thermal: armada: Add support for Armada AP806
[linux-2.6-block.git] / fs / btrfs / inode.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
8f18cf13 19#include <linux/kernel.h>
065631f6 20#include <linux/bio.h>
39279cc3 21#include <linux/buffer_head.h>
f2eb0a24 22#include <linux/file.h>
39279cc3
CM
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
39279cc3
CM
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
39279cc3 33#include <linux/compat.h>
9ebefb18 34#include <linux/bit_spinlock.h>
5103e947 35#include <linux/xattr.h>
33268eaf 36#include <linux/posix_acl.h>
d899e052 37#include <linux/falloc.h>
5a0e3ad6 38#include <linux/slab.h>
7a36ddec 39#include <linux/ratelimit.h>
22c44fe6 40#include <linux/mount.h>
55e301fd 41#include <linux/btrfs.h>
53b381b3 42#include <linux/blkdev.h>
f23b5a59 43#include <linux/posix_acl_xattr.h>
e2e40f2c 44#include <linux/uio.h>
69fe2d75 45#include <linux/magic.h>
39279cc3
CM
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
39279cc3 50#include "print-tree.h"
e6dcd2dc 51#include "ordered-data.h"
95819c05 52#include "xattr.h"
e02119d5 53#include "tree-log.h"
4a54c8c1 54#include "volumes.h"
c8b97818 55#include "compression.h"
b4ce94de 56#include "locking.h"
dc89e982 57#include "free-space-cache.h"
581bb050 58#include "inode-map.h"
38c227d8 59#include "backref.h"
f23b5a59 60#include "hash.h"
63541927 61#include "props.h"
31193213 62#include "qgroup.h"
dda3245e 63#include "dedupe.h"
39279cc3
CM
64
65struct btrfs_iget_args {
90d3e592 66 struct btrfs_key *location;
39279cc3
CM
67 struct btrfs_root *root;
68};
69
f28a4928 70struct btrfs_dio_data {
f28a4928
FM
71 u64 reserve;
72 u64 unsubmitted_oe_range_start;
73 u64 unsubmitted_oe_range_end;
4aaedfb0 74 int overwrite;
f28a4928
FM
75};
76
6e1d5dcc
AD
77static const struct inode_operations btrfs_dir_inode_operations;
78static const struct inode_operations btrfs_symlink_inode_operations;
79static const struct inode_operations btrfs_dir_ro_inode_operations;
80static const struct inode_operations btrfs_special_inode_operations;
81static const struct inode_operations btrfs_file_inode_operations;
7f09410b
AD
82static const struct address_space_operations btrfs_aops;
83static const struct address_space_operations btrfs_symlink_aops;
828c0950 84static const struct file_operations btrfs_dir_file_operations;
20e5506b 85static const struct extent_io_ops btrfs_extent_io_ops;
39279cc3
CM
86
87static struct kmem_cache *btrfs_inode_cachep;
88struct kmem_cache *btrfs_trans_handle_cachep;
39279cc3 89struct kmem_cache *btrfs_path_cachep;
dc89e982 90struct kmem_cache *btrfs_free_space_cachep;
39279cc3
CM
91
92#define S_SHIFT 12
4d4ab6d6 93static const unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
39279cc3
CM
94 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
95 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
96 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
97 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
98 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
99 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
100 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
101};
102
3972f260 103static int btrfs_setsize(struct inode *inode, struct iattr *attr);
a41ad394 104static int btrfs_truncate(struct inode *inode);
5fd02043 105static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
771ed689
CM
106static noinline int cow_file_range(struct inode *inode,
107 struct page *locked_page,
dda3245e
WX
108 u64 start, u64 end, u64 delalloc_end,
109 int *page_started, unsigned long *nr_written,
110 int unlock, struct btrfs_dedupe_hash *hash);
6f9994db
LB
111static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
112 u64 orig_start, u64 block_start,
113 u64 block_len, u64 orig_block_len,
114 u64 ram_bytes, int compress_type,
115 int type);
7b128766 116
52427260
QW
117static void __endio_write_update_ordered(struct inode *inode,
118 const u64 offset, const u64 bytes,
119 const bool uptodate);
120
121/*
122 * Cleanup all submitted ordered extents in specified range to handle errors
123 * from the fill_dellaloc() callback.
124 *
125 * NOTE: caller must ensure that when an error happens, it can not call
126 * extent_clear_unlock_delalloc() to clear both the bits EXTENT_DO_ACCOUNTING
127 * and EXTENT_DELALLOC simultaneously, because that causes the reserved metadata
128 * to be released, which we want to happen only when finishing the ordered
129 * extent (btrfs_finish_ordered_io()). Also note that the caller of the
130 * fill_delalloc() callback already does proper cleanup for the first page of
131 * the range, that is, it invokes the callback writepage_end_io_hook() for the
132 * range of the first page.
133 */
134static inline void btrfs_cleanup_ordered_extents(struct inode *inode,
135 const u64 offset,
136 const u64 bytes)
137{
63d71450
NA
138 unsigned long index = offset >> PAGE_SHIFT;
139 unsigned long end_index = (offset + bytes - 1) >> PAGE_SHIFT;
140 struct page *page;
141
142 while (index <= end_index) {
143 page = find_get_page(inode->i_mapping, index);
144 index++;
145 if (!page)
146 continue;
147 ClearPagePrivate2(page);
148 put_page(page);
149 }
52427260
QW
150 return __endio_write_update_ordered(inode, offset + PAGE_SIZE,
151 bytes - PAGE_SIZE, false);
152}
153
48a3b636 154static int btrfs_dirty_inode(struct inode *inode);
7b128766 155
6a3891c5
JB
156#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
157void btrfs_test_inode_set_ops(struct inode *inode)
158{
159 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
160}
161#endif
162
f34f57a3 163static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
2a7dba39
EP
164 struct inode *inode, struct inode *dir,
165 const struct qstr *qstr)
0279b4cd
JO
166{
167 int err;
168
f34f57a3 169 err = btrfs_init_acl(trans, inode, dir);
0279b4cd 170 if (!err)
2a7dba39 171 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
0279b4cd
JO
172 return err;
173}
174
c8b97818
CM
175/*
176 * this does all the hard work for inserting an inline extent into
177 * the btree. The caller should have done a btrfs_drop_extents so that
178 * no overlapping inline items exist in the btree
179 */
40f76580 180static int insert_inline_extent(struct btrfs_trans_handle *trans,
1acae57b 181 struct btrfs_path *path, int extent_inserted,
c8b97818
CM
182 struct btrfs_root *root, struct inode *inode,
183 u64 start, size_t size, size_t compressed_size,
fe3f566c 184 int compress_type,
c8b97818
CM
185 struct page **compressed_pages)
186{
c8b97818
CM
187 struct extent_buffer *leaf;
188 struct page *page = NULL;
189 char *kaddr;
190 unsigned long ptr;
191 struct btrfs_file_extent_item *ei;
c8b97818
CM
192 int ret;
193 size_t cur_size = size;
c8b97818 194 unsigned long offset;
c8b97818 195
fe3f566c 196 if (compressed_size && compressed_pages)
c8b97818 197 cur_size = compressed_size;
c8b97818 198
1acae57b 199 inode_add_bytes(inode, size);
c8b97818 200
1acae57b
FDBM
201 if (!extent_inserted) {
202 struct btrfs_key key;
203 size_t datasize;
c8b97818 204
4a0cc7ca 205 key.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b 206 key.offset = start;
962a298f 207 key.type = BTRFS_EXTENT_DATA_KEY;
c8b97818 208
1acae57b
FDBM
209 datasize = btrfs_file_extent_calc_inline_size(cur_size);
210 path->leave_spinning = 1;
211 ret = btrfs_insert_empty_item(trans, root, path, &key,
212 datasize);
79b4f4c6 213 if (ret)
1acae57b 214 goto fail;
c8b97818
CM
215 }
216 leaf = path->nodes[0];
217 ei = btrfs_item_ptr(leaf, path->slots[0],
218 struct btrfs_file_extent_item);
219 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
220 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
221 btrfs_set_file_extent_encryption(leaf, ei, 0);
222 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
223 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
224 ptr = btrfs_file_extent_inline_start(ei);
225
261507a0 226 if (compress_type != BTRFS_COMPRESS_NONE) {
c8b97818
CM
227 struct page *cpage;
228 int i = 0;
d397712b 229 while (compressed_size > 0) {
c8b97818 230 cpage = compressed_pages[i];
5b050f04 231 cur_size = min_t(unsigned long, compressed_size,
09cbfeaf 232 PAGE_SIZE);
c8b97818 233
7ac687d9 234 kaddr = kmap_atomic(cpage);
c8b97818 235 write_extent_buffer(leaf, kaddr, ptr, cur_size);
7ac687d9 236 kunmap_atomic(kaddr);
c8b97818
CM
237
238 i++;
239 ptr += cur_size;
240 compressed_size -= cur_size;
241 }
242 btrfs_set_file_extent_compression(leaf, ei,
261507a0 243 compress_type);
c8b97818
CM
244 } else {
245 page = find_get_page(inode->i_mapping,
09cbfeaf 246 start >> PAGE_SHIFT);
c8b97818 247 btrfs_set_file_extent_compression(leaf, ei, 0);
7ac687d9 248 kaddr = kmap_atomic(page);
09cbfeaf 249 offset = start & (PAGE_SIZE - 1);
c8b97818 250 write_extent_buffer(leaf, kaddr + offset, ptr, size);
7ac687d9 251 kunmap_atomic(kaddr);
09cbfeaf 252 put_page(page);
c8b97818
CM
253 }
254 btrfs_mark_buffer_dirty(leaf);
1acae57b 255 btrfs_release_path(path);
c8b97818 256
c2167754
YZ
257 /*
258 * we're an inline extent, so nobody can
259 * extend the file past i_size without locking
260 * a page we already have locked.
261 *
262 * We must do any isize and inode updates
263 * before we unlock the pages. Otherwise we
264 * could end up racing with unlink.
265 */
c8b97818 266 BTRFS_I(inode)->disk_i_size = inode->i_size;
79787eaa 267 ret = btrfs_update_inode(trans, root, inode);
c2167754 268
c8b97818 269fail:
79b4f4c6 270 return ret;
c8b97818
CM
271}
272
273
274/*
275 * conditionally insert an inline extent into the file. This
276 * does the checks required to make sure the data is small enough
277 * to fit as an inline extent.
278 */
00361589
JB
279static noinline int cow_file_range_inline(struct btrfs_root *root,
280 struct inode *inode, u64 start,
281 u64 end, size_t compressed_size,
282 int compress_type,
283 struct page **compressed_pages)
c8b97818 284{
0b246afa 285 struct btrfs_fs_info *fs_info = root->fs_info;
00361589 286 struct btrfs_trans_handle *trans;
c8b97818
CM
287 u64 isize = i_size_read(inode);
288 u64 actual_end = min(end + 1, isize);
289 u64 inline_len = actual_end - start;
0b246afa 290 u64 aligned_end = ALIGN(end, fs_info->sectorsize);
c8b97818
CM
291 u64 data_len = inline_len;
292 int ret;
1acae57b
FDBM
293 struct btrfs_path *path;
294 int extent_inserted = 0;
295 u32 extent_item_size;
c8b97818
CM
296
297 if (compressed_size)
298 data_len = compressed_size;
299
300 if (start > 0 ||
0b246afa
JM
301 actual_end > fs_info->sectorsize ||
302 data_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info) ||
c8b97818 303 (!compressed_size &&
0b246afa 304 (actual_end & (fs_info->sectorsize - 1)) == 0) ||
c8b97818 305 end + 1 < isize ||
0b246afa 306 data_len > fs_info->max_inline) {
c8b97818
CM
307 return 1;
308 }
309
1acae57b
FDBM
310 path = btrfs_alloc_path();
311 if (!path)
312 return -ENOMEM;
313
00361589 314 trans = btrfs_join_transaction(root);
1acae57b
FDBM
315 if (IS_ERR(trans)) {
316 btrfs_free_path(path);
00361589 317 return PTR_ERR(trans);
1acae57b 318 }
69fe2d75 319 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
00361589 320
1acae57b
FDBM
321 if (compressed_size && compressed_pages)
322 extent_item_size = btrfs_file_extent_calc_inline_size(
323 compressed_size);
324 else
325 extent_item_size = btrfs_file_extent_calc_inline_size(
326 inline_len);
327
328 ret = __btrfs_drop_extents(trans, root, inode, path,
329 start, aligned_end, NULL,
330 1, 1, extent_item_size, &extent_inserted);
00361589 331 if (ret) {
66642832 332 btrfs_abort_transaction(trans, ret);
00361589
JB
333 goto out;
334 }
c8b97818
CM
335
336 if (isize > actual_end)
337 inline_len = min_t(u64, isize, actual_end);
1acae57b
FDBM
338 ret = insert_inline_extent(trans, path, extent_inserted,
339 root, inode, start,
c8b97818 340 inline_len, compressed_size,
fe3f566c 341 compress_type, compressed_pages);
2adcac1a 342 if (ret && ret != -ENOSPC) {
66642832 343 btrfs_abort_transaction(trans, ret);
00361589 344 goto out;
2adcac1a 345 } else if (ret == -ENOSPC) {
00361589
JB
346 ret = 1;
347 goto out;
79787eaa 348 }
2adcac1a 349
bdc20e67 350 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
dcdbc059 351 btrfs_drop_extent_cache(BTRFS_I(inode), start, aligned_end - 1, 0);
00361589 352out:
94ed938a
QW
353 /*
354 * Don't forget to free the reserved space, as for inlined extent
355 * it won't count as data extent, free them directly here.
356 * And at reserve time, it's always aligned to page size, so
357 * just free one page here.
358 */
bc42bda2 359 btrfs_qgroup_free_data(inode, NULL, 0, PAGE_SIZE);
1acae57b 360 btrfs_free_path(path);
3a45bb20 361 btrfs_end_transaction(trans);
00361589 362 return ret;
c8b97818
CM
363}
364
771ed689
CM
365struct async_extent {
366 u64 start;
367 u64 ram_size;
368 u64 compressed_size;
369 struct page **pages;
370 unsigned long nr_pages;
261507a0 371 int compress_type;
771ed689
CM
372 struct list_head list;
373};
374
375struct async_cow {
376 struct inode *inode;
377 struct btrfs_root *root;
378 struct page *locked_page;
379 u64 start;
380 u64 end;
381 struct list_head extents;
382 struct btrfs_work work;
383};
384
385static noinline int add_async_extent(struct async_cow *cow,
386 u64 start, u64 ram_size,
387 u64 compressed_size,
388 struct page **pages,
261507a0
LZ
389 unsigned long nr_pages,
390 int compress_type)
771ed689
CM
391{
392 struct async_extent *async_extent;
393
394 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
79787eaa 395 BUG_ON(!async_extent); /* -ENOMEM */
771ed689
CM
396 async_extent->start = start;
397 async_extent->ram_size = ram_size;
398 async_extent->compressed_size = compressed_size;
399 async_extent->pages = pages;
400 async_extent->nr_pages = nr_pages;
261507a0 401 async_extent->compress_type = compress_type;
771ed689
CM
402 list_add_tail(&async_extent->list, &cow->extents);
403 return 0;
404}
405
c2fcdcdf 406static inline int inode_need_compress(struct inode *inode, u64 start, u64 end)
f79707b0 407{
0b246afa 408 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
f79707b0
WS
409
410 /* force compress */
0b246afa 411 if (btrfs_test_opt(fs_info, FORCE_COMPRESS))
f79707b0 412 return 1;
eec63c65
DS
413 /* defrag ioctl */
414 if (BTRFS_I(inode)->defrag_compress)
415 return 1;
f79707b0
WS
416 /* bad compression ratios */
417 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
418 return 0;
0b246afa 419 if (btrfs_test_opt(fs_info, COMPRESS) ||
f79707b0 420 BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
b52aa8c9 421 BTRFS_I(inode)->prop_compress)
c2fcdcdf 422 return btrfs_compress_heuristic(inode, start, end);
f79707b0
WS
423 return 0;
424}
425
6158e1ce 426static inline void inode_should_defrag(struct btrfs_inode *inode,
26d30f85
AJ
427 u64 start, u64 end, u64 num_bytes, u64 small_write)
428{
429 /* If this is a small write inside eof, kick off a defrag */
430 if (num_bytes < small_write &&
6158e1ce 431 (start > 0 || end + 1 < inode->disk_i_size))
26d30f85
AJ
432 btrfs_add_inode_defrag(NULL, inode);
433}
434
d352ac68 435/*
771ed689
CM
436 * we create compressed extents in two phases. The first
437 * phase compresses a range of pages that have already been
438 * locked (both pages and state bits are locked).
c8b97818 439 *
771ed689
CM
440 * This is done inside an ordered work queue, and the compression
441 * is spread across many cpus. The actual IO submission is step
442 * two, and the ordered work queue takes care of making sure that
443 * happens in the same order things were put onto the queue by
444 * writepages and friends.
c8b97818 445 *
771ed689
CM
446 * If this code finds it can't get good compression, it puts an
447 * entry onto the work queue to write the uncompressed bytes. This
448 * makes sure that both compressed inodes and uncompressed inodes
b2570314
AB
449 * are written in the same order that the flusher thread sent them
450 * down.
d352ac68 451 */
c44f649e 452static noinline void compress_file_range(struct inode *inode,
771ed689
CM
453 struct page *locked_page,
454 u64 start, u64 end,
455 struct async_cow *async_cow,
456 int *num_added)
b888db2b 457{
0b246afa 458 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
b888db2b 459 struct btrfs_root *root = BTRFS_I(inode)->root;
0b246afa 460 u64 blocksize = fs_info->sectorsize;
c8b97818 461 u64 actual_end;
42dc7bab 462 u64 isize = i_size_read(inode);
e6dcd2dc 463 int ret = 0;
c8b97818
CM
464 struct page **pages = NULL;
465 unsigned long nr_pages;
c8b97818
CM
466 unsigned long total_compressed = 0;
467 unsigned long total_in = 0;
c8b97818
CM
468 int i;
469 int will_compress;
0b246afa 470 int compress_type = fs_info->compress_type;
4adaa611 471 int redirty = 0;
b888db2b 472
6158e1ce
NB
473 inode_should_defrag(BTRFS_I(inode), start, end, end - start + 1,
474 SZ_16K);
4cb5300b 475
42dc7bab 476 actual_end = min_t(u64, isize, end + 1);
c8b97818
CM
477again:
478 will_compress = 0;
09cbfeaf 479 nr_pages = (end >> PAGE_SHIFT) - (start >> PAGE_SHIFT) + 1;
069eac78
DS
480 BUILD_BUG_ON((BTRFS_MAX_COMPRESSED % PAGE_SIZE) != 0);
481 nr_pages = min_t(unsigned long, nr_pages,
482 BTRFS_MAX_COMPRESSED / PAGE_SIZE);
be20aa9d 483
f03d9301
CM
484 /*
485 * we don't want to send crud past the end of i_size through
486 * compression, that's just a waste of CPU time. So, if the
487 * end of the file is before the start of our current
488 * requested range of bytes, we bail out to the uncompressed
489 * cleanup code that can deal with all of this.
490 *
491 * It isn't really the fastest way to fix things, but this is a
492 * very uncommon corner.
493 */
494 if (actual_end <= start)
495 goto cleanup_and_bail_uncompressed;
496
c8b97818
CM
497 total_compressed = actual_end - start;
498
4bcbb332
SW
499 /*
500 * skip compression for a small file range(<=blocksize) that
01327610 501 * isn't an inline extent, since it doesn't save disk space at all.
4bcbb332
SW
502 */
503 if (total_compressed <= blocksize &&
504 (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
505 goto cleanup_and_bail_uncompressed;
506
069eac78
DS
507 total_compressed = min_t(unsigned long, total_compressed,
508 BTRFS_MAX_UNCOMPRESSED);
c8b97818
CM
509 total_in = 0;
510 ret = 0;
db94535d 511
771ed689
CM
512 /*
513 * we do compression for mount -o compress and when the
514 * inode has not been flagged as nocompress. This flag can
515 * change at any time if we discover bad compression ratios.
c8b97818 516 */
c2fcdcdf 517 if (inode_need_compress(inode, start, end)) {
c8b97818 518 WARN_ON(pages);
31e818fe 519 pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
560f7d75
LZ
520 if (!pages) {
521 /* just bail out to the uncompressed code */
522 goto cont;
523 }
c8b97818 524
eec63c65
DS
525 if (BTRFS_I(inode)->defrag_compress)
526 compress_type = BTRFS_I(inode)->defrag_compress;
527 else if (BTRFS_I(inode)->prop_compress)
b52aa8c9 528 compress_type = BTRFS_I(inode)->prop_compress;
261507a0 529
4adaa611
CM
530 /*
531 * we need to call clear_page_dirty_for_io on each
532 * page in the range. Otherwise applications with the file
533 * mmap'd can wander in and change the page contents while
534 * we are compressing them.
535 *
536 * If the compression fails for any reason, we set the pages
537 * dirty again later on.
538 */
539 extent_range_clear_dirty_for_io(inode, start, end);
540 redirty = 1;
f51d2b59
DS
541
542 /* Compression level is applied here and only here */
543 ret = btrfs_compress_pages(
544 compress_type | (fs_info->compress_level << 4),
261507a0 545 inode->i_mapping, start,
38c31464 546 pages,
4d3a800e 547 &nr_pages,
261507a0 548 &total_in,
e5d74902 549 &total_compressed);
c8b97818
CM
550
551 if (!ret) {
552 unsigned long offset = total_compressed &
09cbfeaf 553 (PAGE_SIZE - 1);
4d3a800e 554 struct page *page = pages[nr_pages - 1];
c8b97818
CM
555 char *kaddr;
556
557 /* zero the tail end of the last page, we might be
558 * sending it down to disk
559 */
560 if (offset) {
7ac687d9 561 kaddr = kmap_atomic(page);
c8b97818 562 memset(kaddr + offset, 0,
09cbfeaf 563 PAGE_SIZE - offset);
7ac687d9 564 kunmap_atomic(kaddr);
c8b97818
CM
565 }
566 will_compress = 1;
567 }
568 }
560f7d75 569cont:
c8b97818
CM
570 if (start == 0) {
571 /* lets try to make an inline extent */
6018ba0a 572 if (ret || total_in < actual_end) {
c8b97818 573 /* we didn't compress the entire range, try
771ed689 574 * to make an uncompressed inline extent.
c8b97818 575 */
00361589 576 ret = cow_file_range_inline(root, inode, start, end,
f74670f7 577 0, BTRFS_COMPRESS_NONE, NULL);
c8b97818 578 } else {
771ed689 579 /* try making a compressed inline extent */
00361589 580 ret = cow_file_range_inline(root, inode, start, end,
fe3f566c
LZ
581 total_compressed,
582 compress_type, pages);
c8b97818 583 }
79787eaa 584 if (ret <= 0) {
151a41bc 585 unsigned long clear_flags = EXTENT_DELALLOC |
8b62f87b
JB
586 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
587 EXTENT_DO_ACCOUNTING;
e6eb4314
FM
588 unsigned long page_error_op;
589
e6eb4314 590 page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
151a41bc 591
771ed689 592 /*
79787eaa
JM
593 * inline extent creation worked or returned error,
594 * we don't need to create any more async work items.
595 * Unlock and free up our temp pages.
8b62f87b
JB
596 *
597 * We use DO_ACCOUNTING here because we need the
598 * delalloc_release_metadata to be done _after_ we drop
599 * our outstanding extent for clearing delalloc for this
600 * range.
771ed689 601 */
ba8b04c1
QW
602 extent_clear_unlock_delalloc(inode, start, end, end,
603 NULL, clear_flags,
604 PAGE_UNLOCK |
c2790a2e
JB
605 PAGE_CLEAR_DIRTY |
606 PAGE_SET_WRITEBACK |
e6eb4314 607 page_error_op |
c2790a2e 608 PAGE_END_WRITEBACK);
c8b97818
CM
609 goto free_pages_out;
610 }
611 }
612
613 if (will_compress) {
614 /*
615 * we aren't doing an inline extent round the compressed size
616 * up to a block size boundary so the allocator does sane
617 * things
618 */
fda2832f 619 total_compressed = ALIGN(total_compressed, blocksize);
c8b97818
CM
620
621 /*
622 * one last check to make sure the compression is really a
170607eb
TT
623 * win, compare the page count read with the blocks on disk,
624 * compression must free at least one sector size
c8b97818 625 */
09cbfeaf 626 total_in = ALIGN(total_in, PAGE_SIZE);
170607eb 627 if (total_compressed + blocksize <= total_in) {
c8bb0c8b
AS
628 *num_added += 1;
629
630 /*
631 * The async work queues will take care of doing actual
632 * allocation on disk for these compressed pages, and
633 * will submit them to the elevator.
634 */
1170862d 635 add_async_extent(async_cow, start, total_in,
4d3a800e 636 total_compressed, pages, nr_pages,
c8bb0c8b
AS
637 compress_type);
638
1170862d
TT
639 if (start + total_in < end) {
640 start += total_in;
c8bb0c8b
AS
641 pages = NULL;
642 cond_resched();
643 goto again;
644 }
645 return;
c8b97818
CM
646 }
647 }
c8bb0c8b 648 if (pages) {
c8b97818
CM
649 /*
650 * the compression code ran but failed to make things smaller,
651 * free any pages it allocated and our page pointer array
652 */
4d3a800e 653 for (i = 0; i < nr_pages; i++) {
70b99e69 654 WARN_ON(pages[i]->mapping);
09cbfeaf 655 put_page(pages[i]);
c8b97818
CM
656 }
657 kfree(pages);
658 pages = NULL;
659 total_compressed = 0;
4d3a800e 660 nr_pages = 0;
c8b97818
CM
661
662 /* flag the file so we don't compress in the future */
0b246afa 663 if (!btrfs_test_opt(fs_info, FORCE_COMPRESS) &&
b52aa8c9 664 !(BTRFS_I(inode)->prop_compress)) {
a555f810 665 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
1e701a32 666 }
c8b97818 667 }
f03d9301 668cleanup_and_bail_uncompressed:
c8bb0c8b
AS
669 /*
670 * No compression, but we still need to write the pages in the file
671 * we've been given so far. redirty the locked page if it corresponds
672 * to our extent and set things up for the async work queue to run
673 * cow_file_range to do the normal delalloc dance.
674 */
675 if (page_offset(locked_page) >= start &&
676 page_offset(locked_page) <= end)
677 __set_page_dirty_nobuffers(locked_page);
678 /* unlocked later on in the async handlers */
679
680 if (redirty)
681 extent_range_redirty_for_io(inode, start, end);
682 add_async_extent(async_cow, start, end - start + 1, 0, NULL, 0,
683 BTRFS_COMPRESS_NONE);
684 *num_added += 1;
3b951516 685
c44f649e 686 return;
771ed689
CM
687
688free_pages_out:
4d3a800e 689 for (i = 0; i < nr_pages; i++) {
771ed689 690 WARN_ON(pages[i]->mapping);
09cbfeaf 691 put_page(pages[i]);
771ed689 692 }
d397712b 693 kfree(pages);
771ed689 694}
771ed689 695
40ae837b
FM
696static void free_async_extent_pages(struct async_extent *async_extent)
697{
698 int i;
699
700 if (!async_extent->pages)
701 return;
702
703 for (i = 0; i < async_extent->nr_pages; i++) {
704 WARN_ON(async_extent->pages[i]->mapping);
09cbfeaf 705 put_page(async_extent->pages[i]);
40ae837b
FM
706 }
707 kfree(async_extent->pages);
708 async_extent->nr_pages = 0;
709 async_extent->pages = NULL;
771ed689
CM
710}
711
712/*
713 * phase two of compressed writeback. This is the ordered portion
714 * of the code, which only gets called in the order the work was
715 * queued. We walk all the async extents created by compress_file_range
716 * and send them down to the disk.
717 */
dec8f175 718static noinline void submit_compressed_extents(struct inode *inode,
771ed689
CM
719 struct async_cow *async_cow)
720{
0b246afa 721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
722 struct async_extent *async_extent;
723 u64 alloc_hint = 0;
771ed689
CM
724 struct btrfs_key ins;
725 struct extent_map *em;
726 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689 727 struct extent_io_tree *io_tree;
f5a84ee3 728 int ret = 0;
771ed689 729
3e04e7f1 730again:
d397712b 731 while (!list_empty(&async_cow->extents)) {
771ed689
CM
732 async_extent = list_entry(async_cow->extents.next,
733 struct async_extent, list);
734 list_del(&async_extent->list);
c8b97818 735
771ed689
CM
736 io_tree = &BTRFS_I(inode)->io_tree;
737
f5a84ee3 738retry:
771ed689
CM
739 /* did the compression code fall back to uncompressed IO? */
740 if (!async_extent->pages) {
741 int page_started = 0;
742 unsigned long nr_written = 0;
743
744 lock_extent(io_tree, async_extent->start,
2ac55d41 745 async_extent->start +
d0082371 746 async_extent->ram_size - 1);
771ed689
CM
747
748 /* allocate blocks */
f5a84ee3
JB
749 ret = cow_file_range(inode, async_cow->locked_page,
750 async_extent->start,
751 async_extent->start +
752 async_extent->ram_size - 1,
dda3245e
WX
753 async_extent->start +
754 async_extent->ram_size - 1,
755 &page_started, &nr_written, 0,
756 NULL);
771ed689 757
79787eaa
JM
758 /* JDM XXX */
759
771ed689
CM
760 /*
761 * if page_started, cow_file_range inserted an
762 * inline extent and took care of all the unlocking
763 * and IO for us. Otherwise, we need to submit
764 * all those pages down to the drive.
765 */
f5a84ee3 766 if (!page_started && !ret)
771ed689
CM
767 extent_write_locked_range(io_tree,
768 inode, async_extent->start,
d397712b 769 async_extent->start +
771ed689
CM
770 async_extent->ram_size - 1,
771 btrfs_get_extent,
772 WB_SYNC_ALL);
3e04e7f1
JB
773 else if (ret)
774 unlock_page(async_cow->locked_page);
771ed689
CM
775 kfree(async_extent);
776 cond_resched();
777 continue;
778 }
779
780 lock_extent(io_tree, async_extent->start,
d0082371 781 async_extent->start + async_extent->ram_size - 1);
771ed689 782
18513091 783 ret = btrfs_reserve_extent(root, async_extent->ram_size,
771ed689
CM
784 async_extent->compressed_size,
785 async_extent->compressed_size,
e570fd27 786 0, alloc_hint, &ins, 1, 1);
f5a84ee3 787 if (ret) {
40ae837b 788 free_async_extent_pages(async_extent);
3e04e7f1 789
fdf8e2ea
JB
790 if (ret == -ENOSPC) {
791 unlock_extent(io_tree, async_extent->start,
792 async_extent->start +
793 async_extent->ram_size - 1);
ce62003f
LB
794
795 /*
796 * we need to redirty the pages if we decide to
797 * fallback to uncompressed IO, otherwise we
798 * will not submit these pages down to lower
799 * layers.
800 */
801 extent_range_redirty_for_io(inode,
802 async_extent->start,
803 async_extent->start +
804 async_extent->ram_size - 1);
805
79787eaa 806 goto retry;
fdf8e2ea 807 }
3e04e7f1 808 goto out_free;
f5a84ee3 809 }
c2167754
YZ
810 /*
811 * here we're doing allocation and writeback of the
812 * compressed pages
813 */
6f9994db
LB
814 em = create_io_em(inode, async_extent->start,
815 async_extent->ram_size, /* len */
816 async_extent->start, /* orig_start */
817 ins.objectid, /* block_start */
818 ins.offset, /* block_len */
819 ins.offset, /* orig_block_len */
820 async_extent->ram_size, /* ram_bytes */
821 async_extent->compress_type,
822 BTRFS_ORDERED_COMPRESSED);
823 if (IS_ERR(em))
824 /* ret value is not necessary due to void function */
3e04e7f1 825 goto out_free_reserve;
6f9994db 826 free_extent_map(em);
3e04e7f1 827
261507a0
LZ
828 ret = btrfs_add_ordered_extent_compress(inode,
829 async_extent->start,
830 ins.objectid,
831 async_extent->ram_size,
832 ins.offset,
833 BTRFS_ORDERED_COMPRESSED,
834 async_extent->compress_type);
d9f85963 835 if (ret) {
dcdbc059
NB
836 btrfs_drop_extent_cache(BTRFS_I(inode),
837 async_extent->start,
d9f85963
FM
838 async_extent->start +
839 async_extent->ram_size - 1, 0);
3e04e7f1 840 goto out_free_reserve;
d9f85963 841 }
0b246afa 842 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
771ed689 843
771ed689
CM
844 /*
845 * clear dirty, set writeback and unlock the pages.
846 */
c2790a2e 847 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
848 async_extent->start +
849 async_extent->ram_size - 1,
a791e35e
CM
850 async_extent->start +
851 async_extent->ram_size - 1,
151a41bc
JB
852 NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
853 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
c2790a2e 854 PAGE_SET_WRITEBACK);
4e4cbee9 855 if (btrfs_submit_compressed_write(inode,
d397712b
CM
856 async_extent->start,
857 async_extent->ram_size,
858 ins.objectid,
859 ins.offset, async_extent->pages,
4e4cbee9 860 async_extent->nr_pages)) {
fce2a4e6
FM
861 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
862 struct page *p = async_extent->pages[0];
863 const u64 start = async_extent->start;
864 const u64 end = start + async_extent->ram_size - 1;
865
866 p->mapping = inode->i_mapping;
867 tree->ops->writepage_end_io_hook(p, start, end,
868 NULL, 0);
869 p->mapping = NULL;
ba8b04c1
QW
870 extent_clear_unlock_delalloc(inode, start, end, end,
871 NULL, 0,
fce2a4e6
FM
872 PAGE_END_WRITEBACK |
873 PAGE_SET_ERROR);
40ae837b 874 free_async_extent_pages(async_extent);
fce2a4e6 875 }
771ed689
CM
876 alloc_hint = ins.objectid + ins.offset;
877 kfree(async_extent);
878 cond_resched();
879 }
dec8f175 880 return;
3e04e7f1 881out_free_reserve:
0b246afa 882 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 883 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 884out_free:
c2790a2e 885 extent_clear_unlock_delalloc(inode, async_extent->start,
ba8b04c1
QW
886 async_extent->start +
887 async_extent->ram_size - 1,
3e04e7f1
JB
888 async_extent->start +
889 async_extent->ram_size - 1,
c2790a2e 890 NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
a7e3b975 891 EXTENT_DELALLOC_NEW |
151a41bc
JB
892 EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
893 PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
704de49d
FM
894 PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
895 PAGE_SET_ERROR);
40ae837b 896 free_async_extent_pages(async_extent);
79787eaa 897 kfree(async_extent);
3e04e7f1 898 goto again;
771ed689
CM
899}
900
4b46fce2
JB
901static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
902 u64 num_bytes)
903{
904 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
905 struct extent_map *em;
906 u64 alloc_hint = 0;
907
908 read_lock(&em_tree->lock);
909 em = search_extent_mapping(em_tree, start, num_bytes);
910 if (em) {
911 /*
912 * if block start isn't an actual block number then find the
913 * first block in this inode and use that as a hint. If that
914 * block is also bogus then just don't worry about it.
915 */
916 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
917 free_extent_map(em);
918 em = search_extent_mapping(em_tree, 0, 0);
919 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
920 alloc_hint = em->block_start;
921 if (em)
922 free_extent_map(em);
923 } else {
924 alloc_hint = em->block_start;
925 free_extent_map(em);
926 }
927 }
928 read_unlock(&em_tree->lock);
929
930 return alloc_hint;
931}
932
771ed689
CM
933/*
934 * when extent_io.c finds a delayed allocation range in the file,
935 * the call backs end up in this code. The basic idea is to
936 * allocate extents on disk for the range, and create ordered data structs
937 * in ram to track those extents.
938 *
939 * locked_page is the page that writepage had locked already. We use
940 * it to make sure we don't do extra locks or unlocks.
941 *
942 * *page_started is set to one if we unlock locked_page and do everything
943 * required to start IO on it. It may be clean and already done with
944 * IO when we return.
945 */
00361589
JB
946static noinline int cow_file_range(struct inode *inode,
947 struct page *locked_page,
dda3245e
WX
948 u64 start, u64 end, u64 delalloc_end,
949 int *page_started, unsigned long *nr_written,
950 int unlock, struct btrfs_dedupe_hash *hash)
771ed689 951{
0b246afa 952 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00361589 953 struct btrfs_root *root = BTRFS_I(inode)->root;
771ed689
CM
954 u64 alloc_hint = 0;
955 u64 num_bytes;
956 unsigned long ram_size;
957 u64 disk_num_bytes;
a315e68f 958 u64 cur_alloc_size = 0;
0b246afa 959 u64 blocksize = fs_info->sectorsize;
771ed689
CM
960 struct btrfs_key ins;
961 struct extent_map *em;
a315e68f
FM
962 unsigned clear_bits;
963 unsigned long page_ops;
964 bool extent_reserved = false;
771ed689
CM
965 int ret = 0;
966
70ddc553 967 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
02ecd2c2 968 WARN_ON_ONCE(1);
29bce2f3
JB
969 ret = -EINVAL;
970 goto out_unlock;
02ecd2c2 971 }
771ed689 972
fda2832f 973 num_bytes = ALIGN(end - start + 1, blocksize);
771ed689
CM
974 num_bytes = max(blocksize, num_bytes);
975 disk_num_bytes = num_bytes;
771ed689 976
6158e1ce 977 inode_should_defrag(BTRFS_I(inode), start, end, num_bytes, SZ_64K);
4cb5300b 978
771ed689
CM
979 if (start == 0) {
980 /* lets try to make an inline extent */
f74670f7
AJ
981 ret = cow_file_range_inline(root, inode, start, end, 0,
982 BTRFS_COMPRESS_NONE, NULL);
771ed689 983 if (ret == 0) {
8b62f87b
JB
984 /*
985 * We use DO_ACCOUNTING here because we need the
986 * delalloc_release_metadata to be run _after_ we drop
987 * our outstanding extent for clearing delalloc for this
988 * range.
989 */
ba8b04c1
QW
990 extent_clear_unlock_delalloc(inode, start, end,
991 delalloc_end, NULL,
c2790a2e 992 EXTENT_LOCKED | EXTENT_DELALLOC |
8b62f87b
JB
993 EXTENT_DELALLOC_NEW | EXTENT_DEFRAG |
994 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
c2790a2e
JB
995 PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
996 PAGE_END_WRITEBACK);
771ed689 997 *nr_written = *nr_written +
09cbfeaf 998 (end - start + PAGE_SIZE) / PAGE_SIZE;
771ed689 999 *page_started = 1;
771ed689 1000 goto out;
79787eaa 1001 } else if (ret < 0) {
79787eaa 1002 goto out_unlock;
771ed689
CM
1003 }
1004 }
1005
1006 BUG_ON(disk_num_bytes >
0b246afa 1007 btrfs_super_total_bytes(fs_info->super_copy));
771ed689 1008
4b46fce2 1009 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
dcdbc059
NB
1010 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1011 start + num_bytes - 1, 0);
771ed689 1012
d397712b 1013 while (disk_num_bytes > 0) {
287a0ab9 1014 cur_alloc_size = disk_num_bytes;
18513091 1015 ret = btrfs_reserve_extent(root, cur_alloc_size, cur_alloc_size,
0b246afa 1016 fs_info->sectorsize, 0, alloc_hint,
e570fd27 1017 &ins, 1, 1);
00361589 1018 if (ret < 0)
79787eaa 1019 goto out_unlock;
a315e68f
FM
1020 cur_alloc_size = ins.offset;
1021 extent_reserved = true;
d397712b 1022
771ed689 1023 ram_size = ins.offset;
6f9994db
LB
1024 em = create_io_em(inode, start, ins.offset, /* len */
1025 start, /* orig_start */
1026 ins.objectid, /* block_start */
1027 ins.offset, /* block_len */
1028 ins.offset, /* orig_block_len */
1029 ram_size, /* ram_bytes */
1030 BTRFS_COMPRESS_NONE, /* compress_type */
1af4a0aa 1031 BTRFS_ORDERED_REGULAR /* type */);
6f9994db 1032 if (IS_ERR(em))
ace68bac 1033 goto out_reserve;
6f9994db 1034 free_extent_map(em);
e6dcd2dc 1035
e6dcd2dc 1036 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
771ed689 1037 ram_size, cur_alloc_size, 0);
ace68bac 1038 if (ret)
d9f85963 1039 goto out_drop_extent_cache;
c8b97818 1040
17d217fe
YZ
1041 if (root->root_key.objectid ==
1042 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1043 ret = btrfs_reloc_clone_csums(inode, start,
1044 cur_alloc_size);
4dbd80fb
QW
1045 /*
1046 * Only drop cache here, and process as normal.
1047 *
1048 * We must not allow extent_clear_unlock_delalloc()
1049 * at out_unlock label to free meta of this ordered
1050 * extent, as its meta should be freed by
1051 * btrfs_finish_ordered_io().
1052 *
1053 * So we must continue until @start is increased to
1054 * skip current ordered extent.
1055 */
00361589 1056 if (ret)
4dbd80fb
QW
1057 btrfs_drop_extent_cache(BTRFS_I(inode), start,
1058 start + ram_size - 1, 0);
17d217fe
YZ
1059 }
1060
0b246afa 1061 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
9cfa3e34 1062
c8b97818
CM
1063 /* we're not doing compressed IO, don't unlock the first
1064 * page (which the caller expects to stay locked), don't
1065 * clear any dirty bits and don't set any writeback bits
8b62b72b
CM
1066 *
1067 * Do set the Private2 bit so we know this page was properly
1068 * setup for writepage
c8b97818 1069 */
a315e68f
FM
1070 page_ops = unlock ? PAGE_UNLOCK : 0;
1071 page_ops |= PAGE_SET_PRIVATE2;
a791e35e 1072
c2790a2e 1073 extent_clear_unlock_delalloc(inode, start,
ba8b04c1
QW
1074 start + ram_size - 1,
1075 delalloc_end, locked_page,
c2790a2e 1076 EXTENT_LOCKED | EXTENT_DELALLOC,
a315e68f 1077 page_ops);
4dbd80fb
QW
1078 if (disk_num_bytes < cur_alloc_size)
1079 disk_num_bytes = 0;
1080 else
1081 disk_num_bytes -= cur_alloc_size;
c59f8951
CM
1082 num_bytes -= cur_alloc_size;
1083 alloc_hint = ins.objectid + ins.offset;
1084 start += cur_alloc_size;
a315e68f 1085 extent_reserved = false;
4dbd80fb
QW
1086
1087 /*
1088 * btrfs_reloc_clone_csums() error, since start is increased
1089 * extent_clear_unlock_delalloc() at out_unlock label won't
1090 * free metadata of current ordered extent, we're OK to exit.
1091 */
1092 if (ret)
1093 goto out_unlock;
b888db2b 1094 }
79787eaa 1095out:
be20aa9d 1096 return ret;
b7d5b0a8 1097
d9f85963 1098out_drop_extent_cache:
dcdbc059 1099 btrfs_drop_extent_cache(BTRFS_I(inode), start, start + ram_size - 1, 0);
ace68bac 1100out_reserve:
0b246afa 1101 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
2ff7e61e 1102 btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 1);
79787eaa 1103out_unlock:
a7e3b975
FM
1104 clear_bits = EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
1105 EXTENT_DEFRAG | EXTENT_CLEAR_META_RESV;
a315e68f
FM
1106 page_ops = PAGE_UNLOCK | PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
1107 PAGE_END_WRITEBACK;
1108 /*
1109 * If we reserved an extent for our delalloc range (or a subrange) and
1110 * failed to create the respective ordered extent, then it means that
1111 * when we reserved the extent we decremented the extent's size from
1112 * the data space_info's bytes_may_use counter and incremented the
1113 * space_info's bytes_reserved counter by the same amount. We must make
1114 * sure extent_clear_unlock_delalloc() does not try to decrement again
1115 * the data space_info's bytes_may_use counter, therefore we do not pass
1116 * it the flag EXTENT_CLEAR_DATA_RESV.
1117 */
1118 if (extent_reserved) {
1119 extent_clear_unlock_delalloc(inode, start,
1120 start + cur_alloc_size,
1121 start + cur_alloc_size,
1122 locked_page,
1123 clear_bits,
1124 page_ops);
1125 start += cur_alloc_size;
1126 if (start >= end)
1127 goto out;
1128 }
ba8b04c1
QW
1129 extent_clear_unlock_delalloc(inode, start, end, delalloc_end,
1130 locked_page,
a315e68f
FM
1131 clear_bits | EXTENT_CLEAR_DATA_RESV,
1132 page_ops);
79787eaa 1133 goto out;
771ed689 1134}
c8b97818 1135
771ed689
CM
1136/*
1137 * work queue call back to started compression on a file and pages
1138 */
1139static noinline void async_cow_start(struct btrfs_work *work)
1140{
1141 struct async_cow *async_cow;
1142 int num_added = 0;
1143 async_cow = container_of(work, struct async_cow, work);
1144
1145 compress_file_range(async_cow->inode, async_cow->locked_page,
1146 async_cow->start, async_cow->end, async_cow,
1147 &num_added);
8180ef88 1148 if (num_added == 0) {
cb77fcd8 1149 btrfs_add_delayed_iput(async_cow->inode);
771ed689 1150 async_cow->inode = NULL;
8180ef88 1151 }
771ed689
CM
1152}
1153
1154/*
1155 * work queue call back to submit previously compressed pages
1156 */
1157static noinline void async_cow_submit(struct btrfs_work *work)
1158{
0b246afa 1159 struct btrfs_fs_info *fs_info;
771ed689
CM
1160 struct async_cow *async_cow;
1161 struct btrfs_root *root;
1162 unsigned long nr_pages;
1163
1164 async_cow = container_of(work, struct async_cow, work);
1165
1166 root = async_cow->root;
0b246afa 1167 fs_info = root->fs_info;
09cbfeaf
KS
1168 nr_pages = (async_cow->end - async_cow->start + PAGE_SIZE) >>
1169 PAGE_SHIFT;
771ed689 1170
ee863954
DS
1171 /*
1172 * atomic_sub_return implies a barrier for waitqueue_active
1173 */
0b246afa 1174 if (atomic_sub_return(nr_pages, &fs_info->async_delalloc_pages) <
ee22184b 1175 5 * SZ_1M &&
0b246afa
JM
1176 waitqueue_active(&fs_info->async_submit_wait))
1177 wake_up(&fs_info->async_submit_wait);
771ed689 1178
d397712b 1179 if (async_cow->inode)
771ed689 1180 submit_compressed_extents(async_cow->inode, async_cow);
771ed689 1181}
c8b97818 1182
771ed689
CM
1183static noinline void async_cow_free(struct btrfs_work *work)
1184{
1185 struct async_cow *async_cow;
1186 async_cow = container_of(work, struct async_cow, work);
8180ef88 1187 if (async_cow->inode)
cb77fcd8 1188 btrfs_add_delayed_iput(async_cow->inode);
771ed689
CM
1189 kfree(async_cow);
1190}
1191
1192static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1193 u64 start, u64 end, int *page_started,
1194 unsigned long *nr_written)
1195{
0b246afa 1196 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
771ed689
CM
1197 struct async_cow *async_cow;
1198 struct btrfs_root *root = BTRFS_I(inode)->root;
1199 unsigned long nr_pages;
1200 u64 cur_end;
771ed689 1201
a3429ab7
CM
1202 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1203 1, 0, NULL, GFP_NOFS);
d397712b 1204 while (start < end) {
771ed689 1205 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
79787eaa 1206 BUG_ON(!async_cow); /* -ENOMEM */
8180ef88 1207 async_cow->inode = igrab(inode);
771ed689
CM
1208 async_cow->root = root;
1209 async_cow->locked_page = locked_page;
1210 async_cow->start = start;
1211
f79707b0 1212 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
0b246afa 1213 !btrfs_test_opt(fs_info, FORCE_COMPRESS))
771ed689
CM
1214 cur_end = end;
1215 else
ee22184b 1216 cur_end = min(end, start + SZ_512K - 1);
771ed689
CM
1217
1218 async_cow->end = cur_end;
1219 INIT_LIST_HEAD(&async_cow->extents);
1220
9e0af237
LB
1221 btrfs_init_work(&async_cow->work,
1222 btrfs_delalloc_helper,
1223 async_cow_start, async_cow_submit,
1224 async_cow_free);
771ed689 1225
09cbfeaf
KS
1226 nr_pages = (cur_end - start + PAGE_SIZE) >>
1227 PAGE_SHIFT;
0b246afa 1228 atomic_add(nr_pages, &fs_info->async_delalloc_pages);
771ed689 1229
0b246afa 1230 btrfs_queue_work(fs_info->delalloc_workers, &async_cow->work);
771ed689 1231
771ed689
CM
1232 *nr_written += nr_pages;
1233 start = cur_end + 1;
1234 }
1235 *page_started = 1;
1236 return 0;
be20aa9d
CM
1237}
1238
2ff7e61e 1239static noinline int csum_exist_in_range(struct btrfs_fs_info *fs_info,
17d217fe
YZ
1240 u64 bytenr, u64 num_bytes)
1241{
1242 int ret;
1243 struct btrfs_ordered_sum *sums;
1244 LIST_HEAD(list);
1245
0b246afa 1246 ret = btrfs_lookup_csums_range(fs_info->csum_root, bytenr,
a2de733c 1247 bytenr + num_bytes - 1, &list, 0);
17d217fe
YZ
1248 if (ret == 0 && list_empty(&list))
1249 return 0;
1250
1251 while (!list_empty(&list)) {
1252 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1253 list_del(&sums->list);
1254 kfree(sums);
1255 }
1256 return 1;
1257}
1258
d352ac68
CM
1259/*
1260 * when nowcow writeback call back. This checks for snapshots or COW copies
1261 * of the extents that exist in the file, and COWs the file as required.
