Btrfs: Include map_type in raid_bio
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
a27bb332 35#include <linux/aio.h>
9ebefb18 36#include <linux/bit_spinlock.h>
5103e947 37#include <linux/xattr.h>
33268eaf 38#include <linux/posix_acl.h>
d899e052 39#include <linux/falloc.h>
5a0e3ad6 40#include <linux/slab.h>
7a36ddec 41#include <linux/ratelimit.h>
22c44fe6 42#include <linux/mount.h>
55e301fd 43#include <linux/btrfs.h>
53b381b3 44#include <linux/blkdev.h>
f23b5a59 45#include <linux/posix_acl_xattr.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
39279cc3
CM
62
63struct btrfs_iget_args {
90d3e592 64 struct btrfs_key *location;
39279cc3
CM
65 struct btrfs_root *root;
66};
67
6e1d5dcc
AD
68static const struct inode_operations btrfs_dir_inode_operations;
69static const struct inode_operations btrfs_symlink_inode_operations;
70static const struct inode_operations btrfs_dir_ro_inode_operations;
71static const struct inode_operations btrfs_special_inode_operations;
72static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
73static const struct address_space_operations btrfs_aops;
74static const struct address_space_operations btrfs_symlink_aops;
828c0950 75static const struct file_operations btrfs_dir_file_operations;
d1310b2e 76static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
77
78static struct kmem_cache *btrfs_inode_cachep;
8ccf6f19 79static struct kmem_cache *btrfs_delalloc_work_cachep;
39279cc3
CM
80struct kmem_cache *btrfs_trans_handle_cachep;
81struct kmem_cache *btrfs_transaction_cachep;
39279cc3 82struct kmem_cache *btrfs_path_cachep;
dc89e982 83struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
84
85#define S_SHIFT 12
86static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
87 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
88 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
89 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
90 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
91 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
92 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
93 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
94};
95
3972f260 96static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 97static int btrfs_truncate(struct inode *inode);
5fd02043 98static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
99static noinline int cow_file_range(struct inode *inode,
100 struct page *locked_page,
101 u64 start, u64 end, int *page_started,
102 unsigned long *nr_written, int unlock);
70c8a91c
JB
103static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
104 u64 len, u64 orig_start,
105 u64 block_start, u64 block_len,
cc95bef6
JB
106 u64 orig_block_len, u64 ram_bytes,
107 int type);
7b128766 108
48a3b636 109static int btrfs_dirty_inode(struct inode *inode);
7b128766 110
f34f57a3 111static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
112 struct inode *inode, struct inode *dir,
113 const struct qstr *qstr)
0279b4cd
JO
114{
115 int err;
116
f34f57a3 117 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 118 if (!err)
2a7dba39 119 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
120 return err;
121}
122
c8b97818
CM
123/*
124 * this does all the hard work for inserting an inline extent into
125 * the btree. The caller should have done a btrfs_drop_extents so that
126 * no overlapping inline items exist in the btree
127 */
40f76580 128static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 129 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
130 struct btrfs_root *root, struct inode *inode,
131 u64 start, size_t size, size_t compressed_size,
fe3f566c 132 int compress_type,
c8b97818
CM
133 struct page **compressed_pages)
134{
c8b97818
CM
135 struct extent_buffer *leaf;
136 struct page *page = NULL;
137 char *kaddr;
138 unsigned long ptr;
139 struct btrfs_file_extent_item *ei;
140 int err = 0;
141 int ret;
142 size_t cur_size = size;
c8b97818 143 unsigned long offset;
c8b97818 144
fe3f566c 145 if (compressed_size && compressed_pages)
c8b97818 146 cur_size = compressed_size;
c8b97818 147
1acae57b 148 inode_add_bytes(inode, size);
c8b97818 149
1acae57b
FDBM
150 if (!extent_inserted) {
151 struct btrfs_key key;
152 size_t datasize;
c8b97818 153
1acae57b
FDBM
154 key.objectid = btrfs_ino(inode);
155 key.offset = start;
962a298f 156 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 157
1acae57b
FDBM
158 datasize = btrfs_file_extent_calc_inline_size(cur_size);
159 path->leave_spinning = 1;
160 ret = btrfs_insert_empty_item(trans, root, path, &key,
161 datasize);
162 if (ret) {
163 err = ret;
164 goto fail;
165 }
c8b97818
CM
166 }
167 leaf = path->nodes[0];
168 ei = btrfs_item_ptr(leaf, path->slots[0],
169 struct btrfs_file_extent_item);
170 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
171 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
172 btrfs_set_file_extent_encryption(leaf, ei, 0);
173 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
174 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
175 ptr = btrfs_file_extent_inline_start(ei);
176
261507a0 177 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
178 struct page *cpage;
179 int i = 0;
d397712b 180 while (compressed_size > 0) {
c8b97818 181 cpage = compressed_pages[i];
5b050f04 182 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
183 PAGE_CACHE_SIZE);
184
7ac687d9 185 kaddr = kmap_atomic(cpage);
c8b97818 186 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 187 kunmap_atomic(kaddr);
c8b97818
CM
188
189 i++;
190 ptr += cur_size;
191 compressed_size -= cur_size;
192 }
193 btrfs_set_file_extent_compression(leaf, ei,
261507a0 194 compress_type);
c8b97818
CM
195 } else {
196 page = find_get_page(inode->i_mapping,
197 start >> PAGE_CACHE_SHIFT);
198 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 199 kaddr = kmap_atomic(page);
c8b97818
CM
200 offset = start & (PAGE_CACHE_SIZE - 1);
201 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 202 kunmap_atomic(kaddr);
c8b97818
CM
203 page_cache_release(page);
204 }
205 btrfs_mark_buffer_dirty(leaf);
1acae57b 206 btrfs_release_path(path);
c8b97818 207
c2167754
YZ
208 /*
209 * we're an inline extent, so nobody can
210 * extend the file past i_size without locking
211 * a page we already have locked.
212 *
213 * We must do any isize and inode updates
214 * before we unlock the pages. Otherwise we
215 * could end up racing with unlink.
216 */
c8b97818 217 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 218 ret = btrfs_update_inode(trans, root, inode);
c2167754 219
79787eaa 220 return ret;
c8b97818 221fail:
c8b97818
CM
222 return err;
223}
224
225
226/*
227 * conditionally insert an inline extent into the file. This
228 * does the checks required to make sure the data is small enough
229 * to fit as an inline extent.
230 */
00361589
JB
231static noinline int cow_file_range_inline(struct btrfs_root *root,
232 struct inode *inode, u64 start,
233 u64 end, size_t compressed_size,
234 int compress_type,
235 struct page **compressed_pages)
c8b97818 236{
00361589 237 struct btrfs_trans_handle *trans;
c8b97818
CM
238 u64 isize = i_size_read(inode);
239 u64 actual_end = min(end + 1, isize);
240 u64 inline_len = actual_end - start;
fda2832f 241 u64 aligned_end = ALIGN(end, root->sectorsize);
c8b97818
CM
242 u64 data_len = inline_len;
243 int ret;
1acae57b
FDBM
244 struct btrfs_path *path;
245 int extent_inserted = 0;
246 u32 extent_item_size;
c8b97818
CM
247
248 if (compressed_size)
249 data_len = compressed_size;
250
251 if (start > 0 ||
354877be
WS
252 actual_end > PAGE_CACHE_SIZE ||
253 data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
c8b97818
CM
254 (!compressed_size &&
255 (actual_end & (root->sectorsize - 1)) == 0) ||
256 end + 1 < isize ||
257 data_len > root->fs_info->max_inline) {
258 return 1;
259 }
260
1acae57b
FDBM
261 path = btrfs_alloc_path();
262 if (!path)
263 return -ENOMEM;
264
00361589 265 trans = btrfs_join_transaction(root);
1acae57b
FDBM
266 if (IS_ERR(trans)) {
267 btrfs_free_path(path);
00361589 268 return PTR_ERR(trans);
1acae57b 269 }
00361589
JB
270 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
271
1acae57b
FDBM
272 if (compressed_size && compressed_pages)
273 extent_item_size = btrfs_file_extent_calc_inline_size(
274 compressed_size);
275 else
276 extent_item_size = btrfs_file_extent_calc_inline_size(
277 inline_len);
278
279 ret = __btrfs_drop_extents(trans, root, inode, path,
280 start, aligned_end, NULL,
281 1, 1, extent_item_size, &extent_inserted);
00361589
JB
282 if (ret) {
283 btrfs_abort_transaction(trans, root, ret);
284 goto out;
285 }
c8b97818
CM
286
287 if (isize > actual_end)
288 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
289 ret = insert_inline_extent(trans, path, extent_inserted,
290 root, inode, start,
c8b97818 291 inline_len, compressed_size,
fe3f566c 292 compress_type, compressed_pages);
2adcac1a 293 if (ret && ret != -ENOSPC) {
79787eaa 294 btrfs_abort_transaction(trans, root, ret);
00361589 295 goto out;
2adcac1a 296 } else if (ret == -ENOSPC) {
00361589
JB
297 ret = 1;
298 goto out;
79787eaa 299 }
2adcac1a 300
bdc20e67 301 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
0ca1f7ce 302 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 303 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
00361589 304out:
1acae57b 305 btrfs_free_path(path);
00361589
JB
306 btrfs_end_transaction(trans, root);
307 return ret;
c8b97818
CM
308}
309
771ed689
CM
310struct async_extent {
311 u64 start;
312 u64 ram_size;
313 u64 compressed_size;
314 struct page **pages;
315 unsigned long nr_pages;
261507a0 316 int compress_type;
771ed689
CM
317 struct list_head list;
318};
319
320struct async_cow {
321 struct inode *inode;
322 struct btrfs_root *root;
323 struct page *locked_page;
324 u64 start;
325 u64 end;
326 struct list_head extents;
327 struct btrfs_work work;
328};
329
330static noinline int add_async_extent(struct async_cow *cow,
331 u64 start, u64 ram_size,
332 u64 compressed_size,
333 struct page **pages,
261507a0
LZ
334 unsigned long nr_pages,
335 int compress_type)
771ed689
CM
336{
337 struct async_extent *async_extent;
338
339 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 340 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
341 async_extent->start = start;
342 async_extent->ram_size = ram_size;
343 async_extent->compressed_size = compressed_size;
344 async_extent->pages = pages;
345 async_extent->nr_pages = nr_pages;
261507a0 346 async_extent->compress_type = compress_type;
771ed689
CM
347 list_add_tail(&async_extent->list, &cow->extents);
348 return 0;
349}
350
f79707b0
WS
351static inline int inode_need_compress(struct inode *inode)
352{
353 struct btrfs_root *root = BTRFS_I(inode)->root;
354
355 /* force compress */
356 if (btrfs_test_opt(root, FORCE_COMPRESS))
357 return 1;
358 /* bad compression ratios */
359 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
360 return 0;
361 if (btrfs_test_opt(root, COMPRESS) ||
362 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
363 BTRFS_I(inode)->force_compress)
364 return 1;
365 return 0;
366}
367
d352ac68 368/*
771ed689
CM
369 * we create compressed extents in two phases. The first
370 * phase compresses a range of pages that have already been
371 * locked (both pages and state bits are locked).
c8b97818 372 *
771ed689
CM
373 * This is done inside an ordered work queue, and the compression
374 * is spread across many cpus. The actual IO submission is step
375 * two, and the ordered work queue takes care of making sure that
376 * happens in the same order things were put onto the queue by
377 * writepages and friends.
c8b97818 378 *
771ed689
CM
379 * If this code finds it can't get good compression, it puts an
380 * entry onto the work queue to write the uncompressed bytes. This
381 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
382 * are written in the same order that the flusher thread sent them
383 * down.
d352ac68 384 */
c44f649e 385static noinline void compress_file_range(struct inode *inode,
771ed689
CM
386 struct page *locked_page,
387 u64 start, u64 end,
388 struct async_cow *async_cow,
389 int *num_added)
b888db2b
CM
390{
391 struct btrfs_root *root = BTRFS_I(inode)->root;
db94535d 392 u64 num_bytes;
db94535d 393 u64 blocksize = root->sectorsize;
c8b97818 394 u64 actual_end;
42dc7bab 395 u64 isize = i_size_read(inode);
e6dcd2dc 396 int ret = 0;
c8b97818
CM
397 struct page **pages = NULL;
398 unsigned long nr_pages;
399 unsigned long nr_pages_ret = 0;
400 unsigned long total_compressed = 0;
401 unsigned long total_in = 0;
402 unsigned long max_compressed = 128 * 1024;
771ed689 403 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
404 int i;
405 int will_compress;
261507a0 406 int compress_type = root->fs_info->compress_type;
4adaa611 407 int redirty = 0;
b888db2b 408
4cb13e5d
LB
409 /* if this is a small write inside eof, kick off a defrag */
410 if ((end - start + 1) < 16 * 1024 &&
411 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
4cb5300b
CM
412 btrfs_add_inode_defrag(NULL, inode);
413
42dc7bab 414 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
415again:
416 will_compress = 0;
417 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
418 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 419
f03d9301
CM
420 /*
421 * we don't want to send crud past the end of i_size through
422 * compression, that's just a waste of CPU time. So, if the
423 * end of the file is before the start of our current
424 * requested range of bytes, we bail out to the uncompressed
425 * cleanup code that can deal with all of this.
426 *
427 * It isn't really the fastest way to fix things, but this is a
428 * very uncommon corner.
429 */
430 if (actual_end <= start)
431 goto cleanup_and_bail_uncompressed;
432
c8b97818
CM
433 total_compressed = actual_end - start;
434
4bcbb332
SW
435 /*
436 * skip compression for a small file range(<=blocksize) that
437 * isn't an inline extent, since it dosen't save disk space at all.
438 */
439 if (total_compressed <= blocksize &&
440 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
441 goto cleanup_and_bail_uncompressed;
442
c8b97818
CM
443 /* we want to make sure that amount of ram required to uncompress
444 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
445 * of a compressed extent to 128k. This is a crucial number
446 * because it also controls how easily we can spread reads across
447 * cpus for decompression.
448 *
449 * We also want to make sure the amount of IO required to do
450 * a random read is reasonably small, so we limit the size of
451 * a compressed extent to 128k.
c8b97818
CM
452 */
453 total_compressed = min(total_compressed, max_uncompressed);
fda2832f 454 num_bytes = ALIGN(end - start + 1, blocksize);
be20aa9d 455 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
456 total_in = 0;
457 ret = 0;
db94535d 458
771ed689
CM
459 /*
460 * we do compression for mount -o compress and when the
461 * inode has not been flagged as nocompress. This flag can
462 * change at any time if we discover bad compression ratios.
c8b97818 463 */
f79707b0 464 if (inode_need_compress(inode)) {
c8b97818 465 WARN_ON(pages);
cfbc246e 466 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
560f7d75
LZ
467 if (!pages) {
468 /* just bail out to the uncompressed code */
469 goto cont;
470 }
c8b97818 471
261507a0
LZ
472 if (BTRFS_I(inode)->force_compress)
473 compress_type = BTRFS_I(inode)->force_compress;
474
4adaa611
CM
475 /*
476 * we need to call clear_page_dirty_for_io on each
477 * page in the range. Otherwise applications with the file
478 * mmap'd can wander in and change the page contents while
479 * we are compressing them.
480 *
481 * If the compression fails for any reason, we set the pages
482 * dirty again later on.
483 */
484 extent_range_clear_dirty_for_io(inode, start, end);
485 redirty = 1;
261507a0
LZ
486 ret = btrfs_compress_pages(compress_type,
487 inode->i_mapping, start,
488 total_compressed, pages,
489 nr_pages, &nr_pages_ret,
490 &total_in,
491 &total_compressed,
492 max_compressed);
c8b97818
CM
493
494 if (!ret) {
495 unsigned long offset = total_compressed &
496 (PAGE_CACHE_SIZE - 1);
497 struct page *page = pages[nr_pages_ret - 1];
498 char *kaddr;
499
500 /* zero the tail end of the last page, we might be
501 * sending it down to disk
502 */
503 if (offset) {
7ac687d9 504 kaddr = kmap_atomic(page);
c8b97818
CM
505 memset(kaddr + offset, 0,
506 PAGE_CACHE_SIZE - offset);
7ac687d9 507 kunmap_atomic(kaddr);
c8b97818
CM
508 }
509 will_compress = 1;
510 }
511 }
560f7d75 512cont:
c8b97818
CM
513 if (start == 0) {
514 /* lets try to make an inline extent */
771ed689 515 if (ret || total_in < (actual_end - start)) {
c8b97818 516 /* we didn't compress the entire range, try
771ed689 517 * to make an uncompressed inline extent.
c8b97818 518 */
00361589
JB
519 ret = cow_file_range_inline(root, inode, start, end,
520 0, 0, NULL);
c8b97818 521 } else {
771ed689 522 /* try making a compressed inline extent */
00361589 523 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
524 total_compressed,
525 compress_type, pages);
c8b97818 526 }
79787eaa 527 if (ret <= 0) {
151a41bc
JB
528 unsigned long clear_flags = EXTENT_DELALLOC |
529 EXTENT_DEFRAG;
e6eb4314
FM
530 unsigned long page_error_op;
531
151a41bc 532 clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
e6eb4314 533 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 534
771ed689 535 /*
79787eaa
JM
536 * inline extent creation worked or returned error,
537 * we don't need to create any more async work items.
538 * Unlock and free up our temp pages.
771ed689 539 */
c2790a2e 540 extent_clear_unlock_delalloc(inode, start, end, NULL,
151a41bc 541 clear_flags, PAGE_UNLOCK |
c2790a2e
JB
542 PAGE_CLEAR_DIRTY |
543 PAGE_SET_WRITEBACK |
e6eb4314 544 page_error_op |
c2790a2e 545 PAGE_END_WRITEBACK);
c8b97818
CM
546 goto free_pages_out;
547 }
548 }
549
550 if (will_compress) {
551 /*
552 * we aren't doing an inline extent round the compressed size
553 * up to a block size boundary so the allocator does sane
554 * things
555 */
fda2832f 556 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
557
558 /*
559 * one last check to make sure the compression is really a
560 * win, compare the page count read with the blocks on disk
561 */
fda2832f 562 total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
c8b97818
CM
563 if (total_compressed >= total_in) {
564 will_compress = 0;
565 } else {
c8b97818
CM
566 num_bytes = total_in;
567 }
568 }
569 if (!will_compress && pages) {
570 /*
571 * the compression code ran but failed to make things smaller,
572 * free any pages it allocated and our page pointer array
573 */
574 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 575 WARN_ON(pages[i]->mapping);
c8b97818
CM
576 page_cache_release(pages[i]);
577 }
578 kfree(pages);
579 pages = NULL;
580 total_compressed = 0;
581 nr_pages_ret = 0;
582
583 /* flag the file so we don't compress in the future */
1e701a32
CM
584 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
585 !(BTRFS_I(inode)->force_compress)) {
a555f810 586 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 587 }
c8b97818 588 }
771ed689
CM
589 if (will_compress) {
590 *num_added += 1;
c8b97818 591
771ed689
CM
592 /* the async work queues will take care of doing actual
593 * allocation on disk for these compressed pages,
594 * and will submit them to the elevator.
595 */
596 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
597 total_compressed, pages, nr_pages_ret,
598 compress_type);
179e29e4 599
24ae6365 600 if (start + num_bytes < end) {
771ed689
CM
601 start += num_bytes;
602 pages = NULL;
603 cond_resched();
604 goto again;
605 }
606 } else {
f03d9301 607cleanup_and_bail_uncompressed:
771ed689
CM
608 /*
609 * No compression, but we still need to write the pages in
610 * the file we've been given so far. redirty the locked
611 * page if it corresponds to our extent and set things up
612 * for the async work queue to run cow_file_range to do
613 * the normal delalloc dance
614 */
615 if (page_offset(locked_page) >= start &&
616 page_offset(locked_page) <= end) {
617 __set_page_dirty_nobuffers(locked_page);
618 /* unlocked later on in the async handlers */
619 }
4adaa611
CM
620 if (redirty)
621 extent_range_redirty_for_io(inode, start, end);
261507a0
LZ
622 add_async_extent(async_cow, start, end - start + 1,
623 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
624 *num_added += 1;
625 }
3b951516 626
c44f649e 627 return;
771ed689
CM
628
629free_pages_out:
630 for (i = 0; i < nr_pages_ret; i++) {
631 WARN_ON(pages[i]->mapping);
632 page_cache_release(pages[i]);
633 }
d397712b 634 kfree(pages);
771ed689 635}
771ed689 636
40ae837b
FM
637static void free_async_extent_pages(struct async_extent *async_extent)
638{
639 int i;
640
641 if (!async_extent->pages)
642 return;
643
644 for (i = 0; i < async_extent->nr_pages; i++) {
645 WARN_ON(async_extent->pages[i]->mapping);
646 page_cache_release(async_extent->pages[i]);
647 }
648 kfree(async_extent->pages);
649 async_extent->nr_pages = 0;
650 async_extent->pages = NULL;
771ed689
CM
651}
652
653/*
654 * phase two of compressed writeback. This is the ordered portion
655 * of the code, which only gets called in the order the work was
656 * queued. We walk all the async extents created by compress_file_range
657 * and send them down to the disk.
658 */
dec8f175 659static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
660 struct async_cow *async_cow)
661{
662 struct async_extent *async_extent;
663 u64 alloc_hint = 0;
771ed689
CM
664 struct btrfs_key ins;
665 struct extent_map *em;
666 struct btrfs_root *root = BTRFS_I(inode)->root;
667 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
668 struct extent_io_tree *io_tree;
f5a84ee3 669 int ret = 0;
771ed689 670
3e04e7f1 671again:
d397712b 672 while (!list_empty(&async_cow->extents)) {
771ed689
CM
673 async_extent = list_entry(async_cow->extents.next,
674 struct async_extent, list);
675 list_del(&async_extent->list);
c8b97818 676
771ed689
CM
677 io_tree = &BTRFS_I(inode)->io_tree;
678
f5a84ee3 679retry:
771ed689
CM
680 /* did the compression code fall back to uncompressed IO? */
681 if (!async_extent->pages) {
682 int page_started = 0;
683 unsigned long nr_written = 0;
684
685 lock_extent(io_tree, async_extent->start,
2ac55d41 686 async_extent->start +
d0082371 687 async_extent->ram_size - 1);
771ed689
CM
688
689 /* allocate blocks */
f5a84ee3
JB
690 ret = cow_file_range(inode, async_cow->locked_page,
691 async_extent->start,
692 async_extent->start +
693 async_extent->ram_size - 1,
694 &page_started, &nr_written, 0);
771ed689 695
79787eaa
JM
696 /* JDM XXX */
697
771ed689
CM
698 /*
699 * if page_started, cow_file_range inserted an
700 * inline extent and took care of all the unlocking
701 * and IO for us. Otherwise, we need to submit
702 * all those pages down to the drive.
703 */
f5a84ee3 704 if (!page_started && !ret)
771ed689
CM
705 extent_write_locked_range(io_tree,
706 inode, async_extent->start,
d397712b 707 async_extent->start +
771ed689
CM
708 async_extent->ram_size - 1,
709 btrfs_get_extent,
710 WB_SYNC_ALL);
3e04e7f1
JB
711 else if (ret)
712 unlock_page(async_cow->locked_page);
771ed689
CM
713 kfree(async_extent);
714 cond_resched();
715 continue;
716 }
717
718 lock_extent(io_tree, async_extent->start,
d0082371 719 async_extent->start + async_extent->ram_size - 1);
771ed689 720
00361589 721 ret = btrfs_reserve_extent(root,
771ed689
CM
722 async_extent->compressed_size,
723 async_extent->compressed_size,
e570fd27 724 0, alloc_hint, &ins, 1, 1);
f5a84ee3 725 if (ret) {
40ae837b 726 free_async_extent_pages(async_extent);
3e04e7f1 727
fdf8e2ea
JB
728 if (ret == -ENOSPC) {
729 unlock_extent(io_tree, async_extent->start,
730 async_extent->start +
731 async_extent->ram_size - 1);
ce62003f
LB
732
733 /*
734 * we need to redirty the pages if we decide to
735 * fallback to uncompressed IO, otherwise we
736 * will not submit these pages down to lower
737 * layers.
738 */
739 extent_range_redirty_for_io(inode,
740 async_extent->start,
741 async_extent->start +
742 async_extent->ram_size - 1);
743
79787eaa 744 goto retry;
fdf8e2ea 745 }
3e04e7f1 746 goto out_free;
f5a84ee3
JB
747 }
748
c2167754
YZ
749 /*
750 * here we're doing allocation and writeback of the
751 * compressed pages
752 */
753 btrfs_drop_extent_cache(inode, async_extent->start,
754 async_extent->start +
755 async_extent->ram_size - 1, 0);
756
172ddd60 757 em = alloc_extent_map();
b9aa55be
LB
758 if (!em) {
759 ret = -ENOMEM;
3e04e7f1 760 goto out_free_reserve;
b9aa55be 761 }
771ed689
CM
762 em->start = async_extent->start;
763 em->len = async_extent->ram_size;
445a6944 764 em->orig_start = em->start;
2ab28f32
JB
765 em->mod_start = em->start;
766 em->mod_len = em->len;
c8b97818 767
771ed689
CM
768 em->block_start = ins.objectid;
769 em->block_len = ins.offset;
b4939680 770 em->orig_block_len = ins.offset;
cc95bef6 771 em->ram_bytes = async_extent->ram_size;
771ed689 772 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 773 em->compress_type = async_extent->compress_type;
771ed689
CM
774 set_bit(EXTENT_FLAG_PINNED, &em->flags);
775 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
70c8a91c 776 em->generation = -1;
771ed689 777
d397712b 778 while (1) {
890871be 779 write_lock(&em_tree->lock);
09a2a8f9 780 ret = add_extent_mapping(em_tree, em, 1);
890871be 781 write_unlock(&em_tree->lock);
771ed689
CM
782 if (ret != -EEXIST) {
783 free_extent_map(em);
784 break;
785 }
786 btrfs_drop_extent_cache(inode, async_extent->start,
787 async_extent->start +
788 async_extent->ram_size - 1, 0);
789 }
790
3e04e7f1
JB
791 if (ret)
792 goto out_free_reserve;
793
261507a0
LZ
794 ret = btrfs_add_ordered_extent_compress(inode,
795 async_extent->start,
796 ins.objectid,
797 async_extent->ram_size,
798 ins.offset,
799 BTRFS_ORDERED_COMPRESSED,
800 async_extent->compress_type);
d9f85963
FM
801 if (ret) {
802 btrfs_drop_extent_cache(inode, async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1, 0);
3e04e7f1 805 goto out_free_reserve;
d9f85963 806 }
771ed689 807
771ed689
CM
808 /*
809 * clear dirty, set writeback and unlock the pages.
810 */
c2790a2e 811 extent_clear_unlock_delalloc(inode, async_extent->start,
a791e35e
CM
812 async_extent->start +
813 async_extent->ram_size - 1,
151a41bc
JB
814 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
815 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 816 PAGE_SET_WRITEBACK);
771ed689 817 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
818 async_extent->start,
819 async_extent->ram_size,
820 ins.objectid,
821 ins.offset, async_extent->pages,
822 async_extent->nr_pages);
fce2a4e6
FM
823 if (ret) {
824 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
825 struct page *p = async_extent->pages[0];
826 const u64 start = async_extent->start;
827 const u64 end = start + async_extent->ram_size - 1;
828
829 p->mapping = inode->i_mapping;
830 tree->ops->writepage_end_io_hook(p, start, end,
831 NULL, 0);
832 p->mapping = NULL;
833 extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
834 PAGE_END_WRITEBACK |
835 PAGE_SET_ERROR);
40ae837b 836 free_async_extent_pages(async_extent);
fce2a4e6 837 }
771ed689
CM
838 alloc_hint = ins.objectid + ins.offset;
839 kfree(async_extent);
840 cond_resched();
841 }
dec8f175 842 return;
3e04e7f1 843out_free_reserve:
e570fd27 844 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 845out_free:
c2790a2e 846 extent_clear_unlock_delalloc(inode, async_extent->start,
3e04e7f1
JB
847 async_extent->start +
848 async_extent->ram_size - 1,
c2790a2e 849 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
850 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
851 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
852 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
853 PAGE_SET_ERROR);
40ae837b 854 free_async_extent_pages(async_extent);
79787eaa 855 kfree(async_extent);
3e04e7f1 856 goto again;
771ed689
CM
857}
858
4b46fce2
JB
859static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
860 u64 num_bytes)
861{
862 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
863 struct extent_map *em;
864 u64 alloc_hint = 0;
865
866 read_lock(&em_tree->lock);
867 em = search_extent_mapping(em_tree, start, num_bytes);
868 if (em) {
869 /*
870 * if block start isn't an actual block number then find the
871 * first block in this inode and use that as a hint. If that
872 * block is also bogus then just don't worry about it.
873 */
874 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
875 free_extent_map(em);
876 em = search_extent_mapping(em_tree, 0, 0);
877 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
878 alloc_hint = em->block_start;
879 if (em)
880 free_extent_map(em);
881 } else {
882 alloc_hint = em->block_start;
883 free_extent_map(em);
884 }
885 }
886 read_unlock(&em_tree->lock);
887
888 return alloc_hint;
889}
890
771ed689
CM
891/*
892 * when extent_io.c finds a delayed allocation range in the file,
893 * the call backs end up in this code. The basic idea is to
894 * allocate extents on disk for the range, and create ordered data structs
895 * in ram to track those extents.
896 *
897 * locked_page is the page that writepage had locked already. We use
898 * it to make sure we don't do extra locks or unlocks.
899 *
900 * *page_started is set to one if we unlock locked_page and do everything
901 * required to start IO on it. It may be clean and already done with
902 * IO when we return.
903 */
00361589
JB
904static noinline int cow_file_range(struct inode *inode,
905 struct page *locked_page,
906 u64 start, u64 end, int *page_started,
907 unsigned long *nr_written,
908 int unlock)
771ed689 909{
00361589 910 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
911 u64 alloc_hint = 0;
912 u64 num_bytes;
913 unsigned long ram_size;
914 u64 disk_num_bytes;
915 u64 cur_alloc_size;
916 u64 blocksize = root->sectorsize;
771ed689
CM
917 struct btrfs_key ins;
918 struct extent_map *em;
919 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
920 int ret = 0;
921
02ecd2c2
JB
922 if (btrfs_is_free_space_inode(inode)) {
923 WARN_ON_ONCE(1);
29bce2f3
JB
924 ret = -EINVAL;
925 goto out_unlock;
02ecd2c2 926 }
771ed689 927
fda2832f 928 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
929 num_bytes = max(blocksize, num_bytes);
930 disk_num_bytes = num_bytes;
771ed689 931
4cb5300b 932 /* if this is a small write inside eof, kick off defrag */
4cb13e5d
LB
933 if (num_bytes < 64 * 1024 &&
934 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
00361589 935 btrfs_add_inode_defrag(NULL, inode);
4cb5300b 936
771ed689
CM
937 if (start == 0) {
938 /* lets try to make an inline extent */
00361589
JB
939 ret = cow_file_range_inline(root, inode, start, end, 0, 0,
940 NULL);
771ed689 941 if (ret == 0) {
c2790a2e
JB
942 extent_clear_unlock_delalloc(inode, start, end, NULL,
943 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc 944 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
945 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
946 PAGE_END_WRITEBACK);
c2167754 947
771ed689
CM
948 *nr_written = *nr_written +
949 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
950 *page_started = 1;
771ed689 951 goto out;
79787eaa 952 } else if (ret < 0) {
79787eaa 953 goto out_unlock;
771ed689
CM
954 }
955 }
956
957 BUG_ON(disk_num_bytes >
6c41761f 958 btrfs_super_total_bytes(root->fs_info->super_copy));
771ed689 959
4b46fce2 960 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
961 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
962
d397712b 963 while (disk_num_bytes > 0) {
a791e35e
CM
964 unsigned long op;
965
287a0ab9 966 cur_alloc_size = disk_num_bytes;
00361589 967 ret = btrfs_reserve_extent(root, cur_alloc_size,
771ed689 968 root->sectorsize, 0, alloc_hint,
e570fd27 969 &ins, 1, 1);
00361589 970 if (ret < 0)
79787eaa 971 goto out_unlock;
d397712b 972
172ddd60 973 em = alloc_extent_map();
b9aa55be
LB
974 if (!em) {
975 ret = -ENOMEM;
ace68bac 976 goto out_reserve;
b9aa55be 977 }
e6dcd2dc 978 em->start = start;
445a6944 979 em->orig_start = em->start;
771ed689
CM
980 ram_size = ins.offset;
981 em->len = ins.offset;
2ab28f32
JB
982 em->mod_start = em->start;
983 em->mod_len = em->len;
c8b97818 984
e6dcd2dc 985 em->block_start = ins.objectid;
c8b97818 986 em->block_len = ins.offset;
b4939680 987 em->orig_block_len = ins.offset;
cc95bef6 988 em->ram_bytes = ram_size;
e6dcd2dc 989 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 990 set_bit(EXTENT_FLAG_PINNED, &em->flags);
70c8a91c 991 em->generation = -1;
c8b97818 992
d397712b 993 while (1) {
890871be 994 write_lock(&em_tree->lock);
09a2a8f9 995 ret = add_extent_mapping(em_tree, em, 1);
890871be 996 write_unlock(&em_tree->lock);
e6dcd2dc
CM
997 if (ret != -EEXIST) {
998 free_extent_map(em);
999 break;
1000 }
1001 btrfs_drop_extent_cache(inode, start,
c8b97818 1002 start + ram_size - 1, 0);
e6dcd2dc 1003 }
ace68bac
LB
1004 if (ret)
1005 goto out_reserve;
e6dcd2dc 1006
98d20f67 1007 cur_alloc_size = ins.offset;
e6dcd2dc 1008 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1009 ram_size, cur_alloc_size, 0);
ace68bac 1010 if (ret)
d9f85963 1011 goto out_drop_extent_cache;
c8b97818 1012
17d217fe
YZ
1013 if (root->root_key.objectid ==
1014 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1015 ret = btrfs_reloc_clone_csums(inode, start,
1016 cur_alloc_size);
00361589 1017 if (ret)
d9f85963 1018 goto out_drop_extent_cache;
17d217fe
YZ
1019 }
1020
d397712b 1021 if (disk_num_bytes < cur_alloc_size)
3b951516 1022 break;
d397712b 1023
c8b97818
CM
1024 /* we're not doing compressed IO, don't unlock the first
1025 * page (which the caller expects to stay locked), don't
1026 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1027 *
1028 * Do set the Private2 bit so we know this page was properly
1029 * setup for writepage
c8b97818 1030 */
c2790a2e
JB
1031 op = unlock ? PAGE_UNLOCK : 0;
1032 op |= PAGE_SET_PRIVATE2;
a791e35e 1033
c2790a2e
JB
1034 extent_clear_unlock_delalloc(inode, start,
1035 start + ram_size - 1, locked_page,
1036 EXTENT_LOCKED | EXTENT_DELALLOC,
1037 op);
c8b97818 1038 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1039 num_bytes -= cur_alloc_size;
1040 alloc_hint = ins.objectid + ins.offset;
1041 start += cur_alloc_size;
b888db2b 1042 }
79787eaa 1043out:
be20aa9d 1044 return ret;
b7d5b0a8 1045
d9f85963
FM
1046out_drop_extent_cache:
1047 btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
ace68bac 1048out_reserve:
e570fd27 1049 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
79787eaa 1050out_unlock:
c2790a2e 1051 extent_clear_unlock_delalloc(inode, start, end, locked_page,
151a41bc
JB
1052 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1053 EXTENT_DELALLOC | EXTENT_DEFRAG,
1054 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1055 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
79787eaa 1056 goto out;
771ed689 1057}
c8b97818 1058
771ed689
CM
1059/*
1060 * work queue call back to started compression on a file and pages
1061 */
1062static noinline void async_cow_start(struct btrfs_work *work)
1063{
1064 struct async_cow *async_cow;
1065 int num_added = 0;
1066 async_cow = container_of(work, struct async_cow, work);
1067
1068 compress_file_range(async_cow->inode, async_cow->locked_page,
1069 async_cow->start, async_cow->end, async_cow,
1070 &num_added);
8180ef88 1071 if (num_added == 0) {
cb77fcd8 1072 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1073 async_cow->inode = NULL;
8180ef88 1074 }
771ed689
CM
1075}
1076
1077/*
1078 * work queue call back to submit previously compressed pages
1079 */
1080static noinline void async_cow_submit(struct btrfs_work *work)
1081{
1082 struct async_cow *async_cow;
1083 struct btrfs_root *root;
1084 unsigned long nr_pages;
1085
1086 async_cow = container_of(work, struct async_cow, work);
1087
1088 root = async_cow->root;
1089 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1090 PAGE_CACHE_SHIFT;
1091
66657b31 1092 if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
287082b0 1093 5 * 1024 * 1024 &&
771ed689
CM
1094 waitqueue_active(&root->fs_info->async_submit_wait))
1095 wake_up(&root->fs_info->async_submit_wait);
1096
d397712b 1097 if (async_cow->inode)
771ed689 1098 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1099}
c8b97818 1100
771ed689
CM
1101static noinline void async_cow_free(struct btrfs_work *work)
1102{
1103 struct async_cow *async_cow;
1104 async_cow = container_of(work, struct async_cow, work);
8180ef88 1105 if (async_cow->inode)
cb77fcd8 1106 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1107 kfree(async_cow);
1108}
1109
1110static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1111 u64 start, u64 end, int *page_started,
1112 unsigned long *nr_written)
1113{
1114 struct async_cow *async_cow;
1115 struct btrfs_root *root = BTRFS_I(inode)->root;
1116 unsigned long nr_pages;
1117 u64 cur_end;
287082b0 1118 int limit = 10 * 1024 * 1024;
771ed689 1119
a3429ab7
CM
1120 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1121 1, 0, NULL, GFP_NOFS);
d397712b 1122 while (start < end) {
771ed689 1123 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1124 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1125 async_cow->inode = igrab(inode);
771ed689
CM
1126 async_cow->root = root;
1127 async_cow->locked_page = locked_page;
1128 async_cow->start = start;
1129
f79707b0
WS
1130 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1131 !btrfs_test_opt(root, FORCE_COMPRESS))
771ed689
CM
1132 cur_end = end;
1133 else
1134 cur_end = min(end, start + 512 * 1024 - 1);
1135
1136 async_cow->end = cur_end;
1137 INIT_LIST_HEAD(&async_cow->extents);
1138
9e0af237
LB
1139 btrfs_init_work(&async_cow->work,
1140 btrfs_delalloc_helper,
1141 async_cow_start, async_cow_submit,
1142 async_cow_free);
771ed689 1143
771ed689
CM
1144 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1145 PAGE_CACHE_SHIFT;
1146 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1147
afe3d242
QW
1148 btrfs_queue_work(root->fs_info->delalloc_workers,
1149 &async_cow->work);
771ed689
CM
1150
1151 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1152 wait_event(root->fs_info->async_submit_wait,
1153 (atomic_read(&root->fs_info->async_delalloc_pages) <
1154 limit));
1155 }
1156
d397712b 1157 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1158 atomic_read(&root->fs_info->async_delalloc_pages)) {
1159 wait_event(root->fs_info->async_submit_wait,
1160 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1161 0));
1162 }
1163
1164 *nr_written += nr_pages;
1165 start = cur_end + 1;
1166 }
1167 *page_started = 1;
1168 return 0;
be20aa9d
CM
1169}
1170
d397712b 1171static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1172 u64 bytenr, u64 num_bytes)
1173{
1174 int ret;
1175 struct btrfs_ordered_sum *sums;
1176 LIST_HEAD(list);
1177
07d400a6 1178 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1179 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1180 if (ret == 0 && list_empty(&list))
1181 return 0;
1182
1183 while (!list_empty(&list)) {
1184 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1185 list_del(&sums->list);
1186 kfree(sums);
1187 }
1188 return 1;
1189}
1190
d352ac68
CM
1191/*
1192 * when nowcow writeback call back. This checks for snapshots or COW copies
1193 * of the extents that exist in the file, and COWs the file as required.
