Btrfs: map the inode item when doing fill_inode_item
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
39279cc3
CM
54
55struct btrfs_iget_args {
56 u64 ino;
57 struct btrfs_root *root;
58};
59
6e1d5dcc
AD
60static const struct inode_operations btrfs_dir_inode_operations;
61static const struct inode_operations btrfs_symlink_inode_operations;
62static const struct inode_operations btrfs_dir_ro_inode_operations;
63static const struct inode_operations btrfs_special_inode_operations;
64static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
65static const struct address_space_operations btrfs_aops;
66static const struct address_space_operations btrfs_symlink_aops;
828c0950 67static const struct file_operations btrfs_dir_file_operations;
d1310b2e 68static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
69
70static struct kmem_cache *btrfs_inode_cachep;
71struct kmem_cache *btrfs_trans_handle_cachep;
72struct kmem_cache *btrfs_transaction_cachep;
39279cc3 73struct kmem_cache *btrfs_path_cachep;
dc89e982 74struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
75
76#define S_SHIFT 12
77static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
78 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
79 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
80 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
81 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
82 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
83 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
84 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
85};
86
a41ad394
JB
87static int btrfs_setsize(struct inode *inode, loff_t newsize);
88static int btrfs_truncate(struct inode *inode);
c8b97818 89static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
90static noinline int cow_file_range(struct inode *inode,
91 struct page *locked_page,
92 u64 start, u64 end, int *page_started,
93 unsigned long *nr_written, int unlock);
7b128766 94
f34f57a3
YZ
95static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
96 struct inode *inode, struct inode *dir)
0279b4cd
JO
97{
98 int err;
99
f34f57a3 100 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 101 if (!err)
f34f57a3 102 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
103 return err;
104}
105
c8b97818
CM
106/*
107 * this does all the hard work for inserting an inline extent into
108 * the btree. The caller should have done a btrfs_drop_extents so that
109 * no overlapping inline items exist in the btree
110 */
d397712b 111static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
112 struct btrfs_root *root, struct inode *inode,
113 u64 start, size_t size, size_t compressed_size,
fe3f566c 114 int compress_type,
c8b97818
CM
115 struct page **compressed_pages)
116{
117 struct btrfs_key key;
118 struct btrfs_path *path;
119 struct extent_buffer *leaf;
120 struct page *page = NULL;
121 char *kaddr;
122 unsigned long ptr;
123 struct btrfs_file_extent_item *ei;
124 int err = 0;
125 int ret;
126 size_t cur_size = size;
127 size_t datasize;
128 unsigned long offset;
c8b97818 129
fe3f566c 130 if (compressed_size && compressed_pages)
c8b97818 131 cur_size = compressed_size;
c8b97818 132
d397712b
CM
133 path = btrfs_alloc_path();
134 if (!path)
c8b97818
CM
135 return -ENOMEM;
136
b9473439 137 path->leave_spinning = 1;
c8b97818
CM
138 btrfs_set_trans_block_group(trans, inode);
139
140 key.objectid = inode->i_ino;
141 key.offset = start;
142 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
143 datasize = btrfs_file_extent_calc_inline_size(cur_size);
144
145 inode_add_bytes(inode, size);
146 ret = btrfs_insert_empty_item(trans, root, path, &key,
147 datasize);
148 BUG_ON(ret);
149 if (ret) {
150 err = ret;
c8b97818
CM
151 goto fail;
152 }
153 leaf = path->nodes[0];
154 ei = btrfs_item_ptr(leaf, path->slots[0],
155 struct btrfs_file_extent_item);
156 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
157 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
158 btrfs_set_file_extent_encryption(leaf, ei, 0);
159 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
160 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
161 ptr = btrfs_file_extent_inline_start(ei);
162
261507a0 163 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
164 struct page *cpage;
165 int i = 0;
d397712b 166 while (compressed_size > 0) {
c8b97818 167 cpage = compressed_pages[i];
5b050f04 168 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
169 PAGE_CACHE_SIZE);
170
b9473439 171 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 172 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 173 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
174
175 i++;
176 ptr += cur_size;
177 compressed_size -= cur_size;
178 }
179 btrfs_set_file_extent_compression(leaf, ei,
261507a0 180 compress_type);
c8b97818
CM
181 } else {
182 page = find_get_page(inode->i_mapping,
183 start >> PAGE_CACHE_SHIFT);
184 btrfs_set_file_extent_compression(leaf, ei, 0);
185 kaddr = kmap_atomic(page, KM_USER0);
186 offset = start & (PAGE_CACHE_SIZE - 1);
187 write_extent_buffer(leaf, kaddr + offset, ptr, size);
188 kunmap_atomic(kaddr, KM_USER0);
189 page_cache_release(page);
190 }
191 btrfs_mark_buffer_dirty(leaf);
192 btrfs_free_path(path);
193
c2167754
YZ
194 /*
195 * we're an inline extent, so nobody can
196 * extend the file past i_size without locking
197 * a page we already have locked.
198 *
199 * We must do any isize and inode updates
200 * before we unlock the pages. Otherwise we
201 * could end up racing with unlink.
202 */
c8b97818
CM
203 BTRFS_I(inode)->disk_i_size = inode->i_size;
204 btrfs_update_inode(trans, root, inode);
c2167754 205
c8b97818
CM
206 return 0;
207fail:
208 btrfs_free_path(path);
209 return err;
210}
211
212
213/*
214 * conditionally insert an inline extent into the file. This
215 * does the checks required to make sure the data is small enough
216 * to fit as an inline extent.
217 */
7f366cfe 218static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
219 struct btrfs_root *root,
220 struct inode *inode, u64 start, u64 end,
fe3f566c 221 size_t compressed_size, int compress_type,
c8b97818
CM
222 struct page **compressed_pages)
223{
224 u64 isize = i_size_read(inode);
225 u64 actual_end = min(end + 1, isize);
226 u64 inline_len = actual_end - start;
227 u64 aligned_end = (end + root->sectorsize - 1) &
228 ~((u64)root->sectorsize - 1);
229 u64 hint_byte;
230 u64 data_len = inline_len;
231 int ret;
232
233 if (compressed_size)
234 data_len = compressed_size;
235
236 if (start > 0 ||
70b99e69 237 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
238 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
239 (!compressed_size &&
240 (actual_end & (root->sectorsize - 1)) == 0) ||
241 end + 1 < isize ||
242 data_len > root->fs_info->max_inline) {
243 return 1;
244 }
245
920bbbfb 246 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 247 &hint_byte, 1);
c8b97818
CM
248 BUG_ON(ret);
249
250 if (isize > actual_end)
251 inline_len = min_t(u64, isize, actual_end);
252 ret = insert_inline_extent(trans, root, inode, start,
253 inline_len, compressed_size,
fe3f566c 254 compress_type, compressed_pages);
c8b97818 255 BUG_ON(ret);
0ca1f7ce 256 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 257 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
258 return 0;
259}
260
771ed689
CM
261struct async_extent {
262 u64 start;
263 u64 ram_size;
264 u64 compressed_size;
265 struct page **pages;
266 unsigned long nr_pages;
261507a0 267 int compress_type;
771ed689
CM
268 struct list_head list;
269};
270
271struct async_cow {
272 struct inode *inode;
273 struct btrfs_root *root;
274 struct page *locked_page;
275 u64 start;
276 u64 end;
277 struct list_head extents;
278 struct btrfs_work work;
279};
280
281static noinline int add_async_extent(struct async_cow *cow,
282 u64 start, u64 ram_size,
283 u64 compressed_size,
284 struct page **pages,
261507a0
LZ
285 unsigned long nr_pages,
286 int compress_type)
771ed689
CM
287{
288 struct async_extent *async_extent;
289
290 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 291 BUG_ON(!async_extent);
771ed689
CM
292 async_extent->start = start;
293 async_extent->ram_size = ram_size;
294 async_extent->compressed_size = compressed_size;
295 async_extent->pages = pages;
296 async_extent->nr_pages = nr_pages;
261507a0 297 async_extent->compress_type = compress_type;
771ed689
CM
298 list_add_tail(&async_extent->list, &cow->extents);
299 return 0;
300}
301
d352ac68 302/*
771ed689
CM
303 * we create compressed extents in two phases. The first
304 * phase compresses a range of pages that have already been
305 * locked (both pages and state bits are locked).
c8b97818 306 *
771ed689
CM
307 * This is done inside an ordered work queue, and the compression
308 * is spread across many cpus. The actual IO submission is step
309 * two, and the ordered work queue takes care of making sure that
310 * happens in the same order things were put onto the queue by
311 * writepages and friends.
c8b97818 312 *
771ed689
CM
313 * If this code finds it can't get good compression, it puts an
314 * entry onto the work queue to write the uncompressed bytes. This
315 * makes sure that both compressed inodes and uncompressed inodes
316 * are written in the same order that pdflush sent them down.
d352ac68 317 */
771ed689
CM
318static noinline int compress_file_range(struct inode *inode,
319 struct page *locked_page,
320 u64 start, u64 end,
321 struct async_cow *async_cow,
322 int *num_added)
b888db2b
CM
323{
324 struct btrfs_root *root = BTRFS_I(inode)->root;
325 struct btrfs_trans_handle *trans;
db94535d 326 u64 num_bytes;
db94535d 327 u64 blocksize = root->sectorsize;
c8b97818 328 u64 actual_end;
42dc7bab 329 u64 isize = i_size_read(inode);
e6dcd2dc 330 int ret = 0;
c8b97818
CM
331 struct page **pages = NULL;
332 unsigned long nr_pages;
333 unsigned long nr_pages_ret = 0;
334 unsigned long total_compressed = 0;
335 unsigned long total_in = 0;
336 unsigned long max_compressed = 128 * 1024;
771ed689 337 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
338 int i;
339 int will_compress;
261507a0 340 int compress_type = root->fs_info->compress_type;
b888db2b 341
42dc7bab 342 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
343again:
344 will_compress = 0;
345 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
346 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 347
f03d9301
CM
348 /*
349 * we don't want to send crud past the end of i_size through
350 * compression, that's just a waste of CPU time. So, if the
351 * end of the file is before the start of our current
352 * requested range of bytes, we bail out to the uncompressed
353 * cleanup code that can deal with all of this.
354 *
355 * It isn't really the fastest way to fix things, but this is a
356 * very uncommon corner.
357 */
358 if (actual_end <= start)
359 goto cleanup_and_bail_uncompressed;
360
c8b97818
CM
361 total_compressed = actual_end - start;
362
363 /* we want to make sure that amount of ram required to uncompress
364 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
365 * of a compressed extent to 128k. This is a crucial number
366 * because it also controls how easily we can spread reads across
367 * cpus for decompression.
368 *
369 * We also want to make sure the amount of IO required to do
370 * a random read is reasonably small, so we limit the size of
371 * a compressed extent to 128k.
c8b97818
CM
372 */
373 total_compressed = min(total_compressed, max_uncompressed);
db94535d 374 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 375 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
376 total_in = 0;
377 ret = 0;
db94535d 378
771ed689
CM
379 /*
380 * we do compression for mount -o compress and when the
381 * inode has not been flagged as nocompress. This flag can
382 * change at any time if we discover bad compression ratios.
c8b97818 383 */
6cbff00f 384 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 385 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
386 (BTRFS_I(inode)->force_compress) ||
387 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 388 WARN_ON(pages);
cfbc246e 389 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 390 BUG_ON(!pages);
c8b97818 391
261507a0
LZ
392 if (BTRFS_I(inode)->force_compress)
393 compress_type = BTRFS_I(inode)->force_compress;
394
395 ret = btrfs_compress_pages(compress_type,
396 inode->i_mapping, start,
397 total_compressed, pages,
398 nr_pages, &nr_pages_ret,
399 &total_in,
400 &total_compressed,
401 max_compressed);
c8b97818
CM
402
403 if (!ret) {
404 unsigned long offset = total_compressed &
405 (PAGE_CACHE_SIZE - 1);
406 struct page *page = pages[nr_pages_ret - 1];
407 char *kaddr;
408
409 /* zero the tail end of the last page, we might be
410 * sending it down to disk
411 */
412 if (offset) {
413 kaddr = kmap_atomic(page, KM_USER0);
414 memset(kaddr + offset, 0,
415 PAGE_CACHE_SIZE - offset);
416 kunmap_atomic(kaddr, KM_USER0);
417 }
418 will_compress = 1;
419 }
420 }
421 if (start == 0) {
771ed689 422 trans = btrfs_join_transaction(root, 1);
3612b495 423 BUG_ON(IS_ERR(trans));
771ed689 424 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 425 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 426
c8b97818 427 /* lets try to make an inline extent */
771ed689 428 if (ret || total_in < (actual_end - start)) {
c8b97818 429 /* we didn't compress the entire range, try
771ed689 430 * to make an uncompressed inline extent.
c8b97818
CM
431 */
432 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 433 start, end, 0, 0, NULL);
c8b97818 434 } else {
771ed689 435 /* try making a compressed inline extent */
c8b97818
CM
436 ret = cow_file_range_inline(trans, root, inode,
437 start, end,
fe3f566c
LZ
438 total_compressed,
439 compress_type, pages);
c8b97818
CM
440 }
441 if (ret == 0) {
771ed689
CM
442 /*
443 * inline extent creation worked, we don't need
444 * to create any more async work items. Unlock
445 * and free up our temp pages.
446 */
c8b97818 447 extent_clear_unlock_delalloc(inode,
a791e35e
CM
448 &BTRFS_I(inode)->io_tree,
449 start, end, NULL,
450 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 451 EXTENT_CLEAR_DELALLOC |
a791e35e 452 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
453
454 btrfs_end_transaction(trans, root);
c8b97818
CM
455 goto free_pages_out;
456 }
c2167754 457 btrfs_end_transaction(trans, root);
c8b97818
CM
458 }
459
460 if (will_compress) {
461 /*
462 * we aren't doing an inline extent round the compressed size
463 * up to a block size boundary so the allocator does sane
464 * things
465 */
466 total_compressed = (total_compressed + blocksize - 1) &
467 ~(blocksize - 1);
468
469 /*
470 * one last check to make sure the compression is really a
471 * win, compare the page count read with the blocks on disk
472 */
473 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
474 ~(PAGE_CACHE_SIZE - 1);
475 if (total_compressed >= total_in) {
476 will_compress = 0;
477 } else {
c8b97818
CM
478 num_bytes = total_in;
479 }
480 }
481 if (!will_compress && pages) {
482 /*
483 * the compression code ran but failed to make things smaller,
484 * free any pages it allocated and our page pointer array
485 */
486 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 487 WARN_ON(pages[i]->mapping);
c8b97818
CM
488 page_cache_release(pages[i]);
489 }
490 kfree(pages);
491 pages = NULL;
492 total_compressed = 0;
493 nr_pages_ret = 0;
494
495 /* flag the file so we don't compress in the future */
1e701a32
CM
496 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
497 !(BTRFS_I(inode)->force_compress)) {
a555f810 498 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 499 }
c8b97818 500 }
771ed689
CM
501 if (will_compress) {
502 *num_added += 1;
c8b97818 503
771ed689
CM
504 /* the async work queues will take care of doing actual
505 * allocation on disk for these compressed pages,
506 * and will submit them to the elevator.
507 */
508 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
509 total_compressed, pages, nr_pages_ret,
510 compress_type);
179e29e4 511
24ae6365 512 if (start + num_bytes < end) {
771ed689
CM
513 start += num_bytes;
514 pages = NULL;
515 cond_resched();
516 goto again;
517 }
518 } else {
f03d9301 519cleanup_and_bail_uncompressed:
771ed689
CM
520 /*
521 * No compression, but we still need to write the pages in
522 * the file we've been given so far. redirty the locked
523 * page if it corresponds to our extent and set things up
524 * for the async work queue to run cow_file_range to do
525 * the normal delalloc dance
526 */
527 if (page_offset(locked_page) >= start &&
528 page_offset(locked_page) <= end) {
529 __set_page_dirty_nobuffers(locked_page);
530 /* unlocked later on in the async handlers */
531 }
261507a0
LZ
532 add_async_extent(async_cow, start, end - start + 1,
533 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
534 *num_added += 1;
535 }
3b951516 536
771ed689
CM
537out:
538 return 0;
539
540free_pages_out:
541 for (i = 0; i < nr_pages_ret; i++) {
542 WARN_ON(pages[i]->mapping);
543 page_cache_release(pages[i]);
544 }
d397712b 545 kfree(pages);
771ed689
CM
546
547 goto out;
548}
549
550/*
551 * phase two of compressed writeback. This is the ordered portion
552 * of the code, which only gets called in the order the work was
553 * queued. We walk all the async extents created by compress_file_range
554 * and send them down to the disk.
555 */
556static noinline int submit_compressed_extents(struct inode *inode,
557 struct async_cow *async_cow)
558{
559 struct async_extent *async_extent;
560 u64 alloc_hint = 0;
561 struct btrfs_trans_handle *trans;
562 struct btrfs_key ins;
563 struct extent_map *em;
564 struct btrfs_root *root = BTRFS_I(inode)->root;
565 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
566 struct extent_io_tree *io_tree;
f5a84ee3 567 int ret = 0;
771ed689
CM
568
569 if (list_empty(&async_cow->extents))
570 return 0;
571
771ed689 572
d397712b 573 while (!list_empty(&async_cow->extents)) {
771ed689
CM
574 async_extent = list_entry(async_cow->extents.next,
575 struct async_extent, list);
576 list_del(&async_extent->list);
c8b97818 577
771ed689
CM
578 io_tree = &BTRFS_I(inode)->io_tree;
579
f5a84ee3 580retry:
771ed689
CM
581 /* did the compression code fall back to uncompressed IO? */
582 if (!async_extent->pages) {
583 int page_started = 0;
584 unsigned long nr_written = 0;
585
586 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
587 async_extent->start +
588 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
589
590 /* allocate blocks */
f5a84ee3
JB
591 ret = cow_file_range(inode, async_cow->locked_page,
592 async_extent->start,
593 async_extent->start +
594 async_extent->ram_size - 1,
595 &page_started, &nr_written, 0);
771ed689
CM
596
597 /*
598 * if page_started, cow_file_range inserted an
599 * inline extent and took care of all the unlocking
600 * and IO for us. Otherwise, we need to submit
601 * all those pages down to the drive.
602 */
f5a84ee3 603 if (!page_started && !ret)
771ed689
CM
604 extent_write_locked_range(io_tree,
605 inode, async_extent->start,
d397712b 606 async_extent->start +
771ed689
CM
607 async_extent->ram_size - 1,
608 btrfs_get_extent,
609 WB_SYNC_ALL);
610 kfree(async_extent);
611 cond_resched();
612 continue;
613 }
614
615 lock_extent(io_tree, async_extent->start,
616 async_extent->start + async_extent->ram_size - 1,
617 GFP_NOFS);
771ed689 618
c2167754 619 trans = btrfs_join_transaction(root, 1);
3612b495 620 BUG_ON(IS_ERR(trans));
771ed689
CM
621 ret = btrfs_reserve_extent(trans, root,
622 async_extent->compressed_size,
623 async_extent->compressed_size,
624 0, alloc_hint,
625 (u64)-1, &ins, 1);
c2167754
YZ
626 btrfs_end_transaction(trans, root);
627
f5a84ee3
JB
628 if (ret) {
629 int i;
630 for (i = 0; i < async_extent->nr_pages; i++) {
631 WARN_ON(async_extent->pages[i]->mapping);
632 page_cache_release(async_extent->pages[i]);
633 }
634 kfree(async_extent->pages);
635 async_extent->nr_pages = 0;
636 async_extent->pages = NULL;
637 unlock_extent(io_tree, async_extent->start,
638 async_extent->start +
639 async_extent->ram_size - 1, GFP_NOFS);
640 goto retry;
641 }
642
c2167754
YZ
643 /*
644 * here we're doing allocation and writeback of the
645 * compressed pages
646 */
647 btrfs_drop_extent_cache(inode, async_extent->start,
648 async_extent->start +
649 async_extent->ram_size - 1, 0);
650
771ed689 651 em = alloc_extent_map(GFP_NOFS);
c26a9203 652 BUG_ON(!em);
771ed689
CM
653 em->start = async_extent->start;
654 em->len = async_extent->ram_size;
445a6944 655 em->orig_start = em->start;
c8b97818 656
771ed689
CM
657 em->block_start = ins.objectid;
658 em->block_len = ins.offset;
659 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 660 em->compress_type = async_extent->compress_type;
771ed689
CM
661 set_bit(EXTENT_FLAG_PINNED, &em->flags);
662 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
663
d397712b 664 while (1) {
890871be 665 write_lock(&em_tree->lock);
771ed689 666 ret = add_extent_mapping(em_tree, em);
890871be 667 write_unlock(&em_tree->lock);
771ed689
CM
668 if (ret != -EEXIST) {
669 free_extent_map(em);
670 break;
671 }
672 btrfs_drop_extent_cache(inode, async_extent->start,
673 async_extent->start +
674 async_extent->ram_size - 1, 0);
675 }
676
261507a0
LZ
677 ret = btrfs_add_ordered_extent_compress(inode,
678 async_extent->start,
679 ins.objectid,
680 async_extent->ram_size,
681 ins.offset,
682 BTRFS_ORDERED_COMPRESSED,
683 async_extent->compress_type);
771ed689
CM
684 BUG_ON(ret);
685
771ed689
CM
686 /*
687 * clear dirty, set writeback and unlock the pages.
688 */
689 extent_clear_unlock_delalloc(inode,
a791e35e
CM
690 &BTRFS_I(inode)->io_tree,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
695 EXTENT_CLEAR_UNLOCK |
a3429ab7 696 EXTENT_CLEAR_DELALLOC |
a791e35e 697 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
698
699 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
700 async_extent->start,
701 async_extent->ram_size,
702 ins.objectid,
703 ins.offset, async_extent->pages,
704 async_extent->nr_pages);
771ed689
CM
705
706 BUG_ON(ret);
771ed689
CM
707 alloc_hint = ins.objectid + ins.offset;
708 kfree(async_extent);
709 cond_resched();
710 }
711
771ed689
CM
712 return 0;
713}
714
4b46fce2
JB
715static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
716 u64 num_bytes)
717{
718 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
719 struct extent_map *em;
720 u64 alloc_hint = 0;
721
722 read_lock(&em_tree->lock);
723 em = search_extent_mapping(em_tree, start, num_bytes);
724 if (em) {
725 /*
726 * if block start isn't an actual block number then find the
727 * first block in this inode and use that as a hint. If that
728 * block is also bogus then just don't worry about it.
729 */
730 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
731 free_extent_map(em);
732 em = search_extent_mapping(em_tree, 0, 0);
733 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
734 alloc_hint = em->block_start;
735 if (em)
736 free_extent_map(em);
737 } else {
738 alloc_hint = em->block_start;
739 free_extent_map(em);
740 }
741 }
742 read_unlock(&em_tree->lock);
743
744 return alloc_hint;
745}
746
771ed689
CM
747/*
748 * when extent_io.c finds a delayed allocation range in the file,
749 * the call backs end up in this code. The basic idea is to
750 * allocate extents on disk for the range, and create ordered data structs
751 * in ram to track those extents.
752 *
753 * locked_page is the page that writepage had locked already. We use
754 * it to make sure we don't do extra locks or unlocks.
755 *
756 * *page_started is set to one if we unlock locked_page and do everything
757 * required to start IO on it. It may be clean and already done with
758 * IO when we return.
759 */
760static noinline int cow_file_range(struct inode *inode,
761 struct page *locked_page,
762 u64 start, u64 end, int *page_started,
763 unsigned long *nr_written,
764 int unlock)
765{
766 struct btrfs_root *root = BTRFS_I(inode)->root;
767 struct btrfs_trans_handle *trans;
768 u64 alloc_hint = 0;
769 u64 num_bytes;
770 unsigned long ram_size;
771 u64 disk_num_bytes;
772 u64 cur_alloc_size;
773 u64 blocksize = root->sectorsize;
771ed689
CM
774 struct btrfs_key ins;
775 struct extent_map *em;
776 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
777 int ret = 0;
778
0cb59c99 779 BUG_ON(root == root->fs_info->tree_root);
771ed689 780 trans = btrfs_join_transaction(root, 1);
3612b495 781 BUG_ON(IS_ERR(trans));
771ed689 782 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 783 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 784
771ed689
CM
785 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
786 num_bytes = max(blocksize, num_bytes);
787 disk_num_bytes = num_bytes;
788 ret = 0;
789
790 if (start == 0) {
791 /* lets try to make an inline extent */
792 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 793 start, end, 0, 0, NULL);
771ed689
CM
794 if (ret == 0) {
795 extent_clear_unlock_delalloc(inode,
a791e35e
CM
796 &BTRFS_I(inode)->io_tree,
797 start, end, NULL,
798 EXTENT_CLEAR_UNLOCK_PAGE |
799 EXTENT_CLEAR_UNLOCK |
800 EXTENT_CLEAR_DELALLOC |
801 EXTENT_CLEAR_DIRTY |
802 EXTENT_SET_WRITEBACK |
803 EXTENT_END_WRITEBACK);
c2167754 804
771ed689
CM
805 *nr_written = *nr_written +
806 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
807 *page_started = 1;
808 ret = 0;
809 goto out;
810 }
811 }
812
813 BUG_ON(disk_num_bytes >
814 btrfs_super_total_bytes(&root->fs_info->super_copy));
815
4b46fce2 816 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
817 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
818
d397712b 819 while (disk_num_bytes > 0) {
a791e35e
CM
820 unsigned long op;
821
287a0ab9 822 cur_alloc_size = disk_num_bytes;
e6dcd2dc 823 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 824 root->sectorsize, 0, alloc_hint,
e6dcd2dc 825 (u64)-1, &ins, 1);
d397712b
CM
826 BUG_ON(ret);
827
e6dcd2dc 828 em = alloc_extent_map(GFP_NOFS);
c26a9203 829 BUG_ON(!em);
e6dcd2dc 830 em->start = start;
445a6944 831 em->orig_start = em->start;
771ed689
CM
832 ram_size = ins.offset;
833 em->len = ins.offset;
c8b97818 834
e6dcd2dc 835 em->block_start = ins.objectid;
c8b97818 836 em->block_len = ins.offset;
e6dcd2dc 837 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 838 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 839
d397712b 840 while (1) {
890871be 841 write_lock(&em_tree->lock);
e6dcd2dc 842 ret = add_extent_mapping(em_tree, em);
890871be 843 write_unlock(&em_tree->lock);
e6dcd2dc
CM
844 if (ret != -EEXIST) {
845 free_extent_map(em);
846 break;
847 }
848 btrfs_drop_extent_cache(inode, start,
c8b97818 849 start + ram_size - 1, 0);
e6dcd2dc
CM
850 }
851
98d20f67 852 cur_alloc_size = ins.offset;
e6dcd2dc 853 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 854 ram_size, cur_alloc_size, 0);
e6dcd2dc 855 BUG_ON(ret);
c8b97818 856
17d217fe
YZ
857 if (root->root_key.objectid ==
858 BTRFS_DATA_RELOC_TREE_OBJECTID) {
859 ret = btrfs_reloc_clone_csums(inode, start,
860 cur_alloc_size);
861 BUG_ON(ret);
862 }
863
d397712b 864 if (disk_num_bytes < cur_alloc_size)
3b951516 865 break;
d397712b 866
c8b97818
CM
867 /* we're not doing compressed IO, don't unlock the first
868 * page (which the caller expects to stay locked), don't
869 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
870 *
871 * Do set the Private2 bit so we know this page was properly
872 * setup for writepage
c8b97818 873 */
a791e35e
CM
874 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
875 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
876 EXTENT_SET_PRIVATE2;
877
c8b97818
CM
878 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
879 start, start + ram_size - 1,
a791e35e 880 locked_page, op);
c8b97818 881 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
882 num_bytes -= cur_alloc_size;
883 alloc_hint = ins.objectid + ins.offset;
884 start += cur_alloc_size;
b888db2b 885 }
b888db2b 886out:
771ed689 887 ret = 0;
b888db2b 888 btrfs_end_transaction(trans, root);
c8b97818 889
be20aa9d 890 return ret;
771ed689 891}
c8b97818 892
771ed689
CM
893/*
894 * work queue call back to started compression on a file and pages
895 */
896static noinline void async_cow_start(struct btrfs_work *work)
897{
898 struct async_cow *async_cow;
899 int num_added = 0;
900 async_cow = container_of(work, struct async_cow, work);
901
902 compress_file_range(async_cow->inode, async_cow->locked_page,
903 async_cow->start, async_cow->end, async_cow,
904 &num_added);
905 if (num_added == 0)
906 async_cow->inode = NULL;
907}
908
909/*
910 * work queue call back to submit previously compressed pages
911 */
912static noinline void async_cow_submit(struct btrfs_work *work)
913{
914 struct async_cow *async_cow;
915 struct btrfs_root *root;
916 unsigned long nr_pages;
917
918 async_cow = container_of(work, struct async_cow, work);
919
920 root = async_cow->root;
921 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
922 PAGE_CACHE_SHIFT;
923
924 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
925
926 if (atomic_read(&root->fs_info->async_delalloc_pages) <
927 5 * 1042 * 1024 &&
928 waitqueue_active(&root->fs_info->async_submit_wait))
929 wake_up(&root->fs_info->async_submit_wait);
930
d397712b 931 if (async_cow->inode)
771ed689 932 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 933}
c8b97818 934
771ed689
CM
935static noinline void async_cow_free(struct btrfs_work *work)
936{
937 struct async_cow *async_cow;
938 async_cow = container_of(work, struct async_cow, work);
939 kfree(async_cow);
940}
941
942static int cow_file_range_async(struct inode *inode, struct page *locked_page,
943 u64 start, u64 end, int *page_started,
944 unsigned long *nr_written)
945{
946 struct async_cow *async_cow;
947 struct btrfs_root *root = BTRFS_I(inode)->root;
948 unsigned long nr_pages;
949 u64 cur_end;
950 int limit = 10 * 1024 * 1042;
951
a3429ab7
CM
952 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
953 1, 0, NULL, GFP_NOFS);
d397712b 954 while (start < end) {
771ed689
CM
955 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
956 async_cow->inode = inode;
957 async_cow->root = root;
958 async_cow->locked_page = locked_page;
959 async_cow->start = start;
960
6cbff00f 961 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
962 cur_end = end;
963 else
964 cur_end = min(end, start + 512 * 1024 - 1);
965
966 async_cow->end = cur_end;
967 INIT_LIST_HEAD(&async_cow->extents);
968
969 async_cow->work.func = async_cow_start;
970 async_cow->work.ordered_func = async_cow_submit;
971 async_cow->work.ordered_free = async_cow_free;
972 async_cow->work.flags = 0;
973
771ed689
CM
974 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
975 PAGE_CACHE_SHIFT;
976 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
977
978 btrfs_queue_worker(&root->fs_info->delalloc_workers,
979 &async_cow->work);
980
981 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
982 wait_event(root->fs_info->async_submit_wait,
983 (atomic_read(&root->fs_info->async_delalloc_pages) <
984 limit));
985 }
986
d397712b 987 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
988 atomic_read(&root->fs_info->async_delalloc_pages)) {
989 wait_event(root->fs_info->async_submit_wait,
990 (atomic_read(&root->fs_info->async_delalloc_pages) ==
991 0));
992 }
993
994 *nr_written += nr_pages;
995 start = cur_end + 1;
996 }
997 *page_started = 1;
998 return 0;
be20aa9d
CM
999}
1000
d397712b 1001static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1002 u64 bytenr, u64 num_bytes)
1003{
1004 int ret;
1005 struct btrfs_ordered_sum *sums;
1006 LIST_HEAD(list);
1007
07d400a6
YZ
1008 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1009 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1010 if (ret == 0 && list_empty(&list))
1011 return 0;
1012
1013 while (!list_empty(&list)) {
1014 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1015 list_del(&sums->list);
1016 kfree(sums);
1017 }
1018 return 1;
1019}
1020
d352ac68
CM
1021/*
1022 * when nowcow writeback call back. This checks for snapshots or COW copies
1023 * of the extents that exist in the file, and COWs the file as required.