1262 *
1263 * If no cow copies or snapshots exist, we write directly to the existing
1264 * blocks on disk
1265 */
7f366cfe
CM
1266static noinline int run_delalloc_nocow(struct inode *inode,
1267 struct page *locked_page,
771ed689
CM
1268 u64 start, u64 end, int *page_started, int force,
1269 unsigned long *nr_written)
be20aa9d 1270{
0b246afa 1271 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
be20aa9d
CM
1272 struct btrfs_root *root = BTRFS_I(inode)->root;
1273 struct extent_buffer *leaf;
be20aa9d 1274 struct btrfs_path *path;
80ff3856 1275 struct btrfs_file_extent_item *fi;
be20aa9d 1276 struct btrfs_key found_key;
6f9994db 1277 struct extent_map *em;
80ff3856
YZ
1278 u64 cow_start;
1279 u64 cur_offset;
1280 u64 extent_end;
5d4f98a2 1281 u64 extent_offset;
80ff3856
YZ
1282 u64 disk_bytenr;
1283 u64 num_bytes;
b4939680 1284 u64 disk_num_bytes;
cc95bef6 1285 u64 ram_bytes;
80ff3856 1286 int extent_type;
79787eaa 1287 int ret, err;
d899e052 1288 int type;
80ff3856
YZ
1289 int nocow;
1290 int check_prev = 1;
82d5902d 1291 bool nolock;
4a0cc7ca 1292 u64 ino = btrfs_ino(BTRFS_I(inode));
be20aa9d
CM
1293
1294 path = btrfs_alloc_path();
17ca04af 1295 if (!path) {
ba8b04c1
QW
1296 extent_clear_unlock_delalloc(inode, start, end, end,
1297 locked_page,
c2790a2e 1298 EXTENT_LOCKED | EXTENT_DELALLOC |
151a41bc
JB
1299 EXTENT_DO_ACCOUNTING |
1300 EXTENT_DEFRAG, PAGE_UNLOCK |
c2790a2e
JB
1301 PAGE_CLEAR_DIRTY |
1302 PAGE_SET_WRITEBACK |
1303 PAGE_END_WRITEBACK);
d8926bb3 1304 return -ENOMEM;
17ca04af 1305 }
82d5902d 1306
70ddc553 1307 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
82d5902d 1308
80ff3856
YZ
1309 cow_start = (u64)-1;
1310 cur_offset = start;
1311 while (1) {
e4c3b2dc 1312 ret = btrfs_lookup_file_extent(NULL, root, path, ino,
80ff3856 1313 cur_offset, 0);
d788a349 1314 if (ret < 0)
79787eaa 1315 goto error;
80ff3856
YZ
1316 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1317 leaf = path->nodes[0];
1318 btrfs_item_key_to_cpu(leaf, &found_key,
1319 path->slots[0] - 1);
33345d01 1320 if (found_key.objectid == ino &&
80ff3856
YZ
1321 found_key.type == BTRFS_EXTENT_DATA_KEY)
1322 path->slots[0]--;
1323 }
1324 check_prev = 0;
1325next_slot:
1326 leaf = path->nodes[0];
1327 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1328 ret = btrfs_next_leaf(root, path);
d788a349 1329 if (ret < 0)
79787eaa 1330 goto error;
80ff3856
YZ
1331 if (ret > 0)
1332 break;
1333 leaf = path->nodes[0];
1334 }
be20aa9d 1335
80ff3856
YZ
1336 nocow = 0;
1337 disk_bytenr = 0;
17d217fe 1338 num_bytes = 0;
80ff3856
YZ
1339 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1340
1d512cb7
FM
1341 if (found_key.objectid > ino)
1342 break;
1343 if (WARN_ON_ONCE(found_key.objectid < ino) ||
1344 found_key.type < BTRFS_EXTENT_DATA_KEY) {
1345 path->slots[0]++;
1346 goto next_slot;
1347 }
1348 if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
80ff3856
YZ
1349 found_key.offset > end)
1350 break;
1351
1352 if (found_key.offset > cur_offset) {
1353 extent_end = found_key.offset;
e9061e21 1354 extent_type = 0;
80ff3856
YZ
1355 goto out_check;
1356 }
1357
1358 fi = btrfs_item_ptr(leaf, path->slots[0],
1359 struct btrfs_file_extent_item);
1360 extent_type = btrfs_file_extent_type(leaf, fi);
1361
cc95bef6 1362 ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
d899e052
YZ
1363 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1364 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
80ff3856 1365 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5d4f98a2 1366 extent_offset = btrfs_file_extent_offset(leaf, fi);
80ff3856
YZ
1367 extent_end = found_key.offset +
1368 btrfs_file_extent_num_bytes(leaf, fi);
b4939680
JB
1369 disk_num_bytes =
1370 btrfs_file_extent_disk_num_bytes(leaf, fi);
80ff3856
YZ
1371 if (extent_end <= start) {
1372 path->slots[0]++;
1373 goto next_slot;
1374 }
17d217fe
YZ
1375 if (disk_bytenr == 0)
1376 goto out_check;
80ff3856
YZ
1377 if (btrfs_file_extent_compression(leaf, fi) ||
1378 btrfs_file_extent_encryption(leaf, fi) ||
1379 btrfs_file_extent_other_encoding(leaf, fi))
1380 goto out_check;
d899e052
YZ
1381 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1382 goto out_check;
2ff7e61e 1383 if (btrfs_extent_readonly(fs_info, disk_bytenr))
80ff3856 1384 goto out_check;
e4c3b2dc 1385 if (btrfs_cross_ref_exist(root, ino,
5d4f98a2
YZ
1386 found_key.offset -
1387 extent_offset, disk_bytenr))
17d217fe 1388 goto out_check;
5d4f98a2 1389 disk_bytenr += extent_offset;
17d217fe
YZ
1390 disk_bytenr += cur_offset - found_key.offset;
1391 num_bytes = min(end + 1, extent_end) - cur_offset;
e9894fd3
WS
1392 /*
1393 * if there are pending snapshots for this root,
1394 * we fall into common COW way.
1395 */
1396 if (!nolock) {
ea14b57f 1397 err = btrfs_start_write_no_snapshotting(root);
e9894fd3
WS
1398 if (!err)
1399 goto out_check;
1400 }
17d217fe
YZ
1401 /*
1402 * force cow if csum exists in the range.
1403 * this ensure that csum for a given extent are
1404 * either valid or do not exist.
1405 */
2ff7e61e 1406 if (csum_exist_in_range(fs_info, disk_bytenr,
91e1f56a
RK
1407 num_bytes)) {
1408 if (!nolock)
ea14b57f 1409 btrfs_end_write_no_snapshotting(root);
17d217fe 1410 goto out_check;
91e1f56a
RK
1411 }
1412 if (!btrfs_inc_nocow_writers(fs_info, disk_bytenr)) {
1413 if (!nolock)
ea14b57f 1414 btrfs_end_write_no_snapshotting(root);
f78c436c 1415 goto out_check;
91e1f56a 1416 }
80ff3856
YZ
1417 nocow = 1;
1418 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1419 extent_end = found_key.offset +
514ac8ad
CM
1420 btrfs_file_extent_inline_len(leaf,
1421 path->slots[0], fi);
da17066c 1422 extent_end = ALIGN(extent_end,
0b246afa 1423 fs_info->sectorsize);
80ff3856
YZ
1424 } else {
1425 BUG_ON(1);
1426 }
1427out_check:
1428 if (extent_end <= start) {
1429 path->slots[0]++;
e9894fd3 1430 if (!nolock && nocow)
ea14b57f 1431 btrfs_end_write_no_snapshotting(root);
f78c436c 1432 if (nocow)
0b246afa 1433 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
80ff3856
YZ
1434 goto next_slot;
1435 }
1436 if (!nocow) {
1437 if (cow_start == (u64)-1)
1438 cow_start = cur_offset;
1439 cur_offset = extent_end;
1440 if (cur_offset > end)
1441 break;
1442 path->slots[0]++;
1443 goto next_slot;
7ea394f1
YZ
1444 }
1445
b3b4aa74 1446 btrfs_release_path(path);
80ff3856 1447 if (cow_start != (u64)-1) {
00361589
JB
1448 ret = cow_file_range(inode, locked_page,
1449 cow_start, found_key.offset - 1,
dda3245e
WX
1450 end, page_started, nr_written, 1,
1451 NULL);
e9894fd3
WS
1452 if (ret) {
1453 if (!nolock && nocow)
ea14b57f 1454 btrfs_end_write_no_snapshotting(root);
f78c436c 1455 if (nocow)
0b246afa 1456 btrfs_dec_nocow_writers(fs_info,
f78c436c 1457 disk_bytenr);
79787eaa 1458 goto error;
e9894fd3 1459 }
80ff3856 1460 cow_start = (u64)-1;
7ea394f1 1461 }
80ff3856 1462
d899e052 1463 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
6f9994db
LB
1464 u64 orig_start = found_key.offset - extent_offset;
1465
1466 em = create_io_em(inode, cur_offset, num_bytes,
1467 orig_start,
1468 disk_bytenr, /* block_start */
1469 num_bytes, /* block_len */
1470 disk_num_bytes, /* orig_block_len */
1471 ram_bytes, BTRFS_COMPRESS_NONE,
1472 BTRFS_ORDERED_PREALLOC);
1473 if (IS_ERR(em)) {
1474 if (!nolock && nocow)
ea14b57f 1475 btrfs_end_write_no_snapshotting(root);
6f9994db
LB
1476 if (nocow)
1477 btrfs_dec_nocow_writers(fs_info,
1478 disk_bytenr);
1479 ret = PTR_ERR(em);
1480 goto error;
d899e052 1481 }
6f9994db
LB
1482 free_extent_map(em);
1483 }
1484
1485 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
d899e052
YZ
1486 type = BTRFS_ORDERED_PREALLOC;
1487 } else {
1488 type = BTRFS_ORDERED_NOCOW;
1489 }
80ff3856
YZ
1490
1491 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
d899e052 1492 num_bytes, num_bytes, type);
f78c436c 1493 if (nocow)
0b246afa 1494 btrfs_dec_nocow_writers(fs_info, disk_bytenr);
79787eaa 1495 BUG_ON(ret); /* -ENOMEM */
771ed689 1496
efa56464 1497 if (root->root_key.objectid ==
4dbd80fb
QW
1498 BTRFS_DATA_RELOC_TREE_OBJECTID)
1499 /*
1500 * Error handled later, as we must prevent
1501 * extent_clear_unlock_delalloc() in error handler
1502 * from freeing metadata of created ordered extent.
1503 */
efa56464
YZ
1504 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1505 num_bytes);
efa56464 1506
c2790a2e 1507 extent_clear_unlock_delalloc(inode, cur_offset,
ba8b04c1 1508 cur_offset + num_bytes - 1, end,
c2790a2e 1509 locked_page, EXTENT_LOCKED |
18513091
WX
1510 EXTENT_DELALLOC |
1511 EXTENT_CLEAR_DATA_RESV,
1512 PAGE_UNLOCK | PAGE_SET_PRIVATE2);
1513
e9894fd3 1514 if (!nolock && nocow)
ea14b57f 1515 btrfs_end_write_no_snapshotting(root);
80ff3856 1516 cur_offset = extent_end;
4dbd80fb
QW
1517
1518 /*
1519 * btrfs_reloc_clone_csums() error, now we're OK to call error
1520 * handler, as metadata for created ordered extent will only
1521 * be freed by btrfs_finish_ordered_io().
1522 */
1523 if (ret)
1524 goto error;
80ff3856
YZ
1525 if (cur_offset > end)
1526 break;
be20aa9d 1527 }
b3b4aa74 1528 btrfs_release_path(path);
80ff3856 1529
17ca04af 1530 if (cur_offset <= end && cow_start == (u64)-1) {
80ff3856 1531 cow_start = cur_offset;
17ca04af
JB
1532 cur_offset = end;
1533 }
1534
80ff3856 1535 if (cow_start != (u64)-1) {
dda3245e
WX
1536 ret = cow_file_range(inode, locked_page, cow_start, end, end,
1537 page_started, nr_written, 1, NULL);
d788a349 1538 if (ret)
79787eaa 1539 goto error;
80ff3856
YZ
1540 }
1541
79787eaa 1542error:
17ca04af 1543 if (ret && cur_offset < end)
ba8b04c1 1544 extent_clear_unlock_delalloc(inode, cur_offset, end, end,
c2790a2e 1545 locked_page, EXTENT_LOCKED |
151a41bc
JB
1546 EXTENT_DELALLOC | EXTENT_DEFRAG |
1547 EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1548 PAGE_CLEAR_DIRTY |
c2790a2e
JB
1549 PAGE_SET_WRITEBACK |
1550 PAGE_END_WRITEBACK);
7ea394f1 1551 btrfs_free_path(path);
79787eaa 1552 return ret;
be20aa9d
CM
1553}
1554
47059d93
WS
1555static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1556{
1557
1558 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1559 !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1560 return 0;
1561
1562 /*
1563 * @defrag_bytes is a hint value, no spinlock held here,
1564 * if is not zero, it means the file is defragging.
1565 * Force cow if given extent needs to be defragged.
1566 */
1567 if (BTRFS_I(inode)->defrag_bytes &&
1568 test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1569 EXTENT_DEFRAG, 0, NULL))
1570 return 1;
1571
1572 return 0;
1573}
1574
d352ac68
CM
1575/*
1576 * extent_io.c call back to do delayed allocation processing
1577 */
c6100a4b 1578static int run_delalloc_range(void *private_data, struct page *locked_page,
771ed689
CM
1579 u64 start, u64 end, int *page_started,
1580 unsigned long *nr_written)
be20aa9d 1581{
c6100a4b 1582 struct inode *inode = private_data;
be20aa9d 1583 int ret;
47059d93 1584 int force_cow = need_force_cow(inode, start, end);
a2135011 1585
47059d93 1586 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
c8b97818 1587 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1588 page_started, 1, nr_written);
47059d93 1589 } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
d899e052 1590 ret = run_delalloc_nocow(inode, locked_page, start, end,
d397712b 1591 page_started, 0, nr_written);
c2fcdcdf 1592 } else if (!inode_need_compress(inode, start, end)) {
dda3245e
WX
1593 ret = cow_file_range(inode, locked_page, start, end, end,
1594 page_started, nr_written, 1, NULL);
7ddf5a42
JB
1595 } else {
1596 set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1597 &BTRFS_I(inode)->runtime_flags);
771ed689 1598 ret = cow_file_range_async(inode, locked_page, start, end,
d397712b 1599 page_started, nr_written);
7ddf5a42 1600 }
52427260
QW
1601 if (ret)
1602 btrfs_cleanup_ordered_extents(inode, start, end - start + 1);
b888db2b
CM
1603 return ret;
1604}
1605
c6100a4b 1606static void btrfs_split_extent_hook(void *private_data,
1bf85046 1607 struct extent_state *orig, u64 split)
9ed74f2d 1608{
c6100a4b 1609 struct inode *inode = private_data;
dcab6a3b
JB
1610 u64 size;
1611
0ca1f7ce 1612 /* not delalloc, ignore it */
9ed74f2d 1613 if (!(orig->state & EXTENT_DELALLOC))
1bf85046 1614 return;
9ed74f2d 1615
dcab6a3b
JB
1616 size = orig->end - orig->start + 1;
1617 if (size > BTRFS_MAX_EXTENT_SIZE) {
823bb20a 1618 u32 num_extents;
dcab6a3b
JB
1619 u64 new_size;
1620
1621 /*
ba117213
JB
1622 * See the explanation in btrfs_merge_extent_hook, the same
1623 * applies here, just in reverse.
dcab6a3b
JB
1624 */
1625 new_size = orig->end - split + 1;
823bb20a 1626 num_extents = count_max_extents(new_size);
ba117213 1627 new_size = split - orig->start;
823bb20a
DS
1628 num_extents += count_max_extents(new_size);
1629 if (count_max_extents(size) >= num_extents)
dcab6a3b
JB
1630 return;
1631 }
1632
9e0baf60 1633 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1634 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
9e0baf60 1635 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1636}
1637
1638/*
1639 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1640 * extents so we can keep track of new extents that are just merged onto old
1641 * extents, such as when we are doing sequential writes, so we can properly
1642 * account for the metadata space we'll need.
1643 */
c6100a4b 1644static void btrfs_merge_extent_hook(void *private_data,
1bf85046
JM
1645 struct extent_state *new,
1646 struct extent_state *other)
9ed74f2d 1647{
c6100a4b 1648 struct inode *inode = private_data;
dcab6a3b 1649 u64 new_size, old_size;
823bb20a 1650 u32 num_extents;
dcab6a3b 1651
9ed74f2d
JB
1652 /* not delalloc, ignore it */
1653 if (!(other->state & EXTENT_DELALLOC))
1bf85046 1654 return;
9ed74f2d 1655
8461a3de
JB
1656 if (new->start > other->start)
1657 new_size = new->end - other->start + 1;
1658 else
1659 new_size = other->end - new->start + 1;
dcab6a3b
JB
1660
1661 /* we're not bigger than the max, unreserve the space and go */
1662 if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1663 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1664 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
dcab6a3b
JB
1665 spin_unlock(&BTRFS_I(inode)->lock);
1666 return;
1667 }
1668
1669 /*
ba117213
JB
1670 * We have to add up either side to figure out how many extents were
1671 * accounted for before we merged into one big extent. If the number of
1672 * extents we accounted for is <= the amount we need for the new range
1673 * then we can return, otherwise drop. Think of it like this
1674 *
1675 * [ 4k][MAX_SIZE]
1676 *
1677 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1678 * need 2 outstanding extents, on one side we have 1 and the other side
1679 * we have 1 so they are == and we can return. But in this case
1680 *
1681 * [MAX_SIZE+4k][MAX_SIZE+4k]
1682 *
1683 * Each range on their own accounts for 2 extents, but merged together
1684 * they are only 3 extents worth of accounting, so we need to drop in
1685 * this case.
dcab6a3b 1686 */
ba117213 1687 old_size = other->end - other->start + 1;
823bb20a 1688 num_extents = count_max_extents(old_size);
ba117213 1689 old_size = new->end - new->start + 1;
823bb20a
DS
1690 num_extents += count_max_extents(old_size);
1691 if (count_max_extents(new_size) >= num_extents)
dcab6a3b
JB
1692 return;
1693
9e0baf60 1694 spin_lock(&BTRFS_I(inode)->lock);
8b62f87b 1695 btrfs_mod_outstanding_extents(BTRFS_I(inode), -1);
9e0baf60 1696 spin_unlock(&BTRFS_I(inode)->lock);
9ed74f2d
JB
1697}
1698
eb73c1b7
MX
1699static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1700 struct inode *inode)
1701{
0b246afa
JM
1702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1703
eb73c1b7
MX
1704 spin_lock(&root->delalloc_lock);
1705 if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1706 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1707 &root->delalloc_inodes);
1708 set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1709 &BTRFS_I(inode)->runtime_flags);
1710 root->nr_delalloc_inodes++;
1711 if (root->nr_delalloc_inodes == 1) {
0b246afa 1712 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1713 BUG_ON(!list_empty(&root->delalloc_root));
1714 list_add_tail(&root->delalloc_root,
0b246afa
JM
1715 &fs_info->delalloc_roots);
1716 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1717 }
1718 }
1719 spin_unlock(&root->delalloc_lock);
1720}
1721
1722static void btrfs_del_delalloc_inode(struct btrfs_root *root,
9e3e97f4 1723 struct btrfs_inode *inode)
eb73c1b7 1724{
9e3e97f4 1725 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
0b246afa 1726
eb73c1b7 1727 spin_lock(&root->delalloc_lock);
9e3e97f4
NB
1728 if (!list_empty(&inode->delalloc_inodes)) {
1729 list_del_init(&inode->delalloc_inodes);
eb73c1b7 1730 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1731 &inode->runtime_flags);
eb73c1b7
MX
1732 root->nr_delalloc_inodes--;
1733 if (!root->nr_delalloc_inodes) {
0b246afa 1734 spin_lock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1735 BUG_ON(list_empty(&root->delalloc_root));
1736 list_del_init(&root->delalloc_root);
0b246afa 1737 spin_unlock(&fs_info->delalloc_root_lock);
eb73c1b7
MX
1738 }
1739 }
1740 spin_unlock(&root->delalloc_lock);
1741}
1742
d352ac68
CM
1743/*
1744 * extent_io.c set_bit_hook, used to track delayed allocation
1745 * bytes in this file, and to maintain the list of inodes that
1746 * have pending delalloc work to be done.
1747 */
c6100a4b 1748static void btrfs_set_bit_hook(void *private_data,
9ee49a04 1749 struct extent_state *state, unsigned *bits)
291d673e 1750{
c6100a4b 1751 struct inode *inode = private_data;
9ed74f2d 1752
0b246afa
JM
1753 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1754
47059d93
WS
1755 if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1756 WARN_ON(1);
75eff68e
CM
1757 /*
1758 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1759 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1760 * bit, which is only set or cleared with irqs on
1761 */
0ca1f7ce 1762 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
291d673e 1763 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 1764 u64 len = state->end + 1 - state->start;
8b62f87b 1765 u32 num_extents = count_max_extents(len);
70ddc553 1766 bool do_list = !btrfs_is_free_space_inode(BTRFS_I(inode));
9ed74f2d 1767
8b62f87b
JB
1768 spin_lock(&BTRFS_I(inode)->lock);
1769 btrfs_mod_outstanding_extents(BTRFS_I(inode), num_extents);
1770 spin_unlock(&BTRFS_I(inode)->lock);
287a0ab9 1771
6a3891c5 1772 /* For sanity tests */
0b246afa 1773 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1774 return;
1775
104b4e51
NB
1776 percpu_counter_add_batch(&fs_info->delalloc_bytes, len,
1777 fs_info->delalloc_batch);
df0af1a5 1778 spin_lock(&BTRFS_I(inode)->lock);
0ca1f7ce 1779 BTRFS_I(inode)->delalloc_bytes += len;
47059d93
WS
1780 if (*bits & EXTENT_DEFRAG)
1781 BTRFS_I(inode)->defrag_bytes += len;
df0af1a5 1782 if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
eb73c1b7
MX
1783 &BTRFS_I(inode)->runtime_flags))
1784 btrfs_add_delalloc_inodes(root, inode);
df0af1a5 1785 spin_unlock(&BTRFS_I(inode)->lock);
291d673e 1786 }
a7e3b975
FM
1787
1788 if (!(state->state & EXTENT_DELALLOC_NEW) &&
1789 (*bits & EXTENT_DELALLOC_NEW)) {
1790 spin_lock(&BTRFS_I(inode)->lock);
1791 BTRFS_I(inode)->new_delalloc_bytes += state->end + 1 -
1792 state->start;
1793 spin_unlock(&BTRFS_I(inode)->lock);
1794 }
291d673e
CM
1795}
1796
d352ac68
CM
1797/*
1798 * extent_io.c clear_bit_hook, see set_bit_hook for why
1799 */
c6100a4b 1800static void btrfs_clear_bit_hook(void *private_data,
41074888 1801 struct extent_state *state,
9ee49a04 1802 unsigned *bits)
291d673e 1803{
c6100a4b 1804 struct btrfs_inode *inode = BTRFS_I((struct inode *)private_data);
6fc0ef68 1805 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
47059d93 1806 u64 len = state->end + 1 - state->start;
823bb20a 1807 u32 num_extents = count_max_extents(len);
47059d93 1808
4a4b964f
FM
1809 if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG)) {
1810 spin_lock(&inode->lock);
6fc0ef68 1811 inode->defrag_bytes -= len;
4a4b964f
FM
1812 spin_unlock(&inode->lock);
1813 }
47059d93 1814
75eff68e
CM
1815 /*
1816 * set_bit and clear bit hooks normally require _irqsave/restore
27160b6b 1817 * but in this case, we are only testing for the DELALLOC
75eff68e
CM
1818 * bit, which is only set or cleared with irqs on
1819 */
0ca1f7ce 1820 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
6fc0ef68 1821 struct btrfs_root *root = inode->root;
83eea1f1 1822 bool do_list = !btrfs_is_free_space_inode(inode);
bcbfce8a 1823
8b62f87b
JB
1824 spin_lock(&inode->lock);
1825 btrfs_mod_outstanding_extents(inode, -num_extents);
1826 spin_unlock(&inode->lock);
0ca1f7ce 1827
b6d08f06
JB
1828 /*
1829 * We don't reserve metadata space for space cache inodes so we
1830 * don't need to call dellalloc_release_metadata if there is an
1831 * error.
1832 */
a315e68f 1833 if (*bits & EXTENT_CLEAR_META_RESV &&
0b246afa 1834 root != fs_info->tree_root)
0ca1f7ce
YZ
1835 btrfs_delalloc_release_metadata(inode, len);
1836
6a3891c5 1837 /* For sanity tests. */
0b246afa 1838 if (btrfs_is_testing(fs_info))
6a3891c5
JB
1839 return;
1840
a315e68f
FM
1841 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID &&
1842 do_list && !(state->state & EXTENT_NORESERVE) &&
1843 (*bits & EXTENT_CLEAR_DATA_RESV))
6fc0ef68
NB
1844 btrfs_free_reserved_data_space_noquota(
1845 &inode->vfs_inode,
51773bec 1846 state->start, len);
9ed74f2d 1847
104b4e51
NB
1848 percpu_counter_add_batch(&fs_info->delalloc_bytes, -len,
1849 fs_info->delalloc_batch);
6fc0ef68
NB
1850 spin_lock(&inode->lock);
1851 inode->delalloc_bytes -= len;
1852 if (do_list && inode->delalloc_bytes == 0 &&
df0af1a5 1853 test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
9e3e97f4 1854 &inode->runtime_flags))
eb73c1b7 1855 btrfs_del_delalloc_inode(root, inode);
6fc0ef68 1856 spin_unlock(&inode->lock);
291d673e 1857 }
a7e3b975
FM
1858
1859 if ((state->state & EXTENT_DELALLOC_NEW) &&
1860 (*bits & EXTENT_DELALLOC_NEW)) {
1861 spin_lock(&inode->lock);
1862 ASSERT(inode->new_delalloc_bytes >= len);
1863 inode->new_delalloc_bytes -= len;
1864 spin_unlock(&inode->lock);
1865 }
291d673e
CM
1866}
1867
d352ac68
CM
1868/*
1869 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1870 * we don't create bios that span stripes or chunks
6f034ece
LB
1871 *
1872 * return 1 if page cannot be merged to bio
1873 * return 0 if page can be merged to bio
1874 * return error otherwise
d352ac68 1875 */
81a75f67 1876int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
c8b97818
CM
1877 size_t size, struct bio *bio,
1878 unsigned long bio_flags)
239b14b3 1879{
0b246afa
JM
1880 struct inode *inode = page->mapping->host;
1881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4f024f37 1882 u64 logical = (u64)bio->bi_iter.bi_sector << 9;
239b14b3
CM
1883 u64 length = 0;
1884 u64 map_length;
239b14b3
CM
1885 int ret;
1886
771ed689
CM
1887 if (bio_flags & EXTENT_BIO_COMPRESSED)
1888 return 0;
1889
4f024f37 1890 length = bio->bi_iter.bi_size;
239b14b3 1891 map_length = length;
0b246afa
JM
1892 ret = btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length,
1893 NULL, 0);
6f034ece
LB
1894 if (ret < 0)
1895 return ret;
d397712b 1896 if (map_length < length + size)
239b14b3 1897 return 1;
3444a972 1898 return 0;
239b14b3
CM
1899}
1900
d352ac68
CM
1901/*
1902 * in order to insert checksums into the metadata in large chunks,
1903 * we wait until bio submission time. All the pages in the bio are
1904 * checksummed and sums are attached onto the ordered extent record.
1905 *
1906 * At IO completion time the cums attached on the ordered extent record
1907 * are inserted into the btree
1908 */
8c27cb35 1909static blk_status_t __btrfs_submit_bio_start(void *private_data, struct bio *bio,
81a75f67 1910 int mirror_num, unsigned long bio_flags,
eaf25d93 1911 u64 bio_offset)
065631f6 1912{
c6100a4b 1913 struct inode *inode = private_data;
4e4cbee9 1914 blk_status_t ret = 0;
e015640f 1915
2ff7e61e 1916 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
79787eaa 1917 BUG_ON(ret); /* -ENOMEM */
4a69a410
CM
1918 return 0;
1919}
e015640f 1920
4a69a410
CM
1921/*
1922 * in order to insert checksums into the metadata in large chunks,
1923 * we wait until bio submission time. All the pages in the bio are
1924 * checksummed and sums are attached onto the ordered extent record.
1925 *
1926 * At IO completion time the cums attached on the ordered extent record
1927 * are inserted into the btree
1928 */
8c27cb35 1929static blk_status_t __btrfs_submit_bio_done(void *private_data, struct bio *bio,
eaf25d93
CM
1930 int mirror_num, unsigned long bio_flags,
1931 u64 bio_offset)
4a69a410 1932{
c6100a4b 1933 struct inode *inode = private_data;
2ff7e61e 1934 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4e4cbee9 1935 blk_status_t ret;
61891923 1936
2ff7e61e 1937 ret = btrfs_map_bio(fs_info, bio, mirror_num, 1);
4246a0b6 1938 if (ret) {
4e4cbee9 1939 bio->bi_status = ret;
4246a0b6
CH
1940 bio_endio(bio);
1941 }
61891923 1942 return ret;
44b8bd7e
CM
1943}
1944
d352ac68 1945/*
cad321ad
CM
1946 * extent_io.c submission hook. This does the right thing for csum calculation
1947 * on write, or reading the csums from the tree before a read
d352ac68 1948 */
8c27cb35 1949static blk_status_t btrfs_submit_bio_hook(void *private_data, struct bio *bio,
c6100a4b
JB
1950 int mirror_num, unsigned long bio_flags,
1951 u64 bio_offset)
44b8bd7e 1952{
c6100a4b 1953 struct inode *inode = private_data;
0b246afa 1954 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
44b8bd7e 1955 struct btrfs_root *root = BTRFS_I(inode)->root;
0d51e28a 1956 enum btrfs_wq_endio_type metadata = BTRFS_WQ_ENDIO_DATA;
4e4cbee9 1957 blk_status_t ret = 0;
19b9bdb0 1958 int skip_sum;
b812ce28 1959 int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
44b8bd7e 1960
6cbff00f 1961 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
cad321ad 1962
70ddc553 1963 if (btrfs_is_free_space_inode(BTRFS_I(inode)))
0d51e28a 1964 metadata = BTRFS_WQ_ENDIO_FREE_SPACE;
0417341e 1965
37226b21 1966 if (bio_op(bio) != REQ_OP_WRITE) {
0b246afa 1967 ret = btrfs_bio_wq_end_io(fs_info, bio, metadata);
5fd02043 1968 if (ret)
61891923 1969 goto out;
5fd02043 1970
d20f7043 1971 if (bio_flags & EXTENT_BIO_COMPRESSED) {
61891923
SB
1972 ret = btrfs_submit_compressed_read(inode, bio,
1973 mirror_num,
1974 bio_flags);
1975 goto out;
c2db1073 1976 } else if (!skip_sum) {
2ff7e61e 1977 ret = btrfs_lookup_bio_sums(inode, bio, NULL);
c2db1073 1978 if (ret)
61891923 1979 goto out;
c2db1073 1980 }
4d1b5fb4 1981 goto mapit;
b812ce28 1982 } else if (async && !skip_sum) {
17d217fe
YZ
1983 /* csum items have already been cloned */
1984 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1985 goto mapit;
19b9bdb0 1986 /* we're doing a write, do the async checksumming */
c6100a4b
JB
1987 ret = btrfs_wq_submit_bio(fs_info, bio, mirror_num, bio_flags,
1988 bio_offset, inode,
0b246afa
JM
1989 __btrfs_submit_bio_start,
1990 __btrfs_submit_bio_done);
61891923 1991 goto out;
b812ce28 1992 } else if (!skip_sum) {
2ff7e61e 1993 ret = btrfs_csum_one_bio(inode, bio, 0, 0);
b812ce28
JB
1994 if (ret)
1995 goto out;
19b9bdb0
CM
1996 }
1997
0b86a832 1998mapit:
2ff7e61e 1999 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
61891923
SB
2000
2001out:
4e4cbee9
CH
2002 if (ret) {
2003 bio->bi_status = ret;
4246a0b6
CH
2004 bio_endio(bio);
2005 }
61891923 2006 return ret;
065631f6 2007}
6885f308 2008
d352ac68
CM
2009/*
2010 * given a list of ordered sums record them in the inode. This happens
2011 * at IO completion time based on sums calculated at bio submission time.
2012 */
ba1da2f4 2013static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
df9f628e 2014 struct inode *inode, struct list_head *list)
e6dcd2dc 2015{
e6dcd2dc
CM
2016 struct btrfs_ordered_sum *sum;
2017
c6e30871 2018 list_for_each_entry(sum, list, list) {
39847c4d 2019 trans->adding_csums = 1;
d20f7043
CM
2020 btrfs_csum_file_blocks(trans,
2021 BTRFS_I(inode)->root->fs_info->csum_root, sum);
39847c4d 2022 trans->adding_csums = 0;
e6dcd2dc
CM
2023 }
2024 return 0;
2025}
2026
2ac55d41 2027int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
ba8b04c1 2028 struct extent_state **cached_state, int dedupe)
ea8c2819 2029{
09cbfeaf 2030 WARN_ON((end & (PAGE_SIZE - 1)) == 0);
ea8c2819 2031 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
7cd8c752 2032 cached_state);
ea8c2819
CM
2033}
2034
d352ac68 2035/* see btrfs_writepage_start_hook for details on why this is required */
247e743c
CM
2036struct btrfs_writepage_fixup {
2037 struct page *page;
2038 struct btrfs_work work;
2039};
2040
b2950863 2041static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
247e743c
CM
2042{
2043 struct btrfs_writepage_fixup *fixup;
2044 struct btrfs_ordered_extent *ordered;
2ac55d41 2045 struct extent_state *cached_state = NULL;
364ecf36 2046 struct extent_changeset *data_reserved = NULL;
247e743c
CM
2047 struct page *page;
2048 struct inode *inode;
2049 u64 page_start;
2050 u64 page_end;
87826df0 2051 int ret;
247e743c
CM
2052
2053 fixup = container_of(work, struct btrfs_writepage_fixup, work);
2054 page = fixup->page;
4a096752 2055again:
247e743c
CM
2056 lock_page(page);
2057 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
2058 ClearPageChecked(page);
2059 goto out_page;
2060 }
2061
2062 inode = page->mapping->host;
2063 page_start = page_offset(page);
09cbfeaf 2064 page_end = page_offset(page) + PAGE_SIZE - 1;
247e743c 2065
ff13db41 2066 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end,
d0082371 2067 &cached_state);
4a096752
CM
2068
2069 /* already ordered? We're done */
8b62b72b 2070 if (PagePrivate2(page))
247e743c 2071 goto out;
4a096752 2072
a776c6fa 2073 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
09cbfeaf 2074 PAGE_SIZE);
4a096752 2075 if (ordered) {
2ac55d41
JB
2076 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
2077 page_end, &cached_state, GFP_NOFS);
4a096752
CM
2078 unlock_page(page);
2079 btrfs_start_ordered_extent(inode, ordered, 1);
87826df0 2080 btrfs_put_ordered_extent(ordered);
4a096752
CM
2081 goto again;
2082 }
247e743c 2083
364ecf36 2084 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
09cbfeaf 2085 PAGE_SIZE);
87826df0
JM
2086 if (ret) {
2087 mapping_set_error(page->mapping, ret);
2088 end_extent_writepage(page, ret, page_start, page_end);
2089 ClearPageChecked(page);
2090 goto out;
2091 }
2092
ba8b04c1
QW
2093 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state,
2094 0);
247e743c 2095 ClearPageChecked(page);
87826df0 2096 set_page_dirty(page);
8b62f87b 2097 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
247e743c 2098out:
2ac55d41
JB
2099 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2100 &cached_state, GFP_NOFS);
247e743c
CM
2101out_page:
2102 unlock_page(page);
09cbfeaf 2103 put_page(page);
b897abec 2104 kfree(fixup);
364ecf36 2105 extent_changeset_free(data_reserved);
247e743c
CM
2106}
2107
2108/*
2109 * There are a few paths in the higher layers of the kernel that directly
2110 * set the page dirty bit without asking the filesystem if it is a
2111 * good idea. This causes problems because we want to make sure COW
2112 * properly happens and the data=ordered rules are followed.
2113 *
c8b97818 2114 * In our case any range that doesn't have the ORDERED bit set
247e743c
CM
2115 * hasn't been properly setup for IO. We kick off an async process
2116 * to fix it up. The async helper will wait for ordered extents, set
2117 * the delalloc bit and make it safe to write the page.
2118 */
b2950863 2119static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
247e743c
CM
2120{
2121 struct inode *inode = page->mapping->host;
0b246afa 2122 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
247e743c 2123 struct btrfs_writepage_fixup *fixup;
247e743c 2124
8b62b72b
CM
2125 /* this page is properly in the ordered list */
2126 if (TestClearPagePrivate2(page))
247e743c
CM
2127 return 0;
2128
2129 if (PageChecked(page))
2130 return -EAGAIN;
2131
2132 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2133 if (!fixup)
2134 return -EAGAIN;
f421950f 2135
247e743c 2136 SetPageChecked(page);
09cbfeaf 2137 get_page(page);
9e0af237
LB
2138 btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2139 btrfs_writepage_fixup_worker, NULL, NULL);
247e743c 2140 fixup->page = page;
0b246afa 2141 btrfs_queue_work(fs_info->fixup_workers, &fixup->work);
87826df0 2142 return -EBUSY;
247e743c
CM
2143}
2144
d899e052
YZ
2145static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2146 struct inode *inode, u64 file_pos,
2147 u64 disk_bytenr, u64 disk_num_bytes,
2148 u64 num_bytes, u64 ram_bytes,
2149 u8 compression, u8 encryption,
2150 u16 other_encoding, int extent_type)
2151{
2152 struct btrfs_root *root = BTRFS_I(inode)->root;
2153 struct btrfs_file_extent_item *fi;
2154 struct btrfs_path *path;
2155 struct extent_buffer *leaf;
2156 struct btrfs_key ins;
a12b877b 2157 u64 qg_released;
1acae57b 2158 int extent_inserted = 0;
d899e052
YZ
2159 int ret;
2160
2161 path = btrfs_alloc_path();
d8926bb3
MF
2162 if (!path)
2163 return -ENOMEM;
d899e052 2164
a1ed835e
CM
2165 /*
2166 * we may be replacing one extent in the tree with another.
2167 * The new extent is pinned in the extent map, and we don't want
2168 * to drop it from the cache until it is completely in the btree.
2169 *
2170 * So, tell btrfs_drop_extents to leave this extent in the cache.
2171 * the caller is expected to unpin it and allow it to be merged
2172 * with the others.
2173 */
1acae57b
FDBM
2174 ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2175 file_pos + num_bytes, NULL, 0,
2176 1, sizeof(*fi), &extent_inserted);
79787eaa
JM
2177 if (ret)
2178 goto out;
d899e052 2179
1acae57b 2180 if (!extent_inserted) {
4a0cc7ca 2181 ins.objectid = btrfs_ino(BTRFS_I(inode));
1acae57b
FDBM
2182 ins.offset = file_pos;
2183 ins.type = BTRFS_EXTENT_DATA_KEY;
2184
2185 path->leave_spinning = 1;
2186 ret = btrfs_insert_empty_item(trans, root, path, &ins,
2187 sizeof(*fi));
2188 if (ret)
2189 goto out;
2190 }
d899e052
YZ
2191 leaf = path->nodes[0];
2192 fi = btrfs_item_ptr(leaf, path->slots[0],
2193 struct btrfs_file_extent_item);
2194 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2195 btrfs_set_file_extent_type(leaf, fi, extent_type);
2196 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2197 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2198 btrfs_set_file_extent_offset(leaf, fi, 0);
2199 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2200 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2201 btrfs_set_file_extent_compression(leaf, fi, compression);
2202 btrfs_set_file_extent_encryption(leaf, fi, encryption);
2203 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
b9473439 2204
d899e052 2205 btrfs_mark_buffer_dirty(leaf);
ce195332 2206 btrfs_release_path(path);
d899e052
YZ
2207
2208 inode_add_bytes(inode, num_bytes);
d899e052
YZ
2209
2210 ins.objectid = disk_bytenr;
2211 ins.offset = disk_num_bytes;
2212 ins.type = BTRFS_EXTENT_ITEM_KEY;
a12b877b 2213
297d750b 2214 /*
5846a3c2
QW
2215 * Release the reserved range from inode dirty range map, as it is
2216 * already moved into delayed_ref_head
297d750b 2217 */
a12b877b
QW
2218 ret = btrfs_qgroup_release_data(inode, file_pos, ram_bytes);
2219 if (ret < 0)
2220 goto out;
2221 qg_released = ret;
84f7d8e6
JB
2222 ret = btrfs_alloc_reserved_file_extent(trans, root,
2223 btrfs_ino(BTRFS_I(inode)),
2224 file_pos, qg_released, &ins);
79787eaa 2225out:
d899e052 2226 btrfs_free_path(path);
b9473439 2227
79787eaa 2228 return ret;
d899e052
YZ
2229}
2230
38c227d8
LB
2231/* snapshot-aware defrag */
2232struct sa_defrag_extent_backref {
2233 struct rb_node node;
2234 struct old_sa_defrag_extent *old;
2235 u64 root_id;
2236 u64 inum;
2237 u64 file_pos;
2238 u64 extent_offset;
2239 u64 num_bytes;
2240 u64 generation;
2241};
2242
2243struct old_sa_defrag_extent {
2244 struct list_head list;
2245 struct new_sa_defrag_extent *new;
2246
2247 u64 extent_offset;
2248 u64 bytenr;
2249 u64 offset;
2250 u64 len;
2251 int count;
2252};
2253
2254struct new_sa_defrag_extent {
2255 struct rb_root root;
2256 struct list_head head;
2257 struct btrfs_path *path;
2258 struct inode *inode;
2259 u64 file_pos;
2260 u64 len;
2261 u64 bytenr;
2262 u64 disk_len;
2263 u8 compress_type;
2264};
2265
2266static int backref_comp(struct sa_defrag_extent_backref *b1,
2267 struct sa_defrag_extent_backref *b2)
2268{
2269 if (b1->root_id < b2->root_id)
2270 return -1;
2271 else if (b1->root_id > b2->root_id)
2272 return 1;
2273
2274 if (b1->inum < b2->inum)
2275 return -1;
2276 else if (b1->inum > b2->inum)
2277 return 1;
2278
2279 if (b1->file_pos < b2->file_pos)
2280 return -1;
2281 else if (b1->file_pos > b2->file_pos)
2282 return 1;
2283
2284 /*
2285 * [------------------------------] ===> (a range of space)
2286 * |<--->| |<---->| =============> (fs/file tree A)
2287 * |<---------------------------->| ===> (fs/file tree B)
2288 *
2289 * A range of space can refer to two file extents in one tree while
2290 * refer to only one file extent in another tree.
2291 *
2292 * So we may process a disk offset more than one time(two extents in A)
2293 * and locate at the same extent(one extent in B), then insert two same
2294 * backrefs(both refer to the extent in B).
2295 */
2296 return 0;
2297}
2298
2299static void backref_insert(struct rb_root *root,
2300 struct sa_defrag_extent_backref *backref)
2301{
2302 struct rb_node **p = &root->rb_node;
2303 struct rb_node *parent = NULL;
2304 struct sa_defrag_extent_backref *entry;
2305 int ret;
2306
2307 while (*p) {
2308 parent = *p;
2309 entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2310
2311 ret = backref_comp(backref, entry);
2312 if (ret < 0)
2313 p = &(*p)->rb_left;
2314 else
2315 p = &(*p)->rb_right;
2316 }
2317
2318 rb_link_node(&backref->node, parent, p);
2319 rb_insert_color(&backref->node, root);
2320}
2321
2322/*
2323 * Note the backref might has changed, and in this case we just return 0.
2324 */
2325static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2326 void *ctx)
2327{
2328 struct btrfs_file_extent_item *extent;
38c227d8
LB
2329 struct old_sa_defrag_extent *old = ctx;
2330 struct new_sa_defrag_extent *new = old->new;
2331 struct btrfs_path *path = new->path;
2332 struct btrfs_key key;
2333 struct btrfs_root *root;
2334 struct sa_defrag_extent_backref *backref;
2335 struct extent_buffer *leaf;
2336 struct inode *inode = new->inode;
0b246afa 2337 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2338 int slot;
2339 int ret;
2340 u64 extent_offset;
2341 u64 num_bytes;
2342
2343 if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
4a0cc7ca 2344 inum == btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2345 return 0;
2346
2347 key.objectid = root_id;
2348 key.type = BTRFS_ROOT_ITEM_KEY;
2349 key.offset = (u64)-1;
2350
38c227d8
LB
2351 root = btrfs_read_fs_root_no_name(fs_info, &key);
2352 if (IS_ERR(root)) {
2353 if (PTR_ERR(root) == -ENOENT)
2354 return 0;
2355 WARN_ON(1);
ab8d0fc4 2356 btrfs_debug(fs_info, "inum=%llu, offset=%llu, root_id=%llu",
38c227d8
LB
2357 inum, offset, root_id);
2358 return PTR_ERR(root);
2359 }
2360
2361 key.objectid = inum;
2362 key.type = BTRFS_EXTENT_DATA_KEY;
2363 if (offset > (u64)-1 << 32)
2364 key.offset = 0;
2365 else
2366 key.offset = offset;
2367
2368 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
fae7f21c 2369 if (WARN_ON(ret < 0))
38c227d8 2370 return ret;
50f1319c 2371 ret = 0;
38c227d8
LB
2372
2373 while (1) {
2374 cond_resched();
2375
2376 leaf = path->nodes[0];
2377 slot = path->slots[0];
2378
2379 if (slot >= btrfs_header_nritems(leaf)) {
2380 ret = btrfs_next_leaf(root, path);
2381 if (ret < 0) {
2382 goto out;
2383 } else if (ret > 0) {
2384 ret = 0;
2385 goto out;
2386 }
2387 continue;
2388 }
2389
2390 path->slots[0]++;
2391
2392 btrfs_item_key_to_cpu(leaf, &key, slot);
2393
2394 if (key.objectid > inum)
2395 goto out;
2396
2397 if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2398 continue;
2399
2400 extent = btrfs_item_ptr(leaf, slot,
2401 struct btrfs_file_extent_item);
2402
2403 if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2404 continue;
2405
e68afa49
LB
2406 /*
2407 * 'offset' refers to the exact key.offset,
2408 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2409 * (key.offset - extent_offset).
2410 */
2411 if (key.offset != offset)
38c227d8
LB
2412 continue;
2413
e68afa49 2414 extent_offset = btrfs_file_extent_offset(leaf, extent);
38c227d8 2415 num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
e68afa49 2416
38c227d8
LB
2417 if (extent_offset >= old->extent_offset + old->offset +
2418 old->len || extent_offset + num_bytes <=
2419 old->extent_offset + old->offset)
2420 continue;
38c227d8
LB
2421 break;
2422 }
2423
2424 backref = kmalloc(sizeof(*backref), GFP_NOFS);
2425 if (!backref) {
2426 ret = -ENOENT;
2427 goto out;
2428 }
2429
2430 backref->root_id = root_id;
2431 backref->inum = inum;
e68afa49 2432 backref->file_pos = offset;
38c227d8
LB
2433 backref->num_bytes = num_bytes;
2434 backref->extent_offset = extent_offset;
2435 backref->generation = btrfs_file_extent_generation(leaf, extent);
2436 backref->old = old;
2437 backref_insert(&new->root, backref);
2438 old->count++;
2439out:
2440 btrfs_release_path(path);
2441 WARN_ON(ret);
2442 return ret;
2443}
2444
2445static noinline bool record_extent_backrefs(struct btrfs_path *path,
2446 struct new_sa_defrag_extent *new)
2447{
0b246afa 2448 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2449 struct old_sa_defrag_extent *old, *tmp;
2450 int ret;
2451
2452 new->path = path;
2453
2454 list_for_each_entry_safe(old, tmp, &new->head, list) {
e68afa49
LB
2455 ret = iterate_inodes_from_logical(old->bytenr +
2456 old->extent_offset, fs_info,
38c227d8 2457 path, record_one_backref,
c995ab3c 2458 old, false);
4724b106
JB
2459 if (ret < 0 && ret != -ENOENT)
2460 return false;
38c227d8
LB
2461
2462 /* no backref to be processed for this extent */
2463 if (!old->count) {
2464 list_del(&old->list);
2465 kfree(old);
2466 }
2467 }
2468
2469 if (list_empty(&new->head))
2470 return false;
2471
2472 return true;
2473}
2474
2475static int relink_is_mergable(struct extent_buffer *leaf,
2476 struct btrfs_file_extent_item *fi,
116e0024 2477 struct new_sa_defrag_extent *new)
38c227d8 2478{
116e0024 2479 if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
38c227d8
LB
2480 return 0;
2481
2482 if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2483 return 0;
2484
116e0024
LB
2485 if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2486 return 0;
2487
2488 if (btrfs_file_extent_encryption(leaf, fi) ||
38c227d8
LB
2489 btrfs_file_extent_other_encoding(leaf, fi))
2490 return 0;
2491
2492 return 1;
2493}
2494
2495/*
2496 * Note the backref might has changed, and in this case we just return 0.