1194 *
1195 * If no cow copies or snapshots exist, we write directly to the existing
1196 * blocks on disk
1197 */
7f366cfe
CM
1198static noinline int run_delalloc_nocow(struct inode *inode,
1199 struct page *locked_page,
771ed689
CM
1200 u64 start, u64 end, int *page_started, int force,
1201 unsigned long *nr_written)
be20aa9d 1202{
be20aa9d 1203 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1204 struct btrfs_trans_handle *trans;
be20aa9d 1205 struct extent_buffer *leaf;
be20aa9d 1206 struct btrfs_path *path;
80ff3856 1207 struct btrfs_file_extent_item *fi;
be20aa9d 1208 struct btrfs_key found_key;
80ff3856
YZ
1209 u64 cow_start;
1210 u64 cur_offset;
1211 u64 extent_end;
5d4f98a2 1212 u64 extent_offset;
80ff3856
YZ
1213 u64 disk_bytenr;
1214 u64 num_bytes;
b4939680 1215 u64 disk_num_bytes;
cc95bef6 1216 u64 ram_bytes;
80ff3856 1217 int extent_type;
79787eaa 1218 int ret, err;
d899e052 1219 int type;
80ff3856
YZ
1220 int nocow;
1221 int check_prev = 1;
82d5902d 1222 bool nolock;
33345d01 1223 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1224
1225 path = btrfs_alloc_path();
17ca04af 1226 if (!path) {
c2790a2e
JB
1227 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1228 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1229 EXTENT_DO_ACCOUNTING |
1230 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1231 PAGE_CLEAR_DIRTY |
1232 PAGE_SET_WRITEBACK |
1233 PAGE_END_WRITEBACK);
d8926bb3 1234 return -ENOMEM;
17ca04af 1235 }
82d5902d 1236
83eea1f1 1237 nolock = btrfs_is_free_space_inode(inode);
82d5902d
LZ
1238
1239 if (nolock)
7a7eaa40 1240 trans = btrfs_join_transaction_nolock(root);
82d5902d 1241 else
7a7eaa40 1242 trans = btrfs_join_transaction(root);
ff5714cc 1243
79787eaa 1244 if (IS_ERR(trans)) {
c2790a2e
JB
1245 extent_clear_unlock_delalloc(inode, start, end, locked_page,
1246 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1247 EXTENT_DO_ACCOUNTING |
1248 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1249 PAGE_CLEAR_DIRTY |
1250 PAGE_SET_WRITEBACK |
1251 PAGE_END_WRITEBACK);
79787eaa
JM
1252 btrfs_free_path(path);
1253 return PTR_ERR(trans);
1254 }
1255
74b21075 1256 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1257
80ff3856
YZ
1258 cow_start = (u64)-1;
1259 cur_offset = start;
1260 while (1) {
33345d01 1261 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856 1262 cur_offset, 0);
d788a349 1263 if (ret < 0)
79787eaa 1264 goto error;
80ff3856
YZ
1265 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1266 leaf = path->nodes[0];
1267 btrfs_item_key_to_cpu(leaf, &found_key,
1268 path->slots[0] - 1);
33345d01 1269 if (found_key.objectid == ino &&
80ff3856
YZ
1270 found_key.type == BTRFS_EXTENT_DATA_KEY)
1271 path->slots[0]--;
1272 }
1273 check_prev = 0;
1274next_slot:
1275 leaf = path->nodes[0];
1276 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1277 ret = btrfs_next_leaf(root, path);
d788a349 1278 if (ret < 0)
79787eaa 1279 goto error;
80ff3856
YZ
1280 if (ret > 0)
1281 break;
1282 leaf = path->nodes[0];
1283 }
be20aa9d 1284
80ff3856
YZ
1285 nocow = 0;
1286 disk_bytenr = 0;
17d217fe 1287 num_bytes = 0;
80ff3856
YZ
1288 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1289
33345d01 1290 if (found_key.objectid > ino ||
80ff3856
YZ
1291 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1292 found_key.offset > end)
1293 break;
1294
1295 if (found_key.offset > cur_offset) {
1296 extent_end = found_key.offset;
e9061e21 1297 extent_type = 0;
80ff3856
YZ
1298 goto out_check;
1299 }
1300
1301 fi = btrfs_item_ptr(leaf, path->slots[0],
1302 struct btrfs_file_extent_item);
1303 extent_type = btrfs_file_extent_type(leaf, fi);
1304
cc95bef6 1305 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1306 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1307 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1308 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1309 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1310 extent_end = found_key.offset +
1311 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1312 disk_num_bytes =
1313 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1314 if (extent_end <= start) {
1315 path->slots[0]++;
1316 goto next_slot;
1317 }
17d217fe
YZ
1318 if (disk_bytenr == 0)
1319 goto out_check;
80ff3856
YZ
1320 if (btrfs_file_extent_compression(leaf, fi) ||
1321 btrfs_file_extent_encryption(leaf, fi) ||
1322 btrfs_file_extent_other_encoding(leaf, fi))
1323 goto out_check;
d899e052
YZ
1324 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1325 goto out_check;
d2fb3437 1326 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1327 goto out_check;
33345d01 1328 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1329 found_key.offset -
1330 extent_offset, disk_bytenr))
17d217fe 1331 goto out_check;
5d4f98a2 1332 disk_bytenr += extent_offset;
17d217fe
YZ
1333 disk_bytenr += cur_offset - found_key.offset;
1334 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1335 /*
1336 * if there are pending snapshots for this root,
1337 * we fall into common COW way.
1338 */
1339 if (!nolock) {
9ea24bbe 1340 err = btrfs_start_write_no_snapshoting(root);
e9894fd3
WS
1341 if (!err)
1342 goto out_check;
1343 }
17d217fe
YZ
1344 /*
1345 * force cow if csum exists in the range.
1346 * this ensure that csum for a given extent are
1347 * either valid or do not exist.
1348 */
1349 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1350 goto out_check;
80ff3856
YZ
1351 nocow = 1;
1352 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1353 extent_end = found_key.offset +
514ac8ad
CM
1354 btrfs_file_extent_inline_len(leaf,
1355 path->slots[0], fi);
80ff3856
YZ
1356 extent_end = ALIGN(extent_end, root->sectorsize);
1357 } else {
1358 BUG_ON(1);
1359 }
1360out_check:
1361 if (extent_end <= start) {
1362 path->slots[0]++;
e9894fd3 1363 if (!nolock && nocow)
9ea24bbe 1364 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1365 goto next_slot;
1366 }
1367 if (!nocow) {
1368 if (cow_start == (u64)-1)
1369 cow_start = cur_offset;
1370 cur_offset = extent_end;
1371 if (cur_offset > end)
1372 break;
1373 path->slots[0]++;
1374 goto next_slot;
7ea394f1
YZ
1375 }
1376
b3b4aa74 1377 btrfs_release_path(path);
80ff3856 1378 if (cow_start != (u64)-1) {
00361589
JB
1379 ret = cow_file_range(inode, locked_page,
1380 cow_start, found_key.offset - 1,
1381 page_started, nr_written, 1);
e9894fd3
WS
1382 if (ret) {
1383 if (!nolock && nocow)
9ea24bbe 1384 btrfs_end_write_no_snapshoting(root);
79787eaa 1385 goto error;
e9894fd3 1386 }
80ff3856 1387 cow_start = (u64)-1;
7ea394f1 1388 }
80ff3856 1389
d899e052
YZ
1390 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1391 struct extent_map *em;
1392 struct extent_map_tree *em_tree;
1393 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1394 em = alloc_extent_map();
79787eaa 1395 BUG_ON(!em); /* -ENOMEM */
d899e052 1396 em->start = cur_offset;
70c8a91c 1397 em->orig_start = found_key.offset - extent_offset;
d899e052
YZ
1398 em->len = num_bytes;
1399 em->block_len = num_bytes;
1400 em->block_start = disk_bytenr;
b4939680 1401 em->orig_block_len = disk_num_bytes;
cc95bef6 1402 em->ram_bytes = ram_bytes;
d899e052 1403 em->bdev = root->fs_info->fs_devices->latest_bdev;
2ab28f32
JB
1404 em->mod_start = em->start;
1405 em->mod_len = em->len;
d899e052 1406 set_bit(EXTENT_FLAG_PINNED, &em->flags);
b11e234d 1407 set_bit(EXTENT_FLAG_FILLING, &em->flags);
70c8a91c 1408 em->generation = -1;
d899e052 1409 while (1) {
890871be 1410 write_lock(&em_tree->lock);
09a2a8f9 1411 ret = add_extent_mapping(em_tree, em, 1);
890871be 1412 write_unlock(&em_tree->lock);
d899e052
YZ
1413 if (ret != -EEXIST) {
1414 free_extent_map(em);
1415 break;
1416 }
1417 btrfs_drop_extent_cache(inode, em->start,
1418 em->start + em->len - 1, 0);
1419 }
1420 type = BTRFS_ORDERED_PREALLOC;
1421 } else {
1422 type = BTRFS_ORDERED_NOCOW;
1423 }
80ff3856
YZ
1424
1425 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1426 num_bytes, num_bytes, type);
79787eaa 1427 BUG_ON(ret); /* -ENOMEM */
771ed689 1428
efa56464
YZ
1429 if (root->root_key.objectid ==
1430 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1431 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1432 num_bytes);
e9894fd3
WS
1433 if (ret) {
1434 if (!nolock && nocow)
9ea24bbe 1435 btrfs_end_write_no_snapshoting(root);
79787eaa 1436 goto error;
e9894fd3 1437 }
efa56464
YZ
1438 }
1439
c2790a2e
JB
1440 extent_clear_unlock_delalloc(inode, cur_offset,
1441 cur_offset + num_bytes - 1,
1442 locked_page, EXTENT_LOCKED |
1443 EXTENT_DELALLOC, PAGE_UNLOCK |
1444 PAGE_SET_PRIVATE2);
e9894fd3 1445 if (!nolock && nocow)
9ea24bbe 1446 btrfs_end_write_no_snapshoting(root);
80ff3856
YZ
1447 cur_offset = extent_end;
1448 if (cur_offset > end)
1449 break;
be20aa9d 1450 }
b3b4aa74 1451 btrfs_release_path(path);
80ff3856 1452
17ca04af 1453 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1454 cow_start = cur_offset;
17ca04af
JB
1455 cur_offset = end;
1456 }
1457
80ff3856 1458 if (cow_start != (u64)-1) {
00361589
JB
1459 ret = cow_file_range(inode, locked_page, cow_start, end,
1460 page_started, nr_written, 1);
d788a349 1461 if (ret)
79787eaa 1462 goto error;
80ff3856
YZ
1463 }
1464
79787eaa 1465error:
a698d075 1466 err = btrfs_end_transaction(trans, root);
79787eaa
JM
1467 if (!ret)
1468 ret = err;
1469
17ca04af 1470 if (ret && cur_offset < end)
c2790a2e
JB
1471 extent_clear_unlock_delalloc(inode, cur_offset, end,
1472 locked_page, EXTENT_LOCKED |
151a41bc
JB
1473 EXTENT_DELALLOC | EXTENT_DEFRAG |
1474 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1475 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1476 PAGE_SET_WRITEBACK |
1477 PAGE_END_WRITEBACK);
7ea394f1 1478 btrfs_free_path(path);
79787eaa 1479 return ret;
be20aa9d
CM
1480}
1481
47059d93
WS
1482static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1483{
1484
1485 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1486 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1487 return 0;
1488
1489 /*
1490 * @defrag_bytes is a hint value, no spinlock held here,
1491 * if is not zero, it means the file is defragging.
1492 * Force cow if given extent needs to be defragged.
1493 */
1494 if (BTRFS_I(inode)->defrag_bytes &&
1495 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1496 EXTENT_DEFRAG, 0, NULL))
1497 return 1;
1498
1499 return 0;
1500}
1501
d352ac68
CM
1502/*
1503 * extent_io.c call back to do delayed allocation processing
1504 */
c8b97818 1505static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1506 u64 start, u64 end, int *page_started,
1507 unsigned long *nr_written)
be20aa9d 1508{
be20aa9d 1509 int ret;
47059d93 1510 int force_cow = need_force_cow(inode, start, end);
a2135011 1511
47059d93 1512 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1513 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1514 page_started, 1, nr_written);
47059d93 1515 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1516 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1517 page_started, 0, nr_written);
7816030e 1518 } else if (!inode_need_compress(inode)) {
7f366cfe
CM
1519 ret = cow_file_range(inode, locked_page, start, end,
1520 page_started, nr_written, 1);
7ddf5a42
JB
1521 } else {
1522 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1523 &BTRFS_I(inode)->runtime_flags);
771ed689 1524 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1525 page_started, nr_written);
7ddf5a42 1526 }
b888db2b
CM
1527 return ret;
1528}
1529
1bf85046
JM
1530static void btrfs_split_extent_hook(struct inode *inode,
1531 struct extent_state *orig, u64 split)
9ed74f2d 1532{
0ca1f7ce 1533 /* not delalloc, ignore it */
9ed74f2d 1534 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1535 return;
9ed74f2d 1536
9e0baf60
JB
1537 spin_lock(&BTRFS_I(inode)->lock);
1538 BTRFS_I(inode)->outstanding_extents++;
1539 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1540}
1541
1542/*
1543 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1544 * extents so we can keep track of new extents that are just merged onto old
1545 * extents, such as when we are doing sequential writes, so we can properly
1546 * account for the metadata space we'll need.
1547 */
1bf85046
JM
1548static void btrfs_merge_extent_hook(struct inode *inode,
1549 struct extent_state *new,
1550 struct extent_state *other)
9ed74f2d 1551{
9ed74f2d
JB
1552 /* not delalloc, ignore it */
1553 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1554 return;
9ed74f2d 1555
9e0baf60
JB
1556 spin_lock(&BTRFS_I(inode)->lock);
1557 BTRFS_I(inode)->outstanding_extents--;
1558 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1559}
1560
eb73c1b7
MX
1561static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1562 struct inode *inode)
1563{
1564 spin_lock(&root->delalloc_lock);
1565 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1566 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1567 &root->delalloc_inodes);
1568 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1569 &BTRFS_I(inode)->runtime_flags);
1570 root->nr_delalloc_inodes++;
1571 if (root->nr_delalloc_inodes == 1) {
1572 spin_lock(&root->fs_info->delalloc_root_lock);
1573 BUG_ON(!list_empty(&root->delalloc_root));
1574 list_add_tail(&root->delalloc_root,
1575 &root->fs_info->delalloc_roots);
1576 spin_unlock(&root->fs_info->delalloc_root_lock);
1577 }
1578 }
1579 spin_unlock(&root->delalloc_lock);
1580}
1581
1582static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1583 struct inode *inode)
1584{
1585 spin_lock(&root->delalloc_lock);
1586 if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1587 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1588 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1589 &BTRFS_I(inode)->runtime_flags);
1590 root->nr_delalloc_inodes--;
1591 if (!root->nr_delalloc_inodes) {
1592 spin_lock(&root->fs_info->delalloc_root_lock);
1593 BUG_ON(list_empty(&root->delalloc_root));
1594 list_del_init(&root->delalloc_root);
1595 spin_unlock(&root->fs_info->delalloc_root_lock);
1596 }
1597 }
1598 spin_unlock(&root->delalloc_lock);
1599}
1600
d352ac68
CM
1601/*
1602 * extent_io.c set_bit_hook, used to track delayed allocation
1603 * bytes in this file, and to maintain the list of inodes that
1604 * have pending delalloc work to be done.
1605 */
1bf85046 1606static void btrfs_set_bit_hook(struct inode *inode,
9ee49a04 1607 struct extent_state *state, unsigned *bits)
291d673e 1608{
9ed74f2d 1609
47059d93
WS
1610 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1611 WARN_ON(1);
75eff68e
CM
1612 /*
1613 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1614 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1615 * bit, which is only set or cleared with irqs on
1616 */
0ca1f7ce 1617 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1618 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1619 u64 len = state->end + 1 - state->start;
83eea1f1 1620 bool do_list = !btrfs_is_free_space_inode(inode);
9ed74f2d 1621
9e0baf60 1622 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1623 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1624 } else {
1625 spin_lock(&BTRFS_I(inode)->lock);
1626 BTRFS_I(inode)->outstanding_extents++;
1627 spin_unlock(&BTRFS_I(inode)->lock);
1628 }
287a0ab9 1629
963d678b
MX
1630 __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1631 root->fs_info->delalloc_batch);
df0af1a5 1632 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1633 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1634 if (*bits & EXTENT_DEFRAG)
1635 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1636 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1637 &BTRFS_I(inode)->runtime_flags))
1638 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1639 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1640 }
291d673e
CM
1641}
1642
d352ac68
CM
1643/*
1644 * extent_io.c clear_bit_hook, see set_bit_hook for why
1645 */
1bf85046 1646static void btrfs_clear_bit_hook(struct inode *inode,
41074888 1647 struct extent_state *state,
9ee49a04 1648 unsigned *bits)
291d673e 1649{
47059d93
WS
1650 u64 len = state->end + 1 - state->start;
1651
1652 spin_lock(&BTRFS_I(inode)->lock);
1653 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1654 BTRFS_I(inode)->defrag_bytes -= len;
1655 spin_unlock(&BTRFS_I(inode)->lock);
1656
75eff68e
CM
1657 /*
1658 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1659 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1660 * bit, which is only set or cleared with irqs on
1661 */
0ca1f7ce 1662 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1663 struct btrfs_root *root = BTRFS_I(inode)->root;
83eea1f1 1664 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1665
9e0baf60 1666 if (*bits & EXTENT_FIRST_DELALLOC) {
0ca1f7ce 1667 *bits &= ~EXTENT_FIRST_DELALLOC;
9e0baf60
JB
1668 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1669 spin_lock(&BTRFS_I(inode)->lock);
1670 BTRFS_I(inode)->outstanding_extents--;
1671 spin_unlock(&BTRFS_I(inode)->lock);
1672 }
0ca1f7ce 1673
b6d08f06
JB
1674 /*
1675 * We don't reserve metadata space for space cache inodes so we
1676 * don't need to call dellalloc_release_metadata if there is an
1677 * error.
1678 */
1679 if (*bits & EXTENT_DO_ACCOUNTING &&
1680 root != root->fs_info->tree_root)
0ca1f7ce
YZ
1681 btrfs_delalloc_release_metadata(inode, len);
1682
0cb59c99 1683 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
7ee9e440 1684 && do_list && !(state->state & EXTENT_NORESERVE))
0ca1f7ce 1685 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1686
963d678b
MX
1687 __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1688 root->fs_info->delalloc_batch);
df0af1a5 1689 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1690 BTRFS_I(inode)->delalloc_bytes -= len;
0cb59c99 1691 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
df0af1a5 1692 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1693 &BTRFS_I(inode)->runtime_flags))
1694 btrfs_del_delalloc_inode(root, inode);
df0af1a5 1695 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1696 }
291d673e
CM
1697}
1698
d352ac68
CM
1699/*
1700 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1701 * we don't create bios that span stripes or chunks
1702 */
64a16701 1703int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
c8b97818
CM
1704 size_t size, struct bio *bio,
1705 unsigned long bio_flags)
239b14b3
CM
1706{
1707 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
4f024f37 1708 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1709 u64 length = 0;
1710 u64 map_length;
239b14b3
CM
1711 int ret;
1712
771ed689
CM
1713 if (bio_flags & EXTENT_BIO_COMPRESSED)
1714 return 0;
1715
4f024f37 1716 length = bio->bi_iter.bi_size;
239b14b3 1717 map_length = length;
64a16701 1718 ret = btrfs_map_block(root->fs_info, rw, logical,
f188591e 1719 &map_length, NULL, 0);
3ec706c8 1720 /* Will always return 0 with map_multi == NULL */
3444a972 1721 BUG_ON(ret < 0);
d397712b 1722 if (map_length < length + size)
239b14b3 1723 return 1;
3444a972 1724 return 0;
239b14b3
CM
1725}
1726
d352ac68
CM
1727/*
1728 * in order to insert checksums into the metadata in large chunks,
1729 * we wait until bio submission time. All the pages in the bio are
1730 * checksummed and sums are attached onto the ordered extent record.
1731 *
1732 * At IO completion time the cums attached on the ordered extent record
1733 * are inserted into the btree
1734 */
d397712b
CM
1735static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1736 struct bio *bio, int mirror_num,
eaf25d93
CM
1737 unsigned long bio_flags,
1738 u64 bio_offset)
065631f6 1739{
065631f6 1740 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1741 int ret = 0;
e015640f 1742
d20f7043 1743 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
79787eaa 1744 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1745 return 0;
1746}
e015640f 1747
4a69a410
CM
1748/*
1749 * in order to insert checksums into the metadata in large chunks,
1750 * we wait until bio submission time. All the pages in the bio are
1751 * checksummed and sums are attached onto the ordered extent record.
1752 *
1753 * At IO completion time the cums attached on the ordered extent record
1754 * are inserted into the btree
1755 */
b2950863 1756static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1757 int mirror_num, unsigned long bio_flags,
1758 u64 bio_offset)
4a69a410
CM
1759{
1760 struct btrfs_root *root = BTRFS_I(inode)->root;
61891923
SB
1761 int ret;
1762
1763 ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1764 if (ret)
1765 bio_endio(bio, ret);
1766 return ret;
44b8bd7e
CM
1767}
1768
d352ac68 1769/*
cad321ad
CM
1770 * extent_io.c submission hook. This does the right thing for csum calculation
1771 * on write, or reading the csums from the tree before a read
d352ac68 1772 */
b2950863 1773static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1774 int mirror_num, unsigned long bio_flags,
1775 u64 bio_offset)
44b8bd7e
CM
1776{
1777 struct btrfs_root *root = BTRFS_I(inode)->root;
1778 int ret = 0;
19b9bdb0 1779 int skip_sum;
0417341e 1780 int metadata = 0;
b812ce28 1781 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1782
6cbff00f 1783 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1784
83eea1f1 1785 if (btrfs_is_free_space_inode(inode))
0417341e
JM
1786 metadata = 2;
1787
7b6d91da 1788 if (!(rw & REQ_WRITE)) {
5fd02043
JB
1789 ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1790 if (ret)
61891923 1791 goto out;
5fd02043 1792
d20f7043 1793 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1794 ret = btrfs_submit_compressed_read(inode, bio,
1795 mirror_num,
1796 bio_flags);
1797 goto out;
c2db1073
TI
1798 } else if (!skip_sum) {
1799 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1800 if (ret)
61891923 1801 goto out;
c2db1073 1802 }
4d1b5fb4 1803 goto mapit;
b812ce28 1804 } else if (async && !skip_sum) {
17d217fe
YZ
1805 /* csum items have already been cloned */
1806 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1807 goto mapit;
19b9bdb0 1808 /* we're doing a write, do the async checksumming */
61891923 1809 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1810 inode, rw, bio, mirror_num,
eaf25d93
CM
1811 bio_flags, bio_offset,
1812 __btrfs_submit_bio_start,
4a69a410 1813 __btrfs_submit_bio_done);
61891923 1814 goto out;
b812ce28
JB
1815 } else if (!skip_sum) {
1816 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1817 if (ret)
1818 goto out;
19b9bdb0
CM
1819 }
1820
0b86a832 1821mapit:
61891923
SB
1822 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1823
1824out:
1825 if (ret < 0)
1826 bio_endio(bio, ret);
1827 return ret;
065631f6 1828}
6885f308 1829
d352ac68
CM
1830/*
1831 * given a list of ordered sums record them in the inode. This happens
1832 * at IO completion time based on sums calculated at bio submission time.
1833 */
ba1da2f4 1834static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1835 struct inode *inode, u64 file_offset,
1836 struct list_head *list)
1837{
e6dcd2dc
CM
1838 struct btrfs_ordered_sum *sum;
1839
c6e30871 1840 list_for_each_entry(sum, list, list) {
39847c4d 1841 trans->adding_csums = 1;
d20f7043
CM
1842 btrfs_csum_file_blocks(trans,
1843 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 1844 trans->adding_csums = 0;
e6dcd2dc
CM
1845 }
1846 return 0;
1847}
1848
2ac55d41
JB
1849int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1850 struct extent_state **cached_state)
ea8c2819 1851{
6c1500f2 1852 WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
ea8c2819 1853 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1854 cached_state, GFP_NOFS);
ea8c2819
CM
1855}
1856
d352ac68 1857/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1858struct btrfs_writepage_fixup {
1859 struct page *page;
1860 struct btrfs_work work;
1861};
1862
b2950863 1863static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1864{
1865 struct btrfs_writepage_fixup *fixup;
1866 struct btrfs_ordered_extent *ordered;
2ac55d41 1867 struct extent_state *cached_state = NULL;
247e743c
CM
1868 struct page *page;
1869 struct inode *inode;
1870 u64 page_start;
1871 u64 page_end;
87826df0 1872 int ret;
247e743c
CM
1873
1874 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1875 page = fixup->page;
4a096752 1876again:
247e743c
CM
1877 lock_page(page);
1878 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1879 ClearPageChecked(page);
1880 goto out_page;
1881 }
1882
1883 inode = page->mapping->host;
1884 page_start = page_offset(page);
1885 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1886
2ac55d41 1887 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
d0082371 1888 &cached_state);
4a096752
CM
1889
1890 /* already ordered? We're done */
8b62b72b 1891 if (PagePrivate2(page))
247e743c 1892 goto out;
4a096752
CM
1893
1894 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1895 if (ordered) {
2ac55d41
JB
1896 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1897 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1898 unlock_page(page);
1899 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 1900 btrfs_put_ordered_extent(ordered);
4a096752
CM
1901 goto again;
1902 }
247e743c 1903
87826df0
JM
1904 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1905 if (ret) {
1906 mapping_set_error(page->mapping, ret);
1907 end_extent_writepage(page, ret, page_start, page_end);
1908 ClearPageChecked(page);
1909 goto out;
1910 }
1911
2ac55d41 1912 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c 1913 ClearPageChecked(page);
87826df0 1914 set_page_dirty(page);
247e743c 1915out:
2ac55d41
JB
1916 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1917 &cached_state, GFP_NOFS);
247e743c
CM
1918out_page:
1919 unlock_page(page);
1920 page_cache_release(page);
b897abec 1921 kfree(fixup);
247e743c
CM
1922}
1923
1924/*
1925 * There are a few paths in the higher layers of the kernel that directly
1926 * set the page dirty bit without asking the filesystem if it is a
1927 * good idea. This causes problems because we want to make sure COW
1928 * properly happens and the data=ordered rules are followed.
1929 *
c8b97818 1930 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1931 * hasn't been properly setup for IO. We kick off an async process
1932 * to fix it up. The async helper will wait for ordered extents, set
1933 * the delalloc bit and make it safe to write the page.
1934 */
b2950863 1935static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1936{
1937 struct inode *inode = page->mapping->host;
1938 struct btrfs_writepage_fixup *fixup;
1939 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1940
8b62b72b
CM
1941 /* this page is properly in the ordered list */
1942 if (TestClearPagePrivate2(page))
247e743c
CM
1943 return 0;
1944
1945 if (PageChecked(page))
1946 return -EAGAIN;
1947
1948 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1949 if (!fixup)
1950 return -EAGAIN;
f421950f 1951
247e743c
CM
1952 SetPageChecked(page);
1953 page_cache_get(page);
9e0af237
LB
1954 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
1955 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 1956 fixup->page = page;
dc6e3209 1957 btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
87826df0 1958 return -EBUSY;
247e743c
CM
1959}
1960
d899e052
YZ
1961static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1962 struct inode *inode, u64 file_pos,
1963 u64 disk_bytenr, u64 disk_num_bytes,
1964 u64 num_bytes, u64 ram_bytes,
1965 u8 compression, u8 encryption,
1966 u16 other_encoding, int extent_type)
1967{
1968 struct btrfs_root *root = BTRFS_I(inode)->root;
1969 struct btrfs_file_extent_item *fi;
1970 struct btrfs_path *path;
1971 struct extent_buffer *leaf;
1972 struct btrfs_key ins;
1acae57b 1973 int extent_inserted = 0;
d899e052
YZ
1974 int ret;
1975
1976 path = btrfs_alloc_path();
d8926bb3
MF
1977 if (!path)
1978 return -ENOMEM;
d899e052 1979
a1ed835e
CM
1980 /*
1981 * we may be replacing one extent in the tree with another.
1982 * The new extent is pinned in the extent map, and we don't want
1983 * to drop it from the cache until it is completely in the btree.
1984 *
1985 * So, tell btrfs_drop_extents to leave this extent in the cache.
1986 * the caller is expected to unpin it and allow it to be merged
1987 * with the others.
1988 */
1acae57b
FDBM
1989 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
1990 file_pos + num_bytes, NULL, 0,
1991 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
1992 if (ret)
1993 goto out;
d899e052 1994
1acae57b
FDBM
1995 if (!extent_inserted) {
1996 ins.objectid = btrfs_ino(inode);
1997 ins.offset = file_pos;
1998 ins.type = BTRFS_EXTENT_DATA_KEY;
1999
2000 path->leave_spinning = 1;
2001 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2002 sizeof(*fi));
2003 if (ret)
2004 goto out;
2005 }
d899e052
YZ
2006 leaf = path->nodes[0];
2007 fi = btrfs_item_ptr(leaf, path->slots[0],
2008 struct btrfs_file_extent_item);
2009 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2010 btrfs_set_file_extent_type(leaf, fi, extent_type);
2011 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2012 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2013 btrfs_set_file_extent_offset(leaf, fi, 0);
2014 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2015 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2016 btrfs_set_file_extent_compression(leaf, fi, compression);
2017 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2018 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2019
d899e052 2020 btrfs_mark_buffer_dirty(leaf);
ce195332 2021 btrfs_release_path(path);
d899e052
YZ
2022
2023 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2024
2025 ins.objectid = disk_bytenr;
2026 ins.offset = disk_num_bytes;
2027 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
2028 ret = btrfs_alloc_reserved_file_extent(trans, root,
2029 root->root_key.objectid,
33345d01 2030 btrfs_ino(inode), file_pos, &ins);
79787eaa 2031out:
d899e052 2032 btrfs_free_path(path);
b9473439 2033
79787eaa 2034 return ret;
d899e052
YZ
2035}
2036
38c227d8
LB
2037/* snapshot-aware defrag */
2038struct sa_defrag_extent_backref {
2039 struct rb_node node;
2040 struct old_sa_defrag_extent *old;
2041 u64 root_id;
2042 u64 inum;
2043 u64 file_pos;
2044 u64 extent_offset;
2045 u64 num_bytes;
2046 u64 generation;
2047};
2048
2049struct old_sa_defrag_extent {
2050 struct list_head list;
2051 struct new_sa_defrag_extent *new;
2052
2053 u64 extent_offset;
2054 u64 bytenr;
2055 u64 offset;
2056 u64 len;
2057 int count;
2058};
2059
2060struct new_sa_defrag_extent {
2061 struct rb_root root;
2062 struct list_head head;
2063 struct btrfs_path *path;
2064 struct inode *inode;
2065 u64 file_pos;
2066 u64 len;
2067 u64 bytenr;
2068 u64 disk_len;
2069 u8 compress_type;
2070};
2071
2072static int backref_comp(struct sa_defrag_extent_backref *b1,
2073 struct sa_defrag_extent_backref *b2)
2074{
2075 if (b1->root_id < b2->root_id)
2076 return -1;
2077 else if (b1->root_id > b2->root_id)
2078 return 1;
2079
2080 if (b1->inum < b2->inum)
2081 return -1;
2082 else if (b1->inum > b2->inum)
2083 return 1;
2084
2085 if (b1->file_pos < b2->file_pos)
2086 return -1;
2087 else if (b1->file_pos > b2->file_pos)
2088 return 1;
2089
2090 /*
2091 * [------------------------------] ===> (a range of space)
2092 * |<--->| |<---->| =============> (fs/file tree A)
2093 * |<---------------------------->| ===> (fs/file tree B)
2094 *
2095 * A range of space can refer to two file extents in one tree while
2096 * refer to only one file extent in another tree.
2097 *
2098 * So we may process a disk offset more than one time(two extents in A)
2099 * and locate at the same extent(one extent in B), then insert two same
2100 * backrefs(both refer to the extent in B).
2101 */
2102 return 0;
2103}
2104
2105static void backref_insert(struct rb_root *root,
2106 struct sa_defrag_extent_backref *backref)
2107{
2108 struct rb_node **p = &root->rb_node;
2109 struct rb_node *parent = NULL;
2110 struct sa_defrag_extent_backref *entry;
2111 int ret;
2112
2113 while (*p) {
2114 parent = *p;
2115 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2116
2117 ret = backref_comp(backref, entry);
2118 if (ret < 0)
2119 p = &(*p)->rb_left;
2120 else
2121 p = &(*p)->rb_right;
2122 }
2123
2124 rb_link_node(&backref->node, parent, p);
2125 rb_insert_color(&backref->node, root);
2126}
2127
2128/*
2129 * Note the backref might has changed, and in this case we just return 0.
2130 */
2131static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2132 void *ctx)
2133{
2134 struct btrfs_file_extent_item *extent;
2135 struct btrfs_fs_info *fs_info;
2136 struct old_sa_defrag_extent *old = ctx;
2137 struct new_sa_defrag_extent *new = old->new;
2138 struct btrfs_path *path = new->path;
2139 struct btrfs_key key;
2140 struct btrfs_root *root;
2141 struct sa_defrag_extent_backref *backref;
2142 struct extent_buffer *leaf;
2143 struct inode *inode = new->inode;
2144 int slot;
2145 int ret;
2146 u64 extent_offset;
2147 u64 num_bytes;
2148
2149 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2150 inum == btrfs_ino(inode))
2151 return 0;
2152
2153 key.objectid = root_id;
2154 key.type = BTRFS_ROOT_ITEM_KEY;
2155 key.offset = (u64)-1;
2156
2157 fs_info = BTRFS_I(inode)->root->fs_info;
2158 root = btrfs_read_fs_root_no_name(fs_info, &key);
2159 if (IS_ERR(root)) {
2160 if (PTR_ERR(root) == -ENOENT)
2161 return 0;
2162 WARN_ON(1);
2163 pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2164 inum, offset, root_id);
2165 return PTR_ERR(root);
2166 }
2167
2168 key.objectid = inum;
2169 key.type = BTRFS_EXTENT_DATA_KEY;
2170 if (offset > (u64)-1 << 32)
2171 key.offset = 0;
2172 else
2173 key.offset = offset;
2174
2175 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2176 if (WARN_ON(ret < 0))
38c227d8 2177 return ret;
50f1319c 2178 ret = 0;
38c227d8
LB
2179
2180 while (1) {
2181 cond_resched();
2182
2183 leaf = path->nodes[0];
2184 slot = path->slots[0];
2185
2186 if (slot >= btrfs_header_nritems(leaf)) {
2187 ret = btrfs_next_leaf(root, path);
2188 if (ret < 0) {
2189 goto out;
2190 } else if (ret > 0) {
2191 ret = 0;
2192 goto out;
2193 }
2194 continue;
2195 }
2196
2197 path->slots[0]++;
2198
2199 btrfs_item_key_to_cpu(leaf, &key, slot);
2200
2201 if (key.objectid > inum)
2202 goto out;
2203
2204 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2205 continue;
2206
2207 extent = btrfs_item_ptr(leaf, slot,
2208 struct btrfs_file_extent_item);
2209
2210 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2211 continue;
2212
e68afa49
LB
2213 /*
2214 * 'offset' refers to the exact key.offset,
2215 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2216 * (key.offset - extent_offset).
2217 */
2218 if (key.offset != offset)
38c227d8
LB
2219 continue;
2220
e68afa49 2221 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2222 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2223
38c227d8
LB
2224 if (extent_offset >= old->extent_offset + old->offset +
2225 old->len || extent_offset + num_bytes <=
2226 old->extent_offset + old->offset)
2227 continue;
38c227d8
LB
2228 break;
2229 }
2230
2231 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2232 if (!backref) {
2233 ret = -ENOENT;
2234 goto out;
2235 }
2236
2237 backref->root_id = root_id;
2238 backref->inum = inum;
e68afa49 2239 backref->file_pos = offset;
38c227d8
LB
2240 backref->num_bytes = num_bytes;
2241 backref->extent_offset = extent_offset;
2242 backref->generation = btrfs_file_extent_generation(leaf, extent);
2243 backref->old = old;
2244 backref_insert(&new->root, backref);
2245 old->count++;
2246out:
2247 btrfs_release_path(path);
2248 WARN_ON(ret);
2249 return ret;
2250}
2251
2252static noinline bool record_extent_backrefs(struct btrfs_path *path,
2253 struct new_sa_defrag_extent *new)
2254{
2255 struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2256 struct old_sa_defrag_extent *old, *tmp;
2257 int ret;
2258
2259 new->path = path;
2260
2261 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2262 ret = iterate_inodes_from_logical(old->bytenr +
2263 old->extent_offset, fs_info,
38c227d8
LB
2264 path, record_one_backref,
2265 old);
4724b106
JB
2266 if (ret < 0 && ret != -ENOENT)
2267 return false;
38c227d8
LB
2268
2269 /* no backref to be processed for this extent */
2270 if (!old->count) {
2271 list_del(&old->list);
2272 kfree(old);
2273 }
2274 }
2275
2276 if (list_empty(&new->head))
2277 return false;
2278
2279 return true;
2280}
2281
2282static int relink_is_mergable(struct extent_buffer *leaf,
2283 struct btrfs_file_extent_item *fi,
116e0024 2284 struct new_sa_defrag_extent *new)
38c227d8 2285{
116e0024 2286 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2287 return 0;
2288
2289 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2290 return 0;
2291
116e0024
LB
2292 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2293 return 0;
2294
2295 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2296 btrfs_file_extent_other_encoding(leaf, fi))
2297 return 0;
2298
2299 return 1;
2300}
2301
2302/*
2303 * Note the backref might has changed, and in this case we just return 0.