1024 *
1025 * If no cow copies or snapshots exist, we write directly to the existing
1026 * blocks on disk
1027 */
7f366cfe
CM
1028static noinline int run_delalloc_nocow(struct inode *inode,
1029 struct page *locked_page,
771ed689
CM
1030 u64 start, u64 end, int *page_started, int force,
1031 unsigned long *nr_written)
be20aa9d 1032{
be20aa9d 1033 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1034 struct btrfs_trans_handle *trans;
be20aa9d 1035 struct extent_buffer *leaf;
be20aa9d 1036 struct btrfs_path *path;
80ff3856 1037 struct btrfs_file_extent_item *fi;
be20aa9d 1038 struct btrfs_key found_key;
80ff3856
YZ
1039 u64 cow_start;
1040 u64 cur_offset;
1041 u64 extent_end;
5d4f98a2 1042 u64 extent_offset;
80ff3856
YZ
1043 u64 disk_bytenr;
1044 u64 num_bytes;
1045 int extent_type;
1046 int ret;
d899e052 1047 int type;
80ff3856
YZ
1048 int nocow;
1049 int check_prev = 1;
0cb59c99 1050 bool nolock = false;
be20aa9d
CM
1051
1052 path = btrfs_alloc_path();
1053 BUG_ON(!path);
0cb59c99
JB
1054 if (root == root->fs_info->tree_root) {
1055 nolock = true;
1056 trans = btrfs_join_transaction_nolock(root, 1);
1057 } else {
1058 trans = btrfs_join_transaction(root, 1);
1059 }
3612b495 1060 BUG_ON(IS_ERR(trans));
be20aa9d 1061
80ff3856
YZ
1062 cow_start = (u64)-1;
1063 cur_offset = start;
1064 while (1) {
1065 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1066 cur_offset, 0);
1067 BUG_ON(ret < 0);
1068 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1069 leaf = path->nodes[0];
1070 btrfs_item_key_to_cpu(leaf, &found_key,
1071 path->slots[0] - 1);
1072 if (found_key.objectid == inode->i_ino &&
1073 found_key.type == BTRFS_EXTENT_DATA_KEY)
1074 path->slots[0]--;
1075 }
1076 check_prev = 0;
1077next_slot:
1078 leaf = path->nodes[0];
1079 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1080 ret = btrfs_next_leaf(root, path);
1081 if (ret < 0)
1082 BUG_ON(1);
1083 if (ret > 0)
1084 break;
1085 leaf = path->nodes[0];
1086 }
be20aa9d 1087
80ff3856
YZ
1088 nocow = 0;
1089 disk_bytenr = 0;
17d217fe 1090 num_bytes = 0;
80ff3856
YZ
1091 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1092
1093 if (found_key.objectid > inode->i_ino ||
1094 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1095 found_key.offset > end)
1096 break;
1097
1098 if (found_key.offset > cur_offset) {
1099 extent_end = found_key.offset;
e9061e21 1100 extent_type = 0;
80ff3856
YZ
1101 goto out_check;
1102 }
1103
1104 fi = btrfs_item_ptr(leaf, path->slots[0],
1105 struct btrfs_file_extent_item);
1106 extent_type = btrfs_file_extent_type(leaf, fi);
1107
d899e052
YZ
1108 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1109 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1110 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1111 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1112 extent_end = found_key.offset +
1113 btrfs_file_extent_num_bytes(leaf, fi);
1114 if (extent_end <= start) {
1115 path->slots[0]++;
1116 goto next_slot;
1117 }
17d217fe
YZ
1118 if (disk_bytenr == 0)
1119 goto out_check;
80ff3856
YZ
1120 if (btrfs_file_extent_compression(leaf, fi) ||
1121 btrfs_file_extent_encryption(leaf, fi) ||
1122 btrfs_file_extent_other_encoding(leaf, fi))
1123 goto out_check;
d899e052
YZ
1124 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1125 goto out_check;
d2fb3437 1126 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1127 goto out_check;
17d217fe 1128 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1129 found_key.offset -
1130 extent_offset, disk_bytenr))
17d217fe 1131 goto out_check;
5d4f98a2 1132 disk_bytenr += extent_offset;
17d217fe
YZ
1133 disk_bytenr += cur_offset - found_key.offset;
1134 num_bytes = min(end + 1, extent_end) - cur_offset;
1135 /*
1136 * force cow if csum exists in the range.
1137 * this ensure that csum for a given extent are
1138 * either valid or do not exist.
1139 */
1140 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1141 goto out_check;
80ff3856
YZ
1142 nocow = 1;
1143 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1144 extent_end = found_key.offset +
1145 btrfs_file_extent_inline_len(leaf, fi);
1146 extent_end = ALIGN(extent_end, root->sectorsize);
1147 } else {
1148 BUG_ON(1);
1149 }
1150out_check:
1151 if (extent_end <= start) {
1152 path->slots[0]++;
1153 goto next_slot;
1154 }
1155 if (!nocow) {
1156 if (cow_start == (u64)-1)
1157 cow_start = cur_offset;
1158 cur_offset = extent_end;
1159 if (cur_offset > end)
1160 break;
1161 path->slots[0]++;
1162 goto next_slot;
7ea394f1
YZ
1163 }
1164
1165 btrfs_release_path(root, path);
80ff3856
YZ
1166 if (cow_start != (u64)-1) {
1167 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1168 found_key.offset - 1, page_started,
1169 nr_written, 1);
80ff3856
YZ
1170 BUG_ON(ret);
1171 cow_start = (u64)-1;
7ea394f1 1172 }
80ff3856 1173
d899e052
YZ
1174 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1175 struct extent_map *em;
1176 struct extent_map_tree *em_tree;
1177 em_tree = &BTRFS_I(inode)->extent_tree;
1178 em = alloc_extent_map(GFP_NOFS);
c26a9203 1179 BUG_ON(!em);
d899e052 1180 em->start = cur_offset;
445a6944 1181 em->orig_start = em->start;
d899e052
YZ
1182 em->len = num_bytes;
1183 em->block_len = num_bytes;
1184 em->block_start = disk_bytenr;
1185 em->bdev = root->fs_info->fs_devices->latest_bdev;
1186 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1187 while (1) {
890871be 1188 write_lock(&em_tree->lock);
d899e052 1189 ret = add_extent_mapping(em_tree, em);
890871be 1190 write_unlock(&em_tree->lock);
d899e052
YZ
1191 if (ret != -EEXIST) {
1192 free_extent_map(em);
1193 break;
1194 }
1195 btrfs_drop_extent_cache(inode, em->start,
1196 em->start + em->len - 1, 0);
1197 }
1198 type = BTRFS_ORDERED_PREALLOC;
1199 } else {
1200 type = BTRFS_ORDERED_NOCOW;
1201 }
80ff3856
YZ
1202
1203 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1204 num_bytes, num_bytes, type);
1205 BUG_ON(ret);
771ed689 1206
efa56464
YZ
1207 if (root->root_key.objectid ==
1208 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1209 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1210 num_bytes);
1211 BUG_ON(ret);
1212 }
1213
d899e052 1214 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1215 cur_offset, cur_offset + num_bytes - 1,
1216 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1217 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1218 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1219 cur_offset = extent_end;
1220 if (cur_offset > end)
1221 break;
be20aa9d 1222 }
80ff3856
YZ
1223 btrfs_release_path(root, path);
1224
1225 if (cur_offset <= end && cow_start == (u64)-1)
1226 cow_start = cur_offset;
1227 if (cow_start != (u64)-1) {
1228 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1229 page_started, nr_written, 1);
80ff3856
YZ
1230 BUG_ON(ret);
1231 }
1232
0cb59c99
JB
1233 if (nolock) {
1234 ret = btrfs_end_transaction_nolock(trans, root);
1235 BUG_ON(ret);
1236 } else {
1237 ret = btrfs_end_transaction(trans, root);
1238 BUG_ON(ret);
1239 }
7ea394f1 1240 btrfs_free_path(path);
80ff3856 1241 return 0;
be20aa9d
CM
1242}
1243
d352ac68
CM
1244/*
1245 * extent_io.c call back to do delayed allocation processing
1246 */
c8b97818 1247static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1248 u64 start, u64 end, int *page_started,
1249 unsigned long *nr_written)
be20aa9d 1250{
be20aa9d 1251 int ret;
7f366cfe 1252 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1253
6cbff00f 1254 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1255 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1256 page_started, 1, nr_written);
6cbff00f 1257 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1258 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1259 page_started, 0, nr_written);
1e701a32 1260 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1261 !(BTRFS_I(inode)->force_compress) &&
1262 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1263 ret = cow_file_range(inode, locked_page, start, end,
1264 page_started, nr_written, 1);
be20aa9d 1265 else
771ed689 1266 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1267 page_started, nr_written);
b888db2b
CM
1268 return ret;
1269}
1270
9ed74f2d 1271static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1272 struct extent_state *orig, u64 split)
9ed74f2d 1273{
0ca1f7ce 1274 /* not delalloc, ignore it */
9ed74f2d
JB
1275 if (!(orig->state & EXTENT_DELALLOC))
1276 return 0;
1277
0ca1f7ce 1278 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1279 return 0;
1280}
1281
1282/*
1283 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1284 * extents so we can keep track of new extents that are just merged onto old
1285 * extents, such as when we are doing sequential writes, so we can properly
1286 * account for the metadata space we'll need.
1287 */
1288static int btrfs_merge_extent_hook(struct inode *inode,
1289 struct extent_state *new,
1290 struct extent_state *other)
1291{
9ed74f2d
JB
1292 /* not delalloc, ignore it */
1293 if (!(other->state & EXTENT_DELALLOC))
1294 return 0;
1295
0ca1f7ce 1296 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1297 return 0;
1298}
1299
d352ac68
CM
1300/*
1301 * extent_io.c set_bit_hook, used to track delayed allocation
1302 * bytes in this file, and to maintain the list of inodes that
1303 * have pending delalloc work to be done.
1304 */
0ca1f7ce
YZ
1305static int btrfs_set_bit_hook(struct inode *inode,
1306 struct extent_state *state, int *bits)
291d673e 1307{
9ed74f2d 1308
75eff68e
CM
1309 /*
1310 * set_bit and clear bit hooks normally require _irqsave/restore
1311 * but in this case, we are only testeing for the DELALLOC
1312 * bit, which is only set or cleared with irqs on
1313 */
0ca1f7ce 1314 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1315 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1316 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1317 int do_list = (root->root_key.objectid !=
1318 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1319
0ca1f7ce
YZ
1320 if (*bits & EXTENT_FIRST_DELALLOC)
1321 *bits &= ~EXTENT_FIRST_DELALLOC;
1322 else
1323 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1324
75eff68e 1325 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1326 BTRFS_I(inode)->delalloc_bytes += len;
1327 root->fs_info->delalloc_bytes += len;
0cb59c99 1328 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1329 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1330 &root->fs_info->delalloc_inodes);
1331 }
75eff68e 1332 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1333 }
1334 return 0;
1335}
1336
d352ac68
CM
1337/*
1338 * extent_io.c clear_bit_hook, see set_bit_hook for why
1339 */
9ed74f2d 1340static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1341 struct extent_state *state, int *bits)
291d673e 1342{
75eff68e
CM
1343 /*
1344 * set_bit and clear bit hooks normally require _irqsave/restore
1345 * but in this case, we are only testeing for the DELALLOC
1346 * bit, which is only set or cleared with irqs on
1347 */
0ca1f7ce 1348 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1349 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1350 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1351 int do_list = (root->root_key.objectid !=
1352 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1353
0ca1f7ce
YZ
1354 if (*bits & EXTENT_FIRST_DELALLOC)
1355 *bits &= ~EXTENT_FIRST_DELALLOC;
1356 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1357 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1358
1359 if (*bits & EXTENT_DO_ACCOUNTING)
1360 btrfs_delalloc_release_metadata(inode, len);
1361
0cb59c99
JB
1362 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1363 && do_list)
0ca1f7ce 1364 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1365
75eff68e 1366 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1367 root->fs_info->delalloc_bytes -= len;
1368 BTRFS_I(inode)->delalloc_bytes -= len;
1369
0cb59c99 1370 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1371 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1372 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1373 }
75eff68e 1374 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1375 }
1376 return 0;
1377}
1378
d352ac68
CM
1379/*
1380 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1381 * we don't create bios that span stripes or chunks
1382 */
239b14b3 1383int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1384 size_t size, struct bio *bio,
1385 unsigned long bio_flags)
239b14b3
CM
1386{
1387 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1388 struct btrfs_mapping_tree *map_tree;
a62b9401 1389 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1390 u64 length = 0;
1391 u64 map_length;
239b14b3
CM
1392 int ret;
1393
771ed689
CM
1394 if (bio_flags & EXTENT_BIO_COMPRESSED)
1395 return 0;
1396
f2d8d74d 1397 length = bio->bi_size;
239b14b3
CM
1398 map_tree = &root->fs_info->mapping_tree;
1399 map_length = length;
cea9e445 1400 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1401 &map_length, NULL, 0);
cea9e445 1402
d397712b 1403 if (map_length < length + size)
239b14b3 1404 return 1;
411fc6bc 1405 return ret;
239b14b3
CM
1406}
1407
d352ac68
CM
1408/*
1409 * in order to insert checksums into the metadata in large chunks,
1410 * we wait until bio submission time. All the pages in the bio are
1411 * checksummed and sums are attached onto the ordered extent record.
1412 *
1413 * At IO completion time the cums attached on the ordered extent record
1414 * are inserted into the btree
1415 */
d397712b
CM
1416static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1417 struct bio *bio, int mirror_num,
eaf25d93
CM
1418 unsigned long bio_flags,
1419 u64 bio_offset)
065631f6 1420{
065631f6 1421 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1422 int ret = 0;
e015640f 1423
d20f7043 1424 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1425 BUG_ON(ret);
4a69a410
CM
1426 return 0;
1427}
e015640f 1428
4a69a410
CM
1429/*
1430 * in order to insert checksums into the metadata in large chunks,
1431 * we wait until bio submission time. All the pages in the bio are
1432 * checksummed and sums are attached onto the ordered extent record.
1433 *
1434 * At IO completion time the cums attached on the ordered extent record
1435 * are inserted into the btree
1436 */
b2950863 1437static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1438 int mirror_num, unsigned long bio_flags,
1439 u64 bio_offset)
4a69a410
CM
1440{
1441 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1442 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1443}
1444
d352ac68 1445/*
cad321ad
CM
1446 * extent_io.c submission hook. This does the right thing for csum calculation
1447 * on write, or reading the csums from the tree before a read
d352ac68 1448 */
b2950863 1449static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1450 int mirror_num, unsigned long bio_flags,
1451 u64 bio_offset)
44b8bd7e
CM
1452{
1453 struct btrfs_root *root = BTRFS_I(inode)->root;
1454 int ret = 0;
19b9bdb0 1455 int skip_sum;
44b8bd7e 1456
6cbff00f 1457 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1458
0cb59c99
JB
1459 if (root == root->fs_info->tree_root)
1460 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1461 else
1462 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1463 BUG_ON(ret);
065631f6 1464
7b6d91da 1465 if (!(rw & REQ_WRITE)) {
d20f7043 1466 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1467 return btrfs_submit_compressed_read(inode, bio,
1468 mirror_num, bio_flags);
c2db1073
TI
1469 } else if (!skip_sum) {
1470 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1471 if (ret)
1472 return ret;
1473 }
4d1b5fb4 1474 goto mapit;
19b9bdb0 1475 } else if (!skip_sum) {
17d217fe
YZ
1476 /* csum items have already been cloned */
1477 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1478 goto mapit;
19b9bdb0
CM
1479 /* we're doing a write, do the async checksumming */
1480 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1481 inode, rw, bio, mirror_num,
eaf25d93
CM
1482 bio_flags, bio_offset,
1483 __btrfs_submit_bio_start,
4a69a410 1484 __btrfs_submit_bio_done);
19b9bdb0
CM
1485 }
1486
0b86a832 1487mapit:
8b712842 1488 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1489}
6885f308 1490
d352ac68
CM
1491/*
1492 * given a list of ordered sums record them in the inode. This happens
1493 * at IO completion time based on sums calculated at bio submission time.
1494 */
ba1da2f4 1495static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1496 struct inode *inode, u64 file_offset,
1497 struct list_head *list)
1498{
e6dcd2dc
CM
1499 struct btrfs_ordered_sum *sum;
1500
1501 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1502
1503 list_for_each_entry(sum, list, list) {
d20f7043
CM
1504 btrfs_csum_file_blocks(trans,
1505 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1506 }
1507 return 0;
1508}
1509
2ac55d41
JB
1510int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1511 struct extent_state **cached_state)
ea8c2819 1512{
d397712b 1513 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1514 WARN_ON(1);
ea8c2819 1515 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1516 cached_state, GFP_NOFS);
ea8c2819
CM
1517}
1518
d352ac68 1519/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1520struct btrfs_writepage_fixup {
1521 struct page *page;
1522 struct btrfs_work work;
1523};
1524
b2950863 1525static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1526{
1527 struct btrfs_writepage_fixup *fixup;
1528 struct btrfs_ordered_extent *ordered;
2ac55d41 1529 struct extent_state *cached_state = NULL;
247e743c
CM
1530 struct page *page;
1531 struct inode *inode;
1532 u64 page_start;
1533 u64 page_end;
1534
1535 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1536 page = fixup->page;
4a096752 1537again:
247e743c
CM
1538 lock_page(page);
1539 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1540 ClearPageChecked(page);
1541 goto out_page;
1542 }
1543
1544 inode = page->mapping->host;
1545 page_start = page_offset(page);
1546 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1547
2ac55d41
JB
1548 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1549 &cached_state, GFP_NOFS);
4a096752
CM
1550
1551 /* already ordered? We're done */
8b62b72b 1552 if (PagePrivate2(page))
247e743c 1553 goto out;
4a096752
CM
1554
1555 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1556 if (ordered) {
2ac55d41
JB
1557 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1558 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1559 unlock_page(page);
1560 btrfs_start_ordered_extent(inode, ordered, 1);
1561 goto again;
1562 }
247e743c 1563
0ca1f7ce 1564 BUG();
2ac55d41 1565 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1566 ClearPageChecked(page);
1567out:
2ac55d41
JB
1568 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1569 &cached_state, GFP_NOFS);
247e743c
CM
1570out_page:
1571 unlock_page(page);
1572 page_cache_release(page);
b897abec 1573 kfree(fixup);
247e743c
CM
1574}
1575
1576/*
1577 * There are a few paths in the higher layers of the kernel that directly
1578 * set the page dirty bit without asking the filesystem if it is a
1579 * good idea. This causes problems because we want to make sure COW
1580 * properly happens and the data=ordered rules are followed.
1581 *
c8b97818 1582 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1583 * hasn't been properly setup for IO. We kick off an async process
1584 * to fix it up. The async helper will wait for ordered extents, set
1585 * the delalloc bit and make it safe to write the page.
1586 */
b2950863 1587static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1588{
1589 struct inode *inode = page->mapping->host;
1590 struct btrfs_writepage_fixup *fixup;
1591 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1592
8b62b72b
CM
1593 /* this page is properly in the ordered list */
1594 if (TestClearPagePrivate2(page))
247e743c
CM
1595 return 0;
1596
1597 if (PageChecked(page))
1598 return -EAGAIN;
1599
1600 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1601 if (!fixup)
1602 return -EAGAIN;
f421950f 1603
247e743c
CM
1604 SetPageChecked(page);
1605 page_cache_get(page);
1606 fixup->work.func = btrfs_writepage_fixup_worker;
1607 fixup->page = page;
1608 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1609 return -EAGAIN;
1610}
1611
d899e052
YZ
1612static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1613 struct inode *inode, u64 file_pos,
1614 u64 disk_bytenr, u64 disk_num_bytes,
1615 u64 num_bytes, u64 ram_bytes,
1616 u8 compression, u8 encryption,
1617 u16 other_encoding, int extent_type)
1618{
1619 struct btrfs_root *root = BTRFS_I(inode)->root;
1620 struct btrfs_file_extent_item *fi;
1621 struct btrfs_path *path;
1622 struct extent_buffer *leaf;
1623 struct btrfs_key ins;
1624 u64 hint;
1625 int ret;
1626
1627 path = btrfs_alloc_path();
1628 BUG_ON(!path);
1629
b9473439 1630 path->leave_spinning = 1;
a1ed835e
CM
1631
1632 /*
1633 * we may be replacing one extent in the tree with another.
1634 * The new extent is pinned in the extent map, and we don't want
1635 * to drop it from the cache until it is completely in the btree.
1636 *
1637 * So, tell btrfs_drop_extents to leave this extent in the cache.
1638 * the caller is expected to unpin it and allow it to be merged
1639 * with the others.
1640 */
920bbbfb
YZ
1641 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1642 &hint, 0);
d899e052
YZ
1643 BUG_ON(ret);
1644
1645 ins.objectid = inode->i_ino;
1646 ins.offset = file_pos;
1647 ins.type = BTRFS_EXTENT_DATA_KEY;
1648 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1649 BUG_ON(ret);
1650 leaf = path->nodes[0];
1651 fi = btrfs_item_ptr(leaf, path->slots[0],
1652 struct btrfs_file_extent_item);
1653 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1654 btrfs_set_file_extent_type(leaf, fi, extent_type);
1655 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1656 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1657 btrfs_set_file_extent_offset(leaf, fi, 0);
1658 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1659 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1660 btrfs_set_file_extent_compression(leaf, fi, compression);
1661 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1662 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1663
1664 btrfs_unlock_up_safe(path, 1);
1665 btrfs_set_lock_blocking(leaf);
1666
d899e052
YZ
1667 btrfs_mark_buffer_dirty(leaf);
1668
1669 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1670
1671 ins.objectid = disk_bytenr;
1672 ins.offset = disk_num_bytes;
1673 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1674 ret = btrfs_alloc_reserved_file_extent(trans, root,
1675 root->root_key.objectid,
1676 inode->i_ino, file_pos, &ins);
d899e052 1677 BUG_ON(ret);
d899e052 1678 btrfs_free_path(path);
b9473439 1679
d899e052
YZ
1680 return 0;
1681}
1682
5d13a98f
CM
1683/*
1684 * helper function for btrfs_finish_ordered_io, this
1685 * just reads in some of the csum leaves to prime them into ram
1686 * before we start the transaction. It limits the amount of btree
1687 * reads required while inside the transaction.
1688 */
d352ac68
CM
1689/* as ordered data IO finishes, this gets called so we can finish
1690 * an ordered extent if the range of bytes in the file it covers are
1691 * fully written.
1692 */
211f90e6 1693static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1694{
e6dcd2dc 1695 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1696 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1697 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1698 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1699 struct extent_state *cached_state = NULL;
261507a0 1700 int compress_type = 0;
e6dcd2dc 1701 int ret;
0cb59c99 1702 bool nolock = false;
e6dcd2dc 1703
5a1a3df1
JB
1704 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1705 end - start + 1);
ba1da2f4 1706 if (!ret)
e6dcd2dc 1707 return 0;
e6dcd2dc 1708 BUG_ON(!ordered_extent);
efd049fb 1709
0cb59c99
JB
1710 nolock = (root == root->fs_info->tree_root);
1711
c2167754
YZ
1712 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1713 BUG_ON(!list_empty(&ordered_extent->list));
1714 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1715 if (!ret) {
0cb59c99
JB
1716 if (nolock)
1717 trans = btrfs_join_transaction_nolock(root, 1);
1718 else
1719 trans = btrfs_join_transaction(root, 1);
3612b495 1720 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1721 btrfs_set_trans_block_group(trans, inode);
1722 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1723 ret = btrfs_update_inode(trans, root, inode);
1724 BUG_ON(ret);
c2167754
YZ
1725 }
1726 goto out;
1727 }
e6dcd2dc 1728
2ac55d41
JB
1729 lock_extent_bits(io_tree, ordered_extent->file_offset,
1730 ordered_extent->file_offset + ordered_extent->len - 1,
1731 0, &cached_state, GFP_NOFS);
e6dcd2dc 1732
0cb59c99
JB
1733 if (nolock)
1734 trans = btrfs_join_transaction_nolock(root, 1);
1735 else
1736 trans = btrfs_join_transaction(root, 1);
3612b495 1737 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1738 btrfs_set_trans_block_group(trans, inode);
1739 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1740
c8b97818 1741 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1742 compress_type = ordered_extent->compress_type;
d899e052 1743 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1744 BUG_ON(compress_type);
920bbbfb 1745 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1746 ordered_extent->file_offset,
1747 ordered_extent->file_offset +
1748 ordered_extent->len);
1749 BUG_ON(ret);
1750 } else {
0af3d00b 1751 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1752 ret = insert_reserved_file_extent(trans, inode,
1753 ordered_extent->file_offset,
1754 ordered_extent->start,
1755 ordered_extent->disk_len,
1756 ordered_extent->len,
1757 ordered_extent->len,
261507a0 1758 compress_type, 0, 0,
d899e052 1759 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1760 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1761 ordered_extent->file_offset,
1762 ordered_extent->len);
d899e052
YZ
1763 BUG_ON(ret);
1764 }
2ac55d41
JB
1765 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1766 ordered_extent->file_offset +
1767 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1768
e6dcd2dc
CM
1769 add_pending_csums(trans, inode, ordered_extent->file_offset,
1770 &ordered_extent->list);
1771
c2167754
YZ
1772 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1773 ret = btrfs_update_inode(trans, root, inode);
1774 BUG_ON(ret);
c2167754 1775out:
0cb59c99
JB
1776 if (nolock) {
1777 if (trans)
1778 btrfs_end_transaction_nolock(trans, root);
1779 } else {
1780 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1781 if (trans)
1782 btrfs_end_transaction(trans, root);
1783 }
1784
e6dcd2dc
CM
1785 /* once for us */
1786 btrfs_put_ordered_extent(ordered_extent);
1787 /* once for the tree */
1788 btrfs_put_ordered_extent(ordered_extent);
1789
e6dcd2dc
CM
1790 return 0;
1791}
1792
b2950863 1793static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1794 struct extent_state *state, int uptodate)
1795{
1abe9b8a 1796 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1797
8b62b72b 1798 ClearPagePrivate2(page);
211f90e6
CM
1799 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1800}
1801
d352ac68
CM
1802/*
1803 * When IO fails, either with EIO or csum verification fails, we
1804 * try other mirrors that might have a good copy of the data. This
1805 * io_failure_record is used to record state as we go through all the
1806 * mirrors. If another mirror has good data, the page is set up to date
1807 * and things continue. If a good mirror can't be found, the original
1808 * bio end_io callback is called to indicate things have failed.