2497 */
2498static noinline int relink_extent_backref(struct btrfs_path *path,
2499 struct sa_defrag_extent_backref *prev,
2500 struct sa_defrag_extent_backref *backref)
2501{
2502 struct btrfs_file_extent_item *extent;
2503 struct btrfs_file_extent_item *item;
2504 struct btrfs_ordered_extent *ordered;
2505 struct btrfs_trans_handle *trans;
38c227d8
LB
2506 struct btrfs_root *root;
2507 struct btrfs_key key;
2508 struct extent_buffer *leaf;
2509 struct old_sa_defrag_extent *old = backref->old;
2510 struct new_sa_defrag_extent *new = old->new;
0b246afa 2511 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8
LB
2512 struct inode *inode;
2513 struct extent_state *cached = NULL;
2514 int ret = 0;
2515 u64 start;
2516 u64 len;
2517 u64 lock_start;
2518 u64 lock_end;
2519 bool merge = false;
2520 int index;
2521
2522 if (prev && prev->root_id == backref->root_id &&
2523 prev->inum == backref->inum &&
2524 prev->file_pos + prev->num_bytes == backref->file_pos)
2525 merge = true;
2526
2527 /* step 1: get root */
2528 key.objectid = backref->root_id;
2529 key.type = BTRFS_ROOT_ITEM_KEY;
2530 key.offset = (u64)-1;
2531
38c227d8
LB
2532 index = srcu_read_lock(&fs_info->subvol_srcu);
2533
2534 root = btrfs_read_fs_root_no_name(fs_info, &key);
2535 if (IS_ERR(root)) {
2536 srcu_read_unlock(&fs_info->subvol_srcu, index);
2537 if (PTR_ERR(root) == -ENOENT)
2538 return 0;
2539 return PTR_ERR(root);
2540 }
38c227d8 2541
bcbba5e6
WS
2542 if (btrfs_root_readonly(root)) {
2543 srcu_read_unlock(&fs_info->subvol_srcu, index);
2544 return 0;
2545 }
2546
38c227d8
LB
2547 /* step 2: get inode */
2548 key.objectid = backref->inum;
2549 key.type = BTRFS_INODE_ITEM_KEY;
2550 key.offset = 0;
2551
2552 inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2553 if (IS_ERR(inode)) {
2554 srcu_read_unlock(&fs_info->subvol_srcu, index);
2555 return 0;
2556 }
2557
2558 srcu_read_unlock(&fs_info->subvol_srcu, index);
2559
2560 /* step 3: relink backref */
2561 lock_start = backref->file_pos;
2562 lock_end = backref->file_pos + backref->num_bytes - 1;
2563 lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
ff13db41 2564 &cached);
38c227d8
LB
2565
2566 ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2567 if (ordered) {
2568 btrfs_put_ordered_extent(ordered);
2569 goto out_unlock;
2570 }
2571
2572 trans = btrfs_join_transaction(root);
2573 if (IS_ERR(trans)) {
2574 ret = PTR_ERR(trans);
2575 goto out_unlock;
2576 }
2577
2578 key.objectid = backref->inum;
2579 key.type = BTRFS_EXTENT_DATA_KEY;
2580 key.offset = backref->file_pos;
2581
2582 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2583 if (ret < 0) {
2584 goto out_free_path;
2585 } else if (ret > 0) {
2586 ret = 0;
2587 goto out_free_path;
2588 }
2589
2590 extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2591 struct btrfs_file_extent_item);
2592
2593 if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2594 backref->generation)
2595 goto out_free_path;
2596
2597 btrfs_release_path(path);
2598
2599 start = backref->file_pos;
2600 if (backref->extent_offset < old->extent_offset + old->offset)
2601 start += old->extent_offset + old->offset -
2602 backref->extent_offset;
2603
2604 len = min(backref->extent_offset + backref->num_bytes,
2605 old->extent_offset + old->offset + old->len);
2606 len -= max(backref->extent_offset, old->extent_offset + old->offset);
2607
2608 ret = btrfs_drop_extents(trans, root, inode, start,
2609 start + len, 1);
2610 if (ret)
2611 goto out_free_path;
2612again:
4a0cc7ca 2613 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2614 key.type = BTRFS_EXTENT_DATA_KEY;
2615 key.offset = start;
2616
a09a0a70 2617 path->leave_spinning = 1;
38c227d8
LB
2618 if (merge) {
2619 struct btrfs_file_extent_item *fi;
2620 u64 extent_len;
2621 struct btrfs_key found_key;
2622
3c9665df 2623 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
38c227d8
LB
2624 if (ret < 0)
2625 goto out_free_path;
2626
2627 path->slots[0]--;
2628 leaf = path->nodes[0];
2629 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2630
2631 fi = btrfs_item_ptr(leaf, path->slots[0],
2632 struct btrfs_file_extent_item);
2633 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2634
116e0024
LB
2635 if (extent_len + found_key.offset == start &&
2636 relink_is_mergable(leaf, fi, new)) {
38c227d8
LB
2637 btrfs_set_file_extent_num_bytes(leaf, fi,
2638 extent_len + len);
2639 btrfs_mark_buffer_dirty(leaf);
2640 inode_add_bytes(inode, len);
2641
2642 ret = 1;
2643 goto out_free_path;
2644 } else {
2645 merge = false;
2646 btrfs_release_path(path);
2647 goto again;
2648 }
2649 }
2650
2651 ret = btrfs_insert_empty_item(trans, root, path, &key,
2652 sizeof(*extent));
2653 if (ret) {
66642832 2654 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2655 goto out_free_path;
2656 }
2657
2658 leaf = path->nodes[0];
2659 item = btrfs_item_ptr(leaf, path->slots[0],
2660 struct btrfs_file_extent_item);
2661 btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2662 btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2663 btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2664 btrfs_set_file_extent_num_bytes(leaf, item, len);
2665 btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2666 btrfs_set_file_extent_generation(leaf, item, trans->transid);
2667 btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2668 btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2669 btrfs_set_file_extent_encryption(leaf, item, 0);
2670 btrfs_set_file_extent_other_encoding(leaf, item, 0);
2671
2672 btrfs_mark_buffer_dirty(leaf);
2673 inode_add_bytes(inode, len);
a09a0a70 2674 btrfs_release_path(path);
38c227d8 2675
84f7d8e6 2676 ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
38c227d8
LB
2677 new->disk_len, 0,
2678 backref->root_id, backref->inum,
b06c4bf5 2679 new->file_pos); /* start - extent_offset */
38c227d8 2680 if (ret) {
66642832 2681 btrfs_abort_transaction(trans, ret);
38c227d8
LB
2682 goto out_free_path;
2683 }
2684
2685 ret = 1;
2686out_free_path:
2687 btrfs_release_path(path);
a09a0a70 2688 path->leave_spinning = 0;
3a45bb20 2689 btrfs_end_transaction(trans);
38c227d8
LB
2690out_unlock:
2691 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2692 &cached, GFP_NOFS);
2693 iput(inode);
2694 return ret;
2695}
2696
6f519564
LB
2697static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2698{
2699 struct old_sa_defrag_extent *old, *tmp;
2700
2701 if (!new)
2702 return;
2703
2704 list_for_each_entry_safe(old, tmp, &new->head, list) {
6f519564
LB
2705 kfree(old);
2706 }
2707 kfree(new);
2708}
2709
38c227d8
LB
2710static void relink_file_extents(struct new_sa_defrag_extent *new)
2711{
0b246afa 2712 struct btrfs_fs_info *fs_info = btrfs_sb(new->inode->i_sb);
38c227d8 2713 struct btrfs_path *path;
38c227d8
LB
2714 struct sa_defrag_extent_backref *backref;
2715 struct sa_defrag_extent_backref *prev = NULL;
2716 struct inode *inode;
2717 struct btrfs_root *root;
2718 struct rb_node *node;
2719 int ret;
2720
2721 inode = new->inode;
2722 root = BTRFS_I(inode)->root;
2723
2724 path = btrfs_alloc_path();
2725 if (!path)
2726 return;
2727
2728 if (!record_extent_backrefs(path, new)) {
2729 btrfs_free_path(path);
2730 goto out;
2731 }
2732 btrfs_release_path(path);
2733
2734 while (1) {
2735 node = rb_first(&new->root);
2736 if (!node)
2737 break;
2738 rb_erase(node, &new->root);
2739
2740 backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2741
2742 ret = relink_extent_backref(path, prev, backref);
2743 WARN_ON(ret < 0);
2744
2745 kfree(prev);
2746
2747 if (ret == 1)
2748 prev = backref;
2749 else
2750 prev = NULL;
2751 cond_resched();
2752 }
2753 kfree(prev);
2754
2755 btrfs_free_path(path);
38c227d8 2756out:
6f519564
LB
2757 free_sa_defrag_extent(new);
2758
0b246afa
JM
2759 atomic_dec(&fs_info->defrag_running);
2760 wake_up(&fs_info->transaction_wait);
38c227d8
LB
2761}
2762
2763static struct new_sa_defrag_extent *
2764record_old_file_extents(struct inode *inode,
2765 struct btrfs_ordered_extent *ordered)
2766{
0b246afa 2767 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
38c227d8
LB
2768 struct btrfs_root *root = BTRFS_I(inode)->root;
2769 struct btrfs_path *path;
2770 struct btrfs_key key;
6f519564 2771 struct old_sa_defrag_extent *old;
38c227d8
LB
2772 struct new_sa_defrag_extent *new;
2773 int ret;
2774
2775 new = kmalloc(sizeof(*new), GFP_NOFS);
2776 if (!new)
2777 return NULL;
2778
2779 new->inode = inode;
2780 new->file_pos = ordered->file_offset;
2781 new->len = ordered->len;
2782 new->bytenr = ordered->start;
2783 new->disk_len = ordered->disk_len;
2784 new->compress_type = ordered->compress_type;
2785 new->root = RB_ROOT;
2786 INIT_LIST_HEAD(&new->head);
2787
2788 path = btrfs_alloc_path();
2789 if (!path)
2790 goto out_kfree;
2791
4a0cc7ca 2792 key.objectid = btrfs_ino(BTRFS_I(inode));
38c227d8
LB
2793 key.type = BTRFS_EXTENT_DATA_KEY;
2794 key.offset = new->file_pos;
2795
2796 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2797 if (ret < 0)
2798 goto out_free_path;
2799 if (ret > 0 && path->slots[0] > 0)
2800 path->slots[0]--;
2801
2802 /* find out all the old extents for the file range */
2803 while (1) {
2804 struct btrfs_file_extent_item *extent;
2805 struct extent_buffer *l;
2806 int slot;
2807 u64 num_bytes;
2808 u64 offset;
2809 u64 end;
2810 u64 disk_bytenr;
2811 u64 extent_offset;
2812
2813 l = path->nodes[0];
2814 slot = path->slots[0];
2815
2816 if (slot >= btrfs_header_nritems(l)) {
2817 ret = btrfs_next_leaf(root, path);
2818 if (ret < 0)
6f519564 2819 goto out_free_path;
38c227d8
LB
2820 else if (ret > 0)
2821 break;
2822 continue;
2823 }
2824
2825 btrfs_item_key_to_cpu(l, &key, slot);
2826
4a0cc7ca 2827 if (key.objectid != btrfs_ino(BTRFS_I(inode)))
38c227d8
LB
2828 break;
2829 if (key.type != BTRFS_EXTENT_DATA_KEY)
2830 break;
2831 if (key.offset >= new->file_pos + new->len)
2832 break;
2833
2834 extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2835
2836 num_bytes = btrfs_file_extent_num_bytes(l, extent);
2837 if (key.offset + num_bytes < new->file_pos)
2838 goto next;
2839
2840 disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2841 if (!disk_bytenr)
2842 goto next;
2843
2844 extent_offset = btrfs_file_extent_offset(l, extent);
2845
2846 old = kmalloc(sizeof(*old), GFP_NOFS);
2847 if (!old)
6f519564 2848 goto out_free_path;
38c227d8
LB
2849
2850 offset = max(new->file_pos, key.offset);
2851 end = min(new->file_pos + new->len, key.offset + num_bytes);
2852
2853 old->bytenr = disk_bytenr;
2854 old->extent_offset = extent_offset;
2855 old->offset = offset - key.offset;
2856 old->len = end - offset;
2857 old->new = new;
2858 old->count = 0;
2859 list_add_tail(&old->list, &new->head);
2860next:
2861 path->slots[0]++;
2862 cond_resched();
2863 }
2864
2865 btrfs_free_path(path);
0b246afa 2866 atomic_inc(&fs_info->defrag_running);
38c227d8
LB
2867
2868 return new;
2869
38c227d8
LB
2870out_free_path:
2871 btrfs_free_path(path);
2872out_kfree:
6f519564 2873 free_sa_defrag_extent(new);
38c227d8
LB
2874 return NULL;
2875}
2876
2ff7e61e 2877static void btrfs_release_delalloc_bytes(struct btrfs_fs_info *fs_info,
e570fd27
MX
2878 u64 start, u64 len)
2879{
2880 struct btrfs_block_group_cache *cache;
2881
0b246afa 2882 cache = btrfs_lookup_block_group(fs_info, start);
e570fd27
MX
2883 ASSERT(cache);
2884
2885 spin_lock(&cache->lock);
2886 cache->delalloc_bytes -= len;
2887 spin_unlock(&cache->lock);
2888
2889 btrfs_put_block_group(cache);
2890}
2891
d352ac68
CM
2892/* as ordered data IO finishes, this gets called so we can finish
2893 * an ordered extent if the range of bytes in the file it covers are
2894 * fully written.
2895 */
5fd02043 2896static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
e6dcd2dc 2897{
5fd02043 2898 struct inode *inode = ordered_extent->inode;
0b246afa 2899 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 2900 struct btrfs_root *root = BTRFS_I(inode)->root;
0ca1f7ce 2901 struct btrfs_trans_handle *trans = NULL;
e6dcd2dc 2902 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2ac55d41 2903 struct extent_state *cached_state = NULL;
38c227d8 2904 struct new_sa_defrag_extent *new = NULL;
261507a0 2905 int compress_type = 0;
77cef2ec
JB
2906 int ret = 0;
2907 u64 logical_len = ordered_extent->len;
82d5902d 2908 bool nolock;
77cef2ec 2909 bool truncated = false;
a7e3b975
FM
2910 bool range_locked = false;
2911 bool clear_new_delalloc_bytes = false;
2912
2913 if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2914 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags) &&
2915 !test_bit(BTRFS_ORDERED_DIRECT, &ordered_extent->flags))
2916 clear_new_delalloc_bytes = true;
e6dcd2dc 2917
70ddc553 2918 nolock = btrfs_is_free_space_inode(BTRFS_I(inode));
0cb59c99 2919
5fd02043
JB
2920 if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2921 ret = -EIO;
2922 goto out;
2923 }
2924
7ab7956e
NB
2925 btrfs_free_io_failure_record(BTRFS_I(inode),
2926 ordered_extent->file_offset,
2927 ordered_extent->file_offset +
2928 ordered_extent->len - 1);
f612496b 2929
77cef2ec
JB
2930 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2931 truncated = true;
2932 logical_len = ordered_extent->truncated_len;
2933 /* Truncated the entire extent, don't bother adding */
2934 if (!logical_len)
2935 goto out;
2936 }
2937
c2167754 2938 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
79787eaa 2939 BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
94ed938a
QW
2940
2941 /*
2942 * For mwrite(mmap + memset to write) case, we still reserve
2943 * space for NOCOW range.
2944 * As NOCOW won't cause a new delayed ref, just free the space
2945 */
bc42bda2 2946 btrfs_qgroup_free_data(inode, NULL, ordered_extent->file_offset,
94ed938a 2947 ordered_extent->len);
6c760c07
JB
2948 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2949 if (nolock)
2950 trans = btrfs_join_transaction_nolock(root);
2951 else
2952 trans = btrfs_join_transaction(root);
2953 if (IS_ERR(trans)) {
2954 ret = PTR_ERR(trans);
2955 trans = NULL;
2956 goto out;
c2167754 2957 }
69fe2d75 2958 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
6c760c07
JB
2959 ret = btrfs_update_inode_fallback(trans, root, inode);
2960 if (ret) /* -ENOMEM or corruption */
66642832 2961 btrfs_abort_transaction(trans, ret);
c2167754
YZ
2962 goto out;
2963 }
e6dcd2dc 2964
a7e3b975 2965 range_locked = true;
2ac55d41
JB
2966 lock_extent_bits(io_tree, ordered_extent->file_offset,
2967 ordered_extent->file_offset + ordered_extent->len - 1,
ff13db41 2968 &cached_state);
e6dcd2dc 2969
38c227d8
LB
2970 ret = test_range_bit(io_tree, ordered_extent->file_offset,
2971 ordered_extent->file_offset + ordered_extent->len - 1,
452e62b7 2972 EXTENT_DEFRAG, 0, cached_state);
38c227d8
LB
2973 if (ret) {
2974 u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
8101c8db 2975 if (0 && last_snapshot >= BTRFS_I(inode)->generation)
38c227d8
LB
2976 /* the inode is shared */
2977 new = record_old_file_extents(inode, ordered_extent);
2978
2979 clear_extent_bit(io_tree, ordered_extent->file_offset,
2980 ordered_extent->file_offset + ordered_extent->len - 1,
2981 EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2982 }
2983
0cb59c99 2984 if (nolock)
7a7eaa40 2985 trans = btrfs_join_transaction_nolock(root);
0cb59c99 2986 else
7a7eaa40 2987 trans = btrfs_join_transaction(root);
79787eaa
JM
2988 if (IS_ERR(trans)) {
2989 ret = PTR_ERR(trans);
2990 trans = NULL;
a7e3b975 2991 goto out;
79787eaa 2992 }
a79b7d4b 2993
69fe2d75 2994 trans->block_rsv = &BTRFS_I(inode)->block_rsv;
c2167754 2995
c8b97818 2996 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
261507a0 2997 compress_type = ordered_extent->compress_type;
d899e052 2998 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
261507a0 2999 BUG_ON(compress_type);
7a6d7067 3000 ret = btrfs_mark_extent_written(trans, BTRFS_I(inode),
d899e052
YZ
3001 ordered_extent->file_offset,
3002 ordered_extent->file_offset +
77cef2ec 3003 logical_len);
d899e052 3004 } else {
0b246afa 3005 BUG_ON(root == fs_info->tree_root);
d899e052
YZ
3006 ret = insert_reserved_file_extent(trans, inode,
3007 ordered_extent->file_offset,
3008 ordered_extent->start,
3009 ordered_extent->disk_len,
77cef2ec 3010 logical_len, logical_len,
261507a0 3011 compress_type, 0, 0,
d899e052 3012 BTRFS_FILE_EXTENT_REG);
e570fd27 3013 if (!ret)
2ff7e61e 3014 btrfs_release_delalloc_bytes(fs_info,
e570fd27
MX
3015 ordered_extent->start,
3016 ordered_extent->disk_len);
d899e052 3017 }
5dc562c5
JB
3018 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
3019 ordered_extent->file_offset, ordered_extent->len,
3020 trans->transid);
79787eaa 3021 if (ret < 0) {
66642832 3022 btrfs_abort_transaction(trans, ret);
a7e3b975 3023 goto out;
79787eaa 3024 }
2ac55d41 3025
df9f628e 3026 add_pending_csums(trans, inode, &ordered_extent->list);
e6dcd2dc 3027
6c760c07
JB
3028 btrfs_ordered_update_i_size(inode, 0, ordered_extent);
3029 ret = btrfs_update_inode_fallback(trans, root, inode);
3030 if (ret) { /* -ENOMEM or corruption */
66642832 3031 btrfs_abort_transaction(trans, ret);
a7e3b975 3032 goto out;
1ef30be1
JB
3033 }
3034 ret = 0;
c2167754 3035out:
a7e3b975
FM
3036 if (range_locked || clear_new_delalloc_bytes) {
3037 unsigned int clear_bits = 0;
3038
3039 if (range_locked)
3040 clear_bits |= EXTENT_LOCKED;
3041 if (clear_new_delalloc_bytes)
3042 clear_bits |= EXTENT_DELALLOC_NEW;
3043 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3044 ordered_extent->file_offset,
3045 ordered_extent->file_offset +
3046 ordered_extent->len - 1,
3047 clear_bits,
3048 (clear_bits & EXTENT_LOCKED) ? 1 : 0,
3049 0, &cached_state, GFP_NOFS);
3050 }
3051
a698d075 3052 if (trans)
3a45bb20 3053 btrfs_end_transaction(trans);
0cb59c99 3054
77cef2ec
JB
3055 if (ret || truncated) {
3056 u64 start, end;
3057
3058 if (truncated)
3059 start = ordered_extent->file_offset + logical_len;
3060 else
3061 start = ordered_extent->file_offset;
3062 end = ordered_extent->file_offset + ordered_extent->len - 1;
3063 clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
3064
3065 /* Drop the cache for the part of the extent we didn't write. */
dcdbc059 3066 btrfs_drop_extent_cache(BTRFS_I(inode), start, end, 0);
5fd02043 3067
0bec9ef5
JB
3068 /*
3069 * If the ordered extent had an IOERR or something else went
3070 * wrong we need to return the space for this ordered extent
77cef2ec
JB
3071 * back to the allocator. We only free the extent in the
3072 * truncated case if we didn't write out the extent at all.
0bec9ef5 3073 */
77cef2ec
JB
3074 if ((ret || !logical_len) &&
3075 !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
0bec9ef5 3076 !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2ff7e61e
JM
3077 btrfs_free_reserved_extent(fs_info,
3078 ordered_extent->start,
e570fd27 3079 ordered_extent->disk_len, 1);
0bec9ef5
JB
3080 }
3081
3082
5fd02043 3083 /*
8bad3c02
LB
3084 * This needs to be done to make sure anybody waiting knows we are done
3085 * updating everything for this ordered extent.
5fd02043
JB
3086 */
3087 btrfs_remove_ordered_extent(inode, ordered_extent);
3088
38c227d8 3089 /* for snapshot-aware defrag */
6f519564
LB
3090 if (new) {
3091 if (ret) {
3092 free_sa_defrag_extent(new);
0b246afa 3093 atomic_dec(&fs_info->defrag_running);
6f519564
LB
3094 } else {
3095 relink_file_extents(new);
3096 }
3097 }
38c227d8 3098
e6dcd2dc
CM
3099 /* once for us */
3100 btrfs_put_ordered_extent(ordered_extent);
3101 /* once for the tree */
3102 btrfs_put_ordered_extent(ordered_extent);
3103
5fd02043
JB
3104 return ret;
3105}
3106
3107static void finish_ordered_fn(struct btrfs_work *work)
3108{
3109 struct btrfs_ordered_extent *ordered_extent;
3110 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
3111 btrfs_finish_ordered_io(ordered_extent);
e6dcd2dc
CM
3112}
3113
c3988d63 3114static void btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
211f90e6
CM
3115 struct extent_state *state, int uptodate)
3116{
5fd02043 3117 struct inode *inode = page->mapping->host;
0b246afa 3118 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5fd02043 3119 struct btrfs_ordered_extent *ordered_extent = NULL;
9e0af237
LB
3120 struct btrfs_workqueue *wq;
3121 btrfs_work_func_t func;
5fd02043 3122
1abe9b8a 3123 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
3124
8b62b72b 3125 ClearPagePrivate2(page);
5fd02043
JB
3126 if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
3127 end - start + 1, uptodate))
c3988d63 3128 return;
5fd02043 3129
70ddc553 3130 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
0b246afa 3131 wq = fs_info->endio_freespace_worker;
9e0af237
LB
3132 func = btrfs_freespace_write_helper;
3133 } else {
0b246afa 3134 wq = fs_info->endio_write_workers;
9e0af237
LB
3135 func = btrfs_endio_write_helper;
3136 }
5fd02043 3137
9e0af237
LB
3138 btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3139 NULL);
3140 btrfs_queue_work(wq, &ordered_extent->work);
211f90e6
CM
3141}
3142
dc380aea
MX
3143static int __readpage_endio_check(struct inode *inode,
3144 struct btrfs_io_bio *io_bio,
3145 int icsum, struct page *page,
3146 int pgoff, u64 start, size_t len)
3147{
3148 char *kaddr;
3149 u32 csum_expected;
3150 u32 csum = ~(u32)0;
dc380aea
MX
3151
3152 csum_expected = *(((u32 *)io_bio->csum) + icsum);
3153
3154 kaddr = kmap_atomic(page);
3155 csum = btrfs_csum_data(kaddr + pgoff, csum, len);
0b5e3daf 3156 btrfs_csum_final(csum, (u8 *)&csum);
dc380aea
MX
3157 if (csum != csum_expected)
3158 goto zeroit;
3159
3160 kunmap_atomic(kaddr);
3161 return 0;
3162zeroit:
0970a22e 3163 btrfs_print_data_csum_error(BTRFS_I(inode), start, csum, csum_expected,
6f6b643e 3164 io_bio->mirror_num);
dc380aea
MX
3165 memset(kaddr + pgoff, 1, len);
3166 flush_dcache_page(page);
3167 kunmap_atomic(kaddr);
dc380aea
MX
3168 return -EIO;
3169}
3170
d352ac68
CM
3171/*
3172 * when reads are done, we need to check csums to verify the data is correct
4a54c8c1
JS
3173 * if there's a match, we allow the bio to finish. If not, the code in
3174 * extent_io.c will try to find good copies for us.
d352ac68 3175 */
facc8a22
MX
3176static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3177 u64 phy_offset, struct page *page,
3178 u64 start, u64 end, int mirror)
07157aac 3179{
4eee4fa4 3180 size_t offset = start - page_offset(page);
07157aac 3181 struct inode *inode = page->mapping->host;
d1310b2e 3182 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
ff79f819 3183 struct btrfs_root *root = BTRFS_I(inode)->root;
d1310b2e 3184
d20f7043
CM
3185 if (PageChecked(page)) {
3186 ClearPageChecked(page);
dc380aea 3187 return 0;
d20f7043 3188 }
6cbff00f
CH
3189
3190 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
dc380aea 3191 return 0;
17d217fe
YZ
3192
3193 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
9655d298 3194 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
91166212 3195 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM);
b6cda9bc 3196 return 0;
17d217fe 3197 }
d20f7043 3198
facc8a22 3199 phy_offset >>= inode->i_sb->s_blocksize_bits;
dc380aea
MX
3200 return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3201 start, (size_t)(end - start + 1));
07157aac 3202}
b888db2b 3203
24bbcf04
YZ
3204void btrfs_add_delayed_iput(struct inode *inode)
3205{
0b246afa 3206 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8089fe62 3207 struct btrfs_inode *binode = BTRFS_I(inode);
24bbcf04
YZ
3208
3209 if (atomic_add_unless(&inode->i_count, -1, 1))
3210 return;
3211
24bbcf04 3212 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3213 if (binode->delayed_iput_count == 0) {
3214 ASSERT(list_empty(&binode->delayed_iput));
3215 list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3216 } else {
3217 binode->delayed_iput_count++;
3218 }
24bbcf04
YZ
3219 spin_unlock(&fs_info->delayed_iput_lock);
3220}
3221
2ff7e61e 3222void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info)
24bbcf04 3223{
24bbcf04 3224
24bbcf04 3225 spin_lock(&fs_info->delayed_iput_lock);
8089fe62
DS
3226 while (!list_empty(&fs_info->delayed_iputs)) {
3227 struct btrfs_inode *inode;
3228
3229 inode = list_first_entry(&fs_info->delayed_iputs,
3230 struct btrfs_inode, delayed_iput);
3231 if (inode->delayed_iput_count) {
3232 inode->delayed_iput_count--;
3233 list_move_tail(&inode->delayed_iput,
3234 &fs_info->delayed_iputs);
3235 } else {
3236 list_del_init(&inode->delayed_iput);
3237 }
3238 spin_unlock(&fs_info->delayed_iput_lock);
3239 iput(&inode->vfs_inode);
3240 spin_lock(&fs_info->delayed_iput_lock);
24bbcf04 3241 }
8089fe62 3242 spin_unlock(&fs_info->delayed_iput_lock);
24bbcf04
YZ
3243}
3244
d68fc57b 3245/*
42b2aa86 3246 * This is called in transaction commit time. If there are no orphan
d68fc57b
YZ
3247 * files in the subvolume, it removes orphan item and frees block_rsv
3248 * structure.
3249 */
3250void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3251 struct btrfs_root *root)
3252{
0b246afa 3253 struct btrfs_fs_info *fs_info = root->fs_info;
90290e19 3254 struct btrfs_block_rsv *block_rsv;
d68fc57b
YZ
3255 int ret;
3256
8a35d95f 3257 if (atomic_read(&root->orphan_inodes) ||
d68fc57b
YZ
3258 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3259 return;
3260
90290e19 3261 spin_lock(&root->orphan_lock);
8a35d95f 3262 if (atomic_read(&root->orphan_inodes)) {
90290e19
JB
3263 spin_unlock(&root->orphan_lock);
3264 return;
3265 }
3266
3267 if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3268 spin_unlock(&root->orphan_lock);
3269 return;
3270 }
3271
3272 block_rsv = root->orphan_block_rsv;
3273 root->orphan_block_rsv = NULL;
3274 spin_unlock(&root->orphan_lock);
3275
27cdeb70 3276 if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
d68fc57b 3277 btrfs_root_refs(&root->root_item) > 0) {
0b246afa 3278 ret = btrfs_del_orphan_item(trans, fs_info->tree_root,
d68fc57b 3279 root->root_key.objectid);
4ef31a45 3280 if (ret)
66642832 3281 btrfs_abort_transaction(trans, ret);
4ef31a45 3282 else
27cdeb70
MX
3283 clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3284 &root->state);
d68fc57b
YZ
3285 }
3286
90290e19
JB
3287 if (block_rsv) {
3288 WARN_ON(block_rsv->size > 0);
2ff7e61e 3289 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b
YZ
3290 }
3291}
3292
7b128766
JB
3293/*
3294 * This creates an orphan entry for the given inode in case something goes
3295 * wrong in the middle of an unlink/truncate.
d68fc57b
YZ
3296 *
3297 * NOTE: caller of this function should reserve 5 units of metadata for
3298 * this function.
7b128766 3299 */
73f2e545
NB
3300int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3301 struct btrfs_inode *inode)
7b128766 3302{
73f2e545
NB
3303 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
3304 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3305 struct btrfs_block_rsv *block_rsv = NULL;
3306 int reserve = 0;
3307 int insert = 0;
3308 int ret;
7b128766 3309
d68fc57b 3310 if (!root->orphan_block_rsv) {
2ff7e61e
JM
3311 block_rsv = btrfs_alloc_block_rsv(fs_info,
3312 BTRFS_BLOCK_RSV_TEMP);
b532402e
TI
3313 if (!block_rsv)
3314 return -ENOMEM;
d68fc57b 3315 }
7b128766 3316
d68fc57b
YZ
3317 spin_lock(&root->orphan_lock);
3318 if (!root->orphan_block_rsv) {
3319 root->orphan_block_rsv = block_rsv;
3320 } else if (block_rsv) {
2ff7e61e 3321 btrfs_free_block_rsv(fs_info, block_rsv);
d68fc57b 3322 block_rsv = NULL;
7b128766 3323 }
7b128766 3324
8a35d95f 3325 if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3326 &inode->runtime_flags)) {
d68fc57b
YZ
3327#if 0
3328 /*
3329 * For proper ENOSPC handling, we should do orphan
3330 * cleanup when mounting. But this introduces backward
3331 * compatibility issue.
3332 */
3333 if (!xchg(&root->orphan_item_inserted, 1))
3334 insert = 2;
3335 else
3336 insert = 1;
3337#endif
3338 insert = 1;
321f0e70 3339 atomic_inc(&root->orphan_inodes);
7b128766
JB
3340 }
3341
72ac3c0d 3342 if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3343 &inode->runtime_flags))
d68fc57b 3344 reserve = 1;
d68fc57b 3345 spin_unlock(&root->orphan_lock);
7b128766 3346
d68fc57b
YZ
3347 /* grab metadata reservation from transaction handle */
3348 if (reserve) {
3349 ret = btrfs_orphan_reserve_metadata(trans, inode);
3b6571c1
JB
3350 ASSERT(!ret);
3351 if (ret) {
3352 atomic_dec(&root->orphan_inodes);
3353 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3354 &inode->runtime_flags);
3b6571c1
JB
3355 if (insert)
3356 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3357 &inode->runtime_flags);
3b6571c1
JB
3358 return ret;
3359 }
d68fc57b 3360 }
7b128766 3361
d68fc57b
YZ
3362 /* insert an orphan item to track this unlinked/truncated file */
3363 if (insert >= 1) {
73f2e545 3364 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
4ef31a45 3365 if (ret) {
703c88e0 3366 atomic_dec(&root->orphan_inodes);
4ef31a45
JB
3367 if (reserve) {
3368 clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
73f2e545 3369 &inode->runtime_flags);
4ef31a45
JB
3370 btrfs_orphan_release_metadata(inode);
3371 }
3372 if (ret != -EEXIST) {
e8e7cff6 3373 clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
73f2e545 3374 &inode->runtime_flags);
66642832 3375 btrfs_abort_transaction(trans, ret);
4ef31a45
JB
3376 return ret;
3377 }
79787eaa
JM
3378 }
3379 ret = 0;
d68fc57b
YZ
3380 }
3381
3382 /* insert an orphan item to track subvolume contains orphan files */
3383 if (insert >= 2) {
0b246afa 3384 ret = btrfs_insert_orphan_item(trans, fs_info->tree_root,
d68fc57b 3385 root->root_key.objectid);
79787eaa 3386 if (ret && ret != -EEXIST) {
66642832 3387 btrfs_abort_transaction(trans, ret);
79787eaa
JM
3388 return ret;
3389 }
d68fc57b
YZ
3390 }
3391 return 0;
7b128766
JB
3392}
3393
3394/*
3395 * We have done the truncate/delete so we can go ahead and remove the orphan
3396 * item for this particular inode.
3397 */
48a3b636 3398static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3d6ae7bb 3399 struct btrfs_inode *inode)
7b128766 3400{
3d6ae7bb 3401 struct btrfs_root *root = inode->root;
d68fc57b
YZ
3402 int delete_item = 0;
3403 int release_rsv = 0;
7b128766
JB
3404 int ret = 0;
3405
d68fc57b 3406 spin_lock(&root->orphan_lock);
8a35d95f 3407 if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3d6ae7bb 3408 &inode->runtime_flags))
d68fc57b 3409 delete_item = 1;
7b128766 3410
72ac3c0d 3411 if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3d6ae7bb 3412 &inode->runtime_flags))
d68fc57b 3413 release_rsv = 1;
d68fc57b 3414 spin_unlock(&root->orphan_lock);
7b128766 3415
703c88e0 3416 if (delete_item) {
8a35d95f 3417 atomic_dec(&root->orphan_inodes);
703c88e0
FDBM
3418 if (trans)
3419 ret = btrfs_del_orphan_item(trans, root,
3d6ae7bb 3420 btrfs_ino(inode));
8a35d95f 3421 }
7b128766 3422
703c88e0
FDBM
3423 if (release_rsv)
3424 btrfs_orphan_release_metadata(inode);
3425
4ef31a45 3426 return ret;
7b128766
JB
3427}
3428
3429/*
3430 * this cleans up any orphans that may be left on the list from the last use
3431 * of this root.
3432 */
66b4ffd1 3433int btrfs_orphan_cleanup(struct btrfs_root *root)
7b128766 3434{
0b246afa 3435 struct btrfs_fs_info *fs_info = root->fs_info;
7b128766
JB
3436 struct btrfs_path *path;
3437 struct extent_buffer *leaf;
7b128766
JB
3438 struct btrfs_key key, found_key;
3439 struct btrfs_trans_handle *trans;
3440 struct inode *inode;
8f6d7f4f 3441 u64 last_objectid = 0;
7b128766
JB
3442 int ret = 0, nr_unlink = 0, nr_truncate = 0;
3443
d68fc57b 3444 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
66b4ffd1 3445 return 0;
c71bf099
YZ
3446
3447 path = btrfs_alloc_path();
66b4ffd1
JB
3448 if (!path) {
3449 ret = -ENOMEM;
3450 goto out;
3451 }
e4058b54 3452 path->reada = READA_BACK;
7b128766
JB
3453
3454 key.objectid = BTRFS_ORPHAN_OBJECTID;
962a298f 3455 key.type = BTRFS_ORPHAN_ITEM_KEY;
7b128766
JB
3456 key.offset = (u64)-1;
3457
7b128766
JB
3458 while (1) {
3459 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
66b4ffd1
JB
3460 if (ret < 0)
3461 goto out;
7b128766
JB
3462
3463 /*
3464 * if ret == 0 means we found what we were searching for, which
25985edc 3465 * is weird, but possible, so only screw with path if we didn't
7b128766
JB
3466 * find the key and see if we have stuff that matches
3467 */
3468 if (ret > 0) {
66b4ffd1 3469 ret = 0;
7b128766
JB
3470 if (path->slots[0] == 0)
3471 break;
3472 path->slots[0]--;
3473 }
3474
3475 /* pull out the item */
3476 leaf = path->nodes[0];
7b128766
JB
3477 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3478
3479 /* make sure the item matches what we want */
3480 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3481 break;
962a298f 3482 if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
7b128766
JB
3483 break;
3484
3485 /* release the path since we're done with it */
b3b4aa74 3486 btrfs_release_path(path);
7b128766
JB
3487
3488 /*
3489 * this is where we are basically btrfs_lookup, without the
3490 * crossing root thing. we store the inode number in the
3491 * offset of the orphan item.
3492 */
8f6d7f4f
JB
3493
3494 if (found_key.offset == last_objectid) {
0b246afa
JM
3495 btrfs_err(fs_info,
3496 "Error removing orphan entry, stopping orphan cleanup");
8f6d7f4f
JB
3497 ret = -EINVAL;
3498 goto out;
3499 }
3500
3501 last_objectid = found_key.offset;
3502
5d4f98a2
YZ
3503 found_key.objectid = found_key.offset;
3504 found_key.type = BTRFS_INODE_ITEM_KEY;
3505 found_key.offset = 0;
0b246afa 3506 inode = btrfs_iget(fs_info->sb, &found_key, root, NULL);
8c6ffba0 3507 ret = PTR_ERR_OR_ZERO(inode);
67710892 3508 if (ret && ret != -ENOENT)
66b4ffd1 3509 goto out;
7b128766 3510
0b246afa 3511 if (ret == -ENOENT && root == fs_info->tree_root) {
f8e9e0b0
AJ
3512 struct btrfs_root *dead_root;
3513 struct btrfs_fs_info *fs_info = root->fs_info;
3514 int is_dead_root = 0;
3515
3516 /*
3517 * this is an orphan in the tree root. Currently these
3518 * could come from 2 sources:
3519 * a) a snapshot deletion in progress
3520 * b) a free space cache inode
3521 * We need to distinguish those two, as the snapshot
3522 * orphan must not get deleted.
3523 * find_dead_roots already ran before us, so if this
3524 * is a snapshot deletion, we should find the root
3525 * in the dead_roots list
3526 */
3527 spin_lock(&fs_info->trans_lock);
3528 list_for_each_entry(dead_root, &fs_info->dead_roots,
3529 root_list) {
3530 if (dead_root->root_key.objectid ==
3531 found_key.objectid) {
3532 is_dead_root = 1;
3533 break;
3534 }
3535 }
3536 spin_unlock(&fs_info->trans_lock);
3537 if (is_dead_root) {
3538 /* prevent this orphan from being found again */
3539 key.offset = found_key.objectid - 1;
3540 continue;
3541 }
3542 }
7b128766 3543 /*
a8c9e576
JB
3544 * Inode is already gone but the orphan item is still there,
3545 * kill the orphan item.
7b128766 3546 */
67710892 3547 if (ret == -ENOENT) {
a8c9e576 3548 trans = btrfs_start_transaction(root, 1);
66b4ffd1
JB
3549 if (IS_ERR(trans)) {
3550 ret = PTR_ERR(trans);
3551 goto out;
3552 }
0b246afa
JM
3553 btrfs_debug(fs_info, "auto deleting %Lu",
3554 found_key.objectid);
a8c9e576
JB
3555 ret = btrfs_del_orphan_item(trans, root,
3556 found_key.objectid);
3a45bb20 3557 btrfs_end_transaction(trans);
4ef31a45
JB
3558 if (ret)
3559 goto out;
7b128766
JB
3560 continue;
3561 }
3562
a8c9e576
JB
3563 /*
3564 * add this inode to the orphan list so btrfs_orphan_del does
3565 * the proper thing when we hit it
3566 */
8a35d95f
JB
3567 set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3568 &BTRFS_I(inode)->runtime_flags);
925396ec 3569 atomic_inc(&root->orphan_inodes);
a8c9e576 3570
7b128766
JB
3571 /* if we have links, this was a truncate, lets do that */
3572 if (inode->i_nlink) {
fae7f21c 3573 if (WARN_ON(!S_ISREG(inode->i_mode))) {
a41ad394
JB
3574 iput(inode);
3575 continue;
3576 }
7b128766 3577 nr_truncate++;
f3fe820c
JB
3578
3579 /* 1 for the orphan item deletion. */
3580 trans = btrfs_start_transaction(root, 1);
3581 if (IS_ERR(trans)) {
c69b26b0 3582 iput(inode);
f3fe820c
JB
3583 ret = PTR_ERR(trans);
3584 goto out;
3585 }
73f2e545 3586 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 3587 btrfs_end_transaction(trans);
c69b26b0
JB
3588 if (ret) {
3589 iput(inode);
f3fe820c 3590 goto out;
c69b26b0 3591 }
f3fe820c 3592
66b4ffd1 3593 ret = btrfs_truncate(inode);
4a7d0f68 3594 if (ret)
3d6ae7bb 3595 btrfs_orphan_del(NULL, BTRFS_I(inode));
7b128766
JB
3596 } else {
3597 nr_unlink++;
3598 }
3599
3600 /* this will do delete_inode and everything for us */
3601 iput(inode);
66b4ffd1
JB
3602 if (ret)
3603 goto out;
7b128766 3604 }
3254c876
MX
3605 /* release the path since we're done with it */
3606 btrfs_release_path(path);
3607
d68fc57b
YZ
3608 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3609
3610 if (root->orphan_block_rsv)
2ff7e61e 3611 btrfs_block_rsv_release(fs_info, root->orphan_block_rsv,
d68fc57b
YZ
3612 (u64)-1);
3613
27cdeb70
MX
3614 if (root->orphan_block_rsv ||
3615 test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
7a7eaa40 3616 trans = btrfs_join_transaction(root);
66b4ffd1 3617 if (!IS_ERR(trans))
3a45bb20 3618 btrfs_end_transaction(trans);
d68fc57b 3619 }
7b128766
JB
3620
3621 if (nr_unlink)
0b246afa 3622 btrfs_debug(fs_info, "unlinked %d orphans", nr_unlink);
7b128766 3623 if (nr_truncate)
0b246afa 3624 btrfs_debug(fs_info, "truncated %d orphans", nr_truncate);
66b4ffd1
JB
3625
3626out:
3627 if (ret)
0b246afa 3628 btrfs_err(fs_info, "could not do orphan cleanup %d", ret);
66b4ffd1
JB
3629 btrfs_free_path(path);
3630 return ret;
7b128766
JB
3631}
3632
46a53cca
CM
3633/*
3634 * very simple check to peek ahead in the leaf looking for xattrs. If we
3635 * don't find any xattrs, we know there can't be any acls.
3636 *
3637 * slot is the slot the inode is in, objectid is the objectid of the inode
3638 */
3639static noinline int acls_after_inode_item(struct extent_buffer *leaf,
63541927
FDBM
3640 int slot, u64 objectid,
3641 int *first_xattr_slot)
46a53cca
CM
3642{
3643 u32 nritems = btrfs_header_nritems(leaf);
3644 struct btrfs_key found_key;
f23b5a59
JB
3645 static u64 xattr_access = 0;
3646 static u64 xattr_default = 0;
46a53cca
CM
3647 int scanned = 0;
3648
f23b5a59 3649 if (!xattr_access) {
97d79299
AG
3650 xattr_access = btrfs_name_hash(XATTR_NAME_POSIX_ACL_ACCESS,
3651 strlen(XATTR_NAME_POSIX_ACL_ACCESS));
3652 xattr_default = btrfs_name_hash(XATTR_NAME_POSIX_ACL_DEFAULT,
3653 strlen(XATTR_NAME_POSIX_ACL_DEFAULT));
f23b5a59
JB
3654 }
3655
46a53cca 3656 slot++;
63541927 3657 *first_xattr_slot = -1;
46a53cca
CM
3658 while (slot < nritems) {
3659 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3660
3661 /* we found a different objectid, there must not be acls */
3662 if (found_key.objectid != objectid)
3663 return 0;
3664
3665 /* we found an xattr, assume we've got an acl */
f23b5a59 3666 if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
63541927
FDBM
3667 if (*first_xattr_slot == -1)
3668 *first_xattr_slot = slot;
f23b5a59
JB
3669 if (found_key.offset == xattr_access ||
3670 found_key.offset == xattr_default)
3671 return 1;
3672 }
46a53cca
CM
3673
3674 /*
3675 * we found a key greater than an xattr key, there can't
3676 * be any acls later on
3677 */
3678 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3679 return 0;
3680
3681 slot++;
3682 scanned++;
3683
3684 /*
3685 * it goes inode, inode backrefs, xattrs, extents,
3686 * so if there are a ton of hard links to an inode there can
3687 * be a lot of backrefs. Don't waste time searching too hard,
3688 * this is just an optimization
3689 */
3690 if (scanned >= 8)
3691 break;
3692 }
3693 /* we hit the end of the leaf before we found an xattr or
3694 * something larger than an xattr. We have to assume the inode
3695 * has acls
3696 */
63541927
FDBM
3697 if (*first_xattr_slot == -1)
3698 *first_xattr_slot = slot;
46a53cca
CM
3699 return 1;
3700}
3701
d352ac68
CM
3702/*
3703 * read an inode from the btree into the in-memory inode
3704 */
67710892 3705static int btrfs_read_locked_inode(struct inode *inode)
39279cc3 3706{
0b246afa 3707 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 3708 struct btrfs_path *path;
5f39d397 3709 struct extent_buffer *leaf;
39279cc3
CM
3710 struct btrfs_inode_item *inode_item;
3711 struct btrfs_root *root = BTRFS_I(inode)->root;
3712 struct btrfs_key location;
67de1176 3713 unsigned long ptr;
46a53cca 3714 int maybe_acls;
618e21d5 3715 u32 rdev;
39279cc3 3716 int ret;
2f7e33d4 3717 bool filled = false;
63541927 3718 int first_xattr_slot;
2f7e33d4
MX
3719
3720 ret = btrfs_fill_inode(inode, &rdev);
3721 if (!ret)
3722 filled = true;
39279cc3
CM
3723
3724 path = btrfs_alloc_path();
67710892
FM
3725 if (!path) {
3726 ret = -ENOMEM;
1748f843 3727 goto make_bad;
67710892 3728 }
1748f843 3729
39279cc3 3730 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
dc17ff8f 3731
39279cc3 3732 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
67710892
FM
3733 if (ret) {
3734 if (ret > 0)
3735 ret = -ENOENT;
39279cc3 3736 goto make_bad;
67710892 3737 }
39279cc3 3738
5f39d397 3739 leaf = path->nodes[0];
2f7e33d4
MX
3740
3741 if (filled)
67de1176 3742 goto cache_index;
2f7e33d4 3743
5f39d397
CM
3744 inode_item = btrfs_item_ptr(leaf, path->slots[0],
3745 struct btrfs_inode_item);
5f39d397 3746 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
bfe86848 3747 set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
2f2f43d3
EB
3748 i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3749 i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
6ef06d27 3750 btrfs_i_size_write(BTRFS_I(inode), btrfs_inode_size(leaf, inode_item));
5f39d397 3751
a937b979
DS
3752 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3753 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
5f39d397 3754
a937b979
DS
3755 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3756 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
5f39d397 3757
a937b979
DS
3758 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3759 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
5f39d397 3760
9cc97d64 3761 BTRFS_I(inode)->i_otime.tv_sec =
3762 btrfs_timespec_sec(leaf, &inode_item->otime);
3763 BTRFS_I(inode)->i_otime.tv_nsec =
3764 btrfs_timespec_nsec(leaf, &inode_item->otime);
5f39d397 3765
a76a3cd4 3766 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
e02119d5 3767 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
5dc562c5
JB
3768 BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3769
6e17d30b
YD
3770 inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3771 inode->i_generation = BTRFS_I(inode)->generation;
3772 inode->i_rdev = 0;
3773 rdev = btrfs_inode_rdev(leaf, inode_item);
3774
3775 BTRFS_I(inode)->index_cnt = (u64)-1;
3776 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3777
3778cache_index:
5dc562c5
JB
3779 /*
3780 * If we were modified in the current generation and evicted from memory
3781 * and then re-read we need to do a full sync since we don't have any
3782 * idea about which extents were modified before we were evicted from
3783 * cache.
6e17d30b
YD
3784 *
3785 * This is required for both inode re-read from disk and delayed inode
3786 * in delayed_nodes_tree.
