Btrfs: fix btrfs acl #ifdef checks
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
4b4e25f2 39#include "compat.h"
39279cc3
CM
40#include "ctree.h"
41#include "disk-io.h"
42#include "transaction.h"
43#include "btrfs_inode.h"
44#include "ioctl.h"
45#include "print-tree.h"
0b86a832 46#include "volumes.h"
e6dcd2dc 47#include "ordered-data.h"
95819c05 48#include "xattr.h"
e02119d5 49#include "tree-log.h"
c8b97818 50#include "compression.h"
b4ce94de 51#include "locking.h"
39279cc3
CM
52
53struct btrfs_iget_args {
54 u64 ino;
55 struct btrfs_root *root;
56};
57
58static struct inode_operations btrfs_dir_inode_operations;
59static struct inode_operations btrfs_symlink_inode_operations;
60static struct inode_operations btrfs_dir_ro_inode_operations;
618e21d5 61static struct inode_operations btrfs_special_inode_operations;
39279cc3
CM
62static struct inode_operations btrfs_file_inode_operations;
63static struct address_space_operations btrfs_aops;
64static struct address_space_operations btrfs_symlink_aops;
65static struct file_operations btrfs_dir_file_operations;
d1310b2e 66static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
67
68static struct kmem_cache *btrfs_inode_cachep;
69struct kmem_cache *btrfs_trans_handle_cachep;
70struct kmem_cache *btrfs_transaction_cachep;
39279cc3
CM
71struct kmem_cache *btrfs_path_cachep;
72
73#define S_SHIFT 12
74static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
75 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
76 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
77 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
78 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
79 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
80 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
81 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
82};
83
7b128766 84static void btrfs_truncate(struct inode *inode);
c8b97818 85static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
86static noinline int cow_file_range(struct inode *inode,
87 struct page *locked_page,
88 u64 start, u64 end, int *page_started,
89 unsigned long *nr_written, int unlock);
7b128766 90
0279b4cd
JO
91static int btrfs_init_inode_security(struct inode *inode, struct inode *dir)
92{
93 int err;
94
95 err = btrfs_init_acl(inode, dir);
96 if (!err)
97 err = btrfs_xattr_security_init(inode, dir);
98 return err;
99}
100
c8b97818
CM
101/*
102 * this does all the hard work for inserting an inline extent into
103 * the btree. The caller should have done a btrfs_drop_extents so that
104 * no overlapping inline items exist in the btree
105 */
d397712b 106static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
107 struct btrfs_root *root, struct inode *inode,
108 u64 start, size_t size, size_t compressed_size,
109 struct page **compressed_pages)
110{
111 struct btrfs_key key;
112 struct btrfs_path *path;
113 struct extent_buffer *leaf;
114 struct page *page = NULL;
115 char *kaddr;
116 unsigned long ptr;
117 struct btrfs_file_extent_item *ei;
118 int err = 0;
119 int ret;
120 size_t cur_size = size;
121 size_t datasize;
122 unsigned long offset;
123 int use_compress = 0;
124
125 if (compressed_size && compressed_pages) {
126 use_compress = 1;
127 cur_size = compressed_size;
128 }
129
d397712b
CM
130 path = btrfs_alloc_path();
131 if (!path)
c8b97818
CM
132 return -ENOMEM;
133
b9473439 134 path->leave_spinning = 1;
c8b97818
CM
135 btrfs_set_trans_block_group(trans, inode);
136
137 key.objectid = inode->i_ino;
138 key.offset = start;
139 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
140 datasize = btrfs_file_extent_calc_inline_size(cur_size);
141
142 inode_add_bytes(inode, size);
143 ret = btrfs_insert_empty_item(trans, root, path, &key,
144 datasize);
145 BUG_ON(ret);
146 if (ret) {
147 err = ret;
c8b97818
CM
148 goto fail;
149 }
150 leaf = path->nodes[0];
151 ei = btrfs_item_ptr(leaf, path->slots[0],
152 struct btrfs_file_extent_item);
153 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
154 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
155 btrfs_set_file_extent_encryption(leaf, ei, 0);
156 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
157 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
158 ptr = btrfs_file_extent_inline_start(ei);
159
160 if (use_compress) {
161 struct page *cpage;
162 int i = 0;
d397712b 163 while (compressed_size > 0) {
c8b97818 164 cpage = compressed_pages[i];
5b050f04 165 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
166 PAGE_CACHE_SIZE);
167
b9473439 168 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 169 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 170 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
171
172 i++;
173 ptr += cur_size;
174 compressed_size -= cur_size;
175 }
176 btrfs_set_file_extent_compression(leaf, ei,
177 BTRFS_COMPRESS_ZLIB);
178 } else {
179 page = find_get_page(inode->i_mapping,
180 start >> PAGE_CACHE_SHIFT);
181 btrfs_set_file_extent_compression(leaf, ei, 0);
182 kaddr = kmap_atomic(page, KM_USER0);
183 offset = start & (PAGE_CACHE_SIZE - 1);
184 write_extent_buffer(leaf, kaddr + offset, ptr, size);
185 kunmap_atomic(kaddr, KM_USER0);
186 page_cache_release(page);
187 }
188 btrfs_mark_buffer_dirty(leaf);
189 btrfs_free_path(path);
190
191 BTRFS_I(inode)->disk_i_size = inode->i_size;
192 btrfs_update_inode(trans, root, inode);
193 return 0;
194fail:
195 btrfs_free_path(path);
196 return err;
197}
198
199
200/*
201 * conditionally insert an inline extent into the file. This
202 * does the checks required to make sure the data is small enough
203 * to fit as an inline extent.
204 */
7f366cfe 205static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
206 struct btrfs_root *root,
207 struct inode *inode, u64 start, u64 end,
208 size_t compressed_size,
209 struct page **compressed_pages)
210{
211 u64 isize = i_size_read(inode);
212 u64 actual_end = min(end + 1, isize);
213 u64 inline_len = actual_end - start;
214 u64 aligned_end = (end + root->sectorsize - 1) &
215 ~((u64)root->sectorsize - 1);
216 u64 hint_byte;
217 u64 data_len = inline_len;
218 int ret;
219
220 if (compressed_size)
221 data_len = compressed_size;
222
223 if (start > 0 ||
70b99e69 224 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
225 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
226 (!compressed_size &&
227 (actual_end & (root->sectorsize - 1)) == 0) ||
228 end + 1 < isize ||
229 data_len > root->fs_info->max_inline) {
230 return 1;
231 }
232
c8b97818 233 ret = btrfs_drop_extents(trans, root, inode, start,
a1ed835e
CM
234 aligned_end, aligned_end, start,
235 &hint_byte, 1);
c8b97818
CM
236 BUG_ON(ret);
237
238 if (isize > actual_end)
239 inline_len = min_t(u64, isize, actual_end);
240 ret = insert_inline_extent(trans, root, inode, start,
241 inline_len, compressed_size,
242 compressed_pages);
243 BUG_ON(ret);
a1ed835e 244 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
245 return 0;
246}
247
771ed689
CM
248struct async_extent {
249 u64 start;
250 u64 ram_size;
251 u64 compressed_size;
252 struct page **pages;
253 unsigned long nr_pages;
254 struct list_head list;
255};
256
257struct async_cow {
258 struct inode *inode;
259 struct btrfs_root *root;
260 struct page *locked_page;
261 u64 start;
262 u64 end;
263 struct list_head extents;
264 struct btrfs_work work;
265};
266
267static noinline int add_async_extent(struct async_cow *cow,
268 u64 start, u64 ram_size,
269 u64 compressed_size,
270 struct page **pages,
271 unsigned long nr_pages)
272{
273 struct async_extent *async_extent;
274
275 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
276 async_extent->start = start;
277 async_extent->ram_size = ram_size;
278 async_extent->compressed_size = compressed_size;
279 async_extent->pages = pages;
280 async_extent->nr_pages = nr_pages;
281 list_add_tail(&async_extent->list, &cow->extents);
282 return 0;
283}
284
d352ac68 285/*
771ed689
CM
286 * we create compressed extents in two phases. The first
287 * phase compresses a range of pages that have already been
288 * locked (both pages and state bits are locked).
c8b97818 289 *
771ed689
CM
290 * This is done inside an ordered work queue, and the compression
291 * is spread across many cpus. The actual IO submission is step
292 * two, and the ordered work queue takes care of making sure that
293 * happens in the same order things were put onto the queue by
294 * writepages and friends.
c8b97818 295 *
771ed689
CM
296 * If this code finds it can't get good compression, it puts an
297 * entry onto the work queue to write the uncompressed bytes. This
298 * makes sure that both compressed inodes and uncompressed inodes
299 * are written in the same order that pdflush sent them down.
d352ac68 300 */
771ed689
CM
301static noinline int compress_file_range(struct inode *inode,
302 struct page *locked_page,
303 u64 start, u64 end,
304 struct async_cow *async_cow,
305 int *num_added)
b888db2b
CM
306{
307 struct btrfs_root *root = BTRFS_I(inode)->root;
308 struct btrfs_trans_handle *trans;
db94535d 309 u64 num_bytes;
c8b97818
CM
310 u64 orig_start;
311 u64 disk_num_bytes;
db94535d 312 u64 blocksize = root->sectorsize;
c8b97818 313 u64 actual_end;
42dc7bab 314 u64 isize = i_size_read(inode);
e6dcd2dc 315 int ret = 0;
c8b97818
CM
316 struct page **pages = NULL;
317 unsigned long nr_pages;
318 unsigned long nr_pages_ret = 0;
319 unsigned long total_compressed = 0;
320 unsigned long total_in = 0;
321 unsigned long max_compressed = 128 * 1024;
771ed689 322 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
323 int i;
324 int will_compress;
b888db2b 325
c8b97818
CM
326 orig_start = start;
327
42dc7bab 328 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
329again:
330 will_compress = 0;
331 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
332 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 333
f03d9301
CM
334 /*
335 * we don't want to send crud past the end of i_size through
336 * compression, that's just a waste of CPU time. So, if the
337 * end of the file is before the start of our current
338 * requested range of bytes, we bail out to the uncompressed
339 * cleanup code that can deal with all of this.
340 *
341 * It isn't really the fastest way to fix things, but this is a
342 * very uncommon corner.
343 */
344 if (actual_end <= start)
345 goto cleanup_and_bail_uncompressed;
346
c8b97818
CM
347 total_compressed = actual_end - start;
348
349 /* we want to make sure that amount of ram required to uncompress
350 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
351 * of a compressed extent to 128k. This is a crucial number
352 * because it also controls how easily we can spread reads across
353 * cpus for decompression.
354 *
355 * We also want to make sure the amount of IO required to do
356 * a random read is reasonably small, so we limit the size of
357 * a compressed extent to 128k.
c8b97818
CM
358 */
359 total_compressed = min(total_compressed, max_uncompressed);
db94535d 360 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 361 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
362 disk_num_bytes = num_bytes;
363 total_in = 0;
364 ret = 0;
db94535d 365
771ed689
CM
366 /*
367 * we do compression for mount -o compress and when the
368 * inode has not been flagged as nocompress. This flag can
369 * change at any time if we discover bad compression ratios.
c8b97818 370 */
6cbff00f 371 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
c8b97818
CM
372 btrfs_test_opt(root, COMPRESS)) {
373 WARN_ON(pages);
cfbc246e 374 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
c8b97818 375
c8b97818
CM
376 ret = btrfs_zlib_compress_pages(inode->i_mapping, start,
377 total_compressed, pages,
378 nr_pages, &nr_pages_ret,
379 &total_in,
380 &total_compressed,
381 max_compressed);
382
383 if (!ret) {
384 unsigned long offset = total_compressed &
385 (PAGE_CACHE_SIZE - 1);
386 struct page *page = pages[nr_pages_ret - 1];
387 char *kaddr;
388
389 /* zero the tail end of the last page, we might be
390 * sending it down to disk
391 */
392 if (offset) {
393 kaddr = kmap_atomic(page, KM_USER0);
394 memset(kaddr + offset, 0,
395 PAGE_CACHE_SIZE - offset);
396 kunmap_atomic(kaddr, KM_USER0);
397 }
398 will_compress = 1;
399 }
400 }
401 if (start == 0) {
771ed689
CM
402 trans = btrfs_join_transaction(root, 1);
403 BUG_ON(!trans);
404 btrfs_set_trans_block_group(trans, inode);
405
c8b97818 406 /* lets try to make an inline extent */
771ed689 407 if (ret || total_in < (actual_end - start)) {
c8b97818 408 /* we didn't compress the entire range, try
771ed689 409 * to make an uncompressed inline extent.
c8b97818
CM
410 */
411 ret = cow_file_range_inline(trans, root, inode,
412 start, end, 0, NULL);
413 } else {
771ed689 414 /* try making a compressed inline extent */
c8b97818
CM
415 ret = cow_file_range_inline(trans, root, inode,
416 start, end,
417 total_compressed, pages);
418 }
771ed689 419 btrfs_end_transaction(trans, root);
c8b97818 420 if (ret == 0) {
771ed689
CM
421 /*
422 * inline extent creation worked, we don't need
423 * to create any more async work items. Unlock
424 * and free up our temp pages.
425 */
c8b97818 426 extent_clear_unlock_delalloc(inode,
a791e35e
CM
427 &BTRFS_I(inode)->io_tree,
428 start, end, NULL,
429 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 430 EXTENT_CLEAR_DELALLOC |
32c00aff 431 EXTENT_CLEAR_ACCOUNTING |
a791e35e 432 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c8b97818
CM
433 ret = 0;
434 goto free_pages_out;
435 }
436 }
437
438 if (will_compress) {
439 /*
440 * we aren't doing an inline extent round the compressed size
441 * up to a block size boundary so the allocator does sane
442 * things
443 */
444 total_compressed = (total_compressed + blocksize - 1) &
445 ~(blocksize - 1);
446
447 /*
448 * one last check to make sure the compression is really a
449 * win, compare the page count read with the blocks on disk
450 */
451 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
452 ~(PAGE_CACHE_SIZE - 1);
453 if (total_compressed >= total_in) {
454 will_compress = 0;
455 } else {
456 disk_num_bytes = total_compressed;
457 num_bytes = total_in;
458 }
459 }
460 if (!will_compress && pages) {
461 /*
462 * the compression code ran but failed to make things smaller,
463 * free any pages it allocated and our page pointer array
464 */
465 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 466 WARN_ON(pages[i]->mapping);
c8b97818
CM
467 page_cache_release(pages[i]);
468 }
469 kfree(pages);
470 pages = NULL;
471 total_compressed = 0;
472 nr_pages_ret = 0;
473
474 /* flag the file so we don't compress in the future */
6cbff00f 475 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
c8b97818 476 }
771ed689
CM
477 if (will_compress) {
478 *num_added += 1;
c8b97818 479
771ed689
CM
480 /* the async work queues will take care of doing actual
481 * allocation on disk for these compressed pages,
482 * and will submit them to the elevator.
483 */
484 add_async_extent(async_cow, start, num_bytes,
485 total_compressed, pages, nr_pages_ret);
179e29e4 486
42dc7bab 487 if (start + num_bytes < end && start + num_bytes < actual_end) {
771ed689
CM
488 start += num_bytes;
489 pages = NULL;
490 cond_resched();
491 goto again;
492 }
493 } else {
f03d9301 494cleanup_and_bail_uncompressed:
771ed689
CM
495 /*
496 * No compression, but we still need to write the pages in
497 * the file we've been given so far. redirty the locked
498 * page if it corresponds to our extent and set things up
499 * for the async work queue to run cow_file_range to do
500 * the normal delalloc dance
501 */
502 if (page_offset(locked_page) >= start &&
503 page_offset(locked_page) <= end) {
504 __set_page_dirty_nobuffers(locked_page);
505 /* unlocked later on in the async handlers */
506 }
507 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0);
508 *num_added += 1;
509 }
3b951516 510
771ed689
CM
511out:
512 return 0;
513
514free_pages_out:
515 for (i = 0; i < nr_pages_ret; i++) {
516 WARN_ON(pages[i]->mapping);
517 page_cache_release(pages[i]);
518 }
d397712b 519 kfree(pages);
771ed689
CM
520
521 goto out;
522}
523
524/*
525 * phase two of compressed writeback. This is the ordered portion
526 * of the code, which only gets called in the order the work was
527 * queued. We walk all the async extents created by compress_file_range
528 * and send them down to the disk.
529 */
530static noinline int submit_compressed_extents(struct inode *inode,
531 struct async_cow *async_cow)
532{
533 struct async_extent *async_extent;
534 u64 alloc_hint = 0;
535 struct btrfs_trans_handle *trans;
536 struct btrfs_key ins;
537 struct extent_map *em;
538 struct btrfs_root *root = BTRFS_I(inode)->root;
539 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
540 struct extent_io_tree *io_tree;
541 int ret;
542
543 if (list_empty(&async_cow->extents))
544 return 0;
545
546 trans = btrfs_join_transaction(root, 1);
547
d397712b 548 while (!list_empty(&async_cow->extents)) {
771ed689
CM
549 async_extent = list_entry(async_cow->extents.next,
550 struct async_extent, list);
551 list_del(&async_extent->list);
c8b97818 552
771ed689
CM
553 io_tree = &BTRFS_I(inode)->io_tree;
554
555 /* did the compression code fall back to uncompressed IO? */
556 if (!async_extent->pages) {
557 int page_started = 0;
558 unsigned long nr_written = 0;
559
560 lock_extent(io_tree, async_extent->start,
d397712b
CM
561 async_extent->start +
562 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
563
564 /* allocate blocks */
565 cow_file_range(inode, async_cow->locked_page,
566 async_extent->start,
567 async_extent->start +
568 async_extent->ram_size - 1,
569 &page_started, &nr_written, 0);
570
571 /*
572 * if page_started, cow_file_range inserted an
573 * inline extent and took care of all the unlocking
574 * and IO for us. Otherwise, we need to submit
575 * all those pages down to the drive.
576 */
577 if (!page_started)
578 extent_write_locked_range(io_tree,
579 inode, async_extent->start,
d397712b 580 async_extent->start +
771ed689
CM
581 async_extent->ram_size - 1,
582 btrfs_get_extent,
583 WB_SYNC_ALL);
584 kfree(async_extent);
585 cond_resched();
586 continue;
587 }
588
589 lock_extent(io_tree, async_extent->start,
590 async_extent->start + async_extent->ram_size - 1,
591 GFP_NOFS);
c8b97818 592 /*
771ed689
CM
593 * here we're doing allocation and writeback of the
594 * compressed pages
c8b97818 595 */
771ed689
CM
596 btrfs_drop_extent_cache(inode, async_extent->start,
597 async_extent->start +
598 async_extent->ram_size - 1, 0);
599
600 ret = btrfs_reserve_extent(trans, root,
601 async_extent->compressed_size,
602 async_extent->compressed_size,
603 0, alloc_hint,
604 (u64)-1, &ins, 1);
605 BUG_ON(ret);
606 em = alloc_extent_map(GFP_NOFS);
607 em->start = async_extent->start;
608 em->len = async_extent->ram_size;
445a6944 609 em->orig_start = em->start;
c8b97818 610
771ed689
CM
611 em->block_start = ins.objectid;
612 em->block_len = ins.offset;
613 em->bdev = root->fs_info->fs_devices->latest_bdev;
614 set_bit(EXTENT_FLAG_PINNED, &em->flags);
615 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
616
d397712b 617 while (1) {
890871be 618 write_lock(&em_tree->lock);
771ed689 619 ret = add_extent_mapping(em_tree, em);
890871be 620 write_unlock(&em_tree->lock);
771ed689
CM
621 if (ret != -EEXIST) {
622 free_extent_map(em);
623 break;
624 }
625 btrfs_drop_extent_cache(inode, async_extent->start,
626 async_extent->start +
627 async_extent->ram_size - 1, 0);
628 }
629
630 ret = btrfs_add_ordered_extent(inode, async_extent->start,
631 ins.objectid,
632 async_extent->ram_size,
633 ins.offset,
634 BTRFS_ORDERED_COMPRESSED);
635 BUG_ON(ret);
636
637 btrfs_end_transaction(trans, root);
638
639 /*
640 * clear dirty, set writeback and unlock the pages.
641 */
642 extent_clear_unlock_delalloc(inode,
a791e35e
CM
643 &BTRFS_I(inode)->io_tree,
644 async_extent->start,
645 async_extent->start +
646 async_extent->ram_size - 1,
647 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
648 EXTENT_CLEAR_UNLOCK |
a3429ab7 649 EXTENT_CLEAR_DELALLOC |
a791e35e 650 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
651
652 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
653 async_extent->start,
654 async_extent->ram_size,
655 ins.objectid,
656 ins.offset, async_extent->pages,
657 async_extent->nr_pages);
771ed689
CM
658
659 BUG_ON(ret);
660 trans = btrfs_join_transaction(root, 1);
661 alloc_hint = ins.objectid + ins.offset;
662 kfree(async_extent);
663 cond_resched();
664 }
665
666 btrfs_end_transaction(trans, root);
667 return 0;
668}
669
670/*
671 * when extent_io.c finds a delayed allocation range in the file,
672 * the call backs end up in this code. The basic idea is to
673 * allocate extents on disk for the range, and create ordered data structs
674 * in ram to track those extents.
675 *
676 * locked_page is the page that writepage had locked already. We use
677 * it to make sure we don't do extra locks or unlocks.
678 *
679 * *page_started is set to one if we unlock locked_page and do everything
680 * required to start IO on it. It may be clean and already done with
681 * IO when we return.