2304 */
2305static noinline int relink_extent_backref(struct btrfs_path *path,
2306 struct sa_defrag_extent_backref *prev,
2307 struct sa_defrag_extent_backref *backref)
2308{
2309 struct btrfs_file_extent_item *extent;
2310 struct btrfs_file_extent_item *item;
2311 struct btrfs_ordered_extent *ordered;
2312 struct btrfs_trans_handle *trans;
2313 struct btrfs_fs_info *fs_info;
2314 struct btrfs_root *root;
2315 struct btrfs_key key;
2316 struct extent_buffer *leaf;
2317 struct old_sa_defrag_extent *old = backref->old;
2318 struct new_sa_defrag_extent *new = old->new;
2319 struct inode *src_inode = new->inode;
2320 struct inode *inode;
2321 struct extent_state *cached = NULL;
2322 int ret = 0;
2323 u64 start;
2324 u64 len;
2325 u64 lock_start;
2326 u64 lock_end;
2327 bool merge = false;
2328 int index;
2329
2330 if (prev && prev->root_id == backref->root_id &&
2331 prev->inum == backref->inum &&
2332 prev->file_pos + prev->num_bytes == backref->file_pos)
2333 merge = true;
2334
2335 /* step 1: get root */
2336 key.objectid = backref->root_id;
2337 key.type = BTRFS_ROOT_ITEM_KEY;
2338 key.offset = (u64)-1;
2339
2340 fs_info = BTRFS_I(src_inode)->root->fs_info;
2341 index = srcu_read_lock(&fs_info->subvol_srcu);
2342
2343 root = btrfs_read_fs_root_no_name(fs_info, &key);
2344 if (IS_ERR(root)) {
2345 srcu_read_unlock(&fs_info->subvol_srcu, index);
2346 if (PTR_ERR(root) == -ENOENT)
2347 return 0;
2348 return PTR_ERR(root);
2349 }
38c227d8 2350
bcbba5e6
WS
2351 if (btrfs_root_readonly(root)) {
2352 srcu_read_unlock(&fs_info->subvol_srcu, index);
2353 return 0;
2354 }
2355
38c227d8
LB
2356 /* step 2: get inode */
2357 key.objectid = backref->inum;
2358 key.type = BTRFS_INODE_ITEM_KEY;
2359 key.offset = 0;
2360
2361 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2362 if (IS_ERR(inode)) {
2363 srcu_read_unlock(&fs_info->subvol_srcu, index);
2364 return 0;
2365 }
2366
2367 srcu_read_unlock(&fs_info->subvol_srcu, index);
2368
2369 /* step 3: relink backref */
2370 lock_start = backref->file_pos;
2371 lock_end = backref->file_pos + backref->num_bytes - 1;
2372 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2373 0, &cached);
2374
2375 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2376 if (ordered) {
2377 btrfs_put_ordered_extent(ordered);
2378 goto out_unlock;
2379 }
2380
2381 trans = btrfs_join_transaction(root);
2382 if (IS_ERR(trans)) {
2383 ret = PTR_ERR(trans);
2384 goto out_unlock;
2385 }
2386
2387 key.objectid = backref->inum;
2388 key.type = BTRFS_EXTENT_DATA_KEY;
2389 key.offset = backref->file_pos;
2390
2391 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2392 if (ret < 0) {
2393 goto out_free_path;
2394 } else if (ret > 0) {
2395 ret = 0;
2396 goto out_free_path;
2397 }
2398
2399 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2400 struct btrfs_file_extent_item);
2401
2402 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2403 backref->generation)
2404 goto out_free_path;
2405
2406 btrfs_release_path(path);
2407
2408 start = backref->file_pos;
2409 if (backref->extent_offset < old->extent_offset + old->offset)
2410 start += old->extent_offset + old->offset -
2411 backref->extent_offset;
2412
2413 len = min(backref->extent_offset + backref->num_bytes,
2414 old->extent_offset + old->offset + old->len);
2415 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2416
2417 ret = btrfs_drop_extents(trans, root, inode, start,
2418 start + len, 1);
2419 if (ret)
2420 goto out_free_path;
2421again:
2422 key.objectid = btrfs_ino(inode);
2423 key.type = BTRFS_EXTENT_DATA_KEY;
2424 key.offset = start;
2425
a09a0a70 2426 path->leave_spinning = 1;
38c227d8
LB
2427 if (merge) {
2428 struct btrfs_file_extent_item *fi;
2429 u64 extent_len;
2430 struct btrfs_key found_key;
2431
3c9665df 2432 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2433 if (ret < 0)
2434 goto out_free_path;
2435
2436 path->slots[0]--;
2437 leaf = path->nodes[0];
2438 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2439
2440 fi = btrfs_item_ptr(leaf, path->slots[0],
2441 struct btrfs_file_extent_item);
2442 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2443
116e0024
LB
2444 if (extent_len + found_key.offset == start &&
2445 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2446 btrfs_set_file_extent_num_bytes(leaf, fi,
2447 extent_len + len);
2448 btrfs_mark_buffer_dirty(leaf);
2449 inode_add_bytes(inode, len);
2450
2451 ret = 1;
2452 goto out_free_path;
2453 } else {
2454 merge = false;
2455 btrfs_release_path(path);
2456 goto again;
2457 }
2458 }
2459
2460 ret = btrfs_insert_empty_item(trans, root, path, &key,
2461 sizeof(*extent));
2462 if (ret) {
2463 btrfs_abort_transaction(trans, root, ret);
2464 goto out_free_path;
2465 }
2466
2467 leaf = path->nodes[0];
2468 item = btrfs_item_ptr(leaf, path->slots[0],
2469 struct btrfs_file_extent_item);
2470 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2471 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2472 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2473 btrfs_set_file_extent_num_bytes(leaf, item, len);
2474 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2475 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2476 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2477 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2478 btrfs_set_file_extent_encryption(leaf, item, 0);
2479 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2480
2481 btrfs_mark_buffer_dirty(leaf);
2482 inode_add_bytes(inode, len);
a09a0a70 2483 btrfs_release_path(path);
38c227d8
LB
2484
2485 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2486 new->disk_len, 0,
2487 backref->root_id, backref->inum,
2488 new->file_pos, 0); /* start - extent_offset */
2489 if (ret) {
2490 btrfs_abort_transaction(trans, root, ret);
2491 goto out_free_path;
2492 }
2493
2494 ret = 1;
2495out_free_path:
2496 btrfs_release_path(path);
a09a0a70 2497 path->leave_spinning = 0;
38c227d8
LB
2498 btrfs_end_transaction(trans, root);
2499out_unlock:
2500 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2501 &cached, GFP_NOFS);
2502 iput(inode);
2503 return ret;
2504}
2505
6f519564
LB
2506static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2507{
2508 struct old_sa_defrag_extent *old, *tmp;
2509
2510 if (!new)
2511 return;
2512
2513 list_for_each_entry_safe(old, tmp, &new->head, list) {
2514 list_del(&old->list);
2515 kfree(old);
2516 }
2517 kfree(new);
2518}
2519
38c227d8
LB
2520static void relink_file_extents(struct new_sa_defrag_extent *new)
2521{
2522 struct btrfs_path *path;
38c227d8
LB
2523 struct sa_defrag_extent_backref *backref;
2524 struct sa_defrag_extent_backref *prev = NULL;
2525 struct inode *inode;
2526 struct btrfs_root *root;
2527 struct rb_node *node;
2528 int ret;
2529
2530 inode = new->inode;
2531 root = BTRFS_I(inode)->root;
2532
2533 path = btrfs_alloc_path();
2534 if (!path)
2535 return;
2536
2537 if (!record_extent_backrefs(path, new)) {
2538 btrfs_free_path(path);
2539 goto out;
2540 }
2541 btrfs_release_path(path);
2542
2543 while (1) {
2544 node = rb_first(&new->root);
2545 if (!node)
2546 break;
2547 rb_erase(node, &new->root);
2548
2549 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2550
2551 ret = relink_extent_backref(path, prev, backref);
2552 WARN_ON(ret < 0);
2553
2554 kfree(prev);
2555
2556 if (ret == 1)
2557 prev = backref;
2558 else
2559 prev = NULL;
2560 cond_resched();
2561 }
2562 kfree(prev);
2563
2564 btrfs_free_path(path);
38c227d8 2565out:
6f519564
LB
2566 free_sa_defrag_extent(new);
2567
38c227d8
LB
2568 atomic_dec(&root->fs_info->defrag_running);
2569 wake_up(&root->fs_info->transaction_wait);
38c227d8
LB
2570}
2571
2572static struct new_sa_defrag_extent *
2573record_old_file_extents(struct inode *inode,
2574 struct btrfs_ordered_extent *ordered)
2575{
2576 struct btrfs_root *root = BTRFS_I(inode)->root;
2577 struct btrfs_path *path;
2578 struct btrfs_key key;
6f519564 2579 struct old_sa_defrag_extent *old;
38c227d8
LB
2580 struct new_sa_defrag_extent *new;
2581 int ret;
2582
2583 new = kmalloc(sizeof(*new), GFP_NOFS);
2584 if (!new)
2585 return NULL;
2586
2587 new->inode = inode;
2588 new->file_pos = ordered->file_offset;
2589 new->len = ordered->len;
2590 new->bytenr = ordered->start;
2591 new->disk_len = ordered->disk_len;
2592 new->compress_type = ordered->compress_type;
2593 new->root = RB_ROOT;
2594 INIT_LIST_HEAD(&new->head);
2595
2596 path = btrfs_alloc_path();
2597 if (!path)
2598 goto out_kfree;
2599
2600 key.objectid = btrfs_ino(inode);
2601 key.type = BTRFS_EXTENT_DATA_KEY;
2602 key.offset = new->file_pos;
2603
2604 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2605 if (ret < 0)
2606 goto out_free_path;
2607 if (ret > 0 && path->slots[0] > 0)
2608 path->slots[0]--;
2609
2610 /* find out all the old extents for the file range */
2611 while (1) {
2612 struct btrfs_file_extent_item *extent;
2613 struct extent_buffer *l;
2614 int slot;
2615 u64 num_bytes;
2616 u64 offset;
2617 u64 end;
2618 u64 disk_bytenr;
2619 u64 extent_offset;
2620
2621 l = path->nodes[0];
2622 slot = path->slots[0];
2623
2624 if (slot >= btrfs_header_nritems(l)) {
2625 ret = btrfs_next_leaf(root, path);
2626 if (ret < 0)
6f519564 2627 goto out_free_path;
38c227d8
LB
2628 else if (ret > 0)
2629 break;
2630 continue;
2631 }
2632
2633 btrfs_item_key_to_cpu(l, &key, slot);
2634
2635 if (key.objectid != btrfs_ino(inode))
2636 break;
2637 if (key.type != BTRFS_EXTENT_DATA_KEY)
2638 break;
2639 if (key.offset >= new->file_pos + new->len)
2640 break;
2641
2642 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2643
2644 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2645 if (key.offset + num_bytes < new->file_pos)
2646 goto next;
2647
2648 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2649 if (!disk_bytenr)
2650 goto next;
2651
2652 extent_offset = btrfs_file_extent_offset(l, extent);
2653
2654 old = kmalloc(sizeof(*old), GFP_NOFS);
2655 if (!old)
6f519564 2656 goto out_free_path;
38c227d8
LB
2657
2658 offset = max(new->file_pos, key.offset);
2659 end = min(new->file_pos + new->len, key.offset + num_bytes);
2660
2661 old->bytenr = disk_bytenr;
2662 old->extent_offset = extent_offset;
2663 old->offset = offset - key.offset;
2664 old->len = end - offset;
2665 old->new = new;
2666 old->count = 0;
2667 list_add_tail(&old->list, &new->head);
2668next:
2669 path->slots[0]++;
2670 cond_resched();
2671 }
2672
2673 btrfs_free_path(path);
2674 atomic_inc(&root->fs_info->defrag_running);
2675
2676 return new;
2677
38c227d8
LB
2678out_free_path:
2679 btrfs_free_path(path);
2680out_kfree:
6f519564 2681 free_sa_defrag_extent(new);
38c227d8
LB
2682 return NULL;
2683}
2684
e570fd27
MX
2685static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2686 u64 start, u64 len)
2687{
2688 struct btrfs_block_group_cache *cache;
2689
2690 cache = btrfs_lookup_block_group(root->fs_info, start);
2691 ASSERT(cache);
2692
2693 spin_lock(&cache->lock);
2694 cache->delalloc_bytes -= len;
2695 spin_unlock(&cache->lock);
2696
2697 btrfs_put_block_group(cache);
2698}
2699
d352ac68
CM
2700/* as ordered data IO finishes, this gets called so we can finish
2701 * an ordered extent if the range of bytes in the file it covers are
2702 * fully written.
2703 */
5fd02043 2704static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2705{
5fd02043 2706 struct inode *inode = ordered_extent->inode;
e6dcd2dc 2707 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2708 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2709 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2710 struct extent_state *cached_state = NULL;
38c227d8 2711 struct new_sa_defrag_extent *new = NULL;
261507a0 2712 int compress_type = 0;
77cef2ec
JB
2713 int ret = 0;
2714 u64 logical_len = ordered_extent->len;
82d5902d 2715 bool nolock;
77cef2ec 2716 bool truncated = false;
e6dcd2dc 2717
83eea1f1 2718 nolock = btrfs_is_free_space_inode(inode);
0cb59c99 2719
5fd02043
JB
2720 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2721 ret = -EIO;
2722 goto out;
2723 }
2724
f612496b
MX
2725 btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2726 ordered_extent->file_offset +
2727 ordered_extent->len - 1);
2728
77cef2ec
JB
2729 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2730 truncated = true;
2731 logical_len = ordered_extent->truncated_len;
2732 /* Truncated the entire extent, don't bother adding */
2733 if (!logical_len)
2734 goto out;
2735 }
2736
c2167754 2737 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2738 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
6c760c07
JB
2739 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2740 if (nolock)
2741 trans = btrfs_join_transaction_nolock(root);
2742 else
2743 trans = btrfs_join_transaction(root);
2744 if (IS_ERR(trans)) {
2745 ret = PTR_ERR(trans);
2746 trans = NULL;
2747 goto out;
c2167754 2748 }
6c760c07
JB
2749 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2750 ret = btrfs_update_inode_fallback(trans, root, inode);
2751 if (ret) /* -ENOMEM or corruption */
2752 btrfs_abort_transaction(trans, root, ret);
c2167754
YZ
2753 goto out;
2754 }
e6dcd2dc 2755
2ac55d41
JB
2756 lock_extent_bits(io_tree, ordered_extent->file_offset,
2757 ordered_extent->file_offset + ordered_extent->len - 1,
d0082371 2758 0, &cached_state);
e6dcd2dc 2759
38c227d8
LB
2760 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2761 ordered_extent->file_offset + ordered_extent->len - 1,
2762 EXTENT_DEFRAG, 1, cached_state);
2763 if (ret) {
2764 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2765 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2766 /* the inode is shared */
2767 new = record_old_file_extents(inode, ordered_extent);
2768
2769 clear_extent_bit(io_tree, ordered_extent->file_offset,
2770 ordered_extent->file_offset + ordered_extent->len - 1,
2771 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2772 }
2773
0cb59c99 2774 if (nolock)
7a7eaa40 2775 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2776 else
7a7eaa40 2777 trans = btrfs_join_transaction(root);
79787eaa
JM
2778 if (IS_ERR(trans)) {
2779 ret = PTR_ERR(trans);
2780 trans = NULL;
2781 goto out_unlock;
2782 }
a79b7d4b 2783
0ca1f7ce 2784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 2785
c8b97818 2786 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2787 compress_type = ordered_extent->compress_type;
d899e052 2788 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2789 BUG_ON(compress_type);
920bbbfb 2790 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
2791 ordered_extent->file_offset,
2792 ordered_extent->file_offset +
77cef2ec 2793 logical_len);
d899e052 2794 } else {
0af3d00b 2795 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
2796 ret = insert_reserved_file_extent(trans, inode,
2797 ordered_extent->file_offset,
2798 ordered_extent->start,
2799 ordered_extent->disk_len,
77cef2ec 2800 logical_len, logical_len,
261507a0 2801 compress_type, 0, 0,
d899e052 2802 BTRFS_FILE_EXTENT_REG);
e570fd27
MX
2803 if (!ret)
2804 btrfs_release_delalloc_bytes(root,
2805 ordered_extent->start,
2806 ordered_extent->disk_len);
d899e052 2807 }
5dc562c5
JB
2808 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2809 ordered_extent->file_offset, ordered_extent->len,
2810 trans->transid);
79787eaa
JM
2811 if (ret < 0) {
2812 btrfs_abort_transaction(trans, root, ret);
5fd02043 2813 goto out_unlock;
79787eaa 2814 }
2ac55d41 2815
e6dcd2dc
CM
2816 add_pending_csums(trans, inode, ordered_extent->file_offset,
2817 &ordered_extent->list);
2818
6c760c07
JB
2819 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2820 ret = btrfs_update_inode_fallback(trans, root, inode);
2821 if (ret) { /* -ENOMEM or corruption */
2822 btrfs_abort_transaction(trans, root, ret);
2823 goto out_unlock;
1ef30be1
JB
2824 }
2825 ret = 0;
5fd02043
JB
2826out_unlock:
2827 unlock_extent_cached(io_tree, ordered_extent->file_offset,
2828 ordered_extent->file_offset +
2829 ordered_extent->len - 1, &cached_state, GFP_NOFS);
c2167754 2830out:
5b0e95bf 2831 if (root != root->fs_info->tree_root)
0cb59c99 2832 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
a698d075
MX
2833 if (trans)
2834 btrfs_end_transaction(trans, root);
0cb59c99 2835
77cef2ec
JB
2836 if (ret || truncated) {
2837 u64 start, end;
2838
2839 if (truncated)
2840 start = ordered_extent->file_offset + logical_len;
2841 else
2842 start = ordered_extent->file_offset;
2843 end = ordered_extent->file_offset + ordered_extent->len - 1;
2844 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2845
2846 /* Drop the cache for the part of the extent we didn't write. */
2847 btrfs_drop_extent_cache(inode, start, end, 0);
5fd02043 2848
0bec9ef5
JB
2849 /*
2850 * If the ordered extent had an IOERR or something else went
2851 * wrong we need to return the space for this ordered extent
77cef2ec
JB
2852 * back to the allocator. We only free the extent in the
2853 * truncated case if we didn't write out the extent at all.
0bec9ef5 2854 */
77cef2ec
JB
2855 if ((ret || !logical_len) &&
2856 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5
JB
2857 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2858 btrfs_free_reserved_extent(root, ordered_extent->start,
e570fd27 2859 ordered_extent->disk_len, 1);
0bec9ef5
JB
2860 }
2861
2862
5fd02043 2863 /*
8bad3c02
LB
2864 * This needs to be done to make sure anybody waiting knows we are done
2865 * updating everything for this ordered extent.
5fd02043
JB
2866 */
2867 btrfs_remove_ordered_extent(inode, ordered_extent);
2868
38c227d8 2869 /* for snapshot-aware defrag */
6f519564
LB
2870 if (new) {
2871 if (ret) {
2872 free_sa_defrag_extent(new);
2873 atomic_dec(&root->fs_info->defrag_running);
2874 } else {
2875 relink_file_extents(new);
2876 }
2877 }
38c227d8 2878
e6dcd2dc
CM
2879 /* once for us */
2880 btrfs_put_ordered_extent(ordered_extent);
2881 /* once for the tree */
2882 btrfs_put_ordered_extent(ordered_extent);
2883
5fd02043
JB
2884 return ret;
2885}
2886
2887static void finish_ordered_fn(struct btrfs_work *work)
2888{
2889 struct btrfs_ordered_extent *ordered_extent;
2890 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2891 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
2892}
2893
b2950863 2894static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
2895 struct extent_state *state, int uptodate)
2896{
5fd02043
JB
2897 struct inode *inode = page->mapping->host;
2898 struct btrfs_root *root = BTRFS_I(inode)->root;
2899 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
2900 struct btrfs_workqueue *wq;
2901 btrfs_work_func_t func;
5fd02043 2902
1abe9b8a 2903 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2904
8b62b72b 2905 ClearPagePrivate2(page);
5fd02043
JB
2906 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2907 end - start + 1, uptodate))
2908 return 0;
2909
9e0af237
LB
2910 if (btrfs_is_free_space_inode(inode)) {
2911 wq = root->fs_info->endio_freespace_worker;
2912 func = btrfs_freespace_write_helper;
2913 } else {
2914 wq = root->fs_info->endio_write_workers;
2915 func = btrfs_endio_write_helper;
2916 }
5fd02043 2917
9e0af237
LB
2918 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
2919 NULL);
2920 btrfs_queue_work(wq, &ordered_extent->work);
5fd02043
JB
2921
2922 return 0;
211f90e6
CM
2923}
2924
dc380aea
MX
2925static int __readpage_endio_check(struct inode *inode,
2926 struct btrfs_io_bio *io_bio,
2927 int icsum, struct page *page,
2928 int pgoff, u64 start, size_t len)
2929{
2930 char *kaddr;
2931 u32 csum_expected;
2932 u32 csum = ~(u32)0;
2933 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2934 DEFAULT_RATELIMIT_BURST);
2935
2936 csum_expected = *(((u32 *)io_bio->csum) + icsum);
2937
2938 kaddr = kmap_atomic(page);
2939 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
2940 btrfs_csum_final(csum, (char *)&csum);
2941 if (csum != csum_expected)
2942 goto zeroit;
2943
2944 kunmap_atomic(kaddr);
2945 return 0;
2946zeroit:
2947 if (__ratelimit(&_rs))
f0954c66 2948 btrfs_warn(BTRFS_I(inode)->root->fs_info,
dc380aea
MX
2949 "csum failed ino %llu off %llu csum %u expected csum %u",
2950 btrfs_ino(inode), start, csum, csum_expected);
2951 memset(kaddr + pgoff, 1, len);
2952 flush_dcache_page(page);
2953 kunmap_atomic(kaddr);
2954 if (csum_expected == 0)
2955 return 0;
2956 return -EIO;
2957}
2958
d352ac68
CM
2959/*
2960 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
2961 * if there's a match, we allow the bio to finish. If not, the code in
2962 * extent_io.c will try to find good copies for us.
d352ac68 2963 */
facc8a22
MX
2964static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
2965 u64 phy_offset, struct page *page,
2966 u64 start, u64 end, int mirror)
07157aac 2967{
4eee4fa4 2968 size_t offset = start - page_offset(page);
07157aac 2969 struct inode *inode = page->mapping->host;
d1310b2e 2970 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 2971 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 2972
d20f7043
CM
2973 if (PageChecked(page)) {
2974 ClearPageChecked(page);
dc380aea 2975 return 0;
d20f7043 2976 }
6cbff00f
CH
2977
2978 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 2979 return 0;
17d217fe
YZ
2980
2981 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 2982 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
2983 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2984 GFP_NOFS);
b6cda9bc 2985 return 0;
17d217fe 2986 }
d20f7043 2987
facc8a22 2988 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
2989 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
2990 start, (size_t)(end - start + 1));
07157aac 2991}
b888db2b 2992
24bbcf04
YZ
2993struct delayed_iput {
2994 struct list_head list;
2995 struct inode *inode;
2996};
2997
79787eaa
JM
2998/* JDM: If this is fs-wide, why can't we add a pointer to
2999 * btrfs_inode instead and avoid the allocation? */
24bbcf04
YZ
3000void btrfs_add_delayed_iput(struct inode *inode)
3001{
3002 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3003 struct delayed_iput *delayed;
3004
3005 if (atomic_add_unless(&inode->i_count, -1, 1))
3006 return;
3007
3008 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
3009 delayed->inode = inode;
3010
3011 spin_lock(&fs_info->delayed_iput_lock);
3012 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
3013 spin_unlock(&fs_info->delayed_iput_lock);
3014}
3015
3016void btrfs_run_delayed_iputs(struct btrfs_root *root)
3017{
3018 LIST_HEAD(list);
3019 struct btrfs_fs_info *fs_info = root->fs_info;
3020 struct delayed_iput *delayed;
3021 int empty;
3022
3023 spin_lock(&fs_info->delayed_iput_lock);
3024 empty = list_empty(&fs_info->delayed_iputs);
3025 spin_unlock(&fs_info->delayed_iput_lock);
3026 if (empty)
3027 return;
3028
24bbcf04
YZ
3029 spin_lock(&fs_info->delayed_iput_lock);
3030 list_splice_init(&fs_info->delayed_iputs, &list);
3031 spin_unlock(&fs_info->delayed_iput_lock);
3032
3033 while (!list_empty(&list)) {
3034 delayed = list_entry(list.next, struct delayed_iput, list);
3035 list_del(&delayed->list);
3036 iput(delayed->inode);
3037 kfree(delayed);
3038 }
24bbcf04
YZ
3039}
3040
d68fc57b 3041/*
42b2aa86 3042 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3043 * files in the subvolume, it removes orphan item and frees block_rsv
3044 * structure.
3045 */
3046void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root)
3048{
90290e19 3049 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3050 int ret;
3051
8a35d95f 3052 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3053 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3054 return;
3055
90290e19 3056 spin_lock(&root->orphan_lock);
8a35d95f 3057 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3058 spin_unlock(&root->orphan_lock);
3059 return;
3060 }
3061
3062 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3063 spin_unlock(&root->orphan_lock);
3064 return;
3065 }
3066
3067 block_rsv = root->orphan_block_rsv;
3068 root->orphan_block_rsv = NULL;
3069 spin_unlock(&root->orphan_lock);
3070
27cdeb70 3071 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b
YZ
3072 btrfs_root_refs(&root->root_item) > 0) {
3073 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3074 root->root_key.objectid);
4ef31a45
JB
3075 if (ret)
3076 btrfs_abort_transaction(trans, root, ret);
3077 else
27cdeb70
MX
3078 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3079 &root->state);
d68fc57b
YZ
3080 }
3081
90290e19
JB
3082 if (block_rsv) {
3083 WARN_ON(block_rsv->size > 0);
3084 btrfs_free_block_rsv(root, block_rsv);
d68fc57b
YZ
3085 }
3086}
3087
7b128766
JB
3088/*
3089 * This creates an orphan entry for the given inode in case something goes
3090 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3091 *
3092 * NOTE: caller of this function should reserve 5 units of metadata for
3093 * this function.
7b128766
JB
3094 */
3095int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3096{
3097 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3098 struct btrfs_block_rsv *block_rsv = NULL;
3099 int reserve = 0;
3100 int insert = 0;
3101 int ret;
7b128766 3102
d68fc57b 3103 if (!root->orphan_block_rsv) {
66d8f3dd 3104 block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3105 if (!block_rsv)
3106 return -ENOMEM;
d68fc57b 3107 }
7b128766 3108
d68fc57b
YZ
3109 spin_lock(&root->orphan_lock);
3110 if (!root->orphan_block_rsv) {
3111 root->orphan_block_rsv = block_rsv;
3112 } else if (block_rsv) {
3113 btrfs_free_block_rsv(root, block_rsv);
3114 block_rsv = NULL;
7b128766 3115 }
7b128766 3116
8a35d95f
JB
3117 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3118 &BTRFS_I(inode)->runtime_flags)) {
d68fc57b
YZ
3119#if 0
3120 /*
3121 * For proper ENOSPC handling, we should do orphan
3122 * cleanup when mounting. But this introduces backward
3123 * compatibility issue.
3124 */
3125 if (!xchg(&root->orphan_item_inserted, 1))
3126 insert = 2;
3127 else
3128 insert = 1;
3129#endif
3130 insert = 1;
321f0e70 3131 atomic_inc(&root->orphan_inodes);
7b128766
JB
3132 }
3133
72ac3c0d
JB
3134 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3135 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3136 reserve = 1;
d68fc57b 3137 spin_unlock(&root->orphan_lock);
7b128766 3138
d68fc57b
YZ
3139 /* grab metadata reservation from transaction handle */
3140 if (reserve) {
3141 ret = btrfs_orphan_reserve_metadata(trans, inode);
79787eaa 3142 BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
d68fc57b 3143 }
7b128766 3144
d68fc57b
YZ
3145 /* insert an orphan item to track this unlinked/truncated file */
3146 if (insert >= 1) {
33345d01 3147 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3148 if (ret) {
703c88e0 3149 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3150 if (reserve) {
3151 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3152 &BTRFS_I(inode)->runtime_flags);
3153 btrfs_orphan_release_metadata(inode);
3154 }
3155 if (ret != -EEXIST) {
e8e7cff6
JB
3156 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3157 &BTRFS_I(inode)->runtime_flags);
4ef31a45
JB
3158 btrfs_abort_transaction(trans, root, ret);
3159 return ret;
3160 }
79787eaa
JM
3161 }
3162 ret = 0;
d68fc57b
YZ
3163 }
3164
3165 /* insert an orphan item to track subvolume contains orphan files */
3166 if (insert >= 2) {
3167 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3168 root->root_key.objectid);
79787eaa
JM
3169 if (ret && ret != -EEXIST) {
3170 btrfs_abort_transaction(trans, root, ret);
3171 return ret;
3172 }
d68fc57b
YZ
3173 }
3174 return 0;
7b128766
JB
3175}
3176
3177/*
3178 * We have done the truncate/delete so we can go ahead and remove the orphan
3179 * item for this particular inode.
3180 */
48a3b636
ES
3181static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3182 struct inode *inode)
7b128766
JB
3183{
3184 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
3185 int delete_item = 0;
3186 int release_rsv = 0;
7b128766
JB
3187 int ret = 0;
3188
d68fc57b 3189 spin_lock(&root->orphan_lock);
8a35d95f
JB
3190 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3191 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3192 delete_item = 1;
7b128766 3193
72ac3c0d
JB
3194 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3195 &BTRFS_I(inode)->runtime_flags))
d68fc57b 3196 release_rsv = 1;
d68fc57b 3197 spin_unlock(&root->orphan_lock);
7b128766 3198
703c88e0 3199 if (delete_item) {
8a35d95f 3200 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3201 if (trans)
3202 ret = btrfs_del_orphan_item(trans, root,
3203 btrfs_ino(inode));
8a35d95f 3204 }
7b128766 3205
703c88e0
FDBM
3206 if (release_rsv)
3207 btrfs_orphan_release_metadata(inode);
3208
4ef31a45 3209 return ret;
7b128766
JB
3210}
3211
3212/*
3213 * this cleans up any orphans that may be left on the list from the last use
3214 * of this root.
3215 */
66b4ffd1 3216int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
3217{
3218 struct btrfs_path *path;
3219 struct extent_buffer *leaf;
7b128766
JB
3220 struct btrfs_key key, found_key;
3221 struct btrfs_trans_handle *trans;
3222 struct inode *inode;
8f6d7f4f 3223 u64 last_objectid = 0;
7b128766
JB
3224 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3225
d68fc57b 3226 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3227 return 0;
c71bf099
YZ
3228
3229 path = btrfs_alloc_path();
66b4ffd1
JB
3230 if (!path) {
3231 ret = -ENOMEM;
3232 goto out;
3233 }
7b128766
JB
3234 path->reada = -1;
3235
3236 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3237 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3238 key.offset = (u64)-1;
3239
7b128766
JB
3240 while (1) {
3241 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3242 if (ret < 0)
3243 goto out;
7b128766
JB
3244
3245 /*
3246 * if ret == 0 means we found what we were searching for, which
25985edc 3247 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3248 * find the key and see if we have stuff that matches
3249 */
3250 if (ret > 0) {
66b4ffd1 3251 ret = 0;
7b128766
JB
3252 if (path->slots[0] == 0)
3253 break;
3254 path->slots[0]--;
3255 }
3256
3257 /* pull out the item */
3258 leaf = path->nodes[0];
7b128766
JB
3259 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3260
3261 /* make sure the item matches what we want */
3262 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3263 break;
962a298f 3264 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3265 break;
3266
3267 /* release the path since we're done with it */
b3b4aa74 3268 btrfs_release_path(path);
7b128766
JB
3269
3270 /*
3271 * this is where we are basically btrfs_lookup, without the
3272 * crossing root thing. we store the inode number in the
3273 * offset of the orphan item.
3274 */
8f6d7f4f
JB
3275
3276 if (found_key.offset == last_objectid) {
c2cf52eb
SK
3277 btrfs_err(root->fs_info,
3278 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3279 ret = -EINVAL;
3280 goto out;
3281 }
3282
3283 last_objectid = found_key.offset;
3284
5d4f98a2
YZ
3285 found_key.objectid = found_key.offset;
3286 found_key.type = BTRFS_INODE_ITEM_KEY;
3287 found_key.offset = 0;
73f73415 3288 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
8c6ffba0 3289 ret = PTR_ERR_OR_ZERO(inode);
a8c9e576 3290 if (ret && ret != -ESTALE)
66b4ffd1 3291 goto out;
7b128766 3292
f8e9e0b0
AJ
3293 if (ret == -ESTALE && root == root->fs_info->tree_root) {
3294 struct btrfs_root *dead_root;
3295 struct btrfs_fs_info *fs_info = root->fs_info;
3296 int is_dead_root = 0;
3297
3298 /*
3299 * this is an orphan in the tree root. Currently these
3300 * could come from 2 sources:
3301 * a) a snapshot deletion in progress
3302 * b) a free space cache inode
3303 * We need to distinguish those two, as the snapshot
3304 * orphan must not get deleted.
3305 * find_dead_roots already ran before us, so if this
3306 * is a snapshot deletion, we should find the root
3307 * in the dead_roots list
3308 */
3309 spin_lock(&fs_info->trans_lock);
3310 list_for_each_entry(dead_root, &fs_info->dead_roots,
3311 root_list) {
3312 if (dead_root->root_key.objectid ==
3313 found_key.objectid) {
3314 is_dead_root = 1;
3315 break;
3316 }
3317 }
3318 spin_unlock(&fs_info->trans_lock);
3319 if (is_dead_root) {
3320 /* prevent this orphan from being found again */
3321 key.offset = found_key.objectid - 1;
3322 continue;
3323 }
3324 }
7b128766 3325 /*
a8c9e576
JB
3326 * Inode is already gone but the orphan item is still there,
3327 * kill the orphan item.
7b128766 3328 */
a8c9e576
JB
3329 if (ret == -ESTALE) {
3330 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3331 if (IS_ERR(trans)) {
3332 ret = PTR_ERR(trans);
3333 goto out;
3334 }
c2cf52eb
SK
3335 btrfs_debug(root->fs_info, "auto deleting %Lu",
3336 found_key.objectid);
a8c9e576
JB
3337 ret = btrfs_del_orphan_item(trans, root,
3338 found_key.objectid);
5b21f2ed 3339 btrfs_end_transaction(trans, root);
4ef31a45
JB
3340 if (ret)
3341 goto out;
7b128766
JB
3342 continue;
3343 }
3344
a8c9e576
JB
3345 /*
3346 * add this inode to the orphan list so btrfs_orphan_del does
3347 * the proper thing when we hit it
3348 */
8a35d95f
JB
3349 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3350 &BTRFS_I(inode)->runtime_flags);
925396ec 3351 atomic_inc(&root->orphan_inodes);
a8c9e576 3352
7b128766
JB
3353 /* if we have links, this was a truncate, lets do that */
3354 if (inode->i_nlink) {
fae7f21c 3355 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3356 iput(inode);
3357 continue;
3358 }
7b128766 3359 nr_truncate++;
f3fe820c
JB
3360
3361 /* 1 for the orphan item deletion. */
3362 trans = btrfs_start_transaction(root, 1);
3363 if (IS_ERR(trans)) {
c69b26b0 3364 iput(inode);
f3fe820c
JB
3365 ret = PTR_ERR(trans);
3366 goto out;
3367 }
3368 ret = btrfs_orphan_add(trans, inode);
3369 btrfs_end_transaction(trans, root);
c69b26b0
JB
3370 if (ret) {
3371 iput(inode);
f3fe820c 3372 goto out;
c69b26b0 3373 }
f3fe820c 3374
66b4ffd1 3375 ret = btrfs_truncate(inode);
4a7d0f68
JB
3376 if (ret)
3377 btrfs_orphan_del(NULL, inode);
7b128766
JB
3378 } else {
3379 nr_unlink++;
3380 }
3381
3382 /* this will do delete_inode and everything for us */
3383 iput(inode);
66b4ffd1
JB
3384 if (ret)
3385 goto out;
7b128766 3386 }
3254c876
MX
3387 /* release the path since we're done with it */
3388 btrfs_release_path(path);
3389
d68fc57b
YZ
3390 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3391
3392 if (root->orphan_block_rsv)
3393 btrfs_block_rsv_release(root, root->orphan_block_rsv,
3394 (u64)-1);
3395
27cdeb70
MX
3396 if (root->orphan_block_rsv ||
3397 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3398 trans = btrfs_join_transaction(root);
66b4ffd1
JB
3399 if (!IS_ERR(trans))
3400 btrfs_end_transaction(trans, root);
d68fc57b 3401 }
7b128766
JB
3402
3403 if (nr_unlink)
4884b476 3404 btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3405 if (nr_truncate)
4884b476 3406 btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3407
3408out:
3409 if (ret)
68b663d1 3410 btrfs_err(root->fs_info,
c2cf52eb 3411 "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3412 btrfs_free_path(path);
3413 return ret;
7b128766
JB
3414}
3415
46a53cca
CM
3416/*
3417 * very simple check to peek ahead in the leaf looking for xattrs. If we
3418 * don't find any xattrs, we know there can't be any acls.
3419 *
3420 * slot is the slot the inode is in, objectid is the objectid of the inode
3421 */
3422static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3423 int slot, u64 objectid,
3424 int *first_xattr_slot)
46a53cca
CM
3425{
3426 u32 nritems = btrfs_header_nritems(leaf);
3427 struct btrfs_key found_key;
f23b5a59
JB
3428 static u64 xattr_access = 0;
3429 static u64 xattr_default = 0;
46a53cca
CM
3430 int scanned = 0;
3431
f23b5a59
JB
3432 if (!xattr_access) {
3433 xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3434 strlen(POSIX_ACL_XATTR_ACCESS));
3435 xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3436 strlen(POSIX_ACL_XATTR_DEFAULT));
3437 }
3438
46a53cca 3439 slot++;
63541927 3440 *first_xattr_slot = -1;
46a53cca
CM
3441 while (slot < nritems) {
3442 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3443
3444 /* we found a different objectid, there must not be acls */
3445 if (found_key.objectid != objectid)
3446 return 0;
3447
3448 /* we found an xattr, assume we've got an acl */
f23b5a59 3449 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3450 if (*first_xattr_slot == -1)
3451 *first_xattr_slot = slot;
f23b5a59
JB
3452 if (found_key.offset == xattr_access ||
3453 found_key.offset == xattr_default)
3454 return 1;
3455 }
46a53cca
CM
3456
3457 /*
3458 * we found a key greater than an xattr key, there can't
3459 * be any acls later on
3460 */
3461 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3462 return 0;
3463
3464 slot++;
3465 scanned++;
3466
3467 /*
3468 * it goes inode, inode backrefs, xattrs, extents,
3469 * so if there are a ton of hard links to an inode there can
3470 * be a lot of backrefs. Don't waste time searching too hard,
3471 * this is just an optimization
3472 */
3473 if (scanned >= 8)
3474 break;
3475 }
3476 /* we hit the end of the leaf before we found an xattr or
3477 * something larger than an xattr. We have to assume the inode
3478 * has acls
3479 */
63541927
FDBM
3480 if (*first_xattr_slot == -1)
3481 *first_xattr_slot = slot;
46a53cca
CM
3482 return 1;
3483}
3484
d352ac68
CM
3485/*
3486 * read an inode from the btree into the in-memory inode
3487 */
5d4f98a2 3488static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
3489{
3490 struct btrfs_path *path;
5f39d397 3491 struct extent_buffer *leaf;
39279cc3 3492 struct btrfs_inode_item *inode_item;
0b86a832 3493 struct btrfs_timespec *tspec;
39279cc3
CM
3494 struct btrfs_root *root = BTRFS_I(inode)->root;
3495 struct btrfs_key location;
67de1176 3496 unsigned long ptr;
46a53cca 3497 int maybe_acls;
618e21d5 3498 u32 rdev;
39279cc3 3499 int ret;
2f7e33d4 3500 bool filled = false;
63541927 3501 int first_xattr_slot;
2f7e33d4
MX
3502
3503 ret = btrfs_fill_inode(inode, &rdev);
3504 if (!ret)
3505 filled = true;
39279cc3
CM
3506
3507 path = btrfs_alloc_path();
1748f843
MF
3508 if (!path)
3509 goto make_bad;
3510
39279cc3 3511 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3512
39279cc3 3513 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 3514 if (ret)
39279cc3 3515 goto make_bad;
39279cc3 3516
5f39d397 3517 leaf = path->nodes[0];
2f7e33d4
MX
3518
3519 if (filled)
67de1176 3520 goto cache_index;
2f7e33d4 3521
5f39d397
CM
3522 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3523 struct btrfs_inode_item);
5f39d397 3524 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3525 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3526 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3527 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
dbe674a9 3528 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
3529
3530 tspec = btrfs_inode_atime(inode_item);
3531 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3532 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3533
3534 tspec = btrfs_inode_mtime(inode_item);
3535 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3536 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3537
3538 tspec = btrfs_inode_ctime(inode_item);
3539 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3540 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3541
a76a3cd4 3542 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3543 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3544 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3545
3546 /*
3547 * If we were modified in the current generation and evicted from memory
3548 * and then re-read we need to do a full sync since we don't have any
3549 * idea about which extents were modified before we were evicted from
3550 * cache.
3551 */
3552 if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3553 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3554 &BTRFS_I(inode)->runtime_flags);
3555
0c4d2d95 3556 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
e02119d5 3557 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 3558 inode->i_rdev = 0;
5f39d397
CM
3559 rdev = btrfs_inode_rdev(leaf, inode_item);
3560
aec7477b 3561 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 3562 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
67de1176
MX
3563
3564cache_index:
3565 path->slots[0]++;
3566 if (inode->i_nlink != 1 ||
3567 path->slots[0] >= btrfs_header_nritems(leaf))
3568 goto cache_acl;
3569
3570 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3571 if (location.objectid != btrfs_ino(inode))
3572 goto cache_acl;
3573
3574 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3575 if (location.type == BTRFS_INODE_REF_KEY) {
3576 struct btrfs_inode_ref *ref;
3577
3578 ref = (struct btrfs_inode_ref *)ptr;
3579 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3580 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3581 struct btrfs_inode_extref *extref;
3582
3583 extref = (struct btrfs_inode_extref *)ptr;
3584 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3585 extref);
3586 }
2f7e33d4 3587cache_acl:
46a53cca
CM
3588 /*
3589 * try to precache a NULL acl entry for files that don't have
3590 * any xattrs or acls
3591 */
33345d01 3592 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
63541927
FDBM
3593 btrfs_ino(inode), &first_xattr_slot);
3594 if (first_xattr_slot != -1) {
3595 path->slots[0] = first_xattr_slot;
3596 ret = btrfs_load_inode_props(inode, path);
3597 if (ret)
3598 btrfs_err(root->fs_info,
351fd353 3599 "error loading props for ino %llu (root %llu): %d",
63541927
FDBM
3600 btrfs_ino(inode),
3601 root->root_key.objectid, ret);
3602 }
3603 btrfs_free_path(path);
3604
72c04902
AV
3605 if (!maybe_acls)
3606 cache_no_acl(inode);
46a53cca 3607
39279cc3 3608 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3609 case S_IFREG:
3610 inode->i_mapping->a_ops = &btrfs_aops;
04160088 3611 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 3612 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3613 inode->i_fop = &btrfs_file_operations;
3614 inode->i_op = &btrfs_file_inode_operations;
3615 break;
3616 case S_IFDIR:
3617 inode->i_fop = &btrfs_dir_file_operations;
3618 if (root == root->fs_info->tree_root)
3619 inode->i_op = &btrfs_dir_ro_inode_operations;
3620 else
3621 inode->i_op = &btrfs_dir_inode_operations;
3622 break;
3623 case S_IFLNK:
3624 inode->i_op = &btrfs_symlink_inode_operations;
3625 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 3626 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 3627 break;
618e21d5 3628 default:
0279b4cd 3629 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3630 init_special_inode(inode, inode->i_mode, rdev);
3631 break;
39279cc3 3632 }
6cbff00f
CH
3633
3634 btrfs_update_iflags(inode);
39279cc3
CM
3635 return;
3636
3637make_bad:
39279cc3 3638 btrfs_free_path(path);
39279cc3
CM
3639 make_bad_inode(inode);
3640}
3641
d352ac68
CM
3642/*
3643 * given a leaf and an inode, copy the inode fields into the leaf
3644 */
e02119d5
CM
3645static void fill_inode_item(struct btrfs_trans_handle *trans,
3646 struct extent_buffer *leaf,
5f39d397 3647 struct btrfs_inode_item *item,
39279cc3
CM
3648 struct inode *inode)
3649{
51fab693
LB
3650 struct btrfs_map_token token;
3651
3652 btrfs_init_map_token(&token);
5f39d397 3653
51fab693
LB
3654 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3655 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3656 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3657 &token);
3658 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3659 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3660
51fab693
LB
3661 btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3662 inode->i_atime.tv_sec, &token);
3663 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3664 inode->i_atime.tv_nsec, &token);
5f39d397 3665
51fab693
LB
3666 btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3667 inode->i_mtime.tv_sec, &token);
3668 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3669 inode->i_mtime.tv_nsec, &token);
5f39d397 3670
51fab693
LB
3671 btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3672 inode->i_ctime.tv_sec, &token);
3673 btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3674 inode->i_ctime.tv_nsec, &token);
5f39d397 3675
51fab693
LB
3676 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3677 &token);
3678 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3679 &token);
3680 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3681 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3682 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3683 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3684 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3685}
3686
d352ac68
CM
3687/*
3688 * copy everything in the in-memory inode into the btree.