5dc562c5 3787 */
0b246afa 3788 if (BTRFS_I(inode)->last_trans == fs_info->generation)
5dc562c5
JB
3789 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3790 &BTRFS_I(inode)->runtime_flags);
3791
bde6c242
FM
3792 /*
3793 * We don't persist the id of the transaction where an unlink operation
3794 * against the inode was last made. So here we assume the inode might
3795 * have been evicted, and therefore the exact value of last_unlink_trans
3796 * lost, and set it to last_trans to avoid metadata inconsistencies
3797 * between the inode and its parent if the inode is fsync'ed and the log
3798 * replayed. For example, in the scenario:
3799 *
3800 * touch mydir/foo
3801 * ln mydir/foo mydir/bar
3802 * sync
3803 * unlink mydir/bar
3804 * echo 2 > /proc/sys/vm/drop_caches # evicts inode
3805 * xfs_io -c fsync mydir/foo
3806 * <power failure>
3807 * mount fs, triggers fsync log replay
3808 *
3809 * We must make sure that when we fsync our inode foo we also log its
3810 * parent inode, otherwise after log replay the parent still has the
3811 * dentry with the "bar" name but our inode foo has a link count of 1
3812 * and doesn't have an inode ref with the name "bar" anymore.
3813 *
3814 * Setting last_unlink_trans to last_trans is a pessimistic approach,
01327610 3815 * but it guarantees correctness at the expense of occasional full
bde6c242
FM
3816 * transaction commits on fsync if our inode is a directory, or if our
3817 * inode is not a directory, logging its parent unnecessarily.
3818 */
3819 BTRFS_I(inode)->last_unlink_trans = BTRFS_I(inode)->last_trans;
3820
67de1176
MX
3821 path->slots[0]++;
3822 if (inode->i_nlink != 1 ||
3823 path->slots[0] >= btrfs_header_nritems(leaf))
3824 goto cache_acl;
3825
3826 btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
4a0cc7ca 3827 if (location.objectid != btrfs_ino(BTRFS_I(inode)))
67de1176
MX
3828 goto cache_acl;
3829
3830 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3831 if (location.type == BTRFS_INODE_REF_KEY) {
3832 struct btrfs_inode_ref *ref;
3833
3834 ref = (struct btrfs_inode_ref *)ptr;
3835 BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3836 } else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3837 struct btrfs_inode_extref *extref;
3838
3839 extref = (struct btrfs_inode_extref *)ptr;
3840 BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3841 extref);
3842 }
2f7e33d4 3843cache_acl:
46a53cca
CM
3844 /*
3845 * try to precache a NULL acl entry for files that don't have
3846 * any xattrs or acls
3847 */
33345d01 3848 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
f85b7379 3849 btrfs_ino(BTRFS_I(inode)), &first_xattr_slot);
63541927
FDBM
3850 if (first_xattr_slot != -1) {
3851 path->slots[0] = first_xattr_slot;
3852 ret = btrfs_load_inode_props(inode, path);
3853 if (ret)
0b246afa 3854 btrfs_err(fs_info,
351fd353 3855 "error loading props for ino %llu (root %llu): %d",
4a0cc7ca 3856 btrfs_ino(BTRFS_I(inode)),
63541927
FDBM
3857 root->root_key.objectid, ret);
3858 }
3859 btrfs_free_path(path);
3860
72c04902
AV
3861 if (!maybe_acls)
3862 cache_no_acl(inode);
46a53cca 3863
39279cc3 3864 switch (inode->i_mode & S_IFMT) {
39279cc3
CM
3865 case S_IFREG:
3866 inode->i_mapping->a_ops = &btrfs_aops;
d1310b2e 3867 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
39279cc3
CM
3868 inode->i_fop = &btrfs_file_operations;
3869 inode->i_op = &btrfs_file_inode_operations;
3870 break;
3871 case S_IFDIR:
3872 inode->i_fop = &btrfs_dir_file_operations;
67ade058 3873 inode->i_op = &btrfs_dir_inode_operations;
39279cc3
CM
3874 break;
3875 case S_IFLNK:
3876 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 3877 inode_nohighmem(inode);
39279cc3
CM
3878 inode->i_mapping->a_ops = &btrfs_symlink_aops;
3879 break;
618e21d5 3880 default:
0279b4cd 3881 inode->i_op = &btrfs_special_inode_operations;
618e21d5
JB
3882 init_special_inode(inode, inode->i_mode, rdev);
3883 break;
39279cc3 3884 }
6cbff00f
CH
3885
3886 btrfs_update_iflags(inode);
67710892 3887 return 0;
39279cc3
CM
3888
3889make_bad:
39279cc3 3890 btrfs_free_path(path);
39279cc3 3891 make_bad_inode(inode);
67710892 3892 return ret;
39279cc3
CM
3893}
3894
d352ac68
CM
3895/*
3896 * given a leaf and an inode, copy the inode fields into the leaf
3897 */
e02119d5
CM
3898static void fill_inode_item(struct btrfs_trans_handle *trans,
3899 struct extent_buffer *leaf,
5f39d397 3900 struct btrfs_inode_item *item,
39279cc3
CM
3901 struct inode *inode)
3902{
51fab693
LB
3903 struct btrfs_map_token token;
3904
3905 btrfs_init_map_token(&token);
5f39d397 3906
51fab693
LB
3907 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3908 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3909 btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3910 &token);
3911 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3912 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
5f39d397 3913
a937b979 3914 btrfs_set_token_timespec_sec(leaf, &item->atime,
51fab693 3915 inode->i_atime.tv_sec, &token);
a937b979 3916 btrfs_set_token_timespec_nsec(leaf, &item->atime,
51fab693 3917 inode->i_atime.tv_nsec, &token);
5f39d397 3918
a937b979 3919 btrfs_set_token_timespec_sec(leaf, &item->mtime,
51fab693 3920 inode->i_mtime.tv_sec, &token);
a937b979 3921 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
51fab693 3922 inode->i_mtime.tv_nsec, &token);
5f39d397 3923
a937b979 3924 btrfs_set_token_timespec_sec(leaf, &item->ctime,
51fab693 3925 inode->i_ctime.tv_sec, &token);
a937b979 3926 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
51fab693 3927 inode->i_ctime.tv_nsec, &token);
5f39d397 3928
9cc97d64 3929 btrfs_set_token_timespec_sec(leaf, &item->otime,
3930 BTRFS_I(inode)->i_otime.tv_sec, &token);
3931 btrfs_set_token_timespec_nsec(leaf, &item->otime,
3932 BTRFS_I(inode)->i_otime.tv_nsec, &token);
3933
51fab693
LB
3934 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3935 &token);
3936 btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3937 &token);
3938 btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3939 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3940 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3941 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3942 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
39279cc3
CM
3943}
3944
d352ac68
CM
3945/*
3946 * copy everything in the in-memory inode into the btree.
3947 */
2115133f 3948static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
d397712b 3949 struct btrfs_root *root, struct inode *inode)
39279cc3
CM
3950{
3951 struct btrfs_inode_item *inode_item;
3952 struct btrfs_path *path;
5f39d397 3953 struct extent_buffer *leaf;
39279cc3
CM
3954 int ret;
3955
3956 path = btrfs_alloc_path();
16cdcec7
MX
3957 if (!path)
3958 return -ENOMEM;
3959
b9473439 3960 path->leave_spinning = 1;
16cdcec7
MX
3961 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3962 1);
39279cc3
CM
3963 if (ret) {
3964 if (ret > 0)
3965 ret = -ENOENT;
3966 goto failed;
3967 }
3968
5f39d397
CM
3969 leaf = path->nodes[0];
3970 inode_item = btrfs_item_ptr(leaf, path->slots[0],
16cdcec7 3971 struct btrfs_inode_item);
39279cc3 3972
e02119d5 3973 fill_inode_item(trans, leaf, inode_item, inode);
5f39d397 3974 btrfs_mark_buffer_dirty(leaf);
15ee9bc7 3975 btrfs_set_inode_last_trans(trans, inode);
39279cc3
CM
3976 ret = 0;
3977failed:
39279cc3
CM
3978 btrfs_free_path(path);
3979 return ret;
3980}
3981
2115133f
CM
3982/*
3983 * copy everything in the in-memory inode into the btree.
3984 */
3985noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3986 struct btrfs_root *root, struct inode *inode)
3987{
0b246afa 3988 struct btrfs_fs_info *fs_info = root->fs_info;
2115133f
CM
3989 int ret;
3990
3991 /*
3992 * If the inode is a free space inode, we can deadlock during commit
3993 * if we put it into the delayed code.
3994 *
3995 * The data relocation inode should also be directly updated
3996 * without delay
3997 */
70ddc553 3998 if (!btrfs_is_free_space_inode(BTRFS_I(inode))
1d52c78a 3999 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
0b246afa 4000 && !test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
8ea05e3a
AB
4001 btrfs_update_root_times(trans, root);
4002
2115133f
CM
4003 ret = btrfs_delayed_update_inode(trans, root, inode);
4004 if (!ret)
4005 btrfs_set_inode_last_trans(trans, inode);
4006 return ret;
4007 }
4008
4009 return btrfs_update_inode_item(trans, root, inode);
4010}
4011
be6aef60
JB
4012noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
4013 struct btrfs_root *root,
4014 struct inode *inode)
2115133f
CM
4015{
4016 int ret;
4017
4018 ret = btrfs_update_inode(trans, root, inode);
4019 if (ret == -ENOSPC)
4020 return btrfs_update_inode_item(trans, root, inode);
4021 return ret;
4022}
4023
d352ac68
CM
4024/*
4025 * unlink helper that gets used here in inode.c and in the tree logging
4026 * recovery code. It remove a link in a directory with a given name, and
4027 * also drops the back refs in the inode to the directory
4028 */
92986796
AV
4029static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4030 struct btrfs_root *root,
4ec5934e
NB
4031 struct btrfs_inode *dir,
4032 struct btrfs_inode *inode,
92986796 4033 const char *name, int name_len)
39279cc3 4034{
0b246afa 4035 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4036 struct btrfs_path *path;
39279cc3 4037 int ret = 0;
5f39d397 4038 struct extent_buffer *leaf;
39279cc3 4039 struct btrfs_dir_item *di;
5f39d397 4040 struct btrfs_key key;
aec7477b 4041 u64 index;
33345d01
LZ
4042 u64 ino = btrfs_ino(inode);
4043 u64 dir_ino = btrfs_ino(dir);
39279cc3
CM
4044
4045 path = btrfs_alloc_path();
54aa1f4d
CM
4046 if (!path) {
4047 ret = -ENOMEM;
554233a6 4048 goto out;
54aa1f4d
CM
4049 }
4050
b9473439 4051 path->leave_spinning = 1;
33345d01 4052 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
39279cc3
CM
4053 name, name_len, -1);
4054 if (IS_ERR(di)) {
4055 ret = PTR_ERR(di);
4056 goto err;
4057 }
4058 if (!di) {
4059 ret = -ENOENT;
4060 goto err;
4061 }
5f39d397
CM
4062 leaf = path->nodes[0];
4063 btrfs_dir_item_key_to_cpu(leaf, di, &key);
39279cc3 4064 ret = btrfs_delete_one_dir_name(trans, root, path, di);
54aa1f4d
CM
4065 if (ret)
4066 goto err;
b3b4aa74 4067 btrfs_release_path(path);
39279cc3 4068
67de1176
MX
4069 /*
4070 * If we don't have dir index, we have to get it by looking up
4071 * the inode ref, since we get the inode ref, remove it directly,
4072 * it is unnecessary to do delayed deletion.
4073 *
4074 * But if we have dir index, needn't search inode ref to get it.
4075 * Since the inode ref is close to the inode item, it is better
4076 * that we delay to delete it, and just do this deletion when
4077 * we update the inode item.
4078 */
4ec5934e 4079 if (inode->dir_index) {
67de1176
MX
4080 ret = btrfs_delayed_delete_inode_ref(inode);
4081 if (!ret) {
4ec5934e 4082 index = inode->dir_index;
67de1176
MX
4083 goto skip_backref;
4084 }
4085 }
4086
33345d01
LZ
4087 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
4088 dir_ino, &index);
aec7477b 4089 if (ret) {
0b246afa 4090 btrfs_info(fs_info,
c2cf52eb 4091 "failed to delete reference to %.*s, inode %llu parent %llu",
c1c9ff7c 4092 name_len, name, ino, dir_ino);
66642832 4093 btrfs_abort_transaction(trans, ret);
aec7477b
JB
4094 goto err;
4095 }
67de1176 4096skip_backref:
2ff7e61e 4097 ret = btrfs_delete_delayed_dir_index(trans, fs_info, dir, index);
79787eaa 4098 if (ret) {
66642832 4099 btrfs_abort_transaction(trans, ret);
39279cc3 4100 goto err;
79787eaa 4101 }
39279cc3 4102
4ec5934e
NB
4103 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len, inode,
4104 dir_ino);
79787eaa 4105 if (ret != 0 && ret != -ENOENT) {
66642832 4106 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4107 goto err;
4108 }
e02119d5 4109
4ec5934e
NB
4110 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len, dir,
4111 index);
6418c961
CM
4112 if (ret == -ENOENT)
4113 ret = 0;
d4e3991b 4114 else if (ret)
66642832 4115 btrfs_abort_transaction(trans, ret);
39279cc3
CM
4116err:
4117 btrfs_free_path(path);
e02119d5
CM
4118 if (ret)
4119 goto out;
4120
6ef06d27 4121 btrfs_i_size_write(dir, dir->vfs_inode.i_size - name_len * 2);
4ec5934e
NB
4122 inode_inc_iversion(&inode->vfs_inode);
4123 inode_inc_iversion(&dir->vfs_inode);
4124 inode->vfs_inode.i_ctime = dir->vfs_inode.i_mtime =
4125 dir->vfs_inode.i_ctime = current_time(&inode->vfs_inode);
4126 ret = btrfs_update_inode(trans, root, &dir->vfs_inode);
e02119d5 4127out:
39279cc3
CM
4128 return ret;
4129}
4130
92986796
AV
4131int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
4132 struct btrfs_root *root,
4ec5934e 4133 struct btrfs_inode *dir, struct btrfs_inode *inode,
92986796
AV
4134 const char *name, int name_len)
4135{
4136 int ret;
4137 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
4138 if (!ret) {
4ec5934e
NB
4139 drop_nlink(&inode->vfs_inode);
4140 ret = btrfs_update_inode(trans, root, &inode->vfs_inode);
92986796
AV
4141 }
4142 return ret;
4143}
39279cc3 4144
a22285a6
YZ
4145/*
4146 * helper to start transaction for unlink and rmdir.
4147 *
d52be818
JB
4148 * unlink and rmdir are special in btrfs, they do not always free space, so
4149 * if we cannot make our reservations the normal way try and see if there is
4150 * plenty of slack room in the global reserve to migrate, otherwise we cannot
4151 * allow the unlink to occur.
a22285a6 4152 */
d52be818 4153static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
4df27c4d 4154{
a22285a6 4155 struct btrfs_root *root = BTRFS_I(dir)->root;
4df27c4d 4156
e70bea5f
JB
4157 /*
4158 * 1 for the possible orphan item
4159 * 1 for the dir item
4160 * 1 for the dir index
4161 * 1 for the inode ref
e70bea5f
JB
4162 * 1 for the inode
4163 */
8eab77ff 4164 return btrfs_start_transaction_fallback_global_rsv(root, 5, 5);
a22285a6
YZ
4165}
4166
4167static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4168{
4169 struct btrfs_root *root = BTRFS_I(dir)->root;
4170 struct btrfs_trans_handle *trans;
2b0143b5 4171 struct inode *inode = d_inode(dentry);
a22285a6 4172 int ret;
a22285a6 4173
d52be818 4174 trans = __unlink_start_trans(dir);
a22285a6
YZ
4175 if (IS_ERR(trans))
4176 return PTR_ERR(trans);
5f39d397 4177
4ec5934e
NB
4178 btrfs_record_unlink_dir(trans, BTRFS_I(dir), BTRFS_I(d_inode(dentry)),
4179 0);
12fcfd22 4180
4ec5934e
NB
4181 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4182 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4183 dentry->d_name.len);
b532402e
TI
4184 if (ret)
4185 goto out;
7b128766 4186
a22285a6 4187 if (inode->i_nlink == 0) {
73f2e545 4188 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
b532402e
TI
4189 if (ret)
4190 goto out;
a22285a6 4191 }
7b128766 4192
b532402e 4193out:
3a45bb20 4194 btrfs_end_transaction(trans);
2ff7e61e 4195 btrfs_btree_balance_dirty(root->fs_info);
39279cc3
CM
4196 return ret;
4197}
4198
4df27c4d
YZ
4199int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4200 struct btrfs_root *root,
4201 struct inode *dir, u64 objectid,
4202 const char *name, int name_len)
4203{
0b246afa 4204 struct btrfs_fs_info *fs_info = root->fs_info;
4df27c4d
YZ
4205 struct btrfs_path *path;
4206 struct extent_buffer *leaf;
4207 struct btrfs_dir_item *di;
4208 struct btrfs_key key;
4209 u64 index;
4210 int ret;
4a0cc7ca 4211 u64 dir_ino = btrfs_ino(BTRFS_I(dir));
4df27c4d
YZ
4212
4213 path = btrfs_alloc_path();
4214 if (!path)
4215 return -ENOMEM;
4216
33345d01 4217 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4df27c4d 4218 name, name_len, -1);
79787eaa
JM
4219 if (IS_ERR_OR_NULL(di)) {
4220 if (!di)
4221 ret = -ENOENT;
4222 else
4223 ret = PTR_ERR(di);
4224 goto out;
4225 }
4df27c4d
YZ
4226
4227 leaf = path->nodes[0];
4228 btrfs_dir_item_key_to_cpu(leaf, di, &key);
4229 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4230 ret = btrfs_delete_one_dir_name(trans, root, path, di);
79787eaa 4231 if (ret) {
66642832 4232 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4233 goto out;
4234 }
b3b4aa74 4235 btrfs_release_path(path);
4df27c4d 4236
0b246afa
JM
4237 ret = btrfs_del_root_ref(trans, fs_info, objectid,
4238 root->root_key.objectid, dir_ino,
4239 &index, name, name_len);
4df27c4d 4240 if (ret < 0) {
79787eaa 4241 if (ret != -ENOENT) {
66642832 4242 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4243 goto out;
4244 }
33345d01 4245 di = btrfs_search_dir_index_item(root, path, dir_ino,
4df27c4d 4246 name, name_len);
79787eaa
JM
4247 if (IS_ERR_OR_NULL(di)) {
4248 if (!di)
4249 ret = -ENOENT;
4250 else
4251 ret = PTR_ERR(di);
66642832 4252 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4253 goto out;
4254 }
4df27c4d
YZ
4255
4256 leaf = path->nodes[0];
4257 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
b3b4aa74 4258 btrfs_release_path(path);
4df27c4d
YZ
4259 index = key.offset;
4260 }
945d8962 4261 btrfs_release_path(path);
4df27c4d 4262
e67bbbb9 4263 ret = btrfs_delete_delayed_dir_index(trans, fs_info, BTRFS_I(dir), index);
79787eaa 4264 if (ret) {
66642832 4265 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4266 goto out;
4267 }
4df27c4d 4268
6ef06d27 4269 btrfs_i_size_write(BTRFS_I(dir), dir->i_size - name_len * 2);
0c4d2d95 4270 inode_inc_iversion(dir);
c2050a45 4271 dir->i_mtime = dir->i_ctime = current_time(dir);
5a24e84c 4272 ret = btrfs_update_inode_fallback(trans, root, dir);
79787eaa 4273 if (ret)
66642832 4274 btrfs_abort_transaction(trans, ret);
79787eaa 4275out:
71d7aed0 4276 btrfs_free_path(path);
79787eaa 4277 return ret;
4df27c4d
YZ
4278}
4279
39279cc3
CM
4280static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4281{
2b0143b5 4282 struct inode *inode = d_inode(dentry);
1832a6d5 4283 int err = 0;
39279cc3 4284 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3 4285 struct btrfs_trans_handle *trans;
44f714da 4286 u64 last_unlink_trans;
39279cc3 4287
b3ae244e 4288 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
134d4512 4289 return -ENOTEMPTY;
4a0cc7ca 4290 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_FIRST_FREE_OBJECTID)
b3ae244e 4291 return -EPERM;
134d4512 4292
d52be818 4293 trans = __unlink_start_trans(dir);
a22285a6 4294 if (IS_ERR(trans))
5df6a9f6 4295 return PTR_ERR(trans);
5df6a9f6 4296
4a0cc7ca 4297 if (unlikely(btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4df27c4d
YZ
4298 err = btrfs_unlink_subvol(trans, root, dir,
4299 BTRFS_I(inode)->location.objectid,
4300 dentry->d_name.name,
4301 dentry->d_name.len);
4302 goto out;
4303 }
4304
73f2e545 4305 err = btrfs_orphan_add(trans, BTRFS_I(inode));
7b128766 4306 if (err)
4df27c4d 4307 goto out;
7b128766 4308
44f714da
FM
4309 last_unlink_trans = BTRFS_I(inode)->last_unlink_trans;
4310
39279cc3 4311 /* now the directory is empty */
4ec5934e
NB
4312 err = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
4313 BTRFS_I(d_inode(dentry)), dentry->d_name.name,
4314 dentry->d_name.len);
44f714da 4315 if (!err) {
6ef06d27 4316 btrfs_i_size_write(BTRFS_I(inode), 0);
44f714da
FM
4317 /*
4318 * Propagate the last_unlink_trans value of the deleted dir to
4319 * its parent directory. This is to prevent an unrecoverable
4320 * log tree in the case we do something like this:
4321 * 1) create dir foo
4322 * 2) create snapshot under dir foo
4323 * 3) delete the snapshot
4324 * 4) rmdir foo
4325 * 5) mkdir foo
4326 * 6) fsync foo or some file inside foo
4327 */
4328 if (last_unlink_trans >= trans->transid)
4329 BTRFS_I(dir)->last_unlink_trans = last_unlink_trans;
4330 }
4df27c4d 4331out:
3a45bb20 4332 btrfs_end_transaction(trans);
2ff7e61e 4333 btrfs_btree_balance_dirty(root->fs_info);
3954401f 4334
39279cc3
CM
4335 return err;
4336}
4337
28f75a0e
CM
4338static int truncate_space_check(struct btrfs_trans_handle *trans,
4339 struct btrfs_root *root,
4340 u64 bytes_deleted)
4341{
0b246afa 4342 struct btrfs_fs_info *fs_info = root->fs_info;
28f75a0e
CM
4343 int ret;
4344
dc95f7bf
JB
4345 /*
4346 * This is only used to apply pressure to the enospc system, we don't
4347 * intend to use this reservation at all.
4348 */
2ff7e61e 4349 bytes_deleted = btrfs_csum_bytes_to_leaves(fs_info, bytes_deleted);
0b246afa
JM
4350 bytes_deleted *= fs_info->nodesize;
4351 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
28f75a0e 4352 bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
dc95f7bf 4353 if (!ret) {
0b246afa 4354 trace_btrfs_space_reservation(fs_info, "transaction",
dc95f7bf
JB
4355 trans->transid,
4356 bytes_deleted, 1);
28f75a0e 4357 trans->bytes_reserved += bytes_deleted;
dc95f7bf 4358 }
28f75a0e
CM
4359 return ret;
4360
4361}
4362
ddfae63c
JB
4363/*
4364 * Return this if we need to call truncate_block for the last bit of the
4365 * truncate.
4366 */
4367#define NEED_TRUNCATE_BLOCK 1
0305cd5f 4368
39279cc3
CM
4369/*
4370 * this can truncate away extent items, csum items and directory items.
4371 * It starts at a high offset and removes keys until it can't find
d352ac68 4372 * any higher than new_size
39279cc3
CM
4373 *
4374 * csum items that cross the new i_size are truncated to the new size
4375 * as well.
7b128766
JB
4376 *
4377 * min_type is the minimum key type to truncate down to. If set to 0, this
4378 * will kill all the items on this inode, including the INODE_ITEM_KEY.
39279cc3 4379 */
8082510e
YZ
4380int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4381 struct btrfs_root *root,
4382 struct inode *inode,
4383 u64 new_size, u32 min_type)
39279cc3 4384{
0b246afa 4385 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 4386 struct btrfs_path *path;
5f39d397 4387 struct extent_buffer *leaf;
39279cc3 4388 struct btrfs_file_extent_item *fi;
8082510e
YZ
4389 struct btrfs_key key;
4390 struct btrfs_key found_key;
39279cc3 4391 u64 extent_start = 0;
db94535d 4392 u64 extent_num_bytes = 0;
5d4f98a2 4393 u64 extent_offset = 0;
39279cc3 4394 u64 item_end = 0;
c1aa4575 4395 u64 last_size = new_size;
8082510e 4396 u32 found_type = (u8)-1;
39279cc3
CM
4397 int found_extent;
4398 int del_item;
85e21bac
CM
4399 int pending_del_nr = 0;
4400 int pending_del_slot = 0;
179e29e4 4401 int extent_type = -1;
8082510e
YZ
4402 int ret;
4403 int err = 0;
4a0cc7ca 4404 u64 ino = btrfs_ino(BTRFS_I(inode));
28ed1345 4405 u64 bytes_deleted = 0;
897ca819
TM
4406 bool be_nice = false;
4407 bool should_throttle = false;
4408 bool should_end = false;
8082510e
YZ
4409
4410 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
39279cc3 4411
28ed1345
CM
4412 /*
4413 * for non-free space inodes and ref cows, we want to back off from
4414 * time to time
4415 */
70ddc553 4416 if (!btrfs_is_free_space_inode(BTRFS_I(inode)) &&
28ed1345 4417 test_bit(BTRFS_ROOT_REF_COWS, &root->state))
897ca819 4418 be_nice = true;
28ed1345 4419
0eb0e19c
MF
4420 path = btrfs_alloc_path();
4421 if (!path)
4422 return -ENOMEM;
e4058b54 4423 path->reada = READA_BACK;
0eb0e19c 4424
5dc562c5
JB
4425 /*
4426 * We want to drop from the next block forward in case this new size is
4427 * not block aligned since we will be keeping the last block of the
4428 * extent just the way it is.
4429 */
27cdeb70 4430 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4431 root == fs_info->tree_root)
dcdbc059 4432 btrfs_drop_extent_cache(BTRFS_I(inode), ALIGN(new_size,
0b246afa 4433 fs_info->sectorsize),
da17066c 4434 (u64)-1, 0);
8082510e 4435
16cdcec7
MX
4436 /*
4437 * This function is also used to drop the items in the log tree before
4438 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4439 * it is used to drop the loged items. So we shouldn't kill the delayed
4440 * items.
4441 */
4442 if (min_type == 0 && root == BTRFS_I(inode)->root)
4ccb5c72 4443 btrfs_kill_delayed_inode_items(BTRFS_I(inode));
16cdcec7 4444
33345d01 4445 key.objectid = ino;
39279cc3 4446 key.offset = (u64)-1;
5f39d397
CM
4447 key.type = (u8)-1;
4448
85e21bac 4449search_again:
28ed1345
CM
4450 /*
4451 * with a 16K leaf size and 128MB extents, you can actually queue
4452 * up a huge file in a single leaf. Most of the time that
4453 * bytes_deleted is > 0, it will be huge by the time we get here
4454 */
ee22184b 4455 if (be_nice && bytes_deleted > SZ_32M) {
3a45bb20 4456 if (btrfs_should_end_transaction(trans)) {
28ed1345
CM
4457 err = -EAGAIN;
4458 goto error;
4459 }
4460 }
4461
4462
b9473439 4463 path->leave_spinning = 1;
85e21bac 4464 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
8082510e
YZ
4465 if (ret < 0) {
4466 err = ret;
4467 goto out;
4468 }
d397712b 4469
85e21bac 4470 if (ret > 0) {
e02119d5
CM
4471 /* there are no items in the tree for us to truncate, we're
4472 * done
4473 */
8082510e
YZ
4474 if (path->slots[0] == 0)
4475 goto out;
85e21bac
CM
4476 path->slots[0]--;
4477 }
4478
d397712b 4479 while (1) {
39279cc3 4480 fi = NULL;
5f39d397
CM
4481 leaf = path->nodes[0];
4482 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 4483 found_type = found_key.type;
39279cc3 4484
33345d01 4485 if (found_key.objectid != ino)
39279cc3 4486 break;
5f39d397 4487
85e21bac 4488 if (found_type < min_type)
39279cc3
CM
4489 break;
4490
5f39d397 4491 item_end = found_key.offset;
39279cc3 4492 if (found_type == BTRFS_EXTENT_DATA_KEY) {
5f39d397 4493 fi = btrfs_item_ptr(leaf, path->slots[0],
39279cc3 4494 struct btrfs_file_extent_item);
179e29e4
CM
4495 extent_type = btrfs_file_extent_type(leaf, fi);
4496 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
5f39d397 4497 item_end +=
db94535d 4498 btrfs_file_extent_num_bytes(leaf, fi);
09ed2f16
LB
4499
4500 trace_btrfs_truncate_show_fi_regular(
4501 BTRFS_I(inode), leaf, fi,
4502 found_key.offset);
179e29e4 4503 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
179e29e4 4504 item_end += btrfs_file_extent_inline_len(leaf,
514ac8ad 4505 path->slots[0], fi);
09ed2f16
LB
4506
4507 trace_btrfs_truncate_show_fi_inline(
4508 BTRFS_I(inode), leaf, fi, path->slots[0],
4509 found_key.offset);
39279cc3 4510 }
008630c1 4511 item_end--;
39279cc3 4512 }
8082510e
YZ
4513 if (found_type > min_type) {
4514 del_item = 1;
4515 } else {
76b42abb 4516 if (item_end < new_size)
b888db2b 4517 break;
8082510e
YZ
4518 if (found_key.offset >= new_size)
4519 del_item = 1;
4520 else
4521 del_item = 0;
39279cc3 4522 }
39279cc3 4523 found_extent = 0;
39279cc3 4524 /* FIXME, shrink the extent if the ref count is only 1 */
179e29e4
CM
4525 if (found_type != BTRFS_EXTENT_DATA_KEY)
4526 goto delete;
4527
4528 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
39279cc3 4529 u64 num_dec;
db94535d 4530 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
f70a9a6b 4531 if (!del_item) {
db94535d
CM
4532 u64 orig_num_bytes =
4533 btrfs_file_extent_num_bytes(leaf, fi);
fda2832f
QW
4534 extent_num_bytes = ALIGN(new_size -
4535 found_key.offset,
0b246afa 4536 fs_info->sectorsize);
db94535d
CM
4537 btrfs_set_file_extent_num_bytes(leaf, fi,
4538 extent_num_bytes);
4539 num_dec = (orig_num_bytes -
9069218d 4540 extent_num_bytes);
27cdeb70
MX
4541 if (test_bit(BTRFS_ROOT_REF_COWS,
4542 &root->state) &&
4543 extent_start != 0)
a76a3cd4 4544 inode_sub_bytes(inode, num_dec);
5f39d397 4545 btrfs_mark_buffer_dirty(leaf);
39279cc3 4546 } else {
db94535d
CM
4547 extent_num_bytes =
4548 btrfs_file_extent_disk_num_bytes(leaf,
4549 fi);
5d4f98a2
YZ
4550 extent_offset = found_key.offset -
4551 btrfs_file_extent_offset(leaf, fi);
4552
39279cc3 4553 /* FIXME blocksize != 4096 */
9069218d 4554 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
39279cc3
CM
4555 if (extent_start != 0) {
4556 found_extent = 1;
27cdeb70
MX
4557 if (test_bit(BTRFS_ROOT_REF_COWS,
4558 &root->state))
a76a3cd4 4559 inode_sub_bytes(inode, num_dec);
e02119d5 4560 }
39279cc3 4561 }
9069218d 4562 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
c8b97818
CM
4563 /*
4564 * we can't truncate inline items that have had
4565 * special encodings
4566 */
4567 if (!del_item &&
c8b97818 4568 btrfs_file_extent_encryption(leaf, fi) == 0 &&
ddfae63c
JB
4569 btrfs_file_extent_other_encoding(leaf, fi) == 0 &&
4570 btrfs_file_extent_compression(leaf, fi) == 0) {
4571 u32 size = (u32)(new_size - found_key.offset);
4572
4573 btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4574 size = btrfs_file_extent_calc_inline_size(size);
4575 btrfs_truncate_item(root->fs_info, path, size, 1);
4576 } else if (!del_item) {
514ac8ad 4577 /*
ddfae63c
JB
4578 * We have to bail so the last_size is set to
4579 * just before this extent.
514ac8ad 4580 */
ddfae63c
JB
4581 err = NEED_TRUNCATE_BLOCK;
4582 break;
4583 }
0305cd5f 4584
ddfae63c 4585 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
0305cd5f 4586 inode_sub_bytes(inode, item_end + 1 - new_size);
39279cc3 4587 }
179e29e4 4588delete:
ddfae63c
JB
4589 if (del_item)
4590 last_size = found_key.offset;
4591 else
4592 last_size = new_size;
39279cc3 4593 if (del_item) {
85e21bac
CM
4594 if (!pending_del_nr) {
4595 /* no pending yet, add ourselves */
4596 pending_del_slot = path->slots[0];
4597 pending_del_nr = 1;
4598 } else if (pending_del_nr &&
4599 path->slots[0] + 1 == pending_del_slot) {
4600 /* hop on the pending chunk */
4601 pending_del_nr++;
4602 pending_del_slot = path->slots[0];
4603 } else {
d397712b 4604 BUG();
85e21bac 4605 }
39279cc3
CM
4606 } else {
4607 break;
4608 }
897ca819 4609 should_throttle = false;
28f75a0e 4610
27cdeb70
MX
4611 if (found_extent &&
4612 (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
0b246afa 4613 root == fs_info->tree_root)) {
b9473439 4614 btrfs_set_path_blocking(path);
28ed1345 4615 bytes_deleted += extent_num_bytes;
84f7d8e6 4616 ret = btrfs_free_extent(trans, root, extent_start,
5d4f98a2
YZ
4617 extent_num_bytes, 0,
4618 btrfs_header_owner(leaf),
b06c4bf5 4619 ino, extent_offset);
39279cc3 4620 BUG_ON(ret);
2ff7e61e
JM
4621 if (btrfs_should_throttle_delayed_refs(trans, fs_info))
4622 btrfs_async_run_delayed_refs(fs_info,
dd4b857a
WX
4623 trans->delayed_ref_updates * 2,
4624 trans->transid, 0);
28f75a0e
CM
4625 if (be_nice) {
4626 if (truncate_space_check(trans, root,
4627 extent_num_bytes)) {
897ca819 4628 should_end = true;
28f75a0e
CM
4629 }
4630 if (btrfs_should_throttle_delayed_refs(trans,
2ff7e61e 4631 fs_info))
897ca819 4632 should_throttle = true;
28f75a0e 4633 }
39279cc3 4634 }
85e21bac 4635
8082510e
YZ
4636 if (found_type == BTRFS_INODE_ITEM_KEY)
4637 break;
4638
4639 if (path->slots[0] == 0 ||
1262133b 4640 path->slots[0] != pending_del_slot ||
28f75a0e 4641 should_throttle || should_end) {
8082510e
YZ
4642 if (pending_del_nr) {
4643 ret = btrfs_del_items(trans, root, path,
4644 pending_del_slot,
4645 pending_del_nr);
79787eaa 4646 if (ret) {
66642832 4647 btrfs_abort_transaction(trans, ret);
79787eaa
JM
4648 goto error;
4649 }
8082510e
YZ
4650 pending_del_nr = 0;
4651 }
b3b4aa74 4652 btrfs_release_path(path);
28f75a0e 4653 if (should_throttle) {
1262133b
JB
4654 unsigned long updates = trans->delayed_ref_updates;
4655 if (updates) {
4656 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4657 ret = btrfs_run_delayed_refs(trans,
4658 fs_info,
4659 updates * 2);
1262133b
JB
4660 if (ret && !err)
4661 err = ret;
4662 }
4663 }
28f75a0e
CM
4664 /*
4665 * if we failed to refill our space rsv, bail out
4666 * and let the transaction restart
4667 */
4668 if (should_end) {
4669 err = -EAGAIN;
4670 goto error;
4671 }
85e21bac 4672 goto search_again;
8082510e
YZ
4673 } else {
4674 path->slots[0]--;
85e21bac 4675 }
39279cc3 4676 }
8082510e 4677out:
85e21bac
CM
4678 if (pending_del_nr) {
4679 ret = btrfs_del_items(trans, root, path, pending_del_slot,
4680 pending_del_nr);
79787eaa 4681 if (ret)
66642832 4682 btrfs_abort_transaction(trans, ret);
85e21bac 4683 }
79787eaa 4684error:
76b42abb
FM
4685 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4686 ASSERT(last_size >= new_size);
4687 if (!err && last_size > new_size)
4688 last_size = new_size;
7f4f6e0a 4689 btrfs_ordered_update_i_size(inode, last_size, NULL);
76b42abb 4690 }
28ed1345 4691
39279cc3 4692 btrfs_free_path(path);
28ed1345 4693
ee22184b 4694 if (be_nice && bytes_deleted > SZ_32M) {
28ed1345
CM
4695 unsigned long updates = trans->delayed_ref_updates;
4696 if (updates) {
4697 trans->delayed_ref_updates = 0;
2ff7e61e
JM
4698 ret = btrfs_run_delayed_refs(trans, fs_info,
4699 updates * 2);
28ed1345
CM
4700 if (ret && !err)
4701 err = ret;
4702 }
4703 }
8082510e 4704 return err;
39279cc3
CM
4705}
4706
4707/*
9703fefe 4708 * btrfs_truncate_block - read, zero a chunk and write a block
2aaa6655
JB
4709 * @inode - inode that we're zeroing
4710 * @from - the offset to start zeroing
4711 * @len - the length to zero, 0 to zero the entire range respective to the
4712 * offset
4713 * @front - zero up to the offset instead of from the offset on
4714 *
9703fefe 4715 * This will find the block for the "from" offset and cow the block and zero the
2aaa6655 4716 * part we want to zero. This is used with truncate and hole punching.
39279cc3 4717 */
9703fefe 4718int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2aaa6655 4719 int front)
39279cc3 4720{
0b246afa 4721 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2aaa6655 4722 struct address_space *mapping = inode->i_mapping;
e6dcd2dc
CM
4723 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4724 struct btrfs_ordered_extent *ordered;
2ac55d41 4725 struct extent_state *cached_state = NULL;
364ecf36 4726 struct extent_changeset *data_reserved = NULL;
e6dcd2dc 4727 char *kaddr;
0b246afa 4728 u32 blocksize = fs_info->sectorsize;
09cbfeaf 4729 pgoff_t index = from >> PAGE_SHIFT;
9703fefe 4730 unsigned offset = from & (blocksize - 1);
39279cc3 4731 struct page *page;
3b16a4e3 4732 gfp_t mask = btrfs_alloc_write_mask(mapping);
39279cc3 4733 int ret = 0;
9703fefe
CR
4734 u64 block_start;
4735 u64 block_end;
39279cc3 4736
2aaa6655
JB
4737 if ((offset & (blocksize - 1)) == 0 &&
4738 (!len || ((len & (blocksize - 1)) == 0)))
39279cc3 4739 goto out;
9703fefe 4740
8b62f87b
JB
4741 block_start = round_down(from, blocksize);
4742 block_end = block_start + blocksize - 1;
4743
364ecf36 4744 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8b62f87b 4745 block_start, blocksize);
5d5e103a
JB
4746 if (ret)
4747 goto out;
39279cc3 4748
211c17f5 4749again:
3b16a4e3 4750 page = find_or_create_page(mapping, index, mask);
5d5e103a 4751 if (!page) {
bc42bda2 4752 btrfs_delalloc_release_space(inode, data_reserved,
8b62f87b
JB
4753 block_start, blocksize);
4754 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
ac6a2b36 4755 ret = -ENOMEM;
39279cc3 4756 goto out;
5d5e103a 4757 }
e6dcd2dc 4758
39279cc3 4759 if (!PageUptodate(page)) {
9ebefb18 4760 ret = btrfs_readpage(NULL, page);
39279cc3 4761 lock_page(page);
211c17f5
CM
4762 if (page->mapping != mapping) {
4763 unlock_page(page);
09cbfeaf 4764 put_page(page);
211c17f5
CM
4765 goto again;
4766 }
39279cc3
CM
4767 if (!PageUptodate(page)) {
4768 ret = -EIO;
89642229 4769 goto out_unlock;
39279cc3
CM
4770 }
4771 }
211c17f5 4772 wait_on_page_writeback(page);
e6dcd2dc 4773
9703fefe 4774 lock_extent_bits(io_tree, block_start, block_end, &cached_state);
e6dcd2dc
CM
4775 set_page_extent_mapped(page);
4776
9703fefe 4777 ordered = btrfs_lookup_ordered_extent(inode, block_start);
e6dcd2dc 4778 if (ordered) {
9703fefe 4779 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4780 &cached_state, GFP_NOFS);
e6dcd2dc 4781 unlock_page(page);
09cbfeaf 4782 put_page(page);
eb84ae03 4783 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
4784 btrfs_put_ordered_extent(ordered);
4785 goto again;
4786 }
4787
9703fefe 4788 clear_extent_bit(&BTRFS_I(inode)->io_tree, block_start, block_end,
9e8a4a8b
LB
4789 EXTENT_DIRTY | EXTENT_DELALLOC |
4790 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 4791 0, 0, &cached_state, GFP_NOFS);
5d5e103a 4792
9703fefe 4793 ret = btrfs_set_extent_delalloc(inode, block_start, block_end,
ba8b04c1 4794 &cached_state, 0);
9ed74f2d 4795 if (ret) {
9703fefe 4796 unlock_extent_cached(io_tree, block_start, block_end,
2ac55d41 4797 &cached_state, GFP_NOFS);
9ed74f2d
JB
4798 goto out_unlock;
4799 }
4800
9703fefe 4801 if (offset != blocksize) {
2aaa6655 4802 if (!len)
9703fefe 4803 len = blocksize - offset;
e6dcd2dc 4804 kaddr = kmap(page);
2aaa6655 4805 if (front)
9703fefe
CR
4806 memset(kaddr + (block_start - page_offset(page)),
4807 0, offset);
2aaa6655 4808 else
9703fefe
CR
4809 memset(kaddr + (block_start - page_offset(page)) + offset,
4810 0, len);
e6dcd2dc
CM
4811 flush_dcache_page(page);
4812 kunmap(page);
4813 }
247e743c 4814 ClearPageChecked(page);
e6dcd2dc 4815 set_page_dirty(page);
9703fefe 4816 unlock_extent_cached(io_tree, block_start, block_end, &cached_state,
2ac55d41 4817 GFP_NOFS);
39279cc3 4818
89642229 4819out_unlock:
5d5e103a 4820 if (ret)
bc42bda2 4821 btrfs_delalloc_release_space(inode, data_reserved, block_start,
9703fefe 4822 blocksize);
8b62f87b 4823 btrfs_delalloc_release_extents(BTRFS_I(inode), blocksize);
39279cc3 4824 unlock_page(page);
09cbfeaf 4825 put_page(page);
39279cc3 4826out:
364ecf36 4827 extent_changeset_free(data_reserved);
39279cc3
CM
4828 return ret;
4829}
4830
16e7549f
JB
4831static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4832 u64 offset, u64 len)
4833{
0b246afa 4834 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
16e7549f
JB
4835 struct btrfs_trans_handle *trans;
4836 int ret;
4837
4838 /*
4839 * Still need to make sure the inode looks like it's been updated so
4840 * that any holes get logged if we fsync.
4841 */
0b246afa
JM
4842 if (btrfs_fs_incompat(fs_info, NO_HOLES)) {
4843 BTRFS_I(inode)->last_trans = fs_info->generation;
16e7549f
JB
4844 BTRFS_I(inode)->last_sub_trans = root->log_transid;
4845 BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4846 return 0;
4847 }
4848
4849 /*
4850 * 1 - for the one we're dropping
4851 * 1 - for the one we're adding
4852 * 1 - for updating the inode.
4853 */
4854 trans = btrfs_start_transaction(root, 3);
4855 if (IS_ERR(trans))
4856 return PTR_ERR(trans);
4857
4858 ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4859 if (ret) {
66642832 4860 btrfs_abort_transaction(trans, ret);
3a45bb20 4861 btrfs_end_transaction(trans);
16e7549f
JB
4862 return ret;
4863 }
4864
f85b7379
DS
4865 ret = btrfs_insert_file_extent(trans, root, btrfs_ino(BTRFS_I(inode)),
4866 offset, 0, 0, len, 0, len, 0, 0, 0);
16e7549f 4867 if (ret)
66642832 4868 btrfs_abort_transaction(trans, ret);
16e7549f
JB
4869 else
4870 btrfs_update_inode(trans, root, inode);
3a45bb20 4871 btrfs_end_transaction(trans);
16e7549f
JB
4872 return ret;
4873}
4874
695a0d0d
JB
4875/*
4876 * This function puts in dummy file extents for the area we're creating a hole
4877 * for. So if we are truncating this file to a larger size we need to insert
4878 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4879 * the range between oldsize and size
4880 */
a41ad394 4881int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
39279cc3 4882{
0b246afa 4883 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
9036c102
YZ
4884 struct btrfs_root *root = BTRFS_I(inode)->root;
4885 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
a22285a6 4886 struct extent_map *em = NULL;
2ac55d41 4887 struct extent_state *cached_state = NULL;
5dc562c5 4888 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
0b246afa
JM
4889 u64 hole_start = ALIGN(oldsize, fs_info->sectorsize);
4890 u64 block_end = ALIGN(size, fs_info->sectorsize);
9036c102
YZ
4891 u64 last_byte;
4892 u64 cur_offset;
4893 u64 hole_size;
9ed74f2d 4894 int err = 0;
39279cc3 4895
a71754fc 4896 /*
9703fefe
CR
4897 * If our size started in the middle of a block we need to zero out the
4898 * rest of the block before we expand the i_size, otherwise we could
a71754fc
JB
4899 * expose stale data.
4900 */
9703fefe 4901 err = btrfs_truncate_block(inode, oldsize, 0, 0);
a71754fc
JB
4902 if (err)
4903 return err;
4904
9036c102
YZ
4905 if (size <= hole_start)
4906 return 0;
4907
9036c102
YZ
4908 while (1) {
4909 struct btrfs_ordered_extent *ordered;
fa7c1494 4910
ff13db41 4911 lock_extent_bits(io_tree, hole_start, block_end - 1,
d0082371 4912 &cached_state);
a776c6fa 4913 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), hole_start,
fa7c1494 4914 block_end - hole_start);
9036c102
YZ
4915 if (!ordered)
4916 break;
2ac55d41
JB
4917 unlock_extent_cached(io_tree, hole_start, block_end - 1,
4918 &cached_state, GFP_NOFS);
fa7c1494 4919 btrfs_start_ordered_extent(inode, ordered, 1);
9036c102
YZ
4920 btrfs_put_ordered_extent(ordered);
4921 }
39279cc3 4922
9036c102
YZ
4923 cur_offset = hole_start;
4924 while (1) {
fc4f21b1 4925 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, cur_offset,
9036c102 4926 block_end - cur_offset, 0);
79787eaa
JM
4927 if (IS_ERR(em)) {
4928 err = PTR_ERR(em);
f2767956 4929 em = NULL;
79787eaa
JM
4930 break;
4931 }
9036c102 4932 last_byte = min(extent_map_end(em), block_end);
0b246afa 4933 last_byte = ALIGN(last_byte, fs_info->sectorsize);
8082510e 4934 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
5dc562c5 4935 struct extent_map *hole_em;
9036c102 4936 hole_size = last_byte - cur_offset;
9ed74f2d 4937
16e7549f
JB
4938 err = maybe_insert_hole(root, inode, cur_offset,
4939 hole_size);
4940 if (err)
3893e33b 4941 break;
dcdbc059 4942 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
4943 cur_offset + hole_size - 1, 0);
4944 hole_em = alloc_extent_map();
4945 if (!hole_em) {
4946 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4947 &BTRFS_I(inode)->runtime_flags);
4948 goto next;
4949 }
4950 hole_em->start = cur_offset;
4951 hole_em->len = hole_size;
4952 hole_em->orig_start = cur_offset;
8082510e 4953
5dc562c5
JB
4954 hole_em->block_start = EXTENT_MAP_HOLE;
4955 hole_em->block_len = 0;
b4939680 4956 hole_em->orig_block_len = 0;
cc95bef6 4957 hole_em->ram_bytes = hole_size;
0b246afa 4958 hole_em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5 4959 hole_em->compress_type = BTRFS_COMPRESS_NONE;
0b246afa 4960 hole_em->generation = fs_info->generation;
8082510e 4961
5dc562c5
JB
4962 while (1) {
4963 write_lock(&em_tree->lock);
09a2a8f9 4964 err = add_extent_mapping(em_tree, hole_em, 1);
5dc562c5
JB
4965 write_unlock(&em_tree->lock);
4966 if (err != -EEXIST)
4967 break;
dcdbc059
NB
4968 btrfs_drop_extent_cache(BTRFS_I(inode),
4969 cur_offset,
5dc562c5
JB
4970 cur_offset +
4971 hole_size - 1, 0);
4972 }
4973 free_extent_map(hole_em);
9036c102 4974 }
16e7549f 4975next:
9036c102 4976 free_extent_map(em);
a22285a6 4977 em = NULL;
9036c102 4978 cur_offset = last_byte;
8082510e 4979 if (cur_offset >= block_end)
9036c102
YZ
4980 break;
4981 }
a22285a6 4982 free_extent_map(em);
2ac55d41
JB
4983 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4984 GFP_NOFS);
9036c102
YZ
4985 return err;
4986}
39279cc3 4987
3972f260 4988static int btrfs_setsize(struct inode *inode, struct iattr *attr)
8082510e 4989{
f4a2f4c5
MX
4990 struct btrfs_root *root = BTRFS_I(inode)->root;
4991 struct btrfs_trans_handle *trans;
a41ad394 4992 loff_t oldsize = i_size_read(inode);
3972f260
ES
4993 loff_t newsize = attr->ia_size;
4994 int mask = attr->ia_valid;
8082510e
YZ
4995 int ret;
4996
3972f260
ES
4997 /*
4998 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4999 * special case where we need to update the times despite not having
5000 * these flags set. For all other operations the VFS set these flags
5001 * explicitly if it wants a timestamp update.