682 */
683static noinline int cow_file_range(struct inode *inode,
684 struct page *locked_page,
685 u64 start, u64 end, int *page_started,
686 unsigned long *nr_written,
687 int unlock)
688{
689 struct btrfs_root *root = BTRFS_I(inode)->root;
690 struct btrfs_trans_handle *trans;
691 u64 alloc_hint = 0;
692 u64 num_bytes;
693 unsigned long ram_size;
694 u64 disk_num_bytes;
695 u64 cur_alloc_size;
696 u64 blocksize = root->sectorsize;
697 u64 actual_end;
42dc7bab 698 u64 isize = i_size_read(inode);
771ed689
CM
699 struct btrfs_key ins;
700 struct extent_map *em;
701 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
702 int ret = 0;
703
704 trans = btrfs_join_transaction(root, 1);
705 BUG_ON(!trans);
706 btrfs_set_trans_block_group(trans, inode);
707
42dc7bab 708 actual_end = min_t(u64, isize, end + 1);
771ed689
CM
709
710 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
711 num_bytes = max(blocksize, num_bytes);
712 disk_num_bytes = num_bytes;
713 ret = 0;
714
715 if (start == 0) {
716 /* lets try to make an inline extent */
717 ret = cow_file_range_inline(trans, root, inode,
718 start, end, 0, NULL);
719 if (ret == 0) {
720 extent_clear_unlock_delalloc(inode,
a791e35e
CM
721 &BTRFS_I(inode)->io_tree,
722 start, end, NULL,
723 EXTENT_CLEAR_UNLOCK_PAGE |
724 EXTENT_CLEAR_UNLOCK |
725 EXTENT_CLEAR_DELALLOC |
32c00aff 726 EXTENT_CLEAR_ACCOUNTING |
a791e35e
CM
727 EXTENT_CLEAR_DIRTY |
728 EXTENT_SET_WRITEBACK |
729 EXTENT_END_WRITEBACK);
771ed689
CM
730 *nr_written = *nr_written +
731 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
732 *page_started = 1;
733 ret = 0;
734 goto out;
735 }
736 }
737
738 BUG_ON(disk_num_bytes >
739 btrfs_super_total_bytes(&root->fs_info->super_copy));
740
b917b7c3
CM
741
742 read_lock(&BTRFS_I(inode)->extent_tree.lock);
743 em = search_extent_mapping(&BTRFS_I(inode)->extent_tree,
744 start, num_bytes);
745 if (em) {
746 alloc_hint = em->block_start;
747 free_extent_map(em);
748 }
749 read_unlock(&BTRFS_I(inode)->extent_tree.lock);
771ed689
CM
750 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
751
d397712b 752 while (disk_num_bytes > 0) {
a791e35e
CM
753 unsigned long op;
754
c8b97818 755 cur_alloc_size = min(disk_num_bytes, root->fs_info->max_extent);
e6dcd2dc 756 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 757 root->sectorsize, 0, alloc_hint,
e6dcd2dc 758 (u64)-1, &ins, 1);
d397712b
CM
759 BUG_ON(ret);
760
e6dcd2dc
CM
761 em = alloc_extent_map(GFP_NOFS);
762 em->start = start;
445a6944 763 em->orig_start = em->start;
771ed689
CM
764 ram_size = ins.offset;
765 em->len = ins.offset;
c8b97818 766
e6dcd2dc 767 em->block_start = ins.objectid;
c8b97818 768 em->block_len = ins.offset;
e6dcd2dc 769 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 770 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 771
d397712b 772 while (1) {
890871be 773 write_lock(&em_tree->lock);
e6dcd2dc 774 ret = add_extent_mapping(em_tree, em);
890871be 775 write_unlock(&em_tree->lock);
e6dcd2dc
CM
776 if (ret != -EEXIST) {
777 free_extent_map(em);
778 break;
779 }
780 btrfs_drop_extent_cache(inode, start,
c8b97818 781 start + ram_size - 1, 0);
e6dcd2dc
CM
782 }
783
98d20f67 784 cur_alloc_size = ins.offset;
e6dcd2dc 785 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 786 ram_size, cur_alloc_size, 0);
e6dcd2dc 787 BUG_ON(ret);
c8b97818 788
17d217fe
YZ
789 if (root->root_key.objectid ==
790 BTRFS_DATA_RELOC_TREE_OBJECTID) {
791 ret = btrfs_reloc_clone_csums(inode, start,
792 cur_alloc_size);
793 BUG_ON(ret);
794 }
795
d397712b 796 if (disk_num_bytes < cur_alloc_size)
3b951516 797 break;
d397712b 798
c8b97818
CM
799 /* we're not doing compressed IO, don't unlock the first
800 * page (which the caller expects to stay locked), don't
801 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
802 *
803 * Do set the Private2 bit so we know this page was properly
804 * setup for writepage
c8b97818 805 */
a791e35e
CM
806 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
807 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
808 EXTENT_SET_PRIVATE2;
809
c8b97818
CM
810 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
811 start, start + ram_size - 1,
a791e35e 812 locked_page, op);
c8b97818 813 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
814 num_bytes -= cur_alloc_size;
815 alloc_hint = ins.objectid + ins.offset;
816 start += cur_alloc_size;
b888db2b 817 }
b888db2b 818out:
771ed689 819 ret = 0;
b888db2b 820 btrfs_end_transaction(trans, root);
c8b97818 821
be20aa9d 822 return ret;
771ed689 823}
c8b97818 824
771ed689
CM
825/*
826 * work queue call back to started compression on a file and pages
827 */
828static noinline void async_cow_start(struct btrfs_work *work)
829{
830 struct async_cow *async_cow;
831 int num_added = 0;
832 async_cow = container_of(work, struct async_cow, work);
833
834 compress_file_range(async_cow->inode, async_cow->locked_page,
835 async_cow->start, async_cow->end, async_cow,
836 &num_added);
837 if (num_added == 0)
838 async_cow->inode = NULL;
839}
840
841/*
842 * work queue call back to submit previously compressed pages
843 */
844static noinline void async_cow_submit(struct btrfs_work *work)
845{
846 struct async_cow *async_cow;
847 struct btrfs_root *root;
848 unsigned long nr_pages;
849
850 async_cow = container_of(work, struct async_cow, work);
851
852 root = async_cow->root;
853 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
854 PAGE_CACHE_SHIFT;
855
856 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
857
858 if (atomic_read(&root->fs_info->async_delalloc_pages) <
859 5 * 1042 * 1024 &&
860 waitqueue_active(&root->fs_info->async_submit_wait))
861 wake_up(&root->fs_info->async_submit_wait);
862
d397712b 863 if (async_cow->inode)
771ed689 864 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 865}
c8b97818 866
771ed689
CM
867static noinline void async_cow_free(struct btrfs_work *work)
868{
869 struct async_cow *async_cow;
870 async_cow = container_of(work, struct async_cow, work);
871 kfree(async_cow);
872}
873
874static int cow_file_range_async(struct inode *inode, struct page *locked_page,
875 u64 start, u64 end, int *page_started,
876 unsigned long *nr_written)
877{
878 struct async_cow *async_cow;
879 struct btrfs_root *root = BTRFS_I(inode)->root;
880 unsigned long nr_pages;
881 u64 cur_end;
882 int limit = 10 * 1024 * 1042;
883
a3429ab7
CM
884 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
885 1, 0, NULL, GFP_NOFS);
d397712b 886 while (start < end) {
771ed689
CM
887 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
888 async_cow->inode = inode;
889 async_cow->root = root;
890 async_cow->locked_page = locked_page;
891 async_cow->start = start;
892
6cbff00f 893 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
894 cur_end = end;
895 else
896 cur_end = min(end, start + 512 * 1024 - 1);
897
898 async_cow->end = cur_end;
899 INIT_LIST_HEAD(&async_cow->extents);
900
901 async_cow->work.func = async_cow_start;
902 async_cow->work.ordered_func = async_cow_submit;
903 async_cow->work.ordered_free = async_cow_free;
904 async_cow->work.flags = 0;
905
771ed689
CM
906 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
907 PAGE_CACHE_SHIFT;
908 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
909
910 btrfs_queue_worker(&root->fs_info->delalloc_workers,
911 &async_cow->work);
912
913 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
914 wait_event(root->fs_info->async_submit_wait,
915 (atomic_read(&root->fs_info->async_delalloc_pages) <
916 limit));
917 }
918
d397712b 919 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
920 atomic_read(&root->fs_info->async_delalloc_pages)) {
921 wait_event(root->fs_info->async_submit_wait,
922 (atomic_read(&root->fs_info->async_delalloc_pages) ==
923 0));
924 }
925
926 *nr_written += nr_pages;
927 start = cur_end + 1;
928 }
929 *page_started = 1;
930 return 0;
be20aa9d
CM
931}
932
d397712b 933static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
934 u64 bytenr, u64 num_bytes)
935{
936 int ret;
937 struct btrfs_ordered_sum *sums;
938 LIST_HEAD(list);
939
07d400a6
YZ
940 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
941 bytenr + num_bytes - 1, &list);
17d217fe
YZ
942 if (ret == 0 && list_empty(&list))
943 return 0;
944
945 while (!list_empty(&list)) {
946 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
947 list_del(&sums->list);
948 kfree(sums);
949 }
950 return 1;
951}
952
d352ac68
CM
953/*
954 * when nowcow writeback call back. This checks for snapshots or COW copies
955 * of the extents that exist in the file, and COWs the file as required.
956 *
957 * If no cow copies or snapshots exist, we write directly to the existing
958 * blocks on disk
959 */
7f366cfe
CM
960static noinline int run_delalloc_nocow(struct inode *inode,
961 struct page *locked_page,
771ed689
CM
962 u64 start, u64 end, int *page_started, int force,
963 unsigned long *nr_written)
be20aa9d 964{
be20aa9d 965 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 966 struct btrfs_trans_handle *trans;
be20aa9d 967 struct extent_buffer *leaf;
be20aa9d 968 struct btrfs_path *path;
80ff3856 969 struct btrfs_file_extent_item *fi;
be20aa9d 970 struct btrfs_key found_key;
80ff3856
YZ
971 u64 cow_start;
972 u64 cur_offset;
973 u64 extent_end;
5d4f98a2 974 u64 extent_offset;
80ff3856
YZ
975 u64 disk_bytenr;
976 u64 num_bytes;
977 int extent_type;
978 int ret;
d899e052 979 int type;
80ff3856
YZ
980 int nocow;
981 int check_prev = 1;
be20aa9d
CM
982
983 path = btrfs_alloc_path();
984 BUG_ON(!path);
7ea394f1
YZ
985 trans = btrfs_join_transaction(root, 1);
986 BUG_ON(!trans);
be20aa9d 987
80ff3856
YZ
988 cow_start = (u64)-1;
989 cur_offset = start;
990 while (1) {
991 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
992 cur_offset, 0);
993 BUG_ON(ret < 0);
994 if (ret > 0 && path->slots[0] > 0 && check_prev) {
995 leaf = path->nodes[0];
996 btrfs_item_key_to_cpu(leaf, &found_key,
997 path->slots[0] - 1);
998 if (found_key.objectid == inode->i_ino &&
999 found_key.type == BTRFS_EXTENT_DATA_KEY)
1000 path->slots[0]--;
1001 }
1002 check_prev = 0;
1003next_slot:
1004 leaf = path->nodes[0];
1005 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1006 ret = btrfs_next_leaf(root, path);
1007 if (ret < 0)
1008 BUG_ON(1);
1009 if (ret > 0)
1010 break;
1011 leaf = path->nodes[0];
1012 }
be20aa9d 1013
80ff3856
YZ
1014 nocow = 0;
1015 disk_bytenr = 0;
17d217fe 1016 num_bytes = 0;
80ff3856
YZ
1017 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1018
1019 if (found_key.objectid > inode->i_ino ||
1020 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1021 found_key.offset > end)
1022 break;
1023
1024 if (found_key.offset > cur_offset) {
1025 extent_end = found_key.offset;
e9061e21 1026 extent_type = 0;
80ff3856
YZ
1027 goto out_check;
1028 }
1029
1030 fi = btrfs_item_ptr(leaf, path->slots[0],
1031 struct btrfs_file_extent_item);
1032 extent_type = btrfs_file_extent_type(leaf, fi);
1033
d899e052
YZ
1034 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1035 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1036 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1037 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1038 extent_end = found_key.offset +
1039 btrfs_file_extent_num_bytes(leaf, fi);
1040 if (extent_end <= start) {
1041 path->slots[0]++;
1042 goto next_slot;
1043 }
17d217fe
YZ
1044 if (disk_bytenr == 0)
1045 goto out_check;
80ff3856
YZ
1046 if (btrfs_file_extent_compression(leaf, fi) ||
1047 btrfs_file_extent_encryption(leaf, fi) ||
1048 btrfs_file_extent_other_encoding(leaf, fi))
1049 goto out_check;
d899e052
YZ
1050 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1051 goto out_check;
d2fb3437 1052 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1053 goto out_check;
17d217fe 1054 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1055 found_key.offset -
1056 extent_offset, disk_bytenr))
17d217fe 1057 goto out_check;
5d4f98a2 1058 disk_bytenr += extent_offset;
17d217fe
YZ
1059 disk_bytenr += cur_offset - found_key.offset;
1060 num_bytes = min(end + 1, extent_end) - cur_offset;
1061 /*
1062 * force cow if csum exists in the range.
1063 * this ensure that csum for a given extent are
1064 * either valid or do not exist.
1065 */
1066 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1067 goto out_check;
80ff3856
YZ
1068 nocow = 1;
1069 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1070 extent_end = found_key.offset +
1071 btrfs_file_extent_inline_len(leaf, fi);
1072 extent_end = ALIGN(extent_end, root->sectorsize);
1073 } else {
1074 BUG_ON(1);
1075 }
1076out_check:
1077 if (extent_end <= start) {
1078 path->slots[0]++;
1079 goto next_slot;
1080 }
1081 if (!nocow) {
1082 if (cow_start == (u64)-1)
1083 cow_start = cur_offset;
1084 cur_offset = extent_end;
1085 if (cur_offset > end)
1086 break;
1087 path->slots[0]++;
1088 goto next_slot;
7ea394f1
YZ
1089 }
1090
1091 btrfs_release_path(root, path);
80ff3856
YZ
1092 if (cow_start != (u64)-1) {
1093 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1094 found_key.offset - 1, page_started,
1095 nr_written, 1);
80ff3856
YZ
1096 BUG_ON(ret);
1097 cow_start = (u64)-1;
7ea394f1 1098 }
80ff3856 1099
d899e052
YZ
1100 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1101 struct extent_map *em;
1102 struct extent_map_tree *em_tree;
1103 em_tree = &BTRFS_I(inode)->extent_tree;
1104 em = alloc_extent_map(GFP_NOFS);
1105 em->start = cur_offset;
445a6944 1106 em->orig_start = em->start;
d899e052
YZ
1107 em->len = num_bytes;
1108 em->block_len = num_bytes;
1109 em->block_start = disk_bytenr;
1110 em->bdev = root->fs_info->fs_devices->latest_bdev;
1111 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1112 while (1) {
890871be 1113 write_lock(&em_tree->lock);
d899e052 1114 ret = add_extent_mapping(em_tree, em);
890871be 1115 write_unlock(&em_tree->lock);
d899e052
YZ
1116 if (ret != -EEXIST) {
1117 free_extent_map(em);
1118 break;
1119 }
1120 btrfs_drop_extent_cache(inode, em->start,
1121 em->start + em->len - 1, 0);
1122 }
1123 type = BTRFS_ORDERED_PREALLOC;
1124 } else {
1125 type = BTRFS_ORDERED_NOCOW;
1126 }
80ff3856
YZ
1127
1128 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1129 num_bytes, num_bytes, type);
1130 BUG_ON(ret);
771ed689 1131
d899e052 1132 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1133 cur_offset, cur_offset + num_bytes - 1,
1134 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1135 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1136 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1137 cur_offset = extent_end;
1138 if (cur_offset > end)
1139 break;
be20aa9d 1140 }
80ff3856
YZ
1141 btrfs_release_path(root, path);
1142
1143 if (cur_offset <= end && cow_start == (u64)-1)
1144 cow_start = cur_offset;
1145 if (cow_start != (u64)-1) {
1146 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1147 page_started, nr_written, 1);
80ff3856
YZ
1148 BUG_ON(ret);
1149 }
1150
1151 ret = btrfs_end_transaction(trans, root);
1152 BUG_ON(ret);
7ea394f1 1153 btrfs_free_path(path);
80ff3856 1154 return 0;
be20aa9d
CM
1155}
1156
d352ac68
CM
1157/*
1158 * extent_io.c call back to do delayed allocation processing
1159 */
c8b97818 1160static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1161 u64 start, u64 end, int *page_started,
1162 unsigned long *nr_written)
be20aa9d 1163{
be20aa9d 1164 int ret;
7f366cfe 1165 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1166
6cbff00f 1167 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1168 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1169 page_started, 1, nr_written);
6cbff00f 1170 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1171 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1172 page_started, 0, nr_written);
7f366cfe
CM
1173 else if (!btrfs_test_opt(root, COMPRESS))
1174 ret = cow_file_range(inode, locked_page, start, end,
1175 page_started, nr_written, 1);
be20aa9d 1176 else
771ed689 1177 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1178 page_started, nr_written);
b888db2b
CM
1179 return ret;
1180}
1181
9ed74f2d
JB
1182static int btrfs_split_extent_hook(struct inode *inode,
1183 struct extent_state *orig, u64 split)
1184{
1185 struct btrfs_root *root = BTRFS_I(inode)->root;
1186 u64 size;
1187
1188 if (!(orig->state & EXTENT_DELALLOC))
1189 return 0;
1190
1191 size = orig->end - orig->start + 1;
1192 if (size > root->fs_info->max_extent) {
1193 u64 num_extents;
1194 u64 new_size;
1195
1196 new_size = orig->end - split + 1;
1197 num_extents = div64_u64(size + root->fs_info->max_extent - 1,
1198 root->fs_info->max_extent);
1199
1200 /*
32c00aff
JB
1201 * if we break a large extent up then leave oustanding_extents
1202 * be, since we've already accounted for the large extent.
9ed74f2d
JB
1203 */
1204 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1205 root->fs_info->max_extent) < num_extents)
1206 return 0;
1207 }
1208
32c00aff
JB
1209 spin_lock(&BTRFS_I(inode)->accounting_lock);
1210 BTRFS_I(inode)->outstanding_extents++;
1211 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1212
1213 return 0;
1214}
1215
1216/*
1217 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1218 * extents so we can keep track of new extents that are just merged onto old
1219 * extents, such as when we are doing sequential writes, so we can properly
1220 * account for the metadata space we'll need.
1221 */
1222static int btrfs_merge_extent_hook(struct inode *inode,
1223 struct extent_state *new,
1224 struct extent_state *other)
1225{
1226 struct btrfs_root *root = BTRFS_I(inode)->root;
1227 u64 new_size, old_size;
1228 u64 num_extents;
1229
1230 /* not delalloc, ignore it */
1231 if (!(other->state & EXTENT_DELALLOC))
1232 return 0;
1233
1234 old_size = other->end - other->start + 1;
1235 if (new->start < other->start)
1236 new_size = other->end - new->start + 1;
1237 else
1238 new_size = new->end - other->start + 1;
1239
1240 /* we're not bigger than the max, unreserve the space and go */
1241 if (new_size <= root->fs_info->max_extent) {
32c00aff
JB
1242 spin_lock(&BTRFS_I(inode)->accounting_lock);
1243 BTRFS_I(inode)->outstanding_extents--;
1244 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1245 return 0;
1246 }
1247
1248 /*
1249 * If we grew by another max_extent, just return, we want to keep that
1250 * reserved amount.
1251 */
1252 num_extents = div64_u64(old_size + root->fs_info->max_extent - 1,
1253 root->fs_info->max_extent);
1254 if (div64_u64(new_size + root->fs_info->max_extent - 1,
1255 root->fs_info->max_extent) > num_extents)
1256 return 0;
1257
32c00aff
JB
1258 spin_lock(&BTRFS_I(inode)->accounting_lock);
1259 BTRFS_I(inode)->outstanding_extents--;
1260 spin_unlock(&BTRFS_I(inode)->accounting_lock);
9ed74f2d
JB
1261
1262 return 0;
1263}
1264
d352ac68
CM
1265/*
1266 * extent_io.c set_bit_hook, used to track delayed allocation
1267 * bytes in this file, and to maintain the list of inodes that
1268 * have pending delalloc work to be done.
1269 */
b2950863 1270static int btrfs_set_bit_hook(struct inode *inode, u64 start, u64 end,
b0c68f8b 1271 unsigned long old, unsigned long bits)
291d673e 1272{
9ed74f2d 1273
75eff68e
CM
1274 /*
1275 * set_bit and clear bit hooks normally require _irqsave/restore
1276 * but in this case, we are only testeing for the DELALLOC
1277 * bit, which is only set or cleared with irqs on
1278 */
b0c68f8b 1279 if (!(old & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1280 struct btrfs_root *root = BTRFS_I(inode)->root;
9ed74f2d 1281
32c00aff
JB
1282 spin_lock(&BTRFS_I(inode)->accounting_lock);
1283 BTRFS_I(inode)->outstanding_extents++;
1284 spin_unlock(&BTRFS_I(inode)->accounting_lock);
6a63209f 1285 btrfs_delalloc_reserve_space(root, inode, end - start + 1);
75eff68e 1286 spin_lock(&root->fs_info->delalloc_lock);
9069218d 1287 BTRFS_I(inode)->delalloc_bytes += end - start + 1;
291d673e 1288 root->fs_info->delalloc_bytes += end - start + 1;
ea8c2819
CM
1289 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1290 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1291 &root->fs_info->delalloc_inodes);
1292 }
75eff68e 1293 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1294 }
1295 return 0;
1296}
1297
d352ac68
CM
1298/*
1299 * extent_io.c clear_bit_hook, see set_bit_hook for why
1300 */
9ed74f2d
JB
1301static int btrfs_clear_bit_hook(struct inode *inode,
1302 struct extent_state *state, unsigned long bits)
291d673e 1303{
75eff68e
CM
1304 /*
1305 * set_bit and clear bit hooks normally require _irqsave/restore
1306 * but in this case, we are only testeing for the DELALLOC
1307 * bit, which is only set or cleared with irqs on
1308 */
9ed74f2d 1309 if ((state->state & EXTENT_DELALLOC) && (bits & EXTENT_DELALLOC)) {
291d673e 1310 struct btrfs_root *root = BTRFS_I(inode)->root;
bcbfce8a 1311
32c00aff
JB
1312 if (bits & EXTENT_DO_ACCOUNTING) {
1313 spin_lock(&BTRFS_I(inode)->accounting_lock);
1314 BTRFS_I(inode)->outstanding_extents--;
1315 spin_unlock(&BTRFS_I(inode)->accounting_lock);
1316 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
1317 }
9ed74f2d 1318
75eff68e 1319 spin_lock(&root->fs_info->delalloc_lock);
9ed74f2d
JB
1320 if (state->end - state->start + 1 >
1321 root->fs_info->delalloc_bytes) {
d397712b
CM
1322 printk(KERN_INFO "btrfs warning: delalloc account "
1323 "%llu %llu\n",
9ed74f2d
JB
1324 (unsigned long long)
1325 state->end - state->start + 1,
d397712b
CM
1326 (unsigned long long)
1327 root->fs_info->delalloc_bytes);
6a63209f 1328 btrfs_delalloc_free_space(root, inode, (u64)-1);
b0c68f8b 1329 root->fs_info->delalloc_bytes = 0;
9069218d 1330 BTRFS_I(inode)->delalloc_bytes = 0;
b0c68f8b 1331 } else {
6a63209f 1332 btrfs_delalloc_free_space(root, inode,
9ed74f2d
JB
1333 state->end -
1334 state->start + 1);
1335 root->fs_info->delalloc_bytes -= state->end -
1336 state->start + 1;
1337 BTRFS_I(inode)->delalloc_bytes -= state->end -
1338 state->start + 1;
b0c68f8b 1339 }
ea8c2819
CM
1340 if (BTRFS_I(inode)->delalloc_bytes == 0 &&
1341 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1342 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1343 }
75eff68e 1344 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1345 }
1346 return 0;
1347}
1348
d352ac68
CM
1349/*
1350 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1351 * we don't create bios that span stripes or chunks
1352 */
239b14b3 1353int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1354 size_t size, struct bio *bio,
1355 unsigned long bio_flags)
239b14b3
CM
1356{
1357 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1358 struct btrfs_mapping_tree *map_tree;
a62b9401 1359 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1360 u64 length = 0;
1361 u64 map_length;
239b14b3
CM
1362 int ret;
1363
771ed689
CM
1364 if (bio_flags & EXTENT_BIO_COMPRESSED)
1365 return 0;
1366
f2d8d74d 1367 length = bio->bi_size;
239b14b3
CM
1368 map_tree = &root->fs_info->mapping_tree;
1369 map_length = length;
cea9e445 1370 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1371 &map_length, NULL, 0);
cea9e445 1372
d397712b 1373 if (map_length < length + size)
239b14b3 1374 return 1;
239b14b3
CM
1375 return 0;
1376}
1377
d352ac68
CM
1378/*
1379 * in order to insert checksums into the metadata in large chunks,
1380 * we wait until bio submission time. All the pages in the bio are
1381 * checksummed and sums are attached onto the ordered extent record.
1382 *
1383 * At IO completion time the cums attached on the ordered extent record
1384 * are inserted into the btree
1385 */
d397712b
CM
1386static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1387 struct bio *bio, int mirror_num,
1388 unsigned long bio_flags)
065631f6 1389{
065631f6 1390 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1391 int ret = 0;
e015640f 1392
d20f7043 1393 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1394 BUG_ON(ret);
4a69a410
CM
1395 return 0;
1396}
e015640f 1397
4a69a410
CM
1398/*
1399 * in order to insert checksums into the metadata in large chunks,
1400 * we wait until bio submission time. All the pages in the bio are
1401 * checksummed and sums are attached onto the ordered extent record.
1402 *
1403 * At IO completion time the cums attached on the ordered extent record
1404 * are inserted into the btree
1405 */
b2950863 1406static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
4a69a410
CM
1407 int mirror_num, unsigned long bio_flags)
1408{
1409 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1410 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1411}
1412
d352ac68 1413/*
cad321ad
CM
1414 * extent_io.c submission hook. This does the right thing for csum calculation
1415 * on write, or reading the csums from the tree before a read
d352ac68 1416 */
b2950863 1417static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
c8b97818 1418 int mirror_num, unsigned long bio_flags)
44b8bd7e
CM
1419{
1420 struct btrfs_root *root = BTRFS_I(inode)->root;
1421 int ret = 0;
19b9bdb0 1422 int skip_sum;
44b8bd7e 1423
6cbff00f 1424 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1425
e6dcd2dc
CM
1426 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1427 BUG_ON(ret);
065631f6 1428
4d1b5fb4 1429 if (!(rw & (1 << BIO_RW))) {
d20f7043 1430 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1431 return btrfs_submit_compressed_read(inode, bio,
1432 mirror_num, bio_flags);
d20f7043
CM
1433 } else if (!skip_sum)
1434 btrfs_lookup_bio_sums(root, inode, bio, NULL);
4d1b5fb4 1435 goto mapit;
19b9bdb0 1436 } else if (!skip_sum) {
17d217fe
YZ
1437 /* csum items have already been cloned */
1438 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1439 goto mapit;
19b9bdb0
CM
1440 /* we're doing a write, do the async checksumming */
1441 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1442 inode, rw, bio, mirror_num,
4a69a410
CM
1443 bio_flags, __btrfs_submit_bio_start,
1444 __btrfs_submit_bio_done);
19b9bdb0
CM
1445 }
1446
0b86a832 1447mapit:
8b712842 1448 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1449}
6885f308 1450
d352ac68
CM
1451/*
1452 * given a list of ordered sums record them in the inode. This happens
1453 * at IO completion time based on sums calculated at bio submission time.
1454 */
ba1da2f4 1455static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1456 struct inode *inode, u64 file_offset,
1457 struct list_head *list)
1458{
e6dcd2dc
CM
1459 struct btrfs_ordered_sum *sum;
1460
1461 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1462
1463 list_for_each_entry(sum, list, list) {
d20f7043
CM
1464 btrfs_csum_file_blocks(trans,
1465 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1466 }
1467 return 0;
1468}
1469
ea8c2819
CM
1470int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end)
1471{
d397712b 1472 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1473 WARN_ON(1);
ea8c2819
CM
1474 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1475 GFP_NOFS);
1476}
1477
d352ac68 1478/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1479struct btrfs_writepage_fixup {
1480 struct page *page;
1481 struct btrfs_work work;
1482};
1483
b2950863 1484static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1485{
1486 struct btrfs_writepage_fixup *fixup;
1487 struct btrfs_ordered_extent *ordered;
1488 struct page *page;
1489 struct inode *inode;
1490 u64 page_start;
1491 u64 page_end;
1492
1493 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1494 page = fixup->page;
4a096752 1495again:
247e743c
CM
1496 lock_page(page);
1497 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1498 ClearPageChecked(page);
1499 goto out_page;
1500 }
1501
1502 inode = page->mapping->host;
1503 page_start = page_offset(page);
1504 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1505
1506 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
4a096752
CM
1507
1508 /* already ordered? We're done */
8b62b72b 1509 if (PagePrivate2(page))
247e743c 1510 goto out;
4a096752
CM
1511
1512 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1513 if (ordered) {
1514 unlock_extent(&BTRFS_I(inode)->io_tree, page_start,
1515 page_end, GFP_NOFS);
1516 unlock_page(page);
1517 btrfs_start_ordered_extent(inode, ordered, 1);
1518 goto again;
1519 }
247e743c 1520
ea8c2819 1521 btrfs_set_extent_delalloc(inode, page_start, page_end);
247e743c
CM
1522 ClearPageChecked(page);
1523out:
1524 unlock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end, GFP_NOFS);
1525out_page:
1526 unlock_page(page);
1527 page_cache_release(page);
1528}
1529
1530/*
1531 * There are a few paths in the higher layers of the kernel that directly
1532 * set the page dirty bit without asking the filesystem if it is a
1533 * good idea. This causes problems because we want to make sure COW
1534 * properly happens and the data=ordered rules are followed.