3689 */
2115133f 3690static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3691 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3692{
3693 struct btrfs_inode_item *inode_item;
3694 struct btrfs_path *path;
5f39d397 3695 struct extent_buffer *leaf;
39279cc3
CM
3696 int ret;
3697
3698 path = btrfs_alloc_path();
16cdcec7
MX
3699 if (!path)
3700 return -ENOMEM;
3701
b9473439 3702 path->leave_spinning = 1;
16cdcec7
MX
3703 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3704 1);
39279cc3
CM
3705 if (ret) {
3706 if (ret > 0)
3707 ret = -ENOENT;
3708 goto failed;
3709 }
3710
5f39d397
CM
3711 leaf = path->nodes[0];
3712 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3713 struct btrfs_inode_item);
39279cc3 3714
e02119d5 3715 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3716 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3717 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3718 ret = 0;
3719failed:
39279cc3
CM
3720 btrfs_free_path(path);
3721 return ret;
3722}
3723
2115133f
CM
3724/*
3725 * copy everything in the in-memory inode into the btree.
3726 */
3727noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3728 struct btrfs_root *root, struct inode *inode)
3729{
3730 int ret;
3731
3732 /*
3733 * If the inode is a free space inode, we can deadlock during commit
3734 * if we put it into the delayed code.
3735 *
3736 * The data relocation inode should also be directly updated
3737 * without delay
3738 */
83eea1f1 3739 if (!btrfs_is_free_space_inode(inode)
1d52c78a
JB
3740 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3741 && !root->fs_info->log_root_recovering) {
8ea05e3a
AB
3742 btrfs_update_root_times(trans, root);
3743
2115133f
CM
3744 ret = btrfs_delayed_update_inode(trans, root, inode);
3745 if (!ret)
3746 btrfs_set_inode_last_trans(trans, inode);
3747 return ret;
3748 }
3749
3750 return btrfs_update_inode_item(trans, root, inode);
3751}
3752
be6aef60
JB
3753noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3754 struct btrfs_root *root,
3755 struct inode *inode)
2115133f
CM
3756{
3757 int ret;
3758
3759 ret = btrfs_update_inode(trans, root, inode);
3760 if (ret == -ENOSPC)
3761 return btrfs_update_inode_item(trans, root, inode);
3762 return ret;
3763}
3764
d352ac68
CM
3765/*
3766 * unlink helper that gets used here in inode.c and in the tree logging
3767 * recovery code. It remove a link in a directory with a given name, and
3768 * also drops the back refs in the inode to the directory
3769 */
92986796
AV
3770static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3771 struct btrfs_root *root,
3772 struct inode *dir, struct inode *inode,
3773 const char *name, int name_len)
39279cc3
CM
3774{
3775 struct btrfs_path *path;
39279cc3 3776 int ret = 0;
5f39d397 3777 struct extent_buffer *leaf;
39279cc3 3778 struct btrfs_dir_item *di;
5f39d397 3779 struct btrfs_key key;
aec7477b 3780 u64 index;
33345d01
LZ
3781 u64 ino = btrfs_ino(inode);
3782 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
3783
3784 path = btrfs_alloc_path();
54aa1f4d
CM
3785 if (!path) {
3786 ret = -ENOMEM;
554233a6 3787 goto out;
54aa1f4d
CM
3788 }
3789
b9473439 3790 path->leave_spinning = 1;
33345d01 3791 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
3792 name, name_len, -1);
3793 if (IS_ERR(di)) {
3794 ret = PTR_ERR(di);
3795 goto err;
3796 }
3797 if (!di) {
3798 ret = -ENOENT;
3799 goto err;
3800 }
5f39d397
CM
3801 leaf = path->nodes[0];
3802 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 3803 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
3804 if (ret)
3805 goto err;
b3b4aa74 3806 btrfs_release_path(path);
39279cc3 3807
67de1176
MX
3808 /*
3809 * If we don't have dir index, we have to get it by looking up
3810 * the inode ref, since we get the inode ref, remove it directly,
3811 * it is unnecessary to do delayed deletion.
3812 *
3813 * But if we have dir index, needn't search inode ref to get it.
3814 * Since the inode ref is close to the inode item, it is better
3815 * that we delay to delete it, and just do this deletion when
3816 * we update the inode item.
3817 */
3818 if (BTRFS_I(inode)->dir_index) {
3819 ret = btrfs_delayed_delete_inode_ref(inode);
3820 if (!ret) {
3821 index = BTRFS_I(inode)->dir_index;
3822 goto skip_backref;
3823 }
3824 }
3825
33345d01
LZ
3826 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3827 dir_ino, &index);
aec7477b 3828 if (ret) {
c2cf52eb
SK
3829 btrfs_info(root->fs_info,
3830 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 3831 name_len, name, ino, dir_ino);
79787eaa 3832 btrfs_abort_transaction(trans, root, ret);
aec7477b
JB
3833 goto err;
3834 }
67de1176 3835skip_backref:
16cdcec7 3836 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
3837 if (ret) {
3838 btrfs_abort_transaction(trans, root, ret);
39279cc3 3839 goto err;
79787eaa 3840 }
39279cc3 3841
e02119d5 3842 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 3843 inode, dir_ino);
79787eaa
JM
3844 if (ret != 0 && ret != -ENOENT) {
3845 btrfs_abort_transaction(trans, root, ret);
3846 goto err;
3847 }
e02119d5
CM
3848
3849 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3850 dir, index);
6418c961
CM
3851 if (ret == -ENOENT)
3852 ret = 0;
d4e3991b
ZB
3853 else if (ret)
3854 btrfs_abort_transaction(trans, root, ret);
39279cc3
CM
3855err:
3856 btrfs_free_path(path);
e02119d5
CM
3857 if (ret)
3858 goto out;
3859
3860 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95
JB
3861 inode_inc_iversion(inode);
3862 inode_inc_iversion(dir);
e02119d5 3863 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
b9959295 3864 ret = btrfs_update_inode(trans, root, dir);
e02119d5 3865out:
39279cc3
CM
3866 return ret;
3867}
3868
92986796
AV
3869int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3870 struct btrfs_root *root,
3871 struct inode *dir, struct inode *inode,
3872 const char *name, int name_len)
3873{
3874 int ret;
3875 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3876 if (!ret) {
8b558c5f 3877 drop_nlink(inode);
92986796
AV
3878 ret = btrfs_update_inode(trans, root, inode);
3879 }
3880 return ret;
3881}
39279cc3 3882
a22285a6
YZ
3883/*
3884 * helper to start transaction for unlink and rmdir.
3885 *
d52be818
JB
3886 * unlink and rmdir are special in btrfs, they do not always free space, so
3887 * if we cannot make our reservations the normal way try and see if there is
3888 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3889 * allow the unlink to occur.
a22285a6 3890 */
d52be818 3891static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 3892{
39279cc3 3893 struct btrfs_trans_handle *trans;
a22285a6 3894 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d
YZ
3895 int ret;
3896
e70bea5f
JB
3897 /*
3898 * 1 for the possible orphan item
3899 * 1 for the dir item
3900 * 1 for the dir index
3901 * 1 for the inode ref
e70bea5f
JB
3902 * 1 for the inode
3903 */
6e137ed3 3904 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
3905 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3906 return trans;
4df27c4d 3907
d52be818
JB
3908 if (PTR_ERR(trans) == -ENOSPC) {
3909 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4df27c4d 3910
d52be818
JB
3911 trans = btrfs_start_transaction(root, 0);
3912 if (IS_ERR(trans))
3913 return trans;
3914 ret = btrfs_cond_migrate_bytes(root->fs_info,
3915 &root->fs_info->trans_block_rsv,
3916 num_bytes, 5);
3917 if (ret) {
3918 btrfs_end_transaction(trans, root);
3919 return ERR_PTR(ret);
a22285a6 3920 }
5a77d76c 3921 trans->block_rsv = &root->fs_info->trans_block_rsv;
d52be818 3922 trans->bytes_reserved = num_bytes;
a22285a6 3923 }
d52be818 3924 return trans;
a22285a6
YZ
3925}
3926
3927static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3928{
3929 struct btrfs_root *root = BTRFS_I(dir)->root;
3930 struct btrfs_trans_handle *trans;
3931 struct inode *inode = dentry->d_inode;
3932 int ret;
a22285a6 3933
d52be818 3934 trans = __unlink_start_trans(dir);
a22285a6
YZ
3935 if (IS_ERR(trans))
3936 return PTR_ERR(trans);
5f39d397 3937
12fcfd22
CM
3938 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3939
e02119d5
CM
3940 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3941 dentry->d_name.name, dentry->d_name.len);
b532402e
TI
3942 if (ret)
3943 goto out;
7b128766 3944
a22285a6 3945 if (inode->i_nlink == 0) {
7b128766 3946 ret = btrfs_orphan_add(trans, inode);
b532402e
TI
3947 if (ret)
3948 goto out;
a22285a6 3949 }
7b128766 3950
b532402e 3951out:
d52be818 3952 btrfs_end_transaction(trans, root);
b53d3f5d 3953 btrfs_btree_balance_dirty(root);
39279cc3
CM
3954 return ret;
3955}
3956
4df27c4d
YZ
3957int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3958 struct btrfs_root *root,
3959 struct inode *dir, u64 objectid,
3960 const char *name, int name_len)
3961{
3962 struct btrfs_path *path;
3963 struct extent_buffer *leaf;
3964 struct btrfs_dir_item *di;
3965 struct btrfs_key key;
3966 u64 index;
3967 int ret;
33345d01 3968 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3969
3970 path = btrfs_alloc_path();
3971 if (!path)
3972 return -ENOMEM;
3973
33345d01 3974 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3975 name, name_len, -1);
79787eaa
JM
3976 if (IS_ERR_OR_NULL(di)) {
3977 if (!di)
3978 ret = -ENOENT;
3979 else
3980 ret = PTR_ERR(di);
3981 goto out;
3982 }
4df27c4d
YZ
3983
3984 leaf = path->nodes[0];
3985 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3986 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3987 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa
JM
3988 if (ret) {
3989 btrfs_abort_transaction(trans, root, ret);
3990 goto out;
3991 }
b3b4aa74 3992 btrfs_release_path(path);
4df27c4d
YZ
3993
3994 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3995 objectid, root->root_key.objectid,
33345d01 3996 dir_ino, &index, name, name_len);
4df27c4d 3997 if (ret < 0) {
79787eaa
JM
3998 if (ret != -ENOENT) {
3999 btrfs_abort_transaction(trans, root, ret);
4000 goto out;
4001 }
33345d01 4002 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4003 name, name_len);
79787eaa
JM
4004 if (IS_ERR_OR_NULL(di)) {
4005 if (!di)
4006 ret = -ENOENT;
4007 else
4008 ret = PTR_ERR(di);
4009 btrfs_abort_transaction(trans, root, ret);
4010 goto out;
4011 }
4df27c4d
YZ
4012
4013 leaf = path->nodes[0];
4014 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4015 btrfs_release_path(path);
4df27c4d
YZ
4016 index = key.offset;
4017 }
945d8962 4018 btrfs_release_path(path);
4df27c4d 4019
16cdcec7 4020 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
79787eaa
JM
4021 if (ret) {
4022 btrfs_abort_transaction(trans, root, ret);
4023 goto out;
4024 }
4df27c4d
YZ
4025
4026 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
0c4d2d95 4027 inode_inc_iversion(dir);
4df27c4d 4028 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
5a24e84c 4029 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa
JM
4030 if (ret)
4031 btrfs_abort_transaction(trans, root, ret);
4032out:
71d7aed0 4033 btrfs_free_path(path);
79787eaa 4034 return ret;
4df27c4d
YZ
4035}
4036
39279cc3
CM
4037static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4038{
4039 struct inode *inode = dentry->d_inode;
1832a6d5 4040 int err = 0;
39279cc3 4041 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4042 struct btrfs_trans_handle *trans;
39279cc3 4043
b3ae244e 4044 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4045 return -ENOTEMPTY;
b3ae244e
DS
4046 if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4047 return -EPERM;
134d4512 4048
d52be818 4049 trans = __unlink_start_trans(dir);
a22285a6 4050 if (IS_ERR(trans))
5df6a9f6 4051 return PTR_ERR(trans);
5df6a9f6 4052
33345d01 4053 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4054 err = btrfs_unlink_subvol(trans, root, dir,
4055 BTRFS_I(inode)->location.objectid,
4056 dentry->d_name.name,
4057 dentry->d_name.len);
4058 goto out;
4059 }
4060
7b128766
JB
4061 err = btrfs_orphan_add(trans, inode);
4062 if (err)
4df27c4d 4063 goto out;
7b128766 4064
39279cc3 4065 /* now the directory is empty */
e02119d5
CM
4066 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4067 dentry->d_name.name, dentry->d_name.len);
d397712b 4068 if (!err)
dbe674a9 4069 btrfs_i_size_write(inode, 0);
4df27c4d 4070out:
d52be818 4071 btrfs_end_transaction(trans, root);
b53d3f5d 4072 btrfs_btree_balance_dirty(root);
3954401f 4073
39279cc3
CM
4074 return err;
4075}
4076
39279cc3
CM
4077/*
4078 * this can truncate away extent items, csum items and directory items.
4079 * It starts at a high offset and removes keys until it can't find
d352ac68 4080 * any higher than new_size
39279cc3
CM
4081 *
4082 * csum items that cross the new i_size are truncated to the new size
4083 * as well.
7b128766
JB
4084 *
4085 * min_type is the minimum key type to truncate down to. If set to 0, this
4086 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4087 */
8082510e
YZ
4088int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4089 struct btrfs_root *root,
4090 struct inode *inode,
4091 u64 new_size, u32 min_type)
39279cc3 4092{
39279cc3 4093 struct btrfs_path *path;
5f39d397 4094 struct extent_buffer *leaf;
39279cc3 4095 struct btrfs_file_extent_item *fi;
8082510e
YZ
4096 struct btrfs_key key;
4097 struct btrfs_key found_key;
39279cc3 4098 u64 extent_start = 0;
db94535d 4099 u64 extent_num_bytes = 0;
5d4f98a2 4100 u64 extent_offset = 0;
39279cc3 4101 u64 item_end = 0;
7f4f6e0a 4102 u64 last_size = (u64)-1;
8082510e 4103 u32 found_type = (u8)-1;
39279cc3
CM
4104 int found_extent;
4105 int del_item;
85e21bac
CM
4106 int pending_del_nr = 0;
4107 int pending_del_slot = 0;
179e29e4 4108 int extent_type = -1;
8082510e
YZ
4109 int ret;
4110 int err = 0;
33345d01 4111 u64 ino = btrfs_ino(inode);
8082510e
YZ
4112
4113 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4114
0eb0e19c
MF
4115 path = btrfs_alloc_path();
4116 if (!path)
4117 return -ENOMEM;
4118 path->reada = -1;
4119
5dc562c5
JB
4120 /*
4121 * We want to drop from the next block forward in case this new size is
4122 * not block aligned since we will be keeping the last block of the
4123 * extent just the way it is.
4124 */
27cdeb70
MX
4125 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4126 root == root->fs_info->tree_root)
fda2832f
QW
4127 btrfs_drop_extent_cache(inode, ALIGN(new_size,
4128 root->sectorsize), (u64)-1, 0);
8082510e 4129
16cdcec7
MX
4130 /*
4131 * This function is also used to drop the items in the log tree before
4132 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4133 * it is used to drop the loged items. So we shouldn't kill the delayed
4134 * items.
4135 */
4136 if (min_type == 0 && root == BTRFS_I(inode)->root)
4137 btrfs_kill_delayed_inode_items(inode);
4138
33345d01 4139 key.objectid = ino;
39279cc3 4140 key.offset = (u64)-1;
5f39d397
CM
4141 key.type = (u8)-1;
4142
85e21bac 4143search_again:
b9473439 4144 path->leave_spinning = 1;
85e21bac 4145 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4146 if (ret < 0) {
4147 err = ret;
4148 goto out;
4149 }
d397712b 4150
85e21bac 4151 if (ret > 0) {
e02119d5
CM
4152 /* there are no items in the tree for us to truncate, we're
4153 * done
4154 */
8082510e
YZ
4155 if (path->slots[0] == 0)
4156 goto out;
85e21bac
CM
4157 path->slots[0]--;
4158 }
4159
d397712b 4160 while (1) {
39279cc3 4161 fi = NULL;
5f39d397
CM
4162 leaf = path->nodes[0];
4163 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4164 found_type = found_key.type;
39279cc3 4165
33345d01 4166 if (found_key.objectid != ino)
39279cc3 4167 break;
5f39d397 4168
85e21bac 4169 if (found_type < min_type)
39279cc3
CM
4170 break;
4171
5f39d397 4172 item_end = found_key.offset;
39279cc3 4173 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4174 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4175 struct btrfs_file_extent_item);
179e29e4
CM
4176 extent_type = btrfs_file_extent_type(leaf, fi);
4177 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4178 item_end +=
db94535d 4179 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 4180 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4181 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4182 path->slots[0], fi);
39279cc3 4183 }
008630c1 4184 item_end--;
39279cc3 4185 }
8082510e
YZ
4186 if (found_type > min_type) {
4187 del_item = 1;
4188 } else {
4189 if (item_end < new_size)
b888db2b 4190 break;
8082510e
YZ
4191 if (found_key.offset >= new_size)
4192 del_item = 1;
4193 else
4194 del_item = 0;
39279cc3 4195 }
39279cc3 4196 found_extent = 0;
39279cc3 4197 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4198 if (found_type != BTRFS_EXTENT_DATA_KEY)
4199 goto delete;
4200
7f4f6e0a
JB
4201 if (del_item)
4202 last_size = found_key.offset;
4203 else
4204 last_size = new_size;
4205
179e29e4 4206 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4207 u64 num_dec;
db94535d 4208 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4209 if (!del_item) {
db94535d
CM
4210 u64 orig_num_bytes =
4211 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4212 extent_num_bytes = ALIGN(new_size -
4213 found_key.offset,
4214 root->sectorsize);
db94535d
CM
4215 btrfs_set_file_extent_num_bytes(leaf, fi,
4216 extent_num_bytes);
4217 num_dec = (orig_num_bytes -
9069218d 4218 extent_num_bytes);
27cdeb70
MX
4219 if (test_bit(BTRFS_ROOT_REF_COWS,
4220 &root->state) &&
4221 extent_start != 0)
a76a3cd4 4222 inode_sub_bytes(inode, num_dec);
5f39d397 4223 btrfs_mark_buffer_dirty(leaf);
39279cc3 4224 } else {
db94535d
CM
4225 extent_num_bytes =
4226 btrfs_file_extent_disk_num_bytes(leaf,
4227 fi);
5d4f98a2
YZ
4228 extent_offset = found_key.offset -
4229 btrfs_file_extent_offset(leaf, fi);
4230
39279cc3 4231 /* FIXME blocksize != 4096 */
9069218d 4232 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4233 if (extent_start != 0) {
4234 found_extent = 1;
27cdeb70
MX
4235 if (test_bit(BTRFS_ROOT_REF_COWS,
4236 &root->state))
a76a3cd4 4237 inode_sub_bytes(inode, num_dec);
e02119d5 4238 }
39279cc3 4239 }
9069218d 4240 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4241 /*
4242 * we can't truncate inline items that have had
4243 * special encodings
4244 */
4245 if (!del_item &&
4246 btrfs_file_extent_compression(leaf, fi) == 0 &&
4247 btrfs_file_extent_encryption(leaf, fi) == 0 &&
4248 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
4249 u32 size = new_size - found_key.offset;
4250
27cdeb70 4251 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
a76a3cd4
YZ
4252 inode_sub_bytes(inode, item_end + 1 -
4253 new_size);
514ac8ad
CM
4254
4255 /*
4256 * update the ram bytes to properly reflect
4257 * the new size of our item
4258 */
4259 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
e02119d5
CM
4260 size =
4261 btrfs_file_extent_calc_inline_size(size);
afe5fea7 4262 btrfs_truncate_item(root, path, size, 1);
27cdeb70
MX
4263 } else if (test_bit(BTRFS_ROOT_REF_COWS,
4264 &root->state)) {
a76a3cd4
YZ
4265 inode_sub_bytes(inode, item_end + 1 -
4266 found_key.offset);
9069218d 4267 }
39279cc3 4268 }
179e29e4 4269delete:
39279cc3 4270 if (del_item) {
85e21bac
CM
4271 if (!pending_del_nr) {
4272 /* no pending yet, add ourselves */
4273 pending_del_slot = path->slots[0];
4274 pending_del_nr = 1;
4275 } else if (pending_del_nr &&
4276 path->slots[0] + 1 == pending_del_slot) {
4277 /* hop on the pending chunk */
4278 pending_del_nr++;
4279 pending_del_slot = path->slots[0];
4280 } else {
d397712b 4281 BUG();
85e21bac 4282 }
39279cc3
CM
4283 } else {
4284 break;
4285 }
27cdeb70
MX
4286 if (found_extent &&
4287 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4288 root == root->fs_info->tree_root)) {
b9473439 4289 btrfs_set_path_blocking(path);
39279cc3 4290 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4291 extent_num_bytes, 0,
4292 btrfs_header_owner(leaf),
66d7e7f0 4293 ino, extent_offset, 0);
39279cc3
CM
4294 BUG_ON(ret);
4295 }
85e21bac 4296
8082510e
YZ
4297 if (found_type == BTRFS_INODE_ITEM_KEY)
4298 break;
4299
4300 if (path->slots[0] == 0 ||
4301 path->slots[0] != pending_del_slot) {
8082510e
YZ
4302 if (pending_del_nr) {
4303 ret = btrfs_del_items(trans, root, path,
4304 pending_del_slot,
4305 pending_del_nr);
79787eaa
JM
4306 if (ret) {
4307 btrfs_abort_transaction(trans,
4308 root, ret);
4309 goto error;
4310 }
8082510e
YZ
4311 pending_del_nr = 0;
4312 }
b3b4aa74 4313 btrfs_release_path(path);
85e21bac 4314 goto search_again;
8082510e
YZ
4315 } else {
4316 path->slots[0]--;
85e21bac 4317 }
39279cc3 4318 }
8082510e 4319out:
85e21bac
CM
4320 if (pending_del_nr) {
4321 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4322 pending_del_nr);
79787eaa
JM
4323 if (ret)
4324 btrfs_abort_transaction(trans, root, ret);
85e21bac 4325 }
79787eaa 4326error:
dac5705c
FM
4327 if (last_size != (u64)-1 &&
4328 root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
7f4f6e0a 4329 btrfs_ordered_update_i_size(inode, last_size, NULL);
39279cc3 4330 btrfs_free_path(path);
8082510e 4331 return err;
39279cc3
CM
4332}
4333
4334/*
2aaa6655
JB
4335 * btrfs_truncate_page - read, zero a chunk and write a page
4336 * @inode - inode that we're zeroing
4337 * @from - the offset to start zeroing
4338 * @len - the length to zero, 0 to zero the entire range respective to the
4339 * offset
4340 * @front - zero up to the offset instead of from the offset on
4341 *
4342 * This will find the page for the "from" offset and cow the page and zero the
4343 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4344 */
2aaa6655
JB
4345int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4346 int front)
39279cc3 4347{
2aaa6655 4348 struct address_space *mapping = inode->i_mapping;
db94535d 4349 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4350 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4351 struct btrfs_ordered_extent *ordered;
2ac55d41 4352 struct extent_state *cached_state = NULL;
e6dcd2dc 4353 char *kaddr;
db94535d 4354 u32 blocksize = root->sectorsize;
39279cc3
CM
4355 pgoff_t index = from >> PAGE_CACHE_SHIFT;
4356 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4357 struct page *page;
3b16a4e3 4358 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4359 int ret = 0;
a52d9a80 4360 u64 page_start;
e6dcd2dc 4361 u64 page_end;
39279cc3 4362
2aaa6655
JB
4363 if ((offset & (blocksize - 1)) == 0 &&
4364 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4365 goto out;
0ca1f7ce 4366 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
4367 if (ret)
4368 goto out;
39279cc3 4369
211c17f5 4370again:
3b16a4e3 4371 page = find_or_create_page(mapping, index, mask);
5d5e103a 4372 if (!page) {
0ca1f7ce 4373 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
ac6a2b36 4374 ret = -ENOMEM;
39279cc3 4375 goto out;
5d5e103a 4376 }
e6dcd2dc
CM
4377
4378 page_start = page_offset(page);
4379 page_end = page_start + PAGE_CACHE_SIZE - 1;
4380
39279cc3 4381 if (!PageUptodate(page)) {
9ebefb18 4382 ret = btrfs_readpage(NULL, page);
39279cc3 4383 lock_page(page);
211c17f5
CM
4384 if (page->mapping != mapping) {
4385 unlock_page(page);
4386 page_cache_release(page);
4387 goto again;
4388 }
39279cc3
CM
4389 if (!PageUptodate(page)) {
4390 ret = -EIO;
89642229 4391 goto out_unlock;
39279cc3
CM
4392 }
4393 }
211c17f5 4394 wait_on_page_writeback(page);
e6dcd2dc 4395
d0082371 4396 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
4397 set_page_extent_mapped(page);
4398
4399 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4400 if (ordered) {
2ac55d41
JB
4401 unlock_extent_cached(io_tree, page_start, page_end,
4402 &cached_state, GFP_NOFS);
e6dcd2dc
CM
4403 unlock_page(page);
4404 page_cache_release(page);
eb84ae03 4405 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4406 btrfs_put_ordered_extent(ordered);
4407 goto again;
4408 }
4409
2ac55d41 4410 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
4411 EXTENT_DIRTY | EXTENT_DELALLOC |
4412 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4413 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4414
2ac55d41
JB
4415 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4416 &cached_state);
9ed74f2d 4417 if (ret) {
2ac55d41
JB
4418 unlock_extent_cached(io_tree, page_start, page_end,
4419 &cached_state, GFP_NOFS);
9ed74f2d
JB
4420 goto out_unlock;
4421 }
4422
e6dcd2dc 4423 if (offset != PAGE_CACHE_SIZE) {
2aaa6655
JB
4424 if (!len)
4425 len = PAGE_CACHE_SIZE - offset;
e6dcd2dc 4426 kaddr = kmap(page);
2aaa6655
JB
4427 if (front)
4428 memset(kaddr, 0, offset);
4429 else
4430 memset(kaddr + offset, 0, len);
e6dcd2dc
CM
4431 flush_dcache_page(page);
4432 kunmap(page);
4433 }
247e743c 4434 ClearPageChecked(page);
e6dcd2dc 4435 set_page_dirty(page);
2ac55d41
JB
4436 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4437 GFP_NOFS);
39279cc3 4438
89642229 4439out_unlock:
5d5e103a 4440 if (ret)
0ca1f7ce 4441 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
4442 unlock_page(page);
4443 page_cache_release(page);
4444out:
4445 return ret;
4446}
4447
16e7549f
JB
4448static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4449 u64 offset, u64 len)
4450{
4451 struct btrfs_trans_handle *trans;
4452 int ret;
4453
4454 /*
4455 * Still need to make sure the inode looks like it's been updated so
4456 * that any holes get logged if we fsync.
4457 */
4458 if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4459 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4460 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4461 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4462 return 0;
4463 }
4464
4465 /*
4466 * 1 - for the one we're dropping
4467 * 1 - for the one we're adding
4468 * 1 - for updating the inode.
4469 */
4470 trans = btrfs_start_transaction(root, 3);
4471 if (IS_ERR(trans))
4472 return PTR_ERR(trans);
4473
4474 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4475 if (ret) {
4476 btrfs_abort_transaction(trans, root, ret);
4477 btrfs_end_transaction(trans, root);
4478 return ret;
4479 }
4480
4481 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4482 0, 0, len, 0, len, 0, 0, 0);
4483 if (ret)
4484 btrfs_abort_transaction(trans, root, ret);
4485 else
4486 btrfs_update_inode(trans, root, inode);
4487 btrfs_end_transaction(trans, root);
4488 return ret;
4489}
4490
695a0d0d
JB
4491/*
4492 * This function puts in dummy file extents for the area we're creating a hole
4493 * for. So if we are truncating this file to a larger size we need to insert
4494 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4495 * the range between oldsize and size
4496 */
a41ad394 4497int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4498{
9036c102
YZ
4499 struct btrfs_root *root = BTRFS_I(inode)->root;
4500 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4501 struct extent_map *em = NULL;
2ac55d41 4502 struct extent_state *cached_state = NULL;
5dc562c5 4503 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
fda2832f
QW
4504 u64 hole_start = ALIGN(oldsize, root->sectorsize);
4505 u64 block_end = ALIGN(size, root->sectorsize);
9036c102
YZ
4506 u64 last_byte;
4507 u64 cur_offset;
4508 u64 hole_size;
9ed74f2d 4509 int err = 0;
39279cc3 4510
a71754fc
JB
4511 /*
4512 * If our size started in the middle of a page we need to zero out the
4513 * rest of the page before we expand the i_size, otherwise we could
4514 * expose stale data.
4515 */
4516 err = btrfs_truncate_page(inode, oldsize, 0, 0);
4517 if (err)
4518 return err;
4519
9036c102
YZ
4520 if (size <= hole_start)
4521 return 0;
4522
9036c102
YZ
4523 while (1) {
4524 struct btrfs_ordered_extent *ordered;
fa7c1494 4525
2ac55d41 4526 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
d0082371 4527 &cached_state);
fa7c1494
MX
4528 ordered = btrfs_lookup_ordered_range(inode, hole_start,
4529 block_end - hole_start);
9036c102
YZ
4530 if (!ordered)
4531 break;
2ac55d41
JB
4532 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4533 &cached_state, GFP_NOFS);
fa7c1494 4534 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4535 btrfs_put_ordered_extent(ordered);
4536 }
39279cc3 4537
9036c102
YZ
4538 cur_offset = hole_start;
4539 while (1) {
4540 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4541 block_end - cur_offset, 0);
79787eaa
JM
4542 if (IS_ERR(em)) {
4543 err = PTR_ERR(em);
f2767956 4544 em = NULL;
79787eaa
JM
4545 break;
4546 }
9036c102 4547 last_byte = min(extent_map_end(em), block_end);
fda2832f 4548 last_byte = ALIGN(last_byte , root->sectorsize);
8082510e 4549 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4550 struct extent_map *hole_em;
9036c102 4551 hole_size = last_byte - cur_offset;
9ed74f2d 4552
16e7549f
JB
4553 err = maybe_insert_hole(root, inode, cur_offset,
4554 hole_size);
4555 if (err)
3893e33b 4556 break;
5dc562c5
JB
4557 btrfs_drop_extent_cache(inode, cur_offset,
4558 cur_offset + hole_size - 1, 0);
4559 hole_em = alloc_extent_map();
4560 if (!hole_em) {
4561 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4562 &BTRFS_I(inode)->runtime_flags);
4563 goto next;
4564 }
4565 hole_em->start = cur_offset;
4566 hole_em->len = hole_size;
4567 hole_em->orig_start = cur_offset;
8082510e 4568
5dc562c5
JB
4569 hole_em->block_start = EXTENT_MAP_HOLE;
4570 hole_em->block_len = 0;
b4939680 4571 hole_em->orig_block_len = 0;
cc95bef6 4572 hole_em->ram_bytes = hole_size;
5dc562c5
JB
4573 hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4574 hole_em->compress_type = BTRFS_COMPRESS_NONE;
16e7549f 4575 hole_em->generation = root->fs_info->generation;
8082510e 4576
5dc562c5
JB
4577 while (1) {
4578 write_lock(&em_tree->lock);
09a2a8f9 4579 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4580 write_unlock(&em_tree->lock);
4581 if (err != -EEXIST)
4582 break;
4583 btrfs_drop_extent_cache(inode, cur_offset,
4584 cur_offset +
4585 hole_size - 1, 0);
4586 }
4587 free_extent_map(hole_em);
9036c102 4588 }
16e7549f 4589next:
9036c102 4590 free_extent_map(em);
a22285a6 4591 em = NULL;
9036c102 4592 cur_offset = last_byte;
8082510e 4593 if (cur_offset >= block_end)
9036c102
YZ
4594 break;
4595 }
a22285a6 4596 free_extent_map(em);
2ac55d41
JB
4597 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4598 GFP_NOFS);
9036c102
YZ
4599 return err;
4600}
39279cc3 4601
9ea24bbe
FM
4602static int wait_snapshoting_atomic_t(atomic_t *a)
4603{
4604 schedule();
4605 return 0;
4606}
4607
4608static void wait_for_snapshot_creation(struct btrfs_root *root)
4609{
4610 while (true) {
4611 int ret;
4612
4613 ret = btrfs_start_write_no_snapshoting(root);
4614 if (ret)
4615 break;
4616 wait_on_atomic_t(&root->will_be_snapshoted,
4617 wait_snapshoting_atomic_t,
4618 TASK_UNINTERRUPTIBLE);
4619 }
4620}
4621
3972f260 4622static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4623{
f4a2f4c5
MX
4624 struct btrfs_root *root = BTRFS_I(inode)->root;
4625 struct btrfs_trans_handle *trans;
a41ad394 4626 loff_t oldsize = i_size_read(inode);
3972f260
ES
4627 loff_t newsize = attr->ia_size;
4628 int mask = attr->ia_valid;
8082510e
YZ
4629 int ret;
4630
3972f260
ES
4631 /*
4632 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4633 * special case where we need to update the times despite not having
4634 * these flags set. For all other operations the VFS set these flags
4635 * explicitly if it wants a timestamp update.
4636 */
dff6efc3
CH
4637 if (newsize != oldsize) {
4638 inode_inc_iversion(inode);
4639 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4640 inode->i_ctime = inode->i_mtime =
4641 current_fs_time(inode->i_sb);
4642 }
3972f260 4643
a41ad394 4644 if (newsize > oldsize) {
7caef267 4645 truncate_pagecache(inode, newsize);
9ea24bbe
FM
4646 /*
4647 * Don't do an expanding truncate while snapshoting is ongoing.
4648 * This is to ensure the snapshot captures a fully consistent
4649 * state of this file - if the snapshot captures this expanding
4650 * truncation, it must capture all writes that happened before
4651 * this truncation.
4652 */
4653 wait_for_snapshot_creation(root);
a41ad394 4654 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe
FM
4655 if (ret) {
4656 btrfs_end_write_no_snapshoting(root);
8082510e 4657 return ret;
9ea24bbe 4658 }
8082510e 4659
f4a2f4c5 4660 trans = btrfs_start_transaction(root, 1);
9ea24bbe
FM
4661 if (IS_ERR(trans)) {
4662 btrfs_end_write_no_snapshoting(root);
f4a2f4c5 4663 return PTR_ERR(trans);
9ea24bbe 4664 }
f4a2f4c5
MX
4665
4666 i_size_write(inode, newsize);
4667 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4668 ret = btrfs_update_inode(trans, root, inode);
9ea24bbe 4669 btrfs_end_write_no_snapshoting(root);
7ad85bb7 4670 btrfs_end_transaction(trans, root);
a41ad394 4671 } else {
8082510e 4672
a41ad394
JB
4673 /*
4674 * We're truncating a file that used to have good data down to
4675 * zero. Make sure it gets into the ordered flush list so that
4676 * any new writes get down to disk quickly.
4677 */
4678 if (newsize == 0)
72ac3c0d
JB
4679 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4680 &BTRFS_I(inode)->runtime_flags);
8082510e 4681
f3fe820c
JB
4682 /*
4683 * 1 for the orphan item we're going to add
4684 * 1 for the orphan item deletion.
4685 */
4686 trans = btrfs_start_transaction(root, 2);
4687 if (IS_ERR(trans))
4688 return PTR_ERR(trans);
4689
4690 /*
4691 * We need to do this in case we fail at _any_ point during the
4692 * actual truncate. Once we do the truncate_setsize we could
4693 * invalidate pages which forces any outstanding ordered io to
4694 * be instantly completed which will give us extents that need
4695 * to be truncated. If we fail to get an orphan inode down we
4696 * could have left over extents that were never meant to live,
4697 * so we need to garuntee from this point on that everything
4698 * will be consistent.
4699 */
4700 ret = btrfs_orphan_add(trans, inode);
4701 btrfs_end_transaction(trans, root);
4702 if (ret)
4703 return ret;
4704
a41ad394
JB
4705 /* we don't support swapfiles, so vmtruncate shouldn't fail */
4706 truncate_setsize(inode, newsize);
2e60a51e
MX
4707
4708 /* Disable nonlocked read DIO to avoid the end less truncate */
4709 btrfs_inode_block_unlocked_dio(inode);
4710 inode_dio_wait(inode);
4711 btrfs_inode_resume_unlocked_dio(inode);
4712
a41ad394 4713 ret = btrfs_truncate(inode);
7f4f6e0a
JB
4714 if (ret && inode->i_nlink) {
4715 int err;
4716
4717 /*
4718 * failed to truncate, disk_i_size is only adjusted down
4719 * as we remove extents, so it should represent the true
4720 * size of the inode, so reset the in memory size and
4721 * delete our orphan entry.
4722 */
4723 trans = btrfs_join_transaction(root);
4724 if (IS_ERR(trans)) {
4725 btrfs_orphan_del(NULL, inode);
4726 return ret;
4727 }
4728 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4729 err = btrfs_orphan_del(trans, inode);
4730 if (err)
4731 btrfs_abort_transaction(trans, root, err);
4732 btrfs_end_transaction(trans, root);
4733 }
8082510e
YZ
4734 }
4735
a41ad394 4736 return ret;
8082510e
YZ
4737}
4738
9036c102
YZ
4739static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4740{
4741 struct inode *inode = dentry->d_inode;
b83cc969 4742 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 4743 int err;
39279cc3 4744
b83cc969
LZ
4745 if (btrfs_root_readonly(root))
4746 return -EROFS;
4747
9036c102
YZ
4748 err = inode_change_ok(inode, attr);
4749 if (err)
4750 return err;
2bf5a725 4751
5a3f23d5 4752 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 4753 err = btrfs_setsize(inode, attr);
8082510e
YZ
4754 if (err)
4755 return err;
39279cc3 4756 }
9036c102 4757
1025774c
CH
4758 if (attr->ia_valid) {
4759 setattr_copy(inode, attr);
0c4d2d95 4760 inode_inc_iversion(inode);
22c44fe6 4761 err = btrfs_dirty_inode(inode);
1025774c 4762
22c44fe6 4763 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 4764 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 4765 }
33268eaf 4766
39279cc3
CM
4767 return err;
4768}
61295eb8 4769
131e404a
FDBM
4770/*
4771 * While truncating the inode pages during eviction, we get the VFS calling
4772 * btrfs_invalidatepage() against each page of the inode. This is slow because
4773 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
4774 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
4775 * extent_state structures over and over, wasting lots of time.
4776 *
4777 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
4778 * those expensive operations on a per page basis and do only the ordered io
4779 * finishing, while we release here the extent_map and extent_state structures,
4780 * without the excessive merging and splitting.
4781 */
4782static void evict_inode_truncate_pages(struct inode *inode)
4783{
4784 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4785 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
4786 struct rb_node *node;
4787
4788 ASSERT(inode->i_state & I_FREEING);
91b0abe3 4789 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
4790
4791 write_lock(&map_tree->lock);
4792 while (!RB_EMPTY_ROOT(&map_tree->map)) {
4793 struct extent_map *em;
4794
4795 node = rb_first(&map_tree->map);
4796 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
4797 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
4798 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
4799 remove_extent_mapping(map_tree, em);
4800 free_extent_map(em);
7064dd5c
FM
4801 if (need_resched()) {
4802 write_unlock(&map_tree->lock);
4803 cond_resched();
4804 write_lock(&map_tree->lock);
4805 }
131e404a
FDBM
4806 }
4807 write_unlock(&map_tree->lock);
4808
4809 spin_lock(&io_tree->lock);
4810 while (!RB_EMPTY_ROOT(&io_tree->state)) {
4811 struct extent_state *state;
4812 struct extent_state *cached_state = NULL;
4813
4814 node = rb_first(&io_tree->state);
4815 state = rb_entry(node, struct extent_state, rb_node);
4816 atomic_inc(&state->refs);
4817 spin_unlock(&io_tree->lock);
4818
4819 lock_extent_bits(io_tree, state->start, state->end,
4820 0, &cached_state);
4821 clear_extent_bit(io_tree, state->start, state->end,
4822 EXTENT_LOCKED | EXTENT_DIRTY |
4823 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
4824 EXTENT_DEFRAG, 1, 1,
4825 &cached_state, GFP_NOFS);
4826 free_extent_state(state);
4827
7064dd5c 4828 cond_resched();
131e404a
FDBM
4829 spin_lock(&io_tree->lock);
4830 }
4831 spin_unlock(&io_tree->lock);
4832}
4833
bd555975 4834void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
4835{
4836 struct btrfs_trans_handle *trans;
4837 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 4838 struct btrfs_block_rsv *rsv, *global_rsv;
07127184 4839 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3
CM
4840 int ret;
4841
1abe9b8a 4842 trace_btrfs_inode_evict(inode);
4843
131e404a
FDBM
4844 evict_inode_truncate_pages(inode);
4845
69e9c6c6
SB
4846 if (inode->i_nlink &&
4847 ((btrfs_root_refs(&root->root_item) != 0 &&
4848 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
4849 btrfs_is_free_space_inode(inode)))
bd555975
AV
4850 goto no_delete;
4851
39279cc3 4852 if (is_bad_inode(inode)) {
7b128766 4853 btrfs_orphan_del(NULL, inode);
39279cc3
CM
4854 goto no_delete;
4855 }
bd555975 4856 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 4857 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 4858
f612496b
MX
4859 btrfs_free_io_failure_record(inode, 0, (u64)-1);
4860
c71bf099 4861 if (root->fs_info->log_root_recovering) {
6bf02314 4862 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 4863 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
4864 goto no_delete;
4865 }
4866
76dda93c 4867 if (inode->i_nlink > 0) {
69e9c6c6
SB
4868 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
4869 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
4870 goto no_delete;
4871 }
4872
0e8c36a9
MX
4873 ret = btrfs_commit_inode_delayed_inode(inode);
4874 if (ret) {
4875 btrfs_orphan_del(NULL, inode);
4876 goto no_delete;
4877 }
4878
66d8f3dd 4879 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4289a667
JB
4880 if (!rsv) {
4881 btrfs_orphan_del(NULL, inode);
4882 goto no_delete;
4883 }
4a338542 4884 rsv->size = min_size;
ca7e70f5 4885 rsv->failfast = 1;
726c35fa 4886 global_rsv = &root->fs_info->global_block_rsv;
4289a667 4887
dbe674a9 4888 btrfs_i_size_write(inode, 0);
5f39d397 4889
4289a667 4890 /*
8407aa46
MX
4891 * This is a bit simpler than btrfs_truncate since we've already
4892 * reserved our space for our orphan item in the unlink, so we just
4893 * need to reserve some slack space in case we add bytes and update
4894 * inode item when doing the truncate.