5002 */
dff6efc3
CH
5003 if (newsize != oldsize) {
5004 inode_inc_iversion(inode);
5005 if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
5006 inode->i_ctime = inode->i_mtime =
c2050a45 5007 current_time(inode);
dff6efc3 5008 }
3972f260 5009
a41ad394 5010 if (newsize > oldsize) {
9ea24bbe 5011 /*
ea14b57f 5012 * Don't do an expanding truncate while snapshotting is ongoing.
9ea24bbe
FM
5013 * This is to ensure the snapshot captures a fully consistent
5014 * state of this file - if the snapshot captures this expanding
5015 * truncation, it must capture all writes that happened before
5016 * this truncation.
5017 */
0bc19f90 5018 btrfs_wait_for_snapshot_creation(root);
a41ad394 5019 ret = btrfs_cont_expand(inode, oldsize, newsize);
9ea24bbe 5020 if (ret) {
ea14b57f 5021 btrfs_end_write_no_snapshotting(root);
8082510e 5022 return ret;
9ea24bbe 5023 }
8082510e 5024
f4a2f4c5 5025 trans = btrfs_start_transaction(root, 1);
9ea24bbe 5026 if (IS_ERR(trans)) {
ea14b57f 5027 btrfs_end_write_no_snapshotting(root);
f4a2f4c5 5028 return PTR_ERR(trans);
9ea24bbe 5029 }
f4a2f4c5
MX
5030
5031 i_size_write(inode, newsize);
5032 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
27772b68 5033 pagecache_isize_extended(inode, oldsize, newsize);
f4a2f4c5 5034 ret = btrfs_update_inode(trans, root, inode);
ea14b57f 5035 btrfs_end_write_no_snapshotting(root);
3a45bb20 5036 btrfs_end_transaction(trans);
a41ad394 5037 } else {
8082510e 5038
a41ad394
JB
5039 /*
5040 * We're truncating a file that used to have good data down to
5041 * zero. Make sure it gets into the ordered flush list so that
5042 * any new writes get down to disk quickly.
5043 */
5044 if (newsize == 0)
72ac3c0d
JB
5045 set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
5046 &BTRFS_I(inode)->runtime_flags);
8082510e 5047
f3fe820c
JB
5048 /*
5049 * 1 for the orphan item we're going to add
5050 * 1 for the orphan item deletion.
5051 */
5052 trans = btrfs_start_transaction(root, 2);
5053 if (IS_ERR(trans))
5054 return PTR_ERR(trans);
5055
5056 /*
5057 * We need to do this in case we fail at _any_ point during the
5058 * actual truncate. Once we do the truncate_setsize we could
5059 * invalidate pages which forces any outstanding ordered io to
5060 * be instantly completed which will give us extents that need
5061 * to be truncated. If we fail to get an orphan inode down we
5062 * could have left over extents that were never meant to live,
01327610 5063 * so we need to guarantee from this point on that everything
f3fe820c
JB
5064 * will be consistent.
5065 */
73f2e545 5066 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
3a45bb20 5067 btrfs_end_transaction(trans);
f3fe820c
JB
5068 if (ret)
5069 return ret;
5070
a41ad394
JB
5071 /* we don't support swapfiles, so vmtruncate shouldn't fail */
5072 truncate_setsize(inode, newsize);
2e60a51e
MX
5073
5074 /* Disable nonlocked read DIO to avoid the end less truncate */
abcefb1e 5075 btrfs_inode_block_unlocked_dio(BTRFS_I(inode));
2e60a51e 5076 inode_dio_wait(inode);
0b581701 5077 btrfs_inode_resume_unlocked_dio(BTRFS_I(inode));
2e60a51e 5078
a41ad394 5079 ret = btrfs_truncate(inode);
7f4f6e0a
JB
5080 if (ret && inode->i_nlink) {
5081 int err;
5082
19fd2df5
LB
5083 /* To get a stable disk_i_size */
5084 err = btrfs_wait_ordered_range(inode, 0, (u64)-1);
5085 if (err) {
3d6ae7bb 5086 btrfs_orphan_del(NULL, BTRFS_I(inode));
19fd2df5
LB
5087 return err;
5088 }
5089
7f4f6e0a
JB
5090 /*
5091 * failed to truncate, disk_i_size is only adjusted down
5092 * as we remove extents, so it should represent the true
5093 * size of the inode, so reset the in memory size and
5094 * delete our orphan entry.
5095 */
5096 trans = btrfs_join_transaction(root);
5097 if (IS_ERR(trans)) {
3d6ae7bb 5098 btrfs_orphan_del(NULL, BTRFS_I(inode));
7f4f6e0a
JB
5099 return ret;
5100 }
5101 i_size_write(inode, BTRFS_I(inode)->disk_i_size);
3d6ae7bb 5102 err = btrfs_orphan_del(trans, BTRFS_I(inode));
7f4f6e0a 5103 if (err)
66642832 5104 btrfs_abort_transaction(trans, err);
3a45bb20 5105 btrfs_end_transaction(trans);
7f4f6e0a 5106 }
8082510e
YZ
5107 }
5108
a41ad394 5109 return ret;
8082510e
YZ
5110}
5111
9036c102
YZ
5112static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
5113{
2b0143b5 5114 struct inode *inode = d_inode(dentry);
b83cc969 5115 struct btrfs_root *root = BTRFS_I(inode)->root;
9036c102 5116 int err;
39279cc3 5117
b83cc969
LZ
5118 if (btrfs_root_readonly(root))
5119 return -EROFS;
5120
31051c85 5121 err = setattr_prepare(dentry, attr);
9036c102
YZ
5122 if (err)
5123 return err;
2bf5a725 5124
5a3f23d5 5125 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3972f260 5126 err = btrfs_setsize(inode, attr);
8082510e
YZ
5127 if (err)
5128 return err;
39279cc3 5129 }
9036c102 5130
1025774c
CH
5131 if (attr->ia_valid) {
5132 setattr_copy(inode, attr);
0c4d2d95 5133 inode_inc_iversion(inode);
22c44fe6 5134 err = btrfs_dirty_inode(inode);
1025774c 5135
22c44fe6 5136 if (!err && attr->ia_valid & ATTR_MODE)
996a710d 5137 err = posix_acl_chmod(inode, inode->i_mode);
1025774c 5138 }
33268eaf 5139
39279cc3
CM
5140 return err;
5141}
61295eb8 5142
131e404a
FDBM
5143/*
5144 * While truncating the inode pages during eviction, we get the VFS calling
5145 * btrfs_invalidatepage() against each page of the inode. This is slow because
5146 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5147 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5148 * extent_state structures over and over, wasting lots of time.
5149 *
5150 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5151 * those expensive operations on a per page basis and do only the ordered io
5152 * finishing, while we release here the extent_map and extent_state structures,
5153 * without the excessive merging and splitting.
5154 */
5155static void evict_inode_truncate_pages(struct inode *inode)
5156{
5157 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5158 struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5159 struct rb_node *node;
5160
5161 ASSERT(inode->i_state & I_FREEING);
91b0abe3 5162 truncate_inode_pages_final(&inode->i_data);
131e404a
FDBM
5163
5164 write_lock(&map_tree->lock);
5165 while (!RB_EMPTY_ROOT(&map_tree->map)) {
5166 struct extent_map *em;
5167
5168 node = rb_first(&map_tree->map);
5169 em = rb_entry(node, struct extent_map, rb_node);
180589ef
WS
5170 clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5171 clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
131e404a
FDBM
5172 remove_extent_mapping(map_tree, em);
5173 free_extent_map(em);
7064dd5c
FM
5174 if (need_resched()) {
5175 write_unlock(&map_tree->lock);
5176 cond_resched();
5177 write_lock(&map_tree->lock);
5178 }
131e404a
FDBM
5179 }
5180 write_unlock(&map_tree->lock);
5181
6ca07097
FM
5182 /*
5183 * Keep looping until we have no more ranges in the io tree.
5184 * We can have ongoing bios started by readpages (called from readahead)
9c6429d9
FM
5185 * that have their endio callback (extent_io.c:end_bio_extent_readpage)
5186 * still in progress (unlocked the pages in the bio but did not yet
5187 * unlocked the ranges in the io tree). Therefore this means some
6ca07097
FM
5188 * ranges can still be locked and eviction started because before
5189 * submitting those bios, which are executed by a separate task (work
5190 * queue kthread), inode references (inode->i_count) were not taken
5191 * (which would be dropped in the end io callback of each bio).
5192 * Therefore here we effectively end up waiting for those bios and
5193 * anyone else holding locked ranges without having bumped the inode's
5194 * reference count - if we don't do it, when they access the inode's
5195 * io_tree to unlock a range it may be too late, leading to an
5196 * use-after-free issue.
5197 */
131e404a
FDBM
5198 spin_lock(&io_tree->lock);
5199 while (!RB_EMPTY_ROOT(&io_tree->state)) {
5200 struct extent_state *state;
5201 struct extent_state *cached_state = NULL;
6ca07097
FM
5202 u64 start;
5203 u64 end;
131e404a
FDBM
5204
5205 node = rb_first(&io_tree->state);
5206 state = rb_entry(node, struct extent_state, rb_node);
6ca07097
FM
5207 start = state->start;
5208 end = state->end;
131e404a
FDBM
5209 spin_unlock(&io_tree->lock);
5210
ff13db41 5211 lock_extent_bits(io_tree, start, end, &cached_state);
b9d0b389
QW
5212
5213 /*
5214 * If still has DELALLOC flag, the extent didn't reach disk,
5215 * and its reserved space won't be freed by delayed_ref.
5216 * So we need to free its reserved space here.
5217 * (Refer to comment in btrfs_invalidatepage, case 2)
5218 *
5219 * Note, end is the bytenr of last byte, so we need + 1 here.
5220 */
5221 if (state->state & EXTENT_DELALLOC)
bc42bda2 5222 btrfs_qgroup_free_data(inode, NULL, start, end - start + 1);
b9d0b389 5223
6ca07097 5224 clear_extent_bit(io_tree, start, end,
131e404a
FDBM
5225 EXTENT_LOCKED | EXTENT_DIRTY |
5226 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5227 EXTENT_DEFRAG, 1, 1,
5228 &cached_state, GFP_NOFS);
131e404a 5229
7064dd5c 5230 cond_resched();
131e404a
FDBM
5231 spin_lock(&io_tree->lock);
5232 }
5233 spin_unlock(&io_tree->lock);
5234}
5235
bd555975 5236void btrfs_evict_inode(struct inode *inode)
39279cc3 5237{
0b246afa 5238 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
5239 struct btrfs_trans_handle *trans;
5240 struct btrfs_root *root = BTRFS_I(inode)->root;
726c35fa 5241 struct btrfs_block_rsv *rsv, *global_rsv;
3bce876f 5242 int steal_from_global = 0;
3d48d981 5243 u64 min_size;
39279cc3
CM
5244 int ret;
5245
1abe9b8a 5246 trace_btrfs_inode_evict(inode);
5247
3d48d981
NB
5248 if (!root) {
5249 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
5250 return;
5251 }
5252
0b246afa 5253 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
3d48d981 5254
131e404a
FDBM
5255 evict_inode_truncate_pages(inode);
5256
69e9c6c6
SB
5257 if (inode->i_nlink &&
5258 ((btrfs_root_refs(&root->root_item) != 0 &&
5259 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
70ddc553 5260 btrfs_is_free_space_inode(BTRFS_I(inode))))
bd555975
AV
5261 goto no_delete;
5262
39279cc3 5263 if (is_bad_inode(inode)) {
3d6ae7bb 5264 btrfs_orphan_del(NULL, BTRFS_I(inode));
39279cc3
CM
5265 goto no_delete;
5266 }
bd555975 5267 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
a30e577c
JM
5268 if (!special_file(inode->i_mode))
5269 btrfs_wait_ordered_range(inode, 0, (u64)-1);
5f39d397 5270
7ab7956e 5271 btrfs_free_io_failure_record(BTRFS_I(inode), 0, (u64)-1);
f612496b 5272
0b246afa 5273 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) {
6bf02314 5274 BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8a35d95f 5275 &BTRFS_I(inode)->runtime_flags));
c71bf099
YZ
5276 goto no_delete;
5277 }
5278
76dda93c 5279 if (inode->i_nlink > 0) {
69e9c6c6
SB
5280 BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5281 root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
76dda93c
YZ
5282 goto no_delete;
5283 }
5284
aa79021f 5285 ret = btrfs_commit_inode_delayed_inode(BTRFS_I(inode));
0e8c36a9 5286 if (ret) {
3d6ae7bb 5287 btrfs_orphan_del(NULL, BTRFS_I(inode));
0e8c36a9
MX
5288 goto no_delete;
5289 }
5290
2ff7e61e 5291 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
4289a667 5292 if (!rsv) {
3d6ae7bb 5293 btrfs_orphan_del(NULL, BTRFS_I(inode));
4289a667
JB
5294 goto no_delete;
5295 }
4a338542 5296 rsv->size = min_size;
ca7e70f5 5297 rsv->failfast = 1;
0b246afa 5298 global_rsv = &fs_info->global_block_rsv;
4289a667 5299
6ef06d27 5300 btrfs_i_size_write(BTRFS_I(inode), 0);
5f39d397 5301
4289a667 5302 /*
8407aa46
MX
5303 * This is a bit simpler than btrfs_truncate since we've already
5304 * reserved our space for our orphan item in the unlink, so we just
5305 * need to reserve some slack space in case we add bytes and update
5306 * inode item when doing the truncate.
4289a667 5307 */
8082510e 5308 while (1) {
08e007d2
MX
5309 ret = btrfs_block_rsv_refill(root, rsv, min_size,
5310 BTRFS_RESERVE_FLUSH_LIMIT);
726c35fa
JB
5311
5312 /*
5313 * Try and steal from the global reserve since we will
5314 * likely not use this space anyway, we want to try as
5315 * hard as possible to get this to work.
5316 */
5317 if (ret)
3bce876f
JB
5318 steal_from_global++;
5319 else
5320 steal_from_global = 0;
5321 ret = 0;
d68fc57b 5322
3bce876f
JB
5323 /*
5324 * steal_from_global == 0: we reserved stuff, hooray!
5325 * steal_from_global == 1: we didn't reserve stuff, boo!
5326 * steal_from_global == 2: we've committed, still not a lot of
5327 * room but maybe we'll have room in the global reserve this
5328 * time.
5329 * steal_from_global == 3: abandon all hope!
5330 */
5331 if (steal_from_global > 2) {
0b246afa
JM
5332 btrfs_warn(fs_info,
5333 "Could not get space for a delete, will truncate on mount %d",
5334 ret);
3d6ae7bb 5335 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5336 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5337 goto no_delete;
d68fc57b 5338 }
7b128766 5339
0e8c36a9 5340 trans = btrfs_join_transaction(root);
4289a667 5341 if (IS_ERR(trans)) {
3d6ae7bb 5342 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5343 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5344 goto no_delete;
d68fc57b 5345 }
7b128766 5346
3bce876f 5347 /*
01327610 5348 * We can't just steal from the global reserve, we need to make
3bce876f
JB
5349 * sure there is room to do it, if not we need to commit and try
5350 * again.
5351 */
5352 if (steal_from_global) {
2ff7e61e 5353 if (!btrfs_check_space_for_delayed_refs(trans, fs_info))
3bce876f 5354 ret = btrfs_block_rsv_migrate(global_rsv, rsv,
25d609f8 5355 min_size, 0);
3bce876f
JB
5356 else
5357 ret = -ENOSPC;
5358 }
5359
5360 /*
5361 * Couldn't steal from the global reserve, we have too much
5362 * pending stuff built up, commit the transaction and try it
5363 * again.
5364 */
5365 if (ret) {
3a45bb20 5366 ret = btrfs_commit_transaction(trans);
3bce876f 5367 if (ret) {
3d6ae7bb 5368 btrfs_orphan_del(NULL, BTRFS_I(inode));
2ff7e61e 5369 btrfs_free_block_rsv(fs_info, rsv);
3bce876f
JB
5370 goto no_delete;
5371 }
5372 continue;
5373 } else {
5374 steal_from_global = 0;
5375 }
5376
4289a667
JB
5377 trans->block_rsv = rsv;
5378
d68fc57b 5379 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
28ed1345 5380 if (ret != -ENOSPC && ret != -EAGAIN)
8082510e 5381 break;
85e21bac 5382
0b246afa 5383 trans->block_rsv = &fs_info->trans_block_rsv;
3a45bb20 5384 btrfs_end_transaction(trans);
8082510e 5385 trans = NULL;
2ff7e61e 5386 btrfs_btree_balance_dirty(fs_info);
8082510e 5387 }
5f39d397 5388
2ff7e61e 5389 btrfs_free_block_rsv(fs_info, rsv);
4289a667 5390
4ef31a45
JB
5391 /*
5392 * Errors here aren't a big deal, it just means we leave orphan items
5393 * in the tree. They will be cleaned up on the next mount.
5394 */
8082510e 5395 if (ret == 0) {
4289a667 5396 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 5397 btrfs_orphan_del(trans, BTRFS_I(inode));
4ef31a45 5398 } else {
3d6ae7bb 5399 btrfs_orphan_del(NULL, BTRFS_I(inode));
8082510e 5400 }
54aa1f4d 5401
0b246afa
JM
5402 trans->block_rsv = &fs_info->trans_block_rsv;
5403 if (!(root == fs_info->tree_root ||
581bb050 5404 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4a0cc7ca 5405 btrfs_return_ino(root, btrfs_ino(BTRFS_I(inode)));
581bb050 5406
3a45bb20 5407 btrfs_end_transaction(trans);
2ff7e61e 5408 btrfs_btree_balance_dirty(fs_info);
39279cc3 5409no_delete:
f48d1cf5 5410 btrfs_remove_delayed_node(BTRFS_I(inode));
dbd5768f 5411 clear_inode(inode);
39279cc3
CM
5412}
5413
5414/*
5415 * this returns the key found in the dir entry in the location pointer.
5416 * If no dir entries were found, location->objectid is 0.
5417 */
5418static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5419 struct btrfs_key *location)
5420{
5421 const char *name = dentry->d_name.name;
5422 int namelen = dentry->d_name.len;
5423 struct btrfs_dir_item *di;
5424 struct btrfs_path *path;
5425 struct btrfs_root *root = BTRFS_I(dir)->root;
0d9f7f3e 5426 int ret = 0;
39279cc3
CM
5427
5428 path = btrfs_alloc_path();
d8926bb3
MF
5429 if (!path)
5430 return -ENOMEM;
3954401f 5431
f85b7379
DS
5432 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(BTRFS_I(dir)),
5433 name, namelen, 0);
0d9f7f3e
Y
5434 if (IS_ERR(di))
5435 ret = PTR_ERR(di);
d397712b 5436
c704005d 5437 if (IS_ERR_OR_NULL(di))
3954401f 5438 goto out_err;
d397712b 5439
5f39d397 5440 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
39279cc3 5441out:
39279cc3
CM
5442 btrfs_free_path(path);
5443 return ret;
3954401f
CM
5444out_err:
5445 location->objectid = 0;
5446 goto out;
39279cc3
CM
5447}
5448
5449/*
5450 * when we hit a tree root in a directory, the btrfs part of the inode
5451 * needs to be changed to reflect the root directory of the tree root. This
5452 * is kind of like crossing a mount point.
5453 */
2ff7e61e 5454static int fixup_tree_root_location(struct btrfs_fs_info *fs_info,
4df27c4d
YZ
5455 struct inode *dir,
5456 struct dentry *dentry,
5457 struct btrfs_key *location,
5458 struct btrfs_root **sub_root)
39279cc3 5459{
4df27c4d
YZ
5460 struct btrfs_path *path;
5461 struct btrfs_root *new_root;
5462 struct btrfs_root_ref *ref;
5463 struct extent_buffer *leaf;
1d4c08e0 5464 struct btrfs_key key;
4df27c4d
YZ
5465 int ret;
5466 int err = 0;
39279cc3 5467
4df27c4d
YZ
5468 path = btrfs_alloc_path();
5469 if (!path) {
5470 err = -ENOMEM;
5471 goto out;
5472 }
39279cc3 5473
4df27c4d 5474 err = -ENOENT;
1d4c08e0
DS
5475 key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5476 key.type = BTRFS_ROOT_REF_KEY;
5477 key.offset = location->objectid;
5478
0b246afa 5479 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
4df27c4d
YZ
5480 if (ret) {
5481 if (ret < 0)
5482 err = ret;
5483 goto out;
5484 }
39279cc3 5485
4df27c4d
YZ
5486 leaf = path->nodes[0];
5487 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4a0cc7ca 5488 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(BTRFS_I(dir)) ||
4df27c4d
YZ
5489 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5490 goto out;
39279cc3 5491
4df27c4d
YZ
5492 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5493 (unsigned long)(ref + 1),
5494 dentry->d_name.len);
5495 if (ret)
5496 goto out;
5497
b3b4aa74 5498 btrfs_release_path(path);
4df27c4d 5499
0b246afa 5500 new_root = btrfs_read_fs_root_no_name(fs_info, location);
4df27c4d
YZ
5501 if (IS_ERR(new_root)) {
5502 err = PTR_ERR(new_root);
5503 goto out;
5504 }
5505
4df27c4d
YZ
5506 *sub_root = new_root;
5507 location->objectid = btrfs_root_dirid(&new_root->root_item);
5508 location->type = BTRFS_INODE_ITEM_KEY;
5509 location->offset = 0;
5510 err = 0;
5511out:
5512 btrfs_free_path(path);
5513 return err;
39279cc3
CM
5514}
5515
5d4f98a2
YZ
5516static void inode_tree_add(struct inode *inode)
5517{
5518 struct btrfs_root *root = BTRFS_I(inode)->root;
5519 struct btrfs_inode *entry;
03e860bd
FNP
5520 struct rb_node **p;
5521 struct rb_node *parent;
cef21937 5522 struct rb_node *new = &BTRFS_I(inode)->rb_node;
4a0cc7ca 5523 u64 ino = btrfs_ino(BTRFS_I(inode));
5d4f98a2 5524
1d3382cb 5525 if (inode_unhashed(inode))
76dda93c 5526 return;
e1409cef 5527 parent = NULL;
5d4f98a2 5528 spin_lock(&root->inode_lock);
e1409cef 5529 p = &root->inode_tree.rb_node;
5d4f98a2
YZ
5530 while (*p) {
5531 parent = *p;
5532 entry = rb_entry(parent, struct btrfs_inode, rb_node);
5533
4a0cc7ca 5534 if (ino < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5535 p = &parent->rb_left;
4a0cc7ca 5536 else if (ino > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
03e860bd 5537 p = &parent->rb_right;
5d4f98a2
YZ
5538 else {
5539 WARN_ON(!(entry->vfs_inode.i_state &
a4ffdde6 5540 (I_WILL_FREE | I_FREEING)));
cef21937 5541 rb_replace_node(parent, new, &root->inode_tree);
03e860bd
FNP
5542 RB_CLEAR_NODE(parent);
5543 spin_unlock(&root->inode_lock);
cef21937 5544 return;
5d4f98a2
YZ
5545 }
5546 }
cef21937
FDBM
5547 rb_link_node(new, parent, p);
5548 rb_insert_color(new, &root->inode_tree);
5d4f98a2
YZ
5549 spin_unlock(&root->inode_lock);
5550}
5551
5552static void inode_tree_del(struct inode *inode)
5553{
0b246afa 5554 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5d4f98a2 5555 struct btrfs_root *root = BTRFS_I(inode)->root;
76dda93c 5556 int empty = 0;
5d4f98a2 5557
03e860bd 5558 spin_lock(&root->inode_lock);
5d4f98a2 5559 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5d4f98a2 5560 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5d4f98a2 5561 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
76dda93c 5562 empty = RB_EMPTY_ROOT(&root->inode_tree);
5d4f98a2 5563 }
03e860bd 5564 spin_unlock(&root->inode_lock);
76dda93c 5565
69e9c6c6 5566 if (empty && btrfs_root_refs(&root->root_item) == 0) {
0b246afa 5567 synchronize_srcu(&fs_info->subvol_srcu);
76dda93c
YZ
5568 spin_lock(&root->inode_lock);
5569 empty = RB_EMPTY_ROOT(&root->inode_tree);
5570 spin_unlock(&root->inode_lock);
5571 if (empty)
5572 btrfs_add_dead_root(root);
5573 }
5574}
5575
143bede5 5576void btrfs_invalidate_inodes(struct btrfs_root *root)
76dda93c 5577{
0b246afa 5578 struct btrfs_fs_info *fs_info = root->fs_info;
76dda93c
YZ
5579 struct rb_node *node;
5580 struct rb_node *prev;
5581 struct btrfs_inode *entry;
5582 struct inode *inode;
5583 u64 objectid = 0;
5584
0b246afa 5585 if (!test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
7813b3db 5586 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
76dda93c
YZ
5587
5588 spin_lock(&root->inode_lock);
5589again:
5590 node = root->inode_tree.rb_node;
5591 prev = NULL;
5592 while (node) {
5593 prev = node;
5594 entry = rb_entry(node, struct btrfs_inode, rb_node);
5595
4a0cc7ca 5596 if (objectid < btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c 5597 node = node->rb_left;
4a0cc7ca 5598 else if (objectid > btrfs_ino(BTRFS_I(&entry->vfs_inode)))
76dda93c
YZ
5599 node = node->rb_right;
5600 else
5601 break;
5602 }
5603 if (!node) {
5604 while (prev) {
5605 entry = rb_entry(prev, struct btrfs_inode, rb_node);
4a0cc7ca 5606 if (objectid <= btrfs_ino(BTRFS_I(&entry->vfs_inode))) {
76dda93c
YZ
5607 node = prev;
5608 break;
5609 }
5610 prev = rb_next(prev);
5611 }
5612 }
5613 while (node) {
5614 entry = rb_entry(node, struct btrfs_inode, rb_node);
4a0cc7ca 5615 objectid = btrfs_ino(BTRFS_I(&entry->vfs_inode)) + 1;
76dda93c
YZ
5616 inode = igrab(&entry->vfs_inode);
5617 if (inode) {
5618 spin_unlock(&root->inode_lock);
5619 if (atomic_read(&inode->i_count) > 1)
5620 d_prune_aliases(inode);
5621 /*
45321ac5 5622 * btrfs_drop_inode will have it removed from
76dda93c
YZ
5623 * the inode cache when its usage count
5624 * hits zero.
5625 */
5626 iput(inode);
5627 cond_resched();
5628 spin_lock(&root->inode_lock);
5629 goto again;
5630 }
5631
5632 if (cond_resched_lock(&root->inode_lock))
5633 goto again;
5634
5635 node = rb_next(node);
5636 }
5637 spin_unlock(&root->inode_lock);
5d4f98a2
YZ
5638}
5639
e02119d5
CM
5640static int btrfs_init_locked_inode(struct inode *inode, void *p)
5641{
5642 struct btrfs_iget_args *args = p;
90d3e592
CM
5643 inode->i_ino = args->location->objectid;
5644 memcpy(&BTRFS_I(inode)->location, args->location,
5645 sizeof(*args->location));
e02119d5 5646 BTRFS_I(inode)->root = args->root;
39279cc3
CM
5647 return 0;
5648}
5649
5650static int btrfs_find_actor(struct inode *inode, void *opaque)
5651{
5652 struct btrfs_iget_args *args = opaque;
90d3e592 5653 return args->location->objectid == BTRFS_I(inode)->location.objectid &&
d397712b 5654 args->root == BTRFS_I(inode)->root;
39279cc3
CM
5655}
5656
5d4f98a2 5657static struct inode *btrfs_iget_locked(struct super_block *s,
90d3e592 5658 struct btrfs_key *location,
5d4f98a2 5659 struct btrfs_root *root)
39279cc3
CM
5660{
5661 struct inode *inode;
5662 struct btrfs_iget_args args;
90d3e592 5663 unsigned long hashval = btrfs_inode_hash(location->objectid, root);
778ba82b 5664
90d3e592 5665 args.location = location;
39279cc3
CM
5666 args.root = root;
5667
778ba82b 5668 inode = iget5_locked(s, hashval, btrfs_find_actor,
39279cc3
CM
5669 btrfs_init_locked_inode,
5670 (void *)&args);
5671 return inode;
5672}
5673
1a54ef8c
BR
5674/* Get an inode object given its location and corresponding root.
5675 * Returns in *is_new if the inode was read from disk
5676 */
5677struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
73f73415 5678 struct btrfs_root *root, int *new)
1a54ef8c
BR
5679{
5680 struct inode *inode;
5681
90d3e592 5682 inode = btrfs_iget_locked(s, location, root);
1a54ef8c 5683 if (!inode)
5d4f98a2 5684 return ERR_PTR(-ENOMEM);
1a54ef8c
BR
5685
5686 if (inode->i_state & I_NEW) {
67710892
FM
5687 int ret;
5688
5689 ret = btrfs_read_locked_inode(inode);
1748f843
MF
5690 if (!is_bad_inode(inode)) {
5691 inode_tree_add(inode);
5692 unlock_new_inode(inode);
5693 if (new)
5694 *new = 1;
5695 } else {
e0b6d65b
ST
5696 unlock_new_inode(inode);
5697 iput(inode);
67710892
FM
5698 ASSERT(ret < 0);
5699 inode = ERR_PTR(ret < 0 ? ret : -ESTALE);
1748f843
MF
5700 }
5701 }
5702
1a54ef8c
BR
5703 return inode;
5704}
5705
4df27c4d
YZ
5706static struct inode *new_simple_dir(struct super_block *s,
5707 struct btrfs_key *key,
5708 struct btrfs_root *root)
5709{
5710 struct inode *inode = new_inode(s);
5711
5712 if (!inode)
5713 return ERR_PTR(-ENOMEM);
5714
4df27c4d
YZ
5715 BTRFS_I(inode)->root = root;
5716 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
72ac3c0d 5717 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
4df27c4d
YZ
5718
5719 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
848cce0d 5720 inode->i_op = &btrfs_dir_ro_inode_operations;
1fdf4194 5721 inode->i_opflags &= ~IOP_XATTR;
4df27c4d
YZ
5722 inode->i_fop = &simple_dir_operations;
5723 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
c2050a45 5724 inode->i_mtime = current_time(inode);
9cc97d64 5725 inode->i_atime = inode->i_mtime;
5726 inode->i_ctime = inode->i_mtime;
5727 BTRFS_I(inode)->i_otime = inode->i_mtime;
4df27c4d
YZ
5728
5729 return inode;
5730}
5731
3de4586c 5732struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
39279cc3 5733{
0b246afa 5734 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
d397712b 5735 struct inode *inode;
4df27c4d 5736 struct btrfs_root *root = BTRFS_I(dir)->root;
39279cc3
CM
5737 struct btrfs_root *sub_root = root;
5738 struct btrfs_key location;
76dda93c 5739 int index;
b4aff1f8 5740 int ret = 0;
39279cc3
CM
5741
5742 if (dentry->d_name.len > BTRFS_NAME_LEN)
5743 return ERR_PTR(-ENAMETOOLONG);
5f39d397 5744
39e3c955 5745 ret = btrfs_inode_by_name(dir, dentry, &location);
39279cc3
CM
5746 if (ret < 0)
5747 return ERR_PTR(ret);
5f39d397 5748
4df27c4d 5749 if (location.objectid == 0)
5662344b 5750 return ERR_PTR(-ENOENT);
4df27c4d
YZ
5751
5752 if (location.type == BTRFS_INODE_ITEM_KEY) {
73f73415 5753 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4df27c4d
YZ
5754 return inode;
5755 }
5756
5757 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5758
0b246afa 5759 index = srcu_read_lock(&fs_info->subvol_srcu);
2ff7e61e 5760 ret = fixup_tree_root_location(fs_info, dir, dentry,
4df27c4d
YZ
5761 &location, &sub_root);
5762 if (ret < 0) {
5763 if (ret != -ENOENT)
5764 inode = ERR_PTR(ret);
5765 else
5766 inode = new_simple_dir(dir->i_sb, &location, sub_root);
5767 } else {
73f73415 5768 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
39279cc3 5769 }
0b246afa 5770 srcu_read_unlock(&fs_info->subvol_srcu, index);
76dda93c 5771
34d19bad 5772 if (!IS_ERR(inode) && root != sub_root) {
0b246afa 5773 down_read(&fs_info->cleanup_work_sem);
bc98a42c 5774 if (!sb_rdonly(inode->i_sb))
66b4ffd1 5775 ret = btrfs_orphan_cleanup(sub_root);
0b246afa 5776 up_read(&fs_info->cleanup_work_sem);
01cd3367
JB
5777 if (ret) {
5778 iput(inode);
66b4ffd1 5779 inode = ERR_PTR(ret);
01cd3367 5780 }
c71bf099
YZ
5781 }
5782
3de4586c
CM
5783 return inode;
5784}
5785
fe15ce44 5786static int btrfs_dentry_delete(const struct dentry *dentry)
76dda93c
YZ
5787{
5788 struct btrfs_root *root;
2b0143b5 5789 struct inode *inode = d_inode(dentry);
76dda93c 5790
848cce0d 5791 if (!inode && !IS_ROOT(dentry))
2b0143b5 5792 inode = d_inode(dentry->d_parent);
76dda93c 5793
848cce0d
LZ
5794 if (inode) {
5795 root = BTRFS_I(inode)->root;
efefb143
YZ
5796 if (btrfs_root_refs(&root->root_item) == 0)
5797 return 1;
848cce0d 5798
4a0cc7ca 5799 if (btrfs_ino(BTRFS_I(inode)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
848cce0d 5800 return 1;
efefb143 5801 }
76dda93c
YZ
5802 return 0;
5803}
5804
b4aff1f8
JB
5805static void btrfs_dentry_release(struct dentry *dentry)
5806{
944a4515 5807 kfree(dentry->d_fsdata);
b4aff1f8
JB
5808}
5809
3de4586c 5810static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
00cd8dd3 5811 unsigned int flags)
3de4586c 5812{
5662344b 5813 struct inode *inode;
a66e7cc6 5814
5662344b
TI
5815 inode = btrfs_lookup_dentry(dir, dentry);
5816 if (IS_ERR(inode)) {
5817 if (PTR_ERR(inode) == -ENOENT)
5818 inode = NULL;
5819 else
5820 return ERR_CAST(inode);
5821 }
5822
41d28bca 5823 return d_splice_alias(inode, dentry);
39279cc3
CM
5824}
5825
16cdcec7 5826unsigned char btrfs_filetype_table[] = {
39279cc3
CM
5827 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5828};
5829
23b5ec74
JB
5830/*
5831 * All this infrastructure exists because dir_emit can fault, and we are holding
5832 * the tree lock when doing readdir. For now just allocate a buffer and copy
5833 * our information into that, and then dir_emit from the buffer. This is
5834 * similar to what NFS does, only we don't keep the buffer around in pagecache
5835 * because I'm afraid I'll mess that up. Long term we need to make filldir do
5836 * copy_to_user_inatomic so we don't have to worry about page faulting under the
5837 * tree lock.
5838 */
5839static int btrfs_opendir(struct inode *inode, struct file *file)
5840{
5841 struct btrfs_file_private *private;
5842
5843 private = kzalloc(sizeof(struct btrfs_file_private), GFP_KERNEL);
5844 if (!private)
5845 return -ENOMEM;
5846 private->filldir_buf = kzalloc(PAGE_SIZE, GFP_KERNEL);
5847 if (!private->filldir_buf) {
5848 kfree(private);
5849 return -ENOMEM;
5850 }
5851 file->private_data = private;
5852 return 0;
5853}
5854
5855struct dir_entry {
5856 u64 ino;
5857 u64 offset;
5858 unsigned type;
5859 int name_len;
5860};
5861
5862static int btrfs_filldir(void *addr, int entries, struct dir_context *ctx)
5863{
5864 while (entries--) {
5865 struct dir_entry *entry = addr;
5866 char *name = (char *)(entry + 1);
5867
5868 ctx->pos = entry->offset;
5869 if (!dir_emit(ctx, name, entry->name_len, entry->ino,
5870 entry->type))
5871 return 1;
5872 addr += sizeof(struct dir_entry) + entry->name_len;
5873 ctx->pos++;
5874 }
5875 return 0;
5876}
5877
9cdda8d3 5878static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
39279cc3 5879{
9cdda8d3 5880 struct inode *inode = file_inode(file);
2ff7e61e 5881 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 5882 struct btrfs_root *root = BTRFS_I(inode)->root;
23b5ec74 5883 struct btrfs_file_private *private = file->private_data;
39279cc3
CM
5884 struct btrfs_dir_item *di;
5885 struct btrfs_key key;
5f39d397 5886 struct btrfs_key found_key;
39279cc3 5887 struct btrfs_path *path;
23b5ec74 5888 void *addr;
16cdcec7
MX
5889 struct list_head ins_list;
5890 struct list_head del_list;
39279cc3 5891 int ret;
5f39d397 5892 struct extent_buffer *leaf;
39279cc3 5893 int slot;
5f39d397
CM
5894 char *name_ptr;
5895 int name_len;
23b5ec74
JB
5896 int entries = 0;
5897 int total_len = 0;
02dbfc99 5898 bool put = false;
c2951f32 5899 struct btrfs_key location;
5f39d397 5900
9cdda8d3
AV
5901 if (!dir_emit_dots(file, ctx))
5902 return 0;
5903
49593bfa 5904 path = btrfs_alloc_path();
16cdcec7
MX
5905 if (!path)
5906 return -ENOMEM;
ff5714cc 5907
23b5ec74 5908 addr = private->filldir_buf;
e4058b54 5909 path->reada = READA_FORWARD;
49593bfa 5910
c2951f32
JM
5911 INIT_LIST_HEAD(&ins_list);
5912 INIT_LIST_HEAD(&del_list);
5913 put = btrfs_readdir_get_delayed_items(inode, &ins_list, &del_list);
16cdcec7 5914
23b5ec74 5915again:
c2951f32 5916 key.type = BTRFS_DIR_INDEX_KEY;
9cdda8d3 5917 key.offset = ctx->pos;
4a0cc7ca 5918 key.objectid = btrfs_ino(BTRFS_I(inode));
5f39d397 5919
39279cc3
CM
5920 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5921 if (ret < 0)
5922 goto err;
49593bfa
DW
5923
5924 while (1) {
23b5ec74
JB
5925 struct dir_entry *entry;
5926
5f39d397 5927 leaf = path->nodes[0];
39279cc3 5928 slot = path->slots[0];
b9e03af0
LZ
5929 if (slot >= btrfs_header_nritems(leaf)) {
5930 ret = btrfs_next_leaf(root, path);
5931 if (ret < 0)
5932 goto err;
5933 else if (ret > 0)
5934 break;
5935 continue;
39279cc3 5936 }
3de4586c 5937
5f39d397
CM
5938 btrfs_item_key_to_cpu(leaf, &found_key, slot);
5939
5940 if (found_key.objectid != key.objectid)
39279cc3 5941 break;
c2951f32 5942 if (found_key.type != BTRFS_DIR_INDEX_KEY)
39279cc3 5943 break;
9cdda8d3 5944 if (found_key.offset < ctx->pos)
b9e03af0 5945 goto next;
c2951f32 5946 if (btrfs_should_delete_dir_index(&del_list, found_key.offset))
16cdcec7 5947 goto next;
39279cc3 5948 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
e79a3327 5949 if (verify_dir_item(fs_info, leaf, slot, di))
c2951f32 5950 goto next;
22a94d44 5951
c2951f32 5952 name_len = btrfs_dir_name_len(leaf, di);
23b5ec74
JB
5953 if ((total_len + sizeof(struct dir_entry) + name_len) >=
5954 PAGE_SIZE) {
5955 btrfs_release_path(path);
5956 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5957 if (ret)
5958 goto nopos;
5959 addr = private->filldir_buf;
5960 entries = 0;
5961 total_len = 0;
5962 goto again;
c2951f32 5963 }
23b5ec74
JB
5964
5965 entry = addr;
5966 entry->name_len = name_len;
5967 name_ptr = (char *)(entry + 1);
c2951f32
JM
5968 read_extent_buffer(leaf, name_ptr, (unsigned long)(di + 1),
5969 name_len);
23b5ec74 5970 entry->type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
c2951f32 5971 btrfs_dir_item_key_to_cpu(leaf, di, &location);
23b5ec74
JB
5972 entry->ino = location.objectid;
5973 entry->offset = found_key.offset;
5974 entries++;
5975 addr += sizeof(struct dir_entry) + name_len;
5976 total_len += sizeof(struct dir_entry) + name_len;
b9e03af0
LZ
5977next:
5978 path->slots[0]++;
39279cc3 5979 }
23b5ec74
JB
5980 btrfs_release_path(path);
5981
5982 ret = btrfs_filldir(private->filldir_buf, entries, ctx);
5983 if (ret)
5984 goto nopos;
49593bfa 5985
d2fbb2b5 5986 ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list);
c2951f32 5987 if (ret)
bc4ef759
DS
5988 goto nopos;
5989
db62efbb
ZB
5990 /*
5991 * Stop new entries from being returned after we return the last
5992 * entry.
5993 *
5994 * New directory entries are assigned a strictly increasing
5995 * offset. This means that new entries created during readdir
5996 * are *guaranteed* to be seen in the future by that readdir.
5997 * This has broken buggy programs which operate on names as
5998 * they're returned by readdir. Until we re-use freed offsets
5999 * we have this hack to stop new entries from being returned
6000 * under the assumption that they'll never reach this huge
6001 * offset.
6002 *
6003 * This is being careful not to overflow 32bit loff_t unless the
6004 * last entry requires it because doing so has broken 32bit apps
6005 * in the past.
6006 */
c2951f32
JM
6007 if (ctx->pos >= INT_MAX)
6008 ctx->pos = LLONG_MAX;
6009 else
6010 ctx->pos = INT_MAX;
39279cc3
CM
6011nopos:
6012 ret = 0;
6013err:
02dbfc99
OS
6014 if (put)
6015 btrfs_readdir_put_delayed_items(inode, &ins_list, &del_list);
39279cc3 6016 btrfs_free_path(path);
39279cc3
CM
6017 return ret;
6018}
6019
a9185b41 6020int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
39279cc3
CM
6021{
6022 struct btrfs_root *root = BTRFS_I(inode)->root;
6023 struct btrfs_trans_handle *trans;
6024 int ret = 0;
0af3d00b 6025 bool nolock = false;
39279cc3 6026
72ac3c0d 6027 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
4ca8b41e
CM
6028 return 0;
6029
70ddc553
NB
6030 if (btrfs_fs_closing(root->fs_info) &&
6031 btrfs_is_free_space_inode(BTRFS_I(inode)))
82d5902d 6032 nolock = true;
0af3d00b 6033
a9185b41 6034 if (wbc->sync_mode == WB_SYNC_ALL) {
0af3d00b 6035 if (nolock)
7a7eaa40 6036 trans = btrfs_join_transaction_nolock(root);
0af3d00b 6037 else
7a7eaa40 6038 trans = btrfs_join_transaction(root);
3612b495
TI
6039 if (IS_ERR(trans))
6040 return PTR_ERR(trans);
3a45bb20 6041 ret = btrfs_commit_transaction(trans);
39279cc3
CM
6042 }
6043 return ret;
6044}
6045
6046/*
54aa1f4d 6047 * This is somewhat expensive, updating the tree every time the
39279cc3
CM
6048 * inode changes. But, it is most likely to find the inode in cache.
6049 * FIXME, needs more benchmarking...there are no reasons other than performance
6050 * to keep or drop this code.
6051 */
48a3b636 6052static int btrfs_dirty_inode(struct inode *inode)
39279cc3 6053{
2ff7e61e 6054 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3
CM
6055 struct btrfs_root *root = BTRFS_I(inode)->root;
6056 struct btrfs_trans_handle *trans;
8929ecfa
YZ
6057 int ret;
6058
72ac3c0d 6059 if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
22c44fe6 6060 return 0;
39279cc3 6061
7a7eaa40 6062 trans = btrfs_join_transaction(root);
22c44fe6
JB
6063 if (IS_ERR(trans))
6064 return PTR_ERR(trans);
8929ecfa
YZ
6065
6066 ret = btrfs_update_inode(trans, root, inode);
94b60442
CM
6067 if (ret && ret == -ENOSPC) {
6068 /* whoops, lets try again with the full transaction */
3a45bb20 6069 btrfs_end_transaction(trans);
94b60442 6070 trans = btrfs_start_transaction(root, 1);
22c44fe6
JB
6071 if (IS_ERR(trans))
6072 return PTR_ERR(trans);
8929ecfa 6073
94b60442 6074 ret = btrfs_update_inode(trans, root, inode);
94b60442 6075 }
3a45bb20 6076 btrfs_end_transaction(trans);
16cdcec7 6077 if (BTRFS_I(inode)->delayed_node)
2ff7e61e 6078 btrfs_balance_delayed_items(fs_info);
22c44fe6
JB
6079
6080 return ret;
6081}
6082
6083/*
6084 * This is a copy of file_update_time. We need this so we can return error on
6085 * ENOSPC for updating the inode in the case of file write and mmap writes.
6086 */
e41f941a
JB
6087static int btrfs_update_time(struct inode *inode, struct timespec *now,
6088 int flags)
22c44fe6 6089{
2bc55652
AB
6090 struct btrfs_root *root = BTRFS_I(inode)->root;
6091
6092 if (btrfs_root_readonly(root))
6093 return -EROFS;
6094
e41f941a 6095 if (flags & S_VERSION)
22c44fe6 6096 inode_inc_iversion(inode);
e41f941a
JB
6097 if (flags & S_CTIME)
6098 inode->i_ctime = *now;
6099 if (flags & S_MTIME)
6100 inode->i_mtime = *now;
6101 if (flags & S_ATIME)
6102 inode->i_atime = *now;
6103 return btrfs_dirty_inode(inode);
39279cc3
CM
6104}
6105
d352ac68
CM
6106/*
6107 * find the highest existing sequence number in a directory
6108 * and then set the in-memory index_cnt variable to reflect
6109 * free sequence numbers
6110 */
4c570655 6111static int btrfs_set_inode_index_count(struct btrfs_inode *inode)
aec7477b 6112{
4c570655 6113 struct btrfs_root *root = inode->root;
aec7477b
JB
6114 struct btrfs_key key, found_key;
6115 struct btrfs_path *path;
6116 struct extent_buffer *leaf;
6117 int ret;
6118
4c570655 6119 key.objectid = btrfs_ino(inode);
962a298f 6120 key.type = BTRFS_DIR_INDEX_KEY;
aec7477b
JB
6121 key.offset = (u64)-1;
6122
6123 path = btrfs_alloc_path();
6124 if (!path)
6125 return -ENOMEM;
6126
6127 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6128 if (ret < 0)
6129 goto out;
6130 /* FIXME: we should be able to handle this */
6131 if (ret == 0)
6132 goto out;
6133 ret = 0;
6134
6135 /*
6136 * MAGIC NUMBER EXPLANATION:
6137 * since we search a directory based on f_pos we have to start at 2
6138 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
6139 * else has to start at 2
6140 */
6141 if (path->slots[0] == 0) {
4c570655 6142 inode->index_cnt = 2;
aec7477b
JB
6143 goto out;
6144 }
6145
6146 path->slots[0]--;
6147
6148 leaf = path->nodes[0];
6149 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6150
4c570655 6151 if (found_key.objectid != btrfs_ino(inode) ||
962a298f 6152 found_key.type != BTRFS_DIR_INDEX_KEY) {
4c570655 6153 inode->index_cnt = 2;
aec7477b
JB
6154 goto out;
6155 }
6156
4c570655 6157 inode->index_cnt = found_key.offset + 1;
aec7477b
JB
6158out:
6159 btrfs_free_path(path);
6160 return ret;
6161}
6162
d352ac68
CM
6163/*
6164 * helper to find a free sequence number in a given directory. This current
6165 * code is very simple, later versions will do smarter things in the btree
6166 */
877574e2 6167int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index)
aec7477b
JB
6168{
6169 int ret = 0;
6170
877574e2
NB
6171 if (dir->index_cnt == (u64)-1) {
6172 ret = btrfs_inode_delayed_dir_index_count(dir);
16cdcec7
MX
6173 if (ret) {
6174 ret = btrfs_set_inode_index_count(dir);
6175 if (ret)
6176 return ret;
6177 }
aec7477b
JB
6178 }
6179
877574e2
NB
6180 *index = dir->index_cnt;
6181 dir->index_cnt++;
aec7477b
JB
6182
6183 return ret;
6184}
6185
b0d5d10f
CM
6186static int btrfs_insert_inode_locked(struct inode *inode)
6187{
6188 struct btrfs_iget_args args;
6189 args.location = &BTRFS_I(inode)->location;
6190 args.root = BTRFS_I(inode)->root;
6191
6192 return insert_inode_locked4(inode,
6193 btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6194 btrfs_find_actor, &args);
6195}
6196
19aee8de
AJ
6197/*
6198 * Inherit flags from the parent inode.
