
7e6b6465 6167 * 1 item for parent inode
a22285a6 6168 */
7e6b6465 6169 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6170 if (IS_ERR(trans)) {
6171 err = PTR_ERR(trans);
6172 goto fail;
6173 }
5f39d397 6174
67de1176
MX
6175 /* There are several dir indexes for this inode, clear the cache. */
6176 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6177 inc_nlink(inode);
0c4d2d95 6178 inode_inc_iversion(inode);
3153495d 6179 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6180 ihold(inode);
e9976151 6181 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6182
a1b075d2 6183 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6184
a5719521 6185 if (err) {
54aa1f4d 6186 drop_inode = 1;
a5719521 6187 } else {
10d9f309 6188 struct dentry *parent = dentry->d_parent;
a5719521 6189 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6190 if (err)
6191 goto fail;
ef3b9af5
FM
6192 if (inode->i_nlink == 1) {
6193 /*
6194 * If new hard link count is 1, it's a file created
6195 * with open(2) O_TMPFILE flag.
6196 */
6197 err = btrfs_orphan_del(trans, inode);
6198 if (err)
6199 goto fail;
6200 }
08c422c2 6201 d_instantiate(dentry, inode);
6a912213 6202 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6203 }
39279cc3 6204
7ad85bb7 6205 btrfs_end_transaction(trans, root);
c581afc8 6206 btrfs_balance_delayed_items(root);
1832a6d5 6207fail:
39279cc3
CM
6208 if (drop_inode) {
6209 inode_dec_link_count(inode);
6210 iput(inode);
6211 }
b53d3f5d 6212 btrfs_btree_balance_dirty(root);
39279cc3
CM
6213 return err;
6214}
6215
18bb1db3 6216static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6217{
b9d86667 6218 struct inode *inode = NULL;
39279cc3
CM
6219 struct btrfs_trans_handle *trans;
6220 struct btrfs_root *root = BTRFS_I(dir)->root;
6221 int err = 0;
6222 int drop_on_err = 0;
b9d86667 6223 u64 objectid = 0;
00e4e6b3 6224 u64 index = 0;
39279cc3 6225
9ed74f2d
JB
6226 /*
6227 * 2 items for inode and ref
6228 * 2 items for dir items
6229 * 1 for xattr if selinux is on
6230 */
a22285a6
YZ
6231 trans = btrfs_start_transaction(root, 5);
6232 if (IS_ERR(trans))
6233 return PTR_ERR(trans);
39279cc3 6234
581bb050
LZ
6235 err = btrfs_find_free_ino(root, &objectid);
6236 if (err)
6237 goto out_fail;
6238
aec7477b 6239 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6240 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6241 S_IFDIR | mode, &index);
39279cc3
CM
6242 if (IS_ERR(inode)) {
6243 err = PTR_ERR(inode);
6244 goto out_fail;
6245 }
5f39d397 6246
39279cc3 6247 drop_on_err = 1;
b0d5d10f
CM
6248 /* these must be set before we unlock the inode */
6249 inode->i_op = &btrfs_dir_inode_operations;
6250 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6251
2a7dba39 6252 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6253 if (err)
b0d5d10f 6254 goto out_fail_inode;
39279cc3 6255
dbe674a9 6256 btrfs_i_size_write(inode, 0);
39279cc3
CM
6257 err = btrfs_update_inode(trans, root, inode);
6258 if (err)
b0d5d10f 6259 goto out_fail_inode;
5f39d397 6260
a1b075d2
JB
6261 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6262 dentry->d_name.len, 0, index);
39279cc3 6263 if (err)
b0d5d10f 6264 goto out_fail_inode;
5f39d397 6265
39279cc3 6266 d_instantiate(dentry, inode);
b0d5d10f
CM
6267 /*
6268 * mkdir is special. We're unlocking after we call d_instantiate
6269 * to avoid a race with nfsd calling d_instantiate.
6270 */
6271 unlock_new_inode(inode);
39279cc3 6272 drop_on_err = 0;
39279cc3
CM
6273
6274out_fail:
7ad85bb7 6275 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6276 if (drop_on_err) {
6277 inode_dec_link_count(inode);
39279cc3 6278 iput(inode);
c7cfb8a5 6279 }
c581afc8 6280 btrfs_balance_delayed_items(root);
b53d3f5d 6281 btrfs_btree_balance_dirty(root);
39279cc3 6282 return err;
b0d5d10f
CM
6283
6284out_fail_inode:
6285 unlock_new_inode(inode);
6286 goto out_fail;
39279cc3
CM
6287}
6288
e6c4efd8
QW
6289/* Find next extent map of a given extent map, caller needs to ensure locks */
6290static struct extent_map *next_extent_map(struct extent_map *em)
6291{
6292 struct rb_node *next;
6293
6294 next = rb_next(&em->rb_node);
6295 if (!next)
6296 return NULL;
6297 return container_of(next, struct extent_map, rb_node);
6298}
6299
6300static struct extent_map *prev_extent_map(struct extent_map *em)
6301{
6302 struct rb_node *prev;
6303
6304 prev = rb_prev(&em->rb_node);
6305 if (!prev)
6306 return NULL;
6307 return container_of(prev, struct extent_map, rb_node);
6308}
6309
d352ac68 6310/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6311 * the existing extent is the nearest extent to map_start,
d352ac68 6312 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6313 * the best fitted new extent into the tree.
d352ac68 6314 */
3b951516
CM
6315static int merge_extent_mapping(struct extent_map_tree *em_tree,
6316 struct extent_map *existing,
e6dcd2dc 6317 struct extent_map *em,
51f395ad 6318 u64 map_start)
3b951516 6319{
e6c4efd8
QW
6320 struct extent_map *prev;
6321 struct extent_map *next;
6322 u64 start;
6323 u64 end;
3b951516 6324 u64 start_diff;
3b951516 6325
e6dcd2dc 6326 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6327
6328 if (existing->start > map_start) {
6329 next = existing;
6330 prev = prev_extent_map(next);
6331 } else {
6332 prev = existing;
6333 next = next_extent_map(prev);
6334 }
6335
6336 start = prev ? extent_map_end(prev) : em->start;
6337 start = max_t(u64, start, em->start);
6338 end = next ? next->start : extent_map_end(em);
6339 end = min_t(u64, end, extent_map_end(em));
6340 start_diff = start - em->start;
6341 em->start = start;
6342 em->len = end - start;
c8b97818
CM
6343 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6344 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6345 em->block_start += start_diff;
c8b97818
CM
6346 em->block_len -= start_diff;
6347 }
09a2a8f9 6348 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6349}
6350
c8b97818
CM
6351static noinline int uncompress_inline(struct btrfs_path *path,
6352 struct inode *inode, struct page *page,
6353 size_t pg_offset, u64 extent_offset,
6354 struct btrfs_file_extent_item *item)
6355{
6356 int ret;
6357 struct extent_buffer *leaf = path->nodes[0];
6358 char *tmp;
6359 size_t max_size;
6360 unsigned long inline_size;
6361 unsigned long ptr;
261507a0 6362 int compress_type;
c8b97818
CM
6363
6364 WARN_ON(pg_offset != 0);
261507a0 6365 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6366 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6367 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6368 btrfs_item_nr(path->slots[0]));
c8b97818 6369 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6370 if (!tmp)
6371 return -ENOMEM;
c8b97818
CM
6372 ptr = btrfs_file_extent_inline_start(item);
6373
6374 read_extent_buffer(leaf, tmp, ptr, inline_size);
6375
5b050f04 6376 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6377 ret = btrfs_decompress(compress_type, tmp, page,
6378 extent_offset, inline_size, max_size);
c8b97818 6379 kfree(tmp);
166ae5a4 6380 return ret;
c8b97818
CM
6381}
6382
d352ac68
CM
6383/*
6384 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6385 * the ugly parts come from merging extents from the disk with the in-ram
6386 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6387 * where the in-ram extents might be locked pending data=ordered completion.
6388 *
6389 * This also copies inline extents directly into the page.
6390 */
d397712b 6391
a52d9a80 6392struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6393 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6394 int create)
6395{
6396 int ret;
6397 int err = 0;
a52d9a80
CM
6398 u64 extent_start = 0;
6399 u64 extent_end = 0;
33345d01 6400 u64 objectid = btrfs_ino(inode);
a52d9a80 6401 u32 found_type;
f421950f 6402 struct btrfs_path *path = NULL;
a52d9a80
CM
6403 struct btrfs_root *root = BTRFS_I(inode)->root;
6404 struct btrfs_file_extent_item *item;
5f39d397
CM
6405 struct extent_buffer *leaf;
6406 struct btrfs_key found_key;
a52d9a80
CM
6407 struct extent_map *em = NULL;
6408 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6409 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6410 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6411 const bool new_inline = !page || create;
a52d9a80 6412
a52d9a80 6413again:
890871be 6414 read_lock(&em_tree->lock);
d1310b2e 6415 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6416 if (em)
6417 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6418 read_unlock(&em_tree->lock);
d1310b2e 6419
a52d9a80 6420 if (em) {
e1c4b745
CM
6421 if (em->start > start || em->start + em->len <= start)
6422 free_extent_map(em);
6423 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6424 free_extent_map(em);
6425 else
6426 goto out;
a52d9a80 6427 }
172ddd60 6428 em = alloc_extent_map();
a52d9a80 6429 if (!em) {
d1310b2e
CM
6430 err = -ENOMEM;
6431 goto out;
a52d9a80 6432 }
e6dcd2dc 6433 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6434 em->start = EXTENT_MAP_HOLE;
445a6944 6435 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6436 em->len = (u64)-1;
c8b97818 6437 em->block_len = (u64)-1;
f421950f
CM
6438
6439 if (!path) {
6440 path = btrfs_alloc_path();
026fd317
JB
6441 if (!path) {
6442 err = -ENOMEM;
6443 goto out;
6444 }
6445 /*
6446 * Chances are we'll be called again, so go ahead and do
6447 * readahead
6448 */
6449 path->reada = 1;
f421950f
CM
6450 }
6451
179e29e4
CM
6452 ret = btrfs_lookup_file_extent(trans, root, path,
6453 objectid, start, trans != NULL);
a52d9a80
CM
6454 if (ret < 0) {
6455 err = ret;
6456 goto out;
6457 }
6458
6459 if (ret != 0) {
6460 if (path->slots[0] == 0)
6461 goto not_found;
6462 path->slots[0]--;
6463 }
6464
5f39d397
CM
6465 leaf = path->nodes[0];
6466 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6467 struct btrfs_file_extent_item);
a52d9a80 6468 /* are we inside the extent that was found? */
5f39d397 6469 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6470 found_type = found_key.type;
5f39d397 6471 if (found_key.objectid != objectid ||
a52d9a80 6472 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6473 /*
6474 * If we backup past the first extent we want to move forward
6475 * and see if there is an extent in front of us, otherwise we'll
6476 * say there is a hole for our whole search range which can
6477 * cause problems.
6478 */
6479 extent_end = start;
6480 goto next;
a52d9a80
CM
6481 }
6482
5f39d397
CM
6483 found_type = btrfs_file_extent_type(leaf, item);
6484 extent_start = found_key.offset;
d899e052
YZ
6485 if (found_type == BTRFS_FILE_EXTENT_REG ||
6486 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6487 extent_end = extent_start +
db94535d 6488 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6489 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6490 size_t size;
514ac8ad 6491 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6492 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6493 }
25a50341 6494next:
9036c102
YZ
6495 if (start >= extent_end) {
6496 path->slots[0]++;
6497 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6498 ret = btrfs_next_leaf(root, path);
6499 if (ret < 0) {
6500 err = ret;
6501 goto out;
a52d9a80 6502 }
9036c102
YZ
6503 if (ret > 0)
6504 goto not_found;
6505 leaf = path->nodes[0];
a52d9a80 6506 }
9036c102
YZ
6507 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6508 if (found_key.objectid != objectid ||
6509 found_key.type != BTRFS_EXTENT_DATA_KEY)
6510 goto not_found;
6511 if (start + len <= found_key.offset)
6512 goto not_found;
e2eca69d
WS
6513 if (start > found_key.offset)
6514 goto next;
9036c102 6515 em->start = start;
70c8a91c 6516 em->orig_start = start;
9036c102
YZ
6517 em->len = found_key.offset - start;
6518 goto not_found_em;
6519 }
6520
7ffbb598
FM
6521 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6522
d899e052
YZ
6523 if (found_type == BTRFS_FILE_EXTENT_REG ||
6524 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6525 goto insert;
6526 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6527 unsigned long ptr;
a52d9a80 6528 char *map;
3326d1b0
CM
6529 size_t size;
6530 size_t extent_offset;
6531 size_t copy_size;
a52d9a80 6532
7ffbb598 6533 if (new_inline)
689f9346 6534 goto out;
5f39d397 6535
514ac8ad 6536 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6537 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6538 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6539 size - extent_offset);
3326d1b0 6540 em->start = extent_start + extent_offset;
fda2832f 6541 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6542 em->orig_block_len = em->len;
70c8a91c 6543 em->orig_start = em->start;
689f9346 6544 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6545 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6546 if (btrfs_file_extent_compression(leaf, item) !=
6547 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6548 ret = uncompress_inline(path, inode, page,
6549 pg_offset,
6550 extent_offset, item);
166ae5a4
ZB
6551 if (ret) {
6552 err = ret;
6553 goto out;
6554 }
c8b97818
CM
6555 } else {
6556 map = kmap(page);
6557 read_extent_buffer(leaf, map + pg_offset, ptr,
6558 copy_size);
93c82d57
CM
6559 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6560 memset(map + pg_offset + copy_size, 0,
6561 PAGE_CACHE_SIZE - pg_offset -
6562 copy_size);
6563 }
c8b97818
CM
6564 kunmap(page);
6565 }
179e29e4
CM
6566 flush_dcache_page(page);
6567 } else if (create && PageUptodate(page)) {
6bf7e080 6568 BUG();
179e29e4
CM
6569 if (!trans) {
6570 kunmap(page);
6571 free_extent_map(em);
6572 em = NULL;
ff5714cc 6573
b3b4aa74 6574 btrfs_release_path(path);
7a7eaa40 6575 trans = btrfs_join_transaction(root);
ff5714cc 6576
3612b495
TI
6577 if (IS_ERR(trans))
6578 return ERR_CAST(trans);
179e29e4
CM
6579 goto again;
6580 }
c8b97818 6581 map = kmap(page);
70dec807 6582 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6583 copy_size);
c8b97818 6584 kunmap(page);
179e29e4 6585 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6586 }
d1310b2e 6587 set_extent_uptodate(io_tree, em->start,
507903b8 6588 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6589 goto insert;
a52d9a80
CM
6590 }
6591not_found:
6592 em->start = start;
70c8a91c 6593 em->orig_start = start;
d1310b2e 6594 em->len = len;
a52d9a80 6595not_found_em:
5f39d397 6596 em->block_start = EXTENT_MAP_HOLE;
9036c102 6597 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6598insert:
b3b4aa74 6599 btrfs_release_path(path);
d1310b2e 6600 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6601 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6602 em->start, em->len, start, len);
a52d9a80
CM
6603 err = -EIO;
6604 goto out;
6605 }
d1310b2e
CM
6606
6607 err = 0;
890871be 6608 write_lock(&em_tree->lock);
09a2a8f9 6609 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6610 /* it is possible that someone inserted the extent into the tree
6611 * while we had the lock dropped. It is also possible that
6612 * an overlapping map exists in the tree
6613 */
a52d9a80 6614 if (ret == -EEXIST) {
3b951516 6615 struct extent_map *existing;
e6dcd2dc
CM
6616
6617 ret = 0;
6618
e6c4efd8
QW
6619 existing = search_extent_mapping(em_tree, start, len);
6620 /*
6621 * existing will always be non-NULL, since there must be
6622 * extent causing the -EEXIST.