1535 *
c8b97818 1536 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1537 * hasn't been properly setup for IO. We kick off an async process
1538 * to fix it up. The async helper will wait for ordered extents, set
1539 * the delalloc bit and make it safe to write the page.
1540 */
b2950863 1541static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1542{
1543 struct inode *inode = page->mapping->host;
1544 struct btrfs_writepage_fixup *fixup;
1545 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1546
8b62b72b
CM
1547 /* this page is properly in the ordered list */
1548 if (TestClearPagePrivate2(page))
247e743c
CM
1549 return 0;
1550
1551 if (PageChecked(page))
1552 return -EAGAIN;
1553
1554 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1555 if (!fixup)
1556 return -EAGAIN;
f421950f 1557
247e743c
CM
1558 SetPageChecked(page);
1559 page_cache_get(page);
1560 fixup->work.func = btrfs_writepage_fixup_worker;
1561 fixup->page = page;
1562 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1563 return -EAGAIN;
1564}
1565
d899e052
YZ
1566static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1567 struct inode *inode, u64 file_pos,
1568 u64 disk_bytenr, u64 disk_num_bytes,
1569 u64 num_bytes, u64 ram_bytes,
e980b50c 1570 u64 locked_end,
d899e052
YZ
1571 u8 compression, u8 encryption,
1572 u16 other_encoding, int extent_type)
1573{
1574 struct btrfs_root *root = BTRFS_I(inode)->root;
1575 struct btrfs_file_extent_item *fi;
1576 struct btrfs_path *path;
1577 struct extent_buffer *leaf;
1578 struct btrfs_key ins;
1579 u64 hint;
1580 int ret;
1581
1582 path = btrfs_alloc_path();
1583 BUG_ON(!path);
1584
b9473439 1585 path->leave_spinning = 1;
a1ed835e
CM
1586
1587 /*
1588 * we may be replacing one extent in the tree with another.
1589 * The new extent is pinned in the extent map, and we don't want
1590 * to drop it from the cache until it is completely in the btree.
1591 *
1592 * So, tell btrfs_drop_extents to leave this extent in the cache.
1593 * the caller is expected to unpin it and allow it to be merged
1594 * with the others.
1595 */
d899e052 1596 ret = btrfs_drop_extents(trans, root, inode, file_pos,
e980b50c 1597 file_pos + num_bytes, locked_end,
a1ed835e 1598 file_pos, &hint, 0);
d899e052
YZ
1599 BUG_ON(ret);
1600
1601 ins.objectid = inode->i_ino;
1602 ins.offset = file_pos;
1603 ins.type = BTRFS_EXTENT_DATA_KEY;
1604 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1605 BUG_ON(ret);
1606 leaf = path->nodes[0];
1607 fi = btrfs_item_ptr(leaf, path->slots[0],
1608 struct btrfs_file_extent_item);
1609 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1610 btrfs_set_file_extent_type(leaf, fi, extent_type);
1611 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1612 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1613 btrfs_set_file_extent_offset(leaf, fi, 0);
1614 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1615 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1616 btrfs_set_file_extent_compression(leaf, fi, compression);
1617 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1618 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1619
1620 btrfs_unlock_up_safe(path, 1);
1621 btrfs_set_lock_blocking(leaf);
1622
d899e052
YZ
1623 btrfs_mark_buffer_dirty(leaf);
1624
1625 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1626
1627 ins.objectid = disk_bytenr;
1628 ins.offset = disk_num_bytes;
1629 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1630 ret = btrfs_alloc_reserved_file_extent(trans, root,
1631 root->root_key.objectid,
1632 inode->i_ino, file_pos, &ins);
d899e052 1633 BUG_ON(ret);
d899e052 1634 btrfs_free_path(path);
b9473439 1635
d899e052
YZ
1636 return 0;
1637}
1638
5d13a98f
CM
1639/*
1640 * helper function for btrfs_finish_ordered_io, this
1641 * just reads in some of the csum leaves to prime them into ram
1642 * before we start the transaction. It limits the amount of btree
1643 * reads required while inside the transaction.
1644 */
1645static noinline void reada_csum(struct btrfs_root *root,
1646 struct btrfs_path *path,
1647 struct btrfs_ordered_extent *ordered_extent)
1648{
1649 struct btrfs_ordered_sum *sum;
1650 u64 bytenr;
1651
1652 sum = list_entry(ordered_extent->list.next, struct btrfs_ordered_sum,
1653 list);
1654 bytenr = sum->sums[0].bytenr;
1655
1656 /*
1657 * we don't care about the results, the point of this search is
1658 * just to get the btree leaves into ram
1659 */
1660 btrfs_lookup_csum(NULL, root->fs_info->csum_root, path, bytenr, 0);
1661}
1662
d352ac68
CM
1663/* as ordered data IO finishes, this gets called so we can finish
1664 * an ordered extent if the range of bytes in the file it covers are
1665 * fully written.
1666 */
211f90e6 1667static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1668{
e6dcd2dc
CM
1669 struct btrfs_root *root = BTRFS_I(inode)->root;
1670 struct btrfs_trans_handle *trans;
5d13a98f 1671 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1672 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
b7ec40d7 1673 struct btrfs_path *path;
d899e052 1674 int compressed = 0;
e6dcd2dc
CM
1675 int ret;
1676
1677 ret = btrfs_dec_test_ordered_pending(inode, start, end - start + 1);
ba1da2f4 1678 if (!ret)
e6dcd2dc 1679 return 0;
e6dcd2dc 1680
b7ec40d7
CM
1681 /*
1682 * before we join the transaction, try to do some of our IO.
1683 * This will limit the amount of IO that we have to do with
1684 * the transaction running. We're unlikely to need to do any
1685 * IO if the file extents are new, the disk_i_size checks
1686 * covers the most common case.
1687 */
1688 if (start < BTRFS_I(inode)->disk_i_size) {
1689 path = btrfs_alloc_path();
1690 if (path) {
1691 ret = btrfs_lookup_file_extent(NULL, root, path,
1692 inode->i_ino,
1693 start, 0);
5d13a98f
CM
1694 ordered_extent = btrfs_lookup_ordered_extent(inode,
1695 start);
1696 if (!list_empty(&ordered_extent->list)) {
1697 btrfs_release_path(root, path);
1698 reada_csum(root, path, ordered_extent);
1699 }
b7ec40d7
CM
1700 btrfs_free_path(path);
1701 }
1702 }
1703
f9295749 1704 trans = btrfs_join_transaction(root, 1);
e6dcd2dc 1705
5d13a98f
CM
1706 if (!ordered_extent)
1707 ordered_extent = btrfs_lookup_ordered_extent(inode, start);
e6dcd2dc 1708 BUG_ON(!ordered_extent);
7ea394f1
YZ
1709 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags))
1710 goto nocow;
e6dcd2dc
CM
1711
1712 lock_extent(io_tree, ordered_extent->file_offset,
1713 ordered_extent->file_offset + ordered_extent->len - 1,
1714 GFP_NOFS);
1715
c8b97818 1716 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
d899e052
YZ
1717 compressed = 1;
1718 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1719 BUG_ON(compressed);
1720 ret = btrfs_mark_extent_written(trans, root, inode,
1721 ordered_extent->file_offset,
1722 ordered_extent->file_offset +
1723 ordered_extent->len);
1724 BUG_ON(ret);
1725 } else {
1726 ret = insert_reserved_file_extent(trans, inode,
1727 ordered_extent->file_offset,
1728 ordered_extent->start,
1729 ordered_extent->disk_len,
1730 ordered_extent->len,
1731 ordered_extent->len,
e980b50c
CM
1732 ordered_extent->file_offset +
1733 ordered_extent->len,
d899e052
YZ
1734 compressed, 0, 0,
1735 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1736 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1737 ordered_extent->file_offset,
1738 ordered_extent->len);
d899e052
YZ
1739 BUG_ON(ret);
1740 }
e6dcd2dc
CM
1741 unlock_extent(io_tree, ordered_extent->file_offset,
1742 ordered_extent->file_offset + ordered_extent->len - 1,
1743 GFP_NOFS);
7ea394f1 1744nocow:
e6dcd2dc
CM
1745 add_pending_csums(trans, inode, ordered_extent->file_offset,
1746 &ordered_extent->list);
1747
34353029 1748 mutex_lock(&BTRFS_I(inode)->extent_mutex);
dbe674a9 1749 btrfs_ordered_update_i_size(inode, ordered_extent);
e02119d5 1750 btrfs_update_inode(trans, root, inode);
e6dcd2dc 1751 btrfs_remove_ordered_extent(inode, ordered_extent);
34353029 1752 mutex_unlock(&BTRFS_I(inode)->extent_mutex);
7f3c74fb 1753
e6dcd2dc
CM
1754 /* once for us */
1755 btrfs_put_ordered_extent(ordered_extent);
1756 /* once for the tree */
1757 btrfs_put_ordered_extent(ordered_extent);
1758
e6dcd2dc
CM
1759 btrfs_end_transaction(trans, root);
1760 return 0;
1761}
1762
b2950863 1763static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1764 struct extent_state *state, int uptodate)
1765{
8b62b72b 1766 ClearPagePrivate2(page);
211f90e6
CM
1767 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1768}
1769
d352ac68
CM
1770/*
1771 * When IO fails, either with EIO or csum verification fails, we
1772 * try other mirrors that might have a good copy of the data. This
1773 * io_failure_record is used to record state as we go through all the
1774 * mirrors. If another mirror has good data, the page is set up to date
1775 * and things continue. If a good mirror can't be found, the original
1776 * bio end_io callback is called to indicate things have failed.
1777 */
7e38326f
CM
1778struct io_failure_record {
1779 struct page *page;
1780 u64 start;
1781 u64 len;
1782 u64 logical;
d20f7043 1783 unsigned long bio_flags;
7e38326f
CM
1784 int last_mirror;
1785};
1786
b2950863 1787static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1788 struct page *page, u64 start, u64 end,
1789 struct extent_state *state)
7e38326f
CM
1790{
1791 struct io_failure_record *failrec = NULL;
1792 u64 private;
1793 struct extent_map *em;
1794 struct inode *inode = page->mapping->host;
1795 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1796 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1797 struct bio *bio;
1798 int num_copies;
1799 int ret;
1259ab75 1800 int rw;
7e38326f
CM
1801 u64 logical;
1802
1803 ret = get_state_private(failure_tree, start, &private);
1804 if (ret) {
7e38326f
CM
1805 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1806 if (!failrec)
1807 return -ENOMEM;
1808 failrec->start = start;
1809 failrec->len = end - start + 1;
1810 failrec->last_mirror = 0;
d20f7043 1811 failrec->bio_flags = 0;
7e38326f 1812
890871be 1813 read_lock(&em_tree->lock);
3b951516
CM
1814 em = lookup_extent_mapping(em_tree, start, failrec->len);
1815 if (em->start > start || em->start + em->len < start) {
1816 free_extent_map(em);
1817 em = NULL;
1818 }
890871be 1819 read_unlock(&em_tree->lock);
7e38326f
CM
1820
1821 if (!em || IS_ERR(em)) {
1822 kfree(failrec);
1823 return -EIO;
1824 }
1825 logical = start - em->start;
1826 logical = em->block_start + logical;
d20f7043
CM
1827 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1828 logical = em->block_start;
1829 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1830 }
7e38326f
CM
1831 failrec->logical = logical;
1832 free_extent_map(em);
1833 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1834 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1835 set_state_private(failure_tree, start,
1836 (u64)(unsigned long)failrec);
7e38326f 1837 } else {
587f7704 1838 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1839 }
1840 num_copies = btrfs_num_copies(
1841 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1842 failrec->logical, failrec->len);
1843 failrec->last_mirror++;
1844 if (!state) {
cad321ad 1845 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1846 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1847 failrec->start,
1848 EXTENT_LOCKED);
1849 if (state && state->start != failrec->start)
1850 state = NULL;
cad321ad 1851 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1852 }
1853 if (!state || failrec->last_mirror > num_copies) {
1854 set_state_private(failure_tree, failrec->start, 0);
1855 clear_extent_bits(failure_tree, failrec->start,
1856 failrec->start + failrec->len - 1,
1857 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1858 kfree(failrec);
1859 return -EIO;
1860 }
1861 bio = bio_alloc(GFP_NOFS, 1);
1862 bio->bi_private = state;
1863 bio->bi_end_io = failed_bio->bi_end_io;
1864 bio->bi_sector = failrec->logical >> 9;
1865 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1866 bio->bi_size = 0;
d20f7043 1867
7e38326f 1868 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1259ab75
CM
1869 if (failed_bio->bi_rw & (1 << BIO_RW))
1870 rw = WRITE;
1871 else
1872 rw = READ;
1873
1874 BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1875 failrec->last_mirror,
d20f7043 1876 failrec->bio_flags);
1259ab75
CM
1877 return 0;
1878}
1879
d352ac68
CM
1880/*
1881 * each time an IO finishes, we do a fast check in the IO failure tree
1882 * to see if we need to process or clean up an io_failure_record
1883 */
b2950863 1884static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1885{
1886 u64 private;
1887 u64 private_failure;
1888 struct io_failure_record *failure;
1889 int ret;
1890
1891 private = 0;
1892 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1893 (u64)-1, 1, EXTENT_DIRTY)) {
1894 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1895 start, &private_failure);
1896 if (ret == 0) {
1897 failure = (struct io_failure_record *)(unsigned long)
1898 private_failure;
1899 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1900 failure->start, 0);
1901 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1902 failure->start,
1903 failure->start + failure->len - 1,
1904 EXTENT_DIRTY | EXTENT_LOCKED,
1905 GFP_NOFS);
1906 kfree(failure);
1907 }
1908 }
7e38326f
CM
1909 return 0;
1910}
1911
d352ac68
CM
1912/*
1913 * when reads are done, we need to check csums to verify the data is correct
1914 * if there's a match, we allow the bio to finish. If not, we go through
1915 * the io_failure_record routines to find good copies
1916 */
b2950863 1917static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1918 struct extent_state *state)
07157aac 1919{
35ebb934 1920 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1921 struct inode *inode = page->mapping->host;
d1310b2e 1922 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1923 char *kaddr;
aadfeb6e 1924 u64 private = ~(u32)0;
07157aac 1925 int ret;
ff79f819
CM
1926 struct btrfs_root *root = BTRFS_I(inode)->root;
1927 u32 csum = ~(u32)0;
d1310b2e 1928
d20f7043
CM
1929 if (PageChecked(page)) {
1930 ClearPageChecked(page);
1931 goto good;
1932 }
6cbff00f
CH
1933
1934 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1935 return 0;
1936
1937 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1938 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1939 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1940 GFP_NOFS);
b6cda9bc 1941 return 0;
17d217fe 1942 }
d20f7043 1943
c2e639f0 1944 if (state && state->start == start) {
70dec807
CM
1945 private = state->private;
1946 ret = 0;
1947 } else {
1948 ret = get_state_private(io_tree, start, &private);
1949 }
9ab86c8e 1950 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1951 if (ret)
07157aac 1952 goto zeroit;
d397712b 1953
ff79f819
CM
1954 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1955 btrfs_csum_final(csum, (char *)&csum);
d397712b 1956 if (csum != private)
07157aac 1957 goto zeroit;
d397712b 1958
9ab86c8e 1959 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1960good:
7e38326f
CM
1961 /* if the io failure tree for this inode is non-empty,
1962 * check to see if we've recovered from a failed IO
1963 */
1259ab75 1964 btrfs_clean_io_failures(inode, start);
07157aac
CM
1965 return 0;
1966
1967zeroit:
193f284d
CM
1968 if (printk_ratelimit()) {
1969 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
1970 "private %llu\n", page->mapping->host->i_ino,
1971 (unsigned long long)start, csum,
1972 (unsigned long long)private);
1973 }
db94535d
CM
1974 memset(kaddr + offset, 1, end - start + 1);
1975 flush_dcache_page(page);
9ab86c8e 1976 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
1977 if (private == 0)
1978 return 0;
7e38326f 1979 return -EIO;
07157aac 1980}
b888db2b 1981
7b128766
JB
1982/*
1983 * This creates an orphan entry for the given inode in case something goes
1984 * wrong in the middle of an unlink/truncate.
1985 */
1986int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
1987{
1988 struct btrfs_root *root = BTRFS_I(inode)->root;
1989 int ret = 0;
1990
bcc63abb 1991 spin_lock(&root->list_lock);
7b128766
JB
1992
1993 /* already on the orphan list, we're good */
1994 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 1995 spin_unlock(&root->list_lock);
7b128766
JB
1996 return 0;
1997 }
1998
1999 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2000
bcc63abb 2001 spin_unlock(&root->list_lock);
7b128766
JB
2002
2003 /*
2004 * insert an orphan item to track this unlinked/truncated file
2005 */
2006 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2007
2008 return ret;
2009}
2010
2011/*
2012 * We have done the truncate/delete so we can go ahead and remove the orphan
2013 * item for this particular inode.
2014 */
2015int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2016{
2017 struct btrfs_root *root = BTRFS_I(inode)->root;
2018 int ret = 0;
2019
bcc63abb 2020 spin_lock(&root->list_lock);
7b128766
JB
2021
2022 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
bcc63abb 2023 spin_unlock(&root->list_lock);
7b128766
JB
2024 return 0;
2025 }
2026
2027 list_del_init(&BTRFS_I(inode)->i_orphan);
2028 if (!trans) {
bcc63abb 2029 spin_unlock(&root->list_lock);
7b128766
JB
2030 return 0;
2031 }
2032
bcc63abb 2033 spin_unlock(&root->list_lock);
7b128766
JB
2034
2035 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2036
2037 return ret;
2038}
2039
2040/*
2041 * this cleans up any orphans that may be left on the list from the last use
2042 * of this root.
2043 */
2044void btrfs_orphan_cleanup(struct btrfs_root *root)
2045{
2046 struct btrfs_path *path;
2047 struct extent_buffer *leaf;
2048 struct btrfs_item *item;
2049 struct btrfs_key key, found_key;
2050 struct btrfs_trans_handle *trans;
2051 struct inode *inode;
2052 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2053
7b128766
JB
2054 path = btrfs_alloc_path();
2055 if (!path)
2056 return;
2057 path->reada = -1;
2058
2059 key.objectid = BTRFS_ORPHAN_OBJECTID;
2060 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2061 key.offset = (u64)-1;
2062
7b128766
JB
2063
2064 while (1) {
2065 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2066 if (ret < 0) {
2067 printk(KERN_ERR "Error searching slot for orphan: %d"
2068 "\n", ret);
2069 break;
2070 }
2071
2072 /*
2073 * if ret == 0 means we found what we were searching for, which
2074 * is weird, but possible, so only screw with path if we didnt
2075 * find the key and see if we have stuff that matches
2076 */
2077 if (ret > 0) {
2078 if (path->slots[0] == 0)
2079 break;
2080 path->slots[0]--;
2081 }
2082
2083 /* pull out the item */
2084 leaf = path->nodes[0];
2085 item = btrfs_item_nr(leaf, path->slots[0]);
2086 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2087
2088 /* make sure the item matches what we want */
2089 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2090 break;
2091 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2092 break;
2093
2094 /* release the path since we're done with it */
2095 btrfs_release_path(root, path);
2096
2097 /*
2098 * this is where we are basically btrfs_lookup, without the
2099 * crossing root thing. we store the inode number in the
2100 * offset of the orphan item.
2101 */
5d4f98a2
YZ
2102 found_key.objectid = found_key.offset;
2103 found_key.type = BTRFS_INODE_ITEM_KEY;
2104 found_key.offset = 0;
2105 inode = btrfs_iget(root->fs_info->sb, &found_key, root);
2106 if (IS_ERR(inode))
7b128766
JB
2107 break;
2108
7b128766
JB
2109 /*
2110 * add this inode to the orphan list so btrfs_orphan_del does
2111 * the proper thing when we hit it
2112 */
bcc63abb 2113 spin_lock(&root->list_lock);
7b128766 2114 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
bcc63abb 2115 spin_unlock(&root->list_lock);
7b128766
JB
2116
2117 /*
2118 * if this is a bad inode, means we actually succeeded in
2119 * removing the inode, but not the orphan record, which means
2120 * we need to manually delete the orphan since iput will just
2121 * do a destroy_inode
2122 */
2123 if (is_bad_inode(inode)) {
5b21f2ed 2124 trans = btrfs_start_transaction(root, 1);
7b128766 2125 btrfs_orphan_del(trans, inode);
5b21f2ed 2126 btrfs_end_transaction(trans, root);
7b128766
JB
2127 iput(inode);
2128 continue;
2129 }
2130
2131 /* if we have links, this was a truncate, lets do that */
2132 if (inode->i_nlink) {
2133 nr_truncate++;
2134 btrfs_truncate(inode);
2135 } else {
2136 nr_unlink++;
2137 }
2138
2139 /* this will do delete_inode and everything for us */
2140 iput(inode);
2141 }
2142
2143 if (nr_unlink)
2144 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2145 if (nr_truncate)
2146 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2147
2148 btrfs_free_path(path);
7b128766
JB
2149}
2150
46a53cca
CM
2151/*
2152 * very simple check to peek ahead in the leaf looking for xattrs. If we
2153 * don't find any xattrs, we know there can't be any acls.
2154 *
2155 * slot is the slot the inode is in, objectid is the objectid of the inode
2156 */
2157static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2158 int slot, u64 objectid)
2159{
2160 u32 nritems = btrfs_header_nritems(leaf);
2161 struct btrfs_key found_key;
2162 int scanned = 0;
2163
2164 slot++;
2165 while (slot < nritems) {
2166 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2167
2168 /* we found a different objectid, there must not be acls */
2169 if (found_key.objectid != objectid)
2170 return 0;
2171
2172 /* we found an xattr, assume we've got an acl */
2173 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2174 return 1;
2175
2176 /*
2177 * we found a key greater than an xattr key, there can't
2178 * be any acls later on
2179 */
2180 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2181 return 0;
2182
2183 slot++;
2184 scanned++;
2185
2186 /*
2187 * it goes inode, inode backrefs, xattrs, extents,
2188 * so if there are a ton of hard links to an inode there can
2189 * be a lot of backrefs. Don't waste time searching too hard,
2190 * this is just an optimization
2191 */
2192 if (scanned >= 8)
2193 break;
2194 }
2195 /* we hit the end of the leaf before we found an xattr or
2196 * something larger than an xattr. We have to assume the inode
2197 * has acls
2198 */
2199 return 1;
2200}
2201
d352ac68
CM
2202/*
2203 * read an inode from the btree into the in-memory inode
2204 */
5d4f98a2 2205static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2206{
2207 struct btrfs_path *path;
5f39d397 2208 struct extent_buffer *leaf;
39279cc3 2209 struct btrfs_inode_item *inode_item;
0b86a832 2210 struct btrfs_timespec *tspec;
39279cc3
CM
2211 struct btrfs_root *root = BTRFS_I(inode)->root;
2212 struct btrfs_key location;
46a53cca 2213 int maybe_acls;
39279cc3 2214 u64 alloc_group_block;
618e21d5 2215 u32 rdev;
39279cc3
CM
2216 int ret;
2217
2218 path = btrfs_alloc_path();
2219 BUG_ON(!path);
39279cc3 2220 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2221
39279cc3 2222 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2223 if (ret)
39279cc3 2224 goto make_bad;
39279cc3 2225
5f39d397
CM
2226 leaf = path->nodes[0];
2227 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2228 struct btrfs_inode_item);
2229
2230 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2231 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2232 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2233 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2234 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2235
2236 tspec = btrfs_inode_atime(inode_item);
2237 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2238 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2239
2240 tspec = btrfs_inode_mtime(inode_item);
2241 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2242 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2243
2244 tspec = btrfs_inode_ctime(inode_item);
2245 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2246 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2247
a76a3cd4 2248 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2249 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2250 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2251 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2252 inode->i_rdev = 0;
5f39d397
CM
2253 rdev = btrfs_inode_rdev(leaf, inode_item);
2254
aec7477b 2255 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2256 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2257
5f39d397 2258 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2259
46a53cca
CM
2260 /*
2261 * try to precache a NULL acl entry for files that don't have
2262 * any xattrs or acls
2263 */
2264 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2265 if (!maybe_acls)
2266 cache_no_acl(inode);
46a53cca 2267
d2fb3437
YZ
2268 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2269 alloc_group_block, 0);
39279cc3
CM
2270 btrfs_free_path(path);
2271 inode_item = NULL;
2272
39279cc3 2273 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2274 case S_IFREG:
2275 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2276 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2277 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2278 inode->i_fop = &btrfs_file_operations;
2279 inode->i_op = &btrfs_file_inode_operations;
2280 break;
2281 case S_IFDIR:
2282 inode->i_fop = &btrfs_dir_file_operations;
2283 if (root == root->fs_info->tree_root)
2284 inode->i_op = &btrfs_dir_ro_inode_operations;
2285 else
2286 inode->i_op = &btrfs_dir_inode_operations;
2287 break;
2288 case S_IFLNK:
2289 inode->i_op = &btrfs_symlink_inode_operations;
2290 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2291 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2292 break;
618e21d5 2293 default:
0279b4cd 2294 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2295 init_special_inode(inode, inode->i_mode, rdev);
2296 break;
39279cc3 2297 }
6cbff00f
CH
2298
2299 btrfs_update_iflags(inode);
39279cc3
CM
2300 return;
2301
2302make_bad:
39279cc3 2303 btrfs_free_path(path);
39279cc3
CM
2304 make_bad_inode(inode);
2305}
2306
d352ac68
CM
2307/*
2308 * given a leaf and an inode, copy the inode fields into the leaf
2309 */
e02119d5
CM
2310static void fill_inode_item(struct btrfs_trans_handle *trans,
2311 struct extent_buffer *leaf,
5f39d397 2312 struct btrfs_inode_item *item,
39279cc3
CM
2313 struct inode *inode)
2314{
5f39d397
CM
2315 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2316 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2317 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2318 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2319 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2320
2321 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2322 inode->i_atime.tv_sec);
2323 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2324 inode->i_atime.tv_nsec);
2325
2326 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2327 inode->i_mtime.tv_sec);
2328 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2329 inode->i_mtime.tv_nsec);
2330
2331 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2332 inode->i_ctime.tv_sec);
2333 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2334 inode->i_ctime.tv_nsec);
2335
a76a3cd4 2336 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2337 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2338 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2339 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2340 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2341 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2342 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
39279cc3
CM
2343}
2344
d352ac68
CM
2345/*
2346 * copy everything in the in-memory inode into the btree.