1809 */
7e38326f
CM
1810struct io_failure_record {
1811 struct page *page;
1812 u64 start;
1813 u64 len;
1814 u64 logical;
d20f7043 1815 unsigned long bio_flags;
7e38326f
CM
1816 int last_mirror;
1817};
1818
b2950863 1819static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1820 struct page *page, u64 start, u64 end,
1821 struct extent_state *state)
7e38326f
CM
1822{
1823 struct io_failure_record *failrec = NULL;
1824 u64 private;
1825 struct extent_map *em;
1826 struct inode *inode = page->mapping->host;
1827 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1828 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1829 struct bio *bio;
1830 int num_copies;
1831 int ret;
1259ab75 1832 int rw;
7e38326f
CM
1833 u64 logical;
1834
1835 ret = get_state_private(failure_tree, start, &private);
1836 if (ret) {
7e38326f
CM
1837 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1838 if (!failrec)
1839 return -ENOMEM;
1840 failrec->start = start;
1841 failrec->len = end - start + 1;
1842 failrec->last_mirror = 0;
d20f7043 1843 failrec->bio_flags = 0;
7e38326f 1844
890871be 1845 read_lock(&em_tree->lock);
3b951516
CM
1846 em = lookup_extent_mapping(em_tree, start, failrec->len);
1847 if (em->start > start || em->start + em->len < start) {
1848 free_extent_map(em);
1849 em = NULL;
1850 }
890871be 1851 read_unlock(&em_tree->lock);
7e38326f
CM
1852
1853 if (!em || IS_ERR(em)) {
1854 kfree(failrec);
1855 return -EIO;
1856 }
1857 logical = start - em->start;
1858 logical = em->block_start + logical;
d20f7043
CM
1859 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1860 logical = em->block_start;
1861 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1862 extent_set_compress_type(&failrec->bio_flags,
1863 em->compress_type);
d20f7043 1864 }
7e38326f
CM
1865 failrec->logical = logical;
1866 free_extent_map(em);
1867 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1868 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1869 set_state_private(failure_tree, start,
1870 (u64)(unsigned long)failrec);
7e38326f 1871 } else {
587f7704 1872 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1873 }
1874 num_copies = btrfs_num_copies(
1875 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1876 failrec->logical, failrec->len);
1877 failrec->last_mirror++;
1878 if (!state) {
cad321ad 1879 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1880 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1881 failrec->start,
1882 EXTENT_LOCKED);
1883 if (state && state->start != failrec->start)
1884 state = NULL;
cad321ad 1885 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1886 }
1887 if (!state || failrec->last_mirror > num_copies) {
1888 set_state_private(failure_tree, failrec->start, 0);
1889 clear_extent_bits(failure_tree, failrec->start,
1890 failrec->start + failrec->len - 1,
1891 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1892 kfree(failrec);
1893 return -EIO;
1894 }
1895 bio = bio_alloc(GFP_NOFS, 1);
1896 bio->bi_private = state;
1897 bio->bi_end_io = failed_bio->bi_end_io;
1898 bio->bi_sector = failrec->logical >> 9;
1899 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1900 bio->bi_size = 0;
d20f7043 1901
7e38326f 1902 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1903 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1904 rw = WRITE;
1905 else
1906 rw = READ;
1907
c2db1073 1908 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1909 failrec->last_mirror,
eaf25d93 1910 failrec->bio_flags, 0);
c2db1073 1911 return ret;
1259ab75
CM
1912}
1913
d352ac68
CM
1914/*
1915 * each time an IO finishes, we do a fast check in the IO failure tree
1916 * to see if we need to process or clean up an io_failure_record
1917 */
b2950863 1918static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1919{
1920 u64 private;
1921 u64 private_failure;
1922 struct io_failure_record *failure;
1923 int ret;
1924
1925 private = 0;
1926 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1927 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1928 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1929 start, &private_failure);
1930 if (ret == 0) {
1931 failure = (struct io_failure_record *)(unsigned long)
1932 private_failure;
1933 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1934 failure->start, 0);
1935 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1936 failure->start,
1937 failure->start + failure->len - 1,
1938 EXTENT_DIRTY | EXTENT_LOCKED,
1939 GFP_NOFS);
1940 kfree(failure);
1941 }
1942 }
7e38326f
CM
1943 return 0;
1944}
1945
d352ac68
CM
1946/*
1947 * when reads are done, we need to check csums to verify the data is correct
1948 * if there's a match, we allow the bio to finish. If not, we go through
1949 * the io_failure_record routines to find good copies
1950 */
b2950863 1951static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1952 struct extent_state *state)
07157aac 1953{
35ebb934 1954 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1955 struct inode *inode = page->mapping->host;
d1310b2e 1956 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1957 char *kaddr;
aadfeb6e 1958 u64 private = ~(u32)0;
07157aac 1959 int ret;
ff79f819
CM
1960 struct btrfs_root *root = BTRFS_I(inode)->root;
1961 u32 csum = ~(u32)0;
d1310b2e 1962
d20f7043
CM
1963 if (PageChecked(page)) {
1964 ClearPageChecked(page);
1965 goto good;
1966 }
6cbff00f
CH
1967
1968 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1969 return 0;
1970
1971 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1972 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1973 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1974 GFP_NOFS);
b6cda9bc 1975 return 0;
17d217fe 1976 }
d20f7043 1977
c2e639f0 1978 if (state && state->start == start) {
70dec807
CM
1979 private = state->private;
1980 ret = 0;
1981 } else {
1982 ret = get_state_private(io_tree, start, &private);
1983 }
9ab86c8e 1984 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1985 if (ret)
07157aac 1986 goto zeroit;
d397712b 1987
ff79f819
CM
1988 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1989 btrfs_csum_final(csum, (char *)&csum);
d397712b 1990 if (csum != private)
07157aac 1991 goto zeroit;
d397712b 1992
9ab86c8e 1993 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1994good:
7e38326f
CM
1995 /* if the io failure tree for this inode is non-empty,
1996 * check to see if we've recovered from a failed IO
1997 */
1259ab75 1998 btrfs_clean_io_failures(inode, start);
07157aac
CM
1999 return 0;
2000
2001zeroit:
193f284d
CM
2002 if (printk_ratelimit()) {
2003 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2004 "private %llu\n", page->mapping->host->i_ino,
2005 (unsigned long long)start, csum,
2006 (unsigned long long)private);
2007 }
db94535d
CM
2008 memset(kaddr + offset, 1, end - start + 1);
2009 flush_dcache_page(page);
9ab86c8e 2010 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2011 if (private == 0)
2012 return 0;
7e38326f 2013 return -EIO;
07157aac 2014}
b888db2b 2015
24bbcf04
YZ
2016struct delayed_iput {
2017 struct list_head list;
2018 struct inode *inode;
2019};
2020
2021void btrfs_add_delayed_iput(struct inode *inode)
2022{
2023 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2024 struct delayed_iput *delayed;
2025
2026 if (atomic_add_unless(&inode->i_count, -1, 1))
2027 return;
2028
2029 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2030 delayed->inode = inode;
2031
2032 spin_lock(&fs_info->delayed_iput_lock);
2033 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2034 spin_unlock(&fs_info->delayed_iput_lock);
2035}
2036
2037void btrfs_run_delayed_iputs(struct btrfs_root *root)
2038{
2039 LIST_HEAD(list);
2040 struct btrfs_fs_info *fs_info = root->fs_info;
2041 struct delayed_iput *delayed;
2042 int empty;
2043
2044 spin_lock(&fs_info->delayed_iput_lock);
2045 empty = list_empty(&fs_info->delayed_iputs);
2046 spin_unlock(&fs_info->delayed_iput_lock);
2047 if (empty)
2048 return;
2049
2050 down_read(&root->fs_info->cleanup_work_sem);
2051 spin_lock(&fs_info->delayed_iput_lock);
2052 list_splice_init(&fs_info->delayed_iputs, &list);
2053 spin_unlock(&fs_info->delayed_iput_lock);
2054
2055 while (!list_empty(&list)) {
2056 delayed = list_entry(list.next, struct delayed_iput, list);
2057 list_del(&delayed->list);
2058 iput(delayed->inode);
2059 kfree(delayed);
2060 }
2061 up_read(&root->fs_info->cleanup_work_sem);
2062}
2063
d68fc57b
YZ
2064/*
2065 * calculate extra metadata reservation when snapshotting a subvolume
2066 * contains orphan files.
2067 */
2068void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2069 struct btrfs_pending_snapshot *pending,
2070 u64 *bytes_to_reserve)
2071{
2072 struct btrfs_root *root;
2073 struct btrfs_block_rsv *block_rsv;
2074 u64 num_bytes;
2075 int index;
2076
2077 root = pending->root;
2078 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2079 return;
2080
2081 block_rsv = root->orphan_block_rsv;
2082
2083 /* orphan block reservation for the snapshot */
2084 num_bytes = block_rsv->size;
2085
2086 /*
2087 * after the snapshot is created, COWing tree blocks may use more
2088 * space than it frees. So we should make sure there is enough
2089 * reserved space.
2090 */
2091 index = trans->transid & 0x1;
2092 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2093 num_bytes += block_rsv->size -
2094 (block_rsv->reserved + block_rsv->freed[index]);
2095 }
2096
2097 *bytes_to_reserve += num_bytes;
2098}
2099
2100void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2101 struct btrfs_pending_snapshot *pending)
2102{
2103 struct btrfs_root *root = pending->root;
2104 struct btrfs_root *snap = pending->snap;
2105 struct btrfs_block_rsv *block_rsv;
2106 u64 num_bytes;
2107 int index;
2108 int ret;
2109
2110 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2111 return;
2112
2113 /* refill source subvolume's orphan block reservation */
2114 block_rsv = root->orphan_block_rsv;
2115 index = trans->transid & 0x1;
2116 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2117 num_bytes = block_rsv->size -
2118 (block_rsv->reserved + block_rsv->freed[index]);
2119 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2120 root->orphan_block_rsv,
2121 num_bytes);
2122 BUG_ON(ret);
2123 }
2124
2125 /* setup orphan block reservation for the snapshot */
2126 block_rsv = btrfs_alloc_block_rsv(snap);
2127 BUG_ON(!block_rsv);
2128
2129 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2130 snap->orphan_block_rsv = block_rsv;
2131
2132 num_bytes = root->orphan_block_rsv->size;
2133 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2134 block_rsv, num_bytes);
2135 BUG_ON(ret);
2136
2137#if 0
2138 /* insert orphan item for the snapshot */
2139 WARN_ON(!root->orphan_item_inserted);
2140 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2141 snap->root_key.objectid);
2142 BUG_ON(ret);
2143 snap->orphan_item_inserted = 1;
2144#endif
2145}
2146
2147enum btrfs_orphan_cleanup_state {
2148 ORPHAN_CLEANUP_STARTED = 1,
2149 ORPHAN_CLEANUP_DONE = 2,
2150};
2151
2152/*
2153 * This is called in transaction commmit time. If there are no orphan
2154 * files in the subvolume, it removes orphan item and frees block_rsv
2155 * structure.
2156 */
2157void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2158 struct btrfs_root *root)
2159{
2160 int ret;
2161
2162 if (!list_empty(&root->orphan_list) ||
2163 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2164 return;
2165
2166 if (root->orphan_item_inserted &&
2167 btrfs_root_refs(&root->root_item) > 0) {
2168 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2169 root->root_key.objectid);
2170 BUG_ON(ret);
2171 root->orphan_item_inserted = 0;
2172 }
2173
2174 if (root->orphan_block_rsv) {
2175 WARN_ON(root->orphan_block_rsv->size > 0);
2176 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2177 root->orphan_block_rsv = NULL;
2178 }
2179}
2180
7b128766
JB
2181/*
2182 * This creates an orphan entry for the given inode in case something goes
2183 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2184 *
2185 * NOTE: caller of this function should reserve 5 units of metadata for
2186 * this function.
7b128766
JB
2187 */
2188int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2189{
2190 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2191 struct btrfs_block_rsv *block_rsv = NULL;
2192 int reserve = 0;
2193 int insert = 0;
2194 int ret;
7b128766 2195
d68fc57b
YZ
2196 if (!root->orphan_block_rsv) {
2197 block_rsv = btrfs_alloc_block_rsv(root);
2198 BUG_ON(!block_rsv);
2199 }
7b128766 2200
d68fc57b
YZ
2201 spin_lock(&root->orphan_lock);
2202 if (!root->orphan_block_rsv) {
2203 root->orphan_block_rsv = block_rsv;
2204 } else if (block_rsv) {
2205 btrfs_free_block_rsv(root, block_rsv);
2206 block_rsv = NULL;
7b128766 2207 }
7b128766 2208
d68fc57b
YZ
2209 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2210 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2211#if 0
2212 /*
2213 * For proper ENOSPC handling, we should do orphan
2214 * cleanup when mounting. But this introduces backward
2215 * compatibility issue.
2216 */
2217 if (!xchg(&root->orphan_item_inserted, 1))
2218 insert = 2;
2219 else
2220 insert = 1;
2221#endif
2222 insert = 1;
7b128766
JB
2223 }
2224
d68fc57b
YZ
2225 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2226 BTRFS_I(inode)->orphan_meta_reserved = 1;
2227 reserve = 1;
2228 }
2229 spin_unlock(&root->orphan_lock);
7b128766 2230
d68fc57b
YZ
2231 if (block_rsv)
2232 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2233
d68fc57b
YZ
2234 /* grab metadata reservation from transaction handle */
2235 if (reserve) {
2236 ret = btrfs_orphan_reserve_metadata(trans, inode);
2237 BUG_ON(ret);
2238 }
7b128766 2239
d68fc57b
YZ
2240 /* insert an orphan item to track this unlinked/truncated file */
2241 if (insert >= 1) {
2242 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2243 BUG_ON(ret);
2244 }
2245
2246 /* insert an orphan item to track subvolume contains orphan files */
2247 if (insert >= 2) {
2248 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2249 root->root_key.objectid);
2250 BUG_ON(ret);
2251 }
2252 return 0;
7b128766
JB
2253}
2254
2255/*
2256 * We have done the truncate/delete so we can go ahead and remove the orphan
2257 * item for this particular inode.
2258 */
2259int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2260{
2261 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2262 int delete_item = 0;
2263 int release_rsv = 0;
7b128766
JB
2264 int ret = 0;
2265
d68fc57b
YZ
2266 spin_lock(&root->orphan_lock);
2267 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2268 list_del_init(&BTRFS_I(inode)->i_orphan);
2269 delete_item = 1;
7b128766
JB
2270 }
2271
d68fc57b
YZ
2272 if (BTRFS_I(inode)->orphan_meta_reserved) {
2273 BTRFS_I(inode)->orphan_meta_reserved = 0;
2274 release_rsv = 1;
7b128766 2275 }
d68fc57b 2276 spin_unlock(&root->orphan_lock);
7b128766 2277
d68fc57b
YZ
2278 if (trans && delete_item) {
2279 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2280 BUG_ON(ret);
2281 }
7b128766 2282
d68fc57b
YZ
2283 if (release_rsv)
2284 btrfs_orphan_release_metadata(inode);
7b128766 2285
d68fc57b 2286 return 0;
7b128766
JB
2287}
2288
2289/*
2290 * this cleans up any orphans that may be left on the list from the last use
2291 * of this root.
2292 */
66b4ffd1 2293int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2294{
2295 struct btrfs_path *path;
2296 struct extent_buffer *leaf;
7b128766
JB
2297 struct btrfs_key key, found_key;
2298 struct btrfs_trans_handle *trans;
2299 struct inode *inode;
2300 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2301
d68fc57b 2302 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2303 return 0;
c71bf099
YZ
2304
2305 path = btrfs_alloc_path();
66b4ffd1
JB
2306 if (!path) {
2307 ret = -ENOMEM;
2308 goto out;
2309 }
7b128766
JB
2310 path->reada = -1;
2311
2312 key.objectid = BTRFS_ORPHAN_OBJECTID;
2313 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2314 key.offset = (u64)-1;
2315
7b128766
JB
2316 while (1) {
2317 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2318 if (ret < 0)
2319 goto out;
7b128766
JB
2320
2321 /*
2322 * if ret == 0 means we found what we were searching for, which
2323 * is weird, but possible, so only screw with path if we didnt
2324 * find the key and see if we have stuff that matches
2325 */
2326 if (ret > 0) {
66b4ffd1 2327 ret = 0;
7b128766
JB
2328 if (path->slots[0] == 0)
2329 break;
2330 path->slots[0]--;
2331 }
2332
2333 /* pull out the item */
2334 leaf = path->nodes[0];
7b128766
JB
2335 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2336
2337 /* make sure the item matches what we want */
2338 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2339 break;
2340 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2341 break;
2342
2343 /* release the path since we're done with it */
2344 btrfs_release_path(root, path);
2345
2346 /*
2347 * this is where we are basically btrfs_lookup, without the
2348 * crossing root thing. we store the inode number in the
2349 * offset of the orphan item.
2350 */
5d4f98a2
YZ
2351 found_key.objectid = found_key.offset;
2352 found_key.type = BTRFS_INODE_ITEM_KEY;
2353 found_key.offset = 0;
73f73415 2354 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2355 if (IS_ERR(inode)) {
2356 ret = PTR_ERR(inode);
2357 goto out;
2358 }
7b128766 2359
7b128766
JB
2360 /*
2361 * add this inode to the orphan list so btrfs_orphan_del does
2362 * the proper thing when we hit it
2363 */
d68fc57b 2364 spin_lock(&root->orphan_lock);
7b128766 2365 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2366 spin_unlock(&root->orphan_lock);
7b128766
JB
2367
2368 /*
2369 * if this is a bad inode, means we actually succeeded in
2370 * removing the inode, but not the orphan record, which means
2371 * we need to manually delete the orphan since iput will just
2372 * do a destroy_inode
2373 */
2374 if (is_bad_inode(inode)) {
a22285a6 2375 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2376 if (IS_ERR(trans)) {
2377 ret = PTR_ERR(trans);
2378 goto out;
2379 }
7b128766 2380 btrfs_orphan_del(trans, inode);
5b21f2ed 2381 btrfs_end_transaction(trans, root);
7b128766
JB
2382 iput(inode);
2383 continue;
2384 }
2385
2386 /* if we have links, this was a truncate, lets do that */
2387 if (inode->i_nlink) {
a41ad394
JB
2388 if (!S_ISREG(inode->i_mode)) {
2389 WARN_ON(1);
2390 iput(inode);
2391 continue;
2392 }
7b128766 2393 nr_truncate++;
66b4ffd1 2394 ret = btrfs_truncate(inode);
7b128766
JB
2395 } else {
2396 nr_unlink++;
2397 }
2398
2399 /* this will do delete_inode and everything for us */
2400 iput(inode);
66b4ffd1
JB
2401 if (ret)
2402 goto out;
7b128766 2403 }
d68fc57b
YZ
2404 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2405
2406 if (root->orphan_block_rsv)
2407 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2408 (u64)-1);
2409
2410 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2411 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2412 if (!IS_ERR(trans))
2413 btrfs_end_transaction(trans, root);
d68fc57b 2414 }
7b128766
JB
2415
2416 if (nr_unlink)
2417 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2418 if (nr_truncate)
2419 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2420
2421out:
2422 if (ret)
2423 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2424 btrfs_free_path(path);
2425 return ret;
7b128766
JB
2426}
2427
46a53cca
CM
2428/*
2429 * very simple check to peek ahead in the leaf looking for xattrs. If we
2430 * don't find any xattrs, we know there can't be any acls.
2431 *
2432 * slot is the slot the inode is in, objectid is the objectid of the inode
2433 */
2434static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2435 int slot, u64 objectid)
2436{
2437 u32 nritems = btrfs_header_nritems(leaf);
2438 struct btrfs_key found_key;
2439 int scanned = 0;
2440
2441 slot++;
2442 while (slot < nritems) {
2443 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2444
2445 /* we found a different objectid, there must not be acls */
2446 if (found_key.objectid != objectid)
2447 return 0;
2448
2449 /* we found an xattr, assume we've got an acl */
2450 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2451 return 1;
2452
2453 /*
2454 * we found a key greater than an xattr key, there can't
2455 * be any acls later on
2456 */
2457 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2458 return 0;
2459
2460 slot++;
2461 scanned++;
2462
2463 /*
2464 * it goes inode, inode backrefs, xattrs, extents,
2465 * so if there are a ton of hard links to an inode there can
2466 * be a lot of backrefs. Don't waste time searching too hard,
2467 * this is just an optimization
2468 */
2469 if (scanned >= 8)
2470 break;
2471 }
2472 /* we hit the end of the leaf before we found an xattr or
2473 * something larger than an xattr. We have to assume the inode
2474 * has acls
2475 */
2476 return 1;
2477}
2478
d352ac68
CM
2479/*
2480 * read an inode from the btree into the in-memory inode
2481 */
5d4f98a2 2482static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2483{
2484 struct btrfs_path *path;
5f39d397 2485 struct extent_buffer *leaf;
39279cc3 2486 struct btrfs_inode_item *inode_item;
0b86a832 2487 struct btrfs_timespec *tspec;
39279cc3
CM
2488 struct btrfs_root *root = BTRFS_I(inode)->root;
2489 struct btrfs_key location;
46a53cca 2490 int maybe_acls;
39279cc3 2491 u64 alloc_group_block;
618e21d5 2492 u32 rdev;
39279cc3
CM
2493 int ret;
2494
2495 path = btrfs_alloc_path();
2496 BUG_ON(!path);
39279cc3 2497 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2498
39279cc3 2499 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2500 if (ret)
39279cc3 2501 goto make_bad;
39279cc3 2502
5f39d397
CM
2503 leaf = path->nodes[0];
2504 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2505 struct btrfs_inode_item);
2506
2507 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2508 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2509 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2510 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2511 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2512
2513 tspec = btrfs_inode_atime(inode_item);
2514 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2515 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2516
2517 tspec = btrfs_inode_mtime(inode_item);
2518 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521 tspec = btrfs_inode_ctime(inode_item);
2522 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
a76a3cd4 2525 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2526 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2527 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2528 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2529 inode->i_rdev = 0;
5f39d397
CM
2530 rdev = btrfs_inode_rdev(leaf, inode_item);
2531
aec7477b 2532 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2533 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2534
5f39d397 2535 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2536
46a53cca
CM
2537 /*
2538 * try to precache a NULL acl entry for files that don't have
2539 * any xattrs or acls
2540 */
2541 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2542 if (!maybe_acls)
2543 cache_no_acl(inode);
46a53cca 2544
d2fb3437
YZ
2545 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2546 alloc_group_block, 0);
39279cc3
CM
2547 btrfs_free_path(path);
2548 inode_item = NULL;
2549
39279cc3 2550 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2551 case S_IFREG:
2552 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2553 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2554 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2555 inode->i_fop = &btrfs_file_operations;
2556 inode->i_op = &btrfs_file_inode_operations;
2557 break;
2558 case S_IFDIR:
2559 inode->i_fop = &btrfs_dir_file_operations;
2560 if (root == root->fs_info->tree_root)
2561 inode->i_op = &btrfs_dir_ro_inode_operations;
2562 else
2563 inode->i_op = &btrfs_dir_inode_operations;
2564 break;
2565 case S_IFLNK:
2566 inode->i_op = &btrfs_symlink_inode_operations;
2567 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2568 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2569 break;
618e21d5 2570 default:
0279b4cd 2571 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2572 init_special_inode(inode, inode->i_mode, rdev);
2573 break;
39279cc3 2574 }
6cbff00f
CH
2575
2576 btrfs_update_iflags(inode);
39279cc3
CM
2577 return;
2578
2579make_bad:
39279cc3 2580 btrfs_free_path(path);
39279cc3
CM
2581 make_bad_inode(inode);
2582}
2583
d352ac68
CM
2584/*
2585 * given a leaf and an inode, copy the inode fields into the leaf
2586 */
e02119d5
CM
2587static void fill_inode_item(struct btrfs_trans_handle *trans,
2588 struct extent_buffer *leaf,
5f39d397 2589 struct btrfs_inode_item *item,
39279cc3
CM
2590 struct inode *inode)
2591{
12ddb96c
JB
2592 if (!leaf->map_token)
2593 map_private_extent_buffer(leaf, (unsigned long)item,
2594 sizeof(struct btrfs_inode_item),
2595 &leaf->map_token, &leaf->kaddr,
2596 &leaf->map_start, &leaf->map_len,
2597 KM_USER1);
2598
5f39d397
CM
2599 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2600 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2601 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2602 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2603 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2604
2605 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2606 inode->i_atime.tv_sec);
2607 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2608 inode->i_atime.tv_nsec);
2609
2610 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2611 inode->i_mtime.tv_sec);
2612 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2613 inode->i_mtime.tv_nsec);
2614
2615 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2616 inode->i_ctime.tv_sec);
2617 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2618 inode->i_ctime.tv_nsec);
2619
a76a3cd4 2620 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2621 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2622 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2623 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2624 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2625 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2626 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
12ddb96c
JB
2627
2628 if (leaf->map_token) {
2629 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2630 leaf->map_token = NULL;
2631 }
39279cc3
CM
2632}
2633
d352ac68
CM
2634/*
2635 * copy everything in the in-memory inode into the btree.
2636 */
d397712b
CM
2637noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2638 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2639{
2640 struct btrfs_inode_item *inode_item;
2641 struct btrfs_path *path;
5f39d397 2642 struct extent_buffer *leaf;
39279cc3
CM
2643 int ret;
2644
2645 path = btrfs_alloc_path();
2646 BUG_ON(!path);
b9473439 2647 path->leave_spinning = 1;
39279cc3
CM
2648 ret = btrfs_lookup_inode(trans, root, path,
2649 &BTRFS_I(inode)->location, 1);
2650 if (ret) {
2651 if (ret > 0)
2652 ret = -ENOENT;
2653 goto failed;
2654 }
2655
b4ce94de 2656 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2657 leaf = path->nodes[0];
2658 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2659 struct btrfs_inode_item);
2660
e02119d5 2661 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2662 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2663 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2664 ret = 0;
2665failed:
39279cc3
CM
2666 btrfs_free_path(path);
2667 return ret;
2668}
2669
2670
d352ac68
CM
2671/*
2672 * unlink helper that gets used here in inode.c and in the tree logging
2673 * recovery code. It remove a link in a directory with a given name, and
2674 * also drops the back refs in the inode to the directory
2675 */
92986796
AV
2676static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2677 struct btrfs_root *root,
2678 struct inode *dir, struct inode *inode,
2679 const char *name, int name_len)
39279cc3
CM
2680{
2681 struct btrfs_path *path;
39279cc3 2682 int ret = 0;
5f39d397 2683 struct extent_buffer *leaf;
39279cc3 2684 struct btrfs_dir_item *di;
5f39d397 2685 struct btrfs_key key;
aec7477b 2686 u64 index;
39279cc3
CM
2687
2688 path = btrfs_alloc_path();
54aa1f4d
CM
2689 if (!path) {
2690 ret = -ENOMEM;
554233a6 2691 goto out;
54aa1f4d
CM
2692 }
2693
b9473439 2694 path->leave_spinning = 1;
39279cc3
CM
2695 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2696 name, name_len, -1);
2697 if (IS_ERR(di)) {
2698 ret = PTR_ERR(di);
2699 goto err;
2700 }
2701 if (!di) {
2702 ret = -ENOENT;
2703 goto err;
2704 }
5f39d397
CM
2705 leaf = path->nodes[0];
2706 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2707 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2708 if (ret)
2709 goto err;
39279cc3
CM
2710 btrfs_release_path(root, path);
2711
aec7477b 2712 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2713 inode->i_ino,
2714 dir->i_ino, &index);
aec7477b 2715 if (ret) {
d397712b 2716 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2717 "inode %lu parent %lu\n", name_len, name,
e02119d5 2718 inode->i_ino, dir->i_ino);
aec7477b
JB
2719 goto err;
2720 }
2721
39279cc3 2722 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2723 index, name, name_len, -1);
39279cc3
CM
2724 if (IS_ERR(di)) {
2725 ret = PTR_ERR(di);
2726 goto err;
2727 }
2728 if (!di) {
2729 ret = -ENOENT;
2730 goto err;
2731 }
2732 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2733 btrfs_release_path(root, path);
39279cc3 2734
e02119d5
CM
2735 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2736 inode, dir->i_ino);
49eb7e46 2737 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2738
2739 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2740 dir, index);
6418c961
CM
2741 if (ret == -ENOENT)
2742 ret = 0;
39279cc3
CM
2743err:
2744 btrfs_free_path(path);
e02119d5
CM
2745 if (ret)
2746 goto out;
2747
2748 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2749 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2750 btrfs_update_inode(trans, root, dir);
e02119d5 2751out:
39279cc3
CM
2752 return ret;
2753}
2754
92986796
AV
2755int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2756 struct btrfs_root *root,
2757 struct inode *dir, struct inode *inode,
2758 const char *name, int name_len)
2759{
2760 int ret;
2761 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2762 if (!ret) {
2763 btrfs_drop_nlink(inode);
2764 ret = btrfs_update_inode(trans, root, inode);
2765 }
2766 return ret;
2767}
2768
2769
a22285a6
YZ
2770/* helper to check if there is any shared block in the path */
2771static int check_path_shared(struct btrfs_root *root,
2772 struct btrfs_path *path)
39279cc3 2773{
a22285a6
YZ
2774 struct extent_buffer *eb;
2775 int level;
0e4dcbef 2776 u64 refs = 1;
5df6a9f6 2777
a22285a6 2778 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2779 int ret;
2780
a22285a6
YZ
2781 if (!path->nodes[level])
2782 break;
2783 eb = path->nodes[level];
2784 if (!btrfs_block_can_be_shared(root, eb))
2785 continue;
2786 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2787 &refs, NULL);
2788 if (refs > 1)
2789 return 1;
5df6a9f6 2790 }
dedefd72 2791 return 0;
39279cc3
CM
2792}
2793
a22285a6
YZ
2794/*
2795 * helper to start transaction for unlink and rmdir.
2796 *
2797 * unlink and rmdir are special in btrfs, they do not always free space.
2798 * so in enospc case, we should make sure they will free space before
2799 * allowing them to use the global metadata reservation.