6623 */
6624 if (start >= extent_map_end(existing) ||
32be3a1a 6625 start <= existing->start) {
e6c4efd8
QW
6626 /*
6627 * The existing extent map is the one nearest to
6628 * the [start, start + len) range which overlaps
6629 */
6630 err = merge_extent_mapping(em_tree, existing,
6631 em, start);
e1c4b745 6632 free_extent_map(existing);
e6c4efd8 6633 if (err) {
3b951516
CM
6634 free_extent_map(em);
6635 em = NULL;
6636 }
6637 } else {
6638 free_extent_map(em);
6639 em = existing;
e6dcd2dc 6640 err = 0;
a52d9a80 6641 }
a52d9a80 6642 }
890871be 6643 write_unlock(&em_tree->lock);
a52d9a80 6644out:
1abe9b8a 6645
4cd8587c 6646 trace_btrfs_get_extent(root, em);
1abe9b8a 6647
f421950f
CM
6648 if (path)
6649 btrfs_free_path(path);
a52d9a80
CM
6650 if (trans) {
6651 ret = btrfs_end_transaction(trans, root);
d397712b 6652 if (!err)
a52d9a80
CM
6653 err = ret;
6654 }
a52d9a80
CM
6655 if (err) {
6656 free_extent_map(em);
a52d9a80
CM
6657 return ERR_PTR(err);
6658 }
79787eaa 6659 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6660 return em;
6661}
6662
ec29ed5b
CM
6663struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6664 size_t pg_offset, u64 start, u64 len,
6665 int create)
6666{
6667 struct extent_map *em;
6668 struct extent_map *hole_em = NULL;
6669 u64 range_start = start;
6670 u64 end;
6671 u64 found;
6672 u64 found_end;
6673 int err = 0;
6674
6675 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6676 if (IS_ERR(em))
6677 return em;
6678 if (em) {
6679 /*
f9e4fb53
LB
6680 * if our em maps to
6681 * - a hole or
6682 * - a pre-alloc extent,
6683 * there might actually be delalloc bytes behind it.
ec29ed5b 6684 */
f9e4fb53
LB
6685 if (em->block_start != EXTENT_MAP_HOLE &&
6686 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6687 return em;
6688 else
6689 hole_em = em;
6690 }
6691
6692 /* check to see if we've wrapped (len == -1 or similar) */
6693 end = start + len;
6694 if (end < start)
6695 end = (u64)-1;
6696 else
6697 end -= 1;
6698
6699 em = NULL;
6700
6701 /* ok, we didn't find anything, lets look for delalloc */
6702 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6703 end, len, EXTENT_DELALLOC, 1);
6704 found_end = range_start + found;
6705 if (found_end < range_start)
6706 found_end = (u64)-1;
6707
6708 /*
6709 * we didn't find anything useful, return
6710 * the original results from get_extent()
6711 */
6712 if (range_start > end || found_end <= start) {
6713 em = hole_em;
6714 hole_em = NULL;
6715 goto out;
6716 }
6717
6718 /* adjust the range_start to make sure it doesn't
6719 * go backwards from the start they passed in
6720 */
67871254 6721 range_start = max(start, range_start);
ec29ed5b
CM
6722 found = found_end - range_start;
6723
6724 if (found > 0) {
6725 u64 hole_start = start;
6726 u64 hole_len = len;
6727
172ddd60 6728 em = alloc_extent_map();
ec29ed5b
CM
6729 if (!em) {
6730 err = -ENOMEM;
6731 goto out;
6732 }
6733 /*
6734 * when btrfs_get_extent can't find anything it
6735 * returns one huge hole
6736 *
6737 * make sure what it found really fits our range, and
6738 * adjust to make sure it is based on the start from
6739 * the caller
6740 */
6741 if (hole_em) {
6742 u64 calc_end = extent_map_end(hole_em);
6743
6744 if (calc_end <= start || (hole_em->start > end)) {
6745 free_extent_map(hole_em);
6746 hole_em = NULL;
6747 } else {
6748 hole_start = max(hole_em->start, start);
6749 hole_len = calc_end - hole_start;
6750 }
6751 }
6752 em->bdev = NULL;
6753 if (hole_em && range_start > hole_start) {
6754 /* our hole starts before our delalloc, so we
6755 * have to return just the parts of the hole
6756 * that go until the delalloc starts
6757 */
6758 em->len = min(hole_len,
6759 range_start - hole_start);
6760 em->start = hole_start;
6761 em->orig_start = hole_start;
6762 /*
6763 * don't adjust block start at all,
6764 * it is fixed at EXTENT_MAP_HOLE
6765 */
6766 em->block_start = hole_em->block_start;
6767 em->block_len = hole_len;
f9e4fb53
LB
6768 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6769 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6770 } else {
6771 em->start = range_start;
6772 em->len = found;
6773 em->orig_start = range_start;
6774 em->block_start = EXTENT_MAP_DELALLOC;
6775 em->block_len = found;
6776 }
6777 } else if (hole_em) {
6778 return hole_em;
6779 }
6780out:
6781
6782 free_extent_map(hole_em);
6783 if (err) {
6784 free_extent_map(em);
6785 return ERR_PTR(err);
6786 }
6787 return em;
6788}
6789
4b46fce2
JB
6790static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6791 u64 start, u64 len)
6792{
6793 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6794 struct extent_map *em;
4b46fce2
JB
6795 struct btrfs_key ins;
6796 u64 alloc_hint;
6797 int ret;
4b46fce2 6798
4b46fce2 6799 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6800 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 6801 alloc_hint, &ins, 1, 1);
00361589
JB
6802 if (ret)
6803 return ERR_PTR(ret);
4b46fce2 6804
70c8a91c 6805 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6806 ins.offset, ins.offset, ins.offset, 0);
00361589 6807 if (IS_ERR(em)) {
e570fd27 6808 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6809 return em;
6810 }
4b46fce2
JB
6811
6812 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6813 ins.offset, ins.offset, 0);
6814 if (ret) {
e570fd27 6815 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6816 free_extent_map(em);
6817 return ERR_PTR(ret);
4b46fce2 6818 }
00361589 6819
4b46fce2
JB
6820 return em;
6821}
6822
46bfbb5c
CM
6823/*
6824 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6825 * block must be cow'd
6826 */
00361589 6827noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6828 u64 *orig_start, u64 *orig_block_len,
6829 u64 *ram_bytes)
46bfbb5c 6830{
00361589 6831 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6832 struct btrfs_path *path;
6833 int ret;
6834 struct extent_buffer *leaf;
6835 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6836 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6837 struct btrfs_file_extent_item *fi;
6838 struct btrfs_key key;
6839 u64 disk_bytenr;
6840 u64 backref_offset;
6841 u64 extent_end;
6842 u64 num_bytes;
6843 int slot;
6844 int found_type;
7ee9e440 6845 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6846
46bfbb5c
CM
6847 path = btrfs_alloc_path();
6848 if (!path)
6849 return -ENOMEM;
6850
00361589 6851 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6852 offset, 0);
6853 if (ret < 0)
6854 goto out;
6855
6856 slot = path->slots[0];
6857 if (ret == 1) {
6858 if (slot == 0) {
6859 /* can't find the item, must cow */
6860 ret = 0;
6861 goto out;
6862 }
6863 slot--;
6864 }
6865 ret = 0;
6866 leaf = path->nodes[0];
6867 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6868 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6869 key.type != BTRFS_EXTENT_DATA_KEY) {
6870 /* not our file or wrong item type, must cow */
6871 goto out;
6872 }
6873
6874 if (key.offset > offset) {
6875 /* Wrong offset, must cow */
6876 goto out;
6877 }
6878
6879 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6880 found_type = btrfs_file_extent_type(leaf, fi);
6881 if (found_type != BTRFS_FILE_EXTENT_REG &&
6882 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6883 /* not a regular extent, must cow */
6884 goto out;
6885 }
7ee9e440
JB
6886
6887 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6888 goto out;
6889
e77751aa
MX
6890 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6891 if (extent_end <= offset)
6892 goto out;
6893
46bfbb5c 6894 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6895 if (disk_bytenr == 0)
6896 goto out;
6897
6898 if (btrfs_file_extent_compression(leaf, fi) ||
6899 btrfs_file_extent_encryption(leaf, fi) ||
6900 btrfs_file_extent_other_encoding(leaf, fi))
6901 goto out;
6902
46bfbb5c
CM
6903 backref_offset = btrfs_file_extent_offset(leaf, fi);
6904
7ee9e440
JB
6905 if (orig_start) {
6906 *orig_start = key.offset - backref_offset;
6907 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6908 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6909 }
eb384b55 6910
46bfbb5c
CM
6911 if (btrfs_extent_readonly(root, disk_bytenr))
6912 goto out;
7b2b7085
MX
6913
6914 num_bytes = min(offset + *len, extent_end) - offset;
6915 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6916 u64 range_end;
6917
6918 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6919 ret = test_range_bit(io_tree, offset, range_end,
6920 EXTENT_DELALLOC, 0, NULL);
6921 if (ret) {
6922 ret = -EAGAIN;
6923 goto out;
6924 }
6925 }
6926
1bda19eb 6927 btrfs_release_path(path);
46bfbb5c
CM
6928
6929 /*
6930 * look for other files referencing this extent, if we
6931 * find any we must cow
6932 */
00361589
JB
6933 trans = btrfs_join_transaction(root);
6934 if (IS_ERR(trans)) {
6935 ret = 0;
46bfbb5c 6936 goto out;
00361589
JB
6937 }
6938
6939 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6940 key.offset - backref_offset, disk_bytenr);
6941 btrfs_end_transaction(trans, root);
6942 if (ret) {
6943 ret = 0;
6944 goto out;
6945 }
46bfbb5c
CM
6946
6947 /*
6948 * adjust disk_bytenr and num_bytes to cover just the bytes
6949 * in this extent we are about to write. If there
6950 * are any csums in that range we have to cow in order
6951 * to keep the csums correct
6952 */
6953 disk_bytenr += backref_offset;
6954 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6955 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6956 goto out;
6957 /*
6958 * all of the above have passed, it is safe to overwrite this extent
6959 * without cow
6960 */
eb384b55 6961 *len = num_bytes;
46bfbb5c
CM
6962 ret = 1;
6963out:
6964 btrfs_free_path(path);
6965 return ret;
6966}
6967
fc4adbff
AG
6968bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6969{
6970 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6971 int found = false;
6972 void **pagep = NULL;
6973 struct page *page = NULL;
6974 int start_idx;
6975 int end_idx;
6976
6977 start_idx = start >> PAGE_CACHE_SHIFT;
6978
6979 /*
6980 * end is the last byte in the last page. end == start is legal
6981 */
6982 end_idx = end >> PAGE_CACHE_SHIFT;
6983
6984 rcu_read_lock();
6985
6986 /* Most of the code in this while loop is lifted from
6987 * find_get_page. It's been modified to begin searching from a
6988 * page and return just the first page found in that range. If the
6989 * found idx is less than or equal to the end idx then we know that
6990 * a page exists. If no pages are found or if those pages are
6991 * outside of the range then we're fine (yay!) */
6992 while (page == NULL &&
6993 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6994 page = radix_tree_deref_slot(pagep);
6995 if (unlikely(!page))
6996 break;
6997
6998 if (radix_tree_exception(page)) {
809f9016
FM
6999 if (radix_tree_deref_retry(page)) {
7000 page = NULL;
fc4adbff 7001 continue;
809f9016 7002 }
fc4adbff
AG
7003 /*
7004 * Otherwise, shmem/tmpfs must be storing a swap entry
7005 * here as an exceptional entry: so return it without
7006 * attempting to raise page count.
7007 */
6fdef6d4 7008 page = NULL;
fc4adbff
AG
7009 break; /* TODO: Is this relevant for this use case? */
7010 }
7011
91405151
FM
7012 if (!page_cache_get_speculative(page)) {
7013 page = NULL;
fc4adbff 7014 continue;
91405151 7015 }
fc4adbff
AG
7016
7017 /*
7018 * Has the page moved?
7019 * This is part of the lockless pagecache protocol. See
7020 * include/linux/pagemap.h for details.
7021 */
7022 if (unlikely(page != *pagep)) {
7023 page_cache_release(page);
7024 page = NULL;
7025 }
7026 }
7027
7028 if (page) {
7029 if (page->index <= end_idx)
7030 found = true;
7031 page_cache_release(page);
7032 }
7033
7034 rcu_read_unlock();
7035 return found;
7036}
7037
eb838e73
JB
7038static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7039 struct extent_state **cached_state, int writing)
7040{
7041 struct btrfs_ordered_extent *ordered;
7042 int ret = 0;
7043
7044 while (1) {
7045 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7046 0, cached_state);
7047 /*
7048 * We're concerned with the entire range that we're going to be
7049 * doing DIO to, so we need to make sure theres no ordered
7050 * extents in this range.
7051 */
7052 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7053 lockend - lockstart + 1);
7054
7055 /*
7056 * We need to make sure there are no buffered pages in this
7057 * range either, we could have raced between the invalidate in
7058 * generic_file_direct_write and locking the extent. The
7059 * invalidate needs to happen so that reads after a write do not
7060 * get stale data.
