Btrfs: Make the code for reading/writing free space cache generic
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
9ebefb18 35#include <linux/bit_spinlock.h>
5103e947 36#include <linux/xattr.h>
33268eaf 37#include <linux/posix_acl.h>
d899e052 38#include <linux/falloc.h>
5a0e3ad6 39#include <linux/slab.h>
4b4e25f2 40#include "compat.h"
39279cc3
CM
41#include "ctree.h"
42#include "disk-io.h"
43#include "transaction.h"
44#include "btrfs_inode.h"
45#include "ioctl.h"
46#include "print-tree.h"
0b86a832 47#include "volumes.h"
e6dcd2dc 48#include "ordered-data.h"
95819c05 49#include "xattr.h"
e02119d5 50#include "tree-log.h"
c8b97818 51#include "compression.h"
b4ce94de 52#include "locking.h"
dc89e982 53#include "free-space-cache.h"
581bb050 54#include "inode-map.h"
39279cc3
CM
55
56struct btrfs_iget_args {
57 u64 ino;
58 struct btrfs_root *root;
59};
60
6e1d5dcc
AD
61static const struct inode_operations btrfs_dir_inode_operations;
62static const struct inode_operations btrfs_symlink_inode_operations;
63static const struct inode_operations btrfs_dir_ro_inode_operations;
64static const struct inode_operations btrfs_special_inode_operations;
65static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
66static const struct address_space_operations btrfs_aops;
67static const struct address_space_operations btrfs_symlink_aops;
828c0950 68static const struct file_operations btrfs_dir_file_operations;
d1310b2e 69static struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
70
71static struct kmem_cache *btrfs_inode_cachep;
72struct kmem_cache *btrfs_trans_handle_cachep;
73struct kmem_cache *btrfs_transaction_cachep;
39279cc3 74struct kmem_cache *btrfs_path_cachep;
dc89e982 75struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
76
77#define S_SHIFT 12
78static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
79 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
80 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
81 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
82 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
83 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
84 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
85 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
86};
87
a41ad394
JB
88static int btrfs_setsize(struct inode *inode, loff_t newsize);
89static int btrfs_truncate(struct inode *inode);
c8b97818 90static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
771ed689
CM
91static noinline int cow_file_range(struct inode *inode,
92 struct page *locked_page,
93 u64 start, u64 end, int *page_started,
94 unsigned long *nr_written, int unlock);
7b128766 95
f34f57a3
YZ
96static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
97 struct inode *inode, struct inode *dir)
0279b4cd
JO
98{
99 int err;
100
f34f57a3 101 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 102 if (!err)
f34f57a3 103 err = btrfs_xattr_security_init(trans, inode, dir);
0279b4cd
JO
104 return err;
105}
106
c8b97818
CM
107/*
108 * this does all the hard work for inserting an inline extent into
109 * the btree. The caller should have done a btrfs_drop_extents so that
110 * no overlapping inline items exist in the btree
111 */
d397712b 112static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
c8b97818
CM
113 struct btrfs_root *root, struct inode *inode,
114 u64 start, size_t size, size_t compressed_size,
fe3f566c 115 int compress_type,
c8b97818
CM
116 struct page **compressed_pages)
117{
118 struct btrfs_key key;
119 struct btrfs_path *path;
120 struct extent_buffer *leaf;
121 struct page *page = NULL;
122 char *kaddr;
123 unsigned long ptr;
124 struct btrfs_file_extent_item *ei;
125 int err = 0;
126 int ret;
127 size_t cur_size = size;
128 size_t datasize;
129 unsigned long offset;
c8b97818 130
fe3f566c 131 if (compressed_size && compressed_pages)
c8b97818 132 cur_size = compressed_size;
c8b97818 133
d397712b
CM
134 path = btrfs_alloc_path();
135 if (!path)
c8b97818
CM
136 return -ENOMEM;
137
b9473439 138 path->leave_spinning = 1;
c8b97818
CM
139 btrfs_set_trans_block_group(trans, inode);
140
141 key.objectid = inode->i_ino;
142 key.offset = start;
143 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
c8b97818
CM
144 datasize = btrfs_file_extent_calc_inline_size(cur_size);
145
146 inode_add_bytes(inode, size);
147 ret = btrfs_insert_empty_item(trans, root, path, &key,
148 datasize);
149 BUG_ON(ret);
150 if (ret) {
151 err = ret;
c8b97818
CM
152 goto fail;
153 }
154 leaf = path->nodes[0];
155 ei = btrfs_item_ptr(leaf, path->slots[0],
156 struct btrfs_file_extent_item);
157 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
158 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
159 btrfs_set_file_extent_encryption(leaf, ei, 0);
160 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
161 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
162 ptr = btrfs_file_extent_inline_start(ei);
163
261507a0 164 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
165 struct page *cpage;
166 int i = 0;
d397712b 167 while (compressed_size > 0) {
c8b97818 168 cpage = compressed_pages[i];
5b050f04 169 cur_size = min_t(unsigned long, compressed_size,
c8b97818
CM
170 PAGE_CACHE_SIZE);
171
b9473439 172 kaddr = kmap_atomic(cpage, KM_USER0);
c8b97818 173 write_extent_buffer(leaf, kaddr, ptr, cur_size);
b9473439 174 kunmap_atomic(kaddr, KM_USER0);
c8b97818
CM
175
176 i++;
177 ptr += cur_size;
178 compressed_size -= cur_size;
179 }
180 btrfs_set_file_extent_compression(leaf, ei,
261507a0 181 compress_type);
c8b97818
CM
182 } else {
183 page = find_get_page(inode->i_mapping,
184 start >> PAGE_CACHE_SHIFT);
185 btrfs_set_file_extent_compression(leaf, ei, 0);
186 kaddr = kmap_atomic(page, KM_USER0);
187 offset = start & (PAGE_CACHE_SIZE - 1);
188 write_extent_buffer(leaf, kaddr + offset, ptr, size);
189 kunmap_atomic(kaddr, KM_USER0);
190 page_cache_release(page);
191 }
192 btrfs_mark_buffer_dirty(leaf);
193 btrfs_free_path(path);
194
c2167754
YZ
195 /*
196 * we're an inline extent, so nobody can
197 * extend the file past i_size without locking
198 * a page we already have locked.
199 *
200 * We must do any isize and inode updates
201 * before we unlock the pages. Otherwise we
202 * could end up racing with unlink.
203 */
c8b97818
CM
204 BTRFS_I(inode)->disk_i_size = inode->i_size;
205 btrfs_update_inode(trans, root, inode);
c2167754 206
c8b97818
CM
207 return 0;
208fail:
209 btrfs_free_path(path);
210 return err;
211}
212
213
214/*
215 * conditionally insert an inline extent into the file. This
216 * does the checks required to make sure the data is small enough
217 * to fit as an inline extent.
218 */
7f366cfe 219static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
c8b97818
CM
220 struct btrfs_root *root,
221 struct inode *inode, u64 start, u64 end,
fe3f566c 222 size_t compressed_size, int compress_type,
c8b97818
CM
223 struct page **compressed_pages)
224{
225 u64 isize = i_size_read(inode);
226 u64 actual_end = min(end + 1, isize);
227 u64 inline_len = actual_end - start;
228 u64 aligned_end = (end + root->sectorsize - 1) &
229 ~((u64)root->sectorsize - 1);
230 u64 hint_byte;
231 u64 data_len = inline_len;
232 int ret;
233
234 if (compressed_size)
235 data_len = compressed_size;
236
237 if (start > 0 ||
70b99e69 238 actual_end >= PAGE_CACHE_SIZE ||
c8b97818
CM
239 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
240 (!compressed_size &&
241 (actual_end & (root->sectorsize - 1)) == 0) ||
242 end + 1 < isize ||
243 data_len > root->fs_info->max_inline) {
244 return 1;
245 }
246
920bbbfb 247 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
a1ed835e 248 &hint_byte, 1);
c8b97818
CM
249 BUG_ON(ret);
250
251 if (isize > actual_end)
252 inline_len = min_t(u64, isize, actual_end);
253 ret = insert_inline_extent(trans, root, inode, start,
254 inline_len, compressed_size,
fe3f566c 255 compress_type, compressed_pages);
c8b97818 256 BUG_ON(ret);
0ca1f7ce 257 btrfs_delalloc_release_metadata(inode, end + 1 - start);
a1ed835e 258 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
c8b97818
CM
259 return 0;
260}
261
771ed689
CM
262struct async_extent {
263 u64 start;
264 u64 ram_size;
265 u64 compressed_size;
266 struct page **pages;
267 unsigned long nr_pages;
261507a0 268 int compress_type;
771ed689
CM
269 struct list_head list;
270};
271
272struct async_cow {
273 struct inode *inode;
274 struct btrfs_root *root;
275 struct page *locked_page;
276 u64 start;
277 u64 end;
278 struct list_head extents;
279 struct btrfs_work work;
280};
281
282static noinline int add_async_extent(struct async_cow *cow,
283 u64 start, u64 ram_size,
284 u64 compressed_size,
285 struct page **pages,
261507a0
LZ
286 unsigned long nr_pages,
287 int compress_type)
771ed689
CM
288{
289 struct async_extent *async_extent;
290
291 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
dac97e51 292 BUG_ON(!async_extent);
771ed689
CM
293 async_extent->start = start;
294 async_extent->ram_size = ram_size;
295 async_extent->compressed_size = compressed_size;
296 async_extent->pages = pages;
297 async_extent->nr_pages = nr_pages;
261507a0 298 async_extent->compress_type = compress_type;
771ed689
CM
299 list_add_tail(&async_extent->list, &cow->extents);
300 return 0;
301}
302
d352ac68 303/*
771ed689
CM
304 * we create compressed extents in two phases. The first
305 * phase compresses a range of pages that have already been
306 * locked (both pages and state bits are locked).
c8b97818 307 *
771ed689
CM
308 * This is done inside an ordered work queue, and the compression
309 * is spread across many cpus. The actual IO submission is step
310 * two, and the ordered work queue takes care of making sure that
311 * happens in the same order things were put onto the queue by
312 * writepages and friends.
c8b97818 313 *
771ed689
CM
314 * If this code finds it can't get good compression, it puts an
315 * entry onto the work queue to write the uncompressed bytes. This
316 * makes sure that both compressed inodes and uncompressed inodes
317 * are written in the same order that pdflush sent them down.
d352ac68 318 */
771ed689
CM
319static noinline int compress_file_range(struct inode *inode,
320 struct page *locked_page,
321 u64 start, u64 end,
322 struct async_cow *async_cow,
323 int *num_added)
b888db2b
CM
324{
325 struct btrfs_root *root = BTRFS_I(inode)->root;
326 struct btrfs_trans_handle *trans;
db94535d 327 u64 num_bytes;
db94535d 328 u64 blocksize = root->sectorsize;
c8b97818 329 u64 actual_end;
42dc7bab 330 u64 isize = i_size_read(inode);
e6dcd2dc 331 int ret = 0;
c8b97818
CM
332 struct page **pages = NULL;
333 unsigned long nr_pages;
334 unsigned long nr_pages_ret = 0;
335 unsigned long total_compressed = 0;
336 unsigned long total_in = 0;
337 unsigned long max_compressed = 128 * 1024;
771ed689 338 unsigned long max_uncompressed = 128 * 1024;
c8b97818
CM
339 int i;
340 int will_compress;
261507a0 341 int compress_type = root->fs_info->compress_type;
b888db2b 342
42dc7bab 343 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
344again:
345 will_compress = 0;
346 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
347 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
be20aa9d 348
f03d9301
CM
349 /*
350 * we don't want to send crud past the end of i_size through
351 * compression, that's just a waste of CPU time. So, if the
352 * end of the file is before the start of our current
353 * requested range of bytes, we bail out to the uncompressed
354 * cleanup code that can deal with all of this.
355 *
356 * It isn't really the fastest way to fix things, but this is a
357 * very uncommon corner.
358 */
359 if (actual_end <= start)
360 goto cleanup_and_bail_uncompressed;
361
c8b97818
CM
362 total_compressed = actual_end - start;
363
364 /* we want to make sure that amount of ram required to uncompress
365 * an extent is reasonable, so we limit the total size in ram
771ed689
CM
366 * of a compressed extent to 128k. This is a crucial number
367 * because it also controls how easily we can spread reads across
368 * cpus for decompression.
369 *
370 * We also want to make sure the amount of IO required to do
371 * a random read is reasonably small, so we limit the size of
372 * a compressed extent to 128k.
c8b97818
CM
373 */
374 total_compressed = min(total_compressed, max_uncompressed);
db94535d 375 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
be20aa9d 376 num_bytes = max(blocksize, num_bytes);
c8b97818
CM
377 total_in = 0;
378 ret = 0;
db94535d 379
771ed689
CM
380 /*
381 * we do compression for mount -o compress and when the
382 * inode has not been flagged as nocompress. This flag can
383 * change at any time if we discover bad compression ratios.
c8b97818 384 */
6cbff00f 385 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
1e701a32 386 (btrfs_test_opt(root, COMPRESS) ||
75e7cb7f
LB
387 (BTRFS_I(inode)->force_compress) ||
388 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
c8b97818 389 WARN_ON(pages);
cfbc246e 390 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
dac97e51 391 BUG_ON(!pages);
c8b97818 392
261507a0
LZ
393 if (BTRFS_I(inode)->force_compress)
394 compress_type = BTRFS_I(inode)->force_compress;
395
396 ret = btrfs_compress_pages(compress_type,
397 inode->i_mapping, start,
398 total_compressed, pages,
399 nr_pages, &nr_pages_ret,
400 &total_in,
401 &total_compressed,
402 max_compressed);
c8b97818
CM
403
404 if (!ret) {
405 unsigned long offset = total_compressed &
406 (PAGE_CACHE_SIZE - 1);
407 struct page *page = pages[nr_pages_ret - 1];
408 char *kaddr;
409
410 /* zero the tail end of the last page, we might be
411 * sending it down to disk
412 */
413 if (offset) {
414 kaddr = kmap_atomic(page, KM_USER0);
415 memset(kaddr + offset, 0,
416 PAGE_CACHE_SIZE - offset);
417 kunmap_atomic(kaddr, KM_USER0);
418 }
419 will_compress = 1;
420 }
421 }
422 if (start == 0) {
771ed689 423 trans = btrfs_join_transaction(root, 1);
3612b495 424 BUG_ON(IS_ERR(trans));
771ed689 425 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 426 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 427
c8b97818 428 /* lets try to make an inline extent */
771ed689 429 if (ret || total_in < (actual_end - start)) {
c8b97818 430 /* we didn't compress the entire range, try
771ed689 431 * to make an uncompressed inline extent.
c8b97818
CM
432 */
433 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 434 start, end, 0, 0, NULL);
c8b97818 435 } else {
771ed689 436 /* try making a compressed inline extent */
c8b97818
CM
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end,
fe3f566c
LZ
439 total_compressed,
440 compress_type, pages);
c8b97818
CM
441 }
442 if (ret == 0) {
771ed689
CM
443 /*
444 * inline extent creation worked, we don't need
445 * to create any more async work items. Unlock
446 * and free up our temp pages.
447 */
c8b97818 448 extent_clear_unlock_delalloc(inode,
a791e35e
CM
449 &BTRFS_I(inode)->io_tree,
450 start, end, NULL,
451 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
a3429ab7 452 EXTENT_CLEAR_DELALLOC |
a791e35e 453 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
c2167754
YZ
454
455 btrfs_end_transaction(trans, root);
c8b97818
CM
456 goto free_pages_out;
457 }
c2167754 458 btrfs_end_transaction(trans, root);
c8b97818
CM
459 }
460
461 if (will_compress) {
462 /*
463 * we aren't doing an inline extent round the compressed size
464 * up to a block size boundary so the allocator does sane
465 * things
466 */
467 total_compressed = (total_compressed + blocksize - 1) &
468 ~(blocksize - 1);
469
470 /*
471 * one last check to make sure the compression is really a
472 * win, compare the page count read with the blocks on disk
473 */
474 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
475 ~(PAGE_CACHE_SIZE - 1);
476 if (total_compressed >= total_in) {
477 will_compress = 0;
478 } else {
c8b97818
CM
479 num_bytes = total_in;
480 }
481 }
482 if (!will_compress && pages) {
483 /*
484 * the compression code ran but failed to make things smaller,
485 * free any pages it allocated and our page pointer array
486 */
487 for (i = 0; i < nr_pages_ret; i++) {
70b99e69 488 WARN_ON(pages[i]->mapping);
c8b97818
CM
489 page_cache_release(pages[i]);
490 }
491 kfree(pages);
492 pages = NULL;
493 total_compressed = 0;
494 nr_pages_ret = 0;
495
496 /* flag the file so we don't compress in the future */
1e701a32
CM
497 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
498 !(BTRFS_I(inode)->force_compress)) {
a555f810 499 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 500 }
c8b97818 501 }
771ed689
CM
502 if (will_compress) {
503 *num_added += 1;
c8b97818 504
771ed689
CM
505 /* the async work queues will take care of doing actual
506 * allocation on disk for these compressed pages,
507 * and will submit them to the elevator.
508 */
509 add_async_extent(async_cow, start, num_bytes,
261507a0
LZ
510 total_compressed, pages, nr_pages_ret,
511 compress_type);
179e29e4 512
24ae6365 513 if (start + num_bytes < end) {
771ed689
CM
514 start += num_bytes;
515 pages = NULL;
516 cond_resched();
517 goto again;
518 }
519 } else {
f03d9301 520cleanup_and_bail_uncompressed:
771ed689
CM
521 /*
522 * No compression, but we still need to write the pages in
523 * the file we've been given so far. redirty the locked
524 * page if it corresponds to our extent and set things up
525 * for the async work queue to run cow_file_range to do
526 * the normal delalloc dance
527 */
528 if (page_offset(locked_page) >= start &&
529 page_offset(locked_page) <= end) {
530 __set_page_dirty_nobuffers(locked_page);
531 /* unlocked later on in the async handlers */
532 }
261507a0
LZ
533 add_async_extent(async_cow, start, end - start + 1,
534 0, NULL, 0, BTRFS_COMPRESS_NONE);
771ed689
CM
535 *num_added += 1;
536 }
3b951516 537
771ed689
CM
538out:
539 return 0;
540
541free_pages_out:
542 for (i = 0; i < nr_pages_ret; i++) {
543 WARN_ON(pages[i]->mapping);
544 page_cache_release(pages[i]);
545 }
d397712b 546 kfree(pages);
771ed689
CM
547
548 goto out;
549}
550
551/*
552 * phase two of compressed writeback. This is the ordered portion
553 * of the code, which only gets called in the order the work was
554 * queued. We walk all the async extents created by compress_file_range
555 * and send them down to the disk.
556 */
557static noinline int submit_compressed_extents(struct inode *inode,
558 struct async_cow *async_cow)
559{
560 struct async_extent *async_extent;
561 u64 alloc_hint = 0;
562 struct btrfs_trans_handle *trans;
563 struct btrfs_key ins;
564 struct extent_map *em;
565 struct btrfs_root *root = BTRFS_I(inode)->root;
566 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
567 struct extent_io_tree *io_tree;
f5a84ee3 568 int ret = 0;
771ed689
CM
569
570 if (list_empty(&async_cow->extents))
571 return 0;
572
771ed689 573
d397712b 574 while (!list_empty(&async_cow->extents)) {
771ed689
CM
575 async_extent = list_entry(async_cow->extents.next,
576 struct async_extent, list);
577 list_del(&async_extent->list);
c8b97818 578
771ed689
CM
579 io_tree = &BTRFS_I(inode)->io_tree;
580
f5a84ee3 581retry:
771ed689
CM
582 /* did the compression code fall back to uncompressed IO? */
583 if (!async_extent->pages) {
584 int page_started = 0;
585 unsigned long nr_written = 0;
586
587 lock_extent(io_tree, async_extent->start,
2ac55d41
JB
588 async_extent->start +
589 async_extent->ram_size - 1, GFP_NOFS);
771ed689
CM
590
591 /* allocate blocks */
f5a84ee3
JB
592 ret = cow_file_range(inode, async_cow->locked_page,
593 async_extent->start,
594 async_extent->start +
595 async_extent->ram_size - 1,
596 &page_started, &nr_written, 0);
771ed689
CM
597
598 /*
599 * if page_started, cow_file_range inserted an
600 * inline extent and took care of all the unlocking
601 * and IO for us. Otherwise, we need to submit
602 * all those pages down to the drive.
603 */
f5a84ee3 604 if (!page_started && !ret)
771ed689
CM
605 extent_write_locked_range(io_tree,
606 inode, async_extent->start,
d397712b 607 async_extent->start +
771ed689
CM
608 async_extent->ram_size - 1,
609 btrfs_get_extent,
610 WB_SYNC_ALL);
611 kfree(async_extent);
612 cond_resched();
613 continue;
614 }
615
616 lock_extent(io_tree, async_extent->start,
617 async_extent->start + async_extent->ram_size - 1,
618 GFP_NOFS);
771ed689 619
c2167754 620 trans = btrfs_join_transaction(root, 1);
3612b495 621 BUG_ON(IS_ERR(trans));
771ed689
CM
622 ret = btrfs_reserve_extent(trans, root,
623 async_extent->compressed_size,
624 async_extent->compressed_size,
625 0, alloc_hint,
626 (u64)-1, &ins, 1);
c2167754
YZ
627 btrfs_end_transaction(trans, root);
628
f5a84ee3
JB
629 if (ret) {
630 int i;
631 for (i = 0; i < async_extent->nr_pages; i++) {
632 WARN_ON(async_extent->pages[i]->mapping);
633 page_cache_release(async_extent->pages[i]);
634 }
635 kfree(async_extent->pages);
636 async_extent->nr_pages = 0;
637 async_extent->pages = NULL;
638 unlock_extent(io_tree, async_extent->start,
639 async_extent->start +
640 async_extent->ram_size - 1, GFP_NOFS);
641 goto retry;
642 }
643
c2167754
YZ
644 /*
645 * here we're doing allocation and writeback of the
646 * compressed pages
647 */
648 btrfs_drop_extent_cache(inode, async_extent->start,
649 async_extent->start +
650 async_extent->ram_size - 1, 0);
651
771ed689 652 em = alloc_extent_map(GFP_NOFS);
c26a9203 653 BUG_ON(!em);
771ed689
CM
654 em->start = async_extent->start;
655 em->len = async_extent->ram_size;
445a6944 656 em->orig_start = em->start;
c8b97818 657
771ed689
CM
658 em->block_start = ins.objectid;
659 em->block_len = ins.offset;
660 em->bdev = root->fs_info->fs_devices->latest_bdev;
261507a0 661 em->compress_type = async_extent->compress_type;
771ed689
CM
662 set_bit(EXTENT_FLAG_PINNED, &em->flags);
663 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
664
d397712b 665 while (1) {
890871be 666 write_lock(&em_tree->lock);
771ed689 667 ret = add_extent_mapping(em_tree, em);
890871be 668 write_unlock(&em_tree->lock);
771ed689
CM
669 if (ret != -EEXIST) {
670 free_extent_map(em);
671 break;
672 }
673 btrfs_drop_extent_cache(inode, async_extent->start,
674 async_extent->start +
675 async_extent->ram_size - 1, 0);
676 }
677
261507a0
LZ
678 ret = btrfs_add_ordered_extent_compress(inode,
679 async_extent->start,
680 ins.objectid,
681 async_extent->ram_size,
682 ins.offset,
683 BTRFS_ORDERED_COMPRESSED,
684 async_extent->compress_type);
771ed689
CM
685 BUG_ON(ret);
686
771ed689
CM
687 /*
688 * clear dirty, set writeback and unlock the pages.
689 */
690 extent_clear_unlock_delalloc(inode,
a791e35e
CM
691 &BTRFS_I(inode)->io_tree,
692 async_extent->start,
693 async_extent->start +
694 async_extent->ram_size - 1,
695 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
696 EXTENT_CLEAR_UNLOCK |
a3429ab7 697 EXTENT_CLEAR_DELALLOC |
a791e35e 698 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
771ed689
CM
699
700 ret = btrfs_submit_compressed_write(inode,
d397712b
CM
701 async_extent->start,
702 async_extent->ram_size,
703 ins.objectid,
704 ins.offset, async_extent->pages,
705 async_extent->nr_pages);
771ed689
CM
706
707 BUG_ON(ret);
771ed689
CM
708 alloc_hint = ins.objectid + ins.offset;
709 kfree(async_extent);
710 cond_resched();
711 }
712
771ed689
CM
713 return 0;
714}
715
4b46fce2
JB
716static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
717 u64 num_bytes)
718{
719 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
720 struct extent_map *em;
721 u64 alloc_hint = 0;
722
723 read_lock(&em_tree->lock);
724 em = search_extent_mapping(em_tree, start, num_bytes);
725 if (em) {
726 /*
727 * if block start isn't an actual block number then find the
728 * first block in this inode and use that as a hint. If that
729 * block is also bogus then just don't worry about it.
730 */
731 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
732 free_extent_map(em);
733 em = search_extent_mapping(em_tree, 0, 0);
734 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
735 alloc_hint = em->block_start;
736 if (em)
737 free_extent_map(em);
738 } else {
739 alloc_hint = em->block_start;
740 free_extent_map(em);
741 }
742 }
743 read_unlock(&em_tree->lock);
744
745 return alloc_hint;
746}
747
771ed689
CM
748/*
749 * when extent_io.c finds a delayed allocation range in the file,
750 * the call backs end up in this code. The basic idea is to
751 * allocate extents on disk for the range, and create ordered data structs
752 * in ram to track those extents.
753 *
754 * locked_page is the page that writepage had locked already. We use
755 * it to make sure we don't do extra locks or unlocks.
756 *
757 * *page_started is set to one if we unlock locked_page and do everything
758 * required to start IO on it. It may be clean and already done with
759 * IO when we return.
760 */
761static noinline int cow_file_range(struct inode *inode,
762 struct page *locked_page,
763 u64 start, u64 end, int *page_started,
764 unsigned long *nr_written,
765 int unlock)
766{
767 struct btrfs_root *root = BTRFS_I(inode)->root;
768 struct btrfs_trans_handle *trans;
769 u64 alloc_hint = 0;
770 u64 num_bytes;
771 unsigned long ram_size;
772 u64 disk_num_bytes;
773 u64 cur_alloc_size;
774 u64 blocksize = root->sectorsize;
771ed689
CM
775 struct btrfs_key ins;
776 struct extent_map *em;
777 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
778 int ret = 0;
779
0cb59c99 780 BUG_ON(root == root->fs_info->tree_root);
771ed689 781 trans = btrfs_join_transaction(root, 1);
3612b495 782 BUG_ON(IS_ERR(trans));
771ed689 783 btrfs_set_trans_block_group(trans, inode);
0ca1f7ce 784 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
771ed689 785
771ed689
CM
786 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
787 num_bytes = max(blocksize, num_bytes);
788 disk_num_bytes = num_bytes;
789 ret = 0;
790
791 if (start == 0) {
792 /* lets try to make an inline extent */
793 ret = cow_file_range_inline(trans, root, inode,
fe3f566c 794 start, end, 0, 0, NULL);
771ed689
CM
795 if (ret == 0) {
796 extent_clear_unlock_delalloc(inode,
a791e35e
CM
797 &BTRFS_I(inode)->io_tree,
798 start, end, NULL,
799 EXTENT_CLEAR_UNLOCK_PAGE |
800 EXTENT_CLEAR_UNLOCK |
801 EXTENT_CLEAR_DELALLOC |
802 EXTENT_CLEAR_DIRTY |
803 EXTENT_SET_WRITEBACK |
804 EXTENT_END_WRITEBACK);
c2167754 805
771ed689
CM
806 *nr_written = *nr_written +
807 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
808 *page_started = 1;
809 ret = 0;
810 goto out;
811 }
812 }
813
814 BUG_ON(disk_num_bytes >
815 btrfs_super_total_bytes(&root->fs_info->super_copy));
816
4b46fce2 817 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
771ed689
CM
818 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
819
d397712b 820 while (disk_num_bytes > 0) {
a791e35e
CM
821 unsigned long op;
822
287a0ab9 823 cur_alloc_size = disk_num_bytes;
e6dcd2dc 824 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
771ed689 825 root->sectorsize, 0, alloc_hint,
e6dcd2dc 826 (u64)-1, &ins, 1);
d397712b
CM
827 BUG_ON(ret);
828
e6dcd2dc 829 em = alloc_extent_map(GFP_NOFS);
c26a9203 830 BUG_ON(!em);
e6dcd2dc 831 em->start = start;
445a6944 832 em->orig_start = em->start;
771ed689
CM
833 ram_size = ins.offset;
834 em->len = ins.offset;
c8b97818 835
e6dcd2dc 836 em->block_start = ins.objectid;
c8b97818 837 em->block_len = ins.offset;
e6dcd2dc 838 em->bdev = root->fs_info->fs_devices->latest_bdev;
7f3c74fb 839 set_bit(EXTENT_FLAG_PINNED, &em->flags);
c8b97818 840
d397712b 841 while (1) {
890871be 842 write_lock(&em_tree->lock);
e6dcd2dc 843 ret = add_extent_mapping(em_tree, em);
890871be 844 write_unlock(&em_tree->lock);
e6dcd2dc
CM
845 if (ret != -EEXIST) {
846 free_extent_map(em);
847 break;
848 }
849 btrfs_drop_extent_cache(inode, start,
c8b97818 850 start + ram_size - 1, 0);
e6dcd2dc
CM
851 }
852
98d20f67 853 cur_alloc_size = ins.offset;
e6dcd2dc 854 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 855 ram_size, cur_alloc_size, 0);
e6dcd2dc 856 BUG_ON(ret);
c8b97818 857
17d217fe
YZ
858 if (root->root_key.objectid ==
859 BTRFS_DATA_RELOC_TREE_OBJECTID) {
860 ret = btrfs_reloc_clone_csums(inode, start,
861 cur_alloc_size);
862 BUG_ON(ret);
863 }
864
d397712b 865 if (disk_num_bytes < cur_alloc_size)
3b951516 866 break;
d397712b 867
c8b97818
CM
868 /* we're not doing compressed IO, don't unlock the first
869 * page (which the caller expects to stay locked), don't
870 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
871 *
872 * Do set the Private2 bit so we know this page was properly
873 * setup for writepage
c8b97818 874 */
a791e35e
CM
875 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
876 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
877 EXTENT_SET_PRIVATE2;
878
c8b97818
CM
879 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
880 start, start + ram_size - 1,
a791e35e 881 locked_page, op);
c8b97818 882 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
883 num_bytes -= cur_alloc_size;
884 alloc_hint = ins.objectid + ins.offset;
885 start += cur_alloc_size;
b888db2b 886 }
b888db2b 887out:
771ed689 888 ret = 0;
b888db2b 889 btrfs_end_transaction(trans, root);
c8b97818 890
be20aa9d 891 return ret;
771ed689 892}
c8b97818 893
771ed689
CM
894/*
895 * work queue call back to started compression on a file and pages
896 */
897static noinline void async_cow_start(struct btrfs_work *work)
898{
899 struct async_cow *async_cow;
900 int num_added = 0;
901 async_cow = container_of(work, struct async_cow, work);
902
903 compress_file_range(async_cow->inode, async_cow->locked_page,
904 async_cow->start, async_cow->end, async_cow,
905 &num_added);
906 if (num_added == 0)
907 async_cow->inode = NULL;
908}
909
910/*
911 * work queue call back to submit previously compressed pages
912 */
913static noinline void async_cow_submit(struct btrfs_work *work)
914{
915 struct async_cow *async_cow;
916 struct btrfs_root *root;
917 unsigned long nr_pages;
918
919 async_cow = container_of(work, struct async_cow, work);
920
921 root = async_cow->root;
922 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
923 PAGE_CACHE_SHIFT;
924
925 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
926
927 if (atomic_read(&root->fs_info->async_delalloc_pages) <
928 5 * 1042 * 1024 &&
929 waitqueue_active(&root->fs_info->async_submit_wait))
930 wake_up(&root->fs_info->async_submit_wait);
931
d397712b 932 if (async_cow->inode)
771ed689 933 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 934}
c8b97818 935
771ed689
CM
936static noinline void async_cow_free(struct btrfs_work *work)
937{
938 struct async_cow *async_cow;
939 async_cow = container_of(work, struct async_cow, work);
940 kfree(async_cow);
941}
942
943static int cow_file_range_async(struct inode *inode, struct page *locked_page,
944 u64 start, u64 end, int *page_started,
945 unsigned long *nr_written)
946{
947 struct async_cow *async_cow;
948 struct btrfs_root *root = BTRFS_I(inode)->root;
949 unsigned long nr_pages;
950 u64 cur_end;
951 int limit = 10 * 1024 * 1042;
952
a3429ab7
CM
953 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
954 1, 0, NULL, GFP_NOFS);
d397712b 955 while (start < end) {
771ed689
CM
956 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
957 async_cow->inode = inode;
958 async_cow->root = root;
959 async_cow->locked_page = locked_page;
960 async_cow->start = start;
961
6cbff00f 962 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
771ed689
CM
963 cur_end = end;
964 else
965 cur_end = min(end, start + 512 * 1024 - 1);
966
967 async_cow->end = cur_end;
968 INIT_LIST_HEAD(&async_cow->extents);
969
970 async_cow->work.func = async_cow_start;
971 async_cow->work.ordered_func = async_cow_submit;
972 async_cow->work.ordered_free = async_cow_free;
973 async_cow->work.flags = 0;
974
771ed689
CM
975 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
976 PAGE_CACHE_SHIFT;
977 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
978
979 btrfs_queue_worker(&root->fs_info->delalloc_workers,
980 &async_cow->work);
981
982 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
983 wait_event(root->fs_info->async_submit_wait,
984 (atomic_read(&root->fs_info->async_delalloc_pages) <
985 limit));
986 }
987
d397712b 988 while (atomic_read(&root->fs_info->async_submit_draining) &&
771ed689
CM
989 atomic_read(&root->fs_info->async_delalloc_pages)) {
990 wait_event(root->fs_info->async_submit_wait,
991 (atomic_read(&root->fs_info->async_delalloc_pages) ==
992 0));
993 }
994
995 *nr_written += nr_pages;
996 start = cur_end + 1;
997 }
998 *page_started = 1;
999 return 0;
be20aa9d
CM
1000}
1001
d397712b 1002static noinline int csum_exist_in_range(struct btrfs_root *root,
17d217fe
YZ
1003 u64 bytenr, u64 num_bytes)
1004{
1005 int ret;
1006 struct btrfs_ordered_sum *sums;
1007 LIST_HEAD(list);
1008
07d400a6
YZ
1009 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1010 bytenr + num_bytes - 1, &list);
17d217fe
YZ
1011 if (ret == 0 && list_empty(&list))
1012 return 0;
1013
1014 while (!list_empty(&list)) {
1015 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1016 list_del(&sums->list);
1017 kfree(sums);
1018 }
1019 return 1;
1020}
1021
d352ac68
CM
1022/*
1023 * when nowcow writeback call back. This checks for snapshots or COW copies
1024 * of the extents that exist in the file, and COWs the file as required.
