btrfs: Don't BUG_ON alloc_path errors in btrfs_truncate_inode_items
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
7a36ddec 40#include <linux/ratelimit.h>
4b4e25f2 41#include "compat.h"
39279cc3
CM
42#include "ctree.h"
43#include "disk-io.h"
44#include "transaction.h"
45#include "btrfs_inode.h"
46#include "ioctl.h"
47#include "print-tree.h"
0b86a832 48#include "volumes.h"
e6dcd2dc 49#include "ordered-data.h"
95819c05 50#include "xattr.h"
e02119d5 51#include "tree-log.h"
c8b97818 52#include "compression.h"
b4ce94de 53#include "locking.h"
dc89e982 54#include "free-space-cache.h"
581bb050 55#include "inode-map.h"
39279cc3
CM
56
57struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
60};
61
6e1d5dcc
AD
62static const struct inode_operations btrfs_dir_inode_operations;
63static const struct inode_operations btrfs_symlink_inode_operations;
64static const struct inode_operations btrfs_dir_ro_inode_operations;
65static const struct inode_operations btrfs_special_inode_operations;
66static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
67static const struct address_space_operations btrfs_aops;
68static const struct address_space_operations btrfs_symlink_aops;
828c0950 69static const struct file_operations btrfs_dir_file_operations;
d1310b2e 70static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
71
72static struct kmem_cache *btrfs_inode_cachep;
73struct kmem_cache *btrfs_trans_handle_cachep;
74struct kmem_cache *btrfs_transaction_cachep;
39279cc3 75struct kmem_cache *btrfs_path_cachep;
dc89e982 76struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
77
78#define S_SHIFT 12
79static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
87};
88
a41ad394
JB
89static int btrfs_setsize(struct inode *inode, loff_t newsize);
90static int btrfs_truncate(struct inode *inode);
c8b97818 91static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
92static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
7b128766 96
f34f57a3 97static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
0279b4cd
JO
100{
101 int err;
102
f34f57a3 103 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 104 if (!err)
2a7dba39 105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
106 return err;
107}
108
c8b97818
CM
109/*
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
113 */
d397712b 114static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
fe3f566c 117 int compress_type,
c8b97818
CM
118 struct page **compressed_pages)
119{
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
c8b97818 132
fe3f566c 133 if (compressed_size && compressed_pages)
c8b97818 134 cur_size = compressed_size;
c8b97818 135
d397712b
CM
136 path = btrfs_alloc_path();
137 if (!path)
c8b97818
CM
138 return -ENOMEM;
139
b9473439 140 path->leave_spinning = 1;
c8b97818 141
33345d01 142 key.objectid = btrfs_ino(inode);
c8b97818
CM
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
146
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
c8b97818
CM
153 goto fail;
154 }
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
164
261507a0 165 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
166 struct page *cpage;
167 int i = 0;
d397712b 168 while (compressed_size > 0) {
c8b97818 169 cpage = compressed_pages[i];
5b050f04 170 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
171 PAGE_CACHE_SIZE);
172
b9473439 173 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 175 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
176
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
180 }
181 btrfs_set_file_extent_compression(leaf, ei,
261507a0 182 compress_type);
c8b97818
CM
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
192 }
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
195
c2167754
YZ
196 /*
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
200 *
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
204 */
c8b97818
CM
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
c2167754 207
c8b97818
CM
208 return 0;
209fail:
210 btrfs_free_path(path);
211 return err;
212}
213
214
215/*
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
219 */
7f366cfe 220static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
fe3f566c 223 size_t compressed_size, int compress_type,
c8b97818
CM
224 struct page **compressed_pages)
225{
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
234
235 if (compressed_size)
236 data_len = compressed_size;
237
238 if (start > 0 ||
70b99e69 239 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
246 }
247
920bbbfb 248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 249 &hint_byte, 1);
c8b97818
CM
250 BUG_ON(ret);
251
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
fe3f566c 256 compress_type, compressed_pages);
c8b97818 257 BUG_ON(ret);
0ca1f7ce 258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
260 return 0;
261}
262
771ed689
CM
263struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
261507a0 269 int compress_type;
771ed689
CM
270 struct list_head list;
271};
272
273struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
281};
282
283static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
261507a0
LZ
287 unsigned long nr_pages,
288 int compress_type)
771ed689
CM
289{
290 struct async_extent *async_extent;
291
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 293 BUG_ON(!async_extent);
771ed689
CM
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
261507a0 299 async_extent->compress_type = compress_type;
771ed689
CM
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
302}
303
d352ac68 304/*
771ed689
CM
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
c8b97818 308 *
771ed689
CM
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
c8b97818 314 *
771ed689
CM
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
d352ac68 319 */
771ed689
CM
320static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
b888db2b
CM
325{
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
db94535d 328 u64 num_bytes;
db94535d 329 u64 blocksize = root->sectorsize;
c8b97818 330 u64 actual_end;
42dc7bab 331 u64 isize = i_size_read(inode);
e6dcd2dc 332 int ret = 0;
c8b97818
CM
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
771ed689 339 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
340 int i;
341 int will_compress;
261507a0 342 int compress_type = root->fs_info->compress_type;
b888db2b 343
4cb5300b
CM
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
347
42dc7bab 348 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
349again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 353
f03d9301
CM
354 /*
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
360 *
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
363 */
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
366
c8b97818
CM
367 total_compressed = actual_end - start;
368
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
374 *
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
c8b97818
CM
378 */
379 total_compressed = min(total_compressed, max_uncompressed);
db94535d 380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 381 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
382 total_in = 0;
383 ret = 0;
db94535d 384
771ed689
CM
385 /*
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
c8b97818 389 */
6cbff00f 390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 391 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 394 WARN_ON(pages);
cfbc246e 395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 396 BUG_ON(!pages);
c8b97818 397
261507a0
LZ
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
400
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
c8b97818
CM
408
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
414
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
417 */
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
423 }
424 will_compress = 1;
425 }
426 }
427 if (start == 0) {
7a7eaa40 428 trans = btrfs_join_transaction(root);
3612b495 429 BUG_ON(IS_ERR(trans));
0ca1f7ce 430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 431
c8b97818 432 /* lets try to make an inline extent */
771ed689 433 if (ret || total_in < (actual_end - start)) {
c8b97818 434 /* we didn't compress the entire range, try
771ed689 435 * to make an uncompressed inline extent.
c8b97818
CM
436 */
437 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 438 start, end, 0, 0, NULL);
c8b97818 439 } else {
771ed689 440 /* try making a compressed inline extent */
c8b97818
CM
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
fe3f566c
LZ
443 total_compressed,
444 compress_type, pages);
c8b97818
CM
445 }
446 if (ret == 0) {
771ed689
CM
447 /*
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
451 */
c8b97818 452 extent_clear_unlock_delalloc(inode,
a791e35e
CM
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 456 EXTENT_CLEAR_DELALLOC |
a791e35e 457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
458
459 btrfs_end_transaction(trans, root);
c8b97818
CM
460 goto free_pages_out;
461 }
c2167754 462 btrfs_end_transaction(trans, root);
c8b97818
CM
463 }
464
465 if (will_compress) {
466 /*
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
470 */
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
473
474 /*
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
477 */
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
c8b97818
CM
483 num_bytes = total_in;
484 }
485 }
486 if (!will_compress && pages) {
487 /*
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
490 */
491 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 492 WARN_ON(pages[i]->mapping);
c8b97818
CM
493 page_cache_release(pages[i]);
494 }
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
499
500 /* flag the file so we don't compress in the future */
1e701a32
CM
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
a555f810 503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 504 }
c8b97818 505 }
771ed689
CM
506 if (will_compress) {
507 *num_added += 1;
c8b97818 508
771ed689
CM
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
512 */
513 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
179e29e4 516
24ae6365 517 if (start + num_bytes < end) {
771ed689
CM
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
522 }
523 } else {
f03d9301 524cleanup_and_bail_uncompressed:
771ed689
CM
525 /*
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
531 */
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
536 }
261507a0
LZ
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
539 *num_added += 1;
540 }
3b951516 541
771ed689
CM
542out:
543 return 0;
544
545free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
549 }
d397712b 550 kfree(pages);
771ed689
CM
551
552 goto out;
553}
554
555/*
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
560 */
561static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
563{
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
f5a84ee3 572 int ret = 0;
771ed689
CM
573
574 if (list_empty(&async_cow->extents))
575 return 0;
576
771ed689 577
d397712b 578 while (!list_empty(&async_cow->extents)) {
771ed689
CM
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
c8b97818 582
771ed689
CM
583 io_tree = &BTRFS_I(inode)->io_tree;
584
f5a84ee3 585retry:
771ed689
CM
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
590
591 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
594
595 /* allocate blocks */
f5a84ee3
JB
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
771ed689
CM
601
602 /*
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
607 */
f5a84ee3 608 if (!page_started && !ret)
771ed689
CM
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
d397712b 611 async_extent->start +
771ed689
CM
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
618 }
619
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
771ed689 623
7a7eaa40 624 trans = btrfs_join_transaction(root);
3612b495 625 BUG_ON(IS_ERR(trans));
74b21075 626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689
CM
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
c2167754
YZ
632 btrfs_end_transaction(trans, root);
633
f5a84ee3
JB
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
639 }
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
647 }
648
c2167754
YZ
649 /*
650 * here we're doing allocation and writeback of the
651 * compressed pages
652 */
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
656
172ddd60 657 em = alloc_extent_map();
c26a9203 658 BUG_ON(!em);
771ed689
CM
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
445a6944 661 em->orig_start = em->start;
c8b97818 662
771ed689
CM
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 666 em->compress_type = async_extent->compress_type;
771ed689
CM
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
669
d397712b 670 while (1) {
890871be 671 write_lock(&em_tree->lock);
771ed689 672 ret = add_extent_mapping(em_tree, em);
890871be 673 write_unlock(&em_tree->lock);
771ed689
CM
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
677 }
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
681 }
682
261507a0
LZ
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
771ed689
CM
690 BUG_ON(ret);
691
771ed689
CM
692 /*
693 * clear dirty, set writeback and unlock the pages.
694 */
695 extent_clear_unlock_delalloc(inode,
a791e35e
CM
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
a3429ab7 702 EXTENT_CLEAR_DELALLOC |
a791e35e 703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
704
705 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
771ed689
CM
711
712 BUG_ON(ret);
771ed689
CM
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
716 }
717
771ed689
CM
718 return 0;
719}
720
4b46fce2
JB
721static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
723{
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
727
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
731 /*
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
735 */
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
746 }
747 }
748 read_unlock(&em_tree->lock);
749
750 return alloc_hint;
751}
752
82d5902d
LZ
753static inline bool is_free_space_inode(struct btrfs_root *root,
754 struct inode *inode)
755{
756 if (root == root->fs_info->tree_root ||
757 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID)
758 return true;
759 return false;
760}
761
771ed689
CM
762/*
763 * when extent_io.c finds a delayed allocation range in the file,
764 * the call backs end up in this code. The basic idea is to
765 * allocate extents on disk for the range, and create ordered data structs
766 * in ram to track those extents.
767 *
768 * locked_page is the page that writepage had locked already. We use
769 * it to make sure we don't do extra locks or unlocks.
770 *
771 * *page_started is set to one if we unlock locked_page and do everything
772 * required to start IO on it. It may be clean and already done with
773 * IO when we return.
774 */
775static noinline int cow_file_range(struct inode *inode,
776 struct page *locked_page,
777 u64 start, u64 end, int *page_started,
778 unsigned long *nr_written,
779 int unlock)
780{
781 struct btrfs_root *root = BTRFS_I(inode)->root;
782 struct btrfs_trans_handle *trans;
783 u64 alloc_hint = 0;
784 u64 num_bytes;
785 unsigned long ram_size;
786 u64 disk_num_bytes;
787 u64 cur_alloc_size;
788 u64 blocksize = root->sectorsize;
771ed689
CM
789 struct btrfs_key ins;
790 struct extent_map *em;
791 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
792 int ret = 0;
793
82d5902d 794 BUG_ON(is_free_space_inode(root, inode));
7a7eaa40 795 trans = btrfs_join_transaction(root);
3612b495 796 BUG_ON(IS_ERR(trans));
0ca1f7ce 797 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 798
771ed689
CM
799 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
800 num_bytes = max(blocksize, num_bytes);
801 disk_num_bytes = num_bytes;
802 ret = 0;
803
4cb5300b
CM
804 /* if this is a small write inside eof, kick off defrag */
805 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
806 btrfs_add_inode_defrag(trans, inode);
807
771ed689
CM
808 if (start == 0) {
809 /* lets try to make an inline extent */
810 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 811 start, end, 0, 0, NULL);
771ed689
CM
812 if (ret == 0) {
813 extent_clear_unlock_delalloc(inode,
a791e35e
CM
814 &BTRFS_I(inode)->io_tree,
815 start, end, NULL,
816 EXTENT_CLEAR_UNLOCK_PAGE |
817 EXTENT_CLEAR_UNLOCK |
818 EXTENT_CLEAR_DELALLOC |
819 EXTENT_CLEAR_DIRTY |
820 EXTENT_SET_WRITEBACK |
821 EXTENT_END_WRITEBACK);
c2167754 822
771ed689
CM
823 *nr_written = *nr_written +
824 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
825 *page_started = 1;
826 ret = 0;
827 goto out;
828 }
829 }
830
831 BUG_ON(disk_num_bytes >
832 btrfs_super_total_bytes(&root->fs_info->super_copy));
833
4b46fce2 834 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
835 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
836
d397712b 837 while (disk_num_bytes > 0) {
a791e35e
CM
838 unsigned long op;
839
287a0ab9 840 cur_alloc_size = disk_num_bytes;
e6dcd2dc 841 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 842 root->sectorsize, 0, alloc_hint,
e6dcd2dc 843 (u64)-1, &ins, 1);
d397712b
CM
844 BUG_ON(ret);
845
172ddd60 846 em = alloc_extent_map();
c26a9203 847 BUG_ON(!em);
e6dcd2dc 848 em->start = start;
445a6944 849 em->orig_start = em->start;
771ed689
CM
850 ram_size = ins.offset;
851 em->len = ins.offset;
c8b97818 852
e6dcd2dc 853 em->block_start = ins.objectid;
c8b97818 854 em->block_len = ins.offset;
e6dcd2dc 855 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 856 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 857
d397712b 858 while (1) {
890871be 859 write_lock(&em_tree->lock);
e6dcd2dc 860 ret = add_extent_mapping(em_tree, em);
890871be 861 write_unlock(&em_tree->lock);
e6dcd2dc
CM
862 if (ret != -EEXIST) {
863 free_extent_map(em);
864 break;
865 }
866 btrfs_drop_extent_cache(inode, start,
c8b97818 867 start + ram_size - 1, 0);
e6dcd2dc
CM
868 }
869
98d20f67 870 cur_alloc_size = ins.offset;
e6dcd2dc 871 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 872 ram_size, cur_alloc_size, 0);
e6dcd2dc 873 BUG_ON(ret);
c8b97818 874
17d217fe
YZ
875 if (root->root_key.objectid ==
876 BTRFS_DATA_RELOC_TREE_OBJECTID) {
877 ret = btrfs_reloc_clone_csums(inode, start,
878 cur_alloc_size);
879 BUG_ON(ret);
880 }
881
d397712b 882 if (disk_num_bytes < cur_alloc_size)
3b951516 883 break;
d397712b 884
c8b97818
CM
885 /* we're not doing compressed IO, don't unlock the first
886 * page (which the caller expects to stay locked), don't
887 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
888 *
889 * Do set the Private2 bit so we know this page was properly
890 * setup for writepage
c8b97818 891 */
a791e35e
CM
892 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
893 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
894 EXTENT_SET_PRIVATE2;
895
c8b97818
CM
896 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
897 start, start + ram_size - 1,
a791e35e 898 locked_page, op);
c8b97818 899 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
900 num_bytes -= cur_alloc_size;
901 alloc_hint = ins.objectid + ins.offset;
902 start += cur_alloc_size;
b888db2b 903 }
b888db2b 904out:
771ed689 905 ret = 0;
b888db2b 906 btrfs_end_transaction(trans, root);
c8b97818 907
be20aa9d 908 return ret;
771ed689 909}
c8b97818 910
771ed689
CM
911/*
912 * work queue call back to started compression on a file and pages
913 */
914static noinline void async_cow_start(struct btrfs_work *work)
915{
916 struct async_cow *async_cow;
917 int num_added = 0;
918 async_cow = container_of(work, struct async_cow, work);
919
920 compress_file_range(async_cow->inode, async_cow->locked_page,
921 async_cow->start, async_cow->end, async_cow,
922 &num_added);
923 if (num_added == 0)
924 async_cow->inode = NULL;
925}
926
927/*
928 * work queue call back to submit previously compressed pages
929 */
930static noinline void async_cow_submit(struct btrfs_work *work)
931{
932 struct async_cow *async_cow;
933 struct btrfs_root *root;
934 unsigned long nr_pages;
935
936 async_cow = container_of(work, struct async_cow, work);
937
938 root = async_cow->root;
939 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
940 PAGE_CACHE_SHIFT;
941
942 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
943
944 if (atomic_read(&root->fs_info->async_delalloc_pages) <
945 5 * 1042 * 1024 &&
946 waitqueue_active(&root->fs_info->async_submit_wait))
947 wake_up(&root->fs_info->async_submit_wait);
948
d397712b 949 if (async_cow->inode)
771ed689 950 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 951}
c8b97818 952
771ed689
CM
953static noinline void async_cow_free(struct btrfs_work *work)
954{
955 struct async_cow *async_cow;
956 async_cow = container_of(work, struct async_cow, work);
957 kfree(async_cow);
958}
959
960static int cow_file_range_async(struct inode *inode, struct page *locked_page,
961 u64 start, u64 end, int *page_started,
962 unsigned long *nr_written)
963{
964 struct async_cow *async_cow;
965 struct btrfs_root *root = BTRFS_I(inode)->root;
966 unsigned long nr_pages;
967 u64 cur_end;
968 int limit = 10 * 1024 * 1042;
969
a3429ab7
CM
970 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
971 1, 0, NULL, GFP_NOFS);
d397712b 972 while (start < end) {
771ed689 973 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
8d413713 974 BUG_ON(!async_cow);
771ed689
CM
975 async_cow->inode = inode;
976 async_cow->root = root;
977 async_cow->locked_page = locked_page;
978 async_cow->start = start;
979
6cbff00f 980 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
981 cur_end = end;
982 else
983 cur_end = min(end, start + 512 * 1024 - 1);
984
985 async_cow->end = cur_end;
986 INIT_LIST_HEAD(&async_cow->extents);
987
988 async_cow->work.func = async_cow_start;
989 async_cow->work.ordered_func = async_cow_submit;
990 async_cow->work.ordered_free = async_cow_free;
991 async_cow->work.flags = 0;
992
771ed689
CM
993 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
994 PAGE_CACHE_SHIFT;
995 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
996
997 btrfs_queue_worker(&root->fs_info->delalloc_workers,
998 &async_cow->work);
999
1000 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1001 wait_event(root->fs_info->async_submit_wait,
1002 (atomic_read(&root->fs_info->async_delalloc_pages) <
1003 limit));
1004 }
1005
d397712b 1006 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
1007 atomic_read(&root->fs_info->async_delalloc_pages)) {
1008 wait_event(root->fs_info->async_submit_wait,
1009 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1010 0));
1011 }
1012
1013 *nr_written += nr_pages;
1014 start = cur_end + 1;
1015 }
1016 *page_started = 1;
1017 return 0;
be20aa9d
CM
1018}
1019
d397712b 1020static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1021 u64 bytenr, u64 num_bytes)
1022{
1023 int ret;
1024 struct btrfs_ordered_sum *sums;
1025 LIST_HEAD(list);
1026
07d400a6 1027 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
a2de733c 1028 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1029 if (ret == 0 && list_empty(&list))
1030 return 0;
1031
1032 while (!list_empty(&list)) {
1033 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1034 list_del(&sums->list);
1035 kfree(sums);
1036 }
1037 return 1;
1038}
1039
d352ac68
CM
1040/*
1041 * when nowcow writeback call back. This checks for snapshots or COW copies
1042 * of the extents that exist in the file, and COWs the file as required.
1043 *
1044 * If no cow copies or snapshots exist, we write directly to the existing
1045 * blocks on disk
1046 */
7f366cfe
CM
1047static noinline int run_delalloc_nocow(struct inode *inode,
1048 struct page *locked_page,
771ed689
CM
1049 u64 start, u64 end, int *page_started, int force,
1050 unsigned long *nr_written)
be20aa9d 1051{
be20aa9d 1052 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1053 struct btrfs_trans_handle *trans;
be20aa9d 1054 struct extent_buffer *leaf;
be20aa9d 1055 struct btrfs_path *path;
80ff3856 1056 struct btrfs_file_extent_item *fi;
be20aa9d 1057 struct btrfs_key found_key;
80ff3856
YZ
1058 u64 cow_start;
1059 u64 cur_offset;
1060 u64 extent_end;
5d4f98a2 1061 u64 extent_offset;
80ff3856
YZ
1062 u64 disk_bytenr;
1063 u64 num_bytes;
1064 int extent_type;
1065 int ret;
d899e052 1066 int type;
80ff3856
YZ
1067 int nocow;
1068 int check_prev = 1;
82d5902d 1069 bool nolock;
33345d01 1070 u64 ino = btrfs_ino(inode);
be20aa9d
CM
1071
1072 path = btrfs_alloc_path();
d8926bb3
MF
1073 if (!path)
1074 return -ENOMEM;
82d5902d
LZ
1075
1076 nolock = is_free_space_inode(root, inode);
1077
1078 if (nolock)
7a7eaa40 1079 trans = btrfs_join_transaction_nolock(root);
82d5902d 1080 else
7a7eaa40 1081 trans = btrfs_join_transaction(root);
ff5714cc 1082
3612b495 1083 BUG_ON(IS_ERR(trans));
74b21075 1084 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
be20aa9d 1085
80ff3856
YZ
1086 cow_start = (u64)-1;
1087 cur_offset = start;
1088 while (1) {
33345d01 1089 ret = btrfs_lookup_file_extent(trans, root, path, ino,
80ff3856
YZ
1090 cur_offset, 0);
1091 BUG_ON(ret < 0);
1092 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1093 leaf = path->nodes[0];
1094 btrfs_item_key_to_cpu(leaf, &found_key,
1095 path->slots[0] - 1);
33345d01 1096 if (found_key.objectid == ino &&
80ff3856
YZ
1097 found_key.type == BTRFS_EXTENT_DATA_KEY)
1098 path->slots[0]--;
1099 }
1100 check_prev = 0;
1101next_slot:
1102 leaf = path->nodes[0];
1103 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1104 ret = btrfs_next_leaf(root, path);
1105 if (ret < 0)
1106 BUG_ON(1);
1107 if (ret > 0)
1108 break;
1109 leaf = path->nodes[0];
1110 }
be20aa9d 1111
80ff3856
YZ
1112 nocow = 0;
1113 disk_bytenr = 0;
17d217fe 1114 num_bytes = 0;
80ff3856
YZ
1115 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1116
33345d01 1117 if (found_key.objectid > ino ||
80ff3856
YZ
1118 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1119 found_key.offset > end)
1120 break;
1121
1122 if (found_key.offset > cur_offset) {
1123 extent_end = found_key.offset;
e9061e21 1124 extent_type = 0;
80ff3856
YZ
1125 goto out_check;
1126 }
1127
1128 fi = btrfs_item_ptr(leaf, path->slots[0],
1129 struct btrfs_file_extent_item);
1130 extent_type = btrfs_file_extent_type(leaf, fi);
1131
d899e052
YZ
1132 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1133 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1134 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1135 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1136 extent_end = found_key.offset +
1137 btrfs_file_extent_num_bytes(leaf, fi);
1138 if (extent_end <= start) {
1139 path->slots[0]++;
1140 goto next_slot;
1141 }
17d217fe
YZ
1142 if (disk_bytenr == 0)
1143 goto out_check;
80ff3856
YZ
1144 if (btrfs_file_extent_compression(leaf, fi) ||
1145 btrfs_file_extent_encryption(leaf, fi) ||
1146 btrfs_file_extent_other_encoding(leaf, fi))
1147 goto out_check;
d899e052
YZ
1148 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1149 goto out_check;
d2fb3437 1150 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1151 goto out_check;
33345d01 1152 if (btrfs_cross_ref_exist(trans, root, ino,
5d4f98a2
YZ
1153 found_key.offset -
1154 extent_offset, disk_bytenr))
17d217fe 1155 goto out_check;
5d4f98a2 1156 disk_bytenr += extent_offset;
17d217fe
YZ
1157 disk_bytenr += cur_offset - found_key.offset;
1158 num_bytes = min(end + 1, extent_end) - cur_offset;
1159 /*
1160 * force cow if csum exists in the range.
1161 * this ensure that csum for a given extent are
1162 * either valid or do not exist.
1163 */
1164 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1165 goto out_check;
80ff3856
YZ
1166 nocow = 1;
1167 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1168 extent_end = found_key.offset +
1169 btrfs_file_extent_inline_len(leaf, fi);
1170 extent_end = ALIGN(extent_end, root->sectorsize);
1171 } else {
1172 BUG_ON(1);
1173 }
1174out_check:
1175 if (extent_end <= start) {
1176 path->slots[0]++;
1177 goto next_slot;
1178 }
1179 if (!nocow) {
1180 if (cow_start == (u64)-1)
1181 cow_start = cur_offset;
1182 cur_offset = extent_end;
1183 if (cur_offset > end)
1184 break;
1185 path->slots[0]++;
1186 goto next_slot;
7ea394f1
YZ
1187 }
1188
b3b4aa74 1189 btrfs_release_path(path);
80ff3856
YZ
1190 if (cow_start != (u64)-1) {
1191 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1192 found_key.offset - 1, page_started,
1193 nr_written, 1);
80ff3856
YZ
1194 BUG_ON(ret);
1195 cow_start = (u64)-1;
7ea394f1 1196 }
80ff3856 1197
d899e052
YZ
1198 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1199 struct extent_map *em;
1200 struct extent_map_tree *em_tree;
1201 em_tree = &BTRFS_I(inode)->extent_tree;
172ddd60 1202 em = alloc_extent_map();
c26a9203 1203 BUG_ON(!em);
d899e052 1204 em->start = cur_offset;
445a6944 1205 em->orig_start = em->start;
d899e052
YZ
1206 em->len = num_bytes;
1207 em->block_len = num_bytes;
1208 em->block_start = disk_bytenr;
1209 em->bdev = root->fs_info->fs_devices->latest_bdev;
1210 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1211 while (1) {
890871be 1212 write_lock(&em_tree->lock);
d899e052 1213 ret = add_extent_mapping(em_tree, em);
890871be 1214 write_unlock(&em_tree->lock);
d899e052
YZ
1215 if (ret != -EEXIST) {
1216 free_extent_map(em);
1217 break;
1218 }
1219 btrfs_drop_extent_cache(inode, em->start,
1220 em->start + em->len - 1, 0);
1221 }
1222 type = BTRFS_ORDERED_PREALLOC;
1223 } else {
1224 type = BTRFS_ORDERED_NOCOW;
1225 }
80ff3856
YZ
1226
1227 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1228 num_bytes, num_bytes, type);
1229 BUG_ON(ret);
771ed689 1230
efa56464
YZ
1231 if (root->root_key.objectid ==
1232 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1233 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1234 num_bytes);
1235 BUG_ON(ret);
1236 }
1237
d899e052 1238 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1239 cur_offset, cur_offset + num_bytes - 1,
1240 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1241 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1242 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1243 cur_offset = extent_end;
1244 if (cur_offset > end)
1245 break;
be20aa9d 1246 }
b3b4aa74 1247 btrfs_release_path(path);
80ff3856
YZ
1248
1249 if (cur_offset <= end && cow_start == (u64)-1)
1250 cow_start = cur_offset;
1251 if (cow_start != (u64)-1) {
1252 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1253 page_started, nr_written, 1);
80ff3856
YZ
1254 BUG_ON(ret);
1255 }
1256
0cb59c99
JB
1257 if (nolock) {
1258 ret = btrfs_end_transaction_nolock(trans, root);
1259 BUG_ON(ret);
1260 } else {
1261 ret = btrfs_end_transaction(trans, root);
1262 BUG_ON(ret);
1263 }
7ea394f1 1264 btrfs_free_path(path);
80ff3856 1265 return 0;
be20aa9d
CM
1266}
1267
d352ac68
CM
1268/*
1269 * extent_io.c call back to do delayed allocation processing
1270 */
c8b97818 1271static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1272 u64 start, u64 end, int *page_started,
1273 unsigned long *nr_written)
be20aa9d 1274{
be20aa9d 1275 int ret;
7f366cfe 1276 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1277
6cbff00f 1278 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1279 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1280 page_started, 1, nr_written);
6cbff00f 1281 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1282 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1283 page_started, 0, nr_written);
1e701a32 1284 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1285 !(BTRFS_I(inode)->force_compress) &&
1286 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1287 ret = cow_file_range(inode, locked_page, start, end,
1288 page_started, nr_written, 1);
be20aa9d 1289 else
771ed689 1290 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1291 page_started, nr_written);
b888db2b
CM
1292 return ret;
1293}
1294
9ed74f2d 1295static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1296 struct extent_state *orig, u64 split)
9ed74f2d 1297{
0ca1f7ce 1298 /* not delalloc, ignore it */
9ed74f2d
JB
1299 if (!(orig->state & EXTENT_DELALLOC))
1300 return 0;
1301
0ca1f7ce 1302 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1303 return 0;
1304}
1305
1306/*
1307 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1308 * extents so we can keep track of new extents that are just merged onto old
1309 * extents, such as when we are doing sequential writes, so we can properly
1310 * account for the metadata space we'll need.