7061 */
fc4adbff
AG
7062 if (!ordered &&
7063 (!writing ||
7064 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7065 break;
7066
7067 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7068 cached_state, GFP_NOFS);
7069
7070 if (ordered) {
7071 btrfs_start_ordered_extent(inode, ordered, 1);
7072 btrfs_put_ordered_extent(ordered);
7073 } else {
7074 /* Screw you mmap */
728404da 7075 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7076 if (ret)
7077 break;
7078 ret = filemap_fdatawait_range(inode->i_mapping,
7079 lockstart,
7080 lockend);
eb838e73
JB
7081 if (ret)
7082 break;
7083
7084 /*
7085 * If we found a page that couldn't be invalidated just
7086 * fall back to buffered.
7087 */
7088 ret = invalidate_inode_pages2_range(inode->i_mapping,
7089 lockstart >> PAGE_CACHE_SHIFT,
7090 lockend >> PAGE_CACHE_SHIFT);
7091 if (ret)
7092 break;
7093 }
7094
7095 cond_resched();
7096 }
7097
7098 return ret;
7099}
7100
69ffb543
JB
7101static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7102 u64 len, u64 orig_start,
7103 u64 block_start, u64 block_len,
cc95bef6
JB
7104 u64 orig_block_len, u64 ram_bytes,
7105 int type)
69ffb543
JB
7106{
7107 struct extent_map_tree *em_tree;
7108 struct extent_map *em;
7109 struct btrfs_root *root = BTRFS_I(inode)->root;
7110 int ret;
7111
7112 em_tree = &BTRFS_I(inode)->extent_tree;
7113 em = alloc_extent_map();
7114 if (!em)
7115 return ERR_PTR(-ENOMEM);
7116
7117 em->start = start;
7118 em->orig_start = orig_start;
2ab28f32
JB
7119 em->mod_start = start;
7120 em->mod_len = len;
69ffb543
JB
7121 em->len = len;
7122 em->block_len = block_len;
7123 em->block_start = block_start;
7124 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7125 em->orig_block_len = orig_block_len;
cc95bef6 7126 em->ram_bytes = ram_bytes;
70c8a91c 7127 em->generation = -1;
69ffb543
JB
7128 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7129 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7130 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7131
7132 do {
7133 btrfs_drop_extent_cache(inode, em->start,
7134 em->start + em->len - 1, 0);
7135 write_lock(&em_tree->lock);
09a2a8f9 7136 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7137 write_unlock(&em_tree->lock);
7138 } while (ret == -EEXIST);
7139
7140 if (ret) {
7141 free_extent_map(em);
7142 return ERR_PTR(ret);
7143 }
7144
7145 return em;
7146}
7147
7148
4b46fce2
JB
7149static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7150 struct buffer_head *bh_result, int create)
7151{
7152 struct extent_map *em;
7153 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7154 struct extent_state *cached_state = NULL;
4b46fce2 7155 u64 start = iblock << inode->i_blkbits;
eb838e73 7156 u64 lockstart, lockend;
4b46fce2 7157 u64 len = bh_result->b_size;
eb838e73 7158 int unlock_bits = EXTENT_LOCKED;
0934856d 7159 int ret = 0;
eb838e73 7160
172a5049 7161 if (create)
eb838e73 7162 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 7163 else
c329861d 7164 len = min_t(u64, len, root->sectorsize);
eb838e73 7165
c329861d
JB
7166 lockstart = start;
7167 lockend = start + len - 1;
7168
eb838e73
JB
7169 /*
7170 * If this errors out it's because we couldn't invalidate pagecache for
7171 * this range and we need to fallback to buffered.
7172 */
7173 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7174 return -ENOTBLK;
7175
4b46fce2 7176 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7177 if (IS_ERR(em)) {
7178 ret = PTR_ERR(em);
7179 goto unlock_err;
7180 }
4b46fce2
JB
7181
7182 /*
7183 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7184 * io. INLINE is special, and we could probably kludge it in here, but
7185 * it's still buffered so for safety lets just fall back to the generic
7186 * buffered path.
7187 *
7188 * For COMPRESSED we _have_ to read the entire extent in so we can
7189 * decompress it, so there will be buffering required no matter what we
7190 * do, so go ahead and fallback to buffered.
7191 *
7192 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7193 * to buffered IO. Don't blame me, this is the price we pay for using
7194 * the generic code.
7195 */
7196 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7197 em->block_start == EXTENT_MAP_INLINE) {
7198 free_extent_map(em);
eb838e73
JB
7199 ret = -ENOTBLK;
7200 goto unlock_err;
4b46fce2
JB
7201 }
7202
7203 /* Just a good old fashioned hole, return */
7204 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7205 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7206 free_extent_map(em);
eb838e73 7207 goto unlock_err;
4b46fce2
JB
7208 }
7209
7210 /*
7211 * We don't allocate a new extent in the following cases
7212 *
7213 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7214 * existing extent.
7215 * 2) The extent is marked as PREALLOC. We're good to go here and can
7216 * just use the extent.
7217 *
7218 */
46bfbb5c 7219 if (!create) {
eb838e73
JB
7220 len = min(len, em->len - (start - em->start));
7221 lockstart = start + len;
7222 goto unlock;
46bfbb5c 7223 }
4b46fce2
JB
7224
7225 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7226 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7227 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
7228 int type;
7229 int ret;
eb384b55 7230 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7231
7232 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7233 type = BTRFS_ORDERED_PREALLOC;
7234 else
7235 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7236 len = min(len, em->len - (start - em->start));
4b46fce2 7237 block_start = em->block_start + (start - em->start);
46bfbb5c 7238
00361589 7239 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7240 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7241 if (type == BTRFS_ORDERED_PREALLOC) {
7242 free_extent_map(em);
7243 em = create_pinned_em(inode, start, len,
7244 orig_start,
b4939680 7245 block_start, len,
cc95bef6
JB
7246 orig_block_len,
7247 ram_bytes, type);
555e1286
FM
7248 if (IS_ERR(em)) {
7249 ret = PTR_ERR(em);
69ffb543 7250 goto unlock_err;
555e1286 7251 }
69ffb543
JB
7252 }
7253
46bfbb5c
CM
7254 ret = btrfs_add_ordered_extent_dio(inode, start,
7255 block_start, len, len, type);
46bfbb5c
CM
7256 if (ret) {
7257 free_extent_map(em);
eb838e73 7258 goto unlock_err;
46bfbb5c
CM
7259 }
7260 goto unlock;
4b46fce2 7261 }
4b46fce2 7262 }
00361589 7263
46bfbb5c
CM
7264 /*
7265 * this will cow the extent, reset the len in case we changed
7266 * it above
7267 */
7268 len = bh_result->b_size;
70c8a91c
JB
7269 free_extent_map(em);
7270 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7271 if (IS_ERR(em)) {
7272 ret = PTR_ERR(em);
7273 goto unlock_err;
7274 }
46bfbb5c
CM
7275 len = min(len, em->len - (start - em->start));
7276unlock:
4b46fce2
JB
7277 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7278 inode->i_blkbits;
46bfbb5c 7279 bh_result->b_size = len;
4b46fce2
JB
7280 bh_result->b_bdev = em->bdev;
7281 set_buffer_mapped(bh_result);
c3473e83
JB
7282 if (create) {
7283 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7284 set_buffer_new(bh_result);
7285
7286 /*
7287 * Need to update the i_size under the extent lock so buffered
7288 * readers will get the updated i_size when we unlock.
7289 */
7290 if (start + len > i_size_read(inode))
7291 i_size_write(inode, start + len);
0934856d 7292
172a5049
MX
7293 spin_lock(&BTRFS_I(inode)->lock);
7294 BTRFS_I(inode)->outstanding_extents++;
7295 spin_unlock(&BTRFS_I(inode)->lock);
7296
0934856d
MX
7297 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7298 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7299 &cached_state, GFP_NOFS);
7300 BUG_ON(ret);
c3473e83 7301 }
4b46fce2 7302
eb838e73
JB
7303 /*
7304 * In the case of write we need to clear and unlock the entire range,
7305 * in the case of read we need to unlock only the end area that we
7306 * aren't using if there is any left over space.
7307 */
24c03fa5 7308 if (lockstart < lockend) {
0934856d
MX
7309 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7310 lockend, unlock_bits, 1, 0,
7311 &cached_state, GFP_NOFS);
24c03fa5 7312 } else {
eb838e73 7313 free_extent_state(cached_state);
24c03fa5 7314 }
eb838e73 7315
4b46fce2
JB
7316 free_extent_map(em);
7317
7318 return 0;
eb838e73
JB
7319
7320unlock_err:
eb838e73
JB
7321 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7322 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7323 return ret;
4b46fce2
JB
7324}
7325
8b110e39
MX
7326static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7327 int rw, int mirror_num)
7328{
7329 struct btrfs_root *root = BTRFS_I(inode)->root;
7330 int ret;
7331
7332 BUG_ON(rw & REQ_WRITE);
7333
7334 bio_get(bio);
7335
7336 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7337 BTRFS_WQ_ENDIO_DIO_REPAIR);
7338 if (ret)
7339 goto err;
7340
7341 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7342err:
7343 bio_put(bio);
7344 return ret;
7345}
7346
7347static int btrfs_check_dio_repairable(struct inode *inode,
7348 struct bio *failed_bio,
7349 struct io_failure_record *failrec,
7350 int failed_mirror)
7351{
7352 int num_copies;
7353
7354 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7355 failrec->logical, failrec->len);
7356 if (num_copies == 1) {
7357 /*
7358 * we only have a single copy of the data, so don't bother with
7359 * all the retry and error correction code that follows. no
7360 * matter what the error is, it is very likely to persist.
7361 */
7362 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7363 num_copies, failrec->this_mirror, failed_mirror);
7364 return 0;
7365 }
7366
7367 failrec->failed_mirror = failed_mirror;
7368 failrec->this_mirror++;
7369 if (failrec->this_mirror == failed_mirror)
7370 failrec->this_mirror++;
7371
7372 if (failrec->this_mirror > num_copies) {
7373 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7374 num_copies, failrec->this_mirror, failed_mirror);
7375 return 0;
7376 }
7377
7378 return 1;
7379}
7380
7381static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7382 struct page *page, u64 start, u64 end,
7383 int failed_mirror, bio_end_io_t *repair_endio,
7384 void *repair_arg)
7385{
7386 struct io_failure_record *failrec;
7387 struct bio *bio;
7388 int isector;
7389 int read_mode;
7390 int ret;
7391
7392 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7393
7394 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7395 if (ret)
7396 return ret;
7397
7398 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7399 failed_mirror);
7400 if (!ret) {
7401 free_io_failure(inode, failrec);
7402 return -EIO;
7403 }
7404
7405 if (failed_bio->bi_vcnt > 1)
7406 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7407 else
7408 read_mode = READ_SYNC;
7409
7410 isector = start - btrfs_io_bio(failed_bio)->logical;
7411 isector >>= inode->i_sb->s_blocksize_bits;
7412 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7413 0, isector, repair_endio, repair_arg);
7414 if (!bio) {
7415 free_io_failure(inode, failrec);
7416 return -EIO;
7417 }
7418
7419 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7420 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7421 read_mode, failrec->this_mirror, failrec->in_validation);
7422
7423 ret = submit_dio_repair_bio(inode, bio, read_mode,
7424 failrec->this_mirror);
7425 if (ret) {
7426 free_io_failure(inode, failrec);
7427 bio_put(bio);
7428 }
7429
7430 return ret;
7431}
7432
7433struct btrfs_retry_complete {
7434 struct completion done;
7435 struct inode *inode;
7436 u64 start;
7437 int uptodate;
7438};
7439
7440static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7441{
7442 struct btrfs_retry_complete *done = bio->bi_private;
7443 struct bio_vec *bvec;
7444 int i;
7445
7446 if (err)
7447 goto end;
7448
7449 done->uptodate = 1;
7450 bio_for_each_segment_all(bvec, bio, i)
7451 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7452end:
7453 complete(&done->done);
7454 bio_put(bio);
7455}
7456
7457static int __btrfs_correct_data_nocsum(struct inode *inode,
7458 struct btrfs_io_bio *io_bio)
4b46fce2 7459{
2c30c71b 7460 struct bio_vec *bvec;
8b110e39 7461 struct btrfs_retry_complete done;
4b46fce2 7462 u64 start;
2c30c71b 7463 int i;
c1dc0896 7464 int ret;
4b46fce2 7465
8b110e39
MX
7466 start = io_bio->logical;
7467 done.inode = inode;
7468
7469 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7470try_again:
7471 done.uptodate = 0;
7472 done.start = start;
7473 init_completion(&done.done);
7474
7475 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7476 start + bvec->bv_len - 1,
7477 io_bio->mirror_num,
7478 btrfs_retry_endio_nocsum, &done);
7479 if (ret)
7480 return ret;
7481
7482 wait_for_completion(&done.done);
7483
7484 if (!done.uptodate) {
7485 /* We might have another mirror, so try again */
7486 goto try_again;
7487 }
7488
7489 start += bvec->bv_len;
7490 }
7491
7492 return 0;
7493}
7494
7495static void btrfs_retry_endio(struct bio *bio, int err)
7496{
7497 struct btrfs_retry_complete *done = bio->bi_private;
7498 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7499 struct bio_vec *bvec;
7500 int uptodate;
7501 int ret;
7502 int i;
7503
7504 if (err)
7505 goto end;
7506
7507 uptodate = 1;
7508 bio_for_each_segment_all(bvec, bio, i) {
7509 ret = __readpage_endio_check(done->inode, io_bio, i,
7510 bvec->bv_page, 0,
7511 done->start, bvec->bv_len);
7512 if (!ret)
7513 clean_io_failure(done->inode, done->start,
7514 bvec->bv_page, 0);
7515 else
7516 uptodate = 0;
7517 }
7518
7519 done->uptodate = uptodate;
7520end:
7521 complete(&done->done);
7522 bio_put(bio);
7523}
7524
7525static int __btrfs_subio_endio_read(struct inode *inode,
7526 struct btrfs_io_bio *io_bio, int err)
7527{
7528 struct bio_vec *bvec;
7529 struct btrfs_retry_complete done;
7530 u64 start;
7531 u64 offset = 0;
7532 int i;
7533 int ret;
dc380aea 7534
8b110e39 7535 err = 0;
c1dc0896 7536 start = io_bio->logical;
8b110e39
MX
7537 done.inode = inode;
7538
c1dc0896 7539 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7540 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7541 0, start, bvec->bv_len);
8b110e39
MX
7542 if (likely(!ret))
7543 goto next;
7544try_again:
7545 done.uptodate = 0;
7546 done.start = start;
7547 init_completion(&done.done);