2800 */
2801static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2802 struct dentry *dentry)
4df27c4d 2803{
39279cc3 2804 struct btrfs_trans_handle *trans;
a22285a6 2805 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2806 struct btrfs_path *path;
a22285a6 2807 struct btrfs_inode_ref *ref;
4df27c4d 2808 struct btrfs_dir_item *di;
7b128766 2809 struct inode *inode = dentry->d_inode;
4df27c4d 2810 u64 index;
a22285a6
YZ
2811 int check_link = 1;
2812 int err = -ENOSPC;
4df27c4d
YZ
2813 int ret;
2814
a22285a6
YZ
2815 trans = btrfs_start_transaction(root, 10);
2816 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2817 return trans;
4df27c4d 2818
a22285a6
YZ
2819 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2820 return ERR_PTR(-ENOSPC);
4df27c4d 2821
a22285a6
YZ
2822 /* check if there is someone else holds reference */
2823 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2824 return ERR_PTR(-ENOSPC);
4df27c4d 2825
a22285a6
YZ
2826 if (atomic_read(&inode->i_count) > 2)
2827 return ERR_PTR(-ENOSPC);
4df27c4d 2828
a22285a6
YZ
2829 if (xchg(&root->fs_info->enospc_unlink, 1))
2830 return ERR_PTR(-ENOSPC);
2831
2832 path = btrfs_alloc_path();
2833 if (!path) {
2834 root->fs_info->enospc_unlink = 0;
2835 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2836 }
2837
a22285a6 2838 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2839 if (IS_ERR(trans)) {
a22285a6
YZ
2840 btrfs_free_path(path);
2841 root->fs_info->enospc_unlink = 0;
2842 return trans;
2843 }
4df27c4d 2844
a22285a6
YZ
2845 path->skip_locking = 1;
2846 path->search_commit_root = 1;
4df27c4d 2847
a22285a6
YZ
2848 ret = btrfs_lookup_inode(trans, root, path,
2849 &BTRFS_I(dir)->location, 0);
2850 if (ret < 0) {
2851 err = ret;
2852 goto out;
2853 }
2854 if (ret == 0) {
2855 if (check_path_shared(root, path))
2856 goto out;
2857 } else {
2858 check_link = 0;
5df6a9f6 2859 }
a22285a6
YZ
2860 btrfs_release_path(root, path);
2861
2862 ret = btrfs_lookup_inode(trans, root, path,
2863 &BTRFS_I(inode)->location, 0);
2864 if (ret < 0) {
2865 err = ret;
2866 goto out;
2867 }
2868 if (ret == 0) {
2869 if (check_path_shared(root, path))
2870 goto out;
2871 } else {
2872 check_link = 0;
2873 }
2874 btrfs_release_path(root, path);
2875
2876 if (ret == 0 && S_ISREG(inode->i_mode)) {
2877 ret = btrfs_lookup_file_extent(trans, root, path,
2878 inode->i_ino, (u64)-1, 0);
2879 if (ret < 0) {
2880 err = ret;
2881 goto out;
2882 }
2883 BUG_ON(ret == 0);
2884 if (check_path_shared(root, path))
2885 goto out;
2886 btrfs_release_path(root, path);
2887 }
2888
2889 if (!check_link) {
2890 err = 0;
2891 goto out;
2892 }
2893
2894 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2895 dentry->d_name.name, dentry->d_name.len, 0);
2896 if (IS_ERR(di)) {
2897 err = PTR_ERR(di);
2898 goto out;
2899 }
2900 if (di) {
2901 if (check_path_shared(root, path))
2902 goto out;
2903 } else {
2904 err = 0;
2905 goto out;
2906 }
2907 btrfs_release_path(root, path);
2908
2909 ref = btrfs_lookup_inode_ref(trans, root, path,
2910 dentry->d_name.name, dentry->d_name.len,
2911 inode->i_ino, dir->i_ino, 0);
2912 if (IS_ERR(ref)) {
2913 err = PTR_ERR(ref);
2914 goto out;
2915 }
2916 BUG_ON(!ref);
2917 if (check_path_shared(root, path))
2918 goto out;
2919 index = btrfs_inode_ref_index(path->nodes[0], ref);
2920 btrfs_release_path(root, path);
2921
2922 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2923 dentry->d_name.name, dentry->d_name.len, 0);
2924 if (IS_ERR(di)) {
2925 err = PTR_ERR(di);
2926 goto out;
2927 }
2928 BUG_ON(ret == -ENOENT);
2929 if (check_path_shared(root, path))
2930 goto out;
2931
2932 err = 0;
2933out:
2934 btrfs_free_path(path);
2935 if (err) {
2936 btrfs_end_transaction(trans, root);
2937 root->fs_info->enospc_unlink = 0;
2938 return ERR_PTR(err);
2939 }
2940
2941 trans->block_rsv = &root->fs_info->global_block_rsv;
2942 return trans;
2943}
2944
2945static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2946 struct btrfs_root *root)
2947{
2948 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2949 BUG_ON(!root->fs_info->enospc_unlink);
2950 root->fs_info->enospc_unlink = 0;
2951 }
2952 btrfs_end_transaction_throttle(trans, root);
2953}
2954
2955static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2956{
2957 struct btrfs_root *root = BTRFS_I(dir)->root;
2958 struct btrfs_trans_handle *trans;
2959 struct inode *inode = dentry->d_inode;
2960 int ret;
2961 unsigned long nr = 0;
2962
2963 trans = __unlink_start_trans(dir, dentry);
2964 if (IS_ERR(trans))
2965 return PTR_ERR(trans);
5f39d397 2966
39279cc3 2967 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2968
2969 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2970
e02119d5
CM
2971 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2972 dentry->d_name.name, dentry->d_name.len);
a22285a6 2973 BUG_ON(ret);
7b128766 2974
a22285a6 2975 if (inode->i_nlink == 0) {
7b128766 2976 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2977 BUG_ON(ret);
2978 }
7b128766 2979
d3c2fdcf 2980 nr = trans->blocks_used;
a22285a6 2981 __unlink_end_trans(trans, root);
d3c2fdcf 2982 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2983 return ret;
2984}
2985
4df27c4d
YZ
2986int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2987 struct btrfs_root *root,
2988 struct inode *dir, u64 objectid,
2989 const char *name, int name_len)
2990{
2991 struct btrfs_path *path;
2992 struct extent_buffer *leaf;
2993 struct btrfs_dir_item *di;
2994 struct btrfs_key key;
2995 u64 index;
2996 int ret;
2997
2998 path = btrfs_alloc_path();
2999 if (!path)
3000 return -ENOMEM;
3001
3002 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3003 name, name_len, -1);
3004 BUG_ON(!di || IS_ERR(di));
3005
3006 leaf = path->nodes[0];
3007 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3008 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3009 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3010 BUG_ON(ret);
3011 btrfs_release_path(root, path);
3012
3013 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3014 objectid, root->root_key.objectid,
3015 dir->i_ino, &index, name, name_len);
3016 if (ret < 0) {
3017 BUG_ON(ret != -ENOENT);
3018 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3019 name, name_len);
3020 BUG_ON(!di || IS_ERR(di));
3021
3022 leaf = path->nodes[0];
3023 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3024 btrfs_release_path(root, path);
3025 index = key.offset;
3026 }
3027
3028 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3029 index, name, name_len, -1);
3030 BUG_ON(!di || IS_ERR(di));
3031
3032 leaf = path->nodes[0];
3033 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3034 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3035 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3036 BUG_ON(ret);
3037 btrfs_release_path(root, path);
3038
3039 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3040 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3041 ret = btrfs_update_inode(trans, root, dir);
3042 BUG_ON(ret);
4df27c4d
YZ
3043
3044 btrfs_free_path(path);
3045 return 0;
3046}
3047
39279cc3
CM
3048static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3049{
3050 struct inode *inode = dentry->d_inode;
1832a6d5 3051 int err = 0;
39279cc3 3052 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3053 struct btrfs_trans_handle *trans;
1832a6d5 3054 unsigned long nr = 0;
39279cc3 3055
3394e160 3056 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3057 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3058 return -ENOTEMPTY;
3059
a22285a6
YZ
3060 trans = __unlink_start_trans(dir, dentry);
3061 if (IS_ERR(trans))
5df6a9f6 3062 return PTR_ERR(trans);
5df6a9f6 3063
39279cc3 3064 btrfs_set_trans_block_group(trans, dir);
39279cc3 3065
4df27c4d
YZ
3066 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3067 err = btrfs_unlink_subvol(trans, root, dir,
3068 BTRFS_I(inode)->location.objectid,
3069 dentry->d_name.name,
3070 dentry->d_name.len);
3071 goto out;
3072 }
3073
7b128766
JB
3074 err = btrfs_orphan_add(trans, inode);
3075 if (err)
4df27c4d 3076 goto out;
7b128766 3077
39279cc3 3078 /* now the directory is empty */
e02119d5
CM
3079 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3080 dentry->d_name.name, dentry->d_name.len);
d397712b 3081 if (!err)
dbe674a9 3082 btrfs_i_size_write(inode, 0);
4df27c4d 3083out:
d3c2fdcf 3084 nr = trans->blocks_used;
a22285a6 3085 __unlink_end_trans(trans, root);
d3c2fdcf 3086 btrfs_btree_balance_dirty(root, nr);
3954401f 3087
39279cc3
CM
3088 return err;
3089}
3090
d20f7043 3091#if 0
323ac95b
CM
3092/*
3093 * when truncating bytes in a file, it is possible to avoid reading
3094 * the leaves that contain only checksum items. This can be the
3095 * majority of the IO required to delete a large file, but it must
3096 * be done carefully.
3097 *
3098 * The keys in the level just above the leaves are checked to make sure
3099 * the lowest key in a given leaf is a csum key, and starts at an offset
3100 * after the new size.
3101 *
3102 * Then the key for the next leaf is checked to make sure it also has
3103 * a checksum item for the same file. If it does, we know our target leaf
3104 * contains only checksum items, and it can be safely freed without reading
3105 * it.
3106 *
3107 * This is just an optimization targeted at large files. It may do
3108 * nothing. It will return 0 unless things went badly.
3109 */
3110static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3111 struct btrfs_root *root,
3112 struct btrfs_path *path,
3113 struct inode *inode, u64 new_size)
3114{
3115 struct btrfs_key key;
3116 int ret;
3117 int nritems;
3118 struct btrfs_key found_key;
3119 struct btrfs_key other_key;
5b84e8d6
YZ
3120 struct btrfs_leaf_ref *ref;
3121 u64 leaf_gen;
3122 u64 leaf_start;
323ac95b
CM
3123
3124 path->lowest_level = 1;
3125 key.objectid = inode->i_ino;
3126 key.type = BTRFS_CSUM_ITEM_KEY;
3127 key.offset = new_size;
3128again:
3129 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3130 if (ret < 0)
3131 goto out;
3132
3133 if (path->nodes[1] == NULL) {
3134 ret = 0;
3135 goto out;
3136 }
3137 ret = 0;
3138 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3139 nritems = btrfs_header_nritems(path->nodes[1]);
3140
3141 if (!nritems)
3142 goto out;
3143
3144 if (path->slots[1] >= nritems)
3145 goto next_node;
3146
3147 /* did we find a key greater than anything we want to delete? */
3148 if (found_key.objectid > inode->i_ino ||
3149 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3150 goto out;
3151
3152 /* we check the next key in the node to make sure the leave contains
3153 * only checksum items. This comparison doesn't work if our
3154 * leaf is the last one in the node
3155 */
3156 if (path->slots[1] + 1 >= nritems) {
3157next_node:
3158 /* search forward from the last key in the node, this
3159 * will bring us into the next node in the tree
3160 */
3161 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3162
3163 /* unlikely, but we inc below, so check to be safe */
3164 if (found_key.offset == (u64)-1)
3165 goto out;
3166
3167 /* search_forward needs a path with locks held, do the
3168 * search again for the original key. It is possible
3169 * this will race with a balance and return a path that
3170 * we could modify, but this drop is just an optimization
3171 * and is allowed to miss some leaves.
3172 */
3173 btrfs_release_path(root, path);
3174 found_key.offset++;
3175
3176 /* setup a max key for search_forward */
3177 other_key.offset = (u64)-1;
3178 other_key.type = key.type;
3179 other_key.objectid = key.objectid;
3180
3181 path->keep_locks = 1;
3182 ret = btrfs_search_forward(root, &found_key, &other_key,
3183 path, 0, 0);
3184 path->keep_locks = 0;
3185 if (ret || found_key.objectid != key.objectid ||
3186 found_key.type != key.type) {
3187 ret = 0;
3188 goto out;
3189 }
3190
3191 key.offset = found_key.offset;
3192 btrfs_release_path(root, path);
3193 cond_resched();
3194 goto again;
3195 }
3196
3197 /* we know there's one more slot after us in the tree,
3198 * read that key so we can verify it is also a checksum item
3199 */
3200 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3201
3202 if (found_key.objectid < inode->i_ino)
3203 goto next_key;
3204
3205 if (found_key.type != key.type || found_key.offset < new_size)
3206 goto next_key;
3207
3208 /*
3209 * if the key for the next leaf isn't a csum key from this objectid,
3210 * we can't be sure there aren't good items inside this leaf.
3211 * Bail out
3212 */
3213 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3214 goto out;
3215
5b84e8d6
YZ
3216 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3217 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3218 /*
3219 * it is safe to delete this leaf, it contains only
3220 * csum items from this inode at an offset >= new_size
3221 */
5b84e8d6 3222 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3223 BUG_ON(ret);
3224
5b84e8d6
YZ
3225 if (root->ref_cows && leaf_gen < trans->transid) {
3226 ref = btrfs_alloc_leaf_ref(root, 0);
3227 if (ref) {
3228 ref->root_gen = root->root_key.offset;
3229 ref->bytenr = leaf_start;
3230 ref->owner = 0;
3231 ref->generation = leaf_gen;
3232 ref->nritems = 0;
3233
bd56b302
CM
3234 btrfs_sort_leaf_ref(ref);
3235
5b84e8d6
YZ
3236 ret = btrfs_add_leaf_ref(root, ref, 0);
3237 WARN_ON(ret);
3238 btrfs_free_leaf_ref(root, ref);
3239 } else {
3240 WARN_ON(1);
3241 }
3242 }
323ac95b
CM
3243next_key:
3244 btrfs_release_path(root, path);
3245
3246 if (other_key.objectid == inode->i_ino &&
3247 other_key.type == key.type && other_key.offset > key.offset) {
3248 key.offset = other_key.offset;
3249 cond_resched();
3250 goto again;
3251 }
3252 ret = 0;
3253out:
3254 /* fixup any changes we've made to the path */
3255 path->lowest_level = 0;
3256 path->keep_locks = 0;
3257 btrfs_release_path(root, path);
3258 return ret;
3259}
3260
d20f7043
CM
3261#endif
3262
39279cc3
CM
3263/*
3264 * this can truncate away extent items, csum items and directory items.
3265 * It starts at a high offset and removes keys until it can't find
d352ac68 3266 * any higher than new_size
39279cc3
CM
3267 *
3268 * csum items that cross the new i_size are truncated to the new size
3269 * as well.
7b128766
JB
3270 *
3271 * min_type is the minimum key type to truncate down to. If set to 0, this
3272 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3273 */
8082510e
YZ
3274int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3275 struct btrfs_root *root,
3276 struct inode *inode,
3277 u64 new_size, u32 min_type)
39279cc3 3278{
39279cc3 3279 struct btrfs_path *path;
5f39d397 3280 struct extent_buffer *leaf;
39279cc3 3281 struct btrfs_file_extent_item *fi;
8082510e
YZ
3282 struct btrfs_key key;
3283 struct btrfs_key found_key;
39279cc3 3284 u64 extent_start = 0;
db94535d 3285 u64 extent_num_bytes = 0;
5d4f98a2 3286 u64 extent_offset = 0;
39279cc3 3287 u64 item_end = 0;
8082510e
YZ
3288 u64 mask = root->sectorsize - 1;
3289 u32 found_type = (u8)-1;
39279cc3
CM
3290 int found_extent;
3291 int del_item;
85e21bac
CM
3292 int pending_del_nr = 0;
3293 int pending_del_slot = 0;
179e29e4 3294 int extent_type = -1;
771ed689 3295 int encoding;
8082510e
YZ
3296 int ret;
3297 int err = 0;
3298
3299 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3300
0af3d00b 3301 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3302 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3303
39279cc3
CM
3304 path = btrfs_alloc_path();
3305 BUG_ON(!path);
33c17ad5 3306 path->reada = -1;
5f39d397 3307
39279cc3
CM
3308 key.objectid = inode->i_ino;
3309 key.offset = (u64)-1;
5f39d397
CM
3310 key.type = (u8)-1;
3311
85e21bac 3312search_again:
b9473439 3313 path->leave_spinning = 1;
85e21bac 3314 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3315 if (ret < 0) {
3316 err = ret;
3317 goto out;
3318 }
d397712b 3319
85e21bac 3320 if (ret > 0) {
e02119d5
CM
3321 /* there are no items in the tree for us to truncate, we're
3322 * done
3323 */
8082510e
YZ
3324 if (path->slots[0] == 0)
3325 goto out;
85e21bac
CM
3326 path->slots[0]--;
3327 }
3328
d397712b 3329 while (1) {
39279cc3 3330 fi = NULL;
5f39d397
CM
3331 leaf = path->nodes[0];
3332 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3333 found_type = btrfs_key_type(&found_key);
771ed689 3334 encoding = 0;
39279cc3 3335
5f39d397 3336 if (found_key.objectid != inode->i_ino)
39279cc3 3337 break;
5f39d397 3338
85e21bac 3339 if (found_type < min_type)
39279cc3
CM
3340 break;
3341
5f39d397 3342 item_end = found_key.offset;
39279cc3 3343 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3344 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3345 struct btrfs_file_extent_item);
179e29e4 3346 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3347 encoding = btrfs_file_extent_compression(leaf, fi);
3348 encoding |= btrfs_file_extent_encryption(leaf, fi);
3349 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3350
179e29e4 3351 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3352 item_end +=
db94535d 3353 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3354 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3355 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3356 fi);
39279cc3 3357 }
008630c1 3358 item_end--;
39279cc3 3359 }
8082510e
YZ
3360 if (found_type > min_type) {
3361 del_item = 1;
3362 } else {
3363 if (item_end < new_size)
b888db2b 3364 break;
8082510e
YZ
3365 if (found_key.offset >= new_size)
3366 del_item = 1;
3367 else
3368 del_item = 0;
39279cc3 3369 }
39279cc3 3370 found_extent = 0;
39279cc3 3371 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3372 if (found_type != BTRFS_EXTENT_DATA_KEY)
3373 goto delete;
3374
3375 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3376 u64 num_dec;
db94535d 3377 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3378 if (!del_item && !encoding) {
db94535d
CM
3379 u64 orig_num_bytes =
3380 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3381 extent_num_bytes = new_size -
5f39d397 3382 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3383 extent_num_bytes = extent_num_bytes &
3384 ~((u64)root->sectorsize - 1);
db94535d
CM
3385 btrfs_set_file_extent_num_bytes(leaf, fi,
3386 extent_num_bytes);
3387 num_dec = (orig_num_bytes -
9069218d 3388 extent_num_bytes);
e02119d5 3389 if (root->ref_cows && extent_start != 0)
a76a3cd4 3390 inode_sub_bytes(inode, num_dec);
5f39d397 3391 btrfs_mark_buffer_dirty(leaf);
39279cc3 3392 } else {
db94535d
CM
3393 extent_num_bytes =
3394 btrfs_file_extent_disk_num_bytes(leaf,
3395 fi);
5d4f98a2
YZ
3396 extent_offset = found_key.offset -
3397 btrfs_file_extent_offset(leaf, fi);
3398
39279cc3 3399 /* FIXME blocksize != 4096 */
9069218d 3400 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3401 if (extent_start != 0) {
3402 found_extent = 1;
e02119d5 3403 if (root->ref_cows)
a76a3cd4 3404 inode_sub_bytes(inode, num_dec);
e02119d5 3405 }
39279cc3 3406 }
9069218d 3407 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3408 /*
3409 * we can't truncate inline items that have had
3410 * special encodings
3411 */
3412 if (!del_item &&
3413 btrfs_file_extent_compression(leaf, fi) == 0 &&
3414 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3415 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3416 u32 size = new_size - found_key.offset;
3417
3418 if (root->ref_cows) {
a76a3cd4
YZ
3419 inode_sub_bytes(inode, item_end + 1 -
3420 new_size);
e02119d5
CM
3421 }
3422 size =
3423 btrfs_file_extent_calc_inline_size(size);
9069218d 3424 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3425 size, 1);
9069218d 3426 BUG_ON(ret);
e02119d5 3427 } else if (root->ref_cows) {
a76a3cd4
YZ
3428 inode_sub_bytes(inode, item_end + 1 -
3429 found_key.offset);
9069218d 3430 }
39279cc3 3431 }
179e29e4 3432delete:
39279cc3 3433 if (del_item) {
85e21bac
CM
3434 if (!pending_del_nr) {
3435 /* no pending yet, add ourselves */
3436 pending_del_slot = path->slots[0];
3437 pending_del_nr = 1;
3438 } else if (pending_del_nr &&
3439 path->slots[0] + 1 == pending_del_slot) {
3440 /* hop on the pending chunk */
3441 pending_del_nr++;
3442 pending_del_slot = path->slots[0];
3443 } else {
d397712b 3444 BUG();
85e21bac 3445 }
39279cc3
CM
3446 } else {
3447 break;
3448 }
0af3d00b
JB
3449 if (found_extent && (root->ref_cows ||
3450 root == root->fs_info->tree_root)) {
b9473439 3451 btrfs_set_path_blocking(path);
39279cc3 3452 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3453 extent_num_bytes, 0,
3454 btrfs_header_owner(leaf),
3455 inode->i_ino, extent_offset);
39279cc3
CM
3456 BUG_ON(ret);
3457 }
85e21bac 3458
8082510e
YZ
3459 if (found_type == BTRFS_INODE_ITEM_KEY)
3460 break;
3461
3462 if (path->slots[0] == 0 ||
3463 path->slots[0] != pending_del_slot) {
3464 if (root->ref_cows) {
3465 err = -EAGAIN;
3466 goto out;
3467 }
3468 if (pending_del_nr) {
3469 ret = btrfs_del_items(trans, root, path,
3470 pending_del_slot,
3471 pending_del_nr);
3472 BUG_ON(ret);
3473 pending_del_nr = 0;
3474 }
85e21bac
CM
3475 btrfs_release_path(root, path);
3476 goto search_again;
8082510e
YZ
3477 } else {
3478 path->slots[0]--;
85e21bac 3479 }
39279cc3 3480 }
8082510e 3481out:
85e21bac
CM
3482 if (pending_del_nr) {
3483 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3484 pending_del_nr);
d68fc57b 3485 BUG_ON(ret);
85e21bac 3486 }
39279cc3 3487 btrfs_free_path(path);
8082510e 3488 return err;
39279cc3
CM
3489}
3490
3491/*
3492 * taken from block_truncate_page, but does cow as it zeros out
3493 * any bytes left in the last page in the file.
3494 */
3495static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3496{
3497 struct inode *inode = mapping->host;
db94535d 3498 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3499 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3500 struct btrfs_ordered_extent *ordered;
2ac55d41 3501 struct extent_state *cached_state = NULL;
e6dcd2dc 3502 char *kaddr;
db94535d 3503 u32 blocksize = root->sectorsize;
39279cc3
CM
3504 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3505 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3506 struct page *page;
39279cc3 3507 int ret = 0;
a52d9a80 3508 u64 page_start;
e6dcd2dc 3509 u64 page_end;
39279cc3
CM
3510
3511 if ((offset & (blocksize - 1)) == 0)
3512 goto out;
0ca1f7ce 3513 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3514 if (ret)
3515 goto out;
39279cc3
CM
3516
3517 ret = -ENOMEM;
211c17f5 3518again:
39279cc3 3519 page = grab_cache_page(mapping, index);
5d5e103a 3520 if (!page) {
0ca1f7ce 3521 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3522 goto out;
5d5e103a 3523 }
e6dcd2dc
CM
3524
3525 page_start = page_offset(page);
3526 page_end = page_start + PAGE_CACHE_SIZE - 1;
3527
39279cc3 3528 if (!PageUptodate(page)) {
9ebefb18 3529 ret = btrfs_readpage(NULL, page);
39279cc3 3530 lock_page(page);
211c17f5
CM
3531 if (page->mapping != mapping) {
3532 unlock_page(page);
3533 page_cache_release(page);
3534 goto again;
3535 }
39279cc3
CM
3536 if (!PageUptodate(page)) {
3537 ret = -EIO;
89642229 3538 goto out_unlock;
39279cc3
CM
3539 }
3540 }
211c17f5 3541 wait_on_page_writeback(page);
e6dcd2dc 3542
2ac55d41
JB
3543 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3544 GFP_NOFS);
e6dcd2dc
CM
3545 set_page_extent_mapped(page);
3546
3547 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3548 if (ordered) {
2ac55d41
JB
3549 unlock_extent_cached(io_tree, page_start, page_end,
3550 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3551 unlock_page(page);
3552 page_cache_release(page);
eb84ae03 3553 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3554 btrfs_put_ordered_extent(ordered);
3555 goto again;
3556 }
3557
2ac55d41 3558 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3559 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3560 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3561
2ac55d41
JB
3562 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3563 &cached_state);
9ed74f2d 3564 if (ret) {
2ac55d41
JB
3565 unlock_extent_cached(io_tree, page_start, page_end,
3566 &cached_state, GFP_NOFS);
9ed74f2d
JB
3567 goto out_unlock;
3568 }
3569
e6dcd2dc
CM
3570 ret = 0;
3571 if (offset != PAGE_CACHE_SIZE) {
3572 kaddr = kmap(page);
3573 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3574 flush_dcache_page(page);
3575 kunmap(page);
3576 }
247e743c 3577 ClearPageChecked(page);
e6dcd2dc 3578 set_page_dirty(page);
2ac55d41
JB
3579 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3580 GFP_NOFS);
39279cc3 3581
89642229 3582out_unlock:
5d5e103a 3583 if (ret)
0ca1f7ce 3584 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3585 unlock_page(page);
3586 page_cache_release(page);
3587out:
3588 return ret;
3589}
3590
695a0d0d
JB
3591/*
3592 * This function puts in dummy file extents for the area we're creating a hole
3593 * for. So if we are truncating this file to a larger size we need to insert
3594 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3595 * the range between oldsize and size
3596 */
a41ad394 3597int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3598{
9036c102
YZ
3599 struct btrfs_trans_handle *trans;
3600 struct btrfs_root *root = BTRFS_I(inode)->root;
3601 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3602 struct extent_map *em = NULL;
2ac55d41 3603 struct extent_state *cached_state = NULL;
9036c102 3604 u64 mask = root->sectorsize - 1;
a41ad394 3605 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3606 u64 block_end = (size + mask) & ~mask;
3607 u64 last_byte;
3608 u64 cur_offset;
3609 u64 hole_size;
9ed74f2d 3610 int err = 0;
39279cc3 3611
9036c102
YZ
3612 if (size <= hole_start)
3613 return 0;
3614
9036c102
YZ
3615 while (1) {
3616 struct btrfs_ordered_extent *ordered;
3617 btrfs_wait_ordered_range(inode, hole_start,
3618 block_end - hole_start);
2ac55d41
JB
3619 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3620 &cached_state, GFP_NOFS);
9036c102
YZ
3621 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3622 if (!ordered)
3623 break;
2ac55d41
JB
3624 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3625 &cached_state, GFP_NOFS);
9036c102
YZ
3626 btrfs_put_ordered_extent(ordered);
3627 }
39279cc3 3628
9036c102
YZ
3629 cur_offset = hole_start;
3630 while (1) {
3631 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3632 block_end - cur_offset, 0);
3633 BUG_ON(IS_ERR(em) || !em);
3634 last_byte = min(extent_map_end(em), block_end);
3635 last_byte = (last_byte + mask) & ~mask;
8082510e 3636 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3637 u64 hint_byte = 0;
9036c102 3638 hole_size = last_byte - cur_offset;
9ed74f2d 3639
a22285a6
YZ
3640 trans = btrfs_start_transaction(root, 2);
3641 if (IS_ERR(trans)) {
3642 err = PTR_ERR(trans);
9ed74f2d 3643 break;
a22285a6 3644 }
8082510e
YZ
3645 btrfs_set_trans_block_group(trans, inode);
3646
3647 err = btrfs_drop_extents(trans, inode, cur_offset,
3648 cur_offset + hole_size,
3649 &hint_byte, 1);
3893e33b
JB
3650 if (err)
3651 break;
8082510e 3652
9036c102
YZ
3653 err = btrfs_insert_file_extent(trans, root,
3654 inode->i_ino, cur_offset, 0,
3655 0, hole_size, 0, hole_size,
3656 0, 0, 0);
3893e33b
JB
3657 if (err)
3658 break;
8082510e 3659
9036c102
YZ
3660 btrfs_drop_extent_cache(inode, hole_start,
3661 last_byte - 1, 0);
8082510e
YZ
3662
3663 btrfs_end_transaction(trans, root);
9036c102
YZ
3664 }
3665 free_extent_map(em);
a22285a6 3666 em = NULL;
9036c102 3667 cur_offset = last_byte;
8082510e 3668 if (cur_offset >= block_end)
9036c102
YZ
3669 break;
3670 }
1832a6d5 3671
a22285a6 3672 free_extent_map(em);
2ac55d41
JB
3673 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3674 GFP_NOFS);
9036c102
YZ
3675 return err;
3676}
39279cc3 3677
a41ad394 3678static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3679{
a41ad394 3680 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3681 int ret;
3682
a41ad394 3683 if (newsize == oldsize)
8082510e
YZ
3684 return 0;
3685
a41ad394
JB
3686 if (newsize > oldsize) {
3687 i_size_write(inode, newsize);
3688 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3689 truncate_pagecache(inode, oldsize, newsize);
3690 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3691 if (ret) {
a41ad394 3692 btrfs_setsize(inode, oldsize);
8082510e
YZ
3693 return ret;
3694 }
3695
930f028a 3696 mark_inode_dirty(inode);
a41ad394 3697 } else {
8082510e 3698
a41ad394
JB
3699 /*
3700 * We're truncating a file that used to have good data down to
3701 * zero. Make sure it gets into the ordered flush list so that
3702 * any new writes get down to disk quickly.
3703 */
3704 if (newsize == 0)
3705 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3706
a41ad394
JB
3707 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3708 truncate_setsize(inode, newsize);
3709 ret = btrfs_truncate(inode);
3710 }
8082510e 3711
a41ad394 3712 return ret;
8082510e
YZ
3713}
3714
9036c102
YZ
3715static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3716{
3717 struct inode *inode = dentry->d_inode;
b83cc969 3718 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3719 int err;
39279cc3 3720
b83cc969
LZ
3721 if (btrfs_root_readonly(root))
3722 return -EROFS;
3723
9036c102
YZ
3724 err = inode_change_ok(inode, attr);
3725 if (err)
3726 return err;
2bf5a725 3727
5a3f23d5 3728 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3729 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3730 if (err)
3731 return err;
39279cc3 3732 }
9036c102 3733
1025774c
CH
3734 if (attr->ia_valid) {
3735 setattr_copy(inode, attr);
3736 mark_inode_dirty(inode);
3737
3738 if (attr->ia_valid & ATTR_MODE)
3739 err = btrfs_acl_chmod(inode);
3740 }
33268eaf 3741
39279cc3
CM
3742 return err;
3743}
61295eb8 3744
bd555975 3745void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3746{
3747 struct btrfs_trans_handle *trans;
3748 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3749 unsigned long nr;
39279cc3
CM
3750 int ret;
3751
1abe9b8a 3752 trace_btrfs_inode_evict(inode);
3753
39279cc3 3754 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3755 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3756 root == root->fs_info->tree_root))
bd555975
AV
3757 goto no_delete;
3758
39279cc3 3759 if (is_bad_inode(inode)) {
7b128766 3760 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3761 goto no_delete;
3762 }
bd555975 3763 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3764 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3765
c71bf099
YZ
3766 if (root->fs_info->log_root_recovering) {
3767 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3768 goto no_delete;
3769 }
3770
76dda93c
YZ
3771 if (inode->i_nlink > 0) {
3772 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3773 goto no_delete;
3774 }
3775
dbe674a9 3776 btrfs_i_size_write(inode, 0);
5f39d397 3777
8082510e 3778 while (1) {
d68fc57b
YZ
3779 trans = btrfs_start_transaction(root, 0);
3780 BUG_ON(IS_ERR(trans));
8082510e 3781 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3782 trans->block_rsv = root->orphan_block_rsv;
3783
3784 ret = btrfs_block_rsv_check(trans, root,
3785 root->orphan_block_rsv, 0, 5);
3786 if (ret) {
3787 BUG_ON(ret != -EAGAIN);
3788 ret = btrfs_commit_transaction(trans, root);
3789 BUG_ON(ret);
3790 continue;
3791 }
7b128766 3792
d68fc57b 3793 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3794 if (ret != -EAGAIN)
3795 break;
85e21bac 3796
8082510e
YZ
3797 nr = trans->blocks_used;
3798 btrfs_end_transaction(trans, root);
3799 trans = NULL;
3800 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3801
8082510e 3802 }
5f39d397 3803
8082510e
YZ
3804 if (ret == 0) {
3805 ret = btrfs_orphan_del(trans, inode);
3806 BUG_ON(ret);
3807 }
54aa1f4d 3808
d3c2fdcf 3809 nr = trans->blocks_used;
54aa1f4d 3810 btrfs_end_transaction(trans, root);
d3c2fdcf 3811 btrfs_btree_balance_dirty(root, nr);
39279cc3 3812no_delete:
bd555975 3813 end_writeback(inode);
8082510e 3814 return;
39279cc3
CM
3815}
3816
3817/*
3818 * this returns the key found in the dir entry in the location pointer.