1025 *
1026 * If no cow copies or snapshots exist, we write directly to the existing
1027 * blocks on disk
1028 */
7f366cfe
CM
1029static noinline int run_delalloc_nocow(struct inode *inode,
1030 struct page *locked_page,
771ed689
CM
1031 u64 start, u64 end, int *page_started, int force,
1032 unsigned long *nr_written)
be20aa9d 1033{
be20aa9d 1034 struct btrfs_root *root = BTRFS_I(inode)->root;
7ea394f1 1035 struct btrfs_trans_handle *trans;
be20aa9d 1036 struct extent_buffer *leaf;
be20aa9d 1037 struct btrfs_path *path;
80ff3856 1038 struct btrfs_file_extent_item *fi;
be20aa9d 1039 struct btrfs_key found_key;
80ff3856
YZ
1040 u64 cow_start;
1041 u64 cur_offset;
1042 u64 extent_end;
5d4f98a2 1043 u64 extent_offset;
80ff3856
YZ
1044 u64 disk_bytenr;
1045 u64 num_bytes;
1046 int extent_type;
1047 int ret;
d899e052 1048 int type;
80ff3856
YZ
1049 int nocow;
1050 int check_prev = 1;
0cb59c99 1051 bool nolock = false;
be20aa9d
CM
1052
1053 path = btrfs_alloc_path();
1054 BUG_ON(!path);
0cb59c99
JB
1055 if (root == root->fs_info->tree_root) {
1056 nolock = true;
1057 trans = btrfs_join_transaction_nolock(root, 1);
1058 } else {
1059 trans = btrfs_join_transaction(root, 1);
1060 }
3612b495 1061 BUG_ON(IS_ERR(trans));
be20aa9d 1062
80ff3856
YZ
1063 cow_start = (u64)-1;
1064 cur_offset = start;
1065 while (1) {
1066 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
1067 cur_offset, 0);
1068 BUG_ON(ret < 0);
1069 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1070 leaf = path->nodes[0];
1071 btrfs_item_key_to_cpu(leaf, &found_key,
1072 path->slots[0] - 1);
1073 if (found_key.objectid == inode->i_ino &&
1074 found_key.type == BTRFS_EXTENT_DATA_KEY)
1075 path->slots[0]--;
1076 }
1077 check_prev = 0;
1078next_slot:
1079 leaf = path->nodes[0];
1080 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1081 ret = btrfs_next_leaf(root, path);
1082 if (ret < 0)
1083 BUG_ON(1);
1084 if (ret > 0)
1085 break;
1086 leaf = path->nodes[0];
1087 }
be20aa9d 1088
80ff3856
YZ
1089 nocow = 0;
1090 disk_bytenr = 0;
17d217fe 1091 num_bytes = 0;
80ff3856
YZ
1092 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1093
1094 if (found_key.objectid > inode->i_ino ||
1095 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1096 found_key.offset > end)
1097 break;
1098
1099 if (found_key.offset > cur_offset) {
1100 extent_end = found_key.offset;
e9061e21 1101 extent_type = 0;
80ff3856
YZ
1102 goto out_check;
1103 }
1104
1105 fi = btrfs_item_ptr(leaf, path->slots[0],
1106 struct btrfs_file_extent_item);
1107 extent_type = btrfs_file_extent_type(leaf, fi);
1108
d899e052
YZ
1109 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1110 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1111 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1112 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1113 extent_end = found_key.offset +
1114 btrfs_file_extent_num_bytes(leaf, fi);
1115 if (extent_end <= start) {
1116 path->slots[0]++;
1117 goto next_slot;
1118 }
17d217fe
YZ
1119 if (disk_bytenr == 0)
1120 goto out_check;
80ff3856
YZ
1121 if (btrfs_file_extent_compression(leaf, fi) ||
1122 btrfs_file_extent_encryption(leaf, fi) ||
1123 btrfs_file_extent_other_encoding(leaf, fi))
1124 goto out_check;
d899e052
YZ
1125 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1126 goto out_check;
d2fb3437 1127 if (btrfs_extent_readonly(root, disk_bytenr))
80ff3856 1128 goto out_check;
17d217fe 1129 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5d4f98a2
YZ
1130 found_key.offset -
1131 extent_offset, disk_bytenr))
17d217fe 1132 goto out_check;
5d4f98a2 1133 disk_bytenr += extent_offset;
17d217fe
YZ
1134 disk_bytenr += cur_offset - found_key.offset;
1135 num_bytes = min(end + 1, extent_end) - cur_offset;
1136 /*
1137 * force cow if csum exists in the range.
1138 * this ensure that csum for a given extent are
1139 * either valid or do not exist.
1140 */
1141 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1142 goto out_check;
80ff3856
YZ
1143 nocow = 1;
1144 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1145 extent_end = found_key.offset +
1146 btrfs_file_extent_inline_len(leaf, fi);
1147 extent_end = ALIGN(extent_end, root->sectorsize);
1148 } else {
1149 BUG_ON(1);
1150 }
1151out_check:
1152 if (extent_end <= start) {
1153 path->slots[0]++;
1154 goto next_slot;
1155 }
1156 if (!nocow) {
1157 if (cow_start == (u64)-1)
1158 cow_start = cur_offset;
1159 cur_offset = extent_end;
1160 if (cur_offset > end)
1161 break;
1162 path->slots[0]++;
1163 goto next_slot;
7ea394f1
YZ
1164 }
1165
1166 btrfs_release_path(root, path);
80ff3856
YZ
1167 if (cow_start != (u64)-1) {
1168 ret = cow_file_range(inode, locked_page, cow_start,
771ed689
CM
1169 found_key.offset - 1, page_started,
1170 nr_written, 1);
80ff3856
YZ
1171 BUG_ON(ret);
1172 cow_start = (u64)-1;
7ea394f1 1173 }
80ff3856 1174
d899e052
YZ
1175 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1176 struct extent_map *em;
1177 struct extent_map_tree *em_tree;
1178 em_tree = &BTRFS_I(inode)->extent_tree;
1179 em = alloc_extent_map(GFP_NOFS);
c26a9203 1180 BUG_ON(!em);
d899e052 1181 em->start = cur_offset;
445a6944 1182 em->orig_start = em->start;
d899e052
YZ
1183 em->len = num_bytes;
1184 em->block_len = num_bytes;
1185 em->block_start = disk_bytenr;
1186 em->bdev = root->fs_info->fs_devices->latest_bdev;
1187 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1188 while (1) {
890871be 1189 write_lock(&em_tree->lock);
d899e052 1190 ret = add_extent_mapping(em_tree, em);
890871be 1191 write_unlock(&em_tree->lock);
d899e052
YZ
1192 if (ret != -EEXIST) {
1193 free_extent_map(em);
1194 break;
1195 }
1196 btrfs_drop_extent_cache(inode, em->start,
1197 em->start + em->len - 1, 0);
1198 }
1199 type = BTRFS_ORDERED_PREALLOC;
1200 } else {
1201 type = BTRFS_ORDERED_NOCOW;
1202 }
80ff3856
YZ
1203
1204 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052
YZ
1205 num_bytes, num_bytes, type);
1206 BUG_ON(ret);
771ed689 1207
efa56464
YZ
1208 if (root->root_key.objectid ==
1209 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1210 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1211 num_bytes);
1212 BUG_ON(ret);
1213 }
1214
d899e052 1215 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
a791e35e
CM
1216 cur_offset, cur_offset + num_bytes - 1,
1217 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1218 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1219 EXTENT_SET_PRIVATE2);
80ff3856
YZ
1220 cur_offset = extent_end;
1221 if (cur_offset > end)
1222 break;
be20aa9d 1223 }
80ff3856
YZ
1224 btrfs_release_path(root, path);
1225
1226 if (cur_offset <= end && cow_start == (u64)-1)
1227 cow_start = cur_offset;
1228 if (cow_start != (u64)-1) {
1229 ret = cow_file_range(inode, locked_page, cow_start, end,
771ed689 1230 page_started, nr_written, 1);
80ff3856
YZ
1231 BUG_ON(ret);
1232 }
1233
0cb59c99
JB
1234 if (nolock) {
1235 ret = btrfs_end_transaction_nolock(trans, root);
1236 BUG_ON(ret);
1237 } else {
1238 ret = btrfs_end_transaction(trans, root);
1239 BUG_ON(ret);
1240 }
7ea394f1 1241 btrfs_free_path(path);
80ff3856 1242 return 0;
be20aa9d
CM
1243}
1244
d352ac68
CM
1245/*
1246 * extent_io.c call back to do delayed allocation processing
1247 */
c8b97818 1248static int run_delalloc_range(struct inode *inode, struct page *locked_page,
771ed689
CM
1249 u64 start, u64 end, int *page_started,
1250 unsigned long *nr_written)
be20aa9d 1251{
be20aa9d 1252 int ret;
7f366cfe 1253 struct btrfs_root *root = BTRFS_I(inode)->root;
a2135011 1254
6cbff00f 1255 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
c8b97818 1256 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1257 page_started, 1, nr_written);
6cbff00f 1258 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
d899e052 1259 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1260 page_started, 0, nr_written);
1e701a32 1261 else if (!btrfs_test_opt(root, COMPRESS) &&
75e7cb7f
LB
1262 !(BTRFS_I(inode)->force_compress) &&
1263 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
7f366cfe
CM
1264 ret = cow_file_range(inode, locked_page, start, end,
1265 page_started, nr_written, 1);
be20aa9d 1266 else
771ed689 1267 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1268 page_started, nr_written);
b888db2b
CM
1269 return ret;
1270}
1271
9ed74f2d 1272static int btrfs_split_extent_hook(struct inode *inode,
0ca1f7ce 1273 struct extent_state *orig, u64 split)
9ed74f2d 1274{
0ca1f7ce 1275 /* not delalloc, ignore it */
9ed74f2d
JB
1276 if (!(orig->state & EXTENT_DELALLOC))
1277 return 0;
1278
0ca1f7ce 1279 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1280 return 0;
1281}
1282
1283/*
1284 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1285 * extents so we can keep track of new extents that are just merged onto old
1286 * extents, such as when we are doing sequential writes, so we can properly
1287 * account for the metadata space we'll need.
1288 */
1289static int btrfs_merge_extent_hook(struct inode *inode,
1290 struct extent_state *new,
1291 struct extent_state *other)
1292{
9ed74f2d
JB
1293 /* not delalloc, ignore it */
1294 if (!(other->state & EXTENT_DELALLOC))
1295 return 0;
1296
0ca1f7ce 1297 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
9ed74f2d
JB
1298 return 0;
1299}
1300
d352ac68
CM
1301/*
1302 * extent_io.c set_bit_hook, used to track delayed allocation
1303 * bytes in this file, and to maintain the list of inodes that
1304 * have pending delalloc work to be done.
1305 */
0ca1f7ce
YZ
1306static int btrfs_set_bit_hook(struct inode *inode,
1307 struct extent_state *state, int *bits)
291d673e 1308{
9ed74f2d 1309
75eff68e
CM
1310 /*
1311 * set_bit and clear bit hooks normally require _irqsave/restore
1312 * but in this case, we are only testeing for the DELALLOC
1313 * bit, which is only set or cleared with irqs on
1314 */
0ca1f7ce 1315 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1316 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1317 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1318 int do_list = (root->root_key.objectid !=
1319 BTRFS_ROOT_TREE_OBJECTID);
9ed74f2d 1320
0ca1f7ce
YZ
1321 if (*bits & EXTENT_FIRST_DELALLOC)
1322 *bits &= ~EXTENT_FIRST_DELALLOC;
1323 else
1324 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
287a0ab9 1325
75eff68e 1326 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1327 BTRFS_I(inode)->delalloc_bytes += len;
1328 root->fs_info->delalloc_bytes += len;
0cb59c99 1329 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
ea8c2819
CM
1330 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1331 &root->fs_info->delalloc_inodes);
1332 }
75eff68e 1333 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1334 }
1335 return 0;
1336}
1337
d352ac68
CM
1338/*
1339 * extent_io.c clear_bit_hook, see set_bit_hook for why
1340 */
9ed74f2d 1341static int btrfs_clear_bit_hook(struct inode *inode,
0ca1f7ce 1342 struct extent_state *state, int *bits)
291d673e 1343{
75eff68e
CM
1344 /*
1345 * set_bit and clear bit hooks normally require _irqsave/restore
1346 * but in this case, we are only testeing for the DELALLOC
1347 * bit, which is only set or cleared with irqs on
1348 */
0ca1f7ce 1349 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1350 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1351 u64 len = state->end + 1 - state->start;
0cb59c99
JB
1352 int do_list = (root->root_key.objectid !=
1353 BTRFS_ROOT_TREE_OBJECTID);
bcbfce8a 1354
0ca1f7ce
YZ
1355 if (*bits & EXTENT_FIRST_DELALLOC)
1356 *bits &= ~EXTENT_FIRST_DELALLOC;
1357 else if (!(*bits & EXTENT_DO_ACCOUNTING))
1358 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
1359
1360 if (*bits & EXTENT_DO_ACCOUNTING)
1361 btrfs_delalloc_release_metadata(inode, len);
1362
0cb59c99
JB
1363 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1364 && do_list)
0ca1f7ce 1365 btrfs_free_reserved_data_space(inode, len);
9ed74f2d 1366
75eff68e 1367 spin_lock(&root->fs_info->delalloc_lock);
0ca1f7ce
YZ
1368 root->fs_info->delalloc_bytes -= len;
1369 BTRFS_I(inode)->delalloc_bytes -= len;
1370
0cb59c99 1371 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
ea8c2819
CM
1372 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1373 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1374 }
75eff68e 1375 spin_unlock(&root->fs_info->delalloc_lock);
291d673e
CM
1376 }
1377 return 0;
1378}
1379
d352ac68
CM
1380/*
1381 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1382 * we don't create bios that span stripes or chunks
1383 */
239b14b3 1384int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1385 size_t size, struct bio *bio,
1386 unsigned long bio_flags)
239b14b3
CM
1387{
1388 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1389 struct btrfs_mapping_tree *map_tree;
a62b9401 1390 u64 logical = (u64)bio->bi_sector << 9;
239b14b3
CM
1391 u64 length = 0;
1392 u64 map_length;
239b14b3
CM
1393 int ret;
1394
771ed689
CM
1395 if (bio_flags & EXTENT_BIO_COMPRESSED)
1396 return 0;
1397
f2d8d74d 1398 length = bio->bi_size;
239b14b3
CM
1399 map_tree = &root->fs_info->mapping_tree;
1400 map_length = length;
cea9e445 1401 ret = btrfs_map_block(map_tree, READ, logical,
f188591e 1402 &map_length, NULL, 0);
cea9e445 1403
d397712b 1404 if (map_length < length + size)
239b14b3 1405 return 1;
411fc6bc 1406 return ret;
239b14b3
CM
1407}
1408
d352ac68
CM
1409/*
1410 * in order to insert checksums into the metadata in large chunks,
1411 * we wait until bio submission time. All the pages in the bio are
1412 * checksummed and sums are attached onto the ordered extent record.
1413 *
1414 * At IO completion time the cums attached on the ordered extent record
1415 * are inserted into the btree
1416 */
d397712b
CM
1417static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1418 struct bio *bio, int mirror_num,
eaf25d93
CM
1419 unsigned long bio_flags,
1420 u64 bio_offset)
065631f6 1421{
065631f6 1422 struct btrfs_root *root = BTRFS_I(inode)->root;
065631f6 1423 int ret = 0;
e015640f 1424
d20f7043 1425 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
44b8bd7e 1426 BUG_ON(ret);
4a69a410
CM
1427 return 0;
1428}
e015640f 1429
4a69a410
CM
1430/*
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1434 *
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1437 */
b2950863 1438static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1439 int mirror_num, unsigned long bio_flags,
1440 u64 bio_offset)
4a69a410
CM
1441{
1442 struct btrfs_root *root = BTRFS_I(inode)->root;
8b712842 1443 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
44b8bd7e
CM
1444}
1445
d352ac68 1446/*
cad321ad
CM
1447 * extent_io.c submission hook. This does the right thing for csum calculation
1448 * on write, or reading the csums from the tree before a read
d352ac68 1449 */
b2950863 1450static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
1451 int mirror_num, unsigned long bio_flags,
1452 u64 bio_offset)
44b8bd7e
CM
1453{
1454 struct btrfs_root *root = BTRFS_I(inode)->root;
1455 int ret = 0;
19b9bdb0 1456 int skip_sum;
44b8bd7e 1457
6cbff00f 1458 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1459
0cb59c99
JB
1460 if (root == root->fs_info->tree_root)
1461 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1462 else
1463 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
e6dcd2dc 1464 BUG_ON(ret);
065631f6 1465
7b6d91da 1466 if (!(rw & REQ_WRITE)) {
d20f7043 1467 if (bio_flags & EXTENT_BIO_COMPRESSED) {
c8b97818
CM
1468 return btrfs_submit_compressed_read(inode, bio,
1469 mirror_num, bio_flags);
c2db1073
TI
1470 } else if (!skip_sum) {
1471 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1472 if (ret)
1473 return ret;
1474 }
4d1b5fb4 1475 goto mapit;
19b9bdb0 1476 } else if (!skip_sum) {
17d217fe
YZ
1477 /* csum items have already been cloned */
1478 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1479 goto mapit;
19b9bdb0
CM
1480 /* we're doing a write, do the async checksumming */
1481 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
44b8bd7e 1482 inode, rw, bio, mirror_num,
eaf25d93
CM
1483 bio_flags, bio_offset,
1484 __btrfs_submit_bio_start,
4a69a410 1485 __btrfs_submit_bio_done);
19b9bdb0
CM
1486 }
1487
0b86a832 1488mapit:
8b712842 1489 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
065631f6 1490}
6885f308 1491
d352ac68
CM
1492/*
1493 * given a list of ordered sums record them in the inode. This happens
1494 * at IO completion time based on sums calculated at bio submission time.
1495 */
ba1da2f4 1496static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
e6dcd2dc
CM
1497 struct inode *inode, u64 file_offset,
1498 struct list_head *list)
1499{
e6dcd2dc
CM
1500 struct btrfs_ordered_sum *sum;
1501
1502 btrfs_set_trans_block_group(trans, inode);
c6e30871
QF
1503
1504 list_for_each_entry(sum, list, list) {
d20f7043
CM
1505 btrfs_csum_file_blocks(trans,
1506 BTRFS_I(inode)->root->fs_info->csum_root, sum);
e6dcd2dc
CM
1507 }
1508 return 0;
1509}
1510
2ac55d41
JB
1511int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1512 struct extent_state **cached_state)
ea8c2819 1513{
d397712b 1514 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
771ed689 1515 WARN_ON(1);
ea8c2819 1516 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
2ac55d41 1517 cached_state, GFP_NOFS);
ea8c2819
CM
1518}
1519
d352ac68 1520/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
1521struct btrfs_writepage_fixup {
1522 struct page *page;
1523 struct btrfs_work work;
1524};
1525
b2950863 1526static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
1527{
1528 struct btrfs_writepage_fixup *fixup;
1529 struct btrfs_ordered_extent *ordered;
2ac55d41 1530 struct extent_state *cached_state = NULL;
247e743c
CM
1531 struct page *page;
1532 struct inode *inode;
1533 u64 page_start;
1534 u64 page_end;
1535
1536 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1537 page = fixup->page;
4a096752 1538again:
247e743c
CM
1539 lock_page(page);
1540 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1541 ClearPageChecked(page);
1542 goto out_page;
1543 }
1544
1545 inode = page->mapping->host;
1546 page_start = page_offset(page);
1547 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1548
2ac55d41
JB
1549 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1550 &cached_state, GFP_NOFS);
4a096752
CM
1551
1552 /* already ordered? We're done */
8b62b72b 1553 if (PagePrivate2(page))
247e743c 1554 goto out;
4a096752
CM
1555
1556 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1557 if (ordered) {
2ac55d41
JB
1558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1559 page_end, &cached_state, GFP_NOFS);
4a096752
CM
1560 unlock_page(page);
1561 btrfs_start_ordered_extent(inode, ordered, 1);
1562 goto again;
1563 }
247e743c 1564
0ca1f7ce 1565 BUG();
2ac55d41 1566 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
247e743c
CM
1567 ClearPageChecked(page);
1568out:
2ac55d41
JB
1569 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1570 &cached_state, GFP_NOFS);
247e743c
CM
1571out_page:
1572 unlock_page(page);
1573 page_cache_release(page);
b897abec 1574 kfree(fixup);
247e743c
CM
1575}
1576
1577/*
1578 * There are a few paths in the higher layers of the kernel that directly
1579 * set the page dirty bit without asking the filesystem if it is a
1580 * good idea. This causes problems because we want to make sure COW
1581 * properly happens and the data=ordered rules are followed.
1582 *
c8b97818 1583 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
1584 * hasn't been properly setup for IO. We kick off an async process
1585 * to fix it up. The async helper will wait for ordered extents, set
1586 * the delalloc bit and make it safe to write the page.
1587 */
b2950863 1588static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
1589{
1590 struct inode *inode = page->mapping->host;
1591 struct btrfs_writepage_fixup *fixup;
1592 struct btrfs_root *root = BTRFS_I(inode)->root;
247e743c 1593
8b62b72b
CM
1594 /* this page is properly in the ordered list */
1595 if (TestClearPagePrivate2(page))
247e743c
CM
1596 return 0;
1597
1598 if (PageChecked(page))
1599 return -EAGAIN;
1600
1601 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1602 if (!fixup)
1603 return -EAGAIN;
f421950f 1604
247e743c
CM
1605 SetPageChecked(page);
1606 page_cache_get(page);
1607 fixup->work.func = btrfs_writepage_fixup_worker;
1608 fixup->page = page;
1609 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1610 return -EAGAIN;
1611}
1612
d899e052
YZ
1613static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1614 struct inode *inode, u64 file_pos,
1615 u64 disk_bytenr, u64 disk_num_bytes,
1616 u64 num_bytes, u64 ram_bytes,
1617 u8 compression, u8 encryption,
1618 u16 other_encoding, int extent_type)
1619{
1620 struct btrfs_root *root = BTRFS_I(inode)->root;
1621 struct btrfs_file_extent_item *fi;
1622 struct btrfs_path *path;
1623 struct extent_buffer *leaf;
1624 struct btrfs_key ins;
1625 u64 hint;
1626 int ret;
1627
1628 path = btrfs_alloc_path();
1629 BUG_ON(!path);
1630
b9473439 1631 path->leave_spinning = 1;
a1ed835e
CM
1632
1633 /*
1634 * we may be replacing one extent in the tree with another.
1635 * The new extent is pinned in the extent map, and we don't want
1636 * to drop it from the cache until it is completely in the btree.
1637 *
1638 * So, tell btrfs_drop_extents to leave this extent in the cache.
1639 * the caller is expected to unpin it and allow it to be merged
1640 * with the others.
1641 */
920bbbfb
YZ
1642 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1643 &hint, 0);
d899e052
YZ
1644 BUG_ON(ret);
1645
1646 ins.objectid = inode->i_ino;
1647 ins.offset = file_pos;
1648 ins.type = BTRFS_EXTENT_DATA_KEY;
1649 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1650 BUG_ON(ret);
1651 leaf = path->nodes[0];
1652 fi = btrfs_item_ptr(leaf, path->slots[0],
1653 struct btrfs_file_extent_item);
1654 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1655 btrfs_set_file_extent_type(leaf, fi, extent_type);
1656 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1657 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1658 btrfs_set_file_extent_offset(leaf, fi, 0);
1659 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1660 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1661 btrfs_set_file_extent_compression(leaf, fi, compression);
1662 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1663 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439
CM
1664
1665 btrfs_unlock_up_safe(path, 1);
1666 btrfs_set_lock_blocking(leaf);
1667
d899e052
YZ
1668 btrfs_mark_buffer_dirty(leaf);
1669
1670 inode_add_bytes(inode, num_bytes);
d899e052
YZ
1671
1672 ins.objectid = disk_bytenr;
1673 ins.offset = disk_num_bytes;
1674 ins.type = BTRFS_EXTENT_ITEM_KEY;
5d4f98a2
YZ
1675 ret = btrfs_alloc_reserved_file_extent(trans, root,
1676 root->root_key.objectid,
1677 inode->i_ino, file_pos, &ins);
d899e052 1678 BUG_ON(ret);
d899e052 1679 btrfs_free_path(path);
b9473439 1680
d899e052
YZ
1681 return 0;
1682}
1683
5d13a98f
CM
1684/*
1685 * helper function for btrfs_finish_ordered_io, this
1686 * just reads in some of the csum leaves to prime them into ram
1687 * before we start the transaction. It limits the amount of btree
1688 * reads required while inside the transaction.
1689 */
d352ac68
CM
1690/* as ordered data IO finishes, this gets called so we can finish
1691 * an ordered extent if the range of bytes in the file it covers are
1692 * fully written.
1693 */
211f90e6 1694static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
e6dcd2dc 1695{
e6dcd2dc 1696 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1697 struct btrfs_trans_handle *trans = NULL;
5d13a98f 1698 struct btrfs_ordered_extent *ordered_extent = NULL;
e6dcd2dc 1699 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 1700 struct extent_state *cached_state = NULL;
261507a0 1701 int compress_type = 0;
e6dcd2dc 1702 int ret;
0cb59c99 1703 bool nolock = false;
e6dcd2dc 1704
5a1a3df1
JB
1705 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1706 end - start + 1);
ba1da2f4 1707 if (!ret)
e6dcd2dc 1708 return 0;
e6dcd2dc 1709 BUG_ON(!ordered_extent);
efd049fb 1710
0cb59c99
JB
1711 nolock = (root == root->fs_info->tree_root);
1712
c2167754
YZ
1713 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1714 BUG_ON(!list_empty(&ordered_extent->list));
1715 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1716 if (!ret) {
0cb59c99
JB
1717 if (nolock)
1718 trans = btrfs_join_transaction_nolock(root, 1);
1719 else
1720 trans = btrfs_join_transaction(root, 1);
3612b495 1721 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1722 btrfs_set_trans_block_group(trans, inode);
1723 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754
YZ
1724 ret = btrfs_update_inode(trans, root, inode);
1725 BUG_ON(ret);
c2167754
YZ
1726 }
1727 goto out;
1728 }
e6dcd2dc 1729
2ac55d41
JB
1730 lock_extent_bits(io_tree, ordered_extent->file_offset,
1731 ordered_extent->file_offset + ordered_extent->len - 1,
1732 0, &cached_state, GFP_NOFS);
e6dcd2dc 1733
0cb59c99
JB
1734 if (nolock)
1735 trans = btrfs_join_transaction_nolock(root, 1);
1736 else
1737 trans = btrfs_join_transaction(root, 1);
3612b495 1738 BUG_ON(IS_ERR(trans));
0ca1f7ce
YZ
1739 btrfs_set_trans_block_group(trans, inode);
1740 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
c2167754 1741
c8b97818 1742 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 1743 compress_type = ordered_extent->compress_type;
d899e052 1744 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 1745 BUG_ON(compress_type);
920bbbfb 1746 ret = btrfs_mark_extent_written(trans, inode,
d899e052
YZ
1747 ordered_extent->file_offset,
1748 ordered_extent->file_offset +
1749 ordered_extent->len);
1750 BUG_ON(ret);
1751 } else {
0af3d00b 1752 BUG_ON(root == root->fs_info->tree_root);
d899e052
YZ
1753 ret = insert_reserved_file_extent(trans, inode,
1754 ordered_extent->file_offset,
1755 ordered_extent->start,
1756 ordered_extent->disk_len,
1757 ordered_extent->len,
1758 ordered_extent->len,
261507a0 1759 compress_type, 0, 0,
d899e052 1760 BTRFS_FILE_EXTENT_REG);
a1ed835e
CM
1761 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1762 ordered_extent->file_offset,
1763 ordered_extent->len);
d899e052
YZ
1764 BUG_ON(ret);
1765 }
2ac55d41
JB
1766 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1767 ordered_extent->file_offset +
1768 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1769
e6dcd2dc
CM
1770 add_pending_csums(trans, inode, ordered_extent->file_offset,
1771 &ordered_extent->list);
1772
1ef30be1
JB
1773 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1774 if (!ret) {
1775 ret = btrfs_update_inode(trans, root, inode);
1776 BUG_ON(ret);
1777 }
1778 ret = 0;
c2167754 1779out:
0cb59c99
JB
1780 if (nolock) {
1781 if (trans)
1782 btrfs_end_transaction_nolock(trans, root);
1783 } else {
1784 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1785 if (trans)
1786 btrfs_end_transaction(trans, root);
1787 }
1788
e6dcd2dc
CM
1789 /* once for us */
1790 btrfs_put_ordered_extent(ordered_extent);
1791 /* once for the tree */
1792 btrfs_put_ordered_extent(ordered_extent);
1793
e6dcd2dc
CM
1794 return 0;
1795}
1796
b2950863 1797static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
1798 struct extent_state *state, int uptodate)
1799{
1abe9b8a 1800 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1801
8b62b72b 1802 ClearPagePrivate2(page);
211f90e6
CM
1803 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1804}
1805
d352ac68
CM
1806/*
1807 * When IO fails, either with EIO or csum verification fails, we
1808 * try other mirrors that might have a good copy of the data. This
1809 * io_failure_record is used to record state as we go through all the
1810 * mirrors. If another mirror has good data, the page is set up to date
1811 * and things continue. If a good mirror can't be found, the original
1812 * bio end_io callback is called to indicate things have failed.