7548
7549 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7550 start + bvec->bv_len - 1,
7551 io_bio->mirror_num,
7552 btrfs_retry_endio, &done);
7553 if (ret) {
7554 err = ret;
7555 goto next;
7556 }
7557
7558 wait_for_completion(&done.done);
7559
7560 if (!done.uptodate) {
7561 /* We might have another mirror, so try again */
7562 goto try_again;
7563 }
7564next:
7565 offset += bvec->bv_len;
4b46fce2 7566 start += bvec->bv_len;
2c30c71b 7567 }
c1dc0896
MX
7568
7569 return err;
7570}
7571
8b110e39
MX
7572static int btrfs_subio_endio_read(struct inode *inode,
7573 struct btrfs_io_bio *io_bio, int err)
7574{
7575 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7576
7577 if (skip_csum) {
7578 if (unlikely(err))
7579 return __btrfs_correct_data_nocsum(inode, io_bio);
7580 else
7581 return 0;
7582 } else {
7583 return __btrfs_subio_endio_read(inode, io_bio, err);
7584 }
7585}
7586
c1dc0896
MX
7587static void btrfs_endio_direct_read(struct bio *bio, int err)
7588{
7589 struct btrfs_dio_private *dip = bio->bi_private;
7590 struct inode *inode = dip->inode;
7591 struct bio *dio_bio;
7592 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7593
8b110e39
MX
7594 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7595 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7596
4b46fce2 7597 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7598 dip->logical_offset + dip->bytes - 1);
9be3395b 7599 dio_bio = dip->dio_bio;
4b46fce2 7600
4b46fce2 7601 kfree(dip);
c0da7aa1
JB
7602
7603 /* If we had a csum failure make sure to clear the uptodate flag */
7604 if (err)
9be3395b
CM
7605 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7606 dio_end_io(dio_bio, err);
23ea8e5a
MX
7607
7608 if (io_bio->end_io)
7609 io_bio->end_io(io_bio, err);
9be3395b 7610 bio_put(bio);
4b46fce2
JB
7611}
7612
7613static void btrfs_endio_direct_write(struct bio *bio, int err)
7614{
7615 struct btrfs_dio_private *dip = bio->bi_private;
7616 struct inode *inode = dip->inode;
7617 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7618 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7619 u64 ordered_offset = dip->logical_offset;
7620 u64 ordered_bytes = dip->bytes;
9be3395b 7621 struct bio *dio_bio;
4b46fce2
JB
7622 int ret;
7623
7624 if (err)
7625 goto out_done;
163cf09c
CM
7626again:
7627 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7628 &ordered_offset,
5fd02043 7629 ordered_bytes, !err);
4b46fce2 7630 if (!ret)
163cf09c 7631 goto out_test;
4b46fce2 7632
9e0af237
LB
7633 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7634 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7635 btrfs_queue_work(root->fs_info->endio_write_workers,
7636 &ordered->work);
163cf09c
CM
7637out_test:
7638 /*
7639 * our bio might span multiple ordered extents. If we haven't
7640 * completed the accounting for the whole dio, go back and try again
7641 */
7642 if (ordered_offset < dip->logical_offset + dip->bytes) {
7643 ordered_bytes = dip->logical_offset + dip->bytes -
7644 ordered_offset;
5fd02043 7645 ordered = NULL;
163cf09c
CM
7646 goto again;
7647 }
4b46fce2 7648out_done:
9be3395b 7649 dio_bio = dip->dio_bio;
4b46fce2 7650
4b46fce2 7651 kfree(dip);
c0da7aa1
JB
7652
7653 /* If we had an error make sure to clear the uptodate flag */
7654 if (err)
9be3395b
CM
7655 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7656 dio_end_io(dio_bio, err);
7657 bio_put(bio);
4b46fce2
JB
7658}
7659
eaf25d93
CM
7660static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7661 struct bio *bio, int mirror_num,
7662 unsigned long bio_flags, u64 offset)
7663{
7664 int ret;
7665 struct btrfs_root *root = BTRFS_I(inode)->root;
7666 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7667 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7668 return 0;
7669}
7670
e65e1535
MX
7671static void btrfs_end_dio_bio(struct bio *bio, int err)
7672{
7673 struct btrfs_dio_private *dip = bio->bi_private;
7674
8b110e39
MX
7675 if (err)
7676 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7677 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7678 btrfs_ino(dip->inode), bio->bi_rw,
7679 (unsigned long long)bio->bi_iter.bi_sector,
7680 bio->bi_iter.bi_size, err);
7681
7682 if (dip->subio_endio)
7683 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
7684
7685 if (err) {
e65e1535
MX
7686 dip->errors = 1;
7687
7688 /*
7689 * before atomic variable goto zero, we must make sure
7690 * dip->errors is perceived to be set.
7691 */
4e857c58 7692 smp_mb__before_atomic();
e65e1535
MX
7693 }
7694
7695 /* if there are more bios still pending for this dio, just exit */
7696 if (!atomic_dec_and_test(&dip->pending_bios))
7697 goto out;
7698
9be3395b 7699 if (dip->errors) {
e65e1535 7700 bio_io_error(dip->orig_bio);
9be3395b
CM
7701 } else {
7702 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7703 bio_endio(dip->orig_bio, 0);
7704 }
7705out:
7706 bio_put(bio);
7707}
7708
7709static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7710 u64 first_sector, gfp_t gfp_flags)
7711{
7712 int nr_vecs = bio_get_nr_vecs(bdev);
7713 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7714}
7715
c1dc0896
MX
7716static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7717 struct inode *inode,
7718 struct btrfs_dio_private *dip,
7719 struct bio *bio,
7720 u64 file_offset)
7721{
7722 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7723 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7724 int ret;
7725
7726 /*
7727 * We load all the csum data we need when we submit
7728 * the first bio to reduce the csum tree search and
7729 * contention.
7730 */
7731 if (dip->logical_offset == file_offset) {
7732 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7733 file_offset);
7734 if (ret)
7735 return ret;
7736 }
7737
7738 if (bio == dip->orig_bio)
7739 return 0;
7740
7741 file_offset -= dip->logical_offset;
7742 file_offset >>= inode->i_sb->s_blocksize_bits;
7743 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7744
7745 return 0;
7746}
7747
e65e1535
MX
7748static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7749 int rw, u64 file_offset, int skip_sum,
c329861d 7750 int async_submit)
e65e1535 7751{
facc8a22 7752 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7753 int write = rw & REQ_WRITE;
7754 struct btrfs_root *root = BTRFS_I(inode)->root;
7755 int ret;
7756
b812ce28
JB
7757 if (async_submit)
7758 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7759
e65e1535 7760 bio_get(bio);
5fd02043
JB
7761
7762 if (!write) {
bfebd8b5
DS
7763 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7764 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7765 if (ret)
7766 goto err;
7767 }
e65e1535 7768
1ae39938
JB
7769 if (skip_sum)
7770 goto map;
7771
7772 if (write && async_submit) {
e65e1535
MX
7773 ret = btrfs_wq_submit_bio(root->fs_info,
7774 inode, rw, bio, 0, 0,
7775 file_offset,
7776 __btrfs_submit_bio_start_direct_io,
7777 __btrfs_submit_bio_done);
7778 goto err;
1ae39938
JB
7779 } else if (write) {
7780 /*
7781 * If we aren't doing async submit, calculate the csum of the
7782 * bio now.
7783 */
7784 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7785 if (ret)
7786 goto err;
23ea8e5a 7787 } else {
c1dc0896
MX
7788 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7789 file_offset);
c2db1073
TI
7790 if (ret)
7791 goto err;
7792 }
1ae39938
JB
7793map:
7794 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7795err:
7796 bio_put(bio);
7797 return ret;
7798}
7799
7800static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7801 int skip_sum)
7802{
7803 struct inode *inode = dip->inode;
7804 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7805 struct bio *bio;
7806 struct bio *orig_bio = dip->orig_bio;
7807 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7808 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7809 u64 file_offset = dip->logical_offset;
7810 u64 submit_len = 0;
7811 u64 map_length;
7812 int nr_pages = 0;
23ea8e5a 7813 int ret;
1ae39938 7814 int async_submit = 0;
e65e1535 7815
4f024f37 7816 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7817 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 7818 &map_length, NULL, 0);
7a5c3c9b 7819 if (ret)
e65e1535 7820 return -EIO;
facc8a22 7821
4f024f37 7822 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 7823 bio = orig_bio;
c1dc0896 7824 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
7825 goto submit;
7826 }
7827
53b381b3 7828 /* async crcs make it difficult to collect full stripe writes. */
ffe2d203 7829 if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
7830 async_submit = 0;
7831 else
7832 async_submit = 1;
7833
02f57c7a
JB
7834 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7835 if (!bio)
7836 return -ENOMEM;
7a5c3c9b 7837
02f57c7a
JB
7838 bio->bi_private = dip;
7839 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7840 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
7841 atomic_inc(&dip->pending_bios);
7842
e65e1535 7843 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 7844 if (map_length < submit_len + bvec->bv_len ||
e65e1535 7845 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 7846 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
7847 /*
7848 * inc the count before we submit the bio so
7849 * we know the end IO handler won't happen before
7850 * we inc the count. Otherwise, the dip might get freed
7851 * before we're done setting it up
7852 */
7853 atomic_inc(&dip->pending_bios);
7854 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7855 file_offset, skip_sum,
c329861d 7856 async_submit);
e65e1535
MX
7857 if (ret) {
7858 bio_put(bio);
7859 atomic_dec(&dip->pending_bios);
7860 goto out_err;
7861 }
7862
e65e1535
MX
7863 start_sector += submit_len >> 9;
7864 file_offset += submit_len;
7865
7866 submit_len = 0;
7867 nr_pages = 0;
7868
7869 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7870 start_sector, GFP_NOFS);
7871 if (!bio)
7872 goto out_err;
7873 bio->bi_private = dip;
7874 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7875 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 7876
4f024f37 7877 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7878 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7879 start_sector << 9,
e65e1535
MX
7880 &map_length, NULL, 0);
7881 if (ret) {
7882 bio_put(bio);
7883 goto out_err;
7884 }
7885 } else {
7886 submit_len += bvec->bv_len;
67871254 7887 nr_pages++;
e65e1535
MX
7888 bvec++;
7889 }
7890 }
7891
02f57c7a 7892submit:
e65e1535 7893 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7894 async_submit);
e65e1535
MX
7895 if (!ret)
7896 return 0;
7897
7898 bio_put(bio);
7899out_err:
7900 dip->errors = 1;
7901 /*
7902 * before atomic variable goto zero, we must
7903 * make sure dip->errors is perceived to be set.
7904 */
4e857c58 7905 smp_mb__before_atomic();
e65e1535
MX
7906 if (atomic_dec_and_test(&dip->pending_bios))
7907 bio_io_error(dip->orig_bio);
7908
7909 /* bio_end_io() will handle error, so we needn't return it */
7910 return 0;
7911}
7912
9be3395b
CM
7913static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7914 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7915{
7916 struct btrfs_root *root = BTRFS_I(inode)->root;
7917 struct btrfs_dio_private *dip;
9be3395b 7918 struct bio *io_bio;
23ea8e5a 7919 struct btrfs_io_bio *btrfs_bio;
4b46fce2 7920 int skip_sum;
7b6d91da 7921 int write = rw & REQ_WRITE;
4b46fce2
JB
7922 int ret = 0;
7923
7924 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7925
9be3395b 7926 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7927 if (!io_bio) {
7928 ret = -ENOMEM;
7929 goto free_ordered;
7930 }
7931
c1dc0896 7932 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
7933 if (!dip) {
7934 ret = -ENOMEM;
9be3395b 7935 goto free_io_bio;
4b46fce2 7936 }
4b46fce2 7937
9be3395b 7938 dip->private = dio_bio->bi_private;
4b46fce2
JB
7939 dip->inode = inode;
7940 dip->logical_offset = file_offset;
4f024f37
KO
7941 dip->bytes = dio_bio->bi_iter.bi_size;
7942 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 7943 io_bio->bi_private = dip;
9be3395b
CM
7944 dip->orig_bio = io_bio;
7945 dip->dio_bio = dio_bio;
e65e1535 7946 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
7947 btrfs_bio = btrfs_io_bio(io_bio);
7948 btrfs_bio->logical = file_offset;
4b46fce2 7949
c1dc0896 7950 if (write) {
9be3395b 7951 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 7952 } else {
9be3395b 7953 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
7954 dip->subio_endio = btrfs_subio_endio_read;
7955 }
4b46fce2 7956
e65e1535
MX
7957 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7958 if (!ret)
eaf25d93 7959 return;
9be3395b 7960
23ea8e5a
MX
7961 if (btrfs_bio->end_io)
7962 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b
CM
7963free_io_bio:
7964 bio_put(io_bio);
7965
4b46fce2
JB
7966free_ordered:
7967 /*
7968 * If this is a write, we need to clean up the reserved space and kill
7969 * the ordered extent.
7970 */
7971 if (write) {
7972 struct btrfs_ordered_extent *ordered;
955256f2 7973 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7974 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7975 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7976 btrfs_free_reserved_extent(root, ordered->start,
e570fd27 7977 ordered->disk_len, 1);
4b46fce2
JB
7978 btrfs_put_ordered_extent(ordered);
7979 btrfs_put_ordered_extent(ordered);
7980 }
9be3395b 7981 bio_endio(dio_bio, ret);
4b46fce2
JB
7982}
7983
5a5f79b5 7984static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
28060d5d 7985 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
7986{
7987 int seg;
a1b75f7d 7988 int i;
5a5f79b5
CM
7989 unsigned blocksize_mask = root->sectorsize - 1;
7990 ssize_t retval = -EINVAL;
5a5f79b5
CM
7991
7992 if (offset & blocksize_mask)
7993 goto out;
7994
28060d5d
AV
7995 if (iov_iter_alignment(iter) & blocksize_mask)
7996 goto out;
a1b75f7d 7997
28060d5d
AV
7998 /* If this is a write we don't need to check anymore */
7999 if (rw & WRITE)
8000 return 0;
8001 /*
8002 * Check to make sure we don't have duplicate iov_base's in this
8003 * iovec, if so return EINVAL, otherwise we'll get csum errors
8004 * when reading back.