2347 */
d397712b
CM
2348noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2349 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2350{
2351 struct btrfs_inode_item *inode_item;
2352 struct btrfs_path *path;
5f39d397 2353 struct extent_buffer *leaf;
39279cc3
CM
2354 int ret;
2355
2356 path = btrfs_alloc_path();
2357 BUG_ON(!path);
b9473439 2358 path->leave_spinning = 1;
39279cc3
CM
2359 ret = btrfs_lookup_inode(trans, root, path,
2360 &BTRFS_I(inode)->location, 1);
2361 if (ret) {
2362 if (ret > 0)
2363 ret = -ENOENT;
2364 goto failed;
2365 }
2366
b4ce94de 2367 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2368 leaf = path->nodes[0];
2369 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2370 struct btrfs_inode_item);
2371
e02119d5 2372 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2373 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2374 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2375 ret = 0;
2376failed:
39279cc3
CM
2377 btrfs_free_path(path);
2378 return ret;
2379}
2380
2381
d352ac68
CM
2382/*
2383 * unlink helper that gets used here in inode.c and in the tree logging
2384 * recovery code. It remove a link in a directory with a given name, and
2385 * also drops the back refs in the inode to the directory
2386 */
e02119d5
CM
2387int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2388 struct btrfs_root *root,
2389 struct inode *dir, struct inode *inode,
2390 const char *name, int name_len)
39279cc3
CM
2391{
2392 struct btrfs_path *path;
39279cc3 2393 int ret = 0;
5f39d397 2394 struct extent_buffer *leaf;
39279cc3 2395 struct btrfs_dir_item *di;
5f39d397 2396 struct btrfs_key key;
aec7477b 2397 u64 index;
39279cc3
CM
2398
2399 path = btrfs_alloc_path();
54aa1f4d
CM
2400 if (!path) {
2401 ret = -ENOMEM;
2402 goto err;
2403 }
2404
b9473439 2405 path->leave_spinning = 1;
39279cc3
CM
2406 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2407 name, name_len, -1);
2408 if (IS_ERR(di)) {
2409 ret = PTR_ERR(di);
2410 goto err;
2411 }
2412 if (!di) {
2413 ret = -ENOENT;
2414 goto err;
2415 }
5f39d397
CM
2416 leaf = path->nodes[0];
2417 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2418 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2419 if (ret)
2420 goto err;
39279cc3
CM
2421 btrfs_release_path(root, path);
2422
aec7477b 2423 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2424 inode->i_ino,
2425 dir->i_ino, &index);
aec7477b 2426 if (ret) {
d397712b 2427 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2428 "inode %lu parent %lu\n", name_len, name,
e02119d5 2429 inode->i_ino, dir->i_ino);
aec7477b
JB
2430 goto err;
2431 }
2432
39279cc3 2433 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2434 index, name, name_len, -1);
39279cc3
CM
2435 if (IS_ERR(di)) {
2436 ret = PTR_ERR(di);
2437 goto err;
2438 }
2439 if (!di) {
2440 ret = -ENOENT;
2441 goto err;
2442 }
2443 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2444 btrfs_release_path(root, path);
39279cc3 2445
e02119d5
CM
2446 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2447 inode, dir->i_ino);
49eb7e46 2448 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2449
2450 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2451 dir, index);
2452 BUG_ON(ret);
39279cc3
CM
2453err:
2454 btrfs_free_path(path);
e02119d5
CM
2455 if (ret)
2456 goto out;
2457
2458 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2459 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2460 btrfs_update_inode(trans, root, dir);
2461 btrfs_drop_nlink(inode);
2462 ret = btrfs_update_inode(trans, root, inode);
e02119d5 2463out:
39279cc3
CM
2464 return ret;
2465}
2466
2467static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2468{
2469 struct btrfs_root *root;
2470 struct btrfs_trans_handle *trans;
7b128766 2471 struct inode *inode = dentry->d_inode;
39279cc3 2472 int ret;
1832a6d5 2473 unsigned long nr = 0;
39279cc3
CM
2474
2475 root = BTRFS_I(dir)->root;
1832a6d5 2476
39279cc3 2477 trans = btrfs_start_transaction(root, 1);
5f39d397 2478
39279cc3 2479 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2480
2481 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2482
e02119d5
CM
2483 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2484 dentry->d_name.name, dentry->d_name.len);
7b128766
JB
2485
2486 if (inode->i_nlink == 0)
2487 ret = btrfs_orphan_add(trans, inode);
2488
d3c2fdcf 2489 nr = trans->blocks_used;
5f39d397 2490
89ce8a63 2491 btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2492 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2493 return ret;
2494}
2495
4df27c4d
YZ
2496int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2497 struct btrfs_root *root,
2498 struct inode *dir, u64 objectid,
2499 const char *name, int name_len)
2500{
2501 struct btrfs_path *path;
2502 struct extent_buffer *leaf;
2503 struct btrfs_dir_item *di;
2504 struct btrfs_key key;
2505 u64 index;
2506 int ret;
2507
2508 path = btrfs_alloc_path();
2509 if (!path)
2510 return -ENOMEM;
2511
2512 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2513 name, name_len, -1);
2514 BUG_ON(!di || IS_ERR(di));
2515
2516 leaf = path->nodes[0];
2517 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2518 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2519 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2520 BUG_ON(ret);
2521 btrfs_release_path(root, path);
2522
2523 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
2524 objectid, root->root_key.objectid,
2525 dir->i_ino, &index, name, name_len);
2526 if (ret < 0) {
2527 BUG_ON(ret != -ENOENT);
2528 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
2529 name, name_len);
2530 BUG_ON(!di || IS_ERR(di));
2531
2532 leaf = path->nodes[0];
2533 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2534 btrfs_release_path(root, path);
2535 index = key.offset;
2536 }
2537
2538 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
2539 index, name, name_len, -1);
2540 BUG_ON(!di || IS_ERR(di));
2541
2542 leaf = path->nodes[0];
2543 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2544 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
2545 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2546 BUG_ON(ret);
2547 btrfs_release_path(root, path);
2548
2549 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2550 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2551 ret = btrfs_update_inode(trans, root, dir);
2552 BUG_ON(ret);
2553 dir->i_sb->s_dirt = 1;
2554
2555 btrfs_free_path(path);
2556 return 0;
2557}
2558
39279cc3
CM
2559static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
2560{
2561 struct inode *inode = dentry->d_inode;
1832a6d5 2562 int err = 0;
39279cc3
CM
2563 int ret;
2564 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 2565 struct btrfs_trans_handle *trans;
1832a6d5 2566 unsigned long nr = 0;
39279cc3 2567
3394e160 2568 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 2569 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
2570 return -ENOTEMPTY;
2571
39279cc3
CM
2572 trans = btrfs_start_transaction(root, 1);
2573 btrfs_set_trans_block_group(trans, dir);
39279cc3 2574
4df27c4d
YZ
2575 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
2576 err = btrfs_unlink_subvol(trans, root, dir,
2577 BTRFS_I(inode)->location.objectid,
2578 dentry->d_name.name,
2579 dentry->d_name.len);
2580 goto out;
2581 }
2582
7b128766
JB
2583 err = btrfs_orphan_add(trans, inode);
2584 if (err)
4df27c4d 2585 goto out;
7b128766 2586
39279cc3 2587 /* now the directory is empty */
e02119d5
CM
2588 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2589 dentry->d_name.name, dentry->d_name.len);
d397712b 2590 if (!err)
dbe674a9 2591 btrfs_i_size_write(inode, 0);
4df27c4d 2592out:
d3c2fdcf 2593 nr = trans->blocks_used;
89ce8a63 2594 ret = btrfs_end_transaction_throttle(trans, root);
d3c2fdcf 2595 btrfs_btree_balance_dirty(root, nr);
3954401f 2596
39279cc3
CM
2597 if (ret && !err)
2598 err = ret;
2599 return err;
2600}
2601
d20f7043 2602#if 0
323ac95b
CM
2603/*
2604 * when truncating bytes in a file, it is possible to avoid reading
2605 * the leaves that contain only checksum items. This can be the
2606 * majority of the IO required to delete a large file, but it must
2607 * be done carefully.
2608 *
2609 * The keys in the level just above the leaves are checked to make sure
2610 * the lowest key in a given leaf is a csum key, and starts at an offset
2611 * after the new size.
2612 *
2613 * Then the key for the next leaf is checked to make sure it also has
2614 * a checksum item for the same file. If it does, we know our target leaf
2615 * contains only checksum items, and it can be safely freed without reading
2616 * it.
2617 *
2618 * This is just an optimization targeted at large files. It may do
2619 * nothing. It will return 0 unless things went badly.
2620 */
2621static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
2622 struct btrfs_root *root,
2623 struct btrfs_path *path,
2624 struct inode *inode, u64 new_size)
2625{
2626 struct btrfs_key key;
2627 int ret;
2628 int nritems;
2629 struct btrfs_key found_key;
2630 struct btrfs_key other_key;
5b84e8d6
YZ
2631 struct btrfs_leaf_ref *ref;
2632 u64 leaf_gen;
2633 u64 leaf_start;
323ac95b
CM
2634
2635 path->lowest_level = 1;
2636 key.objectid = inode->i_ino;
2637 key.type = BTRFS_CSUM_ITEM_KEY;
2638 key.offset = new_size;
2639again:
2640 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2641 if (ret < 0)
2642 goto out;
2643
2644 if (path->nodes[1] == NULL) {
2645 ret = 0;
2646 goto out;
2647 }
2648 ret = 0;
2649 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
2650 nritems = btrfs_header_nritems(path->nodes[1]);
2651
2652 if (!nritems)
2653 goto out;
2654
2655 if (path->slots[1] >= nritems)
2656 goto next_node;
2657
2658 /* did we find a key greater than anything we want to delete? */
2659 if (found_key.objectid > inode->i_ino ||
2660 (found_key.objectid == inode->i_ino && found_key.type > key.type))
2661 goto out;
2662
2663 /* we check the next key in the node to make sure the leave contains
2664 * only checksum items. This comparison doesn't work if our
2665 * leaf is the last one in the node
2666 */
2667 if (path->slots[1] + 1 >= nritems) {
2668next_node:
2669 /* search forward from the last key in the node, this
2670 * will bring us into the next node in the tree
2671 */
2672 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
2673
2674 /* unlikely, but we inc below, so check to be safe */
2675 if (found_key.offset == (u64)-1)
2676 goto out;
2677
2678 /* search_forward needs a path with locks held, do the
2679 * search again for the original key. It is possible
2680 * this will race with a balance and return a path that
2681 * we could modify, but this drop is just an optimization
2682 * and is allowed to miss some leaves.
2683 */
2684 btrfs_release_path(root, path);
2685 found_key.offset++;
2686
2687 /* setup a max key for search_forward */
2688 other_key.offset = (u64)-1;
2689 other_key.type = key.type;
2690 other_key.objectid = key.objectid;
2691
2692 path->keep_locks = 1;
2693 ret = btrfs_search_forward(root, &found_key, &other_key,
2694 path, 0, 0);
2695 path->keep_locks = 0;
2696 if (ret || found_key.objectid != key.objectid ||
2697 found_key.type != key.type) {
2698 ret = 0;
2699 goto out;
2700 }
2701
2702 key.offset = found_key.offset;
2703 btrfs_release_path(root, path);
2704 cond_resched();
2705 goto again;
2706 }
2707
2708 /* we know there's one more slot after us in the tree,
2709 * read that key so we can verify it is also a checksum item
2710 */
2711 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
2712
2713 if (found_key.objectid < inode->i_ino)
2714 goto next_key;
2715
2716 if (found_key.type != key.type || found_key.offset < new_size)
2717 goto next_key;
2718
2719 /*
2720 * if the key for the next leaf isn't a csum key from this objectid,
2721 * we can't be sure there aren't good items inside this leaf.
2722 * Bail out
2723 */
2724 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
2725 goto out;
2726
5b84e8d6
YZ
2727 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
2728 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
2729 /*
2730 * it is safe to delete this leaf, it contains only
2731 * csum items from this inode at an offset >= new_size
2732 */
5b84e8d6 2733 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
2734 BUG_ON(ret);
2735
5b84e8d6
YZ
2736 if (root->ref_cows && leaf_gen < trans->transid) {
2737 ref = btrfs_alloc_leaf_ref(root, 0);
2738 if (ref) {
2739 ref->root_gen = root->root_key.offset;
2740 ref->bytenr = leaf_start;
2741 ref->owner = 0;
2742 ref->generation = leaf_gen;
2743 ref->nritems = 0;
2744
bd56b302
CM
2745 btrfs_sort_leaf_ref(ref);
2746
5b84e8d6
YZ
2747 ret = btrfs_add_leaf_ref(root, ref, 0);
2748 WARN_ON(ret);
2749 btrfs_free_leaf_ref(root, ref);
2750 } else {
2751 WARN_ON(1);
2752 }
2753 }
323ac95b
CM
2754next_key:
2755 btrfs_release_path(root, path);
2756
2757 if (other_key.objectid == inode->i_ino &&
2758 other_key.type == key.type && other_key.offset > key.offset) {
2759 key.offset = other_key.offset;
2760 cond_resched();
2761 goto again;
2762 }
2763 ret = 0;
2764out:
2765 /* fixup any changes we've made to the path */
2766 path->lowest_level = 0;
2767 path->keep_locks = 0;
2768 btrfs_release_path(root, path);
2769 return ret;
2770}
2771
d20f7043
CM
2772#endif
2773
39279cc3
CM
2774/*
2775 * this can truncate away extent items, csum items and directory items.
2776 * It starts at a high offset and removes keys until it can't find
d352ac68 2777 * any higher than new_size
39279cc3
CM
2778 *
2779 * csum items that cross the new i_size are truncated to the new size
2780 * as well.
7b128766
JB
2781 *
2782 * min_type is the minimum key type to truncate down to. If set to 0, this
2783 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 2784 */
e02119d5
CM
2785noinline int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2786 struct btrfs_root *root,
2787 struct inode *inode,
2788 u64 new_size, u32 min_type)
39279cc3
CM
2789{
2790 int ret;
2791 struct btrfs_path *path;
2792 struct btrfs_key key;
5f39d397 2793 struct btrfs_key found_key;
06d9a8d7 2794 u32 found_type = (u8)-1;
5f39d397 2795 struct extent_buffer *leaf;
39279cc3
CM
2796 struct btrfs_file_extent_item *fi;
2797 u64 extent_start = 0;
db94535d 2798 u64 extent_num_bytes = 0;
5d4f98a2 2799 u64 extent_offset = 0;
39279cc3
CM
2800 u64 item_end = 0;
2801 int found_extent;
2802 int del_item;
85e21bac
CM
2803 int pending_del_nr = 0;
2804 int pending_del_slot = 0;
179e29e4 2805 int extent_type = -1;
771ed689 2806 int encoding;
3b951516 2807 u64 mask = root->sectorsize - 1;
39279cc3 2808
e02119d5 2809 if (root->ref_cows)
5b21f2ed 2810 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
39279cc3
CM
2811 path = btrfs_alloc_path();
2812 BUG_ON(!path);
33c17ad5 2813 path->reada = -1;
5f39d397 2814
39279cc3
CM
2815 /* FIXME, add redo link to tree so we don't leak on crash */
2816 key.objectid = inode->i_ino;
2817 key.offset = (u64)-1;
5f39d397
CM
2818 key.type = (u8)-1;
2819
85e21bac 2820search_again:
b9473439 2821 path->leave_spinning = 1;
85e21bac 2822 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
d397712b 2823 if (ret < 0)
85e21bac 2824 goto error;
d397712b 2825
85e21bac 2826 if (ret > 0) {
e02119d5
CM
2827 /* there are no items in the tree for us to truncate, we're
2828 * done
2829 */
2830 if (path->slots[0] == 0) {
2831 ret = 0;
2832 goto error;
2833 }
85e21bac
CM
2834 path->slots[0]--;
2835 }
2836
d397712b 2837 while (1) {
39279cc3 2838 fi = NULL;
5f39d397
CM
2839 leaf = path->nodes[0];
2840 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2841 found_type = btrfs_key_type(&found_key);
771ed689 2842 encoding = 0;
39279cc3 2843
5f39d397 2844 if (found_key.objectid != inode->i_ino)
39279cc3 2845 break;
5f39d397 2846
85e21bac 2847 if (found_type < min_type)
39279cc3
CM
2848 break;
2849
5f39d397 2850 item_end = found_key.offset;
39279cc3 2851 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 2852 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 2853 struct btrfs_file_extent_item);
179e29e4 2854 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
2855 encoding = btrfs_file_extent_compression(leaf, fi);
2856 encoding |= btrfs_file_extent_encryption(leaf, fi);
2857 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
2858
179e29e4 2859 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 2860 item_end +=
db94535d 2861 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 2862 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 2863 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 2864 fi);
39279cc3 2865 }
008630c1 2866 item_end--;
39279cc3 2867 }
e02119d5 2868 if (item_end < new_size) {
d397712b 2869 if (found_type == BTRFS_DIR_ITEM_KEY)
b888db2b 2870 found_type = BTRFS_INODE_ITEM_KEY;
d397712b 2871 else if (found_type == BTRFS_EXTENT_ITEM_KEY)
d20f7043 2872 found_type = BTRFS_EXTENT_DATA_KEY;
d397712b 2873 else if (found_type == BTRFS_EXTENT_DATA_KEY)
85e21bac 2874 found_type = BTRFS_XATTR_ITEM_KEY;
d397712b 2875 else if (found_type == BTRFS_XATTR_ITEM_KEY)
85e21bac 2876 found_type = BTRFS_INODE_REF_KEY;
d397712b 2877 else if (found_type)
b888db2b 2878 found_type--;
d397712b 2879 else
b888db2b 2880 break;
a61721d5 2881 btrfs_set_key_type(&key, found_type);
85e21bac 2882 goto next;
39279cc3 2883 }
e02119d5 2884 if (found_key.offset >= new_size)
39279cc3
CM
2885 del_item = 1;
2886 else
2887 del_item = 0;
2888 found_extent = 0;
2889
2890 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
2891 if (found_type != BTRFS_EXTENT_DATA_KEY)
2892 goto delete;
2893
2894 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 2895 u64 num_dec;
db94535d 2896 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 2897 if (!del_item && !encoding) {
db94535d
CM
2898 u64 orig_num_bytes =
2899 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 2900 extent_num_bytes = new_size -
5f39d397 2901 found_key.offset + root->sectorsize - 1;
b1632b10
Y
2902 extent_num_bytes = extent_num_bytes &
2903 ~((u64)root->sectorsize - 1);
db94535d
CM
2904 btrfs_set_file_extent_num_bytes(leaf, fi,
2905 extent_num_bytes);
2906 num_dec = (orig_num_bytes -
9069218d 2907 extent_num_bytes);
e02119d5 2908 if (root->ref_cows && extent_start != 0)
a76a3cd4 2909 inode_sub_bytes(inode, num_dec);
5f39d397 2910 btrfs_mark_buffer_dirty(leaf);
39279cc3 2911 } else {
db94535d
CM
2912 extent_num_bytes =
2913 btrfs_file_extent_disk_num_bytes(leaf,
2914 fi);
5d4f98a2
YZ
2915 extent_offset = found_key.offset -
2916 btrfs_file_extent_offset(leaf, fi);
2917
39279cc3 2918 /* FIXME blocksize != 4096 */
9069218d 2919 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
2920 if (extent_start != 0) {
2921 found_extent = 1;
e02119d5 2922 if (root->ref_cows)
a76a3cd4 2923 inode_sub_bytes(inode, num_dec);
e02119d5 2924 }
39279cc3 2925 }
9069218d 2926 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
2927 /*
2928 * we can't truncate inline items that have had
2929 * special encodings
2930 */
2931 if (!del_item &&
2932 btrfs_file_extent_compression(leaf, fi) == 0 &&
2933 btrfs_file_extent_encryption(leaf, fi) == 0 &&
2934 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
2935 u32 size = new_size - found_key.offset;
2936
2937 if (root->ref_cows) {
a76a3cd4
YZ
2938 inode_sub_bytes(inode, item_end + 1 -
2939 new_size);
e02119d5
CM
2940 }
2941 size =
2942 btrfs_file_extent_calc_inline_size(size);
9069218d 2943 ret = btrfs_truncate_item(trans, root, path,
e02119d5 2944 size, 1);
9069218d 2945 BUG_ON(ret);
e02119d5 2946 } else if (root->ref_cows) {
a76a3cd4
YZ
2947 inode_sub_bytes(inode, item_end + 1 -
2948 found_key.offset);
9069218d 2949 }
39279cc3 2950 }
179e29e4 2951delete:
39279cc3 2952 if (del_item) {
85e21bac
CM
2953 if (!pending_del_nr) {
2954 /* no pending yet, add ourselves */
2955 pending_del_slot = path->slots[0];
2956 pending_del_nr = 1;
2957 } else if (pending_del_nr &&
2958 path->slots[0] + 1 == pending_del_slot) {
2959 /* hop on the pending chunk */
2960 pending_del_nr++;
2961 pending_del_slot = path->slots[0];
2962 } else {
d397712b 2963 BUG();
85e21bac 2964 }
39279cc3
CM
2965 } else {
2966 break;
2967 }
5d4f98a2 2968 if (found_extent && root->ref_cows) {
b9473439 2969 btrfs_set_path_blocking(path);
39279cc3 2970 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
2971 extent_num_bytes, 0,
2972 btrfs_header_owner(leaf),
2973 inode->i_ino, extent_offset);
39279cc3
CM
2974 BUG_ON(ret);
2975 }
85e21bac
CM
2976next:
2977 if (path->slots[0] == 0) {
2978 if (pending_del_nr)
2979 goto del_pending;
2980 btrfs_release_path(root, path);
06d9a8d7
CM
2981 if (found_type == BTRFS_INODE_ITEM_KEY)
2982 break;
85e21bac
CM
2983 goto search_again;
2984 }
2985
2986 path->slots[0]--;
2987 if (pending_del_nr &&
2988 path->slots[0] + 1 != pending_del_slot) {
2989 struct btrfs_key debug;
2990del_pending:
2991 btrfs_item_key_to_cpu(path->nodes[0], &debug,
2992 pending_del_slot);
2993 ret = btrfs_del_items(trans, root, path,
2994 pending_del_slot,
2995 pending_del_nr);
2996 BUG_ON(ret);
2997 pending_del_nr = 0;
2998 btrfs_release_path(root, path);
06d9a8d7
CM
2999 if (found_type == BTRFS_INODE_ITEM_KEY)
3000 break;
85e21bac
CM
3001 goto search_again;
3002 }
39279cc3
CM
3003 }
3004 ret = 0;
3005error:
85e21bac
CM
3006 if (pending_del_nr) {
3007 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3008 pending_del_nr);
3009 }
39279cc3 3010 btrfs_free_path(path);
39279cc3
CM
3011 return ret;
3012}
3013
3014/*
3015 * taken from block_truncate_page, but does cow as it zeros out
3016 * any bytes left in the last page in the file.