1813 */
7e38326f
CM
1814struct io_failure_record {
1815 struct page *page;
1816 u64 start;
1817 u64 len;
1818 u64 logical;
d20f7043 1819 unsigned long bio_flags;
7e38326f
CM
1820 int last_mirror;
1821};
1822
b2950863 1823static int btrfs_io_failed_hook(struct bio *failed_bio,
1259ab75
CM
1824 struct page *page, u64 start, u64 end,
1825 struct extent_state *state)
7e38326f
CM
1826{
1827 struct io_failure_record *failrec = NULL;
1828 u64 private;
1829 struct extent_map *em;
1830 struct inode *inode = page->mapping->host;
1831 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
3b951516 1832 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
7e38326f
CM
1833 struct bio *bio;
1834 int num_copies;
1835 int ret;
1259ab75 1836 int rw;
7e38326f
CM
1837 u64 logical;
1838
1839 ret = get_state_private(failure_tree, start, &private);
1840 if (ret) {
7e38326f
CM
1841 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1842 if (!failrec)
1843 return -ENOMEM;
1844 failrec->start = start;
1845 failrec->len = end - start + 1;
1846 failrec->last_mirror = 0;
d20f7043 1847 failrec->bio_flags = 0;
7e38326f 1848
890871be 1849 read_lock(&em_tree->lock);
3b951516
CM
1850 em = lookup_extent_mapping(em_tree, start, failrec->len);
1851 if (em->start > start || em->start + em->len < start) {
1852 free_extent_map(em);
1853 em = NULL;
1854 }
890871be 1855 read_unlock(&em_tree->lock);
7e38326f
CM
1856
1857 if (!em || IS_ERR(em)) {
1858 kfree(failrec);
1859 return -EIO;
1860 }
1861 logical = start - em->start;
1862 logical = em->block_start + logical;
d20f7043
CM
1863 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1864 logical = em->block_start;
1865 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
261507a0
LZ
1866 extent_set_compress_type(&failrec->bio_flags,
1867 em->compress_type);
d20f7043 1868 }
7e38326f
CM
1869 failrec->logical = logical;
1870 free_extent_map(em);
1871 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1872 EXTENT_DIRTY, GFP_NOFS);
587f7704
CM
1873 set_state_private(failure_tree, start,
1874 (u64)(unsigned long)failrec);
7e38326f 1875 } else {
587f7704 1876 failrec = (struct io_failure_record *)(unsigned long)private;
7e38326f
CM
1877 }
1878 num_copies = btrfs_num_copies(
1879 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1880 failrec->logical, failrec->len);
1881 failrec->last_mirror++;
1882 if (!state) {
cad321ad 1883 spin_lock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1884 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1885 failrec->start,
1886 EXTENT_LOCKED);
1887 if (state && state->start != failrec->start)
1888 state = NULL;
cad321ad 1889 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
7e38326f
CM
1890 }
1891 if (!state || failrec->last_mirror > num_copies) {
1892 set_state_private(failure_tree, failrec->start, 0);
1893 clear_extent_bits(failure_tree, failrec->start,
1894 failrec->start + failrec->len - 1,
1895 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1896 kfree(failrec);
1897 return -EIO;
1898 }
1899 bio = bio_alloc(GFP_NOFS, 1);
1900 bio->bi_private = state;
1901 bio->bi_end_io = failed_bio->bi_end_io;
1902 bio->bi_sector = failrec->logical >> 9;
1903 bio->bi_bdev = failed_bio->bi_bdev;
e1c4b745 1904 bio->bi_size = 0;
d20f7043 1905
7e38326f 1906 bio_add_page(bio, page, failrec->len, start - page_offset(page));
7b6d91da 1907 if (failed_bio->bi_rw & REQ_WRITE)
1259ab75
CM
1908 rw = WRITE;
1909 else
1910 rw = READ;
1911
c2db1073 1912 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
c8b97818 1913 failrec->last_mirror,
eaf25d93 1914 failrec->bio_flags, 0);
c2db1073 1915 return ret;
1259ab75
CM
1916}
1917
d352ac68
CM
1918/*
1919 * each time an IO finishes, we do a fast check in the IO failure tree
1920 * to see if we need to process or clean up an io_failure_record
1921 */
b2950863 1922static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1259ab75
CM
1923{
1924 u64 private;
1925 u64 private_failure;
1926 struct io_failure_record *failure;
1927 int ret;
1928
1929 private = 0;
1930 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
ec29ed5b 1931 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1259ab75
CM
1932 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1933 start, &private_failure);
1934 if (ret == 0) {
1935 failure = (struct io_failure_record *)(unsigned long)
1936 private_failure;
1937 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1938 failure->start, 0);
1939 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1940 failure->start,
1941 failure->start + failure->len - 1,
1942 EXTENT_DIRTY | EXTENT_LOCKED,
1943 GFP_NOFS);
1944 kfree(failure);
1945 }
1946 }
7e38326f
CM
1947 return 0;
1948}
1949
d352ac68
CM
1950/*
1951 * when reads are done, we need to check csums to verify the data is correct
1952 * if there's a match, we allow the bio to finish. If not, we go through
1953 * the io_failure_record routines to find good copies
1954 */
b2950863 1955static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
70dec807 1956 struct extent_state *state)
07157aac 1957{
35ebb934 1958 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
07157aac 1959 struct inode *inode = page->mapping->host;
d1310b2e 1960 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
07157aac 1961 char *kaddr;
aadfeb6e 1962 u64 private = ~(u32)0;
07157aac 1963 int ret;
ff79f819
CM
1964 struct btrfs_root *root = BTRFS_I(inode)->root;
1965 u32 csum = ~(u32)0;
d1310b2e 1966
d20f7043
CM
1967 if (PageChecked(page)) {
1968 ClearPageChecked(page);
1969 goto good;
1970 }
6cbff00f
CH
1971
1972 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
17d217fe
YZ
1973 return 0;
1974
1975 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 1976 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
17d217fe
YZ
1977 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1978 GFP_NOFS);
b6cda9bc 1979 return 0;
17d217fe 1980 }
d20f7043 1981
c2e639f0 1982 if (state && state->start == start) {
70dec807
CM
1983 private = state->private;
1984 ret = 0;
1985 } else {
1986 ret = get_state_private(io_tree, start, &private);
1987 }
9ab86c8e 1988 kaddr = kmap_atomic(page, KM_USER0);
d397712b 1989 if (ret)
07157aac 1990 goto zeroit;
d397712b 1991
ff79f819
CM
1992 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
1993 btrfs_csum_final(csum, (char *)&csum);
d397712b 1994 if (csum != private)
07157aac 1995 goto zeroit;
d397712b 1996
9ab86c8e 1997 kunmap_atomic(kaddr, KM_USER0);
d20f7043 1998good:
7e38326f
CM
1999 /* if the io failure tree for this inode is non-empty,
2000 * check to see if we've recovered from a failed IO
2001 */
1259ab75 2002 btrfs_clean_io_failures(inode, start);
07157aac
CM
2003 return 0;
2004
2005zeroit:
193f284d
CM
2006 if (printk_ratelimit()) {
2007 printk(KERN_INFO "btrfs csum failed ino %lu off %llu csum %u "
2008 "private %llu\n", page->mapping->host->i_ino,
2009 (unsigned long long)start, csum,
2010 (unsigned long long)private);
2011 }
db94535d
CM
2012 memset(kaddr + offset, 1, end - start + 1);
2013 flush_dcache_page(page);
9ab86c8e 2014 kunmap_atomic(kaddr, KM_USER0);
3b951516
CM
2015 if (private == 0)
2016 return 0;
7e38326f 2017 return -EIO;
07157aac 2018}
b888db2b 2019
24bbcf04
YZ
2020struct delayed_iput {
2021 struct list_head list;
2022 struct inode *inode;
2023};
2024
2025void btrfs_add_delayed_iput(struct inode *inode)
2026{
2027 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2028 struct delayed_iput *delayed;
2029
2030 if (atomic_add_unless(&inode->i_count, -1, 1))
2031 return;
2032
2033 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2034 delayed->inode = inode;
2035
2036 spin_lock(&fs_info->delayed_iput_lock);
2037 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2038 spin_unlock(&fs_info->delayed_iput_lock);
2039}
2040
2041void btrfs_run_delayed_iputs(struct btrfs_root *root)
2042{
2043 LIST_HEAD(list);
2044 struct btrfs_fs_info *fs_info = root->fs_info;
2045 struct delayed_iput *delayed;
2046 int empty;
2047
2048 spin_lock(&fs_info->delayed_iput_lock);
2049 empty = list_empty(&fs_info->delayed_iputs);
2050 spin_unlock(&fs_info->delayed_iput_lock);
2051 if (empty)
2052 return;
2053
2054 down_read(&root->fs_info->cleanup_work_sem);
2055 spin_lock(&fs_info->delayed_iput_lock);
2056 list_splice_init(&fs_info->delayed_iputs, &list);
2057 spin_unlock(&fs_info->delayed_iput_lock);
2058
2059 while (!list_empty(&list)) {
2060 delayed = list_entry(list.next, struct delayed_iput, list);
2061 list_del(&delayed->list);
2062 iput(delayed->inode);
2063 kfree(delayed);
2064 }
2065 up_read(&root->fs_info->cleanup_work_sem);
2066}
2067
d68fc57b
YZ
2068/*
2069 * calculate extra metadata reservation when snapshotting a subvolume
2070 * contains orphan files.
2071 */
2072void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2073 struct btrfs_pending_snapshot *pending,
2074 u64 *bytes_to_reserve)
2075{
2076 struct btrfs_root *root;
2077 struct btrfs_block_rsv *block_rsv;
2078 u64 num_bytes;
2079 int index;
2080
2081 root = pending->root;
2082 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2083 return;
2084
2085 block_rsv = root->orphan_block_rsv;
2086
2087 /* orphan block reservation for the snapshot */
2088 num_bytes = block_rsv->size;
2089
2090 /*
2091 * after the snapshot is created, COWing tree blocks may use more
2092 * space than it frees. So we should make sure there is enough
2093 * reserved space.
2094 */
2095 index = trans->transid & 0x1;
2096 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2097 num_bytes += block_rsv->size -
2098 (block_rsv->reserved + block_rsv->freed[index]);
2099 }
2100
2101 *bytes_to_reserve += num_bytes;
2102}
2103
2104void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2105 struct btrfs_pending_snapshot *pending)
2106{
2107 struct btrfs_root *root = pending->root;
2108 struct btrfs_root *snap = pending->snap;
2109 struct btrfs_block_rsv *block_rsv;
2110 u64 num_bytes;
2111 int index;
2112 int ret;
2113
2114 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2115 return;
2116
2117 /* refill source subvolume's orphan block reservation */
2118 block_rsv = root->orphan_block_rsv;
2119 index = trans->transid & 0x1;
2120 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2121 num_bytes = block_rsv->size -
2122 (block_rsv->reserved + block_rsv->freed[index]);
2123 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2124 root->orphan_block_rsv,
2125 num_bytes);
2126 BUG_ON(ret);
2127 }
2128
2129 /* setup orphan block reservation for the snapshot */
2130 block_rsv = btrfs_alloc_block_rsv(snap);
2131 BUG_ON(!block_rsv);
2132
2133 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2134 snap->orphan_block_rsv = block_rsv;
2135
2136 num_bytes = root->orphan_block_rsv->size;
2137 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2138 block_rsv, num_bytes);
2139 BUG_ON(ret);
2140
2141#if 0
2142 /* insert orphan item for the snapshot */
2143 WARN_ON(!root->orphan_item_inserted);
2144 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2145 snap->root_key.objectid);
2146 BUG_ON(ret);
2147 snap->orphan_item_inserted = 1;
2148#endif
2149}
2150
2151enum btrfs_orphan_cleanup_state {
2152 ORPHAN_CLEANUP_STARTED = 1,
2153 ORPHAN_CLEANUP_DONE = 2,
2154};
2155
2156/*
2157 * This is called in transaction commmit time. If there are no orphan
2158 * files in the subvolume, it removes orphan item and frees block_rsv
2159 * structure.
2160 */
2161void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2162 struct btrfs_root *root)
2163{
2164 int ret;
2165
2166 if (!list_empty(&root->orphan_list) ||
2167 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2168 return;
2169
2170 if (root->orphan_item_inserted &&
2171 btrfs_root_refs(&root->root_item) > 0) {
2172 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2173 root->root_key.objectid);
2174 BUG_ON(ret);
2175 root->orphan_item_inserted = 0;
2176 }
2177
2178 if (root->orphan_block_rsv) {
2179 WARN_ON(root->orphan_block_rsv->size > 0);
2180 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2181 root->orphan_block_rsv = NULL;
2182 }
2183}
2184
7b128766
JB
2185/*
2186 * This creates an orphan entry for the given inode in case something goes
2187 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
2188 *
2189 * NOTE: caller of this function should reserve 5 units of metadata for
2190 * this function.
7b128766
JB
2191 */
2192int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2193{
2194 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2195 struct btrfs_block_rsv *block_rsv = NULL;
2196 int reserve = 0;
2197 int insert = 0;
2198 int ret;
7b128766 2199
d68fc57b
YZ
2200 if (!root->orphan_block_rsv) {
2201 block_rsv = btrfs_alloc_block_rsv(root);
2202 BUG_ON(!block_rsv);
2203 }
7b128766 2204
d68fc57b
YZ
2205 spin_lock(&root->orphan_lock);
2206 if (!root->orphan_block_rsv) {
2207 root->orphan_block_rsv = block_rsv;
2208 } else if (block_rsv) {
2209 btrfs_free_block_rsv(root, block_rsv);
2210 block_rsv = NULL;
7b128766 2211 }
7b128766 2212
d68fc57b
YZ
2213 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2214 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2215#if 0
2216 /*
2217 * For proper ENOSPC handling, we should do orphan
2218 * cleanup when mounting. But this introduces backward
2219 * compatibility issue.
2220 */
2221 if (!xchg(&root->orphan_item_inserted, 1))
2222 insert = 2;
2223 else
2224 insert = 1;
2225#endif
2226 insert = 1;
7b128766
JB
2227 }
2228
d68fc57b
YZ
2229 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2230 BTRFS_I(inode)->orphan_meta_reserved = 1;
2231 reserve = 1;
2232 }
2233 spin_unlock(&root->orphan_lock);
7b128766 2234
d68fc57b
YZ
2235 if (block_rsv)
2236 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
7b128766 2237
d68fc57b
YZ
2238 /* grab metadata reservation from transaction handle */
2239 if (reserve) {
2240 ret = btrfs_orphan_reserve_metadata(trans, inode);
2241 BUG_ON(ret);
2242 }
7b128766 2243
d68fc57b
YZ
2244 /* insert an orphan item to track this unlinked/truncated file */
2245 if (insert >= 1) {
2246 ret = btrfs_insert_orphan_item(trans, root, inode->i_ino);
2247 BUG_ON(ret);
2248 }
2249
2250 /* insert an orphan item to track subvolume contains orphan files */
2251 if (insert >= 2) {
2252 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2253 root->root_key.objectid);
2254 BUG_ON(ret);
2255 }
2256 return 0;
7b128766
JB
2257}
2258
2259/*
2260 * We have done the truncate/delete so we can go ahead and remove the orphan
2261 * item for this particular inode.
2262 */
2263int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2264{
2265 struct btrfs_root *root = BTRFS_I(inode)->root;
d68fc57b
YZ
2266 int delete_item = 0;
2267 int release_rsv = 0;
7b128766
JB
2268 int ret = 0;
2269
d68fc57b
YZ
2270 spin_lock(&root->orphan_lock);
2271 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2272 list_del_init(&BTRFS_I(inode)->i_orphan);
2273 delete_item = 1;
7b128766
JB
2274 }
2275
d68fc57b
YZ
2276 if (BTRFS_I(inode)->orphan_meta_reserved) {
2277 BTRFS_I(inode)->orphan_meta_reserved = 0;
2278 release_rsv = 1;
7b128766 2279 }
d68fc57b 2280 spin_unlock(&root->orphan_lock);
7b128766 2281
d68fc57b
YZ
2282 if (trans && delete_item) {
2283 ret = btrfs_del_orphan_item(trans, root, inode->i_ino);
2284 BUG_ON(ret);
2285 }
7b128766 2286
d68fc57b
YZ
2287 if (release_rsv)
2288 btrfs_orphan_release_metadata(inode);
7b128766 2289
d68fc57b 2290 return 0;
7b128766
JB
2291}
2292
2293/*
2294 * this cleans up any orphans that may be left on the list from the last use
2295 * of this root.
2296 */
66b4ffd1 2297int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766
JB
2298{
2299 struct btrfs_path *path;
2300 struct extent_buffer *leaf;
7b128766
JB
2301 struct btrfs_key key, found_key;
2302 struct btrfs_trans_handle *trans;
2303 struct inode *inode;
2304 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2305
d68fc57b 2306 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 2307 return 0;
c71bf099
YZ
2308
2309 path = btrfs_alloc_path();
66b4ffd1
JB
2310 if (!path) {
2311 ret = -ENOMEM;
2312 goto out;
2313 }
7b128766
JB
2314 path->reada = -1;
2315
2316 key.objectid = BTRFS_ORPHAN_OBJECTID;
2317 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2318 key.offset = (u64)-1;
2319
7b128766
JB
2320 while (1) {
2321 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
2322 if (ret < 0)
2323 goto out;
7b128766
JB
2324
2325 /*
2326 * if ret == 0 means we found what we were searching for, which
2327 * is weird, but possible, so only screw with path if we didnt
2328 * find the key and see if we have stuff that matches
2329 */
2330 if (ret > 0) {
66b4ffd1 2331 ret = 0;
7b128766
JB
2332 if (path->slots[0] == 0)
2333 break;
2334 path->slots[0]--;
2335 }
2336
2337 /* pull out the item */
2338 leaf = path->nodes[0];
7b128766
JB
2339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2340
2341 /* make sure the item matches what we want */
2342 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2343 break;
2344 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2345 break;
2346
2347 /* release the path since we're done with it */
2348 btrfs_release_path(root, path);
2349
2350 /*
2351 * this is where we are basically btrfs_lookup, without the
2352 * crossing root thing. we store the inode number in the
2353 * offset of the orphan item.
2354 */
5d4f98a2
YZ
2355 found_key.objectid = found_key.offset;
2356 found_key.type = BTRFS_INODE_ITEM_KEY;
2357 found_key.offset = 0;
73f73415 2358 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
66b4ffd1
JB
2359 if (IS_ERR(inode)) {
2360 ret = PTR_ERR(inode);
2361 goto out;
2362 }
7b128766 2363
7b128766
JB
2364 /*
2365 * add this inode to the orphan list so btrfs_orphan_del does
2366 * the proper thing when we hit it
2367 */
d68fc57b 2368 spin_lock(&root->orphan_lock);
7b128766 2369 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
d68fc57b 2370 spin_unlock(&root->orphan_lock);
7b128766
JB
2371
2372 /*
2373 * if this is a bad inode, means we actually succeeded in
2374 * removing the inode, but not the orphan record, which means
2375 * we need to manually delete the orphan since iput will just
2376 * do a destroy_inode
2377 */
2378 if (is_bad_inode(inode)) {
a22285a6 2379 trans = btrfs_start_transaction(root, 0);
66b4ffd1
JB
2380 if (IS_ERR(trans)) {
2381 ret = PTR_ERR(trans);
2382 goto out;
2383 }
7b128766 2384 btrfs_orphan_del(trans, inode);
5b21f2ed 2385 btrfs_end_transaction(trans, root);
7b128766
JB
2386 iput(inode);
2387 continue;
2388 }
2389
2390 /* if we have links, this was a truncate, lets do that */
2391 if (inode->i_nlink) {
a41ad394
JB
2392 if (!S_ISREG(inode->i_mode)) {
2393 WARN_ON(1);
2394 iput(inode);
2395 continue;
2396 }
7b128766 2397 nr_truncate++;
66b4ffd1 2398 ret = btrfs_truncate(inode);
7b128766
JB
2399 } else {
2400 nr_unlink++;
2401 }
2402
2403 /* this will do delete_inode and everything for us */
2404 iput(inode);
66b4ffd1
JB
2405 if (ret)
2406 goto out;
7b128766 2407 }
d68fc57b
YZ
2408 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2409
2410 if (root->orphan_block_rsv)
2411 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2412 (u64)-1);
2413
2414 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2415 trans = btrfs_join_transaction(root, 1);
66b4ffd1
JB
2416 if (!IS_ERR(trans))
2417 btrfs_end_transaction(trans, root);
d68fc57b 2418 }
7b128766
JB
2419
2420 if (nr_unlink)
2421 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2422 if (nr_truncate)
2423 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
66b4ffd1
JB
2424
2425out:
2426 if (ret)
2427 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2428 btrfs_free_path(path);
2429 return ret;
7b128766
JB
2430}
2431
46a53cca
CM
2432/*
2433 * very simple check to peek ahead in the leaf looking for xattrs. If we
2434 * don't find any xattrs, we know there can't be any acls.
2435 *
2436 * slot is the slot the inode is in, objectid is the objectid of the inode
2437 */
2438static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2439 int slot, u64 objectid)
2440{
2441 u32 nritems = btrfs_header_nritems(leaf);
2442 struct btrfs_key found_key;
2443 int scanned = 0;
2444
2445 slot++;
2446 while (slot < nritems) {
2447 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2448
2449 /* we found a different objectid, there must not be acls */
2450 if (found_key.objectid != objectid)
2451 return 0;
2452
2453 /* we found an xattr, assume we've got an acl */
2454 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2455 return 1;
2456
2457 /*
2458 * we found a key greater than an xattr key, there can't
2459 * be any acls later on
2460 */
2461 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2462 return 0;
2463
2464 slot++;
2465 scanned++;
2466
2467 /*
2468 * it goes inode, inode backrefs, xattrs, extents,
2469 * so if there are a ton of hard links to an inode there can
2470 * be a lot of backrefs. Don't waste time searching too hard,
2471 * this is just an optimization
2472 */
2473 if (scanned >= 8)
2474 break;
2475 }
2476 /* we hit the end of the leaf before we found an xattr or
2477 * something larger than an xattr. We have to assume the inode
2478 * has acls
2479 */
2480 return 1;
2481}
2482
d352ac68
CM
2483/*
2484 * read an inode from the btree into the in-memory inode
2485 */
5d4f98a2 2486static void btrfs_read_locked_inode(struct inode *inode)
39279cc3
CM
2487{
2488 struct btrfs_path *path;
5f39d397 2489 struct extent_buffer *leaf;
39279cc3 2490 struct btrfs_inode_item *inode_item;
0b86a832 2491 struct btrfs_timespec *tspec;
39279cc3
CM
2492 struct btrfs_root *root = BTRFS_I(inode)->root;
2493 struct btrfs_key location;
46a53cca 2494 int maybe_acls;
39279cc3 2495 u64 alloc_group_block;
618e21d5 2496 u32 rdev;
39279cc3
CM
2497 int ret;
2498
2499 path = btrfs_alloc_path();
2500 BUG_ON(!path);
39279cc3 2501 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 2502
39279cc3 2503 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
5f39d397 2504 if (ret)
39279cc3 2505 goto make_bad;
39279cc3 2506
5f39d397
CM
2507 leaf = path->nodes[0];
2508 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2509 struct btrfs_inode_item);
2510
2511 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2512 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2513 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2514 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
dbe674a9 2515 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
5f39d397
CM
2516
2517 tspec = btrfs_inode_atime(inode_item);
2518 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2519 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2520
2521 tspec = btrfs_inode_mtime(inode_item);
2522 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2523 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2524
2525 tspec = btrfs_inode_ctime(inode_item);
2526 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2527 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2528
a76a3cd4 2529 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 2530 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
c3027eb5 2531 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
e02119d5 2532 inode->i_generation = BTRFS_I(inode)->generation;
618e21d5 2533 inode->i_rdev = 0;
5f39d397
CM
2534 rdev = btrfs_inode_rdev(leaf, inode_item);
2535
aec7477b 2536 BTRFS_I(inode)->index_cnt = (u64)-1;
d2fb3437 2537 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
aec7477b 2538
5f39d397 2539 alloc_group_block = btrfs_inode_block_group(leaf, inode_item);
b4ce94de 2540
46a53cca
CM
2541 /*
2542 * try to precache a NULL acl entry for files that don't have
2543 * any xattrs or acls
2544 */
2545 maybe_acls = acls_after_inode_item(leaf, path->slots[0], inode->i_ino);
72c04902
AV
2546 if (!maybe_acls)
2547 cache_no_acl(inode);
46a53cca 2548
d2fb3437
YZ
2549 BTRFS_I(inode)->block_group = btrfs_find_block_group(root, 0,
2550 alloc_group_block, 0);
39279cc3
CM
2551 btrfs_free_path(path);
2552 inode_item = NULL;
2553
39279cc3 2554 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
2555 case S_IFREG:
2556 inode->i_mapping->a_ops = &btrfs_aops;
04160088 2557 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d1310b2e 2558 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
2559 inode->i_fop = &btrfs_file_operations;
2560 inode->i_op = &btrfs_file_inode_operations;
2561 break;
2562 case S_IFDIR:
2563 inode->i_fop = &btrfs_dir_file_operations;
2564 if (root == root->fs_info->tree_root)
2565 inode->i_op = &btrfs_dir_ro_inode_operations;
2566 else
2567 inode->i_op = &btrfs_dir_inode_operations;
2568 break;
2569 case S_IFLNK:
2570 inode->i_op = &btrfs_symlink_inode_operations;
2571 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 2572 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3 2573 break;
618e21d5 2574 default:
0279b4cd 2575 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
2576 init_special_inode(inode, inode->i_mode, rdev);
2577 break;
39279cc3 2578 }
6cbff00f
CH
2579
2580 btrfs_update_iflags(inode);
39279cc3
CM
2581 return;
2582
2583make_bad:
39279cc3 2584 btrfs_free_path(path);
39279cc3
CM
2585 make_bad_inode(inode);
2586}
2587
d352ac68
CM
2588/*
2589 * given a leaf and an inode, copy the inode fields into the leaf
2590 */
e02119d5
CM
2591static void fill_inode_item(struct btrfs_trans_handle *trans,
2592 struct extent_buffer *leaf,
5f39d397 2593 struct btrfs_inode_item *item,
39279cc3
CM
2594 struct inode *inode)
2595{
12ddb96c
JB
2596 if (!leaf->map_token)
2597 map_private_extent_buffer(leaf, (unsigned long)item,
2598 sizeof(struct btrfs_inode_item),
2599 &leaf->map_token, &leaf->kaddr,
2600 &leaf->map_start, &leaf->map_len,
2601 KM_USER1);
2602
5f39d397
CM
2603 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2604 btrfs_set_inode_gid(leaf, item, inode->i_gid);
dbe674a9 2605 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
5f39d397
CM
2606 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2607 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2608
2609 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2610 inode->i_atime.tv_sec);
2611 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2612 inode->i_atime.tv_nsec);
2613
2614 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2615 inode->i_mtime.tv_sec);
2616 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2617 inode->i_mtime.tv_nsec);
2618
2619 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2620 inode->i_ctime.tv_sec);
2621 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2622 inode->i_ctime.tv_nsec);
2623
a76a3cd4 2624 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
e02119d5 2625 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
c3027eb5 2626 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
e02119d5 2627 btrfs_set_inode_transid(leaf, item, trans->transid);
5f39d397 2628 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
b98b6767 2629 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
d2fb3437 2630 btrfs_set_inode_block_group(leaf, item, BTRFS_I(inode)->block_group);
12ddb96c
JB
2631
2632 if (leaf->map_token) {
2633 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
2634 leaf->map_token = NULL;
2635 }
39279cc3
CM
2636}
2637
d352ac68
CM
2638/*
2639 * copy everything in the in-memory inode into the btree.
2640 */
d397712b
CM
2641noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2642 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
2643{
2644 struct btrfs_inode_item *inode_item;
2645 struct btrfs_path *path;
5f39d397 2646 struct extent_buffer *leaf;
39279cc3
CM
2647 int ret;
2648
2649 path = btrfs_alloc_path();
2650 BUG_ON(!path);
b9473439 2651 path->leave_spinning = 1;
39279cc3
CM
2652 ret = btrfs_lookup_inode(trans, root, path,
2653 &BTRFS_I(inode)->location, 1);
2654 if (ret) {
2655 if (ret > 0)
2656 ret = -ENOENT;
2657 goto failed;
2658 }
2659
b4ce94de 2660 btrfs_unlock_up_safe(path, 1);
5f39d397
CM
2661 leaf = path->nodes[0];
2662 inode_item = btrfs_item_ptr(leaf, path->slots[0],
39279cc3
CM
2663 struct btrfs_inode_item);
2664
e02119d5 2665 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 2666 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 2667 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
2668 ret = 0;
2669failed:
39279cc3
CM
2670 btrfs_free_path(path);
2671 return ret;
2672}
2673
2674
d352ac68
CM
2675/*
2676 * unlink helper that gets used here in inode.c and in the tree logging
2677 * recovery code. It remove a link in a directory with a given name, and
2678 * also drops the back refs in the inode to the directory
2679 */
92986796
AV
2680static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2681 struct btrfs_root *root,
2682 struct inode *dir, struct inode *inode,
2683 const char *name, int name_len)
39279cc3
CM
2684{
2685 struct btrfs_path *path;
39279cc3 2686 int ret = 0;
5f39d397 2687 struct extent_buffer *leaf;
39279cc3 2688 struct btrfs_dir_item *di;
5f39d397 2689 struct btrfs_key key;
aec7477b 2690 u64 index;
39279cc3
CM
2691
2692 path = btrfs_alloc_path();
54aa1f4d
CM
2693 if (!path) {
2694 ret = -ENOMEM;
554233a6 2695 goto out;
54aa1f4d
CM
2696 }
2697
b9473439 2698 path->leave_spinning = 1;
39279cc3
CM
2699 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2700 name, name_len, -1);
2701 if (IS_ERR(di)) {
2702 ret = PTR_ERR(di);
2703 goto err;
2704 }
2705 if (!di) {
2706 ret = -ENOENT;
2707 goto err;
2708 }
5f39d397
CM
2709 leaf = path->nodes[0];
2710 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 2711 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
2712 if (ret)
2713 goto err;
39279cc3
CM
2714 btrfs_release_path(root, path);
2715
aec7477b 2716 ret = btrfs_del_inode_ref(trans, root, name, name_len,
e02119d5
CM
2717 inode->i_ino,
2718 dir->i_ino, &index);
aec7477b 2719 if (ret) {
d397712b 2720 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
aec7477b 2721 "inode %lu parent %lu\n", name_len, name,
e02119d5 2722 inode->i_ino, dir->i_ino);
aec7477b
JB
2723 goto err;
2724 }
2725
39279cc3 2726 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
aec7477b 2727 index, name, name_len, -1);
39279cc3
CM
2728 if (IS_ERR(di)) {
2729 ret = PTR_ERR(di);
2730 goto err;
2731 }
2732 if (!di) {
2733 ret = -ENOENT;
2734 goto err;
2735 }
2736 ret = btrfs_delete_one_dir_name(trans, root, path, di);
925baedd 2737 btrfs_release_path(root, path);
39279cc3 2738
e02119d5
CM
2739 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2740 inode, dir->i_ino);
49eb7e46 2741 BUG_ON(ret != 0 && ret != -ENOENT);
e02119d5
CM
2742
2743 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2744 dir, index);
6418c961
CM
2745 if (ret == -ENOENT)
2746 ret = 0;
39279cc3
CM
2747err:
2748 btrfs_free_path(path);
e02119d5
CM
2749 if (ret)
2750 goto out;
2751
2752 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2753 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2754 btrfs_update_inode(trans, root, dir);
e02119d5 2755out:
39279cc3
CM
2756 return ret;
2757}
2758
92986796
AV
2759int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2760 struct btrfs_root *root,
2761 struct inode *dir, struct inode *inode,
2762 const char *name, int name_len)
2763{
2764 int ret;
2765 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2766 if (!ret) {
2767 btrfs_drop_nlink(inode);
2768 ret = btrfs_update_inode(trans, root, inode);
2769 }
2770 return ret;
2771}
2772
2773
a22285a6
YZ
2774/* helper to check if there is any shared block in the path */
2775static int check_path_shared(struct btrfs_root *root,
2776 struct btrfs_path *path)
39279cc3 2777{
a22285a6
YZ
2778 struct extent_buffer *eb;
2779 int level;
0e4dcbef 2780 u64 refs = 1;
5df6a9f6 2781
a22285a6 2782 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
dedefd72
JB
2783 int ret;
2784
a22285a6
YZ
2785 if (!path->nodes[level])
2786 break;
2787 eb = path->nodes[level];
2788 if (!btrfs_block_can_be_shared(root, eb))
2789 continue;
2790 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2791 &refs, NULL);
2792 if (refs > 1)
2793 return 1;
5df6a9f6 2794 }
dedefd72 2795 return 0;
39279cc3
CM
2796}
2797
a22285a6
YZ
2798/*
2799 * helper to start transaction for unlink and rmdir.
2800 *
2801 * unlink and rmdir are special in btrfs, they do not always free space.
2802 * so in enospc case, we should make sure they will free space before
2803 * allowing them to use the global metadata reservation.