1311 */
1312static int btrfs_merge_extent_hook(struct inode *inode,
1313 struct extent_state *new,
1314 struct extent_state *other)
1315{
9ed74f2d
JB
1316 /* not delalloc, ignore it */
1317 if (!(other->state & EXTENT_DELALLOC))
1318 return 0;
1319
0ca1f7ce 1320 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1321 return 0;
1322}
1323
d352ac68
CM
1324/*
1325 * extent_io.c set_bit_hook, used to track delayed allocation
1326 * bytes in this file, and to maintain the list of inodes that
1327 * have pending delalloc work to be done.
1328 */
0ca1f7ce
YZ
1329static int btrfs_set_bit_hook(struct inode *inode,
1330 struct extent_state *state, int *bits)
291d673e 1331{
9ed74f2d 1332
75eff68e
CM
1333 /*
1334 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1335 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1336 * bit, which is only set or cleared with irqs on
1337 */
0ca1f7ce 1338 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1339 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1340 u64 len = state->end + 1 - state->start;
82d5902d 1341 bool do_list = !is_free_space_inode(root, inode);
9ed74f2d 1342
0ca1f7ce
YZ
1343 if (*bits & EXTENT_FIRST_DELALLOC)
1344 *bits &= ~EXTENT_FIRST_DELALLOC;
1345 else
1346 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1347
75eff68e 1348 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1349 BTRFS_I(inode)->delalloc_bytes += len;
1350 root->fs_info->delalloc_bytes += len;
0cb59c99 1351 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1352 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1353 &root->fs_info->delalloc_inodes);
1354 }
75eff68e 1355 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1356 }
1357 return 0;
1358}
1359
d352ac68
CM
1360/*
1361 * extent_io.c clear_bit_hook, see set_bit_hook for why
1362 */
9ed74f2d 1363static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1364 struct extent_state *state, int *bits)
291d673e 1365{
75eff68e
CM
1366 /*
1367 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1368 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1369 * bit, which is only set or cleared with irqs on
1370 */
0ca1f7ce 1371 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1372 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1373 u64 len = state->end + 1 - state->start;
82d5902d 1374 bool do_list = !is_free_space_inode(root, inode);
bcbfce8a 1375
0ca1f7ce
YZ
1376 if (*bits & EXTENT_FIRST_DELALLOC)
1377 *bits &= ~EXTENT_FIRST_DELALLOC;
1378 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1379 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1380
1381 if (*bits & EXTENT_DO_ACCOUNTING)
1382 btrfs_delalloc_release_metadata(inode, len);
1383
0cb59c99
JB
1384 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1385 && do_list)
0ca1f7ce 1386 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1387
75eff68e 1388 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1389 root->fs_info->delalloc_bytes -= len;
1390 BTRFS_I(inode)->delalloc_bytes -= len;
1391
0cb59c99 1392 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1393 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1394 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1395 }
75eff68e 1396 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1397 }
1398 return 0;
1399}
1400
d352ac68
CM
1401/*
1402 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1403 * we don't create bios that span stripes or chunks
1404 */
239b14b3 1405int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1406 size_t size, struct bio *bio,
1407 unsigned long bio_flags)
239b14b3
CM
1408{
1409 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1410 struct btrfs_mapping_tree *map_tree;
a62b9401 1411 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1412 u64 length = 0;
1413 u64 map_length;
239b14b3
CM
1414 int ret;
1415
771ed689
CM
1416 if (bio_flags & EXTENT_BIO_COMPRESSED)
1417 return 0;
1418
f2d8d74d 1419 length = bio->bi_size;
239b14b3
CM
1420 map_tree = &root->fs_info->mapping_tree;
1421 map_length = length;
cea9e445 1422 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1423 &map_length, NULL, 0);
cea9e445 1424
d397712b 1425 if (map_length < length + size)
239b14b3 1426 return 1;
411fc6bc 1427 return ret;
239b14b3
CM
1428}
1429
d352ac68
CM
1430/*
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1434 *
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1437 */
d397712b
CM
1438static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1439 struct bio *bio, int mirror_num,
eaf25d93
CM
1440 unsigned long bio_flags,
1441 u64 bio_offset)
065631f6 1442{
065631f6 1443 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1444 int ret = 0;
e015640f 1445
d20f7043 1446 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1447 BUG_ON(ret);
4a69a410
CM
1448 return 0;
1449}
e015640f 1450
4a69a410
CM
1451/*
1452 * in order to insert checksums into the metadata in large chunks,
1453 * we wait until bio submission time. All the pages in the bio are
1454 * checksummed and sums are attached onto the ordered extent record.
1455 *
1456 * At IO completion time the cums attached on the ordered extent record
1457 * are inserted into the btree
1458 */
b2950863 1459static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1460 int mirror_num, unsigned long bio_flags,
1461 u64 bio_offset)
4a69a410
CM
1462{
1463 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1464 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1465}
1466
d352ac68 1467/*
cad321ad
CM
1468 * extent_io.c submission hook. This does the right thing for csum calculation
1469 * on write, or reading the csums from the tree before a read
d352ac68 1470 */
b2950863 1471static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1472 int mirror_num, unsigned long bio_flags,
1473 u64 bio_offset)
44b8bd7e
CM
1474{
1475 struct btrfs_root *root = BTRFS_I(inode)->root;
1476 int ret = 0;
19b9bdb0 1477 int skip_sum;
44b8bd7e 1478
6cbff00f 1479 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1480
82d5902d 1481 if (is_free_space_inode(root, inode))
0cb59c99
JB
1482 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1483 else
1484 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1485 BUG_ON(ret);
065631f6 1486
7b6d91da 1487 if (!(rw & REQ_WRITE)) {
d20f7043 1488 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1489 return btrfs_submit_compressed_read(inode, bio,
1490 mirror_num, bio_flags);
c2db1073
TI
1491 } else if (!skip_sum) {
1492 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1493 if (ret)
1494 return ret;
1495 }
4d1b5fb4 1496 goto mapit;
19b9bdb0 1497 } else if (!skip_sum) {
17d217fe
YZ
1498 /* csum items have already been cloned */
1499 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1500 goto mapit;
19b9bdb0
CM
1501 /* we're doing a write, do the async checksumming */
1502 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1503 inode, rw, bio, mirror_num,
eaf25d93
CM
1504 bio_flags, bio_offset,
1505 __btrfs_submit_bio_start,
4a69a410 1506 __btrfs_submit_bio_done);
19b9bdb0
CM
1507 }
1508
0b86a832 1509mapit:
8b712842 1510 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1511}
6885f308 1512
d352ac68
CM
1513/*
1514 * given a list of ordered sums record them in the inode. This happens
1515 * at IO completion time based on sums calculated at bio submission time.
1516 */
ba1da2f4 1517static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1518 struct inode *inode, u64 file_offset,
1519 struct list_head *list)
1520{
e6dcd2dc
CM
1521 struct btrfs_ordered_sum *sum;
1522
c6e30871 1523 list_for_each_entry(sum, list, list) {
d20f7043
CM
1524 btrfs_csum_file_blocks(trans,
1525 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1526 }
1527 return 0;
1528}
1529
2ac55d41
JB
1530int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1531 struct extent_state **cached_state)
ea8c2819 1532{
d397712b 1533 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1534 WARN_ON(1);
ea8c2819 1535 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1536 cached_state, GFP_NOFS);
ea8c2819
CM
1537}
1538
d352ac68 1539/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1540struct btrfs_writepage_fixup {
1541 struct page *page;
1542 struct btrfs_work work;
1543};
1544
b2950863 1545static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1546{
1547 struct btrfs_writepage_fixup *fixup;
1548 struct btrfs_ordered_extent *ordered;
2ac55d41 1549 struct extent_state *cached_state = NULL;
247e743c
CM
1550 struct page *page;
1551 struct inode *inode;
1552 u64 page_start;
1553 u64 page_end;
1554
1555 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1556 page = fixup->page;
4a096752 1557again:
247e743c
CM
1558 lock_page(page);
1559 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1560 ClearPageChecked(page);
1561 goto out_page;
1562 }
1563
1564 inode = page->mapping->host;
1565 page_start = page_offset(page);
1566 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1567
2ac55d41
JB
1568 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1569 &cached_state, GFP_NOFS);
4a096752
CM
1570
1571 /* already ordered? We're done */
8b62b72b 1572 if (PagePrivate2(page))
247e743c 1573 goto out;
4a096752
CM
1574
1575 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1576 if (ordered) {
2ac55d41
JB
1577 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1578 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1579 unlock_page(page);
1580 btrfs_start_ordered_extent(inode, ordered, 1);
1581 goto again;
1582 }
247e743c 1583
0ca1f7ce 1584 BUG();
2ac55d41 1585 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1586 ClearPageChecked(page);
1587out:
2ac55d41
JB
1588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1589 &cached_state, GFP_NOFS);
247e743c
CM
1590out_page:
1591 unlock_page(page);
1592 page_cache_release(page);
b897abec 1593 kfree(fixup);
247e743c
CM
1594}
1595
1596/*
1597 * There are a few paths in the higher layers of the kernel that directly
1598 * set the page dirty bit without asking the filesystem if it is a
1599 * good idea. This causes problems because we want to make sure COW
1600 * properly happens and the data=ordered rules are followed.
1601 *
c8b97818 1602 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1603 * hasn't been properly setup for IO. We kick off an async process
1604 * to fix it up. The async helper will wait for ordered extents, set
1605 * the delalloc bit and make it safe to write the page.
1606 */
b2950863 1607static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1608{
1609 struct inode *inode = page->mapping->host;
1610 struct btrfs_writepage_fixup *fixup;
1611 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1612
8b62b72b
CM
1613 /* this page is properly in the ordered list */
1614 if (TestClearPagePrivate2(page))
247e743c
CM
1615 return 0;
1616
1617 if (PageChecked(page))
1618 return -EAGAIN;
1619
1620 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1621 if (!fixup)
1622 return -EAGAIN;
f421950f 1623
247e743c
CM
1624 SetPageChecked(page);
1625 page_cache_get(page);
1626 fixup->work.func = btrfs_writepage_fixup_worker;
1627 fixup->page = page;
1628 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1629 return -EAGAIN;
1630}
1631
d899e052
YZ
1632static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1633 struct inode *inode, u64 file_pos,
1634 u64 disk_bytenr, u64 disk_num_bytes,
1635 u64 num_bytes, u64 ram_bytes,
1636 u8 compression, u8 encryption,
1637 u16 other_encoding, int extent_type)
1638{
1639 struct btrfs_root *root = BTRFS_I(inode)->root;
1640 struct btrfs_file_extent_item *fi;
1641 struct btrfs_path *path;
1642 struct extent_buffer *leaf;
1643 struct btrfs_key ins;
1644 u64 hint;
1645 int ret;
1646
1647 path = btrfs_alloc_path();
d8926bb3
MF
1648 if (!path)
1649 return -ENOMEM;
d899e052 1650
b9473439 1651 path->leave_spinning = 1;
a1ed835e
CM
1652
1653 /*
1654 * we may be replacing one extent in the tree with another.
1655 * The new extent is pinned in the extent map, and we don't want
1656 * to drop it from the cache until it is completely in the btree.
1657 *
1658 * So, tell btrfs_drop_extents to leave this extent in the cache.
1659 * the caller is expected to unpin it and allow it to be merged
1660 * with the others.
1661 */
920bbbfb
YZ
1662 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1663 &hint, 0);
d899e052
YZ
1664 BUG_ON(ret);
1665
33345d01 1666 ins.objectid = btrfs_ino(inode);
d899e052
YZ
1667 ins.offset = file_pos;
1668 ins.type = BTRFS_EXTENT_DATA_KEY;
1669 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1670 BUG_ON(ret);
1671 leaf = path->nodes[0];
1672 fi = btrfs_item_ptr(leaf, path->slots[0],
1673 struct btrfs_file_extent_item);
1674 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1675 btrfs_set_file_extent_type(leaf, fi, extent_type);
1676 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1677 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1678 btrfs_set_file_extent_offset(leaf, fi, 0);
1679 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1680 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1681 btrfs_set_file_extent_compression(leaf, fi, compression);
1682 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1683 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1684
1685 btrfs_unlock_up_safe(path, 1);
1686 btrfs_set_lock_blocking(leaf);
1687
d899e052
YZ
1688 btrfs_mark_buffer_dirty(leaf);
1689
1690 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1691
1692 ins.objectid = disk_bytenr;
1693 ins.offset = disk_num_bytes;
1694 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1695 ret = btrfs_alloc_reserved_file_extent(trans, root,
1696 root->root_key.objectid,
33345d01 1697 btrfs_ino(inode), file_pos, &ins);
d899e052 1698 BUG_ON(ret);
d899e052 1699 btrfs_free_path(path);
b9473439 1700
d899e052
YZ
1701 return 0;
1702}
1703
5d13a98f
CM
1704/*
1705 * helper function for btrfs_finish_ordered_io, this
1706 * just reads in some of the csum leaves to prime them into ram
1707 * before we start the transaction. It limits the amount of btree
1708 * reads required while inside the transaction.
1709 */
d352ac68
CM
1710/* as ordered data IO finishes, this gets called so we can finish
1711 * an ordered extent if the range of bytes in the file it covers are
1712 * fully written.
1713 */
211f90e6 1714static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1715{
e6dcd2dc 1716 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1717 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1718 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1719 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1720 struct extent_state *cached_state = NULL;
261507a0 1721 int compress_type = 0;
e6dcd2dc 1722 int ret;
82d5902d 1723 bool nolock;
e6dcd2dc 1724
5a1a3df1
JB
1725 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1726 end - start + 1);
ba1da2f4 1727 if (!ret)
e6dcd2dc 1728 return 0;
e6dcd2dc 1729 BUG_ON(!ordered_extent);
efd049fb 1730
82d5902d 1731 nolock = is_free_space_inode(root, inode);
0cb59c99 1732
c2167754
YZ
1733 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1734 BUG_ON(!list_empty(&ordered_extent->list));
1735 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1736 if (!ret) {
0cb59c99 1737 if (nolock)
7a7eaa40 1738 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1739 else
7a7eaa40 1740 trans = btrfs_join_transaction(root);
3612b495 1741 BUG_ON(IS_ERR(trans));
0ca1f7ce 1742 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1743 ret = btrfs_update_inode(trans, root, inode);
1744 BUG_ON(ret);
c2167754
YZ
1745 }
1746 goto out;
1747 }
e6dcd2dc 1748
2ac55d41
JB
1749 lock_extent_bits(io_tree, ordered_extent->file_offset,
1750 ordered_extent->file_offset + ordered_extent->len - 1,
1751 0, &cached_state, GFP_NOFS);
e6dcd2dc 1752
0cb59c99 1753 if (nolock)
7a7eaa40 1754 trans = btrfs_join_transaction_nolock(root);
0cb59c99 1755 else
7a7eaa40 1756 trans = btrfs_join_transaction(root);
3612b495 1757 BUG_ON(IS_ERR(trans));
0ca1f7ce 1758 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1759
c8b97818 1760 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1761 compress_type = ordered_extent->compress_type;
d899e052 1762 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1763 BUG_ON(compress_type);
920bbbfb 1764 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1765 ordered_extent->file_offset,
1766 ordered_extent->file_offset +
1767 ordered_extent->len);
1768 BUG_ON(ret);
1769 } else {
0af3d00b 1770 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1771 ret = insert_reserved_file_extent(trans, inode,
1772 ordered_extent->file_offset,
1773 ordered_extent->start,
1774 ordered_extent->disk_len,
1775 ordered_extent->len,
1776 ordered_extent->len,
261507a0 1777 compress_type, 0, 0,
d899e052 1778 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1779 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1780 ordered_extent->file_offset,
1781 ordered_extent->len);
d899e052
YZ
1782 BUG_ON(ret);
1783 }
2ac55d41
JB
1784 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1785 ordered_extent->file_offset +
1786 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1787
e6dcd2dc
CM
1788 add_pending_csums(trans, inode, ordered_extent->file_offset,
1789 &ordered_extent->list);
1790
1ef30be1
JB
1791 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1792 if (!ret) {
1793 ret = btrfs_update_inode(trans, root, inode);
1794 BUG_ON(ret);
1795 }
1796 ret = 0;
c2167754 1797out:
0cb59c99
JB
1798 if (nolock) {
1799 if (trans)
1800 btrfs_end_transaction_nolock(trans, root);
1801 } else {
1802 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1803 if (trans)
1804 btrfs_end_transaction(trans, root);
1805 }
1806
e6dcd2dc
CM
1807 /* once for us */
1808 btrfs_put_ordered_extent(ordered_extent);
1809 /* once for the tree */
1810 btrfs_put_ordered_extent(ordered_extent);
1811
e6dcd2dc
CM
1812 return 0;
1813}
1814
b2950863 1815static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1816 struct extent_state *state, int uptodate)
1817{
1abe9b8a 1818 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1819
8b62b72b 1820 ClearPagePrivate2(page);
211f90e6
CM
1821 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1822}
1823
d352ac68
CM
1824/*
1825 * When IO fails, either with EIO or csum verification fails, we
1826 * try other mirrors that might have a good copy of the data. This
1827 * io_failure_record is used to record state as we go through all the
1828 * mirrors. If another mirror has good data, the page is set up to date
1829 * and things continue. If a good mirror can't be found, the original
1830 * bio end_io callback is called to indicate things have failed.
1831 */
7e38326f
CM
1832struct io_failure_record {
1833 struct page *page;
1834 u64 start;
1835 u64 len;
1836 u64 logical;
d20f7043 1837 unsigned long bio_flags;
7e38326f
CM
1838 int last_mirror;
1839};
1840
b2950863 1841static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1842 struct page *page, u64 start, u64 end,
1843 struct extent_state *state)
7e38326f
CM
1844{
1845 struct io_failure_record *failrec = NULL;
1846 u64 private;
1847 struct extent_map *em;
1848 struct inode *inode = page->mapping->host;
1849 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1850 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1851 struct bio *bio;
1852 int num_copies;
1853 int ret;
1259ab75 1854 int rw;
7e38326f
CM
1855 u64 logical;
1856
1857 ret = get_state_private(failure_tree, start, &private);
1858 if (ret) {
7e38326f
CM
1859 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1860 if (!failrec)
1861 return -ENOMEM;
1862 failrec->start = start;
1863 failrec->len = end - start + 1;
1864 failrec->last_mirror = 0;
d20f7043 1865 failrec->bio_flags = 0;
7e38326f 1866
890871be 1867 read_lock(&em_tree->lock);
3b951516
CM
1868 em = lookup_extent_mapping(em_tree, start, failrec->len);
1869 if (em->start > start || em->start + em->len < start) {
1870 free_extent_map(em);
1871 em = NULL;
1872 }
890871be 1873 read_unlock(&em_tree->lock);
7e38326f 1874
c704005d 1875 if (IS_ERR_OR_NULL(em)) {
7e38326f
CM
1876 kfree(failrec);
1877 return -EIO;
1878 }
1879 logical = start - em->start;
1880 logical = em->block_start + logical;
d20f7043
CM
1881 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1882 logical = em->block_start;
1883 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1884 extent_set_compress_type(&failrec->bio_flags,
1885 em->compress_type);
d20f7043 1886 }
7e38326f
CM
1887 failrec->logical = logical;
1888 free_extent_map(em);
1889 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1890 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1891 set_state_private(failure_tree, start,
1892 (u64)(unsigned long)failrec);
7e38326f 1893 } else {
587f7704 1894 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1895 }
1896 num_copies = btrfs_num_copies(
1897 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1898 failrec->logical, failrec->len);
1899 failrec->last_mirror++;
1900 if (!state) {
cad321ad 1901 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1902 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1903 failrec->start,
1904 EXTENT_LOCKED);
1905 if (state && state->start != failrec->start)
1906 state = NULL;
cad321ad 1907 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1908 }
1909 if (!state || failrec->last_mirror > num_copies) {
1910 set_state_private(failure_tree, failrec->start, 0);
1911 clear_extent_bits(failure_tree, failrec->start,
1912 failrec->start + failrec->len - 1,
1913 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1914 kfree(failrec);
1915 return -EIO;
1916 }
1917 bio = bio_alloc(GFP_NOFS, 1);
1918 bio->bi_private = state;
1919 bio->bi_end_io = failed_bio->bi_end_io;
1920 bio->bi_sector = failrec->logical >> 9;
1921 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1922 bio->bi_size = 0;
d20f7043 1923
7e38326f 1924 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1925 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1926 rw = WRITE;
1927 else
1928 rw = READ;
1929
c2db1073 1930 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1931 failrec->last_mirror,
eaf25d93 1932 failrec->bio_flags, 0);
c2db1073 1933 return ret;
1259ab75
CM
1934}
1935
d352ac68
CM
1936/*
1937 * each time an IO finishes, we do a fast check in the IO failure tree
1938 * to see if we need to process or clean up an io_failure_record
1939 */
b2950863 1940static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1941{
1942 u64 private;
1943 u64 private_failure;
1944 struct io_failure_record *failure;
1945 int ret;
1946
1947 private = 0;
1948 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1949 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1950 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1951 start, &private_failure);
1952 if (ret == 0) {
1953 failure = (struct io_failure_record *)(unsigned long)
1954 private_failure;
1955 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1956 failure->start, 0);
1957 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1958 failure->start,
1959 failure->start + failure->len - 1,
1960 EXTENT_DIRTY | EXTENT_LOCKED,
1961 GFP_NOFS);
1962 kfree(failure);
1963 }
1964 }
7e38326f
CM
1965 return 0;
1966}
1967
d352ac68
CM
1968/*
1969 * when reads are done, we need to check csums to verify the data is correct
1970 * if there's a match, we allow the bio to finish. If not, we go through
1971 * the io_failure_record routines to find good copies
1972 */
b2950863 1973static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1974 struct extent_state *state)
07157aac 1975{
35ebb934 1976 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1977 struct inode *inode = page->mapping->host;
d1310b2e 1978 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1979 char *kaddr;
aadfeb6e 1980 u64 private = ~(u32)0;
07157aac 1981 int ret;
ff79f819
CM
1982 struct btrfs_root *root = BTRFS_I(inode)->root;
1983 u32 csum = ~(u32)0;
d1310b2e 1984
d20f7043
CM
1985 if (PageChecked(page)) {
1986 ClearPageChecked(page);
1987 goto good;
1988 }
6cbff00f
CH
1989
1990 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
08d2f347 1991 goto good;
17d217fe
YZ
1992
1993 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1994 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1995 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1996 GFP_NOFS);
b6cda9bc 1997 return 0;
17d217fe 1998 }
d20f7043 1999
c2e639f0 2000 if (state && state->start == start) {
70dec807
CM
2001 private = state->private;
2002 ret = 0;
2003 } else {
2004 ret = get_state_private(io_tree, start, &private);
2005 }
9ab86c8e 2006 kaddr = kmap_atomic(page, KM_USER0);
d397712b 2007 if (ret)
07157aac 2008 goto zeroit;
d397712b 2009
ff79f819
CM
2010 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2011 btrfs_csum_final(csum, (char *)&csum);
d397712b 2012 if (csum != private)
07157aac 2013 goto zeroit;
d397712b 2014
9ab86c8e 2015 kunmap_atomic(kaddr, KM_USER0);
d20f7043 2016good:
7e38326f
CM
2017 /* if the io failure tree for this inode is non-empty,
2018 * check to see if we've recovered from a failed IO
2019 */
1259ab75 2020 btrfs_clean_io_failures(inode, start);
07157aac
CM
2021 return 0;
2022
2023zeroit:
945d8962 2024 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
33345d01
LZ
2025 "private %llu\n",
2026 (unsigned long long)btrfs_ino(page->mapping->host),
193f284d
CM
2027 (unsigned long long)start, csum,
2028 (unsigned long long)private);
db94535d
CM
2029 memset(kaddr + offset, 1, end - start + 1);
2030 flush_dcache_page(page);
9ab86c8e 2031 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2032 if (private == 0)
2033 return 0;
7e38326f 2034 return -EIO;
07157aac 2035}
b888db2b 2036
24bbcf04
YZ
2037struct delayed_iput {
2038 struct list_head list;
2039 struct inode *inode;
2040};
2041
2042void btrfs_add_delayed_iput(struct inode *inode)
2043{
2044 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2045 struct delayed_iput *delayed;
2046
2047 if (atomic_add_unless(&inode->i_count, -1, 1))
2048 return;
2049
2050 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2051 delayed->inode = inode;
2052
2053 spin_lock(&fs_info->delayed_iput_lock);
2054 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2055 spin_unlock(&fs_info->delayed_iput_lock);
2056}
2057
2058void btrfs_run_delayed_iputs(struct btrfs_root *root)
2059{
2060 LIST_HEAD(list);
2061 struct btrfs_fs_info *fs_info = root->fs_info;
2062 struct delayed_iput *delayed;
2063 int empty;
2064
2065 spin_lock(&fs_info->delayed_iput_lock);
2066 empty = list_empty(&fs_info->delayed_iputs);
2067 spin_unlock(&fs_info->delayed_iput_lock);
2068 if (empty)
2069 return;
2070
2071 down_read(&root->fs_info->cleanup_work_sem);
2072 spin_lock(&fs_info->delayed_iput_lock);
2073 list_splice_init(&fs_info->delayed_iputs, &list);
2074 spin_unlock(&fs_info->delayed_iput_lock);
2075
2076 while (!list_empty(&list)) {
2077 delayed = list_entry(list.next, struct delayed_iput, list);
2078 list_del(&delayed->list);
2079 iput(delayed->inode);
2080 kfree(delayed);
2081 }
2082 up_read(&root->fs_info->cleanup_work_sem);
2083}
2084
d68fc57b
YZ
2085/*
2086 * calculate extra metadata reservation when snapshotting a subvolume
2087 * contains orphan files.
2088 */
2089void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2090 struct btrfs_pending_snapshot *pending,
2091 u64 *bytes_to_reserve)
2092{
2093 struct btrfs_root *root;
2094 struct btrfs_block_rsv *block_rsv;
2095 u64 num_bytes;
2096 int index;
2097
2098 root = pending->root;
2099 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2100 return;
2101
2102 block_rsv = root->orphan_block_rsv;
2103
2104 /* orphan block reservation for the snapshot */
2105 num_bytes = block_rsv->size;
2106
2107 /*
2108 * after the snapshot is created, COWing tree blocks may use more
2109 * space than it frees. So we should make sure there is enough
2110 * reserved space.
2111 */
2112 index = trans->transid & 0x1;
2113 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2114 num_bytes += block_rsv->size -
2115 (block_rsv->reserved + block_rsv->freed[index]);
2116 }
2117
2118 *bytes_to_reserve += num_bytes;
2119}
2120
2121void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2122 struct btrfs_pending_snapshot *pending)
2123{
2124 struct btrfs_root *root = pending->root;
2125 struct btrfs_root *snap = pending->snap;
2126 struct btrfs_block_rsv *block_rsv;
2127 u64 num_bytes;
2128 int index;
2129 int ret;
2130
2131 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2132 return;
2133
2134 /* refill source subvolume's orphan block reservation */
2135 block_rsv = root->orphan_block_rsv;
2136 index = trans->transid & 0x1;
2137 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2138 num_bytes = block_rsv->size -
2139 (block_rsv->reserved + block_rsv->freed[index]);
2140 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2141 root->orphan_block_rsv,
2142 num_bytes);
2143 BUG_ON(ret);
2144 }
2145
2146 /* setup orphan block reservation for the snapshot */
2147 block_rsv = btrfs_alloc_block_rsv(snap);
2148 BUG_ON(!block_rsv);
2149
2150 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2151 snap->orphan_block_rsv = block_rsv;
2152
2153 num_bytes = root->orphan_block_rsv->size;
2154 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2155 block_rsv, num_bytes);
2156 BUG_ON(ret);
2157
2158#if 0
2159 /* insert orphan item for the snapshot */
2160 WARN_ON(!root->orphan_item_inserted);
2161 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2162 snap->root_key.objectid);
2163 BUG_ON(ret);
2164 snap->orphan_item_inserted = 1;
2165#endif
2166}
2167
2168enum btrfs_orphan_cleanup_state {
2169 ORPHAN_CLEANUP_STARTED = 1,
2170 ORPHAN_CLEANUP_DONE = 2,
2171};
2172
2173/*
2174 * This is called in transaction commmit time. If there are no orphan
2175 * files in the subvolume, it removes orphan item and frees block_rsv
2176 * structure.