4289a667 4895 */
8082510e 4896 while (1) {
08e007d2
MX
4897 ret = btrfs_block_rsv_refill(root, rsv, min_size,
4898 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
4899
4900 /*
4901 * Try and steal from the global reserve since we will
4902 * likely not use this space anyway, we want to try as
4903 * hard as possible to get this to work.
4904 */
4905 if (ret)
4906 ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
d68fc57b 4907
d68fc57b 4908 if (ret) {
c2cf52eb
SK
4909 btrfs_warn(root->fs_info,
4910 "Could not get space for a delete, will truncate on mount %d",
4911 ret);
4289a667
JB
4912 btrfs_orphan_del(NULL, inode);
4913 btrfs_free_block_rsv(root, rsv);
4914 goto no_delete;
d68fc57b 4915 }
7b128766 4916
0e8c36a9 4917 trans = btrfs_join_transaction(root);
4289a667
JB
4918 if (IS_ERR(trans)) {
4919 btrfs_orphan_del(NULL, inode);
4920 btrfs_free_block_rsv(root, rsv);
4921 goto no_delete;
d68fc57b 4922 }
7b128766 4923
4289a667
JB
4924 trans->block_rsv = rsv;
4925
d68fc57b 4926 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
ca7e70f5 4927 if (ret != -ENOSPC)
8082510e 4928 break;
85e21bac 4929
8407aa46 4930 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e
YZ
4931 btrfs_end_transaction(trans, root);
4932 trans = NULL;
b53d3f5d 4933 btrfs_btree_balance_dirty(root);
8082510e 4934 }
5f39d397 4935
4289a667
JB
4936 btrfs_free_block_rsv(root, rsv);
4937
4ef31a45
JB
4938 /*
4939 * Errors here aren't a big deal, it just means we leave orphan items
4940 * in the tree. They will be cleaned up on the next mount.
4941 */
8082510e 4942 if (ret == 0) {
4289a667 4943 trans->block_rsv = root->orphan_block_rsv;
4ef31a45
JB
4944 btrfs_orphan_del(trans, inode);
4945 } else {
4946 btrfs_orphan_del(NULL, inode);
8082510e 4947 }
54aa1f4d 4948
4289a667 4949 trans->block_rsv = &root->fs_info->trans_block_rsv;
581bb050
LZ
4950 if (!(root == root->fs_info->tree_root ||
4951 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 4952 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 4953
54aa1f4d 4954 btrfs_end_transaction(trans, root);
b53d3f5d 4955 btrfs_btree_balance_dirty(root);
39279cc3 4956no_delete:
89042e5a 4957 btrfs_remove_delayed_node(inode);
dbd5768f 4958 clear_inode(inode);
8082510e 4959 return;
39279cc3
CM
4960}
4961
4962/*
4963 * this returns the key found in the dir entry in the location pointer.
4964 * If no dir entries were found, location->objectid is 0.
4965 */
4966static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4967 struct btrfs_key *location)
4968{
4969 const char *name = dentry->d_name.name;
4970 int namelen = dentry->d_name.len;
4971 struct btrfs_dir_item *di;
4972 struct btrfs_path *path;
4973 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 4974 int ret = 0;
39279cc3
CM
4975
4976 path = btrfs_alloc_path();
d8926bb3
MF
4977 if (!path)
4978 return -ENOMEM;
3954401f 4979
33345d01 4980 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 4981 namelen, 0);
0d9f7f3e
Y
4982 if (IS_ERR(di))
4983 ret = PTR_ERR(di);
d397712b 4984
c704005d 4985 if (IS_ERR_OR_NULL(di))
3954401f 4986 goto out_err;
d397712b 4987
5f39d397 4988 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 4989out:
39279cc3
CM
4990 btrfs_free_path(path);
4991 return ret;
3954401f
CM
4992out_err:
4993 location->objectid = 0;
4994 goto out;
39279cc3
CM
4995}
4996
4997/*
4998 * when we hit a tree root in a directory, the btrfs part of the inode
4999 * needs to be changed to reflect the root directory of the tree root. This
5000 * is kind of like crossing a mount point.
5001 */
5002static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
5003 struct inode *dir,
5004 struct dentry *dentry,
5005 struct btrfs_key *location,
5006 struct btrfs_root **sub_root)
39279cc3 5007{
4df27c4d
YZ
5008 struct btrfs_path *path;
5009 struct btrfs_root *new_root;
5010 struct btrfs_root_ref *ref;
5011 struct extent_buffer *leaf;
1d4c08e0 5012 struct btrfs_key key;
4df27c4d
YZ
5013 int ret;
5014 int err = 0;
39279cc3 5015
4df27c4d
YZ
5016 path = btrfs_alloc_path();
5017 if (!path) {
5018 err = -ENOMEM;
5019 goto out;
5020 }
39279cc3 5021
4df27c4d 5022 err = -ENOENT;
1d4c08e0
DS
5023 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5024 key.type = BTRFS_ROOT_REF_KEY;
5025 key.offset = location->objectid;
5026
5027 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5028 0, 0);
4df27c4d
YZ
5029 if (ret) {
5030 if (ret < 0)
5031 err = ret;
5032 goto out;
5033 }
39279cc3 5034
4df27c4d
YZ
5035 leaf = path->nodes[0];
5036 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 5037 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
5038 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5039 goto out;
39279cc3 5040
4df27c4d
YZ
5041 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5042 (unsigned long)(ref + 1),
5043 dentry->d_name.len);
5044 if (ret)
5045 goto out;
5046
b3b4aa74 5047 btrfs_release_path(path);
4df27c4d
YZ
5048
5049 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5050 if (IS_ERR(new_root)) {
5051 err = PTR_ERR(new_root);
5052 goto out;
5053 }
5054
4df27c4d
YZ
5055 *sub_root = new_root;
5056 location->objectid = btrfs_root_dirid(&new_root->root_item);
5057 location->type = BTRFS_INODE_ITEM_KEY;
5058 location->offset = 0;
5059 err = 0;
5060out:
5061 btrfs_free_path(path);
5062 return err;
39279cc3
CM
5063}
5064
5d4f98a2
YZ
5065static void inode_tree_add(struct inode *inode)
5066{
5067 struct btrfs_root *root = BTRFS_I(inode)->root;
5068 struct btrfs_inode *entry;
03e860bd
FNP
5069 struct rb_node **p;
5070 struct rb_node *parent;
cef21937 5071 struct rb_node *new = &BTRFS_I(inode)->rb_node;
33345d01 5072 u64 ino = btrfs_ino(inode);
5d4f98a2 5073
1d3382cb 5074 if (inode_unhashed(inode))
76dda93c 5075 return;
e1409cef 5076 parent = NULL;
5d4f98a2 5077 spin_lock(&root->inode_lock);
e1409cef 5078 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5079 while (*p) {
5080 parent = *p;
5081 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5082
33345d01 5083 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 5084 p = &parent->rb_left;
33345d01 5085 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 5086 p = &parent->rb_right;
5d4f98a2
YZ
5087 else {
5088 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5089 (I_WILL_FREE | I_FREEING)));
cef21937 5090 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5091 RB_CLEAR_NODE(parent);
5092 spin_unlock(&root->inode_lock);
cef21937 5093 return;
5d4f98a2
YZ
5094 }
5095 }
cef21937
FDBM
5096 rb_link_node(new, parent, p);
5097 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5098 spin_unlock(&root->inode_lock);
5099}
5100
5101static void inode_tree_del(struct inode *inode)
5102{
5103 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5104 int empty = 0;
5d4f98a2 5105
03e860bd 5106 spin_lock(&root->inode_lock);
5d4f98a2 5107 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5108 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5109 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5110 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5111 }
03e860bd 5112 spin_unlock(&root->inode_lock);
76dda93c 5113
69e9c6c6 5114 if (empty && btrfs_root_refs(&root->root_item) == 0) {
76dda93c
YZ
5115 synchronize_srcu(&root->fs_info->subvol_srcu);
5116 spin_lock(&root->inode_lock);
5117 empty = RB_EMPTY_ROOT(&root->inode_tree);
5118 spin_unlock(&root->inode_lock);
5119 if (empty)
5120 btrfs_add_dead_root(root);
5121 }
5122}
5123
143bede5 5124void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c
YZ
5125{
5126 struct rb_node *node;
5127 struct rb_node *prev;
5128 struct btrfs_inode *entry;
5129 struct inode *inode;
5130 u64 objectid = 0;
5131
7813b3db
LB
5132 if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5133 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5134
5135 spin_lock(&root->inode_lock);
5136again:
5137 node = root->inode_tree.rb_node;
5138 prev = NULL;
5139 while (node) {
5140 prev = node;
5141 entry = rb_entry(node, struct btrfs_inode, rb_node);
5142
33345d01 5143 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 5144 node = node->rb_left;
33345d01 5145 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
5146 node = node->rb_right;
5147 else
5148 break;
5149 }
5150 if (!node) {
5151 while (prev) {
5152 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 5153 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
5154 node = prev;
5155 break;
5156 }
5157 prev = rb_next(prev);
5158 }
5159 }
5160 while (node) {
5161 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 5162 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
5163 inode = igrab(&entry->vfs_inode);
5164 if (inode) {
5165 spin_unlock(&root->inode_lock);
5166 if (atomic_read(&inode->i_count) > 1)
5167 d_prune_aliases(inode);
5168 /*
45321ac5 5169 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5170 * the inode cache when its usage count
5171 * hits zero.
5172 */
5173 iput(inode);
5174 cond_resched();
5175 spin_lock(&root->inode_lock);
5176 goto again;
5177 }
5178
5179 if (cond_resched_lock(&root->inode_lock))
5180 goto again;
5181
5182 node = rb_next(node);
5183 }
5184 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5185}
5186
e02119d5
CM
5187static int btrfs_init_locked_inode(struct inode *inode, void *p)
5188{
5189 struct btrfs_iget_args *args = p;
90d3e592
CM
5190 inode->i_ino = args->location->objectid;
5191 memcpy(&BTRFS_I(inode)->location, args->location,
5192 sizeof(*args->location));
e02119d5 5193 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5194 return 0;
5195}
5196
5197static int btrfs_find_actor(struct inode *inode, void *opaque)
5198{
5199 struct btrfs_iget_args *args = opaque;
90d3e592 5200 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5201 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5202}
5203
5d4f98a2 5204static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5205 struct btrfs_key *location,
5d4f98a2 5206 struct btrfs_root *root)
39279cc3
CM
5207{
5208 struct inode *inode;
5209 struct btrfs_iget_args args;
90d3e592 5210 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5211
90d3e592 5212 args.location = location;
39279cc3
CM
5213 args.root = root;
5214
778ba82b 5215 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5216 btrfs_init_locked_inode,
5217 (void *)&args);
5218 return inode;
5219}
5220
1a54ef8c
BR
5221/* Get an inode object given its location and corresponding root.
5222 * Returns in *is_new if the inode was read from disk
5223 */
5224struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5225 struct btrfs_root *root, int *new)
1a54ef8c
BR
5226{
5227 struct inode *inode;
5228
90d3e592 5229 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5230 if (!inode)
5d4f98a2 5231 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5232
5233 if (inode->i_state & I_NEW) {
1a54ef8c 5234 btrfs_read_locked_inode(inode);
1748f843
MF
5235 if (!is_bad_inode(inode)) {
5236 inode_tree_add(inode);
5237 unlock_new_inode(inode);
5238 if (new)
5239 *new = 1;
5240 } else {
e0b6d65b
ST
5241 unlock_new_inode(inode);
5242 iput(inode);
5243 inode = ERR_PTR(-ESTALE);
1748f843
MF
5244 }
5245 }
5246
1a54ef8c
BR
5247 return inode;
5248}
5249
4df27c4d
YZ
5250static struct inode *new_simple_dir(struct super_block *s,
5251 struct btrfs_key *key,
5252 struct btrfs_root *root)
5253{
5254 struct inode *inode = new_inode(s);
5255
5256 if (!inode)
5257 return ERR_PTR(-ENOMEM);
5258
4df27c4d
YZ
5259 BTRFS_I(inode)->root = root;
5260 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5261 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5262
5263 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5264 inode->i_op = &btrfs_dir_ro_inode_operations;
4df27c4d
YZ
5265 inode->i_fop = &simple_dir_operations;
5266 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5267 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5268
5269 return inode;
5270}
5271
3de4586c 5272struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5273{
d397712b 5274 struct inode *inode;
4df27c4d 5275 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5276 struct btrfs_root *sub_root = root;
5277 struct btrfs_key location;
76dda93c 5278 int index;
b4aff1f8 5279 int ret = 0;
39279cc3
CM
5280
5281 if (dentry->d_name.len > BTRFS_NAME_LEN)
5282 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5283
39e3c955 5284 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5285 if (ret < 0)
5286 return ERR_PTR(ret);
5f39d397 5287
4df27c4d 5288 if (location.objectid == 0)
5662344b 5289 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5290
5291 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5292 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5293 return inode;
5294 }
5295
5296 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5297
76dda93c 5298 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
5299 ret = fixup_tree_root_location(root, dir, dentry,
5300 &location, &sub_root);
5301 if (ret < 0) {
5302 if (ret != -ENOENT)
5303 inode = ERR_PTR(ret);
5304 else
5305 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5306 } else {
73f73415 5307 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5308 }
76dda93c
YZ
5309 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5310
34d19bad 5311 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
5312 down_read(&root->fs_info->cleanup_work_sem);
5313 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 5314 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 5315 up_read(&root->fs_info->cleanup_work_sem);
01cd3367
JB
5316 if (ret) {
5317 iput(inode);
66b4ffd1 5318 inode = ERR_PTR(ret);
01cd3367 5319 }
c71bf099
YZ
5320 }
5321
3de4586c
CM
5322 return inode;
5323}
5324
fe15ce44 5325static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5326{
5327 struct btrfs_root *root;
848cce0d 5328 struct inode *inode = dentry->d_inode;
76dda93c 5329
848cce0d
LZ
5330 if (!inode && !IS_ROOT(dentry))
5331 inode = dentry->d_parent->d_inode;
76dda93c 5332
848cce0d
LZ
5333 if (inode) {
5334 root = BTRFS_I(inode)->root;
efefb143
YZ
5335 if (btrfs_root_refs(&root->root_item) == 0)
5336 return 1;
848cce0d
LZ
5337
5338 if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5339 return 1;
efefb143 5340 }
76dda93c
YZ
5341 return 0;
5342}
5343
b4aff1f8
JB
5344static void btrfs_dentry_release(struct dentry *dentry)
5345{
944a4515 5346 kfree(dentry->d_fsdata);
b4aff1f8
JB
5347}
5348
3de4586c 5349static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5350 unsigned int flags)
3de4586c 5351{
5662344b 5352 struct inode *inode;
a66e7cc6 5353
5662344b
TI
5354 inode = btrfs_lookup_dentry(dir, dentry);
5355 if (IS_ERR(inode)) {
5356 if (PTR_ERR(inode) == -ENOENT)
5357 inode = NULL;
5358 else
5359 return ERR_CAST(inode);
5360 }
5361
41d28bca 5362 return d_splice_alias(inode, dentry);
39279cc3
CM
5363}
5364
16cdcec7 5365unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5366 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5367};
5368
9cdda8d3 5369static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5370{
9cdda8d3 5371 struct inode *inode = file_inode(file);
39279cc3
CM
5372 struct btrfs_root *root = BTRFS_I(inode)->root;
5373 struct btrfs_item *item;
5374 struct btrfs_dir_item *di;
5375 struct btrfs_key key;
5f39d397 5376 struct btrfs_key found_key;
39279cc3 5377 struct btrfs_path *path;
16cdcec7
MX
5378 struct list_head ins_list;
5379 struct list_head del_list;
39279cc3 5380 int ret;
5f39d397 5381 struct extent_buffer *leaf;
39279cc3 5382 int slot;
39279cc3
CM
5383 unsigned char d_type;
5384 int over = 0;
5385 u32 di_cur;
5386 u32 di_total;
5387 u32 di_len;
5388 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
5389 char tmp_name[32];
5390 char *name_ptr;
5391 int name_len;
9cdda8d3 5392 int is_curr = 0; /* ctx->pos points to the current index? */
39279cc3
CM
5393
5394 /* FIXME, use a real flag for deciding about the key type */
5395 if (root->fs_info->tree_root == root)
5396 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 5397
9cdda8d3
AV
5398 if (!dir_emit_dots(file, ctx))
5399 return 0;
5400
49593bfa 5401 path = btrfs_alloc_path();
16cdcec7
MX
5402 if (!path)
5403 return -ENOMEM;
ff5714cc 5404
026fd317 5405 path->reada = 1;
49593bfa 5406
16cdcec7
MX
5407 if (key_type == BTRFS_DIR_INDEX_KEY) {
5408 INIT_LIST_HEAD(&ins_list);
5409 INIT_LIST_HEAD(&del_list);
5410 btrfs_get_delayed_items(inode, &ins_list, &del_list);
5411 }
5412
962a298f 5413 key.type = key_type;
9cdda8d3 5414 key.offset = ctx->pos;
33345d01 5415 key.objectid = btrfs_ino(inode);
5f39d397 5416
39279cc3
CM
5417 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5418 if (ret < 0)
5419 goto err;
49593bfa
DW
5420
5421 while (1) {
5f39d397 5422 leaf = path->nodes[0];
39279cc3 5423 slot = path->slots[0];
b9e03af0
LZ
5424 if (slot >= btrfs_header_nritems(leaf)) {
5425 ret = btrfs_next_leaf(root, path);
5426 if (ret < 0)
5427 goto err;
5428 else if (ret > 0)
5429 break;
5430 continue;
39279cc3 5431 }
3de4586c 5432
dd3cc16b 5433 item = btrfs_item_nr(slot);
5f39d397
CM
5434 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5435
5436 if (found_key.objectid != key.objectid)
39279cc3 5437 break;
962a298f 5438 if (found_key.type != key_type)
39279cc3 5439 break;
9cdda8d3 5440 if (found_key.offset < ctx->pos)
b9e03af0 5441 goto next;
16cdcec7
MX
5442 if (key_type == BTRFS_DIR_INDEX_KEY &&
5443 btrfs_should_delete_dir_index(&del_list,
5444 found_key.offset))
5445 goto next;
5f39d397 5446
9cdda8d3 5447 ctx->pos = found_key.offset;
16cdcec7 5448 is_curr = 1;
49593bfa 5449
39279cc3
CM
5450 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5451 di_cur = 0;
5f39d397 5452 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
5453
5454 while (di_cur < di_total) {
5f39d397
CM
5455 struct btrfs_key location;
5456
22a94d44
JB
5457 if (verify_dir_item(root, leaf, di))
5458 break;
5459
5f39d397 5460 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 5461 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
5462 name_ptr = tmp_name;
5463 } else {
5464 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
5465 if (!name_ptr) {
5466 ret = -ENOMEM;
5467 goto err;
5468 }
5f39d397
CM
5469 }
5470 read_extent_buffer(leaf, name_ptr,
5471 (unsigned long)(di + 1), name_len);
5472
5473 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5474 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c 5475
fede766f 5476
3de4586c 5477 /* is this a reference to our own snapshot? If so
8c9c2bf7
AJ
5478 * skip it.
5479 *
5480 * In contrast to old kernels, we insert the snapshot's
5481 * dir item and dir index after it has been created, so
5482 * we won't find a reference to our own snapshot. We
5483 * still keep the following code for backward
5484 * compatibility.
3de4586c
CM
5485 */
5486 if (location.type == BTRFS_ROOT_ITEM_KEY &&
5487 location.objectid == root->root_key.objectid) {
5488 over = 0;
5489 goto skip;
5490 }
9cdda8d3
AV
5491 over = !dir_emit(ctx, name_ptr, name_len,
5492 location.objectid, d_type);
5f39d397 5493
3de4586c 5494skip:
5f39d397
CM
5495 if (name_ptr != tmp_name)
5496 kfree(name_ptr);
5497
39279cc3
CM
5498 if (over)
5499 goto nopos;
5103e947 5500 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 5501 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
5502 di_cur += di_len;
5503 di = (struct btrfs_dir_item *)((char *)di + di_len);
5504 }
b9e03af0
LZ
5505next:
5506 path->slots[0]++;
39279cc3 5507 }
49593bfa 5508
16cdcec7
MX
5509 if (key_type == BTRFS_DIR_INDEX_KEY) {
5510 if (is_curr)
9cdda8d3
AV
5511 ctx->pos++;
5512 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
16cdcec7
MX
5513 if (ret)
5514 goto nopos;
5515 }
5516
49593bfa 5517 /* Reached end of directory/root. Bump pos past the last item. */
db62efbb
ZB
5518 ctx->pos++;
5519
5520 /*
5521 * Stop new entries from being returned after we return the last
5522 * entry.
5523 *
5524 * New directory entries are assigned a strictly increasing
5525 * offset. This means that new entries created during readdir
5526 * are *guaranteed* to be seen in the future by that readdir.
5527 * This has broken buggy programs which operate on names as
5528 * they're returned by readdir. Until we re-use freed offsets
5529 * we have this hack to stop new entries from being returned
5530 * under the assumption that they'll never reach this huge
5531 * offset.
5532 *
5533 * This is being careful not to overflow 32bit loff_t unless the
5534 * last entry requires it because doing so has broken 32bit apps
5535 * in the past.
5536 */
5537 if (key_type == BTRFS_DIR_INDEX_KEY) {
5538 if (ctx->pos >= INT_MAX)
5539 ctx->pos = LLONG_MAX;
5540 else
5541 ctx->pos = INT_MAX;
5542 }
39279cc3
CM
5543nopos:
5544 ret = 0;
5545err:
16cdcec7
MX
5546 if (key_type == BTRFS_DIR_INDEX_KEY)
5547 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 5548 btrfs_free_path(path);
39279cc3
CM
5549 return ret;
5550}
5551
a9185b41 5552int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
5553{
5554 struct btrfs_root *root = BTRFS_I(inode)->root;
5555 struct btrfs_trans_handle *trans;
5556 int ret = 0;
0af3d00b 5557 bool nolock = false;
39279cc3 5558
72ac3c0d 5559 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
5560 return 0;
5561
83eea1f1 5562 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
82d5902d 5563 nolock = true;
0af3d00b 5564
a9185b41 5565 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 5566 if (nolock)
7a7eaa40 5567 trans = btrfs_join_transaction_nolock(root);
0af3d00b 5568 else
7a7eaa40 5569 trans = btrfs_join_transaction(root);
3612b495
TI
5570 if (IS_ERR(trans))
5571 return PTR_ERR(trans);
a698d075 5572 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
5573 }
5574 return ret;
5575}
5576
5577/*
54aa1f4d 5578 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
5579 * inode changes. But, it is most likely to find the inode in cache.
5580 * FIXME, needs more benchmarking...there are no reasons other than performance
5581 * to keep or drop this code.
5582 */
48a3b636 5583static int btrfs_dirty_inode(struct inode *inode)
39279cc3
CM
5584{
5585 struct btrfs_root *root = BTRFS_I(inode)->root;
5586 struct btrfs_trans_handle *trans;
8929ecfa
YZ
5587 int ret;
5588
72ac3c0d 5589 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 5590 return 0;
39279cc3 5591
7a7eaa40 5592 trans = btrfs_join_transaction(root);
22c44fe6
JB
5593 if (IS_ERR(trans))
5594 return PTR_ERR(trans);
8929ecfa
YZ
5595
5596 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
5597 if (ret && ret == -ENOSPC) {
5598 /* whoops, lets try again with the full transaction */
5599 btrfs_end_transaction(trans, root);
5600 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
5601 if (IS_ERR(trans))
5602 return PTR_ERR(trans);
8929ecfa 5603
94b60442 5604 ret = btrfs_update_inode(trans, root, inode);
94b60442 5605 }
39279cc3 5606 btrfs_end_transaction(trans, root);
16cdcec7
MX
5607 if (BTRFS_I(inode)->delayed_node)
5608 btrfs_balance_delayed_items(root);
22c44fe6
JB
5609
5610 return ret;
5611}
5612
5613/*
5614 * This is a copy of file_update_time. We need this so we can return error on
5615 * ENOSPC for updating the inode in the case of file write and mmap writes.
5616 */
e41f941a
JB
5617static int btrfs_update_time(struct inode *inode, struct timespec *now,
5618 int flags)
22c44fe6 5619{
2bc55652
AB
5620 struct btrfs_root *root = BTRFS_I(inode)->root;
5621
5622 if (btrfs_root_readonly(root))
5623 return -EROFS;
5624
e41f941a 5625 if (flags & S_VERSION)
22c44fe6 5626 inode_inc_iversion(inode);
e41f941a
JB
5627 if (flags & S_CTIME)
5628 inode->i_ctime = *now;
5629 if (flags & S_MTIME)
5630 inode->i_mtime = *now;
5631 if (flags & S_ATIME)
5632 inode->i_atime = *now;
5633 return btrfs_dirty_inode(inode);
39279cc3
CM
5634}
5635
d352ac68
CM
5636/*
5637 * find the highest existing sequence number in a directory
5638 * and then set the in-memory index_cnt variable to reflect
5639 * free sequence numbers
5640 */
aec7477b
JB
5641static int btrfs_set_inode_index_count(struct inode *inode)
5642{
5643 struct btrfs_root *root = BTRFS_I(inode)->root;
5644 struct btrfs_key key, found_key;
5645 struct btrfs_path *path;
5646 struct extent_buffer *leaf;
5647 int ret;
5648
33345d01 5649 key.objectid = btrfs_ino(inode);
962a298f 5650 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
5651 key.offset = (u64)-1;
5652
5653 path = btrfs_alloc_path();
5654 if (!path)
5655 return -ENOMEM;
5656
5657 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5658 if (ret < 0)
5659 goto out;
5660 /* FIXME: we should be able to handle this */
5661 if (ret == 0)
5662 goto out;
5663 ret = 0;
5664
5665 /*
5666 * MAGIC NUMBER EXPLANATION:
5667 * since we search a directory based on f_pos we have to start at 2
5668 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5669 * else has to start at 2
5670 */
5671 if (path->slots[0] == 0) {
5672 BTRFS_I(inode)->index_cnt = 2;
5673 goto out;
5674 }
5675
5676 path->slots[0]--;
5677
5678 leaf = path->nodes[0];
5679 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5680
33345d01 5681 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 5682 found_key.type != BTRFS_DIR_INDEX_KEY) {
aec7477b
JB
5683 BTRFS_I(inode)->index_cnt = 2;
5684 goto out;
5685 }
5686
5687 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5688out:
5689 btrfs_free_path(path);
5690 return ret;
5691}
5692
d352ac68
CM
5693/*
5694 * helper to find a free sequence number in a given directory. This current
5695 * code is very simple, later versions will do smarter things in the btree
5696 */
3de4586c 5697int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
5698{
5699 int ret = 0;
5700
5701 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
5702 ret = btrfs_inode_delayed_dir_index_count(dir);
5703 if (ret) {
5704 ret = btrfs_set_inode_index_count(dir);
5705 if (ret)
5706 return ret;
5707 }
aec7477b
JB
5708 }
5709
00e4e6b3 5710 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
5711 BTRFS_I(dir)->index_cnt++;
5712
5713 return ret;
5714}
5715
b0d5d10f
CM
5716static int btrfs_insert_inode_locked(struct inode *inode)
5717{
5718 struct btrfs_iget_args args;
5719 args.location = &BTRFS_I(inode)->location;
5720 args.root = BTRFS_I(inode)->root;
5721
5722 return insert_inode_locked4(inode,
5723 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
5724 btrfs_find_actor, &args);
5725}
5726
39279cc3
CM
5727static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5728 struct btrfs_root *root,
aec7477b 5729 struct inode *dir,
9c58309d 5730 const char *name, int name_len,
175a4eb7
AV
5731 u64 ref_objectid, u64 objectid,
5732 umode_t mode, u64 *index)
39279cc3
CM
5733{
5734 struct inode *inode;
5f39d397 5735 struct btrfs_inode_item *inode_item;
39279cc3 5736 struct btrfs_key *location;
5f39d397 5737 struct btrfs_path *path;
9c58309d
CM
5738 struct btrfs_inode_ref *ref;
5739 struct btrfs_key key[2];
5740 u32 sizes[2];
ef3b9af5 5741 int nitems = name ? 2 : 1;
9c58309d 5742 unsigned long ptr;
39279cc3 5743 int ret;
39279cc3 5744
5f39d397 5745 path = btrfs_alloc_path();
d8926bb3
MF
5746 if (!path)
5747 return ERR_PTR(-ENOMEM);
5f39d397 5748
39279cc3 5749 inode = new_inode(root->fs_info->sb);
8fb27640
YS
5750 if (!inode) {
5751 btrfs_free_path(path);
39279cc3 5752 return ERR_PTR(-ENOMEM);
8fb27640 5753 }
39279cc3 5754
5762b5c9
FM
5755 /*
5756 * O_TMPFILE, set link count to 0, so that after this point,
5757 * we fill in an inode item with the correct link count.
5758 */
5759 if (!name)
5760 set_nlink(inode, 0);
5761
581bb050
LZ
5762 /*
5763 * we have to initialize this early, so we can reclaim the inode
5764 * number if we fail afterwards in this function.
5765 */
5766 inode->i_ino = objectid;
5767
ef3b9af5 5768 if (dir && name) {
1abe9b8a 5769 trace_btrfs_inode_request(dir);
5770
3de4586c 5771 ret = btrfs_set_inode_index(dir, index);
09771430 5772 if (ret) {
8fb27640 5773 btrfs_free_path(path);
09771430 5774 iput(inode);
aec7477b 5775 return ERR_PTR(ret);
09771430 5776 }
ef3b9af5
FM
5777 } else if (dir) {
5778 *index = 0;
aec7477b
JB
5779 }
5780 /*
5781 * index_cnt is ignored for everything but a dir,
5782 * btrfs_get_inode_index_count has an explanation for the magic
5783 * number
5784 */
5785 BTRFS_I(inode)->index_cnt = 2;
67de1176 5786 BTRFS_I(inode)->dir_index = *index;
39279cc3 5787 BTRFS_I(inode)->root = root;
e02119d5 5788 BTRFS_I(inode)->generation = trans->transid;
76195853 5789 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 5790
5dc562c5
JB
5791 /*
5792 * We could have gotten an inode number from somebody who was fsynced
5793 * and then removed in this same transaction, so let's just set full
5794 * sync since it will be a full sync anyway and this will blow away the
5795 * old info in the log.
5796 */
5797 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5798
9c58309d 5799 key[0].objectid = objectid;
962a298f 5800 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
5801 key[0].offset = 0;
5802
9c58309d 5803 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
5804
5805 if (name) {
5806 /*
5807 * Start new inodes with an inode_ref. This is slightly more
5808 * efficient for small numbers of hard links since they will
5809 * be packed into one item. Extended refs will kick in if we
5810 * add more hard links than can fit in the ref item.
5811 */
5812 key[1].objectid = objectid;
962a298f 5813 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
5814 key[1].offset = ref_objectid;
5815
5816 sizes[1] = name_len + sizeof(*ref);
5817 }
9c58309d 5818
b0d5d10f
CM
5819 location = &BTRFS_I(inode)->location;
5820 location->objectid = objectid;
5821 location->offset = 0;
962a298f 5822 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
5823
5824 ret = btrfs_insert_inode_locked(inode);
5825 if (ret < 0)
5826 goto fail;
5827
b9473439 5828 path->leave_spinning = 1;
ef3b9af5 5829 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 5830 if (ret != 0)
b0d5d10f 5831 goto fail_unlock;
5f39d397 5832
ecc11fab 5833 inode_init_owner(inode, dir, mode);
a76a3cd4 5834 inode_set_bytes(inode, 0);
39279cc3 5835 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
5836 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5837 struct btrfs_inode_item);
293f7e07
LZ
5838 memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5839 sizeof(*inode_item));
e02119d5 5840 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 5841
ef3b9af5
FM
5842 if (name) {
5843 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5844 struct btrfs_inode_ref);
5845 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5846 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5847 ptr = (unsigned long)(ref + 1);
5848 write_extent_buffer(path->nodes[0], name, ptr, name_len);
5849 }
9c58309d 5850
5f39d397
CM
5851 btrfs_mark_buffer_dirty(path->nodes[0]);
5852 btrfs_free_path(path);
5853
6cbff00f
CH
5854 btrfs_inherit_iflags(inode, dir);
5855
569254b0 5856 if (S_ISREG(mode)) {
94272164
CM
5857 if (btrfs_test_opt(root, NODATASUM))
5858 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
213490b3 5859 if (btrfs_test_opt(root, NODATACOW))
f2bdf9a8
JB
5860 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5861 BTRFS_INODE_NODATASUM;
94272164
CM
5862 }
5863
5d4f98a2 5864 inode_tree_add(inode);
1abe9b8a 5865
5866 trace_btrfs_inode_new(inode);
1973f0fa 5867 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 5868
8ea05e3a
AB
5869 btrfs_update_root_times(trans, root);
5870
63541927
FDBM
5871 ret = btrfs_inode_inherit_props(trans, inode, dir);
5872 if (ret)
5873 btrfs_err(root->fs_info,
5874 "error inheriting props for ino %llu (root %llu): %d",
5875 btrfs_ino(inode), root->root_key.objectid, ret);
5876
39279cc3 5877 return inode;
b0d5d10f
CM
5878
5879fail_unlock:
5880 unlock_new_inode(inode);
5f39d397 5881fail:
ef3b9af5 5882 if (dir && name)
aec7477b 5883 BTRFS_I(dir)->index_cnt--;
5f39d397 5884 btrfs_free_path(path);
09771430 5885 iput(inode);
5f39d397 5886 return ERR_PTR(ret);
39279cc3
CM
5887}
5888
5889static inline u8 btrfs_inode_type(struct inode *inode)
5890{
5891 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5892}
5893
d352ac68
CM
5894/*
5895 * utility function to add 'inode' into 'parent_inode' with
5896 * a give name and a given sequence number.
5897 * if 'add_backref' is true, also insert a backref from the
5898 * inode to the parent directory.
5899 */
e02119d5
CM
5900int btrfs_add_link(struct btrfs_trans_handle *trans,
5901 struct inode *parent_inode, struct inode *inode,
5902 const char *name, int name_len, int add_backref, u64 index)
39279cc3 5903{
4df27c4d 5904 int ret = 0;
39279cc3 5905 struct btrfs_key key;
e02119d5 5906 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
5907 u64 ino = btrfs_ino(inode);
5908 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 5909
33345d01 5910 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5911 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5912 } else {
33345d01 5913 key.objectid = ino;
962a298f 5914 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
5915 key.offset = 0;
5916 }
5917
33345d01 5918 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5919 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5920 key.objectid, root->root_key.objectid,
33345d01 5921 parent_ino, index, name, name_len);
4df27c4d 5922 } else if (add_backref) {
33345d01
LZ
5923 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5924 parent_ino, index);
4df27c4d 5925 }
39279cc3 5926
79787eaa
JM
5927 /* Nothing to clean up yet */
5928 if (ret)
5929 return ret;
4df27c4d 5930
79787eaa
JM
5931 ret = btrfs_insert_dir_item(trans, root, name, name_len,
5932 parent_inode, &key,
5933 btrfs_inode_type(inode), index);
9c52057c 5934 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
5935 goto fail_dir_item;
5936 else if (ret) {
5937 btrfs_abort_transaction(trans, root, ret);
5938 return ret;
39279cc3 5939 }
79787eaa
JM
5940
5941 btrfs_i_size_write(parent_inode, parent_inode->i_size +
5942 name_len * 2);
0c4d2d95 5943 inode_inc_iversion(parent_inode);
79787eaa
JM
5944 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5945 ret = btrfs_update_inode(trans, root, parent_inode);
5946 if (ret)
5947 btrfs_abort_transaction(trans, root, ret);
39279cc3 5948 return ret;
fe66a05a
CM
5949
5950fail_dir_item:
5951 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5952 u64 local_index;
5953 int err;
5954 err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5955 key.objectid, root->root_key.objectid,
5956 parent_ino, &local_index, name, name_len);
5957
5958 } else if (add_backref) {
5959 u64 local_index;
5960 int err;
5961
5962 err = btrfs_del_inode_ref(trans, root, name, name_len,
5963 ino, parent_ino, &local_index);
5964 }
5965 return ret;
39279cc3
CM
5966}
5967
5968static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
5969 struct inode *dir, struct dentry *dentry,
5970 struct inode *inode, int backref, u64 index)
39279cc3 5971{
a1b075d2
JB
5972 int err = btrfs_add_link(trans, dir, inode,
5973 dentry->d_name.name, dentry->d_name.len,
5974 backref, index);
39279cc3
CM
5975 if (err > 0)
5976 err = -EEXIST;
5977 return err;
5978}
5979
618e21d5 5980static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 5981 umode_t mode, dev_t rdev)
618e21d5
JB
5982{
5983 struct btrfs_trans_handle *trans;
5984 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 5985 struct inode *inode = NULL;
618e21d5
JB
5986 int err;
5987 int drop_inode = 0;
5988 u64 objectid;
00e4e6b3 5989 u64 index = 0;
618e21d5
JB
5990
5991 if (!new_valid_dev(rdev))
5992 return -EINVAL;
5993
9ed74f2d
JB
5994 /*
5995 * 2 for inode item and ref
5996 * 2 for dir items
5997 * 1 for xattr if selinux is on
5998 */
a22285a6
YZ
5999 trans = btrfs_start_transaction(root, 5);
6000 if (IS_ERR(trans))
6001 return PTR_ERR(trans);
1832a6d5 6002
581bb050
LZ
6003 err = btrfs_find_free_ino(root, &objectid);
6004 if (err)
6005 goto out_unlock;
6006
aec7477b 6007 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6008 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6009 mode, &index);
7cf96da3
TI
6010 if (IS_ERR(inode)) {
6011 err = PTR_ERR(inode);
618e21d5 6012 goto out_unlock;
7cf96da3 6013 }
618e21d5 6014
ad19db71
CS
6015 /*
6016 * If the active LSM wants to access the inode during
6017 * d_instantiate it needs these. Smack checks to see
6018 * if the filesystem supports xattrs by looking at the
6019 * ops vector.
6020 */
ad19db71 6021 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6022 init_special_inode(inode, inode->i_mode, rdev);
6023
6024 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6025 if (err)
b0d5d10f
CM
6026 goto out_unlock_inode;
6027
6028 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6029 if (err) {
6030 goto out_unlock_inode;
6031 } else {
1b4ab1bb 6032 btrfs_update_inode(trans, root, inode);
b0d5d10f 6033 unlock_new_inode(inode);
08c422c2 6034 d_instantiate(dentry, inode);
618e21d5 6035 }
b0d5d10f 6036
618e21d5 6037out_unlock:
7ad85bb7 6038 btrfs_end_transaction(trans, root);
c581afc8 6039 btrfs_balance_delayed_items(root);
b53d3f5d 6040 btrfs_btree_balance_dirty(root);
618e21d5
JB
6041 if (drop_inode) {
6042 inode_dec_link_count(inode);
6043 iput(inode);
6044 }
618e21d5 6045 return err;
b0d5d10f
CM
6046
6047out_unlock_inode:
6048 drop_inode = 1;
6049 unlock_new_inode(inode);
6050 goto out_unlock;
6051
618e21d5
JB
6052}
6053
39279cc3 6054static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6055 umode_t mode, bool excl)
39279cc3
CM
6056{
6057 struct btrfs_trans_handle *trans;
6058 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6059 struct inode *inode = NULL;
43baa579 6060 int drop_inode_on_err = 0;
a22285a6 6061 int err;
39279cc3 6062 u64 objectid;
00e4e6b3 6063 u64 index = 0;
39279cc3 6064
9ed74f2d
JB
6065 /*
6066 * 2 for inode item and ref
6067 * 2 for dir items
6068 * 1 for xattr if selinux is on
6069 */
a22285a6
YZ
6070 trans = btrfs_start_transaction(root, 5);
6071 if (IS_ERR(trans))
6072 return PTR_ERR(trans);
9ed74f2d 6073
581bb050
LZ
6074 err = btrfs_find_free_ino(root, &objectid);
6075 if (err)
6076 goto out_unlock;
6077
aec7477b 6078 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6079 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6080 mode, &index);
7cf96da3
TI
6081 if (IS_ERR(inode)) {
6082 err = PTR_ERR(inode);
39279cc3 6083 goto out_unlock;
7cf96da3 6084 }
43baa579 6085 drop_inode_on_err = 1;
ad19db71
CS
6086 /*
6087 * If the active LSM wants to access the inode during
6088 * d_instantiate it needs these. Smack checks to see
6089 * if the filesystem supports xattrs by looking at the
6090 * ops vector.