2804 */
2805static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2806 struct dentry *dentry)
4df27c4d 2807{
39279cc3 2808 struct btrfs_trans_handle *trans;
a22285a6 2809 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 2810 struct btrfs_path *path;
a22285a6 2811 struct btrfs_inode_ref *ref;
4df27c4d 2812 struct btrfs_dir_item *di;
7b128766 2813 struct inode *inode = dentry->d_inode;
4df27c4d 2814 u64 index;
a22285a6
YZ
2815 int check_link = 1;
2816 int err = -ENOSPC;
4df27c4d
YZ
2817 int ret;
2818
a22285a6
YZ
2819 trans = btrfs_start_transaction(root, 10);
2820 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2821 return trans;
4df27c4d 2822
a22285a6
YZ
2823 if (inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2824 return ERR_PTR(-ENOSPC);
4df27c4d 2825
a22285a6
YZ
2826 /* check if there is someone else holds reference */
2827 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2828 return ERR_PTR(-ENOSPC);
4df27c4d 2829
a22285a6
YZ
2830 if (atomic_read(&inode->i_count) > 2)
2831 return ERR_PTR(-ENOSPC);
4df27c4d 2832
a22285a6
YZ
2833 if (xchg(&root->fs_info->enospc_unlink, 1))
2834 return ERR_PTR(-ENOSPC);
2835
2836 path = btrfs_alloc_path();
2837 if (!path) {
2838 root->fs_info->enospc_unlink = 0;
2839 return ERR_PTR(-ENOMEM);
4df27c4d
YZ
2840 }
2841
a22285a6 2842 trans = btrfs_start_transaction(root, 0);
5df6a9f6 2843 if (IS_ERR(trans)) {
a22285a6
YZ
2844 btrfs_free_path(path);
2845 root->fs_info->enospc_unlink = 0;
2846 return trans;
2847 }
4df27c4d 2848
a22285a6
YZ
2849 path->skip_locking = 1;
2850 path->search_commit_root = 1;
4df27c4d 2851
a22285a6
YZ
2852 ret = btrfs_lookup_inode(trans, root, path,
2853 &BTRFS_I(dir)->location, 0);
2854 if (ret < 0) {
2855 err = ret;
2856 goto out;
2857 }
2858 if (ret == 0) {
2859 if (check_path_shared(root, path))
2860 goto out;
2861 } else {
2862 check_link = 0;
5df6a9f6 2863 }
a22285a6
YZ
2864 btrfs_release_path(root, path);
2865
2866 ret = btrfs_lookup_inode(trans, root, path,
2867 &BTRFS_I(inode)->location, 0);
2868 if (ret < 0) {
2869 err = ret;
2870 goto out;
2871 }
2872 if (ret == 0) {
2873 if (check_path_shared(root, path))
2874 goto out;
2875 } else {
2876 check_link = 0;
2877 }
2878 btrfs_release_path(root, path);
2879
2880 if (ret == 0 && S_ISREG(inode->i_mode)) {
2881 ret = btrfs_lookup_file_extent(trans, root, path,
2882 inode->i_ino, (u64)-1, 0);
2883 if (ret < 0) {
2884 err = ret;
2885 goto out;
2886 }
2887 BUG_ON(ret == 0);
2888 if (check_path_shared(root, path))
2889 goto out;
2890 btrfs_release_path(root, path);
2891 }
2892
2893 if (!check_link) {
2894 err = 0;
2895 goto out;
2896 }
2897
2898 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
2899 dentry->d_name.name, dentry->d_name.len, 0);
2900 if (IS_ERR(di)) {
2901 err = PTR_ERR(di);
2902 goto out;
2903 }
2904 if (di) {
2905 if (check_path_shared(root, path))
2906 goto out;
2907 } else {
2908 err = 0;
2909 goto out;
2910 }
2911 btrfs_release_path(root, path);
2912
2913 ref = btrfs_lookup_inode_ref(trans, root, path,
2914 dentry->d_name.name, dentry->d_name.len,
2915 inode->i_ino, dir->i_ino, 0);
2916 if (IS_ERR(ref)) {
2917 err = PTR_ERR(ref);
2918 goto out;
2919 }
2920 BUG_ON(!ref);
2921 if (check_path_shared(root, path))
2922 goto out;
2923 index = btrfs_inode_ref_index(path->nodes[0], ref);
2924 btrfs_release_path(root, path);
2925
2926 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino, index,
2927 dentry->d_name.name, dentry->d_name.len, 0);
2928 if (IS_ERR(di)) {
2929 err = PTR_ERR(di);
2930 goto out;
2931 }
2932 BUG_ON(ret == -ENOENT);
2933 if (check_path_shared(root, path))
2934 goto out;
2935
2936 err = 0;
2937out:
2938 btrfs_free_path(path);
2939 if (err) {
2940 btrfs_end_transaction(trans, root);
2941 root->fs_info->enospc_unlink = 0;
2942 return ERR_PTR(err);
2943 }
2944
2945 trans->block_rsv = &root->fs_info->global_block_rsv;
2946 return trans;
2947}
2948
2949static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2950 struct btrfs_root *root)
2951{
2952 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2953 BUG_ON(!root->fs_info->enospc_unlink);
2954 root->fs_info->enospc_unlink = 0;
2955 }
2956 btrfs_end_transaction_throttle(trans, root);
2957}
2958
2959static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2960{
2961 struct btrfs_root *root = BTRFS_I(dir)->root;
2962 struct btrfs_trans_handle *trans;
2963 struct inode *inode = dentry->d_inode;
2964 int ret;
2965 unsigned long nr = 0;
2966
2967 trans = __unlink_start_trans(dir, dentry);
2968 if (IS_ERR(trans))
2969 return PTR_ERR(trans);
5f39d397 2970
39279cc3 2971 btrfs_set_trans_block_group(trans, dir);
12fcfd22
CM
2972
2973 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2974
e02119d5
CM
2975 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
2976 dentry->d_name.name, dentry->d_name.len);
a22285a6 2977 BUG_ON(ret);
7b128766 2978
a22285a6 2979 if (inode->i_nlink == 0) {
7b128766 2980 ret = btrfs_orphan_add(trans, inode);
a22285a6
YZ
2981 BUG_ON(ret);
2982 }
7b128766 2983
d3c2fdcf 2984 nr = trans->blocks_used;
a22285a6 2985 __unlink_end_trans(trans, root);
d3c2fdcf 2986 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
2987 return ret;
2988}
2989
4df27c4d
YZ
2990int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2991 struct btrfs_root *root,
2992 struct inode *dir, u64 objectid,
2993 const char *name, int name_len)
2994{
2995 struct btrfs_path *path;
2996 struct extent_buffer *leaf;
2997 struct btrfs_dir_item *di;
2998 struct btrfs_key key;
2999 u64 index;
3000 int ret;
3001
3002 path = btrfs_alloc_path();
3003 if (!path)
3004 return -ENOMEM;
3005
3006 di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
3007 name, name_len, -1);
3008 BUG_ON(!di || IS_ERR(di));
3009
3010 leaf = path->nodes[0];
3011 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3012 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3013 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3014 BUG_ON(ret);
3015 btrfs_release_path(root, path);
3016
3017 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3018 objectid, root->root_key.objectid,
3019 dir->i_ino, &index, name, name_len);
3020 if (ret < 0) {
3021 BUG_ON(ret != -ENOENT);
3022 di = btrfs_search_dir_index_item(root, path, dir->i_ino,
3023 name, name_len);
3024 BUG_ON(!di || IS_ERR(di));
3025
3026 leaf = path->nodes[0];
3027 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3028 btrfs_release_path(root, path);
3029 index = key.offset;
3030 }
3031
3032 di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
3033 index, name, name_len, -1);
3034 BUG_ON(!di || IS_ERR(di));
3035
3036 leaf = path->nodes[0];
3037 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3038 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3039 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3040 BUG_ON(ret);
3041 btrfs_release_path(root, path);
3042
3043 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3044 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3045 ret = btrfs_update_inode(trans, root, dir);
3046 BUG_ON(ret);
4df27c4d
YZ
3047
3048 btrfs_free_path(path);
3049 return 0;
3050}
3051
39279cc3
CM
3052static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3053{
3054 struct inode *inode = dentry->d_inode;
1832a6d5 3055 int err = 0;
39279cc3 3056 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 3057 struct btrfs_trans_handle *trans;
1832a6d5 3058 unsigned long nr = 0;
39279cc3 3059
3394e160 3060 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
4df27c4d 3061 inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
134d4512
Y
3062 return -ENOTEMPTY;
3063
a22285a6
YZ
3064 trans = __unlink_start_trans(dir, dentry);
3065 if (IS_ERR(trans))
5df6a9f6 3066 return PTR_ERR(trans);
5df6a9f6 3067
39279cc3 3068 btrfs_set_trans_block_group(trans, dir);
39279cc3 3069
4df27c4d
YZ
3070 if (unlikely(inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3071 err = btrfs_unlink_subvol(trans, root, dir,
3072 BTRFS_I(inode)->location.objectid,
3073 dentry->d_name.name,
3074 dentry->d_name.len);
3075 goto out;
3076 }
3077
7b128766
JB
3078 err = btrfs_orphan_add(trans, inode);
3079 if (err)
4df27c4d 3080 goto out;
7b128766 3081
39279cc3 3082 /* now the directory is empty */
e02119d5
CM
3083 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3084 dentry->d_name.name, dentry->d_name.len);
d397712b 3085 if (!err)
dbe674a9 3086 btrfs_i_size_write(inode, 0);
4df27c4d 3087out:
d3c2fdcf 3088 nr = trans->blocks_used;
a22285a6 3089 __unlink_end_trans(trans, root);
d3c2fdcf 3090 btrfs_btree_balance_dirty(root, nr);
3954401f 3091
39279cc3
CM
3092 return err;
3093}
3094
d20f7043 3095#if 0
323ac95b
CM
3096/*
3097 * when truncating bytes in a file, it is possible to avoid reading
3098 * the leaves that contain only checksum items. This can be the
3099 * majority of the IO required to delete a large file, but it must
3100 * be done carefully.
3101 *
3102 * The keys in the level just above the leaves are checked to make sure
3103 * the lowest key in a given leaf is a csum key, and starts at an offset
3104 * after the new size.
3105 *
3106 * Then the key for the next leaf is checked to make sure it also has
3107 * a checksum item for the same file. If it does, we know our target leaf
3108 * contains only checksum items, and it can be safely freed without reading
3109 * it.
3110 *
3111 * This is just an optimization targeted at large files. It may do
3112 * nothing. It will return 0 unless things went badly.
3113 */
3114static noinline int drop_csum_leaves(struct btrfs_trans_handle *trans,
3115 struct btrfs_root *root,
3116 struct btrfs_path *path,
3117 struct inode *inode, u64 new_size)
3118{
3119 struct btrfs_key key;
3120 int ret;
3121 int nritems;
3122 struct btrfs_key found_key;
3123 struct btrfs_key other_key;
5b84e8d6
YZ
3124 struct btrfs_leaf_ref *ref;
3125 u64 leaf_gen;
3126 u64 leaf_start;
323ac95b
CM
3127
3128 path->lowest_level = 1;
3129 key.objectid = inode->i_ino;
3130 key.type = BTRFS_CSUM_ITEM_KEY;
3131 key.offset = new_size;
3132again:
3133 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3134 if (ret < 0)
3135 goto out;
3136
3137 if (path->nodes[1] == NULL) {
3138 ret = 0;
3139 goto out;
3140 }
3141 ret = 0;
3142 btrfs_node_key_to_cpu(path->nodes[1], &found_key, path->slots[1]);
3143 nritems = btrfs_header_nritems(path->nodes[1]);
3144
3145 if (!nritems)
3146 goto out;
3147
3148 if (path->slots[1] >= nritems)
3149 goto next_node;
3150
3151 /* did we find a key greater than anything we want to delete? */
3152 if (found_key.objectid > inode->i_ino ||
3153 (found_key.objectid == inode->i_ino && found_key.type > key.type))
3154 goto out;
3155
3156 /* we check the next key in the node to make sure the leave contains
3157 * only checksum items. This comparison doesn't work if our
3158 * leaf is the last one in the node
3159 */
3160 if (path->slots[1] + 1 >= nritems) {
3161next_node:
3162 /* search forward from the last key in the node, this
3163 * will bring us into the next node in the tree
3164 */
3165 btrfs_node_key_to_cpu(path->nodes[1], &found_key, nritems - 1);
3166
3167 /* unlikely, but we inc below, so check to be safe */
3168 if (found_key.offset == (u64)-1)
3169 goto out;
3170
3171 /* search_forward needs a path with locks held, do the
3172 * search again for the original key. It is possible
3173 * this will race with a balance and return a path that
3174 * we could modify, but this drop is just an optimization
3175 * and is allowed to miss some leaves.
3176 */
3177 btrfs_release_path(root, path);
3178 found_key.offset++;
3179
3180 /* setup a max key for search_forward */
3181 other_key.offset = (u64)-1;
3182 other_key.type = key.type;
3183 other_key.objectid = key.objectid;
3184
3185 path->keep_locks = 1;
3186 ret = btrfs_search_forward(root, &found_key, &other_key,
3187 path, 0, 0);
3188 path->keep_locks = 0;
3189 if (ret || found_key.objectid != key.objectid ||
3190 found_key.type != key.type) {
3191 ret = 0;
3192 goto out;
3193 }
3194
3195 key.offset = found_key.offset;
3196 btrfs_release_path(root, path);
3197 cond_resched();
3198 goto again;
3199 }
3200
3201 /* we know there's one more slot after us in the tree,
3202 * read that key so we can verify it is also a checksum item
3203 */
3204 btrfs_node_key_to_cpu(path->nodes[1], &other_key, path->slots[1] + 1);
3205
3206 if (found_key.objectid < inode->i_ino)
3207 goto next_key;
3208
3209 if (found_key.type != key.type || found_key.offset < new_size)
3210 goto next_key;
3211
3212 /*
3213 * if the key for the next leaf isn't a csum key from this objectid,
3214 * we can't be sure there aren't good items inside this leaf.
3215 * Bail out
3216 */
3217 if (other_key.objectid != inode->i_ino || other_key.type != key.type)
3218 goto out;
3219
5b84e8d6
YZ
3220 leaf_start = btrfs_node_blockptr(path->nodes[1], path->slots[1]);
3221 leaf_gen = btrfs_node_ptr_generation(path->nodes[1], path->slots[1]);
323ac95b
CM
3222 /*
3223 * it is safe to delete this leaf, it contains only
3224 * csum items from this inode at an offset >= new_size
3225 */
5b84e8d6 3226 ret = btrfs_del_leaf(trans, root, path, leaf_start);
323ac95b
CM
3227 BUG_ON(ret);
3228
5b84e8d6
YZ
3229 if (root->ref_cows && leaf_gen < trans->transid) {
3230 ref = btrfs_alloc_leaf_ref(root, 0);
3231 if (ref) {
3232 ref->root_gen = root->root_key.offset;
3233 ref->bytenr = leaf_start;
3234 ref->owner = 0;
3235 ref->generation = leaf_gen;
3236 ref->nritems = 0;
3237
bd56b302
CM
3238 btrfs_sort_leaf_ref(ref);
3239
5b84e8d6
YZ
3240 ret = btrfs_add_leaf_ref(root, ref, 0);
3241 WARN_ON(ret);
3242 btrfs_free_leaf_ref(root, ref);
3243 } else {
3244 WARN_ON(1);
3245 }
3246 }
323ac95b
CM
3247next_key:
3248 btrfs_release_path(root, path);
3249
3250 if (other_key.objectid == inode->i_ino &&
3251 other_key.type == key.type && other_key.offset > key.offset) {
3252 key.offset = other_key.offset;
3253 cond_resched();
3254 goto again;
3255 }
3256 ret = 0;
3257out:
3258 /* fixup any changes we've made to the path */
3259 path->lowest_level = 0;
3260 path->keep_locks = 0;
3261 btrfs_release_path(root, path);
3262 return ret;
3263}
3264
d20f7043
CM
3265#endif
3266
39279cc3
CM
3267/*
3268 * this can truncate away extent items, csum items and directory items.
3269 * It starts at a high offset and removes keys until it can't find
d352ac68 3270 * any higher than new_size
39279cc3
CM
3271 *
3272 * csum items that cross the new i_size are truncated to the new size
3273 * as well.
7b128766
JB
3274 *
3275 * min_type is the minimum key type to truncate down to. If set to 0, this
3276 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 3277 */
8082510e
YZ
3278int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3279 struct btrfs_root *root,
3280 struct inode *inode,
3281 u64 new_size, u32 min_type)
39279cc3 3282{
39279cc3 3283 struct btrfs_path *path;
5f39d397 3284 struct extent_buffer *leaf;
39279cc3 3285 struct btrfs_file_extent_item *fi;
8082510e
YZ
3286 struct btrfs_key key;
3287 struct btrfs_key found_key;
39279cc3 3288 u64 extent_start = 0;
db94535d 3289 u64 extent_num_bytes = 0;
5d4f98a2 3290 u64 extent_offset = 0;
39279cc3 3291 u64 item_end = 0;
8082510e
YZ
3292 u64 mask = root->sectorsize - 1;
3293 u32 found_type = (u8)-1;
39279cc3
CM
3294 int found_extent;
3295 int del_item;
85e21bac
CM
3296 int pending_del_nr = 0;
3297 int pending_del_slot = 0;
179e29e4 3298 int extent_type = -1;
771ed689 3299 int encoding;
8082510e
YZ
3300 int ret;
3301 int err = 0;
3302
3303 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 3304
0af3d00b 3305 if (root->ref_cows || root == root->fs_info->tree_root)
5b21f2ed 3306 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
8082510e 3307
39279cc3
CM
3308 path = btrfs_alloc_path();
3309 BUG_ON(!path);
33c17ad5 3310 path->reada = -1;
5f39d397 3311
39279cc3
CM
3312 key.objectid = inode->i_ino;
3313 key.offset = (u64)-1;
5f39d397
CM
3314 key.type = (u8)-1;
3315
85e21bac 3316search_again:
b9473439 3317 path->leave_spinning = 1;
85e21bac 3318 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
3319 if (ret < 0) {
3320 err = ret;
3321 goto out;
3322 }
d397712b 3323
85e21bac 3324 if (ret > 0) {
e02119d5
CM
3325 /* there are no items in the tree for us to truncate, we're
3326 * done
3327 */
8082510e
YZ
3328 if (path->slots[0] == 0)
3329 goto out;
85e21bac
CM
3330 path->slots[0]--;
3331 }
3332
d397712b 3333 while (1) {
39279cc3 3334 fi = NULL;
5f39d397
CM
3335 leaf = path->nodes[0];
3336 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3337 found_type = btrfs_key_type(&found_key);
771ed689 3338 encoding = 0;
39279cc3 3339
5f39d397 3340 if (found_key.objectid != inode->i_ino)
39279cc3 3341 break;
5f39d397 3342
85e21bac 3343 if (found_type < min_type)
39279cc3
CM
3344 break;
3345
5f39d397 3346 item_end = found_key.offset;
39279cc3 3347 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 3348 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 3349 struct btrfs_file_extent_item);
179e29e4 3350 extent_type = btrfs_file_extent_type(leaf, fi);
771ed689
CM
3351 encoding = btrfs_file_extent_compression(leaf, fi);
3352 encoding |= btrfs_file_extent_encryption(leaf, fi);
3353 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3354
179e29e4 3355 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 3356 item_end +=
db94535d 3357 btrfs_file_extent_num_bytes(leaf, fi);
179e29e4 3358 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 3359 item_end += btrfs_file_extent_inline_len(leaf,
c8b97818 3360 fi);
39279cc3 3361 }
008630c1 3362 item_end--;
39279cc3 3363 }
8082510e
YZ
3364 if (found_type > min_type) {
3365 del_item = 1;
3366 } else {
3367 if (item_end < new_size)
b888db2b 3368 break;
8082510e
YZ
3369 if (found_key.offset >= new_size)
3370 del_item = 1;
3371 else
3372 del_item = 0;
39279cc3 3373 }
39279cc3 3374 found_extent = 0;
39279cc3 3375 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
3376 if (found_type != BTRFS_EXTENT_DATA_KEY)
3377 goto delete;
3378
3379 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 3380 u64 num_dec;
db94535d 3381 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
771ed689 3382 if (!del_item && !encoding) {
db94535d
CM
3383 u64 orig_num_bytes =
3384 btrfs_file_extent_num_bytes(leaf, fi);
e02119d5 3385 extent_num_bytes = new_size -
5f39d397 3386 found_key.offset + root->sectorsize - 1;
b1632b10
Y
3387 extent_num_bytes = extent_num_bytes &
3388 ~((u64)root->sectorsize - 1);
db94535d
CM
3389 btrfs_set_file_extent_num_bytes(leaf, fi,
3390 extent_num_bytes);
3391 num_dec = (orig_num_bytes -
9069218d 3392 extent_num_bytes);
e02119d5 3393 if (root->ref_cows && extent_start != 0)
a76a3cd4 3394 inode_sub_bytes(inode, num_dec);
5f39d397 3395 btrfs_mark_buffer_dirty(leaf);
39279cc3 3396 } else {
db94535d
CM
3397 extent_num_bytes =
3398 btrfs_file_extent_disk_num_bytes(leaf,
3399 fi);
5d4f98a2
YZ
3400 extent_offset = found_key.offset -
3401 btrfs_file_extent_offset(leaf, fi);
3402
39279cc3 3403 /* FIXME blocksize != 4096 */
9069218d 3404 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
3405 if (extent_start != 0) {
3406 found_extent = 1;
e02119d5 3407 if (root->ref_cows)
a76a3cd4 3408 inode_sub_bytes(inode, num_dec);
e02119d5 3409 }
39279cc3 3410 }
9069218d 3411 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
3412 /*
3413 * we can't truncate inline items that have had
3414 * special encodings
3415 */
3416 if (!del_item &&
3417 btrfs_file_extent_compression(leaf, fi) == 0 &&
3418 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3419 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
e02119d5
CM
3420 u32 size = new_size - found_key.offset;
3421
3422 if (root->ref_cows) {
a76a3cd4
YZ
3423 inode_sub_bytes(inode, item_end + 1 -
3424 new_size);
e02119d5
CM
3425 }
3426 size =
3427 btrfs_file_extent_calc_inline_size(size);
9069218d 3428 ret = btrfs_truncate_item(trans, root, path,
e02119d5 3429 size, 1);
9069218d 3430 BUG_ON(ret);
e02119d5 3431 } else if (root->ref_cows) {
a76a3cd4
YZ
3432 inode_sub_bytes(inode, item_end + 1 -
3433 found_key.offset);
9069218d 3434 }
39279cc3 3435 }
179e29e4 3436delete:
39279cc3 3437 if (del_item) {
85e21bac
CM
3438 if (!pending_del_nr) {
3439 /* no pending yet, add ourselves */
3440 pending_del_slot = path->slots[0];
3441 pending_del_nr = 1;
3442 } else if (pending_del_nr &&
3443 path->slots[0] + 1 == pending_del_slot) {
3444 /* hop on the pending chunk */
3445 pending_del_nr++;
3446 pending_del_slot = path->slots[0];
3447 } else {
d397712b 3448 BUG();
85e21bac 3449 }
39279cc3
CM
3450 } else {
3451 break;
3452 }
0af3d00b
JB
3453 if (found_extent && (root->ref_cows ||
3454 root == root->fs_info->tree_root)) {
b9473439 3455 btrfs_set_path_blocking(path);
39279cc3 3456 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
3457 extent_num_bytes, 0,
3458 btrfs_header_owner(leaf),
3459 inode->i_ino, extent_offset);
39279cc3
CM
3460 BUG_ON(ret);
3461 }
85e21bac 3462
8082510e
YZ
3463 if (found_type == BTRFS_INODE_ITEM_KEY)
3464 break;
3465
3466 if (path->slots[0] == 0 ||
3467 path->slots[0] != pending_del_slot) {
3468 if (root->ref_cows) {
3469 err = -EAGAIN;
3470 goto out;
3471 }
3472 if (pending_del_nr) {
3473 ret = btrfs_del_items(trans, root, path,
3474 pending_del_slot,
3475 pending_del_nr);
3476 BUG_ON(ret);
3477 pending_del_nr = 0;
3478 }
85e21bac
CM
3479 btrfs_release_path(root, path);
3480 goto search_again;
8082510e
YZ
3481 } else {
3482 path->slots[0]--;
85e21bac 3483 }
39279cc3 3484 }
8082510e 3485out:
85e21bac
CM
3486 if (pending_del_nr) {
3487 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3488 pending_del_nr);
d68fc57b 3489 BUG_ON(ret);
85e21bac 3490 }
39279cc3 3491 btrfs_free_path(path);
8082510e 3492 return err;
39279cc3
CM
3493}
3494
3495/*
3496 * taken from block_truncate_page, but does cow as it zeros out
3497 * any bytes left in the last page in the file.
3498 */
3499static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3500{
3501 struct inode *inode = mapping->host;
db94535d 3502 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
3503 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3504 struct btrfs_ordered_extent *ordered;
2ac55d41 3505 struct extent_state *cached_state = NULL;
e6dcd2dc 3506 char *kaddr;
db94535d 3507 u32 blocksize = root->sectorsize;
39279cc3
CM
3508 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3509 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3510 struct page *page;
39279cc3 3511 int ret = 0;
a52d9a80 3512 u64 page_start;
e6dcd2dc 3513 u64 page_end;
39279cc3
CM
3514
3515 if ((offset & (blocksize - 1)) == 0)
3516 goto out;
0ca1f7ce 3517 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
5d5e103a
JB
3518 if (ret)
3519 goto out;
39279cc3
CM
3520
3521 ret = -ENOMEM;
211c17f5 3522again:
39279cc3 3523 page = grab_cache_page(mapping, index);
5d5e103a 3524 if (!page) {
0ca1f7ce 3525 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3 3526 goto out;
5d5e103a 3527 }
e6dcd2dc
CM
3528
3529 page_start = page_offset(page);
3530 page_end = page_start + PAGE_CACHE_SIZE - 1;
3531
39279cc3 3532 if (!PageUptodate(page)) {
9ebefb18 3533 ret = btrfs_readpage(NULL, page);
39279cc3 3534 lock_page(page);
211c17f5
CM
3535 if (page->mapping != mapping) {
3536 unlock_page(page);
3537 page_cache_release(page);
3538 goto again;
3539 }
39279cc3
CM
3540 if (!PageUptodate(page)) {
3541 ret = -EIO;
89642229 3542 goto out_unlock;
39279cc3
CM
3543 }
3544 }
211c17f5 3545 wait_on_page_writeback(page);
e6dcd2dc 3546
2ac55d41
JB
3547 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3548 GFP_NOFS);
e6dcd2dc
CM
3549 set_page_extent_mapped(page);
3550
3551 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3552 if (ordered) {
2ac55d41
JB
3553 unlock_extent_cached(io_tree, page_start, page_end,
3554 &cached_state, GFP_NOFS);
e6dcd2dc
CM
3555 unlock_page(page);
3556 page_cache_release(page);
eb84ae03 3557 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
3558 btrfs_put_ordered_extent(ordered);
3559 goto again;
3560 }
3561
2ac55d41 3562 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
5d5e103a 3563 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 3564 0, 0, &cached_state, GFP_NOFS);
5d5e103a 3565
2ac55d41
JB
3566 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3567 &cached_state);
9ed74f2d 3568 if (ret) {
2ac55d41
JB
3569 unlock_extent_cached(io_tree, page_start, page_end,
3570 &cached_state, GFP_NOFS);
9ed74f2d
JB
3571 goto out_unlock;
3572 }
3573
e6dcd2dc
CM
3574 ret = 0;
3575 if (offset != PAGE_CACHE_SIZE) {
3576 kaddr = kmap(page);
3577 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3578 flush_dcache_page(page);
3579 kunmap(page);
3580 }
247e743c 3581 ClearPageChecked(page);
e6dcd2dc 3582 set_page_dirty(page);
2ac55d41
JB
3583 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3584 GFP_NOFS);
39279cc3 3585
89642229 3586out_unlock:
5d5e103a 3587 if (ret)
0ca1f7ce 3588 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
39279cc3
CM
3589 unlock_page(page);
3590 page_cache_release(page);
3591out:
3592 return ret;
3593}
3594
695a0d0d
JB
3595/*
3596 * This function puts in dummy file extents for the area we're creating a hole
3597 * for. So if we are truncating this file to a larger size we need to insert
3598 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3599 * the range between oldsize and size
3600 */
a41ad394 3601int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 3602{
9036c102
YZ
3603 struct btrfs_trans_handle *trans;
3604 struct btrfs_root *root = BTRFS_I(inode)->root;
3605 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 3606 struct extent_map *em = NULL;
2ac55d41 3607 struct extent_state *cached_state = NULL;
9036c102 3608 u64 mask = root->sectorsize - 1;
a41ad394 3609 u64 hole_start = (oldsize + mask) & ~mask;
9036c102
YZ
3610 u64 block_end = (size + mask) & ~mask;
3611 u64 last_byte;
3612 u64 cur_offset;
3613 u64 hole_size;
9ed74f2d 3614 int err = 0;
39279cc3 3615
9036c102
YZ
3616 if (size <= hole_start)
3617 return 0;
3618
9036c102
YZ
3619 while (1) {
3620 struct btrfs_ordered_extent *ordered;
3621 btrfs_wait_ordered_range(inode, hole_start,
3622 block_end - hole_start);
2ac55d41
JB
3623 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3624 &cached_state, GFP_NOFS);
9036c102
YZ
3625 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3626 if (!ordered)
3627 break;
2ac55d41
JB
3628 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3629 &cached_state, GFP_NOFS);
9036c102
YZ
3630 btrfs_put_ordered_extent(ordered);
3631 }
39279cc3 3632
9036c102
YZ
3633 cur_offset = hole_start;
3634 while (1) {
3635 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3636 block_end - cur_offset, 0);
3637 BUG_ON(IS_ERR(em) || !em);
3638 last_byte = min(extent_map_end(em), block_end);
3639 last_byte = (last_byte + mask) & ~mask;
8082510e 3640 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
771ed689 3641 u64 hint_byte = 0;
9036c102 3642 hole_size = last_byte - cur_offset;
9ed74f2d 3643
a22285a6
YZ
3644 trans = btrfs_start_transaction(root, 2);
3645 if (IS_ERR(trans)) {
3646 err = PTR_ERR(trans);
9ed74f2d 3647 break;
a22285a6 3648 }
8082510e
YZ
3649 btrfs_set_trans_block_group(trans, inode);
3650
3651 err = btrfs_drop_extents(trans, inode, cur_offset,
3652 cur_offset + hole_size,
3653 &hint_byte, 1);
3893e33b
JB
3654 if (err)
3655 break;
8082510e 3656
9036c102
YZ
3657 err = btrfs_insert_file_extent(trans, root,
3658 inode->i_ino, cur_offset, 0,
3659 0, hole_size, 0, hole_size,
3660 0, 0, 0);
3893e33b
JB
3661 if (err)
3662 break;
8082510e 3663
9036c102
YZ
3664 btrfs_drop_extent_cache(inode, hole_start,
3665 last_byte - 1, 0);
8082510e
YZ
3666
3667 btrfs_end_transaction(trans, root);
9036c102
YZ
3668 }
3669 free_extent_map(em);
a22285a6 3670 em = NULL;
9036c102 3671 cur_offset = last_byte;
8082510e 3672 if (cur_offset >= block_end)
9036c102
YZ
3673 break;
3674 }
1832a6d5 3675
a22285a6 3676 free_extent_map(em);
2ac55d41
JB
3677 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3678 GFP_NOFS);
9036c102
YZ
3679 return err;
3680}
39279cc3 3681
a41ad394 3682static int btrfs_setsize(struct inode *inode, loff_t newsize)
8082510e 3683{
a41ad394 3684 loff_t oldsize = i_size_read(inode);
8082510e
YZ
3685 int ret;
3686
a41ad394 3687 if (newsize == oldsize)
8082510e
YZ
3688 return 0;
3689
a41ad394
JB
3690 if (newsize > oldsize) {
3691 i_size_write(inode, newsize);
3692 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3693 truncate_pagecache(inode, oldsize, newsize);
3694 ret = btrfs_cont_expand(inode, oldsize, newsize);
8082510e 3695 if (ret) {
a41ad394 3696 btrfs_setsize(inode, oldsize);
8082510e
YZ
3697 return ret;
3698 }
3699
930f028a 3700 mark_inode_dirty(inode);
a41ad394 3701 } else {
8082510e 3702
a41ad394
JB
3703 /*
3704 * We're truncating a file that used to have good data down to
3705 * zero. Make sure it gets into the ordered flush list so that
3706 * any new writes get down to disk quickly.
3707 */
3708 if (newsize == 0)
3709 BTRFS_I(inode)->ordered_data_close = 1;
8082510e 3710
a41ad394
JB
3711 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3712 truncate_setsize(inode, newsize);
3713 ret = btrfs_truncate(inode);
3714 }
8082510e 3715
a41ad394 3716 return ret;
8082510e
YZ
3717}
3718
9036c102
YZ
3719static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3720{
3721 struct inode *inode = dentry->d_inode;
b83cc969 3722 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 3723 int err;
39279cc3 3724
b83cc969
LZ
3725 if (btrfs_root_readonly(root))
3726 return -EROFS;
3727
9036c102
YZ
3728 err = inode_change_ok(inode, attr);
3729 if (err)
3730 return err;
2bf5a725 3731
5a3f23d5 3732 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
a41ad394 3733 err = btrfs_setsize(inode, attr->ia_size);
8082510e
YZ
3734 if (err)
3735 return err;
39279cc3 3736 }
9036c102 3737
1025774c
CH
3738 if (attr->ia_valid) {
3739 setattr_copy(inode, attr);
3740 mark_inode_dirty(inode);
3741
3742 if (attr->ia_valid & ATTR_MODE)
3743 err = btrfs_acl_chmod(inode);
3744 }
33268eaf 3745
39279cc3
CM
3746 return err;
3747}
61295eb8 3748
bd555975 3749void btrfs_evict_inode(struct inode *inode)
39279cc3
CM
3750{
3751 struct btrfs_trans_handle *trans;
3752 struct btrfs_root *root = BTRFS_I(inode)->root;
d3c2fdcf 3753 unsigned long nr;
39279cc3
CM
3754 int ret;
3755
1abe9b8a 3756 trace_btrfs_inode_evict(inode);
3757
39279cc3 3758 truncate_inode_pages(&inode->i_data, 0);
0af3d00b
JB
3759 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3760 root == root->fs_info->tree_root))
bd555975
AV
3761 goto no_delete;
3762
39279cc3 3763 if (is_bad_inode(inode)) {
7b128766 3764 btrfs_orphan_del(NULL, inode);
39279cc3
CM
3765 goto no_delete;
3766 }
bd555975 3767 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4a096752 3768 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 3769
c71bf099
YZ
3770 if (root->fs_info->log_root_recovering) {
3771 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3772 goto no_delete;
3773 }
3774
76dda93c
YZ
3775 if (inode->i_nlink > 0) {
3776 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3777 goto no_delete;
3778 }
3779
dbe674a9 3780 btrfs_i_size_write(inode, 0);
5f39d397 3781
8082510e 3782 while (1) {
d68fc57b
YZ
3783 trans = btrfs_start_transaction(root, 0);
3784 BUG_ON(IS_ERR(trans));
8082510e 3785 btrfs_set_trans_block_group(trans, inode);
d68fc57b
YZ
3786 trans->block_rsv = root->orphan_block_rsv;
3787
3788 ret = btrfs_block_rsv_check(trans, root,
3789 root->orphan_block_rsv, 0, 5);
3790 if (ret) {
3791 BUG_ON(ret != -EAGAIN);
3792 ret = btrfs_commit_transaction(trans, root);
3793 BUG_ON(ret);
3794 continue;
3795 }
7b128766 3796
d68fc57b 3797 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
8082510e
YZ
3798 if (ret != -EAGAIN)
3799 break;
85e21bac 3800
8082510e
YZ
3801 nr = trans->blocks_used;
3802 btrfs_end_transaction(trans, root);
3803 trans = NULL;
3804 btrfs_btree_balance_dirty(root, nr);
d68fc57b 3805
8082510e 3806 }
5f39d397 3807
8082510e
YZ
3808 if (ret == 0) {
3809 ret = btrfs_orphan_del(trans, inode);
3810 BUG_ON(ret);
3811 }
54aa1f4d 3812
581bb050
LZ
3813 if (!(root == root->fs_info->tree_root ||
3814 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3815 btrfs_return_ino(root, inode->i_ino);
3816
d3c2fdcf 3817 nr = trans->blocks_used;
54aa1f4d 3818 btrfs_end_transaction(trans, root);
d3c2fdcf 3819 btrfs_btree_balance_dirty(root, nr);
39279cc3 3820no_delete:
bd555975 3821 end_writeback(inode);
8082510e 3822 return;
39279cc3
CM
3823}
3824
3825/*
3826 * this returns the key found in the dir entry in the location pointer.
3827 * If no dir entries were found, location->objectid is 0.
3828 */
3829static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3830 struct btrfs_key *location)
3831{
3832 const char *name = dentry->d_name.name;
3833 int namelen = dentry->d_name.len;
3834 struct btrfs_dir_item *di;
3835 struct btrfs_path *path;
3836 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 3837 int ret = 0;
39279cc3
CM
3838
3839 path = btrfs_alloc_path();
3840 BUG_ON(!path);
3954401f 3841
39279cc3
CM
3842 di = btrfs_lookup_dir_item(NULL, root, path, dir->i_ino, name,
3843 namelen, 0);
0d9f7f3e
Y
3844 if (IS_ERR(di))
3845 ret = PTR_ERR(di);
d397712b
CM
3846
3847 if (!di || IS_ERR(di))
3954401f 3848 goto out_err;
d397712b 3849
5f39d397 3850 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 3851out:
39279cc3
CM
3852 btrfs_free_path(path);
3853 return ret;
3954401f
CM
3854out_err:
3855 location->objectid = 0;
3856 goto out;
39279cc3
CM
3857}
3858
3859/*
3860 * when we hit a tree root in a directory, the btrfs part of the inode
3861 * needs to be changed to reflect the root directory of the tree root. This
3862 * is kind of like crossing a mount point.