2177 */
2178void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2179 struct btrfs_root *root)
2180{
2181 int ret;
2182
2183 if (!list_empty(&root->orphan_list) ||
2184 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2185 return;
2186
2187 if (root->orphan_item_inserted &&
2188 btrfs_root_refs(&root->root_item) > 0) {
2189 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2190 root->root_key.objectid);
2191 BUG_ON(ret);
2192 root->orphan_item_inserted = 0;
2193 }
2194
2195 if (root->orphan_block_rsv) {
2196 WARN_ON(root->orphan_block_rsv->size > 0);
2197 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2198 root->orphan_block_rsv = NULL;
2199 }
2200}
2201
7b128766
JB
2202/*
2203 * This creates an orphan entry for the given inode in case something goes
2204 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2205 *
2206 * NOTE: caller of this function should reserve 5 units of metadata for
2207 * this function.
7b128766
JB
2208 */
2209int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2210{
2211 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2212 struct btrfs_block_rsv *block_rsv = NULL;
2213 int reserve = 0;
2214 int insert = 0;
2215 int ret;
7b128766 2216
d68fc57b
YZ
2217 if (!root->orphan_block_rsv) {
2218 block_rsv = btrfs_alloc_block_rsv(root);
2219 BUG_ON(!block_rsv);
2220 }
7b128766 2221
d68fc57b
YZ
2222 spin_lock(&root->orphan_lock);
2223 if (!root->orphan_block_rsv) {
2224 root->orphan_block_rsv = block_rsv;
2225 } else if (block_rsv) {
2226 btrfs_free_block_rsv(root, block_rsv);
2227 block_rsv = NULL;
7b128766 2228 }
7b128766 2229
d68fc57b
YZ
2230 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2231 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2232#if 0
2233 /*
2234 * For proper ENOSPC handling, we should do orphan
2235 * cleanup when mounting. But this introduces backward
2236 * compatibility issue.
2237 */
2238 if (!xchg(&root->orphan_item_inserted, 1))
2239 insert = 2;
2240 else
2241 insert = 1;
2242#endif
2243 insert = 1;
7b128766
JB
2244 }
2245
d68fc57b
YZ
2246 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2247 BTRFS_I(inode)->orphan_meta_reserved = 1;
2248 reserve = 1;
2249 }
2250 spin_unlock(&root->orphan_lock);
7b128766 2251
d68fc57b
YZ
2252 if (block_rsv)
2253 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2254
d68fc57b
YZ
2255 /* grab metadata reservation from transaction handle */
2256 if (reserve) {
2257 ret = btrfs_orphan_reserve_metadata(trans, inode);
2258 BUG_ON(ret);
2259 }
7b128766 2260
d68fc57b
YZ
2261 /* insert an orphan item to track this unlinked/truncated file */
2262 if (insert >= 1) {
33345d01 2263 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2264 BUG_ON(ret);
2265 }
2266
2267 /* insert an orphan item to track subvolume contains orphan files */
2268 if (insert >= 2) {
2269 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2270 root->root_key.objectid);
2271 BUG_ON(ret);
2272 }
2273 return 0;
7b128766
JB
2274}
2275
2276/*
2277 * We have done the truncate/delete so we can go ahead and remove the orphan
2278 * item for this particular inode.
2279 */
2280int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2281{
2282 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2283 int delete_item = 0;
2284 int release_rsv = 0;
7b128766
JB
2285 int ret = 0;
2286
d68fc57b
YZ
2287 spin_lock(&root->orphan_lock);
2288 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2289 list_del_init(&BTRFS_I(inode)->i_orphan);
2290 delete_item = 1;
7b128766
JB
2291 }
2292
d68fc57b
YZ
2293 if (BTRFS_I(inode)->orphan_meta_reserved) {
2294 BTRFS_I(inode)->orphan_meta_reserved = 0;
2295 release_rsv = 1;
7b128766 2296 }
d68fc57b 2297 spin_unlock(&root->orphan_lock);
7b128766 2298
d68fc57b 2299 if (trans && delete_item) {
33345d01 2300 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
d68fc57b
YZ
2301 BUG_ON(ret);
2302 }
7b128766 2303
d68fc57b
YZ
2304 if (release_rsv)
2305 btrfs_orphan_release_metadata(inode);
7b128766 2306
d68fc57b 2307 return 0;
7b128766
JB
2308}
2309
2310/*
2311 * this cleans up any orphans that may be left on the list from the last use
2312 * of this root.
2313 */
66b4ffd1 2314int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2315{
2316 struct btrfs_path *path;
2317 struct extent_buffer *leaf;
7b128766
JB
2318 struct btrfs_key key, found_key;
2319 struct btrfs_trans_handle *trans;
2320 struct inode *inode;
2321 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2322
d68fc57b 2323 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2324 return 0;
c71bf099
YZ
2325
2326 path = btrfs_alloc_path();
66b4ffd1
JB
2327 if (!path) {
2328 ret = -ENOMEM;
2329 goto out;
2330 }
7b128766
JB
2331 path->reada = -1;
2332
2333 key.objectid = BTRFS_ORPHAN_OBJECTID;
2334 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2335 key.offset = (u64)-1;
2336
7b128766
JB
2337 while (1) {
2338 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2339 if (ret < 0)
2340 goto out;
7b128766
JB
2341
2342 /*
2343 * if ret == 0 means we found what we were searching for, which
25985edc 2344 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
2345 * find the key and see if we have stuff that matches
2346 */
2347 if (ret > 0) {
66b4ffd1 2348 ret = 0;
7b128766
JB
2349 if (path->slots[0] == 0)
2350 break;
2351 path->slots[0]--;
2352 }
2353
2354 /* pull out the item */
2355 leaf = path->nodes[0];
7b128766
JB
2356 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2357
2358 /* make sure the item matches what we want */
2359 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2360 break;
2361 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2362 break;
2363
2364 /* release the path since we're done with it */
b3b4aa74 2365 btrfs_release_path(path);
7b128766
JB
2366
2367 /*
2368 * this is where we are basically btrfs_lookup, without the
2369 * crossing root thing. we store the inode number in the
2370 * offset of the orphan item.
2371 */
5d4f98a2
YZ
2372 found_key.objectid = found_key.offset;
2373 found_key.type = BTRFS_INODE_ITEM_KEY;
2374 found_key.offset = 0;
73f73415 2375 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2376 if (IS_ERR(inode)) {
2377 ret = PTR_ERR(inode);
2378 goto out;
2379 }
7b128766 2380
7b128766
JB
2381 /*
2382 * add this inode to the orphan list so btrfs_orphan_del does
2383 * the proper thing when we hit it
2384 */
d68fc57b 2385 spin_lock(&root->orphan_lock);
7b128766 2386 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2387 spin_unlock(&root->orphan_lock);
7b128766
JB
2388
2389 /*
2390 * if this is a bad inode, means we actually succeeded in
2391 * removing the inode, but not the orphan record, which means
2392 * we need to manually delete the orphan since iput will just
2393 * do a destroy_inode
2394 */
2395 if (is_bad_inode(inode)) {
a22285a6 2396 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2397 if (IS_ERR(trans)) {
2398 ret = PTR_ERR(trans);
2399 goto out;
2400 }
7b128766 2401 btrfs_orphan_del(trans, inode);
5b21f2ed 2402 btrfs_end_transaction(trans, root);
7b128766
JB
2403 iput(inode);
2404 continue;
2405 }
2406
2407 /* if we have links, this was a truncate, lets do that */
2408 if (inode->i_nlink) {
a41ad394
JB
2409 if (!S_ISREG(inode->i_mode)) {
2410 WARN_ON(1);
2411 iput(inode);
2412 continue;
2413 }
7b128766 2414 nr_truncate++;
66b4ffd1 2415 ret = btrfs_truncate(inode);
7b128766
JB
2416 } else {
2417 nr_unlink++;
2418 }
2419
2420 /* this will do delete_inode and everything for us */
2421 iput(inode);
66b4ffd1
JB
2422 if (ret)
2423 goto out;
7b128766 2424 }
d68fc57b
YZ
2425 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2426
2427 if (root->orphan_block_rsv)
2428 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2429 (u64)-1);
2430
2431 if (root->orphan_block_rsv || root->orphan_item_inserted) {
7a7eaa40 2432 trans = btrfs_join_transaction(root);
66b4ffd1
JB
2433 if (!IS_ERR(trans))
2434 btrfs_end_transaction(trans, root);
d68fc57b 2435 }
7b128766
JB
2436
2437 if (nr_unlink)
2438 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2439 if (nr_truncate)
2440 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2441
2442out:
2443 if (ret)
2444 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2445 btrfs_free_path(path);
2446 return ret;
7b128766
JB
2447}
2448
46a53cca
CM
2449/*
2450 * very simple check to peek ahead in the leaf looking for xattrs. If we
2451 * don't find any xattrs, we know there can't be any acls.
2452 *
2453 * slot is the slot the inode is in, objectid is the objectid of the inode
2454 */
2455static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2456 int slot, u64 objectid)
2457{
2458 u32 nritems = btrfs_header_nritems(leaf);
2459 struct btrfs_key found_key;
2460 int scanned = 0;
2461
2462 slot++;
2463 while (slot < nritems) {
2464 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2465
2466 /* we found a different objectid, there must not be acls */
2467 if (found_key.objectid != objectid)
2468 return 0;
2469
2470 /* we found an xattr, assume we've got an acl */
2471 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2472 return 1;
2473
2474 /*
2475 * we found a key greater than an xattr key, there can't
2476 * be any acls later on
2477 */
2478 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2479 return 0;
2480
2481 slot++;
2482 scanned++;
2483
2484 /*
2485 * it goes inode, inode backrefs, xattrs, extents,
2486 * so if there are a ton of hard links to an inode there can
2487 * be a lot of backrefs. Don't waste time searching too hard,
2488 * this is just an optimization
2489 */
2490 if (scanned >= 8)
2491 break;
2492 }
2493 /* we hit the end of the leaf before we found an xattr or
2494 * something larger than an xattr. We have to assume the inode
2495 * has acls
2496 */
2497 return 1;
2498}
2499
d352ac68
CM
2500/*
2501 * read an inode from the btree into the in-memory inode
2502 */
5d4f98a2 2503static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2504{
2505 struct btrfs_path *path;
5f39d397 2506 struct extent_buffer *leaf;
39279cc3 2507 struct btrfs_inode_item *inode_item;
0b86a832 2508 struct btrfs_timespec *tspec;
39279cc3
CM
2509 struct btrfs_root *root = BTRFS_I(inode)->root;
2510 struct btrfs_key location;
46a53cca 2511 int maybe_acls;
618e21d5 2512 u32 rdev;
39279cc3 2513 int ret;
2f7e33d4
MX
2514 bool filled = false;
2515
2516 ret = btrfs_fill_inode(inode, &rdev);
2517 if (!ret)
2518 filled = true;
39279cc3
CM
2519
2520 path = btrfs_alloc_path();
2521 BUG_ON(!path);
d90c7321 2522 path->leave_spinning = 1;
39279cc3 2523 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2524
39279cc3 2525 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2526 if (ret)
39279cc3 2527 goto make_bad;
39279cc3 2528
5f39d397 2529 leaf = path->nodes[0];
2f7e33d4
MX
2530
2531 if (filled)
2532 goto cache_acl;
2533
5f39d397
CM
2534 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2535 struct btrfs_inode_item);
d90c7321
JB
2536 if (!leaf->map_token)
2537 map_private_extent_buffer(leaf, (unsigned long)inode_item,
2538 sizeof(struct btrfs_inode_item),
2539 &leaf->map_token, &leaf->kaddr,
2540 &leaf->map_start, &leaf->map_len,
2541 KM_USER1);
5f39d397
CM
2542
2543 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2544 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2545 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2546 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2547 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2548
2549 tspec = btrfs_inode_atime(inode_item);
2550 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2551 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2552
2553 tspec = btrfs_inode_mtime(inode_item);
2554 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2555 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2556
2557 tspec = btrfs_inode_ctime(inode_item);
2558 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2559 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2560
a76a3cd4 2561 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2562 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2563 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2564 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2565 inode->i_rdev = 0;
5f39d397
CM
2566 rdev = btrfs_inode_rdev(leaf, inode_item);
2567
aec7477b 2568 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2569 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2f7e33d4 2570cache_acl:
46a53cca
CM
2571 /*
2572 * try to precache a NULL acl entry for files that don't have
2573 * any xattrs or acls
2574 */
33345d01
LZ
2575 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2576 btrfs_ino(inode));
72c04902
AV
2577 if (!maybe_acls)
2578 cache_no_acl(inode);
46a53cca 2579
d90c7321
JB
2580 if (leaf->map_token) {
2581 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2582 leaf->map_token = NULL;
2583 }
2584
39279cc3 2585 btrfs_free_path(path);
39279cc3 2586
39279cc3 2587 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2588 case S_IFREG:
2589 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2590 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2591 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2592 inode->i_fop = &btrfs_file_operations;
2593 inode->i_op = &btrfs_file_inode_operations;
2594 break;
2595 case S_IFDIR:
2596 inode->i_fop = &btrfs_dir_file_operations;
2597 if (root == root->fs_info->tree_root)
2598 inode->i_op = &btrfs_dir_ro_inode_operations;
2599 else
2600 inode->i_op = &btrfs_dir_inode_operations;
2601 break;
2602 case S_IFLNK:
2603 inode->i_op = &btrfs_symlink_inode_operations;
2604 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2605 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2606 break;
618e21d5 2607 default:
0279b4cd 2608 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2609 init_special_inode(inode, inode->i_mode, rdev);
2610 break;
39279cc3 2611 }
6cbff00f
CH
2612
2613 btrfs_update_iflags(inode);
39279cc3
CM
2614 return;
2615
2616make_bad:
39279cc3 2617 btrfs_free_path(path);
39279cc3
CM
2618 make_bad_inode(inode);
2619}
2620
d352ac68
CM
2621/*
2622 * given a leaf and an inode, copy the inode fields into the leaf
2623 */
e02119d5
CM
2624static void fill_inode_item(struct btrfs_trans_handle *trans,
2625 struct extent_buffer *leaf,
5f39d397 2626 struct btrfs_inode_item *item,
39279cc3
CM
2627 struct inode *inode)
2628{
12ddb96c
JB
2629 if (!leaf->map_token)
2630 map_private_extent_buffer(leaf, (unsigned long)item,
2631 sizeof(struct btrfs_inode_item),
2632 &leaf->map_token, &leaf->kaddr,
2633 &leaf->map_start, &leaf->map_len,
2634 KM_USER1);
2635
5f39d397
CM
2636 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2637 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2638 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2639 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2640 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2641
2642 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2643 inode->i_atime.tv_sec);
2644 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2645 inode->i_atime.tv_nsec);
2646
2647 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2648 inode->i_mtime.tv_sec);
2649 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2650 inode->i_mtime.tv_nsec);
2651
2652 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2653 inode->i_ctime.tv_sec);
2654 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2655 inode->i_ctime.tv_nsec);
2656
a76a3cd4 2657 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2658 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2659 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2660 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2661 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2662 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d82a6f1d 2663 btrfs_set_inode_block_group(leaf, item, 0);
12ddb96c
JB
2664
2665 if (leaf->map_token) {
2666 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2667 leaf->map_token = NULL;
2668 }
39279cc3
CM
2669}
2670
d352ac68
CM
2671/*
2672 * copy everything in the in-memory inode into the btree.
2673 */
d397712b
CM
2674noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2675 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2676{
2677 struct btrfs_inode_item *inode_item;
2678 struct btrfs_path *path;
5f39d397 2679 struct extent_buffer *leaf;
39279cc3
CM
2680 int ret;
2681
16cdcec7 2682 /*
149e2d76
MX
2683 * If the inode is a free space inode, we can deadlock during commit
2684 * if we put it into the delayed code.
2685 *
2686 * The data relocation inode should also be directly updated
2687 * without delay
16cdcec7 2688 */
149e2d76
MX
2689 if (!is_free_space_inode(root, inode)
2690 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
16cdcec7
MX
2691 ret = btrfs_delayed_update_inode(trans, root, inode);
2692 if (!ret)
2693 btrfs_set_inode_last_trans(trans, inode);
2694 return ret;
2695 }
2696
39279cc3 2697 path = btrfs_alloc_path();
16cdcec7
MX
2698 if (!path)
2699 return -ENOMEM;
2700
b9473439 2701 path->leave_spinning = 1;
16cdcec7
MX
2702 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2703 1);
39279cc3
CM
2704 if (ret) {
2705 if (ret > 0)
2706 ret = -ENOENT;
2707 goto failed;
2708 }
2709
b4ce94de 2710 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2711 leaf = path->nodes[0];
2712 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 2713 struct btrfs_inode_item);
39279cc3 2714
e02119d5 2715 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2716 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2717 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2718 ret = 0;
2719failed:
39279cc3
CM
2720 btrfs_free_path(path);
2721 return ret;
2722}
2723
d352ac68
CM
2724/*
2725 * unlink helper that gets used here in inode.c and in the tree logging
2726 * recovery code. It remove a link in a directory with a given name, and
2727 * also drops the back refs in the inode to the directory
2728 */
92986796
AV
2729static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root,
2731 struct inode *dir, struct inode *inode,
2732 const char *name, int name_len)
39279cc3
CM
2733{
2734 struct btrfs_path *path;
39279cc3 2735 int ret = 0;
5f39d397 2736 struct extent_buffer *leaf;
39279cc3 2737 struct btrfs_dir_item *di;
5f39d397 2738 struct btrfs_key key;
aec7477b 2739 u64 index;
33345d01
LZ
2740 u64 ino = btrfs_ino(inode);
2741 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
2742
2743 path = btrfs_alloc_path();
54aa1f4d
CM
2744 if (!path) {
2745 ret = -ENOMEM;
554233a6 2746 goto out;
54aa1f4d
CM
2747 }
2748
b9473439 2749 path->leave_spinning = 1;
33345d01 2750 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
2751 name, name_len, -1);
2752 if (IS_ERR(di)) {
2753 ret = PTR_ERR(di);
2754 goto err;
2755 }
2756 if (!di) {
2757 ret = -ENOENT;
2758 goto err;
2759 }
5f39d397
CM
2760 leaf = path->nodes[0];
2761 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2762 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2763 if (ret)
2764 goto err;
b3b4aa74 2765 btrfs_release_path(path);
39279cc3 2766
33345d01
LZ
2767 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2768 dir_ino, &index);
aec7477b 2769 if (ret) {
d397712b 2770 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
33345d01
LZ
2771 "inode %llu parent %llu\n", name_len, name,
2772 (unsigned long long)ino, (unsigned long long)dir_ino);
aec7477b
JB
2773 goto err;
2774 }
2775
16cdcec7
MX
2776 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2777 if (ret)
39279cc3 2778 goto err;
39279cc3 2779
e02119d5 2780 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
33345d01 2781 inode, dir_ino);
49eb7e46 2782 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2783
2784 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2785 dir, index);
6418c961
CM
2786 if (ret == -ENOENT)
2787 ret = 0;
39279cc3
CM
2788err:
2789 btrfs_free_path(path);
e02119d5
CM
2790 if (ret)
2791 goto out;
2792
2793 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2794 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2795 btrfs_update_inode(trans, root, dir);
e02119d5 2796out:
39279cc3
CM
2797 return ret;
2798}
2799
92986796
AV
2800int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2801 struct btrfs_root *root,
2802 struct inode *dir, struct inode *inode,
2803 const char *name, int name_len)
2804{
2805 int ret;
2806 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2807 if (!ret) {
2808 btrfs_drop_nlink(inode);
2809 ret = btrfs_update_inode(trans, root, inode);
2810 }
2811 return ret;
2812}
2813
2814
a22285a6
YZ
2815/* helper to check if there is any shared block in the path */
2816static int check_path_shared(struct btrfs_root *root,
2817 struct btrfs_path *path)
39279cc3 2818{
a22285a6
YZ
2819 struct extent_buffer *eb;
2820 int level;
0e4dcbef 2821 u64 refs = 1;
5df6a9f6 2822
a22285a6 2823 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2824 int ret;
2825
a22285a6
YZ
2826 if (!path->nodes[level])
2827 break;
2828 eb = path->nodes[level];
2829 if (!btrfs_block_can_be_shared(root, eb))
2830 continue;
2831 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2832 &refs, NULL);
2833 if (refs > 1)
2834 return 1;
5df6a9f6 2835 }
dedefd72 2836 return 0;
39279cc3
CM
2837}
2838
a22285a6
YZ
2839/*
2840 * helper to start transaction for unlink and rmdir.
2841 *
2842 * unlink and rmdir are special in btrfs, they do not always free space.
2843 * so in enospc case, we should make sure they will free space before
2844 * allowing them to use the global metadata reservation.
2845 */
2846static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2847 struct dentry *dentry)
4df27c4d 2848{
39279cc3 2849 struct btrfs_trans_handle *trans;
a22285a6 2850 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2851 struct btrfs_path *path;
a22285a6 2852 struct btrfs_inode_ref *ref;
4df27c4d 2853 struct btrfs_dir_item *di;
7b128766 2854 struct inode *inode = dentry->d_inode;
4df27c4d 2855 u64 index;
a22285a6
YZ
2856 int check_link = 1;
2857 int err = -ENOSPC;
4df27c4d 2858 int ret;
33345d01
LZ
2859 u64 ino = btrfs_ino(inode);
2860 u64 dir_ino = btrfs_ino(dir);
4df27c4d 2861
a22285a6
YZ
2862 trans = btrfs_start_transaction(root, 10);
2863 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2864 return trans;
4df27c4d 2865
33345d01 2866 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
a22285a6 2867 return ERR_PTR(-ENOSPC);
4df27c4d 2868
a22285a6
YZ
2869 /* check if there is someone else holds reference */
2870 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2871 return ERR_PTR(-ENOSPC);
4df27c4d 2872
a22285a6
YZ
2873 if (atomic_read(&inode->i_count) > 2)
2874 return ERR_PTR(-ENOSPC);
4df27c4d 2875
a22285a6
YZ
2876 if (xchg(&root->fs_info->enospc_unlink, 1))
2877 return ERR_PTR(-ENOSPC);
2878
2879 path = btrfs_alloc_path();
2880 if (!path) {
2881 root->fs_info->enospc_unlink = 0;
2882 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2883 }
2884
a22285a6 2885 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2886 if (IS_ERR(trans)) {
a22285a6
YZ
2887 btrfs_free_path(path);
2888 root->fs_info->enospc_unlink = 0;
2889 return trans;
2890 }
4df27c4d 2891
a22285a6
YZ
2892 path->skip_locking = 1;
2893 path->search_commit_root = 1;
4df27c4d 2894
a22285a6
YZ
2895 ret = btrfs_lookup_inode(trans, root, path,
2896 &BTRFS_I(dir)->location, 0);
2897 if (ret < 0) {
2898 err = ret;
2899 goto out;
2900 }
2901 if (ret == 0) {
2902 if (check_path_shared(root, path))
2903 goto out;
2904 } else {
2905 check_link = 0;
5df6a9f6 2906 }
b3b4aa74 2907 btrfs_release_path(path);
a22285a6
YZ
2908
2909 ret = btrfs_lookup_inode(trans, root, path,
2910 &BTRFS_I(inode)->location, 0);
2911 if (ret < 0) {
2912 err = ret;
2913 goto out;
2914 }
2915 if (ret == 0) {
2916 if (check_path_shared(root, path))
2917 goto out;
2918 } else {
2919 check_link = 0;
2920 }
b3b4aa74 2921 btrfs_release_path(path);
a22285a6
YZ
2922
2923 if (ret == 0 && S_ISREG(inode->i_mode)) {
2924 ret = btrfs_lookup_file_extent(trans, root, path,
33345d01 2925 ino, (u64)-1, 0);
a22285a6
YZ
2926 if (ret < 0) {
2927 err = ret;
2928 goto out;
2929 }
2930 BUG_ON(ret == 0);
2931 if (check_path_shared(root, path))
2932 goto out;
b3b4aa74 2933 btrfs_release_path(path);
a22285a6
YZ
2934 }
2935
2936 if (!check_link) {
2937 err = 0;
2938 goto out;
2939 }
2940
33345d01 2941 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
a22285a6
YZ
2942 dentry->d_name.name, dentry->d_name.len, 0);
2943 if (IS_ERR(di)) {
2944 err = PTR_ERR(di);
2945 goto out;
2946 }
2947 if (di) {
2948 if (check_path_shared(root, path))
2949 goto out;
2950 } else {
2951 err = 0;
2952 goto out;
2953 }
b3b4aa74 2954 btrfs_release_path(path);
a22285a6
YZ
2955
2956 ref = btrfs_lookup_inode_ref(trans, root, path,
2957 dentry->d_name.name, dentry->d_name.len,
33345d01 2958 ino, dir_ino, 0);
a22285a6
YZ
2959 if (IS_ERR(ref)) {
2960 err = PTR_ERR(ref);
2961 goto out;
2962 }
2963 BUG_ON(!ref);
2964 if (check_path_shared(root, path))
2965 goto out;
2966 index = btrfs_inode_ref_index(path->nodes[0], ref);
b3b4aa74 2967 btrfs_release_path(path);
a22285a6 2968
16cdcec7
MX
2969 /*
2970 * This is a commit root search, if we can lookup inode item and other
2971 * relative items in the commit root, it means the transaction of
2972 * dir/file creation has been committed, and the dir index item that we
2973 * delay to insert has also been inserted into the commit root. So
2974 * we needn't worry about the delayed insertion of the dir index item
2975 * here.
2976 */
33345d01 2977 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
a22285a6
YZ
2978 dentry->d_name.name, dentry->d_name.len, 0);
2979 if (IS_ERR(di)) {
2980 err = PTR_ERR(di);
2981 goto out;
2982 }
2983 BUG_ON(ret == -ENOENT);
2984 if (check_path_shared(root, path))
2985 goto out;
2986
2987 err = 0;
2988out:
2989 btrfs_free_path(path);
2990 if (err) {
2991 btrfs_end_transaction(trans, root);
2992 root->fs_info->enospc_unlink = 0;
2993 return ERR_PTR(err);
2994 }
2995
2996 trans->block_rsv = &root->fs_info->global_block_rsv;
2997 return trans;
2998}
2999
3000static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3001 struct btrfs_root *root)
3002{
3003 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
3004 BUG_ON(!root->fs_info->enospc_unlink);
3005 root->fs_info->enospc_unlink = 0;
3006 }
3007 btrfs_end_transaction_throttle(trans, root);
3008}
3009
3010static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3011{
3012 struct btrfs_root *root = BTRFS_I(dir)->root;
3013 struct btrfs_trans_handle *trans;
3014 struct inode *inode = dentry->d_inode;
3015 int ret;
3016 unsigned long nr = 0;
3017
3018 trans = __unlink_start_trans(dir, dentry);
3019 if (IS_ERR(trans))
3020 return PTR_ERR(trans);
5f39d397 3021
12fcfd22
CM
3022 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3023
e02119d5
CM
3024 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3025 dentry->d_name.name, dentry->d_name.len);
a22285a6 3026 BUG_ON(ret);
7b128766 3027
a22285a6 3028 if (inode->i_nlink == 0) {
7b128766 3029 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
3030 BUG_ON(ret);
3031 }
7b128766 3032
d3c2fdcf 3033 nr = trans->blocks_used;
a22285a6 3034 __unlink_end_trans(trans, root);
d3c2fdcf 3035 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
3036 return ret;
3037}
3038
4df27c4d
YZ
3039int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3040 struct btrfs_root *root,
3041 struct inode *dir, u64 objectid,
3042 const char *name, int name_len)
3043{
3044 struct btrfs_path *path;
3045 struct extent_buffer *leaf;
3046 struct btrfs_dir_item *di;
3047 struct btrfs_key key;
3048 u64 index;
3049 int ret;
33345d01 3050 u64 dir_ino = btrfs_ino(dir);
4df27c4d
YZ
3051
3052 path = btrfs_alloc_path();
3053 if (!path)
3054 return -ENOMEM;
3055
33345d01 3056 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 3057 name, name_len, -1);
c704005d 3058 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3059
3060 leaf = path->nodes[0];
3061 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3062 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3063 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3064 BUG_ON(ret);
b3b4aa74 3065 btrfs_release_path(path);
4df27c4d
YZ
3066
3067 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3068 objectid, root->root_key.objectid,
33345d01 3069 dir_ino, &index, name, name_len);
4df27c4d
YZ
3070 if (ret < 0) {
3071 BUG_ON(ret != -ENOENT);
33345d01 3072 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 3073 name, name_len);
c704005d 3074 BUG_ON(IS_ERR_OR_NULL(di));
4df27c4d
YZ
3075
3076 leaf = path->nodes[0];
3077 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 3078 btrfs_release_path(path);
4df27c4d
YZ
3079 index = key.offset;
3080 }
945d8962 3081 btrfs_release_path(path);
4df27c4d 3082
16cdcec7 3083 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4df27c4d 3084 BUG_ON(ret);
4df27c4d
YZ
3085
3086 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3087 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3088 ret = btrfs_update_inode(trans, root, dir);
3089 BUG_ON(ret);
4df27c4d 3090
71d7aed0 3091 btrfs_free_path(path);
4df27c4d
YZ
3092 return 0;
3093}
3094
39279cc3
CM
3095static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3096{
3097 struct inode *inode = dentry->d_inode;
1832a6d5 3098 int err = 0;
39279cc3 3099 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3100 struct btrfs_trans_handle *trans;
1832a6d5 3101 unsigned long nr = 0;
39279cc3 3102
3394e160 3103 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
33345d01 3104 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3105 return -ENOTEMPTY;
3106
a22285a6
YZ
3107 trans = __unlink_start_trans(dir, dentry);
3108 if (IS_ERR(trans))
5df6a9f6 3109 return PTR_ERR(trans);
5df6a9f6 3110
33345d01 3111 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
3112 err = btrfs_unlink_subvol(trans, root, dir,
3113 BTRFS_I(inode)->location.objectid,
3114 dentry->d_name.name,
3115 dentry->d_name.len);
3116 goto out;
3117 }
3118
7b128766
JB
3119 err = btrfs_orphan_add(trans, inode);
3120 if (err)
4df27c4d 3121 goto out;
7b128766 3122
39279cc3 3123 /* now the directory is empty */
e02119d5
CM
3124 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3125 dentry->d_name.name, dentry->d_name.len);
d397712b 3126 if (!err)
dbe674a9 3127 btrfs_i_size_write(inode, 0);
4df27c4d 3128out:
d3c2fdcf 3129 nr = trans->blocks_used;
a22285a6 3130 __unlink_end_trans(trans, root);
d3c2fdcf 3131 btrfs_btree_balance_dirty(root, nr);
3954401f 3132
39279cc3
CM
3133 return err;
3134}
3135
39279cc3
CM
3136/*
3137 * this can truncate away extent items, csum items and directory items.