6199 *
6200 * Currently only the compression flags and the cow flags are inherited.
6201 */
6202static void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
6203{
6204 unsigned int flags;
6205
6206 if (!dir)
6207 return;
6208
6209 flags = BTRFS_I(dir)->flags;
6210
6211 if (flags & BTRFS_INODE_NOCOMPRESS) {
6212 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
6213 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
6214 } else if (flags & BTRFS_INODE_COMPRESS) {
6215 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
6216 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
6217 }
6218
6219 if (flags & BTRFS_INODE_NODATACOW) {
6220 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
6221 if (S_ISREG(inode->i_mode))
6222 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6223 }
6224
6225 btrfs_update_iflags(inode);
6226}
6227
39279cc3
CM
6228static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6229 struct btrfs_root *root,
aec7477b 6230 struct inode *dir,
9c58309d 6231 const char *name, int name_len,
175a4eb7
AV
6232 u64 ref_objectid, u64 objectid,
6233 umode_t mode, u64 *index)
39279cc3 6234{
0b246afa 6235 struct btrfs_fs_info *fs_info = root->fs_info;
39279cc3 6236 struct inode *inode;
5f39d397 6237 struct btrfs_inode_item *inode_item;
39279cc3 6238 struct btrfs_key *location;
5f39d397 6239 struct btrfs_path *path;
9c58309d
CM
6240 struct btrfs_inode_ref *ref;
6241 struct btrfs_key key[2];
6242 u32 sizes[2];
ef3b9af5 6243 int nitems = name ? 2 : 1;
9c58309d 6244 unsigned long ptr;
39279cc3 6245 int ret;
39279cc3 6246
5f39d397 6247 path = btrfs_alloc_path();
d8926bb3
MF
6248 if (!path)
6249 return ERR_PTR(-ENOMEM);
5f39d397 6250
0b246afa 6251 inode = new_inode(fs_info->sb);
8fb27640
YS
6252 if (!inode) {
6253 btrfs_free_path(path);
39279cc3 6254 return ERR_PTR(-ENOMEM);
8fb27640 6255 }
39279cc3 6256
5762b5c9
FM
6257 /*
6258 * O_TMPFILE, set link count to 0, so that after this point,
6259 * we fill in an inode item with the correct link count.
6260 */
6261 if (!name)
6262 set_nlink(inode, 0);
6263
581bb050
LZ
6264 /*
6265 * we have to initialize this early, so we can reclaim the inode
6266 * number if we fail afterwards in this function.
6267 */
6268 inode->i_ino = objectid;
6269
ef3b9af5 6270 if (dir && name) {
1abe9b8a 6271 trace_btrfs_inode_request(dir);
6272
877574e2 6273 ret = btrfs_set_inode_index(BTRFS_I(dir), index);
09771430 6274 if (ret) {
8fb27640 6275 btrfs_free_path(path);
09771430 6276 iput(inode);
aec7477b 6277 return ERR_PTR(ret);
09771430 6278 }
ef3b9af5
FM
6279 } else if (dir) {
6280 *index = 0;
aec7477b
JB
6281 }
6282 /*
6283 * index_cnt is ignored for everything but a dir,
6284 * btrfs_get_inode_index_count has an explanation for the magic
6285 * number
6286 */
6287 BTRFS_I(inode)->index_cnt = 2;
67de1176 6288 BTRFS_I(inode)->dir_index = *index;
39279cc3 6289 BTRFS_I(inode)->root = root;
e02119d5 6290 BTRFS_I(inode)->generation = trans->transid;
76195853 6291 inode->i_generation = BTRFS_I(inode)->generation;
b888db2b 6292
5dc562c5
JB
6293 /*
6294 * We could have gotten an inode number from somebody who was fsynced
6295 * and then removed in this same transaction, so let's just set full
6296 * sync since it will be a full sync anyway and this will blow away the
6297 * old info in the log.
6298 */
6299 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6300
9c58309d 6301 key[0].objectid = objectid;
962a298f 6302 key[0].type = BTRFS_INODE_ITEM_KEY;
9c58309d
CM
6303 key[0].offset = 0;
6304
9c58309d 6305 sizes[0] = sizeof(struct btrfs_inode_item);
ef3b9af5
FM
6306
6307 if (name) {
6308 /*
6309 * Start new inodes with an inode_ref. This is slightly more
6310 * efficient for small numbers of hard links since they will
6311 * be packed into one item. Extended refs will kick in if we
6312 * add more hard links than can fit in the ref item.
6313 */
6314 key[1].objectid = objectid;
962a298f 6315 key[1].type = BTRFS_INODE_REF_KEY;
ef3b9af5
FM
6316 key[1].offset = ref_objectid;
6317
6318 sizes[1] = name_len + sizeof(*ref);
6319 }
9c58309d 6320
b0d5d10f
CM
6321 location = &BTRFS_I(inode)->location;
6322 location->objectid = objectid;
6323 location->offset = 0;
962a298f 6324 location->type = BTRFS_INODE_ITEM_KEY;
b0d5d10f
CM
6325
6326 ret = btrfs_insert_inode_locked(inode);
6327 if (ret < 0)
6328 goto fail;
6329
b9473439 6330 path->leave_spinning = 1;
ef3b9af5 6331 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
9c58309d 6332 if (ret != 0)
b0d5d10f 6333 goto fail_unlock;
5f39d397 6334
ecc11fab 6335 inode_init_owner(inode, dir, mode);
a76a3cd4 6336 inode_set_bytes(inode, 0);
9cc97d64 6337
c2050a45 6338 inode->i_mtime = current_time(inode);
9cc97d64 6339 inode->i_atime = inode->i_mtime;
6340 inode->i_ctime = inode->i_mtime;
6341 BTRFS_I(inode)->i_otime = inode->i_mtime;
6342
5f39d397
CM
6343 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6344 struct btrfs_inode_item);
b159fa28 6345 memzero_extent_buffer(path->nodes[0], (unsigned long)inode_item,
293f7e07 6346 sizeof(*inode_item));
e02119d5 6347 fill_inode_item(trans, path->nodes[0], inode_item, inode);
9c58309d 6348
ef3b9af5
FM
6349 if (name) {
6350 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6351 struct btrfs_inode_ref);
6352 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6353 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6354 ptr = (unsigned long)(ref + 1);
6355 write_extent_buffer(path->nodes[0], name, ptr, name_len);
6356 }
9c58309d 6357
5f39d397
CM
6358 btrfs_mark_buffer_dirty(path->nodes[0]);
6359 btrfs_free_path(path);
6360
6cbff00f
CH
6361 btrfs_inherit_iflags(inode, dir);
6362
569254b0 6363 if (S_ISREG(mode)) {
0b246afa 6364 if (btrfs_test_opt(fs_info, NODATASUM))
94272164 6365 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
0b246afa 6366 if (btrfs_test_opt(fs_info, NODATACOW))
f2bdf9a8
JB
6367 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6368 BTRFS_INODE_NODATASUM;
94272164
CM
6369 }
6370
5d4f98a2 6371 inode_tree_add(inode);
1abe9b8a 6372
6373 trace_btrfs_inode_new(inode);
1973f0fa 6374 btrfs_set_inode_last_trans(trans, inode);
1abe9b8a 6375
8ea05e3a
AB
6376 btrfs_update_root_times(trans, root);
6377
63541927
FDBM
6378 ret = btrfs_inode_inherit_props(trans, inode, dir);
6379 if (ret)
0b246afa 6380 btrfs_err(fs_info,
63541927 6381 "error inheriting props for ino %llu (root %llu): %d",
f85b7379 6382 btrfs_ino(BTRFS_I(inode)), root->root_key.objectid, ret);
63541927 6383
39279cc3 6384 return inode;
b0d5d10f
CM
6385
6386fail_unlock:
6387 unlock_new_inode(inode);
5f39d397 6388fail:
ef3b9af5 6389 if (dir && name)
aec7477b 6390 BTRFS_I(dir)->index_cnt--;
5f39d397 6391 btrfs_free_path(path);
09771430 6392 iput(inode);
5f39d397 6393 return ERR_PTR(ret);
39279cc3
CM
6394}
6395
6396static inline u8 btrfs_inode_type(struct inode *inode)
6397{
6398 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6399}
6400
d352ac68
CM
6401/*
6402 * utility function to add 'inode' into 'parent_inode' with
6403 * a give name and a given sequence number.
6404 * if 'add_backref' is true, also insert a backref from the
6405 * inode to the parent directory.
6406 */
e02119d5 6407int btrfs_add_link(struct btrfs_trans_handle *trans,
db0a669f 6408 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
e02119d5 6409 const char *name, int name_len, int add_backref, u64 index)
39279cc3 6410{
db0a669f 6411 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
4df27c4d 6412 int ret = 0;
39279cc3 6413 struct btrfs_key key;
db0a669f
NB
6414 struct btrfs_root *root = parent_inode->root;
6415 u64 ino = btrfs_ino(inode);
6416 u64 parent_ino = btrfs_ino(parent_inode);
5f39d397 6417
33345d01 6418 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
db0a669f 6419 memcpy(&key, &inode->root->root_key, sizeof(key));
4df27c4d 6420 } else {
33345d01 6421 key.objectid = ino;
962a298f 6422 key.type = BTRFS_INODE_ITEM_KEY;
4df27c4d
YZ
6423 key.offset = 0;
6424 }
6425
33345d01 6426 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
0b246afa
JM
6427 ret = btrfs_add_root_ref(trans, fs_info, key.objectid,
6428 root->root_key.objectid, parent_ino,
6429 index, name, name_len);
4df27c4d 6430 } else if (add_backref) {
33345d01
LZ
6431 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6432 parent_ino, index);
4df27c4d 6433 }
39279cc3 6434
79787eaa
JM
6435 /* Nothing to clean up yet */
6436 if (ret)
6437 return ret;
4df27c4d 6438
79787eaa
JM
6439 ret = btrfs_insert_dir_item(trans, root, name, name_len,
6440 parent_inode, &key,
db0a669f 6441 btrfs_inode_type(&inode->vfs_inode), index);
9c52057c 6442 if (ret == -EEXIST || ret == -EOVERFLOW)
79787eaa
JM
6443 goto fail_dir_item;
6444 else if (ret) {
66642832 6445 btrfs_abort_transaction(trans, ret);
79787eaa 6446 return ret;
39279cc3 6447 }
79787eaa 6448
db0a669f 6449 btrfs_i_size_write(parent_inode, parent_inode->vfs_inode.i_size +
79787eaa 6450 name_len * 2);
db0a669f
NB
6451 inode_inc_iversion(&parent_inode->vfs_inode);
6452 parent_inode->vfs_inode.i_mtime = parent_inode->vfs_inode.i_ctime =
6453 current_time(&parent_inode->vfs_inode);
6454 ret = btrfs_update_inode(trans, root, &parent_inode->vfs_inode);
79787eaa 6455 if (ret)
66642832 6456 btrfs_abort_transaction(trans, ret);
39279cc3 6457 return ret;
fe66a05a
CM
6458
6459fail_dir_item:
6460 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6461 u64 local_index;
6462 int err;
0b246afa
JM
6463 err = btrfs_del_root_ref(trans, fs_info, key.objectid,
6464 root->root_key.objectid, parent_ino,
6465 &local_index, name, name_len);
fe66a05a
CM
6466
6467 } else if (add_backref) {
6468 u64 local_index;
6469 int err;
6470
6471 err = btrfs_del_inode_ref(trans, root, name, name_len,
6472 ino, parent_ino, &local_index);
6473 }
6474 return ret;
39279cc3
CM
6475}
6476
6477static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
cef415af
NB
6478 struct btrfs_inode *dir, struct dentry *dentry,
6479 struct btrfs_inode *inode, int backref, u64 index)
39279cc3 6480{
a1b075d2
JB
6481 int err = btrfs_add_link(trans, dir, inode,
6482 dentry->d_name.name, dentry->d_name.len,
6483 backref, index);
39279cc3
CM
6484 if (err > 0)
6485 err = -EEXIST;
6486 return err;
6487}
6488
618e21d5 6489static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
1a67aafb 6490 umode_t mode, dev_t rdev)
618e21d5 6491{
2ff7e61e 6492 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
618e21d5
JB
6493 struct btrfs_trans_handle *trans;
6494 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6495 struct inode *inode = NULL;
618e21d5
JB
6496 int err;
6497 int drop_inode = 0;
6498 u64 objectid;
00e4e6b3 6499 u64 index = 0;
618e21d5 6500
9ed74f2d
JB
6501 /*
6502 * 2 for inode item and ref
6503 * 2 for dir items
6504 * 1 for xattr if selinux is on
6505 */
a22285a6
YZ
6506 trans = btrfs_start_transaction(root, 5);
6507 if (IS_ERR(trans))
6508 return PTR_ERR(trans);
1832a6d5 6509
581bb050
LZ
6510 err = btrfs_find_free_ino(root, &objectid);
6511 if (err)
6512 goto out_unlock;
6513
aec7477b 6514 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6515 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6516 mode, &index);
7cf96da3
TI
6517 if (IS_ERR(inode)) {
6518 err = PTR_ERR(inode);
618e21d5 6519 goto out_unlock;
7cf96da3 6520 }
618e21d5 6521
ad19db71
CS
6522 /*
6523 * If the active LSM wants to access the inode during
6524 * d_instantiate it needs these. Smack checks to see
6525 * if the filesystem supports xattrs by looking at the
6526 * ops vector.
6527 */
ad19db71 6528 inode->i_op = &btrfs_special_inode_operations;
b0d5d10f
CM
6529 init_special_inode(inode, inode->i_mode, rdev);
6530
6531 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
618e21d5 6532 if (err)
b0d5d10f
CM
6533 goto out_unlock_inode;
6534
cef415af
NB
6535 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6536 0, index);
b0d5d10f
CM
6537 if (err) {
6538 goto out_unlock_inode;
6539 } else {
1b4ab1bb 6540 btrfs_update_inode(trans, root, inode);
b0d5d10f 6541 unlock_new_inode(inode);
08c422c2 6542 d_instantiate(dentry, inode);
618e21d5 6543 }
b0d5d10f 6544
618e21d5 6545out_unlock:
3a45bb20 6546 btrfs_end_transaction(trans);
2ff7e61e
JM
6547 btrfs_balance_delayed_items(fs_info);
6548 btrfs_btree_balance_dirty(fs_info);
618e21d5
JB
6549 if (drop_inode) {
6550 inode_dec_link_count(inode);
6551 iput(inode);
6552 }
618e21d5 6553 return err;
b0d5d10f
CM
6554
6555out_unlock_inode:
6556 drop_inode = 1;
6557 unlock_new_inode(inode);
6558 goto out_unlock;
6559
618e21d5
JB
6560}
6561
39279cc3 6562static int btrfs_create(struct inode *dir, struct dentry *dentry,
ebfc3b49 6563 umode_t mode, bool excl)
39279cc3 6564{
2ff7e61e 6565 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
6566 struct btrfs_trans_handle *trans;
6567 struct btrfs_root *root = BTRFS_I(dir)->root;
1832a6d5 6568 struct inode *inode = NULL;
43baa579 6569 int drop_inode_on_err = 0;
a22285a6 6570 int err;
39279cc3 6571 u64 objectid;
00e4e6b3 6572 u64 index = 0;
39279cc3 6573
9ed74f2d
JB
6574 /*
6575 * 2 for inode item and ref
6576 * 2 for dir items
6577 * 1 for xattr if selinux is on
6578 */
a22285a6
YZ
6579 trans = btrfs_start_transaction(root, 5);
6580 if (IS_ERR(trans))
6581 return PTR_ERR(trans);
9ed74f2d 6582
581bb050
LZ
6583 err = btrfs_find_free_ino(root, &objectid);
6584 if (err)
6585 goto out_unlock;
6586
aec7477b 6587 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6588 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6589 mode, &index);
7cf96da3
TI
6590 if (IS_ERR(inode)) {
6591 err = PTR_ERR(inode);
39279cc3 6592 goto out_unlock;
7cf96da3 6593 }
43baa579 6594 drop_inode_on_err = 1;
ad19db71
CS
6595 /*
6596 * If the active LSM wants to access the inode during
6597 * d_instantiate it needs these. Smack checks to see
6598 * if the filesystem supports xattrs by looking at the
6599 * ops vector.
6600 */
6601 inode->i_fop = &btrfs_file_operations;
6602 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 6603 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
6604
6605 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6606 if (err)
6607 goto out_unlock_inode;
6608
6609 err = btrfs_update_inode(trans, root, inode);
6610 if (err)
6611 goto out_unlock_inode;
ad19db71 6612
cef415af
NB
6613 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6614 0, index);
39279cc3 6615 if (err)
b0d5d10f 6616 goto out_unlock_inode;
43baa579 6617
43baa579 6618 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
b0d5d10f 6619 unlock_new_inode(inode);
43baa579
FB
6620 d_instantiate(dentry, inode);
6621
39279cc3 6622out_unlock:
3a45bb20 6623 btrfs_end_transaction(trans);
43baa579 6624 if (err && drop_inode_on_err) {
39279cc3
CM
6625 inode_dec_link_count(inode);
6626 iput(inode);
6627 }
2ff7e61e
JM
6628 btrfs_balance_delayed_items(fs_info);
6629 btrfs_btree_balance_dirty(fs_info);
39279cc3 6630 return err;
b0d5d10f
CM
6631
6632out_unlock_inode:
6633 unlock_new_inode(inode);
6634 goto out_unlock;
6635
39279cc3
CM
6636}
6637
6638static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6639 struct dentry *dentry)
6640{
271dba45 6641 struct btrfs_trans_handle *trans = NULL;
39279cc3 6642 struct btrfs_root *root = BTRFS_I(dir)->root;
2b0143b5 6643 struct inode *inode = d_inode(old_dentry);
2ff7e61e 6644 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
00e4e6b3 6645 u64 index;
39279cc3
CM
6646 int err;
6647 int drop_inode = 0;
6648
4a8be425
TH
6649 /* do not allow sys_link's with other subvols of the same device */
6650 if (root->objectid != BTRFS_I(inode)->root->objectid)
3ab3564f 6651 return -EXDEV;
4a8be425 6652
f186373f 6653 if (inode->i_nlink >= BTRFS_LINK_MAX)
c055e99e 6654 return -EMLINK;
4a8be425 6655
877574e2 6656 err = btrfs_set_inode_index(BTRFS_I(dir), &index);
aec7477b
JB
6657 if (err)
6658 goto fail;
6659
a22285a6 6660 /*
7e6b6465 6661 * 2 items for inode and inode ref
a22285a6 6662 * 2 items for dir items
7e6b6465 6663 * 1 item for parent inode
a22285a6 6664 */
7e6b6465 6665 trans = btrfs_start_transaction(root, 5);
a22285a6
YZ
6666 if (IS_ERR(trans)) {
6667 err = PTR_ERR(trans);
271dba45 6668 trans = NULL;
a22285a6
YZ
6669 goto fail;
6670 }
5f39d397 6671
67de1176
MX
6672 /* There are several dir indexes for this inode, clear the cache. */
6673 BTRFS_I(inode)->dir_index = 0ULL;
8b558c5f 6674 inc_nlink(inode);
0c4d2d95 6675 inode_inc_iversion(inode);
c2050a45 6676 inode->i_ctime = current_time(inode);
7de9c6ee 6677 ihold(inode);
e9976151 6678 set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
aec7477b 6679
cef415af
NB
6680 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry, BTRFS_I(inode),
6681 1, index);
5f39d397 6682
a5719521 6683 if (err) {
54aa1f4d 6684 drop_inode = 1;
a5719521 6685 } else {
10d9f309 6686 struct dentry *parent = dentry->d_parent;
a5719521 6687 err = btrfs_update_inode(trans, root, inode);
79787eaa
JM
6688 if (err)
6689 goto fail;
ef3b9af5
FM
6690 if (inode->i_nlink == 1) {
6691 /*
6692 * If new hard link count is 1, it's a file created
6693 * with open(2) O_TMPFILE flag.
6694 */
3d6ae7bb 6695 err = btrfs_orphan_del(trans, BTRFS_I(inode));
ef3b9af5
FM
6696 if (err)
6697 goto fail;
6698 }
08c422c2 6699 d_instantiate(dentry, inode);
9ca5fbfb 6700 btrfs_log_new_name(trans, BTRFS_I(inode), NULL, parent);
a5719521 6701 }
39279cc3 6702
2ff7e61e 6703 btrfs_balance_delayed_items(fs_info);
1832a6d5 6704fail:
271dba45 6705 if (trans)
3a45bb20 6706 btrfs_end_transaction(trans);
39279cc3
CM
6707 if (drop_inode) {
6708 inode_dec_link_count(inode);
6709 iput(inode);
6710 }
2ff7e61e 6711 btrfs_btree_balance_dirty(fs_info);
39279cc3
CM
6712 return err;
6713}
6714
18bb1db3 6715static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
39279cc3 6716{
2ff7e61e 6717 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
b9d86667 6718 struct inode *inode = NULL;
39279cc3
CM
6719 struct btrfs_trans_handle *trans;
6720 struct btrfs_root *root = BTRFS_I(dir)->root;
6721 int err = 0;
6722 int drop_on_err = 0;
b9d86667 6723 u64 objectid = 0;
00e4e6b3 6724 u64 index = 0;
39279cc3 6725
9ed74f2d
JB
6726 /*
6727 * 2 items for inode and ref
6728 * 2 items for dir items
6729 * 1 for xattr if selinux is on
6730 */
a22285a6
YZ
6731 trans = btrfs_start_transaction(root, 5);
6732 if (IS_ERR(trans))
6733 return PTR_ERR(trans);
39279cc3 6734
581bb050
LZ
6735 err = btrfs_find_free_ino(root, &objectid);
6736 if (err)
6737 goto out_fail;
6738
aec7477b 6739 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
6740 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)), objectid,
6741 S_IFDIR | mode, &index);
39279cc3
CM
6742 if (IS_ERR(inode)) {
6743 err = PTR_ERR(inode);
6744 goto out_fail;
6745 }
5f39d397 6746
39279cc3 6747 drop_on_err = 1;
b0d5d10f
CM
6748 /* these must be set before we unlock the inode */
6749 inode->i_op = &btrfs_dir_inode_operations;
6750 inode->i_fop = &btrfs_dir_file_operations;
33268eaf 6751
2a7dba39 6752 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
33268eaf 6753 if (err)
b0d5d10f 6754 goto out_fail_inode;
39279cc3 6755
6ef06d27 6756 btrfs_i_size_write(BTRFS_I(inode), 0);
39279cc3
CM
6757 err = btrfs_update_inode(trans, root, inode);
6758 if (err)
b0d5d10f 6759 goto out_fail_inode;
5f39d397 6760
db0a669f
NB
6761 err = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode),
6762 dentry->d_name.name,
6763 dentry->d_name.len, 0, index);
39279cc3 6764 if (err)
b0d5d10f 6765 goto out_fail_inode;
5f39d397 6766
39279cc3 6767 d_instantiate(dentry, inode);
b0d5d10f
CM
6768 /*
6769 * mkdir is special. We're unlocking after we call d_instantiate
6770 * to avoid a race with nfsd calling d_instantiate.
6771 */
6772 unlock_new_inode(inode);
39279cc3 6773 drop_on_err = 0;
39279cc3
CM
6774
6775out_fail:
3a45bb20 6776 btrfs_end_transaction(trans);
c7cfb8a5
WS
6777 if (drop_on_err) {
6778 inode_dec_link_count(inode);
39279cc3 6779 iput(inode);
c7cfb8a5 6780 }
2ff7e61e
JM
6781 btrfs_balance_delayed_items(fs_info);
6782 btrfs_btree_balance_dirty(fs_info);
39279cc3 6783 return err;
b0d5d10f
CM
6784
6785out_fail_inode:
6786 unlock_new_inode(inode);
6787 goto out_fail;
39279cc3
CM
6788}
6789
e6c4efd8
QW
6790/* Find next extent map of a given extent map, caller needs to ensure locks */
6791static struct extent_map *next_extent_map(struct extent_map *em)
6792{
6793 struct rb_node *next;
6794
6795 next = rb_next(&em->rb_node);
6796 if (!next)
6797 return NULL;
6798 return container_of(next, struct extent_map, rb_node);
6799}
6800
6801static struct extent_map *prev_extent_map(struct extent_map *em)
6802{
6803 struct rb_node *prev;
6804
6805 prev = rb_prev(&em->rb_node);
6806 if (!prev)
6807 return NULL;
6808 return container_of(prev, struct extent_map, rb_node);
6809}
6810
d352ac68 6811/* helper for btfs_get_extent. Given an existing extent in the tree,
e6c4efd8 6812 * the existing extent is the nearest extent to map_start,
d352ac68 6813 * and an extent that you want to insert, deal with overlap and insert
e6c4efd8 6814 * the best fitted new extent into the tree.
d352ac68 6815 */
3b951516
CM
6816static int merge_extent_mapping(struct extent_map_tree *em_tree,
6817 struct extent_map *existing,
e6dcd2dc 6818 struct extent_map *em,
51f395ad 6819 u64 map_start)
3b951516 6820{
e6c4efd8
QW
6821 struct extent_map *prev;
6822 struct extent_map *next;
6823 u64 start;
6824 u64 end;
3b951516 6825 u64 start_diff;
3b951516 6826
e6dcd2dc 6827 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
e6c4efd8
QW
6828
6829 if (existing->start > map_start) {
6830 next = existing;
6831 prev = prev_extent_map(next);
6832 } else {
6833 prev = existing;
6834 next = next_extent_map(prev);
6835 }
6836
6837 start = prev ? extent_map_end(prev) : em->start;
6838 start = max_t(u64, start, em->start);
6839 end = next ? next->start : extent_map_end(em);
6840 end = min_t(u64, end, extent_map_end(em));
6841 start_diff = start - em->start;
6842 em->start = start;
6843 em->len = end - start;
c8b97818
CM
6844 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6845 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
e6dcd2dc 6846 em->block_start += start_diff;
c8b97818
CM
6847 em->block_len -= start_diff;
6848 }
09a2a8f9 6849 return add_extent_mapping(em_tree, em, 0);
3b951516
CM
6850}
6851
c8b97818 6852static noinline int uncompress_inline(struct btrfs_path *path,
e40da0e5 6853 struct page *page,
c8b97818
CM
6854 size_t pg_offset, u64 extent_offset,
6855 struct btrfs_file_extent_item *item)
6856{
6857 int ret;
6858 struct extent_buffer *leaf = path->nodes[0];
6859 char *tmp;
6860 size_t max_size;
6861 unsigned long inline_size;
6862 unsigned long ptr;
261507a0 6863 int compress_type;
c8b97818
CM
6864
6865 WARN_ON(pg_offset != 0);
261507a0 6866 compress_type = btrfs_file_extent_compression(leaf, item);
c8b97818
CM
6867 max_size = btrfs_file_extent_ram_bytes(leaf, item);
6868 inline_size = btrfs_file_extent_inline_item_len(leaf,
dd3cc16b 6869 btrfs_item_nr(path->slots[0]));
c8b97818 6870 tmp = kmalloc(inline_size, GFP_NOFS);
8d413713
TI
6871 if (!tmp)
6872 return -ENOMEM;
c8b97818
CM
6873 ptr = btrfs_file_extent_inline_start(item);
6874
6875 read_extent_buffer(leaf, tmp, ptr, inline_size);
6876
09cbfeaf 6877 max_size = min_t(unsigned long, PAGE_SIZE, max_size);
261507a0
LZ
6878 ret = btrfs_decompress(compress_type, tmp, page,
6879 extent_offset, inline_size, max_size);
e1699d2d
ZB
6880
6881 /*
6882 * decompression code contains a memset to fill in any space between the end
6883 * of the uncompressed data and the end of max_size in case the decompressed
6884 * data ends up shorter than ram_bytes. That doesn't cover the hole between
6885 * the end of an inline extent and the beginning of the next block, so we
6886 * cover that region here.
6887 */
6888
6889 if (max_size + pg_offset < PAGE_SIZE) {
6890 char *map = kmap(page);
6891 memset(map + pg_offset + max_size, 0, PAGE_SIZE - max_size - pg_offset);
6892 kunmap(page);
6893 }
c8b97818 6894 kfree(tmp);
166ae5a4 6895 return ret;
c8b97818
CM
6896}
6897
d352ac68
CM
6898/*
6899 * a bit scary, this does extent mapping from logical file offset to the disk.
d397712b
CM
6900 * the ugly parts come from merging extents from the disk with the in-ram
6901 * representation. This gets more complex because of the data=ordered code,
d352ac68
CM
6902 * where the in-ram extents might be locked pending data=ordered completion.
6903 *
6904 * This also copies inline extents directly into the page.
6905 */
fc4f21b1
NB
6906struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
6907 struct page *page,
6908 size_t pg_offset, u64 start, u64 len,
6909 int create)
a52d9a80 6910{
fc4f21b1 6911 struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
a52d9a80
CM
6912 int ret;
6913 int err = 0;
a52d9a80
CM
6914 u64 extent_start = 0;
6915 u64 extent_end = 0;
fc4f21b1 6916 u64 objectid = btrfs_ino(inode);
a52d9a80 6917 u32 found_type;
f421950f 6918 struct btrfs_path *path = NULL;
fc4f21b1 6919 struct btrfs_root *root = inode->root;
a52d9a80 6920 struct btrfs_file_extent_item *item;
5f39d397
CM
6921 struct extent_buffer *leaf;
6922 struct btrfs_key found_key;
a52d9a80 6923 struct extent_map *em = NULL;
fc4f21b1
NB
6924 struct extent_map_tree *em_tree = &inode->extent_tree;
6925 struct extent_io_tree *io_tree = &inode->io_tree;
a52d9a80 6926 struct btrfs_trans_handle *trans = NULL;
7ffbb598 6927 const bool new_inline = !page || create;
a52d9a80 6928
a52d9a80 6929again:
890871be 6930 read_lock(&em_tree->lock);
d1310b2e 6931 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d 6932 if (em)
0b246afa 6933 em->bdev = fs_info->fs_devices->latest_bdev;
890871be 6934 read_unlock(&em_tree->lock);
d1310b2e 6935
a52d9a80 6936 if (em) {
e1c4b745
CM
6937 if (em->start > start || em->start + em->len <= start)
6938 free_extent_map(em);
6939 else if (em->block_start == EXTENT_MAP_INLINE && page)
70dec807
CM
6940 free_extent_map(em);
6941 else
6942 goto out;
a52d9a80 6943 }
172ddd60 6944 em = alloc_extent_map();
a52d9a80 6945 if (!em) {
d1310b2e
CM
6946 err = -ENOMEM;
6947 goto out;
a52d9a80 6948 }
0b246afa 6949 em->bdev = fs_info->fs_devices->latest_bdev;
d1310b2e 6950 em->start = EXTENT_MAP_HOLE;
445a6944 6951 em->orig_start = EXTENT_MAP_HOLE;
d1310b2e 6952 em->len = (u64)-1;
c8b97818 6953 em->block_len = (u64)-1;
f421950f
CM
6954
6955 if (!path) {
6956 path = btrfs_alloc_path();
026fd317
JB
6957 if (!path) {
6958 err = -ENOMEM;
6959 goto out;
6960 }
6961 /*
6962 * Chances are we'll be called again, so go ahead and do
6963 * readahead
6964 */
e4058b54 6965 path->reada = READA_FORWARD;
f421950f
CM
6966 }
6967
179e29e4
CM
6968 ret = btrfs_lookup_file_extent(trans, root, path,
6969 objectid, start, trans != NULL);
a52d9a80
CM
6970 if (ret < 0) {
6971 err = ret;
6972 goto out;
6973 }
6974
6975 if (ret != 0) {
6976 if (path->slots[0] == 0)
6977 goto not_found;
6978 path->slots[0]--;
6979 }
6980
5f39d397
CM
6981 leaf = path->nodes[0];
6982 item = btrfs_item_ptr(leaf, path->slots[0],
a52d9a80 6983 struct btrfs_file_extent_item);
a52d9a80 6984 /* are we inside the extent that was found? */
5f39d397 6985 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
962a298f 6986 found_type = found_key.type;
5f39d397 6987 if (found_key.objectid != objectid ||
a52d9a80 6988 found_type != BTRFS_EXTENT_DATA_KEY) {
25a50341
JB
6989 /*
6990 * If we backup past the first extent we want to move forward
6991 * and see if there is an extent in front of us, otherwise we'll
6992 * say there is a hole for our whole search range which can
6993 * cause problems.
6994 */
6995 extent_end = start;
6996 goto next;
a52d9a80
CM
6997 }
6998
5f39d397
CM
6999 found_type = btrfs_file_extent_type(leaf, item);
7000 extent_start = found_key.offset;
d899e052
YZ
7001 if (found_type == BTRFS_FILE_EXTENT_REG ||
7002 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80 7003 extent_end = extent_start +
db94535d 7004 btrfs_file_extent_num_bytes(leaf, item);
09ed2f16
LB
7005
7006 trace_btrfs_get_extent_show_fi_regular(inode, leaf, item,
7007 extent_start);
9036c102
YZ
7008 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
7009 size_t size;
514ac8ad 7010 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
da17066c 7011 extent_end = ALIGN(extent_start + size,
0b246afa 7012 fs_info->sectorsize);
09ed2f16
LB
7013
7014 trace_btrfs_get_extent_show_fi_inline(inode, leaf, item,
7015 path->slots[0],
7016 extent_start);
9036c102 7017 }
25a50341 7018next:
9036c102
YZ
7019 if (start >= extent_end) {
7020 path->slots[0]++;
7021 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
7022 ret = btrfs_next_leaf(root, path);
7023 if (ret < 0) {
7024 err = ret;
7025 goto out;
a52d9a80 7026 }
9036c102
YZ
7027 if (ret > 0)
7028 goto not_found;
7029 leaf = path->nodes[0];
a52d9a80 7030 }
9036c102
YZ
7031 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
7032 if (found_key.objectid != objectid ||
7033 found_key.type != BTRFS_EXTENT_DATA_KEY)
7034 goto not_found;
7035 if (start + len <= found_key.offset)
7036 goto not_found;
e2eca69d
WS
7037 if (start > found_key.offset)
7038 goto next;
9036c102 7039 em->start = start;
70c8a91c 7040 em->orig_start = start;
9036c102
YZ
7041 em->len = found_key.offset - start;
7042 goto not_found_em;
7043 }
7044
fc4f21b1 7045 btrfs_extent_item_to_extent_map(inode, path, item,
9cdc5124 7046 new_inline, em);
7ffbb598 7047
d899e052
YZ
7048 if (found_type == BTRFS_FILE_EXTENT_REG ||
7049 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
a52d9a80
CM
7050 goto insert;
7051 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5f39d397 7052 unsigned long ptr;
a52d9a80 7053 char *map;
3326d1b0
CM
7054 size_t size;
7055 size_t extent_offset;
7056 size_t copy_size;
a52d9a80 7057
7ffbb598 7058 if (new_inline)
689f9346 7059 goto out;
5f39d397 7060
514ac8ad 7061 size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
9036c102 7062 extent_offset = page_offset(page) + pg_offset - extent_start;
09cbfeaf
KS
7063 copy_size = min_t(u64, PAGE_SIZE - pg_offset,
7064 size - extent_offset);
3326d1b0 7065 em->start = extent_start + extent_offset;
0b246afa 7066 em->len = ALIGN(copy_size, fs_info->sectorsize);
b4939680 7067 em->orig_block_len = em->len;
70c8a91c 7068 em->orig_start = em->start;
689f9346 7069 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
179e29e4 7070 if (create == 0 && !PageUptodate(page)) {
261507a0
LZ
7071 if (btrfs_file_extent_compression(leaf, item) !=
7072 BTRFS_COMPRESS_NONE) {
e40da0e5 7073 ret = uncompress_inline(path, page, pg_offset,
c8b97818 7074 extent_offset, item);
166ae5a4
ZB
7075 if (ret) {
7076 err = ret;
7077 goto out;
7078 }
c8b97818
CM
7079 } else {
7080 map = kmap(page);
7081 read_extent_buffer(leaf, map + pg_offset, ptr,
7082 copy_size);
09cbfeaf 7083 if (pg_offset + copy_size < PAGE_SIZE) {
93c82d57 7084 memset(map + pg_offset + copy_size, 0,
09cbfeaf 7085 PAGE_SIZE - pg_offset -
93c82d57
CM
7086 copy_size);
7087 }
c8b97818
CM
7088 kunmap(page);
7089 }
179e29e4
CM
7090 flush_dcache_page(page);
7091 } else if (create && PageUptodate(page)) {
6bf7e080 7092 BUG();
179e29e4
CM
7093 if (!trans) {
7094 kunmap(page);
7095 free_extent_map(em);
7096 em = NULL;
ff5714cc 7097
b3b4aa74 7098 btrfs_release_path(path);
7a7eaa40 7099 trans = btrfs_join_transaction(root);
ff5714cc 7100
3612b495
TI
7101 if (IS_ERR(trans))
7102 return ERR_CAST(trans);
179e29e4
CM
7103 goto again;
7104 }
c8b97818 7105 map = kmap(page);
70dec807 7106 write_extent_buffer(leaf, map + pg_offset, ptr,
179e29e4 7107 copy_size);
c8b97818 7108 kunmap(page);
179e29e4 7109 btrfs_mark_buffer_dirty(leaf);
a52d9a80 7110 }
d1310b2e 7111 set_extent_uptodate(io_tree, em->start,
507903b8 7112 extent_map_end(em) - 1, NULL, GFP_NOFS);
a52d9a80 7113 goto insert;
a52d9a80
CM
7114 }
7115not_found:
7116 em->start = start;
70c8a91c 7117 em->orig_start = start;
d1310b2e 7118 em->len = len;
a52d9a80 7119not_found_em:
5f39d397 7120 em->block_start = EXTENT_MAP_HOLE;
9036c102 7121 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
a52d9a80 7122insert:
b3b4aa74 7123 btrfs_release_path(path);
d1310b2e 7124 if (em->start > start || extent_map_end(em) <= start) {
0b246afa 7125 btrfs_err(fs_info,
5d163e0e
JM
7126 "bad extent! em: [%llu %llu] passed [%llu %llu]",
7127 em->start, em->len, start, len);
a52d9a80
CM
7128 err = -EIO;
7129 goto out;
7130 }
d1310b2e
CM
7131
7132 err = 0;
890871be 7133 write_lock(&em_tree->lock);
09a2a8f9 7134 ret = add_extent_mapping(em_tree, em, 0);
3b951516
CM
7135 /* it is possible that someone inserted the extent into the tree
7136 * while we had the lock dropped. It is also possible that
7137 * an overlapping map exists in the tree
7138 */
a52d9a80 7139 if (ret == -EEXIST) {
3b951516 7140 struct extent_map *existing;
e6dcd2dc
CM
7141
7142 ret = 0;
7143
e6c4efd8
QW
7144 existing = search_extent_mapping(em_tree, start, len);
7145 /*
7146 * existing will always be non-NULL, since there must be
7147 * extent causing the -EEXIST.
7148 */
8dff9c85 7149 if (existing->start == em->start &&
8e2bd3b7 7150 extent_map_end(existing) >= extent_map_end(em) &&
8dff9c85
CM
7151 em->block_start == existing->block_start) {
7152 /*
8e2bd3b7
OS
7153 * The existing extent map already encompasses the
7154 * entire extent map we tried to add.
8dff9c85
CM
7155 */
7156 free_extent_map(em);
7157 em = existing;
7158 err = 0;
7159
7160 } else if (start >= extent_map_end(existing) ||
32be3a1a 7161 start <= existing->start) {
e6c4efd8
QW
7162 /*
7163 * The existing extent map is the one nearest to
7164 * the [start, start + len) range which overlaps
7165 */
7166 err = merge_extent_mapping(em_tree, existing,
7167 em, start);
e1c4b745 7168 free_extent_map(existing);
e6c4efd8 7169 if (err) {
3b951516
CM
7170 free_extent_map(em);
7171 em = NULL;
7172 }
7173 } else {
7174 free_extent_map(em);
7175 em = existing;
e6dcd2dc 7176 err = 0;
a52d9a80 7177 }
a52d9a80 7178 }
890871be 7179 write_unlock(&em_tree->lock);
a52d9a80 7180out:
1abe9b8a 7181
fc4f21b1 7182 trace_btrfs_get_extent(root, inode, em);
1abe9b8a 7183
527afb44 7184 btrfs_free_path(path);
a52d9a80 7185 if (trans) {
3a45bb20 7186 ret = btrfs_end_transaction(trans);
d397712b 7187 if (!err)
a52d9a80
CM
7188 err = ret;
7189 }
a52d9a80
CM
7190 if (err) {
7191 free_extent_map(em);
a52d9a80
CM
7192 return ERR_PTR(err);
7193 }
79787eaa 7194 BUG_ON(!em); /* Error is always set */
a52d9a80
CM
7195 return em;
7196}
7197
fc4f21b1
NB
7198struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
7199 struct page *page,
7200 size_t pg_offset, u64 start, u64 len,
7201 int create)
ec29ed5b
CM
7202{
7203 struct extent_map *em;
7204 struct extent_map *hole_em = NULL;
7205 u64 range_start = start;
7206 u64 end;
7207 u64 found;
7208 u64 found_end;
7209 int err = 0;
7210
7211 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
7212 if (IS_ERR(em))
7213 return em;
9986277e
DC
7214 /*
7215 * If our em maps to:
7216 * - a hole or
7217 * - a pre-alloc extent,
7218 * there might actually be delalloc bytes behind it.
7219 */
7220 if (em->block_start != EXTENT_MAP_HOLE &&
7221 !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7222 return em;
7223 else
7224 hole_em = em;
ec29ed5b
CM
7225
7226 /* check to see if we've wrapped (len == -1 or similar) */
7227 end = start + len;
7228 if (end < start)
7229 end = (u64)-1;
7230 else
7231 end -= 1;
7232
7233 em = NULL;
7234
7235 /* ok, we didn't find anything, lets look for delalloc */
fc4f21b1 7236 found = count_range_bits(&inode->io_tree, &range_start,
ec29ed5b
CM
7237 end, len, EXTENT_DELALLOC, 1);
7238 found_end = range_start + found;
7239 if (found_end < range_start)
7240 found_end = (u64)-1;
7241
7242 /*
7243 * we didn't find anything useful, return
7244 * the original results from get_extent()
7245 */
7246 if (range_start > end || found_end <= start) {
7247 em = hole_em;
7248 hole_em = NULL;
7249 goto out;
7250 }
7251
7252 /* adjust the range_start to make sure it doesn't
7253 * go backwards from the start they passed in
7254 */
67871254 7255 range_start = max(start, range_start);
ec29ed5b
CM
7256 found = found_end - range_start;
7257
7258 if (found > 0) {
7259 u64 hole_start = start;
7260 u64 hole_len = len;
7261
172ddd60 7262 em = alloc_extent_map();
ec29ed5b
CM
7263 if (!em) {
7264 err = -ENOMEM;
7265 goto out;
7266 }
7267 /*
7268 * when btrfs_get_extent can't find anything it
7269 * returns one huge hole
7270 *
7271 * make sure what it found really fits our range, and
7272 * adjust to make sure it is based on the start from
7273 * the caller
7274 */
7275 if (hole_em) {
7276 u64 calc_end = extent_map_end(hole_em);
7277
7278 if (calc_end <= start || (hole_em->start > end)) {
7279 free_extent_map(hole_em);
7280 hole_em = NULL;
7281 } else {
7282 hole_start = max(hole_em->start, start);
7283 hole_len = calc_end - hole_start;
7284 }
7285 }
7286 em->bdev = NULL;
7287 if (hole_em && range_start > hole_start) {
7288 /* our hole starts before our delalloc, so we
7289 * have to return just the parts of the hole
7290 * that go until the delalloc starts
7291 */
7292 em->len = min(hole_len,
7293 range_start - hole_start);
7294 em->start = hole_start;
7295 em->orig_start = hole_start;
7296 /*
7297 * don't adjust block start at all,
7298 * it is fixed at EXTENT_MAP_HOLE
7299 */
7300 em->block_start = hole_em->block_start;
7301 em->block_len = hole_len;
f9e4fb53
LB
7302 if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7303 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
ec29ed5b
CM
7304 } else {
7305 em->start = range_start;
7306 em->len = found;
7307 em->orig_start = range_start;
7308 em->block_start = EXTENT_MAP_DELALLOC;
7309 em->block_len = found;
7310 }
7311 } else if (hole_em) {
7312 return hole_em;
7313 }
7314out:
7315
7316 free_extent_map(hole_em);
7317 if (err) {
7318 free_extent_map(em);
7319 return ERR_PTR(err);
7320 }
7321 return em;
7322}
7323
5f9a8a51
FM
7324static struct extent_map *btrfs_create_dio_extent(struct inode *inode,
7325 const u64 start,
7326 const u64 len,
7327 const u64 orig_start,
7328 const u64 block_start,
7329 const u64 block_len,
7330 const u64 orig_block_len,
7331 const u64 ram_bytes,
7332 const int type)
7333{
7334 struct extent_map *em = NULL;
7335 int ret;
7336
5f9a8a51 7337 if (type != BTRFS_ORDERED_NOCOW) {
6f9994db
LB
7338 em = create_io_em(inode, start, len, orig_start,
7339 block_start, block_len, orig_block_len,
7340 ram_bytes,
7341 BTRFS_COMPRESS_NONE, /* compress_type */
7342 type);
5f9a8a51
FM
7343 if (IS_ERR(em))
7344 goto out;
7345 }
7346 ret = btrfs_add_ordered_extent_dio(inode, start, block_start,
7347 len, block_len, type);
7348 if (ret) {
7349 if (em) {
7350 free_extent_map(em);
dcdbc059 7351 btrfs_drop_extent_cache(BTRFS_I(inode), start,
5f9a8a51
FM
7352 start + len - 1, 0);
7353 }
7354 em = ERR_PTR(ret);
7355 }
7356 out:
5f9a8a51
FM
7357
7358 return em;
7359}
7360
4b46fce2
JB
7361static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7362 u64 start, u64 len)
7363{
0b246afa 7364 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7365 struct btrfs_root *root = BTRFS_I(inode)->root;
70c8a91c 7366 struct extent_map *em;
4b46fce2
JB
7367 struct btrfs_key ins;
7368 u64 alloc_hint;
7369 int ret;
4b46fce2 7370
4b46fce2 7371 alloc_hint = get_extent_allocation_hint(inode, start, len);
0b246afa 7372 ret = btrfs_reserve_extent(root, len, len, fs_info->sectorsize,
da17066c 7373 0, alloc_hint, &ins, 1, 1);
00361589
JB
7374 if (ret)
7375 return ERR_PTR(ret);
4b46fce2 7376
5f9a8a51
FM
7377 em = btrfs_create_dio_extent(inode, start, ins.offset, start,
7378 ins.objectid, ins.offset, ins.offset,
6288d6ea 7379 ins.offset, BTRFS_ORDERED_REGULAR);
0b246afa 7380 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5f9a8a51 7381 if (IS_ERR(em))
2ff7e61e
JM
7382 btrfs_free_reserved_extent(fs_info, ins.objectid,
7383 ins.offset, 1);
de0ee0ed 7384
4b46fce2
JB
7385 return em;
7386}
7387
46bfbb5c
CM
7388/*
7389 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7390 * block must be cow'd
7391 */
00361589 7392noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7ee9e440
JB
7393 u64 *orig_start, u64 *orig_block_len,
7394 u64 *ram_bytes)
46bfbb5c 7395{
2ff7e61e 7396 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
46bfbb5c
CM
7397 struct btrfs_path *path;
7398 int ret;
7399 struct extent_buffer *leaf;
7400 struct btrfs_root *root = BTRFS_I(inode)->root;
7b2b7085 7401 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
46bfbb5c
CM
7402 struct btrfs_file_extent_item *fi;
7403 struct btrfs_key key;
7404 u64 disk_bytenr;
7405 u64 backref_offset;
7406 u64 extent_end;
7407 u64 num_bytes;
7408 int slot;
7409 int found_type;
7ee9e440 7410 bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
e77751aa 7411
46bfbb5c
CM
7412 path = btrfs_alloc_path();
7413 if (!path)
7414 return -ENOMEM;
7415
f85b7379
DS
7416 ret = btrfs_lookup_file_extent(NULL, root, path,
7417 btrfs_ino(BTRFS_I(inode)), offset, 0);
46bfbb5c
CM
7418 if (ret < 0)
7419 goto out;
7420
7421 slot = path->slots[0];
7422 if (ret == 1) {
7423 if (slot == 0) {
7424 /* can't find the item, must cow */
7425 ret = 0;
7426 goto out;
7427 }
7428 slot--;
7429 }
7430 ret = 0;
7431 leaf = path->nodes[0];
7432 btrfs_item_key_to_cpu(leaf, &key, slot);
4a0cc7ca 7433 if (key.objectid != btrfs_ino(BTRFS_I(inode)) ||
46bfbb5c
CM
7434 key.type != BTRFS_EXTENT_DATA_KEY) {
7435 /* not our file or wrong item type, must cow */
7436 goto out;
7437 }
7438
7439 if (key.offset > offset) {
7440 /* Wrong offset, must cow */
7441 goto out;
7442 }
7443
7444 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7445 found_type = btrfs_file_extent_type(leaf, fi);
7446 if (found_type != BTRFS_FILE_EXTENT_REG &&
7447 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7448 /* not a regular extent, must cow */
7449 goto out;
7450 }
7ee9e440
JB
7451
7452 if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7453 goto out;
7454
e77751aa
MX
7455 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7456 if (extent_end <= offset)
7457 goto out;
7458
46bfbb5c 7459 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7ee9e440
JB
7460 if (disk_bytenr == 0)
7461 goto out;
7462
7463 if (btrfs_file_extent_compression(leaf, fi) ||
7464 btrfs_file_extent_encryption(leaf, fi) ||
7465 btrfs_file_extent_other_encoding(leaf, fi))
7466 goto out;
7467
46bfbb5c
CM
7468 backref_offset = btrfs_file_extent_offset(leaf, fi);
7469
7ee9e440
JB
7470 if (orig_start) {
7471 *orig_start = key.offset - backref_offset;
7472 *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7473 *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7474 }
eb384b55 7475
2ff7e61e 7476 if (btrfs_extent_readonly(fs_info, disk_bytenr))
46bfbb5c 7477 goto out;
7b2b7085
MX
7478
7479 num_bytes = min(offset + *len, extent_end) - offset;
7480 if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7481 u64 range_end;
7482
da17066c
JM
7483 range_end = round_up(offset + num_bytes,
7484 root->fs_info->sectorsize) - 1;
7b2b7085
MX
7485 ret = test_range_bit(io_tree, offset, range_end,
7486 EXTENT_DELALLOC, 0, NULL);
7487 if (ret) {
7488 ret = -EAGAIN;
7489 goto out;
7490 }
7491 }
7492
1bda19eb 7493 btrfs_release_path(path);
46bfbb5c
CM
7494
7495 /*
7496 * look for other files referencing this extent, if we
7497 * find any we must cow
7498 */
00361589 7499
e4c3b2dc 7500 ret = btrfs_cross_ref_exist(root, btrfs_ino(BTRFS_I(inode)),
00361589 7501 key.offset - backref_offset, disk_bytenr);
00361589
JB
7502 if (ret) {
7503 ret = 0;
7504 goto out;
7505 }
46bfbb5c
CM
7506
7507 /*
7508 * adjust disk_bytenr and num_bytes to cover just the bytes
7509 * in this extent we are about to write. If there
7510 * are any csums in that range we have to cow in order
7511 * to keep the csums correct
7512 */
7513 disk_bytenr += backref_offset;
7514 disk_bytenr += offset - key.offset;
2ff7e61e
JM
7515 if (csum_exist_in_range(fs_info, disk_bytenr, num_bytes))
7516 goto out;
46bfbb5c
CM
7517 /*
7518 * all of the above have passed, it is safe to overwrite this extent
7519 * without cow
7520 */
eb384b55 7521 *len = num_bytes;
46bfbb5c
CM
7522 ret = 1;
7523out:
7524 btrfs_free_path(path);
7525 return ret;
7526}
7527
fc4adbff
AG
7528bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7529{
7530 struct radix_tree_root *root = &inode->i_mapping->page_tree;
e03733da 7531 bool found = false;
fc4adbff
AG
7532 void **pagep = NULL;
7533 struct page *page = NULL;
cc2b702c
DS
7534 unsigned long start_idx;
7535 unsigned long end_idx;
fc4adbff 7536
09cbfeaf 7537 start_idx = start >> PAGE_SHIFT;
fc4adbff
AG
7538
7539 /*
7540 * end is the last byte in the last page. end == start is legal
7541 */
09cbfeaf 7542 end_idx = end >> PAGE_SHIFT;
fc4adbff
AG
7543
7544 rcu_read_lock();
7545
7546 /* Most of the code in this while loop is lifted from
7547 * find_get_page. It's been modified to begin searching from a
7548 * page and return just the first page found in that range. If the
7549 * found idx is less than or equal to the end idx then we know that
7550 * a page exists. If no pages are found or if those pages are
7551 * outside of the range then we're fine (yay!) */
7552 while (page == NULL &&
7553 radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7554 page = radix_tree_deref_slot(pagep);
7555 if (unlikely(!page))
7556 break;
7557
7558 if (radix_tree_exception(page)) {
809f9016
FM
7559 if (radix_tree_deref_retry(page)) {
7560 page = NULL;
fc4adbff 7561 continue;
809f9016 7562 }
fc4adbff
AG
7563 /*
7564 * Otherwise, shmem/tmpfs must be storing a swap entry
7565 * here as an exceptional entry: so return it without
7566 * attempting to raise page count.