3863 */
3864static int fixup_tree_root_location(struct btrfs_root *root,
4df27c4d
YZ
3865 struct inode *dir,
3866 struct dentry *dentry,
3867 struct btrfs_key *location,
3868 struct btrfs_root **sub_root)
39279cc3 3869{
4df27c4d
YZ
3870 struct btrfs_path *path;
3871 struct btrfs_root *new_root;
3872 struct btrfs_root_ref *ref;
3873 struct extent_buffer *leaf;
3874 int ret;
3875 int err = 0;
39279cc3 3876
4df27c4d
YZ
3877 path = btrfs_alloc_path();
3878 if (!path) {
3879 err = -ENOMEM;
3880 goto out;
3881 }
39279cc3 3882
4df27c4d
YZ
3883 err = -ENOENT;
3884 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3885 BTRFS_I(dir)->root->root_key.objectid,
3886 location->objectid);
3887 if (ret) {
3888 if (ret < 0)
3889 err = ret;
3890 goto out;
3891 }
39279cc3 3892
4df27c4d
YZ
3893 leaf = path->nodes[0];
3894 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3895 if (btrfs_root_ref_dirid(leaf, ref) != dir->i_ino ||
3896 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3897 goto out;
39279cc3 3898
4df27c4d
YZ
3899 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3900 (unsigned long)(ref + 1),
3901 dentry->d_name.len);
3902 if (ret)
3903 goto out;
3904
3905 btrfs_release_path(root->fs_info->tree_root, path);
3906
3907 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3908 if (IS_ERR(new_root)) {
3909 err = PTR_ERR(new_root);
3910 goto out;
3911 }
3912
3913 if (btrfs_root_refs(&new_root->root_item) == 0) {
3914 err = -ENOENT;
3915 goto out;
3916 }
3917
3918 *sub_root = new_root;
3919 location->objectid = btrfs_root_dirid(&new_root->root_item);
3920 location->type = BTRFS_INODE_ITEM_KEY;
3921 location->offset = 0;
3922 err = 0;
3923out:
3924 btrfs_free_path(path);
3925 return err;
39279cc3
CM
3926}
3927
5d4f98a2
YZ
3928static void inode_tree_add(struct inode *inode)
3929{
3930 struct btrfs_root *root = BTRFS_I(inode)->root;
3931 struct btrfs_inode *entry;
03e860bd
FNP
3932 struct rb_node **p;
3933 struct rb_node *parent;
03e860bd
FNP
3934again:
3935 p = &root->inode_tree.rb_node;
3936 parent = NULL;
5d4f98a2 3937
1d3382cb 3938 if (inode_unhashed(inode))
76dda93c
YZ
3939 return;
3940
5d4f98a2
YZ
3941 spin_lock(&root->inode_lock);
3942 while (*p) {
3943 parent = *p;
3944 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3945
3946 if (inode->i_ino < entry->vfs_inode.i_ino)
03e860bd 3947 p = &parent->rb_left;
5d4f98a2 3948 else if (inode->i_ino > entry->vfs_inode.i_ino)
03e860bd 3949 p = &parent->rb_right;
5d4f98a2
YZ
3950 else {
3951 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 3952 (I_WILL_FREE | I_FREEING)));
03e860bd
FNP
3953 rb_erase(parent, &root->inode_tree);
3954 RB_CLEAR_NODE(parent);
3955 spin_unlock(&root->inode_lock);
3956 goto again;
5d4f98a2
YZ
3957 }
3958 }
3959 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3960 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3961 spin_unlock(&root->inode_lock);
3962}
3963
3964static void inode_tree_del(struct inode *inode)
3965{
3966 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 3967 int empty = 0;
5d4f98a2 3968
03e860bd 3969 spin_lock(&root->inode_lock);
5d4f98a2 3970 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 3971 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 3972 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 3973 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 3974 }
03e860bd 3975 spin_unlock(&root->inode_lock);
76dda93c 3976
0af3d00b
JB
3977 /*
3978 * Free space cache has inodes in the tree root, but the tree root has a
3979 * root_refs of 0, so this could end up dropping the tree root as a
3980 * snapshot, so we need the extra !root->fs_info->tree_root check to
3981 * make sure we don't drop it.
3982 */
3983 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3984 root != root->fs_info->tree_root) {
76dda93c
YZ
3985 synchronize_srcu(&root->fs_info->subvol_srcu);
3986 spin_lock(&root->inode_lock);
3987 empty = RB_EMPTY_ROOT(&root->inode_tree);
3988 spin_unlock(&root->inode_lock);
3989 if (empty)
3990 btrfs_add_dead_root(root);
3991 }
3992}
3993
3994int btrfs_invalidate_inodes(struct btrfs_root *root)
3995{
3996 struct rb_node *node;
3997 struct rb_node *prev;
3998 struct btrfs_inode *entry;
3999 struct inode *inode;
4000 u64 objectid = 0;
4001
4002 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4003
4004 spin_lock(&root->inode_lock);
4005again:
4006 node = root->inode_tree.rb_node;
4007 prev = NULL;
4008 while (node) {
4009 prev = node;
4010 entry = rb_entry(node, struct btrfs_inode, rb_node);
4011
4012 if (objectid < entry->vfs_inode.i_ino)
4013 node = node->rb_left;
4014 else if (objectid > entry->vfs_inode.i_ino)
4015 node = node->rb_right;
4016 else
4017 break;
4018 }
4019 if (!node) {
4020 while (prev) {
4021 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4022 if (objectid <= entry->vfs_inode.i_ino) {
4023 node = prev;
4024 break;
4025 }
4026 prev = rb_next(prev);
4027 }
4028 }
4029 while (node) {
4030 entry = rb_entry(node, struct btrfs_inode, rb_node);
4031 objectid = entry->vfs_inode.i_ino + 1;
4032 inode = igrab(&entry->vfs_inode);
4033 if (inode) {
4034 spin_unlock(&root->inode_lock);
4035 if (atomic_read(&inode->i_count) > 1)
4036 d_prune_aliases(inode);
4037 /*
45321ac5 4038 * btrfs_drop_inode will have it removed from
76dda93c
YZ
4039 * the inode cache when its usage count
4040 * hits zero.
4041 */
4042 iput(inode);
4043 cond_resched();
4044 spin_lock(&root->inode_lock);
4045 goto again;
4046 }
4047
4048 if (cond_resched_lock(&root->inode_lock))
4049 goto again;
4050
4051 node = rb_next(node);
4052 }
4053 spin_unlock(&root->inode_lock);
4054 return 0;
5d4f98a2
YZ
4055}
4056
e02119d5
CM
4057static int btrfs_init_locked_inode(struct inode *inode, void *p)
4058{
4059 struct btrfs_iget_args *args = p;
4060 inode->i_ino = args->ino;
e02119d5 4061 BTRFS_I(inode)->root = args->root;
6a63209f 4062 btrfs_set_inode_space_info(args->root, inode);
39279cc3
CM
4063 return 0;
4064}
4065
4066static int btrfs_find_actor(struct inode *inode, void *opaque)
4067{
4068 struct btrfs_iget_args *args = opaque;
d397712b
CM
4069 return args->ino == inode->i_ino &&
4070 args->root == BTRFS_I(inode)->root;
39279cc3
CM
4071}
4072
5d4f98a2
YZ
4073static struct inode *btrfs_iget_locked(struct super_block *s,
4074 u64 objectid,
4075 struct btrfs_root *root)
39279cc3
CM
4076{
4077 struct inode *inode;
4078 struct btrfs_iget_args args;
4079 args.ino = objectid;
4080 args.root = root;
4081
4082 inode = iget5_locked(s, objectid, btrfs_find_actor,
4083 btrfs_init_locked_inode,
4084 (void *)&args);
4085 return inode;
4086}
4087
1a54ef8c
BR
4088/* Get an inode object given its location and corresponding root.
4089 * Returns in *is_new if the inode was read from disk
4090 */
4091struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 4092 struct btrfs_root *root, int *new)
1a54ef8c
BR
4093{
4094 struct inode *inode;
4095
4096 inode = btrfs_iget_locked(s, location->objectid, root);
4097 if (!inode)
5d4f98a2 4098 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
4099
4100 if (inode->i_state & I_NEW) {
4101 BTRFS_I(inode)->root = root;
4102 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
4103 btrfs_read_locked_inode(inode);
5d4f98a2 4104 inode_tree_add(inode);
1a54ef8c 4105 unlock_new_inode(inode);
73f73415
JB
4106 if (new)
4107 *new = 1;
1a54ef8c
BR
4108 }
4109
4110 return inode;
4111}
4112
4df27c4d
YZ
4113static struct inode *new_simple_dir(struct super_block *s,
4114 struct btrfs_key *key,
4115 struct btrfs_root *root)
4116{
4117 struct inode *inode = new_inode(s);
4118
4119 if (!inode)
4120 return ERR_PTR(-ENOMEM);
4121
4df27c4d
YZ
4122 BTRFS_I(inode)->root = root;
4123 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
4124 BTRFS_I(inode)->dummy_inode = 1;
4125
4126 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
4127 inode->i_op = &simple_dir_inode_operations;
4128 inode->i_fop = &simple_dir_operations;
4129 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
4130 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4131
4132 return inode;
4133}
4134
3de4586c 4135struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 4136{
d397712b 4137 struct inode *inode;
4df27c4d 4138 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
4139 struct btrfs_root *sub_root = root;
4140 struct btrfs_key location;
76dda93c 4141 int index;
5d4f98a2 4142 int ret;
39279cc3
CM
4143
4144 if (dentry->d_name.len > BTRFS_NAME_LEN)
4145 return ERR_PTR(-ENAMETOOLONG);
5f39d397 4146
39279cc3 4147 ret = btrfs_inode_by_name(dir, dentry, &location);
5f39d397 4148
39279cc3
CM
4149 if (ret < 0)
4150 return ERR_PTR(ret);
5f39d397 4151
4df27c4d
YZ
4152 if (location.objectid == 0)
4153 return NULL;
4154
4155 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 4156 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
4157 return inode;
4158 }
4159
4160 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4161
76dda93c 4162 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4df27c4d
YZ
4163 ret = fixup_tree_root_location(root, dir, dentry,
4164 &location, &sub_root);
4165 if (ret < 0) {
4166 if (ret != -ENOENT)
4167 inode = ERR_PTR(ret);
4168 else
4169 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4170 } else {
73f73415 4171 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 4172 }
76dda93c
YZ
4173 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4174
34d19bad 4175 if (!IS_ERR(inode) && root != sub_root) {
c71bf099
YZ
4176 down_read(&root->fs_info->cleanup_work_sem);
4177 if (!(inode->i_sb->s_flags & MS_RDONLY))
66b4ffd1 4178 ret = btrfs_orphan_cleanup(sub_root);
c71bf099 4179 up_read(&root->fs_info->cleanup_work_sem);
66b4ffd1
JB
4180 if (ret)
4181 inode = ERR_PTR(ret);
c71bf099
YZ
4182 }
4183
3de4586c
CM
4184 return inode;
4185}
4186
fe15ce44 4187static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
4188{
4189 struct btrfs_root *root;
4190
efefb143
YZ
4191 if (!dentry->d_inode && !IS_ROOT(dentry))
4192 dentry = dentry->d_parent;
76dda93c 4193
efefb143
YZ
4194 if (dentry->d_inode) {
4195 root = BTRFS_I(dentry->d_inode)->root;
4196 if (btrfs_root_refs(&root->root_item) == 0)
4197 return 1;
4198 }
76dda93c
YZ
4199 return 0;
4200}
4201
3de4586c
CM
4202static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4203 struct nameidata *nd)
4204{
4205 struct inode *inode;
4206
3de4586c
CM
4207 inode = btrfs_lookup_dentry(dir, dentry);
4208 if (IS_ERR(inode))
4209 return ERR_CAST(inode);
7b128766 4210
39279cc3
CM
4211 return d_splice_alias(inode, dentry);
4212}
4213
39279cc3
CM
4214static unsigned char btrfs_filetype_table[] = {
4215 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4216};
4217
cbdf5a24
DW
4218static int btrfs_real_readdir(struct file *filp, void *dirent,
4219 filldir_t filldir)
39279cc3 4220{
6da6abae 4221 struct inode *inode = filp->f_dentry->d_inode;
39279cc3
CM
4222 struct btrfs_root *root = BTRFS_I(inode)->root;
4223 struct btrfs_item *item;
4224 struct btrfs_dir_item *di;
4225 struct btrfs_key key;
5f39d397 4226 struct btrfs_key found_key;
39279cc3
CM
4227 struct btrfs_path *path;
4228 int ret;
5f39d397 4229 struct extent_buffer *leaf;
39279cc3 4230 int slot;
39279cc3
CM
4231 unsigned char d_type;
4232 int over = 0;
4233 u32 di_cur;
4234 u32 di_total;
4235 u32 di_len;
4236 int key_type = BTRFS_DIR_INDEX_KEY;
5f39d397
CM
4237 char tmp_name[32];
4238 char *name_ptr;
4239 int name_len;
39279cc3
CM
4240
4241 /* FIXME, use a real flag for deciding about the key type */
4242 if (root->fs_info->tree_root == root)
4243 key_type = BTRFS_DIR_ITEM_KEY;
5f39d397 4244
3954401f
CM
4245 /* special case for "." */
4246 if (filp->f_pos == 0) {
4247 over = filldir(dirent, ".", 1,
4248 1, inode->i_ino,
4249 DT_DIR);
4250 if (over)
4251 return 0;
4252 filp->f_pos = 1;
4253 }
3954401f
CM
4254 /* special case for .., just use the back ref */
4255 if (filp->f_pos == 1) {
5ecc7e5d 4256 u64 pino = parent_ino(filp->f_path.dentry);
3954401f 4257 over = filldir(dirent, "..", 2,
5ecc7e5d 4258 2, pino, DT_DIR);
3954401f 4259 if (over)
49593bfa 4260 return 0;
3954401f
CM
4261 filp->f_pos = 2;
4262 }
49593bfa
DW
4263 path = btrfs_alloc_path();
4264 path->reada = 2;
4265
39279cc3
CM
4266 btrfs_set_key_type(&key, key_type);
4267 key.offset = filp->f_pos;
49593bfa 4268 key.objectid = inode->i_ino;
5f39d397 4269
39279cc3
CM
4270 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4271 if (ret < 0)
4272 goto err;
49593bfa
DW
4273
4274 while (1) {
5f39d397 4275 leaf = path->nodes[0];
39279cc3 4276 slot = path->slots[0];
b9e03af0
LZ
4277 if (slot >= btrfs_header_nritems(leaf)) {
4278 ret = btrfs_next_leaf(root, path);
4279 if (ret < 0)
4280 goto err;
4281 else if (ret > 0)
4282 break;
4283 continue;
39279cc3 4284 }
3de4586c 4285
5f39d397
CM
4286 item = btrfs_item_nr(leaf, slot);
4287 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4288
4289 if (found_key.objectid != key.objectid)
39279cc3 4290 break;
5f39d397 4291 if (btrfs_key_type(&found_key) != key_type)
39279cc3 4292 break;
5f39d397 4293 if (found_key.offset < filp->f_pos)
b9e03af0 4294 goto next;
5f39d397
CM
4295
4296 filp->f_pos = found_key.offset;
49593bfa 4297
39279cc3
CM
4298 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4299 di_cur = 0;
5f39d397 4300 di_total = btrfs_item_size(leaf, item);
49593bfa
DW
4301
4302 while (di_cur < di_total) {
5f39d397
CM
4303 struct btrfs_key location;
4304
22a94d44
JB
4305 if (verify_dir_item(root, leaf, di))
4306 break;
4307
5f39d397 4308 name_len = btrfs_dir_name_len(leaf, di);
49593bfa 4309 if (name_len <= sizeof(tmp_name)) {
5f39d397
CM
4310 name_ptr = tmp_name;
4311 } else {
4312 name_ptr = kmalloc(name_len, GFP_NOFS);
49593bfa
DW
4313 if (!name_ptr) {
4314 ret = -ENOMEM;
4315 goto err;
4316 }
5f39d397
CM
4317 }
4318 read_extent_buffer(leaf, name_ptr,
4319 (unsigned long)(di + 1), name_len);
4320
4321 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4322 btrfs_dir_item_key_to_cpu(leaf, di, &location);
3de4586c
CM
4323
4324 /* is this a reference to our own snapshot? If so
4325 * skip it
4326 */
4327 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4328 location.objectid == root->root_key.objectid) {
4329 over = 0;
4330 goto skip;
4331 }
5f39d397 4332 over = filldir(dirent, name_ptr, name_len,
49593bfa 4333 found_key.offset, location.objectid,
39279cc3 4334 d_type);
5f39d397 4335
3de4586c 4336skip:
5f39d397
CM
4337 if (name_ptr != tmp_name)
4338 kfree(name_ptr);
4339
39279cc3
CM
4340 if (over)
4341 goto nopos;
5103e947 4342 di_len = btrfs_dir_name_len(leaf, di) +
49593bfa 4343 btrfs_dir_data_len(leaf, di) + sizeof(*di);
39279cc3
CM
4344 di_cur += di_len;
4345 di = (struct btrfs_dir_item *)((char *)di + di_len);
4346 }
b9e03af0
LZ
4347next:
4348 path->slots[0]++;
39279cc3 4349 }
49593bfa
DW
4350
4351 /* Reached end of directory/root. Bump pos past the last item. */
5e591a07 4352 if (key_type == BTRFS_DIR_INDEX_KEY)
406266ab
JE
4353 /*
4354 * 32-bit glibc will use getdents64, but then strtol -
4355 * so the last number we can serve is this.
4356 */
4357 filp->f_pos = 0x7fffffff;
5e591a07
YZ
4358 else
4359 filp->f_pos++;
39279cc3
CM
4360nopos:
4361 ret = 0;
4362err:
39279cc3 4363 btrfs_free_path(path);
39279cc3
CM
4364 return ret;
4365}
4366
a9185b41 4367int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
4368{
4369 struct btrfs_root *root = BTRFS_I(inode)->root;
4370 struct btrfs_trans_handle *trans;
4371 int ret = 0;
0af3d00b 4372 bool nolock = false;
39279cc3 4373
8929ecfa 4374 if (BTRFS_I(inode)->dummy_inode)
4ca8b41e
CM
4375 return 0;
4376
0af3d00b
JB
4377 smp_mb();
4378 nolock = (root->fs_info->closing && root == root->fs_info->tree_root);
4379
a9185b41 4380 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b
JB
4381 if (nolock)
4382 trans = btrfs_join_transaction_nolock(root, 1);
4383 else
4384 trans = btrfs_join_transaction(root, 1);
3612b495
TI
4385 if (IS_ERR(trans))
4386 return PTR_ERR(trans);
39279cc3 4387 btrfs_set_trans_block_group(trans, inode);
0af3d00b
JB
4388 if (nolock)
4389 ret = btrfs_end_transaction_nolock(trans, root);
4390 else
4391 ret = btrfs_commit_transaction(trans, root);
39279cc3
CM
4392 }
4393 return ret;
4394}
4395
4396/*
54aa1f4d 4397 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
4398 * inode changes. But, it is most likely to find the inode in cache.
4399 * FIXME, needs more benchmarking...there are no reasons other than performance
4400 * to keep or drop this code.
4401 */
4402void btrfs_dirty_inode(struct inode *inode)
4403{
4404 struct btrfs_root *root = BTRFS_I(inode)->root;
4405 struct btrfs_trans_handle *trans;
8929ecfa
YZ
4406 int ret;
4407
4408 if (BTRFS_I(inode)->dummy_inode)
4409 return;
39279cc3 4410
f9295749 4411 trans = btrfs_join_transaction(root, 1);
3612b495 4412 BUG_ON(IS_ERR(trans));
39279cc3 4413 btrfs_set_trans_block_group(trans, inode);
8929ecfa
YZ
4414
4415 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
4416 if (ret && ret == -ENOSPC) {
4417 /* whoops, lets try again with the full transaction */
4418 btrfs_end_transaction(trans, root);
4419 trans = btrfs_start_transaction(root, 1);
9aeead73
CM
4420 if (IS_ERR(trans)) {
4421 if (printk_ratelimit()) {
4422 printk(KERN_ERR "btrfs: fail to "
4423 "dirty inode %lu error %ld\n",
4424 inode->i_ino, PTR_ERR(trans));
4425 }
4426 return;
4427 }
94b60442 4428 btrfs_set_trans_block_group(trans, inode);
8929ecfa 4429
94b60442
CM
4430 ret = btrfs_update_inode(trans, root, inode);
4431 if (ret) {
9aeead73
CM
4432 if (printk_ratelimit()) {
4433 printk(KERN_ERR "btrfs: fail to "
4434 "dirty inode %lu error %d\n",
4435 inode->i_ino, ret);
4436 }
94b60442
CM
4437 }
4438 }
39279cc3 4439 btrfs_end_transaction(trans, root);
39279cc3
CM
4440}
4441
d352ac68
CM
4442/*
4443 * find the highest existing sequence number in a directory
4444 * and then set the in-memory index_cnt variable to reflect
4445 * free sequence numbers
4446 */
aec7477b
JB
4447static int btrfs_set_inode_index_count(struct inode *inode)
4448{
4449 struct btrfs_root *root = BTRFS_I(inode)->root;
4450 struct btrfs_key key, found_key;
4451 struct btrfs_path *path;
4452 struct extent_buffer *leaf;
4453 int ret;
4454
4455 key.objectid = inode->i_ino;
4456 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4457 key.offset = (u64)-1;
4458
4459 path = btrfs_alloc_path();
4460 if (!path)
4461 return -ENOMEM;
4462
4463 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4464 if (ret < 0)
4465 goto out;
4466 /* FIXME: we should be able to handle this */
4467 if (ret == 0)
4468 goto out;
4469 ret = 0;
4470
4471 /*
4472 * MAGIC NUMBER EXPLANATION:
4473 * since we search a directory based on f_pos we have to start at 2
4474 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4475 * else has to start at 2
4476 */
4477 if (path->slots[0] == 0) {
4478 BTRFS_I(inode)->index_cnt = 2;
4479 goto out;
4480 }
4481
4482 path->slots[0]--;
4483
4484 leaf = path->nodes[0];
4485 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4486
4487 if (found_key.objectid != inode->i_ino ||
4488 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4489 BTRFS_I(inode)->index_cnt = 2;
4490 goto out;
4491 }
4492
4493 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4494out:
4495 btrfs_free_path(path);
4496 return ret;
4497}
4498
d352ac68
CM
4499/*
4500 * helper to find a free sequence number in a given directory. This current
4501 * code is very simple, later versions will do smarter things in the btree
4502 */
3de4586c 4503int btrfs_set_inode_index(struct inode *dir, u64 *index)
aec7477b
JB
4504{
4505 int ret = 0;
4506
4507 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4508 ret = btrfs_set_inode_index_count(dir);
d397712b 4509 if (ret)
aec7477b
JB
4510 return ret;
4511 }
4512
00e4e6b3 4513 *index = BTRFS_I(dir)->index_cnt;
aec7477b
JB
4514 BTRFS_I(dir)->index_cnt++;
4515
4516 return ret;
4517}
4518
39279cc3
CM
4519static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *root,
aec7477b 4521 struct inode *dir,
9c58309d 4522 const char *name, int name_len,
d2fb3437
YZ
4523 u64 ref_objectid, u64 objectid,
4524 u64 alloc_hint, int mode, u64 *index)
39279cc3
CM
4525{
4526 struct inode *inode;
5f39d397 4527 struct btrfs_inode_item *inode_item;
39279cc3 4528 struct btrfs_key *location;
5f39d397 4529 struct btrfs_path *path;
9c58309d
CM
4530 struct btrfs_inode_ref *ref;
4531 struct btrfs_key key[2];
4532 u32 sizes[2];
4533 unsigned long ptr;
39279cc3
CM
4534 int ret;
4535 int owner;
4536
5f39d397
CM
4537 path = btrfs_alloc_path();
4538 BUG_ON(!path);
4539
39279cc3 4540 inode = new_inode(root->fs_info->sb);
8fb27640
YS
4541 if (!inode) {
4542 btrfs_free_path(path);
39279cc3 4543 return ERR_PTR(-ENOMEM);
8fb27640 4544 }
39279cc3 4545
581bb050
LZ
4546 /*
4547 * we have to initialize this early, so we can reclaim the inode
4548 * number if we fail afterwards in this function.
4549 */
4550 inode->i_ino = objectid;
4551
aec7477b 4552 if (dir) {
1abe9b8a 4553 trace_btrfs_inode_request(dir);
4554
3de4586c 4555 ret = btrfs_set_inode_index(dir, index);
09771430 4556 if (ret) {
8fb27640 4557 btrfs_free_path(path);
09771430 4558 iput(inode);
aec7477b 4559 return ERR_PTR(ret);
09771430 4560 }
aec7477b
JB
4561 }
4562 /*
4563 * index_cnt is ignored for everything but a dir,
4564 * btrfs_get_inode_index_count has an explanation for the magic
4565 * number
4566 */
4567 BTRFS_I(inode)->index_cnt = 2;
39279cc3 4568 BTRFS_I(inode)->root = root;
e02119d5 4569 BTRFS_I(inode)->generation = trans->transid;
76195853 4570 inode->i_generation = BTRFS_I(inode)->generation;
6a63209f 4571 btrfs_set_inode_space_info(root, inode);
b888db2b 4572
39279cc3
CM
4573 if (mode & S_IFDIR)
4574 owner = 0;
4575 else
4576 owner = 1;
d2fb3437
YZ
4577 BTRFS_I(inode)->block_group =
4578 btrfs_find_block_group(root, 0, alloc_hint, owner);
9c58309d
CM
4579
4580 key[0].objectid = objectid;
4581 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4582 key[0].offset = 0;
4583
4584 key[1].objectid = objectid;
4585 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4586 key[1].offset = ref_objectid;
4587
4588 sizes[0] = sizeof(struct btrfs_inode_item);
4589 sizes[1] = name_len + sizeof(*ref);
4590
b9473439 4591 path->leave_spinning = 1;
9c58309d
CM
4592 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4593 if (ret != 0)
5f39d397
CM
4594 goto fail;
4595
ecc11fab 4596 inode_init_owner(inode, dir, mode);
a76a3cd4 4597 inode_set_bytes(inode, 0);
39279cc3 4598 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5f39d397
CM
4599 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4600 struct btrfs_inode_item);
e02119d5 4601 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d
CM
4602
4603 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4604 struct btrfs_inode_ref);
4605 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
00e4e6b3 4606 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
9c58309d
CM
4607 ptr = (unsigned long)(ref + 1);
4608 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4609
5f39d397
CM
4610 btrfs_mark_buffer_dirty(path->nodes[0]);
4611 btrfs_free_path(path);
4612
39279cc3
CM
4613 location = &BTRFS_I(inode)->location;
4614 location->objectid = objectid;
39279cc3
CM
4615 location->offset = 0;
4616 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4617
6cbff00f
CH
4618 btrfs_inherit_iflags(inode, dir);
4619
94272164
CM
4620 if ((mode & S_IFREG)) {
4621 if (btrfs_test_opt(root, NODATASUM))
4622 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
75e7cb7f
LB
4623 if (btrfs_test_opt(root, NODATACOW) ||
4624 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
94272164
CM
4625 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4626 }
4627
39279cc3 4628 insert_inode_hash(inode);
5d4f98a2 4629 inode_tree_add(inode);
1abe9b8a 4630
4631 trace_btrfs_inode_new(inode);
4632
39279cc3 4633 return inode;
5f39d397 4634fail:
aec7477b
JB
4635 if (dir)
4636 BTRFS_I(dir)->index_cnt--;
5f39d397 4637 btrfs_free_path(path);
09771430 4638 iput(inode);
5f39d397 4639 return ERR_PTR(ret);
39279cc3
CM
4640}
4641
4642static inline u8 btrfs_inode_type(struct inode *inode)
4643{
4644 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4645}
4646
d352ac68
CM
4647/*
4648 * utility function to add 'inode' into 'parent_inode' with
4649 * a give name and a given sequence number.
4650 * if 'add_backref' is true, also insert a backref from the
4651 * inode to the parent directory.