6091 */
6092 inode->i_fop = &btrfs_file_operations;
6093 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
6094 inode->i_mapping->a_ops = &btrfs_aops;
6095 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
6096
6097 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6098 if (err)
6099 goto out_unlock_inode;
6100
6101 err = btrfs_update_inode(trans, root, inode);
6102 if (err)
6103 goto out_unlock_inode;
ad19db71 6104
a1b075d2 6105 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 6106 if (err)
b0d5d10f 6107 goto out_unlock_inode;
43baa579 6108
43baa579 6109 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6110 unlock_new_inode(inode);
43baa579
FB
6111 d_instantiate(dentry, inode);
6112
39279cc3 6113out_unlock:
7ad85bb7 6114 btrfs_end_transaction(trans, root);
43baa579 6115 if (err && drop_inode_on_err) {
39279cc3
CM
6116 inode_dec_link_count(inode);
6117 iput(inode);
6118 }
c581afc8 6119 btrfs_balance_delayed_items(root);
b53d3f5d 6120 btrfs_btree_balance_dirty(root);
39279cc3 6121 return err;
b0d5d10f
CM
6122
6123out_unlock_inode:
6124 unlock_new_inode(inode);
6125 goto out_unlock;
6126
39279cc3
CM
6127}
6128
6129static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6130 struct dentry *dentry)
6131{
6132 struct btrfs_trans_handle *trans;
6133 struct btrfs_root *root = BTRFS_I(dir)->root;
6134 struct inode *inode = old_dentry->d_inode;
00e4e6b3 6135 u64 index;
39279cc3
CM
6136 int err;
6137 int drop_inode = 0;
6138
4a8be425
TH
6139 /* do not allow sys_link's with other subvols of the same device */
6140 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6141 return -EXDEV;
4a8be425 6142
f186373f 6143 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6144 return -EMLINK;
4a8be425 6145
3de4586c 6146 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
6147 if (err)
6148 goto fail;
6149
a22285a6 6150 /*
7e6b6465 6151 * 2 items for inode and inode ref
a22285a6 6152 * 2 items for dir items
7e6b6465 6153 * 1 item for parent inode
a22285a6 6154 */
7e6b6465 6155 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6156 if (IS_ERR(trans)) {
6157 err = PTR_ERR(trans);
6158 goto fail;
6159 }
5f39d397 6160
67de1176
MX
6161 /* There are several dir indexes for this inode, clear the cache. */
6162 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6163 inc_nlink(inode);
0c4d2d95 6164 inode_inc_iversion(inode);
3153495d 6165 inode->i_ctime = CURRENT_TIME;
7de9c6ee 6166 ihold(inode);
e9976151 6167 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6168
a1b075d2 6169 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 6170
a5719521 6171 if (err) {
54aa1f4d 6172 drop_inode = 1;
a5719521 6173 } else {
10d9f309 6174 struct dentry *parent = dentry->d_parent;
a5719521 6175 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6176 if (err)
6177 goto fail;
ef3b9af5
FM
6178 if (inode->i_nlink == 1) {
6179 /*
6180 * If new hard link count is 1, it's a file created
6181 * with open(2) O_TMPFILE flag.
6182 */
6183 err = btrfs_orphan_del(trans, inode);
6184 if (err)
6185 goto fail;
6186 }
08c422c2 6187 d_instantiate(dentry, inode);
6a912213 6188 btrfs_log_new_name(trans, inode, NULL, parent);
a5719521 6189 }
39279cc3 6190
7ad85bb7 6191 btrfs_end_transaction(trans, root);
c581afc8 6192 btrfs_balance_delayed_items(root);
1832a6d5 6193fail:
39279cc3
CM
6194 if (drop_inode) {
6195 inode_dec_link_count(inode);
6196 iput(inode);
6197 }
b53d3f5d 6198 btrfs_btree_balance_dirty(root);
39279cc3
CM
6199 return err;
6200}
6201
18bb1db3 6202static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6203{
b9d86667 6204 struct inode *inode = NULL;
39279cc3
CM
6205 struct btrfs_trans_handle *trans;
6206 struct btrfs_root *root = BTRFS_I(dir)->root;
6207 int err = 0;
6208 int drop_on_err = 0;
b9d86667 6209 u64 objectid = 0;
00e4e6b3 6210 u64 index = 0;
39279cc3 6211
9ed74f2d
JB
6212 /*
6213 * 2 items for inode and ref
6214 * 2 items for dir items
6215 * 1 for xattr if selinux is on
6216 */
a22285a6
YZ
6217 trans = btrfs_start_transaction(root, 5);
6218 if (IS_ERR(trans))
6219 return PTR_ERR(trans);
39279cc3 6220
581bb050
LZ
6221 err = btrfs_find_free_ino(root, &objectid);
6222 if (err)
6223 goto out_fail;
6224
aec7477b 6225 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 6226 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 6227 S_IFDIR | mode, &index);
39279cc3
CM
6228 if (IS_ERR(inode)) {
6229 err = PTR_ERR(inode);
6230 goto out_fail;
6231 }
5f39d397 6232
39279cc3 6233 drop_on_err = 1;
b0d5d10f
CM
6234 /* these must be set before we unlock the inode */
6235 inode->i_op = &btrfs_dir_inode_operations;
6236 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6237
2a7dba39 6238 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6239 if (err)
b0d5d10f 6240 goto out_fail_inode;
39279cc3 6241
dbe674a9 6242 btrfs_i_size_write(inode, 0);
39279cc3
CM
6243 err = btrfs_update_inode(trans, root, inode);
6244 if (err)
b0d5d10f 6245 goto out_fail_inode;
5f39d397 6246
a1b075d2
JB
6247 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6248 dentry->d_name.len, 0, index);
39279cc3 6249 if (err)
b0d5d10f 6250 goto out_fail_inode;
5f39d397 6251
39279cc3 6252 d_instantiate(dentry, inode);
b0d5d10f
CM
6253 /*
6254 * mkdir is special. We're unlocking after we call d_instantiate
6255 * to avoid a race with nfsd calling d_instantiate.
6256 */
6257 unlock_new_inode(inode);
39279cc3 6258 drop_on_err = 0;
39279cc3
CM
6259
6260out_fail:
7ad85bb7 6261 btrfs_end_transaction(trans, root);
c7cfb8a5
WS
6262 if (drop_on_err) {
6263 inode_dec_link_count(inode);
39279cc3 6264 iput(inode);
c7cfb8a5 6265 }
c581afc8 6266 btrfs_balance_delayed_items(root);
b53d3f5d 6267 btrfs_btree_balance_dirty(root);
39279cc3 6268 return err;
b0d5d10f
CM
6269
6270out_fail_inode:
6271 unlock_new_inode(inode);
6272 goto out_fail;
39279cc3
CM
6273}
6274
e6c4efd8
QW
6275/* Find next extent map of a given extent map, caller needs to ensure locks */
6276static struct extent_map *next_extent_map(struct extent_map *em)
6277{
6278 struct rb_node *next;
6279
6280 next = rb_next(&em->rb_node);
6281 if (!next)
6282 return NULL;
6283 return container_of(next, struct extent_map, rb_node);
6284}
6285
6286static struct extent_map *prev_extent_map(struct extent_map *em)
6287{
6288 struct rb_node *prev;
6289
6290 prev = rb_prev(&em->rb_node);
6291 if (!prev)
6292 return NULL;
6293 return container_of(prev, struct extent_map, rb_node);
6294}
6295
d352ac68 6296/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6297 * the existing extent is the nearest extent to map_start,
d352ac68 6298 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6299 * the best fitted new extent into the tree.
d352ac68 6300 */
3b951516
CM
6301static int merge_extent_mapping(struct extent_map_tree *em_tree,
6302 struct extent_map *existing,
e6dcd2dc 6303 struct extent_map *em,
51f395ad 6304 u64 map_start)
3b951516 6305{
e6c4efd8
QW
6306 struct extent_map *prev;
6307 struct extent_map *next;
6308 u64 start;
6309 u64 end;
3b951516 6310 u64 start_diff;
3b951516 6311
e6dcd2dc 6312 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6313
6314 if (existing->start > map_start) {
6315 next = existing;
6316 prev = prev_extent_map(next);
6317 } else {
6318 prev = existing;
6319 next = next_extent_map(prev);
6320 }
6321
6322 start = prev ? extent_map_end(prev) : em->start;
6323 start = max_t(u64, start, em->start);
6324 end = next ? next->start : extent_map_end(em);
6325 end = min_t(u64, end, extent_map_end(em));
6326 start_diff = start - em->start;
6327 em->start = start;
6328 em->len = end - start;
c8b97818
CM
6329 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6330 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6331 em->block_start += start_diff;
c8b97818
CM
6332 em->block_len -= start_diff;
6333 }
09a2a8f9 6334 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6335}
6336
c8b97818
CM
6337static noinline int uncompress_inline(struct btrfs_path *path,
6338 struct inode *inode, struct page *page,
6339 size_t pg_offset, u64 extent_offset,
6340 struct btrfs_file_extent_item *item)
6341{
6342 int ret;
6343 struct extent_buffer *leaf = path->nodes[0];
6344 char *tmp;
6345 size_t max_size;
6346 unsigned long inline_size;
6347 unsigned long ptr;
261507a0 6348 int compress_type;
c8b97818
CM
6349
6350 WARN_ON(pg_offset != 0);
261507a0 6351 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6352 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6353 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6354 btrfs_item_nr(path->slots[0]));
c8b97818 6355 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6356 if (!tmp)
6357 return -ENOMEM;
c8b97818
CM
6358 ptr = btrfs_file_extent_inline_start(item);
6359
6360 read_extent_buffer(leaf, tmp, ptr, inline_size);
6361
5b050f04 6362 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
6363 ret = btrfs_decompress(compress_type, tmp, page,
6364 extent_offset, inline_size, max_size);
c8b97818 6365 kfree(tmp);
166ae5a4 6366 return ret;
c8b97818
CM
6367}
6368
d352ac68
CM
6369/*
6370 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6371 * the ugly parts come from merging extents from the disk with the in-ram
6372 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6373 * where the in-ram extents might be locked pending data=ordered completion.
6374 *
6375 * This also copies inline extents directly into the page.
6376 */
d397712b 6377
a52d9a80 6378struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 6379 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
6380 int create)
6381{
6382 int ret;
6383 int err = 0;
a52d9a80
CM
6384 u64 extent_start = 0;
6385 u64 extent_end = 0;
33345d01 6386 u64 objectid = btrfs_ino(inode);
a52d9a80 6387 u32 found_type;
f421950f 6388 struct btrfs_path *path = NULL;
a52d9a80
CM
6389 struct btrfs_root *root = BTRFS_I(inode)->root;
6390 struct btrfs_file_extent_item *item;
5f39d397
CM
6391 struct extent_buffer *leaf;
6392 struct btrfs_key found_key;
a52d9a80
CM
6393 struct extent_map *em = NULL;
6394 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 6395 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 6396 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6397 const bool new_inline = !page || create;
a52d9a80 6398
a52d9a80 6399again:
890871be 6400 read_lock(&em_tree->lock);
d1310b2e 6401 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
6402 if (em)
6403 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 6404 read_unlock(&em_tree->lock);
d1310b2e 6405
a52d9a80 6406 if (em) {
e1c4b745
CM
6407 if (em->start > start || em->start + em->len <= start)
6408 free_extent_map(em);
6409 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6410 free_extent_map(em);
6411 else
6412 goto out;
a52d9a80 6413 }
172ddd60 6414 em = alloc_extent_map();
a52d9a80 6415 if (!em) {
d1310b2e
CM
6416 err = -ENOMEM;
6417 goto out;
a52d9a80 6418 }
e6dcd2dc 6419 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 6420 em->start = EXTENT_MAP_HOLE;
445a6944 6421 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6422 em->len = (u64)-1;
c8b97818 6423 em->block_len = (u64)-1;
f421950f
CM
6424
6425 if (!path) {
6426 path = btrfs_alloc_path();
026fd317
JB
6427 if (!path) {
6428 err = -ENOMEM;
6429 goto out;
6430 }
6431 /*
6432 * Chances are we'll be called again, so go ahead and do
6433 * readahead
6434 */
6435 path->reada = 1;
f421950f
CM
6436 }
6437
179e29e4
CM
6438 ret = btrfs_lookup_file_extent(trans, root, path,
6439 objectid, start, trans != NULL);
a52d9a80
CM
6440 if (ret < 0) {
6441 err = ret;
6442 goto out;
6443 }
6444
6445 if (ret != 0) {
6446 if (path->slots[0] == 0)
6447 goto not_found;
6448 path->slots[0]--;
6449 }
6450
5f39d397
CM
6451 leaf = path->nodes[0];
6452 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6453 struct btrfs_file_extent_item);
a52d9a80 6454 /* are we inside the extent that was found? */
5f39d397 6455 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6456 found_type = found_key.type;
5f39d397 6457 if (found_key.objectid != objectid ||
a52d9a80 6458 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6459 /*
6460 * If we backup past the first extent we want to move forward
6461 * and see if there is an extent in front of us, otherwise we'll
6462 * say there is a hole for our whole search range which can
6463 * cause problems.
6464 */
6465 extent_end = start;
6466 goto next;
a52d9a80
CM
6467 }
6468
5f39d397
CM
6469 found_type = btrfs_file_extent_type(leaf, item);
6470 extent_start = found_key.offset;
d899e052
YZ
6471 if (found_type == BTRFS_FILE_EXTENT_REG ||
6472 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 6473 extent_end = extent_start +
db94535d 6474 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
6475 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6476 size_t size;
514ac8ad 6477 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
fda2832f 6478 extent_end = ALIGN(extent_start + size, root->sectorsize);
9036c102 6479 }
25a50341 6480next:
9036c102
YZ
6481 if (start >= extent_end) {
6482 path->slots[0]++;
6483 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6484 ret = btrfs_next_leaf(root, path);
6485 if (ret < 0) {
6486 err = ret;
6487 goto out;
a52d9a80 6488 }
9036c102
YZ
6489 if (ret > 0)
6490 goto not_found;
6491 leaf = path->nodes[0];
a52d9a80 6492 }
9036c102
YZ
6493 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6494 if (found_key.objectid != objectid ||
6495 found_key.type != BTRFS_EXTENT_DATA_KEY)
6496 goto not_found;
6497 if (start + len <= found_key.offset)
6498 goto not_found;
e2eca69d
WS
6499 if (start > found_key.offset)
6500 goto next;
9036c102 6501 em->start = start;
70c8a91c 6502 em->orig_start = start;
9036c102
YZ
6503 em->len = found_key.offset - start;
6504 goto not_found_em;
6505 }
6506
7ffbb598
FM
6507 btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6508
d899e052
YZ
6509 if (found_type == BTRFS_FILE_EXTENT_REG ||
6510 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
6511 goto insert;
6512 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 6513 unsigned long ptr;
a52d9a80 6514 char *map;
3326d1b0
CM
6515 size_t size;
6516 size_t extent_offset;
6517 size_t copy_size;
a52d9a80 6518
7ffbb598 6519 if (new_inline)
689f9346 6520 goto out;
5f39d397 6521
514ac8ad 6522 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 6523 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 6524 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 6525 size - extent_offset);
3326d1b0 6526 em->start = extent_start + extent_offset;
fda2832f 6527 em->len = ALIGN(copy_size, root->sectorsize);
b4939680 6528 em->orig_block_len = em->len;
70c8a91c 6529 em->orig_start = em->start;
689f9346 6530 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 6531 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
6532 if (btrfs_file_extent_compression(leaf, item) !=
6533 BTRFS_COMPRESS_NONE) {
c8b97818
CM
6534 ret = uncompress_inline(path, inode, page,
6535 pg_offset,
6536 extent_offset, item);
166ae5a4
ZB
6537 if (ret) {
6538 err = ret;
6539 goto out;
6540 }
c8b97818
CM
6541 } else {
6542 map = kmap(page);
6543 read_extent_buffer(leaf, map + pg_offset, ptr,
6544 copy_size);
93c82d57
CM
6545 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6546 memset(map + pg_offset + copy_size, 0,
6547 PAGE_CACHE_SIZE - pg_offset -
6548 copy_size);
6549 }
c8b97818
CM
6550 kunmap(page);
6551 }
179e29e4
CM
6552 flush_dcache_page(page);
6553 } else if (create && PageUptodate(page)) {
6bf7e080 6554 BUG();
179e29e4
CM
6555 if (!trans) {
6556 kunmap(page);
6557 free_extent_map(em);
6558 em = NULL;
ff5714cc 6559
b3b4aa74 6560 btrfs_release_path(path);
7a7eaa40 6561 trans = btrfs_join_transaction(root);
ff5714cc 6562
3612b495
TI
6563 if (IS_ERR(trans))
6564 return ERR_CAST(trans);
179e29e4
CM
6565 goto again;
6566 }
c8b97818 6567 map = kmap(page);
70dec807 6568 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 6569 copy_size);
c8b97818 6570 kunmap(page);
179e29e4 6571 btrfs_mark_buffer_dirty(leaf);
a52d9a80 6572 }
d1310b2e 6573 set_extent_uptodate(io_tree, em->start,
507903b8 6574 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 6575 goto insert;
a52d9a80
CM
6576 }
6577not_found:
6578 em->start = start;
70c8a91c 6579 em->orig_start = start;
d1310b2e 6580 em->len = len;
a52d9a80 6581not_found_em:
5f39d397 6582 em->block_start = EXTENT_MAP_HOLE;
9036c102 6583 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 6584insert:
b3b4aa74 6585 btrfs_release_path(path);
d1310b2e 6586 if (em->start > start || extent_map_end(em) <= start) {
c2cf52eb 6587 btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
c1c9ff7c 6588 em->start, em->len, start, len);
a52d9a80
CM
6589 err = -EIO;
6590 goto out;
6591 }
d1310b2e
CM
6592
6593 err = 0;
890871be 6594 write_lock(&em_tree->lock);
09a2a8f9 6595 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
6596 /* it is possible that someone inserted the extent into the tree
6597 * while we had the lock dropped. It is also possible that
6598 * an overlapping map exists in the tree
6599 */
a52d9a80 6600 if (ret == -EEXIST) {
3b951516 6601 struct extent_map *existing;
e6dcd2dc
CM
6602
6603 ret = 0;
6604
e6c4efd8
QW
6605 existing = search_extent_mapping(em_tree, start, len);
6606 /*
6607 * existing will always be non-NULL, since there must be
6608 * extent causing the -EEXIST.
6609 */
6610 if (start >= extent_map_end(existing) ||
32be3a1a 6611 start <= existing->start) {
e6c4efd8
QW
6612 /*
6613 * The existing extent map is the one nearest to
6614 * the [start, start + len) range which overlaps
6615 */
6616 err = merge_extent_mapping(em_tree, existing,
6617 em, start);
e1c4b745 6618 free_extent_map(existing);
e6c4efd8 6619 if (err) {
3b951516
CM
6620 free_extent_map(em);
6621 em = NULL;
6622 }
6623 } else {
6624 free_extent_map(em);
6625 em = existing;
e6dcd2dc 6626 err = 0;
a52d9a80 6627 }
a52d9a80 6628 }
890871be 6629 write_unlock(&em_tree->lock);
a52d9a80 6630out:
1abe9b8a 6631
4cd8587c 6632 trace_btrfs_get_extent(root, em);
1abe9b8a 6633
f421950f
CM
6634 if (path)
6635 btrfs_free_path(path);
a52d9a80
CM
6636 if (trans) {
6637 ret = btrfs_end_transaction(trans, root);
d397712b 6638 if (!err)
a52d9a80
CM
6639 err = ret;
6640 }
a52d9a80
CM
6641 if (err) {
6642 free_extent_map(em);
a52d9a80
CM
6643 return ERR_PTR(err);
6644 }
79787eaa 6645 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
6646 return em;
6647}
6648
ec29ed5b
CM
6649struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6650 size_t pg_offset, u64 start, u64 len,
6651 int create)
6652{
6653 struct extent_map *em;
6654 struct extent_map *hole_em = NULL;
6655 u64 range_start = start;
6656 u64 end;
6657 u64 found;
6658 u64 found_end;
6659 int err = 0;
6660
6661 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6662 if (IS_ERR(em))
6663 return em;
6664 if (em) {
6665 /*
f9e4fb53
LB
6666 * if our em maps to
6667 * - a hole or
6668 * - a pre-alloc extent,
6669 * there might actually be delalloc bytes behind it.
ec29ed5b 6670 */
f9e4fb53
LB
6671 if (em->block_start != EXTENT_MAP_HOLE &&
6672 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
ec29ed5b
CM
6673 return em;
6674 else
6675 hole_em = em;
6676 }
6677
6678 /* check to see if we've wrapped (len == -1 or similar) */
6679 end = start + len;
6680 if (end < start)
6681 end = (u64)-1;
6682 else
6683 end -= 1;
6684
6685 em = NULL;
6686
6687 /* ok, we didn't find anything, lets look for delalloc */
6688 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6689 end, len, EXTENT_DELALLOC, 1);
6690 found_end = range_start + found;
6691 if (found_end < range_start)
6692 found_end = (u64)-1;
6693
6694 /*
6695 * we didn't find anything useful, return
6696 * the original results from get_extent()
6697 */
6698 if (range_start > end || found_end <= start) {
6699 em = hole_em;
6700 hole_em = NULL;
6701 goto out;
6702 }
6703
6704 /* adjust the range_start to make sure it doesn't
6705 * go backwards from the start they passed in
6706 */
67871254 6707 range_start = max(start, range_start);
ec29ed5b
CM
6708 found = found_end - range_start;
6709
6710 if (found > 0) {
6711 u64 hole_start = start;
6712 u64 hole_len = len;
6713
172ddd60 6714 em = alloc_extent_map();
ec29ed5b
CM
6715 if (!em) {
6716 err = -ENOMEM;
6717 goto out;
6718 }
6719 /*
6720 * when btrfs_get_extent can't find anything it
6721 * returns one huge hole
6722 *
6723 * make sure what it found really fits our range, and
6724 * adjust to make sure it is based on the start from
6725 * the caller
6726 */
6727 if (hole_em) {
6728 u64 calc_end = extent_map_end(hole_em);
6729
6730 if (calc_end <= start || (hole_em->start > end)) {
6731 free_extent_map(hole_em);
6732 hole_em = NULL;
6733 } else {
6734 hole_start = max(hole_em->start, start);
6735 hole_len = calc_end - hole_start;
6736 }
6737 }
6738 em->bdev = NULL;
6739 if (hole_em && range_start > hole_start) {
6740 /* our hole starts before our delalloc, so we
6741 * have to return just the parts of the hole
6742 * that go until the delalloc starts
6743 */
6744 em->len = min(hole_len,
6745 range_start - hole_start);
6746 em->start = hole_start;
6747 em->orig_start = hole_start;
6748 /*
6749 * don't adjust block start at all,
6750 * it is fixed at EXTENT_MAP_HOLE
6751 */
6752 em->block_start = hole_em->block_start;
6753 em->block_len = hole_len;
f9e4fb53
LB
6754 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6755 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
6756 } else {
6757 em->start = range_start;
6758 em->len = found;
6759 em->orig_start = range_start;
6760 em->block_start = EXTENT_MAP_DELALLOC;
6761 em->block_len = found;
6762 }
6763 } else if (hole_em) {
6764 return hole_em;
6765 }
6766out:
6767
6768 free_extent_map(hole_em);
6769 if (err) {
6770 free_extent_map(em);
6771 return ERR_PTR(err);
6772 }
6773 return em;
6774}
6775
4b46fce2
JB
6776static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6777 u64 start, u64 len)
6778{
6779 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 6780 struct extent_map *em;
4b46fce2
JB
6781 struct btrfs_key ins;
6782 u64 alloc_hint;
6783 int ret;
4b46fce2 6784
4b46fce2 6785 alloc_hint = get_extent_allocation_hint(inode, start, len);
00361589 6786 ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
e570fd27 6787 alloc_hint, &ins, 1, 1);
00361589
JB
6788 if (ret)
6789 return ERR_PTR(ret);
4b46fce2 6790
70c8a91c 6791 em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
cc95bef6 6792 ins.offset, ins.offset, ins.offset, 0);
00361589 6793 if (IS_ERR(em)) {
e570fd27 6794 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6795 return em;
6796 }
4b46fce2
JB
6797
6798 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6799 ins.offset, ins.offset, 0);
6800 if (ret) {
e570fd27 6801 btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
00361589
JB
6802 free_extent_map(em);
6803 return ERR_PTR(ret);
4b46fce2 6804 }
00361589 6805
4b46fce2
JB
6806 return em;
6807}
6808
46bfbb5c
CM
6809/*
6810 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6811 * block must be cow'd
6812 */
00361589 6813noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
6814 u64 *orig_start, u64 *orig_block_len,
6815 u64 *ram_bytes)
46bfbb5c 6816{
00361589 6817 struct btrfs_trans_handle *trans;
46bfbb5c
CM
6818 struct btrfs_path *path;
6819 int ret;
6820 struct extent_buffer *leaf;
6821 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 6822 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
6823 struct btrfs_file_extent_item *fi;
6824 struct btrfs_key key;
6825 u64 disk_bytenr;
6826 u64 backref_offset;
6827 u64 extent_end;
6828 u64 num_bytes;
6829 int slot;
6830 int found_type;
7ee9e440 6831 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 6832
46bfbb5c
CM
6833 path = btrfs_alloc_path();
6834 if (!path)
6835 return -ENOMEM;
6836
00361589 6837 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
46bfbb5c
CM
6838 offset, 0);
6839 if (ret < 0)
6840 goto out;
6841
6842 slot = path->slots[0];
6843 if (ret == 1) {
6844 if (slot == 0) {
6845 /* can't find the item, must cow */
6846 ret = 0;
6847 goto out;
6848 }
6849 slot--;
6850 }
6851 ret = 0;
6852 leaf = path->nodes[0];
6853 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 6854 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
6855 key.type != BTRFS_EXTENT_DATA_KEY) {
6856 /* not our file or wrong item type, must cow */
6857 goto out;
6858 }
6859
6860 if (key.offset > offset) {
6861 /* Wrong offset, must cow */
6862 goto out;
6863 }
6864
6865 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6866 found_type = btrfs_file_extent_type(leaf, fi);
6867 if (found_type != BTRFS_FILE_EXTENT_REG &&
6868 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6869 /* not a regular extent, must cow */
6870 goto out;
6871 }
7ee9e440
JB
6872
6873 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
6874 goto out;
6875
e77751aa
MX
6876 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6877 if (extent_end <= offset)
6878 goto out;
6879
46bfbb5c 6880 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
6881 if (disk_bytenr == 0)
6882 goto out;
6883
6884 if (btrfs_file_extent_compression(leaf, fi) ||
6885 btrfs_file_extent_encryption(leaf, fi) ||
6886 btrfs_file_extent_other_encoding(leaf, fi))
6887 goto out;
6888
46bfbb5c
CM
6889 backref_offset = btrfs_file_extent_offset(leaf, fi);
6890
7ee9e440
JB
6891 if (orig_start) {
6892 *orig_start = key.offset - backref_offset;
6893 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6894 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6895 }
eb384b55 6896
46bfbb5c
CM
6897 if (btrfs_extent_readonly(root, disk_bytenr))
6898 goto out;
7b2b7085
MX
6899
6900 num_bytes = min(offset + *len, extent_end) - offset;
6901 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6902 u64 range_end;
6903
6904 range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
6905 ret = test_range_bit(io_tree, offset, range_end,
6906 EXTENT_DELALLOC, 0, NULL);
6907 if (ret) {
6908 ret = -EAGAIN;
6909 goto out;
6910 }
6911 }
6912
1bda19eb 6913 btrfs_release_path(path);
46bfbb5c
CM
6914
6915 /*
6916 * look for other files referencing this extent, if we
6917 * find any we must cow
6918 */
00361589
JB
6919 trans = btrfs_join_transaction(root);
6920 if (IS_ERR(trans)) {
6921 ret = 0;
46bfbb5c 6922 goto out;
00361589
JB
6923 }
6924
6925 ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6926 key.offset - backref_offset, disk_bytenr);
6927 btrfs_end_transaction(trans, root);
6928 if (ret) {
6929 ret = 0;
6930 goto out;
6931 }
46bfbb5c
CM
6932
6933 /*
6934 * adjust disk_bytenr and num_bytes to cover just the bytes
6935 * in this extent we are about to write. If there
6936 * are any csums in that range we have to cow in order
6937 * to keep the csums correct
6938 */
6939 disk_bytenr += backref_offset;
6940 disk_bytenr += offset - key.offset;
46bfbb5c
CM
6941 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6942 goto out;
6943 /*
6944 * all of the above have passed, it is safe to overwrite this extent
6945 * without cow
6946 */
eb384b55 6947 *len = num_bytes;
46bfbb5c
CM
6948 ret = 1;
6949out:
6950 btrfs_free_path(path);
6951 return ret;
6952}
6953
fc4adbff
AG
6954bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
6955{
6956 struct radix_tree_root *root = &inode->i_mapping->page_tree;
6957 int found = false;
6958 void **pagep = NULL;
6959 struct page *page = NULL;
6960 int start_idx;
6961 int end_idx;
6962
6963 start_idx = start >> PAGE_CACHE_SHIFT;
6964
6965 /*
6966 * end is the last byte in the last page. end == start is legal
6967 */
6968 end_idx = end >> PAGE_CACHE_SHIFT;
6969
6970 rcu_read_lock();
6971
6972 /* Most of the code in this while loop is lifted from
6973 * find_get_page. It's been modified to begin searching from a
6974 * page and return just the first page found in that range. If the
6975 * found idx is less than or equal to the end idx then we know that
6976 * a page exists. If no pages are found or if those pages are
6977 * outside of the range then we're fine (yay!) */
6978 while (page == NULL &&
6979 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
6980 page = radix_tree_deref_slot(pagep);
6981 if (unlikely(!page))
6982 break;
6983
6984 if (radix_tree_exception(page)) {
809f9016
FM
6985 if (radix_tree_deref_retry(page)) {
6986 page = NULL;
fc4adbff 6987 continue;
809f9016 6988 }
fc4adbff
AG
6989 /*
6990 * Otherwise, shmem/tmpfs must be storing a swap entry
6991 * here as an exceptional entry: so return it without
6992 * attempting to raise page count.
6993 */
6fdef6d4 6994 page = NULL;
fc4adbff
AG
6995 break; /* TODO: Is this relevant for this use case? */
6996 }
6997
91405151
FM
6998 if (!page_cache_get_speculative(page)) {
6999 page = NULL;
fc4adbff 7000 continue;
91405151 7001 }
fc4adbff
AG
7002
7003 /*
7004 * Has the page moved?
7005 * This is part of the lockless pagecache protocol. See
7006 * include/linux/pagemap.h for details.
7007 */
7008 if (unlikely(page != *pagep)) {
7009 page_cache_release(page);
7010 page = NULL;
7011 }
7012 }
7013
7014 if (page) {
7015 if (page->index <= end_idx)
7016 found = true;
7017 page_cache_release(page);
7018 }
7019
7020 rcu_read_unlock();
7021 return found;
7022}
7023
eb838e73
JB
7024static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7025 struct extent_state **cached_state, int writing)
7026{
7027 struct btrfs_ordered_extent *ordered;
7028 int ret = 0;
7029
7030 while (1) {
7031 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7032 0, cached_state);
7033 /*
7034 * We're concerned with the entire range that we're going to be
7035 * doing DIO to, so we need to make sure theres no ordered
7036 * extents in this range.
7037 */
7038 ordered = btrfs_lookup_ordered_range(inode, lockstart,
7039 lockend - lockstart + 1);
7040
7041 /*
7042 * We need to make sure there are no buffered pages in this
7043 * range either, we could have raced between the invalidate in
7044 * generic_file_direct_write and locking the extent. The
7045 * invalidate needs to happen so that reads after a write do not
7046 * get stale data.
7047 */
fc4adbff
AG
7048 if (!ordered &&
7049 (!writing ||
7050 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7051 break;
7052
7053 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7054 cached_state, GFP_NOFS);
7055
7056 if (ordered) {
7057 btrfs_start_ordered_extent(inode, ordered, 1);
7058 btrfs_put_ordered_extent(ordered);
7059 } else {
7060 /* Screw you mmap */
728404da 7061 ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
075bdbdb
FM
7062 if (ret)
7063 break;
7064 ret = filemap_fdatawait_range(inode->i_mapping,
7065 lockstart,
7066 lockend);
eb838e73
JB
7067 if (ret)
7068 break;
7069
7070 /*
7071 * If we found a page that couldn't be invalidated just
7072 * fall back to buffered.
7073 */
7074 ret = invalidate_inode_pages2_range(inode->i_mapping,
7075 lockstart >> PAGE_CACHE_SHIFT,
7076 lockend >> PAGE_CACHE_SHIFT);
7077 if (ret)
7078 break;
7079 }
7080
7081 cond_resched();
7082 }
7083
7084 return ret;
7085}
7086
69ffb543
JB
7087static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7088 u64 len, u64 orig_start,
7089 u64 block_start, u64 block_len,
cc95bef6
JB
7090 u64 orig_block_len, u64 ram_bytes,
7091 int type)
69ffb543
JB
7092{
7093 struct extent_map_tree *em_tree;
7094 struct extent_map *em;
7095 struct btrfs_root *root = BTRFS_I(inode)->root;
7096 int ret;
7097
7098 em_tree = &BTRFS_I(inode)->extent_tree;
7099 em = alloc_extent_map();
7100 if (!em)
7101 return ERR_PTR(-ENOMEM);
7102
7103 em->start = start;
7104 em->orig_start = orig_start;
2ab28f32
JB
7105 em->mod_start = start;
7106 em->mod_len = len;
69ffb543
JB
7107 em->len = len;
7108 em->block_len = block_len;
7109 em->block_start = block_start;
7110 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7111 em->orig_block_len = orig_block_len;
cc95bef6 7112 em->ram_bytes = ram_bytes;
70c8a91c 7113 em->generation = -1;
69ffb543
JB
7114 set_bit(EXTENT_FLAG_PINNED, &em->flags);
7115 if (type == BTRFS_ORDERED_PREALLOC)
b11e234d 7116 set_bit(EXTENT_FLAG_FILLING, &em->flags);
69ffb543
JB
7117
7118 do {
7119 btrfs_drop_extent_cache(inode, em->start,
7120 em->start + em->len - 1, 0);
7121 write_lock(&em_tree->lock);
09a2a8f9 7122 ret = add_extent_mapping(em_tree, em, 1);
69ffb543
JB
7123 write_unlock(&em_tree->lock);
7124 } while (ret == -EEXIST);
7125
7126 if (ret) {
7127 free_extent_map(em);
7128 return ERR_PTR(ret);
7129 }
7130
7131 return em;
7132}
7133
7134
4b46fce2
JB
7135static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7136 struct buffer_head *bh_result, int create)
7137{
7138 struct extent_map *em;
7139 struct btrfs_root *root = BTRFS_I(inode)->root;
eb838e73 7140 struct extent_state *cached_state = NULL;
4b46fce2 7141 u64 start = iblock << inode->i_blkbits;
eb838e73 7142 u64 lockstart, lockend;
4b46fce2 7143 u64 len = bh_result->b_size;
eb838e73 7144 int unlock_bits = EXTENT_LOCKED;
0934856d 7145 int ret = 0;
eb838e73 7146
172a5049 7147 if (create)
eb838e73 7148 unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
172a5049 7149 else
c329861d 7150 len = min_t(u64, len, root->sectorsize);
eb838e73 7151
c329861d
JB
7152 lockstart = start;
7153 lockend = start + len - 1;
7154
eb838e73
JB
7155 /*
7156 * If this errors out it's because we couldn't invalidate pagecache for
7157 * this range and we need to fallback to buffered.
7158 */
7159 if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7160 return -ENOTBLK;
7161
4b46fce2 7162 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
eb838e73
JB
7163 if (IS_ERR(em)) {
7164 ret = PTR_ERR(em);
7165 goto unlock_err;
7166 }
4b46fce2
JB
7167
7168 /*
7169 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7170 * io. INLINE is special, and we could probably kludge it in here, but
7171 * it's still buffered so for safety lets just fall back to the generic
7172 * buffered path.
7173 *
7174 * For COMPRESSED we _have_ to read the entire extent in so we can
7175 * decompress it, so there will be buffering required no matter what we
7176 * do, so go ahead and fallback to buffered.
7177 *
7178 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7179 * to buffered IO. Don't blame me, this is the price we pay for using
7180 * the generic code.
7181 */
7182 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7183 em->block_start == EXTENT_MAP_INLINE) {
7184 free_extent_map(em);
eb838e73
JB
7185 ret = -ENOTBLK;
7186 goto unlock_err;
4b46fce2
JB
7187 }
7188
7189 /* Just a good old fashioned hole, return */
7190 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7191 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7192 free_extent_map(em);
eb838e73 7193 goto unlock_err;
4b46fce2
JB
7194 }
7195
7196 /*
7197 * We don't allocate a new extent in the following cases
7198 *
7199 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7200 * existing extent.
7201 * 2) The extent is marked as PREALLOC. We're good to go here and can
7202 * just use the extent.
7203 *
7204 */
46bfbb5c 7205 if (!create) {
eb838e73
JB
7206 len = min(len, em->len - (start - em->start));
7207 lockstart = start + len;
7208 goto unlock;
46bfbb5c 7209 }
4b46fce2
JB
7210
7211 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7212 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7213 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
7214 int type;
7215 int ret;
eb384b55 7216 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7217
7218 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7219 type = BTRFS_ORDERED_PREALLOC;
7220 else
7221 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7222 len = min(len, em->len - (start - em->start));
4b46fce2 7223 block_start = em->block_start + (start - em->start);
46bfbb5c 7224
00361589 7225 if (can_nocow_extent(inode, start, &len, &orig_start,
7ee9e440 7226 &orig_block_len, &ram_bytes) == 1) {
69ffb543
JB
7227 if (type == BTRFS_ORDERED_PREALLOC) {
7228 free_extent_map(em);
7229 em = create_pinned_em(inode, start, len,
7230 orig_start,
b4939680 7231 block_start, len,
cc95bef6
JB
7232 orig_block_len,
7233 ram_bytes, type);
555e1286
FM
7234 if (IS_ERR(em)) {
7235 ret = PTR_ERR(em);
69ffb543 7236 goto unlock_err;
555e1286 7237 }
69ffb543
JB
7238 }
7239
46bfbb5c
CM
7240 ret = btrfs_add_ordered_extent_dio(inode, start,
7241 block_start, len, len, type);
46bfbb5c
CM
7242 if (ret) {
7243 free_extent_map(em);
eb838e73 7244 goto unlock_err;
46bfbb5c
CM
7245 }
7246 goto unlock;
4b46fce2 7247 }
4b46fce2 7248 }
00361589 7249
46bfbb5c
CM
7250 /*
7251 * this will cow the extent, reset the len in case we changed
7252 * it above
7253 */
7254 len = bh_result->b_size;
70c8a91c
JB
7255 free_extent_map(em);
7256 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7257 if (IS_ERR(em)) {
7258 ret = PTR_ERR(em);
7259 goto unlock_err;
7260 }
46bfbb5c
CM
7261 len = min(len, em->len - (start - em->start));
7262unlock:
4b46fce2
JB
7263 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7264 inode->i_blkbits;
46bfbb5c 7265 bh_result->b_size = len;
4b46fce2
JB
7266 bh_result->b_bdev = em->bdev;
7267 set_buffer_mapped(bh_result);
c3473e83
JB
7268 if (create) {
7269 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7270 set_buffer_new(bh_result);
7271
7272 /*
7273 * Need to update the i_size under the extent lock so buffered
7274 * readers will get the updated i_size when we unlock.
7275 */
7276 if (start + len > i_size_read(inode))
7277 i_size_write(inode, start + len);
0934856d 7278
172a5049
MX
7279 spin_lock(&BTRFS_I(inode)->lock);
7280 BTRFS_I(inode)->outstanding_extents++;
7281 spin_unlock(&BTRFS_I(inode)->lock);
7282
0934856d
MX
7283 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7284 lockstart + len - 1, EXTENT_DELALLOC, NULL,
7285 &cached_state, GFP_NOFS);
7286 BUG_ON(ret);
c3473e83 7287 }
4b46fce2 7288
eb838e73
JB
7289 /*
7290 * In the case of write we need to clear and unlock the entire range,
7291 * in the case of read we need to unlock only the end area that we
7292 * aren't using if there is any left over space.
7293 */
24c03fa5 7294 if (lockstart < lockend) {
0934856d
MX
7295 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7296 lockend, unlock_bits, 1, 0,
7297 &cached_state, GFP_NOFS);
24c03fa5 7298 } else {
eb838e73 7299 free_extent_state(cached_state);
24c03fa5 7300 }
eb838e73 7301
4b46fce2
JB
7302 free_extent_map(em);
7303
7304 return 0;
eb838e73
JB
7305
7306unlock_err:
eb838e73
JB
7307 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7308 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7309 return ret;
4b46fce2
JB
7310}
7311
8b110e39
MX
7312static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7313 int rw, int mirror_num)
7314{
7315 struct btrfs_root *root = BTRFS_I(inode)->root;
7316 int ret;
7317
7318 BUG_ON(rw & REQ_WRITE);
7319
7320 bio_get(bio);
7321
7322 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7323 BTRFS_WQ_ENDIO_DIO_REPAIR);
7324 if (ret)
7325 goto err;
7326
7327 ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7328err:
7329 bio_put(bio);
7330 return ret;
7331}
7332
7333static int btrfs_check_dio_repairable(struct inode *inode,
7334 struct bio *failed_bio,
7335 struct io_failure_record *failrec,
7336 int failed_mirror)
7337{
7338 int num_copies;
7339
7340 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7341 failrec->logical, failrec->len);
7342 if (num_copies == 1) {
7343 /*
7344 * we only have a single copy of the data, so don't bother with
7345 * all the retry and error correction code that follows. no
7346 * matter what the error is, it is very likely to persist.