8005 */
8006 for (seg = 0; seg < iter->nr_segs; seg++) {
8007 for (i = seg + 1; i < iter->nr_segs; i++) {
8008 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8009 goto out;
8010 }
5a5f79b5
CM
8011 }
8012 retval = 0;
8013out:
8014 return retval;
8015}
eb838e73 8016
16432985 8017static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 8018 struct iov_iter *iter, loff_t offset)
16432985 8019{
4b46fce2
JB
8020 struct file *file = iocb->ki_filp;
8021 struct inode *inode = file->f_mapping->host;
0934856d 8022 size_t count = 0;
2e60a51e 8023 int flags = 0;
38851cc1
MX
8024 bool wakeup = true;
8025 bool relock = false;
0934856d 8026 ssize_t ret;
4b46fce2 8027
28060d5d 8028 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
5a5f79b5 8029 return 0;
3f7c579c 8030
38851cc1 8031 atomic_inc(&inode->i_dio_count);
4e857c58 8032 smp_mb__after_atomic();
38851cc1 8033
0e267c44 8034 /*
41bd9ca4
MX
8035 * The generic stuff only does filemap_write_and_wait_range, which
8036 * isn't enough if we've written compressed pages to this area, so
8037 * we need to flush the dirty pages again to make absolutely sure
8038 * that any outstanding dirty pages are on disk.
0e267c44 8039 */
a6cbcd4a 8040 count = iov_iter_count(iter);
41bd9ca4
MX
8041 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8042 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8043 filemap_fdatawrite_range(inode->i_mapping, offset,
8044 offset + count - 1);
0e267c44 8045
0934856d 8046 if (rw & WRITE) {
38851cc1
MX
8047 /*
8048 * If the write DIO is beyond the EOF, we need update
8049 * the isize, but it is protected by i_mutex. So we can
8050 * not unlock the i_mutex at this case.
8051 */
8052 if (offset + count <= inode->i_size) {
8053 mutex_unlock(&inode->i_mutex);
8054 relock = true;
8055 }
0934856d
MX
8056 ret = btrfs_delalloc_reserve_space(inode, count);
8057 if (ret)
38851cc1 8058 goto out;
ee39b432
DS
8059 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8060 &BTRFS_I(inode)->runtime_flags)) {
38851cc1
MX
8061 inode_dio_done(inode);
8062 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8063 wakeup = false;
0934856d
MX
8064 }
8065
8066 ret = __blockdev_direct_IO(rw, iocb, inode,
8067 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
31b14039 8068 iter, offset, btrfs_get_blocks_direct, NULL,
2e60a51e 8069 btrfs_submit_direct, flags);
0934856d
MX
8070 if (rw & WRITE) {
8071 if (ret < 0 && ret != -EIOCBQUEUED)
8072 btrfs_delalloc_release_space(inode, count);
172a5049 8073 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
8074 btrfs_delalloc_release_space(inode,
8075 count - (size_t)ret);
172a5049
MX
8076 else
8077 btrfs_delalloc_release_metadata(inode, 0);
0934856d 8078 }
38851cc1 8079out:
2e60a51e
MX
8080 if (wakeup)
8081 inode_dio_done(inode);
38851cc1
MX
8082 if (relock)
8083 mutex_lock(&inode->i_mutex);
0934856d
MX
8084
8085 return ret;
16432985
CM
8086}
8087
05dadc09
TI
8088#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8089
1506fcc8
YS
8090static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8091 __u64 start, __u64 len)
8092{
05dadc09
TI
8093 int ret;
8094
8095 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8096 if (ret)
8097 return ret;
8098
ec29ed5b 8099 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8100}
8101
a52d9a80 8102int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8103{
d1310b2e
CM
8104 struct extent_io_tree *tree;
8105 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8106 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8107}
1832a6d5 8108
a52d9a80 8109static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8110{
d1310b2e 8111 struct extent_io_tree *tree;
b888db2b
CM
8112
8113
8114 if (current->flags & PF_MEMALLOC) {
8115 redirty_page_for_writepage(wbc, page);
8116 unlock_page(page);
8117 return 0;
8118 }
d1310b2e 8119 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8120 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8121}
8122
48a3b636
ES
8123static int btrfs_writepages(struct address_space *mapping,
8124 struct writeback_control *wbc)
b293f02e 8125{
d1310b2e 8126 struct extent_io_tree *tree;
771ed689 8127
d1310b2e 8128 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8129 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8130}
8131
3ab2fb5a
CM
8132static int
8133btrfs_readpages(struct file *file, struct address_space *mapping,
8134 struct list_head *pages, unsigned nr_pages)
8135{
d1310b2e
CM
8136 struct extent_io_tree *tree;
8137 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8138 return extent_readpages(tree, mapping, pages, nr_pages,
8139 btrfs_get_extent);
8140}
e6dcd2dc 8141static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8142{
d1310b2e
CM
8143 struct extent_io_tree *tree;
8144 struct extent_map_tree *map;
a52d9a80 8145 int ret;
8c2383c3 8146
d1310b2e
CM
8147 tree = &BTRFS_I(page->mapping->host)->io_tree;
8148 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8149 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8150 if (ret == 1) {
8151 ClearPagePrivate(page);
8152 set_page_private(page, 0);
8153 page_cache_release(page);
39279cc3 8154 }
a52d9a80 8155 return ret;
39279cc3
CM
8156}
8157
e6dcd2dc
CM
8158static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8159{
98509cfc
CM
8160 if (PageWriteback(page) || PageDirty(page))
8161 return 0;
b335b003 8162 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8163}
8164
d47992f8
LC
8165static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8166 unsigned int length)
39279cc3 8167{
5fd02043 8168 struct inode *inode = page->mapping->host;
d1310b2e 8169 struct extent_io_tree *tree;
e6dcd2dc 8170 struct btrfs_ordered_extent *ordered;
2ac55d41 8171 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8172 u64 page_start = page_offset(page);
8173 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8174 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8175
8b62b72b
CM
8176 /*
8177 * we have the page locked, so new writeback can't start,
8178 * and the dirty bit won't be cleared while we are here.
8179 *
8180 * Wait for IO on this page so that we can safely clear
8181 * the PagePrivate2 bit and do ordered accounting
8182 */
e6dcd2dc 8183 wait_on_page_writeback(page);
8b62b72b 8184
5fd02043 8185 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8186 if (offset) {
8187 btrfs_releasepage(page, GFP_NOFS);
8188 return;
8189 }
131e404a
FDBM
8190
8191 if (!inode_evicting)
8192 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8193 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8194 if (ordered) {
eb84ae03
CM
8195 /*
8196 * IO on this page will never be started, so we need
8197 * to account for any ordered extents now
8198 */
131e404a
FDBM
8199 if (!inode_evicting)
8200 clear_extent_bit(tree, page_start, page_end,
8201 EXTENT_DIRTY | EXTENT_DELALLOC |
8202 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8203 EXTENT_DEFRAG, 1, 0, &cached_state,
8204 GFP_NOFS);
8b62b72b
CM
8205 /*
8206 * whoever cleared the private bit is responsible
8207 * for the finish_ordered_io
8208 */
77cef2ec
JB
8209 if (TestClearPagePrivate2(page)) {
8210 struct btrfs_ordered_inode_tree *tree;
8211 u64 new_len;
8212
8213 tree = &BTRFS_I(inode)->ordered_tree;
8214
8215 spin_lock_irq(&tree->lock);
8216 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8217 new_len = page_start - ordered->file_offset;
8218 if (new_len < ordered->truncated_len)
8219 ordered->truncated_len = new_len;
8220 spin_unlock_irq(&tree->lock);
8221
8222 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8223 page_start,
8224 PAGE_CACHE_SIZE, 1))
8225 btrfs_finish_ordered_io(ordered);
8b62b72b 8226 }
e6dcd2dc 8227 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8228 if (!inode_evicting) {
8229 cached_state = NULL;
8230 lock_extent_bits(tree, page_start, page_end, 0,
8231 &cached_state);
8232 }
8233 }
8234
8235 if (!inode_evicting) {
8236 clear_extent_bit(tree, page_start, page_end,
8237 EXTENT_LOCKED | EXTENT_DIRTY |
8238 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8239 EXTENT_DEFRAG, 1, 1,
8240 &cached_state, GFP_NOFS);
8241
8242 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8243 }
e6dcd2dc 8244
4a096752 8245 ClearPageChecked(page);
9ad6b7bc 8246 if (PagePrivate(page)) {
9ad6b7bc
CM
8247 ClearPagePrivate(page);
8248 set_page_private(page, 0);
8249 page_cache_release(page);
8250 }
39279cc3
CM
8251}
8252
9ebefb18
CM
8253/*
8254 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8255 * called from a page fault handler when a page is first dirtied. Hence we must
8256 * be careful to check for EOF conditions here. We set the page up correctly
8257 * for a written page which means we get ENOSPC checking when writing into
8258 * holes and correct delalloc and unwritten extent mapping on filesystems that
8259 * support these features.
8260 *
8261 * We are not allowed to take the i_mutex here so we have to play games to
8262 * protect against truncate races as the page could now be beyond EOF. Because
8263 * vmtruncate() writes the inode size before removing pages, once we have the
8264 * page lock we can determine safely if the page is beyond EOF. If it is not
8265 * beyond EOF, then the page is guaranteed safe against truncation until we
8266 * unlock the page.
8267 */
c2ec175c 8268int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8269{
c2ec175c 8270 struct page *page = vmf->page;
496ad9aa 8271 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8272 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8273 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8274 struct btrfs_ordered_extent *ordered;
2ac55d41 8275 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8276 char *kaddr;
8277 unsigned long zero_start;
9ebefb18 8278 loff_t size;
1832a6d5 8279 int ret;
9998eb70 8280 int reserved = 0;
a52d9a80 8281 u64 page_start;
e6dcd2dc 8282 u64 page_end;
9ebefb18 8283
b2b5ef5c 8284 sb_start_pagefault(inode->i_sb);
0ca1f7ce 8285 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 8286 if (!ret) {
e41f941a 8287 ret = file_update_time(vma->vm_file);
9998eb70
CM
8288 reserved = 1;
8289 }
56a76f82
NP
8290 if (ret) {
8291 if (ret == -ENOMEM)
8292 ret = VM_FAULT_OOM;
8293 else /* -ENOSPC, -EIO, etc */
8294 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8295 if (reserved)
8296 goto out;
8297 goto out_noreserve;
56a76f82 8298 }
1832a6d5 8299
56a76f82 8300 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8301again:
9ebefb18 8302 lock_page(page);
9ebefb18 8303 size = i_size_read(inode);
e6dcd2dc
CM
8304 page_start = page_offset(page);
8305 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 8306
9ebefb18 8307 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8308 (page_start >= size)) {
9ebefb18
CM
8309 /* page got truncated out from underneath us */
8310 goto out_unlock;
8311 }
e6dcd2dc
CM
8312 wait_on_page_writeback(page);
8313
d0082371 8314 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8315 set_page_extent_mapped(page);
8316
eb84ae03
CM
8317 /*
8318 * we can't set the delalloc bits if there are pending ordered
8319 * extents. Drop our locks and wait for them to finish
8320 */
e6dcd2dc
CM
8321 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8322 if (ordered) {
2ac55d41
JB
8323 unlock_extent_cached(io_tree, page_start, page_end,
8324 &cached_state, GFP_NOFS);
e6dcd2dc 8325 unlock_page(page);
eb84ae03 8326 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8327 btrfs_put_ordered_extent(ordered);
8328 goto again;
8329 }
8330
fbf19087
JB
8331 /*
8332 * XXX - page_mkwrite gets called every time the page is dirtied, even
8333 * if it was already dirty, so for space accounting reasons we need to
8334 * clear any delalloc bits for the range we are fixing to save. There
8335 * is probably a better way to do this, but for now keep consistent with
8336 * prepare_pages in the normal write path.
8337 */
2ac55d41 8338 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8339 EXTENT_DIRTY | EXTENT_DELALLOC |
8340 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8341 0, 0, &cached_state, GFP_NOFS);
fbf19087 8342
2ac55d41
JB
8343 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8344 &cached_state);
9ed74f2d 8345 if (ret) {
2ac55d41
JB
8346 unlock_extent_cached(io_tree, page_start, page_end,
8347 &cached_state, GFP_NOFS);
9ed74f2d
JB
8348 ret = VM_FAULT_SIGBUS;
8349 goto out_unlock;
8350 }
e6dcd2dc 8351 ret = 0;
9ebefb18
CM
8352
8353 /* page is wholly or partially inside EOF */
a52d9a80 8354 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8355 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8356 else
e6dcd2dc 8357 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8358
e6dcd2dc
CM
8359 if (zero_start != PAGE_CACHE_SIZE) {
8360 kaddr = kmap(page);
8361 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8362 flush_dcache_page(page);
8363 kunmap(page);
8364 }
247e743c 8365 ClearPageChecked(page);
e6dcd2dc 8366 set_page_dirty(page);
50a9b214 8367 SetPageUptodate(page);
5a3f23d5 8368
257c62e1
CM
8369 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8370 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8371 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8372
2ac55d41 8373 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8374
8375out_unlock:
b2b5ef5c
JK
8376 if (!ret) {
8377 sb_end_pagefault(inode->i_sb);
50a9b214 8378 return VM_FAULT_LOCKED;
b2b5ef5c 8379 }
9ebefb18 8380 unlock_page(page);
1832a6d5 8381out:
ec39e180 8382 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8383out_noreserve:
b2b5ef5c 8384 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8385 return ret;
8386}
8387
a41ad394 8388static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8389{
8390 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8391 struct btrfs_block_rsv *rsv;
a71754fc 8392 int ret = 0;
3893e33b 8393 int err = 0;
39279cc3 8394 struct btrfs_trans_handle *trans;
dbe674a9 8395 u64 mask = root->sectorsize - 1;
07127184 8396 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8397
0ef8b726
JB
8398 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8399 (u64)-1);
8400 if (ret)
8401 return ret;
39279cc3 8402
fcb80c2a
JB
8403 /*
8404 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8405 * 3 things going on here
8406 *
8407 * 1) We need to reserve space for our orphan item and the space to
8408 * delete our orphan item. Lord knows we don't want to have a dangling
8409 * orphan item because we didn't reserve space to remove it.
8410 *
8411 * 2) We need to reserve space to update our inode.
8412 *
8413 * 3) We need to have something to cache all the space that is going to
8414 * be free'd up by the truncate operation, but also have some slack
8415 * space reserved in case it uses space during the truncate (thank you
8416 * very much snapshotting).