4652 */
e02119d5
CM
4653int btrfs_add_link(struct btrfs_trans_handle *trans,
4654 struct inode *parent_inode, struct inode *inode,
4655 const char *name, int name_len, int add_backref, u64 index)
39279cc3 4656{
4df27c4d 4657 int ret = 0;
39279cc3 4658 struct btrfs_key key;
e02119d5 4659 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5f39d397 4660
4df27c4d
YZ
4661 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4662 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4663 } else {
4664 key.objectid = inode->i_ino;
4665 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4666 key.offset = 0;
4667 }
4668
4669 if (unlikely(inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4670 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4671 key.objectid, root->root_key.objectid,
4672 parent_inode->i_ino,
4673 index, name, name_len);
4674 } else if (add_backref) {
4675 ret = btrfs_insert_inode_ref(trans, root,
4676 name, name_len, inode->i_ino,
4677 parent_inode->i_ino, index);
4678 }
39279cc3 4679
39279cc3 4680 if (ret == 0) {
4df27c4d
YZ
4681 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4682 parent_inode->i_ino, &key,
4683 btrfs_inode_type(inode), index);
4684 BUG_ON(ret);
4685
dbe674a9 4686 btrfs_i_size_write(parent_inode, parent_inode->i_size +
e02119d5 4687 name_len * 2);
79c44584 4688 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
e02119d5 4689 ret = btrfs_update_inode(trans, root, parent_inode);
39279cc3
CM
4690 }
4691 return ret;
4692}
4693
4694static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
a1b075d2
JB
4695 struct inode *dir, struct dentry *dentry,
4696 struct inode *inode, int backref, u64 index)
39279cc3 4697{
a1b075d2
JB
4698 int err = btrfs_add_link(trans, dir, inode,
4699 dentry->d_name.name, dentry->d_name.len,
4700 backref, index);
39279cc3
CM
4701 if (!err) {
4702 d_instantiate(dentry, inode);
4703 return 0;
4704 }
4705 if (err > 0)
4706 err = -EEXIST;
4707 return err;
4708}
4709
618e21d5
JB
4710static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4711 int mode, dev_t rdev)
4712{
4713 struct btrfs_trans_handle *trans;
4714 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4715 struct inode *inode = NULL;
618e21d5
JB
4716 int err;
4717 int drop_inode = 0;
4718 u64 objectid;
1832a6d5 4719 unsigned long nr = 0;
00e4e6b3 4720 u64 index = 0;
618e21d5
JB
4721
4722 if (!new_valid_dev(rdev))
4723 return -EINVAL;
4724
9ed74f2d
JB
4725 /*
4726 * 2 for inode item and ref
4727 * 2 for dir items
4728 * 1 for xattr if selinux is on
4729 */
a22285a6
YZ
4730 trans = btrfs_start_transaction(root, 5);
4731 if (IS_ERR(trans))
4732 return PTR_ERR(trans);
1832a6d5 4733
618e21d5
JB
4734 btrfs_set_trans_block_group(trans, dir);
4735
581bb050
LZ
4736 err = btrfs_find_free_ino(root, &objectid);
4737 if (err)
4738 goto out_unlock;
4739
aec7477b 4740 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4741 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3 4742 BTRFS_I(dir)->block_group, mode, &index);
618e21d5
JB
4743 err = PTR_ERR(inode);
4744 if (IS_ERR(inode))
4745 goto out_unlock;
4746
f34f57a3 4747 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4748 if (err) {
4749 drop_inode = 1;
4750 goto out_unlock;
4751 }
4752
618e21d5 4753 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4754 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
618e21d5
JB
4755 if (err)
4756 drop_inode = 1;
4757 else {
4758 inode->i_op = &btrfs_special_inode_operations;
4759 init_special_inode(inode, inode->i_mode, rdev);
1b4ab1bb 4760 btrfs_update_inode(trans, root, inode);
618e21d5 4761 }
618e21d5
JB
4762 btrfs_update_inode_block_group(trans, inode);
4763 btrfs_update_inode_block_group(trans, dir);
4764out_unlock:
d3c2fdcf 4765 nr = trans->blocks_used;
89ce8a63 4766 btrfs_end_transaction_throttle(trans, root);
a22285a6 4767 btrfs_btree_balance_dirty(root, nr);
618e21d5
JB
4768 if (drop_inode) {
4769 inode_dec_link_count(inode);
4770 iput(inode);
4771 }
618e21d5
JB
4772 return err;
4773}
4774
39279cc3
CM
4775static int btrfs_create(struct inode *dir, struct dentry *dentry,
4776 int mode, struct nameidata *nd)
4777{
4778 struct btrfs_trans_handle *trans;
4779 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 4780 struct inode *inode = NULL;
39279cc3 4781 int drop_inode = 0;
a22285a6 4782 int err;
1832a6d5 4783 unsigned long nr = 0;
39279cc3 4784 u64 objectid;
00e4e6b3 4785 u64 index = 0;
39279cc3 4786
9ed74f2d
JB
4787 /*
4788 * 2 for inode item and ref
4789 * 2 for dir items
4790 * 1 for xattr if selinux is on
4791 */
a22285a6
YZ
4792 trans = btrfs_start_transaction(root, 5);
4793 if (IS_ERR(trans))
4794 return PTR_ERR(trans);
9ed74f2d 4795
39279cc3
CM
4796 btrfs_set_trans_block_group(trans, dir);
4797
581bb050
LZ
4798 err = btrfs_find_free_ino(root, &objectid);
4799 if (err)
4800 goto out_unlock;
4801
aec7477b 4802 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2
JB
4803 dentry->d_name.len, dir->i_ino, objectid,
4804 BTRFS_I(dir)->block_group, mode, &index);
39279cc3
CM
4805 err = PTR_ERR(inode);
4806 if (IS_ERR(inode))
4807 goto out_unlock;
4808
f34f57a3 4809 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4810 if (err) {
4811 drop_inode = 1;
4812 goto out_unlock;
4813 }
4814
39279cc3 4815 btrfs_set_trans_block_group(trans, inode);
a1b075d2 4816 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
4817 if (err)
4818 drop_inode = 1;
4819 else {
4820 inode->i_mapping->a_ops = &btrfs_aops;
04160088 4821 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
4822 inode->i_fop = &btrfs_file_operations;
4823 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 4824 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 4825 }
39279cc3
CM
4826 btrfs_update_inode_block_group(trans, inode);
4827 btrfs_update_inode_block_group(trans, dir);
4828out_unlock:
d3c2fdcf 4829 nr = trans->blocks_used;
ab78c84d 4830 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4831 if (drop_inode) {
4832 inode_dec_link_count(inode);
4833 iput(inode);
4834 }
d3c2fdcf 4835 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4836 return err;
4837}
4838
4839static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4840 struct dentry *dentry)
4841{
4842 struct btrfs_trans_handle *trans;
4843 struct btrfs_root *root = BTRFS_I(dir)->root;
4844 struct inode *inode = old_dentry->d_inode;
00e4e6b3 4845 u64 index;
1832a6d5 4846 unsigned long nr = 0;
39279cc3
CM
4847 int err;
4848 int drop_inode = 0;
4849
4850 if (inode->i_nlink == 0)
4851 return -ENOENT;
4852
4a8be425
TH
4853 /* do not allow sys_link's with other subvols of the same device */
4854 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 4855 return -EXDEV;
4a8be425 4856
c055e99e
AV
4857 if (inode->i_nlink == ~0U)
4858 return -EMLINK;
4859
3de4586c 4860 err = btrfs_set_inode_index(dir, &index);
aec7477b
JB
4861 if (err)
4862 goto fail;
4863
a22285a6 4864 /*
7e6b6465 4865 * 2 items for inode and inode ref
a22285a6 4866 * 2 items for dir items
7e6b6465 4867 * 1 item for parent inode
a22285a6 4868 */
7e6b6465 4869 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
4870 if (IS_ERR(trans)) {
4871 err = PTR_ERR(trans);
4872 goto fail;
4873 }
5f39d397 4874
3153495d
MX
4875 btrfs_inc_nlink(inode);
4876 inode->i_ctime = CURRENT_TIME;
4877
39279cc3 4878 btrfs_set_trans_block_group(trans, dir);
7de9c6ee 4879 ihold(inode);
aec7477b 4880
a1b075d2 4881 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5f39d397 4882
a5719521 4883 if (err) {
54aa1f4d 4884 drop_inode = 1;
a5719521 4885 } else {
6a912213 4886 struct dentry *parent = dget_parent(dentry);
a5719521
YZ
4887 btrfs_update_inode_block_group(trans, dir);
4888 err = btrfs_update_inode(trans, root, inode);
4889 BUG_ON(err);
6a912213
JB
4890 btrfs_log_new_name(trans, inode, NULL, parent);
4891 dput(parent);
a5719521 4892 }
39279cc3 4893
d3c2fdcf 4894 nr = trans->blocks_used;
ab78c84d 4895 btrfs_end_transaction_throttle(trans, root);
1832a6d5 4896fail:
39279cc3
CM
4897 if (drop_inode) {
4898 inode_dec_link_count(inode);
4899 iput(inode);
4900 }
d3c2fdcf 4901 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4902 return err;
4903}
4904
39279cc3
CM
4905static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4906{
b9d86667 4907 struct inode *inode = NULL;
39279cc3
CM
4908 struct btrfs_trans_handle *trans;
4909 struct btrfs_root *root = BTRFS_I(dir)->root;
4910 int err = 0;
4911 int drop_on_err = 0;
b9d86667 4912 u64 objectid = 0;
00e4e6b3 4913 u64 index = 0;
d3c2fdcf 4914 unsigned long nr = 1;
39279cc3 4915
9ed74f2d
JB
4916 /*
4917 * 2 items for inode and ref
4918 * 2 items for dir items
4919 * 1 for xattr if selinux is on
4920 */
a22285a6
YZ
4921 trans = btrfs_start_transaction(root, 5);
4922 if (IS_ERR(trans))
4923 return PTR_ERR(trans);
9ed74f2d 4924 btrfs_set_trans_block_group(trans, dir);
39279cc3 4925
581bb050
LZ
4926 err = btrfs_find_free_ino(root, &objectid);
4927 if (err)
4928 goto out_fail;
4929
aec7477b 4930 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 4931 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
4932 BTRFS_I(dir)->block_group, S_IFDIR | mode,
4933 &index);
39279cc3
CM
4934 if (IS_ERR(inode)) {
4935 err = PTR_ERR(inode);
4936 goto out_fail;
4937 }
5f39d397 4938
39279cc3 4939 drop_on_err = 1;
33268eaf 4940
f34f57a3 4941 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
4942 if (err)
4943 goto out_fail;
4944
39279cc3
CM
4945 inode->i_op = &btrfs_dir_inode_operations;
4946 inode->i_fop = &btrfs_dir_file_operations;
4947 btrfs_set_trans_block_group(trans, inode);
4948
dbe674a9 4949 btrfs_i_size_write(inode, 0);
39279cc3
CM
4950 err = btrfs_update_inode(trans, root, inode);
4951 if (err)
4952 goto out_fail;
5f39d397 4953
a1b075d2
JB
4954 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4955 dentry->d_name.len, 0, index);
39279cc3
CM
4956 if (err)
4957 goto out_fail;
5f39d397 4958
39279cc3
CM
4959 d_instantiate(dentry, inode);
4960 drop_on_err = 0;
39279cc3
CM
4961 btrfs_update_inode_block_group(trans, inode);
4962 btrfs_update_inode_block_group(trans, dir);
4963
4964out_fail:
d3c2fdcf 4965 nr = trans->blocks_used;
ab78c84d 4966 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
4967 if (drop_on_err)
4968 iput(inode);
d3c2fdcf 4969 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
4970 return err;
4971}
4972
d352ac68
CM
4973/* helper for btfs_get_extent. Given an existing extent in the tree,
4974 * and an extent that you want to insert, deal with overlap and insert
4975 * the new extent into the tree.
4976 */
3b951516
CM
4977static int merge_extent_mapping(struct extent_map_tree *em_tree,
4978 struct extent_map *existing,
e6dcd2dc
CM
4979 struct extent_map *em,
4980 u64 map_start, u64 map_len)
3b951516
CM
4981{
4982 u64 start_diff;
3b951516 4983
e6dcd2dc
CM
4984 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4985 start_diff = map_start - em->start;
4986 em->start = map_start;
4987 em->len = map_len;
c8b97818
CM
4988 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4989 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 4990 em->block_start += start_diff;
c8b97818
CM
4991 em->block_len -= start_diff;
4992 }
e6dcd2dc 4993 return add_extent_mapping(em_tree, em);
3b951516
CM
4994}
4995
c8b97818
CM
4996static noinline int uncompress_inline(struct btrfs_path *path,
4997 struct inode *inode, struct page *page,
4998 size_t pg_offset, u64 extent_offset,
4999 struct btrfs_file_extent_item *item)
5000{
5001 int ret;
5002 struct extent_buffer *leaf = path->nodes[0];
5003 char *tmp;
5004 size_t max_size;
5005 unsigned long inline_size;
5006 unsigned long ptr;
261507a0 5007 int compress_type;
c8b97818
CM
5008
5009 WARN_ON(pg_offset != 0);
261507a0 5010 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
5011 max_size = btrfs_file_extent_ram_bytes(leaf, item);
5012 inline_size = btrfs_file_extent_inline_item_len(leaf,
5013 btrfs_item_nr(leaf, path->slots[0]));
5014 tmp = kmalloc(inline_size, GFP_NOFS);
5015 ptr = btrfs_file_extent_inline_start(item);
5016
5017 read_extent_buffer(leaf, tmp, ptr, inline_size);
5018
5b050f04 5019 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
261507a0
LZ
5020 ret = btrfs_decompress(compress_type, tmp, page,
5021 extent_offset, inline_size, max_size);
c8b97818
CM
5022 if (ret) {
5023 char *kaddr = kmap_atomic(page, KM_USER0);
5024 unsigned long copy_size = min_t(u64,
5025 PAGE_CACHE_SIZE - pg_offset,
5026 max_size - extent_offset);
5027 memset(kaddr + pg_offset, 0, copy_size);
5028 kunmap_atomic(kaddr, KM_USER0);
5029 }
5030 kfree(tmp);
5031 return 0;
5032}
5033
d352ac68
CM
5034/*
5035 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
5036 * the ugly parts come from merging extents from the disk with the in-ram
5037 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
5038 * where the in-ram extents might be locked pending data=ordered completion.
5039 *
5040 * This also copies inline extents directly into the page.
5041 */
d397712b 5042
a52d9a80 5043struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
70dec807 5044 size_t pg_offset, u64 start, u64 len,
a52d9a80
CM
5045 int create)
5046{
5047 int ret;
5048 int err = 0;
db94535d 5049 u64 bytenr;
a52d9a80
CM
5050 u64 extent_start = 0;
5051 u64 extent_end = 0;
5052 u64 objectid = inode->i_ino;
5053 u32 found_type;
f421950f 5054 struct btrfs_path *path = NULL;
a52d9a80
CM
5055 struct btrfs_root *root = BTRFS_I(inode)->root;
5056 struct btrfs_file_extent_item *item;
5f39d397
CM
5057 struct extent_buffer *leaf;
5058 struct btrfs_key found_key;
a52d9a80
CM
5059 struct extent_map *em = NULL;
5060 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
d1310b2e 5061 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a52d9a80 5062 struct btrfs_trans_handle *trans = NULL;
261507a0 5063 int compress_type;
a52d9a80 5064
a52d9a80 5065again:
890871be 5066 read_lock(&em_tree->lock);
d1310b2e 5067 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
5068 if (em)
5069 em->bdev = root->fs_info->fs_devices->latest_bdev;
890871be 5070 read_unlock(&em_tree->lock);
d1310b2e 5071
a52d9a80 5072 if (em) {
e1c4b745
CM
5073 if (em->start > start || em->start + em->len <= start)
5074 free_extent_map(em);
5075 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
5076 free_extent_map(em);
5077 else
5078 goto out;
a52d9a80 5079 }
d1310b2e 5080 em = alloc_extent_map(GFP_NOFS);
a52d9a80 5081 if (!em) {
d1310b2e
CM
5082 err = -ENOMEM;
5083 goto out;
a52d9a80 5084 }
e6dcd2dc 5085 em->bdev = root->fs_info->fs_devices->latest_bdev;
d1310b2e 5086 em->start = EXTENT_MAP_HOLE;
445a6944 5087 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 5088 em->len = (u64)-1;
c8b97818 5089 em->block_len = (u64)-1;
f421950f
CM
5090
5091 if (!path) {
5092 path = btrfs_alloc_path();
5093 BUG_ON(!path);
5094 }
5095
179e29e4
CM
5096 ret = btrfs_lookup_file_extent(trans, root, path,
5097 objectid, start, trans != NULL);
a52d9a80
CM
5098 if (ret < 0) {
5099 err = ret;
5100 goto out;
5101 }
5102
5103 if (ret != 0) {
5104 if (path->slots[0] == 0)
5105 goto not_found;
5106 path->slots[0]--;
5107 }
5108
5f39d397
CM
5109 leaf = path->nodes[0];
5110 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 5111 struct btrfs_file_extent_item);
a52d9a80 5112 /* are we inside the extent that was found? */
5f39d397
CM
5113 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5114 found_type = btrfs_key_type(&found_key);
5115 if (found_key.objectid != objectid ||
a52d9a80
CM
5116 found_type != BTRFS_EXTENT_DATA_KEY) {
5117 goto not_found;
5118 }
5119
5f39d397
CM
5120 found_type = btrfs_file_extent_type(leaf, item);
5121 extent_start = found_key.offset;
261507a0 5122 compress_type = btrfs_file_extent_compression(leaf, item);
d899e052
YZ
5123 if (found_type == BTRFS_FILE_EXTENT_REG ||
5124 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 5125 extent_end = extent_start +
db94535d 5126 btrfs_file_extent_num_bytes(leaf, item);
9036c102
YZ
5127 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5128 size_t size;
5129 size = btrfs_file_extent_inline_len(leaf, item);
5130 extent_end = (extent_start + size + root->sectorsize - 1) &
5131 ~((u64)root->sectorsize - 1);
5132 }
5133
5134 if (start >= extent_end) {
5135 path->slots[0]++;
5136 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5137 ret = btrfs_next_leaf(root, path);
5138 if (ret < 0) {
5139 err = ret;
5140 goto out;
a52d9a80 5141 }
9036c102
YZ
5142 if (ret > 0)
5143 goto not_found;
5144 leaf = path->nodes[0];
a52d9a80 5145 }
9036c102
YZ
5146 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5147 if (found_key.objectid != objectid ||
5148 found_key.type != BTRFS_EXTENT_DATA_KEY)
5149 goto not_found;
5150 if (start + len <= found_key.offset)
5151 goto not_found;
5152 em->start = start;
5153 em->len = found_key.offset - start;
5154 goto not_found_em;
5155 }
5156
d899e052
YZ
5157 if (found_type == BTRFS_FILE_EXTENT_REG ||
5158 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
9036c102
YZ
5159 em->start = extent_start;
5160 em->len = extent_end - extent_start;
ff5b7ee3
YZ
5161 em->orig_start = extent_start -
5162 btrfs_file_extent_offset(leaf, item);
db94535d
CM
5163 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5164 if (bytenr == 0) {
5f39d397 5165 em->block_start = EXTENT_MAP_HOLE;
a52d9a80
CM
5166 goto insert;
5167 }
261507a0 5168 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818 5169 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0 5170 em->compress_type = compress_type;
c8b97818
CM
5171 em->block_start = bytenr;
5172 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5173 item);
5174 } else {
5175 bytenr += btrfs_file_extent_offset(leaf, item);
5176 em->block_start = bytenr;
5177 em->block_len = em->len;
d899e052
YZ
5178 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5179 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
c8b97818 5180 }
a52d9a80
CM
5181 goto insert;
5182 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 5183 unsigned long ptr;
a52d9a80 5184 char *map;
3326d1b0
CM
5185 size_t size;
5186 size_t extent_offset;
5187 size_t copy_size;
a52d9a80 5188
689f9346 5189 em->block_start = EXTENT_MAP_INLINE;
c8b97818 5190 if (!page || create) {
689f9346 5191 em->start = extent_start;
9036c102 5192 em->len = extent_end - extent_start;
689f9346
Y
5193 goto out;
5194 }
5f39d397 5195
9036c102
YZ
5196 size = btrfs_file_extent_inline_len(leaf, item);
5197 extent_offset = page_offset(page) + pg_offset - extent_start;
70dec807 5198 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
3326d1b0 5199 size - extent_offset);
3326d1b0 5200 em->start = extent_start + extent_offset;
70dec807
CM
5201 em->len = (copy_size + root->sectorsize - 1) &
5202 ~((u64)root->sectorsize - 1);
ff5b7ee3 5203 em->orig_start = EXTENT_MAP_INLINE;
261507a0 5204 if (compress_type) {
c8b97818 5205 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
261507a0
LZ
5206 em->compress_type = compress_type;
5207 }
689f9346 5208 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 5209 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
5210 if (btrfs_file_extent_compression(leaf, item) !=
5211 BTRFS_COMPRESS_NONE) {
c8b97818
CM
5212 ret = uncompress_inline(path, inode, page,
5213 pg_offset,
5214 extent_offset, item);
5215 BUG_ON(ret);
5216 } else {
5217 map = kmap(page);
5218 read_extent_buffer(leaf, map + pg_offset, ptr,
5219 copy_size);
93c82d57
CM
5220 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5221 memset(map + pg_offset + copy_size, 0,
5222 PAGE_CACHE_SIZE - pg_offset -
5223 copy_size);
5224 }
c8b97818
CM
5225 kunmap(page);
5226 }
179e29e4
CM
5227 flush_dcache_page(page);
5228 } else if (create && PageUptodate(page)) {
0ca1f7ce 5229 WARN_ON(1);
179e29e4
CM
5230 if (!trans) {
5231 kunmap(page);
5232 free_extent_map(em);
5233 em = NULL;
5234 btrfs_release_path(root, path);
f9295749 5235 trans = btrfs_join_transaction(root, 1);
3612b495
TI
5236 if (IS_ERR(trans))
5237 return ERR_CAST(trans);
179e29e4
CM
5238 goto again;
5239 }
c8b97818 5240 map = kmap(page);
70dec807 5241 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 5242 copy_size);
c8b97818 5243 kunmap(page);
179e29e4 5244 btrfs_mark_buffer_dirty(leaf);
a52d9a80 5245 }
d1310b2e 5246 set_extent_uptodate(io_tree, em->start,
507903b8 5247 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80
CM
5248 goto insert;
5249 } else {
d397712b 5250 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
a52d9a80
CM
5251 WARN_ON(1);
5252 }
5253not_found:
5254 em->start = start;
d1310b2e 5255 em->len = len;
a52d9a80 5256not_found_em:
5f39d397 5257 em->block_start = EXTENT_MAP_HOLE;
9036c102 5258 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80
CM
5259insert:
5260 btrfs_release_path(root, path);
d1310b2e 5261 if (em->start > start || extent_map_end(em) <= start) {
d397712b
CM
5262 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5263 "[%llu %llu]\n", (unsigned long long)em->start,
5264 (unsigned long long)em->len,
5265 (unsigned long long)start,
5266 (unsigned long long)len);
a52d9a80
CM
5267 err = -EIO;
5268 goto out;
5269 }
d1310b2e
CM
5270
5271 err = 0;
890871be 5272 write_lock(&em_tree->lock);
a52d9a80 5273 ret = add_extent_mapping(em_tree, em);
3b951516
CM
5274 /* it is possible that someone inserted the extent into the tree
5275 * while we had the lock dropped. It is also possible that
5276 * an overlapping map exists in the tree
5277 */
a52d9a80 5278 if (ret == -EEXIST) {
3b951516 5279 struct extent_map *existing;
e6dcd2dc
CM
5280
5281 ret = 0;
5282
3b951516 5283 existing = lookup_extent_mapping(em_tree, start, len);
e1c4b745
CM
5284 if (existing && (existing->start > start ||
5285 existing->start + existing->len <= start)) {
5286 free_extent_map(existing);
5287 existing = NULL;
5288 }
3b951516
CM
5289 if (!existing) {
5290 existing = lookup_extent_mapping(em_tree, em->start,
5291 em->len);
5292 if (existing) {
5293 err = merge_extent_mapping(em_tree, existing,
e6dcd2dc
CM
5294 em, start,
5295 root->sectorsize);
3b951516
CM
5296 free_extent_map(existing);
5297 if (err) {
5298 free_extent_map(em);
5299 em = NULL;
5300 }
5301 } else {
5302 err = -EIO;
3b951516
CM
5303 free_extent_map(em);
5304 em = NULL;
5305 }
5306 } else {
5307 free_extent_map(em);
5308 em = existing;
e6dcd2dc 5309 err = 0;
a52d9a80 5310 }
a52d9a80 5311 }
890871be 5312 write_unlock(&em_tree->lock);
a52d9a80 5313out:
1abe9b8a 5314
5315 trace_btrfs_get_extent(root, em);
5316
f421950f
CM
5317 if (path)
5318 btrfs_free_path(path);
a52d9a80
CM
5319 if (trans) {
5320 ret = btrfs_end_transaction(trans, root);
d397712b 5321 if (!err)
a52d9a80
CM
5322 err = ret;
5323 }
a52d9a80
CM
5324 if (err) {
5325 free_extent_map(em);
a52d9a80
CM
5326 return ERR_PTR(err);
5327 }
5328 return em;
5329}
5330
ec29ed5b
CM
5331struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5332 size_t pg_offset, u64 start, u64 len,
5333 int create)
5334{
5335 struct extent_map *em;
5336 struct extent_map *hole_em = NULL;
5337 u64 range_start = start;
5338 u64 end;
5339 u64 found;
5340 u64 found_end;
5341 int err = 0;
5342
5343 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5344 if (IS_ERR(em))
5345 return em;
5346 if (em) {
5347 /*
5348 * if our em maps to a hole, there might
5349 * actually be delalloc bytes behind it
5350 */
5351 if (em->block_start != EXTENT_MAP_HOLE)
5352 return em;
5353 else
5354 hole_em = em;
5355 }
5356
5357 /* check to see if we've wrapped (len == -1 or similar) */
5358 end = start + len;
5359 if (end < start)
5360 end = (u64)-1;
5361 else
5362 end -= 1;
5363
5364 em = NULL;
5365
5366 /* ok, we didn't find anything, lets look for delalloc */
5367 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5368 end, len, EXTENT_DELALLOC, 1);
5369 found_end = range_start + found;
5370 if (found_end < range_start)
5371 found_end = (u64)-1;
5372
5373 /*
5374 * we didn't find anything useful, return
5375 * the original results from get_extent()
5376 */
5377 if (range_start > end || found_end <= start) {
5378 em = hole_em;
5379 hole_em = NULL;
5380 goto out;
5381 }
5382
5383 /* adjust the range_start to make sure it doesn't
5384 * go backwards from the start they passed in
5385 */
5386 range_start = max(start,range_start);
5387 found = found_end - range_start;
5388
5389 if (found > 0) {
5390 u64 hole_start = start;
5391 u64 hole_len = len;
5392
5393 em = alloc_extent_map(GFP_NOFS);
5394 if (!em) {
5395 err = -ENOMEM;
5396 goto out;
5397 }
5398 /*
5399 * when btrfs_get_extent can't find anything it
5400 * returns one huge hole
5401 *
5402 * make sure what it found really fits our range, and
5403 * adjust to make sure it is based on the start from
5404 * the caller
5405 */
5406 if (hole_em) {
5407 u64 calc_end = extent_map_end(hole_em);
5408
5409 if (calc_end <= start || (hole_em->start > end)) {
5410 free_extent_map(hole_em);
5411 hole_em = NULL;
5412 } else {
5413 hole_start = max(hole_em->start, start);
5414 hole_len = calc_end - hole_start;
5415 }
5416 }
5417 em->bdev = NULL;
5418 if (hole_em && range_start > hole_start) {
5419 /* our hole starts before our delalloc, so we
5420 * have to return just the parts of the hole
5421 * that go until the delalloc starts
5422 */
5423 em->len = min(hole_len,
5424 range_start - hole_start);
5425 em->start = hole_start;
5426 em->orig_start = hole_start;
5427 /*
5428 * don't adjust block start at all,
5429 * it is fixed at EXTENT_MAP_HOLE
5430 */
5431 em->block_start = hole_em->block_start;
5432 em->block_len = hole_len;
5433 } else {
5434 em->start = range_start;
5435 em->len = found;
5436 em->orig_start = range_start;
5437 em->block_start = EXTENT_MAP_DELALLOC;
5438 em->block_len = found;
5439 }
5440 } else if (hole_em) {
5441 return hole_em;
5442 }
5443out:
5444
5445 free_extent_map(hole_em);
5446 if (err) {
5447 free_extent_map(em);
5448 return ERR_PTR(err);
5449 }
5450 return em;
5451}
5452
4b46fce2 5453static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
16d299ac 5454 struct extent_map *em,
4b46fce2
JB
5455 u64 start, u64 len)
5456{
5457 struct btrfs_root *root = BTRFS_I(inode)->root;
5458 struct btrfs_trans_handle *trans;
4b46fce2
JB
5459 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5460 struct btrfs_key ins;
5461 u64 alloc_hint;
5462 int ret;
16d299ac 5463 bool insert = false;
4b46fce2 5464
16d299ac
JB
5465 /*
5466 * Ok if the extent map we looked up is a hole and is for the exact
5467 * range we want, there is no reason to allocate a new one, however if
5468 * it is not right then we need to free this one and drop the cache for
5469 * our range.
5470 */
5471 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5472 em->len != len) {
5473 free_extent_map(em);
5474 em = NULL;
5475 insert = true;
5476 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5477 }
4b46fce2
JB
5478
5479 trans = btrfs_join_transaction(root, 0);
3612b495
TI
5480 if (IS_ERR(trans))
5481 return ERR_CAST(trans);
4b46fce2
JB
5482
5483 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5484
5485 alloc_hint = get_extent_allocation_hint(inode, start, len);
5486 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5487 alloc_hint, (u64)-1, &ins, 1);
5488 if (ret) {
5489 em = ERR_PTR(ret);
5490 goto out;
5491 }
5492
4b46fce2 5493 if (!em) {
16d299ac
JB
5494 em = alloc_extent_map(GFP_NOFS);
5495 if (!em) {
5496 em = ERR_PTR(-ENOMEM);
5497 goto out;
5498 }
4b46fce2
JB
5499 }
5500
5501 em->start = start;
5502 em->orig_start = em->start;
5503 em->len = ins.offset;
5504
5505 em->block_start = ins.objectid;
5506 em->block_len = ins.offset;
5507 em->bdev = root->fs_info->fs_devices->latest_bdev;
16d299ac
JB
5508
5509 /*
5510 * We need to do this because if we're using the original em we searched
5511 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5512 */
5513 em->flags = 0;
4b46fce2
JB
5514 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5515
16d299ac 5516 while (insert) {
4b46fce2
JB
5517 write_lock(&em_tree->lock);
5518 ret = add_extent_mapping(em_tree, em);
5519 write_unlock(&em_tree->lock);
5520 if (ret != -EEXIST)
5521 break;
5522 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5523 }
5524
5525 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5526 ins.offset, ins.offset, 0);
5527 if (ret) {
5528 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5529 em = ERR_PTR(ret);
5530 }
5531out:
5532 btrfs_end_transaction(trans, root);
5533 return em;
5534}
5535
46bfbb5c
CM
5536/*
5537 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5538 * block must be cow'd
5539 */
5540static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5541 struct inode *inode, u64 offset, u64 len)
5542{
5543 struct btrfs_path *path;
5544 int ret;
5545 struct extent_buffer *leaf;
5546 struct btrfs_root *root = BTRFS_I(inode)->root;
5547 struct btrfs_file_extent_item *fi;
5548 struct btrfs_key key;
5549 u64 disk_bytenr;
5550 u64 backref_offset;
5551 u64 extent_end;
5552 u64 num_bytes;
5553 int slot;
5554 int found_type;
5555
5556 path = btrfs_alloc_path();
5557 if (!path)
5558 return -ENOMEM;
5559
5560 ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
5561 offset, 0);
5562 if (ret < 0)
5563 goto out;
5564
5565 slot = path->slots[0];
5566 if (ret == 1) {
5567 if (slot == 0) {
5568 /* can't find the item, must cow */
5569 ret = 0;
5570 goto out;
5571 }
5572 slot--;
5573 }
5574 ret = 0;
5575 leaf = path->nodes[0];
5576 btrfs_item_key_to_cpu(leaf, &key, slot);
5577 if (key.objectid != inode->i_ino ||
5578 key.type != BTRFS_EXTENT_DATA_KEY) {
5579 /* not our file or wrong item type, must cow */
5580 goto out;
5581 }
5582
5583 if (key.offset > offset) {
5584 /* Wrong offset, must cow */
5585 goto out;
5586 }
5587
5588 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5589 found_type = btrfs_file_extent_type(leaf, fi);
5590 if (found_type != BTRFS_FILE_EXTENT_REG &&
5591 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5592 /* not a regular extent, must cow */
5593 goto out;
5594 }
5595 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5596 backref_offset = btrfs_file_extent_offset(leaf, fi);
5597
5598 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5599 if (extent_end < offset + len) {
5600 /* extent doesn't include our full range, must cow */
5601 goto out;
5602 }
5603
5604 if (btrfs_extent_readonly(root, disk_bytenr))
5605 goto out;
5606
5607 /*
5608 * look for other files referencing this extent, if we
5609 * find any we must cow
5610 */
5611 if (btrfs_cross_ref_exist(trans, root, inode->i_ino,
5612 key.offset - backref_offset, disk_bytenr))
5613 goto out;
5614
5615 /*
5616 * adjust disk_bytenr and num_bytes to cover just the bytes
5617 * in this extent we are about to write. If there
5618 * are any csums in that range we have to cow in order
5619 * to keep the csums correct
5620 */
5621 disk_bytenr += backref_offset;
5622 disk_bytenr += offset - key.offset;
5623 num_bytes = min(offset + len, extent_end) - offset;
5624 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5625 goto out;
5626 /*
5627 * all of the above have passed, it is safe to overwrite this extent
5628 * without cow
5629 */
5630 ret = 1;
5631out:
5632 btrfs_free_path(path);
5633 return ret;
5634}
5635
4b46fce2
JB
5636static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5637 struct buffer_head *bh_result, int create)
5638{
5639 struct extent_map *em;
5640 struct btrfs_root *root = BTRFS_I(inode)->root;
5641 u64 start = iblock << inode->i_blkbits;
5642 u64 len = bh_result->b_size;
46bfbb5c 5643 struct btrfs_trans_handle *trans;
4b46fce2
JB
5644
5645 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5646 if (IS_ERR(em))
5647 return PTR_ERR(em);
5648
5649 /*
5650 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5651 * io. INLINE is special, and we could probably kludge it in here, but
5652 * it's still buffered so for safety lets just fall back to the generic
5653 * buffered path.
5654 *
5655 * For COMPRESSED we _have_ to read the entire extent in so we can
5656 * decompress it, so there will be buffering required no matter what we
5657 * do, so go ahead and fallback to buffered.
5658 *
5659 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5660 * to buffered IO. Don't blame me, this is the price we pay for using
5661 * the generic code.
5662 */
5663 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5664 em->block_start == EXTENT_MAP_INLINE) {
5665 free_extent_map(em);
5666 return -ENOTBLK;
5667 }
5668
5669 /* Just a good old fashioned hole, return */
5670 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5671 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5672 free_extent_map(em);
5673 /* DIO will do one hole at a time, so just unlock a sector */
5674 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5675 start + root->sectorsize - 1, GFP_NOFS);
5676 return 0;
5677 }
5678
5679 /*
5680 * We don't allocate a new extent in the following cases
5681 *
5682 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5683 * existing extent.
5684 * 2) The extent is marked as PREALLOC. We're good to go here and can
5685 * just use the extent.