3017 */
3018static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3019{
3020 struct inode *inode = mapping->host;
db94535d 3021 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3022 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3023 struct btrfs_ordered_extent *ordered;
3024 char *kaddr;
db94535d 3025 u32 blocksize = root->sectorsize;
39279cc3
CM
3026 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3027 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3028 struct page *page;
39279cc3 3029 int ret = 0;
a52d9a80 3030 u64 page_start;
e6dcd2dc 3031 u64 page_end;
39279cc3
CM
3032
3033 if ((offset & (blocksize - 1)) == 0)
3034 goto out;
3035
3036 ret = -ENOMEM;
211c17f5 3037again:
39279cc3
CM
3038 page = grab_cache_page(mapping, index);
3039 if (!page)
3040 goto out;
e6dcd2dc
CM
3041
3042 page_start = page_offset(page);
3043 page_end = page_start + PAGE_CACHE_SIZE - 1;
3044
39279cc3 3045 if (!PageUptodate(page)) {
9ebefb18 3046 ret = btrfs_readpage(NULL, page);
39279cc3 3047 lock_page(page);
211c17f5
CM
3048 if (page->mapping != mapping) {
3049 unlock_page(page);
3050 page_cache_release(page);
3051 goto again;
3052 }
39279cc3
CM
3053 if (!PageUptodate(page)) {
3054 ret = -EIO;
89642229 3055 goto out_unlock;
39279cc3
CM
3056 }
3057 }
211c17f5 3058 wait_on_page_writeback(page);
e6dcd2dc
CM
3059
3060 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
3061 set_page_extent_mapped(page);
3062
3063 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3064 if (ordered) {
3065 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3066 unlock_page(page);
3067 page_cache_release(page);
eb84ae03 3068 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3069 btrfs_put_ordered_extent(ordered);
3070 goto again;
3071 }
3072
9ed74f2d
JB
3073 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
3074 if (ret) {
3075 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
3076 goto out_unlock;
3077 }
3078
e6dcd2dc
CM
3079 ret = 0;
3080 if (offset != PAGE_CACHE_SIZE) {
3081 kaddr = kmap(page);
3082 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3083 flush_dcache_page(page);
3084 kunmap(page);
3085 }
247e743c 3086 ClearPageChecked(page);
e6dcd2dc
CM
3087 set_page_dirty(page);
3088 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
39279cc3 3089
89642229 3090out_unlock:
39279cc3
CM
3091 unlock_page(page);
3092 page_cache_release(page);
3093out:
3094 return ret;
3095}
3096
9036c102 3097int btrfs_cont_expand(struct inode *inode, loff_t size)
39279cc3 3098{
9036c102
YZ
3099 struct btrfs_trans_handle *trans;
3100 struct btrfs_root *root = BTRFS_I(inode)->root;
3101 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3102 struct extent_map *em;
3103 u64 mask = root->sectorsize - 1;
3104 u64 hole_start = (inode->i_size + mask) & ~mask;
3105 u64 block_end = (size + mask) & ~mask;
3106 u64 last_byte;
3107 u64 cur_offset;
3108 u64 hole_size;
9ed74f2d 3109 int err = 0;
39279cc3 3110
9036c102
YZ
3111 if (size <= hole_start)
3112 return 0;
3113
9036c102 3114 btrfs_truncate_page(inode->i_mapping, inode->i_size);
2bf5a725 3115
9036c102
YZ
3116 while (1) {
3117 struct btrfs_ordered_extent *ordered;
3118 btrfs_wait_ordered_range(inode, hole_start,
3119 block_end - hole_start);
3120 lock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3121 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3122 if (!ordered)
3123 break;
3124 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3125 btrfs_put_ordered_extent(ordered);
3126 }
39279cc3 3127
9036c102
YZ
3128 trans = btrfs_start_transaction(root, 1);
3129 btrfs_set_trans_block_group(trans, inode);
39279cc3 3130
9036c102
YZ
3131 cur_offset = hole_start;
3132 while (1) {
3133 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3134 block_end - cur_offset, 0);
3135 BUG_ON(IS_ERR(em) || !em);
3136 last_byte = min(extent_map_end(em), block_end);
3137 last_byte = (last_byte + mask) & ~mask;
3138 if (test_bit(EXTENT_FLAG_VACANCY, &em->flags)) {
771ed689 3139 u64 hint_byte = 0;
9036c102 3140 hole_size = last_byte - cur_offset;
771ed689
CM
3141 err = btrfs_drop_extents(trans, root, inode,
3142 cur_offset,
3143 cur_offset + hole_size,
e980b50c 3144 block_end,
a1ed835e 3145 cur_offset, &hint_byte, 1);
771ed689
CM
3146 if (err)
3147 break;
9ed74f2d
JB
3148
3149 err = btrfs_reserve_metadata_space(root, 1);
3150 if (err)
3151 break;
3152
9036c102
YZ
3153 err = btrfs_insert_file_extent(trans, root,
3154 inode->i_ino, cur_offset, 0,
3155 0, hole_size, 0, hole_size,
3156 0, 0, 0);
3157 btrfs_drop_extent_cache(inode, hole_start,
3158 last_byte - 1, 0);
9ed74f2d 3159 btrfs_unreserve_metadata_space(root, 1);
9036c102
YZ
3160 }
3161 free_extent_map(em);
3162 cur_offset = last_byte;
3163 if (err || cur_offset >= block_end)
3164 break;
3165 }
1832a6d5 3166
9036c102
YZ
3167 btrfs_end_transaction(trans, root);
3168 unlock_extent(io_tree, hole_start, block_end - 1, GFP_NOFS);
3169 return err;
3170}
39279cc3 3171
9036c102
YZ
3172static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3173{
3174 struct inode *inode = dentry->d_inode;
3175 int err;
39279cc3 3176
9036c102
YZ
3177 err = inode_change_ok(inode, attr);
3178 if (err)
3179 return err;
2bf5a725 3180
5a3f23d5
CM
3181 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3182 if (attr->ia_size > inode->i_size) {
3183 err = btrfs_cont_expand(inode, attr->ia_size);
3184 if (err)
3185 return err;
3186 } else if (inode->i_size > 0 &&
3187 attr->ia_size == 0) {
3188
3189 /* we're truncating a file that used to have good
3190 * data down to zero. Make sure it gets into
3191 * the ordered flush list so that any new writes
3192 * get down to disk quickly.
3193 */
3194 BTRFS_I(inode)->ordered_data_close = 1;
3195 }
39279cc3 3196 }
9036c102 3197
39279cc3 3198 err = inode_setattr(inode, attr);
33268eaf
JB
3199
3200 if (!err && ((attr->ia_valid & ATTR_MODE)))
3201 err = btrfs_acl_chmod(inode);
39279cc3
CM
3202 return err;
3203}
61295eb8 3204
39279cc3
CM
3205void btrfs_delete_inode(struct inode *inode)
3206{
3207 struct btrfs_trans_handle *trans;
3208 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3209 unsigned long nr;
39279cc3
CM
3210 int ret;
3211
3212 truncate_inode_pages(&inode->i_data, 0);
3213 if (is_bad_inode(inode)) {
7b128766 3214 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3215 goto no_delete;
3216 }
4a096752 3217 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3218
76dda93c
YZ
3219 if (inode->i_nlink > 0) {
3220 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3221 goto no_delete;
3222 }
3223
dbe674a9 3224 btrfs_i_size_write(inode, 0);
180591bc 3225 trans = btrfs_join_transaction(root, 1);
5f39d397 3226
39279cc3 3227 btrfs_set_trans_block_group(trans, inode);
e02119d5 3228 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size, 0);
7b128766
JB
3229 if (ret) {
3230 btrfs_orphan_del(NULL, inode);
54aa1f4d 3231 goto no_delete_lock;
7b128766
JB
3232 }
3233
3234 btrfs_orphan_del(trans, inode);
85e21bac 3235
d3c2fdcf 3236 nr = trans->blocks_used;
85e21bac 3237 clear_inode(inode);
5f39d397 3238
39279cc3 3239 btrfs_end_transaction(trans, root);
d3c2fdcf 3240 btrfs_btree_balance_dirty(root, nr);
39279cc3 3241 return;
54aa1f4d
CM
3242
3243no_delete_lock:
d3c2fdcf 3244 nr = trans->blocks_used;
54aa1f4d 3245 btrfs_end_transaction(trans, root);
d3c2fdcf 3246 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3247no_delete:
3248 clear_inode(inode);
3249}
3250
3251/*
3252 * this returns the key found in the dir entry in the location pointer.
3253 * If no dir entries were found, location->objectid is 0.
3254 */
3255static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3256 struct btrfs_key *location)
3257{
3258 const char *name = dentry->d_name.name;
3259 int namelen = dentry->d_name.len;
3260 struct btrfs_dir_item *di;
3261 struct btrfs_path *path;
3262 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3263 int ret = 0;
39279cc3
CM
3264
3265 path = btrfs_alloc_path();
3266 BUG_ON(!path);
3954401f 3267
39279cc3
CM
3268 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3269 namelen, 0);
0d9f7f3e
Y
3270 if (IS_ERR(di))
3271 ret = PTR_ERR(di);
d397712b
CM
3272
3273 if (!di || IS_ERR(di))
3954401f 3274 goto out_err;
d397712b 3275
5f39d397 3276 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3277out:
39279cc3
CM
3278 btrfs_free_path(path);
3279 return ret;
3954401f
CM
3280out_err:
3281 location->objectid = 0;
3282 goto out;
39279cc3
CM
3283}
3284
3285/*
3286 * when we hit a tree root in a directory, the btrfs part of the inode
3287 * needs to be changed to reflect the root directory of the tree root. This
3288 * is kind of like crossing a mount point.
3289 */
3290static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3291 struct inode *dir,
3292 struct dentry *dentry,
3293 struct btrfs_key *location,
3294 struct btrfs_root **sub_root)
39279cc3 3295{
4df27c4d
YZ
3296 struct btrfs_path *path;
3297 struct btrfs_root *new_root;
3298 struct btrfs_root_ref *ref;
3299 struct extent_buffer *leaf;
3300 int ret;
3301 int err = 0;
39279cc3 3302
4df27c4d
YZ
3303 path = btrfs_alloc_path();
3304 if (!path) {
3305 err = -ENOMEM;
3306 goto out;
3307 }
39279cc3 3308
4df27c4d
YZ
3309 err = -ENOENT;
3310 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3311 BTRFS_I(dir)->root->root_key.objectid,
3312 location->objectid);
3313 if (ret) {
3314 if (ret < 0)
3315 err = ret;
3316 goto out;
3317 }
39279cc3 3318
4df27c4d
YZ
3319 leaf = path->nodes[0];
3320 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3321 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3322 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3323 goto out;
39279cc3 3324
4df27c4d
YZ
3325 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3326 (unsigned long)(ref + 1),
3327 dentry->d_name.len);
3328 if (ret)
3329 goto out;
3330
3331 btrfs_release_path(root->fs_info->tree_root, path);
3332
3333 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3334 if (IS_ERR(new_root)) {
3335 err = PTR_ERR(new_root);
3336 goto out;
3337 }
3338
3339 if (btrfs_root_refs(&new_root->root_item) == 0) {
3340 err = -ENOENT;
3341 goto out;
3342 }
3343
3344 *sub_root = new_root;
3345 location->objectid = btrfs_root_dirid(&new_root->root_item);
3346 location->type = BTRFS_INODE_ITEM_KEY;
3347 location->offset = 0;
3348 err = 0;
3349out:
3350 btrfs_free_path(path);
3351 return err;
39279cc3
CM
3352}
3353
5d4f98a2
YZ
3354static void inode_tree_add(struct inode *inode)
3355{
3356 struct btrfs_root *root = BTRFS_I(inode)->root;
3357 struct btrfs_inode *entry;
03e860bd
FNP
3358 struct rb_node **p;
3359 struct rb_node *parent;
03e860bd
FNP
3360again:
3361 p = &root->inode_tree.rb_node;
3362 parent = NULL;
5d4f98a2 3363
76dda93c
YZ
3364 if (hlist_unhashed(&inode->i_hash))
3365 return;
3366
5d4f98a2
YZ
3367 spin_lock(&root->inode_lock);
3368 while (*p) {
3369 parent = *p;
3370 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3371
3372 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3373 p = &parent->rb_left;
5d4f98a2 3374 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3375 p = &parent->rb_right;
5d4f98a2
YZ
3376 else {
3377 WARN_ON(!(entry->vfs_inode.i_state &
3378 (I_WILL_FREE | I_FREEING | I_CLEAR)));
03e860bd
FNP
3379 rb_erase(parent, &root->inode_tree);
3380 RB_CLEAR_NODE(parent);
3381 spin_unlock(&root->inode_lock);
3382 goto again;
5d4f98a2
YZ
3383 }
3384 }
3385 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3386 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3387 spin_unlock(&root->inode_lock);
3388}
3389
3390static void inode_tree_del(struct inode *inode)
3391{
3392 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3393 int empty = 0;
5d4f98a2 3394
03e860bd 3395 spin_lock(&root->inode_lock);
5d4f98a2 3396 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3397 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3398 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3399 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3400 }
03e860bd 3401 spin_unlock(&root->inode_lock);
76dda93c
YZ
3402
3403 if (empty && btrfs_root_refs(&root->root_item) == 0) {
3404 synchronize_srcu(&root->fs_info->subvol_srcu);
3405 spin_lock(&root->inode_lock);
3406 empty = RB_EMPTY_ROOT(&root->inode_tree);
3407 spin_unlock(&root->inode_lock);
3408 if (empty)
3409 btrfs_add_dead_root(root);
3410 }
3411}
3412
3413int btrfs_invalidate_inodes(struct btrfs_root *root)
3414{
3415 struct rb_node *node;
3416 struct rb_node *prev;
3417 struct btrfs_inode *entry;
3418 struct inode *inode;
3419 u64 objectid = 0;
3420
3421 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3422
3423 spin_lock(&root->inode_lock);
3424again:
3425 node = root->inode_tree.rb_node;
3426 prev = NULL;
3427 while (node) {
3428 prev = node;
3429 entry = rb_entry(node, struct btrfs_inode, rb_node);
3430
3431 if (objectid < entry->vfs_inode.i_ino)
3432 node = node->rb_left;
3433 else if (objectid > entry->vfs_inode.i_ino)
3434 node = node->rb_right;
3435 else
3436 break;
3437 }
3438 if (!node) {
3439 while (prev) {
3440 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3441 if (objectid <= entry->vfs_inode.i_ino) {
3442 node = prev;
3443 break;
3444 }
3445 prev = rb_next(prev);
3446 }
3447 }
3448 while (node) {
3449 entry = rb_entry(node, struct btrfs_inode, rb_node);
3450 objectid = entry->vfs_inode.i_ino + 1;
3451 inode = igrab(&entry->vfs_inode);
3452 if (inode) {
3453 spin_unlock(&root->inode_lock);
3454 if (atomic_read(&inode->i_count) > 1)
3455 d_prune_aliases(inode);
3456 /*
3457 * btrfs_drop_inode will remove it from
3458 * the inode cache when its usage count
3459 * hits zero.
3460 */
3461 iput(inode);
3462 cond_resched();
3463 spin_lock(&root->inode_lock);
3464 goto again;
3465 }
3466
3467 if (cond_resched_lock(&root->inode_lock))
3468 goto again;
3469
3470 node = rb_next(node);
3471 }
3472 spin_unlock(&root->inode_lock);
3473 return 0;
5d4f98a2
YZ
3474}
3475
e02119d5 3476static noinline void init_btrfs_i(struct inode *inode)
39279cc3 3477{
e02119d5
CM
3478 struct btrfs_inode *bi = BTRFS_I(inode);
3479
e02119d5 3480 bi->generation = 0;
c3027eb5 3481 bi->sequence = 0;
e02119d5 3482 bi->last_trans = 0;
257c62e1 3483 bi->last_sub_trans = 0;
e02119d5
CM
3484 bi->logged_trans = 0;
3485 bi->delalloc_bytes = 0;
6a63209f 3486 bi->reserved_bytes = 0;
e02119d5
CM
3487 bi->disk_i_size = 0;
3488 bi->flags = 0;
3489 bi->index_cnt = (u64)-1;
12fcfd22 3490 bi->last_unlink_trans = 0;
2757495c 3491 bi->ordered_data_close = 0;
d1310b2e
CM
3492 extent_map_tree_init(&BTRFS_I(inode)->extent_tree, GFP_NOFS);
3493 extent_io_tree_init(&BTRFS_I(inode)->io_tree,
b888db2b 3494 inode->i_mapping, GFP_NOFS);
7e38326f
CM
3495 extent_io_tree_init(&BTRFS_I(inode)->io_failure_tree,
3496 inode->i_mapping, GFP_NOFS);
ea8c2819 3497 INIT_LIST_HEAD(&BTRFS_I(inode)->delalloc_inodes);
5a3f23d5 3498 INIT_LIST_HEAD(&BTRFS_I(inode)->ordered_operations);
5d4f98a2 3499 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
ba1da2f4 3500 btrfs_ordered_inode_tree_init(&BTRFS_I(inode)->ordered_tree);
ee6e6504 3501 mutex_init(&BTRFS_I(inode)->extent_mutex);
e02119d5
CM
3502 mutex_init(&BTRFS_I(inode)->log_mutex);
3503}
3504
3505static int btrfs_init_locked_inode(struct inode *inode, void *p)
3506{
3507 struct btrfs_iget_args *args = p;
3508 inode->i_ino = args->ino;
3509 init_btrfs_i(inode);
3510 BTRFS_I(inode)->root = args->root;
6a63209f 3511 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3512 return 0;
3513}
3514
3515static int btrfs_find_actor(struct inode *inode, void *opaque)
3516{
3517 struct btrfs_iget_args *args = opaque;
d397712b
CM
3518 return args->ino == inode->i_ino &&
3519 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3520}
3521
5d4f98a2
YZ
3522static struct inode *btrfs_iget_locked(struct super_block *s,
3523 u64 objectid,
3524 struct btrfs_root *root)
39279cc3
CM
3525{
3526 struct inode *inode;
3527 struct btrfs_iget_args args;
3528 args.ino = objectid;
3529 args.root = root;
3530
3531 inode = iget5_locked(s, objectid, btrfs_find_actor,
3532 btrfs_init_locked_inode,
3533 (void *)&args);
3534 return inode;
3535}
3536
1a54ef8c
BR
3537/* Get an inode object given its location and corresponding root.
3538 * Returns in *is_new if the inode was read from disk
3539 */
3540struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5d4f98a2 3541 struct btrfs_root *root)
1a54ef8c
BR
3542{
3543 struct inode *inode;
3544
3545 inode = btrfs_iget_locked(s, location->objectid, root);
3546 if (!inode)
5d4f98a2 3547 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3548
3549 if (inode->i_state & I_NEW) {
3550 BTRFS_I(inode)->root = root;
3551 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3552 btrfs_read_locked_inode(inode);
5d4f98a2
YZ
3553
3554 inode_tree_add(inode);
1a54ef8c 3555 unlock_new_inode(inode);
1a54ef8c
BR
3556 }
3557
3558 return inode;
3559}
3560
4df27c4d
YZ
3561static struct inode *new_simple_dir(struct super_block *s,
3562 struct btrfs_key *key,
3563 struct btrfs_root *root)
3564{
3565 struct inode *inode = new_inode(s);
3566
3567 if (!inode)
3568 return ERR_PTR(-ENOMEM);
3569
3570 init_btrfs_i(inode);
3571
3572 BTRFS_I(inode)->root = root;
3573 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3574 BTRFS_I(inode)->dummy_inode = 1;
3575
3576 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3577 inode->i_op = &simple_dir_inode_operations;
3578 inode->i_fop = &simple_dir_operations;
3579 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3580 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3581
3582 return inode;
3583}
3584
3de4586c 3585struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 3586{
d397712b 3587 struct inode *inode;
4df27c4d 3588 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
3589 struct btrfs_root *sub_root = root;
3590 struct btrfs_key location;
76dda93c 3591 int index;
5d4f98a2 3592 int ret;
39279cc3 3593
76dda93c
YZ
3594 dentry->d_op = &btrfs_dentry_operations;
3595
39279cc3
CM
3596 if (dentry->d_name.len > BTRFS_NAME_LEN)
3597 return ERR_PTR(-ENAMETOOLONG);
5f39d397 3598
39279cc3 3599 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 3600
39279cc3
CM
3601 if (ret < 0)
3602 return ERR_PTR(ret);
5f39d397 3603
4df27c4d
YZ
3604 if (location.objectid == 0)
3605 return NULL;
3606
3607 if (location.type == BTRFS_INODE_ITEM_KEY) {
3608 inode = btrfs_iget(dir->i_sb, &location, root);
3609 return inode;
3610 }
3611
3612 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
3613
76dda93c 3614 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
3615 ret = fixup_tree_root_location(root, dir, dentry,
3616 &location, &sub_root);
3617 if (ret < 0) {
3618 if (ret != -ENOENT)
3619 inode = ERR_PTR(ret);
3620 else
3621 inode = new_simple_dir(dir->i_sb, &location, sub_root);
3622 } else {
5d4f98a2 3623 inode = btrfs_iget(dir->i_sb, &location, sub_root);
39279cc3 3624 }
76dda93c
YZ
3625 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
3626
3de4586c
CM
3627 return inode;
3628}
3629
76dda93c
YZ
3630static int btrfs_dentry_delete(struct dentry *dentry)
3631{
3632 struct btrfs_root *root;
3633
efefb143
YZ
3634 if (!dentry->d_inode && !IS_ROOT(dentry))
3635 dentry = dentry->d_parent;
76dda93c 3636
efefb143
YZ
3637 if (dentry->d_inode) {
3638 root = BTRFS_I(dentry->d_inode)->root;
3639 if (btrfs_root_refs(&root->root_item) == 0)
3640 return 1;
3641 }
76dda93c
YZ
3642 return 0;
3643}
3644
3de4586c
CM
3645static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
3646 struct nameidata *nd)
3647{
3648 struct inode *inode;
3649
3de4586c
CM
3650 inode = btrfs_lookup_dentry(dir, dentry);
3651 if (IS_ERR(inode))
3652 return ERR_CAST(inode);
7b128766 3653
39279cc3
CM
3654 return d_splice_alias(inode, dentry);
3655}
3656
39279cc3
CM
3657static unsigned char btrfs_filetype_table[] = {
3658 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
3659};
3660
cbdf5a24
DW
3661static int btrfs_real_readdir(struct file *filp, void *dirent,
3662 filldir_t filldir)
39279cc3 3663{
6da6abae 3664 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
3665 struct btrfs_root *root = BTRFS_I(inode)->root;
3666 struct btrfs_item *item;
3667 struct btrfs_dir_item *di;
3668 struct btrfs_key key;
5f39d397 3669 struct btrfs_key found_key;
39279cc3
CM
3670 struct btrfs_path *path;
3671 int ret;
3672 u32 nritems;
5f39d397 3673 struct extent_buffer *leaf;
39279cc3
CM
3674 int slot;
3675 int advance;
3676 unsigned char d_type;
3677 int over = 0;
3678 u32 di_cur;
3679 u32 di_total;
3680 u32 di_len;
3681 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
3682 char tmp_name[32];
3683 char *name_ptr;
3684 int name_len;
39279cc3
CM
3685
3686 /* FIXME, use a real flag for deciding about the key type */
3687 if (root->fs_info->tree_root == root)
3688 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 3689
3954401f
CM
3690 /* special case for "." */
3691 if (filp->f_pos == 0) {
3692 over = filldir(dirent, ".", 1,
3693 1, inode->i_ino,
3694 DT_DIR);
3695 if (over)
3696 return 0;
3697 filp->f_pos = 1;
3698 }
3954401f
CM
3699 /* special case for .., just use the back ref */
3700 if (filp->f_pos == 1) {
5ecc7e5d 3701 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 3702 over = filldir(dirent, "..", 2,
5ecc7e5d 3703 2, pino, DT_DIR);
3954401f 3704 if (over)
49593bfa 3705 return 0;
3954401f
CM
3706 filp->f_pos = 2;
3707 }
49593bfa
DW
3708 path = btrfs_alloc_path();
3709 path->reada = 2;
3710
39279cc3
CM
3711 btrfs_set_key_type(&key, key_type);
3712 key.offset = filp->f_pos;
49593bfa 3713 key.objectid = inode->i_ino;
5f39d397 3714
39279cc3
CM
3715 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3716 if (ret < 0)
3717 goto err;
3718 advance = 0;
49593bfa
DW
3719
3720 while (1) {
5f39d397
CM
3721 leaf = path->nodes[0];
3722 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3723 slot = path->slots[0];
3724 if (advance || slot >= nritems) {
49593bfa 3725 if (slot >= nritems - 1) {
39279cc3
CM
3726 ret = btrfs_next_leaf(root, path);
3727 if (ret)
3728 break;
5f39d397
CM
3729 leaf = path->nodes[0];
3730 nritems = btrfs_header_nritems(leaf);
39279cc3
CM
3731 slot = path->slots[0];
3732 } else {
3733 slot++;
3734 path->slots[0]++;
3735 }
3736 }
3de4586c 3737
39279cc3 3738 advance = 1;
5f39d397
CM
3739 item = btrfs_item_nr(leaf, slot);
3740 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3741
3742 if (found_key.objectid != key.objectid)
39279cc3 3743 break;
5f39d397 3744 if (btrfs_key_type(&found_key) != key_type)
39279cc3 3745 break;
5f39d397 3746 if (found_key.offset < filp->f_pos)
39279cc3 3747 continue;
5f39d397
CM
3748
3749 filp->f_pos = found_key.offset;
49593bfa 3750
39279cc3
CM
3751 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
3752 di_cur = 0;
5f39d397 3753 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
3754
3755 while (di_cur < di_total) {
5f39d397
CM
3756 struct btrfs_key location;
3757
3758 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 3759 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
3760 name_ptr = tmp_name;
3761 } else {
3762 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
3763 if (!name_ptr) {
3764 ret = -ENOMEM;
3765 goto err;
3766 }
5f39d397
CM
3767 }
3768 read_extent_buffer(leaf, name_ptr,
3769 (unsigned long)(di + 1), name_len);
3770
3771 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
3772 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
3773
3774 /* is this a reference to our own snapshot? If so
3775 * skip it
3776 */
3777 if (location.type == BTRFS_ROOT_ITEM_KEY &&
3778 location.objectid == root->root_key.objectid) {
3779 over = 0;
3780 goto skip;
3781 }
5f39d397 3782 over = filldir(dirent, name_ptr, name_len,
49593bfa 3783 found_key.offset, location.objectid,
39279cc3 3784 d_type);
5f39d397 3785
3de4586c 3786skip:
5f39d397
CM
3787 if (name_ptr != tmp_name)
3788 kfree(name_ptr);
3789
39279cc3
CM
3790 if (over)
3791 goto nopos;
5103e947 3792 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 3793 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
3794 di_cur += di_len;
3795 di = (struct btrfs_dir_item *)((char *)di + di_len);
3796 }
3797 }
49593bfa
DW
3798
3799 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 3800 if (key_type == BTRFS_DIR_INDEX_KEY)
89f135d8 3801 filp->f_pos = INT_LIMIT(off_t);
5e591a07
YZ
3802 else
3803 filp->f_pos++;
39279cc3
CM
3804nopos:
3805 ret = 0;
3806err:
39279cc3 3807 btrfs_free_path(path);
39279cc3
CM
3808 return ret;
3809}
3810
3811int btrfs_write_inode(struct inode *inode, int wait)
3812{
3813 struct btrfs_root *root = BTRFS_I(inode)->root;
3814 struct btrfs_trans_handle *trans;
3815 int ret = 0;
3816
c146afad 3817 if (root->fs_info->btree_inode == inode)
4ca8b41e
CM
3818 return 0;
3819
39279cc3 3820 if (wait) {
f9295749 3821 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3822 btrfs_set_trans_block_group(trans, inode);
3823 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
3824 }
3825 return ret;
3826}
3827
3828/*
54aa1f4d 3829 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
3830 * inode changes. But, it is most likely to find the inode in cache.