8417 *
8418 * And we need these to all be seperate. The fact is we can use alot of
8419 * space doing the truncate, and we have no earthly idea how much space
8420 * we will use, so we need the truncate reservation to be seperate so it
8421 * doesn't end up using space reserved for updating the inode or
8422 * removing the orphan item. We also need to be able to stop the
8423 * transaction and start a new one, which means we need to be able to
8424 * update the inode several times, and we have no idea of knowing how
8425 * many times that will be, so we can't just reserve 1 item for the
8426 * entirety of the opration, so that has to be done seperately as well.
8427 * Then there is the orphan item, which does indeed need to be held on
8428 * to for the whole operation, and we need nobody to touch this reserved
8429 * space except the orphan code.
8430 *
8431 * So that leaves us with
8432 *
8433 * 1) root->orphan_block_rsv - for the orphan deletion.
8434 * 2) rsv - for the truncate reservation, which we will steal from the
8435 * transaction reservation.
8436 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8437 * updating the inode.
8438 */
66d8f3dd 8439 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8440 if (!rsv)
8441 return -ENOMEM;
4a338542 8442 rsv->size = min_size;
ca7e70f5 8443 rsv->failfast = 1;
f0cd846e 8444
907cbceb 8445 /*
07127184 8446 * 1 for the truncate slack space
907cbceb
JB
8447 * 1 for updating the inode.
8448 */
f3fe820c 8449 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8450 if (IS_ERR(trans)) {
8451 err = PTR_ERR(trans);
8452 goto out;
8453 }
f0cd846e 8454
907cbceb
JB
8455 /* Migrate the slack space for the truncate to our reserve */
8456 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8457 min_size);
fcb80c2a 8458 BUG_ON(ret);
f0cd846e 8459
5dc562c5
JB
8460 /*
8461 * So if we truncate and then write and fsync we normally would just
8462 * write the extents that changed, which is a problem if we need to
8463 * first truncate that entire inode. So set this flag so we write out
8464 * all of the extents in the inode to the sync log so we're completely
8465 * safe.
8466 */
8467 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8468 trans->block_rsv = rsv;
907cbceb 8469
8082510e
YZ
8470 while (1) {
8471 ret = btrfs_truncate_inode_items(trans, root, inode,
8472 inode->i_size,
8473 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 8474 if (ret != -ENOSPC) {
3893e33b 8475 err = ret;
8082510e 8476 break;
3893e33b 8477 }
39279cc3 8478
fcb80c2a 8479 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8480 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8481 if (ret) {
8482 err = ret;
8483 break;
8484 }
ca7e70f5 8485
8082510e 8486 btrfs_end_transaction(trans, root);
b53d3f5d 8487 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8488
8489 trans = btrfs_start_transaction(root, 2);
8490 if (IS_ERR(trans)) {
8491 ret = err = PTR_ERR(trans);
8492 trans = NULL;
8493 break;
8494 }
8495
8496 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8497 rsv, min_size);
8498 BUG_ON(ret); /* shouldn't happen */
8499 trans->block_rsv = rsv;
8082510e
YZ
8500 }
8501
8502 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8503 trans->block_rsv = root->orphan_block_rsv;
8082510e 8504 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8505 if (ret)
8506 err = ret;
8082510e
YZ
8507 }
8508
917c16b2
CM
8509 if (trans) {
8510 trans->block_rsv = &root->fs_info->trans_block_rsv;
8511 ret = btrfs_update_inode(trans, root, inode);
8512 if (ret && !err)
8513 err = ret;
7b128766 8514
7ad85bb7 8515 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8516 btrfs_btree_balance_dirty(root);
917c16b2 8517 }
fcb80c2a
JB
8518
8519out:
8520 btrfs_free_block_rsv(root, rsv);
8521
3893e33b
JB
8522 if (ret && !err)
8523 err = ret;
a41ad394 8524
3893e33b 8525 return err;
39279cc3
CM
8526}
8527
d352ac68
CM
8528/*
8529 * create a new subvolume directory/inode (helper for the ioctl).
8530 */
d2fb3437 8531int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8532 struct btrfs_root *new_root,
8533 struct btrfs_root *parent_root,
8534 u64 new_dirid)
39279cc3 8535{
39279cc3 8536 struct inode *inode;
76dda93c 8537 int err;
00e4e6b3 8538 u64 index = 0;
39279cc3 8539
12fc9d09
FA
8540 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8541 new_dirid, new_dirid,
8542 S_IFDIR | (~current_umask() & S_IRWXUGO),
8543 &index);
54aa1f4d 8544 if (IS_ERR(inode))
f46b5a66 8545 return PTR_ERR(inode);
39279cc3
CM
8546 inode->i_op = &btrfs_dir_inode_operations;
8547 inode->i_fop = &btrfs_dir_file_operations;
8548
bfe86848 8549 set_nlink(inode, 1);
dbe674a9 8550 btrfs_i_size_write(inode, 0);
b0d5d10f 8551 unlock_new_inode(inode);
3b96362c 8552
63541927
FDBM
8553 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8554 if (err)
8555 btrfs_err(new_root->fs_info,
351fd353 8556 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8557 new_root->root_key.objectid, err);
8558
76dda93c 8559 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8560
76dda93c 8561 iput(inode);
ce598979 8562 return err;
39279cc3
CM
8563}
8564
39279cc3
CM
8565struct inode *btrfs_alloc_inode(struct super_block *sb)
8566{
8567 struct btrfs_inode *ei;
2ead6ae7 8568 struct inode *inode;
39279cc3
CM
8569
8570 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8571 if (!ei)
8572 return NULL;
2ead6ae7
YZ
8573
8574 ei->root = NULL;
2ead6ae7 8575 ei->generation = 0;
15ee9bc7 8576 ei->last_trans = 0;
257c62e1 8577 ei->last_sub_trans = 0;
e02119d5 8578 ei->logged_trans = 0;
2ead6ae7 8579 ei->delalloc_bytes = 0;
47059d93 8580 ei->defrag_bytes = 0;
2ead6ae7
YZ
8581 ei->disk_i_size = 0;
8582 ei->flags = 0;
7709cde3 8583 ei->csum_bytes = 0;
2ead6ae7 8584 ei->index_cnt = (u64)-1;
67de1176 8585 ei->dir_index = 0;
2ead6ae7 8586 ei->last_unlink_trans = 0;
46d8bc34 8587 ei->last_log_commit = 0;
2ead6ae7 8588
9e0baf60
JB
8589 spin_lock_init(&ei->lock);
8590 ei->outstanding_extents = 0;
8591 ei->reserved_extents = 0;
2ead6ae7 8592
72ac3c0d 8593 ei->runtime_flags = 0;
261507a0 8594 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8595
16cdcec7
MX
8596 ei->delayed_node = NULL;
8597
9cc97d64 8598 ei->i_otime.tv_sec = 0;
8599 ei->i_otime.tv_nsec = 0;
8600
2ead6ae7 8601 inode = &ei->vfs_inode;
a8067e02 8602 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8603 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8604 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8605 ei->io_tree.track_uptodate = 1;
8606 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8607 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8608 mutex_init(&ei->log_mutex);
f248679e 8609 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8610 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8611 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8612 RB_CLEAR_NODE(&ei->rb_node);
8613
8614 return inode;
39279cc3
CM
8615}
8616
aaedb55b
JB
8617#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8618void btrfs_test_destroy_inode(struct inode *inode)
8619{
8620 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8621 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8622}
8623#endif
8624
fa0d7e3d
NP
8625static void btrfs_i_callback(struct rcu_head *head)
8626{
8627 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8628 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8629}
8630
39279cc3
CM
8631void btrfs_destroy_inode(struct inode *inode)
8632{
e6dcd2dc 8633 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8634 struct btrfs_root *root = BTRFS_I(inode)->root;
8635
b3d9b7a3 8636 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8637 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8638 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8639 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8640 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8641 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8642 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8643
a6dbd429
JB
8644 /*
8645 * This can happen where we create an inode, but somebody else also
8646 * created the same inode and we need to destroy the one we already
8647 * created.
8648 */
8649 if (!root)
8650 goto free;
8651
8a35d95f
JB
8652 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8653 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8654 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8655 btrfs_ino(inode));
8a35d95f 8656 atomic_dec(&root->orphan_inodes);
7b128766 8657 }
7b128766 8658
d397712b 8659 while (1) {
e6dcd2dc
CM
8660 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8661 if (!ordered)
8662 break;
8663 else {
c2cf52eb 8664 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8665 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8666 btrfs_remove_ordered_extent(inode, ordered);
8667 btrfs_put_ordered_extent(ordered);
8668 btrfs_put_ordered_extent(ordered);
8669 }
8670 }
5d4f98a2 8671 inode_tree_del(inode);
5b21f2ed 8672 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8673free:
fa0d7e3d 8674 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8675}
8676
45321ac5 8677int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8678{
8679 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8680
6379ef9f
NA
8681 if (root == NULL)
8682 return 1;
8683
fa6ac876 8684 /* the snap/subvol tree is on deleting */
69e9c6c6 8685 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8686 return 1;
76dda93c 8687 else
45321ac5 8688 return generic_drop_inode(inode);
76dda93c
YZ
8689}
8690
0ee0fda0 8691static void init_once(void *foo)
39279cc3
CM
8692{
8693 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8694
8695 inode_init_once(&ei->vfs_inode);
8696}
8697
8698void btrfs_destroy_cachep(void)
8699{
8c0a8537
KS
8700 /*
8701 * Make sure all delayed rcu free inodes are flushed before we
8702 * destroy cache.
8703 */
8704 rcu_barrier();
39279cc3
CM
8705 if (btrfs_inode_cachep)
8706 kmem_cache_destroy(btrfs_inode_cachep);
8707 if (btrfs_trans_handle_cachep)
8708 kmem_cache_destroy(btrfs_trans_handle_cachep);
8709 if (btrfs_transaction_cachep)
8710 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8711 if (btrfs_path_cachep)
8712 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8713 if (btrfs_free_space_cachep)
8714 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8715 if (btrfs_delalloc_work_cachep)
8716 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8717}
8718
8719int btrfs_init_cachep(void)
8720{
837e1972 8721 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8722 sizeof(struct btrfs_inode), 0,
8723 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8724 if (!btrfs_inode_cachep)
8725 goto fail;
9601e3f6 8726
837e1972 8727 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8728 sizeof(struct btrfs_trans_handle), 0,
8729 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8730 if (!btrfs_trans_handle_cachep)
8731 goto fail;
9601e3f6 8732
837e1972 8733 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8734 sizeof(struct btrfs_transaction), 0,
8735 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8736 if (!btrfs_transaction_cachep)
8737 goto fail;
9601e3f6 8738
837e1972 8739 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8740 sizeof(struct btrfs_path), 0,
8741 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8742 if (!btrfs_path_cachep)
8743 goto fail;
9601e3f6 8744
837e1972 8745 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8746 sizeof(struct btrfs_free_space), 0,
8747 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8748 if (!btrfs_free_space_cachep)
8749 goto fail;
8750
8ccf6f19
MX
8751 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8752 sizeof(struct btrfs_delalloc_work), 0,
8753 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8754 NULL);
8755 if (!btrfs_delalloc_work_cachep)
8756 goto fail;
8757
39279cc3
CM
8758 return 0;
8759fail:
8760 btrfs_destroy_cachep();
8761 return -ENOMEM;
8762}
8763
8764static int btrfs_getattr(struct vfsmount *mnt,
8765 struct dentry *dentry, struct kstat *stat)
8766{
df0af1a5 8767 u64 delalloc_bytes;
39279cc3 8768 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8769 u32 blocksize = inode->i_sb->s_blocksize;
8770
39279cc3 8771 generic_fillattr(inode, stat);
0ee5dc67 8772 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8773 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8774
8775 spin_lock(&BTRFS_I(inode)->lock);
8776 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8777 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8778 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8779 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8780 return 0;
8781}
8782
d397712b
CM
8783static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8784 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8785{
8786 struct btrfs_trans_handle *trans;
8787 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8788 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8789 struct inode *new_inode = new_dentry->d_inode;
8790 struct inode *old_inode = old_dentry->d_inode;
8791 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8792 u64 index = 0;
4df27c4d 8793 u64 root_objectid;
39279cc3 8794 int ret;
33345d01 8795 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8796
33345d01 8797 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8798 return -EPERM;
8799
4df27c4d 8800 /* we only allow rename subvolume link between subvolumes */
33345d01 8801 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8802 return -EXDEV;
8803
33345d01
LZ
8804 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8805 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8806 return -ENOTEMPTY;
5f39d397 8807
4df27c4d
YZ
8808 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8809 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8810 return -ENOTEMPTY;
9c52057c
CM
8811
8812
8813 /* check for collisions, even if the name isn't there */
4871c158 8814 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8815 new_dentry->d_name.name,
8816 new_dentry->d_name.len);
8817
8818 if (ret) {
8819 if (ret == -EEXIST) {
8820 /* we shouldn't get
8821 * eexist without a new_inode */
fae7f21c 8822 if (WARN_ON(!new_inode)) {
9c52057c
CM
8823 return ret;
8824 }
8825 } else {
8826 /* maybe -EOVERFLOW */
8827 return ret;
8828 }
8829 }
8830 ret = 0;
8831
5a3f23d5 8832 /*
8d875f95
CM
8833 * we're using rename to replace one file with another. Start IO on it
8834 * now so we don't add too much work to the end of the transaction
5a3f23d5 8835 */
8d875f95 8836 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
8837 filemap_flush(old_inode->i_mapping);
8838
76dda93c 8839 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8840 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8841 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8842 /*
8843 * We want to reserve the absolute worst case amount of items. So if
8844 * both inodes are subvols and we need to unlink them then that would
8845 * require 4 item modifications, but if they are both normal inodes it
8846 * would require 5 item modifications, so we'll assume their normal
8847 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8848 * should cover the worst case number of items we'll modify.