5686 *
5687 */
46bfbb5c
CM
5688 if (!create) {
5689 len = em->len - (start - em->start);
4b46fce2 5690 goto map;
46bfbb5c 5691 }
4b46fce2
JB
5692
5693 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5694 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5695 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2
JB
5696 int type;
5697 int ret;
46bfbb5c 5698 u64 block_start;
4b46fce2
JB
5699
5700 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5701 type = BTRFS_ORDERED_PREALLOC;
5702 else
5703 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 5704 len = min(len, em->len - (start - em->start));
4b46fce2 5705 block_start = em->block_start + (start - em->start);
46bfbb5c
CM
5706
5707 /*
5708 * we're not going to log anything, but we do need
5709 * to make sure the current transaction stays open
5710 * while we look for nocow cross refs
5711 */
5712 trans = btrfs_join_transaction(root, 0);
3612b495 5713 if (IS_ERR(trans))
46bfbb5c
CM
5714 goto must_cow;
5715
5716 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5717 ret = btrfs_add_ordered_extent_dio(inode, start,
5718 block_start, len, len, type);
5719 btrfs_end_transaction(trans, root);
5720 if (ret) {
5721 free_extent_map(em);
5722 return ret;
5723 }
5724 goto unlock;
4b46fce2 5725 }
46bfbb5c 5726 btrfs_end_transaction(trans, root);
4b46fce2 5727 }
46bfbb5c
CM
5728must_cow:
5729 /*
5730 * this will cow the extent, reset the len in case we changed
5731 * it above
5732 */
5733 len = bh_result->b_size;
16d299ac 5734 em = btrfs_new_extent_direct(inode, em, start, len);
46bfbb5c
CM
5735 if (IS_ERR(em))
5736 return PTR_ERR(em);
5737 len = min(len, em->len - (start - em->start));
5738unlock:
4845e44f
CM
5739 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5740 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5741 0, NULL, GFP_NOFS);
4b46fce2
JB
5742map:
5743 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5744 inode->i_blkbits;
46bfbb5c 5745 bh_result->b_size = len;
4b46fce2
JB
5746 bh_result->b_bdev = em->bdev;
5747 set_buffer_mapped(bh_result);
5748 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5749 set_buffer_new(bh_result);
5750
5751 free_extent_map(em);
5752
5753 return 0;
5754}
5755
5756struct btrfs_dio_private {
5757 struct inode *inode;
5758 u64 logical_offset;
5759 u64 disk_bytenr;
5760 u64 bytes;
5761 u32 *csums;
5762 void *private;
e65e1535
MX
5763
5764 /* number of bios pending for this dio */
5765 atomic_t pending_bios;
5766
5767 /* IO errors */
5768 int errors;
5769
5770 struct bio *orig_bio;
4b46fce2
JB
5771};
5772
5773static void btrfs_endio_direct_read(struct bio *bio, int err)
5774{
e65e1535 5775 struct btrfs_dio_private *dip = bio->bi_private;
4b46fce2
JB
5776 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5777 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2
JB
5778 struct inode *inode = dip->inode;
5779 struct btrfs_root *root = BTRFS_I(inode)->root;
5780 u64 start;
5781 u32 *private = dip->csums;
5782
5783 start = dip->logical_offset;
5784 do {
5785 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5786 struct page *page = bvec->bv_page;
5787 char *kaddr;
5788 u32 csum = ~(u32)0;
5789 unsigned long flags;
5790
5791 local_irq_save(flags);
5792 kaddr = kmap_atomic(page, KM_IRQ0);
5793 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5794 csum, bvec->bv_len);
5795 btrfs_csum_final(csum, (char *)&csum);
5796 kunmap_atomic(kaddr, KM_IRQ0);
5797 local_irq_restore(flags);
5798
5799 flush_dcache_page(bvec->bv_page);
5800 if (csum != *private) {
5801 printk(KERN_ERR "btrfs csum failed ino %lu off"
5802 " %llu csum %u private %u\n",
5803 inode->i_ino, (unsigned long long)start,
5804 csum, *private);
5805 err = -EIO;
5806 }
5807 }
5808
5809 start += bvec->bv_len;
5810 private++;
5811 bvec++;
5812 } while (bvec <= bvec_end);
5813
5814 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5815 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5816 bio->bi_private = dip->private;
5817
5818 kfree(dip->csums);
5819 kfree(dip);
c0da7aa1
JB
5820
5821 /* If we had a csum failure make sure to clear the uptodate flag */
5822 if (err)
5823 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5824 dio_end_io(bio, err);
5825}
5826
5827static void btrfs_endio_direct_write(struct bio *bio, int err)
5828{
5829 struct btrfs_dio_private *dip = bio->bi_private;
5830 struct inode *inode = dip->inode;
5831 struct btrfs_root *root = BTRFS_I(inode)->root;
5832 struct btrfs_trans_handle *trans;
5833 struct btrfs_ordered_extent *ordered = NULL;
5834 struct extent_state *cached_state = NULL;
163cf09c
CM
5835 u64 ordered_offset = dip->logical_offset;
5836 u64 ordered_bytes = dip->bytes;
4b46fce2
JB
5837 int ret;
5838
5839 if (err)
5840 goto out_done;
163cf09c
CM
5841again:
5842 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5843 &ordered_offset,
5844 ordered_bytes);
4b46fce2 5845 if (!ret)
163cf09c 5846 goto out_test;
4b46fce2
JB
5847
5848 BUG_ON(!ordered);
5849
5850 trans = btrfs_join_transaction(root, 1);
3612b495 5851 if (IS_ERR(trans)) {
4b46fce2
JB
5852 err = -ENOMEM;
5853 goto out;
5854 }
5855 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5856
5857 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5858 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5859 if (!ret)
5860 ret = btrfs_update_inode(trans, root, inode);
5861 err = ret;
5862 goto out;
5863 }
5864
5865 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5866 ordered->file_offset + ordered->len - 1, 0,
5867 &cached_state, GFP_NOFS);
5868
5869 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5870 ret = btrfs_mark_extent_written(trans, inode,
5871 ordered->file_offset,
5872 ordered->file_offset +
5873 ordered->len);
5874 if (ret) {
5875 err = ret;
5876 goto out_unlock;
5877 }
5878 } else {
5879 ret = insert_reserved_file_extent(trans, inode,
5880 ordered->file_offset,
5881 ordered->start,
5882 ordered->disk_len,
5883 ordered->len,
5884 ordered->len,
5885 0, 0, 0,
5886 BTRFS_FILE_EXTENT_REG);
5887 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5888 ordered->file_offset, ordered->len);
5889 if (ret) {
5890 err = ret;
5891 WARN_ON(1);
5892 goto out_unlock;
5893 }
5894 }
5895
5896 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
1ef30be1
JB
5897 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5898 if (!ret)
5899 btrfs_update_inode(trans, root, inode);
5900 ret = 0;
4b46fce2
JB
5901out_unlock:
5902 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5903 ordered->file_offset + ordered->len - 1,
5904 &cached_state, GFP_NOFS);
5905out:
5906 btrfs_delalloc_release_metadata(inode, ordered->len);
5907 btrfs_end_transaction(trans, root);
163cf09c 5908 ordered_offset = ordered->file_offset + ordered->len;
4b46fce2
JB
5909 btrfs_put_ordered_extent(ordered);
5910 btrfs_put_ordered_extent(ordered);
163cf09c
CM
5911
5912out_test:
5913 /*
5914 * our bio might span multiple ordered extents. If we haven't
5915 * completed the accounting for the whole dio, go back and try again
5916 */
5917 if (ordered_offset < dip->logical_offset + dip->bytes) {
5918 ordered_bytes = dip->logical_offset + dip->bytes -
5919 ordered_offset;
5920 goto again;
5921 }
4b46fce2
JB
5922out_done:
5923 bio->bi_private = dip->private;
5924
5925 kfree(dip->csums);
5926 kfree(dip);
c0da7aa1
JB
5927
5928 /* If we had an error make sure to clear the uptodate flag */
5929 if (err)
5930 clear_bit(BIO_UPTODATE, &bio->bi_flags);
4b46fce2
JB
5931 dio_end_io(bio, err);
5932}
5933
eaf25d93
CM
5934static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5935 struct bio *bio, int mirror_num,
5936 unsigned long bio_flags, u64 offset)
5937{
5938 int ret;
5939 struct btrfs_root *root = BTRFS_I(inode)->root;
5940 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5941 BUG_ON(ret);
5942 return 0;
5943}
5944
e65e1535
MX
5945static void btrfs_end_dio_bio(struct bio *bio, int err)
5946{
5947 struct btrfs_dio_private *dip = bio->bi_private;
5948
5949 if (err) {
5950 printk(KERN_ERR "btrfs direct IO failed ino %lu rw %lu "
3dd1462e
JB
5951 "sector %#Lx len %u err no %d\n",
5952 dip->inode->i_ino, bio->bi_rw,
5953 (unsigned long long)bio->bi_sector, bio->bi_size, err);
e65e1535
MX
5954 dip->errors = 1;
5955
5956 /*
5957 * before atomic variable goto zero, we must make sure
5958 * dip->errors is perceived to be set.
5959 */
5960 smp_mb__before_atomic_dec();
5961 }
5962
5963 /* if there are more bios still pending for this dio, just exit */
5964 if (!atomic_dec_and_test(&dip->pending_bios))
5965 goto out;
5966
5967 if (dip->errors)
5968 bio_io_error(dip->orig_bio);
5969 else {
5970 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5971 bio_endio(dip->orig_bio, 0);
5972 }
5973out:
5974 bio_put(bio);
5975}
5976
5977static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5978 u64 first_sector, gfp_t gfp_flags)
5979{
5980 int nr_vecs = bio_get_nr_vecs(bdev);
5981 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5982}
5983
5984static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5985 int rw, u64 file_offset, int skip_sum,
1ae39938 5986 u32 *csums, int async_submit)
e65e1535
MX
5987{
5988 int write = rw & REQ_WRITE;
5989 struct btrfs_root *root = BTRFS_I(inode)->root;
5990 int ret;
5991
5992 bio_get(bio);
5993 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5994 if (ret)
5995 goto err;
5996
1ae39938
JB
5997 if (skip_sum)
5998 goto map;
5999
6000 if (write && async_submit) {
e65e1535
MX
6001 ret = btrfs_wq_submit_bio(root->fs_info,
6002 inode, rw, bio, 0, 0,
6003 file_offset,
6004 __btrfs_submit_bio_start_direct_io,
6005 __btrfs_submit_bio_done);
6006 goto err;
1ae39938
JB
6007 } else if (write) {
6008 /*
6009 * If we aren't doing async submit, calculate the csum of the
6010 * bio now.
6011 */
6012 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
6013 if (ret)
6014 goto err;
c2db1073
TI
6015 } else if (!skip_sum) {
6016 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
e65e1535 6017 file_offset, csums);
c2db1073
TI
6018 if (ret)
6019 goto err;
6020 }
e65e1535 6021
1ae39938
JB
6022map:
6023 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
e65e1535
MX
6024err:
6025 bio_put(bio);
6026 return ret;
6027}
6028
6029static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
6030 int skip_sum)
6031{
6032 struct inode *inode = dip->inode;
6033 struct btrfs_root *root = BTRFS_I(inode)->root;
6034 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
6035 struct bio *bio;
6036 struct bio *orig_bio = dip->orig_bio;
6037 struct bio_vec *bvec = orig_bio->bi_io_vec;
6038 u64 start_sector = orig_bio->bi_sector;
6039 u64 file_offset = dip->logical_offset;
6040 u64 submit_len = 0;
6041 u64 map_length;
6042 int nr_pages = 0;
6043 u32 *csums = dip->csums;
6044 int ret = 0;
1ae39938 6045 int async_submit = 0;
98bc3149 6046 int write = rw & REQ_WRITE;
e65e1535 6047
e65e1535
MX
6048 map_length = orig_bio->bi_size;
6049 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6050 &map_length, NULL, 0);
6051 if (ret) {
6052 bio_put(bio);
6053 return -EIO;
6054 }
6055
02f57c7a
JB
6056 if (map_length >= orig_bio->bi_size) {
6057 bio = orig_bio;
6058 goto submit;
6059 }
6060
1ae39938 6061 async_submit = 1;
02f57c7a
JB
6062 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
6063 if (!bio)
6064 return -ENOMEM;
6065 bio->bi_private = dip;
6066 bio->bi_end_io = btrfs_end_dio_bio;
6067 atomic_inc(&dip->pending_bios);
6068
e65e1535
MX
6069 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
6070 if (unlikely(map_length < submit_len + bvec->bv_len ||
6071 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
6072 bvec->bv_offset) < bvec->bv_len)) {
6073 /*
6074 * inc the count before we submit the bio so
6075 * we know the end IO handler won't happen before
6076 * we inc the count. Otherwise, the dip might get freed
6077 * before we're done setting it up
6078 */
6079 atomic_inc(&dip->pending_bios);
6080 ret = __btrfs_submit_dio_bio(bio, inode, rw,
6081 file_offset, skip_sum,
1ae39938 6082 csums, async_submit);
e65e1535
MX
6083 if (ret) {
6084 bio_put(bio);
6085 atomic_dec(&dip->pending_bios);
6086 goto out_err;
6087 }
6088
98bc3149
JB
6089 /* Write's use the ordered csums */
6090 if (!write && !skip_sum)
e65e1535
MX
6091 csums = csums + nr_pages;
6092 start_sector += submit_len >> 9;
6093 file_offset += submit_len;
6094
6095 submit_len = 0;
6096 nr_pages = 0;
6097
6098 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
6099 start_sector, GFP_NOFS);
6100 if (!bio)
6101 goto out_err;
6102 bio->bi_private = dip;
6103 bio->bi_end_io = btrfs_end_dio_bio;
6104
6105 map_length = orig_bio->bi_size;
6106 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
6107 &map_length, NULL, 0);
6108 if (ret) {
6109 bio_put(bio);
6110 goto out_err;
6111 }
6112 } else {
6113 submit_len += bvec->bv_len;
6114 nr_pages ++;
6115 bvec++;
6116 }
6117 }
6118
02f57c7a 6119submit:
e65e1535 6120 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
1ae39938 6121 csums, async_submit);
e65e1535
MX
6122 if (!ret)
6123 return 0;
6124
6125 bio_put(bio);
6126out_err:
6127 dip->errors = 1;
6128 /*
6129 * before atomic variable goto zero, we must
6130 * make sure dip->errors is perceived to be set.
6131 */
6132 smp_mb__before_atomic_dec();
6133 if (atomic_dec_and_test(&dip->pending_bios))
6134 bio_io_error(dip->orig_bio);
6135
6136 /* bio_end_io() will handle error, so we needn't return it */
6137 return 0;
6138}
6139
4b46fce2
JB
6140static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6141 loff_t file_offset)
6142{
6143 struct btrfs_root *root = BTRFS_I(inode)->root;
6144 struct btrfs_dio_private *dip;
6145 struct bio_vec *bvec = bio->bi_io_vec;
4b46fce2 6146 int skip_sum;
7b6d91da 6147 int write = rw & REQ_WRITE;
4b46fce2
JB
6148 int ret = 0;
6149
6150 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6151
6152 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6153 if (!dip) {
6154 ret = -ENOMEM;
6155 goto free_ordered;
6156 }
6157 dip->csums = NULL;
6158
98bc3149
JB
6159 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6160 if (!write && !skip_sum) {
4b46fce2
JB
6161 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6162 if (!dip->csums) {
b4966b77 6163 kfree(dip);
4b46fce2
JB
6164 ret = -ENOMEM;
6165 goto free_ordered;
6166 }
6167 }
6168
6169 dip->private = bio->bi_private;
6170 dip->inode = inode;
6171 dip->logical_offset = file_offset;
6172
4b46fce2
JB
6173 dip->bytes = 0;
6174 do {
6175 dip->bytes += bvec->bv_len;
6176 bvec++;
6177 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6178
46bfbb5c 6179 dip->disk_bytenr = (u64)bio->bi_sector << 9;
4b46fce2 6180 bio->bi_private = dip;
e65e1535
MX
6181 dip->errors = 0;
6182 dip->orig_bio = bio;
6183 atomic_set(&dip->pending_bios, 0);
4b46fce2
JB
6184
6185 if (write)
6186 bio->bi_end_io = btrfs_endio_direct_write;
6187 else
6188 bio->bi_end_io = btrfs_endio_direct_read;
6189
e65e1535
MX
6190 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6191 if (!ret)
eaf25d93 6192 return;
4b46fce2
JB
6193free_ordered:
6194 /*
6195 * If this is a write, we need to clean up the reserved space and kill
6196 * the ordered extent.
6197 */
6198 if (write) {
6199 struct btrfs_ordered_extent *ordered;
955256f2 6200 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
4b46fce2
JB
6201 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6202 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6203 btrfs_free_reserved_extent(root, ordered->start,
6204 ordered->disk_len);
6205 btrfs_put_ordered_extent(ordered);
6206 btrfs_put_ordered_extent(ordered);
6207 }
6208 bio_endio(bio, ret);
6209}
6210
5a5f79b5
CM
6211static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6212 const struct iovec *iov, loff_t offset,
6213 unsigned long nr_segs)
6214{
6215 int seg;
a1b75f7d 6216 int i;
5a5f79b5
CM
6217 size_t size;
6218 unsigned long addr;
6219 unsigned blocksize_mask = root->sectorsize - 1;
6220 ssize_t retval = -EINVAL;
6221 loff_t end = offset;
6222
6223 if (offset & blocksize_mask)
6224 goto out;
6225
6226 /* Check the memory alignment. Blocks cannot straddle pages */
6227 for (seg = 0; seg < nr_segs; seg++) {
6228 addr = (unsigned long)iov[seg].iov_base;
6229 size = iov[seg].iov_len;
6230 end += size;
a1b75f7d 6231 if ((addr & blocksize_mask) || (size & blocksize_mask))
5a5f79b5 6232 goto out;
a1b75f7d
JB
6233
6234 /* If this is a write we don't need to check anymore */
6235 if (rw & WRITE)
6236 continue;
6237
6238 /*
6239 * Check to make sure we don't have duplicate iov_base's in this
6240 * iovec, if so return EINVAL, otherwise we'll get csum errors
6241 * when reading back.
6242 */
6243 for (i = seg + 1; i < nr_segs; i++) {
6244 if (iov[seg].iov_base == iov[i].iov_base)
6245 goto out;
6246 }
5a5f79b5
CM
6247 }
6248 retval = 0;
6249out:
6250 return retval;
6251}
16432985
CM
6252static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6253 const struct iovec *iov, loff_t offset,
6254 unsigned long nr_segs)
6255{
4b46fce2
JB
6256 struct file *file = iocb->ki_filp;
6257 struct inode *inode = file->f_mapping->host;
6258 struct btrfs_ordered_extent *ordered;
4845e44f 6259 struct extent_state *cached_state = NULL;
4b46fce2
JB
6260 u64 lockstart, lockend;
6261 ssize_t ret;
4845e44f
CM
6262 int writing = rw & WRITE;
6263 int write_bits = 0;
3f7c579c 6264 size_t count = iov_length(iov, nr_segs);
4b46fce2 6265
5a5f79b5
CM
6266 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6267 offset, nr_segs)) {
6268 return 0;
6269 }
6270
4b46fce2 6271 lockstart = offset;
3f7c579c
CM
6272 lockend = offset + count - 1;
6273
6274 if (writing) {
6275 ret = btrfs_delalloc_reserve_space(inode, count);
6276 if (ret)
6277 goto out;
6278 }
4845e44f 6279
4b46fce2 6280 while (1) {
4845e44f
CM
6281 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6282 0, &cached_state, GFP_NOFS);
4b46fce2
JB
6283 /*
6284 * We're concerned with the entire range that we're going to be
6285 * doing DIO to, so we need to make sure theres no ordered
6286 * extents in this range.
6287 */
6288 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6289 lockend - lockstart + 1);
6290 if (!ordered)
6291 break;
4845e44f
CM
6292 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6293 &cached_state, GFP_NOFS);
4b46fce2
JB
6294 btrfs_start_ordered_extent(inode, ordered, 1);
6295 btrfs_put_ordered_extent(ordered);
6296 cond_resched();
6297 }
6298
4845e44f
CM
6299 /*
6300 * we don't use btrfs_set_extent_delalloc because we don't want
6301 * the dirty or uptodate bits
6302 */
6303 if (writing) {
6304 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6305 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6306 EXTENT_DELALLOC, 0, NULL, &cached_state,
6307 GFP_NOFS);
6308 if (ret) {
6309 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6310 lockend, EXTENT_LOCKED | write_bits,
6311 1, 0, &cached_state, GFP_NOFS);
6312 goto out;
6313 }
6314 }
6315
6316 free_extent_state(cached_state);
6317 cached_state = NULL;
6318
5a5f79b5
CM
6319 ret = __blockdev_direct_IO(rw, iocb, inode,
6320 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6321 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6322 btrfs_submit_direct, 0);
4b46fce2
JB
6323
6324 if (ret < 0 && ret != -EIOCBQUEUED) {
4845e44f
CM
6325 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6326 offset + iov_length(iov, nr_segs) - 1,
6327 EXTENT_LOCKED | write_bits, 1, 0,
6328 &cached_state, GFP_NOFS);
4b46fce2
JB
6329 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6330 /*
6331 * We're falling back to buffered, unlock the section we didn't
6332 * do IO on.
6333 */
4845e44f
CM
6334 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6335 offset + iov_length(iov, nr_segs) - 1,
6336 EXTENT_LOCKED | write_bits, 1, 0,
6337 &cached_state, GFP_NOFS);
4b46fce2 6338 }
4845e44f
CM
6339out:
6340 free_extent_state(cached_state);
4b46fce2 6341 return ret;
16432985
CM
6342}
6343
1506fcc8
YS
6344static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6345 __u64 start, __u64 len)
6346{
ec29ed5b 6347 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
6348}
6349
a52d9a80 6350int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 6351{
d1310b2e
CM
6352 struct extent_io_tree *tree;
6353 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6354 return extent_read_full_page(tree, page, btrfs_get_extent);
9ebefb18 6355}
1832a6d5 6356
a52d9a80 6357static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 6358{
d1310b2e 6359 struct extent_io_tree *tree;
b888db2b
CM
6360
6361
6362 if (current->flags & PF_MEMALLOC) {
6363 redirty_page_for_writepage(wbc, page);
6364 unlock_page(page);
6365 return 0;
6366 }
d1310b2e 6367 tree = &BTRFS_I(page->mapping->host)->io_tree;
a52d9a80 6368 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
9ebefb18
CM
6369}
6370
f421950f
CM
6371int btrfs_writepages(struct address_space *mapping,
6372 struct writeback_control *wbc)
b293f02e 6373{
d1310b2e 6374 struct extent_io_tree *tree;
771ed689 6375
d1310b2e 6376 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
6377 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6378}
6379
3ab2fb5a
CM
6380static int
6381btrfs_readpages(struct file *file, struct address_space *mapping,
6382 struct list_head *pages, unsigned nr_pages)
6383{
d1310b2e
CM
6384 struct extent_io_tree *tree;
6385 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
6386 return extent_readpages(tree, mapping, pages, nr_pages,
6387 btrfs_get_extent);
6388}
e6dcd2dc 6389static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 6390{
d1310b2e
CM
6391 struct extent_io_tree *tree;
6392 struct extent_map_tree *map;
a52d9a80 6393 int ret;
8c2383c3 6394
d1310b2e
CM
6395 tree = &BTRFS_I(page->mapping->host)->io_tree;
6396 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 6397 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
6398 if (ret == 1) {
6399 ClearPagePrivate(page);
6400 set_page_private(page, 0);
6401 page_cache_release(page);
39279cc3 6402 }
a52d9a80 6403 return ret;
39279cc3
CM
6404}
6405
e6dcd2dc
CM
6406static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6407{
98509cfc
CM
6408 if (PageWriteback(page) || PageDirty(page))
6409 return 0;
b335b003 6410 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
e6dcd2dc
CM
6411}
6412
a52d9a80 6413static void btrfs_invalidatepage(struct page *page, unsigned long offset)
39279cc3 6414{
d1310b2e 6415 struct extent_io_tree *tree;
e6dcd2dc 6416 struct btrfs_ordered_extent *ordered;
2ac55d41 6417 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6418 u64 page_start = page_offset(page);
6419 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
39279cc3 6420
8b62b72b
CM
6421
6422 /*
6423 * we have the page locked, so new writeback can't start,
6424 * and the dirty bit won't be cleared while we are here.
6425 *
6426 * Wait for IO on this page so that we can safely clear
6427 * the PagePrivate2 bit and do ordered accounting
6428 */
e6dcd2dc 6429 wait_on_page_writeback(page);
8b62b72b 6430
d1310b2e 6431 tree = &BTRFS_I(page->mapping->host)->io_tree;
e6dcd2dc
CM
6432 if (offset) {
6433 btrfs_releasepage(page, GFP_NOFS);
6434 return;
6435 }
2ac55d41
JB
6436 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6437 GFP_NOFS);
e6dcd2dc
CM
6438 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6439 page_offset(page));
6440 if (ordered) {
eb84ae03
CM
6441 /*
6442 * IO on this page will never be started, so we need
6443 * to account for any ordered extents now
6444 */
e6dcd2dc
CM
6445 clear_extent_bit(tree, page_start, page_end,
6446 EXTENT_DIRTY | EXTENT_DELALLOC |
32c00aff 6447 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
2ac55d41 6448 &cached_state, GFP_NOFS);
8b62b72b
CM
6449 /*
6450 * whoever cleared the private bit is responsible
6451 * for the finish_ordered_io
6452 */
6453 if (TestClearPagePrivate2(page)) {
6454 btrfs_finish_ordered_io(page->mapping->host,
6455 page_start, page_end);
6456 }
e6dcd2dc 6457 btrfs_put_ordered_extent(ordered);
2ac55d41
JB
6458 cached_state = NULL;
6459 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6460 GFP_NOFS);
e6dcd2dc
CM
6461 }
6462 clear_extent_bit(tree, page_start, page_end,
32c00aff 6463 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
2ac55d41 6464 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
e6dcd2dc
CM
6465 __btrfs_releasepage(page, GFP_NOFS);
6466
4a096752 6467 ClearPageChecked(page);
9ad6b7bc 6468 if (PagePrivate(page)) {
9ad6b7bc
CM
6469 ClearPagePrivate(page);
6470 set_page_private(page, 0);
6471 page_cache_release(page);
6472 }
39279cc3
CM
6473}
6474
9ebefb18
CM
6475/*
6476 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6477 * called from a page fault handler when a page is first dirtied. Hence we must
6478 * be careful to check for EOF conditions here. We set the page up correctly
6479 * for a written page which means we get ENOSPC checking when writing into
6480 * holes and correct delalloc and unwritten extent mapping on filesystems that
6481 * support these features.
6482 *
6483 * We are not allowed to take the i_mutex here so we have to play games to
6484 * protect against truncate races as the page could now be beyond EOF. Because
6485 * vmtruncate() writes the inode size before removing pages, once we have the
6486 * page lock we can determine safely if the page is beyond EOF. If it is not
6487 * beyond EOF, then the page is guaranteed safe against truncation until we
6488 * unlock the page.
6489 */
c2ec175c 6490int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
9ebefb18 6491{
c2ec175c 6492 struct page *page = vmf->page;
6da6abae 6493 struct inode *inode = fdentry(vma->vm_file)->d_inode;
1832a6d5 6494 struct btrfs_root *root = BTRFS_I(inode)->root;
e6dcd2dc
CM
6495 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6496 struct btrfs_ordered_extent *ordered;
2ac55d41 6497 struct extent_state *cached_state = NULL;
e6dcd2dc
CM
6498 char *kaddr;
6499 unsigned long zero_start;
9ebefb18 6500 loff_t size;
1832a6d5 6501 int ret;
a52d9a80 6502 u64 page_start;
e6dcd2dc 6503 u64 page_end;
9ebefb18 6504
0ca1f7ce 6505 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
56a76f82
NP
6506 if (ret) {
6507 if (ret == -ENOMEM)
6508 ret = VM_FAULT_OOM;
6509 else /* -ENOSPC, -EIO, etc */
6510 ret = VM_FAULT_SIGBUS;
1832a6d5 6511 goto out;
56a76f82 6512 }
1832a6d5 6513
56a76f82 6514 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 6515again:
9ebefb18 6516 lock_page(page);
9ebefb18 6517 size = i_size_read(inode);
e6dcd2dc
CM
6518 page_start = page_offset(page);
6519 page_end = page_start + PAGE_CACHE_SIZE - 1;
a52d9a80 6520
9ebefb18 6521 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 6522 (page_start >= size)) {
9ebefb18
CM
6523 /* page got truncated out from underneath us */
6524 goto out_unlock;
6525 }
e6dcd2dc
CM
6526 wait_on_page_writeback(page);
6527
2ac55d41
JB
6528 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6529 GFP_NOFS);
e6dcd2dc
CM
6530 set_page_extent_mapped(page);
6531
eb84ae03
CM
6532 /*
6533 * we can't set the delalloc bits if there are pending ordered
6534 * extents. Drop our locks and wait for them to finish
6535 */
e6dcd2dc
CM
6536 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6537 if (ordered) {
2ac55d41
JB
6538 unlock_extent_cached(io_tree, page_start, page_end,
6539 &cached_state, GFP_NOFS);
e6dcd2dc 6540 unlock_page(page);
eb84ae03 6541 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
6542 btrfs_put_ordered_extent(ordered);
6543 goto again;
6544 }
6545
fbf19087
JB
6546 /*
6547 * XXX - page_mkwrite gets called every time the page is dirtied, even
6548 * if it was already dirty, so for space accounting reasons we need to
6549 * clear any delalloc bits for the range we are fixing to save. There
6550 * is probably a better way to do this, but for now keep consistent with
6551 * prepare_pages in the normal write path.
6552 */
2ac55d41 6553 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
32c00aff 6554 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
2ac55d41 6555 0, 0, &cached_state, GFP_NOFS);
fbf19087 6556
2ac55d41
JB
6557 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6558 &cached_state);
9ed74f2d 6559 if (ret) {
2ac55d41
JB
6560 unlock_extent_cached(io_tree, page_start, page_end,
6561 &cached_state, GFP_NOFS);
9ed74f2d
JB
6562 ret = VM_FAULT_SIGBUS;
6563 goto out_unlock;
6564 }
e6dcd2dc 6565 ret = 0;
9ebefb18
CM
6566
6567 /* page is wholly or partially inside EOF */
a52d9a80 6568 if (page_start + PAGE_CACHE_SIZE > size)
e6dcd2dc 6569 zero_start = size & ~PAGE_CACHE_MASK;
9ebefb18 6570 else
e6dcd2dc 6571 zero_start = PAGE_CACHE_SIZE;
9ebefb18 6572
e6dcd2dc
CM
6573 if (zero_start != PAGE_CACHE_SIZE) {
6574 kaddr = kmap(page);
6575 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6576 flush_dcache_page(page);
6577 kunmap(page);
6578 }
247e743c 6579 ClearPageChecked(page);
e6dcd2dc 6580 set_page_dirty(page);
50a9b214 6581 SetPageUptodate(page);
5a3f23d5 6582
257c62e1
CM
6583 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6584 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6585
2ac55d41 6586 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
6587
6588out_unlock:
50a9b214
CM
6589 if (!ret)
6590 return VM_FAULT_LOCKED;
9ebefb18 6591 unlock_page(page);
0ca1f7ce 6592 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
1832a6d5 6593out:
9ebefb18
CM
6594 return ret;
6595}
6596
a41ad394 6597static int btrfs_truncate(struct inode *inode)
39279cc3
CM
6598{
6599 struct btrfs_root *root = BTRFS_I(inode)->root;
6600 int ret;
3893e33b 6601 int err = 0;
39279cc3 6602 struct btrfs_trans_handle *trans;
d3c2fdcf 6603 unsigned long nr;
dbe674a9 6604 u64 mask = root->sectorsize - 1;
39279cc3 6605
5d5e103a
JB
6606 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6607 if (ret)
a41ad394 6608 return ret;
8082510e 6609
4a096752 6610 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
8082510e 6611 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
39279cc3 6612
f0cd846e
JB
6613 trans = btrfs_start_transaction(root, 5);
6614 if (IS_ERR(trans))
6615 return PTR_ERR(trans);
6616
6617 btrfs_set_trans_block_group(trans, inode);
6618
6619 ret = btrfs_orphan_add(trans, inode);
6620 if (ret) {
6621 btrfs_end_transaction(trans, root);
6622 return ret;
6623 }
6624
6625 nr = trans->blocks_used;
6626 btrfs_end_transaction(trans, root);
6627 btrfs_btree_balance_dirty(root, nr);
6628
6629 /* Now start a transaction for the truncate */
d68fc57b 6630 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6631 if (IS_ERR(trans))
6632 return PTR_ERR(trans);
8082510e 6633 btrfs_set_trans_block_group(trans, inode);
d68fc57b 6634 trans->block_rsv = root->orphan_block_rsv;
5a3f23d5
CM
6635
6636 /*
6637 * setattr is responsible for setting the ordered_data_close flag,
6638 * but that is only tested during the last file release. That
6639 * could happen well after the next commit, leaving a great big
6640 * window where new writes may get lost if someone chooses to write
6641 * to this file after truncating to zero
6642 *
6643 * The inode doesn't have any dirty data here, and so if we commit
6644 * this is a noop. If someone immediately starts writing to the inode
6645 * it is very likely we'll catch some of their writes in this
6646 * transaction, and the commit will find this file on the ordered
6647 * data list with good things to send down.
6648 *
6649 * This is a best effort solution, there is still a window where
6650 * using truncate to replace the contents of the file will
6651 * end up with a zero length file after a crash.
6652 */
6653 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6654 btrfs_add_ordered_operation(trans, root, inode);
6655
8082510e 6656 while (1) {
d68fc57b
YZ
6657 if (!trans) {
6658 trans = btrfs_start_transaction(root, 0);
3893e33b
JB
6659 if (IS_ERR(trans))
6660 return PTR_ERR(trans);
d68fc57b
YZ
6661 btrfs_set_trans_block_group(trans, inode);
6662 trans->block_rsv = root->orphan_block_rsv;
6663 }
6664
6665 ret = btrfs_block_rsv_check(trans, root,
6666 root->orphan_block_rsv, 0, 5);
3893e33b 6667 if (ret == -EAGAIN) {
d68fc57b 6668 ret = btrfs_commit_transaction(trans, root);
3893e33b
JB
6669 if (ret)
6670 return ret;
d68fc57b
YZ
6671 trans = NULL;
6672 continue;
3893e33b
JB
6673 } else if (ret) {
6674 err = ret;
6675 break;
d68fc57b
YZ
6676 }
6677
8082510e
YZ
6678 ret = btrfs_truncate_inode_items(trans, root, inode,
6679 inode->i_size,
6680 BTRFS_EXTENT_DATA_KEY);
3893e33b
JB
6681 if (ret != -EAGAIN) {
6682 err = ret;
8082510e 6683 break;
3893e33b 6684 }
39279cc3 6685
8082510e 6686 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6687 if (ret) {
6688 err = ret;
6689 break;
6690 }
5f39d397 6691
8082510e
YZ
6692 nr = trans->blocks_used;
6693 btrfs_end_transaction(trans, root);
d68fc57b 6694 trans = NULL;
8082510e 6695 btrfs_btree_balance_dirty(root, nr);
8082510e
YZ
6696 }
6697
6698 if (ret == 0 && inode->i_nlink > 0) {
6699 ret = btrfs_orphan_del(trans, inode);
3893e33b
JB
6700 if (ret)
6701 err = ret;
ded5db9d
JB
6702 } else if (ret && inode->i_nlink > 0) {
6703 /*
6704 * Failed to do the truncate, remove us from the in memory
6705 * orphan list.
6706 */
6707 ret = btrfs_orphan_del(NULL, inode);
8082510e
YZ
6708 }
6709
6710 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
6711 if (ret && !err)
6712 err = ret;
7b128766 6713
7b128766 6714 nr = trans->blocks_used;
89ce8a63 6715 ret = btrfs_end_transaction_throttle(trans, root);
3893e33b
JB
6716 if (ret && !err)
6717 err = ret;
d3c2fdcf 6718 btrfs_btree_balance_dirty(root, nr);
a41ad394 6719
3893e33b 6720 return err;
39279cc3
CM
6721}
6722
d352ac68
CM
6723/*
6724 * create a new subvolume directory/inode (helper for the ioctl).