3819 * If no dir entries were found, location->objectid is 0.
3820 */
3821static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3822 struct btrfs_key *location)
3823{
3824 const char *name = dentry->d_name.name;
3825 int namelen = dentry->d_name.len;
3826 struct btrfs_dir_item *di;
3827 struct btrfs_path *path;
3828 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3829 int ret = 0;
39279cc3
CM
3830
3831 path = btrfs_alloc_path();
3832 BUG_ON(!path);
3954401f 3833
39279cc3
CM
3834 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3835 namelen, 0);
0d9f7f3e
Y
3836 if (IS_ERR(di))
3837 ret = PTR_ERR(di);
d397712b
CM
3838
3839 if (!di || IS_ERR(di))
3954401f 3840 goto out_err;
d397712b 3841
5f39d397 3842 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3843out:
39279cc3
CM
3844 btrfs_free_path(path);
3845 return ret;
3954401f
CM
3846out_err:
3847 location->objectid = 0;
3848 goto out;
39279cc3
CM
3849}
3850
3851/*
3852 * when we hit a tree root in a directory, the btrfs part of the inode
3853 * needs to be changed to reflect the root directory of the tree root. This
3854 * is kind of like crossing a mount point.
3855 */
3856static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3857 struct inode *dir,
3858 struct dentry *dentry,
3859 struct btrfs_key *location,
3860 struct btrfs_root **sub_root)
39279cc3 3861{
4df27c4d
YZ
3862 struct btrfs_path *path;
3863 struct btrfs_root *new_root;
3864 struct btrfs_root_ref *ref;
3865 struct extent_buffer *leaf;
3866 int ret;
3867 int err = 0;
39279cc3 3868
4df27c4d
YZ
3869 path = btrfs_alloc_path();
3870 if (!path) {
3871 err = -ENOMEM;
3872 goto out;
3873 }
39279cc3 3874
4df27c4d
YZ
3875 err = -ENOENT;
3876 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3877 BTRFS_I(dir)->root->root_key.objectid,
3878 location->objectid);
3879 if (ret) {
3880 if (ret < 0)
3881 err = ret;
3882 goto out;
3883 }
39279cc3 3884
4df27c4d
YZ
3885 leaf = path->nodes[0];
3886 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3887 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3888 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3889 goto out;
39279cc3 3890
4df27c4d
YZ
3891 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3892 (unsigned long)(ref + 1),
3893 dentry->d_name.len);
3894 if (ret)
3895 goto out;
3896
3897 btrfs_release_path(root->fs_info->tree_root, path);
3898
3899 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3900 if (IS_ERR(new_root)) {
3901 err = PTR_ERR(new_root);
3902 goto out;
3903 }
3904
3905 if (btrfs_root_refs(&new_root->root_item) == 0) {
3906 err = -ENOENT;
3907 goto out;
3908 }
3909
3910 *sub_root = new_root;
3911 location->objectid = btrfs_root_dirid(&new_root->root_item);
3912 location->type = BTRFS_INODE_ITEM_KEY;
3913 location->offset = 0;
3914 err = 0;
3915out:
3916 btrfs_free_path(path);
3917 return err;
39279cc3
CM
3918}
3919
5d4f98a2
YZ
3920static void inode_tree_add(struct inode *inode)
3921{
3922 struct btrfs_root *root = BTRFS_I(inode)->root;
3923 struct btrfs_inode *entry;
03e860bd
FNP
3924 struct rb_node **p;
3925 struct rb_node *parent;
03e860bd
FNP
3926again:
3927 p = &root->inode_tree.rb_node;
3928 parent = NULL;
5d4f98a2 3929
1d3382cb 3930 if (inode_unhashed(inode))
76dda93c
YZ
3931 return;
3932
5d4f98a2
YZ
3933 spin_lock(&root->inode_lock);
3934 while (*p) {
3935 parent = *p;
3936 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3937
3938 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3939 p = &parent->rb_left;
5d4f98a2 3940 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3941 p = &parent->rb_right;
5d4f98a2
YZ
3942 else {
3943 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3944 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3945 rb_erase(parent, &root->inode_tree);
3946 RB_CLEAR_NODE(parent);
3947 spin_unlock(&root->inode_lock);
3948 goto again;
5d4f98a2
YZ
3949 }
3950 }
3951 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3952 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3953 spin_unlock(&root->inode_lock);
3954}
3955
3956static void inode_tree_del(struct inode *inode)
3957{
3958 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3959 int empty = 0;
5d4f98a2 3960
03e860bd 3961 spin_lock(&root->inode_lock);
5d4f98a2 3962 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3963 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3964 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3965 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3966 }
03e860bd 3967 spin_unlock(&root->inode_lock);
76dda93c 3968
0af3d00b
JB
3969 /*
3970 * Free space cache has inodes in the tree root, but the tree root has a
3971 * root_refs of 0, so this could end up dropping the tree root as a
3972 * snapshot, so we need the extra !root->fs_info->tree_root check to
3973 * make sure we don't drop it.
3974 */
3975 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3976 root != root->fs_info->tree_root) {
76dda93c
YZ
3977 synchronize_srcu(&root->fs_info->subvol_srcu);
3978 spin_lock(&root->inode_lock);
3979 empty = RB_EMPTY_ROOT(&root->inode_tree);
3980 spin_unlock(&root->inode_lock);
3981 if (empty)
3982 btrfs_add_dead_root(root);
3983 }
3984}
3985
3986int btrfs_invalidate_inodes(struct btrfs_root *root)
3987{
3988 struct rb_node *node;
3989 struct rb_node *prev;
3990 struct btrfs_inode *entry;
3991 struct inode *inode;
3992 u64 objectid = 0;
3993
3994 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3995
3996 spin_lock(&root->inode_lock);
3997again:
3998 node = root->inode_tree.rb_node;
3999 prev = NULL;
4000 while (node) {
4001 prev = node;
4002 entry = rb_entry(node, struct btrfs_inode, rb_node);
4003
4004 if (objectid < entry->vfs_inode.i_ino)
4005 node = node->rb_left;
4006 else if (objectid > entry->vfs_inode.i_ino)
4007 node = node->rb_right;
4008 else
4009 break;
4010 }
4011 if (!node) {
4012 while (prev) {
4013 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4014 if (objectid <= entry->vfs_inode.i_ino) {
4015 node = prev;
4016 break;
4017 }
4018 prev = rb_next(prev);
4019 }
4020 }
4021 while (node) {
4022 entry = rb_entry(node, struct btrfs_inode, rb_node);
4023 objectid = entry->vfs_inode.i_ino + 1;
4024 inode = igrab(&entry->vfs_inode);
4025 if (inode) {
4026 spin_unlock(&root->inode_lock);
4027 if (atomic_read(&inode->i_count) > 1)
4028 d_prune_aliases(inode);
4029 /*
45321ac5 4030 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4031 * the inode cache when its usage count
4032 * hits zero.
4033 */
4034 iput(inode);
4035 cond_resched();
4036 spin_lock(&root->inode_lock);
4037 goto again;
4038 }
4039
4040 if (cond_resched_lock(&root->inode_lock))
4041 goto again;
4042
4043 node = rb_next(node);
4044 }
4045 spin_unlock(&root->inode_lock);
4046 return 0;
5d4f98a2
YZ
4047}
4048
e02119d5
CM
4049static int btrfs_init_locked_inode(struct inode *inode, void *p)
4050{
4051 struct btrfs_iget_args *args = p;
4052 inode->i_ino = args->ino;
e02119d5 4053 BTRFS_I(inode)->root = args->root;
6a63209f 4054 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4055 return 0;
4056}
4057
4058static int btrfs_find_actor(struct inode *inode, void *opaque)
4059{
4060 struct btrfs_iget_args *args = opaque;
d397712b
CM
4061 return args->ino == inode->i_ino &&
4062 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4063}
4064
5d4f98a2
YZ
4065static struct inode *btrfs_iget_locked(struct super_block *s,
4066 u64 objectid,
4067 struct btrfs_root *root)
39279cc3
CM
4068{
4069 struct inode *inode;
4070 struct btrfs_iget_args args;
4071 args.ino = objectid;
4072 args.root = root;
4073
4074 inode = iget5_locked(s, objectid, btrfs_find_actor,
4075 btrfs_init_locked_inode,
4076 (void *)&args);
4077 return inode;
4078}
4079
1a54ef8c
BR
4080/* Get an inode object given its location and corresponding root.
4081 * Returns in *is_new if the inode was read from disk
4082 */
4083struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4084 struct btrfs_root *root, int *new)
1a54ef8c
BR
4085{
4086 struct inode *inode;
4087
4088 inode = btrfs_iget_locked(s, location->objectid, root);
4089 if (!inode)
5d4f98a2 4090 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4091
4092 if (inode->i_state & I_NEW) {
4093 BTRFS_I(inode)->root = root;
4094 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4095 btrfs_read_locked_inode(inode);
5d4f98a2 4096 inode_tree_add(inode);
1a54ef8c 4097 unlock_new_inode(inode);
73f73415
JB
4098 if (new)
4099 *new = 1;
1a54ef8c
BR
4100 }
4101
4102 return inode;
4103}
4104
4df27c4d
YZ
4105static struct inode *new_simple_dir(struct super_block *s,
4106 struct btrfs_key *key,
4107 struct btrfs_root *root)
4108{
4109 struct inode *inode = new_inode(s);
4110
4111 if (!inode)
4112 return ERR_PTR(-ENOMEM);
4113
4df27c4d
YZ
4114 BTRFS_I(inode)->root = root;
4115 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4116 BTRFS_I(inode)->dummy_inode = 1;
4117
4118 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4119 inode->i_op = &simple_dir_inode_operations;
4120 inode->i_fop = &simple_dir_operations;
4121 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4122 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4123
4124 return inode;
4125}
4126
3de4586c 4127struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4128{
d397712b 4129 struct inode *inode;
4df27c4d 4130 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4131 struct btrfs_root *sub_root = root;
4132 struct btrfs_key location;
76dda93c 4133 int index;
5d4f98a2 4134 int ret;
39279cc3
CM
4135
4136 if (dentry->d_name.len > BTRFS_NAME_LEN)
4137 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4138
39279cc3 4139 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4140
39279cc3
CM
4141 if (ret < 0)
4142 return ERR_PTR(ret);
5f39d397 4143
4df27c4d
YZ
4144 if (location.objectid == 0)
4145 return NULL;
4146
4147 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4148 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4149 return inode;
4150 }
4151
4152 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4153
76dda93c 4154 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4155 ret = fixup_tree_root_location(root, dir, dentry,
4156 &location, &sub_root);
4157 if (ret < 0) {
4158 if (ret != -ENOENT)
4159 inode = ERR_PTR(ret);
4160 else
4161 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4162 } else {
73f73415 4163 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4164 }
76dda93c
YZ
4165 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4166
34d19bad 4167 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4168 down_read(&root->fs_info->cleanup_work_sem);
4169 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4170 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4171 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4172 if (ret)
4173 inode = ERR_PTR(ret);
c71bf099
YZ
4174 }
4175
3de4586c
CM
4176 return inode;
4177}
4178
fe15ce44 4179static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4180{
4181 struct btrfs_root *root;
4182
efefb143
YZ
4183 if (!dentry->d_inode && !IS_ROOT(dentry))
4184 dentry = dentry->d_parent;
76dda93c 4185
efefb143
YZ
4186 if (dentry->d_inode) {
4187 root = BTRFS_I(dentry->d_inode)->root;
4188 if (btrfs_root_refs(&root->root_item) == 0)
4189 return 1;
4190 }
76dda93c
YZ
4191 return 0;
4192}
4193
3de4586c
CM
4194static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4195 struct nameidata *nd)
4196{
4197 struct inode *inode;
4198
3de4586c
CM
4199 inode = btrfs_lookup_dentry(dir, dentry);
4200 if (IS_ERR(inode))
4201 return ERR_CAST(inode);
7b128766 4202
39279cc3
CM
4203 return d_splice_alias(inode, dentry);
4204}
4205
39279cc3
CM
4206static unsigned char btrfs_filetype_table[] = {
4207 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4208};
4209
cbdf5a24
DW
4210static int btrfs_real_readdir(struct file *filp, void *dirent,
4211 filldir_t filldir)
39279cc3 4212{
6da6abae 4213 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4214 struct btrfs_root *root = BTRFS_I(inode)->root;
4215 struct btrfs_item *item;
4216 struct btrfs_dir_item *di;
4217 struct btrfs_key key;
5f39d397 4218 struct btrfs_key found_key;
39279cc3
CM
4219 struct btrfs_path *path;
4220 int ret;
4221 u32 nritems;
5f39d397 4222 struct extent_buffer *leaf;
39279cc3
CM
4223 int slot;
4224 int advance;
4225 unsigned char d_type;
4226 int over = 0;
4227 u32 di_cur;
4228 u32 di_total;
4229 u32 di_len;
4230 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4231 char tmp_name[32];
4232 char *name_ptr;
4233 int name_len;
39279cc3
CM
4234
4235 /* FIXME, use a real flag for deciding about the key type */
4236 if (root->fs_info->tree_root == root)
4237 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4238
3954401f
CM
4239 /* special case for "." */
4240 if (filp->f_pos == 0) {
4241 over = filldir(dirent, ".", 1,
4242 1, inode->i_ino,
4243 DT_DIR);
4244 if (over)
4245 return 0;
4246 filp->f_pos = 1;
4247 }
3954401f
CM
4248 /* special case for .., just use the back ref */
4249 if (filp->f_pos == 1) {
5ecc7e5d 4250 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4251 over = filldir(dirent, "..", 2,
5ecc7e5d 4252 2, pino, DT_DIR);
3954401f 4253 if (over)
49593bfa 4254 return 0;
3954401f
CM
4255 filp->f_pos = 2;
4256 }
49593bfa
DW
4257 path = btrfs_alloc_path();
4258 path->reada = 2;
4259
39279cc3
CM
4260 btrfs_set_key_type(&key, key_type);
4261 key.offset = filp->f_pos;
49593bfa 4262 key.objectid = inode->i_ino;
5f39d397 4263
39279cc3
CM
4264 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4265 if (ret < 0)
4266 goto err;
4267 advance = 0;
49593bfa
DW
4268
4269 while (1) {
5f39d397
CM
4270 leaf = path->nodes[0];
4271 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4272 slot = path->slots[0];
4273 if (advance || slot >= nritems) {
49593bfa 4274 if (slot >= nritems - 1) {
39279cc3
CM
4275 ret = btrfs_next_leaf(root, path);
4276 if (ret)
4277 break;
5f39d397
CM
4278 leaf = path->nodes[0];
4279 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
4280 slot = path->slots[0];
4281 } else {
4282 slot++;
4283 path->slots[0]++;
4284 }
4285 }
3de4586c 4286
39279cc3 4287 advance = 1;
5f39d397
CM
4288 item = btrfs_item_nr(leaf, slot);
4289 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4290
4291 if (found_key.objectid != key.objectid)
39279cc3 4292 break;
5f39d397 4293 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4294 break;
5f39d397 4295 if (found_key.offset < filp->f_pos)
39279cc3 4296 continue;
5f39d397
CM
4297
4298 filp->f_pos = found_key.offset;
49593bfa 4299
39279cc3
CM
4300 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4301 di_cur = 0;
5f39d397 4302 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4303
4304 while (di_cur < di_total) {
5f39d397
CM
4305 struct btrfs_key location;
4306
22a94d44
JB
4307 if (verify_dir_item(root, leaf, di))
4308 break;
4309
5f39d397 4310 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4311 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4312 name_ptr = tmp_name;
4313 } else {
4314 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4315 if (!name_ptr) {
4316 ret = -ENOMEM;
4317 goto err;
4318 }
5f39d397
CM
4319 }
4320 read_extent_buffer(leaf, name_ptr,
4321 (unsigned long)(di + 1), name_len);
4322
4323 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4324 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4325
4326 /* is this a reference to our own snapshot? If so
4327 * skip it
4328 */
4329 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4330 location.objectid == root->root_key.objectid) {
4331 over = 0;
4332 goto skip;
4333 }
5f39d397 4334 over = filldir(dirent, name_ptr, name_len,
49593bfa 4335 found_key.offset, location.objectid,
39279cc3 4336 d_type);
5f39d397 4337
3de4586c 4338skip:
5f39d397
CM
4339 if (name_ptr != tmp_name)
4340 kfree(name_ptr);
4341
39279cc3
CM
4342 if (over)
4343 goto nopos;
5103e947 4344 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4345 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4346 di_cur += di_len;
4347 di = (struct btrfs_dir_item *)((char *)di + di_len);
4348 }
4349 }
49593bfa
DW
4350
4351 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4352 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4353 /*
4354 * 32-bit glibc will use getdents64, but then strtol -
4355 * so the last number we can serve is this.
4356 */
4357 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4358 else
4359 filp->f_pos++;
39279cc3
CM
4360nopos:
4361 ret = 0;
4362err:
39279cc3 4363 btrfs_free_path(path);
39279cc3
CM
4364 return ret;
4365}
4366
a9185b41 4367int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4368{
4369 struct btrfs_root *root = BTRFS_I(inode)->root;
4370 struct btrfs_trans_handle *trans;
4371 int ret = 0;
0af3d00b 4372 bool nolock = false;
39279cc3 4373
8929ecfa 4374 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4375 return 0;
4376
0af3d00b
JB
4377 smp_mb();
4378 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4379
a9185b41 4380 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4381 if (nolock)
4382 trans = btrfs_join_transaction_nolock(root, 1);
4383 else
4384 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4385 if (IS_ERR(trans))
4386 return PTR_ERR(trans);
39279cc3 4387 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4388 if (nolock)
4389 ret = btrfs_end_transaction_nolock(trans, root);
4390 else
4391 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4392 }
4393 return ret;
4394}
4395
4396/*
54aa1f4d 4397 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4398 * inode changes. But, it is most likely to find the inode in cache.
4399 * FIXME, needs more benchmarking...there are no reasons other than performance
4400 * to keep or drop this code.
4401 */
4402void btrfs_dirty_inode(struct inode *inode)
4403{
4404 struct btrfs_root *root = BTRFS_I(inode)->root;
4405 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4406 int ret;
4407
4408 if (BTRFS_I(inode)->dummy_inode)
4409 return;
39279cc3 4410
f9295749 4411 trans = btrfs_join_transaction(root, 1);
3612b495 4412 BUG_ON(IS_ERR(trans));
39279cc3 4413 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4414
4415 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4416 if (ret && ret == -ENOSPC) {
4417 /* whoops, lets try again with the full transaction */
4418 btrfs_end_transaction(trans, root);
4419 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4420 if (IS_ERR(trans)) {
4421 if (printk_ratelimit()) {
4422 printk(KERN_ERR "btrfs: fail to "
4423 "dirty inode %lu error %ld\n",
4424 inode->i_ino, PTR_ERR(trans));
4425 }
4426 return;
4427 }
94b60442 4428 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4429
94b60442
CM
4430 ret = btrfs_update_inode(trans, root, inode);
4431 if (ret) {
9aeead73
CM
4432 if (printk_ratelimit()) {
4433 printk(KERN_ERR "btrfs: fail to "
4434 "dirty inode %lu error %d\n",
4435 inode->i_ino, ret);
4436 }
94b60442
CM
4437 }
4438 }
39279cc3 4439 btrfs_end_transaction(trans, root);
39279cc3
CM
4440}
4441
d352ac68
CM
4442/*
4443 * find the highest existing sequence number in a directory
4444 * and then set the in-memory index_cnt variable to reflect
4445 * free sequence numbers
4446 */
aec7477b
JB
4447static int btrfs_set_inode_index_count(struct inode *inode)
4448{
4449 struct btrfs_root *root = BTRFS_I(inode)->root;
4450 struct btrfs_key key, found_key;
4451 struct btrfs_path *path;
4452 struct extent_buffer *leaf;
4453 int ret;
4454
4455 key.objectid = inode->i_ino;
4456 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4457 key.offset = (u64)-1;
4458
4459 path = btrfs_alloc_path();
4460 if (!path)
4461 return -ENOMEM;
4462
4463 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4464 if (ret < 0)
4465 goto out;
4466 /* FIXME: we should be able to handle this */
4467 if (ret == 0)
4468 goto out;
4469 ret = 0;
4470
4471 /*
4472 * MAGIC NUMBER EXPLANATION:
4473 * since we search a directory based on f_pos we have to start at 2
4474 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4475 * else has to start at 2
4476 */
4477 if (path->slots[0] == 0) {
4478 BTRFS_I(inode)->index_cnt = 2;
4479 goto out;
4480 }
4481
4482 path->slots[0]--;
4483
4484 leaf = path->nodes[0];
4485 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4486
4487 if (found_key.objectid != inode->i_ino ||
4488 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4489 BTRFS_I(inode)->index_cnt = 2;
4490 goto out;
4491 }
4492
4493 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4494out:
4495 btrfs_free_path(path);
4496 return ret;
4497}
4498
d352ac68
CM
4499/*
4500 * helper to find a free sequence number in a given directory. This current
4501 * code is very simple, later versions will do smarter things in the btree
4502 */
3de4586c 4503int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4504{
4505 int ret = 0;
4506
4507 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4508 ret = btrfs_set_inode_index_count(dir);
d397712b 4509 if (ret)
aec7477b
JB
4510 return ret;
4511 }
4512
00e4e6b3 4513 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4514 BTRFS_I(dir)->index_cnt++;
4515
4516 return ret;
4517}
4518
39279cc3
CM
4519static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *root,
aec7477b 4521 struct inode *dir,
9c58309d 4522 const char *name, int name_len,
d2fb3437
YZ
4523 u64 ref_objectid, u64 objectid,
4524 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4525{
4526 struct inode *inode;
5f39d397 4527 struct btrfs_inode_item *inode_item;
39279cc3 4528 struct btrfs_key *location;
5f39d397 4529 struct btrfs_path *path;
9c58309d
CM
4530 struct btrfs_inode_ref *ref;
4531 struct btrfs_key key[2];
4532 u32 sizes[2];
4533 unsigned long ptr;
39279cc3
CM
4534 int ret;
4535 int owner;
4536
5f39d397
CM
4537 path = btrfs_alloc_path();
4538 BUG_ON(!path);
4539
39279cc3
CM
4540 inode = new_inode(root->fs_info->sb);
4541 if (!inode)
4542 return ERR_PTR(-ENOMEM);
4543
aec7477b 4544 if (dir) {
1abe9b8a 4545 trace_btrfs_inode_request(dir);
4546
3de4586c 4547 ret = btrfs_set_inode_index(dir, index);
09771430
SF
4548 if (ret) {
4549 iput(inode);
aec7477b 4550 return ERR_PTR(ret);
09771430 4551 }
aec7477b
JB
4552 }
4553 /*
4554 * index_cnt is ignored for everything but a dir,
4555 * btrfs_get_inode_index_count has an explanation for the magic
4556 * number
4557 */
4558 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4559 BTRFS_I(inode)->root = root;
e02119d5 4560 BTRFS_I(inode)->generation = trans->transid;
76195853 4561 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4562 btrfs_set_inode_space_info(root, inode);
b888db2b 4563
39279cc3
CM
4564 if (mode & S_IFDIR)
4565 owner = 0;
4566 else
4567 owner = 1;
d2fb3437
YZ
4568 BTRFS_I(inode)->block_group =
4569 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4570
4571 key[0].objectid = objectid;
4572 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4573 key[0].offset = 0;
4574
4575 key[1].objectid = objectid;
4576 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4577 key[1].offset = ref_objectid;
4578
4579 sizes[0] = sizeof(struct btrfs_inode_item);
4580 sizes[1] = name_len + sizeof(*ref);
4581
b9473439 4582 path->leave_spinning = 1;
9c58309d
CM
4583 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4584 if (ret != 0)
5f39d397
CM
4585 goto fail;
4586
ecc11fab 4587 inode_init_owner(inode, dir, mode);
39279cc3 4588 inode->i_ino = objectid;
a76a3cd4 4589 inode_set_bytes(inode, 0);
39279cc3 4590 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4591 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4592 struct btrfs_inode_item);
e02119d5 4593 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4594
4595 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4596 struct btrfs_inode_ref);
4597 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4598 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4599 ptr = (unsigned long)(ref + 1);
4600 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4601
5f39d397
CM
4602 btrfs_mark_buffer_dirty(path->nodes[0]);
4603 btrfs_free_path(path);
4604
39279cc3
CM
4605 location = &BTRFS_I(inode)->location;
4606 location->objectid = objectid;
39279cc3
CM
4607 location->offset = 0;
4608 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4609
6cbff00f
CH
4610 btrfs_inherit_iflags(inode, dir);
4611
94272164
CM
4612 if ((mode & S_IFREG)) {
4613 if (btrfs_test_opt(root, NODATASUM))
4614 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4615 if (btrfs_test_opt(root, NODATACOW) ||
4616 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4617 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4618 }
4619
39279cc3 4620 insert_inode_hash(inode);
5d4f98a2 4621 inode_tree_add(inode);
1abe9b8a 4622
4623 trace_btrfs_inode_new(inode);
4624
39279cc3 4625 return inode;
5f39d397 4626fail:
aec7477b
JB
4627 if (dir)
4628 BTRFS_I(dir)->index_cnt--;
5f39d397 4629 btrfs_free_path(path);
09771430 4630 iput(inode);
5f39d397 4631 return ERR_PTR(ret);
39279cc3
CM
4632}
4633
4634static inline u8 btrfs_inode_type(struct inode *inode)
4635{
4636 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4637}
4638
d352ac68
CM
4639/*
4640 * utility function to add 'inode' into 'parent_inode' with
4641 * a give name and a given sequence number.
4642 * if 'add_backref' is true, also insert a backref from the
4643 * inode to the parent directory.