8849 */
6e137ed3 8850 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8851 if (IS_ERR(trans)) {
8852 ret = PTR_ERR(trans);
8853 goto out_notrans;
8854 }
76dda93c 8855
4df27c4d
YZ
8856 if (dest != root)
8857 btrfs_record_root_in_trans(trans, dest);
5f39d397 8858
a5719521
YZ
8859 ret = btrfs_set_inode_index(new_dir, &index);
8860 if (ret)
8861 goto out_fail;
5a3f23d5 8862
67de1176 8863 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8864 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8865 /* force full log commit if subvolume involved. */
995946dd 8866 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8867 } else {
a5719521
YZ
8868 ret = btrfs_insert_inode_ref(trans, dest,
8869 new_dentry->d_name.name,
8870 new_dentry->d_name.len,
33345d01
LZ
8871 old_ino,
8872 btrfs_ino(new_dir), index);
a5719521
YZ
8873 if (ret)
8874 goto out_fail;
4df27c4d
YZ
8875 /*
8876 * this is an ugly little race, but the rename is required
8877 * to make sure that if we crash, the inode is either at the
8878 * old name or the new one. pinning the log transaction lets
8879 * us make sure we don't allow a log commit to come in after
8880 * we unlink the name but before we add the new name back in.
8881 */
8882 btrfs_pin_log_trans(root);
8883 }
5a3f23d5 8884
0c4d2d95
JB
8885 inode_inc_iversion(old_dir);
8886 inode_inc_iversion(new_dir);
8887 inode_inc_iversion(old_inode);
39279cc3
CM
8888 old_dir->i_ctime = old_dir->i_mtime = ctime;
8889 new_dir->i_ctime = new_dir->i_mtime = ctime;
8890 old_inode->i_ctime = ctime;
5f39d397 8891
12fcfd22
CM
8892 if (old_dentry->d_parent != new_dentry->d_parent)
8893 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8894
33345d01 8895 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8896 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8897 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8898 old_dentry->d_name.name,
8899 old_dentry->d_name.len);
8900 } else {
92986796
AV
8901 ret = __btrfs_unlink_inode(trans, root, old_dir,
8902 old_dentry->d_inode,
8903 old_dentry->d_name.name,
8904 old_dentry->d_name.len);
8905 if (!ret)
8906 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8907 }
79787eaa
JM
8908 if (ret) {
8909 btrfs_abort_transaction(trans, root, ret);
8910 goto out_fail;
8911 }
39279cc3
CM
8912
8913 if (new_inode) {
0c4d2d95 8914 inode_inc_iversion(new_inode);
39279cc3 8915 new_inode->i_ctime = CURRENT_TIME;
33345d01 8916 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8917 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8918 root_objectid = BTRFS_I(new_inode)->location.objectid;
8919 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8920 root_objectid,
8921 new_dentry->d_name.name,
8922 new_dentry->d_name.len);
8923 BUG_ON(new_inode->i_nlink == 0);
8924 } else {
8925 ret = btrfs_unlink_inode(trans, dest, new_dir,
8926 new_dentry->d_inode,
8927 new_dentry->d_name.name,
8928 new_dentry->d_name.len);
8929 }
4ef31a45 8930 if (!ret && new_inode->i_nlink == 0)
e02119d5 8931 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8932 if (ret) {
8933 btrfs_abort_transaction(trans, root, ret);
8934 goto out_fail;
8935 }
39279cc3 8936 }
aec7477b 8937
4df27c4d
YZ
8938 ret = btrfs_add_link(trans, new_dir, old_inode,
8939 new_dentry->d_name.name,
a5719521 8940 new_dentry->d_name.len, 0, index);
79787eaa
JM
8941 if (ret) {
8942 btrfs_abort_transaction(trans, root, ret);
8943 goto out_fail;
8944 }
39279cc3 8945
67de1176
MX
8946 if (old_inode->i_nlink == 1)
8947 BTRFS_I(old_inode)->dir_index = index;
8948
33345d01 8949 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8950 struct dentry *parent = new_dentry->d_parent;
6a912213 8951 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8952 btrfs_end_log_trans(root);
8953 }
39279cc3 8954out_fail:
7ad85bb7 8955 btrfs_end_transaction(trans, root);
b44c59a8 8956out_notrans:
33345d01 8957 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8958 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8959
39279cc3
CM
8960 return ret;
8961}
8962
80ace85c
MS
8963static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8964 struct inode *new_dir, struct dentry *new_dentry,
8965 unsigned int flags)
8966{
8967 if (flags & ~RENAME_NOREPLACE)
8968 return -EINVAL;
8969
8970 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8971}
8972
8ccf6f19
MX
8973static void btrfs_run_delalloc_work(struct btrfs_work *work)
8974{
8975 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8976 struct inode *inode;
8ccf6f19
MX
8977
8978 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8979 work);
9f23e289
JB
8980 inode = delalloc_work->inode;
8981 if (delalloc_work->wait) {
8982 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8983 } else {
8984 filemap_flush(inode->i_mapping);
8985 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8986 &BTRFS_I(inode)->runtime_flags))
8987 filemap_flush(inode->i_mapping);
8988 }
8ccf6f19
MX
8989
8990 if (delalloc_work->delay_iput)
9f23e289 8991 btrfs_add_delayed_iput(inode);
8ccf6f19 8992 else
9f23e289 8993 iput(inode);
8ccf6f19
MX
8994 complete(&delalloc_work->completion);
8995}
8996
8997struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8998 int wait, int delay_iput)
8999{
9000 struct btrfs_delalloc_work *work;
9001
9002 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9003 if (!work)
9004 return NULL;
9005
9006 init_completion(&work->completion);
9007 INIT_LIST_HEAD(&work->list);
9008 work->inode = inode;
9009 work->wait = wait;
9010 work->delay_iput = delay_iput;
9e0af237
LB
9011 WARN_ON_ONCE(!inode);
9012 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9013 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
9014
9015 return work;
9016}
9017
9018void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9019{
9020 wait_for_completion(&work->completion);
9021 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9022}
9023
d352ac68
CM
9024/*
9025 * some fairly slow code that needs optimization. This walks the list
9026 * of all the inodes with pending delalloc and forces them to disk.
9027 */
6c255e67
MX
9028static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9029 int nr)
ea8c2819 9030{
ea8c2819 9031 struct btrfs_inode *binode;
5b21f2ed 9032 struct inode *inode;
8ccf6f19
MX
9033 struct btrfs_delalloc_work *work, *next;
9034 struct list_head works;
1eafa6c7 9035 struct list_head splice;
8ccf6f19 9036 int ret = 0;
ea8c2819 9037
8ccf6f19 9038 INIT_LIST_HEAD(&works);
1eafa6c7 9039 INIT_LIST_HEAD(&splice);
63607cc8 9040
573bfb72 9041 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9042 spin_lock(&root->delalloc_lock);
9043 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9044 while (!list_empty(&splice)) {
9045 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9046 delalloc_inodes);
1eafa6c7 9047
eb73c1b7
MX
9048 list_move_tail(&binode->delalloc_inodes,
9049 &root->delalloc_inodes);
5b21f2ed 9050 inode = igrab(&binode->vfs_inode);
df0af1a5 9051 if (!inode) {
eb73c1b7 9052 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9053 continue;
df0af1a5 9054 }
eb73c1b7 9055 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9056
9057 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9058 if (!work) {
f4ab9ea7
JB
9059 if (delay_iput)
9060 btrfs_add_delayed_iput(inode);
9061 else
9062 iput(inode);
1eafa6c7 9063 ret = -ENOMEM;
a1ecaabb 9064 goto out;
5b21f2ed 9065 }
1eafa6c7 9066 list_add_tail(&work->list, &works);
a44903ab
QW
9067 btrfs_queue_work(root->fs_info->flush_workers,
9068 &work->work);
6c255e67
MX
9069 ret++;
9070 if (nr != -1 && ret >= nr)
a1ecaabb 9071 goto out;
5b21f2ed 9072 cond_resched();
eb73c1b7 9073 spin_lock(&root->delalloc_lock);
ea8c2819 9074 }
eb73c1b7 9075 spin_unlock(&root->delalloc_lock);
8c8bee1d 9076
a1ecaabb 9077out:
eb73c1b7
MX
9078 list_for_each_entry_safe(work, next, &works, list) {
9079 list_del_init(&work->list);
9080 btrfs_wait_and_free_delalloc_work(work);
9081 }
9082
9083 if (!list_empty_careful(&splice)) {
9084 spin_lock(&root->delalloc_lock);
9085 list_splice_tail(&splice, &root->delalloc_inodes);
9086 spin_unlock(&root->delalloc_lock);
9087 }
573bfb72 9088 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9089 return ret;
9090}
1eafa6c7 9091
eb73c1b7
MX
9092int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9093{
9094 int ret;
1eafa6c7 9095
2c21b4d7 9096 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9097 return -EROFS;
9098
6c255e67
MX
9099 ret = __start_delalloc_inodes(root, delay_iput, -1);
9100 if (ret > 0)
9101 ret = 0;
eb73c1b7
MX
9102 /*
9103 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9104 * we have to make sure the IO is actually started and that
9105 * ordered extents get created before we return
9106 */
9107 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9108 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9109 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9110 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9111 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9112 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9113 }
9114 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9115 return ret;
9116}
9117
6c255e67
MX
9118int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9119 int nr)
eb73c1b7
MX
9120{
9121 struct btrfs_root *root;
9122 struct list_head splice;
9123 int ret;
9124
2c21b4d7 9125 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9126 return -EROFS;
9127
9128 INIT_LIST_HEAD(&splice);
9129
573bfb72 9130 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9131 spin_lock(&fs_info->delalloc_root_lock);
9132 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9133 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9134 root = list_first_entry(&splice, struct btrfs_root,
9135 delalloc_root);
9136 root = btrfs_grab_fs_root(root);
9137 BUG_ON(!root);
9138 list_move_tail(&root->delalloc_root,
9139 &fs_info->delalloc_roots);
9140 spin_unlock(&fs_info->delalloc_root_lock);
9141
6c255e67 9142 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9143 btrfs_put_fs_root(root);
6c255e67 9144 if (ret < 0)
eb73c1b7
MX
9145 goto out;
9146
6c255e67
MX
9147 if (nr != -1) {
9148 nr -= ret;
9149 WARN_ON(nr < 0);
9150 }
eb73c1b7 9151 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9152 }
eb73c1b7 9153 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9154
6c255e67 9155 ret = 0;
eb73c1b7
MX
9156 atomic_inc(&fs_info->async_submit_draining);
9157 while (atomic_read(&fs_info->nr_async_submits) ||
9158 atomic_read(&fs_info->async_delalloc_pages)) {
9159 wait_event(fs_info->async_submit_wait,
9160 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9161 atomic_read(&fs_info->async_delalloc_pages) == 0));
9162 }
9163 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9164out:
1eafa6c7 9165 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9166 spin_lock(&fs_info->delalloc_root_lock);
9167 list_splice_tail(&splice, &fs_info->delalloc_roots);
9168 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9169 }
573bfb72 9170 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9171 return ret;
ea8c2819
CM
9172}
9173
39279cc3
CM
9174static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9175 const char *symname)
9176{
9177 struct btrfs_trans_handle *trans;
9178 struct btrfs_root *root = BTRFS_I(dir)->root;
9179 struct btrfs_path *path;
9180 struct btrfs_key key;
1832a6d5 9181 struct inode *inode = NULL;
39279cc3
CM
9182 int err;
9183 int drop_inode = 0;
9184 u64 objectid;
67871254 9185 u64 index = 0;
39279cc3
CM
9186 int name_len;
9187 int datasize;
5f39d397 9188 unsigned long ptr;
39279cc3 9189 struct btrfs_file_extent_item *ei;
5f39d397 9190 struct extent_buffer *leaf;
39279cc3 9191
f06becc4 9192 name_len = strlen(symname);
39279cc3
CM
9193 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9194 return -ENAMETOOLONG;
1832a6d5 9195
9ed74f2d
JB
9196 /*
9197 * 2 items for inode item and ref
9198 * 2 items for dir items
9199 * 1 item for xattr if selinux is on
9200 */
a22285a6
YZ
9201 trans = btrfs_start_transaction(root, 5);
9202 if (IS_ERR(trans))
9203 return PTR_ERR(trans);
1832a6d5 9204
581bb050
LZ
9205 err = btrfs_find_free_ino(root, &objectid);
9206 if (err)
9207 goto out_unlock;
9208
aec7477b 9209 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9210 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9211 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9212 if (IS_ERR(inode)) {
9213 err = PTR_ERR(inode);
39279cc3 9214 goto out_unlock;
7cf96da3 9215 }
39279cc3 9216
ad19db71
CS
9217 /*
9218 * If the active LSM wants to access the inode during
9219 * d_instantiate it needs these. Smack checks to see
9220 * if the filesystem supports xattrs by looking at the
9221 * ops vector.