6725 */
d2fb3437 6726int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
76dda93c 6727 struct btrfs_root *new_root,
d2fb3437 6728 u64 new_dirid, u64 alloc_hint)
39279cc3 6729{
39279cc3 6730 struct inode *inode;
76dda93c 6731 int err;
00e4e6b3 6732 u64 index = 0;
39279cc3 6733
aec7477b 6734 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
d2fb3437 6735 new_dirid, alloc_hint, S_IFDIR | 0700, &index);
54aa1f4d 6736 if (IS_ERR(inode))
f46b5a66 6737 return PTR_ERR(inode);
39279cc3
CM
6738 inode->i_op = &btrfs_dir_inode_operations;
6739 inode->i_fop = &btrfs_dir_file_operations;
6740
39279cc3 6741 inode->i_nlink = 1;
dbe674a9 6742 btrfs_i_size_write(inode, 0);
3b96362c 6743
76dda93c
YZ
6744 err = btrfs_update_inode(trans, new_root, inode);
6745 BUG_ON(err);
cb8e7090 6746
76dda93c 6747 iput(inode);
cb8e7090 6748 return 0;
39279cc3
CM
6749}
6750
d352ac68
CM
6751/* helper function for file defrag and space balancing. This
6752 * forces readahead on a given range of bytes in an inode
6753 */
edbd8d4e 6754unsigned long btrfs_force_ra(struct address_space *mapping,
86479a04
CM
6755 struct file_ra_state *ra, struct file *file,
6756 pgoff_t offset, pgoff_t last_index)
6757{
8e7bf94f 6758 pgoff_t req_size = last_index - offset + 1;
86479a04 6759
86479a04
CM
6760 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6761 return offset + req_size;
86479a04
CM
6762}
6763
39279cc3
CM
6764struct inode *btrfs_alloc_inode(struct super_block *sb)
6765{
6766 struct btrfs_inode *ei;
2ead6ae7 6767 struct inode *inode;
39279cc3
CM
6768
6769 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6770 if (!ei)
6771 return NULL;
2ead6ae7
YZ
6772
6773 ei->root = NULL;
6774 ei->space_info = NULL;
6775 ei->generation = 0;
6776 ei->sequence = 0;
15ee9bc7 6777 ei->last_trans = 0;
257c62e1 6778 ei->last_sub_trans = 0;
e02119d5 6779 ei->logged_trans = 0;
2ead6ae7
YZ
6780 ei->delalloc_bytes = 0;
6781 ei->reserved_bytes = 0;
6782 ei->disk_i_size = 0;
6783 ei->flags = 0;
6784 ei->index_cnt = (u64)-1;
6785 ei->last_unlink_trans = 0;
6786
0ca1f7ce 6787 atomic_set(&ei->outstanding_extents, 0);
57a45ced 6788 atomic_set(&ei->reserved_extents, 0);
2ead6ae7
YZ
6789
6790 ei->ordered_data_close = 0;
d68fc57b 6791 ei->orphan_meta_reserved = 0;
2ead6ae7 6792 ei->dummy_inode = 0;
261507a0 6793 ei->force_compress = BTRFS_COMPRESS_NONE;
2ead6ae7
YZ
6794
6795 inode = &ei->vfs_inode;
6796 extent_map_tree_init(&ei->extent_tree, GFP_NOFS);
6797 extent_io_tree_init(&ei->io_tree, &inode->i_data, GFP_NOFS);
6798 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data, GFP_NOFS);
6799 mutex_init(&ei->log_mutex);
e6dcd2dc 6800 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7b128766 6801 INIT_LIST_HEAD(&ei->i_orphan);
2ead6ae7 6802 INIT_LIST_HEAD(&ei->delalloc_inodes);
5a3f23d5 6803 INIT_LIST_HEAD(&ei->ordered_operations);
2ead6ae7
YZ
6804 RB_CLEAR_NODE(&ei->rb_node);
6805
6806 return inode;
39279cc3
CM
6807}
6808
fa0d7e3d
NP
6809static void btrfs_i_callback(struct rcu_head *head)
6810{
6811 struct inode *inode = container_of(head, struct inode, i_rcu);
6812 INIT_LIST_HEAD(&inode->i_dentry);
6813 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6814}
6815
39279cc3
CM
6816void btrfs_destroy_inode(struct inode *inode)
6817{
e6dcd2dc 6818 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
6819 struct btrfs_root *root = BTRFS_I(inode)->root;
6820
39279cc3
CM
6821 WARN_ON(!list_empty(&inode->i_dentry));
6822 WARN_ON(inode->i_data.nrpages);
0ca1f7ce 6823 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents));
57a45ced 6824 WARN_ON(atomic_read(&BTRFS_I(inode)->reserved_extents));
39279cc3 6825
a6dbd429
JB
6826 /*
6827 * This can happen where we create an inode, but somebody else also
6828 * created the same inode and we need to destroy the one we already
6829 * created.
6830 */
6831 if (!root)
6832 goto free;
6833
5a3f23d5
CM
6834 /*
6835 * Make sure we're properly removed from the ordered operation
6836 * lists.
6837 */
6838 smp_mb();
6839 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6840 spin_lock(&root->fs_info->ordered_extent_lock);
6841 list_del_init(&BTRFS_I(inode)->ordered_operations);
6842 spin_unlock(&root->fs_info->ordered_extent_lock);
6843 }
6844
0af3d00b
JB
6845 if (root == root->fs_info->tree_root) {
6846 struct btrfs_block_group_cache *block_group;
6847
6848 block_group = btrfs_lookup_block_group(root->fs_info,
6849 BTRFS_I(inode)->block_group);
6850 if (block_group && block_group->inode == inode) {
6851 spin_lock(&block_group->lock);
6852 block_group->inode = NULL;
6853 spin_unlock(&block_group->lock);
6854 btrfs_put_block_group(block_group);
6855 } else if (block_group) {
6856 btrfs_put_block_group(block_group);
6857 }
6858 }
6859
d68fc57b 6860 spin_lock(&root->orphan_lock);
7b128766 6861 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
8082510e
YZ
6862 printk(KERN_INFO "BTRFS: inode %lu still on the orphan list\n",
6863 inode->i_ino);
6864 list_del_init(&BTRFS_I(inode)->i_orphan);
7b128766 6865 }
d68fc57b 6866 spin_unlock(&root->orphan_lock);
7b128766 6867
d397712b 6868 while (1) {
e6dcd2dc
CM
6869 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6870 if (!ordered)
6871 break;
6872 else {
d397712b
CM
6873 printk(KERN_ERR "btrfs found ordered "
6874 "extent %llu %llu on inode cleanup\n",
6875 (unsigned long long)ordered->file_offset,
6876 (unsigned long long)ordered->len);
e6dcd2dc
CM
6877 btrfs_remove_ordered_extent(inode, ordered);
6878 btrfs_put_ordered_extent(ordered);
6879 btrfs_put_ordered_extent(ordered);
6880 }
6881 }
5d4f98a2 6882 inode_tree_del(inode);
5b21f2ed 6883 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
a6dbd429 6884free:
fa0d7e3d 6885 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
6886}
6887
45321ac5 6888int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
6889{
6890 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 6891
0af3d00b
JB
6892 if (btrfs_root_refs(&root->root_item) == 0 &&
6893 root != root->fs_info->tree_root)
45321ac5 6894 return 1;
76dda93c 6895 else
45321ac5 6896 return generic_drop_inode(inode);
76dda93c
YZ
6897}
6898
0ee0fda0 6899static void init_once(void *foo)
39279cc3
CM
6900{
6901 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6902
6903 inode_init_once(&ei->vfs_inode);
6904}
6905
6906void btrfs_destroy_cachep(void)
6907{
6908 if (btrfs_inode_cachep)
6909 kmem_cache_destroy(btrfs_inode_cachep);
6910 if (btrfs_trans_handle_cachep)
6911 kmem_cache_destroy(btrfs_trans_handle_cachep);
6912 if (btrfs_transaction_cachep)
6913 kmem_cache_destroy(btrfs_transaction_cachep);
39279cc3
CM
6914 if (btrfs_path_cachep)
6915 kmem_cache_destroy(btrfs_path_cachep);
dc89e982
JB
6916 if (btrfs_free_space_cachep)
6917 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
6918}
6919
6920int btrfs_init_cachep(void)
6921{
9601e3f6
CH
6922 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6923 sizeof(struct btrfs_inode), 0,
6924 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
39279cc3
CM
6925 if (!btrfs_inode_cachep)
6926 goto fail;
9601e3f6
CH
6927
6928 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6929 sizeof(struct btrfs_trans_handle), 0,
6930 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6931 if (!btrfs_trans_handle_cachep)
6932 goto fail;
9601e3f6
CH
6933
6934 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6935 sizeof(struct btrfs_transaction), 0,
6936 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6937 if (!btrfs_transaction_cachep)
6938 goto fail;
9601e3f6
CH
6939
6940 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6941 sizeof(struct btrfs_path), 0,
6942 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
6943 if (!btrfs_path_cachep)
6944 goto fail;
9601e3f6 6945
dc89e982
JB
6946 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6947 sizeof(struct btrfs_free_space), 0,
6948 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6949 if (!btrfs_free_space_cachep)
6950 goto fail;
6951
39279cc3
CM
6952 return 0;
6953fail:
6954 btrfs_destroy_cachep();
6955 return -ENOMEM;
6956}
6957
6958static int btrfs_getattr(struct vfsmount *mnt,
6959 struct dentry *dentry, struct kstat *stat)
6960{
6961 struct inode *inode = dentry->d_inode;
6962 generic_fillattr(inode, stat);
3394e160 6963 stat->dev = BTRFS_I(inode)->root->anon_super.s_dev;
d6667462 6964 stat->blksize = PAGE_CACHE_SIZE;
a76a3cd4
YZ
6965 stat->blocks = (inode_get_bytes(inode) +
6966 BTRFS_I(inode)->delalloc_bytes) >> 9;
39279cc3
CM
6967 return 0;
6968}
6969
75e7cb7f
LB
6970/*
6971 * If a file is moved, it will inherit the cow and compression flags of the new
6972 * directory.
6973 */
6974static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6975{
6976 struct btrfs_inode *b_dir = BTRFS_I(dir);
6977 struct btrfs_inode *b_inode = BTRFS_I(inode);
6978
6979 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6980 b_inode->flags |= BTRFS_INODE_NODATACOW;
6981 else
6982 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6983
6984 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6985 b_inode->flags |= BTRFS_INODE_COMPRESS;
6986 else
6987 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6988}
6989
d397712b
CM
6990static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6991 struct inode *new_dir, struct dentry *new_dentry)
39279cc3
CM
6992{
6993 struct btrfs_trans_handle *trans;
6994 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 6995 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
39279cc3
CM
6996 struct inode *new_inode = new_dentry->d_inode;
6997 struct inode *old_inode = old_dentry->d_inode;
6998 struct timespec ctime = CURRENT_TIME;
00e4e6b3 6999 u64 index = 0;
4df27c4d 7000 u64 root_objectid;
39279cc3
CM
7001 int ret;
7002
f679a840
YZ
7003 if (new_dir->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
7004 return -EPERM;
7005
4df27c4d
YZ
7006 /* we only allow rename subvolume link between subvolumes */
7007 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
7008 return -EXDEV;
7009
4df27c4d
YZ
7010 if (old_inode->i_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
7011 (new_inode && new_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 7012 return -ENOTEMPTY;
5f39d397 7013
4df27c4d
YZ
7014 if (S_ISDIR(old_inode->i_mode) && new_inode &&
7015 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
7016 return -ENOTEMPTY;
5a3f23d5
CM
7017 /*
7018 * we're using rename to replace one file with another.
7019 * and the replacement file is large. Start IO on it now so
7020 * we don't add too much work to the end of the transaction
7021 */
4baf8c92 7022 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
5a3f23d5
CM
7023 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
7024 filemap_flush(old_inode->i_mapping);
7025
76dda93c
YZ
7026 /* close the racy window with snapshot create/destroy ioctl */
7027 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7028 down_read(&root->fs_info->subvol_sem);
a22285a6
YZ
7029 /*
7030 * We want to reserve the absolute worst case amount of items. So if
7031 * both inodes are subvols and we need to unlink them then that would
7032 * require 4 item modifications, but if they are both normal inodes it
7033 * would require 5 item modifications, so we'll assume their normal
7034 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
7035 * should cover the worst case number of items we'll modify.
7036 */
7037 trans = btrfs_start_transaction(root, 20);
b44c59a8
JL
7038 if (IS_ERR(trans)) {
7039 ret = PTR_ERR(trans);
7040 goto out_notrans;
7041 }
76dda93c 7042
a5719521 7043 btrfs_set_trans_block_group(trans, new_dir);
5f39d397 7044
4df27c4d
YZ
7045 if (dest != root)
7046 btrfs_record_root_in_trans(trans, dest);
5f39d397 7047
a5719521
YZ
7048 ret = btrfs_set_inode_index(new_dir, &index);
7049 if (ret)
7050 goto out_fail;
5a3f23d5 7051
a5719521 7052 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
7053 /* force full log commit if subvolume involved. */
7054 root->fs_info->last_trans_log_full_commit = trans->transid;
7055 } else {
a5719521
YZ
7056 ret = btrfs_insert_inode_ref(trans, dest,
7057 new_dentry->d_name.name,
7058 new_dentry->d_name.len,
7059 old_inode->i_ino,
7060 new_dir->i_ino, index);
7061 if (ret)
7062 goto out_fail;
4df27c4d
YZ
7063 /*
7064 * this is an ugly little race, but the rename is required
7065 * to make sure that if we crash, the inode is either at the
7066 * old name or the new one. pinning the log transaction lets
7067 * us make sure we don't allow a log commit to come in after
7068 * we unlink the name but before we add the new name back in.
7069 */
7070 btrfs_pin_log_trans(root);
7071 }
5a3f23d5
CM
7072 /*
7073 * make sure the inode gets flushed if it is replacing
7074 * something.
7075 */
7076 if (new_inode && new_inode->i_size &&
7077 old_inode && S_ISREG(old_inode->i_mode)) {
7078 btrfs_add_ordered_operation(trans, root, old_inode);
7079 }
7080
39279cc3
CM
7081 old_dir->i_ctime = old_dir->i_mtime = ctime;
7082 new_dir->i_ctime = new_dir->i_mtime = ctime;
7083 old_inode->i_ctime = ctime;
5f39d397 7084
12fcfd22
CM
7085 if (old_dentry->d_parent != new_dentry->d_parent)
7086 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
7087
4df27c4d
YZ
7088 if (unlikely(old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)) {
7089 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
7090 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
7091 old_dentry->d_name.name,
7092 old_dentry->d_name.len);
7093 } else {
92986796
AV
7094 ret = __btrfs_unlink_inode(trans, root, old_dir,
7095 old_dentry->d_inode,
7096 old_dentry->d_name.name,
7097 old_dentry->d_name.len);
7098 if (!ret)
7099 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d
YZ
7100 }
7101 BUG_ON(ret);
39279cc3
CM
7102
7103 if (new_inode) {
7104 new_inode->i_ctime = CURRENT_TIME;
4df27c4d
YZ
7105 if (unlikely(new_inode->i_ino ==
7106 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7107 root_objectid = BTRFS_I(new_inode)->location.objectid;
7108 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7109 root_objectid,
7110 new_dentry->d_name.name,
7111 new_dentry->d_name.len);
7112 BUG_ON(new_inode->i_nlink == 0);
7113 } else {
7114 ret = btrfs_unlink_inode(trans, dest, new_dir,
7115 new_dentry->d_inode,
7116 new_dentry->d_name.name,
7117 new_dentry->d_name.len);
7118 }
7119 BUG_ON(ret);
7b128766 7120 if (new_inode->i_nlink == 0) {
e02119d5 7121 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
4df27c4d 7122 BUG_ON(ret);
7b128766 7123 }
39279cc3 7124 }
aec7477b 7125
75e7cb7f
LB
7126 fixup_inode_flags(new_dir, old_inode);
7127
4df27c4d
YZ
7128 ret = btrfs_add_link(trans, new_dir, old_inode,
7129 new_dentry->d_name.name,
a5719521 7130 new_dentry->d_name.len, 0, index);
4df27c4d 7131 BUG_ON(ret);
39279cc3 7132
4df27c4d 7133 if (old_inode->i_ino != BTRFS_FIRST_FREE_OBJECTID) {
6a912213
JB
7134 struct dentry *parent = dget_parent(new_dentry);
7135 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7136 dput(parent);
4df27c4d
YZ
7137 btrfs_end_log_trans(root);
7138 }
39279cc3 7139out_fail:
ab78c84d 7140 btrfs_end_transaction_throttle(trans, root);
b44c59a8 7141out_notrans:
76dda93c
YZ
7142 if (old_inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
7143 up_read(&root->fs_info->subvol_sem);
9ed74f2d 7144
39279cc3
CM
7145 return ret;
7146}
7147
d352ac68
CM
7148/*
7149 * some fairly slow code that needs optimization. This walks the list
7150 * of all the inodes with pending delalloc and forces them to disk.
7151 */
24bbcf04 7152int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
ea8c2819
CM
7153{
7154 struct list_head *head = &root->fs_info->delalloc_inodes;
7155 struct btrfs_inode *binode;
5b21f2ed 7156 struct inode *inode;
ea8c2819 7157
c146afad
YZ
7158 if (root->fs_info->sb->s_flags & MS_RDONLY)
7159 return -EROFS;
7160
75eff68e 7161 spin_lock(&root->fs_info->delalloc_lock);
d397712b 7162 while (!list_empty(head)) {
ea8c2819
CM
7163 binode = list_entry(head->next, struct btrfs_inode,
7164 delalloc_inodes);
5b21f2ed
ZY
7165 inode = igrab(&binode->vfs_inode);
7166 if (!inode)
7167 list_del_init(&binode->delalloc_inodes);
75eff68e 7168 spin_unlock(&root->fs_info->delalloc_lock);
5b21f2ed 7169 if (inode) {
8c8bee1d 7170 filemap_flush(inode->i_mapping);
24bbcf04
YZ
7171 if (delay_iput)
7172 btrfs_add_delayed_iput(inode);
7173 else
7174 iput(inode);
5b21f2ed
ZY
7175 }
7176 cond_resched();
75eff68e 7177 spin_lock(&root->fs_info->delalloc_lock);
ea8c2819 7178 }
75eff68e 7179 spin_unlock(&root->fs_info->delalloc_lock);
8c8bee1d
CM
7180
7181 /* the filemap_flush will queue IO into the worker threads, but
7182 * we have to make sure the IO is actually started and that
7183 * ordered extents get created before we return
7184 */
7185 atomic_inc(&root->fs_info->async_submit_draining);
d397712b 7186 while (atomic_read(&root->fs_info->nr_async_submits) ||
771ed689 7187 atomic_read(&root->fs_info->async_delalloc_pages)) {
8c8bee1d 7188 wait_event(root->fs_info->async_submit_wait,
771ed689
CM
7189 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7190 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8c8bee1d
CM
7191 }
7192 atomic_dec(&root->fs_info->async_submit_draining);
ea8c2819
CM
7193 return 0;
7194}
7195
0019f10d
JB
7196int btrfs_start_one_delalloc_inode(struct btrfs_root *root, int delay_iput,
7197 int sync)
5da9d01b
YZ
7198{
7199 struct btrfs_inode *binode;
7200 struct inode *inode = NULL;
7201
7202 spin_lock(&root->fs_info->delalloc_lock);
7203 while (!list_empty(&root->fs_info->delalloc_inodes)) {
7204 binode = list_entry(root->fs_info->delalloc_inodes.next,
7205 struct btrfs_inode, delalloc_inodes);
7206 inode = igrab(&binode->vfs_inode);
7207 if (inode) {
7208 list_move_tail(&binode->delalloc_inodes,
7209 &root->fs_info->delalloc_inodes);
7210 break;
7211 }
7212
7213 list_del_init(&binode->delalloc_inodes);
7214 cond_resched_lock(&root->fs_info->delalloc_lock);
7215 }
7216 spin_unlock(&root->fs_info->delalloc_lock);
7217
7218 if (inode) {
0019f10d
JB
7219 if (sync) {
7220 filemap_write_and_wait(inode->i_mapping);
7221 /*
7222 * We have to do this because compression doesn't
7223 * actually set PG_writeback until it submits the pages
7224 * for IO, which happens in an async thread, so we could
7225 * race and not actually wait for any writeback pages
7226 * because they've not been submitted yet. Technically
7227 * this could still be the case for the ordered stuff
7228 * since the async thread may not have started to do its
7229 * work yet. If this becomes the case then we need to
7230 * figure out a way to make sure that in writepage we
7231 * wait for any async pages to be submitted before
7232 * returning so that fdatawait does what its supposed to
7233 * do.
7234 */
7235 btrfs_wait_ordered_range(inode, 0, (u64)-1);
7236 } else {
7237 filemap_flush(inode->i_mapping);
7238 }
5da9d01b
YZ
7239 if (delay_iput)
7240 btrfs_add_delayed_iput(inode);
7241 else
7242 iput(inode);
7243 return 1;
7244 }
7245 return 0;
7246}
7247
39279cc3
CM
7248static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7249 const char *symname)
7250{
7251 struct btrfs_trans_handle *trans;
7252 struct btrfs_root *root = BTRFS_I(dir)->root;
7253 struct btrfs_path *path;
7254 struct btrfs_key key;
1832a6d5 7255 struct inode *inode = NULL;
39279cc3
CM
7256 int err;
7257 int drop_inode = 0;
7258 u64 objectid;
00e4e6b3 7259 u64 index = 0 ;
39279cc3
CM
7260 int name_len;
7261 int datasize;
5f39d397 7262 unsigned long ptr;
39279cc3 7263 struct btrfs_file_extent_item *ei;
5f39d397 7264 struct extent_buffer *leaf;
1832a6d5 7265 unsigned long nr = 0;
39279cc3
CM
7266
7267 name_len = strlen(symname) + 1;
7268 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7269 return -ENAMETOOLONG;
1832a6d5 7270
9ed74f2d
JB
7271 /*
7272 * 2 items for inode item and ref
7273 * 2 items for dir items
7274 * 1 item for xattr if selinux is on
7275 */
a22285a6
YZ
7276 trans = btrfs_start_transaction(root, 5);
7277 if (IS_ERR(trans))
7278 return PTR_ERR(trans);
1832a6d5 7279
39279cc3
CM
7280 btrfs_set_trans_block_group(trans, dir);
7281
581bb050
LZ
7282 err = btrfs_find_free_ino(root, &objectid);
7283 if (err)
7284 goto out_unlock;
7285
aec7477b 7286 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
a1b075d2 7287 dentry->d_name.len, dir->i_ino, objectid,
00e4e6b3
CM
7288 BTRFS_I(dir)->block_group, S_IFLNK|S_IRWXUGO,
7289 &index);
39279cc3
CM
7290 err = PTR_ERR(inode);
7291 if (IS_ERR(inode))
7292 goto out_unlock;
7293
f34f57a3 7294 err = btrfs_init_inode_security(trans, inode, dir);
33268eaf
JB
7295 if (err) {
7296 drop_inode = 1;
7297 goto out_unlock;
7298 }
7299
39279cc3 7300 btrfs_set_trans_block_group(trans, inode);
a1b075d2 7301 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
39279cc3
CM
7302 if (err)
7303 drop_inode = 1;
7304 else {
7305 inode->i_mapping->a_ops = &btrfs_aops;
04160088 7306 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
39279cc3
CM
7307 inode->i_fop = &btrfs_file_operations;
7308 inode->i_op = &btrfs_file_inode_operations;
d1310b2e 7309 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3 7310 }
39279cc3
CM
7311 btrfs_update_inode_block_group(trans, inode);
7312 btrfs_update_inode_block_group(trans, dir);
7313 if (drop_inode)
7314 goto out_unlock;
7315
7316 path = btrfs_alloc_path();
7317 BUG_ON(!path);
7318 key.objectid = inode->i_ino;
7319 key.offset = 0;
39279cc3
CM
7320 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7321 datasize = btrfs_file_extent_calc_inline_size(name_len);
7322 err = btrfs_insert_empty_item(trans, root, path, &key,
7323 datasize);
54aa1f4d
CM
7324 if (err) {
7325 drop_inode = 1;
7326 goto out_unlock;
7327 }
5f39d397
CM
7328 leaf = path->nodes[0];
7329 ei = btrfs_item_ptr(leaf, path->slots[0],
7330 struct btrfs_file_extent_item);
7331 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7332 btrfs_set_file_extent_type(leaf, ei,
39279cc3 7333 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
7334 btrfs_set_file_extent_encryption(leaf, ei, 0);
7335 btrfs_set_file_extent_compression(leaf, ei, 0);
7336 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7337 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7338
39279cc3 7339 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
7340 write_extent_buffer(leaf, symname, ptr, name_len);
7341 btrfs_mark_buffer_dirty(leaf);
39279cc3 7342 btrfs_free_path(path);
5f39d397 7343
39279cc3
CM
7344 inode->i_op = &btrfs_symlink_inode_operations;
7345 inode->i_mapping->a_ops = &btrfs_symlink_aops;
04160088 7346 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
d899e052 7347 inode_set_bytes(inode, name_len);
dbe674a9 7348 btrfs_i_size_write(inode, name_len - 1);
54aa1f4d
CM
7349 err = btrfs_update_inode(trans, root, inode);
7350 if (err)
7351 drop_inode = 1;
39279cc3
CM
7352
7353out_unlock:
d3c2fdcf 7354 nr = trans->blocks_used;
ab78c84d 7355 btrfs_end_transaction_throttle(trans, root);
39279cc3
CM
7356 if (drop_inode) {
7357 inode_dec_link_count(inode);
7358 iput(inode);
7359 }
d3c2fdcf 7360 btrfs_btree_balance_dirty(root, nr);
39279cc3
CM
7361 return err;
7362}
16432985 7363
0af3d00b
JB
7364static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7365 u64 start, u64 num_bytes, u64 min_size,
7366 loff_t actual_len, u64 *alloc_hint,
7367 struct btrfs_trans_handle *trans)
d899e052 7368{
d899e052
YZ
7369 struct btrfs_root *root = BTRFS_I(inode)->root;
7370 struct btrfs_key ins;
d899e052 7371 u64 cur_offset = start;
55a61d1d 7372 u64 i_size;
d899e052 7373 int ret = 0;
0af3d00b 7374 bool own_trans = true;
d899e052 7375
0af3d00b
JB
7376 if (trans)
7377 own_trans = false;
d899e052 7378 while (num_bytes > 0) {
0af3d00b
JB
7379 if (own_trans) {
7380 trans = btrfs_start_transaction(root, 3);
7381 if (IS_ERR(trans)) {
7382 ret = PTR_ERR(trans);
7383 break;
7384 }
5a303d5d
YZ
7385 }
7386
efa56464
YZ
7387 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7388 0, *alloc_hint, (u64)-1, &ins, 1);
5a303d5d 7389 if (ret) {
0af3d00b
JB
7390 if (own_trans)
7391 btrfs_end_transaction(trans, root);
a22285a6 7392 break;
d899e052 7393 }
5a303d5d 7394
d899e052
YZ
7395 ret = insert_reserved_file_extent(trans, inode,
7396 cur_offset, ins.objectid,
7397 ins.offset, ins.offset,
920bbbfb 7398 ins.offset, 0, 0, 0,
d899e052
YZ
7399 BTRFS_FILE_EXTENT_PREALLOC);
7400 BUG_ON(ret);
a1ed835e
CM
7401 btrfs_drop_extent_cache(inode, cur_offset,
7402 cur_offset + ins.offset -1, 0);
5a303d5d 7403
d899e052
YZ
7404 num_bytes -= ins.offset;
7405 cur_offset += ins.offset;
efa56464 7406 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 7407
d899e052 7408 inode->i_ctime = CURRENT_TIME;
6cbff00f 7409 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 7410 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
7411 (actual_len > inode->i_size) &&
7412 (cur_offset > inode->i_size)) {
d1ea6a61 7413 if (cur_offset > actual_len)
55a61d1d 7414 i_size = actual_len;
d1ea6a61 7415 else
55a61d1d
JB
7416 i_size = cur_offset;
7417 i_size_write(inode, i_size);
7418 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
7419 }
7420
d899e052
YZ
7421 ret = btrfs_update_inode(trans, root, inode);
7422 BUG_ON(ret);
d899e052 7423
0af3d00b
JB
7424 if (own_trans)
7425 btrfs_end_transaction(trans, root);
5a303d5d 7426 }
d899e052
YZ
7427 return ret;
7428}
7429
0af3d00b
JB
7430int btrfs_prealloc_file_range(struct inode *inode, int mode,
7431 u64 start, u64 num_bytes, u64 min_size,
7432 loff_t actual_len, u64 *alloc_hint)
7433{
7434 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7435 min_size, actual_len, alloc_hint,
7436 NULL);
7437}
7438
7439int btrfs_prealloc_file_range_trans(struct inode *inode,
7440 struct btrfs_trans_handle *trans, int mode,
7441 u64 start, u64 num_bytes, u64 min_size,
7442 loff_t actual_len, u64 *alloc_hint)
7443{
7444 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7445 min_size, actual_len, alloc_hint, trans);
7446}
7447
e6dcd2dc
CM
7448static int btrfs_set_page_dirty(struct page *page)
7449{
e6dcd2dc
CM
7450 return __set_page_dirty_nobuffers(page);
7451}
7452
b74c79e9 7453static int btrfs_permission(struct inode *inode, int mask, unsigned int flags)
fdebe2bd 7454{
b83cc969
LZ
7455 struct btrfs_root *root = BTRFS_I(inode)->root;
7456
7457 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7458 return -EROFS;
6cbff00f 7459 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
fdebe2bd 7460 return -EACCES;
b74c79e9 7461 return generic_permission(inode, mask, flags, btrfs_check_acl);
fdebe2bd 7462}
39279cc3 7463
6e1d5dcc 7464static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 7465 .getattr = btrfs_getattr,
39279cc3
CM
7466 .lookup = btrfs_lookup,
7467 .create = btrfs_create,
7468 .unlink = btrfs_unlink,
7469 .link = btrfs_link,
7470 .mkdir = btrfs_mkdir,
7471 .rmdir = btrfs_rmdir,
7472 .rename = btrfs_rename,
7473 .symlink = btrfs_symlink,
7474 .setattr = btrfs_setattr,
618e21d5 7475 .mknod = btrfs_mknod,
95819c05
CH
7476 .setxattr = btrfs_setxattr,
7477 .getxattr = btrfs_getxattr,
5103e947 7478 .listxattr = btrfs_listxattr,
95819c05 7479 .removexattr = btrfs_removexattr,
fdebe2bd 7480 .permission = btrfs_permission,
39279cc3 7481};
6e1d5dcc 7482static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 7483 .lookup = btrfs_lookup,
fdebe2bd 7484 .permission = btrfs_permission,
39279cc3 7485};
76dda93c 7486
828c0950 7487static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
7488 .llseek = generic_file_llseek,
7489 .read = generic_read_dir,
cbdf5a24 7490 .readdir = btrfs_real_readdir,
34287aa3 7491 .unlocked_ioctl = btrfs_ioctl,
39279cc3 7492#ifdef CONFIG_COMPAT
34287aa3 7493 .compat_ioctl = btrfs_ioctl,
39279cc3 7494#endif
6bf13c0c 7495 .release = btrfs_release_file,
e02119d5 7496 .fsync = btrfs_sync_file,
39279cc3
CM
7497};
7498
d1310b2e 7499static struct extent_io_ops btrfs_extent_io_ops = {
07157aac 7500 .fill_delalloc = run_delalloc_range,
065631f6 7501 .submit_bio_hook = btrfs_submit_bio_hook,
239b14b3 7502 .merge_bio_hook = btrfs_merge_bio_hook,
07157aac 7503 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
e6dcd2dc 7504 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 7505 .writepage_start_hook = btrfs_writepage_start_hook,
1259ab75 7506 .readpage_io_failed_hook = btrfs_io_failed_hook,
b0c68f8b
CM
7507 .set_bit_hook = btrfs_set_bit_hook,
7508 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
7509 .merge_extent_hook = btrfs_merge_extent_hook,
7510 .split_extent_hook = btrfs_split_extent_hook,
07157aac
CM
7511};
7512
35054394
CM
7513/*
7514 * btrfs doesn't support the bmap operation because swapfiles
7515 * use bmap to make a mapping of extents in the file. They assume
7516 * these extents won't change over the life of the file and they
7517 * use the bmap result to do IO directly to the drive.
7518 *
7519 * the btrfs bmap call would return logical addresses that aren't
7520 * suitable for IO and they also will change frequently as COW
7521 * operations happen. So, swapfile + btrfs == corruption.
7522 *
7523 * For now we're avoiding this by dropping bmap.
7524 */
7f09410b 7525static const struct address_space_operations btrfs_aops = {
39279cc3
CM
7526 .readpage = btrfs_readpage,
7527 .writepage = btrfs_writepage,
b293f02e 7528 .writepages = btrfs_writepages,
3ab2fb5a 7529 .readpages = btrfs_readpages,
39279cc3 7530 .sync_page = block_sync_page,
16432985 7531 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
7532 .invalidatepage = btrfs_invalidatepage,
7533 .releasepage = btrfs_releasepage,
e6dcd2dc 7534 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 7535 .error_remove_page = generic_error_remove_page,
39279cc3
CM
7536};
7537
7f09410b 7538static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
7539 .readpage = btrfs_readpage,
7540 .writepage = btrfs_writepage,
2bf5a725
CM
7541 .invalidatepage = btrfs_invalidatepage,
7542 .releasepage = btrfs_releasepage,
39279cc3
CM
7543};
7544
6e1d5dcc 7545static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
7546 .getattr = btrfs_getattr,
7547 .setattr = btrfs_setattr,
95819c05
CH
7548 .setxattr = btrfs_setxattr,
7549 .getxattr = btrfs_getxattr,
5103e947 7550 .listxattr = btrfs_listxattr,
95819c05 7551 .removexattr = btrfs_removexattr,
fdebe2bd 7552 .permission = btrfs_permission,
1506fcc8 7553 .fiemap = btrfs_fiemap,
39279cc3 7554};
6e1d5dcc 7555static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
7556 .getattr = btrfs_getattr,
7557 .setattr = btrfs_setattr,
fdebe2bd 7558 .permission = btrfs_permission,
95819c05
CH
7559 .setxattr = btrfs_setxattr,
7560 .getxattr = btrfs_getxattr,
33268eaf 7561 .listxattr = btrfs_listxattr,
95819c05 7562 .removexattr = btrfs_removexattr,
618e21d5 7563};
6e1d5dcc 7564static const struct inode_operations btrfs_symlink_inode_operations = {
39279cc3
CM
7565 .readlink = generic_readlink,
7566 .follow_link = page_follow_link_light,
7567 .put_link = page_put_link,
f209561a 7568 .getattr = btrfs_getattr,
fdebe2bd 7569 .permission = btrfs_permission,
0279b4cd
JO
7570 .setxattr = btrfs_setxattr,
7571 .getxattr = btrfs_getxattr,
7572 .listxattr = btrfs_listxattr,
7573 .removexattr = btrfs_removexattr,
39279cc3 7574};
76dda93c 7575
82d339d9 7576const struct dentry_operations btrfs_dentry_operations = {
76dda93c
YZ
7577 .d_delete = btrfs_dentry_delete,
7578};