4644 */
e02119d5
CM
4645int btrfs_add_link(struct btrfs_trans_handle *trans,
4646 struct inode *parent_inode, struct inode *inode,
4647 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4648{
4df27c4d 4649 int ret = 0;
39279cc3 4650 struct btrfs_key key;
e02119d5 4651 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4652
4df27c4d
YZ
4653 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4654 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4655 } else {
4656 key.objectid = inode->i_ino;
4657 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4658 key.offset = 0;
4659 }
4660
4661 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4662 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4663 key.objectid, root->root_key.objectid,
4664 parent_inode->i_ino,
4665 index, name, name_len);
4666 } else if (add_backref) {
4667 ret = btrfs_insert_inode_ref(trans, root,
4668 name, name_len, inode->i_ino,
4669 parent_inode->i_ino, index);
4670 }
39279cc3 4671
39279cc3 4672 if (ret == 0) {
4df27c4d
YZ
4673 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4674 parent_inode->i_ino, &key,
4675 btrfs_inode_type(inode), index);
4676 BUG_ON(ret);
4677
dbe674a9 4678 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4679 name_len * 2);
79c44584 4680 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4681 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4682 }
4683 return ret;
4684}
4685
4686static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4687 struct inode *dir, struct dentry *dentry,
4688 struct inode *inode, int backref, u64 index)
39279cc3 4689{
a1b075d2
JB
4690 int err = btrfs_add_link(trans, dir, inode,
4691 dentry->d_name.name, dentry->d_name.len,
4692 backref, index);
39279cc3
CM
4693 if (!err) {
4694 d_instantiate(dentry, inode);
4695 return 0;
4696 }
4697 if (err > 0)
4698 err = -EEXIST;
4699 return err;
4700}
4701
618e21d5
JB
4702static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4703 int mode, dev_t rdev)
4704{
4705 struct btrfs_trans_handle *trans;
4706 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4707 struct inode *inode = NULL;
618e21d5
JB
4708 int err;
4709 int drop_inode = 0;
4710 u64 objectid;
1832a6d5 4711 unsigned long nr = 0;
00e4e6b3 4712 u64 index = 0;
618e21d5
JB
4713
4714 if (!new_valid_dev(rdev))
4715 return -EINVAL;
4716
a22285a6
YZ
4717 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4718 if (err)
4719 return err;
4720
9ed74f2d
JB
4721 /*
4722 * 2 for inode item and ref
4723 * 2 for dir items
4724 * 1 for xattr if selinux is on
4725 */
a22285a6
YZ
4726 trans = btrfs_start_transaction(root, 5);
4727 if (IS_ERR(trans))
4728 return PTR_ERR(trans);
1832a6d5 4729
618e21d5
JB
4730 btrfs_set_trans_block_group(trans, dir);
4731
aec7477b 4732 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4733 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4734 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4735 err = PTR_ERR(inode);
4736 if (IS_ERR(inode))
4737 goto out_unlock;
4738
f34f57a3 4739 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4740 if (err) {
4741 drop_inode = 1;
4742 goto out_unlock;
4743 }
4744
618e21d5 4745 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4746 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4747 if (err)
4748 drop_inode = 1;
4749 else {
4750 inode->i_op = &btrfs_special_inode_operations;
4751 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4752 btrfs_update_inode(trans, root, inode);
618e21d5 4753 }
618e21d5
JB
4754 btrfs_update_inode_block_group(trans, inode);
4755 btrfs_update_inode_block_group(trans, dir);
4756out_unlock:
d3c2fdcf 4757 nr = trans->blocks_used;
89ce8a63 4758 btrfs_end_transaction_throttle(trans, root);
a22285a6 4759 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4760 if (drop_inode) {
4761 inode_dec_link_count(inode);
4762 iput(inode);
4763 }
618e21d5
JB
4764 return err;
4765}
4766
39279cc3
CM
4767static int btrfs_create(struct inode *dir, struct dentry *dentry,
4768 int mode, struct nameidata *nd)
4769{
4770 struct btrfs_trans_handle *trans;
4771 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4772 struct inode *inode = NULL;
39279cc3 4773 int drop_inode = 0;
a22285a6 4774 int err;
1832a6d5 4775 unsigned long nr = 0;
39279cc3 4776 u64 objectid;
00e4e6b3 4777 u64 index = 0;
39279cc3 4778
a22285a6
YZ
4779 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4780 if (err)
4781 return err;
9ed74f2d
JB
4782 /*
4783 * 2 for inode item and ref
4784 * 2 for dir items
4785 * 1 for xattr if selinux is on
4786 */
a22285a6
YZ
4787 trans = btrfs_start_transaction(root, 5);
4788 if (IS_ERR(trans))
4789 return PTR_ERR(trans);
9ed74f2d 4790
39279cc3
CM
4791 btrfs_set_trans_block_group(trans, dir);
4792
aec7477b 4793 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4794 dentry->d_name.len, dir->i_ino, objectid,
4795 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4796 err = PTR_ERR(inode);
4797 if (IS_ERR(inode))
4798 goto out_unlock;
4799
f34f57a3 4800 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4801 if (err) {
4802 drop_inode = 1;
4803 goto out_unlock;
4804 }
4805
39279cc3 4806 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4807 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4808 if (err)
4809 drop_inode = 1;
4810 else {
4811 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4812 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4813 inode->i_fop = &btrfs_file_operations;
4814 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4815 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4816 }
39279cc3
CM
4817 btrfs_update_inode_block_group(trans, inode);
4818 btrfs_update_inode_block_group(trans, dir);
4819out_unlock:
d3c2fdcf 4820 nr = trans->blocks_used;
ab78c84d 4821 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4822 if (drop_inode) {
4823 inode_dec_link_count(inode);
4824 iput(inode);
4825 }
d3c2fdcf 4826 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4827 return err;
4828}
4829
4830static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4831 struct dentry *dentry)
4832{
4833 struct btrfs_trans_handle *trans;
4834 struct btrfs_root *root = BTRFS_I(dir)->root;
4835 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4836 u64 index;
1832a6d5 4837 unsigned long nr = 0;
39279cc3
CM
4838 int err;
4839 int drop_inode = 0;
4840
4841 if (inode->i_nlink == 0)
4842 return -ENOENT;
4843
4a8be425
TH
4844 /* do not allow sys_link's with other subvols of the same device */
4845 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4846 return -EXDEV;
4a8be425 4847
c055e99e
AV
4848 if (inode->i_nlink == ~0U)
4849 return -EMLINK;
4850
9ed74f2d 4851 btrfs_inc_nlink(inode);
bc1cbf1f 4852 inode->i_ctime = CURRENT_TIME;
9ed74f2d 4853
3de4586c 4854 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4855 if (err)
4856 goto fail;
4857
a22285a6 4858 /*
7e6b6465 4859 * 2 items for inode and inode ref
a22285a6 4860 * 2 items for dir items
7e6b6465 4861 * 1 item for parent inode
a22285a6 4862 */
7e6b6465 4863 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4864 if (IS_ERR(trans)) {
4865 err = PTR_ERR(trans);
4866 goto fail;
4867 }
5f39d397 4868
39279cc3 4869 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4870 ihold(inode);
aec7477b 4871
a1b075d2 4872 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4873
a5719521 4874 if (err) {
54aa1f4d 4875 drop_inode = 1;
a5719521 4876 } else {
6a912213 4877 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4878 btrfs_update_inode_block_group(trans, dir);
4879 err = btrfs_update_inode(trans, root, inode);
4880 BUG_ON(err);
6a912213
JB
4881 btrfs_log_new_name(trans, inode, NULL, parent);
4882 dput(parent);
a5719521 4883 }
39279cc3 4884
d3c2fdcf 4885 nr = trans->blocks_used;
ab78c84d 4886 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4887fail:
39279cc3
CM
4888 if (drop_inode) {
4889 inode_dec_link_count(inode);
4890 iput(inode);
4891 }
d3c2fdcf 4892 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4893 return err;
4894}
4895
39279cc3
CM
4896static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4897{
b9d86667 4898 struct inode *inode = NULL;
39279cc3
CM
4899 struct btrfs_trans_handle *trans;
4900 struct btrfs_root *root = BTRFS_I(dir)->root;
4901 int err = 0;
4902 int drop_on_err = 0;
b9d86667 4903 u64 objectid = 0;
00e4e6b3 4904 u64 index = 0;
d3c2fdcf 4905 unsigned long nr = 1;
39279cc3 4906
a22285a6
YZ
4907 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
4908 if (err)
4909 return err;
4910
9ed74f2d
JB
4911 /*
4912 * 2 items for inode and ref
4913 * 2 items for dir items
4914 * 1 for xattr if selinux is on
4915 */
a22285a6
YZ
4916 trans = btrfs_start_transaction(root, 5);
4917 if (IS_ERR(trans))
4918 return PTR_ERR(trans);
9ed74f2d 4919 btrfs_set_trans_block_group(trans, dir);
39279cc3 4920
aec7477b 4921 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4922 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4923 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4924 &index);
39279cc3
CM
4925 if (IS_ERR(inode)) {
4926 err = PTR_ERR(inode);
4927 goto out_fail;
4928 }
5f39d397 4929
39279cc3 4930 drop_on_err = 1;
33268eaf 4931
f34f57a3 4932 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4933 if (err)
4934 goto out_fail;
4935
39279cc3
CM
4936 inode->i_op = &btrfs_dir_inode_operations;
4937 inode->i_fop = &btrfs_dir_file_operations;
4938 btrfs_set_trans_block_group(trans, inode);
4939
dbe674a9 4940 btrfs_i_size_write(inode, 0);
39279cc3
CM
4941 err = btrfs_update_inode(trans, root, inode);
4942 if (err)
4943 goto out_fail;
5f39d397 4944
a1b075d2
JB
4945 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4946 dentry->d_name.len, 0, index);
39279cc3
CM
4947 if (err)
4948 goto out_fail;
5f39d397 4949
39279cc3
CM
4950 d_instantiate(dentry, inode);
4951 drop_on_err = 0;
39279cc3
CM
4952 btrfs_update_inode_block_group(trans, inode);
4953 btrfs_update_inode_block_group(trans, dir);
4954
4955out_fail:
d3c2fdcf 4956 nr = trans->blocks_used;
ab78c84d 4957 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4958 if (drop_on_err)
4959 iput(inode);
d3c2fdcf 4960 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4961 return err;
4962}
4963
d352ac68
CM
4964/* helper for btfs_get_extent. Given an existing extent in the tree,
4965 * and an extent that you want to insert, deal with overlap and insert
4966 * the new extent into the tree.
4967 */
3b951516
CM
4968static int merge_extent_mapping(struct extent_map_tree *em_tree,
4969 struct extent_map *existing,
e6dcd2dc
CM
4970 struct extent_map *em,
4971 u64 map_start, u64 map_len)
3b951516
CM
4972{
4973 u64 start_diff;
3b951516 4974
e6dcd2dc
CM
4975 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4976 start_diff = map_start - em->start;
4977 em->start = map_start;
4978 em->len = map_len;
c8b97818
CM
4979 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4980 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4981 em->block_start += start_diff;
c8b97818
CM
4982 em->block_len -= start_diff;
4983 }
e6dcd2dc 4984 return add_extent_mapping(em_tree, em);
3b951516
CM
4985}
4986
c8b97818
CM
4987static noinline int uncompress_inline(struct btrfs_path *path,
4988 struct inode *inode, struct page *page,
4989 size_t pg_offset, u64 extent_offset,
4990 struct btrfs_file_extent_item *item)
4991{
4992 int ret;
4993 struct extent_buffer *leaf = path->nodes[0];
4994 char *tmp;
4995 size_t max_size;
4996 unsigned long inline_size;
4997 unsigned long ptr;
261507a0 4998 int compress_type;
c8b97818
CM
4999
5000 WARN_ON(pg_offset != 0);
261507a0 5001 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5002 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5003 inline_size = btrfs_file_extent_inline_item_len(leaf,
5004 btrfs_item_nr(leaf, path->slots[0]));
5005 tmp = kmalloc(inline_size, GFP_NOFS);
5006 ptr = btrfs_file_extent_inline_start(item);
5007
5008 read_extent_buffer(leaf, tmp, ptr, inline_size);
5009
5b050f04 5010 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5011 ret = btrfs_decompress(compress_type, tmp, page,
5012 extent_offset, inline_size, max_size);
c8b97818
CM
5013 if (ret) {
5014 char *kaddr = kmap_atomic(page, KM_USER0);
5015 unsigned long copy_size = min_t(u64,
5016 PAGE_CACHE_SIZE - pg_offset,
5017 max_size - extent_offset);
5018 memset(kaddr + pg_offset, 0, copy_size);
5019 kunmap_atomic(kaddr, KM_USER0);
5020 }
5021 kfree(tmp);
5022 return 0;
5023}
5024
d352ac68
CM
5025/*
5026 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5027 * the ugly parts come from merging extents from the disk with the in-ram
5028 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5029 * where the in-ram extents might be locked pending data=ordered completion.
5030 *
5031 * This also copies inline extents directly into the page.
5032 */
d397712b 5033
a52d9a80 5034struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5035 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5036 int create)
5037{
5038 int ret;
5039 int err = 0;
db94535d 5040 u64 bytenr;
a52d9a80
CM
5041 u64 extent_start = 0;
5042 u64 extent_end = 0;
5043 u64 objectid = inode->i_ino;
5044 u32 found_type;
f421950f 5045 struct btrfs_path *path = NULL;
a52d9a80
CM
5046 struct btrfs_root *root = BTRFS_I(inode)->root;
5047 struct btrfs_file_extent_item *item;
5f39d397
CM
5048 struct extent_buffer *leaf;
5049 struct btrfs_key found_key;
a52d9a80
CM
5050 struct extent_map *em = NULL;
5051 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5052 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5053 struct btrfs_trans_handle *trans = NULL;
261507a0 5054 int compress_type;
a52d9a80 5055
a52d9a80 5056again:
890871be 5057 read_lock(&em_tree->lock);
d1310b2e 5058 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5059 if (em)
5060 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5061 read_unlock(&em_tree->lock);
d1310b2e 5062
a52d9a80 5063 if (em) {
e1c4b745
CM
5064 if (em->start > start || em->start + em->len <= start)
5065 free_extent_map(em);
5066 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5067 free_extent_map(em);
5068 else
5069 goto out;
a52d9a80 5070 }
d1310b2e 5071 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5072 if (!em) {
d1310b2e
CM
5073 err = -ENOMEM;
5074 goto out;
a52d9a80 5075 }
e6dcd2dc 5076 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5077 em->start = EXTENT_MAP_HOLE;
445a6944 5078 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5079 em->len = (u64)-1;
c8b97818 5080 em->block_len = (u64)-1;
f421950f
CM
5081
5082 if (!path) {
5083 path = btrfs_alloc_path();
5084 BUG_ON(!path);
5085 }
5086
179e29e4
CM
5087 ret = btrfs_lookup_file_extent(trans, root, path,
5088 objectid, start, trans != NULL);
a52d9a80
CM
5089 if (ret < 0) {
5090 err = ret;
5091 goto out;
5092 }
5093
5094 if (ret != 0) {
5095 if (path->slots[0] == 0)
5096 goto not_found;
5097 path->slots[0]--;
5098 }
5099
5f39d397
CM
5100 leaf = path->nodes[0];
5101 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5102 struct btrfs_file_extent_item);
a52d9a80 5103 /* are we inside the extent that was found? */
5f39d397
CM
5104 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5105 found_type = btrfs_key_type(&found_key);
5106 if (found_key.objectid != objectid ||
a52d9a80
CM
5107 found_type != BTRFS_EXTENT_DATA_KEY) {
5108 goto not_found;
5109 }
5110
5f39d397
CM
5111 found_type = btrfs_file_extent_type(leaf, item);
5112 extent_start = found_key.offset;
261507a0 5113 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5114 if (found_type == BTRFS_FILE_EXTENT_REG ||
5115 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5116 extent_end = extent_start +
db94535d 5117 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5118 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5119 size_t size;
5120 size = btrfs_file_extent_inline_len(leaf, item);
5121 extent_end = (extent_start + size + root->sectorsize - 1) &
5122 ~((u64)root->sectorsize - 1);
5123 }
5124
5125 if (start >= extent_end) {
5126 path->slots[0]++;
5127 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5128 ret = btrfs_next_leaf(root, path);
5129 if (ret < 0) {
5130 err = ret;
5131 goto out;
a52d9a80 5132 }
9036c102
YZ
5133 if (ret > 0)
5134 goto not_found;
5135 leaf = path->nodes[0];
a52d9a80 5136 }
9036c102
YZ
5137 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5138 if (found_key.objectid != objectid ||
5139 found_key.type != BTRFS_EXTENT_DATA_KEY)
5140 goto not_found;
5141 if (start + len <= found_key.offset)
5142 goto not_found;
5143 em->start = start;
5144 em->len = found_key.offset - start;
5145 goto not_found_em;
5146 }
5147
d899e052
YZ
5148 if (found_type == BTRFS_FILE_EXTENT_REG ||
5149 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5150 em->start = extent_start;
5151 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5152 em->orig_start = extent_start -
5153 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5154 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5155 if (bytenr == 0) {
5f39d397 5156 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5157 goto insert;
5158 }
261507a0 5159 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5160 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5161 em->compress_type = compress_type;
c8b97818
CM
5162 em->block_start = bytenr;
5163 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5164 item);
5165 } else {
5166 bytenr += btrfs_file_extent_offset(leaf, item);
5167 em->block_start = bytenr;
5168 em->block_len = em->len;
d899e052
YZ
5169 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5170 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5171 }
a52d9a80
CM
5172 goto insert;
5173 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5174 unsigned long ptr;
a52d9a80 5175 char *map;
3326d1b0
CM
5176 size_t size;
5177 size_t extent_offset;
5178 size_t copy_size;
a52d9a80 5179
689f9346 5180 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5181 if (!page || create) {
689f9346 5182 em->start = extent_start;
9036c102 5183 em->len = extent_end - extent_start;
689f9346
Y
5184 goto out;
5185 }
5f39d397 5186
9036c102
YZ
5187 size = btrfs_file_extent_inline_len(leaf, item);
5188 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5189 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5190 size - extent_offset);
3326d1b0 5191 em->start = extent_start + extent_offset;
70dec807
CM
5192 em->len = (copy_size + root->sectorsize - 1) &
5193 ~((u64)root->sectorsize - 1);
ff5b7ee3 5194 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5195 if (compress_type) {
c8b97818 5196 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5197 em->compress_type = compress_type;
5198 }
689f9346 5199 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5200 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5201 if (btrfs_file_extent_compression(leaf, item) !=
5202 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5203 ret = uncompress_inline(path, inode, page,
5204 pg_offset,
5205 extent_offset, item);
5206 BUG_ON(ret);
5207 } else {
5208 map = kmap(page);
5209 read_extent_buffer(leaf, map + pg_offset, ptr,
5210 copy_size);
93c82d57
CM
5211 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5212 memset(map + pg_offset + copy_size, 0,
5213 PAGE_CACHE_SIZE - pg_offset -
5214 copy_size);
5215 }
c8b97818
CM
5216 kunmap(page);
5217 }
179e29e4
CM
5218 flush_dcache_page(page);
5219 } else if (create && PageUptodate(page)) {
0ca1f7ce 5220 WARN_ON(1);
179e29e4
CM
5221 if (!trans) {
5222 kunmap(page);
5223 free_extent_map(em);
5224 em = NULL;
5225 btrfs_release_path(root, path);
f9295749 5226 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5227 if (IS_ERR(trans))
5228 return ERR_CAST(trans);
179e29e4
CM
5229 goto again;
5230 }
c8b97818 5231 map = kmap(page);
70dec807 5232 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5233 copy_size);
c8b97818 5234 kunmap(page);
179e29e4 5235 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5236 }
d1310b2e
CM
5237 set_extent_uptodate(io_tree, em->start,
5238 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
5239 goto insert;
5240 } else {
d397712b 5241 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5242 WARN_ON(1);
5243 }
5244not_found:
5245 em->start = start;
d1310b2e 5246 em->len = len;
a52d9a80 5247not_found_em:
5f39d397 5248 em->block_start = EXTENT_MAP_HOLE;
9036c102 5249 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5250insert:
5251 btrfs_release_path(root, path);
d1310b2e 5252 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5253 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5254 "[%llu %llu]\n", (unsigned long long)em->start,
5255 (unsigned long long)em->len,
5256 (unsigned long long)start,
5257 (unsigned long long)len);
a52d9a80
CM
5258 err = -EIO;
5259 goto out;
5260 }
d1310b2e
CM
5261
5262 err = 0;
890871be 5263 write_lock(&em_tree->lock);
a52d9a80 5264 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5265 /* it is possible that someone inserted the extent into the tree
5266 * while we had the lock dropped. It is also possible that
5267 * an overlapping map exists in the tree
5268 */
a52d9a80 5269 if (ret == -EEXIST) {
3b951516 5270 struct extent_map *existing;
e6dcd2dc
CM
5271
5272 ret = 0;
5273
3b951516 5274 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5275 if (existing && (existing->start > start ||
5276 existing->start + existing->len <= start)) {
5277 free_extent_map(existing);
5278 existing = NULL;
5279 }
3b951516
CM
5280 if (!existing) {
5281 existing = lookup_extent_mapping(em_tree, em->start,
5282 em->len);
5283 if (existing) {
5284 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5285 em, start,
5286 root->sectorsize);
3b951516
CM
5287 free_extent_map(existing);
5288 if (err) {
5289 free_extent_map(em);
5290 em = NULL;
5291 }
5292 } else {
5293 err = -EIO;
3b951516
CM
5294 free_extent_map(em);
5295 em = NULL;
5296 }
5297 } else {
5298 free_extent_map(em);
5299 em = existing;
e6dcd2dc 5300 err = 0;
a52d9a80 5301 }
a52d9a80 5302 }
890871be 5303 write_unlock(&em_tree->lock);
a52d9a80 5304out:
1abe9b8a 5305
5306 trace_btrfs_get_extent(root, em);
5307
f421950f
CM
5308 if (path)
5309 btrfs_free_path(path);
a52d9a80
CM
5310 if (trans) {
5311 ret = btrfs_end_transaction(trans, root);
d397712b 5312 if (!err)
a52d9a80
CM
5313 err = ret;
5314 }
a52d9a80
CM
5315 if (err) {
5316 free_extent_map(em);
a52d9a80
CM
5317 return ERR_PTR(err);
5318 }
5319 return em;
5320}
5321
ec29ed5b
CM
5322struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5323 size_t pg_offset, u64 start, u64 len,
5324 int create)
5325{
5326 struct extent_map *em;
5327 struct extent_map *hole_em = NULL;
5328 u64 range_start = start;
5329 u64 end;
5330 u64 found;
5331 u64 found_end;
5332 int err = 0;
5333
5334 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5335 if (IS_ERR(em))
5336 return em;
5337 if (em) {
5338 /*
5339 * if our em maps to a hole, there might
5340 * actually be delalloc bytes behind it
5341 */
5342 if (em->block_start != EXTENT_MAP_HOLE)
5343 return em;
5344 else
5345 hole_em = em;
5346 }
5347
5348 /* check to see if we've wrapped (len == -1 or similar) */
5349 end = start + len;
5350 if (end < start)
5351 end = (u64)-1;
5352 else
5353 end -= 1;
5354
5355 em = NULL;
5356
5357 /* ok, we didn't find anything, lets look for delalloc */
5358 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5359 end, len, EXTENT_DELALLOC, 1);
5360 found_end = range_start + found;
5361 if (found_end < range_start)
5362 found_end = (u64)-1;
5363
5364 /*
5365 * we didn't find anything useful, return
5366 * the original results from get_extent()
5367 */
5368 if (range_start > end || found_end <= start) {
5369 em = hole_em;
5370 hole_em = NULL;
5371 goto out;
5372 }
5373
5374 /* adjust the range_start to make sure it doesn't
5375 * go backwards from the start they passed in
5376 */
5377 range_start = max(start,range_start);
5378 found = found_end - range_start;
5379
5380 if (found > 0) {
5381 u64 hole_start = start;
5382 u64 hole_len = len;
5383
5384 em = alloc_extent_map(GFP_NOFS);
5385 if (!em) {
5386 err = -ENOMEM;
5387 goto out;
5388 }
5389 /*
5390 * when btrfs_get_extent can't find anything it
5391 * returns one huge hole
5392 *
5393 * make sure what it found really fits our range, and
5394 * adjust to make sure it is based on the start from
5395 * the caller
5396 */
5397 if (hole_em) {
5398 u64 calc_end = extent_map_end(hole_em);
5399
5400 if (calc_end <= start || (hole_em->start > end)) {
5401 free_extent_map(hole_em);
5402 hole_em = NULL;
5403 } else {
5404 hole_start = max(hole_em->start, start);
5405 hole_len = calc_end - hole_start;
5406 }
5407 }
5408 em->bdev = NULL;
5409 if (hole_em && range_start > hole_start) {
5410 /* our hole starts before our delalloc, so we
5411 * have to return just the parts of the hole
5412 * that go until the delalloc starts
5413 */
5414 em->len = min(hole_len,
5415 range_start - hole_start);
5416 em->start = hole_start;
5417 em->orig_start = hole_start;
5418 /*
5419 * don't adjust block start at all,
5420 * it is fixed at EXTENT_MAP_HOLE
5421 */
5422 em->block_start = hole_em->block_start;
5423 em->block_len = hole_len;
5424 } else {
5425 em->start = range_start;
5426 em->len = found;
5427 em->orig_start = range_start;
5428 em->block_start = EXTENT_MAP_DELALLOC;
5429 em->block_len = found;
5430 }
5431 } else if (hole_em) {
5432 return hole_em;
5433 }
5434out:
5435
5436 free_extent_map(hole_em);
5437 if (err) {
5438 free_extent_map(em);
5439 return ERR_PTR(err);
5440 }
5441 return em;
5442}
5443
4b46fce2
JB
5444static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5445 u64 start, u64 len)
5446{
5447 struct btrfs_root *root = BTRFS_I(inode)->root;
5448 struct btrfs_trans_handle *trans;
5449 struct extent_map *em;
5450 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5451 struct btrfs_key ins;
5452 u64 alloc_hint;
5453 int ret;
5454
5455 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5456
5457 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5458 if (IS_ERR(trans))
5459 return ERR_CAST(trans);
4b46fce2
JB
5460
5461 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5462
5463 alloc_hint = get_extent_allocation_hint(inode, start, len);
5464 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5465 alloc_hint, (u64)-1, &ins, 1);
5466 if (ret) {
5467 em = ERR_PTR(ret);
5468 goto out;
5469 }
5470
5471 em = alloc_extent_map(GFP_NOFS);
5472 if (!em) {
5473 em = ERR_PTR(-ENOMEM);
5474 goto out;
5475 }
5476
5477 em->start = start;
5478 em->orig_start = em->start;
5479 em->len = ins.offset;
5480
5481 em->block_start = ins.objectid;
5482 em->block_len = ins.offset;
5483 em->bdev = root->fs_info->fs_devices->latest_bdev;
5484 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5485
5486 while (1) {
5487 write_lock(&em_tree->lock);
5488 ret = add_extent_mapping(em_tree, em);
5489 write_unlock(&em_tree->lock);
5490 if (ret != -EEXIST)
5491 break;
5492 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5493 }
5494
5495 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5496 ins.offset, ins.offset, 0);
5497 if (ret) {
5498 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5499 em = ERR_PTR(ret);
5500 }
5501out:
5502 btrfs_end_transaction(trans, root);
5503 return em;
5504}
5505
46bfbb5c
CM
5506/*
5507 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5508 * block must be cow'd
5509 */
5510static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5511 struct inode *inode, u64 offset, u64 len)
5512{
5513 struct btrfs_path *path;
5514 int ret;
5515 struct extent_buffer *leaf;
5516 struct btrfs_root *root = BTRFS_I(inode)->root;
5517 struct btrfs_file_extent_item *fi;
5518 struct btrfs_key key;
5519 u64 disk_bytenr;
5520 u64 backref_offset;
5521 u64 extent_end;
5522 u64 num_bytes;
5523 int slot;
5524 int found_type;
5525
5526 path = btrfs_alloc_path();
5527 if (!path)
5528 return -ENOMEM;
5529
5530 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5531 offset, 0);
5532 if (ret < 0)
5533 goto out;
5534
5535 slot = path->slots[0];
5536 if (ret == 1) {
5537 if (slot == 0) {
5538 /* can't find the item, must cow */
5539 ret = 0;
5540 goto out;
5541 }
5542 slot--;
5543 }
5544 ret = 0;
5545 leaf = path->nodes[0];
5546 btrfs_item_key_to_cpu(leaf, &key, slot);
5547 if (key.objectid != inode->i_ino ||
5548 key.type != BTRFS_EXTENT_DATA_KEY) {
5549 /* not our file or wrong item type, must cow */
5550 goto out;
5551 }
5552
5553 if (key.offset > offset) {
5554 /* Wrong offset, must cow */
5555 goto out;
5556 }
5557
5558 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5559 found_type = btrfs_file_extent_type(leaf, fi);
5560 if (found_type != BTRFS_FILE_EXTENT_REG &&
5561 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5562 /* not a regular extent, must cow */
5563 goto out;
5564 }
5565 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5566 backref_offset = btrfs_file_extent_offset(leaf, fi);
5567
5568 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5569 if (extent_end < offset + len) {
5570 /* extent doesn't include our full range, must cow */
5571 goto out;
5572 }
5573
5574 if (btrfs_extent_readonly(root, disk_bytenr))
5575 goto out;
5576
5577 /*
5578 * look for other files referencing this extent, if we
5579 * find any we must cow
5580 */
5581 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5582 key.offset - backref_offset, disk_bytenr))
5583 goto out;
5584
5585 /*
5586 * adjust disk_bytenr and num_bytes to cover just the bytes
5587 * in this extent we are about to write. If there
5588 * are any csums in that range we have to cow in order
5589 * to keep the csums correct
5590 */
5591 disk_bytenr += backref_offset;
5592 disk_bytenr += offset - key.offset;
5593 num_bytes = min(offset + len, extent_end) - offset;
5594 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5595 goto out;
5596 /*
5597 * all of the above have passed, it is safe to overwrite this extent
5598 * without cow
5599 */
5600 ret = 1;
5601out:
5602 btrfs_free_path(path);
5603 return ret;
5604}
5605
4b46fce2
JB
5606static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5607 struct buffer_head *bh_result, int create)
5608{
5609 struct extent_map *em;
5610 struct btrfs_root *root = BTRFS_I(inode)->root;
5611 u64 start = iblock << inode->i_blkbits;
5612 u64 len = bh_result->b_size;
46bfbb5c 5613 struct btrfs_trans_handle *trans;
4b46fce2
JB
5614
5615 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5616 if (IS_ERR(em))
5617 return PTR_ERR(em);
5618
5619 /*
5620 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5621 * io. INLINE is special, and we could probably kludge it in here, but
5622 * it's still buffered so for safety lets just fall back to the generic
5623 * buffered path.
5624 *
5625 * For COMPRESSED we _have_ to read the entire extent in so we can
5626 * decompress it, so there will be buffering required no matter what we
5627 * do, so go ahead and fallback to buffered.
5628 *
5629 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5630 * to buffered IO. Don't blame me, this is the price we pay for using
5631 * the generic code.
5632 */
5633 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5634 em->block_start == EXTENT_MAP_INLINE) {
5635 free_extent_map(em);
5636 return -ENOTBLK;
5637 }
5638
5639 /* Just a good old fashioned hole, return */
5640 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5641 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5642 free_extent_map(em);
5643 /* DIO will do one hole at a time, so just unlock a sector */
5644 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5645 start + root->sectorsize - 1, GFP_NOFS);
5646 return 0;
5647 }
5648
5649 /*
5650 * We don't allocate a new extent in the following cases
5651 *
5652 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5653 * existing extent.
5654 * 2) The extent is marked as PREALLOC. We're good to go here and can
5655 * just use the extent.