9222 */
9223 inode->i_fop = &btrfs_file_operations;
9224 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
9225 inode->i_mapping->a_ops = &btrfs_aops;
9226 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9227 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9228
9229 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9230 if (err)
9231 goto out_unlock_inode;
ad19db71 9232
a1b075d2 9233 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9234 if (err)
b0d5d10f 9235 goto out_unlock_inode;
39279cc3
CM
9236
9237 path = btrfs_alloc_path();
d8926bb3
MF
9238 if (!path) {
9239 err = -ENOMEM;
b0d5d10f 9240 goto out_unlock_inode;
d8926bb3 9241 }
33345d01 9242 key.objectid = btrfs_ino(inode);
39279cc3 9243 key.offset = 0;
962a298f 9244 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9245 datasize = btrfs_file_extent_calc_inline_size(name_len);
9246 err = btrfs_insert_empty_item(trans, root, path, &key,
9247 datasize);
54aa1f4d 9248 if (err) {
b0839166 9249 btrfs_free_path(path);
b0d5d10f 9250 goto out_unlock_inode;
54aa1f4d 9251 }
5f39d397
CM
9252 leaf = path->nodes[0];
9253 ei = btrfs_item_ptr(leaf, path->slots[0],
9254 struct btrfs_file_extent_item);
9255 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9256 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9257 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9258 btrfs_set_file_extent_encryption(leaf, ei, 0);
9259 btrfs_set_file_extent_compression(leaf, ei, 0);
9260 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9261 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9262
39279cc3 9263 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9264 write_extent_buffer(leaf, symname, ptr, name_len);
9265 btrfs_mark_buffer_dirty(leaf);
39279cc3 9266 btrfs_free_path(path);
5f39d397 9267
39279cc3
CM
9268 inode->i_op = &btrfs_symlink_inode_operations;
9269 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 9270 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 9271 inode_set_bytes(inode, name_len);
f06becc4 9272 btrfs_i_size_write(inode, name_len);
54aa1f4d 9273 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9274 if (err) {
54aa1f4d 9275 drop_inode = 1;
b0d5d10f
CM
9276 goto out_unlock_inode;
9277 }
9278
9279 unlock_new_inode(inode);
9280 d_instantiate(dentry, inode);
39279cc3
CM
9281
9282out_unlock:
7ad85bb7 9283 btrfs_end_transaction(trans, root);
39279cc3
CM
9284 if (drop_inode) {
9285 inode_dec_link_count(inode);
9286 iput(inode);
9287 }
b53d3f5d 9288 btrfs_btree_balance_dirty(root);
39279cc3 9289 return err;
b0d5d10f
CM
9290
9291out_unlock_inode:
9292 drop_inode = 1;
9293 unlock_new_inode(inode);
9294 goto out_unlock;
39279cc3 9295}
16432985 9296
0af3d00b
JB
9297static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9298 u64 start, u64 num_bytes, u64 min_size,
9299 loff_t actual_len, u64 *alloc_hint,
9300 struct btrfs_trans_handle *trans)
d899e052 9301{
5dc562c5
JB
9302 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9303 struct extent_map *em;
d899e052
YZ
9304 struct btrfs_root *root = BTRFS_I(inode)->root;
9305 struct btrfs_key ins;
d899e052 9306 u64 cur_offset = start;
55a61d1d 9307 u64 i_size;
154ea289 9308 u64 cur_bytes;
d899e052 9309 int ret = 0;
0af3d00b 9310 bool own_trans = true;
d899e052 9311
0af3d00b
JB
9312 if (trans)
9313 own_trans = false;
d899e052 9314 while (num_bytes > 0) {
0af3d00b
JB
9315 if (own_trans) {
9316 trans = btrfs_start_transaction(root, 3);
9317 if (IS_ERR(trans)) {
9318 ret = PTR_ERR(trans);
9319 break;
9320 }
5a303d5d
YZ
9321 }
9322
154ea289
CM
9323 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9324 cur_bytes = max(cur_bytes, min_size);
00361589 9325 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9326 *alloc_hint, &ins, 1, 0);
5a303d5d 9327 if (ret) {
0af3d00b
JB
9328 if (own_trans)
9329 btrfs_end_transaction(trans, root);
a22285a6 9330 break;
d899e052 9331 }
5a303d5d 9332
d899e052
YZ
9333 ret = insert_reserved_file_extent(trans, inode,
9334 cur_offset, ins.objectid,
9335 ins.offset, ins.offset,
920bbbfb 9336 ins.offset, 0, 0, 0,
d899e052 9337 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9338 if (ret) {
857cc2fc 9339 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9340 ins.offset, 0);
79787eaa
JM
9341 btrfs_abort_transaction(trans, root, ret);
9342 if (own_trans)
9343 btrfs_end_transaction(trans, root);
9344 break;
9345 }
a1ed835e
CM
9346 btrfs_drop_extent_cache(inode, cur_offset,
9347 cur_offset + ins.offset -1, 0);
5a303d5d 9348
5dc562c5
JB
9349 em = alloc_extent_map();
9350 if (!em) {
9351 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9352 &BTRFS_I(inode)->runtime_flags);
9353 goto next;
9354 }
9355
9356 em->start = cur_offset;
9357 em->orig_start = cur_offset;
9358 em->len = ins.offset;
9359 em->block_start = ins.objectid;
9360 em->block_len = ins.offset;
b4939680 9361 em->orig_block_len = ins.offset;
cc95bef6 9362 em->ram_bytes = ins.offset;
5dc562c5
JB
9363 em->bdev = root->fs_info->fs_devices->latest_bdev;
9364 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9365 em->generation = trans->transid;
9366
9367 while (1) {
9368 write_lock(&em_tree->lock);
09a2a8f9 9369 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9370 write_unlock(&em_tree->lock);
9371 if (ret != -EEXIST)
9372 break;
9373 btrfs_drop_extent_cache(inode, cur_offset,
9374 cur_offset + ins.offset - 1,
9375 0);
9376 }
9377 free_extent_map(em);
9378next:
d899e052
YZ
9379 num_bytes -= ins.offset;
9380 cur_offset += ins.offset;
efa56464 9381 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9382
0c4d2d95 9383 inode_inc_iversion(inode);
d899e052 9384 inode->i_ctime = CURRENT_TIME;
6cbff00f 9385 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9386 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9387 (actual_len > inode->i_size) &&
9388 (cur_offset > inode->i_size)) {
d1ea6a61 9389 if (cur_offset > actual_len)
55a61d1d 9390 i_size = actual_len;
d1ea6a61 9391 else
55a61d1d
JB
9392 i_size = cur_offset;
9393 i_size_write(inode, i_size);
9394 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9395 }
9396
d899e052 9397 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9398
9399 if (ret) {
9400 btrfs_abort_transaction(trans, root, ret);
9401 if (own_trans)
9402 btrfs_end_transaction(trans, root);
9403 break;
9404 }
d899e052 9405
0af3d00b
JB
9406 if (own_trans)
9407 btrfs_end_transaction(trans, root);
5a303d5d 9408 }
d899e052
YZ
9409 return ret;
9410}
9411
0af3d00b
JB
9412int btrfs_prealloc_file_range(struct inode *inode, int mode,
9413 u64 start, u64 num_bytes, u64 min_size,
9414 loff_t actual_len, u64 *alloc_hint)
9415{
9416 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9417 min_size, actual_len, alloc_hint,
9418 NULL);
9419}
9420
9421int btrfs_prealloc_file_range_trans(struct inode *inode,
9422 struct btrfs_trans_handle *trans, int mode,
9423 u64 start, u64 num_bytes, u64 min_size,
9424 loff_t actual_len, u64 *alloc_hint)
9425{
9426 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9427 min_size, actual_len, alloc_hint, trans);
9428}
9429
e6dcd2dc
CM
9430static int btrfs_set_page_dirty(struct page *page)
9431{
e6dcd2dc
CM
9432 return __set_page_dirty_nobuffers(page);
9433}
9434
10556cb2 9435static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9436{
b83cc969 9437 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9438 umode_t mode = inode->i_mode;
b83cc969 9439
cb6db4e5
JM
9440 if (mask & MAY_WRITE &&
9441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9442 if (btrfs_root_readonly(root))
9443 return -EROFS;
9444 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9445 return -EACCES;
9446 }
2830ba7f 9447 return generic_permission(inode, mask);
fdebe2bd 9448}
39279cc3 9449
ef3b9af5
FM
9450static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9451{
9452 struct btrfs_trans_handle *trans;
9453 struct btrfs_root *root = BTRFS_I(dir)->root;
9454 struct inode *inode = NULL;
9455 u64 objectid;
9456 u64 index;
9457 int ret = 0;
9458
9459 /*
9460 * 5 units required for adding orphan entry
9461 */
9462 trans = btrfs_start_transaction(root, 5);
9463 if (IS_ERR(trans))
9464 return PTR_ERR(trans);
9465
9466 ret = btrfs_find_free_ino(root, &objectid);
9467 if (ret)
9468 goto out;
9469
9470 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9471 btrfs_ino(dir), objectid, mode, &index);
9472 if (IS_ERR(inode)) {
9473 ret = PTR_ERR(inode);
9474 inode = NULL;
9475 goto out;
9476 }
9477
ef3b9af5
FM
9478 inode->i_fop = &btrfs_file_operations;
9479 inode->i_op = &btrfs_file_inode_operations;
9480
9481 inode->i_mapping->a_ops = &btrfs_aops;
9482 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9483 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9484
b0d5d10f
CM
9485 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9486 if (ret)
9487 goto out_inode;
9488
9489 ret = btrfs_update_inode(trans, root, inode);
9490 if (ret)
9491 goto out_inode;
ef3b9af5
FM
9492 ret = btrfs_orphan_add(trans, inode);
9493 if (ret)
b0d5d10f 9494 goto out_inode;
ef3b9af5 9495
5762b5c9
FM
9496 /*
9497 * We set number of links to 0 in btrfs_new_inode(), and here we set
9498 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9499 * through:
9500 *
9501 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9502 */
9503 set_nlink(inode, 1);
b0d5d10f 9504 unlock_new_inode(inode);
ef3b9af5
FM
9505 d_tmpfile(dentry, inode);
9506 mark_inode_dirty(inode);
9507
9508out:
9509 btrfs_end_transaction(trans, root);
9510 if (ret)
9511 iput(inode);
9512 btrfs_balance_delayed_items(root);
9513 btrfs_btree_balance_dirty(root);
ef3b9af5 9514 return ret;
b0d5d10f
CM
9515
9516out_inode:
9517 unlock_new_inode(inode);
9518 goto out;
9519
ef3b9af5
FM
9520}
9521
b38ef71c
FM
9522/* Inspired by filemap_check_errors() */
9523int btrfs_inode_check_errors(struct inode *inode)
9524{
9525 int ret = 0;
9526
9527 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9528 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9529 ret = -ENOSPC;
9530 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9531 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9532 ret = -EIO;
9533
9534 return ret;
9535}
9536
6e1d5dcc 9537static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9538 .getattr = btrfs_getattr,
39279cc3
CM
9539 .lookup = btrfs_lookup,
9540 .create = btrfs_create,
9541 .unlink = btrfs_unlink,
9542 .link = btrfs_link,
9543 .mkdir = btrfs_mkdir,
9544 .rmdir = btrfs_rmdir,
80ace85c 9545 .rename2 = btrfs_rename2,
39279cc3
CM
9546 .symlink = btrfs_symlink,
9547 .setattr = btrfs_setattr,
618e21d5 9548 .mknod = btrfs_mknod,
95819c05
CH
9549 .setxattr = btrfs_setxattr,
9550 .getxattr = btrfs_getxattr,
5103e947 9551 .listxattr = btrfs_listxattr,
95819c05 9552 .removexattr = btrfs_removexattr,
fdebe2bd 9553 .permission = btrfs_permission,
4e34e719 9554 .get_acl = btrfs_get_acl,
996a710d 9555 .set_acl = btrfs_set_acl,
93fd63c2 9556 .update_time = btrfs_update_time,
ef3b9af5 9557 .tmpfile = btrfs_tmpfile,
39279cc3 9558};
6e1d5dcc 9559static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9560 .lookup = btrfs_lookup,
fdebe2bd 9561 .permission = btrfs_permission,
4e34e719 9562 .get_acl = btrfs_get_acl,
996a710d 9563 .set_acl = btrfs_set_acl,
93fd63c2 9564 .update_time = btrfs_update_time,
39279cc3 9565};
76dda93c 9566
828c0950 9567static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9568 .llseek = generic_file_llseek,
9569 .read = generic_read_dir,
9cdda8d3 9570 .iterate = btrfs_real_readdir,
34287aa3 9571 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9572#ifdef CONFIG_COMPAT
34287aa3 9573 .compat_ioctl = btrfs_ioctl,
39279cc3 9574#endif
6bf13c0c 9575 .release = btrfs_release_file,
e02119d5 9576 .fsync = btrfs_sync_file,
39279cc3
CM
9577};
9578
d1310b2e 9579static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9580 .fill_delalloc = run_delalloc_range,
065631f6 9581 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9582 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9583 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9584 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9585 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9586 .set_bit_hook = btrfs_set_bit_hook,
9587 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9588 .merge_extent_hook = btrfs_merge_extent_hook,
9589 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9590};
9591
35054394
CM
9592/*
9593 * btrfs doesn't support the bmap operation because swapfiles
9594 * use bmap to make a mapping of extents in the file. They assume
9595 * these extents won't change over the life of the file and they
9596 * use the bmap result to do IO directly to the drive.
9597 *
9598 * the btrfs bmap call would return logical addresses that aren't
9599 * suitable for IO and they also will change frequently as COW
9600 * operations happen. So, swapfile + btrfs == corruption.
9601 *
9602 * For now we're avoiding this by dropping bmap.
9603 */
7f09410b 9604static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9605 .readpage = btrfs_readpage,
9606 .writepage = btrfs_writepage,
b293f02e 9607 .writepages = btrfs_writepages,
3ab2fb5a 9608 .readpages = btrfs_readpages,
16432985 9609 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9610 .invalidatepage = btrfs_invalidatepage,
9611 .releasepage = btrfs_releasepage,
e6dcd2dc 9612 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9613 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9614};
9615
7f09410b 9616static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9617 .readpage = btrfs_readpage,
9618 .writepage = btrfs_writepage,
2bf5a725
CM
9619 .invalidatepage = btrfs_invalidatepage,
9620 .releasepage = btrfs_releasepage,
39279cc3
CM
9621};
9622
6e1d5dcc 9623static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9624 .getattr = btrfs_getattr,
9625 .setattr = btrfs_setattr,
95819c05
CH
9626 .setxattr = btrfs_setxattr,
9627 .getxattr = btrfs_getxattr,
5103e947 9628 .listxattr = btrfs_listxattr,
95819c05 9629 .removexattr = btrfs_removexattr,
fdebe2bd 9630 .permission = btrfs_permission,
1506fcc8 9631 .fiemap = btrfs_fiemap,
4e34e719 9632 .get_acl = btrfs_get_acl,
996a710d 9633 .set_acl = btrfs_set_acl,
e41f941a 9634 .update_time = btrfs_update_time,
39279cc3 9635};
6e1d5dcc 9636static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9637 .getattr = btrfs_getattr,
9638 .setattr = btrfs_setattr,
fdebe2bd 9639 .permission = btrfs_permission,
95819c05
CH
9640 .setxattr = btrfs_setxattr,
9641 .getxattr = btrfs_getxattr,
33268eaf 9642 .listxattr = btrfs_listxattr,
95819c05 9643 .removexattr = btrfs_removexattr,
4e34e719 9644 .get_acl = btrfs_get_acl,
996a710d 9645 .set_acl = btrfs_set_acl,
e41f941a 9646 .update_time = btrfs_update_time,
618e21d5 9647};
6e1d5dcc 9648static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9649 .readlink = generic_readlink,
9650 .follow_link = page_follow_link_light,
9651 .put_link = page_put_link,
f209561a 9652 .getattr = btrfs_getattr,
22c44fe6 9653 .setattr = btrfs_setattr,
fdebe2bd 9654 .permission = btrfs_permission,
0279b4cd
JO
9655 .setxattr = btrfs_setxattr,
9656 .getxattr = btrfs_getxattr,
9657 .listxattr = btrfs_listxattr,
9658 .removexattr = btrfs_removexattr,
e41f941a 9659 .update_time = btrfs_update_time,
39279cc3 9660};
76dda93c 9661
82d339d9 9662const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9663 .d_delete = btrfs_dentry_delete,
b4aff1f8 9664 .d_release = btrfs_dentry_release,
76dda93c 9665};