7567 */
6fdef6d4 7568 page = NULL;
fc4adbff
AG
7569 break; /* TODO: Is this relevant for this use case? */
7570 }
7571
91405151
FM
7572 if (!page_cache_get_speculative(page)) {
7573 page = NULL;
fc4adbff 7574 continue;
91405151 7575 }
fc4adbff
AG
7576
7577 /*
7578 * Has the page moved?
7579 * This is part of the lockless pagecache protocol. See
7580 * include/linux/pagemap.h for details.
7581 */
7582 if (unlikely(page != *pagep)) {
09cbfeaf 7583 put_page(page);
fc4adbff
AG
7584 page = NULL;
7585 }
7586 }
7587
7588 if (page) {
7589 if (page->index <= end_idx)
7590 found = true;
09cbfeaf 7591 put_page(page);
fc4adbff
AG
7592 }
7593
7594 rcu_read_unlock();
7595 return found;
7596}
7597
eb838e73
JB
7598static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7599 struct extent_state **cached_state, int writing)
7600{
7601 struct btrfs_ordered_extent *ordered;
7602 int ret = 0;
7603
7604 while (1) {
7605 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
ff13db41 7606 cached_state);
eb838e73
JB
7607 /*
7608 * We're concerned with the entire range that we're going to be
01327610 7609 * doing DIO to, so we need to make sure there's no ordered
eb838e73
JB
7610 * extents in this range.
7611 */
a776c6fa 7612 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), lockstart,
eb838e73
JB
7613 lockend - lockstart + 1);
7614
7615 /*
7616 * We need to make sure there are no buffered pages in this
7617 * range either, we could have raced between the invalidate in
7618 * generic_file_direct_write and locking the extent. The
7619 * invalidate needs to happen so that reads after a write do not
7620 * get stale data.
7621 */
fc4adbff
AG
7622 if (!ordered &&
7623 (!writing ||
7624 !btrfs_page_exists_in_range(inode, lockstart, lockend)))
eb838e73
JB
7625 break;
7626
7627 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7628 cached_state, GFP_NOFS);
7629
7630 if (ordered) {
ade77029
FM
7631 /*
7632 * If we are doing a DIO read and the ordered extent we
7633 * found is for a buffered write, we can not wait for it
7634 * to complete and retry, because if we do so we can
7635 * deadlock with concurrent buffered writes on page
7636 * locks. This happens only if our DIO read covers more
7637 * than one extent map, if at this point has already
7638 * created an ordered extent for a previous extent map
7639 * and locked its range in the inode's io tree, and a
7640 * concurrent write against that previous extent map's
7641 * range and this range started (we unlock the ranges
7642 * in the io tree only when the bios complete and
7643 * buffered writes always lock pages before attempting
7644 * to lock range in the io tree).
7645 */
7646 if (writing ||
7647 test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags))
7648 btrfs_start_ordered_extent(inode, ordered, 1);
7649 else
7650 ret = -ENOTBLK;
eb838e73
JB
7651 btrfs_put_ordered_extent(ordered);
7652 } else {
eb838e73 7653 /*
b850ae14
FM
7654 * We could trigger writeback for this range (and wait
7655 * for it to complete) and then invalidate the pages for
7656 * this range (through invalidate_inode_pages2_range()),
7657 * but that can lead us to a deadlock with a concurrent
7658 * call to readpages() (a buffered read or a defrag call
7659 * triggered a readahead) on a page lock due to an
7660 * ordered dio extent we created before but did not have
7661 * yet a corresponding bio submitted (whence it can not
7662 * complete), which makes readpages() wait for that
7663 * ordered extent to complete while holding a lock on
7664 * that page.
eb838e73 7665 */
b850ae14 7666 ret = -ENOTBLK;
eb838e73
JB
7667 }
7668
ade77029
FM
7669 if (ret)
7670 break;
7671
eb838e73
JB
7672 cond_resched();
7673 }
7674
7675 return ret;
7676}
7677
6f9994db
LB
7678/* The callers of this must take lock_extent() */
7679static struct extent_map *create_io_em(struct inode *inode, u64 start, u64 len,
7680 u64 orig_start, u64 block_start,
7681 u64 block_len, u64 orig_block_len,
7682 u64 ram_bytes, int compress_type,
7683 int type)
69ffb543
JB
7684{
7685 struct extent_map_tree *em_tree;
7686 struct extent_map *em;
7687 struct btrfs_root *root = BTRFS_I(inode)->root;
7688 int ret;
7689
6f9994db
LB
7690 ASSERT(type == BTRFS_ORDERED_PREALLOC ||
7691 type == BTRFS_ORDERED_COMPRESSED ||
7692 type == BTRFS_ORDERED_NOCOW ||
1af4a0aa 7693 type == BTRFS_ORDERED_REGULAR);
6f9994db 7694
69ffb543
JB
7695 em_tree = &BTRFS_I(inode)->extent_tree;
7696 em = alloc_extent_map();
7697 if (!em)
7698 return ERR_PTR(-ENOMEM);
7699
7700 em->start = start;
7701 em->orig_start = orig_start;
7702 em->len = len;
7703 em->block_len = block_len;
7704 em->block_start = block_start;
7705 em->bdev = root->fs_info->fs_devices->latest_bdev;
b4939680 7706 em->orig_block_len = orig_block_len;
cc95bef6 7707 em->ram_bytes = ram_bytes;
70c8a91c 7708 em->generation = -1;
69ffb543 7709 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1af4a0aa 7710 if (type == BTRFS_ORDERED_PREALLOC) {
b11e234d 7711 set_bit(EXTENT_FLAG_FILLING, &em->flags);
1af4a0aa 7712 } else if (type == BTRFS_ORDERED_COMPRESSED) {
6f9994db
LB
7713 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
7714 em->compress_type = compress_type;
7715 }
69ffb543
JB
7716
7717 do {
dcdbc059 7718 btrfs_drop_extent_cache(BTRFS_I(inode), em->start,
69ffb543
JB
7719 em->start + em->len - 1, 0);
7720 write_lock(&em_tree->lock);
09a2a8f9 7721 ret = add_extent_mapping(em_tree, em, 1);
69ffb543 7722 write_unlock(&em_tree->lock);
6f9994db
LB
7723 /*
7724 * The caller has taken lock_extent(), who could race with us
7725 * to add em?
7726 */
69ffb543
JB
7727 } while (ret == -EEXIST);
7728
7729 if (ret) {
7730 free_extent_map(em);
7731 return ERR_PTR(ret);
7732 }
7733
6f9994db 7734 /* em got 2 refs now, callers needs to do free_extent_map once. */
69ffb543
JB
7735 return em;
7736}
7737
4b46fce2
JB
7738static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7739 struct buffer_head *bh_result, int create)
7740{
0b246afa 7741 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 7742 struct extent_map *em;
eb838e73 7743 struct extent_state *cached_state = NULL;
50745b0a 7744 struct btrfs_dio_data *dio_data = NULL;
4b46fce2 7745 u64 start = iblock << inode->i_blkbits;
eb838e73 7746 u64 lockstart, lockend;
4b46fce2 7747 u64 len = bh_result->b_size;
eb838e73 7748 int unlock_bits = EXTENT_LOCKED;
0934856d 7749 int ret = 0;
eb838e73 7750
172a5049 7751 if (create)
3266789f 7752 unlock_bits |= EXTENT_DIRTY;
172a5049 7753 else
0b246afa 7754 len = min_t(u64, len, fs_info->sectorsize);
eb838e73 7755
c329861d
JB
7756 lockstart = start;
7757 lockend = start + len - 1;
7758
e1cbbfa5
JB
7759 if (current->journal_info) {
7760 /*
7761 * Need to pull our outstanding extents and set journal_info to NULL so
01327610 7762 * that anything that needs to check if there's a transaction doesn't get
e1cbbfa5
JB
7763 * confused.
7764 */
50745b0a 7765 dio_data = current->journal_info;
e1cbbfa5
JB
7766 current->journal_info = NULL;
7767 }
7768
eb838e73
JB
7769 /*
7770 * If this errors out it's because we couldn't invalidate pagecache for
7771 * this range and we need to fallback to buffered.
7772 */
9c9464cc
FM
7773 if (lock_extent_direct(inode, lockstart, lockend, &cached_state,
7774 create)) {
7775 ret = -ENOTBLK;
7776 goto err;
7777 }
eb838e73 7778
fc4f21b1 7779 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len, 0);
eb838e73
JB
7780 if (IS_ERR(em)) {
7781 ret = PTR_ERR(em);
7782 goto unlock_err;
7783 }
4b46fce2
JB
7784
7785 /*
7786 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7787 * io. INLINE is special, and we could probably kludge it in here, but
7788 * it's still buffered so for safety lets just fall back to the generic
7789 * buffered path.
7790 *
7791 * For COMPRESSED we _have_ to read the entire extent in so we can
7792 * decompress it, so there will be buffering required no matter what we
7793 * do, so go ahead and fallback to buffered.
7794 *
01327610 7795 * We return -ENOTBLK because that's what makes DIO go ahead and go back
4b46fce2
JB
7796 * to buffered IO. Don't blame me, this is the price we pay for using
7797 * the generic code.
7798 */
7799 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7800 em->block_start == EXTENT_MAP_INLINE) {
7801 free_extent_map(em);
eb838e73
JB
7802 ret = -ENOTBLK;
7803 goto unlock_err;
4b46fce2
JB
7804 }
7805
7806 /* Just a good old fashioned hole, return */
7807 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7808 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7809 free_extent_map(em);
eb838e73 7810 goto unlock_err;
4b46fce2
JB
7811 }
7812
7813 /*
7814 * We don't allocate a new extent in the following cases
7815 *
7816 * 1) The inode is marked as NODATACOW. In this case we'll just use the
7817 * existing extent.
7818 * 2) The extent is marked as PREALLOC. We're good to go here and can
7819 * just use the extent.
7820 *
7821 */
46bfbb5c 7822 if (!create) {
eb838e73
JB
7823 len = min(len, em->len - (start - em->start));
7824 lockstart = start + len;
7825 goto unlock;
46bfbb5c 7826 }
4b46fce2
JB
7827
7828 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7829 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7830 em->block_start != EXTENT_MAP_HOLE)) {
4b46fce2 7831 int type;
eb384b55 7832 u64 block_start, orig_start, orig_block_len, ram_bytes;
4b46fce2
JB
7833
7834 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7835 type = BTRFS_ORDERED_PREALLOC;
7836 else
7837 type = BTRFS_ORDERED_NOCOW;
46bfbb5c 7838 len = min(len, em->len - (start - em->start));
4b46fce2 7839 block_start = em->block_start + (start - em->start);
46bfbb5c 7840
00361589 7841 if (can_nocow_extent(inode, start, &len, &orig_start,
f78c436c 7842 &orig_block_len, &ram_bytes) == 1 &&
0b246afa 7843 btrfs_inc_nocow_writers(fs_info, block_start)) {
5f9a8a51 7844 struct extent_map *em2;
0b901916 7845
5f9a8a51
FM
7846 em2 = btrfs_create_dio_extent(inode, start, len,
7847 orig_start, block_start,
7848 len, orig_block_len,
7849 ram_bytes, type);
0b246afa 7850 btrfs_dec_nocow_writers(fs_info, block_start);
69ffb543
JB
7851 if (type == BTRFS_ORDERED_PREALLOC) {
7852 free_extent_map(em);
5f9a8a51 7853 em = em2;
69ffb543 7854 }
5f9a8a51
FM
7855 if (em2 && IS_ERR(em2)) {
7856 ret = PTR_ERR(em2);
eb838e73 7857 goto unlock_err;
46bfbb5c 7858 }
18513091
WX
7859 /*
7860 * For inode marked NODATACOW or extent marked PREALLOC,
7861 * use the existing or preallocated extent, so does not
7862 * need to adjust btrfs_space_info's bytes_may_use.
7863 */
7864 btrfs_free_reserved_data_space_noquota(inode,
7865 start, len);
46bfbb5c 7866 goto unlock;
4b46fce2 7867 }
4b46fce2 7868 }
00361589 7869
46bfbb5c
CM
7870 /*
7871 * this will cow the extent, reset the len in case we changed
7872 * it above
7873 */
7874 len = bh_result->b_size;
70c8a91c
JB
7875 free_extent_map(em);
7876 em = btrfs_new_extent_direct(inode, start, len);
eb838e73
JB
7877 if (IS_ERR(em)) {
7878 ret = PTR_ERR(em);
7879 goto unlock_err;
7880 }
46bfbb5c
CM
7881 len = min(len, em->len - (start - em->start));
7882unlock:
4b46fce2
JB
7883 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7884 inode->i_blkbits;
46bfbb5c 7885 bh_result->b_size = len;
4b46fce2
JB
7886 bh_result->b_bdev = em->bdev;
7887 set_buffer_mapped(bh_result);
c3473e83
JB
7888 if (create) {
7889 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7890 set_buffer_new(bh_result);
7891
7892 /*
7893 * Need to update the i_size under the extent lock so buffered
7894 * readers will get the updated i_size when we unlock.
7895 */
4aaedfb0 7896 if (!dio_data->overwrite && start + len > i_size_read(inode))
c3473e83 7897 i_size_write(inode, start + len);
0934856d 7898
50745b0a 7899 WARN_ON(dio_data->reserve < len);
7900 dio_data->reserve -= len;
f28a4928 7901 dio_data->unsubmitted_oe_range_end = start + len;
50745b0a 7902 current->journal_info = dio_data;
c3473e83 7903 }
4b46fce2 7904
eb838e73
JB
7905 /*
7906 * In the case of write we need to clear and unlock the entire range,
7907 * in the case of read we need to unlock only the end area that we
7908 * aren't using if there is any left over space.
7909 */
24c03fa5 7910 if (lockstart < lockend) {
0934856d
MX
7911 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7912 lockend, unlock_bits, 1, 0,
7913 &cached_state, GFP_NOFS);
24c03fa5 7914 } else {
eb838e73 7915 free_extent_state(cached_state);
24c03fa5 7916 }
eb838e73 7917
4b46fce2
JB
7918 free_extent_map(em);
7919
7920 return 0;
eb838e73
JB
7921
7922unlock_err:
eb838e73
JB
7923 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7924 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
9c9464cc 7925err:
50745b0a 7926 if (dio_data)
7927 current->journal_info = dio_data;
eb838e73 7928 return ret;
4b46fce2
JB
7929}
7930
58efbc9f
OS
7931static inline blk_status_t submit_dio_repair_bio(struct inode *inode,
7932 struct bio *bio,
7933 int mirror_num)
8b110e39 7934{
2ff7e61e 7935 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
58efbc9f 7936 blk_status_t ret;
8b110e39 7937
37226b21 7938 BUG_ON(bio_op(bio) == REQ_OP_WRITE);
8b110e39
MX
7939
7940 bio_get(bio);
7941
2ff7e61e 7942 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DIO_REPAIR);
8b110e39
MX
7943 if (ret)
7944 goto err;
7945
2ff7e61e 7946 ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
8b110e39
MX
7947err:
7948 bio_put(bio);
7949 return ret;
7950}
7951
7952static int btrfs_check_dio_repairable(struct inode *inode,
7953 struct bio *failed_bio,
7954 struct io_failure_record *failrec,
7955 int failed_mirror)
7956{
ab8d0fc4 7957 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
8b110e39
MX
7958 int num_copies;
7959
ab8d0fc4 7960 num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
8b110e39
MX
7961 if (num_copies == 1) {
7962 /*
7963 * we only have a single copy of the data, so don't bother with
7964 * all the retry and error correction code that follows. no
7965 * matter what the error is, it is very likely to persist.
7966 */
ab8d0fc4
JM
7967 btrfs_debug(fs_info,
7968 "Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
7969 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7970 return 0;
7971 }
7972
7973 failrec->failed_mirror = failed_mirror;
7974 failrec->this_mirror++;
7975 if (failrec->this_mirror == failed_mirror)
7976 failrec->this_mirror++;
7977
7978 if (failrec->this_mirror > num_copies) {
ab8d0fc4
JM
7979 btrfs_debug(fs_info,
7980 "Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
7981 num_copies, failrec->this_mirror, failed_mirror);
8b110e39
MX
7982 return 0;
7983 }
7984
7985 return 1;
7986}
7987
58efbc9f
OS
7988static blk_status_t dio_read_error(struct inode *inode, struct bio *failed_bio,
7989 struct page *page, unsigned int pgoff,
7990 u64 start, u64 end, int failed_mirror,
7991 bio_end_io_t *repair_endio, void *repair_arg)
8b110e39
MX
7992{
7993 struct io_failure_record *failrec;
7870d082
JB
7994 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7995 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
8b110e39
MX
7996 struct bio *bio;
7997 int isector;
f1c77c55 7998 unsigned int read_mode = 0;
17347cec 7999 int segs;
8b110e39 8000 int ret;
58efbc9f 8001 blk_status_t status;
8b110e39 8002
37226b21 8003 BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
8b110e39
MX
8004
8005 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
8006 if (ret)
58efbc9f 8007 return errno_to_blk_status(ret);
8b110e39
MX
8008
8009 ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
8010 failed_mirror);
8011 if (!ret) {
7870d082 8012 free_io_failure(failure_tree, io_tree, failrec);
58efbc9f 8013 return BLK_STS_IOERR;
8b110e39
MX
8014 }
8015
17347cec
LB
8016 segs = bio_segments(failed_bio);
8017 if (segs > 1 ||
8018 (failed_bio->bi_io_vec->bv_len > btrfs_inode_sectorsize(inode)))
70fd7614 8019 read_mode |= REQ_FAILFAST_DEV;
8b110e39
MX
8020
8021 isector = start - btrfs_io_bio(failed_bio)->logical;
8022 isector >>= inode->i_sb->s_blocksize_bits;
8023 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2dabb324 8024 pgoff, isector, repair_endio, repair_arg);
37226b21 8025 bio_set_op_attrs(bio, REQ_OP_READ, read_mode);
8b110e39
MX
8026
8027 btrfs_debug(BTRFS_I(inode)->root->fs_info,
913e1535 8028 "repair DIO read error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d",
8b110e39
MX
8029 read_mode, failrec->this_mirror, failrec->in_validation);
8030
58efbc9f
OS
8031 status = submit_dio_repair_bio(inode, bio, failrec->this_mirror);
8032 if (status) {
7870d082 8033 free_io_failure(failure_tree, io_tree, failrec);
8b110e39
MX
8034 bio_put(bio);
8035 }
8036
58efbc9f 8037 return status;
8b110e39
MX
8038}
8039
8040struct btrfs_retry_complete {
8041 struct completion done;
8042 struct inode *inode;
8043 u64 start;
8044 int uptodate;
8045};
8046
4246a0b6 8047static void btrfs_retry_endio_nocsum(struct bio *bio)
8b110e39
MX
8048{
8049 struct btrfs_retry_complete *done = bio->bi_private;
7870d082 8050 struct inode *inode = done->inode;
8b110e39 8051 struct bio_vec *bvec;
7870d082 8052 struct extent_io_tree *io_tree, *failure_tree;
8b110e39
MX
8053 int i;
8054
4e4cbee9 8055 if (bio->bi_status)
8b110e39
MX
8056 goto end;
8057
2dabb324 8058 ASSERT(bio->bi_vcnt == 1);
7870d082
JB
8059 io_tree = &BTRFS_I(inode)->io_tree;
8060 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8061 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(inode));
2dabb324 8062
8b110e39 8063 done->uptodate = 1;
c09abff8 8064 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8065 bio_for_each_segment_all(bvec, bio, i)
7870d082
JB
8066 clean_io_failure(BTRFS_I(inode)->root->fs_info, failure_tree,
8067 io_tree, done->start, bvec->bv_page,
8068 btrfs_ino(BTRFS_I(inode)), 0);
8b110e39
MX
8069end:
8070 complete(&done->done);
8071 bio_put(bio);
8072}
8073
58efbc9f
OS
8074static blk_status_t __btrfs_correct_data_nocsum(struct inode *inode,
8075 struct btrfs_io_bio *io_bio)
4b46fce2 8076{
2dabb324 8077 struct btrfs_fs_info *fs_info;
17347cec
LB
8078 struct bio_vec bvec;
8079 struct bvec_iter iter;
8b110e39 8080 struct btrfs_retry_complete done;
4b46fce2 8081 u64 start;
2dabb324
CR
8082 unsigned int pgoff;
8083 u32 sectorsize;
8084 int nr_sectors;
58efbc9f
OS
8085 blk_status_t ret;
8086 blk_status_t err = BLK_STS_OK;
4b46fce2 8087
2dabb324 8088 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8089 sectorsize = fs_info->sectorsize;
2dabb324 8090
8b110e39
MX
8091 start = io_bio->logical;
8092 done.inode = inode;
17347cec 8093 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8094
17347cec
LB
8095 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8096 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
8097 pgoff = bvec.bv_offset;
2dabb324
CR
8098
8099next_block_or_try_again:
8b110e39
MX
8100 done.uptodate = 0;
8101 done.start = start;
8102 init_completion(&done.done);
8103
17347cec 8104 ret = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
2dabb324
CR
8105 pgoff, start, start + sectorsize - 1,
8106 io_bio->mirror_num,
8107 btrfs_retry_endio_nocsum, &done);
629ebf4f
LB
8108 if (ret) {
8109 err = ret;
8110 goto next;
8111 }
8b110e39 8112
9c17f6cd 8113 wait_for_completion_io(&done.done);
8b110e39
MX
8114
8115 if (!done.uptodate) {
8116 /* We might have another mirror, so try again */
2dabb324 8117 goto next_block_or_try_again;
8b110e39
MX
8118 }
8119
629ebf4f 8120next:
2dabb324
CR
8121 start += sectorsize;
8122
97bf5a55
LB
8123 nr_sectors--;
8124 if (nr_sectors) {
2dabb324 8125 pgoff += sectorsize;
97bf5a55 8126 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8127 goto next_block_or_try_again;
8128 }
8b110e39
MX
8129 }
8130
629ebf4f 8131 return err;
8b110e39
MX
8132}
8133
4246a0b6 8134static void btrfs_retry_endio(struct bio *bio)
8b110e39
MX
8135{
8136 struct btrfs_retry_complete *done = bio->bi_private;
8137 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7870d082
JB
8138 struct extent_io_tree *io_tree, *failure_tree;
8139 struct inode *inode = done->inode;
8b110e39
MX
8140 struct bio_vec *bvec;
8141 int uptodate;
8142 int ret;
8143 int i;
8144
4e4cbee9 8145 if (bio->bi_status)
8b110e39
MX
8146 goto end;
8147
8148 uptodate = 1;
2dabb324 8149
2dabb324 8150 ASSERT(bio->bi_vcnt == 1);
2e949b0a 8151 ASSERT(bio->bi_io_vec->bv_len == btrfs_inode_sectorsize(done->inode));
2dabb324 8152
7870d082
JB
8153 io_tree = &BTRFS_I(inode)->io_tree;
8154 failure_tree = &BTRFS_I(inode)->io_failure_tree;
8155
c09abff8 8156 ASSERT(!bio_flagged(bio, BIO_CLONED));
8b110e39 8157 bio_for_each_segment_all(bvec, bio, i) {
7870d082
JB
8158 ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
8159 bvec->bv_offset, done->start,
8160 bvec->bv_len);
8b110e39 8161 if (!ret)
7870d082
JB
8162 clean_io_failure(BTRFS_I(inode)->root->fs_info,
8163 failure_tree, io_tree, done->start,
8164 bvec->bv_page,
8165 btrfs_ino(BTRFS_I(inode)),
8166 bvec->bv_offset);
8b110e39
MX
8167 else
8168 uptodate = 0;
8169 }
8170
8171 done->uptodate = uptodate;
8172end:
8173 complete(&done->done);
8174 bio_put(bio);
8175}
8176
4e4cbee9
CH
8177static blk_status_t __btrfs_subio_endio_read(struct inode *inode,
8178 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39 8179{
2dabb324 8180 struct btrfs_fs_info *fs_info;
17347cec
LB
8181 struct bio_vec bvec;
8182 struct bvec_iter iter;
8b110e39
MX
8183 struct btrfs_retry_complete done;
8184 u64 start;
8185 u64 offset = 0;
2dabb324
CR
8186 u32 sectorsize;
8187 int nr_sectors;
8188 unsigned int pgoff;
8189 int csum_pos;
ef7cdac1 8190 bool uptodate = (err == 0);
8b110e39 8191 int ret;
58efbc9f 8192 blk_status_t status;
dc380aea 8193
2dabb324 8194 fs_info = BTRFS_I(inode)->root->fs_info;
da17066c 8195 sectorsize = fs_info->sectorsize;
2dabb324 8196
58efbc9f 8197 err = BLK_STS_OK;
c1dc0896 8198 start = io_bio->logical;
8b110e39 8199 done.inode = inode;
17347cec 8200 io_bio->bio.bi_iter = io_bio->iter;
8b110e39 8201
17347cec
LB
8202 bio_for_each_segment(bvec, &io_bio->bio, iter) {
8203 nr_sectors = BTRFS_BYTES_TO_BLKS(fs_info, bvec.bv_len);
2dabb324 8204
17347cec 8205 pgoff = bvec.bv_offset;
2dabb324 8206next_block:
ef7cdac1
LB
8207 if (uptodate) {
8208 csum_pos = BTRFS_BYTES_TO_BLKS(fs_info, offset);
8209 ret = __readpage_endio_check(inode, io_bio, csum_pos,
8210 bvec.bv_page, pgoff, start, sectorsize);
8211 if (likely(!ret))
8212 goto next;
8213 }
8b110e39
MX
8214try_again:
8215 done.uptodate = 0;
8216 done.start = start;
8217 init_completion(&done.done);
8218
58efbc9f
OS
8219 status = dio_read_error(inode, &io_bio->bio, bvec.bv_page,
8220 pgoff, start, start + sectorsize - 1,
8221 io_bio->mirror_num, btrfs_retry_endio,
8222 &done);
8223 if (status) {
8224 err = status;
8b110e39
MX
8225 goto next;
8226 }
8227
9c17f6cd 8228 wait_for_completion_io(&done.done);
8b110e39
MX
8229
8230 if (!done.uptodate) {
8231 /* We might have another mirror, so try again */
8232 goto try_again;
8233 }
8234next:
2dabb324
CR
8235 offset += sectorsize;
8236 start += sectorsize;
8237
8238 ASSERT(nr_sectors);
8239
97bf5a55
LB
8240 nr_sectors--;
8241 if (nr_sectors) {
2dabb324 8242 pgoff += sectorsize;
97bf5a55 8243 ASSERT(pgoff < PAGE_SIZE);
2dabb324
CR
8244 goto next_block;
8245 }
2c30c71b 8246 }
c1dc0896
MX
8247
8248 return err;
8249}
8250
4e4cbee9
CH
8251static blk_status_t btrfs_subio_endio_read(struct inode *inode,
8252 struct btrfs_io_bio *io_bio, blk_status_t err)
8b110e39
MX
8253{
8254 bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8255
8256 if (skip_csum) {
8257 if (unlikely(err))
8258 return __btrfs_correct_data_nocsum(inode, io_bio);
8259 else
58efbc9f 8260 return BLK_STS_OK;
8b110e39
MX
8261 } else {
8262 return __btrfs_subio_endio_read(inode, io_bio, err);
8263 }
8264}
8265
4246a0b6 8266static void btrfs_endio_direct_read(struct bio *bio)
c1dc0896
MX
8267{
8268 struct btrfs_dio_private *dip = bio->bi_private;
8269 struct inode *inode = dip->inode;
8270 struct bio *dio_bio;
8271 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
4e4cbee9 8272 blk_status_t err = bio->bi_status;
c1dc0896 8273
99c4e3b9 8274 if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
8b110e39 8275 err = btrfs_subio_endio_read(inode, io_bio, err);
c1dc0896 8276
4b46fce2 8277 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
d0082371 8278 dip->logical_offset + dip->bytes - 1);
9be3395b 8279 dio_bio = dip->dio_bio;
4b46fce2 8280
4b46fce2 8281 kfree(dip);
c0da7aa1 8282
99c4e3b9 8283 dio_bio->bi_status = err;
4055351c 8284 dio_end_io(dio_bio);
23ea8e5a
MX
8285
8286 if (io_bio->end_io)
4e4cbee9 8287 io_bio->end_io(io_bio, blk_status_to_errno(err));
9be3395b 8288 bio_put(bio);
4b46fce2
JB
8289}
8290
52427260
QW
8291static void __endio_write_update_ordered(struct inode *inode,
8292 const u64 offset, const u64 bytes,
8293 const bool uptodate)
4b46fce2 8294{
0b246afa 8295 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4b46fce2 8296 struct btrfs_ordered_extent *ordered = NULL;
52427260
QW
8297 struct btrfs_workqueue *wq;
8298 btrfs_work_func_t func;
14543774
FM
8299 u64 ordered_offset = offset;
8300 u64 ordered_bytes = bytes;
67c003f9 8301 u64 last_offset;
4b46fce2
JB
8302 int ret;
8303
52427260
QW
8304 if (btrfs_is_free_space_inode(BTRFS_I(inode))) {
8305 wq = fs_info->endio_freespace_worker;
8306 func = btrfs_freespace_write_helper;
8307 } else {
8308 wq = fs_info->endio_write_workers;
8309 func = btrfs_endio_write_helper;
8310 }
8311
163cf09c 8312again:
67c003f9 8313 last_offset = ordered_offset;
163cf09c
CM
8314 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
8315 &ordered_offset,
4246a0b6 8316 ordered_bytes,
14543774 8317 uptodate);
4b46fce2 8318 if (!ret)
163cf09c 8319 goto out_test;
4b46fce2 8320
52427260
QW
8321 btrfs_init_work(&ordered->work, func, finish_ordered_fn, NULL, NULL);
8322 btrfs_queue_work(wq, &ordered->work);
163cf09c 8323out_test:
67c003f9
NA
8324 /*
8325 * If btrfs_dec_test_ordered_pending does not find any ordered extent
8326 * in the range, we can exit.
8327 */
8328 if (ordered_offset == last_offset)
8329 return;
163cf09c
CM
8330 /*
8331 * our bio might span multiple ordered extents. If we haven't
8332 * completed the accounting for the whole dio, go back and try again
8333 */
14543774
FM
8334 if (ordered_offset < offset + bytes) {
8335 ordered_bytes = offset + bytes - ordered_offset;
5fd02043 8336 ordered = NULL;
163cf09c
CM
8337 goto again;
8338 }
14543774
FM
8339}
8340
8341static void btrfs_endio_direct_write(struct bio *bio)
8342{
8343 struct btrfs_dio_private *dip = bio->bi_private;
8344 struct bio *dio_bio = dip->dio_bio;
8345
52427260 8346 __endio_write_update_ordered(dip->inode, dip->logical_offset,
4e4cbee9 8347 dip->bytes, !bio->bi_status);
4b46fce2 8348
4b46fce2 8349 kfree(dip);
c0da7aa1 8350
4e4cbee9 8351 dio_bio->bi_status = bio->bi_status;
4055351c 8352 dio_end_io(dio_bio);
9be3395b 8353 bio_put(bio);
4b46fce2
JB
8354}
8355
8c27cb35 8356static blk_status_t __btrfs_submit_bio_start_direct_io(void *private_data,
eaf25d93
CM
8357 struct bio *bio, int mirror_num,
8358 unsigned long bio_flags, u64 offset)
8359{
c6100a4b 8360 struct inode *inode = private_data;
4e4cbee9 8361 blk_status_t ret;
2ff7e61e 8362 ret = btrfs_csum_one_bio(inode, bio, offset, 1);
79787eaa 8363 BUG_ON(ret); /* -ENOMEM */
eaf25d93
CM
8364 return 0;
8365}
8366
4246a0b6 8367static void btrfs_end_dio_bio(struct bio *bio)
e65e1535
MX
8368{
8369 struct btrfs_dio_private *dip = bio->bi_private;
4e4cbee9 8370 blk_status_t err = bio->bi_status;
e65e1535 8371
8b110e39
MX
8372 if (err)
8373 btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
6296b960 8374 "direct IO failed ino %llu rw %d,%u sector %#Lx len %u err no %d",
f85b7379
DS
8375 btrfs_ino(BTRFS_I(dip->inode)), bio_op(bio),
8376 bio->bi_opf,
8b110e39
MX
8377 (unsigned long long)bio->bi_iter.bi_sector,
8378 bio->bi_iter.bi_size, err);
8379
8380 if (dip->subio_endio)
8381 err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
c1dc0896
MX
8382
8383 if (err) {
e65e1535
MX
8384 dip->errors = 1;
8385
8386 /*
8387 * before atomic variable goto zero, we must make sure
8388 * dip->errors is perceived to be set.
8389 */
4e857c58 8390 smp_mb__before_atomic();
e65e1535
MX
8391 }
8392
8393 /* if there are more bios still pending for this dio, just exit */
8394 if (!atomic_dec_and_test(&dip->pending_bios))
8395 goto out;
8396
9be3395b 8397 if (dip->errors) {
e65e1535 8398 bio_io_error(dip->orig_bio);
9be3395b 8399 } else {
2dbe0c77 8400 dip->dio_bio->bi_status = BLK_STS_OK;
4246a0b6 8401 bio_endio(dip->orig_bio);
e65e1535
MX
8402 }
8403out:
8404 bio_put(bio);
8405}
8406
4e4cbee9 8407static inline blk_status_t btrfs_lookup_and_bind_dio_csum(struct inode *inode,
c1dc0896
MX
8408 struct btrfs_dio_private *dip,
8409 struct bio *bio,
8410 u64 file_offset)
8411{
8412 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8413 struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
4e4cbee9 8414 blk_status_t ret;
c1dc0896
MX
8415
8416 /*
8417 * We load all the csum data we need when we submit
8418 * the first bio to reduce the csum tree search and
8419 * contention.
8420 */
8421 if (dip->logical_offset == file_offset) {
2ff7e61e 8422 ret = btrfs_lookup_bio_sums_dio(inode, dip->orig_bio,
c1dc0896
MX
8423 file_offset);
8424 if (ret)
8425 return ret;
8426 }
8427
8428 if (bio == dip->orig_bio)
8429 return 0;
8430
8431 file_offset -= dip->logical_offset;
8432 file_offset >>= inode->i_sb->s_blocksize_bits;
8433 io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8434
8435 return 0;
8436}
8437
58efbc9f
OS
8438static inline blk_status_t
8439__btrfs_submit_dio_bio(struct bio *bio, struct inode *inode, u64 file_offset,
66ba772e 8440 int async_submit)
e65e1535 8441{
0b246afa 8442 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
facc8a22 8443 struct btrfs_dio_private *dip = bio->bi_private;
37226b21 8444 bool write = bio_op(bio) == REQ_OP_WRITE;
4e4cbee9 8445 blk_status_t ret;
e65e1535 8446
b812ce28
JB
8447 if (async_submit)
8448 async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8449
e65e1535 8450 bio_get(bio);
5fd02043
JB
8451
8452 if (!write) {
0b246afa 8453 ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
5fd02043
JB
8454 if (ret)
8455 goto err;
8456 }
e65e1535 8457
e6961cac 8458 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1ae39938
JB
8459 goto map;
8460
8461 if (write && async_submit) {
c6100a4b
JB
8462 ret = btrfs_wq_submit_bio(fs_info, bio, 0, 0,
8463 file_offset, inode,
0b246afa
JM
8464 __btrfs_submit_bio_start_direct_io,
8465 __btrfs_submit_bio_done);
e65e1535 8466 goto err;
1ae39938
JB
8467 } else if (write) {
8468 /*
8469 * If we aren't doing async submit, calculate the csum of the
8470 * bio now.
8471 */
2ff7e61e 8472 ret = btrfs_csum_one_bio(inode, bio, file_offset, 1);
1ae39938
JB
8473 if (ret)
8474 goto err;
23ea8e5a 8475 } else {
2ff7e61e 8476 ret = btrfs_lookup_and_bind_dio_csum(inode, dip, bio,
c1dc0896 8477 file_offset);
c2db1073
TI
8478 if (ret)
8479 goto err;
8480 }
1ae39938 8481map:
9b4a9b28 8482 ret = btrfs_map_bio(fs_info, bio, 0, 0);
e65e1535
MX
8483err:
8484 bio_put(bio);
8485 return ret;
8486}
8487
e6961cac 8488static int btrfs_submit_direct_hook(struct btrfs_dio_private *dip)
e65e1535
MX
8489{
8490 struct inode *inode = dip->inode;
0b246afa 8491 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e65e1535
MX
8492 struct bio *bio;
8493 struct bio *orig_bio = dip->orig_bio;
4f024f37 8494 u64 start_sector = orig_bio->bi_iter.bi_sector;
e65e1535 8495 u64 file_offset = dip->logical_offset;
e65e1535 8496 u64 map_length;
1ae39938 8497 int async_submit = 0;
725130ba
LB
8498 u64 submit_len;
8499 int clone_offset = 0;
8500 int clone_len;
5f4dc8fc 8501 int ret;
58efbc9f 8502 blk_status_t status;
e65e1535 8503
4f024f37 8504 map_length = orig_bio->bi_iter.bi_size;
725130ba 8505 submit_len = map_length;
0b246afa
JM
8506 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio), start_sector << 9,
8507 &map_length, NULL, 0);
7a5c3c9b 8508 if (ret)
e65e1535 8509 return -EIO;
facc8a22 8510
725130ba 8511 if (map_length >= submit_len) {
02f57c7a 8512 bio = orig_bio;
c1dc0896 8513 dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
02f57c7a
JB
8514 goto submit;
8515 }
8516
53b381b3 8517 /* async crcs make it difficult to collect full stripe writes. */
1b86826d 8518 if (btrfs_data_alloc_profile(fs_info) & BTRFS_BLOCK_GROUP_RAID56_MASK)
53b381b3
DW
8519 async_submit = 0;
8520 else
8521 async_submit = 1;
8522
725130ba
LB
8523 /* bio split */
8524 ASSERT(map_length <= INT_MAX);
02f57c7a 8525 atomic_inc(&dip->pending_bios);
3c91ee69 8526 do {
725130ba 8527 clone_len = min_t(int, submit_len, map_length);
02f57c7a 8528
725130ba
LB
8529 /*
8530 * This will never fail as it's passing GPF_NOFS and
8531 * the allocation is backed by btrfs_bioset.
8532 */
e477094f 8533 bio = btrfs_bio_clone_partial(orig_bio, clone_offset,
725130ba
LB
8534 clone_len);
8535 bio->bi_private = dip;
8536 bio->bi_end_io = btrfs_end_dio_bio;
8537 btrfs_io_bio(bio)->logical = file_offset;
8538
8539 ASSERT(submit_len >= clone_len);
8540 submit_len -= clone_len;
8541 if (submit_len == 0)
8542 break;
e65e1535 8543
725130ba
LB
8544 /*
8545 * Increase the count before we submit the bio so we know
8546 * the end IO handler won't happen before we increase the
8547 * count. Otherwise, the dip might get freed before we're
8548 * done setting it up.
8549 */
8550 atomic_inc(&dip->pending_bios);
e65e1535 8551
66ba772e 8552 status = __btrfs_submit_dio_bio(bio, inode, file_offset,
58efbc9f
OS
8553 async_submit);
8554 if (status) {
725130ba
LB
8555 bio_put(bio);
8556 atomic_dec(&dip->pending_bios);
8557 goto out_err;
8558 }
e65e1535 8559
725130ba
LB
8560 clone_offset += clone_len;
8561 start_sector += clone_len >> 9;
8562 file_offset += clone_len;
5f4dc8fc 8563
725130ba
LB
8564 map_length = submit_len;
8565 ret = btrfs_map_block(fs_info, btrfs_op(orig_bio),
8566 start_sector << 9, &map_length, NULL, 0);
8567 if (ret)
8568 goto out_err;
3c91ee69 8569 } while (submit_len > 0);
e65e1535 8570
02f57c7a 8571submit:
66ba772e 8572 status = __btrfs_submit_dio_bio(bio, inode, file_offset, async_submit);
58efbc9f 8573 if (!status)
e65e1535
MX
8574 return 0;
8575
8576 bio_put(bio);
8577out_err:
8578 dip->errors = 1;
8579 /*
8580 * before atomic variable goto zero, we must
8581 * make sure dip->errors is perceived to be set.
8582 */
4e857c58 8583 smp_mb__before_atomic();
e65e1535
MX
8584 if (atomic_dec_and_test(&dip->pending_bios))
8585 bio_io_error(dip->orig_bio);
8586
8587 /* bio_end_io() will handle error, so we needn't return it */
8588 return 0;
8589}
8590
8a4c1e42
MC
8591static void btrfs_submit_direct(struct bio *dio_bio, struct inode *inode,
8592 loff_t file_offset)
4b46fce2 8593{
61de718f 8594 struct btrfs_dio_private *dip = NULL;
3892ac90
LB
8595 struct bio *bio = NULL;
8596 struct btrfs_io_bio *io_bio;
8a4c1e42 8597 bool write = (bio_op(dio_bio) == REQ_OP_WRITE);
4b46fce2
JB
8598 int ret = 0;
8599
8b6c1d56 8600 bio = btrfs_bio_clone(dio_bio);
9be3395b 8601
c1dc0896 8602 dip = kzalloc(sizeof(*dip), GFP_NOFS);
4b46fce2
JB
8603 if (!dip) {
8604 ret = -ENOMEM;
61de718f 8605 goto free_ordered;
4b46fce2 8606 }
4b46fce2 8607
9be3395b 8608 dip->private = dio_bio->bi_private;
4b46fce2
JB
8609 dip->inode = inode;
8610 dip->logical_offset = file_offset;
4f024f37
KO
8611 dip->bytes = dio_bio->bi_iter.bi_size;
8612 dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
3892ac90
LB
8613 bio->bi_private = dip;
8614 dip->orig_bio = bio;
9be3395b 8615 dip->dio_bio = dio_bio;
e65e1535 8616 atomic_set(&dip->pending_bios, 0);
3892ac90
LB
8617 io_bio = btrfs_io_bio(bio);
8618 io_bio->logical = file_offset;
4b46fce2 8619
c1dc0896 8620 if (write) {
3892ac90 8621 bio->bi_end_io = btrfs_endio_direct_write;
c1dc0896 8622 } else {
3892ac90 8623 bio->bi_end_io = btrfs_endio_direct_read;
c1dc0896
MX
8624 dip->subio_endio = btrfs_subio_endio_read;
8625 }
4b46fce2 8626
f28a4928
FM
8627 /*
8628 * Reset the range for unsubmitted ordered extents (to a 0 length range)
8629 * even if we fail to submit a bio, because in such case we do the
8630 * corresponding error handling below and it must not be done a second
8631 * time by btrfs_direct_IO().
8632 */
8633 if (write) {
8634 struct btrfs_dio_data *dio_data = current->journal_info;
8635
8636 dio_data->unsubmitted_oe_range_end = dip->logical_offset +
8637 dip->bytes;
8638 dio_data->unsubmitted_oe_range_start =
8639 dio_data->unsubmitted_oe_range_end;
8640 }
8641
e6961cac 8642 ret = btrfs_submit_direct_hook(dip);
e65e1535 8643 if (!ret)
eaf25d93 8644 return;
9be3395b 8645
3892ac90
LB
8646 if (io_bio->end_io)
8647 io_bio->end_io(io_bio, ret);
9be3395b 8648
4b46fce2
JB
8649free_ordered:
8650 /*
61de718f
FM
8651 * If we arrived here it means either we failed to submit the dip
8652 * or we either failed to clone the dio_bio or failed to allocate the
8653 * dip. If we cloned the dio_bio and allocated the dip, we can just
8654 * call bio_endio against our io_bio so that we get proper resource
8655 * cleanup if we fail to submit the dip, otherwise, we must do the
8656 * same as btrfs_endio_direct_[write|read] because we can't call these
8657 * callbacks - they require an allocated dip and a clone of dio_bio.
4b46fce2 8658 */
3892ac90 8659 if (bio && dip) {
054ec2f6 8660 bio_io_error(bio);
61de718f 8661 /*
3892ac90 8662 * The end io callbacks free our dip, do the final put on bio
61de718f
FM
8663 * and all the cleanup and final put for dio_bio (through
8664 * dio_end_io()).
8665 */
8666 dip = NULL;
3892ac90 8667 bio = NULL;
61de718f 8668 } else {
14543774 8669 if (write)
52427260 8670 __endio_write_update_ordered(inode,
14543774
FM
8671 file_offset,
8672 dio_bio->bi_iter.bi_size,
52427260 8673 false);
14543774 8674 else
61de718f
FM
8675 unlock_extent(&BTRFS_I(inode)->io_tree, file_offset,
8676 file_offset + dio_bio->bi_iter.bi_size - 1);
14543774 8677
4e4cbee9 8678 dio_bio->bi_status = BLK_STS_IOERR;
61de718f
FM
8679 /*
8680 * Releases and cleans up our dio_bio, no need to bio_put()
8681 * nor bio_endio()/bio_io_error() against dio_bio.