3138 * It starts at a high offset and removes keys until it can't find
d352ac68 3139 * any higher than new_size
39279cc3
CM
3140 *
3141 * csum items that cross the new i_size are truncated to the new size
3142 * as well.
7b128766
JB
3143 *
3144 * min_type is the minimum key type to truncate down to. If set to 0, this
3145 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3146 */
8082510e
YZ
3147int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3148 struct btrfs_root *root,
3149 struct inode *inode,
3150 u64 new_size, u32 min_type)
39279cc3 3151{
39279cc3 3152 struct btrfs_path *path;
5f39d397 3153 struct extent_buffer *leaf;
39279cc3 3154 struct btrfs_file_extent_item *fi;
8082510e
YZ
3155 struct btrfs_key key;
3156 struct btrfs_key found_key;
39279cc3 3157 u64 extent_start = 0;
db94535d 3158 u64 extent_num_bytes = 0;
5d4f98a2 3159 u64 extent_offset = 0;
39279cc3 3160 u64 item_end = 0;
8082510e
YZ
3161 u64 mask = root->sectorsize - 1;
3162 u32 found_type = (u8)-1;
39279cc3
CM
3163 int found_extent;
3164 int del_item;
85e21bac
CM
3165 int pending_del_nr = 0;
3166 int pending_del_slot = 0;
179e29e4 3167 int extent_type = -1;
771ed689 3168 int encoding;
8082510e
YZ
3169 int ret;
3170 int err = 0;
33345d01 3171 u64 ino = btrfs_ino(inode);
8082510e
YZ
3172
3173 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3174
0eb0e19c
MF
3175 path = btrfs_alloc_path();
3176 if (!path)
3177 return -ENOMEM;
3178 path->reada = -1;
3179
0af3d00b 3180 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3181 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3182
16cdcec7
MX
3183 /*
3184 * This function is also used to drop the items in the log tree before
3185 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3186 * it is used to drop the loged items. So we shouldn't kill the delayed
3187 * items.
3188 */
3189 if (min_type == 0 && root == BTRFS_I(inode)->root)
3190 btrfs_kill_delayed_inode_items(inode);
3191
33345d01 3192 key.objectid = ino;
39279cc3 3193 key.offset = (u64)-1;
5f39d397
CM
3194 key.type = (u8)-1;
3195
85e21bac 3196search_again:
b9473439 3197 path->leave_spinning = 1;
85e21bac 3198 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3199 if (ret < 0) {
3200 err = ret;
3201 goto out;
3202 }
d397712b 3203
85e21bac 3204 if (ret > 0) {
e02119d5
CM
3205 /* there are no items in the tree for us to truncate, we're
3206 * done
3207 */
8082510e
YZ
3208 if (path->slots[0] == 0)
3209 goto out;
85e21bac
CM
3210 path->slots[0]--;
3211 }
3212
d397712b 3213 while (1) {
39279cc3 3214 fi = NULL;
5f39d397
CM
3215 leaf = path->nodes[0];
3216 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3217 found_type = btrfs_key_type(&found_key);
771ed689 3218 encoding = 0;
39279cc3 3219
33345d01 3220 if (found_key.objectid != ino)
39279cc3 3221 break;
5f39d397 3222
85e21bac 3223 if (found_type < min_type)
39279cc3
CM
3224 break;
3225
5f39d397 3226 item_end = found_key.offset;
39279cc3 3227 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3228 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3229 struct btrfs_file_extent_item);
179e29e4 3230 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3231 encoding = btrfs_file_extent_compression(leaf, fi);
3232 encoding |= btrfs_file_extent_encryption(leaf, fi);
3233 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3234
179e29e4 3235 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3236 item_end +=
db94535d 3237 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3238 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3239 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3240 fi);
39279cc3 3241 }
008630c1 3242 item_end--;
39279cc3 3243 }
8082510e
YZ
3244 if (found_type > min_type) {
3245 del_item = 1;
3246 } else {
3247 if (item_end < new_size)
b888db2b 3248 break;
8082510e
YZ
3249 if (found_key.offset >= new_size)
3250 del_item = 1;
3251 else
3252 del_item = 0;
39279cc3 3253 }
39279cc3 3254 found_extent = 0;
39279cc3 3255 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3256 if (found_type != BTRFS_EXTENT_DATA_KEY)
3257 goto delete;
3258
3259 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3260 u64 num_dec;
db94535d 3261 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3262 if (!del_item && !encoding) {
db94535d
CM
3263 u64 orig_num_bytes =
3264 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3265 extent_num_bytes = new_size -
5f39d397 3266 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3267 extent_num_bytes = extent_num_bytes &
3268 ~((u64)root->sectorsize - 1);
db94535d
CM
3269 btrfs_set_file_extent_num_bytes(leaf, fi,
3270 extent_num_bytes);
3271 num_dec = (orig_num_bytes -
9069218d 3272 extent_num_bytes);
e02119d5 3273 if (root->ref_cows && extent_start != 0)
a76a3cd4 3274 inode_sub_bytes(inode, num_dec);
5f39d397 3275 btrfs_mark_buffer_dirty(leaf);
39279cc3 3276 } else {
db94535d
CM
3277 extent_num_bytes =
3278 btrfs_file_extent_disk_num_bytes(leaf,
3279 fi);
5d4f98a2
YZ
3280 extent_offset = found_key.offset -
3281 btrfs_file_extent_offset(leaf, fi);
3282
39279cc3 3283 /* FIXME blocksize != 4096 */
9069218d 3284 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3285 if (extent_start != 0) {
3286 found_extent = 1;
e02119d5 3287 if (root->ref_cows)
a76a3cd4 3288 inode_sub_bytes(inode, num_dec);
e02119d5 3289 }
39279cc3 3290 }
9069218d 3291 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3292 /*
3293 * we can't truncate inline items that have had
3294 * special encodings
3295 */
3296 if (!del_item &&
3297 btrfs_file_extent_compression(leaf, fi) == 0 &&
3298 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3299 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3300 u32 size = new_size - found_key.offset;
3301
3302 if (root->ref_cows) {
a76a3cd4
YZ
3303 inode_sub_bytes(inode, item_end + 1 -
3304 new_size);
e02119d5
CM
3305 }
3306 size =
3307 btrfs_file_extent_calc_inline_size(size);
9069218d 3308 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3309 size, 1);
e02119d5 3310 } else if (root->ref_cows) {
a76a3cd4
YZ
3311 inode_sub_bytes(inode, item_end + 1 -
3312 found_key.offset);
9069218d 3313 }
39279cc3 3314 }
179e29e4 3315delete:
39279cc3 3316 if (del_item) {
85e21bac
CM
3317 if (!pending_del_nr) {
3318 /* no pending yet, add ourselves */
3319 pending_del_slot = path->slots[0];
3320 pending_del_nr = 1;
3321 } else if (pending_del_nr &&
3322 path->slots[0] + 1 == pending_del_slot) {
3323 /* hop on the pending chunk */
3324 pending_del_nr++;
3325 pending_del_slot = path->slots[0];
3326 } else {
d397712b 3327 BUG();
85e21bac 3328 }
39279cc3
CM
3329 } else {
3330 break;
3331 }
0af3d00b
JB
3332 if (found_extent && (root->ref_cows ||
3333 root == root->fs_info->tree_root)) {
b9473439 3334 btrfs_set_path_blocking(path);
39279cc3 3335 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3336 extent_num_bytes, 0,
3337 btrfs_header_owner(leaf),
33345d01 3338 ino, extent_offset);
39279cc3
CM
3339 BUG_ON(ret);
3340 }
85e21bac 3341
8082510e
YZ
3342 if (found_type == BTRFS_INODE_ITEM_KEY)
3343 break;
3344
3345 if (path->slots[0] == 0 ||
3346 path->slots[0] != pending_del_slot) {
82d5902d
LZ
3347 if (root->ref_cows &&
3348 BTRFS_I(inode)->location.objectid !=
3349 BTRFS_FREE_INO_OBJECTID) {
8082510e
YZ
3350 err = -EAGAIN;
3351 goto out;
3352 }
3353 if (pending_del_nr) {
3354 ret = btrfs_del_items(trans, root, path,
3355 pending_del_slot,
3356 pending_del_nr);
3357 BUG_ON(ret);
3358 pending_del_nr = 0;
3359 }
b3b4aa74 3360 btrfs_release_path(path);
85e21bac 3361 goto search_again;
8082510e
YZ
3362 } else {
3363 path->slots[0]--;
85e21bac 3364 }
39279cc3 3365 }
8082510e 3366out:
85e21bac
CM
3367 if (pending_del_nr) {
3368 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3369 pending_del_nr);
d68fc57b 3370 BUG_ON(ret);
85e21bac 3371 }
39279cc3 3372 btrfs_free_path(path);
8082510e 3373 return err;
39279cc3
CM
3374}
3375
3376/*
3377 * taken from block_truncate_page, but does cow as it zeros out
3378 * any bytes left in the last page in the file.
3379 */
3380static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3381{
3382 struct inode *inode = mapping->host;
db94535d 3383 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3384 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3385 struct btrfs_ordered_extent *ordered;
2ac55d41 3386 struct extent_state *cached_state = NULL;
e6dcd2dc 3387 char *kaddr;
db94535d 3388 u32 blocksize = root->sectorsize;
39279cc3
CM
3389 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3390 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3391 struct page *page;
39279cc3 3392 int ret = 0;
a52d9a80 3393 u64 page_start;
e6dcd2dc 3394 u64 page_end;
39279cc3
CM
3395
3396 if ((offset & (blocksize - 1)) == 0)
3397 goto out;
0ca1f7ce 3398 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3399 if (ret)
3400 goto out;
39279cc3
CM
3401
3402 ret = -ENOMEM;
211c17f5 3403again:
39279cc3 3404 page = grab_cache_page(mapping, index);
5d5e103a 3405 if (!page) {
0ca1f7ce 3406 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3407 goto out;
5d5e103a 3408 }
e6dcd2dc
CM
3409
3410 page_start = page_offset(page);
3411 page_end = page_start + PAGE_CACHE_SIZE - 1;
3412
39279cc3 3413 if (!PageUptodate(page)) {
9ebefb18 3414 ret = btrfs_readpage(NULL, page);
39279cc3 3415 lock_page(page);
211c17f5
CM
3416 if (page->mapping != mapping) {
3417 unlock_page(page);
3418 page_cache_release(page);
3419 goto again;
3420 }
39279cc3
CM
3421 if (!PageUptodate(page)) {
3422 ret = -EIO;
89642229 3423 goto out_unlock;
39279cc3
CM
3424 }
3425 }
211c17f5 3426 wait_on_page_writeback(page);
e6dcd2dc 3427
2ac55d41
JB
3428 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3429 GFP_NOFS);
e6dcd2dc
CM
3430 set_page_extent_mapped(page);
3431
3432 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3433 if (ordered) {
2ac55d41
JB
3434 unlock_extent_cached(io_tree, page_start, page_end,
3435 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3436 unlock_page(page);
3437 page_cache_release(page);
eb84ae03 3438 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3439 btrfs_put_ordered_extent(ordered);
3440 goto again;
3441 }
3442
2ac55d41 3443 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3444 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3445 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3446
2ac55d41
JB
3447 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3448 &cached_state);
9ed74f2d 3449 if (ret) {
2ac55d41
JB
3450 unlock_extent_cached(io_tree, page_start, page_end,
3451 &cached_state, GFP_NOFS);
9ed74f2d
JB
3452 goto out_unlock;
3453 }
3454
e6dcd2dc
CM
3455 ret = 0;
3456 if (offset != PAGE_CACHE_SIZE) {
3457 kaddr = kmap(page);
3458 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3459 flush_dcache_page(page);
3460 kunmap(page);
3461 }
247e743c 3462 ClearPageChecked(page);
e6dcd2dc 3463 set_page_dirty(page);
2ac55d41
JB
3464 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3465 GFP_NOFS);
39279cc3 3466
89642229 3467out_unlock:
5d5e103a 3468 if (ret)
0ca1f7ce 3469 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3470 unlock_page(page);
3471 page_cache_release(page);
3472out:
3473 return ret;
3474}
3475
695a0d0d
JB
3476/*
3477 * This function puts in dummy file extents for the area we're creating a hole
3478 * for. So if we are truncating this file to a larger size we need to insert
3479 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3480 * the range between oldsize and size
3481 */
a41ad394 3482int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3483{
9036c102
YZ
3484 struct btrfs_trans_handle *trans;
3485 struct btrfs_root *root = BTRFS_I(inode)->root;
3486 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3487 struct extent_map *em = NULL;
2ac55d41 3488 struct extent_state *cached_state = NULL;
9036c102 3489 u64 mask = root->sectorsize - 1;
a41ad394 3490 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3491 u64 block_end = (size + mask) & ~mask;
3492 u64 last_byte;
3493 u64 cur_offset;
3494 u64 hole_size;
9ed74f2d 3495 int err = 0;
39279cc3 3496
9036c102
YZ
3497 if (size <= hole_start)
3498 return 0;
3499
9036c102
YZ
3500 while (1) {
3501 struct btrfs_ordered_extent *ordered;
3502 btrfs_wait_ordered_range(inode, hole_start,
3503 block_end - hole_start);
2ac55d41
JB
3504 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3505 &cached_state, GFP_NOFS);
9036c102
YZ
3506 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3507 if (!ordered)
3508 break;
2ac55d41
JB
3509 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3510 &cached_state, GFP_NOFS);
9036c102
YZ
3511 btrfs_put_ordered_extent(ordered);
3512 }
39279cc3 3513
9036c102
YZ
3514 cur_offset = hole_start;
3515 while (1) {
3516 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3517 block_end - cur_offset, 0);
c704005d 3518 BUG_ON(IS_ERR_OR_NULL(em));
9036c102
YZ
3519 last_byte = min(extent_map_end(em), block_end);
3520 last_byte = (last_byte + mask) & ~mask;
8082510e 3521 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3522 u64 hint_byte = 0;
9036c102 3523 hole_size = last_byte - cur_offset;
9ed74f2d 3524
a22285a6
YZ
3525 trans = btrfs_start_transaction(root, 2);
3526 if (IS_ERR(trans)) {
3527 err = PTR_ERR(trans);
9ed74f2d 3528 break;
a22285a6 3529 }
8082510e
YZ
3530
3531 err = btrfs_drop_extents(trans, inode, cur_offset,
3532 cur_offset + hole_size,
3533 &hint_byte, 1);
3893e33b
JB
3534 if (err)
3535 break;
8082510e 3536
9036c102 3537 err = btrfs_insert_file_extent(trans, root,
33345d01 3538 btrfs_ino(inode), cur_offset, 0,
9036c102
YZ
3539 0, hole_size, 0, hole_size,
3540 0, 0, 0);
3893e33b
JB
3541 if (err)
3542 break;
8082510e 3543
9036c102
YZ
3544 btrfs_drop_extent_cache(inode, hole_start,
3545 last_byte - 1, 0);
8082510e
YZ
3546
3547 btrfs_end_transaction(trans, root);
9036c102
YZ
3548 }
3549 free_extent_map(em);
a22285a6 3550 em = NULL;
9036c102 3551 cur_offset = last_byte;
8082510e 3552 if (cur_offset >= block_end)
9036c102
YZ
3553 break;
3554 }
1832a6d5 3555
a22285a6 3556 free_extent_map(em);
2ac55d41
JB
3557 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3558 GFP_NOFS);
9036c102
YZ
3559 return err;
3560}
39279cc3 3561
a41ad394 3562static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3563{
a41ad394 3564 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3565 int ret;
3566
a41ad394 3567 if (newsize == oldsize)
8082510e
YZ
3568 return 0;
3569
a41ad394
JB
3570 if (newsize > oldsize) {
3571 i_size_write(inode, newsize);
3572 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3573 truncate_pagecache(inode, oldsize, newsize);
3574 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3575 if (ret) {
a41ad394 3576 btrfs_setsize(inode, oldsize);
8082510e
YZ
3577 return ret;
3578 }
3579
930f028a 3580 mark_inode_dirty(inode);
a41ad394 3581 } else {
8082510e 3582
a41ad394
JB
3583 /*
3584 * We're truncating a file that used to have good data down to
3585 * zero. Make sure it gets into the ordered flush list so that
3586 * any new writes get down to disk quickly.
3587 */
3588 if (newsize == 0)
3589 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3590
a41ad394
JB
3591 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3592 truncate_setsize(inode, newsize);
3593 ret = btrfs_truncate(inode);
8082510e
YZ
3594 }
3595
a41ad394 3596 return ret;
8082510e
YZ
3597}
3598
9036c102
YZ
3599static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3600{
3601 struct inode *inode = dentry->d_inode;
b83cc969 3602 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3603 int err;
39279cc3 3604
b83cc969
LZ
3605 if (btrfs_root_readonly(root))
3606 return -EROFS;
3607
9036c102
YZ
3608 err = inode_change_ok(inode, attr);
3609 if (err)
3610 return err;
2bf5a725 3611
5a3f23d5 3612 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3613 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3614 if (err)
3615 return err;
39279cc3 3616 }
9036c102 3617
1025774c
CH
3618 if (attr->ia_valid) {
3619 setattr_copy(inode, attr);
3620 mark_inode_dirty(inode);
3621
3622 if (attr->ia_valid & ATTR_MODE)
3623 err = btrfs_acl_chmod(inode);
3624 }
33268eaf 3625
39279cc3
CM
3626 return err;
3627}
61295eb8 3628
bd555975 3629void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3630{
3631 struct btrfs_trans_handle *trans;
3632 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3633 unsigned long nr;
39279cc3
CM
3634 int ret;
3635
1abe9b8a 3636 trace_btrfs_inode_evict(inode);
3637
39279cc3 3638 truncate_inode_pages(&inode->i_data, 0);
0af3d00b 3639 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
82d5902d 3640 is_free_space_inode(root, inode)))
bd555975
AV
3641 goto no_delete;
3642
39279cc3 3643 if (is_bad_inode(inode)) {
7b128766 3644 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3645 goto no_delete;
3646 }
bd555975 3647 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3648 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3649
c71bf099
YZ
3650 if (root->fs_info->log_root_recovering) {
3651 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3652 goto no_delete;
3653 }
3654
76dda93c
YZ
3655 if (inode->i_nlink > 0) {
3656 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3657 goto no_delete;
3658 }
3659
dbe674a9 3660 btrfs_i_size_write(inode, 0);
5f39d397 3661
8082510e 3662 while (1) {
30b4caf5 3663 trans = btrfs_join_transaction(root);
d68fc57b 3664 BUG_ON(IS_ERR(trans));
d68fc57b
YZ
3665 trans->block_rsv = root->orphan_block_rsv;
3666
3667 ret = btrfs_block_rsv_check(trans, root,
3668 root->orphan_block_rsv, 0, 5);
3669 if (ret) {
3670 BUG_ON(ret != -EAGAIN);
3671 ret = btrfs_commit_transaction(trans, root);
3672 BUG_ON(ret);
3673 continue;
3674 }
7b128766 3675
d68fc57b 3676 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3677 if (ret != -EAGAIN)
3678 break;
85e21bac 3679
8082510e
YZ
3680 nr = trans->blocks_used;
3681 btrfs_end_transaction(trans, root);
3682 trans = NULL;
3683 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3684
8082510e 3685 }
5f39d397 3686
8082510e
YZ
3687 if (ret == 0) {
3688 ret = btrfs_orphan_del(trans, inode);
3689 BUG_ON(ret);
3690 }
54aa1f4d 3691
581bb050
LZ
3692 if (!(root == root->fs_info->tree_root ||
3693 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
33345d01 3694 btrfs_return_ino(root, btrfs_ino(inode));
581bb050 3695
d3c2fdcf 3696 nr = trans->blocks_used;
54aa1f4d 3697 btrfs_end_transaction(trans, root);
d3c2fdcf 3698 btrfs_btree_balance_dirty(root, nr);
39279cc3 3699no_delete:
bd555975 3700 end_writeback(inode);
8082510e 3701 return;
39279cc3
CM
3702}
3703
3704/*
3705 * this returns the key found in the dir entry in the location pointer.
3706 * If no dir entries were found, location->objectid is 0.
3707 */
3708static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3709 struct btrfs_key *location)
3710{
3711 const char *name = dentry->d_name.name;
3712 int namelen = dentry->d_name.len;
3713 struct btrfs_dir_item *di;
3714 struct btrfs_path *path;
3715 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3716 int ret = 0;
39279cc3
CM
3717
3718 path = btrfs_alloc_path();
d8926bb3
MF
3719 if (!path)
3720 return -ENOMEM;
3954401f 3721
33345d01 3722 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
39279cc3 3723 namelen, 0);
0d9f7f3e
Y
3724 if (IS_ERR(di))
3725 ret = PTR_ERR(di);
d397712b 3726
c704005d 3727 if (IS_ERR_OR_NULL(di))
3954401f 3728 goto out_err;
d397712b 3729
5f39d397 3730 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3731out:
39279cc3
CM
3732 btrfs_free_path(path);
3733 return ret;
3954401f
CM
3734out_err:
3735 location->objectid = 0;
3736 goto out;
39279cc3
CM
3737}
3738
3739/*
3740 * when we hit a tree root in a directory, the btrfs part of the inode
3741 * needs to be changed to reflect the root directory of the tree root. This
3742 * is kind of like crossing a mount point.
3743 */
3744static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3745 struct inode *dir,
3746 struct dentry *dentry,
3747 struct btrfs_key *location,
3748 struct btrfs_root **sub_root)
39279cc3 3749{
4df27c4d
YZ
3750 struct btrfs_path *path;
3751 struct btrfs_root *new_root;
3752 struct btrfs_root_ref *ref;
3753 struct extent_buffer *leaf;
3754 int ret;
3755 int err = 0;
39279cc3 3756
4df27c4d
YZ
3757 path = btrfs_alloc_path();
3758 if (!path) {
3759 err = -ENOMEM;
3760 goto out;
3761 }
39279cc3 3762
4df27c4d
YZ
3763 err = -ENOENT;
3764 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3765 BTRFS_I(dir)->root->root_key.objectid,
3766 location->objectid);
3767 if (ret) {
3768 if (ret < 0)
3769 err = ret;
3770 goto out;
3771 }
39279cc3 3772
4df27c4d
YZ
3773 leaf = path->nodes[0];
3774 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
33345d01 3775 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4df27c4d
YZ
3776 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3777 goto out;
39279cc3 3778
4df27c4d
YZ
3779 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3780 (unsigned long)(ref + 1),
3781 dentry->d_name.len);
3782 if (ret)
3783 goto out;
3784
b3b4aa74 3785 btrfs_release_path(path);
4df27c4d
YZ
3786
3787 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3788 if (IS_ERR(new_root)) {
3789 err = PTR_ERR(new_root);
3790 goto out;
3791 }
3792
3793 if (btrfs_root_refs(&new_root->root_item) == 0) {
3794 err = -ENOENT;
3795 goto out;
3796 }
3797
3798 *sub_root = new_root;
3799 location->objectid = btrfs_root_dirid(&new_root->root_item);
3800 location->type = BTRFS_INODE_ITEM_KEY;
3801 location->offset = 0;
3802 err = 0;
3803out:
3804 btrfs_free_path(path);
3805 return err;
39279cc3
CM
3806}
3807
5d4f98a2
YZ
3808static void inode_tree_add(struct inode *inode)
3809{
3810 struct btrfs_root *root = BTRFS_I(inode)->root;
3811 struct btrfs_inode *entry;
03e860bd
FNP
3812 struct rb_node **p;
3813 struct rb_node *parent;
33345d01 3814 u64 ino = btrfs_ino(inode);
03e860bd
FNP
3815again:
3816 p = &root->inode_tree.rb_node;
3817 parent = NULL;
5d4f98a2 3818
1d3382cb 3819 if (inode_unhashed(inode))
76dda93c
YZ
3820 return;
3821
5d4f98a2
YZ
3822 spin_lock(&root->inode_lock);
3823 while (*p) {
3824 parent = *p;
3825 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3826
33345d01 3827 if (ino < btrfs_ino(&entry->vfs_inode))
03e860bd 3828 p = &parent->rb_left;
33345d01 3829 else if (ino > btrfs_ino(&entry->vfs_inode))
03e860bd 3830 p = &parent->rb_right;
5d4f98a2
YZ
3831 else {
3832 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3833 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3834 rb_erase(parent, &root->inode_tree);
3835 RB_CLEAR_NODE(parent);
3836 spin_unlock(&root->inode_lock);
3837 goto again;
5d4f98a2
YZ
3838 }
3839 }
3840 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3841 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3842 spin_unlock(&root->inode_lock);
3843}
3844
3845static void inode_tree_del(struct inode *inode)
3846{
3847 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3848 int empty = 0;
5d4f98a2 3849
03e860bd 3850 spin_lock(&root->inode_lock);
5d4f98a2 3851 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3852 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3853 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3854 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3855 }
03e860bd 3856 spin_unlock(&root->inode_lock);
76dda93c 3857
0af3d00b
JB
3858 /*
3859 * Free space cache has inodes in the tree root, but the tree root has a
3860 * root_refs of 0, so this could end up dropping the tree root as a
3861 * snapshot, so we need the extra !root->fs_info->tree_root check to
3862 * make sure we don't drop it.
3863 */
3864 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3865 root != root->fs_info->tree_root) {
76dda93c
YZ
3866 synchronize_srcu(&root->fs_info->subvol_srcu);
3867 spin_lock(&root->inode_lock);
3868 empty = RB_EMPTY_ROOT(&root->inode_tree);
3869 spin_unlock(&root->inode_lock);
3870 if (empty)
3871 btrfs_add_dead_root(root);
3872 }
3873}
3874
3875int btrfs_invalidate_inodes(struct btrfs_root *root)
3876{
3877 struct rb_node *node;
3878 struct rb_node *prev;
3879 struct btrfs_inode *entry;
3880 struct inode *inode;
3881 u64 objectid = 0;
3882
3883 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3884
3885 spin_lock(&root->inode_lock);
3886again:
3887 node = root->inode_tree.rb_node;
3888 prev = NULL;
3889 while (node) {
3890 prev = node;
3891 entry = rb_entry(node, struct btrfs_inode, rb_node);
3892
33345d01 3893 if (objectid < btrfs_ino(&entry->vfs_inode))
76dda93c 3894 node = node->rb_left;
33345d01 3895 else if (objectid > btrfs_ino(&entry->vfs_inode))
76dda93c
YZ
3896 node = node->rb_right;
3897 else
3898 break;
3899 }
3900 if (!node) {
3901 while (prev) {
3902 entry = rb_entry(prev, struct btrfs_inode, rb_node);
33345d01 3903 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
76dda93c
YZ
3904 node = prev;
3905 break;
3906 }
3907 prev = rb_next(prev);
3908 }
3909 }
3910 while (node) {
3911 entry = rb_entry(node, struct btrfs_inode, rb_node);
33345d01 3912 objectid = btrfs_ino(&entry->vfs_inode) + 1;
76dda93c
YZ
3913 inode = igrab(&entry->vfs_inode);
3914 if (inode) {
3915 spin_unlock(&root->inode_lock);
3916 if (atomic_read(&inode->i_count) > 1)
3917 d_prune_aliases(inode);
3918 /*
45321ac5 3919 * btrfs_drop_inode will have it removed from
76dda93c
YZ
3920 * the inode cache when its usage count
3921 * hits zero.