3831 * FIXME, needs more benchmarking...there are no reasons other than performance
3832 * to keep or drop this code.
3833 */
3834void btrfs_dirty_inode(struct inode *inode)
3835{
3836 struct btrfs_root *root = BTRFS_I(inode)->root;
3837 struct btrfs_trans_handle *trans;
3838
f9295749 3839 trans = btrfs_join_transaction(root, 1);
39279cc3
CM
3840 btrfs_set_trans_block_group(trans, inode);
3841 btrfs_update_inode(trans, root, inode);
3842 btrfs_end_transaction(trans, root);
39279cc3
CM
3843}
3844
d352ac68
CM
3845/*
3846 * find the highest existing sequence number in a directory
3847 * and then set the in-memory index_cnt variable to reflect
3848 * free sequence numbers
3849 */
aec7477b
JB
3850static int btrfs_set_inode_index_count(struct inode *inode)
3851{
3852 struct btrfs_root *root = BTRFS_I(inode)->root;
3853 struct btrfs_key key, found_key;
3854 struct btrfs_path *path;
3855 struct extent_buffer *leaf;
3856 int ret;
3857
3858 key.objectid = inode->i_ino;
3859 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
3860 key.offset = (u64)-1;
3861
3862 path = btrfs_alloc_path();
3863 if (!path)
3864 return -ENOMEM;
3865
3866 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3867 if (ret < 0)
3868 goto out;
3869 /* FIXME: we should be able to handle this */
3870 if (ret == 0)
3871 goto out;
3872 ret = 0;
3873
3874 /*
3875 * MAGIC NUMBER EXPLANATION:
3876 * since we search a directory based on f_pos we have to start at 2
3877 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
3878 * else has to start at 2
3879 */
3880 if (path->slots[0] == 0) {
3881 BTRFS_I(inode)->index_cnt = 2;
3882 goto out;
3883 }
3884
3885 path->slots[0]--;
3886
3887 leaf = path->nodes[0];
3888 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3889
3890 if (found_key.objectid != inode->i_ino ||
3891 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
3892 BTRFS_I(inode)->index_cnt = 2;
3893 goto out;
3894 }
3895
3896 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
3897out:
3898 btrfs_free_path(path);
3899 return ret;
3900}
3901
d352ac68
CM
3902/*
3903 * helper to find a free sequence number in a given directory. This current
3904 * code is very simple, later versions will do smarter things in the btree
3905 */
3de4586c 3906int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
3907{
3908 int ret = 0;
3909
3910 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
3911 ret = btrfs_set_inode_index_count(dir);
d397712b 3912 if (ret)
aec7477b
JB
3913 return ret;
3914 }
3915
00e4e6b3 3916 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
3917 BTRFS_I(dir)->index_cnt++;
3918
3919 return ret;
3920}
3921
39279cc3
CM
3922static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
3923 struct btrfs_root *root,
aec7477b 3924 struct inode *dir,
9c58309d 3925 const char *name, int name_len,
d2fb3437
YZ
3926 u64 ref_objectid, u64 objectid,
3927 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
3928{
3929 struct inode *inode;
5f39d397 3930 struct btrfs_inode_item *inode_item;
39279cc3 3931 struct btrfs_key *location;
5f39d397 3932 struct btrfs_path *path;
9c58309d
CM
3933 struct btrfs_inode_ref *ref;
3934 struct btrfs_key key[2];
3935 u32 sizes[2];
3936 unsigned long ptr;
39279cc3
CM
3937 int ret;
3938 int owner;
3939
5f39d397
CM
3940 path = btrfs_alloc_path();
3941 BUG_ON(!path);
3942
39279cc3
CM
3943 inode = new_inode(root->fs_info->sb);
3944 if (!inode)
3945 return ERR_PTR(-ENOMEM);
3946
aec7477b 3947 if (dir) {
3de4586c 3948 ret = btrfs_set_inode_index(dir, index);
09771430
SF
3949 if (ret) {
3950 iput(inode);
aec7477b 3951 return ERR_PTR(ret);
09771430 3952 }
aec7477b
JB
3953 }
3954 /*
3955 * index_cnt is ignored for everything but a dir,
3956 * btrfs_get_inode_index_count has an explanation for the magic
3957 * number
3958 */
e02119d5 3959 init_btrfs_i(inode);
aec7477b 3960 BTRFS_I(inode)->index_cnt = 2;
39279cc3 3961 BTRFS_I(inode)->root = root;
e02119d5 3962 BTRFS_I(inode)->generation = trans->transid;
6a63209f 3963 btrfs_set_inode_space_info(root, inode);
b888db2b 3964
39279cc3
CM
3965 if (mode & S_IFDIR)
3966 owner = 0;
3967 else
3968 owner = 1;
d2fb3437
YZ
3969 BTRFS_I(inode)->block_group =
3970 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
3971
3972 key[0].objectid = objectid;
3973 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
3974 key[0].offset = 0;
3975
3976 key[1].objectid = objectid;
3977 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
3978 key[1].offset = ref_objectid;
3979
3980 sizes[0] = sizeof(struct btrfs_inode_item);
3981 sizes[1] = name_len + sizeof(*ref);
3982
b9473439 3983 path->leave_spinning = 1;
9c58309d
CM
3984 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
3985 if (ret != 0)
5f39d397
CM
3986 goto fail;
3987
79683f2d 3988 inode->i_uid = current_fsuid();
8c087b51 3989
42f15d77 3990 if (dir && (dir->i_mode & S_ISGID)) {
8c087b51
CB
3991 inode->i_gid = dir->i_gid;
3992 if (S_ISDIR(mode))
3993 mode |= S_ISGID;
3994 } else
3995 inode->i_gid = current_fsgid();
3996
39279cc3
CM
3997 inode->i_mode = mode;
3998 inode->i_ino = objectid;
a76a3cd4 3999 inode_set_bytes(inode, 0);
39279cc3 4000 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4001 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4002 struct btrfs_inode_item);
e02119d5 4003 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4004
4005 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4006 struct btrfs_inode_ref);
4007 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4008 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4009 ptr = (unsigned long)(ref + 1);
4010 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4011
5f39d397
CM
4012 btrfs_mark_buffer_dirty(path->nodes[0]);
4013 btrfs_free_path(path);
4014
39279cc3
CM
4015 location = &BTRFS_I(inode)->location;
4016 location->objectid = objectid;
39279cc3
CM
4017 location->offset = 0;
4018 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4019
6cbff00f
CH
4020 btrfs_inherit_iflags(inode, dir);
4021
94272164
CM
4022 if ((mode & S_IFREG)) {
4023 if (btrfs_test_opt(root, NODATASUM))
4024 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4025 if (btrfs_test_opt(root, NODATACOW))
4026 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4027 }
4028
39279cc3 4029 insert_inode_hash(inode);
5d4f98a2 4030 inode_tree_add(inode);
39279cc3 4031 return inode;
5f39d397 4032fail:
aec7477b
JB
4033 if (dir)
4034 BTRFS_I(dir)->index_cnt--;
5f39d397 4035 btrfs_free_path(path);
09771430 4036 iput(inode);
5f39d397 4037 return ERR_PTR(ret);
39279cc3
CM
4038}
4039
4040static inline u8 btrfs_inode_type(struct inode *inode)
4041{
4042 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4043}
4044
d352ac68
CM
4045/*
4046 * utility function to add 'inode' into 'parent_inode' with
4047 * a give name and a given sequence number.
4048 * if 'add_backref' is true, also insert a backref from the
4049 * inode to the parent directory.
4050 */
e02119d5
CM
4051int btrfs_add_link(struct btrfs_trans_handle *trans,
4052 struct inode *parent_inode, struct inode *inode,
4053 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4054{
4df27c4d 4055 int ret = 0;
39279cc3 4056 struct btrfs_key key;
e02119d5 4057 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4058
4df27c4d
YZ
4059 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4060 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4061 } else {
4062 key.objectid = inode->i_ino;
4063 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4064 key.offset = 0;
4065 }
4066
4067 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4068 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4069 key.objectid, root->root_key.objectid,
4070 parent_inode->i_ino,
4071 index, name, name_len);
4072 } else if (add_backref) {
4073 ret = btrfs_insert_inode_ref(trans, root,
4074 name, name_len, inode->i_ino,
4075 parent_inode->i_ino, index);
4076 }
39279cc3 4077
39279cc3 4078 if (ret == 0) {
4df27c4d
YZ
4079 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4080 parent_inode->i_ino, &key,
4081 btrfs_inode_type(inode), index);
4082 BUG_ON(ret);
4083
dbe674a9 4084 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4085 name_len * 2);
79c44584 4086 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4087 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4088 }
4089 return ret;
4090}
4091
4092static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
9c58309d 4093 struct dentry *dentry, struct inode *inode,
00e4e6b3 4094 int backref, u64 index)
39279cc3 4095{
e02119d5
CM
4096 int err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4097 inode, dentry->d_name.name,
4098 dentry->d_name.len, backref, index);
39279cc3
CM
4099 if (!err) {
4100 d_instantiate(dentry, inode);
4101 return 0;
4102 }
4103 if (err > 0)
4104 err = -EEXIST;
4105 return err;
4106}
4107
618e21d5
JB
4108static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4109 int mode, dev_t rdev)
4110{
4111 struct btrfs_trans_handle *trans;
4112 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4113 struct inode *inode = NULL;
618e21d5
JB
4114 int err;
4115 int drop_inode = 0;
4116 u64 objectid;
1832a6d5 4117 unsigned long nr = 0;
00e4e6b3 4118 u64 index = 0;
618e21d5
JB
4119
4120 if (!new_valid_dev(rdev))
4121 return -EINVAL;
4122
9ed74f2d
JB
4123 /*
4124 * 2 for inode item and ref
4125 * 2 for dir items
4126 * 1 for xattr if selinux is on
4127 */
4128 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4129 if (err)
9ed74f2d 4130 return err;
1832a6d5 4131
618e21d5 4132 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4133 if (!trans)
4134 goto fail;
618e21d5
JB
4135 btrfs_set_trans_block_group(trans, dir);
4136
4137 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4138 if (err) {
4139 err = -ENOSPC;
4140 goto out_unlock;
4141 }
4142
aec7477b 4143 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4144 dentry->d_name.len,
4145 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3 4146 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4147 err = PTR_ERR(inode);
4148 if (IS_ERR(inode))
4149 goto out_unlock;
4150
0279b4cd 4151 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4152 if (err) {
4153 drop_inode = 1;
4154 goto out_unlock;
4155 }
4156
618e21d5 4157 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4158 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
618e21d5
JB
4159 if (err)
4160 drop_inode = 1;
4161 else {
4162 inode->i_op = &btrfs_special_inode_operations;
4163 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4164 btrfs_update_inode(trans, root, inode);
618e21d5 4165 }
618e21d5
JB
4166 btrfs_update_inode_block_group(trans, inode);
4167 btrfs_update_inode_block_group(trans, dir);
4168out_unlock:
d3c2fdcf 4169 nr = trans->blocks_used;
89ce8a63 4170 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4171fail:
9ed74f2d 4172 btrfs_unreserve_metadata_space(root, 5);
618e21d5
JB
4173 if (drop_inode) {
4174 inode_dec_link_count(inode);
4175 iput(inode);
4176 }
d3c2fdcf 4177 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4178 return err;
4179}
4180
39279cc3
CM
4181static int btrfs_create(struct inode *dir, struct dentry *dentry,
4182 int mode, struct nameidata *nd)
4183{
4184 struct btrfs_trans_handle *trans;
4185 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4186 struct inode *inode = NULL;
39279cc3
CM
4187 int err;
4188 int drop_inode = 0;
1832a6d5 4189 unsigned long nr = 0;
39279cc3 4190 u64 objectid;
00e4e6b3 4191 u64 index = 0;
39279cc3 4192
9ed74f2d
JB
4193 /*
4194 * 2 for inode item and ref
4195 * 2 for dir items
4196 * 1 for xattr if selinux is on
4197 */
4198 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4199 if (err)
9ed74f2d
JB
4200 return err;
4201
39279cc3 4202 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4203 if (!trans)
4204 goto fail;
39279cc3
CM
4205 btrfs_set_trans_block_group(trans, dir);
4206
4207 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4208 if (err) {
4209 err = -ENOSPC;
4210 goto out_unlock;
4211 }
4212
aec7477b 4213 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4214 dentry->d_name.len,
4215 dentry->d_parent->d_inode->i_ino,
00e4e6b3
CM
4216 objectid, BTRFS_I(dir)->block_group, mode,
4217 &index);
39279cc3
CM
4218 err = PTR_ERR(inode);
4219 if (IS_ERR(inode))
4220 goto out_unlock;
4221
0279b4cd 4222 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4223 if (err) {
4224 drop_inode = 1;
4225 goto out_unlock;
4226 }
4227
39279cc3 4228 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 4229 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
4230 if (err)
4231 drop_inode = 1;
4232 else {
4233 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4234 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4235 inode->i_fop = &btrfs_file_operations;
4236 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4237 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4238 }
39279cc3
CM
4239 btrfs_update_inode_block_group(trans, inode);
4240 btrfs_update_inode_block_group(trans, dir);
4241out_unlock:
d3c2fdcf 4242 nr = trans->blocks_used;
ab78c84d 4243 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4244fail:
9ed74f2d 4245 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4246 if (drop_inode) {
4247 inode_dec_link_count(inode);
4248 iput(inode);
4249 }
d3c2fdcf 4250 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4251 return err;
4252}
4253
4254static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4255 struct dentry *dentry)
4256{
4257 struct btrfs_trans_handle *trans;
4258 struct btrfs_root *root = BTRFS_I(dir)->root;
4259 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4260 u64 index;
1832a6d5 4261 unsigned long nr = 0;
39279cc3
CM
4262 int err;
4263 int drop_inode = 0;
4264
4265 if (inode->i_nlink == 0)
4266 return -ENOENT;
4267
9ed74f2d
JB
4268 /*
4269 * 1 item for inode ref
4270 * 2 items for dir items
4271 */
4272 err = btrfs_reserve_metadata_space(root, 3);
1832a6d5 4273 if (err)
9ed74f2d
JB
4274 return err;
4275
4276 btrfs_inc_nlink(inode);
4277
3de4586c 4278 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4279 if (err)
4280 goto fail;
4281
39279cc3 4282 trans = btrfs_start_transaction(root, 1);
5f39d397 4283
39279cc3
CM
4284 btrfs_set_trans_block_group(trans, dir);
4285 atomic_inc(&inode->i_count);
aec7477b 4286
00e4e6b3 4287 err = btrfs_add_nondir(trans, dentry, inode, 1, index);
5f39d397 4288
a5719521 4289 if (err) {
54aa1f4d 4290 drop_inode = 1;
a5719521
YZ
4291 } else {
4292 btrfs_update_inode_block_group(trans, dir);
4293 err = btrfs_update_inode(trans, root, inode);
4294 BUG_ON(err);
4295 btrfs_log_new_name(trans, inode, NULL, dentry->d_parent);
4296 }
39279cc3 4297
d3c2fdcf 4298 nr = trans->blocks_used;
ab78c84d 4299 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4300fail:
9ed74f2d 4301 btrfs_unreserve_metadata_space(root, 3);
39279cc3
CM
4302 if (drop_inode) {
4303 inode_dec_link_count(inode);
4304 iput(inode);
4305 }
d3c2fdcf 4306 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4307 return err;
4308}
4309
39279cc3
CM
4310static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4311{
b9d86667 4312 struct inode *inode = NULL;
39279cc3
CM
4313 struct btrfs_trans_handle *trans;
4314 struct btrfs_root *root = BTRFS_I(dir)->root;
4315 int err = 0;
4316 int drop_on_err = 0;
b9d86667 4317 u64 objectid = 0;
00e4e6b3 4318 u64 index = 0;
d3c2fdcf 4319 unsigned long nr = 1;
39279cc3 4320
9ed74f2d
JB
4321 /*
4322 * 2 items for inode and ref
4323 * 2 items for dir items
4324 * 1 for xattr if selinux is on
4325 */
4326 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 4327 if (err)
9ed74f2d 4328 return err;
1832a6d5 4329
39279cc3 4330 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
4331 if (!trans) {
4332 err = -ENOMEM;
39279cc3
CM
4333 goto out_unlock;
4334 }
9ed74f2d 4335 btrfs_set_trans_block_group(trans, dir);
39279cc3
CM
4336
4337 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
4338 if (err) {
4339 err = -ENOSPC;
4340 goto out_unlock;
4341 }
4342
aec7477b 4343 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
4344 dentry->d_name.len,
4345 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
4346 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4347 &index);
39279cc3
CM
4348 if (IS_ERR(inode)) {
4349 err = PTR_ERR(inode);
4350 goto out_fail;
4351 }
5f39d397 4352
39279cc3 4353 drop_on_err = 1;
33268eaf 4354
0279b4cd 4355 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
4356 if (err)
4357 goto out_fail;
4358
39279cc3
CM
4359 inode->i_op = &btrfs_dir_inode_operations;
4360 inode->i_fop = &btrfs_dir_file_operations;
4361 btrfs_set_trans_block_group(trans, inode);
4362
dbe674a9 4363 btrfs_i_size_write(inode, 0);
39279cc3
CM
4364 err = btrfs_update_inode(trans, root, inode);
4365 if (err)
4366 goto out_fail;
5f39d397 4367
e02119d5
CM
4368 err = btrfs_add_link(trans, dentry->d_parent->d_inode,
4369 inode, dentry->d_name.name,
4370 dentry->d_name.len, 0, index);
39279cc3
CM
4371 if (err)
4372 goto out_fail;
5f39d397 4373
39279cc3
CM
4374 d_instantiate(dentry, inode);
4375 drop_on_err = 0;
39279cc3
CM
4376 btrfs_update_inode_block_group(trans, inode);
4377 btrfs_update_inode_block_group(trans, dir);
4378
4379out_fail:
d3c2fdcf 4380 nr = trans->blocks_used;
ab78c84d 4381 btrfs_end_transaction_throttle(trans, root);
5f39d397 4382
39279cc3 4383out_unlock:
9ed74f2d 4384 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
4385 if (drop_on_err)
4386 iput(inode);
d3c2fdcf 4387 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4388 return err;
4389}
4390
d352ac68
CM
4391/* helper for btfs_get_extent. Given an existing extent in the tree,
4392 * and an extent that you want to insert, deal with overlap and insert
4393 * the new extent into the tree.
4394 */
3b951516
CM
4395static int merge_extent_mapping(struct extent_map_tree *em_tree,
4396 struct extent_map *existing,
e6dcd2dc
CM
4397 struct extent_map *em,
4398 u64 map_start, u64 map_len)
3b951516
CM
4399{
4400 u64 start_diff;
3b951516 4401
e6dcd2dc
CM
4402 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4403 start_diff = map_start - em->start;
4404 em->start = map_start;
4405 em->len = map_len;
c8b97818
CM
4406 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4407 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4408 em->block_start += start_diff;
c8b97818
CM
4409 em->block_len -= start_diff;
4410 }
e6dcd2dc 4411 return add_extent_mapping(em_tree, em);
3b951516
CM
4412}
4413
c8b97818
CM
4414static noinline int uncompress_inline(struct btrfs_path *path,
4415 struct inode *inode, struct page *page,
4416 size_t pg_offset, u64 extent_offset,
4417 struct btrfs_file_extent_item *item)
4418{
4419 int ret;
4420 struct extent_buffer *leaf = path->nodes[0];
4421 char *tmp;
4422 size_t max_size;
4423 unsigned long inline_size;
4424 unsigned long ptr;
4425
4426 WARN_ON(pg_offset != 0);
4427 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4428 inline_size = btrfs_file_extent_inline_item_len(leaf,
4429 btrfs_item_nr(leaf, path->slots[0]));
4430 tmp = kmalloc(inline_size, GFP_NOFS);
4431 ptr = btrfs_file_extent_inline_start(item);
4432
4433 read_extent_buffer(leaf, tmp, ptr, inline_size);
4434
5b050f04 4435 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
c8b97818
CM
4436 ret = btrfs_zlib_decompress(tmp, page, extent_offset,
4437 inline_size, max_size);
4438 if (ret) {
4439 char *kaddr = kmap_atomic(page, KM_USER0);
4440 unsigned long copy_size = min_t(u64,
4441 PAGE_CACHE_SIZE - pg_offset,
4442 max_size - extent_offset);
4443 memset(kaddr + pg_offset, 0, copy_size);
4444 kunmap_atomic(kaddr, KM_USER0);
4445 }
4446 kfree(tmp);
4447 return 0;
4448}
4449
d352ac68
CM
4450/*
4451 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4452 * the ugly parts come from merging extents from the disk with the in-ram
4453 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4454 * where the in-ram extents might be locked pending data=ordered completion.
4455 *
4456 * This also copies inline extents directly into the page.