7347 */
7348 pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7349 num_copies, failrec->this_mirror, failed_mirror);
7350 return 0;
7351 }
7352
7353 failrec->failed_mirror = failed_mirror;
7354 failrec->this_mirror++;
7355 if (failrec->this_mirror == failed_mirror)
7356 failrec->this_mirror++;
7357
7358 if (failrec->this_mirror > num_copies) {
7359 pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7360 num_copies, failrec->this_mirror, failed_mirror);
7361 return 0;
7362 }
7363
7364 return 1;
7365}
7366
7367static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7368 struct page *page, u64 start, u64 end,
7369 int failed_mirror, bio_end_io_t *repair_endio,
7370 void *repair_arg)
7371{
7372 struct io_failure_record *failrec;
7373 struct bio *bio;
7374 int isector;
7375 int read_mode;
7376 int ret;
7377
7378 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7379
7380 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7381 if (ret)
7382 return ret;
7383
7384 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7385 failed_mirror);
7386 if (!ret) {
7387 free_io_failure(inode, failrec);
7388 return -EIO;
7389 }
7390
7391 if (failed_bio->bi_vcnt > 1)
7392 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7393 else
7394 read_mode = READ_SYNC;
7395
7396 isector = start - btrfs_io_bio(failed_bio)->logical;
7397 isector >>= inode->i_sb->s_blocksize_bits;
7398 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7399 0, isector, repair_endio, repair_arg);
7400 if (!bio) {
7401 free_io_failure(inode, failrec);
7402 return -EIO;
7403 }
7404
7405 btrfs_debug(BTRFS_I(inode)->root->fs_info,
7406 "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7407 read_mode, failrec->this_mirror, failrec->in_validation);
7408
7409 ret = submit_dio_repair_bio(inode, bio, read_mode,
7410 failrec->this_mirror);
7411 if (ret) {
7412 free_io_failure(inode, failrec);
7413 bio_put(bio);
7414 }
7415
7416 return ret;
7417}
7418
7419struct btrfs_retry_complete {
7420 struct completion done;
7421 struct inode *inode;
7422 u64 start;
7423 int uptodate;
7424};
7425
7426static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7427{
7428 struct btrfs_retry_complete *done = bio->bi_private;
7429 struct bio_vec *bvec;
7430 int i;
7431
7432 if (err)
7433 goto end;
7434
7435 done->uptodate = 1;
7436 bio_for_each_segment_all(bvec, bio, i)
7437 clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7438end:
7439 complete(&done->done);
7440 bio_put(bio);
7441}
7442
7443static int __btrfs_correct_data_nocsum(struct inode *inode,
7444 struct btrfs_io_bio *io_bio)
4b46fce2 7445{
2c30c71b 7446 struct bio_vec *bvec;
8b110e39 7447 struct btrfs_retry_complete done;
4b46fce2 7448 u64 start;
2c30c71b 7449 int i;
c1dc0896 7450 int ret;
4b46fce2 7451
8b110e39
MX
7452 start = io_bio->logical;
7453 done.inode = inode;
7454
7455 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7456try_again:
7457 done.uptodate = 0;
7458 done.start = start;
7459 init_completion(&done.done);
7460
7461 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7462 start + bvec->bv_len - 1,
7463 io_bio->mirror_num,
7464 btrfs_retry_endio_nocsum, &done);
7465 if (ret)
7466 return ret;
7467
7468 wait_for_completion(&done.done);
7469
7470 if (!done.uptodate) {
7471 /* We might have another mirror, so try again */
7472 goto try_again;
7473 }
7474
7475 start += bvec->bv_len;
7476 }
7477
7478 return 0;
7479}
7480
7481static void btrfs_retry_endio(struct bio *bio, int err)
7482{
7483 struct btrfs_retry_complete *done = bio->bi_private;
7484 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7485 struct bio_vec *bvec;
7486 int uptodate;
7487 int ret;
7488 int i;
7489
7490 if (err)
7491 goto end;
7492
7493 uptodate = 1;
7494 bio_for_each_segment_all(bvec, bio, i) {
7495 ret = __readpage_endio_check(done->inode, io_bio, i,
7496 bvec->bv_page, 0,
7497 done->start, bvec->bv_len);
7498 if (!ret)
7499 clean_io_failure(done->inode, done->start,
7500 bvec->bv_page, 0);
7501 else
7502 uptodate = 0;
7503 }
7504
7505 done->uptodate = uptodate;
7506end:
7507 complete(&done->done);
7508 bio_put(bio);
7509}
7510
7511static int __btrfs_subio_endio_read(struct inode *inode,
7512 struct btrfs_io_bio *io_bio, int err)
7513{
7514 struct bio_vec *bvec;
7515 struct btrfs_retry_complete done;
7516 u64 start;
7517 u64 offset = 0;
7518 int i;
7519 int ret;
dc380aea 7520
8b110e39 7521 err = 0;
c1dc0896 7522 start = io_bio->logical;
8b110e39
MX
7523 done.inode = inode;
7524
c1dc0896 7525 bio_for_each_segment_all(bvec, &io_bio->bio, i) {
dc380aea
MX
7526 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7527 0, start, bvec->bv_len);
8b110e39
MX
7528 if (likely(!ret))
7529 goto next;
7530try_again:
7531 done.uptodate = 0;
7532 done.start = start;
7533 init_completion(&done.done);
7534
7535 ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7536 start + bvec->bv_len - 1,
7537 io_bio->mirror_num,
7538 btrfs_retry_endio, &done);
7539 if (ret) {
7540 err = ret;
7541 goto next;
7542 }
7543
7544 wait_for_completion(&done.done);
7545
7546 if (!done.uptodate) {
7547 /* We might have another mirror, so try again */
7548 goto try_again;
7549 }
7550next:
7551 offset += bvec->bv_len;
4b46fce2 7552 start += bvec->bv_len;
2c30c71b 7553 }
c1dc0896
MX
7554
7555 return err;
7556}
7557
8b110e39
MX
7558static int btrfs_subio_endio_read(struct inode *inode,
7559 struct btrfs_io_bio *io_bio, int err)
7560{
7561 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7562
7563 if (skip_csum) {
7564 if (unlikely(err))
7565 return __btrfs_correct_data_nocsum(inode, io_bio);
7566 else
7567 return 0;
7568 } else {
7569 return __btrfs_subio_endio_read(inode, io_bio, err);
7570 }
7571}
7572
c1dc0896
MX
7573static void btrfs_endio_direct_read(struct bio *bio, int err)
7574{
7575 struct btrfs_dio_private *dip = bio->bi_private;
7576 struct inode *inode = dip->inode;
7577 struct bio *dio_bio;
7578 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7579
8b110e39
MX
7580 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7581 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 7582
4b46fce2 7583 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 7584 dip->logical_offset + dip->bytes - 1);
9be3395b 7585 dio_bio = dip->dio_bio;
4b46fce2 7586
4b46fce2 7587 kfree(dip);
c0da7aa1
JB
7588
7589 /* If we had a csum failure make sure to clear the uptodate flag */
7590 if (err)
9be3395b
CM
7591 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7592 dio_end_io(dio_bio, err);
23ea8e5a
MX
7593
7594 if (io_bio->end_io)
7595 io_bio->end_io(io_bio, err);
9be3395b 7596 bio_put(bio);
4b46fce2
JB
7597}
7598
7599static void btrfs_endio_direct_write(struct bio *bio, int err)
7600{
7601 struct btrfs_dio_private *dip = bio->bi_private;
7602 struct inode *inode = dip->inode;
7603 struct btrfs_root *root = BTRFS_I(inode)->root;
4b46fce2 7604 struct btrfs_ordered_extent *ordered = NULL;
163cf09c
CM
7605 u64 ordered_offset = dip->logical_offset;
7606 u64 ordered_bytes = dip->bytes;
9be3395b 7607 struct bio *dio_bio;
4b46fce2
JB
7608 int ret;
7609
7610 if (err)
7611 goto out_done;
163cf09c
CM
7612again:
7613 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7614 &ordered_offset,
5fd02043 7615 ordered_bytes, !err);
4b46fce2 7616 if (!ret)
163cf09c 7617 goto out_test;
4b46fce2 7618
9e0af237
LB
7619 btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7620 finish_ordered_fn, NULL, NULL);
fccb5d86
QW
7621 btrfs_queue_work(root->fs_info->endio_write_workers,
7622 &ordered->work);
163cf09c
CM
7623out_test:
7624 /*
7625 * our bio might span multiple ordered extents. If we haven't
7626 * completed the accounting for the whole dio, go back and try again
7627 */
7628 if (ordered_offset < dip->logical_offset + dip->bytes) {
7629 ordered_bytes = dip->logical_offset + dip->bytes -
7630 ordered_offset;
5fd02043 7631 ordered = NULL;
163cf09c
CM
7632 goto again;
7633 }
4b46fce2 7634out_done:
9be3395b 7635 dio_bio = dip->dio_bio;
4b46fce2 7636
4b46fce2 7637 kfree(dip);
c0da7aa1
JB
7638
7639 /* If we had an error make sure to clear the uptodate flag */
7640 if (err)
9be3395b
CM
7641 clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7642 dio_end_io(dio_bio, err);
7643 bio_put(bio);
4b46fce2
JB
7644}
7645
eaf25d93
CM
7646static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7647 struct bio *bio, int mirror_num,
7648 unsigned long bio_flags, u64 offset)
7649{
7650 int ret;
7651 struct btrfs_root *root = BTRFS_I(inode)->root;
7652 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
79787eaa 7653 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
7654 return 0;
7655}
7656
e65e1535
MX
7657static void btrfs_end_dio_bio(struct bio *bio, int err)
7658{
7659 struct btrfs_dio_private *dip = bio->bi_private;
7660
8b110e39
MX
7661 if (err)
7662 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7663 "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7664 btrfs_ino(dip->inode), bio->bi_rw,
7665 (unsigned long long)bio->bi_iter.bi_sector,
7666 bio->bi_iter.bi_size, err);
7667
7668 if (dip->subio_endio)
7669 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
7670
7671 if (err) {
e65e1535
MX
7672 dip->errors = 1;
7673
7674 /*
7675 * before atomic variable goto zero, we must make sure
7676 * dip->errors is perceived to be set.
7677 */
4e857c58 7678 smp_mb__before_atomic();
e65e1535
MX
7679 }
7680
7681 /* if there are more bios still pending for this dio, just exit */
7682 if (!atomic_dec_and_test(&dip->pending_bios))
7683 goto out;
7684
9be3395b 7685 if (dip->errors) {
e65e1535 7686 bio_io_error(dip->orig_bio);
9be3395b
CM
7687 } else {
7688 set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
e65e1535
MX
7689 bio_endio(dip->orig_bio, 0);
7690 }
7691out:
7692 bio_put(bio);
7693}
7694
7695static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7696 u64 first_sector, gfp_t gfp_flags)
7697{
7698 int nr_vecs = bio_get_nr_vecs(bdev);
7699 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7700}
7701
c1dc0896
MX
7702static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
7703 struct inode *inode,
7704 struct btrfs_dio_private *dip,
7705 struct bio *bio,
7706 u64 file_offset)
7707{
7708 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7709 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
7710 int ret;
7711
7712 /*
7713 * We load all the csum data we need when we submit
7714 * the first bio to reduce the csum tree search and
7715 * contention.
7716 */
7717 if (dip->logical_offset == file_offset) {
7718 ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
7719 file_offset);
7720 if (ret)
7721 return ret;
7722 }
7723
7724 if (bio == dip->orig_bio)
7725 return 0;
7726
7727 file_offset -= dip->logical_offset;
7728 file_offset >>= inode->i_sb->s_blocksize_bits;
7729 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
7730
7731 return 0;
7732}
7733
e65e1535
MX
7734static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7735 int rw, u64 file_offset, int skip_sum,
c329861d 7736 int async_submit)
e65e1535 7737{
facc8a22 7738 struct btrfs_dio_private *dip = bio->bi_private;
e65e1535
MX
7739 int write = rw & REQ_WRITE;
7740 struct btrfs_root *root = BTRFS_I(inode)->root;
7741 int ret;
7742
b812ce28
JB
7743 if (async_submit)
7744 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7745
e65e1535 7746 bio_get(bio);
5fd02043
JB
7747
7748 if (!write) {
bfebd8b5
DS
7749 ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7750 BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
7751 if (ret)
7752 goto err;
7753 }
e65e1535 7754
1ae39938
JB
7755 if (skip_sum)
7756 goto map;
7757
7758 if (write && async_submit) {
e65e1535
MX
7759 ret = btrfs_wq_submit_bio(root->fs_info,
7760 inode, rw, bio, 0, 0,
7761 file_offset,
7762 __btrfs_submit_bio_start_direct_io,
7763 __btrfs_submit_bio_done);
7764 goto err;
1ae39938
JB
7765 } else if (write) {
7766 /*
7767 * If we aren't doing async submit, calculate the csum of the
7768 * bio now.
7769 */
7770 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7771 if (ret)
7772 goto err;
23ea8e5a 7773 } else {
c1dc0896
MX
7774 ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
7775 file_offset);
c2db1073
TI
7776 if (ret)
7777 goto err;
7778 }
1ae39938
JB
7779map:
7780 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
7781err:
7782 bio_put(bio);
7783 return ret;
7784}
7785
7786static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7787 int skip_sum)
7788{
7789 struct inode *inode = dip->inode;
7790 struct btrfs_root *root = BTRFS_I(inode)->root;
e65e1535
MX
7791 struct bio *bio;
7792 struct bio *orig_bio = dip->orig_bio;
7793 struct bio_vec *bvec = orig_bio->bi_io_vec;
4f024f37 7794 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535
MX
7795 u64 file_offset = dip->logical_offset;
7796 u64 submit_len = 0;
7797 u64 map_length;
7798 int nr_pages = 0;
23ea8e5a 7799 int ret;
1ae39938 7800 int async_submit = 0;
e65e1535 7801
4f024f37 7802 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7803 ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
e65e1535 7804 &map_length, NULL, 0);
7a5c3c9b 7805 if (ret)
e65e1535 7806 return -EIO;
facc8a22 7807
4f024f37 7808 if (map_length >= orig_bio->bi_iter.bi_size) {
02f57c7a 7809 bio = orig_bio;
c1dc0896 7810 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
7811 goto submit;
7812 }
7813
53b381b3
DW
7814 /* async crcs make it difficult to collect full stripe writes. */
7815 if (btrfs_get_alloc_profile(root, 1) &
7816 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7817 async_submit = 0;
7818 else
7819 async_submit = 1;
7820
02f57c7a
JB
7821 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7822 if (!bio)
7823 return -ENOMEM;
7a5c3c9b 7824
02f57c7a
JB
7825 bio->bi_private = dip;
7826 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7827 btrfs_io_bio(bio)->logical = file_offset;
02f57c7a
JB
7828 atomic_inc(&dip->pending_bios);
7829
e65e1535 7830 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
ee39b432 7831 if (map_length < submit_len + bvec->bv_len ||
e65e1535 7832 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
ee39b432 7833 bvec->bv_offset) < bvec->bv_len) {
e65e1535
MX
7834 /*
7835 * inc the count before we submit the bio so
7836 * we know the end IO handler won't happen before
7837 * we inc the count. Otherwise, the dip might get freed
7838 * before we're done setting it up
7839 */
7840 atomic_inc(&dip->pending_bios);
7841 ret = __btrfs_submit_dio_bio(bio, inode, rw,
7842 file_offset, skip_sum,
c329861d 7843 async_submit);
e65e1535
MX
7844 if (ret) {
7845 bio_put(bio);
7846 atomic_dec(&dip->pending_bios);
7847 goto out_err;
7848 }
7849
e65e1535
MX
7850 start_sector += submit_len >> 9;
7851 file_offset += submit_len;
7852
7853 submit_len = 0;
7854 nr_pages = 0;
7855
7856 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7857 start_sector, GFP_NOFS);
7858 if (!bio)
7859 goto out_err;
7860 bio->bi_private = dip;
7861 bio->bi_end_io = btrfs_end_dio_bio;
c1dc0896 7862 btrfs_io_bio(bio)->logical = file_offset;
e65e1535 7863
4f024f37 7864 map_length = orig_bio->bi_iter.bi_size;
53b381b3 7865 ret = btrfs_map_block(root->fs_info, rw,
3ec706c8 7866 start_sector << 9,
e65e1535
MX
7867 &map_length, NULL, 0);
7868 if (ret) {
7869 bio_put(bio);
7870 goto out_err;
7871 }
7872 } else {
7873 submit_len += bvec->bv_len;
67871254 7874 nr_pages++;
e65e1535
MX
7875 bvec++;
7876 }
7877 }
7878
02f57c7a 7879submit:
e65e1535 7880 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
c329861d 7881 async_submit);
e65e1535
MX
7882 if (!ret)
7883 return 0;
7884
7885 bio_put(bio);
7886out_err:
7887 dip->errors = 1;
7888 /*
7889 * before atomic variable goto zero, we must
7890 * make sure dip->errors is perceived to be set.
7891 */
4e857c58 7892 smp_mb__before_atomic();
e65e1535
MX
7893 if (atomic_dec_and_test(&dip->pending_bios))
7894 bio_io_error(dip->orig_bio);
7895
7896 /* bio_end_io() will handle error, so we needn't return it */
7897 return 0;
7898}
7899
9be3395b
CM
7900static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7901 struct inode *inode, loff_t file_offset)
4b46fce2
JB
7902{
7903 struct btrfs_root *root = BTRFS_I(inode)->root;
7904 struct btrfs_dio_private *dip;
9be3395b 7905 struct bio *io_bio;
23ea8e5a 7906 struct btrfs_io_bio *btrfs_bio;
4b46fce2 7907 int skip_sum;
7b6d91da 7908 int write = rw & REQ_WRITE;
4b46fce2
JB
7909 int ret = 0;
7910
7911 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7912
9be3395b 7913 io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
9be3395b
CM
7914 if (!io_bio) {
7915 ret = -ENOMEM;
7916 goto free_ordered;
7917 }
7918
c1dc0896 7919 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
7920 if (!dip) {
7921 ret = -ENOMEM;
9be3395b 7922 goto free_io_bio;
4b46fce2 7923 }
4b46fce2 7924
9be3395b 7925 dip->private = dio_bio->bi_private;
4b46fce2
JB
7926 dip->inode = inode;
7927 dip->logical_offset = file_offset;
4f024f37
KO
7928 dip->bytes = dio_bio->bi_iter.bi_size;
7929 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
9be3395b 7930 io_bio->bi_private = dip;
9be3395b
CM
7931 dip->orig_bio = io_bio;
7932 dip->dio_bio = dio_bio;
e65e1535 7933 atomic_set(&dip->pending_bios, 0);
c1dc0896
MX
7934 btrfs_bio = btrfs_io_bio(io_bio);
7935 btrfs_bio->logical = file_offset;
4b46fce2 7936
c1dc0896 7937 if (write) {
9be3395b 7938 io_bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 7939 } else {
9be3395b 7940 io_bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
7941 dip->subio_endio = btrfs_subio_endio_read;
7942 }
4b46fce2 7943
e65e1535
MX
7944 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7945 if (!ret)
eaf25d93 7946 return;
9be3395b 7947
23ea8e5a
MX
7948 if (btrfs_bio->end_io)
7949 btrfs_bio->end_io(btrfs_bio, ret);
9be3395b
CM
7950free_io_bio:
7951 bio_put(io_bio);
7952
4b46fce2
JB
7953free_ordered:
7954 /*
7955 * If this is a write, we need to clean up the reserved space and kill
7956 * the ordered extent.
7957 */
7958 if (write) {
7959 struct btrfs_ordered_extent *ordered;
955256f2 7960 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
7961 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7962 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7963 btrfs_free_reserved_extent(root, ordered->start,
e570fd27 7964 ordered->disk_len, 1);
4b46fce2
JB
7965 btrfs_put_ordered_extent(ordered);
7966 btrfs_put_ordered_extent(ordered);
7967 }
9be3395b 7968 bio_endio(dio_bio, ret);
4b46fce2
JB
7969}
7970
5a5f79b5 7971static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
28060d5d 7972 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
7973{
7974 int seg;
a1b75f7d 7975 int i;
5a5f79b5
CM
7976 unsigned blocksize_mask = root->sectorsize - 1;
7977 ssize_t retval = -EINVAL;
5a5f79b5
CM
7978
7979 if (offset & blocksize_mask)
7980 goto out;
7981
28060d5d
AV
7982 if (iov_iter_alignment(iter) & blocksize_mask)
7983 goto out;
a1b75f7d 7984
28060d5d
AV
7985 /* If this is a write we don't need to check anymore */
7986 if (rw & WRITE)
7987 return 0;
7988 /*
7989 * Check to make sure we don't have duplicate iov_base's in this
7990 * iovec, if so return EINVAL, otherwise we'll get csum errors
7991 * when reading back.
7992 */
7993 for (seg = 0; seg < iter->nr_segs; seg++) {
7994 for (i = seg + 1; i < iter->nr_segs; i++) {
7995 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
7996 goto out;
7997 }
5a5f79b5
CM
7998 }
7999 retval = 0;
8000out:
8001 return retval;
8002}
eb838e73 8003
16432985 8004static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
d8d3d94b 8005 struct iov_iter *iter, loff_t offset)
16432985 8006{
4b46fce2
JB
8007 struct file *file = iocb->ki_filp;
8008 struct inode *inode = file->f_mapping->host;
0934856d 8009 size_t count = 0;
2e60a51e 8010 int flags = 0;
38851cc1
MX
8011 bool wakeup = true;
8012 bool relock = false;
0934856d 8013 ssize_t ret;
4b46fce2 8014
28060d5d 8015 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iter, offset))
5a5f79b5 8016 return 0;
3f7c579c 8017
38851cc1 8018 atomic_inc(&inode->i_dio_count);
4e857c58 8019 smp_mb__after_atomic();
38851cc1 8020
0e267c44 8021 /*
41bd9ca4
MX
8022 * The generic stuff only does filemap_write_and_wait_range, which
8023 * isn't enough if we've written compressed pages to this area, so
8024 * we need to flush the dirty pages again to make absolutely sure
8025 * that any outstanding dirty pages are on disk.
0e267c44 8026 */
a6cbcd4a 8027 count = iov_iter_count(iter);
41bd9ca4
MX
8028 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8029 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8030 filemap_fdatawrite_range(inode->i_mapping, offset,
8031 offset + count - 1);
0e267c44 8032
0934856d 8033 if (rw & WRITE) {
38851cc1
MX
8034 /*
8035 * If the write DIO is beyond the EOF, we need update
8036 * the isize, but it is protected by i_mutex. So we can
8037 * not unlock the i_mutex at this case.
8038 */
8039 if (offset + count <= inode->i_size) {
8040 mutex_unlock(&inode->i_mutex);
8041 relock = true;
8042 }
0934856d
MX
8043 ret = btrfs_delalloc_reserve_space(inode, count);
8044 if (ret)
38851cc1 8045 goto out;
ee39b432
DS
8046 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8047 &BTRFS_I(inode)->runtime_flags)) {
38851cc1
MX
8048 inode_dio_done(inode);
8049 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8050 wakeup = false;
0934856d
MX
8051 }
8052
8053 ret = __blockdev_direct_IO(rw, iocb, inode,
8054 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
31b14039 8055 iter, offset, btrfs_get_blocks_direct, NULL,
2e60a51e 8056 btrfs_submit_direct, flags);
0934856d
MX
8057 if (rw & WRITE) {
8058 if (ret < 0 && ret != -EIOCBQUEUED)
8059 btrfs_delalloc_release_space(inode, count);
172a5049 8060 else if (ret >= 0 && (size_t)ret < count)
0934856d
MX
8061 btrfs_delalloc_release_space(inode,
8062 count - (size_t)ret);
172a5049
MX
8063 else
8064 btrfs_delalloc_release_metadata(inode, 0);
0934856d 8065 }
38851cc1 8066out:
2e60a51e
MX
8067 if (wakeup)
8068 inode_dio_done(inode);
38851cc1
MX
8069 if (relock)
8070 mutex_lock(&inode->i_mutex);
0934856d
MX
8071
8072 return ret;
16432985
CM
8073}
8074
05dadc09
TI
8075#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8076
1506fcc8
YS
8077static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8078 __u64 start, __u64 len)
8079{
05dadc09
TI
8080 int ret;
8081
8082 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8083 if (ret)
8084 return ret;
8085
ec29ed5b 8086 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8087}
8088
a52d9a80 8089int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8090{
d1310b2e
CM
8091 struct extent_io_tree *tree;
8092 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8093 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8094}
1832a6d5 8095
a52d9a80 8096static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8097{
d1310b2e 8098 struct extent_io_tree *tree;
b888db2b
CM
8099
8100
8101 if (current->flags & PF_MEMALLOC) {
8102 redirty_page_for_writepage(wbc, page);
8103 unlock_page(page);
8104 return 0;
8105 }
d1310b2e 8106 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 8107 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
8108}
8109
48a3b636
ES
8110static int btrfs_writepages(struct address_space *mapping,
8111 struct writeback_control *wbc)
b293f02e 8112{
d1310b2e 8113 struct extent_io_tree *tree;
771ed689 8114
d1310b2e 8115 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8116 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8117}
8118
3ab2fb5a
CM
8119static int
8120btrfs_readpages(struct file *file, struct address_space *mapping,
8121 struct list_head *pages, unsigned nr_pages)
8122{
d1310b2e
CM
8123 struct extent_io_tree *tree;
8124 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8125 return extent_readpages(tree, mapping, pages, nr_pages,
8126 btrfs_get_extent);
8127}
e6dcd2dc 8128static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8129{
d1310b2e
CM
8130 struct extent_io_tree *tree;
8131 struct extent_map_tree *map;
a52d9a80 8132 int ret;
8c2383c3 8133
d1310b2e
CM
8134 tree = &BTRFS_I(page->mapping->host)->io_tree;
8135 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8136 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8137 if (ret == 1) {
8138 ClearPagePrivate(page);
8139 set_page_private(page, 0);
8140 page_cache_release(page);
39279cc3 8141 }
a52d9a80 8142 return ret;
39279cc3
CM
8143}
8144
e6dcd2dc
CM
8145static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8146{
98509cfc
CM
8147 if (PageWriteback(page) || PageDirty(page))
8148 return 0;
b335b003 8149 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
8150}
8151
d47992f8
LC
8152static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8153 unsigned int length)
39279cc3 8154{
5fd02043 8155 struct inode *inode = page->mapping->host;
d1310b2e 8156 struct extent_io_tree *tree;
e6dcd2dc 8157 struct btrfs_ordered_extent *ordered;
2ac55d41 8158 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8159 u64 page_start = page_offset(page);
8160 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
131e404a 8161 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8162
8b62b72b
CM
8163 /*
8164 * we have the page locked, so new writeback can't start,
8165 * and the dirty bit won't be cleared while we are here.
8166 *
8167 * Wait for IO on this page so that we can safely clear
8168 * the PagePrivate2 bit and do ordered accounting
8169 */
e6dcd2dc 8170 wait_on_page_writeback(page);
8b62b72b 8171
5fd02043 8172 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8173 if (offset) {
8174 btrfs_releasepage(page, GFP_NOFS);
8175 return;
8176 }
131e404a
FDBM
8177
8178 if (!inode_evicting)
8179 lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8180 ordered = btrfs_lookup_ordered_extent(inode, page_start);
e6dcd2dc 8181 if (ordered) {
eb84ae03
CM
8182 /*
8183 * IO on this page will never be started, so we need
8184 * to account for any ordered extents now
8185 */
131e404a
FDBM
8186 if (!inode_evicting)
8187 clear_extent_bit(tree, page_start, page_end,
8188 EXTENT_DIRTY | EXTENT_DELALLOC |
8189 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8190 EXTENT_DEFRAG, 1, 0, &cached_state,
8191 GFP_NOFS);
8b62b72b
CM
8192 /*
8193 * whoever cleared the private bit is responsible
8194 * for the finish_ordered_io
8195 */
77cef2ec
JB
8196 if (TestClearPagePrivate2(page)) {
8197 struct btrfs_ordered_inode_tree *tree;
8198 u64 new_len;
8199
8200 tree = &BTRFS_I(inode)->ordered_tree;
8201
8202 spin_lock_irq(&tree->lock);
8203 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8204 new_len = page_start - ordered->file_offset;
8205 if (new_len < ordered->truncated_len)
8206 ordered->truncated_len = new_len;
8207 spin_unlock_irq(&tree->lock);
8208
8209 if (btrfs_dec_test_ordered_pending(inode, &ordered,
8210 page_start,
8211 PAGE_CACHE_SIZE, 1))
8212 btrfs_finish_ordered_io(ordered);
8b62b72b 8213 }
e6dcd2dc 8214 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8215 if (!inode_evicting) {
8216 cached_state = NULL;
8217 lock_extent_bits(tree, page_start, page_end, 0,
8218 &cached_state);
8219 }
8220 }
8221
8222 if (!inode_evicting) {
8223 clear_extent_bit(tree, page_start, page_end,
8224 EXTENT_LOCKED | EXTENT_DIRTY |
8225 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8226 EXTENT_DEFRAG, 1, 1,
8227 &cached_state, GFP_NOFS);
8228
8229 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 8230 }
e6dcd2dc 8231
4a096752 8232 ClearPageChecked(page);
9ad6b7bc 8233 if (PagePrivate(page)) {
9ad6b7bc
CM
8234 ClearPagePrivate(page);
8235 set_page_private(page, 0);
8236 page_cache_release(page);
8237 }
39279cc3
CM
8238}
8239
9ebefb18
CM
8240/*
8241 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8242 * called from a page fault handler when a page is first dirtied. Hence we must
8243 * be careful to check for EOF conditions here. We set the page up correctly
8244 * for a written page which means we get ENOSPC checking when writing into
8245 * holes and correct delalloc and unwritten extent mapping on filesystems that
8246 * support these features.
8247 *
8248 * We are not allowed to take the i_mutex here so we have to play games to
8249 * protect against truncate races as the page could now be beyond EOF. Because
8250 * vmtruncate() writes the inode size before removing pages, once we have the
8251 * page lock we can determine safely if the page is beyond EOF. If it is not
8252 * beyond EOF, then the page is guaranteed safe against truncation until we
8253 * unlock the page.
8254 */
c2ec175c 8255int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 8256{
c2ec175c 8257 struct page *page = vmf->page;
496ad9aa 8258 struct inode *inode = file_inode(vma->vm_file);
1832a6d5 8259 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
8260 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8261 struct btrfs_ordered_extent *ordered;
2ac55d41 8262 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
8263 char *kaddr;
8264 unsigned long zero_start;
9ebefb18 8265 loff_t size;
1832a6d5 8266 int ret;
9998eb70 8267 int reserved = 0;
a52d9a80 8268 u64 page_start;
e6dcd2dc 8269 u64 page_end;
9ebefb18 8270
b2b5ef5c 8271 sb_start_pagefault(inode->i_sb);
0ca1f7ce 8272 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
9998eb70 8273 if (!ret) {
e41f941a 8274 ret = file_update_time(vma->vm_file);
9998eb70
CM
8275 reserved = 1;
8276 }
56a76f82
NP
8277 if (ret) {
8278 if (ret == -ENOMEM)
8279 ret = VM_FAULT_OOM;
8280 else /* -ENOSPC, -EIO, etc */
8281 ret = VM_FAULT_SIGBUS;
9998eb70
CM
8282 if (reserved)
8283 goto out;
8284 goto out_noreserve;
56a76f82 8285 }
1832a6d5 8286
56a76f82 8287 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 8288again:
9ebefb18 8289 lock_page(page);
9ebefb18 8290 size = i_size_read(inode);
e6dcd2dc
CM
8291 page_start = page_offset(page);
8292 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 8293
9ebefb18 8294 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 8295 (page_start >= size)) {
9ebefb18
CM
8296 /* page got truncated out from underneath us */
8297 goto out_unlock;
8298 }
e6dcd2dc
CM
8299 wait_on_page_writeback(page);
8300
d0082371 8301 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
e6dcd2dc
CM
8302 set_page_extent_mapped(page);
8303
eb84ae03
CM
8304 /*
8305 * we can't set the delalloc bits if there are pending ordered
8306 * extents. Drop our locks and wait for them to finish
8307 */
e6dcd2dc
CM
8308 ordered = btrfs_lookup_ordered_extent(inode, page_start);
8309 if (ordered) {
2ac55d41
JB
8310 unlock_extent_cached(io_tree, page_start, page_end,
8311 &cached_state, GFP_NOFS);
e6dcd2dc 8312 unlock_page(page);
eb84ae03 8313 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
8314 btrfs_put_ordered_extent(ordered);
8315 goto again;
8316 }
8317
fbf19087
JB
8318 /*
8319 * XXX - page_mkwrite gets called every time the page is dirtied, even
8320 * if it was already dirty, so for space accounting reasons we need to
8321 * clear any delalloc bits for the range we are fixing to save. There
8322 * is probably a better way to do this, but for now keep consistent with
8323 * prepare_pages in the normal write path.
8324 */
2ac55d41 8325 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
9e8a4a8b
LB
8326 EXTENT_DIRTY | EXTENT_DELALLOC |
8327 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 8328 0, 0, &cached_state, GFP_NOFS);
fbf19087 8329
2ac55d41
JB
8330 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8331 &cached_state);
9ed74f2d 8332 if (ret) {
2ac55d41
JB
8333 unlock_extent_cached(io_tree, page_start, page_end,
8334 &cached_state, GFP_NOFS);
9ed74f2d
JB
8335 ret = VM_FAULT_SIGBUS;
8336 goto out_unlock;
8337 }
e6dcd2dc 8338 ret = 0;
9ebefb18
CM
8339
8340 /* page is wholly or partially inside EOF */
a52d9a80 8341 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 8342 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 8343 else
e6dcd2dc 8344 zero_start = PAGE_CACHE_SIZE;
9ebefb18 8345
e6dcd2dc
CM
8346 if (zero_start != PAGE_CACHE_SIZE) {
8347 kaddr = kmap(page);
8348 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8349 flush_dcache_page(page);
8350 kunmap(page);
8351 }
247e743c 8352 ClearPageChecked(page);
e6dcd2dc 8353 set_page_dirty(page);
50a9b214 8354 SetPageUptodate(page);
5a3f23d5 8355
257c62e1
CM
8356 BTRFS_I(inode)->last_trans = root->fs_info->generation;
8357 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 8358 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 8359
2ac55d41 8360 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
8361
8362out_unlock:
b2b5ef5c
JK
8363 if (!ret) {
8364 sb_end_pagefault(inode->i_sb);
50a9b214 8365 return VM_FAULT_LOCKED;
b2b5ef5c 8366 }
9ebefb18 8367 unlock_page(page);
1832a6d5 8368out:
ec39e180 8369 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
9998eb70 8370out_noreserve:
b2b5ef5c 8371 sb_end_pagefault(inode->i_sb);
9ebefb18
CM
8372 return ret;
8373}
8374
a41ad394 8375static int btrfs_truncate(struct inode *inode)
39279cc3
CM
8376{
8377 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 8378 struct btrfs_block_rsv *rsv;
a71754fc 8379 int ret = 0;
3893e33b 8380 int err = 0;
39279cc3 8381 struct btrfs_trans_handle *trans;
dbe674a9 8382 u64 mask = root->sectorsize - 1;
07127184 8383 u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
39279cc3 8384
0ef8b726
JB
8385 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8386 (u64)-1);
8387 if (ret)
8388 return ret;
39279cc3 8389
fcb80c2a
JB
8390 /*
8391 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
8392 * 3 things going on here
8393 *
8394 * 1) We need to reserve space for our orphan item and the space to
8395 * delete our orphan item. Lord knows we don't want to have a dangling
8396 * orphan item because we didn't reserve space to remove it.
8397 *
8398 * 2) We need to reserve space to update our inode.
8399 *
8400 * 3) We need to have something to cache all the space that is going to
8401 * be free'd up by the truncate operation, but also have some slack
8402 * space reserved in case it uses space during the truncate (thank you
8403 * very much snapshotting).
8404 *
8405 * And we need these to all be seperate. The fact is we can use alot of
8406 * space doing the truncate, and we have no earthly idea how much space
8407 * we will use, so we need the truncate reservation to be seperate so it
8408 * doesn't end up using space reserved for updating the inode or
8409 * removing the orphan item. We also need to be able to stop the
8410 * transaction and start a new one, which means we need to be able to
8411 * update the inode several times, and we have no idea of knowing how
8412 * many times that will be, so we can't just reserve 1 item for the
8413 * entirety of the opration, so that has to be done seperately as well.
8414 * Then there is the orphan item, which does indeed need to be held on
8415 * to for the whole operation, and we need nobody to touch this reserved
8416 * space except the orphan code.
8417 *
8418 * So that leaves us with
8419 *
8420 * 1) root->orphan_block_rsv - for the orphan deletion.
8421 * 2) rsv - for the truncate reservation, which we will steal from the
8422 * transaction reservation.
8423 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8424 * updating the inode.
8425 */
66d8f3dd 8426 rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
8427 if (!rsv)
8428 return -ENOMEM;
4a338542 8429 rsv->size = min_size;
ca7e70f5 8430 rsv->failfast = 1;
f0cd846e 8431
907cbceb 8432 /*
07127184 8433 * 1 for the truncate slack space
907cbceb
JB
8434 * 1 for updating the inode.
8435 */
f3fe820c 8436 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
8437 if (IS_ERR(trans)) {
8438 err = PTR_ERR(trans);
8439 goto out;
8440 }
f0cd846e 8441
907cbceb
JB
8442 /* Migrate the slack space for the truncate to our reserve */
8443 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8444 min_size);
fcb80c2a 8445 BUG_ON(ret);
f0cd846e 8446
5dc562c5
JB
8447 /*
8448 * So if we truncate and then write and fsync we normally would just
8449 * write the extents that changed, which is a problem if we need to
8450 * first truncate that entire inode. So set this flag so we write out
8451 * all of the extents in the inode to the sync log so we're completely
8452 * safe.
8453 */
8454 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 8455 trans->block_rsv = rsv;
907cbceb 8456
8082510e
YZ
8457 while (1) {
8458 ret = btrfs_truncate_inode_items(trans, root, inode,
8459 inode->i_size,
8460 BTRFS_EXTENT_DATA_KEY);
ca7e70f5 8461 if (ret != -ENOSPC) {
3893e33b 8462 err = ret;
8082510e 8463 break;
3893e33b 8464 }
39279cc3 8465
fcb80c2a 8466 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 8467 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
8468 if (ret) {
8469 err = ret;
8470 break;
8471 }
ca7e70f5 8472
8082510e 8473 btrfs_end_transaction(trans, root);
b53d3f5d 8474 btrfs_btree_balance_dirty(root);
ca7e70f5
JB
8475
8476 trans = btrfs_start_transaction(root, 2);
8477 if (IS_ERR(trans)) {
8478 ret = err = PTR_ERR(trans);
8479 trans = NULL;
8480 break;
8481 }
8482
8483 ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8484 rsv, min_size);
8485 BUG_ON(ret); /* shouldn't happen */
8486 trans->block_rsv = rsv;
8082510e
YZ
8487 }
8488
8489 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 8490 trans->block_rsv = root->orphan_block_rsv;
8082510e 8491 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
8492 if (ret)
8493 err = ret;
8082510e
YZ
8494 }
8495
917c16b2
CM
8496 if (trans) {
8497 trans->block_rsv = &root->fs_info->trans_block_rsv;
8498 ret = btrfs_update_inode(trans, root, inode);
8499 if (ret && !err)
8500 err = ret;
7b128766 8501
7ad85bb7 8502 ret = btrfs_end_transaction(trans, root);
b53d3f5d 8503 btrfs_btree_balance_dirty(root);
917c16b2 8504 }
fcb80c2a
JB
8505
8506out:
8507 btrfs_free_block_rsv(root, rsv);
8508
3893e33b
JB
8509 if (ret && !err)
8510 err = ret;
a41ad394 8511
3893e33b 8512 return err;
39279cc3
CM
8513}
8514
d352ac68
CM
8515/*
8516 * create a new subvolume directory/inode (helper for the ioctl).