5656 *
5657 */
46bfbb5c
CM
5658 if (!create) {
5659 len = em->len - (start - em->start);
4b46fce2 5660 goto map;
46bfbb5c 5661 }
4b46fce2
JB
5662
5663 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5664 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5665 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5666 int type;
5667 int ret;
46bfbb5c 5668 u64 block_start;
4b46fce2
JB
5669
5670 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5671 type = BTRFS_ORDERED_PREALLOC;
5672 else
5673 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5674 len = min(len, em->len - (start - em->start));
4b46fce2 5675 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5676
5677 /*
5678 * we're not going to log anything, but we do need
5679 * to make sure the current transaction stays open
5680 * while we look for nocow cross refs
5681 */
5682 trans = btrfs_join_transaction(root, 0);
3612b495 5683 if (IS_ERR(trans))
46bfbb5c
CM
5684 goto must_cow;
5685
5686 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5687 ret = btrfs_add_ordered_extent_dio(inode, start,
5688 block_start, len, len, type);
5689 btrfs_end_transaction(trans, root);
5690 if (ret) {
5691 free_extent_map(em);
5692 return ret;
5693 }
5694 goto unlock;
4b46fce2 5695 }
46bfbb5c 5696 btrfs_end_transaction(trans, root);
4b46fce2 5697 }
46bfbb5c
CM
5698must_cow:
5699 /*
5700 * this will cow the extent, reset the len in case we changed
5701 * it above
5702 */
5703 len = bh_result->b_size;
5704 free_extent_map(em);
5705 em = btrfs_new_extent_direct(inode, start, len);
5706 if (IS_ERR(em))
5707 return PTR_ERR(em);
5708 len = min(len, em->len - (start - em->start));
5709unlock:
4845e44f
CM
5710 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5711 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5712 0, NULL, GFP_NOFS);
4b46fce2
JB
5713map:
5714 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5715 inode->i_blkbits;
46bfbb5c 5716 bh_result->b_size = len;
4b46fce2
JB
5717 bh_result->b_bdev = em->bdev;
5718 set_buffer_mapped(bh_result);
5719 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5720 set_buffer_new(bh_result);
5721
5722 free_extent_map(em);
5723
5724 return 0;
5725}
5726
5727struct btrfs_dio_private {
5728 struct inode *inode;
5729 u64 logical_offset;
5730 u64 disk_bytenr;
5731 u64 bytes;
5732 u32 *csums;
5733 void *private;
e65e1535
MX
5734
5735 /* number of bios pending for this dio */
5736 atomic_t pending_bios;
5737
5738 /* IO errors */
5739 int errors;
5740
5741 struct bio *orig_bio;
4b46fce2
JB
5742};
5743
5744static void btrfs_endio_direct_read(struct bio *bio, int err)
5745{
e65e1535 5746 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5747 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5748 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5749 struct inode *inode = dip->inode;
5750 struct btrfs_root *root = BTRFS_I(inode)->root;
5751 u64 start;
5752 u32 *private = dip->csums;
5753
5754 start = dip->logical_offset;
5755 do {
5756 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5757 struct page *page = bvec->bv_page;
5758 char *kaddr;
5759 u32 csum = ~(u32)0;
5760 unsigned long flags;
5761
5762 local_irq_save(flags);
5763 kaddr = kmap_atomic(page, KM_IRQ0);
5764 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5765 csum, bvec->bv_len);
5766 btrfs_csum_final(csum, (char *)&csum);
5767 kunmap_atomic(kaddr, KM_IRQ0);
5768 local_irq_restore(flags);
5769
5770 flush_dcache_page(bvec->bv_page);
5771 if (csum != *private) {
5772 printk(KERN_ERR "btrfs csum failed ino %lu off"
5773 " %llu csum %u private %u\n",
5774 inode->i_ino, (unsigned long long)start,
5775 csum, *private);
5776 err = -EIO;
5777 }
5778 }
5779
5780 start += bvec->bv_len;
5781 private++;
5782 bvec++;
5783 } while (bvec <= bvec_end);
5784
5785 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5786 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5787 bio->bi_private = dip->private;
5788
5789 kfree(dip->csums);
5790 kfree(dip);
c0da7aa1
JB
5791
5792 /* If we had a csum failure make sure to clear the uptodate flag */
5793 if (err)
5794 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5795 dio_end_io(bio, err);
5796}
5797
5798static void btrfs_endio_direct_write(struct bio *bio, int err)
5799{
5800 struct btrfs_dio_private *dip = bio->bi_private;
5801 struct inode *inode = dip->inode;
5802 struct btrfs_root *root = BTRFS_I(inode)->root;
5803 struct btrfs_trans_handle *trans;
5804 struct btrfs_ordered_extent *ordered = NULL;
5805 struct extent_state *cached_state = NULL;
163cf09c
CM
5806 u64 ordered_offset = dip->logical_offset;
5807 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5808 int ret;
5809
5810 if (err)
5811 goto out_done;
163cf09c
CM
5812again:
5813 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5814 &ordered_offset,
5815 ordered_bytes);
4b46fce2 5816 if (!ret)
163cf09c 5817 goto out_test;
4b46fce2
JB
5818
5819 BUG_ON(!ordered);
5820
5821 trans = btrfs_join_transaction(root, 1);
3612b495 5822 if (IS_ERR(trans)) {
4b46fce2
JB
5823 err = -ENOMEM;
5824 goto out;
5825 }
5826 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5827
5828 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5829 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5830 if (!ret)
5831 ret = btrfs_update_inode(trans, root, inode);
5832 err = ret;
5833 goto out;
5834 }
5835
5836 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5837 ordered->file_offset + ordered->len - 1, 0,
5838 &cached_state, GFP_NOFS);
5839
5840 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5841 ret = btrfs_mark_extent_written(trans, inode,
5842 ordered->file_offset,
5843 ordered->file_offset +
5844 ordered->len);
5845 if (ret) {
5846 err = ret;
5847 goto out_unlock;
5848 }
5849 } else {
5850 ret = insert_reserved_file_extent(trans, inode,
5851 ordered->file_offset,
5852 ordered->start,
5853 ordered->disk_len,
5854 ordered->len,
5855 ordered->len,
5856 0, 0, 0,
5857 BTRFS_FILE_EXTENT_REG);
5858 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5859 ordered->file_offset, ordered->len);
5860 if (ret) {
5861 err = ret;
5862 WARN_ON(1);
5863 goto out_unlock;
5864 }
5865 }
5866
5867 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5868 btrfs_ordered_update_i_size(inode, 0, ordered);
5869 btrfs_update_inode(trans, root, inode);
5870out_unlock:
5871 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5872 ordered->file_offset + ordered->len - 1,
5873 &cached_state, GFP_NOFS);
5874out:
5875 btrfs_delalloc_release_metadata(inode, ordered->len);
5876 btrfs_end_transaction(trans, root);
163cf09c 5877 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5878 btrfs_put_ordered_extent(ordered);
5879 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5880
5881out_test:
5882 /*
5883 * our bio might span multiple ordered extents. If we haven't
5884 * completed the accounting for the whole dio, go back and try again
5885 */
5886 if (ordered_offset < dip->logical_offset + dip->bytes) {
5887 ordered_bytes = dip->logical_offset + dip->bytes -
5888 ordered_offset;
5889 goto again;
5890 }
4b46fce2
JB
5891out_done:
5892 bio->bi_private = dip->private;
5893
5894 kfree(dip->csums);
5895 kfree(dip);
c0da7aa1
JB
5896
5897 /* If we had an error make sure to clear the uptodate flag */
5898 if (err)
5899 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5900 dio_end_io(bio, err);
5901}
5902
eaf25d93
CM
5903static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5904 struct bio *bio, int mirror_num,
5905 unsigned long bio_flags, u64 offset)
5906{
5907 int ret;
5908 struct btrfs_root *root = BTRFS_I(inode)->root;
5909 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5910 BUG_ON(ret);
5911 return 0;
5912}
5913
e65e1535
MX
5914static void btrfs_end_dio_bio(struct bio *bio, int err)
5915{
5916 struct btrfs_dio_private *dip = bio->bi_private;
5917
5918 if (err) {
5919 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5920 "sector %#Lx len %u err no %d\n",
5921 dip->inode->i_ino, bio->bi_rw,
5922 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5923 dip->errors = 1;
5924
5925 /*
5926 * before atomic variable goto zero, we must make sure
5927 * dip->errors is perceived to be set.
5928 */
5929 smp_mb__before_atomic_dec();
5930 }
5931
5932 /* if there are more bios still pending for this dio, just exit */
5933 if (!atomic_dec_and_test(&dip->pending_bios))
5934 goto out;
5935
5936 if (dip->errors)
5937 bio_io_error(dip->orig_bio);
5938 else {
5939 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5940 bio_endio(dip->orig_bio, 0);
5941 }
5942out:
5943 bio_put(bio);
5944}
5945
5946static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5947 u64 first_sector, gfp_t gfp_flags)
5948{
5949 int nr_vecs = bio_get_nr_vecs(bdev);
5950 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5951}
5952
5953static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5954 int rw, u64 file_offset, int skip_sum,
5955 u32 *csums)
5956{
5957 int write = rw & REQ_WRITE;
5958 struct btrfs_root *root = BTRFS_I(inode)->root;
5959 int ret;
5960
5961 bio_get(bio);
5962 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5963 if (ret)
5964 goto err;
5965
5966 if (write && !skip_sum) {
5967 ret = btrfs_wq_submit_bio(root->fs_info,
5968 inode, rw, bio, 0, 0,
5969 file_offset,
5970 __btrfs_submit_bio_start_direct_io,
5971 __btrfs_submit_bio_done);
5972 goto err;
c2db1073
TI
5973 } else if (!skip_sum) {
5974 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5975 file_offset, csums);
c2db1073
TI
5976 if (ret)
5977 goto err;
5978 }
e65e1535
MX
5979
5980 ret = btrfs_map_bio(root, rw, bio, 0, 1);
5981err:
5982 bio_put(bio);
5983 return ret;
5984}
5985
5986static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5987 int skip_sum)
5988{
5989 struct inode *inode = dip->inode;
5990 struct btrfs_root *root = BTRFS_I(inode)->root;
5991 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5992 struct bio *bio;
5993 struct bio *orig_bio = dip->orig_bio;
5994 struct bio_vec *bvec = orig_bio->bi_io_vec;
5995 u64 start_sector = orig_bio->bi_sector;
5996 u64 file_offset = dip->logical_offset;
5997 u64 submit_len = 0;
5998 u64 map_length;
5999 int nr_pages = 0;
6000 u32 *csums = dip->csums;
6001 int ret = 0;
98bc3149 6002 int write = rw & REQ_WRITE;
e65e1535
MX
6003
6004 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6005 if (!bio)
6006 return -ENOMEM;
6007 bio->bi_private = dip;
6008 bio->bi_end_io = btrfs_end_dio_bio;
6009 atomic_inc(&dip->pending_bios);
6010
6011 map_length = orig_bio->bi_size;
6012 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6013 &map_length, NULL, 0);
6014 if (ret) {
6015 bio_put(bio);
6016 return -EIO;
6017 }
6018
6019 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6020 if (unlikely(map_length < submit_len + bvec->bv_len ||
6021 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6022 bvec->bv_offset) < bvec->bv_len)) {
6023 /*
6024 * inc the count before we submit the bio so
6025 * we know the end IO handler won't happen before
6026 * we inc the count. Otherwise, the dip might get freed
6027 * before we're done setting it up
6028 */
6029 atomic_inc(&dip->pending_bios);
6030 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6031 file_offset, skip_sum,
6032 csums);
6033 if (ret) {
6034 bio_put(bio);
6035 atomic_dec(&dip->pending_bios);
6036 goto out_err;
6037 }
6038
98bc3149
JB
6039 /* Write's use the ordered csums */
6040 if (!write && !skip_sum)
e65e1535
MX
6041 csums = csums + nr_pages;
6042 start_sector += submit_len >> 9;
6043 file_offset += submit_len;
6044
6045 submit_len = 0;
6046 nr_pages = 0;
6047
6048 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6049 start_sector, GFP_NOFS);
6050 if (!bio)
6051 goto out_err;
6052 bio->bi_private = dip;
6053 bio->bi_end_io = btrfs_end_dio_bio;
6054
6055 map_length = orig_bio->bi_size;
6056 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6057 &map_length, NULL, 0);
6058 if (ret) {
6059 bio_put(bio);
6060 goto out_err;
6061 }
6062 } else {
6063 submit_len += bvec->bv_len;
6064 nr_pages ++;
6065 bvec++;
6066 }
6067 }
6068
6069 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
6070 csums);
6071 if (!ret)
6072 return 0;
6073
6074 bio_put(bio);
6075out_err:
6076 dip->errors = 1;
6077 /*
6078 * before atomic variable goto zero, we must
6079 * make sure dip->errors is perceived to be set.
6080 */
6081 smp_mb__before_atomic_dec();
6082 if (atomic_dec_and_test(&dip->pending_bios))
6083 bio_io_error(dip->orig_bio);
6084
6085 /* bio_end_io() will handle error, so we needn't return it */
6086 return 0;
6087}
6088
4b46fce2
JB
6089static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6090 loff_t file_offset)
6091{
6092 struct btrfs_root *root = BTRFS_I(inode)->root;
6093 struct btrfs_dio_private *dip;
6094 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6095 int skip_sum;
7b6d91da 6096 int write = rw & REQ_WRITE;
4b46fce2
JB
6097 int ret = 0;
6098
6099 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6100
6101 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6102 if (!dip) {
6103 ret = -ENOMEM;
6104 goto free_ordered;
6105 }
6106 dip->csums = NULL;
6107
98bc3149
JB
6108 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6109 if (!write && !skip_sum) {
4b46fce2
JB
6110 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6111 if (!dip->csums) {
b4966b77 6112 kfree(dip);
4b46fce2
JB
6113 ret = -ENOMEM;
6114 goto free_ordered;
6115 }
6116 }
6117
6118 dip->private = bio->bi_private;
6119 dip->inode = inode;
6120 dip->logical_offset = file_offset;
6121
4b46fce2
JB
6122 dip->bytes = 0;
6123 do {
6124 dip->bytes += bvec->bv_len;
6125 bvec++;
6126 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6127
46bfbb5c 6128 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6129 bio->bi_private = dip;
e65e1535
MX
6130 dip->errors = 0;
6131 dip->orig_bio = bio;
6132 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6133
6134 if (write)
6135 bio->bi_end_io = btrfs_endio_direct_write;
6136 else
6137 bio->bi_end_io = btrfs_endio_direct_read;
6138
e65e1535
MX
6139 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6140 if (!ret)
eaf25d93 6141 return;
4b46fce2
JB
6142free_ordered:
6143 /*
6144 * If this is a write, we need to clean up the reserved space and kill
6145 * the ordered extent.
6146 */
6147 if (write) {
6148 struct btrfs_ordered_extent *ordered;
955256f2 6149 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6150 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6151 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6152 btrfs_free_reserved_extent(root, ordered->start,
6153 ordered->disk_len);
6154 btrfs_put_ordered_extent(ordered);
6155 btrfs_put_ordered_extent(ordered);
6156 }
6157 bio_endio(bio, ret);
6158}
6159
5a5f79b5
CM
6160static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6161 const struct iovec *iov, loff_t offset,
6162 unsigned long nr_segs)
6163{
6164 int seg;
6165 size_t size;
6166 unsigned long addr;
6167 unsigned blocksize_mask = root->sectorsize - 1;
6168 ssize_t retval = -EINVAL;
6169 loff_t end = offset;
6170
6171 if (offset & blocksize_mask)
6172 goto out;
6173
6174 /* Check the memory alignment. Blocks cannot straddle pages */
6175 for (seg = 0; seg < nr_segs; seg++) {
6176 addr = (unsigned long)iov[seg].iov_base;
6177 size = iov[seg].iov_len;
6178 end += size;
6179 if ((addr & blocksize_mask) || (size & blocksize_mask))
6180 goto out;
6181 }
6182 retval = 0;
6183out:
6184 return retval;
6185}
16432985
CM
6186static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6187 const struct iovec *iov, loff_t offset,
6188 unsigned long nr_segs)
6189{
4b46fce2
JB
6190 struct file *file = iocb->ki_filp;
6191 struct inode *inode = file->f_mapping->host;
6192 struct btrfs_ordered_extent *ordered;
4845e44f 6193 struct extent_state *cached_state = NULL;
4b46fce2
JB
6194 u64 lockstart, lockend;
6195 ssize_t ret;
4845e44f
CM
6196 int writing = rw & WRITE;
6197 int write_bits = 0;
3f7c579c 6198 size_t count = iov_length(iov, nr_segs);
4b46fce2 6199
5a5f79b5
CM
6200 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6201 offset, nr_segs)) {
6202 return 0;
6203 }
6204
4b46fce2 6205 lockstart = offset;
3f7c579c
CM
6206 lockend = offset + count - 1;
6207
6208 if (writing) {
6209 ret = btrfs_delalloc_reserve_space(inode, count);
6210 if (ret)
6211 goto out;
6212 }
4845e44f 6213
4b46fce2 6214 while (1) {
4845e44f
CM
6215 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6216 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6217 /*
6218 * We're concerned with the entire range that we're going to be
6219 * doing DIO to, so we need to make sure theres no ordered
6220 * extents in this range.
6221 */
6222 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6223 lockend - lockstart + 1);
6224 if (!ordered)
6225 break;
4845e44f
CM
6226 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6227 &cached_state, GFP_NOFS);
4b46fce2
JB
6228 btrfs_start_ordered_extent(inode, ordered, 1);
6229 btrfs_put_ordered_extent(ordered);
6230 cond_resched();
6231 }
6232
4845e44f
CM
6233 /*
6234 * we don't use btrfs_set_extent_delalloc because we don't want
6235 * the dirty or uptodate bits
6236 */
6237 if (writing) {
6238 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6239 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6240 EXTENT_DELALLOC, 0, NULL, &cached_state,
6241 GFP_NOFS);
6242 if (ret) {
6243 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6244 lockend, EXTENT_LOCKED | write_bits,
6245 1, 0, &cached_state, GFP_NOFS);
6246 goto out;
6247 }
6248 }
6249
6250 free_extent_state(cached_state);
6251 cached_state = NULL;
6252
5a5f79b5
CM
6253 ret = __blockdev_direct_IO(rw, iocb, inode,
6254 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6255 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6256 btrfs_submit_direct, 0);
4b46fce2
JB
6257
6258 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6259 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6260 offset + iov_length(iov, nr_segs) - 1,
6261 EXTENT_LOCKED | write_bits, 1, 0,
6262 &cached_state, GFP_NOFS);
4b46fce2
JB
6263 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6264 /*
6265 * We're falling back to buffered, unlock the section we didn't
6266 * do IO on.
6267 */
4845e44f
CM
6268 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6269 offset + iov_length(iov, nr_segs) - 1,
6270 EXTENT_LOCKED | write_bits, 1, 0,
6271 &cached_state, GFP_NOFS);
4b46fce2 6272 }
4845e44f
CM
6273out:
6274 free_extent_state(cached_state);
4b46fce2 6275 return ret;
16432985
CM
6276}
6277
1506fcc8
YS
6278static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6279 __u64 start, __u64 len)
6280{
ec29ed5b 6281 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6282}
6283
a52d9a80 6284int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6285{
d1310b2e
CM
6286 struct extent_io_tree *tree;
6287 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6288 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6289}
1832a6d5 6290
a52d9a80 6291static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6292{
d1310b2e 6293 struct extent_io_tree *tree;
b888db2b
CM
6294
6295
6296 if (current->flags & PF_MEMALLOC) {
6297 redirty_page_for_writepage(wbc, page);
6298 unlock_page(page);
6299 return 0;
6300 }
d1310b2e 6301 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6302 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6303}
6304
f421950f
CM
6305int btrfs_writepages(struct address_space *mapping,
6306 struct writeback_control *wbc)
b293f02e 6307{
d1310b2e 6308 struct extent_io_tree *tree;
771ed689 6309
d1310b2e 6310 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6311 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6312}
6313
3ab2fb5a
CM
6314static int
6315btrfs_readpages(struct file *file, struct address_space *mapping,
6316 struct list_head *pages, unsigned nr_pages)
6317{
d1310b2e
CM
6318 struct extent_io_tree *tree;
6319 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6320 return extent_readpages(tree, mapping, pages, nr_pages,
6321 btrfs_get_extent);
6322}
e6dcd2dc 6323static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6324{
d1310b2e
CM
6325 struct extent_io_tree *tree;
6326 struct extent_map_tree *map;
a52d9a80 6327 int ret;
8c2383c3 6328
d1310b2e
CM
6329 tree = &BTRFS_I(page->mapping->host)->io_tree;
6330 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6331 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6332 if (ret == 1) {
6333 ClearPagePrivate(page);
6334 set_page_private(page, 0);
6335 page_cache_release(page);
39279cc3 6336 }
a52d9a80 6337 return ret;
39279cc3
CM
6338}
6339
e6dcd2dc
CM
6340static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6341{
98509cfc
CM
6342 if (PageWriteback(page) || PageDirty(page))
6343 return 0;
b335b003 6344 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6345}
6346
a52d9a80 6347static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6348{
d1310b2e 6349 struct extent_io_tree *tree;
e6dcd2dc 6350 struct btrfs_ordered_extent *ordered;
2ac55d41 6351 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6352 u64 page_start = page_offset(page);
6353 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6354
8b62b72b
CM
6355
6356 /*
6357 * we have the page locked, so new writeback can't start,
6358 * and the dirty bit won't be cleared while we are here.
6359 *
6360 * Wait for IO on this page so that we can safely clear
6361 * the PagePrivate2 bit and do ordered accounting
6362 */
e6dcd2dc 6363 wait_on_page_writeback(page);
8b62b72b 6364
d1310b2e 6365 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6366 if (offset) {
6367 btrfs_releasepage(page, GFP_NOFS);
6368 return;
6369 }
2ac55d41
JB
6370 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6371 GFP_NOFS);
e6dcd2dc
CM
6372 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6373 page_offset(page));
6374 if (ordered) {
eb84ae03
CM
6375 /*
6376 * IO on this page will never be started, so we need
6377 * to account for any ordered extents now
6378 */
e6dcd2dc
CM
6379 clear_extent_bit(tree, page_start, page_end,
6380 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6381 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6382 &cached_state, GFP_NOFS);
8b62b72b
CM
6383 /*
6384 * whoever cleared the private bit is responsible
6385 * for the finish_ordered_io
6386 */
6387 if (TestClearPagePrivate2(page)) {
6388 btrfs_finish_ordered_io(page->mapping->host,
6389 page_start, page_end);
6390 }
e6dcd2dc 6391 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6392 cached_state = NULL;
6393 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6394 GFP_NOFS);
e6dcd2dc
CM
6395 }
6396 clear_extent_bit(tree, page_start, page_end,
32c00aff 6397 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6398 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6399 __btrfs_releasepage(page, GFP_NOFS);
6400
4a096752 6401 ClearPageChecked(page);
9ad6b7bc 6402 if (PagePrivate(page)) {
9ad6b7bc
CM
6403 ClearPagePrivate(page);
6404 set_page_private(page, 0);
6405 page_cache_release(page);
6406 }
39279cc3
CM
6407}
6408
9ebefb18
CM
6409/*
6410 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6411 * called from a page fault handler when a page is first dirtied. Hence we must
6412 * be careful to check for EOF conditions here. We set the page up correctly
6413 * for a written page which means we get ENOSPC checking when writing into
6414 * holes and correct delalloc and unwritten extent mapping on filesystems that
6415 * support these features.
6416 *
6417 * We are not allowed to take the i_mutex here so we have to play games to
6418 * protect against truncate races as the page could now be beyond EOF. Because
6419 * vmtruncate() writes the inode size before removing pages, once we have the
6420 * page lock we can determine safely if the page is beyond EOF. If it is not
6421 * beyond EOF, then the page is guaranteed safe against truncation until we
6422 * unlock the page.
6423 */
c2ec175c 6424int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6425{
c2ec175c 6426 struct page *page = vmf->page;
6da6abae 6427 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6428 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6429 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6430 struct btrfs_ordered_extent *ordered;
2ac55d41 6431 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6432 char *kaddr;
6433 unsigned long zero_start;
9ebefb18 6434 loff_t size;
1832a6d5 6435 int ret;
a52d9a80 6436 u64 page_start;
e6dcd2dc 6437 u64 page_end;
9ebefb18 6438
0ca1f7ce 6439 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6440 if (ret) {
6441 if (ret == -ENOMEM)
6442 ret = VM_FAULT_OOM;
6443 else /* -ENOSPC, -EIO, etc */
6444 ret = VM_FAULT_SIGBUS;
1832a6d5 6445 goto out;
56a76f82 6446 }
1832a6d5 6447
56a76f82 6448 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6449again:
9ebefb18 6450 lock_page(page);
9ebefb18 6451 size = i_size_read(inode);
e6dcd2dc
CM
6452 page_start = page_offset(page);
6453 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6454
9ebefb18 6455 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6456 (page_start >= size)) {
9ebefb18
CM
6457 /* page got truncated out from underneath us */
6458 goto out_unlock;
6459 }
e6dcd2dc
CM
6460 wait_on_page_writeback(page);
6461
2ac55d41
JB
6462 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6463 GFP_NOFS);
e6dcd2dc
CM
6464 set_page_extent_mapped(page);
6465
eb84ae03
CM
6466 /*
6467 * we can't set the delalloc bits if there are pending ordered
6468 * extents. Drop our locks and wait for them to finish
6469 */
e6dcd2dc
CM
6470 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6471 if (ordered) {
2ac55d41
JB
6472 unlock_extent_cached(io_tree, page_start, page_end,
6473 &cached_state, GFP_NOFS);
e6dcd2dc 6474 unlock_page(page);
eb84ae03 6475 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6476 btrfs_put_ordered_extent(ordered);
6477 goto again;
6478 }
6479
fbf19087
JB
6480 /*
6481 * XXX - page_mkwrite gets called every time the page is dirtied, even
6482 * if it was already dirty, so for space accounting reasons we need to
6483 * clear any delalloc bits for the range we are fixing to save. There
6484 * is probably a better way to do this, but for now keep consistent with
6485 * prepare_pages in the normal write path.
6486 */
2ac55d41 6487 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6488 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6489 0, 0, &cached_state, GFP_NOFS);
fbf19087 6490
2ac55d41
JB
6491 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6492 &cached_state);
9ed74f2d 6493 if (ret) {
2ac55d41
JB
6494 unlock_extent_cached(io_tree, page_start, page_end,
6495 &cached_state, GFP_NOFS);
9ed74f2d
JB
6496 ret = VM_FAULT_SIGBUS;
6497 goto out_unlock;
6498 }
e6dcd2dc 6499 ret = 0;
9ebefb18
CM
6500
6501 /* page is wholly or partially inside EOF */
a52d9a80 6502 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6503 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6504 else
e6dcd2dc 6505 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6506
e6dcd2dc
CM
6507 if (zero_start != PAGE_CACHE_SIZE) {
6508 kaddr = kmap(page);
6509 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6510 flush_dcache_page(page);
6511 kunmap(page);
6512 }
247e743c 6513 ClearPageChecked(page);
e6dcd2dc 6514 set_page_dirty(page);
50a9b214 6515 SetPageUptodate(page);
5a3f23d5 6516
257c62e1
CM
6517 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6518 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6519
2ac55d41 6520 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6521
6522out_unlock:
50a9b214
CM
6523 if (!ret)
6524 return VM_FAULT_LOCKED;
9ebefb18 6525 unlock_page(page);
0ca1f7ce 6526 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6527out:
9ebefb18
CM
6528 return ret;
6529}
6530
a41ad394 6531static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6532{
6533 struct btrfs_root *root = BTRFS_I(inode)->root;
6534 int ret;
3893e33b 6535 int err = 0;
39279cc3 6536 struct btrfs_trans_handle *trans;
d3c2fdcf 6537 unsigned long nr;
dbe674a9 6538 u64 mask = root->sectorsize - 1;
39279cc3 6539
5d5e103a
JB
6540 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6541 if (ret)
a41ad394 6542 return ret;
8082510e 6543
4a096752 6544 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6545 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6546
f0cd846e
JB
6547 trans = btrfs_start_transaction(root, 5);
6548 if (IS_ERR(trans))
6549 return PTR_ERR(trans);
6550
6551 btrfs_set_trans_block_group(trans, inode);
6552
6553 ret = btrfs_orphan_add(trans, inode);
6554 if (ret) {
6555 btrfs_end_transaction(trans, root);
6556 return ret;
6557 }
6558
6559 nr = trans->blocks_used;
6560 btrfs_end_transaction(trans, root);
6561 btrfs_btree_balance_dirty(root, nr);
6562
6563 /* Now start a transaction for the truncate */
d68fc57b 6564 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6565 if (IS_ERR(trans))
6566 return PTR_ERR(trans);
8082510e 6567 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6568 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6569
6570 /*
6571 * setattr is responsible for setting the ordered_data_close flag,
6572 * but that is only tested during the last file release. That
6573 * could happen well after the next commit, leaving a great big
6574 * window where new writes may get lost if someone chooses to write
6575 * to this file after truncating to zero
6576 *
6577 * The inode doesn't have any dirty data here, and so if we commit
6578 * this is a noop. If someone immediately starts writing to the inode
6579 * it is very likely we'll catch some of their writes in this
6580 * transaction, and the commit will find this file on the ordered
6581 * data list with good things to send down.
6582 *
6583 * This is a best effort solution, there is still a window where
6584 * using truncate to replace the contents of the file will
6585 * end up with a zero length file after a crash.
6586 */
6587 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6588 btrfs_add_ordered_operation(trans, root, inode);
6589
8082510e 6590 while (1) {
d68fc57b
YZ
6591 if (!trans) {
6592 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6593 if (IS_ERR(trans))
6594 return PTR_ERR(trans);
d68fc57b
YZ
6595 btrfs_set_trans_block_group(trans, inode);
6596 trans->block_rsv = root->orphan_block_rsv;
6597 }
6598
6599 ret = btrfs_block_rsv_check(trans, root,
6600 root->orphan_block_rsv, 0, 5);
3893e33b 6601 if (ret == -EAGAIN) {
d68fc57b 6602 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6603 if (ret)
6604 return ret;
d68fc57b
YZ
6605 trans = NULL;
6606 continue;
3893e33b
JB
6607 } else if (ret) {
6608 err = ret;
6609 break;
d68fc57b
YZ
6610 }
6611
8082510e
YZ
6612 ret = btrfs_truncate_inode_items(trans, root, inode,
6613 inode->i_size,
6614 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6615 if (ret != -EAGAIN) {
6616 err = ret;
8082510e 6617 break;
3893e33b 6618 }
39279cc3 6619
8082510e 6620 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6621 if (ret) {
6622 err = ret;
6623 break;
6624 }
5f39d397 6625
8082510e
YZ
6626 nr = trans->blocks_used;
6627 btrfs_end_transaction(trans, root);
d68fc57b 6628 trans = NULL;
8082510e 6629 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6630 }
6631
6632 if (ret == 0 && inode->i_nlink > 0) {
6633 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6634 if (ret)
6635 err = ret;
ded5db9d
JB
6636 } else if (ret && inode->i_nlink > 0) {
6637 /*
6638 * Failed to do the truncate, remove us from the in memory
6639 * orphan list.