4457 */
d397712b 4458
a52d9a80 4459struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4460 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4461 int create)
4462{
4463 int ret;
4464 int err = 0;
db94535d 4465 u64 bytenr;
a52d9a80
CM
4466 u64 extent_start = 0;
4467 u64 extent_end = 0;
4468 u64 objectid = inode->i_ino;
4469 u32 found_type;
f421950f 4470 struct btrfs_path *path = NULL;
a52d9a80
CM
4471 struct btrfs_root *root = BTRFS_I(inode)->root;
4472 struct btrfs_file_extent_item *item;
5f39d397
CM
4473 struct extent_buffer *leaf;
4474 struct btrfs_key found_key;
a52d9a80
CM
4475 struct extent_map *em = NULL;
4476 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4477 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4478 struct btrfs_trans_handle *trans = NULL;
c8b97818 4479 int compressed;
a52d9a80 4480
a52d9a80 4481again:
890871be 4482 read_lock(&em_tree->lock);
d1310b2e 4483 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4484 if (em)
4485 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4486 read_unlock(&em_tree->lock);
d1310b2e 4487
a52d9a80 4488 if (em) {
e1c4b745
CM
4489 if (em->start > start || em->start + em->len <= start)
4490 free_extent_map(em);
4491 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4492 free_extent_map(em);
4493 else
4494 goto out;
a52d9a80 4495 }
d1310b2e 4496 em = alloc_extent_map(GFP_NOFS);
a52d9a80 4497 if (!em) {
d1310b2e
CM
4498 err = -ENOMEM;
4499 goto out;
a52d9a80 4500 }
e6dcd2dc 4501 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4502 em->start = EXTENT_MAP_HOLE;
445a6944 4503 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4504 em->len = (u64)-1;
c8b97818 4505 em->block_len = (u64)-1;
f421950f
CM
4506
4507 if (!path) {
4508 path = btrfs_alloc_path();
4509 BUG_ON(!path);
4510 }
4511
179e29e4
CM
4512 ret = btrfs_lookup_file_extent(trans, root, path,
4513 objectid, start, trans != NULL);
a52d9a80
CM
4514 if (ret < 0) {
4515 err = ret;
4516 goto out;
4517 }
4518
4519 if (ret != 0) {
4520 if (path->slots[0] == 0)
4521 goto not_found;
4522 path->slots[0]--;
4523 }
4524
5f39d397
CM
4525 leaf = path->nodes[0];
4526 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 4527 struct btrfs_file_extent_item);
a52d9a80 4528 /* are we inside the extent that was found? */
5f39d397
CM
4529 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4530 found_type = btrfs_key_type(&found_key);
4531 if (found_key.objectid != objectid ||
a52d9a80
CM
4532 found_type != BTRFS_EXTENT_DATA_KEY) {
4533 goto not_found;
4534 }
4535
5f39d397
CM
4536 found_type = btrfs_file_extent_type(leaf, item);
4537 extent_start = found_key.offset;
c8b97818 4538 compressed = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
4539 if (found_type == BTRFS_FILE_EXTENT_REG ||
4540 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 4541 extent_end = extent_start +
db94535d 4542 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
4543 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4544 size_t size;
4545 size = btrfs_file_extent_inline_len(leaf, item);
4546 extent_end = (extent_start + size + root->sectorsize - 1) &
4547 ~((u64)root->sectorsize - 1);
4548 }
4549
4550 if (start >= extent_end) {
4551 path->slots[0]++;
4552 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
4553 ret = btrfs_next_leaf(root, path);
4554 if (ret < 0) {
4555 err = ret;
4556 goto out;
a52d9a80 4557 }
9036c102
YZ
4558 if (ret > 0)
4559 goto not_found;
4560 leaf = path->nodes[0];
a52d9a80 4561 }
9036c102
YZ
4562 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4563 if (found_key.objectid != objectid ||
4564 found_key.type != BTRFS_EXTENT_DATA_KEY)
4565 goto not_found;
4566 if (start + len <= found_key.offset)
4567 goto not_found;
4568 em->start = start;
4569 em->len = found_key.offset - start;
4570 goto not_found_em;
4571 }
4572
d899e052
YZ
4573 if (found_type == BTRFS_FILE_EXTENT_REG ||
4574 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
4575 em->start = extent_start;
4576 em->len = extent_end - extent_start;
ff5b7ee3
YZ
4577 em->orig_start = extent_start -
4578 btrfs_file_extent_offset(leaf, item);
db94535d
CM
4579 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
4580 if (bytenr == 0) {
5f39d397 4581 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
4582 goto insert;
4583 }
c8b97818
CM
4584 if (compressed) {
4585 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
4586 em->block_start = bytenr;
4587 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
4588 item);
4589 } else {
4590 bytenr += btrfs_file_extent_offset(leaf, item);
4591 em->block_start = bytenr;
4592 em->block_len = em->len;
d899e052
YZ
4593 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
4594 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 4595 }
a52d9a80
CM
4596 goto insert;
4597 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4598 unsigned long ptr;
a52d9a80 4599 char *map;
3326d1b0
CM
4600 size_t size;
4601 size_t extent_offset;
4602 size_t copy_size;
a52d9a80 4603
689f9346 4604 em->block_start = EXTENT_MAP_INLINE;
c8b97818 4605 if (!page || create) {
689f9346 4606 em->start = extent_start;
9036c102 4607 em->len = extent_end - extent_start;
689f9346
Y
4608 goto out;
4609 }
5f39d397 4610
9036c102
YZ
4611 size = btrfs_file_extent_inline_len(leaf, item);
4612 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 4613 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 4614 size - extent_offset);
3326d1b0 4615 em->start = extent_start + extent_offset;
70dec807
CM
4616 em->len = (copy_size + root->sectorsize - 1) &
4617 ~((u64)root->sectorsize - 1);
ff5b7ee3 4618 em->orig_start = EXTENT_MAP_INLINE;
c8b97818
CM
4619 if (compressed)
4620 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
689f9346 4621 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 4622 if (create == 0 && !PageUptodate(page)) {
c8b97818
CM
4623 if (btrfs_file_extent_compression(leaf, item) ==
4624 BTRFS_COMPRESS_ZLIB) {
4625 ret = uncompress_inline(path, inode, page,
4626 pg_offset,
4627 extent_offset, item);
4628 BUG_ON(ret);
4629 } else {
4630 map = kmap(page);
4631 read_extent_buffer(leaf, map + pg_offset, ptr,
4632 copy_size);
93c82d57
CM
4633 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
4634 memset(map + pg_offset + copy_size, 0,
4635 PAGE_CACHE_SIZE - pg_offset -
4636 copy_size);
4637 }
c8b97818
CM
4638 kunmap(page);
4639 }
179e29e4
CM
4640 flush_dcache_page(page);
4641 } else if (create && PageUptodate(page)) {
4642 if (!trans) {
4643 kunmap(page);
4644 free_extent_map(em);
4645 em = NULL;
4646 btrfs_release_path(root, path);
f9295749 4647 trans = btrfs_join_transaction(root, 1);
179e29e4
CM
4648 goto again;
4649 }
c8b97818 4650 map = kmap(page);
70dec807 4651 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 4652 copy_size);
c8b97818 4653 kunmap(page);
179e29e4 4654 btrfs_mark_buffer_dirty(leaf);
a52d9a80 4655 }
d1310b2e
CM
4656 set_extent_uptodate(io_tree, em->start,
4657 extent_map_end(em) - 1, GFP_NOFS);
a52d9a80
CM
4658 goto insert;
4659 } else {
d397712b 4660 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
4661 WARN_ON(1);
4662 }
4663not_found:
4664 em->start = start;
d1310b2e 4665 em->len = len;
a52d9a80 4666not_found_em:
5f39d397 4667 em->block_start = EXTENT_MAP_HOLE;
9036c102 4668 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
4669insert:
4670 btrfs_release_path(root, path);
d1310b2e 4671 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
4672 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
4673 "[%llu %llu]\n", (unsigned long long)em->start,
4674 (unsigned long long)em->len,
4675 (unsigned long long)start,
4676 (unsigned long long)len);
a52d9a80
CM
4677 err = -EIO;
4678 goto out;
4679 }
d1310b2e
CM
4680
4681 err = 0;
890871be 4682 write_lock(&em_tree->lock);
a52d9a80 4683 ret = add_extent_mapping(em_tree, em);
3b951516
CM
4684 /* it is possible that someone inserted the extent into the tree
4685 * while we had the lock dropped. It is also possible that
4686 * an overlapping map exists in the tree
4687 */
a52d9a80 4688 if (ret == -EEXIST) {
3b951516 4689 struct extent_map *existing;
e6dcd2dc
CM
4690
4691 ret = 0;
4692
3b951516 4693 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
4694 if (existing && (existing->start > start ||
4695 existing->start + existing->len <= start)) {
4696 free_extent_map(existing);
4697 existing = NULL;
4698 }
3b951516
CM
4699 if (!existing) {
4700 existing = lookup_extent_mapping(em_tree, em->start,
4701 em->len);
4702 if (existing) {
4703 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
4704 em, start,
4705 root->sectorsize);
3b951516
CM
4706 free_extent_map(existing);
4707 if (err) {
4708 free_extent_map(em);
4709 em = NULL;
4710 }
4711 } else {
4712 err = -EIO;
3b951516
CM
4713 free_extent_map(em);
4714 em = NULL;
4715 }
4716 } else {
4717 free_extent_map(em);
4718 em = existing;
e6dcd2dc 4719 err = 0;
a52d9a80 4720 }
a52d9a80 4721 }
890871be 4722 write_unlock(&em_tree->lock);
a52d9a80 4723out:
f421950f
CM
4724 if (path)
4725 btrfs_free_path(path);
a52d9a80
CM
4726 if (trans) {
4727 ret = btrfs_end_transaction(trans, root);
d397712b 4728 if (!err)
a52d9a80
CM
4729 err = ret;
4730 }
a52d9a80
CM
4731 if (err) {
4732 free_extent_map(em);
a52d9a80
CM
4733 return ERR_PTR(err);
4734 }
4735 return em;
4736}
4737
16432985
CM
4738static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
4739 const struct iovec *iov, loff_t offset,
4740 unsigned long nr_segs)
4741{
e1c4b745 4742 return -EINVAL;
16432985
CM
4743}
4744
1506fcc8
YS
4745static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4746 __u64 start, __u64 len)
4747{
4748 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent);
4749}
4750
a52d9a80 4751int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 4752{
d1310b2e
CM
4753 struct extent_io_tree *tree;
4754 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4755 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 4756}
1832a6d5 4757
a52d9a80 4758static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 4759{
d1310b2e 4760 struct extent_io_tree *tree;
b888db2b
CM
4761
4762
4763 if (current->flags & PF_MEMALLOC) {
4764 redirty_page_for_writepage(wbc, page);
4765 unlock_page(page);
4766 return 0;
4767 }
d1310b2e 4768 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 4769 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
4770}
4771
f421950f
CM
4772int btrfs_writepages(struct address_space *mapping,
4773 struct writeback_control *wbc)
b293f02e 4774{
d1310b2e 4775 struct extent_io_tree *tree;
771ed689 4776
d1310b2e 4777 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
4778 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
4779}
4780
3ab2fb5a
CM
4781static int
4782btrfs_readpages(struct file *file, struct address_space *mapping,
4783 struct list_head *pages, unsigned nr_pages)
4784{
d1310b2e
CM
4785 struct extent_io_tree *tree;
4786 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
4787 return extent_readpages(tree, mapping, pages, nr_pages,
4788 btrfs_get_extent);
4789}
e6dcd2dc 4790static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 4791{
d1310b2e
CM
4792 struct extent_io_tree *tree;
4793 struct extent_map_tree *map;
a52d9a80 4794 int ret;
8c2383c3 4795
d1310b2e
CM
4796 tree = &BTRFS_I(page->mapping->host)->io_tree;
4797 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 4798 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
4799 if (ret == 1) {
4800 ClearPagePrivate(page);
4801 set_page_private(page, 0);
4802 page_cache_release(page);
39279cc3 4803 }
a52d9a80 4804 return ret;
39279cc3
CM
4805}
4806
e6dcd2dc
CM
4807static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
4808{
98509cfc
CM
4809 if (PageWriteback(page) || PageDirty(page))
4810 return 0;
b335b003 4811 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
4812}
4813
a52d9a80 4814static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 4815{
d1310b2e 4816 struct extent_io_tree *tree;
e6dcd2dc
CM
4817 struct btrfs_ordered_extent *ordered;
4818 u64 page_start = page_offset(page);
4819 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 4820
8b62b72b
CM
4821
4822 /*
4823 * we have the page locked, so new writeback can't start,
4824 * and the dirty bit won't be cleared while we are here.
4825 *
4826 * Wait for IO on this page so that we can safely clear
4827 * the PagePrivate2 bit and do ordered accounting
4828 */
e6dcd2dc 4829 wait_on_page_writeback(page);
8b62b72b 4830
d1310b2e 4831 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
4832 if (offset) {
4833 btrfs_releasepage(page, GFP_NOFS);
4834 return;
4835 }
e6dcd2dc
CM
4836 lock_extent(tree, page_start, page_end, GFP_NOFS);
4837 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
4838 page_offset(page));
4839 if (ordered) {
eb84ae03
CM
4840 /*
4841 * IO on this page will never be started, so we need
4842 * to account for any ordered extents now
4843 */
e6dcd2dc
CM
4844 clear_extent_bit(tree, page_start, page_end,
4845 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff
JB
4846 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
4847 NULL, GFP_NOFS);
8b62b72b
CM
4848 /*
4849 * whoever cleared the private bit is responsible
4850 * for the finish_ordered_io
4851 */
4852 if (TestClearPagePrivate2(page)) {
4853 btrfs_finish_ordered_io(page->mapping->host,
4854 page_start, page_end);
4855 }
e6dcd2dc
CM
4856 btrfs_put_ordered_extent(ordered);
4857 lock_extent(tree, page_start, page_end, GFP_NOFS);
4858 }
4859 clear_extent_bit(tree, page_start, page_end,
32c00aff
JB
4860 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4861 EXTENT_DO_ACCOUNTING, 1, 1, NULL, GFP_NOFS);
e6dcd2dc
CM
4862 __btrfs_releasepage(page, GFP_NOFS);
4863
4a096752 4864 ClearPageChecked(page);
9ad6b7bc 4865 if (PagePrivate(page)) {
9ad6b7bc
CM
4866 ClearPagePrivate(page);
4867 set_page_private(page, 0);
4868 page_cache_release(page);
4869 }
39279cc3
CM
4870}
4871
9ebefb18
CM
4872/*
4873 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
4874 * called from a page fault handler when a page is first dirtied. Hence we must
4875 * be careful to check for EOF conditions here. We set the page up correctly
4876 * for a written page which means we get ENOSPC checking when writing into
4877 * holes and correct delalloc and unwritten extent mapping on filesystems that
4878 * support these features.
4879 *
4880 * We are not allowed to take the i_mutex here so we have to play games to
4881 * protect against truncate races as the page could now be beyond EOF. Because
4882 * vmtruncate() writes the inode size before removing pages, once we have the
4883 * page lock we can determine safely if the page is beyond EOF. If it is not
4884 * beyond EOF, then the page is guaranteed safe against truncation until we
4885 * unlock the page.
4886 */
c2ec175c 4887int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 4888{
c2ec175c 4889 struct page *page = vmf->page;
6da6abae 4890 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 4891 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
4892 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4893 struct btrfs_ordered_extent *ordered;
4894 char *kaddr;
4895 unsigned long zero_start;
9ebefb18 4896 loff_t size;
1832a6d5 4897 int ret;
a52d9a80 4898 u64 page_start;
e6dcd2dc 4899 u64 page_end;
9ebefb18 4900
6a63209f 4901 ret = btrfs_check_data_free_space(root, inode, PAGE_CACHE_SIZE);
56a76f82
NP
4902 if (ret) {
4903 if (ret == -ENOMEM)
4904 ret = VM_FAULT_OOM;
4905 else /* -ENOSPC, -EIO, etc */
4906 ret = VM_FAULT_SIGBUS;
1832a6d5 4907 goto out;
56a76f82 4908 }
1832a6d5 4909
9ed74f2d
JB
4910 ret = btrfs_reserve_metadata_for_delalloc(root, inode, 1);
4911 if (ret) {
4912 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
4913 ret = VM_FAULT_SIGBUS;
4914 goto out;
4915 }
4916
56a76f82 4917 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 4918again:
9ebefb18 4919 lock_page(page);
9ebefb18 4920 size = i_size_read(inode);
e6dcd2dc
CM
4921 page_start = page_offset(page);
4922 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 4923
9ebefb18 4924 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 4925 (page_start >= size)) {
6a63209f 4926 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ebefb18
CM
4927 /* page got truncated out from underneath us */
4928 goto out_unlock;
4929 }
e6dcd2dc
CM
4930 wait_on_page_writeback(page);
4931
4932 lock_extent(io_tree, page_start, page_end, GFP_NOFS);
4933 set_page_extent_mapped(page);
4934
eb84ae03
CM
4935 /*
4936 * we can't set the delalloc bits if there are pending ordered
4937 * extents. Drop our locks and wait for them to finish
4938 */
e6dcd2dc
CM
4939 ordered = btrfs_lookup_ordered_extent(inode, page_start);
4940 if (ordered) {
4941 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4942 unlock_page(page);
eb84ae03 4943 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4944 btrfs_put_ordered_extent(ordered);
4945 goto again;
4946 }
4947
fbf19087
JB
4948 /*
4949 * XXX - page_mkwrite gets called every time the page is dirtied, even
4950 * if it was already dirty, so for space accounting reasons we need to
4951 * clear any delalloc bits for the range we are fixing to save. There
4952 * is probably a better way to do this, but for now keep consistent with
4953 * prepare_pages in the normal write path.
4954 */
4955 clear_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff
JB
4956 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
4957 GFP_NOFS);
fbf19087 4958
9ed74f2d
JB
4959 ret = btrfs_set_extent_delalloc(inode, page_start, page_end);
4960 if (ret) {
4961 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
4962 ret = VM_FAULT_SIGBUS;
fbf19087 4963 btrfs_free_reserved_data_space(root, inode, PAGE_CACHE_SIZE);
9ed74f2d
JB
4964 goto out_unlock;
4965 }
e6dcd2dc 4966 ret = 0;
9ebefb18
CM
4967
4968 /* page is wholly or partially inside EOF */
a52d9a80 4969 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 4970 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 4971 else
e6dcd2dc 4972 zero_start = PAGE_CACHE_SIZE;
9ebefb18 4973
e6dcd2dc
CM
4974 if (zero_start != PAGE_CACHE_SIZE) {
4975 kaddr = kmap(page);
4976 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
4977 flush_dcache_page(page);
4978 kunmap(page);
4979 }
247e743c 4980 ClearPageChecked(page);
e6dcd2dc 4981 set_page_dirty(page);
50a9b214 4982 SetPageUptodate(page);
5a3f23d5 4983
257c62e1
CM
4984 BTRFS_I(inode)->last_trans = root->fs_info->generation;
4985 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
4986
e6dcd2dc 4987 unlock_extent(io_tree, page_start, page_end, GFP_NOFS);
9ebefb18
CM
4988
4989out_unlock:
9ed74f2d 4990 btrfs_unreserve_metadata_for_delalloc(root, inode, 1);
50a9b214
CM
4991 if (!ret)
4992 return VM_FAULT_LOCKED;
9ebefb18 4993 unlock_page(page);
1832a6d5 4994out:
9ebefb18
CM
4995 return ret;
4996}
4997
39279cc3
CM
4998static void btrfs_truncate(struct inode *inode)
4999{
5000 struct btrfs_root *root = BTRFS_I(inode)->root;
5001 int ret;
5002 struct btrfs_trans_handle *trans;
d3c2fdcf 5003 unsigned long nr;
dbe674a9 5004 u64 mask = root->sectorsize - 1;
39279cc3
CM
5005
5006 if (!S_ISREG(inode->i_mode))
5007 return;
5008 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
5009 return;
5010
5011 btrfs_truncate_page(inode->i_mapping, inode->i_size);
4a096752 5012 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
39279cc3 5013
39279cc3 5014 trans = btrfs_start_transaction(root, 1);
5a3f23d5
CM
5015
5016 /*
5017 * setattr is responsible for setting the ordered_data_close flag,
5018 * but that is only tested during the last file release. That
5019 * could happen well after the next commit, leaving a great big
5020 * window where new writes may get lost if someone chooses to write
5021 * to this file after truncating to zero
5022 *
5023 * The inode doesn't have any dirty data here, and so if we commit
5024 * this is a noop. If someone immediately starts writing to the inode
5025 * it is very likely we'll catch some of their writes in this
5026 * transaction, and the commit will find this file on the ordered
5027 * data list with good things to send down.
5028 *
5029 * This is a best effort solution, there is still a window where
5030 * using truncate to replace the contents of the file will
5031 * end up with a zero length file after a crash.
5032 */
5033 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
5034 btrfs_add_ordered_operation(trans, root, inode);
5035
39279cc3 5036 btrfs_set_trans_block_group(trans, inode);
dbe674a9 5037 btrfs_i_size_write(inode, inode->i_size);
39279cc3 5038
7b128766
JB
5039 ret = btrfs_orphan_add(trans, inode);
5040 if (ret)
5041 goto out;
39279cc3 5042 /* FIXME, add redo link to tree so we don't leak on crash */
e02119d5 5043 ret = btrfs_truncate_inode_items(trans, root, inode, inode->i_size,
85e21bac 5044 BTRFS_EXTENT_DATA_KEY);
39279cc3 5045 btrfs_update_inode(trans, root, inode);
5f39d397 5046
7b128766
JB
5047 ret = btrfs_orphan_del(trans, inode);
5048 BUG_ON(ret);
5049
5050out:
5051 nr = trans->blocks_used;
89ce8a63 5052 ret = btrfs_end_transaction_throttle(trans, root);
39279cc3 5053 BUG_ON(ret);
d3c2fdcf 5054 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5055}
5056
d352ac68
CM
5057/*
5058 * create a new subvolume directory/inode (helper for the ioctl).
5059 */
d2fb3437 5060int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 5061 struct btrfs_root *new_root,
d2fb3437 5062 u64 new_dirid, u64 alloc_hint)
39279cc3 5063{
39279cc3 5064 struct inode *inode;
76dda93c 5065 int err;
00e4e6b3 5066 u64 index = 0;
39279cc3 5067
aec7477b 5068 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 5069 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 5070 if (IS_ERR(inode))
f46b5a66 5071 return PTR_ERR(inode);
39279cc3
CM
5072 inode->i_op = &btrfs_dir_inode_operations;
5073 inode->i_fop = &btrfs_dir_file_operations;
5074
39279cc3 5075 inode->i_nlink = 1;
dbe674a9 5076 btrfs_i_size_write(inode, 0);
3b96362c 5077
76dda93c
YZ
5078 err = btrfs_update_inode(trans, new_root, inode);
5079 BUG_ON(err);
cb8e7090 5080
76dda93c 5081 iput(inode);
cb8e7090 5082 return 0;
39279cc3
CM
5083}
5084
d352ac68
CM
5085/* helper function for file defrag and space balancing. This
5086 * forces readahead on a given range of bytes in an inode
5087 */
edbd8d4e 5088unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
5089 struct file_ra_state *ra, struct file *file,
5090 pgoff_t offset, pgoff_t last_index)
5091{
8e7bf94f 5092 pgoff_t req_size = last_index - offset + 1;
86479a04 5093
86479a04
CM
5094 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
5095 return offset + req_size;
86479a04
CM
5096}
5097
39279cc3
CM
5098struct inode *btrfs_alloc_inode(struct super_block *sb)
5099{
5100 struct btrfs_inode *ei;
5101
5102 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
5103 if (!ei)
5104 return NULL;
15ee9bc7 5105 ei->last_trans = 0;
257c62e1 5106 ei->last_sub_trans = 0;
e02119d5 5107 ei->logged_trans = 0;
32c00aff
JB
5108 ei->outstanding_extents = 0;
5109 ei->reserved_extents = 0;
5110 spin_lock_init(&ei->accounting_lock);
e6dcd2dc 5111 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 5112 INIT_LIST_HEAD(&ei->i_orphan);
5a3f23d5 5113 INIT_LIST_HEAD(&ei->ordered_operations);
39279cc3
CM
5114 return &ei->vfs_inode;
5115}
5116
5117void btrfs_destroy_inode(struct inode *inode)
5118{
e6dcd2dc 5119 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
5120 struct btrfs_root *root = BTRFS_I(inode)->root;
5121
39279cc3
CM
5122 WARN_ON(!list_empty(&inode->i_dentry));
5123 WARN_ON(inode->i_data.nrpages);
5124
5a3f23d5
CM
5125 /*
5126 * Make sure we're properly removed from the ordered operation
5127 * lists.
5128 */
5129 smp_mb();
5130 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
5131 spin_lock(&root->fs_info->ordered_extent_lock);
5132 list_del_init(&BTRFS_I(inode)->ordered_operations);
5133 spin_unlock(&root->fs_info->ordered_extent_lock);
5134 }
5135
5136 spin_lock(&root->list_lock);
7b128766
JB
5137 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
5138 printk(KERN_ERR "BTRFS: inode %lu: inode still on the orphan"
5139 " list\n", inode->i_ino);
5140 dump_stack();
5141 }
5a3f23d5 5142 spin_unlock(&root->list_lock);
7b128766 5143
d397712b 5144 while (1) {
e6dcd2dc
CM
5145 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
5146 if (!ordered)
5147 break;
5148 else {
d397712b
CM
5149 printk(KERN_ERR "btrfs found ordered "
5150 "extent %llu %llu on inode cleanup\n",
5151 (unsigned long long)ordered->file_offset,
5152 (unsigned long long)ordered->len);
e6dcd2dc
CM
5153 btrfs_remove_ordered_extent(inode, ordered);
5154 btrfs_put_ordered_extent(ordered);
5155 btrfs_put_ordered_extent(ordered);
5156 }
5157 }
5d4f98a2 5158 inode_tree_del(inode);
5b21f2ed 5159 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
39279cc3
CM
5160 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5161}
5162
76dda93c
YZ
5163void btrfs_drop_inode(struct inode *inode)
5164{
5165 struct btrfs_root *root = BTRFS_I(inode)->root;
5166
5167 if (inode->i_nlink > 0 && btrfs_root_refs(&root->root_item) == 0)
5168 generic_delete_inode(inode);
5169 else
5170 generic_drop_inode(inode);
5171}
5172
0ee0fda0 5173static void init_once(void *foo)
39279cc3
CM
5174{
5175 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
5176
5177 inode_init_once(&ei->vfs_inode);
5178}
5179
5180void btrfs_destroy_cachep(void)
5181{
5182 if (btrfs_inode_cachep)
5183 kmem_cache_destroy(btrfs_inode_cachep);
5184 if (btrfs_trans_handle_cachep)
5185 kmem_cache_destroy(btrfs_trans_handle_cachep);
5186 if (btrfs_transaction_cachep)
5187 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
5188 if (btrfs_path_cachep)
5189 kmem_cache_destroy(btrfs_path_cachep);
5190}
5191
5192int btrfs_init_cachep(void)
5193{
9601e3f6
CH
5194 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
5195 sizeof(struct btrfs_inode), 0,
5196 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
5197 if (!btrfs_inode_cachep)
5198 goto fail;
9601e3f6
CH
5199
5200 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
5201 sizeof(struct btrfs_trans_handle), 0,
5202 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5203 if (!btrfs_trans_handle_cachep)
5204 goto fail;
9601e3f6
CH
5205
5206 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
5207 sizeof(struct btrfs_transaction), 0,
5208 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5209 if (!btrfs_transaction_cachep)
5210 goto fail;
9601e3f6
CH
5211
5212 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
5213 sizeof(struct btrfs_path), 0,
5214 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
5215 if (!btrfs_path_cachep)
5216 goto fail;
9601e3f6 5217
39279cc3
CM
5218 return 0;
5219fail:
5220 btrfs_destroy_cachep();
5221 return -ENOMEM;
5222}
5223
5224static int btrfs_getattr(struct vfsmount *mnt,
5225 struct dentry *dentry, struct kstat *stat)
5226{
5227 struct inode *inode = dentry->d_inode;
5228 generic_fillattr(inode, stat);
3394e160 5229 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 5230 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
5231 stat->blocks = (inode_get_bytes(inode) +
5232 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
5233 return 0;
5234}
5235
d397712b
CM
5236static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
5237 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
5238{
5239 struct btrfs_trans_handle *trans;
5240 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 5241 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
5242 struct inode *new_inode = new_dentry->d_inode;
5243 struct inode *old_inode = old_dentry->d_inode;
5244 struct timespec ctime = CURRENT_TIME;
00e4e6b3 5245 u64 index = 0;
4df27c4d 5246 u64 root_objectid;
39279cc3
CM
5247 int ret;
5248
f679a840
YZ
5249 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5250 return -EPERM;
5251
4df27c4d
YZ
5252 /* we only allow rename subvolume link between subvolumes */
5253 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
5254 return -EXDEV;
5255
4df27c4d
YZ
5256 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
5257 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 5258 return -ENOTEMPTY;
5f39d397 5259
4df27c4d
YZ
5260 if (S_ISDIR(old_inode->i_mode) && new_inode &&
5261 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
5262 return -ENOTEMPTY;
0660b5af 5263
9ed74f2d
JB
5264 /*
5265 * 2 items for dir items
5266 * 1 item for orphan entry
5267 * 1 item for ref
5268 */
5269 ret = btrfs_reserve_metadata_space(root, 4);
1832a6d5 5270 if (ret)
4df27c4d 5271 return ret;
1832a6d5 5272
5a3f23d5
CM
5273 /*
5274 * we're using rename to replace one file with another.