8517 */
d2fb3437 8518int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
8519 struct btrfs_root *new_root,
8520 struct btrfs_root *parent_root,
8521 u64 new_dirid)
39279cc3 8522{
39279cc3 8523 struct inode *inode;
76dda93c 8524 int err;
00e4e6b3 8525 u64 index = 0;
39279cc3 8526
12fc9d09
FA
8527 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8528 new_dirid, new_dirid,
8529 S_IFDIR | (~current_umask() & S_IRWXUGO),
8530 &index);
54aa1f4d 8531 if (IS_ERR(inode))
f46b5a66 8532 return PTR_ERR(inode);
39279cc3
CM
8533 inode->i_op = &btrfs_dir_inode_operations;
8534 inode->i_fop = &btrfs_dir_file_operations;
8535
bfe86848 8536 set_nlink(inode, 1);
dbe674a9 8537 btrfs_i_size_write(inode, 0);
b0d5d10f 8538 unlock_new_inode(inode);
3b96362c 8539
63541927
FDBM
8540 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8541 if (err)
8542 btrfs_err(new_root->fs_info,
351fd353 8543 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
8544 new_root->root_key.objectid, err);
8545
76dda93c 8546 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 8547
76dda93c 8548 iput(inode);
ce598979 8549 return err;
39279cc3
CM
8550}
8551
39279cc3
CM
8552struct inode *btrfs_alloc_inode(struct super_block *sb)
8553{
8554 struct btrfs_inode *ei;
2ead6ae7 8555 struct inode *inode;
39279cc3
CM
8556
8557 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8558 if (!ei)
8559 return NULL;
2ead6ae7
YZ
8560
8561 ei->root = NULL;
2ead6ae7 8562 ei->generation = 0;
15ee9bc7 8563 ei->last_trans = 0;
257c62e1 8564 ei->last_sub_trans = 0;
e02119d5 8565 ei->logged_trans = 0;
2ead6ae7 8566 ei->delalloc_bytes = 0;
47059d93 8567 ei->defrag_bytes = 0;
2ead6ae7
YZ
8568 ei->disk_i_size = 0;
8569 ei->flags = 0;
7709cde3 8570 ei->csum_bytes = 0;
2ead6ae7 8571 ei->index_cnt = (u64)-1;
67de1176 8572 ei->dir_index = 0;
2ead6ae7 8573 ei->last_unlink_trans = 0;
46d8bc34 8574 ei->last_log_commit = 0;
2ead6ae7 8575
9e0baf60
JB
8576 spin_lock_init(&ei->lock);
8577 ei->outstanding_extents = 0;
8578 ei->reserved_extents = 0;
2ead6ae7 8579
72ac3c0d 8580 ei->runtime_flags = 0;
261507a0 8581 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 8582
16cdcec7
MX
8583 ei->delayed_node = NULL;
8584
2ead6ae7 8585 inode = &ei->vfs_inode;
a8067e02 8586 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
8587 extent_io_tree_init(&ei->io_tree, &inode->i_data);
8588 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
0b32f4bb
JB
8589 ei->io_tree.track_uptodate = 1;
8590 ei->io_failure_tree.track_uptodate = 1;
b812ce28 8591 atomic_set(&ei->sync_writers, 0);
2ead6ae7 8592 mutex_init(&ei->log_mutex);
f248679e 8593 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 8594 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 8595 INIT_LIST_HEAD(&ei->delalloc_inodes);
2ead6ae7
YZ
8596 RB_CLEAR_NODE(&ei->rb_node);
8597
8598 return inode;
39279cc3
CM
8599}
8600
aaedb55b
JB
8601#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8602void btrfs_test_destroy_inode(struct inode *inode)
8603{
8604 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8605 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8606}
8607#endif
8608
fa0d7e3d
NP
8609static void btrfs_i_callback(struct rcu_head *head)
8610{
8611 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
8612 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8613}
8614
39279cc3
CM
8615void btrfs_destroy_inode(struct inode *inode)
8616{
e6dcd2dc 8617 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
8618 struct btrfs_root *root = BTRFS_I(inode)->root;
8619
b3d9b7a3 8620 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 8621 WARN_ON(inode->i_data.nrpages);
9e0baf60
JB
8622 WARN_ON(BTRFS_I(inode)->outstanding_extents);
8623 WARN_ON(BTRFS_I(inode)->reserved_extents);
7709cde3
JB
8624 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8625 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 8626 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 8627
a6dbd429
JB
8628 /*
8629 * This can happen where we create an inode, but somebody else also
8630 * created the same inode and we need to destroy the one we already
8631 * created.
8632 */
8633 if (!root)
8634 goto free;
8635
8a35d95f
JB
8636 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8637 &BTRFS_I(inode)->runtime_flags)) {
c2cf52eb 8638 btrfs_info(root->fs_info, "inode %llu still on the orphan list",
c1c9ff7c 8639 btrfs_ino(inode));
8a35d95f 8640 atomic_dec(&root->orphan_inodes);
7b128766 8641 }
7b128766 8642
d397712b 8643 while (1) {
e6dcd2dc
CM
8644 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8645 if (!ordered)
8646 break;
8647 else {
c2cf52eb 8648 btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
c1c9ff7c 8649 ordered->file_offset, ordered->len);
e6dcd2dc
CM
8650 btrfs_remove_ordered_extent(inode, ordered);
8651 btrfs_put_ordered_extent(ordered);
8652 btrfs_put_ordered_extent(ordered);
8653 }
8654 }
5d4f98a2 8655 inode_tree_del(inode);
5b21f2ed 8656 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 8657free:
fa0d7e3d 8658 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
8659}
8660
45321ac5 8661int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
8662{
8663 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 8664
6379ef9f
NA
8665 if (root == NULL)
8666 return 1;
8667
fa6ac876 8668 /* the snap/subvol tree is on deleting */
69e9c6c6 8669 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 8670 return 1;
76dda93c 8671 else
45321ac5 8672 return generic_drop_inode(inode);
76dda93c
YZ
8673}
8674
0ee0fda0 8675static void init_once(void *foo)
39279cc3
CM
8676{
8677 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8678
8679 inode_init_once(&ei->vfs_inode);
8680}
8681
8682void btrfs_destroy_cachep(void)
8683{
8c0a8537
KS
8684 /*
8685 * Make sure all delayed rcu free inodes are flushed before we
8686 * destroy cache.
8687 */
8688 rcu_barrier();
39279cc3
CM
8689 if (btrfs_inode_cachep)
8690 kmem_cache_destroy(btrfs_inode_cachep);
8691 if (btrfs_trans_handle_cachep)
8692 kmem_cache_destroy(btrfs_trans_handle_cachep);
8693 if (btrfs_transaction_cachep)
8694 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
8695 if (btrfs_path_cachep)
8696 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
8697 if (btrfs_free_space_cachep)
8698 kmem_cache_destroy(btrfs_free_space_cachep);
8ccf6f19
MX
8699 if (btrfs_delalloc_work_cachep)
8700 kmem_cache_destroy(btrfs_delalloc_work_cachep);
39279cc3
CM
8701}
8702
8703int btrfs_init_cachep(void)
8704{
837e1972 8705 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6
CH
8706 sizeof(struct btrfs_inode), 0,
8707 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
8708 if (!btrfs_inode_cachep)
8709 goto fail;
9601e3f6 8710
837e1972 8711 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6
CH
8712 sizeof(struct btrfs_trans_handle), 0,
8713 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8714 if (!btrfs_trans_handle_cachep)
8715 goto fail;
9601e3f6 8716
837e1972 8717 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9601e3f6
CH
8718 sizeof(struct btrfs_transaction), 0,
8719 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8720 if (!btrfs_transaction_cachep)
8721 goto fail;
9601e3f6 8722
837e1972 8723 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6
CH
8724 sizeof(struct btrfs_path), 0,
8725 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
8726 if (!btrfs_path_cachep)
8727 goto fail;
9601e3f6 8728
837e1972 8729 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982
JB
8730 sizeof(struct btrfs_free_space), 0,
8731 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8732 if (!btrfs_free_space_cachep)
8733 goto fail;
8734
8ccf6f19
MX
8735 btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8736 sizeof(struct btrfs_delalloc_work), 0,
8737 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8738 NULL);
8739 if (!btrfs_delalloc_work_cachep)
8740 goto fail;
8741
39279cc3
CM
8742 return 0;
8743fail:
8744 btrfs_destroy_cachep();
8745 return -ENOMEM;
8746}
8747
8748static int btrfs_getattr(struct vfsmount *mnt,
8749 struct dentry *dentry, struct kstat *stat)
8750{
df0af1a5 8751 u64 delalloc_bytes;
39279cc3 8752 struct inode *inode = dentry->d_inode;
fadc0d8b
DS
8753 u32 blocksize = inode->i_sb->s_blocksize;
8754
39279cc3 8755 generic_fillattr(inode, stat);
0ee5dc67 8756 stat->dev = BTRFS_I(inode)->root->anon_dev;
d6667462 8757 stat->blksize = PAGE_CACHE_SIZE;
df0af1a5
MX
8758
8759 spin_lock(&BTRFS_I(inode)->lock);
8760 delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8761 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 8762 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 8763 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
8764 return 0;
8765}
8766
d397712b
CM
8767static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8768 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
8769{
8770 struct btrfs_trans_handle *trans;
8771 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 8772 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
8773 struct inode *new_inode = new_dentry->d_inode;
8774 struct inode *old_inode = old_dentry->d_inode;
8775 struct timespec ctime = CURRENT_TIME;
00e4e6b3 8776 u64 index = 0;
4df27c4d 8777 u64 root_objectid;
39279cc3 8778 int ret;
33345d01 8779 u64 old_ino = btrfs_ino(old_inode);
39279cc3 8780
33345d01 8781 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
8782 return -EPERM;
8783
4df27c4d 8784 /* we only allow rename subvolume link between subvolumes */
33345d01 8785 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
8786 return -EXDEV;
8787
33345d01
LZ
8788 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8789 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 8790 return -ENOTEMPTY;
5f39d397 8791
4df27c4d
YZ
8792 if (S_ISDIR(old_inode->i_mode) && new_inode &&
8793 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8794 return -ENOTEMPTY;
9c52057c
CM
8795
8796
8797 /* check for collisions, even if the name isn't there */
4871c158 8798 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
8799 new_dentry->d_name.name,
8800 new_dentry->d_name.len);
8801
8802 if (ret) {
8803 if (ret == -EEXIST) {
8804 /* we shouldn't get
8805 * eexist without a new_inode */
fae7f21c 8806 if (WARN_ON(!new_inode)) {
9c52057c
CM
8807 return ret;
8808 }
8809 } else {
8810 /* maybe -EOVERFLOW */
8811 return ret;
8812 }
8813 }
8814 ret = 0;
8815
5a3f23d5 8816 /*
8d875f95
CM
8817 * we're using rename to replace one file with another. Start IO on it
8818 * now so we don't add too much work to the end of the transaction
5a3f23d5 8819 */
8d875f95 8820 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
8821 filemap_flush(old_inode->i_mapping);
8822
76dda93c 8823 /* close the racy window with snapshot create/destroy ioctl */
33345d01 8824 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8825 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
8826 /*
8827 * We want to reserve the absolute worst case amount of items. So if
8828 * both inodes are subvols and we need to unlink them then that would
8829 * require 4 item modifications, but if they are both normal inodes it
8830 * would require 5 item modifications, so we'll assume their normal
8831 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8832 * should cover the worst case number of items we'll modify.
8833 */
6e137ed3 8834 trans = btrfs_start_transaction(root, 11);
b44c59a8
JL
8835 if (IS_ERR(trans)) {
8836 ret = PTR_ERR(trans);
8837 goto out_notrans;
8838 }
76dda93c 8839
4df27c4d
YZ
8840 if (dest != root)
8841 btrfs_record_root_in_trans(trans, dest);
5f39d397 8842
a5719521
YZ
8843 ret = btrfs_set_inode_index(new_dir, &index);
8844 if (ret)
8845 goto out_fail;
5a3f23d5 8846
67de1176 8847 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 8848 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 8849 /* force full log commit if subvolume involved. */
995946dd 8850 btrfs_set_log_full_commit(root->fs_info, trans);
4df27c4d 8851 } else {
a5719521
YZ
8852 ret = btrfs_insert_inode_ref(trans, dest,
8853 new_dentry->d_name.name,
8854 new_dentry->d_name.len,
33345d01
LZ
8855 old_ino,
8856 btrfs_ino(new_dir), index);
a5719521
YZ
8857 if (ret)
8858 goto out_fail;
4df27c4d
YZ
8859 /*
8860 * this is an ugly little race, but the rename is required
8861 * to make sure that if we crash, the inode is either at the
8862 * old name or the new one. pinning the log transaction lets
8863 * us make sure we don't allow a log commit to come in after
8864 * we unlink the name but before we add the new name back in.
8865 */
8866 btrfs_pin_log_trans(root);
8867 }
5a3f23d5 8868
0c4d2d95
JB
8869 inode_inc_iversion(old_dir);
8870 inode_inc_iversion(new_dir);
8871 inode_inc_iversion(old_inode);
39279cc3
CM
8872 old_dir->i_ctime = old_dir->i_mtime = ctime;
8873 new_dir->i_ctime = new_dir->i_mtime = ctime;
8874 old_inode->i_ctime = ctime;
5f39d397 8875
12fcfd22
CM
8876 if (old_dentry->d_parent != new_dentry->d_parent)
8877 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8878
33345d01 8879 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
8880 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8881 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8882 old_dentry->d_name.name,
8883 old_dentry->d_name.len);
8884 } else {
92986796
AV
8885 ret = __btrfs_unlink_inode(trans, root, old_dir,
8886 old_dentry->d_inode,
8887 old_dentry->d_name.name,
8888 old_dentry->d_name.len);
8889 if (!ret)
8890 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 8891 }
79787eaa
JM
8892 if (ret) {
8893 btrfs_abort_transaction(trans, root, ret);
8894 goto out_fail;
8895 }
39279cc3
CM
8896
8897 if (new_inode) {
0c4d2d95 8898 inode_inc_iversion(new_inode);
39279cc3 8899 new_inode->i_ctime = CURRENT_TIME;
33345d01 8900 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
8901 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8902 root_objectid = BTRFS_I(new_inode)->location.objectid;
8903 ret = btrfs_unlink_subvol(trans, dest, new_dir,
8904 root_objectid,
8905 new_dentry->d_name.name,
8906 new_dentry->d_name.len);
8907 BUG_ON(new_inode->i_nlink == 0);
8908 } else {
8909 ret = btrfs_unlink_inode(trans, dest, new_dir,
8910 new_dentry->d_inode,
8911 new_dentry->d_name.name,
8912 new_dentry->d_name.len);
8913 }
4ef31a45 8914 if (!ret && new_inode->i_nlink == 0)
e02119d5 8915 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
79787eaa
JM
8916 if (ret) {
8917 btrfs_abort_transaction(trans, root, ret);
8918 goto out_fail;
8919 }
39279cc3 8920 }
aec7477b 8921
4df27c4d
YZ
8922 ret = btrfs_add_link(trans, new_dir, old_inode,
8923 new_dentry->d_name.name,
a5719521 8924 new_dentry->d_name.len, 0, index);
79787eaa
JM
8925 if (ret) {
8926 btrfs_abort_transaction(trans, root, ret);
8927 goto out_fail;
8928 }
39279cc3 8929
67de1176
MX
8930 if (old_inode->i_nlink == 1)
8931 BTRFS_I(old_inode)->dir_index = index;
8932
33345d01 8933 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
10d9f309 8934 struct dentry *parent = new_dentry->d_parent;
6a912213 8935 btrfs_log_new_name(trans, old_inode, old_dir, parent);
4df27c4d
YZ
8936 btrfs_end_log_trans(root);
8937 }
39279cc3 8938out_fail:
7ad85bb7 8939 btrfs_end_transaction(trans, root);
b44c59a8 8940out_notrans:
33345d01 8941 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 8942 up_read(&root->fs_info->subvol_sem);
9ed74f2d 8943
39279cc3
CM
8944 return ret;
8945}
8946
80ace85c
MS
8947static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
8948 struct inode *new_dir, struct dentry *new_dentry,
8949 unsigned int flags)
8950{
8951 if (flags & ~RENAME_NOREPLACE)
8952 return -EINVAL;
8953
8954 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
8955}
8956
8ccf6f19
MX
8957static void btrfs_run_delalloc_work(struct btrfs_work *work)
8958{
8959 struct btrfs_delalloc_work *delalloc_work;
9f23e289 8960 struct inode *inode;
8ccf6f19
MX
8961
8962 delalloc_work = container_of(work, struct btrfs_delalloc_work,
8963 work);
9f23e289
JB
8964 inode = delalloc_work->inode;
8965 if (delalloc_work->wait) {
8966 btrfs_wait_ordered_range(inode, 0, (u64)-1);
8967 } else {
8968 filemap_flush(inode->i_mapping);
8969 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8970 &BTRFS_I(inode)->runtime_flags))
8971 filemap_flush(inode->i_mapping);
8972 }
8ccf6f19
MX
8973
8974 if (delalloc_work->delay_iput)
9f23e289 8975 btrfs_add_delayed_iput(inode);
8ccf6f19 8976 else
9f23e289 8977 iput(inode);
8ccf6f19
MX
8978 complete(&delalloc_work->completion);
8979}
8980
8981struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8982 int wait, int delay_iput)
8983{
8984 struct btrfs_delalloc_work *work;
8985
8986 work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8987 if (!work)
8988 return NULL;
8989
8990 init_completion(&work->completion);
8991 INIT_LIST_HEAD(&work->list);
8992 work->inode = inode;
8993 work->wait = wait;
8994 work->delay_iput = delay_iput;
9e0af237
LB
8995 WARN_ON_ONCE(!inode);
8996 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
8997 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
8998
8999 return work;
9000}
9001
9002void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9003{
9004 wait_for_completion(&work->completion);
9005 kmem_cache_free(btrfs_delalloc_work_cachep, work);
9006}
9007
d352ac68
CM
9008/*
9009 * some fairly slow code that needs optimization. This walks the list
9010 * of all the inodes with pending delalloc and forces them to disk.
9011 */
6c255e67
MX
9012static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9013 int nr)
ea8c2819 9014{
ea8c2819 9015 struct btrfs_inode *binode;
5b21f2ed 9016 struct inode *inode;
8ccf6f19
MX
9017 struct btrfs_delalloc_work *work, *next;
9018 struct list_head works;
1eafa6c7 9019 struct list_head splice;
8ccf6f19 9020 int ret = 0;
ea8c2819 9021
8ccf6f19 9022 INIT_LIST_HEAD(&works);
1eafa6c7 9023 INIT_LIST_HEAD(&splice);
63607cc8 9024
573bfb72 9025 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
9026 spin_lock(&root->delalloc_lock);
9027 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
9028 while (!list_empty(&splice)) {
9029 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 9030 delalloc_inodes);
1eafa6c7 9031
eb73c1b7
MX
9032 list_move_tail(&binode->delalloc_inodes,
9033 &root->delalloc_inodes);
5b21f2ed 9034 inode = igrab(&binode->vfs_inode);
df0af1a5 9035 if (!inode) {
eb73c1b7 9036 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 9037 continue;
df0af1a5 9038 }
eb73c1b7 9039 spin_unlock(&root->delalloc_lock);
1eafa6c7
MX
9040
9041 work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
5d99a998 9042 if (!work) {
f4ab9ea7
JB
9043 if (delay_iput)
9044 btrfs_add_delayed_iput(inode);
9045 else
9046 iput(inode);
1eafa6c7 9047 ret = -ENOMEM;
a1ecaabb 9048 goto out;
5b21f2ed 9049 }
1eafa6c7 9050 list_add_tail(&work->list, &works);
a44903ab
QW
9051 btrfs_queue_work(root->fs_info->flush_workers,
9052 &work->work);
6c255e67
MX
9053 ret++;
9054 if (nr != -1 && ret >= nr)
a1ecaabb 9055 goto out;
5b21f2ed 9056 cond_resched();
eb73c1b7 9057 spin_lock(&root->delalloc_lock);
ea8c2819 9058 }
eb73c1b7 9059 spin_unlock(&root->delalloc_lock);
8c8bee1d 9060
a1ecaabb 9061out:
eb73c1b7
MX
9062 list_for_each_entry_safe(work, next, &works, list) {
9063 list_del_init(&work->list);
9064 btrfs_wait_and_free_delalloc_work(work);
9065 }
9066
9067 if (!list_empty_careful(&splice)) {
9068 spin_lock(&root->delalloc_lock);
9069 list_splice_tail(&splice, &root->delalloc_inodes);
9070 spin_unlock(&root->delalloc_lock);
9071 }
573bfb72 9072 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
9073 return ret;
9074}
1eafa6c7 9075
eb73c1b7
MX
9076int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9077{
9078 int ret;
1eafa6c7 9079
2c21b4d7 9080 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
eb73c1b7
MX
9081 return -EROFS;
9082
6c255e67
MX
9083 ret = __start_delalloc_inodes(root, delay_iput, -1);
9084 if (ret > 0)
9085 ret = 0;
eb73c1b7
MX
9086 /*
9087 * the filemap_flush will queue IO into the worker threads, but
8c8bee1d
CM
9088 * we have to make sure the IO is actually started and that
9089 * ordered extents get created before we return
9090 */
9091 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 9092 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 9093 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 9094 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
9095 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9096 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
9097 }
9098 atomic_dec(&root->fs_info->async_submit_draining);
eb73c1b7
MX
9099 return ret;
9100}
9101
6c255e67
MX
9102int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9103 int nr)
eb73c1b7
MX
9104{
9105 struct btrfs_root *root;
9106 struct list_head splice;
9107 int ret;
9108
2c21b4d7 9109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
9110 return -EROFS;
9111
9112 INIT_LIST_HEAD(&splice);
9113
573bfb72 9114 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
9115 spin_lock(&fs_info->delalloc_root_lock);
9116 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 9117 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
9118 root = list_first_entry(&splice, struct btrfs_root,
9119 delalloc_root);
9120 root = btrfs_grab_fs_root(root);
9121 BUG_ON(!root);
9122 list_move_tail(&root->delalloc_root,
9123 &fs_info->delalloc_roots);
9124 spin_unlock(&fs_info->delalloc_root_lock);
9125
6c255e67 9126 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 9127 btrfs_put_fs_root(root);
6c255e67 9128 if (ret < 0)
eb73c1b7
MX
9129 goto out;
9130
6c255e67
MX
9131 if (nr != -1) {
9132 nr -= ret;
9133 WARN_ON(nr < 0);
9134 }
eb73c1b7 9135 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 9136 }
eb73c1b7 9137 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9138
6c255e67 9139 ret = 0;
eb73c1b7
MX
9140 atomic_inc(&fs_info->async_submit_draining);
9141 while (atomic_read(&fs_info->nr_async_submits) ||
9142 atomic_read(&fs_info->async_delalloc_pages)) {
9143 wait_event(fs_info->async_submit_wait,
9144 (atomic_read(&fs_info->nr_async_submits) == 0 &&
9145 atomic_read(&fs_info->async_delalloc_pages) == 0));
9146 }
9147 atomic_dec(&fs_info->async_submit_draining);
eb73c1b7 9148out:
1eafa6c7 9149 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
9150 spin_lock(&fs_info->delalloc_root_lock);
9151 list_splice_tail(&splice, &fs_info->delalloc_roots);
9152 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 9153 }
573bfb72 9154 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 9155 return ret;
ea8c2819
CM
9156}
9157
39279cc3
CM
9158static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9159 const char *symname)
9160{
9161 struct btrfs_trans_handle *trans;
9162 struct btrfs_root *root = BTRFS_I(dir)->root;
9163 struct btrfs_path *path;
9164 struct btrfs_key key;
1832a6d5 9165 struct inode *inode = NULL;
39279cc3
CM
9166 int err;
9167 int drop_inode = 0;
9168 u64 objectid;
67871254 9169 u64 index = 0;
39279cc3
CM
9170 int name_len;
9171 int datasize;
5f39d397 9172 unsigned long ptr;
39279cc3 9173 struct btrfs_file_extent_item *ei;
5f39d397 9174 struct extent_buffer *leaf;
39279cc3 9175
f06becc4 9176 name_len = strlen(symname);
39279cc3
CM
9177 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9178 return -ENAMETOOLONG;
1832a6d5 9179
9ed74f2d
JB
9180 /*
9181 * 2 items for inode item and ref
9182 * 2 items for dir items
9183 * 1 item for xattr if selinux is on
9184 */
a22285a6
YZ
9185 trans = btrfs_start_transaction(root, 5);
9186 if (IS_ERR(trans))
9187 return PTR_ERR(trans);
1832a6d5 9188
581bb050
LZ
9189 err = btrfs_find_free_ino(root, &objectid);
9190 if (err)
9191 goto out_unlock;
9192
aec7477b 9193 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 9194 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 9195 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
9196 if (IS_ERR(inode)) {
9197 err = PTR_ERR(inode);
39279cc3 9198 goto out_unlock;
7cf96da3 9199 }
39279cc3 9200
ad19db71
CS
9201 /*
9202 * If the active LSM wants to access the inode during
9203 * d_instantiate it needs these. Smack checks to see
9204 * if the filesystem supports xattrs by looking at the
9205 * ops vector.
9206 */
9207 inode->i_fop = &btrfs_file_operations;
9208 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f
CM
9209 inode->i_mapping->a_ops = &btrfs_aops;
9210 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9211 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9212
9213 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9214 if (err)
9215 goto out_unlock_inode;
ad19db71 9216
a1b075d2 9217 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3 9218 if (err)
b0d5d10f 9219 goto out_unlock_inode;
39279cc3
CM
9220
9221 path = btrfs_alloc_path();
d8926bb3
MF
9222 if (!path) {
9223 err = -ENOMEM;
b0d5d10f 9224 goto out_unlock_inode;
d8926bb3 9225 }
33345d01 9226 key.objectid = btrfs_ino(inode);
39279cc3 9227 key.offset = 0;
962a298f 9228 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
9229 datasize = btrfs_file_extent_calc_inline_size(name_len);
9230 err = btrfs_insert_empty_item(trans, root, path, &key,
9231 datasize);
54aa1f4d 9232 if (err) {
b0839166 9233 btrfs_free_path(path);
b0d5d10f 9234 goto out_unlock_inode;
54aa1f4d 9235 }
5f39d397
CM
9236 leaf = path->nodes[0];
9237 ei = btrfs_item_ptr(leaf, path->slots[0],
9238 struct btrfs_file_extent_item);
9239 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9240 btrfs_set_file_extent_type(leaf, ei,
39279cc3 9241 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
9242 btrfs_set_file_extent_encryption(leaf, ei, 0);
9243 btrfs_set_file_extent_compression(leaf, ei, 0);
9244 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9245 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9246
39279cc3 9247 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
9248 write_extent_buffer(leaf, symname, ptr, name_len);
9249 btrfs_mark_buffer_dirty(leaf);
39279cc3 9250 btrfs_free_path(path);
5f39d397 9251
39279cc3
CM
9252 inode->i_op = &btrfs_symlink_inode_operations;
9253 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 9254 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 9255 inode_set_bytes(inode, name_len);
f06becc4 9256 btrfs_i_size_write(inode, name_len);
54aa1f4d 9257 err = btrfs_update_inode(trans, root, inode);
b0d5d10f 9258 if (err) {
54aa1f4d 9259 drop_inode = 1;
b0d5d10f
CM
9260 goto out_unlock_inode;
9261 }
9262
9263 unlock_new_inode(inode);
9264 d_instantiate(dentry, inode);
39279cc3
CM
9265
9266out_unlock:
7ad85bb7 9267 btrfs_end_transaction(trans, root);
39279cc3
CM
9268 if (drop_inode) {
9269 inode_dec_link_count(inode);
9270 iput(inode);
9271 }
b53d3f5d 9272 btrfs_btree_balance_dirty(root);
39279cc3 9273 return err;
b0d5d10f
CM
9274
9275out_unlock_inode:
9276 drop_inode = 1;
9277 unlock_new_inode(inode);
9278 goto out_unlock;
39279cc3 9279}
16432985 9280
0af3d00b
JB
9281static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9282 u64 start, u64 num_bytes, u64 min_size,
9283 loff_t actual_len, u64 *alloc_hint,
9284 struct btrfs_trans_handle *trans)
d899e052 9285{
5dc562c5
JB
9286 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9287 struct extent_map *em;
d899e052
YZ
9288 struct btrfs_root *root = BTRFS_I(inode)->root;
9289 struct btrfs_key ins;
d899e052 9290 u64 cur_offset = start;
55a61d1d 9291 u64 i_size;
154ea289 9292 u64 cur_bytes;
d899e052 9293 int ret = 0;
0af3d00b 9294 bool own_trans = true;
d899e052 9295
0af3d00b
JB
9296 if (trans)
9297 own_trans = false;
d899e052 9298 while (num_bytes > 0) {
0af3d00b
JB
9299 if (own_trans) {
9300 trans = btrfs_start_transaction(root, 3);
9301 if (IS_ERR(trans)) {
9302 ret = PTR_ERR(trans);
9303 break;
9304 }
5a303d5d
YZ
9305 }
9306
154ea289
CM
9307 cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9308 cur_bytes = max(cur_bytes, min_size);
00361589 9309 ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
e570fd27 9310 *alloc_hint, &ins, 1, 0);
5a303d5d 9311 if (ret) {
0af3d00b
JB
9312 if (own_trans)
9313 btrfs_end_transaction(trans, root);
a22285a6 9314 break;
d899e052 9315 }
5a303d5d 9316
d899e052
YZ
9317 ret = insert_reserved_file_extent(trans, inode,
9318 cur_offset, ins.objectid,
9319 ins.offset, ins.offset,
920bbbfb 9320 ins.offset, 0, 0, 0,
d899e052 9321 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 9322 if (ret) {
857cc2fc 9323 btrfs_free_reserved_extent(root, ins.objectid,
e570fd27 9324 ins.offset, 0);
79787eaa
JM
9325 btrfs_abort_transaction(trans, root, ret);
9326 if (own_trans)
9327 btrfs_end_transaction(trans, root);
9328 break;
9329 }
a1ed835e
CM
9330 btrfs_drop_extent_cache(inode, cur_offset,
9331 cur_offset + ins.offset -1, 0);
5a303d5d 9332
5dc562c5
JB
9333 em = alloc_extent_map();
9334 if (!em) {
9335 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9336 &BTRFS_I(inode)->runtime_flags);
9337 goto next;
9338 }
9339
9340 em->start = cur_offset;
9341 em->orig_start = cur_offset;
9342 em->len = ins.offset;
9343 em->block_start = ins.objectid;
9344 em->block_len = ins.offset;
b4939680 9345 em->orig_block_len = ins.offset;
cc95bef6 9346 em->ram_bytes = ins.offset;
5dc562c5
JB
9347 em->bdev = root->fs_info->fs_devices->latest_bdev;
9348 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9349 em->generation = trans->transid;
9350
9351 while (1) {
9352 write_lock(&em_tree->lock);
09a2a8f9 9353 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
9354 write_unlock(&em_tree->lock);
9355 if (ret != -EEXIST)
9356 break;
9357 btrfs_drop_extent_cache(inode, cur_offset,
9358 cur_offset + ins.offset - 1,
9359 0);
9360 }
9361 free_extent_map(em);
9362next:
d899e052
YZ
9363 num_bytes -= ins.offset;
9364 cur_offset += ins.offset;
efa56464 9365 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 9366
0c4d2d95 9367 inode_inc_iversion(inode);
d899e052 9368 inode->i_ctime = CURRENT_TIME;
6cbff00f 9369 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 9370 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
9371 (actual_len > inode->i_size) &&
9372 (cur_offset > inode->i_size)) {
d1ea6a61 9373 if (cur_offset > actual_len)
55a61d1d 9374 i_size = actual_len;
d1ea6a61 9375 else
55a61d1d
JB
9376 i_size = cur_offset;
9377 i_size_write(inode, i_size);
9378 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
9379 }
9380
d899e052 9381 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
9382
9383 if (ret) {
9384 btrfs_abort_transaction(trans, root, ret);
9385 if (own_trans)
9386 btrfs_end_transaction(trans, root);
9387 break;
9388 }
d899e052 9389
0af3d00b
JB
9390 if (own_trans)
9391 btrfs_end_transaction(trans, root);
5a303d5d 9392 }
d899e052
YZ
9393 return ret;
9394}
9395
0af3d00b
JB
9396int btrfs_prealloc_file_range(struct inode *inode, int mode,
9397 u64 start, u64 num_bytes, u64 min_size,
9398 loff_t actual_len, u64 *alloc_hint)
9399{
9400 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9401 min_size, actual_len, alloc_hint,
9402 NULL);
9403}
9404
9405int btrfs_prealloc_file_range_trans(struct inode *inode,
9406 struct btrfs_trans_handle *trans, int mode,
9407 u64 start, u64 num_bytes, u64 min_size,
9408 loff_t actual_len, u64 *alloc_hint)
9409{
9410 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9411 min_size, actual_len, alloc_hint, trans);
9412}
9413
e6dcd2dc
CM
9414static int btrfs_set_page_dirty(struct page *page)
9415{
e6dcd2dc
CM
9416 return __set_page_dirty_nobuffers(page);
9417}
9418
10556cb2 9419static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 9420{
b83cc969 9421 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 9422 umode_t mode = inode->i_mode;
b83cc969 9423
cb6db4e5
JM
9424 if (mask & MAY_WRITE &&
9425 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9426 if (btrfs_root_readonly(root))
9427 return -EROFS;
9428 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9429 return -EACCES;
9430 }
2830ba7f 9431 return generic_permission(inode, mask);
fdebe2bd 9432}
39279cc3 9433
ef3b9af5
FM
9434static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9435{
9436 struct btrfs_trans_handle *trans;
9437 struct btrfs_root *root = BTRFS_I(dir)->root;
9438 struct inode *inode = NULL;
9439 u64 objectid;
9440 u64 index;
9441 int ret = 0;
9442
9443 /*
9444 * 5 units required for adding orphan entry
9445 */
9446 trans = btrfs_start_transaction(root, 5);
9447 if (IS_ERR(trans))
9448 return PTR_ERR(trans);
9449
9450 ret = btrfs_find_free_ino(root, &objectid);
9451 if (ret)
9452 goto out;
9453
9454 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9455 btrfs_ino(dir), objectid, mode, &index);
9456 if (IS_ERR(inode)) {
9457 ret = PTR_ERR(inode);
9458 inode = NULL;
9459 goto out;
9460 }
9461
ef3b9af5
FM
9462 inode->i_fop = &btrfs_file_operations;
9463 inode->i_op = &btrfs_file_inode_operations;
9464
9465 inode->i_mapping->a_ops = &btrfs_aops;
9466 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
9467 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9468
b0d5d10f
CM
9469 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9470 if (ret)
9471 goto out_inode;
9472
9473 ret = btrfs_update_inode(trans, root, inode);
9474 if (ret)
9475 goto out_inode;
ef3b9af5
FM
9476 ret = btrfs_orphan_add(trans, inode);
9477 if (ret)
b0d5d10f 9478 goto out_inode;
ef3b9af5 9479
5762b5c9
FM
9480 /*
9481 * We set number of links to 0 in btrfs_new_inode(), and here we set
9482 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9483 * through:
9484 *
9485 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9486 */
9487 set_nlink(inode, 1);
b0d5d10f 9488 unlock_new_inode(inode);
ef3b9af5
FM
9489 d_tmpfile(dentry, inode);
9490 mark_inode_dirty(inode);
9491
9492out:
9493 btrfs_end_transaction(trans, root);
9494 if (ret)
9495 iput(inode);
9496 btrfs_balance_delayed_items(root);
9497 btrfs_btree_balance_dirty(root);
ef3b9af5 9498 return ret;
b0d5d10f
CM
9499
9500out_inode:
9501 unlock_new_inode(inode);
9502 goto out;
9503
ef3b9af5
FM
9504}
9505
b38ef71c
FM
9506/* Inspired by filemap_check_errors() */
9507int btrfs_inode_check_errors(struct inode *inode)
9508{
9509 int ret = 0;
9510
9511 if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9512 test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9513 ret = -ENOSPC;
9514 if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9515 test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9516 ret = -EIO;
9517
9518 return ret;
9519}
9520
6e1d5dcc 9521static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 9522 .getattr = btrfs_getattr,
39279cc3
CM
9523 .lookup = btrfs_lookup,
9524 .create = btrfs_create,
9525 .unlink = btrfs_unlink,
9526 .link = btrfs_link,
9527 .mkdir = btrfs_mkdir,
9528 .rmdir = btrfs_rmdir,
80ace85c 9529 .rename2 = btrfs_rename2,
39279cc3
CM
9530 .symlink = btrfs_symlink,
9531 .setattr = btrfs_setattr,
618e21d5 9532 .mknod = btrfs_mknod,
95819c05
CH
9533 .setxattr = btrfs_setxattr,
9534 .getxattr = btrfs_getxattr,
5103e947 9535 .listxattr = btrfs_listxattr,
95819c05 9536 .removexattr = btrfs_removexattr,
fdebe2bd 9537 .permission = btrfs_permission,
4e34e719 9538 .get_acl = btrfs_get_acl,
996a710d 9539 .set_acl = btrfs_set_acl,
93fd63c2 9540 .update_time = btrfs_update_time,
ef3b9af5 9541 .tmpfile = btrfs_tmpfile,
39279cc3 9542};
6e1d5dcc 9543static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 9544 .lookup = btrfs_lookup,
fdebe2bd 9545 .permission = btrfs_permission,
4e34e719 9546 .get_acl = btrfs_get_acl,
996a710d 9547 .set_acl = btrfs_set_acl,
93fd63c2 9548 .update_time = btrfs_update_time,
39279cc3 9549};
76dda93c 9550
828c0950 9551static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
9552 .llseek = generic_file_llseek,
9553 .read = generic_read_dir,
9cdda8d3 9554 .iterate = btrfs_real_readdir,
34287aa3 9555 .unlocked_ioctl = btrfs_ioctl,
39279cc3 9556#ifdef CONFIG_COMPAT
34287aa3 9557 .compat_ioctl = btrfs_ioctl,
39279cc3 9558#endif
6bf13c0c 9559 .release = btrfs_release_file,
e02119d5 9560 .fsync = btrfs_sync_file,
39279cc3
CM
9561};
9562
d1310b2e 9563static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 9564 .fill_delalloc = run_delalloc_range,
065631f6 9565 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 9566 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 9567 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 9568 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 9569 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
9570 .set_bit_hook = btrfs_set_bit_hook,
9571 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
9572 .merge_extent_hook = btrfs_merge_extent_hook,
9573 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
9574};
9575
35054394
CM
9576/*
9577 * btrfs doesn't support the bmap operation because swapfiles
9578 * use bmap to make a mapping of extents in the file. They assume
9579 * these extents won't change over the life of the file and they
9580 * use the bmap result to do IO directly to the drive.
9581 *
9582 * the btrfs bmap call would return logical addresses that aren't
9583 * suitable for IO and they also will change frequently as COW
9584 * operations happen. So, swapfile + btrfs == corruption.
9585 *
9586 * For now we're avoiding this by dropping bmap.
9587 */
7f09410b 9588static const struct address_space_operations btrfs_aops = {
39279cc3
CM
9589 .readpage = btrfs_readpage,
9590 .writepage = btrfs_writepage,
b293f02e 9591 .writepages = btrfs_writepages,
3ab2fb5a 9592 .readpages = btrfs_readpages,
16432985 9593 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
9594 .invalidatepage = btrfs_invalidatepage,
9595 .releasepage = btrfs_releasepage,
e6dcd2dc 9596 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 9597 .error_remove_page = generic_error_remove_page,
39279cc3
CM
9598};
9599
7f09410b 9600static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
9601 .readpage = btrfs_readpage,
9602 .writepage = btrfs_writepage,
2bf5a725
CM
9603 .invalidatepage = btrfs_invalidatepage,
9604 .releasepage = btrfs_releasepage,
39279cc3
CM
9605};
9606
6e1d5dcc 9607static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
9608 .getattr = btrfs_getattr,
9609 .setattr = btrfs_setattr,
95819c05
CH
9610 .setxattr = btrfs_setxattr,
9611 .getxattr = btrfs_getxattr,
5103e947 9612 .listxattr = btrfs_listxattr,
95819c05 9613 .removexattr = btrfs_removexattr,
fdebe2bd 9614 .permission = btrfs_permission,
1506fcc8 9615 .fiemap = btrfs_fiemap,
4e34e719 9616 .get_acl = btrfs_get_acl,
996a710d 9617 .set_acl = btrfs_set_acl,
e41f941a 9618 .update_time = btrfs_update_time,
39279cc3 9619};
6e1d5dcc 9620static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
9621 .getattr = btrfs_getattr,
9622 .setattr = btrfs_setattr,
fdebe2bd 9623 .permission = btrfs_permission,
95819c05
CH
9624 .setxattr = btrfs_setxattr,
9625 .getxattr = btrfs_getxattr,
33268eaf 9626 .listxattr = btrfs_listxattr,
95819c05 9627 .removexattr = btrfs_removexattr,
4e34e719 9628 .get_acl = btrfs_get_acl,
996a710d 9629 .set_acl = btrfs_set_acl,
e41f941a 9630 .update_time = btrfs_update_time,
618e21d5 9631};
6e1d5dcc 9632static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
9633 .readlink = generic_readlink,
9634 .follow_link = page_follow_link_light,
9635 .put_link = page_put_link,
f209561a 9636 .getattr = btrfs_getattr,
22c44fe6 9637 .setattr = btrfs_setattr,
fdebe2bd 9638 .permission = btrfs_permission,
0279b4cd
JO
9639 .setxattr = btrfs_setxattr,
9640 .getxattr = btrfs_getxattr,
9641 .listxattr = btrfs_listxattr,
9642 .removexattr = btrfs_removexattr,
e41f941a 9643 .update_time = btrfs_update_time,
39279cc3 9644};
76dda93c 9645
82d339d9 9646const struct dentry_operations btrfs_dentry_operations = {
76dda93c 9647 .d_delete = btrfs_dentry_delete,
b4aff1f8 9648 .d_release = btrfs_dentry_release,
76dda93c 9649};