6640 */
6641 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6642 }
6643
6644 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6645 if (ret && !err)
6646 err = ret;
7b128766 6647
7b128766 6648 nr = trans->blocks_used;
89ce8a63 6649 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6650 if (ret && !err)
6651 err = ret;
d3c2fdcf 6652 btrfs_btree_balance_dirty(root, nr);
a41ad394 6653
3893e33b 6654 return err;
39279cc3
CM
6655}
6656
d352ac68
CM
6657/*
6658 * create a new subvolume directory/inode (helper for the ioctl).
6659 */
d2fb3437 6660int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6661 struct btrfs_root *new_root,
d2fb3437 6662 u64 new_dirid, u64 alloc_hint)
39279cc3 6663{
39279cc3 6664 struct inode *inode;
76dda93c 6665 int err;
00e4e6b3 6666 u64 index = 0;
39279cc3 6667
aec7477b 6668 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6669 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6670 if (IS_ERR(inode))
f46b5a66 6671 return PTR_ERR(inode);
39279cc3
CM
6672 inode->i_op = &btrfs_dir_inode_operations;
6673 inode->i_fop = &btrfs_dir_file_operations;
6674
39279cc3 6675 inode->i_nlink = 1;
dbe674a9 6676 btrfs_i_size_write(inode, 0);
3b96362c 6677
76dda93c
YZ
6678 err = btrfs_update_inode(trans, new_root, inode);
6679 BUG_ON(err);
cb8e7090 6680
76dda93c 6681 iput(inode);
cb8e7090 6682 return 0;
39279cc3
CM
6683}
6684
d352ac68
CM
6685/* helper function for file defrag and space balancing. This
6686 * forces readahead on a given range of bytes in an inode
6687 */
edbd8d4e 6688unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6689 struct file_ra_state *ra, struct file *file,
6690 pgoff_t offset, pgoff_t last_index)
6691{
8e7bf94f 6692 pgoff_t req_size = last_index - offset + 1;
86479a04 6693
86479a04
CM
6694 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6695 return offset + req_size;
86479a04
CM
6696}
6697
39279cc3
CM
6698struct inode *btrfs_alloc_inode(struct super_block *sb)
6699{
6700 struct btrfs_inode *ei;
2ead6ae7 6701 struct inode *inode;
39279cc3
CM
6702
6703 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6704 if (!ei)
6705 return NULL;
2ead6ae7
YZ
6706
6707 ei->root = NULL;
6708 ei->space_info = NULL;
6709 ei->generation = 0;
6710 ei->sequence = 0;
15ee9bc7 6711 ei->last_trans = 0;
257c62e1 6712 ei->last_sub_trans = 0;
e02119d5 6713 ei->logged_trans = 0;
2ead6ae7
YZ
6714 ei->delalloc_bytes = 0;
6715 ei->reserved_bytes = 0;
6716 ei->disk_i_size = 0;
6717 ei->flags = 0;
6718 ei->index_cnt = (u64)-1;
6719 ei->last_unlink_trans = 0;
6720
0ca1f7ce 6721 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6722 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6723
6724 ei->ordered_data_close = 0;
d68fc57b 6725 ei->orphan_meta_reserved = 0;
2ead6ae7 6726 ei->dummy_inode = 0;
261507a0 6727 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6728
6729 inode = &ei->vfs_inode;
6730 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6731 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6732 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6733 mutex_init(&ei->log_mutex);
e6dcd2dc 6734 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6735 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6736 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6737 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6738 RB_CLEAR_NODE(&ei->rb_node);
6739
6740 return inode;
39279cc3
CM
6741}
6742
fa0d7e3d
NP
6743static void btrfs_i_callback(struct rcu_head *head)
6744{
6745 struct inode *inode = container_of(head, struct inode, i_rcu);
6746 INIT_LIST_HEAD(&inode->i_dentry);
6747 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6748}
6749
39279cc3
CM
6750void btrfs_destroy_inode(struct inode *inode)
6751{
e6dcd2dc 6752 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6753 struct btrfs_root *root = BTRFS_I(inode)->root;
6754
39279cc3
CM
6755 WARN_ON(!list_empty(&inode->i_dentry));
6756 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6757 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6758 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6759
a6dbd429
JB
6760 /*
6761 * This can happen where we create an inode, but somebody else also
6762 * created the same inode and we need to destroy the one we already
6763 * created.
6764 */
6765 if (!root)
6766 goto free;
6767
5a3f23d5
CM
6768 /*
6769 * Make sure we're properly removed from the ordered operation
6770 * lists.
6771 */
6772 smp_mb();
6773 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6774 spin_lock(&root->fs_info->ordered_extent_lock);
6775 list_del_init(&BTRFS_I(inode)->ordered_operations);
6776 spin_unlock(&root->fs_info->ordered_extent_lock);
6777 }
6778
0af3d00b
JB
6779 if (root == root->fs_info->tree_root) {
6780 struct btrfs_block_group_cache *block_group;
6781
6782 block_group = btrfs_lookup_block_group(root->fs_info,
6783 BTRFS_I(inode)->block_group);
6784 if (block_group && block_group->inode == inode) {
6785 spin_lock(&block_group->lock);
6786 block_group->inode = NULL;
6787 spin_unlock(&block_group->lock);
6788 btrfs_put_block_group(block_group);
6789 } else if (block_group) {
6790 btrfs_put_block_group(block_group);
6791 }
6792 }
6793
d68fc57b 6794 spin_lock(&root->orphan_lock);
7b128766 6795 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6796 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6797 inode->i_ino);
6798 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6799 }
d68fc57b 6800 spin_unlock(&root->orphan_lock);
7b128766 6801
d397712b 6802 while (1) {
e6dcd2dc
CM
6803 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6804 if (!ordered)
6805 break;
6806 else {
d397712b
CM
6807 printk(KERN_ERR "btrfs found ordered "
6808 "extent %llu %llu on inode cleanup\n",
6809 (unsigned long long)ordered->file_offset,
6810 (unsigned long long)ordered->len);
e6dcd2dc
CM
6811 btrfs_remove_ordered_extent(inode, ordered);
6812 btrfs_put_ordered_extent(ordered);
6813 btrfs_put_ordered_extent(ordered);
6814 }
6815 }
5d4f98a2 6816 inode_tree_del(inode);
5b21f2ed 6817 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6818free:
fa0d7e3d 6819 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6820}
6821
45321ac5 6822int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6823{
6824 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6825
0af3d00b
JB
6826 if (btrfs_root_refs(&root->root_item) == 0 &&
6827 root != root->fs_info->tree_root)
45321ac5 6828 return 1;
76dda93c 6829 else
45321ac5 6830 return generic_drop_inode(inode);
76dda93c
YZ
6831}
6832
0ee0fda0 6833static void init_once(void *foo)
39279cc3
CM
6834{
6835 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6836
6837 inode_init_once(&ei->vfs_inode);
6838}
6839
6840void btrfs_destroy_cachep(void)
6841{
6842 if (btrfs_inode_cachep)
6843 kmem_cache_destroy(btrfs_inode_cachep);
6844 if (btrfs_trans_handle_cachep)
6845 kmem_cache_destroy(btrfs_trans_handle_cachep);
6846 if (btrfs_transaction_cachep)
6847 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6848 if (btrfs_path_cachep)
6849 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6850 if (btrfs_free_space_cachep)
6851 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6852}
6853
6854int btrfs_init_cachep(void)
6855{
9601e3f6
CH
6856 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6857 sizeof(struct btrfs_inode), 0,
6858 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6859 if (!btrfs_inode_cachep)
6860 goto fail;
9601e3f6
CH
6861
6862 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6863 sizeof(struct btrfs_trans_handle), 0,
6864 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6865 if (!btrfs_trans_handle_cachep)
6866 goto fail;
9601e3f6
CH
6867
6868 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6869 sizeof(struct btrfs_transaction), 0,
6870 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6871 if (!btrfs_transaction_cachep)
6872 goto fail;
9601e3f6
CH
6873
6874 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6875 sizeof(struct btrfs_path), 0,
6876 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6877 if (!btrfs_path_cachep)
6878 goto fail;
9601e3f6 6879
dc89e982
JB
6880 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6881 sizeof(struct btrfs_free_space), 0,
6882 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6883 if (!btrfs_free_space_cachep)
6884 goto fail;
6885
39279cc3
CM
6886 return 0;
6887fail:
6888 btrfs_destroy_cachep();
6889 return -ENOMEM;
6890}
6891
6892static int btrfs_getattr(struct vfsmount *mnt,
6893 struct dentry *dentry, struct kstat *stat)
6894{
6895 struct inode *inode = dentry->d_inode;
6896 generic_fillattr(inode, stat);
3394e160 6897 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6898 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6899 stat->blocks = (inode_get_bytes(inode) +
6900 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6901 return 0;
6902}
6903
75e7cb7f
LB
6904/*
6905 * If a file is moved, it will inherit the cow and compression flags of the new
6906 * directory.
6907 */
6908static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6909{
6910 struct btrfs_inode *b_dir = BTRFS_I(dir);
6911 struct btrfs_inode *b_inode = BTRFS_I(inode);
6912
6913 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6914 b_inode->flags |= BTRFS_INODE_NODATACOW;
6915 else
6916 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6917
6918 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6919 b_inode->flags |= BTRFS_INODE_COMPRESS;
6920 else
6921 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6922}
6923
d397712b
CM
6924static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6925 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6926{
6927 struct btrfs_trans_handle *trans;
6928 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6929 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6930 struct inode *new_inode = new_dentry->d_inode;
6931 struct inode *old_inode = old_dentry->d_inode;
6932 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6933 u64 index = 0;
4df27c4d 6934 u64 root_objectid;
39279cc3
CM
6935 int ret;
6936
f679a840
YZ
6937 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6938 return -EPERM;
6939
4df27c4d
YZ
6940 /* we only allow rename subvolume link between subvolumes */
6941 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6942 return -EXDEV;
6943
4df27c4d
YZ
6944 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6945 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6946 return -ENOTEMPTY;
5f39d397 6947
4df27c4d
YZ
6948 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6949 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6950 return -ENOTEMPTY;
5a3f23d5
CM
6951 /*
6952 * we're using rename to replace one file with another.
6953 * and the replacement file is large. Start IO on it now so
6954 * we don't add too much work to the end of the transaction
6955 */
4baf8c92 6956 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6957 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6958 filemap_flush(old_inode->i_mapping);
6959
76dda93c
YZ
6960 /* close the racy window with snapshot create/destroy ioctl */
6961 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
6962 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6963 /*
6964 * We want to reserve the absolute worst case amount of items. So if
6965 * both inodes are subvols and we need to unlink them then that would
6966 * require 4 item modifications, but if they are both normal inodes it
6967 * would require 5 item modifications, so we'll assume their normal
6968 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6969 * should cover the worst case number of items we'll modify.
6970 */
6971 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6972 if (IS_ERR(trans)) {
6973 ret = PTR_ERR(trans);
6974 goto out_notrans;
6975 }
76dda93c 6976
a5719521 6977 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 6978
4df27c4d
YZ
6979 if (dest != root)
6980 btrfs_record_root_in_trans(trans, dest);
5f39d397 6981
a5719521
YZ
6982 ret = btrfs_set_inode_index(new_dir, &index);
6983 if (ret)
6984 goto out_fail;
5a3f23d5 6985
a5719521 6986 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6987 /* force full log commit if subvolume involved. */
6988 root->fs_info->last_trans_log_full_commit = trans->transid;
6989 } else {
a5719521
YZ
6990 ret = btrfs_insert_inode_ref(trans, dest,
6991 new_dentry->d_name.name,
6992 new_dentry->d_name.len,
6993 old_inode->i_ino,
6994 new_dir->i_ino, index);
6995 if (ret)
6996 goto out_fail;
4df27c4d
YZ
6997 /*
6998 * this is an ugly little race, but the rename is required
6999 * to make sure that if we crash, the inode is either at the
7000 * old name or the new one. pinning the log transaction lets
7001 * us make sure we don't allow a log commit to come in after
7002 * we unlink the name but before we add the new name back in.
7003 */
7004 btrfs_pin_log_trans(root);
7005 }
5a3f23d5
CM
7006 /*
7007 * make sure the inode gets flushed if it is replacing
7008 * something.
7009 */
7010 if (new_inode && new_inode->i_size &&
7011 old_inode && S_ISREG(old_inode->i_mode)) {
7012 btrfs_add_ordered_operation(trans, root, old_inode);
7013 }
7014
39279cc3
CM
7015 old_dir->i_ctime = old_dir->i_mtime = ctime;
7016 new_dir->i_ctime = new_dir->i_mtime = ctime;
7017 old_inode->i_ctime = ctime;
5f39d397 7018
12fcfd22
CM
7019 if (old_dentry->d_parent != new_dentry->d_parent)
7020 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7021
4df27c4d
YZ
7022 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7023 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7024 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7025 old_dentry->d_name.name,
7026 old_dentry->d_name.len);
7027 } else {
92986796
AV
7028 ret = __btrfs_unlink_inode(trans, root, old_dir,
7029 old_dentry->d_inode,
7030 old_dentry->d_name.name,
7031 old_dentry->d_name.len);
7032 if (!ret)
7033 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7034 }
7035 BUG_ON(ret);
39279cc3
CM
7036
7037 if (new_inode) {
7038 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
7039 if (unlikely(new_inode->i_ino ==
7040 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7041 root_objectid = BTRFS_I(new_inode)->location.objectid;
7042 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7043 root_objectid,
7044 new_dentry->d_name.name,
7045 new_dentry->d_name.len);
7046 BUG_ON(new_inode->i_nlink == 0);
7047 } else {
7048 ret = btrfs_unlink_inode(trans, dest, new_dir,
7049 new_dentry->d_inode,
7050 new_dentry->d_name.name,
7051 new_dentry->d_name.len);
7052 }
7053 BUG_ON(ret);
7b128766 7054 if (new_inode->i_nlink == 0) {
e02119d5 7055 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7056 BUG_ON(ret);
7b128766 7057 }
39279cc3 7058 }
aec7477b 7059
75e7cb7f
LB
7060 fixup_inode_flags(new_dir, old_inode);
7061
4df27c4d
YZ
7062 ret = btrfs_add_link(trans, new_dir, old_inode,
7063 new_dentry->d_name.name,
a5719521 7064 new_dentry->d_name.len, 0, index);
4df27c4d 7065 BUG_ON(ret);
39279cc3 7066
4df27c4d 7067 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7068 struct dentry *parent = dget_parent(new_dentry);
7069 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7070 dput(parent);
4df27c4d
YZ
7071 btrfs_end_log_trans(root);
7072 }
39279cc3 7073out_fail:
ab78c84d 7074 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7075out_notrans:
76dda93c
YZ
7076 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7077 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7078
39279cc3
CM
7079 return ret;
7080}
7081
d352ac68
CM
7082/*
7083 * some fairly slow code that needs optimization. This walks the list
7084 * of all the inodes with pending delalloc and forces them to disk.
7085 */
24bbcf04 7086int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7087{
7088 struct list_head *head = &root->fs_info->delalloc_inodes;
7089 struct btrfs_inode *binode;
5b21f2ed 7090 struct inode *inode;
ea8c2819 7091
c146afad
YZ
7092 if (root->fs_info->sb->s_flags & MS_RDONLY)
7093 return -EROFS;
7094
75eff68e 7095 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7096 while (!list_empty(head)) {
ea8c2819
CM
7097 binode = list_entry(head->next, struct btrfs_inode,
7098 delalloc_inodes);
5b21f2ed
ZY
7099 inode = igrab(&binode->vfs_inode);
7100 if (!inode)
7101 list_del_init(&binode->delalloc_inodes);
75eff68e 7102 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7103 if (inode) {
8c8bee1d 7104 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7105 if (delay_iput)
7106 btrfs_add_delayed_iput(inode);
7107 else
7108 iput(inode);
5b21f2ed
ZY
7109 }
7110 cond_resched();
75eff68e 7111 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7112 }
75eff68e 7113 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7114
7115 /* the filemap_flush will queue IO into the worker threads, but
7116 * we have to make sure the IO is actually started and that
7117 * ordered extents get created before we return
7118 */
7119 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7120 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7121 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7122 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7123 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7124 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7125 }
7126 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7127 return 0;
7128}
7129
0019f10d
JB
7130int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7131 int sync)
5da9d01b
YZ
7132{
7133 struct btrfs_inode *binode;
7134 struct inode *inode = NULL;
7135
7136 spin_lock(&root->fs_info->delalloc_lock);
7137 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7138 binode = list_entry(root->fs_info->delalloc_inodes.next,
7139 struct btrfs_inode, delalloc_inodes);
7140 inode = igrab(&binode->vfs_inode);
7141 if (inode) {
7142 list_move_tail(&binode->delalloc_inodes,
7143 &root->fs_info->delalloc_inodes);
7144 break;
7145 }
7146
7147 list_del_init(&binode->delalloc_inodes);
7148 cond_resched_lock(&root->fs_info->delalloc_lock);
7149 }
7150 spin_unlock(&root->fs_info->delalloc_lock);
7151
7152 if (inode) {
0019f10d
JB
7153 if (sync) {
7154 filemap_write_and_wait(inode->i_mapping);
7155 /*
7156 * We have to do this because compression doesn't
7157 * actually set PG_writeback until it submits the pages
7158 * for IO, which happens in an async thread, so we could
7159 * race and not actually wait for any writeback pages
7160 * because they've not been submitted yet. Technically
7161 * this could still be the case for the ordered stuff
7162 * since the async thread may not have started to do its
7163 * work yet. If this becomes the case then we need to
7164 * figure out a way to make sure that in writepage we
7165 * wait for any async pages to be submitted before
7166 * returning so that fdatawait does what its supposed to
7167 * do.
7168 */
7169 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7170 } else {
7171 filemap_flush(inode->i_mapping);
7172 }
5da9d01b
YZ
7173 if (delay_iput)
7174 btrfs_add_delayed_iput(inode);
7175 else
7176 iput(inode);
7177 return 1;
7178 }
7179 return 0;
7180}
7181
39279cc3
CM
7182static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7183 const char *symname)
7184{
7185 struct btrfs_trans_handle *trans;
7186 struct btrfs_root *root = BTRFS_I(dir)->root;
7187 struct btrfs_path *path;
7188 struct btrfs_key key;
1832a6d5 7189 struct inode *inode = NULL;
39279cc3
CM
7190 int err;
7191 int drop_inode = 0;
7192 u64 objectid;
00e4e6b3 7193 u64 index = 0 ;
39279cc3
CM
7194 int name_len;
7195 int datasize;
5f39d397 7196 unsigned long ptr;
39279cc3 7197 struct btrfs_file_extent_item *ei;
5f39d397 7198 struct extent_buffer *leaf;
1832a6d5 7199 unsigned long nr = 0;
39279cc3
CM
7200
7201 name_len = strlen(symname) + 1;
7202 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7203 return -ENAMETOOLONG;
1832a6d5 7204
a22285a6
YZ
7205 err = btrfs_find_free_objectid(NULL, root, dir->i_ino, &objectid);
7206 if (err)
7207 return err;
9ed74f2d
JB
7208 /*
7209 * 2 items for inode item and ref
7210 * 2 items for dir items
7211 * 1 item for xattr if selinux is on
7212 */
a22285a6
YZ
7213 trans = btrfs_start_transaction(root, 5);
7214 if (IS_ERR(trans))
7215 return PTR_ERR(trans);
1832a6d5 7216
39279cc3
CM
7217 btrfs_set_trans_block_group(trans, dir);
7218
aec7477b 7219 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7220 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7221 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7222 &index);
39279cc3
CM
7223 err = PTR_ERR(inode);
7224 if (IS_ERR(inode))
7225 goto out_unlock;
7226
f34f57a3 7227 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7228 if (err) {
7229 drop_inode = 1;
7230 goto out_unlock;
7231 }
7232
39279cc3 7233 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7234 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7235 if (err)
7236 drop_inode = 1;
7237 else {
7238 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7239 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7240 inode->i_fop = &btrfs_file_operations;
7241 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7242 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7243 }
39279cc3
CM
7244 btrfs_update_inode_block_group(trans, inode);
7245 btrfs_update_inode_block_group(trans, dir);
7246 if (drop_inode)
7247 goto out_unlock;
7248
7249 path = btrfs_alloc_path();
7250 BUG_ON(!path);
7251 key.objectid = inode->i_ino;
7252 key.offset = 0;
39279cc3
CM
7253 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7254 datasize = btrfs_file_extent_calc_inline_size(name_len);
7255 err = btrfs_insert_empty_item(trans, root, path, &key,
7256 datasize);
54aa1f4d
CM
7257 if (err) {
7258 drop_inode = 1;
7259 goto out_unlock;
7260 }
5f39d397
CM
7261 leaf = path->nodes[0];
7262 ei = btrfs_item_ptr(leaf, path->slots[0],
7263 struct btrfs_file_extent_item);
7264 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7265 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7266 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7267 btrfs_set_file_extent_encryption(leaf, ei, 0);
7268 btrfs_set_file_extent_compression(leaf, ei, 0);
7269 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7270 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7271
39279cc3 7272 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7273 write_extent_buffer(leaf, symname, ptr, name_len);
7274 btrfs_mark_buffer_dirty(leaf);
39279cc3 7275 btrfs_free_path(path);
5f39d397 7276
39279cc3
CM
7277 inode->i_op = &btrfs_symlink_inode_operations;
7278 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7279 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7280 inode_set_bytes(inode, name_len);
dbe674a9 7281 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7282 err = btrfs_update_inode(trans, root, inode);
7283 if (err)
7284 drop_inode = 1;
39279cc3
CM
7285
7286out_unlock:
d3c2fdcf 7287 nr = trans->blocks_used;
ab78c84d 7288 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7289 if (drop_inode) {
7290 inode_dec_link_count(inode);
7291 iput(inode);
7292 }
d3c2fdcf 7293 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7294 return err;
7295}
16432985 7296
0af3d00b
JB
7297static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7298 u64 start, u64 num_bytes, u64 min_size,
7299 loff_t actual_len, u64 *alloc_hint,
7300 struct btrfs_trans_handle *trans)
d899e052 7301{
d899e052
YZ
7302 struct btrfs_root *root = BTRFS_I(inode)->root;
7303 struct btrfs_key ins;
d899e052 7304 u64 cur_offset = start;
55a61d1d 7305 u64 i_size;
d899e052 7306 int ret = 0;
0af3d00b 7307 bool own_trans = true;
d899e052 7308
0af3d00b
JB
7309 if (trans)
7310 own_trans = false;
d899e052 7311 while (num_bytes > 0) {
0af3d00b
JB
7312 if (own_trans) {
7313 trans = btrfs_start_transaction(root, 3);
7314 if (IS_ERR(trans)) {
7315 ret = PTR_ERR(trans);
7316 break;
7317 }
5a303d5d
YZ
7318 }
7319
efa56464
YZ
7320 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7321 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7322 if (ret) {
0af3d00b
JB
7323 if (own_trans)
7324 btrfs_end_transaction(trans, root);
a22285a6 7325 break;
d899e052 7326 }
5a303d5d 7327
d899e052
YZ
7328 ret = insert_reserved_file_extent(trans, inode,
7329 cur_offset, ins.objectid,
7330 ins.offset, ins.offset,
920bbbfb 7331 ins.offset, 0, 0, 0,
d899e052
YZ
7332 BTRFS_FILE_EXTENT_PREALLOC);
7333 BUG_ON(ret);
a1ed835e
CM
7334 btrfs_drop_extent_cache(inode, cur_offset,
7335 cur_offset + ins.offset -1, 0);
5a303d5d 7336
d899e052
YZ
7337 num_bytes -= ins.offset;
7338 cur_offset += ins.offset;
efa56464 7339 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7340
d899e052 7341 inode->i_ctime = CURRENT_TIME;
6cbff00f 7342 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7343 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7344 (actual_len > inode->i_size) &&
7345 (cur_offset > inode->i_size)) {
d1ea6a61 7346 if (cur_offset > actual_len)
55a61d1d 7347 i_size = actual_len;
d1ea6a61 7348 else
55a61d1d
JB
7349 i_size = cur_offset;
7350 i_size_write(inode, i_size);
7351 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7352 }
7353
d899e052
YZ
7354 ret = btrfs_update_inode(trans, root, inode);
7355 BUG_ON(ret);
d899e052 7356
0af3d00b
JB
7357 if (own_trans)
7358 btrfs_end_transaction(trans, root);
5a303d5d 7359 }
d899e052
YZ
7360 return ret;
7361}
7362
0af3d00b
JB
7363int btrfs_prealloc_file_range(struct inode *inode, int mode,
7364 u64 start, u64 num_bytes, u64 min_size,
7365 loff_t actual_len, u64 *alloc_hint)
7366{
7367 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7368 min_size, actual_len, alloc_hint,
7369 NULL);
7370}
7371
7372int btrfs_prealloc_file_range_trans(struct inode *inode,
7373 struct btrfs_trans_handle *trans, int mode,
7374 u64 start, u64 num_bytes, u64 min_size,
7375 loff_t actual_len, u64 *alloc_hint)
7376{
7377 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7378 min_size, actual_len, alloc_hint, trans);
7379}
7380
e6dcd2dc
CM
7381static int btrfs_set_page_dirty(struct page *page)
7382{
e6dcd2dc
CM
7383 return __set_page_dirty_nobuffers(page);
7384}
7385
b74c79e9 7386static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7387{
b83cc969
LZ
7388 struct btrfs_root *root = BTRFS_I(inode)->root;
7389
7390 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7391 return -EROFS;
6cbff00f 7392 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7393 return -EACCES;
b74c79e9 7394 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7395}
39279cc3 7396
6e1d5dcc 7397static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7398 .getattr = btrfs_getattr,
39279cc3
CM
7399 .lookup = btrfs_lookup,
7400 .create = btrfs_create,
7401 .unlink = btrfs_unlink,
7402 .link = btrfs_link,
7403 .mkdir = btrfs_mkdir,
7404 .rmdir = btrfs_rmdir,
7405 .rename = btrfs_rename,
7406 .symlink = btrfs_symlink,
7407 .setattr = btrfs_setattr,
618e21d5 7408 .mknod = btrfs_mknod,
95819c05
CH
7409 .setxattr = btrfs_setxattr,
7410 .getxattr = btrfs_getxattr,
5103e947 7411 .listxattr = btrfs_listxattr,
95819c05 7412 .removexattr = btrfs_removexattr,
fdebe2bd 7413 .permission = btrfs_permission,
39279cc3 7414};
6e1d5dcc 7415static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7416 .lookup = btrfs_lookup,
fdebe2bd 7417 .permission = btrfs_permission,
39279cc3 7418};
76dda93c 7419
828c0950 7420static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7421 .llseek = generic_file_llseek,
7422 .read = generic_read_dir,
cbdf5a24 7423 .readdir = btrfs_real_readdir,
34287aa3 7424 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7425#ifdef CONFIG_COMPAT
34287aa3 7426 .compat_ioctl = btrfs_ioctl,
39279cc3 7427#endif
6bf13c0c 7428 .release = btrfs_release_file,
e02119d5 7429 .fsync = btrfs_sync_file,
39279cc3
CM
7430};
7431
d1310b2e 7432static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7433 .fill_delalloc = run_delalloc_range,
065631f6 7434 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7435 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7436 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7437 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7438 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7439 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7440 .set_bit_hook = btrfs_set_bit_hook,
7441 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7442 .merge_extent_hook = btrfs_merge_extent_hook,
7443 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7444};
7445
35054394
CM
7446/*
7447 * btrfs doesn't support the bmap operation because swapfiles
7448 * use bmap to make a mapping of extents in the file. They assume
7449 * these extents won't change over the life of the file and they
7450 * use the bmap result to do IO directly to the drive.
7451 *
7452 * the btrfs bmap call would return logical addresses that aren't
7453 * suitable for IO and they also will change frequently as COW
7454 * operations happen. So, swapfile + btrfs == corruption.
7455 *
7456 * For now we're avoiding this by dropping bmap.
7457 */
7f09410b 7458static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7459 .readpage = btrfs_readpage,
7460 .writepage = btrfs_writepage,
b293f02e 7461 .writepages = btrfs_writepages,
3ab2fb5a 7462 .readpages = btrfs_readpages,
39279cc3 7463 .sync_page = block_sync_page,
16432985 7464 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7465 .invalidatepage = btrfs_invalidatepage,
7466 .releasepage = btrfs_releasepage,
e6dcd2dc 7467 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7468 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7469};
7470
7f09410b 7471static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7472 .readpage = btrfs_readpage,
7473 .writepage = btrfs_writepage,
2bf5a725
CM
7474 .invalidatepage = btrfs_invalidatepage,
7475 .releasepage = btrfs_releasepage,
39279cc3
CM
7476};
7477
6e1d5dcc 7478static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7479 .getattr = btrfs_getattr,
7480 .setattr = btrfs_setattr,
95819c05
CH
7481 .setxattr = btrfs_setxattr,
7482 .getxattr = btrfs_getxattr,
5103e947 7483 .listxattr = btrfs_listxattr,
95819c05 7484 .removexattr = btrfs_removexattr,
fdebe2bd 7485 .permission = btrfs_permission,
1506fcc8 7486 .fiemap = btrfs_fiemap,
39279cc3 7487};
6e1d5dcc 7488static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7489 .getattr = btrfs_getattr,
7490 .setattr = btrfs_setattr,
fdebe2bd 7491 .permission = btrfs_permission,
95819c05
CH
7492 .setxattr = btrfs_setxattr,
7493 .getxattr = btrfs_getxattr,
33268eaf 7494 .listxattr = btrfs_listxattr,
95819c05 7495 .removexattr = btrfs_removexattr,
618e21d5 7496};
6e1d5dcc 7497static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7498 .readlink = generic_readlink,
7499 .follow_link = page_follow_link_light,
7500 .put_link = page_put_link,
f209561a 7501 .getattr = btrfs_getattr,
fdebe2bd 7502 .permission = btrfs_permission,
0279b4cd
JO
7503 .setxattr = btrfs_setxattr,
7504 .getxattr = btrfs_getxattr,
7505 .listxattr = btrfs_listxattr,
7506 .removexattr = btrfs_removexattr,
39279cc3 7507};
76dda93c 7508
82d339d9 7509const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7510 .d_delete = btrfs_dentry_delete,
7511};