5275 * and the replacement file is large. Start IO on it now so
5276 * we don't add too much work to the end of the transaction
5277 */
4baf8c92 5278 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
5279 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
5280 filemap_flush(old_inode->i_mapping);
5281
76dda93c
YZ
5282 /* close the racy window with snapshot create/destroy ioctl */
5283 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5284 down_read(&root->fs_info->subvol_sem);
5285
39279cc3 5286 trans = btrfs_start_transaction(root, 1);
a5719521 5287 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 5288
4df27c4d
YZ
5289 if (dest != root)
5290 btrfs_record_root_in_trans(trans, dest);
5291
a5719521
YZ
5292 ret = btrfs_set_inode_index(new_dir, &index);
5293 if (ret)
5294 goto out_fail;
5a3f23d5 5295
a5719521 5296 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
5297 /* force full log commit if subvolume involved. */
5298 root->fs_info->last_trans_log_full_commit = trans->transid;
5299 } else {
a5719521
YZ
5300 ret = btrfs_insert_inode_ref(trans, dest,
5301 new_dentry->d_name.name,
5302 new_dentry->d_name.len,
5303 old_inode->i_ino,
5304 new_dir->i_ino, index);
5305 if (ret)
5306 goto out_fail;
4df27c4d
YZ
5307 /*
5308 * this is an ugly little race, but the rename is required
5309 * to make sure that if we crash, the inode is either at the
5310 * old name or the new one. pinning the log transaction lets
5311 * us make sure we don't allow a log commit to come in after
5312 * we unlink the name but before we add the new name back in.
5313 */
5314 btrfs_pin_log_trans(root);
5315 }
a5719521
YZ
5316 /*
5317 * make sure the inode gets flushed if it is replacing
5318 * something.
5319 */
5320 if (new_inode && new_inode->i_size &&
5321 old_inode && S_ISREG(old_inode->i_mode)) {
5322 btrfs_add_ordered_operation(trans, root, old_inode);
5323 }
39279cc3 5324
39279cc3
CM
5325 old_dir->i_ctime = old_dir->i_mtime = ctime;
5326 new_dir->i_ctime = new_dir->i_mtime = ctime;
5327 old_inode->i_ctime = ctime;
5f39d397 5328
12fcfd22
CM
5329 if (old_dentry->d_parent != new_dentry->d_parent)
5330 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
5331
4df27c4d
YZ
5332 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
5333 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
5334 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
5335 old_dentry->d_name.name,
5336 old_dentry->d_name.len);
5337 } else {
5338 btrfs_inc_nlink(old_dentry->d_inode);
5339 ret = btrfs_unlink_inode(trans, root, old_dir,
5340 old_dentry->d_inode,
5341 old_dentry->d_name.name,
5342 old_dentry->d_name.len);
5343 }
5344 BUG_ON(ret);
39279cc3
CM
5345
5346 if (new_inode) {
5347 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
5348 if (unlikely(new_inode->i_ino ==
5349 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
5350 root_objectid = BTRFS_I(new_inode)->location.objectid;
5351 ret = btrfs_unlink_subvol(trans, dest, new_dir,
5352 root_objectid,
5353 new_dentry->d_name.name,
5354 new_dentry->d_name.len);
5355 BUG_ON(new_inode->i_nlink == 0);
5356 } else {
5357 ret = btrfs_unlink_inode(trans, dest, new_dir,
5358 new_dentry->d_inode,
5359 new_dentry->d_name.name,
5360 new_dentry->d_name.len);
5361 }
5362 BUG_ON(ret);
7b128766 5363 if (new_inode->i_nlink == 0) {
e02119d5 5364 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 5365 BUG_ON(ret);
7b128766 5366 }
39279cc3 5367 }
aec7477b 5368
4df27c4d
YZ
5369 ret = btrfs_add_link(trans, new_dir, old_inode,
5370 new_dentry->d_name.name,
a5719521 5371 new_dentry->d_name.len, 0, index);
4df27c4d 5372 BUG_ON(ret);
39279cc3 5373
4df27c4d
YZ
5374 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
5375 btrfs_log_new_name(trans, old_inode, old_dir,
5376 new_dentry->d_parent);
5377 btrfs_end_log_trans(root);
5378 }
a5719521 5379out_fail:
ab78c84d 5380 btrfs_end_transaction_throttle(trans, root);
4df27c4d 5381
76dda93c
YZ
5382 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
5383 up_read(&root->fs_info->subvol_sem);
9ed74f2d
JB
5384
5385 btrfs_unreserve_metadata_space(root, 4);
39279cc3
CM
5386 return ret;
5387}
5388
d352ac68
CM
5389/*
5390 * some fairly slow code that needs optimization. This walks the list
5391 * of all the inodes with pending delalloc and forces them to disk.
5392 */
ea8c2819
CM
5393int btrfs_start_delalloc_inodes(struct btrfs_root *root)
5394{
5395 struct list_head *head = &root->fs_info->delalloc_inodes;
5396 struct btrfs_inode *binode;
5b21f2ed 5397 struct inode *inode;
ea8c2819 5398
c146afad
YZ
5399 if (root->fs_info->sb->s_flags & MS_RDONLY)
5400 return -EROFS;
5401
75eff68e 5402 spin_lock(&root->fs_info->delalloc_lock);
d397712b 5403 while (!list_empty(head)) {
ea8c2819
CM
5404 binode = list_entry(head->next, struct btrfs_inode,
5405 delalloc_inodes);
5b21f2ed
ZY
5406 inode = igrab(&binode->vfs_inode);
5407 if (!inode)
5408 list_del_init(&binode->delalloc_inodes);
75eff68e 5409 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 5410 if (inode) {
8c8bee1d 5411 filemap_flush(inode->i_mapping);
5b21f2ed
ZY
5412 iput(inode);
5413 }
5414 cond_resched();
75eff68e 5415 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 5416 }
75eff68e 5417 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
5418
5419 /* the filemap_flush will queue IO into the worker threads, but
5420 * we have to make sure the IO is actually started and that
5421 * ordered extents get created before we return
5422 */
5423 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 5424 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 5425 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 5426 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
5427 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
5428 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
5429 }
5430 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
5431 return 0;
5432}
5433
39279cc3
CM
5434static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
5435 const char *symname)
5436{
5437 struct btrfs_trans_handle *trans;
5438 struct btrfs_root *root = BTRFS_I(dir)->root;
5439 struct btrfs_path *path;
5440 struct btrfs_key key;
1832a6d5 5441 struct inode *inode = NULL;
39279cc3
CM
5442 int err;
5443 int drop_inode = 0;
5444 u64 objectid;
00e4e6b3 5445 u64 index = 0 ;
39279cc3
CM
5446 int name_len;
5447 int datasize;
5f39d397 5448 unsigned long ptr;
39279cc3 5449 struct btrfs_file_extent_item *ei;
5f39d397 5450 struct extent_buffer *leaf;
1832a6d5 5451 unsigned long nr = 0;
39279cc3
CM
5452
5453 name_len = strlen(symname) + 1;
5454 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
5455 return -ENAMETOOLONG;
1832a6d5 5456
9ed74f2d
JB
5457 /*
5458 * 2 items for inode item and ref
5459 * 2 items for dir items
5460 * 1 item for xattr if selinux is on
5461 */
5462 err = btrfs_reserve_metadata_space(root, 5);
1832a6d5 5463 if (err)
9ed74f2d 5464 return err;
1832a6d5 5465
39279cc3 5466 trans = btrfs_start_transaction(root, 1);
9ed74f2d
JB
5467 if (!trans)
5468 goto out_fail;
39279cc3
CM
5469 btrfs_set_trans_block_group(trans, dir);
5470
5471 err = btrfs_find_free_objectid(trans, root, dir->i_ino, &objectid);
5472 if (err) {
5473 err = -ENOSPC;
5474 goto out_unlock;
5475 }
5476
aec7477b 5477 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9c58309d
CM
5478 dentry->d_name.len,
5479 dentry->d_parent->d_inode->i_ino, objectid,
00e4e6b3
CM
5480 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
5481 &index);
39279cc3
CM
5482 err = PTR_ERR(inode);
5483 if (IS_ERR(inode))
5484 goto out_unlock;
5485
0279b4cd 5486 err = btrfs_init_inode_security(inode, dir);
33268eaf
JB
5487 if (err) {
5488 drop_inode = 1;
5489 goto out_unlock;
5490 }
5491
39279cc3 5492 btrfs_set_trans_block_group(trans, inode);
00e4e6b3 5493 err = btrfs_add_nondir(trans, dentry, inode, 0, index);
39279cc3
CM
5494 if (err)
5495 drop_inode = 1;
5496 else {
5497 inode->i_mapping->a_ops = &btrfs_aops;
04160088 5498 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
5499 inode->i_fop = &btrfs_file_operations;
5500 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 5501 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 5502 }
39279cc3
CM
5503 btrfs_update_inode_block_group(trans, inode);
5504 btrfs_update_inode_block_group(trans, dir);
5505 if (drop_inode)
5506 goto out_unlock;
5507
5508 path = btrfs_alloc_path();
5509 BUG_ON(!path);
5510 key.objectid = inode->i_ino;
5511 key.offset = 0;
39279cc3
CM
5512 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
5513 datasize = btrfs_file_extent_calc_inline_size(name_len);
5514 err = btrfs_insert_empty_item(trans, root, path, &key,
5515 datasize);
54aa1f4d
CM
5516 if (err) {
5517 drop_inode = 1;
5518 goto out_unlock;
5519 }
5f39d397
CM
5520 leaf = path->nodes[0];
5521 ei = btrfs_item_ptr(leaf, path->slots[0],
5522 struct btrfs_file_extent_item);
5523 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
5524 btrfs_set_file_extent_type(leaf, ei,
39279cc3 5525 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
5526 btrfs_set_file_extent_encryption(leaf, ei, 0);
5527 btrfs_set_file_extent_compression(leaf, ei, 0);
5528 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
5529 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
5530
39279cc3 5531 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
5532 write_extent_buffer(leaf, symname, ptr, name_len);
5533 btrfs_mark_buffer_dirty(leaf);
39279cc3 5534 btrfs_free_path(path);
5f39d397 5535
39279cc3
CM
5536 inode->i_op = &btrfs_symlink_inode_operations;
5537 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 5538 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 5539 inode_set_bytes(inode, name_len);
dbe674a9 5540 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
5541 err = btrfs_update_inode(trans, root, inode);
5542 if (err)
5543 drop_inode = 1;
39279cc3
CM
5544
5545out_unlock:
d3c2fdcf 5546 nr = trans->blocks_used;
ab78c84d 5547 btrfs_end_transaction_throttle(trans, root);
1832a6d5 5548out_fail:
9ed74f2d 5549 btrfs_unreserve_metadata_space(root, 5);
39279cc3
CM
5550 if (drop_inode) {
5551 inode_dec_link_count(inode);
5552 iput(inode);
5553 }
d3c2fdcf 5554 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
5555 return err;
5556}
16432985 5557
546888da
CM
5558static int prealloc_file_range(struct btrfs_trans_handle *trans,
5559 struct inode *inode, u64 start, u64 end,
e980b50c 5560 u64 locked_end, u64 alloc_hint, int mode)
d899e052 5561{
d899e052
YZ
5562 struct btrfs_root *root = BTRFS_I(inode)->root;
5563 struct btrfs_key ins;
5564 u64 alloc_size;
5565 u64 cur_offset = start;
5566 u64 num_bytes = end - start;
5567 int ret = 0;
5568
d899e052
YZ
5569 while (num_bytes > 0) {
5570 alloc_size = min(num_bytes, root->fs_info->max_extent);
9ed74f2d
JB
5571
5572 ret = btrfs_reserve_metadata_space(root, 1);
5573 if (ret)
5574 goto out;
5575
d899e052
YZ
5576 ret = btrfs_reserve_extent(trans, root, alloc_size,
5577 root->sectorsize, 0, alloc_hint,
5578 (u64)-1, &ins, 1);
5579 if (ret) {
5580 WARN_ON(1);
5581 goto out;
5582 }
5583 ret = insert_reserved_file_extent(trans, inode,
5584 cur_offset, ins.objectid,
5585 ins.offset, ins.offset,
e980b50c
CM
5586 ins.offset, locked_end,
5587 0, 0, 0,
d899e052
YZ
5588 BTRFS_FILE_EXTENT_PREALLOC);
5589 BUG_ON(ret);
a1ed835e
CM
5590 btrfs_drop_extent_cache(inode, cur_offset,
5591 cur_offset + ins.offset -1, 0);
d899e052
YZ
5592 num_bytes -= ins.offset;
5593 cur_offset += ins.offset;
5594 alloc_hint = ins.objectid + ins.offset;
9ed74f2d 5595 btrfs_unreserve_metadata_space(root, 1);
d899e052
YZ
5596 }
5597out:
5598 if (cur_offset > start) {
5599 inode->i_ctime = CURRENT_TIME;
6cbff00f 5600 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052
YZ
5601 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
5602 cur_offset > i_size_read(inode))
5603 btrfs_i_size_write(inode, cur_offset);
5604 ret = btrfs_update_inode(trans, root, inode);
5605 BUG_ON(ret);
5606 }
5607
d899e052
YZ
5608 return ret;
5609}
5610
5611static long btrfs_fallocate(struct inode *inode, int mode,
5612 loff_t offset, loff_t len)
5613{
5614 u64 cur_offset;
5615 u64 last_byte;
5616 u64 alloc_start;
5617 u64 alloc_end;
5618 u64 alloc_hint = 0;
e980b50c 5619 u64 locked_end;
d899e052
YZ
5620 u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
5621 struct extent_map *em;
546888da 5622 struct btrfs_trans_handle *trans;
a970b0a1 5623 struct btrfs_root *root;
d899e052
YZ
5624 int ret;
5625
5626 alloc_start = offset & ~mask;
5627 alloc_end = (offset + len + mask) & ~mask;
5628
546888da
CM
5629 /*
5630 * wait for ordered IO before we have any locks. We'll loop again
5631 * below with the locks held.
5632 */
5633 btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
5634
d899e052
YZ
5635 mutex_lock(&inode->i_mutex);
5636 if (alloc_start > inode->i_size) {
5637 ret = btrfs_cont_expand(inode, alloc_start);
5638 if (ret)
5639 goto out;
5640 }
5641
a970b0a1
JB
5642 root = BTRFS_I(inode)->root;
5643
5644 ret = btrfs_check_data_free_space(root, inode,
5645 alloc_end - alloc_start);
5646 if (ret)
5647 goto out;
5648
e980b50c 5649 locked_end = alloc_end - 1;
d899e052
YZ
5650 while (1) {
5651 struct btrfs_ordered_extent *ordered;
546888da
CM
5652
5653 trans = btrfs_start_transaction(BTRFS_I(inode)->root, 1);
5654 if (!trans) {
5655 ret = -EIO;
a970b0a1 5656 goto out_free;
546888da
CM
5657 }
5658
5659 /* the extent lock is ordered inside the running
5660 * transaction
5661 */
e980b50c
CM
5662 lock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
5663 GFP_NOFS);
d899e052
YZ
5664 ordered = btrfs_lookup_first_ordered_extent(inode,
5665 alloc_end - 1);
5666 if (ordered &&
5667 ordered->file_offset + ordered->len > alloc_start &&
5668 ordered->file_offset < alloc_end) {
5669 btrfs_put_ordered_extent(ordered);
5670 unlock_extent(&BTRFS_I(inode)->io_tree,
e980b50c 5671 alloc_start, locked_end, GFP_NOFS);
546888da
CM
5672 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
5673
5674 /*
5675 * we can't wait on the range with the transaction
5676 * running or with the extent lock held
5677 */
d899e052
YZ
5678 btrfs_wait_ordered_range(inode, alloc_start,
5679 alloc_end - alloc_start);
5680 } else {
5681 if (ordered)
5682 btrfs_put_ordered_extent(ordered);
5683 break;
5684 }
5685 }
5686
5687 cur_offset = alloc_start;
5688 while (1) {
5689 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
5690 alloc_end - cur_offset, 0);
5691 BUG_ON(IS_ERR(em) || !em);
5692 last_byte = min(extent_map_end(em), alloc_end);
5693 last_byte = (last_byte + mask) & ~mask;
5694 if (em->block_start == EXTENT_MAP_HOLE) {
546888da 5695 ret = prealloc_file_range(trans, inode, cur_offset,
e980b50c
CM
5696 last_byte, locked_end + 1,
5697 alloc_hint, mode);
d899e052
YZ
5698 if (ret < 0) {
5699 free_extent_map(em);
5700 break;
5701 }
5702 }
5703 if (em->block_start <= EXTENT_MAP_LAST_BYTE)
5704 alloc_hint = em->block_start;
5705 free_extent_map(em);
5706
5707 cur_offset = last_byte;
5708 if (cur_offset >= alloc_end) {
5709 ret = 0;
5710 break;
5711 }
5712 }
e980b50c 5713 unlock_extent(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
d899e052 5714 GFP_NOFS);
546888da
CM
5715
5716 btrfs_end_transaction(trans, BTRFS_I(inode)->root);
a970b0a1
JB
5717out_free:
5718 btrfs_free_reserved_data_space(root, inode, alloc_end - alloc_start);
d899e052
YZ
5719out:
5720 mutex_unlock(&inode->i_mutex);
5721 return ret;
5722}
5723
e6dcd2dc
CM
5724static int btrfs_set_page_dirty(struct page *page)
5725{
e6dcd2dc
CM
5726 return __set_page_dirty_nobuffers(page);
5727}
5728
0ee0fda0 5729static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 5730{
6cbff00f 5731 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 5732 return -EACCES;
33268eaf 5733 return generic_permission(inode, mask, btrfs_check_acl);
fdebe2bd 5734}
39279cc3
CM
5735
5736static struct inode_operations btrfs_dir_inode_operations = {
3394e160 5737 .getattr = btrfs_getattr,
39279cc3
CM
5738 .lookup = btrfs_lookup,
5739 .create = btrfs_create,
5740 .unlink = btrfs_unlink,
5741 .link = btrfs_link,
5742 .mkdir = btrfs_mkdir,
5743 .rmdir = btrfs_rmdir,
5744 .rename = btrfs_rename,
5745 .symlink = btrfs_symlink,
5746 .setattr = btrfs_setattr,
618e21d5 5747 .mknod = btrfs_mknod,
95819c05
CH
5748 .setxattr = btrfs_setxattr,
5749 .getxattr = btrfs_getxattr,
5103e947 5750 .listxattr = btrfs_listxattr,
95819c05 5751 .removexattr = btrfs_removexattr,
fdebe2bd 5752 .permission = btrfs_permission,
39279cc3 5753};
39279cc3
CM
5754static struct inode_operations btrfs_dir_ro_inode_operations = {
5755 .lookup = btrfs_lookup,
fdebe2bd 5756 .permission = btrfs_permission,
39279cc3 5757};
76dda93c 5758
39279cc3
CM
5759static struct file_operations btrfs_dir_file_operations = {
5760 .llseek = generic_file_llseek,
5761 .read = generic_read_dir,
cbdf5a24 5762 .readdir = btrfs_real_readdir,
34287aa3 5763 .unlocked_ioctl = btrfs_ioctl,
39279cc3 5764#ifdef CONFIG_COMPAT
34287aa3 5765 .compat_ioctl = btrfs_ioctl,
39279cc3 5766#endif
6bf13c0c 5767 .release = btrfs_release_file,
e02119d5 5768 .fsync = btrfs_sync_file,
39279cc3
CM
5769};
5770
d1310b2e 5771static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 5772 .fill_delalloc = run_delalloc_range,
065631f6 5773 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 5774 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 5775 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 5776 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 5777 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 5778 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
5779 .set_bit_hook = btrfs_set_bit_hook,
5780 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
5781 .merge_extent_hook = btrfs_merge_extent_hook,
5782 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
5783};
5784
35054394
CM
5785/*
5786 * btrfs doesn't support the bmap operation because swapfiles
5787 * use bmap to make a mapping of extents in the file. They assume
5788 * these extents won't change over the life of the file and they
5789 * use the bmap result to do IO directly to the drive.
5790 *
5791 * the btrfs bmap call would return logical addresses that aren't
5792 * suitable for IO and they also will change frequently as COW
5793 * operations happen. So, swapfile + btrfs == corruption.
5794 *
5795 * For now we're avoiding this by dropping bmap.
5796 */
39279cc3
CM
5797static struct address_space_operations btrfs_aops = {
5798 .readpage = btrfs_readpage,
5799 .writepage = btrfs_writepage,
b293f02e 5800 .writepages = btrfs_writepages,
3ab2fb5a 5801 .readpages = btrfs_readpages,
39279cc3 5802 .sync_page = block_sync_page,
16432985 5803 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
5804 .invalidatepage = btrfs_invalidatepage,
5805 .releasepage = btrfs_releasepage,
e6dcd2dc 5806 .set_page_dirty = btrfs_set_page_dirty,
39279cc3
CM
5807};
5808
5809static struct address_space_operations btrfs_symlink_aops = {
5810 .readpage = btrfs_readpage,
5811 .writepage = btrfs_writepage,
2bf5a725
CM
5812 .invalidatepage = btrfs_invalidatepage,
5813 .releasepage = btrfs_releasepage,
39279cc3
CM
5814};
5815
5816static struct inode_operations btrfs_file_inode_operations = {
5817 .truncate = btrfs_truncate,
5818 .getattr = btrfs_getattr,
5819 .setattr = btrfs_setattr,
95819c05
CH
5820 .setxattr = btrfs_setxattr,
5821 .getxattr = btrfs_getxattr,
5103e947 5822 .listxattr = btrfs_listxattr,
95819c05 5823 .removexattr = btrfs_removexattr,
fdebe2bd 5824 .permission = btrfs_permission,
d899e052 5825 .fallocate = btrfs_fallocate,
1506fcc8 5826 .fiemap = btrfs_fiemap,
39279cc3 5827};
618e21d5
JB
5828static struct inode_operations btrfs_special_inode_operations = {
5829 .getattr = btrfs_getattr,
5830 .setattr = btrfs_setattr,
fdebe2bd 5831 .permission = btrfs_permission,
95819c05
CH
5832 .setxattr = btrfs_setxattr,
5833 .getxattr = btrfs_getxattr,
33268eaf 5834 .listxattr = btrfs_listxattr,
95819c05 5835 .removexattr = btrfs_removexattr,
618e21d5 5836};
39279cc3
CM
5837static struct inode_operations btrfs_symlink_inode_operations = {
5838 .readlink = generic_readlink,
5839 .follow_link = page_follow_link_light,
5840 .put_link = page_put_link,
fdebe2bd 5841 .permission = btrfs_permission,
0279b4cd
JO
5842 .setxattr = btrfs_setxattr,
5843 .getxattr = btrfs_getxattr,
5844 .listxattr = btrfs_listxattr,
5845 .removexattr = btrfs_removexattr,
39279cc3 5846};
76dda93c 5847
82d339d9 5848const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
5849 .d_delete = btrfs_dentry_delete,
5850};