3922 */
3923 iput(inode);
3924 cond_resched();
3925 spin_lock(&root->inode_lock);
3926 goto again;
3927 }
3928
3929 if (cond_resched_lock(&root->inode_lock))
3930 goto again;
3931
3932 node = rb_next(node);
3933 }
3934 spin_unlock(&root->inode_lock);
3935 return 0;
5d4f98a2
YZ
3936}
3937
e02119d5
CM
3938static int btrfs_init_locked_inode(struct inode *inode, void *p)
3939{
3940 struct btrfs_iget_args *args = p;
3941 inode->i_ino = args->ino;
e02119d5 3942 BTRFS_I(inode)->root = args->root;
6a63209f 3943 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
3944 return 0;
3945}
3946
3947static int btrfs_find_actor(struct inode *inode, void *opaque)
3948{
3949 struct btrfs_iget_args *args = opaque;
33345d01 3950 return args->ino == btrfs_ino(inode) &&
d397712b 3951 args->root == BTRFS_I(inode)->root;
39279cc3
CM
3952}
3953
5d4f98a2
YZ
3954static struct inode *btrfs_iget_locked(struct super_block *s,
3955 u64 objectid,
3956 struct btrfs_root *root)
39279cc3
CM
3957{
3958 struct inode *inode;
3959 struct btrfs_iget_args args;
3960 args.ino = objectid;
3961 args.root = root;
3962
3963 inode = iget5_locked(s, objectid, btrfs_find_actor,
3964 btrfs_init_locked_inode,
3965 (void *)&args);
3966 return inode;
3967}
3968
1a54ef8c
BR
3969/* Get an inode object given its location and corresponding root.
3970 * Returns in *is_new if the inode was read from disk
3971 */
3972struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 3973 struct btrfs_root *root, int *new)
1a54ef8c
BR
3974{
3975 struct inode *inode;
3976
3977 inode = btrfs_iget_locked(s, location->objectid, root);
3978 if (!inode)
5d4f98a2 3979 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
3980
3981 if (inode->i_state & I_NEW) {
3982 BTRFS_I(inode)->root = root;
3983 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3984 btrfs_read_locked_inode(inode);
5d4f98a2 3985 inode_tree_add(inode);
1a54ef8c 3986 unlock_new_inode(inode);
73f73415
JB
3987 if (new)
3988 *new = 1;
1a54ef8c
BR
3989 }
3990
3991 return inode;
3992}
3993
4df27c4d
YZ
3994static struct inode *new_simple_dir(struct super_block *s,
3995 struct btrfs_key *key,
3996 struct btrfs_root *root)
3997{
3998 struct inode *inode = new_inode(s);
3999
4000 if (!inode)
4001 return ERR_PTR(-ENOMEM);
4002
4df27c4d
YZ
4003 BTRFS_I(inode)->root = root;
4004 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4005 BTRFS_I(inode)->dummy_inode = 1;
4006
4007 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4008 inode->i_op = &simple_dir_inode_operations;
4009 inode->i_fop = &simple_dir_operations;
4010 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4011 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4012
4013 return inode;
4014}
4015
3de4586c 4016struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4017{
d397712b 4018 struct inode *inode;
4df27c4d 4019 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4020 struct btrfs_root *sub_root = root;
4021 struct btrfs_key location;
76dda93c 4022 int index;
5d4f98a2 4023 int ret;
39279cc3
CM
4024
4025 if (dentry->d_name.len > BTRFS_NAME_LEN)
4026 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4027
39279cc3 4028 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4029
39279cc3
CM
4030 if (ret < 0)
4031 return ERR_PTR(ret);
5f39d397 4032
4df27c4d
YZ
4033 if (location.objectid == 0)
4034 return NULL;
4035
4036 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4037 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4038 return inode;
4039 }
4040
4041 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4042
76dda93c 4043 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4044 ret = fixup_tree_root_location(root, dir, dentry,
4045 &location, &sub_root);
4046 if (ret < 0) {
4047 if (ret != -ENOENT)
4048 inode = ERR_PTR(ret);
4049 else
4050 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4051 } else {
73f73415 4052 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4053 }
76dda93c
YZ
4054 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4055
34d19bad 4056 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4057 down_read(&root->fs_info->cleanup_work_sem);
4058 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4059 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4060 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4061 if (ret)
4062 inode = ERR_PTR(ret);
c71bf099
YZ
4063 }
4064
3de4586c
CM
4065 return inode;
4066}
4067
fe15ce44 4068static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4069{
4070 struct btrfs_root *root;
4071
efefb143
YZ
4072 if (!dentry->d_inode && !IS_ROOT(dentry))
4073 dentry = dentry->d_parent;
76dda93c 4074
efefb143
YZ
4075 if (dentry->d_inode) {
4076 root = BTRFS_I(dentry->d_inode)->root;
4077 if (btrfs_root_refs(&root->root_item) == 0)
4078 return 1;
4079 }
76dda93c
YZ
4080 return 0;
4081}
4082
3de4586c
CM
4083static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4084 struct nameidata *nd)
4085{
4086 struct inode *inode;
4087
3de4586c
CM
4088 inode = btrfs_lookup_dentry(dir, dentry);
4089 if (IS_ERR(inode))
4090 return ERR_CAST(inode);
7b128766 4091
39279cc3
CM
4092 return d_splice_alias(inode, dentry);
4093}
4094
16cdcec7 4095unsigned char btrfs_filetype_table[] = {
39279cc3
CM
4096 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4097};
4098
cbdf5a24
DW
4099static int btrfs_real_readdir(struct file *filp, void *dirent,
4100 filldir_t filldir)
39279cc3 4101{
6da6abae 4102 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4103 struct btrfs_root *root = BTRFS_I(inode)->root;
4104 struct btrfs_item *item;
4105 struct btrfs_dir_item *di;
4106 struct btrfs_key key;
5f39d397 4107 struct btrfs_key found_key;
39279cc3 4108 struct btrfs_path *path;
16cdcec7
MX
4109 struct list_head ins_list;
4110 struct list_head del_list;
39279cc3 4111 int ret;
5f39d397 4112 struct extent_buffer *leaf;
39279cc3 4113 int slot;
39279cc3
CM
4114 unsigned char d_type;
4115 int over = 0;
4116 u32 di_cur;
4117 u32 di_total;
4118 u32 di_len;
4119 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4120 char tmp_name[32];
4121 char *name_ptr;
4122 int name_len;
16cdcec7 4123 int is_curr = 0; /* filp->f_pos points to the current index? */
39279cc3
CM
4124
4125 /* FIXME, use a real flag for deciding about the key type */
4126 if (root->fs_info->tree_root == root)
4127 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4128
3954401f
CM
4129 /* special case for "." */
4130 if (filp->f_pos == 0) {
33345d01 4131 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
3954401f
CM
4132 if (over)
4133 return 0;
4134 filp->f_pos = 1;
4135 }
3954401f
CM
4136 /* special case for .., just use the back ref */
4137 if (filp->f_pos == 1) {
5ecc7e5d 4138 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4139 over = filldir(dirent, "..", 2,
5ecc7e5d 4140 2, pino, DT_DIR);
3954401f 4141 if (over)
49593bfa 4142 return 0;
3954401f
CM
4143 filp->f_pos = 2;
4144 }
49593bfa 4145 path = btrfs_alloc_path();
16cdcec7
MX
4146 if (!path)
4147 return -ENOMEM;
ff5714cc 4148
026fd317 4149 path->reada = 1;
49593bfa 4150
16cdcec7
MX
4151 if (key_type == BTRFS_DIR_INDEX_KEY) {
4152 INIT_LIST_HEAD(&ins_list);
4153 INIT_LIST_HEAD(&del_list);
4154 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4155 }
4156
39279cc3
CM
4157 btrfs_set_key_type(&key, key_type);
4158 key.offset = filp->f_pos;
33345d01 4159 key.objectid = btrfs_ino(inode);
5f39d397 4160
39279cc3
CM
4161 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4162 if (ret < 0)
4163 goto err;
49593bfa
DW
4164
4165 while (1) {
5f39d397 4166 leaf = path->nodes[0];
39279cc3 4167 slot = path->slots[0];
b9e03af0
LZ
4168 if (slot >= btrfs_header_nritems(leaf)) {
4169 ret = btrfs_next_leaf(root, path);
4170 if (ret < 0)
4171 goto err;
4172 else if (ret > 0)
4173 break;
4174 continue;
39279cc3 4175 }
3de4586c 4176
5f39d397
CM
4177 item = btrfs_item_nr(leaf, slot);
4178 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4179
4180 if (found_key.objectid != key.objectid)
39279cc3 4181 break;
5f39d397 4182 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4183 break;
5f39d397 4184 if (found_key.offset < filp->f_pos)
b9e03af0 4185 goto next;
16cdcec7
MX
4186 if (key_type == BTRFS_DIR_INDEX_KEY &&
4187 btrfs_should_delete_dir_index(&del_list,
4188 found_key.offset))
4189 goto next;
5f39d397
CM
4190
4191 filp->f_pos = found_key.offset;
16cdcec7 4192 is_curr = 1;
49593bfa 4193
39279cc3
CM
4194 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4195 di_cur = 0;
5f39d397 4196 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4197
4198 while (di_cur < di_total) {
5f39d397
CM
4199 struct btrfs_key location;
4200
22a94d44
JB
4201 if (verify_dir_item(root, leaf, di))
4202 break;
4203
5f39d397 4204 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4205 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4206 name_ptr = tmp_name;
4207 } else {
4208 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4209 if (!name_ptr) {
4210 ret = -ENOMEM;
4211 goto err;
4212 }
5f39d397
CM
4213 }
4214 read_extent_buffer(leaf, name_ptr,
4215 (unsigned long)(di + 1), name_len);
4216
4217 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4218 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4219
4220 /* is this a reference to our own snapshot? If so
4221 * skip it
4222 */
4223 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4224 location.objectid == root->root_key.objectid) {
4225 over = 0;
4226 goto skip;
4227 }
5f39d397 4228 over = filldir(dirent, name_ptr, name_len,
49593bfa 4229 found_key.offset, location.objectid,
39279cc3 4230 d_type);
5f39d397 4231
3de4586c 4232skip:
5f39d397
CM
4233 if (name_ptr != tmp_name)
4234 kfree(name_ptr);
4235
39279cc3
CM
4236 if (over)
4237 goto nopos;
5103e947 4238 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4239 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4240 di_cur += di_len;
4241 di = (struct btrfs_dir_item *)((char *)di + di_len);
4242 }
b9e03af0
LZ
4243next:
4244 path->slots[0]++;
39279cc3 4245 }
49593bfa 4246
16cdcec7
MX
4247 if (key_type == BTRFS_DIR_INDEX_KEY) {
4248 if (is_curr)
4249 filp->f_pos++;
4250 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4251 &ins_list);
4252 if (ret)
4253 goto nopos;
4254 }
4255
49593bfa 4256 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4257 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4258 /*
4259 * 32-bit glibc will use getdents64, but then strtol -
4260 * so the last number we can serve is this.
4261 */
4262 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4263 else
4264 filp->f_pos++;
39279cc3
CM
4265nopos:
4266 ret = 0;
4267err:
16cdcec7
MX
4268 if (key_type == BTRFS_DIR_INDEX_KEY)
4269 btrfs_put_delayed_items(&ins_list, &del_list);
39279cc3 4270 btrfs_free_path(path);
39279cc3
CM
4271 return ret;
4272}
4273
a9185b41 4274int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4275{
4276 struct btrfs_root *root = BTRFS_I(inode)->root;
4277 struct btrfs_trans_handle *trans;
4278 int ret = 0;
0af3d00b 4279 bool nolock = false;
39279cc3 4280
8929ecfa 4281 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4282 return 0;
4283
7841cb28 4284 if (btrfs_fs_closing(root->fs_info) && is_free_space_inode(root, inode))
82d5902d 4285 nolock = true;
0af3d00b 4286
a9185b41 4287 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 4288 if (nolock)
7a7eaa40 4289 trans = btrfs_join_transaction_nolock(root);
0af3d00b 4290 else
7a7eaa40 4291 trans = btrfs_join_transaction(root);
3612b495
TI
4292 if (IS_ERR(trans))
4293 return PTR_ERR(trans);
0af3d00b
JB
4294 if (nolock)
4295 ret = btrfs_end_transaction_nolock(trans, root);
4296 else
4297 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4298 }
4299 return ret;
4300}
4301
4302/*
54aa1f4d 4303 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4304 * inode changes. But, it is most likely to find the inode in cache.
4305 * FIXME, needs more benchmarking...there are no reasons other than performance
4306 * to keep or drop this code.
4307 */
aa385729 4308void btrfs_dirty_inode(struct inode *inode, int flags)
39279cc3
CM
4309{
4310 struct btrfs_root *root = BTRFS_I(inode)->root;
4311 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4312 int ret;
4313
4314 if (BTRFS_I(inode)->dummy_inode)
4315 return;
39279cc3 4316
7a7eaa40 4317 trans = btrfs_join_transaction(root);
3612b495 4318 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
4319
4320 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4321 if (ret && ret == -ENOSPC) {
4322 /* whoops, lets try again with the full transaction */
4323 btrfs_end_transaction(trans, root);
4324 trans = btrfs_start_transaction(root, 1);
9aeead73 4325 if (IS_ERR(trans)) {
7a36ddec 4326 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4327 "dirty inode %llu error %ld\n",
4328 (unsigned long long)btrfs_ino(inode),
4329 PTR_ERR(trans));
9aeead73
CM
4330 return;
4331 }
8929ecfa 4332
94b60442
CM
4333 ret = btrfs_update_inode(trans, root, inode);
4334 if (ret) {
7a36ddec 4335 printk_ratelimited(KERN_ERR "btrfs: fail to "
33345d01
LZ
4336 "dirty inode %llu error %d\n",
4337 (unsigned long long)btrfs_ino(inode),
4338 ret);
94b60442
CM
4339 }
4340 }
39279cc3 4341 btrfs_end_transaction(trans, root);
16cdcec7
MX
4342 if (BTRFS_I(inode)->delayed_node)
4343 btrfs_balance_delayed_items(root);
39279cc3
CM
4344}
4345
d352ac68
CM
4346/*
4347 * find the highest existing sequence number in a directory
4348 * and then set the in-memory index_cnt variable to reflect
4349 * free sequence numbers
4350 */
aec7477b
JB
4351static int btrfs_set_inode_index_count(struct inode *inode)
4352{
4353 struct btrfs_root *root = BTRFS_I(inode)->root;
4354 struct btrfs_key key, found_key;
4355 struct btrfs_path *path;
4356 struct extent_buffer *leaf;
4357 int ret;
4358
33345d01 4359 key.objectid = btrfs_ino(inode);
aec7477b
JB
4360 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4361 key.offset = (u64)-1;
4362
4363 path = btrfs_alloc_path();
4364 if (!path)
4365 return -ENOMEM;
4366
4367 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4368 if (ret < 0)
4369 goto out;
4370 /* FIXME: we should be able to handle this */
4371 if (ret == 0)
4372 goto out;
4373 ret = 0;
4374
4375 /*
4376 * MAGIC NUMBER EXPLANATION:
4377 * since we search a directory based on f_pos we have to start at 2
4378 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4379 * else has to start at 2
4380 */
4381 if (path->slots[0] == 0) {
4382 BTRFS_I(inode)->index_cnt = 2;
4383 goto out;
4384 }
4385
4386 path->slots[0]--;
4387
4388 leaf = path->nodes[0];
4389 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4390
33345d01 4391 if (found_key.objectid != btrfs_ino(inode) ||
aec7477b
JB
4392 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4393 BTRFS_I(inode)->index_cnt = 2;
4394 goto out;
4395 }
4396
4397 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4398out:
4399 btrfs_free_path(path);
4400 return ret;
4401}
4402
d352ac68
CM
4403/*
4404 * helper to find a free sequence number in a given directory. This current
4405 * code is very simple, later versions will do smarter things in the btree
4406 */
3de4586c 4407int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4408{
4409 int ret = 0;
4410
4411 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
16cdcec7
MX
4412 ret = btrfs_inode_delayed_dir_index_count(dir);
4413 if (ret) {
4414 ret = btrfs_set_inode_index_count(dir);
4415 if (ret)
4416 return ret;
4417 }
aec7477b
JB
4418 }
4419
00e4e6b3 4420 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4421 BTRFS_I(dir)->index_cnt++;
4422
4423 return ret;
4424}
4425
39279cc3
CM
4426static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4427 struct btrfs_root *root,
aec7477b 4428 struct inode *dir,
9c58309d 4429 const char *name, int name_len,
d82a6f1d
JB
4430 u64 ref_objectid, u64 objectid, int mode,
4431 u64 *index)
39279cc3
CM
4432{
4433 struct inode *inode;
5f39d397 4434 struct btrfs_inode_item *inode_item;
39279cc3 4435 struct btrfs_key *location;
5f39d397 4436 struct btrfs_path *path;
9c58309d
CM
4437 struct btrfs_inode_ref *ref;
4438 struct btrfs_key key[2];
4439 u32 sizes[2];
4440 unsigned long ptr;
39279cc3
CM
4441 int ret;
4442 int owner;
4443
5f39d397 4444 path = btrfs_alloc_path();
d8926bb3
MF
4445 if (!path)
4446 return ERR_PTR(-ENOMEM);
5f39d397 4447
39279cc3 4448 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4449 if (!inode) {
4450 btrfs_free_path(path);
39279cc3 4451 return ERR_PTR(-ENOMEM);
8fb27640 4452 }
39279cc3 4453
581bb050
LZ
4454 /*
4455 * we have to initialize this early, so we can reclaim the inode
4456 * number if we fail afterwards in this function.
4457 */
4458 inode->i_ino = objectid;
4459
aec7477b 4460 if (dir) {
1abe9b8a 4461 trace_btrfs_inode_request(dir);
4462
3de4586c 4463 ret = btrfs_set_inode_index(dir, index);
09771430 4464 if (ret) {
8fb27640 4465 btrfs_free_path(path);
09771430 4466 iput(inode);
aec7477b 4467 return ERR_PTR(ret);
09771430 4468 }
aec7477b
JB
4469 }
4470 /*
4471 * index_cnt is ignored for everything but a dir,
4472 * btrfs_get_inode_index_count has an explanation for the magic
4473 * number
4474 */
4475 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4476 BTRFS_I(inode)->root = root;
e02119d5 4477 BTRFS_I(inode)->generation = trans->transid;
76195853 4478 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4479 btrfs_set_inode_space_info(root, inode);
b888db2b 4480
39279cc3
CM
4481 if (mode & S_IFDIR)
4482 owner = 0;
4483 else
4484 owner = 1;
9c58309d
CM
4485
4486 key[0].objectid = objectid;
4487 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4488 key[0].offset = 0;
4489
4490 key[1].objectid = objectid;
4491 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4492 key[1].offset = ref_objectid;
4493
4494 sizes[0] = sizeof(struct btrfs_inode_item);
4495 sizes[1] = name_len + sizeof(*ref);
4496
b9473439 4497 path->leave_spinning = 1;
9c58309d
CM
4498 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4499 if (ret != 0)
5f39d397
CM
4500 goto fail;
4501
ecc11fab 4502 inode_init_owner(inode, dir, mode);
a76a3cd4 4503 inode_set_bytes(inode, 0);
39279cc3 4504 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4505 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4506 struct btrfs_inode_item);
e02119d5 4507 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4508
4509 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4510 struct btrfs_inode_ref);
4511 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4512 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4513 ptr = (unsigned long)(ref + 1);
4514 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4515
5f39d397
CM
4516 btrfs_mark_buffer_dirty(path->nodes[0]);
4517 btrfs_free_path(path);
4518
39279cc3
CM
4519 location = &BTRFS_I(inode)->location;
4520 location->objectid = objectid;
39279cc3
CM
4521 location->offset = 0;
4522 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4523
6cbff00f
CH
4524 btrfs_inherit_iflags(inode, dir);
4525
94272164
CM
4526 if ((mode & S_IFREG)) {
4527 if (btrfs_test_opt(root, NODATASUM))
4528 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4529 if (btrfs_test_opt(root, NODATACOW) ||
4530 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4531 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4532 }
4533
39279cc3 4534 insert_inode_hash(inode);
5d4f98a2 4535 inode_tree_add(inode);
1abe9b8a 4536
4537 trace_btrfs_inode_new(inode);
1973f0fa 4538 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 4539
39279cc3 4540 return inode;
5f39d397 4541fail:
aec7477b
JB
4542 if (dir)
4543 BTRFS_I(dir)->index_cnt--;
5f39d397 4544 btrfs_free_path(path);
09771430 4545 iput(inode);
5f39d397 4546 return ERR_PTR(ret);
39279cc3
CM
4547}
4548
4549static inline u8 btrfs_inode_type(struct inode *inode)
4550{
4551 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4552}
4553
d352ac68
CM
4554/*
4555 * utility function to add 'inode' into 'parent_inode' with
4556 * a give name and a given sequence number.
4557 * if 'add_backref' is true, also insert a backref from the
4558 * inode to the parent directory.
4559 */
e02119d5
CM
4560int btrfs_add_link(struct btrfs_trans_handle *trans,
4561 struct inode *parent_inode, struct inode *inode,
4562 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4563{
4df27c4d 4564 int ret = 0;
39279cc3 4565 struct btrfs_key key;
e02119d5 4566 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
33345d01
LZ
4567 u64 ino = btrfs_ino(inode);
4568 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 4569
33345d01 4570 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4571 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4572 } else {
33345d01 4573 key.objectid = ino;
4df27c4d
YZ
4574 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4575 key.offset = 0;
4576 }
4577
33345d01 4578 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
4579 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4580 key.objectid, root->root_key.objectid,
33345d01 4581 parent_ino, index, name, name_len);
4df27c4d 4582 } else if (add_backref) {
33345d01
LZ
4583 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4584 parent_ino, index);
4df27c4d 4585 }
39279cc3 4586
39279cc3 4587 if (ret == 0) {
4df27c4d 4588 ret = btrfs_insert_dir_item(trans, root, name, name_len,
16cdcec7 4589 parent_inode, &key,
4df27c4d
YZ
4590 btrfs_inode_type(inode), index);
4591 BUG_ON(ret);
4592
dbe674a9 4593 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4594 name_len * 2);
79c44584 4595 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4596 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4597 }
4598 return ret;
4599}
4600
4601static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4602 struct inode *dir, struct dentry *dentry,
4603 struct inode *inode, int backref, u64 index)
39279cc3 4604{
a1b075d2
JB
4605 int err = btrfs_add_link(trans, dir, inode,
4606 dentry->d_name.name, dentry->d_name.len,
4607 backref, index);
39279cc3
CM
4608 if (!err) {
4609 d_instantiate(dentry, inode);
4610 return 0;
4611 }
4612 if (err > 0)
4613 err = -EEXIST;
4614 return err;
4615}
4616
618e21d5
JB
4617static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4618 int mode, dev_t rdev)
4619{
4620 struct btrfs_trans_handle *trans;
4621 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4622 struct inode *inode = NULL;
618e21d5
JB
4623 int err;
4624 int drop_inode = 0;
4625 u64 objectid;
1832a6d5 4626 unsigned long nr = 0;
00e4e6b3 4627 u64 index = 0;
618e21d5
JB
4628
4629 if (!new_valid_dev(rdev))
4630 return -EINVAL;
4631
9ed74f2d
JB
4632 /*
4633 * 2 for inode item and ref
4634 * 2 for dir items
4635 * 1 for xattr if selinux is on
4636 */
a22285a6
YZ
4637 trans = btrfs_start_transaction(root, 5);
4638 if (IS_ERR(trans))
4639 return PTR_ERR(trans);
1832a6d5 4640
581bb050
LZ
4641 err = btrfs_find_free_ino(root, &objectid);
4642 if (err)
4643 goto out_unlock;
4644
aec7477b 4645 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4646 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4647 mode, &index);
7cf96da3
TI
4648 if (IS_ERR(inode)) {
4649 err = PTR_ERR(inode);
618e21d5 4650 goto out_unlock;
7cf96da3 4651 }
618e21d5 4652
2a7dba39 4653 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4654 if (err) {
4655 drop_inode = 1;
4656 goto out_unlock;
4657 }
4658
a1b075d2 4659 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4660 if (err)
4661 drop_inode = 1;
4662 else {
4663 inode->i_op = &btrfs_special_inode_operations;
4664 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4665 btrfs_update_inode(trans, root, inode);
618e21d5 4666 }
618e21d5 4667out_unlock:
d3c2fdcf 4668 nr = trans->blocks_used;
89ce8a63 4669 btrfs_end_transaction_throttle(trans, root);
a22285a6 4670 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4671 if (drop_inode) {
4672 inode_dec_link_count(inode);
4673 iput(inode);
4674 }
618e21d5
JB
4675 return err;
4676}
4677
39279cc3
CM
4678static int btrfs_create(struct inode *dir, struct dentry *dentry,
4679 int mode, struct nameidata *nd)
4680{
4681 struct btrfs_trans_handle *trans;
4682 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4683 struct inode *inode = NULL;
39279cc3 4684 int drop_inode = 0;
a22285a6 4685 int err;
1832a6d5 4686 unsigned long nr = 0;
39279cc3 4687 u64 objectid;
00e4e6b3 4688 u64 index = 0;
39279cc3 4689
9ed74f2d
JB
4690 /*
4691 * 2 for inode item and ref
4692 * 2 for dir items
4693 * 1 for xattr if selinux is on
4694 */
a22285a6
YZ
4695 trans = btrfs_start_transaction(root, 5);
4696 if (IS_ERR(trans))
4697 return PTR_ERR(trans);
9ed74f2d 4698
581bb050
LZ
4699 err = btrfs_find_free_ino(root, &objectid);
4700 if (err)
4701 goto out_unlock;
4702
aec7477b 4703 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4704 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4705 mode, &index);
7cf96da3
TI
4706 if (IS_ERR(inode)) {
4707 err = PTR_ERR(inode);
39279cc3 4708 goto out_unlock;
7cf96da3 4709 }
39279cc3 4710
2a7dba39 4711 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4712 if (err) {
4713 drop_inode = 1;
4714 goto out_unlock;
4715 }
4716
a1b075d2 4717 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4718 if (err)
4719 drop_inode = 1;
4720 else {
4721 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4722 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4723 inode->i_fop = &btrfs_file_operations;
4724 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4725 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4726 }
39279cc3 4727out_unlock:
d3c2fdcf 4728 nr = trans->blocks_used;
ab78c84d 4729 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4730 if (drop_inode) {
4731 inode_dec_link_count(inode);
4732 iput(inode);
4733 }
d3c2fdcf 4734 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4735 return err;
4736}
4737
4738static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4739 struct dentry *dentry)
4740{
4741 struct btrfs_trans_handle *trans;
4742 struct btrfs_root *root = BTRFS_I(dir)->root;
4743 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4744 u64 index;
1832a6d5 4745 unsigned long nr = 0;
39279cc3
CM
4746 int err;
4747 int drop_inode = 0;
4748
4a8be425
TH
4749 /* do not allow sys_link's with other subvols of the same device */
4750 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4751 return -EXDEV;
4a8be425 4752
c055e99e
AV
4753 if (inode->i_nlink == ~0U)
4754 return -EMLINK;
4a8be425 4755
3de4586c 4756 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4757 if (err)
4758 goto fail;
4759
a22285a6 4760 /*
7e6b6465 4761 * 2 items for inode and inode ref
a22285a6 4762 * 2 items for dir items
7e6b6465 4763 * 1 item for parent inode
a22285a6 4764 */
7e6b6465 4765 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4766 if (IS_ERR(trans)) {
4767 err = PTR_ERR(trans);
4768 goto fail;
4769 }
5f39d397 4770
3153495d
MX
4771 btrfs_inc_nlink(inode);
4772 inode->i_ctime = CURRENT_TIME;
7de9c6ee 4773 ihold(inode);
aec7477b 4774
a1b075d2 4775 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4776
a5719521 4777 if (err) {
54aa1f4d 4778 drop_inode = 1;
a5719521 4779 } else {
6a912213 4780 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4781 err = btrfs_update_inode(trans, root, inode);
4782 BUG_ON(err);
6a912213
JB
4783 btrfs_log_new_name(trans, inode, NULL, parent);
4784 dput(parent);
a5719521 4785 }
39279cc3 4786
d3c2fdcf 4787 nr = trans->blocks_used;
ab78c84d 4788 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4789fail:
39279cc3
CM
4790 if (drop_inode) {
4791 inode_dec_link_count(inode);
4792 iput(inode);
4793 }
d3c2fdcf 4794 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4795 return err;
4796}
4797
39279cc3
CM
4798static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4799{
b9d86667 4800 struct inode *inode = NULL;
39279cc3
CM
4801 struct btrfs_trans_handle *trans;
4802 struct btrfs_root *root = BTRFS_I(dir)->root;
4803 int err = 0;
4804 int drop_on_err = 0;
b9d86667 4805 u64 objectid = 0;
00e4e6b3 4806 u64 index = 0;
d3c2fdcf 4807 unsigned long nr = 1;
39279cc3 4808
9ed74f2d
JB
4809 /*
4810 * 2 items for inode and ref
4811 * 2 items for dir items
4812 * 1 for xattr if selinux is on
4813 */
a22285a6
YZ
4814 trans = btrfs_start_transaction(root, 5);
4815 if (IS_ERR(trans))
4816 return PTR_ERR(trans);
39279cc3 4817
581bb050
LZ
4818 err = btrfs_find_free_ino(root, &objectid);
4819 if (err)
4820 goto out_fail;
4821
aec7477b 4822 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 4823 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 4824 S_IFDIR | mode, &index);
39279cc3
CM
4825 if (IS_ERR(inode)) {
4826 err = PTR_ERR(inode);
4827 goto out_fail;
4828 }
5f39d397 4829
39279cc3 4830 drop_on_err = 1;
33268eaf 4831
2a7dba39 4832 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
4833 if (err)
4834 goto out_fail;
4835
39279cc3
CM
4836 inode->i_op = &btrfs_dir_inode_operations;
4837 inode->i_fop = &btrfs_dir_file_operations;
39279cc3 4838
dbe674a9 4839 btrfs_i_size_write(inode, 0);
39279cc3
CM
4840 err = btrfs_update_inode(trans, root, inode);
4841 if (err)
4842 goto out_fail;
5f39d397 4843
a1b075d2
JB
4844 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4845 dentry->d_name.len, 0, index);
39279cc3
CM
4846 if (err)
4847 goto out_fail;
5f39d397 4848
39279cc3
CM
4849 d_instantiate(dentry, inode);
4850 drop_on_err = 0;
39279cc3
CM
4851
4852out_fail:
d3c2fdcf 4853 nr = trans->blocks_used;
ab78c84d 4854 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4855 if (drop_on_err)
4856 iput(inode);
d3c2fdcf 4857 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4858 return err;
4859}
4860
d352ac68
CM
4861/* helper for btfs_get_extent. Given an existing extent in the tree,
4862 * and an extent that you want to insert, deal with overlap and insert
4863 * the new extent into the tree.
4864 */
3b951516
CM
4865static int merge_extent_mapping(struct extent_map_tree *em_tree,
4866 struct extent_map *existing,
e6dcd2dc
CM
4867 struct extent_map *em,
4868 u64 map_start, u64 map_len)
3b951516
CM
4869{
4870 u64 start_diff;
3b951516 4871
e6dcd2dc
CM
4872 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4873 start_diff = map_start - em->start;
4874 em->start = map_start;
4875 em->len = map_len;
c8b97818
CM
4876 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4877 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4878 em->block_start += start_diff;
c8b97818
CM
4879 em->block_len -= start_diff;
4880 }
e6dcd2dc 4881 return add_extent_mapping(em_tree, em);
3b951516
CM
4882}
4883
c8b97818
CM
4884static noinline int uncompress_inline(struct btrfs_path *path,
4885 struct inode *inode, struct page *page,
4886 size_t pg_offset, u64 extent_offset,
4887 struct btrfs_file_extent_item *item)
4888{
4889 int ret;
4890 struct extent_buffer *leaf = path->nodes[0];
4891 char *tmp;
4892 size_t max_size;
4893 unsigned long inline_size;
4894 unsigned long ptr;
261507a0 4895 int compress_type;
c8b97818
CM
4896
4897 WARN_ON(pg_offset != 0);
261507a0 4898 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
4899 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4900 inline_size = btrfs_file_extent_inline_item_len(leaf,
4901 btrfs_item_nr(leaf, path->slots[0]));
4902 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
4903 if (!tmp)
4904 return -ENOMEM;
c8b97818
CM
4905 ptr = btrfs_file_extent_inline_start(item);
4906
4907 read_extent_buffer(leaf, tmp, ptr, inline_size);
4908
5b050f04 4909 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
4910 ret = btrfs_decompress(compress_type, tmp, page,
4911 extent_offset, inline_size, max_size);
c8b97818
CM
4912 if (ret) {
4913 char *kaddr = kmap_atomic(page, KM_USER0);
4914 unsigned long copy_size = min_t(u64,
4915 PAGE_CACHE_SIZE - pg_offset,
4916 max_size - extent_offset);
4917 memset(kaddr + pg_offset, 0, copy_size);
4918 kunmap_atomic(kaddr, KM_USER0);
4919 }
4920 kfree(tmp);
4921 return 0;
4922}
4923
d352ac68
CM
4924/*
4925 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
4926 * the ugly parts come from merging extents from the disk with the in-ram
4927 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
4928 * where the in-ram extents might be locked pending data=ordered completion.
4929 *
4930 * This also copies inline extents directly into the page.
4931 */
d397712b 4932
a52d9a80 4933struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 4934 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
4935 int create)
4936{
4937 int ret;
4938 int err = 0;
db94535d 4939 u64 bytenr;
a52d9a80
CM
4940 u64 extent_start = 0;
4941 u64 extent_end = 0;
33345d01 4942 u64 objectid = btrfs_ino(inode);
a52d9a80 4943 u32 found_type;
f421950f 4944 struct btrfs_path *path = NULL;
a52d9a80
CM
4945 struct btrfs_root *root = BTRFS_I(inode)->root;
4946 struct btrfs_file_extent_item *item;
5f39d397
CM
4947 struct extent_buffer *leaf;
4948 struct btrfs_key found_key;
a52d9a80
CM
4949 struct extent_map *em = NULL;
4950 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 4951 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 4952 struct btrfs_trans_handle *trans = NULL;
261507a0 4953 int compress_type;
a52d9a80 4954
a52d9a80 4955again:
890871be 4956 read_lock(&em_tree->lock);
d1310b2e 4957 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
4958 if (em)
4959 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 4960 read_unlock(&em_tree->lock);
d1310b2e 4961
a52d9a80 4962 if (em) {
e1c4b745
CM
4963 if (em->start > start || em->start + em->len <= start)
4964 free_extent_map(em);
4965 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
4966 free_extent_map(em);
4967 else
4968 goto out;
a52d9a80 4969 }
172ddd60 4970 em = alloc_extent_map();
a52d9a80 4971 if (!em) {
d1310b2e
CM
4972 err = -ENOMEM;
4973 goto out;
a52d9a80 4974 }
e6dcd2dc 4975 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 4976 em->start = EXTENT_MAP_HOLE;
445a6944 4977 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 4978 em->len = (u64)-1;
c8b97818 4979 em->block_len = (u64)-1;
f421950f
CM
4980
4981 if (!path) {
4982 path = btrfs_alloc_path();
026fd317
JB
4983 if (!path) {
4984 err = -ENOMEM;
4985 goto out;
4986 }
4987 /*
4988 * Chances are we'll be called again, so go ahead and do
4989 * readahead
4990 */
4991 path->reada = 1;
f421950f
CM
4992 }
4993
179e29e4
CM
4994 ret = btrfs_lookup_file_extent(trans, root, path,
4995 objectid, start, trans != NULL);
a52d9a80
CM
4996 if (ret < 0) {
4997 err = ret;
4998 goto out;
4999 }
5000
5001 if (ret != 0) {
5002 if (path->slots[0] == 0)
5003 goto not_found;
5004 path->slots[0]--;
5005 }
5006
5f39d397
CM
5007 leaf = path->nodes[0];
5008 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5009 struct btrfs_file_extent_item);
a52d9a80 5010 /* are we inside the extent that was found? */
5f39d397
CM
5011 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5012 found_type = btrfs_key_type(&found_key);
5013 if (found_key.objectid != objectid ||
a52d9a80
CM
5014 found_type != BTRFS_EXTENT_DATA_KEY) {
5015 goto not_found;
5016 }
5017
5f39d397
CM
5018 found_type = btrfs_file_extent_type(leaf, item);
5019 extent_start = found_key.offset;
261507a0 5020 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5021 if (found_type == BTRFS_FILE_EXTENT_REG ||
5022 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5023 extent_end = extent_start +
db94535d 5024 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5025 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5026 size_t size;
5027 size = btrfs_file_extent_inline_len(leaf, item);
5028 extent_end = (extent_start + size + root->sectorsize - 1) &
5029 ~((u64)root->sectorsize - 1);
5030 }
5031
5032 if (start >= extent_end) {
5033 path->slots[0]++;
5034 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5035 ret = btrfs_next_leaf(root, path);
5036 if (ret < 0) {
5037 err = ret;
5038 goto out;
a52d9a80 5039 }
9036c102
YZ
5040 if (ret > 0)
5041 goto not_found;
5042 leaf = path->nodes[0];
a52d9a80 5043 }
9036c102
YZ
5044 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5045 if (found_key.objectid != objectid ||
5046 found_key.type != BTRFS_EXTENT_DATA_KEY)
5047 goto not_found;
5048 if (start + len <= found_key.offset)
5049 goto not_found;
5050 em->start = start;
5051 em->len = found_key.offset - start;
5052 goto not_found_em;
5053 }
5054
d899e052
YZ
5055 if (found_type == BTRFS_FILE_EXTENT_REG ||
5056 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5057 em->start = extent_start;
5058 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5059 em->orig_start = extent_start -
5060 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5061 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5062 if (bytenr == 0) {
5f39d397 5063 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5064 goto insert;
5065 }
261507a0 5066 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5067 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5068 em->compress_type = compress_type;
c8b97818
CM
5069 em->block_start = bytenr;
5070 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5071 item);
5072 } else {
5073 bytenr += btrfs_file_extent_offset(leaf, item);
5074 em->block_start = bytenr;
5075 em->block_len = em->len;
d899e052
YZ
5076 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5077 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5078 }
a52d9a80
CM
5079 goto insert;
5080 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5081 unsigned long ptr;
a52d9a80 5082 char *map;
3326d1b0
CM
5083 size_t size;
5084 size_t extent_offset;
5085 size_t copy_size;
a52d9a80 5086
689f9346 5087 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5088 if (!page || create) {
689f9346 5089 em->start = extent_start;
9036c102 5090 em->len = extent_end - extent_start;
689f9346
Y
5091 goto out;
5092 }
5f39d397 5093
9036c102
YZ
5094 size = btrfs_file_extent_inline_len(leaf, item);
5095 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5096 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5097 size - extent_offset);
3326d1b0 5098 em->start = extent_start + extent_offset;
70dec807
CM
5099 em->len = (copy_size + root->sectorsize - 1) &
5100 ~((u64)root->sectorsize - 1);
ff5b7ee3 5101 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5102 if (compress_type) {
c8b97818 5103 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5104 em->compress_type = compress_type;
5105 }
689f9346 5106 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5107 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5108 if (btrfs_file_extent_compression(leaf, item) !=
5109 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5110 ret = uncompress_inline(path, inode, page,
5111 pg_offset,
5112 extent_offset, item);
5113 BUG_ON(ret);
5114 } else {
5115 map = kmap(page);
5116 read_extent_buffer(leaf, map + pg_offset, ptr,
5117 copy_size);
93c82d57
CM
5118 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5119 memset(map + pg_offset + copy_size, 0,
5120 PAGE_CACHE_SIZE - pg_offset -
5121 copy_size);
5122 }
c8b97818
CM
5123 kunmap(page);
5124 }
179e29e4
CM
5125 flush_dcache_page(page);
5126 } else if (create && PageUptodate(page)) {
0ca1f7ce 5127 WARN_ON(1);
179e29e4
CM
5128 if (!trans) {
5129 kunmap(page);
5130 free_extent_map(em);
5131 em = NULL;
ff5714cc 5132
b3b4aa74 5133 btrfs_release_path(path);
7a7eaa40 5134 trans = btrfs_join_transaction(root);
ff5714cc 5135
3612b495
TI
5136 if (IS_ERR(trans))
5137 return ERR_CAST(trans);
179e29e4
CM
5138 goto again;
5139 }
c8b97818 5140 map = kmap(page);
70dec807 5141 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5142 copy_size);
c8b97818 5143 kunmap(page);
179e29e4 5144 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5145 }
d1310b2e 5146 set_extent_uptodate(io_tree, em->start,
507903b8 5147 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5148 goto insert;
5149 } else {
d397712b 5150 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5151 WARN_ON(1);
5152 }
5153not_found:
5154 em->start = start;
d1310b2e 5155 em->len = len;
a52d9a80 5156not_found_em:
5f39d397 5157 em->block_start = EXTENT_MAP_HOLE;
9036c102 5158 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 5159insert:
b3b4aa74 5160 btrfs_release_path(path);
d1310b2e 5161 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5162 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5163 "[%llu %llu]\n", (unsigned long long)em->start,
5164 (unsigned long long)em->len,
5165 (unsigned long long)start,
5166 (unsigned long long)len);
a52d9a80
CM
5167 err = -EIO;
5168 goto out;
5169 }
d1310b2e
CM
5170
5171 err = 0;
890871be 5172 write_lock(&em_tree->lock);
a52d9a80 5173 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5174 /* it is possible that someone inserted the extent into the tree
5175 * while we had the lock dropped. It is also possible that
5176 * an overlapping map exists in the tree
5177 */
a52d9a80 5178 if (ret == -EEXIST) {
3b951516 5179 struct extent_map *existing;
e6dcd2dc
CM
5180
5181 ret = 0;
5182
3b951516 5183 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5184 if (existing && (existing->start > start ||
5185 existing->start + existing->len <= start)) {
5186 free_extent_map(existing);
5187 existing = NULL;
5188 }
3b951516
CM
5189 if (!existing) {
5190 existing = lookup_extent_mapping(em_tree, em->start,
5191 em->len);
5192 if (existing) {
5193 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5194 em, start,
5195 root->sectorsize);
3b951516
CM
5196 free_extent_map(existing);
5197 if (err) {
5198 free_extent_map(em);
5199 em = NULL;
5200 }
5201 } else {
5202 err = -EIO;
3b951516
CM
5203 free_extent_map(em);
5204 em = NULL;
5205 }
5206 } else {
5207 free_extent_map(em);
5208 em = existing;
e6dcd2dc 5209 err = 0;
a52d9a80 5210 }
a52d9a80 5211 }
890871be 5212 write_unlock(&em_tree->lock);
a52d9a80 5213out:
1abe9b8a 5214
5215 trace_btrfs_get_extent(root, em);
5216
f421950f
CM
5217 if (path)
5218 btrfs_free_path(path);
a52d9a80
CM
5219 if (trans) {
5220 ret = btrfs_end_transaction(trans, root);
d397712b 5221 if (!err)
a52d9a80
CM
5222 err = ret;
5223 }
a52d9a80
CM
5224 if (err) {
5225 free_extent_map(em);
a52d9a80
CM
5226 return ERR_PTR(err);
5227 }
5228 return em;
5229}
5230
ec29ed5b
CM
5231struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5232 size_t pg_offset, u64 start, u64 len,
5233 int create)
5234{
5235 struct extent_map *em;
5236 struct extent_map *hole_em = NULL;
5237 u64 range_start = start;
5238 u64 end;
5239 u64 found;
5240 u64 found_end;
5241 int err = 0;
5242
5243 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5244 if (IS_ERR(em))
5245 return em;
5246 if (em) {
5247 /*
5248 * if our em maps to a hole, there might
5249 * actually be delalloc bytes behind it
5250 */
5251 if (em->block_start != EXTENT_MAP_HOLE)
5252 return em;
5253 else
5254 hole_em = em;
5255 }
5256
5257 /* check to see if we've wrapped (len == -1 or similar) */
5258 end = start + len;
5259 if (end < start)
5260 end = (u64)-1;
5261 else
5262 end -= 1;
5263
5264 em = NULL;
5265
5266 /* ok, we didn't find anything, lets look for delalloc */
5267 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5268 end, len, EXTENT_DELALLOC, 1);
5269 found_end = range_start + found;
5270 if (found_end < range_start)
5271 found_end = (u64)-1;
5272
5273 /*
5274 * we didn't find anything useful, return
5275 * the original results from get_extent()
5276 */
5277 if (range_start > end || found_end <= start) {
5278 em = hole_em;
5279 hole_em = NULL;
5280 goto out;
5281 }
5282
5283 /* adjust the range_start to make sure it doesn't
5284 * go backwards from the start they passed in
5285 */
5286 range_start = max(start,range_start);
5287 found = found_end - range_start;
5288
5289 if (found > 0) {
5290 u64 hole_start = start;
5291 u64 hole_len = len;
5292
172ddd60 5293 em = alloc_extent_map();
ec29ed5b
CM
5294 if (!em) {
5295 err = -ENOMEM;
5296 goto out;
5297 }
5298 /*
5299 * when btrfs_get_extent can't find anything it
5300 * returns one huge hole
5301 *
5302 * make sure what it found really fits our range, and
5303 * adjust to make sure it is based on the start from
5304 * the caller
5305 */
5306 if (hole_em) {
5307 u64 calc_end = extent_map_end(hole_em);
5308
5309 if (calc_end <= start || (hole_em->start > end)) {
5310 free_extent_map(hole_em);
5311 hole_em = NULL;
5312 } else {
5313 hole_start = max(hole_em->start, start);
5314 hole_len = calc_end - hole_start;
5315 }
5316 }
5317 em->bdev = NULL;
5318 if (hole_em && range_start > hole_start) {
5319 /* our hole starts before our delalloc, so we
5320 * have to return just the parts of the hole
5321 * that go until the delalloc starts
5322 */
5323 em->len = min(hole_len,
5324 range_start - hole_start);
5325 em->start = hole_start;
5326 em->orig_start = hole_start;
5327 /*
5328 * don't adjust block start at all,
5329 * it is fixed at EXTENT_MAP_HOLE
5330 */
5331 em->block_start = hole_em->block_start;
5332 em->block_len = hole_len;
5333 } else {
5334 em->start = range_start;
5335 em->len = found;
5336 em->orig_start = range_start;
5337 em->block_start = EXTENT_MAP_DELALLOC;
5338 em->block_len = found;
5339 }
5340 } else if (hole_em) {
5341 return hole_em;
5342 }
5343out:
5344
5345 free_extent_map(hole_em);
5346 if (err) {
5347 free_extent_map(em);
5348 return ERR_PTR(err);
5349 }
5350 return em;
5351}
5352
4b46fce2 5353static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5354 struct extent_map *em,
4b46fce2
JB
5355 u64 start, u64 len)
5356{
5357 struct btrfs_root *root = BTRFS_I(inode)->root;
5358 struct btrfs_trans_handle *trans;
4b46fce2
JB
5359 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5360 struct btrfs_key ins;
5361 u64 alloc_hint;
5362 int ret;
16d299ac 5363 bool insert = false;
4b46fce2 5364
16d299ac
JB
5365 /*
5366 * Ok if the extent map we looked up is a hole and is for the exact
5367 * range we want, there is no reason to allocate a new one, however if
5368 * it is not right then we need to free this one and drop the cache for
5369 * our range.
5370 */
5371 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5372 em->len != len) {
5373 free_extent_map(em);
5374 em = NULL;
5375 insert = true;
5376 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5377 }
4b46fce2 5378
7a7eaa40 5379 trans = btrfs_join_transaction(root);
3612b495
TI
5380 if (IS_ERR(trans))
5381 return ERR_CAST(trans);
4b46fce2 5382
4cb5300b
CM
5383 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5384 btrfs_add_inode_defrag(trans, inode);
5385
4b46fce2
JB
5386 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5387
5388 alloc_hint = get_extent_allocation_hint(inode, start, len);
5389 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5390 alloc_hint, (u64)-1, &ins, 1);
5391 if (ret) {
5392 em = ERR_PTR(ret);
5393 goto out;
5394 }
5395
4b46fce2 5396 if (!em) {
172ddd60 5397 em = alloc_extent_map();
16d299ac
JB
5398 if (!em) {
5399 em = ERR_PTR(-ENOMEM);
5400 goto out;
5401 }
4b46fce2
JB
5402 }
5403
5404 em->start = start;
5405 em->orig_start = em->start;
5406 em->len = ins.offset;
5407
5408 em->block_start = ins.objectid;
5409 em->block_len = ins.offset;
5410 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5411
5412 /*
5413 * We need to do this because if we're using the original em we searched
5414 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5415 */
5416 em->flags = 0;
4b46fce2
JB
5417 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5418
16d299ac 5419 while (insert) {
4b46fce2
JB
5420 write_lock(&em_tree->lock);
5421 ret = add_extent_mapping(em_tree, em);
5422 write_unlock(&em_tree->lock);
5423 if (ret != -EEXIST)
5424 break;
5425 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5426 }
5427
5428 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5429 ins.offset, ins.offset, 0);
5430 if (ret) {
5431 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5432 em = ERR_PTR(ret);
5433 }
5434out:
5435 btrfs_end_transaction(trans, root);
5436 return em;
5437}
5438
46bfbb5c
CM
5439/*
5440 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5441 * block must be cow'd
5442 */
5443static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5444 struct inode *inode, u64 offset, u64 len)
5445{
5446 struct btrfs_path *path;
5447 int ret;
5448 struct extent_buffer *leaf;
5449 struct btrfs_root *root = BTRFS_I(inode)->root;
5450 struct btrfs_file_extent_item *fi;
5451 struct btrfs_key key;
5452 u64 disk_bytenr;
5453 u64 backref_offset;
5454 u64 extent_end;
5455 u64 num_bytes;
5456 int slot;
5457 int found_type;
5458
5459 path = btrfs_alloc_path();
5460 if (!path)
5461 return -ENOMEM;
5462
33345d01 5463 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
46bfbb5c
CM
5464 offset, 0);
5465 if (ret < 0)
5466 goto out;
5467
5468 slot = path->slots[0];
5469 if (ret == 1) {
5470 if (slot == 0) {
5471 /* can't find the item, must cow */
5472 ret = 0;
5473 goto out;
5474 }
5475 slot--;
5476 }
5477 ret = 0;
5478 leaf = path->nodes[0];
5479 btrfs_item_key_to_cpu(leaf, &key, slot);
33345d01 5480 if (key.objectid != btrfs_ino(inode) ||
46bfbb5c
CM
5481 key.type != BTRFS_EXTENT_DATA_KEY) {
5482 /* not our file or wrong item type, must cow */
5483 goto out;
5484 }
5485
5486 if (key.offset > offset) {
5487 /* Wrong offset, must cow */
5488 goto out;
5489 }
5490
5491 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5492 found_type = btrfs_file_extent_type(leaf, fi);
5493 if (found_type != BTRFS_FILE_EXTENT_REG &&
5494 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5495 /* not a regular extent, must cow */
5496 goto out;
5497 }
5498 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5499 backref_offset = btrfs_file_extent_offset(leaf, fi);
5500
5501 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5502 if (extent_end < offset + len) {
5503 /* extent doesn't include our full range, must cow */
5504 goto out;
5505 }
5506
5507 if (btrfs_extent_readonly(root, disk_bytenr))
5508 goto out;
5509
5510 /*
5511 * look for other files referencing this extent, if we
5512 * find any we must cow
5513 */
33345d01 5514 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
46bfbb5c
CM
5515 key.offset - backref_offset, disk_bytenr))
5516 goto out;
5517
5518 /*
5519 * adjust disk_bytenr and num_bytes to cover just the bytes
5520 * in this extent we are about to write. If there
5521 * are any csums in that range we have to cow in order
5522 * to keep the csums correct
5523 */
5524 disk_bytenr += backref_offset;
5525 disk_bytenr += offset - key.offset;
5526 num_bytes = min(offset + len, extent_end) - offset;
5527 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5528 goto out;
5529 /*
5530 * all of the above have passed, it is safe to overwrite this extent
5531 * without cow
5532 */
5533 ret = 1;
5534out:
5535 btrfs_free_path(path);
5536 return ret;
5537}
5538
4b46fce2
JB
5539static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5540 struct buffer_head *bh_result, int create)
5541{
5542 struct extent_map *em;
5543 struct btrfs_root *root = BTRFS_I(inode)->root;
5544 u64 start = iblock << inode->i_blkbits;
5545 u64 len = bh_result->b_size;
46bfbb5c 5546 struct btrfs_trans_handle *trans;
4b46fce2
JB
5547
5548 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5549 if (IS_ERR(em))
5550 return PTR_ERR(em);
5551
5552 /*
5553 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5554 * io. INLINE is special, and we could probably kludge it in here, but
5555 * it's still buffered so for safety lets just fall back to the generic
5556 * buffered path.
5557 *
5558 * For COMPRESSED we _have_ to read the entire extent in so we can
5559 * decompress it, so there will be buffering required no matter what we
5560 * do, so go ahead and fallback to buffered.
5561 *
5562 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5563 * to buffered IO. Don't blame me, this is the price we pay for using
5564 * the generic code.
5565 */
5566 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5567 em->block_start == EXTENT_MAP_INLINE) {
5568 free_extent_map(em);
5569 return -ENOTBLK;
5570 }
5571
5572 /* Just a good old fashioned hole, return */
5573 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5574 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5575 free_extent_map(em);
5576 /* DIO will do one hole at a time, so just unlock a sector */
5577 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5578 start + root->sectorsize - 1, GFP_NOFS);
5579 return 0;
5580 }
5581
5582 /*
5583 * We don't allocate a new extent in the following cases
5584 *
5585 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5586 * existing extent.
5587 * 2) The extent is marked as PREALLOC. We're good to go here and can
5588 * just use the extent.
5589 *
5590 */
46bfbb5c
CM
5591 if (!create) {
5592 len = em->len - (start - em->start);
4b46fce2 5593 goto map;
46bfbb5c 5594 }
4b46fce2
JB
5595
5596 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5597 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5598 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5599 int type;
5600 int ret;
46bfbb5c 5601 u64 block_start;
4b46fce2
JB
5602
5603 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5604 type = BTRFS_ORDERED_PREALLOC;
5605 else
5606 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5607 len = min(len, em->len - (start - em->start));
4b46fce2 5608 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5609
5610 /*
5611 * we're not going to log anything, but we do need
5612 * to make sure the current transaction stays open
5613 * while we look for nocow cross refs
5614 */
7a7eaa40 5615 trans = btrfs_join_transaction(root);
3612b495 5616 if (IS_ERR(trans))
46bfbb5c
CM
5617 goto must_cow;
5618
5619 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5620 ret = btrfs_add_ordered_extent_dio(inode, start,
5621 block_start, len, len, type);
5622 btrfs_end_transaction(trans, root);
5623 if (ret) {
5624 free_extent_map(em);
5625 return ret;
5626 }
5627 goto unlock;
4b46fce2 5628 }
46bfbb5c 5629 btrfs_end_transaction(trans, root);
4b46fce2 5630 }
46bfbb5c
CM
5631must_cow:
5632 /*
5633 * this will cow the extent, reset the len in case we changed
5634 * it above
5635 */
5636 len = bh_result->b_size;
16d299ac 5637 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5638 if (IS_ERR(em))
5639 return PTR_ERR(em);
5640 len = min(len, em->len - (start - em->start));
5641unlock:
4845e44f
CM
5642 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5643 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5644 0, NULL, GFP_NOFS);
4b46fce2
JB
5645map:
5646 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5647 inode->i_blkbits;
46bfbb5c 5648 bh_result->b_size = len;
4b46fce2
JB
5649 bh_result->b_bdev = em->bdev;
5650 set_buffer_mapped(bh_result);
5651 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5652 set_buffer_new(bh_result);
5653
5654 free_extent_map(em);
5655
5656 return 0;
5657}
5658
5659struct btrfs_dio_private {
5660 struct inode *inode;
5661 u64 logical_offset;
5662 u64 disk_bytenr;
5663 u64 bytes;
5664 u32 *csums;
5665 void *private;
e65e1535
MX
5666
5667 /* number of bios pending for this dio */
5668 atomic_t pending_bios;
5669
5670 /* IO errors */
5671 int errors;
5672
5673 struct bio *orig_bio;
4b46fce2
JB
5674};
5675
5676static void btrfs_endio_direct_read(struct bio *bio, int err)
5677{
e65e1535 5678 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5679 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5680 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5681 struct inode *inode = dip->inode;
5682 struct btrfs_root *root = BTRFS_I(inode)->root;
5683 u64 start;
5684 u32 *private = dip->csums;
5685
5686 start = dip->logical_offset;
5687 do {
5688 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5689 struct page *page = bvec->bv_page;
5690 char *kaddr;
5691 u32 csum = ~(u32)0;
5692 unsigned long flags;
5693
5694 local_irq_save(flags);
5695 kaddr = kmap_atomic(page, KM_IRQ0);
5696 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5697 csum, bvec->bv_len);
5698 btrfs_csum_final(csum, (char *)&csum);
5699 kunmap_atomic(kaddr, KM_IRQ0);
5700 local_irq_restore(flags);
5701
5702 flush_dcache_page(bvec->bv_page);
5703 if (csum != *private) {
33345d01 5704 printk(KERN_ERR "btrfs csum failed ino %llu off"
4b46fce2 5705 " %llu csum %u private %u\n",
33345d01
LZ
5706 (unsigned long long)btrfs_ino(inode),
5707 (unsigned long long)start,
4b46fce2
JB
5708 csum, *private);
5709 err = -EIO;
5710 }
5711 }
5712
5713 start += bvec->bv_len;
5714 private++;
5715 bvec++;
5716 } while (bvec <= bvec_end);
5717
5718 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5719 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5720 bio->bi_private = dip->private;
5721
5722 kfree(dip->csums);
5723 kfree(dip);
c0da7aa1
JB
5724
5725 /* If we had a csum failure make sure to clear the uptodate flag */
5726 if (err)
5727 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5728 dio_end_io(bio, err);
5729}
5730
5731static void btrfs_endio_direct_write(struct bio *bio, int err)
5732{
5733 struct btrfs_dio_private *dip = bio->bi_private;
5734 struct inode *inode = dip->inode;
5735 struct btrfs_root *root = BTRFS_I(inode)->root;
5736 struct btrfs_trans_handle *trans;
5737 struct btrfs_ordered_extent *ordered = NULL;
5738 struct extent_state *cached_state = NULL;
163cf09c
CM
5739 u64 ordered_offset = dip->logical_offset;
5740 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5741 int ret;
5742
5743 if (err)
5744 goto out_done;
163cf09c
CM
5745again:
5746 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5747 &ordered_offset,
5748 ordered_bytes);
4b46fce2 5749 if (!ret)
163cf09c 5750 goto out_test;
4b46fce2
JB
5751
5752 BUG_ON(!ordered);
5753
7a7eaa40 5754 trans = btrfs_join_transaction(root);
3612b495 5755 if (IS_ERR(trans)) {
4b46fce2
JB
5756 err = -ENOMEM;
5757 goto out;
5758 }
5759 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5760
5761 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5762 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5763 if (!ret)
5764 ret = btrfs_update_inode(trans, root, inode);
5765 err = ret;
5766 goto out;
5767 }
5768
5769 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5770 ordered->file_offset + ordered->len - 1, 0,
5771 &cached_state, GFP_NOFS);
5772
5773 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5774 ret = btrfs_mark_extent_written(trans, inode,
5775 ordered->file_offset,
5776 ordered->file_offset +
5777 ordered->len);
5778 if (ret) {
5779 err = ret;
5780 goto out_unlock;
5781 }
5782 } else {
5783 ret = insert_reserved_file_extent(trans, inode,
5784 ordered->file_offset,
5785 ordered->start,
5786 ordered->disk_len,
5787 ordered->len,
5788 ordered->len,
5789 0, 0, 0,
5790 BTRFS_FILE_EXTENT_REG);
5791 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5792 ordered->file_offset, ordered->len);
5793 if (ret) {
5794 err = ret;
5795 WARN_ON(1);
5796 goto out_unlock;
5797 }
5798 }
5799
5800 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5801 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5802 if (!ret)
5803 btrfs_update_inode(trans, root, inode);
5804 ret = 0;
4b46fce2
JB
5805out_unlock:
5806 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5807 ordered->file_offset + ordered->len - 1,
5808 &cached_state, GFP_NOFS);
5809out:
5810 btrfs_delalloc_release_metadata(inode, ordered->len);
5811 btrfs_end_transaction(trans, root);
163cf09c 5812 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5813 btrfs_put_ordered_extent(ordered);
5814 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5815
5816out_test:
5817 /*
5818 * our bio might span multiple ordered extents. If we haven't
5819 * completed the accounting for the whole dio, go back and try again
5820 */
5821 if (ordered_offset < dip->logical_offset + dip->bytes) {
5822 ordered_bytes = dip->logical_offset + dip->bytes -
5823 ordered_offset;
5824 goto again;
5825 }
4b46fce2
JB
5826out_done:
5827 bio->bi_private = dip->private;
5828
5829 kfree(dip->csums);
5830 kfree(dip);
c0da7aa1
JB
5831
5832 /* If we had an error make sure to clear the uptodate flag */
5833 if (err)
5834 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5835 dio_end_io(bio, err);
5836}
5837
eaf25d93
CM
5838static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5839 struct bio *bio, int mirror_num,
5840 unsigned long bio_flags, u64 offset)
5841{
5842 int ret;
5843 struct btrfs_root *root = BTRFS_I(inode)->root;
5844 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5845 BUG_ON(ret);
5846 return 0;
5847}
5848
e65e1535
MX
5849static void btrfs_end_dio_bio(struct bio *bio, int err)
5850{
5851 struct btrfs_dio_private *dip = bio->bi_private;
5852
5853 if (err) {
33345d01 5854 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
3dd1462e 5855 "sector %#Lx len %u err no %d\n",
33345d01 5856 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
3dd1462e 5857 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5858 dip->errors = 1;
5859
5860 /*
5861 * before atomic variable goto zero, we must make sure
5862 * dip->errors is perceived to be set.
5863 */
5864 smp_mb__before_atomic_dec();
5865 }
5866
5867 /* if there are more bios still pending for this dio, just exit */
5868 if (!atomic_dec_and_test(&dip->pending_bios))
5869 goto out;
5870
5871 if (dip->errors)
5872 bio_io_error(dip->orig_bio);
5873 else {
5874 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5875 bio_endio(dip->orig_bio, 0);
5876 }
5877out:
5878 bio_put(bio);
5879}
5880
5881static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5882 u64 first_sector, gfp_t gfp_flags)
5883{
5884 int nr_vecs = bio_get_nr_vecs(bdev);
5885 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5886}
5887
5888static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5889 int rw, u64 file_offset, int skip_sum,
1ae39938 5890 u32 *csums, int async_submit)
e65e1535
MX
5891{
5892 int write = rw & REQ_WRITE;
5893 struct btrfs_root *root = BTRFS_I(inode)->root;
5894 int ret;
5895
5896 bio_get(bio);
5897 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5898 if (ret)
5899 goto err;
5900
1ae39938
JB
5901 if (skip_sum)
5902 goto map;
5903
5904 if (write && async_submit) {
e65e1535
MX
5905 ret = btrfs_wq_submit_bio(root->fs_info,
5906 inode, rw, bio, 0, 0,
5907 file_offset,
5908 __btrfs_submit_bio_start_direct_io,
5909 __btrfs_submit_bio_done);
5910 goto err;
1ae39938
JB
5911 } else if (write) {
5912 /*
5913 * If we aren't doing async submit, calculate the csum of the
5914 * bio now.
5915 */
5916 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5917 if (ret)
5918 goto err;
c2db1073
TI
5919 } else if (!skip_sum) {
5920 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 5921 file_offset, csums);
c2db1073
TI
5922 if (ret)
5923 goto err;
5924 }
e65e1535 5925
1ae39938
JB
5926map:
5927 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
5928err:
5929 bio_put(bio);
5930 return ret;
5931}
5932
5933static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5934 int skip_sum)
5935{
5936 struct inode *inode = dip->inode;
5937 struct btrfs_root *root = BTRFS_I(inode)->root;
5938 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5939 struct bio *bio;
5940 struct bio *orig_bio = dip->orig_bio;
5941 struct bio_vec *bvec = orig_bio->bi_io_vec;
5942 u64 start_sector = orig_bio->bi_sector;
5943 u64 file_offset = dip->logical_offset;
5944 u64 submit_len = 0;
5945 u64 map_length;
5946 int nr_pages = 0;
5947 u32 *csums = dip->csums;
5948 int ret = 0;
1ae39938 5949 int async_submit = 0;
98bc3149 5950 int write = rw & REQ_WRITE;
e65e1535 5951
e65e1535
MX
5952 map_length = orig_bio->bi_size;
5953 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5954 &map_length, NULL, 0);
5955 if (ret) {
64728bbb 5956 bio_put(orig_bio);
e65e1535
MX
5957 return -EIO;
5958 }
5959
02f57c7a
JB
5960 if (map_length >= orig_bio->bi_size) {
5961 bio = orig_bio;
5962 goto submit;
5963 }
5964
1ae39938 5965 async_submit = 1;
02f57c7a
JB
5966 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5967 if (!bio)
5968 return -ENOMEM;
5969 bio->bi_private = dip;
5970 bio->bi_end_io = btrfs_end_dio_bio;
5971 atomic_inc(&dip->pending_bios);
5972
e65e1535
MX
5973 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5974 if (unlikely(map_length < submit_len + bvec->bv_len ||
5975 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5976 bvec->bv_offset) < bvec->bv_len)) {
5977 /*
5978 * inc the count before we submit the bio so
5979 * we know the end IO handler won't happen before
5980 * we inc the count. Otherwise, the dip might get freed
5981 * before we're done setting it up
5982 */
5983 atomic_inc(&dip->pending_bios);
5984 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5985 file_offset, skip_sum,
1ae39938 5986 csums, async_submit);
e65e1535
MX
5987 if (ret) {
5988 bio_put(bio);
5989 atomic_dec(&dip->pending_bios);
5990 goto out_err;
5991 }
5992
98bc3149
JB
5993 /* Write's use the ordered csums */
5994 if (!write && !skip_sum)
e65e1535
MX
5995 csums = csums + nr_pages;
5996 start_sector += submit_len >> 9;
5997 file_offset += submit_len;
5998
5999 submit_len = 0;
6000 nr_pages = 0;
6001
6002 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6003 start_sector, GFP_NOFS);
6004 if (!bio)
6005 goto out_err;
6006 bio->bi_private = dip;
6007 bio->bi_end_io = btrfs_end_dio_bio;
6008
6009 map_length = orig_bio->bi_size;
6010 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6011 &map_length, NULL, 0);
6012 if (ret) {
6013 bio_put(bio);
6014 goto out_err;
6015 }
6016 } else {
6017 submit_len += bvec->bv_len;
6018 nr_pages ++;
6019 bvec++;
6020 }
6021 }
6022
02f57c7a 6023submit:
e65e1535 6024 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6025 csums, async_submit);
e65e1535
MX
6026 if (!ret)
6027 return 0;
6028
6029 bio_put(bio);
6030out_err:
6031 dip->errors = 1;
6032 /*
6033 * before atomic variable goto zero, we must
6034 * make sure dip->errors is perceived to be set.
6035 */
6036 smp_mb__before_atomic_dec();
6037 if (atomic_dec_and_test(&dip->pending_bios))
6038 bio_io_error(dip->orig_bio);
6039
6040 /* bio_end_io() will handle error, so we needn't return it */
6041 return 0;
6042}
6043
4b46fce2
JB
6044static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6045 loff_t file_offset)
6046{
6047 struct btrfs_root *root = BTRFS_I(inode)->root;
6048 struct btrfs_dio_private *dip;
6049 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6050 int skip_sum;
7b6d91da 6051 int write = rw & REQ_WRITE;
4b46fce2
JB
6052 int ret = 0;
6053
6054 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6055
6056 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6057 if (!dip) {
6058 ret = -ENOMEM;
6059 goto free_ordered;
6060 }
6061 dip->csums = NULL;
6062
98bc3149
JB
6063 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6064 if (!write && !skip_sum) {
4b46fce2
JB
6065 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6066 if (!dip->csums) {
b4966b77 6067 kfree(dip);
4b46fce2
JB
6068 ret = -ENOMEM;
6069 goto free_ordered;
6070 }
6071 }
6072
6073 dip->private = bio->bi_private;
6074 dip->inode = inode;
6075 dip->logical_offset = file_offset;
6076
4b46fce2
JB
6077 dip->bytes = 0;
6078 do {
6079 dip->bytes += bvec->bv_len;
6080 bvec++;
6081 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6082
46bfbb5c 6083 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6084 bio->bi_private = dip;
e65e1535
MX
6085 dip->errors = 0;
6086 dip->orig_bio = bio;
6087 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6088
6089 if (write)
6090 bio->bi_end_io = btrfs_endio_direct_write;
6091 else
6092 bio->bi_end_io = btrfs_endio_direct_read;
6093
e65e1535
MX
6094 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6095 if (!ret)
eaf25d93 6096 return;
4b46fce2
JB
6097free_ordered:
6098 /*
6099 * If this is a write, we need to clean up the reserved space and kill
6100 * the ordered extent.
6101 */
6102 if (write) {
6103 struct btrfs_ordered_extent *ordered;
955256f2 6104 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6105 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6106 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6107 btrfs_free_reserved_extent(root, ordered->start,
6108 ordered->disk_len);
6109 btrfs_put_ordered_extent(ordered);
6110 btrfs_put_ordered_extent(ordered);
6111 }
6112 bio_endio(bio, ret);
6113}
6114
5a5f79b5
CM
6115static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6116 const struct iovec *iov, loff_t offset,
6117 unsigned long nr_segs)
6118{
6119 int seg;
a1b75f7d 6120 int i;
5a5f79b5
CM
6121 size_t size;
6122 unsigned long addr;
6123 unsigned blocksize_mask = root->sectorsize - 1;
6124 ssize_t retval = -EINVAL;
6125 loff_t end = offset;
6126
6127 if (offset & blocksize_mask)
6128 goto out;
6129
6130 /* Check the memory alignment. Blocks cannot straddle pages */
6131 for (seg = 0; seg < nr_segs; seg++) {
6132 addr = (unsigned long)iov[seg].iov_base;
6133 size = iov[seg].iov_len;
6134 end += size;
a1b75f7d 6135 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6136 goto out;
a1b75f7d
JB
6137
6138 /* If this is a write we don't need to check anymore */
6139 if (rw & WRITE)
6140 continue;
6141
6142 /*
6143 * Check to make sure we don't have duplicate iov_base's in this
6144 * iovec, if so return EINVAL, otherwise we'll get csum errors
6145 * when reading back.
6146 */
6147 for (i = seg + 1; i < nr_segs; i++) {
6148 if (iov[seg].iov_base == iov[i].iov_base)
6149 goto out;
6150 }
5a5f79b5
CM
6151 }
6152 retval = 0;
6153out:
6154 return retval;
6155}
16432985
CM
6156static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6157 const struct iovec *iov, loff_t offset,
6158 unsigned long nr_segs)
6159{
4b46fce2
JB
6160 struct file *file = iocb->ki_filp;
6161 struct inode *inode = file->f_mapping->host;
6162 struct btrfs_ordered_extent *ordered;
4845e44f 6163 struct extent_state *cached_state = NULL;
4b46fce2
JB
6164 u64 lockstart, lockend;
6165 ssize_t ret;
4845e44f
CM
6166 int writing = rw & WRITE;
6167 int write_bits = 0;
3f7c579c 6168 size_t count = iov_length(iov, nr_segs);
4b46fce2 6169
5a5f79b5
CM
6170 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6171 offset, nr_segs)) {
6172 return 0;
6173 }
6174
4b46fce2 6175 lockstart = offset;
3f7c579c
CM
6176 lockend = offset + count - 1;
6177
6178 if (writing) {
6179 ret = btrfs_delalloc_reserve_space(inode, count);
6180 if (ret)
6181 goto out;
6182 }
4845e44f 6183
4b46fce2 6184 while (1) {
4845e44f
CM
6185 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6186 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6187 /*
6188 * We're concerned with the entire range that we're going to be
6189 * doing DIO to, so we need to make sure theres no ordered
6190 * extents in this range.
6191 */
6192 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6193 lockend - lockstart + 1);
6194 if (!ordered)
6195 break;
4845e44f
CM
6196 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6197 &cached_state, GFP_NOFS);
4b46fce2
JB
6198 btrfs_start_ordered_extent(inode, ordered, 1);
6199 btrfs_put_ordered_extent(ordered);
6200 cond_resched();
6201 }
6202
4845e44f
CM
6203 /*
6204 * we don't use btrfs_set_extent_delalloc because we don't want
6205 * the dirty or uptodate bits
6206 */
6207 if (writing) {
6208 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6209 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6210 EXTENT_DELALLOC, 0, NULL, &cached_state,
6211 GFP_NOFS);
6212 if (ret) {
6213 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6214 lockend, EXTENT_LOCKED | write_bits,
6215 1, 0, &cached_state, GFP_NOFS);
6216 goto out;
6217 }
6218 }
6219
6220 free_extent_state(cached_state);
6221 cached_state = NULL;
6222
5a5f79b5
CM
6223 ret = __blockdev_direct_IO(rw, iocb, inode,
6224 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6225 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6226 btrfs_submit_direct, 0);
4b46fce2
JB
6227
6228 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6229 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6230 offset + iov_length(iov, nr_segs) - 1,
6231 EXTENT_LOCKED | write_bits, 1, 0,
6232 &cached_state, GFP_NOFS);
4b46fce2
JB
6233 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6234 /*
6235 * We're falling back to buffered, unlock the section we didn't
6236 * do IO on.
6237 */
4845e44f
CM
6238 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6239 offset + iov_length(iov, nr_segs) - 1,
6240 EXTENT_LOCKED | write_bits, 1, 0,
6241 &cached_state, GFP_NOFS);
4b46fce2 6242 }
4845e44f
CM
6243out:
6244 free_extent_state(cached_state);
4b46fce2 6245 return ret;
16432985
CM
6246}
6247
1506fcc8
YS
6248static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6249 __u64 start, __u64 len)
6250{
ec29ed5b 6251 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6252}
6253
a52d9a80 6254int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6255{
d1310b2e
CM
6256 struct extent_io_tree *tree;
6257 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6258 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6259}
1832a6d5 6260
a52d9a80 6261static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6262{
d1310b2e 6263 struct extent_io_tree *tree;
b888db2b
CM
6264
6265
6266 if (current->flags & PF_MEMALLOC) {
6267 redirty_page_for_writepage(wbc, page);
6268 unlock_page(page);
6269 return 0;
6270 }
d1310b2e 6271 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6272 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6273}
6274
f421950f
CM
6275int btrfs_writepages(struct address_space *mapping,
6276 struct writeback_control *wbc)
b293f02e 6277{
d1310b2e 6278 struct extent_io_tree *tree;
771ed689 6279
d1310b2e 6280 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6281 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6282}
6283
3ab2fb5a
CM
6284static int
6285btrfs_readpages(struct file *file, struct address_space *mapping,
6286 struct list_head *pages, unsigned nr_pages)
6287{
d1310b2e
CM
6288 struct extent_io_tree *tree;
6289 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6290 return extent_readpages(tree, mapping, pages, nr_pages,
6291 btrfs_get_extent);
6292}
e6dcd2dc 6293static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6294{
d1310b2e
CM
6295 struct extent_io_tree *tree;
6296 struct extent_map_tree *map;
a52d9a80 6297 int ret;
8c2383c3 6298
d1310b2e
CM
6299 tree = &BTRFS_I(page->mapping->host)->io_tree;
6300 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6301 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6302 if (ret == 1) {
6303 ClearPagePrivate(page);
6304 set_page_private(page, 0);
6305 page_cache_release(page);
39279cc3 6306 }
a52d9a80 6307 return ret;
39279cc3
CM
6308}
6309
e6dcd2dc
CM
6310static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6311{
98509cfc
CM
6312 if (PageWriteback(page) || PageDirty(page))
6313 return 0;
b335b003 6314 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6315}
6316
a52d9a80 6317static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6318{
d1310b2e 6319 struct extent_io_tree *tree;
e6dcd2dc 6320 struct btrfs_ordered_extent *ordered;
2ac55d41 6321 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6322 u64 page_start = page_offset(page);
6323 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6324
8b62b72b
CM
6325
6326 /*
6327 * we have the page locked, so new writeback can't start,
6328 * and the dirty bit won't be cleared while we are here.
6329 *
6330 * Wait for IO on this page so that we can safely clear
6331 * the PagePrivate2 bit and do ordered accounting
6332 */
e6dcd2dc 6333 wait_on_page_writeback(page);
8b62b72b 6334
d1310b2e 6335 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6336 if (offset) {
6337 btrfs_releasepage(page, GFP_NOFS);
6338 return;
6339 }
2ac55d41
JB
6340 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6341 GFP_NOFS);
e6dcd2dc
CM
6342 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6343 page_offset(page));
6344 if (ordered) {
eb84ae03
CM
6345 /*
6346 * IO on this page will never be started, so we need
6347 * to account for any ordered extents now
6348 */
e6dcd2dc
CM
6349 clear_extent_bit(tree, page_start, page_end,
6350 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6351 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6352 &cached_state, GFP_NOFS);
8b62b72b
CM
6353 /*
6354 * whoever cleared the private bit is responsible
6355 * for the finish_ordered_io
6356 */
6357 if (TestClearPagePrivate2(page)) {
6358 btrfs_finish_ordered_io(page->mapping->host,
6359 page_start, page_end);
6360 }
e6dcd2dc 6361 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6362 cached_state = NULL;
6363 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6364 GFP_NOFS);
e6dcd2dc
CM
6365 }
6366 clear_extent_bit(tree, page_start, page_end,
32c00aff 6367 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6368 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6369 __btrfs_releasepage(page, GFP_NOFS);
6370
4a096752 6371 ClearPageChecked(page);
9ad6b7bc 6372 if (PagePrivate(page)) {
9ad6b7bc
CM
6373 ClearPagePrivate(page);
6374 set_page_private(page, 0);
6375 page_cache_release(page);
6376 }
39279cc3
CM
6377}
6378
9ebefb18
CM
6379/*
6380 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6381 * called from a page fault handler when a page is first dirtied. Hence we must
6382 * be careful to check for EOF conditions here. We set the page up correctly
6383 * for a written page which means we get ENOSPC checking when writing into
6384 * holes and correct delalloc and unwritten extent mapping on filesystems that
6385 * support these features.
6386 *
6387 * We are not allowed to take the i_mutex here so we have to play games to
6388 * protect against truncate races as the page could now be beyond EOF. Because
6389 * vmtruncate() writes the inode size before removing pages, once we have the
6390 * page lock we can determine safely if the page is beyond EOF. If it is not
6391 * beyond EOF, then the page is guaranteed safe against truncation until we
6392 * unlock the page.
6393 */
c2ec175c 6394int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6395{
c2ec175c 6396 struct page *page = vmf->page;
6da6abae 6397 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6398 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6399 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6400 struct btrfs_ordered_extent *ordered;
2ac55d41 6401 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6402 char *kaddr;
6403 unsigned long zero_start;
9ebefb18 6404 loff_t size;
1832a6d5 6405 int ret;
a52d9a80 6406 u64 page_start;
e6dcd2dc 6407 u64 page_end;
9ebefb18 6408
0ca1f7ce 6409 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6410 if (ret) {
6411 if (ret == -ENOMEM)
6412 ret = VM_FAULT_OOM;
6413 else /* -ENOSPC, -EIO, etc */
6414 ret = VM_FAULT_SIGBUS;
1832a6d5 6415 goto out;
56a76f82 6416 }
1832a6d5 6417
56a76f82 6418 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6419again:
9ebefb18 6420 lock_page(page);
9ebefb18 6421 size = i_size_read(inode);
e6dcd2dc
CM
6422 page_start = page_offset(page);
6423 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6424
9ebefb18 6425 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6426 (page_start >= size)) {
9ebefb18
CM
6427 /* page got truncated out from underneath us */
6428 goto out_unlock;
6429 }
e6dcd2dc
CM
6430 wait_on_page_writeback(page);
6431
2ac55d41
JB
6432 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6433 GFP_NOFS);
e6dcd2dc
CM
6434 set_page_extent_mapped(page);
6435
eb84ae03
CM
6436 /*
6437 * we can't set the delalloc bits if there are pending ordered
6438 * extents. Drop our locks and wait for them to finish
6439 */
e6dcd2dc
CM
6440 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6441 if (ordered) {
2ac55d41
JB
6442 unlock_extent_cached(io_tree, page_start, page_end,
6443 &cached_state, GFP_NOFS);
e6dcd2dc 6444 unlock_page(page);
eb84ae03 6445 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6446 btrfs_put_ordered_extent(ordered);
6447 goto again;
6448 }
6449
fbf19087
JB
6450 /*
6451 * XXX - page_mkwrite gets called every time the page is dirtied, even
6452 * if it was already dirty, so for space accounting reasons we need to
6453 * clear any delalloc bits for the range we are fixing to save. There
6454 * is probably a better way to do this, but for now keep consistent with
6455 * prepare_pages in the normal write path.
6456 */
2ac55d41 6457 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6458 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6459 0, 0, &cached_state, GFP_NOFS);
fbf19087 6460
2ac55d41
JB
6461 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6462 &cached_state);
9ed74f2d 6463 if (ret) {
2ac55d41
JB
6464 unlock_extent_cached(io_tree, page_start, page_end,
6465 &cached_state, GFP_NOFS);
9ed74f2d
JB
6466 ret = VM_FAULT_SIGBUS;
6467 goto out_unlock;
6468 }
e6dcd2dc 6469 ret = 0;
9ebefb18
CM
6470
6471 /* page is wholly or partially inside EOF */
a52d9a80 6472 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6473 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6474 else
e6dcd2dc 6475 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6476
e6dcd2dc
CM
6477 if (zero_start != PAGE_CACHE_SIZE) {
6478 kaddr = kmap(page);
6479 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6480 flush_dcache_page(page);
6481 kunmap(page);
6482 }
247e743c 6483 ClearPageChecked(page);
e6dcd2dc 6484 set_page_dirty(page);
50a9b214 6485 SetPageUptodate(page);
5a3f23d5 6486
257c62e1
CM
6487 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6488 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6489
2ac55d41 6490 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6491
6492out_unlock:
50a9b214
CM
6493 if (!ret)
6494 return VM_FAULT_LOCKED;
9ebefb18 6495 unlock_page(page);
0ca1f7ce 6496 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6497out:
9ebefb18
CM
6498 return ret;
6499}
6500
a41ad394 6501static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6502{
6503 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 6504 struct btrfs_block_rsv *rsv;
39279cc3 6505 int ret;
3893e33b 6506 int err = 0;
39279cc3 6507 struct btrfs_trans_handle *trans;
d3c2fdcf 6508 unsigned long nr;
dbe674a9 6509 u64 mask = root->sectorsize - 1;
39279cc3 6510
5d5e103a
JB
6511 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6512 if (ret)
a41ad394 6513 return ret;
8082510e 6514
4a096752 6515 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6516 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6517
fcb80c2a
JB
6518 /*
6519 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6520 * 3 things going on here
6521 *
6522 * 1) We need to reserve space for our orphan item and the space to
6523 * delete our orphan item. Lord knows we don't want to have a dangling
6524 * orphan item because we didn't reserve space to remove it.
6525 *
6526 * 2) We need to reserve space to update our inode.
6527 *
6528 * 3) We need to have something to cache all the space that is going to
6529 * be free'd up by the truncate operation, but also have some slack
6530 * space reserved in case it uses space during the truncate (thank you
6531 * very much snapshotting).
6532 *
6533 * And we need these to all be seperate. The fact is we can use alot of
6534 * space doing the truncate, and we have no earthly idea how much space
6535 * we will use, so we need the truncate reservation to be seperate so it
6536 * doesn't end up using space reserved for updating the inode or
6537 * removing the orphan item. We also need to be able to stop the
6538 * transaction and start a new one, which means we need to be able to
6539 * update the inode several times, and we have no idea of knowing how
6540 * many times that will be, so we can't just reserve 1 item for the
6541 * entirety of the opration, so that has to be done seperately as well.
6542 * Then there is the orphan item, which does indeed need to be held on
6543 * to for the whole operation, and we need nobody to touch this reserved
6544 * space except the orphan code.
6545 *
6546 * So that leaves us with
6547 *
6548 * 1) root->orphan_block_rsv - for the orphan deletion.
6549 * 2) rsv - for the truncate reservation, which we will steal from the
6550 * transaction reservation.
6551 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6552 * updating the inode.
6553 */
6554 rsv = btrfs_alloc_block_rsv(root);
6555 if (!rsv)
6556 return -ENOMEM;
6557 btrfs_add_durable_block_rsv(root->fs_info, rsv);
f0cd846e 6558
fcb80c2a
JB
6559 trans = btrfs_start_transaction(root, 4);
6560 if (IS_ERR(trans)) {
6561 err = PTR_ERR(trans);
6562 goto out;
6563 }
f0cd846e 6564
fcb80c2a
JB
6565 /*
6566 * Reserve space for the truncate process. Truncate should be adding
6567 * space, but if there are snapshots it may end up using space.
6568 */
6569 ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6570 BUG_ON(ret);
f0cd846e
JB
6571
6572 ret = btrfs_orphan_add(trans, inode);
6573 if (ret) {
6574 btrfs_end_transaction(trans, root);
fcb80c2a 6575 goto out;
f0cd846e
JB
6576 }
6577
6578 nr = trans->blocks_used;
6579 btrfs_end_transaction(trans, root);
6580 btrfs_btree_balance_dirty(root, nr);
6581
fcb80c2a
JB
6582 /*
6583 * Ok so we've already migrated our bytes over for the truncate, so here
6584 * just reserve the one slot we need for updating the inode.
6585 */
6586 trans = btrfs_start_transaction(root, 1);
6587 if (IS_ERR(trans)) {
6588 err = PTR_ERR(trans);
6589 goto out;
6590 }
fcb80c2a 6591 trans->block_rsv = rsv;
5a3f23d5
CM
6592
6593 /*
6594 * setattr is responsible for setting the ordered_data_close flag,
6595 * but that is only tested during the last file release. That
6596 * could happen well after the next commit, leaving a great big
6597 * window where new writes may get lost if someone chooses to write
6598 * to this file after truncating to zero
6599 *
6600 * The inode doesn't have any dirty data here, and so if we commit
6601 * this is a noop. If someone immediately starts writing to the inode
6602 * it is very likely we'll catch some of their writes in this
6603 * transaction, and the commit will find this file on the ordered
6604 * data list with good things to send down.
6605 *
6606 * This is a best effort solution, there is still a window where
6607 * using truncate to replace the contents of the file will
6608 * end up with a zero length file after a crash.
6609 */
6610 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6611 btrfs_add_ordered_operation(trans, root, inode);
6612
8082510e 6613 while (1) {
d68fc57b 6614 if (!trans) {
fcb80c2a
JB
6615 trans = btrfs_start_transaction(root, 3);
6616 if (IS_ERR(trans)) {
6617 err = PTR_ERR(trans);
6618 goto out;
6619 }
d68fc57b 6620
fcb80c2a
JB
6621 ret = btrfs_truncate_reserve_metadata(trans, root,
6622 rsv);
6623 BUG_ON(ret);
6624
fcb80c2a 6625 trans->block_rsv = rsv;
d68fc57b
YZ
6626 }
6627
8082510e
YZ
6628 ret = btrfs_truncate_inode_items(trans, root, inode,
6629 inode->i_size,
6630 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6631 if (ret != -EAGAIN) {
6632 err = ret;
8082510e 6633 break;
3893e33b 6634 }
39279cc3 6635
fcb80c2a 6636 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6637 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6638 if (ret) {
6639 err = ret;
6640 break;
6641 }
5f39d397 6642
8082510e
YZ
6643 nr = trans->blocks_used;
6644 btrfs_end_transaction(trans, root);
d68fc57b 6645 trans = NULL;
8082510e 6646 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6647 }
6648
6649 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 6650 trans->block_rsv = root->orphan_block_rsv;
8082510e 6651 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6652 if (ret)
6653 err = ret;
ded5db9d
JB
6654 } else if (ret && inode->i_nlink > 0) {
6655 /*
6656 * Failed to do the truncate, remove us from the in memory
6657 * orphan list.
6658 */
6659 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6660 }
6661
fcb80c2a 6662 trans->block_rsv = &root->fs_info->trans_block_rsv;
8082510e 6663 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6664 if (ret && !err)
6665 err = ret;
7b128766 6666
7b128766 6667 nr = trans->blocks_used;
89ce8a63 6668 ret = btrfs_end_transaction_throttle(trans, root);
fcb80c2a
JB
6669 btrfs_btree_balance_dirty(root, nr);
6670
6671out:
6672 btrfs_free_block_rsv(root, rsv);
6673
3893e33b
JB
6674 if (ret && !err)
6675 err = ret;
a41ad394 6676
3893e33b 6677 return err;
39279cc3
CM
6678}
6679
d352ac68
CM
6680/*
6681 * create a new subvolume directory/inode (helper for the ioctl).
6682 */
d2fb3437 6683int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
d82a6f1d 6684 struct btrfs_root *new_root, u64 new_dirid)
39279cc3 6685{
39279cc3 6686 struct inode *inode;
76dda93c 6687 int err;
00e4e6b3 6688 u64 index = 0;
39279cc3 6689
aec7477b 6690 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d82a6f1d 6691 new_dirid, S_IFDIR | 0700, &index);
54aa1f4d 6692 if (IS_ERR(inode))
f46b5a66 6693 return PTR_ERR(inode);
39279cc3
CM
6694 inode->i_op = &btrfs_dir_inode_operations;
6695 inode->i_fop = &btrfs_dir_file_operations;
6696
39279cc3 6697 inode->i_nlink = 1;
dbe674a9 6698 btrfs_i_size_write(inode, 0);
3b96362c 6699
76dda93c
YZ
6700 err = btrfs_update_inode(trans, new_root, inode);
6701 BUG_ON(err);
cb8e7090 6702
76dda93c 6703 iput(inode);
cb8e7090 6704 return 0;
39279cc3
CM
6705}
6706
d352ac68
CM
6707/* helper function for file defrag and space balancing. This
6708 * forces readahead on a given range of bytes in an inode
6709 */
edbd8d4e 6710unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6711 struct file_ra_state *ra, struct file *file,
6712 pgoff_t offset, pgoff_t last_index)
6713{
8e7bf94f 6714 pgoff_t req_size = last_index - offset + 1;
86479a04 6715
86479a04
CM
6716 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6717 return offset + req_size;
86479a04
CM
6718}
6719
39279cc3
CM
6720struct inode *btrfs_alloc_inode(struct super_block *sb)
6721{
6722 struct btrfs_inode *ei;
2ead6ae7 6723 struct inode *inode;
39279cc3
CM
6724
6725 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6726 if (!ei)
6727 return NULL;
2ead6ae7
YZ
6728
6729 ei->root = NULL;
6730 ei->space_info = NULL;
6731 ei->generation = 0;
6732 ei->sequence = 0;
15ee9bc7 6733 ei->last_trans = 0;
257c62e1 6734 ei->last_sub_trans = 0;
e02119d5 6735 ei->logged_trans = 0;
2ead6ae7
YZ
6736 ei->delalloc_bytes = 0;
6737 ei->reserved_bytes = 0;
6738 ei->disk_i_size = 0;
6739 ei->flags = 0;
6740 ei->index_cnt = (u64)-1;
6741 ei->last_unlink_trans = 0;
6742
0ca1f7ce 6743 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6744 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6745
6746 ei->ordered_data_close = 0;
d68fc57b 6747 ei->orphan_meta_reserved = 0;
2ead6ae7 6748 ei->dummy_inode = 0;
4cb5300b 6749 ei->in_defrag = 0;
261507a0 6750 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 6751
16cdcec7
MX
6752 ei->delayed_node = NULL;
6753
2ead6ae7 6754 inode = &ei->vfs_inode;
a8067e02 6755 extent_map_tree_init(&ei->extent_tree);
f993c883
DS
6756 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6757 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
2ead6ae7 6758 mutex_init(&ei->log_mutex);
e6dcd2dc 6759 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6760 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6761 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6762 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6763 RB_CLEAR_NODE(&ei->rb_node);
6764
6765 return inode;
39279cc3
CM
6766}
6767
fa0d7e3d
NP
6768static void btrfs_i_callback(struct rcu_head *head)
6769{
6770 struct inode *inode = container_of(head, struct inode, i_rcu);
6771 INIT_LIST_HEAD(&inode->i_dentry);
6772 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6773}
6774
39279cc3
CM
6775void btrfs_destroy_inode(struct inode *inode)
6776{
e6dcd2dc 6777 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6778 struct btrfs_root *root = BTRFS_I(inode)->root;
6779
39279cc3
CM
6780 WARN_ON(!list_empty(&inode->i_dentry));
6781 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6782 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6783 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6784
a6dbd429
JB
6785 /*
6786 * This can happen where we create an inode, but somebody else also
6787 * created the same inode and we need to destroy the one we already
6788 * created.
6789 */
6790 if (!root)
6791 goto free;
6792
5a3f23d5
CM
6793 /*
6794 * Make sure we're properly removed from the ordered operation
6795 * lists.
6796 */
6797 smp_mb();
6798 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6799 spin_lock(&root->fs_info->ordered_extent_lock);
6800 list_del_init(&BTRFS_I(inode)->ordered_operations);
6801 spin_unlock(&root->fs_info->ordered_extent_lock);
6802 }
6803
d68fc57b 6804 spin_lock(&root->orphan_lock);
7b128766 6805 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
33345d01
LZ
6806 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6807 (unsigned long long)btrfs_ino(inode));
8082510e 6808 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6809 }
d68fc57b 6810 spin_unlock(&root->orphan_lock);
7b128766 6811
d397712b 6812 while (1) {
e6dcd2dc
CM
6813 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6814 if (!ordered)
6815 break;
6816 else {
d397712b
CM
6817 printk(KERN_ERR "btrfs found ordered "
6818 "extent %llu %llu on inode cleanup\n",
6819 (unsigned long long)ordered->file_offset,
6820 (unsigned long long)ordered->len);
e6dcd2dc
CM
6821 btrfs_remove_ordered_extent(inode, ordered);
6822 btrfs_put_ordered_extent(ordered);
6823 btrfs_put_ordered_extent(ordered);
6824 }
6825 }
5d4f98a2 6826 inode_tree_del(inode);
5b21f2ed 6827 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6828free:
16cdcec7 6829 btrfs_remove_delayed_node(inode);
fa0d7e3d 6830 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6831}
6832
45321ac5 6833int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6834{
6835 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6836
0af3d00b 6837 if (btrfs_root_refs(&root->root_item) == 0 &&
82d5902d 6838 !is_free_space_inode(root, inode))
45321ac5 6839 return 1;
76dda93c 6840 else
45321ac5 6841 return generic_drop_inode(inode);
76dda93c
YZ
6842}
6843
0ee0fda0 6844static void init_once(void *foo)
39279cc3
CM
6845{
6846 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6847
6848 inode_init_once(&ei->vfs_inode);
6849}
6850
6851void btrfs_destroy_cachep(void)
6852{
6853 if (btrfs_inode_cachep)
6854 kmem_cache_destroy(btrfs_inode_cachep);
6855 if (btrfs_trans_handle_cachep)
6856 kmem_cache_destroy(btrfs_trans_handle_cachep);
6857 if (btrfs_transaction_cachep)
6858 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6859 if (btrfs_path_cachep)
6860 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6861 if (btrfs_free_space_cachep)
6862 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6863}
6864
6865int btrfs_init_cachep(void)
6866{
9601e3f6
CH
6867 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6868 sizeof(struct btrfs_inode), 0,
6869 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6870 if (!btrfs_inode_cachep)
6871 goto fail;
9601e3f6
CH
6872
6873 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6874 sizeof(struct btrfs_trans_handle), 0,
6875 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6876 if (!btrfs_trans_handle_cachep)
6877 goto fail;
9601e3f6
CH
6878
6879 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6880 sizeof(struct btrfs_transaction), 0,
6881 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6882 if (!btrfs_transaction_cachep)
6883 goto fail;
9601e3f6
CH
6884
6885 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6886 sizeof(struct btrfs_path), 0,
6887 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6888 if (!btrfs_path_cachep)
6889 goto fail;
9601e3f6 6890
dc89e982
JB
6891 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6892 sizeof(struct btrfs_free_space), 0,
6893 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6894 if (!btrfs_free_space_cachep)
6895 goto fail;
6896
39279cc3
CM
6897 return 0;
6898fail:
6899 btrfs_destroy_cachep();
6900 return -ENOMEM;
6901}
6902
6903static int btrfs_getattr(struct vfsmount *mnt,
6904 struct dentry *dentry, struct kstat *stat)
6905{
6906 struct inode *inode = dentry->d_inode;
6907 generic_fillattr(inode, stat);
3394e160 6908 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6909 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6910 stat->blocks = (inode_get_bytes(inode) +
6911 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6912 return 0;
6913}
6914
75e7cb7f
LB
6915/*
6916 * If a file is moved, it will inherit the cow and compression flags of the new
6917 * directory.
6918 */
6919static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6920{
6921 struct btrfs_inode *b_dir = BTRFS_I(dir);
6922 struct btrfs_inode *b_inode = BTRFS_I(inode);
6923
6924 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6925 b_inode->flags |= BTRFS_INODE_NODATACOW;
6926 else
6927 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6928
6929 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6930 b_inode->flags |= BTRFS_INODE_COMPRESS;
6931 else
6932 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6933}
6934
d397712b
CM
6935static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6936 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6937{
6938 struct btrfs_trans_handle *trans;
6939 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6940 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6941 struct inode *new_inode = new_dentry->d_inode;
6942 struct inode *old_inode = old_dentry->d_inode;
6943 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6944 u64 index = 0;
4df27c4d 6945 u64 root_objectid;
39279cc3 6946 int ret;
33345d01 6947 u64 old_ino = btrfs_ino(old_inode);
39279cc3 6948
33345d01 6949 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
6950 return -EPERM;
6951
4df27c4d 6952 /* we only allow rename subvolume link between subvolumes */
33345d01 6953 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
6954 return -EXDEV;
6955
33345d01
LZ
6956 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6957 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 6958 return -ENOTEMPTY;
5f39d397 6959
4df27c4d
YZ
6960 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6961 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6962 return -ENOTEMPTY;
5a3f23d5
CM
6963 /*
6964 * we're using rename to replace one file with another.
6965 * and the replacement file is large. Start IO on it now so
6966 * we don't add too much work to the end of the transaction
6967 */
4baf8c92 6968 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
6969 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6970 filemap_flush(old_inode->i_mapping);
6971
76dda93c 6972 /* close the racy window with snapshot create/destroy ioctl */
33345d01 6973 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 6974 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
6975 /*
6976 * We want to reserve the absolute worst case amount of items. So if
6977 * both inodes are subvols and we need to unlink them then that would
6978 * require 4 item modifications, but if they are both normal inodes it
6979 * would require 5 item modifications, so we'll assume their normal
6980 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6981 * should cover the worst case number of items we'll modify.
6982 */
6983 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
6984 if (IS_ERR(trans)) {
6985 ret = PTR_ERR(trans);
6986 goto out_notrans;
6987 }
76dda93c 6988
4df27c4d
YZ
6989 if (dest != root)
6990 btrfs_record_root_in_trans(trans, dest);
5f39d397 6991
a5719521
YZ
6992 ret = btrfs_set_inode_index(new_dir, &index);
6993 if (ret)
6994 goto out_fail;
5a3f23d5 6995
33345d01 6996 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
6997 /* force full log commit if subvolume involved. */
6998 root->fs_info->last_trans_log_full_commit = trans->transid;
6999 } else {
a5719521
YZ
7000 ret = btrfs_insert_inode_ref(trans, dest,
7001 new_dentry->d_name.name,
7002 new_dentry->d_name.len,
33345d01
LZ
7003 old_ino,
7004 btrfs_ino(new_dir), index);
a5719521
YZ
7005 if (ret)
7006 goto out_fail;
4df27c4d
YZ
7007 /*
7008 * this is an ugly little race, but the rename is required
7009 * to make sure that if we crash, the inode is either at the
7010 * old name or the new one. pinning the log transaction lets
7011 * us make sure we don't allow a log commit to come in after
7012 * we unlink the name but before we add the new name back in.
7013 */
7014 btrfs_pin_log_trans(root);
7015 }
5a3f23d5
CM
7016 /*
7017 * make sure the inode gets flushed if it is replacing
7018 * something.
7019 */
33345d01 7020 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
5a3f23d5 7021 btrfs_add_ordered_operation(trans, root, old_inode);
5a3f23d5 7022
39279cc3
CM
7023 old_dir->i_ctime = old_dir->i_mtime = ctime;
7024 new_dir->i_ctime = new_dir->i_mtime = ctime;
7025 old_inode->i_ctime = ctime;
5f39d397 7026
12fcfd22
CM
7027 if (old_dentry->d_parent != new_dentry->d_parent)
7028 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7029
33345d01 7030 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7031 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7032 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7033 old_dentry->d_name.name,
7034 old_dentry->d_name.len);
7035 } else {
92986796
AV
7036 ret = __btrfs_unlink_inode(trans, root, old_dir,
7037 old_dentry->d_inode,
7038 old_dentry->d_name.name,
7039 old_dentry->d_name.len);
7040 if (!ret)
7041 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7042 }
7043 BUG_ON(ret);
39279cc3
CM
7044
7045 if (new_inode) {
7046 new_inode->i_ctime = CURRENT_TIME;
33345d01 7047 if (unlikely(btrfs_ino(new_inode) ==
4df27c4d
YZ
7048 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7049 root_objectid = BTRFS_I(new_inode)->location.objectid;
7050 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7051 root_objectid,
7052 new_dentry->d_name.name,
7053 new_dentry->d_name.len);
7054 BUG_ON(new_inode->i_nlink == 0);
7055 } else {
7056 ret = btrfs_unlink_inode(trans, dest, new_dir,
7057 new_dentry->d_inode,
7058 new_dentry->d_name.name,
7059 new_dentry->d_name.len);
7060 }
7061 BUG_ON(ret);
7b128766 7062 if (new_inode->i_nlink == 0) {
e02119d5 7063 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7064 BUG_ON(ret);
7b128766 7065 }
39279cc3 7066 }
aec7477b 7067
75e7cb7f
LB
7068 fixup_inode_flags(new_dir, old_inode);
7069
4df27c4d
YZ
7070 ret = btrfs_add_link(trans, new_dir, old_inode,
7071 new_dentry->d_name.name,
a5719521 7072 new_dentry->d_name.len, 0, index);
4df27c4d 7073 BUG_ON(ret);
39279cc3 7074
33345d01 7075 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7076 struct dentry *parent = dget_parent(new_dentry);
7077 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7078 dput(parent);
4df27c4d
YZ
7079 btrfs_end_log_trans(root);
7080 }
39279cc3 7081out_fail:
ab78c84d 7082 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7083out_notrans:
33345d01 7084 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
76dda93c 7085 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7086
39279cc3
CM
7087 return ret;
7088}
7089
d352ac68
CM
7090/*
7091 * some fairly slow code that needs optimization. This walks the list
7092 * of all the inodes with pending delalloc and forces them to disk.
7093 */
24bbcf04 7094int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7095{
7096 struct list_head *head = &root->fs_info->delalloc_inodes;
7097 struct btrfs_inode *binode;
5b21f2ed 7098 struct inode *inode;
ea8c2819 7099
c146afad
YZ
7100 if (root->fs_info->sb->s_flags & MS_RDONLY)
7101 return -EROFS;
7102
75eff68e 7103 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7104 while (!list_empty(head)) {
ea8c2819
CM
7105 binode = list_entry(head->next, struct btrfs_inode,
7106 delalloc_inodes);
5b21f2ed
ZY
7107 inode = igrab(&binode->vfs_inode);
7108 if (!inode)
7109 list_del_init(&binode->delalloc_inodes);
75eff68e 7110 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7111 if (inode) {
8c8bee1d 7112 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7113 if (delay_iput)
7114 btrfs_add_delayed_iput(inode);
7115 else
7116 iput(inode);
5b21f2ed
ZY
7117 }
7118 cond_resched();
75eff68e 7119 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7120 }
75eff68e 7121 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7122
7123 /* the filemap_flush will queue IO into the worker threads, but
7124 * we have to make sure the IO is actually started and that
7125 * ordered extents get created before we return
7126 */
7127 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7128 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7129 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7130 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7131 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7132 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7133 }
7134 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7135 return 0;
7136}
7137
39279cc3
CM
7138static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7139 const char *symname)
7140{
7141 struct btrfs_trans_handle *trans;
7142 struct btrfs_root *root = BTRFS_I(dir)->root;
7143 struct btrfs_path *path;
7144 struct btrfs_key key;
1832a6d5 7145 struct inode *inode = NULL;
39279cc3
CM
7146 int err;
7147 int drop_inode = 0;
7148 u64 objectid;
00e4e6b3 7149 u64 index = 0 ;
39279cc3
CM
7150 int name_len;
7151 int datasize;
5f39d397 7152 unsigned long ptr;
39279cc3 7153 struct btrfs_file_extent_item *ei;
5f39d397 7154 struct extent_buffer *leaf;
1832a6d5 7155 unsigned long nr = 0;
39279cc3
CM
7156
7157 name_len = strlen(symname) + 1;
7158 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7159 return -ENAMETOOLONG;
1832a6d5 7160
9ed74f2d
JB
7161 /*
7162 * 2 items for inode item and ref
7163 * 2 items for dir items
7164 * 1 item for xattr if selinux is on
7165 */
a22285a6
YZ
7166 trans = btrfs_start_transaction(root, 5);
7167 if (IS_ERR(trans))
7168 return PTR_ERR(trans);
1832a6d5 7169
581bb050
LZ
7170 err = btrfs_find_free_ino(root, &objectid);
7171 if (err)
7172 goto out_unlock;
7173
aec7477b 7174 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
33345d01 7175 dentry->d_name.len, btrfs_ino(dir), objectid,
d82a6f1d 7176 S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
7177 if (IS_ERR(inode)) {
7178 err = PTR_ERR(inode);
39279cc3 7179 goto out_unlock;
7cf96da3 7180 }
39279cc3 7181
2a7dba39 7182 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf
JB
7183 if (err) {
7184 drop_inode = 1;
7185 goto out_unlock;
7186 }
7187
a1b075d2 7188 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7189 if (err)
7190 drop_inode = 1;
7191 else {
7192 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7193 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7194 inode->i_fop = &btrfs_file_operations;
7195 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7196 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7197 }
39279cc3
CM
7198 if (drop_inode)
7199 goto out_unlock;
7200
7201 path = btrfs_alloc_path();
d8926bb3
MF
7202 if (!path) {
7203 err = -ENOMEM;
7204 drop_inode = 1;
7205 goto out_unlock;
7206 }
33345d01 7207 key.objectid = btrfs_ino(inode);
39279cc3 7208 key.offset = 0;
39279cc3
CM
7209 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7210 datasize = btrfs_file_extent_calc_inline_size(name_len);
7211 err = btrfs_insert_empty_item(trans, root, path, &key,
7212 datasize);
54aa1f4d
CM
7213 if (err) {
7214 drop_inode = 1;
b0839166 7215 btrfs_free_path(path);
54aa1f4d
CM
7216 goto out_unlock;
7217 }
5f39d397
CM
7218 leaf = path->nodes[0];
7219 ei = btrfs_item_ptr(leaf, path->slots[0],
7220 struct btrfs_file_extent_item);
7221 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7222 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7223 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7224 btrfs_set_file_extent_encryption(leaf, ei, 0);
7225 btrfs_set_file_extent_compression(leaf, ei, 0);
7226 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7227 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7228
39279cc3 7229 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7230 write_extent_buffer(leaf, symname, ptr, name_len);
7231 btrfs_mark_buffer_dirty(leaf);
39279cc3 7232 btrfs_free_path(path);
5f39d397 7233
39279cc3
CM
7234 inode->i_op = &btrfs_symlink_inode_operations;
7235 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7236 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7237 inode_set_bytes(inode, name_len);
dbe674a9 7238 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7239 err = btrfs_update_inode(trans, root, inode);
7240 if (err)
7241 drop_inode = 1;
39279cc3
CM
7242
7243out_unlock:
d3c2fdcf 7244 nr = trans->blocks_used;
ab78c84d 7245 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7246 if (drop_inode) {
7247 inode_dec_link_count(inode);
7248 iput(inode);
7249 }
d3c2fdcf 7250 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7251 return err;
7252}
16432985 7253
0af3d00b
JB
7254static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7255 u64 start, u64 num_bytes, u64 min_size,
7256 loff_t actual_len, u64 *alloc_hint,
7257 struct btrfs_trans_handle *trans)
d899e052 7258{
d899e052
YZ
7259 struct btrfs_root *root = BTRFS_I(inode)->root;
7260 struct btrfs_key ins;
d899e052 7261 u64 cur_offset = start;
55a61d1d 7262 u64 i_size;
d899e052 7263 int ret = 0;
0af3d00b 7264 bool own_trans = true;
d899e052 7265
0af3d00b
JB
7266 if (trans)
7267 own_trans = false;
d899e052 7268 while (num_bytes > 0) {
0af3d00b
JB
7269 if (own_trans) {
7270 trans = btrfs_start_transaction(root, 3);
7271 if (IS_ERR(trans)) {
7272 ret = PTR_ERR(trans);
7273 break;
7274 }
5a303d5d
YZ
7275 }
7276
efa56464
YZ
7277 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7278 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7279 if (ret) {
0af3d00b
JB
7280 if (own_trans)
7281 btrfs_end_transaction(trans, root);
a22285a6 7282 break;
d899e052 7283 }
5a303d5d 7284
d899e052
YZ
7285 ret = insert_reserved_file_extent(trans, inode,
7286 cur_offset, ins.objectid,
7287 ins.offset, ins.offset,
920bbbfb 7288 ins.offset, 0, 0, 0,
d899e052
YZ
7289 BTRFS_FILE_EXTENT_PREALLOC);
7290 BUG_ON(ret);
a1ed835e
CM
7291 btrfs_drop_extent_cache(inode, cur_offset,
7292 cur_offset + ins.offset -1, 0);
5a303d5d 7293
d899e052
YZ
7294 num_bytes -= ins.offset;
7295 cur_offset += ins.offset;
efa56464 7296 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7297
d899e052 7298 inode->i_ctime = CURRENT_TIME;
6cbff00f 7299 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7300 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7301 (actual_len > inode->i_size) &&
7302 (cur_offset > inode->i_size)) {
d1ea6a61 7303 if (cur_offset > actual_len)
55a61d1d 7304 i_size = actual_len;
d1ea6a61 7305 else
55a61d1d
JB
7306 i_size = cur_offset;
7307 i_size_write(inode, i_size);
7308 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7309 }
7310
d899e052
YZ
7311 ret = btrfs_update_inode(trans, root, inode);
7312 BUG_ON(ret);
d899e052 7313
0af3d00b
JB
7314 if (own_trans)
7315 btrfs_end_transaction(trans, root);
5a303d5d 7316 }
d899e052
YZ
7317 return ret;
7318}
7319
0af3d00b
JB
7320int btrfs_prealloc_file_range(struct inode *inode, int mode,
7321 u64 start, u64 num_bytes, u64 min_size,
7322 loff_t actual_len, u64 *alloc_hint)
7323{
7324 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7325 min_size, actual_len, alloc_hint,
7326 NULL);
7327}
7328
7329int btrfs_prealloc_file_range_trans(struct inode *inode,
7330 struct btrfs_trans_handle *trans, int mode,
7331 u64 start, u64 num_bytes, u64 min_size,
7332 loff_t actual_len, u64 *alloc_hint)
7333{
7334 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7335 min_size, actual_len, alloc_hint, trans);
7336}
7337
e6dcd2dc
CM
7338static int btrfs_set_page_dirty(struct page *page)
7339{
e6dcd2dc
CM
7340 return __set_page_dirty_nobuffers(page);
7341}
7342
b74c79e9 7343static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7344{
b83cc969
LZ
7345 struct btrfs_root *root = BTRFS_I(inode)->root;
7346
7347 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7348 return -EROFS;
6cbff00f 7349 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7350 return -EACCES;
b74c79e9 7351 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7352}
39279cc3 7353
6e1d5dcc 7354static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7355 .getattr = btrfs_getattr,
39279cc3
CM
7356 .lookup = btrfs_lookup,
7357 .create = btrfs_create,
7358 .unlink = btrfs_unlink,
7359 .link = btrfs_link,
7360 .mkdir = btrfs_mkdir,
7361 .rmdir = btrfs_rmdir,
7362 .rename = btrfs_rename,
7363 .symlink = btrfs_symlink,
7364 .setattr = btrfs_setattr,
618e21d5 7365 .mknod = btrfs_mknod,
95819c05
CH
7366 .setxattr = btrfs_setxattr,
7367 .getxattr = btrfs_getxattr,
5103e947 7368 .listxattr = btrfs_listxattr,
95819c05 7369 .removexattr = btrfs_removexattr,
fdebe2bd 7370 .permission = btrfs_permission,
39279cc3 7371};
6e1d5dcc 7372static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7373 .lookup = btrfs_lookup,
fdebe2bd 7374 .permission = btrfs_permission,
39279cc3 7375};
76dda93c 7376
828c0950 7377static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7378 .llseek = generic_file_llseek,
7379 .read = generic_read_dir,
cbdf5a24 7380 .readdir = btrfs_real_readdir,
34287aa3 7381 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7382#ifdef CONFIG_COMPAT
34287aa3 7383 .compat_ioctl = btrfs_ioctl,
39279cc3 7384#endif
6bf13c0c 7385 .release = btrfs_release_file,
e02119d5 7386 .fsync = btrfs_sync_file,
39279cc3
CM
7387};
7388
d1310b2e 7389static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7390 .fill_delalloc = run_delalloc_range,
065631f6 7391 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7392 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7393 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7394 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7395 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7396 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7397 .set_bit_hook = btrfs_set_bit_hook,
7398 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7399 .merge_extent_hook = btrfs_merge_extent_hook,
7400 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7401};
7402
35054394
CM
7403/*
7404 * btrfs doesn't support the bmap operation because swapfiles
7405 * use bmap to make a mapping of extents in the file. They assume
7406 * these extents won't change over the life of the file and they
7407 * use the bmap result to do IO directly to the drive.
7408 *
7409 * the btrfs bmap call would return logical addresses that aren't
7410 * suitable for IO and they also will change frequently as COW
7411 * operations happen. So, swapfile + btrfs == corruption.
7412 *
7413 * For now we're avoiding this by dropping bmap.
7414 */
7f09410b 7415static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7416 .readpage = btrfs_readpage,
7417 .writepage = btrfs_writepage,
b293f02e 7418 .writepages = btrfs_writepages,
3ab2fb5a 7419 .readpages = btrfs_readpages,
16432985 7420 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7421 .invalidatepage = btrfs_invalidatepage,
7422 .releasepage = btrfs_releasepage,
e6dcd2dc 7423 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7424 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7425};
7426
7f09410b 7427static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7428 .readpage = btrfs_readpage,
7429 .writepage = btrfs_writepage,
2bf5a725
CM
7430 .invalidatepage = btrfs_invalidatepage,
7431 .releasepage = btrfs_releasepage,
39279cc3
CM
7432};
7433
6e1d5dcc 7434static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7435 .getattr = btrfs_getattr,
7436 .setattr = btrfs_setattr,
95819c05
CH
7437 .setxattr = btrfs_setxattr,
7438 .getxattr = btrfs_getxattr,
5103e947 7439 .listxattr = btrfs_listxattr,
95819c05 7440 .removexattr = btrfs_removexattr,
fdebe2bd 7441 .permission = btrfs_permission,
1506fcc8 7442 .fiemap = btrfs_fiemap,
39279cc3 7443};
6e1d5dcc 7444static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7445 .getattr = btrfs_getattr,
7446 .setattr = btrfs_setattr,
fdebe2bd 7447 .permission = btrfs_permission,
95819c05
CH
7448 .setxattr = btrfs_setxattr,
7449 .getxattr = btrfs_getxattr,
33268eaf 7450 .listxattr = btrfs_listxattr,
95819c05 7451 .removexattr = btrfs_removexattr,
618e21d5 7452};
6e1d5dcc 7453static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7454 .readlink = generic_readlink,
7455 .follow_link = page_follow_link_light,
7456 .put_link = page_put_link,
f209561a 7457 .getattr = btrfs_getattr,
fdebe2bd 7458 .permission = btrfs_permission,
0279b4cd
JO
7459 .setxattr = btrfs_setxattr,
7460 .getxattr = btrfs_getxattr,
7461 .listxattr = btrfs_listxattr,
7462 .removexattr = btrfs_removexattr,
39279cc3 7463};
76dda93c 7464
82d339d9 7465const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7466 .d_delete = btrfs_dentry_delete,
7467};