8682 */
4055351c 8683 dio_end_io(dio_bio);
4b46fce2 8684 }
3892ac90
LB
8685 if (bio)
8686 bio_put(bio);
61de718f 8687 kfree(dip);
4b46fce2
JB
8688}
8689
2ff7e61e 8690static ssize_t check_direct_IO(struct btrfs_fs_info *fs_info,
2ff7e61e 8691 const struct iov_iter *iter, loff_t offset)
5a5f79b5
CM
8692{
8693 int seg;
a1b75f7d 8694 int i;
0b246afa 8695 unsigned int blocksize_mask = fs_info->sectorsize - 1;
5a5f79b5 8696 ssize_t retval = -EINVAL;
5a5f79b5
CM
8697
8698 if (offset & blocksize_mask)
8699 goto out;
8700
28060d5d
AV
8701 if (iov_iter_alignment(iter) & blocksize_mask)
8702 goto out;
a1b75f7d 8703
28060d5d 8704 /* If this is a write we don't need to check anymore */
cd27e455 8705 if (iov_iter_rw(iter) != READ || !iter_is_iovec(iter))
28060d5d
AV
8706 return 0;
8707 /*
8708 * Check to make sure we don't have duplicate iov_base's in this
8709 * iovec, if so return EINVAL, otherwise we'll get csum errors
8710 * when reading back.
8711 */
8712 for (seg = 0; seg < iter->nr_segs; seg++) {
8713 for (i = seg + 1; i < iter->nr_segs; i++) {
8714 if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
a1b75f7d
JB
8715 goto out;
8716 }
5a5f79b5
CM
8717 }
8718 retval = 0;
8719out:
8720 return retval;
8721}
eb838e73 8722
c8b8e32d 8723static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
16432985 8724{
4b46fce2
JB
8725 struct file *file = iocb->ki_filp;
8726 struct inode *inode = file->f_mapping->host;
0b246afa 8727 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
50745b0a 8728 struct btrfs_dio_data dio_data = { 0 };
364ecf36 8729 struct extent_changeset *data_reserved = NULL;
c8b8e32d 8730 loff_t offset = iocb->ki_pos;
0934856d 8731 size_t count = 0;
2e60a51e 8732 int flags = 0;
38851cc1
MX
8733 bool wakeup = true;
8734 bool relock = false;
0934856d 8735 ssize_t ret;
4b46fce2 8736
8c70c9f8 8737 if (check_direct_IO(fs_info, iter, offset))
5a5f79b5 8738 return 0;
3f7c579c 8739
fe0f07d0 8740 inode_dio_begin(inode);
38851cc1 8741
0e267c44 8742 /*
41bd9ca4
MX
8743 * The generic stuff only does filemap_write_and_wait_range, which
8744 * isn't enough if we've written compressed pages to this area, so
8745 * we need to flush the dirty pages again to make absolutely sure
8746 * that any outstanding dirty pages are on disk.
0e267c44 8747 */
a6cbcd4a 8748 count = iov_iter_count(iter);
41bd9ca4
MX
8749 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8750 &BTRFS_I(inode)->runtime_flags))
9a025a08
WS
8751 filemap_fdatawrite_range(inode->i_mapping, offset,
8752 offset + count - 1);
0e267c44 8753
6f673763 8754 if (iov_iter_rw(iter) == WRITE) {
38851cc1
MX
8755 /*
8756 * If the write DIO is beyond the EOF, we need update
8757 * the isize, but it is protected by i_mutex. So we can
8758 * not unlock the i_mutex at this case.
8759 */
8760 if (offset + count <= inode->i_size) {
4aaedfb0 8761 dio_data.overwrite = 1;
5955102c 8762 inode_unlock(inode);
38851cc1 8763 relock = true;
edf064e7
GR
8764 } else if (iocb->ki_flags & IOCB_NOWAIT) {
8765 ret = -EAGAIN;
8766 goto out;
38851cc1 8767 }
364ecf36
QW
8768 ret = btrfs_delalloc_reserve_space(inode, &data_reserved,
8769 offset, count);
0934856d 8770 if (ret)
38851cc1 8771 goto out;
e1cbbfa5
JB
8772
8773 /*
8774 * We need to know how many extents we reserved so that we can
8775 * do the accounting properly if we go over the number we
8776 * originally calculated. Abuse current->journal_info for this.
8777 */
da17066c 8778 dio_data.reserve = round_up(count,
0b246afa 8779 fs_info->sectorsize);
f28a4928
FM
8780 dio_data.unsubmitted_oe_range_start = (u64)offset;
8781 dio_data.unsubmitted_oe_range_end = (u64)offset;
50745b0a 8782 current->journal_info = &dio_data;
97dcdea0 8783 down_read(&BTRFS_I(inode)->dio_sem);
ee39b432
DS
8784 } else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8785 &BTRFS_I(inode)->runtime_flags)) {
fe0f07d0 8786 inode_dio_end(inode);
38851cc1
MX
8787 flags = DIO_LOCKING | DIO_SKIP_HOLES;
8788 wakeup = false;
0934856d
MX
8789 }
8790
17f8c842 8791 ret = __blockdev_direct_IO(iocb, inode,
0b246afa 8792 fs_info->fs_devices->latest_bdev,
c8b8e32d 8793 iter, btrfs_get_blocks_direct, NULL,
17f8c842 8794 btrfs_submit_direct, flags);
6f673763 8795 if (iov_iter_rw(iter) == WRITE) {
97dcdea0 8796 up_read(&BTRFS_I(inode)->dio_sem);
e1cbbfa5 8797 current->journal_info = NULL;
ddba1bfc 8798 if (ret < 0 && ret != -EIOCBQUEUED) {
50745b0a 8799 if (dio_data.reserve)
bc42bda2
QW
8800 btrfs_delalloc_release_space(inode, data_reserved,
8801 offset, dio_data.reserve);
f28a4928
FM
8802 /*
8803 * On error we might have left some ordered extents
8804 * without submitting corresponding bios for them, so
8805 * cleanup them up to avoid other tasks getting them
8806 * and waiting for them to complete forever.
8807 */
8808 if (dio_data.unsubmitted_oe_range_start <
8809 dio_data.unsubmitted_oe_range_end)
52427260 8810 __endio_write_update_ordered(inode,
f28a4928
FM
8811 dio_data.unsubmitted_oe_range_start,
8812 dio_data.unsubmitted_oe_range_end -
8813 dio_data.unsubmitted_oe_range_start,
52427260 8814 false);
ddba1bfc 8815 } else if (ret >= 0 && (size_t)ret < count)
bc42bda2
QW
8816 btrfs_delalloc_release_space(inode, data_reserved,
8817 offset, count - (size_t)ret);
69fe2d75 8818 btrfs_delalloc_release_extents(BTRFS_I(inode), count);
0934856d 8819 }
38851cc1 8820out:
2e60a51e 8821 if (wakeup)
fe0f07d0 8822 inode_dio_end(inode);
38851cc1 8823 if (relock)
5955102c 8824 inode_lock(inode);
0934856d 8825
364ecf36 8826 extent_changeset_free(data_reserved);
0934856d 8827 return ret;
16432985
CM
8828}
8829
05dadc09
TI
8830#define BTRFS_FIEMAP_FLAGS (FIEMAP_FLAG_SYNC)
8831
1506fcc8
YS
8832static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8833 __u64 start, __u64 len)
8834{
05dadc09
TI
8835 int ret;
8836
8837 ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8838 if (ret)
8839 return ret;
8840
ec29ed5b 8841 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
1506fcc8
YS
8842}
8843
a52d9a80 8844int btrfs_readpage(struct file *file, struct page *page)
9ebefb18 8845{
d1310b2e
CM
8846 struct extent_io_tree *tree;
8847 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 8848 return extent_read_full_page(tree, page, btrfs_get_extent, 0);
9ebefb18 8849}
1832a6d5 8850
a52d9a80 8851static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
39279cc3 8852{
d1310b2e 8853 struct extent_io_tree *tree;
be7bd730
JB
8854 struct inode *inode = page->mapping->host;
8855 int ret;
b888db2b
CM
8856
8857 if (current->flags & PF_MEMALLOC) {
8858 redirty_page_for_writepage(wbc, page);
8859 unlock_page(page);
8860 return 0;
8861 }
be7bd730
JB
8862
8863 /*
8864 * If we are under memory pressure we will call this directly from the
8865 * VM, we need to make sure we have the inode referenced for the ordered
8866 * extent. If not just return like we didn't do anything.
8867 */
8868 if (!igrab(inode)) {
8869 redirty_page_for_writepage(wbc, page);
8870 return AOP_WRITEPAGE_ACTIVATE;
8871 }
d1310b2e 8872 tree = &BTRFS_I(page->mapping->host)->io_tree;
be7bd730
JB
8873 ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8874 btrfs_add_delayed_iput(inode);
8875 return ret;
9ebefb18
CM
8876}
8877
48a3b636
ES
8878static int btrfs_writepages(struct address_space *mapping,
8879 struct writeback_control *wbc)
b293f02e 8880{
d1310b2e 8881 struct extent_io_tree *tree;
771ed689 8882
d1310b2e 8883 tree = &BTRFS_I(mapping->host)->io_tree;
b293f02e
CM
8884 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8885}
8886
3ab2fb5a
CM
8887static int
8888btrfs_readpages(struct file *file, struct address_space *mapping,
8889 struct list_head *pages, unsigned nr_pages)
8890{
d1310b2e
CM
8891 struct extent_io_tree *tree;
8892 tree = &BTRFS_I(mapping->host)->io_tree;
3ab2fb5a
CM
8893 return extent_readpages(tree, mapping, pages, nr_pages,
8894 btrfs_get_extent);
8895}
e6dcd2dc 8896static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
9ebefb18 8897{
d1310b2e
CM
8898 struct extent_io_tree *tree;
8899 struct extent_map_tree *map;
a52d9a80 8900 int ret;
8c2383c3 8901
d1310b2e
CM
8902 tree = &BTRFS_I(page->mapping->host)->io_tree;
8903 map = &BTRFS_I(page->mapping->host)->extent_tree;
70dec807 8904 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
a52d9a80
CM
8905 if (ret == 1) {
8906 ClearPagePrivate(page);
8907 set_page_private(page, 0);
09cbfeaf 8908 put_page(page);
39279cc3 8909 }
a52d9a80 8910 return ret;
39279cc3
CM
8911}
8912
e6dcd2dc
CM
8913static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8914{
98509cfc
CM
8915 if (PageWriteback(page) || PageDirty(page))
8916 return 0;
3ba7ab22 8917 return __btrfs_releasepage(page, gfp_flags);
e6dcd2dc
CM
8918}
8919
d47992f8
LC
8920static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8921 unsigned int length)
39279cc3 8922{
5fd02043 8923 struct inode *inode = page->mapping->host;
d1310b2e 8924 struct extent_io_tree *tree;
e6dcd2dc 8925 struct btrfs_ordered_extent *ordered;
2ac55d41 8926 struct extent_state *cached_state = NULL;
e6dcd2dc 8927 u64 page_start = page_offset(page);
09cbfeaf 8928 u64 page_end = page_start + PAGE_SIZE - 1;
dbfdb6d1
CR
8929 u64 start;
8930 u64 end;
131e404a 8931 int inode_evicting = inode->i_state & I_FREEING;
39279cc3 8932
8b62b72b
CM
8933 /*
8934 * we have the page locked, so new writeback can't start,
8935 * and the dirty bit won't be cleared while we are here.
8936 *
8937 * Wait for IO on this page so that we can safely clear
8938 * the PagePrivate2 bit and do ordered accounting
8939 */
e6dcd2dc 8940 wait_on_page_writeback(page);
8b62b72b 8941
5fd02043 8942 tree = &BTRFS_I(inode)->io_tree;
e6dcd2dc
CM
8943 if (offset) {
8944 btrfs_releasepage(page, GFP_NOFS);
8945 return;
8946 }
131e404a
FDBM
8947
8948 if (!inode_evicting)
ff13db41 8949 lock_extent_bits(tree, page_start, page_end, &cached_state);
dbfdb6d1
CR
8950again:
8951 start = page_start;
a776c6fa 8952 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
dbfdb6d1 8953 page_end - start + 1);
e6dcd2dc 8954 if (ordered) {
dbfdb6d1 8955 end = min(page_end, ordered->file_offset + ordered->len - 1);
eb84ae03
CM
8956 /*
8957 * IO on this page will never be started, so we need
8958 * to account for any ordered extents now
8959 */
131e404a 8960 if (!inode_evicting)
dbfdb6d1 8961 clear_extent_bit(tree, start, end,
131e404a 8962 EXTENT_DIRTY | EXTENT_DELALLOC |
a7e3b975 8963 EXTENT_DELALLOC_NEW |
131e404a
FDBM
8964 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8965 EXTENT_DEFRAG, 1, 0, &cached_state,
8966 GFP_NOFS);
8b62b72b
CM
8967 /*
8968 * whoever cleared the private bit is responsible
8969 * for the finish_ordered_io
8970 */
77cef2ec
JB
8971 if (TestClearPagePrivate2(page)) {
8972 struct btrfs_ordered_inode_tree *tree;
8973 u64 new_len;
8974
8975 tree = &BTRFS_I(inode)->ordered_tree;
8976
8977 spin_lock_irq(&tree->lock);
8978 set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
dbfdb6d1 8979 new_len = start - ordered->file_offset;
77cef2ec
JB
8980 if (new_len < ordered->truncated_len)
8981 ordered->truncated_len = new_len;
8982 spin_unlock_irq(&tree->lock);
8983
8984 if (btrfs_dec_test_ordered_pending(inode, &ordered,
dbfdb6d1
CR
8985 start,
8986 end - start + 1, 1))
77cef2ec 8987 btrfs_finish_ordered_io(ordered);
8b62b72b 8988 }
e6dcd2dc 8989 btrfs_put_ordered_extent(ordered);
131e404a
FDBM
8990 if (!inode_evicting) {
8991 cached_state = NULL;
dbfdb6d1 8992 lock_extent_bits(tree, start, end,
131e404a
FDBM
8993 &cached_state);
8994 }
dbfdb6d1
CR
8995
8996 start = end + 1;
8997 if (start < page_end)
8998 goto again;
131e404a
FDBM
8999 }
9000
b9d0b389
QW
9001 /*
9002 * Qgroup reserved space handler
9003 * Page here will be either
9004 * 1) Already written to disk
9005 * In this case, its reserved space is released from data rsv map
9006 * and will be freed by delayed_ref handler finally.
9007 * So even we call qgroup_free_data(), it won't decrease reserved
9008 * space.
9009 * 2) Not written to disk
0b34c261
GR
9010 * This means the reserved space should be freed here. However,
9011 * if a truncate invalidates the page (by clearing PageDirty)
9012 * and the page is accounted for while allocating extent
9013 * in btrfs_check_data_free_space() we let delayed_ref to
9014 * free the entire extent.
b9d0b389 9015 */
0b34c261 9016 if (PageDirty(page))
bc42bda2 9017 btrfs_qgroup_free_data(inode, NULL, page_start, PAGE_SIZE);
131e404a
FDBM
9018 if (!inode_evicting) {
9019 clear_extent_bit(tree, page_start, page_end,
9020 EXTENT_LOCKED | EXTENT_DIRTY |
a7e3b975
FM
9021 EXTENT_DELALLOC | EXTENT_DELALLOC_NEW |
9022 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
131e404a
FDBM
9023 &cached_state, GFP_NOFS);
9024
9025 __btrfs_releasepage(page, GFP_NOFS);
e6dcd2dc 9026 }
e6dcd2dc 9027
4a096752 9028 ClearPageChecked(page);
9ad6b7bc 9029 if (PagePrivate(page)) {
9ad6b7bc
CM
9030 ClearPagePrivate(page);
9031 set_page_private(page, 0);
09cbfeaf 9032 put_page(page);
9ad6b7bc 9033 }
39279cc3
CM
9034}
9035
9ebefb18
CM
9036/*
9037 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
9038 * called from a page fault handler when a page is first dirtied. Hence we must
9039 * be careful to check for EOF conditions here. We set the page up correctly
9040 * for a written page which means we get ENOSPC checking when writing into
9041 * holes and correct delalloc and unwritten extent mapping on filesystems that
9042 * support these features.
9043 *
9044 * We are not allowed to take the i_mutex here so we have to play games to
9045 * protect against truncate races as the page could now be beyond EOF. Because
9046 * vmtruncate() writes the inode size before removing pages, once we have the
9047 * page lock we can determine safely if the page is beyond EOF. If it is not
9048 * beyond EOF, then the page is guaranteed safe against truncation until we
9049 * unlock the page.
9050 */
11bac800 9051int btrfs_page_mkwrite(struct vm_fault *vmf)
9ebefb18 9052{
c2ec175c 9053 struct page *page = vmf->page;
11bac800 9054 struct inode *inode = file_inode(vmf->vma->vm_file);
0b246afa 9055 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc
CM
9056 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
9057 struct btrfs_ordered_extent *ordered;
2ac55d41 9058 struct extent_state *cached_state = NULL;
364ecf36 9059 struct extent_changeset *data_reserved = NULL;
e6dcd2dc
CM
9060 char *kaddr;
9061 unsigned long zero_start;
9ebefb18 9062 loff_t size;
1832a6d5 9063 int ret;
9998eb70 9064 int reserved = 0;
d0b7da88 9065 u64 reserved_space;
a52d9a80 9066 u64 page_start;
e6dcd2dc 9067 u64 page_end;
d0b7da88
CR
9068 u64 end;
9069
09cbfeaf 9070 reserved_space = PAGE_SIZE;
9ebefb18 9071
b2b5ef5c 9072 sb_start_pagefault(inode->i_sb);
df480633 9073 page_start = page_offset(page);
09cbfeaf 9074 page_end = page_start + PAGE_SIZE - 1;
d0b7da88 9075 end = page_end;
df480633 9076
d0b7da88
CR
9077 /*
9078 * Reserving delalloc space after obtaining the page lock can lead to
9079 * deadlock. For example, if a dirty page is locked by this function
9080 * and the call to btrfs_delalloc_reserve_space() ends up triggering
9081 * dirty page write out, then the btrfs_writepage() function could
9082 * end up waiting indefinitely to get a lock on the page currently
9083 * being processed by btrfs_page_mkwrite() function.
9084 */
364ecf36 9085 ret = btrfs_delalloc_reserve_space(inode, &data_reserved, page_start,
d0b7da88 9086 reserved_space);
9998eb70 9087 if (!ret) {
11bac800 9088 ret = file_update_time(vmf->vma->vm_file);
9998eb70
CM
9089 reserved = 1;
9090 }
56a76f82
NP
9091 if (ret) {
9092 if (ret == -ENOMEM)
9093 ret = VM_FAULT_OOM;
9094 else /* -ENOSPC, -EIO, etc */
9095 ret = VM_FAULT_SIGBUS;
9998eb70
CM
9096 if (reserved)
9097 goto out;
9098 goto out_noreserve;
56a76f82 9099 }
1832a6d5 9100
56a76f82 9101 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
e6dcd2dc 9102again:
9ebefb18 9103 lock_page(page);
9ebefb18 9104 size = i_size_read(inode);
a52d9a80 9105
9ebefb18 9106 if ((page->mapping != inode->i_mapping) ||
e6dcd2dc 9107 (page_start >= size)) {
9ebefb18
CM
9108 /* page got truncated out from underneath us */
9109 goto out_unlock;
9110 }
e6dcd2dc
CM
9111 wait_on_page_writeback(page);
9112
ff13db41 9113 lock_extent_bits(io_tree, page_start, page_end, &cached_state);
e6dcd2dc
CM
9114 set_page_extent_mapped(page);
9115
eb84ae03
CM
9116 /*
9117 * we can't set the delalloc bits if there are pending ordered
9118 * extents. Drop our locks and wait for them to finish
9119 */
a776c6fa
NB
9120 ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), page_start,
9121 PAGE_SIZE);
e6dcd2dc 9122 if (ordered) {
2ac55d41
JB
9123 unlock_extent_cached(io_tree, page_start, page_end,
9124 &cached_state, GFP_NOFS);
e6dcd2dc 9125 unlock_page(page);
eb84ae03 9126 btrfs_start_ordered_extent(inode, ordered, 1);
e6dcd2dc
CM
9127 btrfs_put_ordered_extent(ordered);
9128 goto again;
9129 }
9130
09cbfeaf 9131 if (page->index == ((size - 1) >> PAGE_SHIFT)) {
da17066c 9132 reserved_space = round_up(size - page_start,
0b246afa 9133 fs_info->sectorsize);
09cbfeaf 9134 if (reserved_space < PAGE_SIZE) {
d0b7da88 9135 end = page_start + reserved_space - 1;
bc42bda2
QW
9136 btrfs_delalloc_release_space(inode, data_reserved,
9137 page_start, PAGE_SIZE - reserved_space);
d0b7da88
CR
9138 }
9139 }
9140
fbf19087 9141 /*
5416034f
LB
9142 * page_mkwrite gets called when the page is firstly dirtied after it's
9143 * faulted in, but write(2) could also dirty a page and set delalloc
9144 * bits, thus in this case for space account reason, we still need to
9145 * clear any delalloc bits within this page range since we have to
9146 * reserve data&meta space before lock_page() (see above comments).
fbf19087 9147 */
d0b7da88 9148 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, end,
9e8a4a8b
LB
9149 EXTENT_DIRTY | EXTENT_DELALLOC |
9150 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
2ac55d41 9151 0, 0, &cached_state, GFP_NOFS);
fbf19087 9152
d0b7da88 9153 ret = btrfs_set_extent_delalloc(inode, page_start, end,
ba8b04c1 9154 &cached_state, 0);
9ed74f2d 9155 if (ret) {
2ac55d41
JB
9156 unlock_extent_cached(io_tree, page_start, page_end,
9157 &cached_state, GFP_NOFS);
9ed74f2d
JB
9158 ret = VM_FAULT_SIGBUS;
9159 goto out_unlock;
9160 }
e6dcd2dc 9161 ret = 0;
9ebefb18
CM
9162
9163 /* page is wholly or partially inside EOF */
09cbfeaf
KS
9164 if (page_start + PAGE_SIZE > size)
9165 zero_start = size & ~PAGE_MASK;
9ebefb18 9166 else
09cbfeaf 9167 zero_start = PAGE_SIZE;
9ebefb18 9168
09cbfeaf 9169 if (zero_start != PAGE_SIZE) {
e6dcd2dc 9170 kaddr = kmap(page);
09cbfeaf 9171 memset(kaddr + zero_start, 0, PAGE_SIZE - zero_start);
e6dcd2dc
CM
9172 flush_dcache_page(page);
9173 kunmap(page);
9174 }
247e743c 9175 ClearPageChecked(page);
e6dcd2dc 9176 set_page_dirty(page);
50a9b214 9177 SetPageUptodate(page);
5a3f23d5 9178
0b246afa 9179 BTRFS_I(inode)->last_trans = fs_info->generation;
257c62e1 9180 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
46d8bc34 9181 BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
257c62e1 9182
2ac55d41 9183 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
9ebefb18
CM
9184
9185out_unlock:
b2b5ef5c 9186 if (!ret) {
8b62f87b 9187 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
b2b5ef5c 9188 sb_end_pagefault(inode->i_sb);
364ecf36 9189 extent_changeset_free(data_reserved);
50a9b214 9190 return VM_FAULT_LOCKED;
b2b5ef5c 9191 }
9ebefb18 9192 unlock_page(page);
1832a6d5 9193out:
8b62f87b 9194 btrfs_delalloc_release_extents(BTRFS_I(inode), PAGE_SIZE);
bc42bda2
QW
9195 btrfs_delalloc_release_space(inode, data_reserved, page_start,
9196 reserved_space);
9998eb70 9197out_noreserve:
b2b5ef5c 9198 sb_end_pagefault(inode->i_sb);
364ecf36 9199 extent_changeset_free(data_reserved);
9ebefb18
CM
9200 return ret;
9201}
9202
a41ad394 9203static int btrfs_truncate(struct inode *inode)
39279cc3 9204{
0b246afa 9205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
39279cc3 9206 struct btrfs_root *root = BTRFS_I(inode)->root;
fcb80c2a 9207 struct btrfs_block_rsv *rsv;
a71754fc 9208 int ret = 0;
3893e33b 9209 int err = 0;
39279cc3 9210 struct btrfs_trans_handle *trans;
0b246afa
JM
9211 u64 mask = fs_info->sectorsize - 1;
9212 u64 min_size = btrfs_calc_trunc_metadata_size(fs_info, 1);
39279cc3 9213
0ef8b726
JB
9214 ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
9215 (u64)-1);
9216 if (ret)
9217 return ret;
39279cc3 9218
fcb80c2a 9219 /*
01327610 9220 * Yes ladies and gentlemen, this is indeed ugly. The fact is we have
fcb80c2a
JB
9221 * 3 things going on here
9222 *
9223 * 1) We need to reserve space for our orphan item and the space to
9224 * delete our orphan item. Lord knows we don't want to have a dangling
9225 * orphan item because we didn't reserve space to remove it.
9226 *
9227 * 2) We need to reserve space to update our inode.
9228 *
9229 * 3) We need to have something to cache all the space that is going to
9230 * be free'd up by the truncate operation, but also have some slack
9231 * space reserved in case it uses space during the truncate (thank you
9232 * very much snapshotting).
9233 *
01327610 9234 * And we need these to all be separate. The fact is we can use a lot of
fcb80c2a 9235 * space doing the truncate, and we have no earthly idea how much space
01327610 9236 * we will use, so we need the truncate reservation to be separate so it
fcb80c2a
JB
9237 * doesn't end up using space reserved for updating the inode or
9238 * removing the orphan item. We also need to be able to stop the
9239 * transaction and start a new one, which means we need to be able to
9240 * update the inode several times, and we have no idea of knowing how
9241 * many times that will be, so we can't just reserve 1 item for the
01327610 9242 * entirety of the operation, so that has to be done separately as well.
fcb80c2a
JB
9243 * Then there is the orphan item, which does indeed need to be held on
9244 * to for the whole operation, and we need nobody to touch this reserved
9245 * space except the orphan code.
9246 *
9247 * So that leaves us with
9248 *
9249 * 1) root->orphan_block_rsv - for the orphan deletion.
9250 * 2) rsv - for the truncate reservation, which we will steal from the
9251 * transaction reservation.
9252 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
9253 * updating the inode.
9254 */
2ff7e61e 9255 rsv = btrfs_alloc_block_rsv(fs_info, BTRFS_BLOCK_RSV_TEMP);
fcb80c2a
JB
9256 if (!rsv)
9257 return -ENOMEM;
4a338542 9258 rsv->size = min_size;
ca7e70f5 9259 rsv->failfast = 1;
f0cd846e 9260
907cbceb 9261 /*
07127184 9262 * 1 for the truncate slack space
907cbceb
JB
9263 * 1 for updating the inode.
9264 */
f3fe820c 9265 trans = btrfs_start_transaction(root, 2);
fcb80c2a
JB
9266 if (IS_ERR(trans)) {
9267 err = PTR_ERR(trans);
9268 goto out;
9269 }
f0cd846e 9270
907cbceb 9271 /* Migrate the slack space for the truncate to our reserve */
0b246afa 9272 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv, rsv,
25d609f8 9273 min_size, 0);
fcb80c2a 9274 BUG_ON(ret);
f0cd846e 9275
5dc562c5
JB
9276 /*
9277 * So if we truncate and then write and fsync we normally would just
9278 * write the extents that changed, which is a problem if we need to
9279 * first truncate that entire inode. So set this flag so we write out
9280 * all of the extents in the inode to the sync log so we're completely
9281 * safe.
9282 */
9283 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
ca7e70f5 9284 trans->block_rsv = rsv;
907cbceb 9285
8082510e
YZ
9286 while (1) {
9287 ret = btrfs_truncate_inode_items(trans, root, inode,
9288 inode->i_size,
9289 BTRFS_EXTENT_DATA_KEY);
ddfae63c 9290 trans->block_rsv = &fs_info->trans_block_rsv;
28ed1345 9291 if (ret != -ENOSPC && ret != -EAGAIN) {
3893e33b 9292 err = ret;
8082510e 9293 break;
3893e33b 9294 }
39279cc3 9295
8082510e 9296 ret = btrfs_update_inode(trans, root, inode);
3893e33b
JB
9297 if (ret) {
9298 err = ret;
9299 break;
9300 }
ca7e70f5 9301
3a45bb20 9302 btrfs_end_transaction(trans);
2ff7e61e 9303 btrfs_btree_balance_dirty(fs_info);
ca7e70f5
JB
9304
9305 trans = btrfs_start_transaction(root, 2);
9306 if (IS_ERR(trans)) {
9307 ret = err = PTR_ERR(trans);
9308 trans = NULL;
9309 break;
9310 }
9311
47b5d646 9312 btrfs_block_rsv_release(fs_info, rsv, -1);
0b246afa 9313 ret = btrfs_block_rsv_migrate(&fs_info->trans_block_rsv,
25d609f8 9314 rsv, min_size, 0);
ca7e70f5
JB
9315 BUG_ON(ret); /* shouldn't happen */
9316 trans->block_rsv = rsv;
8082510e
YZ
9317 }
9318
ddfae63c
JB
9319 /*
9320 * We can't call btrfs_truncate_block inside a trans handle as we could
9321 * deadlock with freeze, if we got NEED_TRUNCATE_BLOCK then we know
9322 * we've truncated everything except the last little bit, and can do
9323 * btrfs_truncate_block and then update the disk_i_size.
9324 */
9325 if (ret == NEED_TRUNCATE_BLOCK) {
9326 btrfs_end_transaction(trans);
9327 btrfs_btree_balance_dirty(fs_info);
9328
9329 ret = btrfs_truncate_block(inode, inode->i_size, 0, 0);
9330 if (ret)
9331 goto out;
9332 trans = btrfs_start_transaction(root, 1);
9333 if (IS_ERR(trans)) {
9334 ret = PTR_ERR(trans);
9335 goto out;
9336 }
9337 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
9338 }
9339
8082510e 9340 if (ret == 0 && inode->i_nlink > 0) {
fcb80c2a 9341 trans->block_rsv = root->orphan_block_rsv;
3d6ae7bb 9342 ret = btrfs_orphan_del(trans, BTRFS_I(inode));
3893e33b
JB
9343 if (ret)
9344 err = ret;
8082510e
YZ
9345 }
9346
917c16b2 9347 if (trans) {
0b246afa 9348 trans->block_rsv = &fs_info->trans_block_rsv;
917c16b2
CM
9349 ret = btrfs_update_inode(trans, root, inode);
9350 if (ret && !err)
9351 err = ret;
7b128766 9352
3a45bb20 9353 ret = btrfs_end_transaction(trans);
2ff7e61e 9354 btrfs_btree_balance_dirty(fs_info);
917c16b2 9355 }
fcb80c2a 9356out:
2ff7e61e 9357 btrfs_free_block_rsv(fs_info, rsv);
fcb80c2a 9358
3893e33b
JB
9359 if (ret && !err)
9360 err = ret;
a41ad394 9361
3893e33b 9362 return err;
39279cc3
CM
9363}
9364
d352ac68
CM
9365/*
9366 * create a new subvolume directory/inode (helper for the ioctl).
9367 */
d2fb3437 9368int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
63541927
FDBM
9369 struct btrfs_root *new_root,
9370 struct btrfs_root *parent_root,
9371 u64 new_dirid)
39279cc3 9372{
39279cc3 9373 struct inode *inode;
76dda93c 9374 int err;
00e4e6b3 9375 u64 index = 0;
39279cc3 9376
12fc9d09
FA
9377 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
9378 new_dirid, new_dirid,
9379 S_IFDIR | (~current_umask() & S_IRWXUGO),
9380 &index);
54aa1f4d 9381 if (IS_ERR(inode))
f46b5a66 9382 return PTR_ERR(inode);
39279cc3
CM
9383 inode->i_op = &btrfs_dir_inode_operations;
9384 inode->i_fop = &btrfs_dir_file_operations;
9385
bfe86848 9386 set_nlink(inode, 1);
6ef06d27 9387 btrfs_i_size_write(BTRFS_I(inode), 0);
b0d5d10f 9388 unlock_new_inode(inode);
3b96362c 9389
63541927
FDBM
9390 err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
9391 if (err)
9392 btrfs_err(new_root->fs_info,
351fd353 9393 "error inheriting subvolume %llu properties: %d",
63541927
FDBM
9394 new_root->root_key.objectid, err);
9395
76dda93c 9396 err = btrfs_update_inode(trans, new_root, inode);
cb8e7090 9397
76dda93c 9398 iput(inode);
ce598979 9399 return err;
39279cc3
CM
9400}
9401
39279cc3
CM
9402struct inode *btrfs_alloc_inode(struct super_block *sb)
9403{
69fe2d75 9404 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
39279cc3 9405 struct btrfs_inode *ei;
2ead6ae7 9406 struct inode *inode;
39279cc3
CM
9407
9408 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
9409 if (!ei)
9410 return NULL;
2ead6ae7
YZ
9411
9412 ei->root = NULL;
2ead6ae7 9413 ei->generation = 0;
15ee9bc7 9414 ei->last_trans = 0;
257c62e1 9415 ei->last_sub_trans = 0;
e02119d5 9416 ei->logged_trans = 0;
2ead6ae7 9417 ei->delalloc_bytes = 0;
a7e3b975 9418 ei->new_delalloc_bytes = 0;
47059d93 9419 ei->defrag_bytes = 0;
2ead6ae7
YZ
9420 ei->disk_i_size = 0;
9421 ei->flags = 0;
7709cde3 9422 ei->csum_bytes = 0;
2ead6ae7 9423 ei->index_cnt = (u64)-1;
67de1176 9424 ei->dir_index = 0;
2ead6ae7 9425 ei->last_unlink_trans = 0;
46d8bc34 9426 ei->last_log_commit = 0;
8089fe62 9427 ei->delayed_iput_count = 0;
2ead6ae7 9428
9e0baf60
JB
9429 spin_lock_init(&ei->lock);
9430 ei->outstanding_extents = 0;
69fe2d75
JB
9431 if (sb->s_magic != BTRFS_TEST_MAGIC)
9432 btrfs_init_metadata_block_rsv(fs_info, &ei->block_rsv,
9433 BTRFS_BLOCK_RSV_DELALLOC);
72ac3c0d 9434 ei->runtime_flags = 0;
b52aa8c9 9435 ei->prop_compress = BTRFS_COMPRESS_NONE;
eec63c65 9436 ei->defrag_compress = BTRFS_COMPRESS_NONE;
2ead6ae7 9437
16cdcec7
MX
9438 ei->delayed_node = NULL;
9439
9cc97d64 9440 ei->i_otime.tv_sec = 0;
9441 ei->i_otime.tv_nsec = 0;
9442
2ead6ae7 9443 inode = &ei->vfs_inode;
a8067e02 9444 extent_map_tree_init(&ei->extent_tree);
c6100a4b
JB
9445 extent_io_tree_init(&ei->io_tree, inode);
9446 extent_io_tree_init(&ei->io_failure_tree, inode);
0b32f4bb
JB
9447 ei->io_tree.track_uptodate = 1;
9448 ei->io_failure_tree.track_uptodate = 1;
b812ce28 9449 atomic_set(&ei->sync_writers, 0);
2ead6ae7 9450 mutex_init(&ei->log_mutex);
f248679e 9451 mutex_init(&ei->delalloc_mutex);
e6dcd2dc 9452 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
2ead6ae7 9453 INIT_LIST_HEAD(&ei->delalloc_inodes);
8089fe62 9454 INIT_LIST_HEAD(&ei->delayed_iput);
2ead6ae7 9455 RB_CLEAR_NODE(&ei->rb_node);
5f9a8a51 9456 init_rwsem(&ei->dio_sem);
2ead6ae7
YZ
9457
9458 return inode;
39279cc3
CM
9459}
9460
aaedb55b
JB
9461#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
9462void btrfs_test_destroy_inode(struct inode *inode)
9463{
dcdbc059 9464 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
aaedb55b
JB
9465 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9466}
9467#endif
9468
fa0d7e3d
NP
9469static void btrfs_i_callback(struct rcu_head *head)
9470{
9471 struct inode *inode = container_of(head, struct inode, i_rcu);
fa0d7e3d
NP
9472 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
9473}
9474
39279cc3
CM
9475void btrfs_destroy_inode(struct inode *inode)
9476{
0b246afa 9477 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
e6dcd2dc 9478 struct btrfs_ordered_extent *ordered;
5a3f23d5
CM
9479 struct btrfs_root *root = BTRFS_I(inode)->root;
9480
b3d9b7a3 9481 WARN_ON(!hlist_empty(&inode->i_dentry));
39279cc3 9482 WARN_ON(inode->i_data.nrpages);
69fe2d75
JB
9483 WARN_ON(BTRFS_I(inode)->block_rsv.reserved);
9484 WARN_ON(BTRFS_I(inode)->block_rsv.size);
9e0baf60 9485 WARN_ON(BTRFS_I(inode)->outstanding_extents);
7709cde3 9486 WARN_ON(BTRFS_I(inode)->delalloc_bytes);
a7e3b975 9487 WARN_ON(BTRFS_I(inode)->new_delalloc_bytes);
7709cde3 9488 WARN_ON(BTRFS_I(inode)->csum_bytes);
47059d93 9489 WARN_ON(BTRFS_I(inode)->defrag_bytes);
39279cc3 9490
a6dbd429
JB
9491 /*
9492 * This can happen where we create an inode, but somebody else also
9493 * created the same inode and we need to destroy the one we already
9494 * created.
9495 */
9496 if (!root)
9497 goto free;
9498
8a35d95f
JB
9499 if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
9500 &BTRFS_I(inode)->runtime_flags)) {
0b246afa 9501 btrfs_info(fs_info, "inode %llu still on the orphan list",
4a0cc7ca 9502 btrfs_ino(BTRFS_I(inode)));
8a35d95f 9503 atomic_dec(&root->orphan_inodes);
7b128766 9504 }
7b128766 9505
d397712b 9506 while (1) {
e6dcd2dc
CM
9507 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
9508 if (!ordered)
9509 break;
9510 else {
0b246afa 9511 btrfs_err(fs_info,
5d163e0e
JM
9512 "found ordered extent %llu %llu on inode cleanup",
9513 ordered->file_offset, ordered->len);
e6dcd2dc
CM
9514 btrfs_remove_ordered_extent(inode, ordered);
9515 btrfs_put_ordered_extent(ordered);
9516 btrfs_put_ordered_extent(ordered);
9517 }
9518 }
56fa9d07 9519 btrfs_qgroup_check_reserved_leak(inode);
5d4f98a2 9520 inode_tree_del(inode);
dcdbc059 9521 btrfs_drop_extent_cache(BTRFS_I(inode), 0, (u64)-1, 0);
a6dbd429 9522free:
fa0d7e3d 9523 call_rcu(&inode->i_rcu, btrfs_i_callback);
39279cc3
CM
9524}
9525
45321ac5 9526int btrfs_drop_inode(struct inode *inode)
76dda93c
YZ
9527{
9528 struct btrfs_root *root = BTRFS_I(inode)->root;
45321ac5 9529
6379ef9f
NA
9530 if (root == NULL)
9531 return 1;
9532
fa6ac876 9533 /* the snap/subvol tree is on deleting */
69e9c6c6 9534 if (btrfs_root_refs(&root->root_item) == 0)
45321ac5 9535 return 1;
76dda93c 9536 else
45321ac5 9537 return generic_drop_inode(inode);
76dda93c
YZ
9538}
9539
0ee0fda0 9540static void init_once(void *foo)
39279cc3
CM
9541{
9542 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9543
9544 inode_init_once(&ei->vfs_inode);
9545}
9546
9547void btrfs_destroy_cachep(void)
9548{
8c0a8537
KS
9549 /*
9550 * Make sure all delayed rcu free inodes are flushed before we
9551 * destroy cache.
9552 */
9553 rcu_barrier();
5598e900
KM
9554 kmem_cache_destroy(btrfs_inode_cachep);
9555 kmem_cache_destroy(btrfs_trans_handle_cachep);
5598e900
KM
9556 kmem_cache_destroy(btrfs_path_cachep);
9557 kmem_cache_destroy(btrfs_free_space_cachep);
39279cc3
CM
9558}
9559
9560int btrfs_init_cachep(void)
9561{
837e1972 9562 btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9601e3f6 9563 sizeof(struct btrfs_inode), 0,
5d097056
VD
9564 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT,
9565 init_once);
39279cc3
CM
9566 if (!btrfs_inode_cachep)
9567 goto fail;
9601e3f6 9568
837e1972 9569 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9601e3f6 9570 sizeof(struct btrfs_trans_handle), 0,
fba4b697 9571 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9572 if (!btrfs_trans_handle_cachep)
9573 goto fail;
9601e3f6 9574
837e1972 9575 btrfs_path_cachep = kmem_cache_create("btrfs_path",
9601e3f6 9576 sizeof(struct btrfs_path), 0,
fba4b697 9577 SLAB_MEM_SPREAD, NULL);
39279cc3
CM
9578 if (!btrfs_path_cachep)
9579 goto fail;
9601e3f6 9580
837e1972 9581 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
dc89e982 9582 sizeof(struct btrfs_free_space), 0,
fba4b697 9583 SLAB_MEM_SPREAD, NULL);
dc89e982
JB
9584 if (!btrfs_free_space_cachep)
9585 goto fail;
9586
39279cc3
CM
9587 return 0;
9588fail:
9589 btrfs_destroy_cachep();
9590 return -ENOMEM;
9591}
9592
a528d35e
DH
9593static int btrfs_getattr(const struct path *path, struct kstat *stat,
9594 u32 request_mask, unsigned int flags)
39279cc3 9595{
df0af1a5 9596 u64 delalloc_bytes;
a528d35e 9597 struct inode *inode = d_inode(path->dentry);
fadc0d8b 9598 u32 blocksize = inode->i_sb->s_blocksize;
04a87e34
YS
9599 u32 bi_flags = BTRFS_I(inode)->flags;
9600
9601 stat->result_mask |= STATX_BTIME;
9602 stat->btime.tv_sec = BTRFS_I(inode)->i_otime.tv_sec;
9603 stat->btime.tv_nsec = BTRFS_I(inode)->i_otime.tv_nsec;
9604 if (bi_flags & BTRFS_INODE_APPEND)
9605 stat->attributes |= STATX_ATTR_APPEND;
9606 if (bi_flags & BTRFS_INODE_COMPRESS)
9607 stat->attributes |= STATX_ATTR_COMPRESSED;
9608 if (bi_flags & BTRFS_INODE_IMMUTABLE)
9609 stat->attributes |= STATX_ATTR_IMMUTABLE;
9610 if (bi_flags & BTRFS_INODE_NODUMP)
9611 stat->attributes |= STATX_ATTR_NODUMP;
9612
9613 stat->attributes_mask |= (STATX_ATTR_APPEND |
9614 STATX_ATTR_COMPRESSED |
9615 STATX_ATTR_IMMUTABLE |
9616 STATX_ATTR_NODUMP);
fadc0d8b 9617
39279cc3 9618 generic_fillattr(inode, stat);
0ee5dc67 9619 stat->dev = BTRFS_I(inode)->root->anon_dev;
df0af1a5
MX
9620
9621 spin_lock(&BTRFS_I(inode)->lock);
a7e3b975 9622 delalloc_bytes = BTRFS_I(inode)->new_delalloc_bytes;
df0af1a5 9623 spin_unlock(&BTRFS_I(inode)->lock);
fadc0d8b 9624 stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
df0af1a5 9625 ALIGN(delalloc_bytes, blocksize)) >> 9;
39279cc3
CM
9626 return 0;
9627}
9628
cdd1fedf
DF
9629static int btrfs_rename_exchange(struct inode *old_dir,
9630 struct dentry *old_dentry,
9631 struct inode *new_dir,
9632 struct dentry *new_dentry)
9633{
0b246afa 9634 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
cdd1fedf
DF
9635 struct btrfs_trans_handle *trans;
9636 struct btrfs_root *root = BTRFS_I(old_dir)->root;
9637 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9638 struct inode *new_inode = new_dentry->d_inode;
9639 struct inode *old_inode = old_dentry->d_inode;
c2050a45 9640 struct timespec ctime = current_time(old_inode);
cdd1fedf 9641 struct dentry *parent;
4a0cc7ca
NB
9642 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
9643 u64 new_ino = btrfs_ino(BTRFS_I(new_inode));
cdd1fedf
DF
9644 u64 old_idx = 0;
9645 u64 new_idx = 0;
9646 u64 root_objectid;
9647 int ret;
86e8aa0e
FM
9648 bool root_log_pinned = false;
9649 bool dest_log_pinned = false;
cdd1fedf
DF
9650
9651 /* we only allow rename subvolume link between subvolumes */
9652 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9653 return -EXDEV;
9654
9655 /* close the race window with snapshot create/destroy ioctl */
9656 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9657 down_read(&fs_info->subvol_sem);
cdd1fedf 9658 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9659 down_read(&fs_info->subvol_sem);
cdd1fedf
DF
9660
9661 /*
9662 * We want to reserve the absolute worst case amount of items. So if
9663 * both inodes are subvols and we need to unlink them then that would
9664 * require 4 item modifications, but if they are both normal inodes it
9665 * would require 5 item modifications, so we'll assume their normal
9666 * inodes. So 5 * 2 is 10, plus 2 for the new links, so 12 total items
9667 * should cover the worst case number of items we'll modify.
9668 */
9669 trans = btrfs_start_transaction(root, 12);
9670 if (IS_ERR(trans)) {
9671 ret = PTR_ERR(trans);
9672 goto out_notrans;
9673 }
9674
9675 /*
9676 * We need to find a free sequence number both in the source and
9677 * in the destination directory for the exchange.
9678 */
877574e2 9679 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &old_idx);
cdd1fedf
DF
9680 if (ret)
9681 goto out_fail;
877574e2 9682 ret = btrfs_set_inode_index(BTRFS_I(old_dir), &new_idx);
cdd1fedf
DF
9683 if (ret)
9684 goto out_fail;
9685
9686 BTRFS_I(old_inode)->dir_index = 0ULL;
9687 BTRFS_I(new_inode)->dir_index = 0ULL;
9688
9689 /* Reference for the source. */
9690 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9691 /* force full log commit if subvolume involved. */
0b246afa 9692 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9693 } else {
376e5a57
FM
9694 btrfs_pin_log_trans(root);
9695 root_log_pinned = true;
cdd1fedf
DF
9696 ret = btrfs_insert_inode_ref(trans, dest,
9697 new_dentry->d_name.name,
9698 new_dentry->d_name.len,
9699 old_ino,
f85b7379
DS
9700 btrfs_ino(BTRFS_I(new_dir)),
9701 old_idx);
cdd1fedf
DF
9702 if (ret)
9703 goto out_fail;
cdd1fedf
DF
9704 }
9705
9706 /* And now for the dest. */
9707 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9708 /* force full log commit if subvolume involved. */
0b246afa 9709 btrfs_set_log_full_commit(fs_info, trans);
cdd1fedf 9710 } else {
376e5a57
FM
9711 btrfs_pin_log_trans(dest);
9712 dest_log_pinned = true;
cdd1fedf
DF
9713 ret = btrfs_insert_inode_ref(trans, root,
9714 old_dentry->d_name.name,
9715 old_dentry->d_name.len,
9716 new_ino,
f85b7379
DS
9717 btrfs_ino(BTRFS_I(old_dir)),
9718 new_idx);
cdd1fedf
DF
9719 if (ret)
9720 goto out_fail;
cdd1fedf
DF
9721 }
9722
9723 /* Update inode version and ctime/mtime. */
9724 inode_inc_iversion(old_dir);
9725 inode_inc_iversion(new_dir);
9726 inode_inc_iversion(old_inode);
9727 inode_inc_iversion(new_inode);
9728 old_dir->i_ctime = old_dir->i_mtime = ctime;
9729 new_dir->i_ctime = new_dir->i_mtime = ctime;
9730 old_inode->i_ctime = ctime;
9731 new_inode->i_ctime = ctime;
9732
9733 if (old_dentry->d_parent != new_dentry->d_parent) {
f85b7379
DS
9734 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
9735 BTRFS_I(old_inode), 1);
9736 btrfs_record_unlink_dir(trans, BTRFS_I(new_dir),
9737 BTRFS_I(new_inode), 1);
cdd1fedf
DF
9738 }
9739
9740 /* src is a subvolume */
9741 if (old_ino == BTRFS_FIRST_FREE_OBJECTID) {
9742 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9743 ret = btrfs_unlink_subvol(trans, root, old_dir,
9744 root_objectid,
9745 old_dentry->d_name.name,
9746 old_dentry->d_name.len);
9747 } else { /* src is an inode */
4ec5934e
NB
9748 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
9749 BTRFS_I(old_dentry->d_inode),
cdd1fedf
DF
9750 old_dentry->d_name.name,
9751 old_dentry->d_name.len);
9752 if (!ret)
9753 ret = btrfs_update_inode(trans, root, old_inode);
9754 }
9755 if (ret) {
66642832 9756 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9757 goto out_fail;
9758 }
9759
9760 /* dest is a subvolume */
9761 if (new_ino == BTRFS_FIRST_FREE_OBJECTID) {
9762 root_objectid = BTRFS_I(new_inode)->root->root_key.objectid;
9763 ret = btrfs_unlink_subvol(trans, dest, new_dir,
9764 root_objectid,
9765 new_dentry->d_name.name,
9766 new_dentry->d_name.len);
9767 } else { /* dest is an inode */
4ec5934e
NB
9768 ret = __btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
9769 BTRFS_I(new_dentry->d_inode),
cdd1fedf
DF
9770 new_dentry->d_name.name,
9771 new_dentry->d_name.len);
9772 if (!ret)
9773 ret = btrfs_update_inode(trans, dest, new_inode);
9774 }
9775 if (ret) {
66642832 9776 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9777 goto out_fail;
9778 }
9779
db0a669f 9780 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
cdd1fedf
DF
9781 new_dentry->d_name.name,
9782 new_dentry->d_name.len, 0, old_idx);
9783 if (ret) {
66642832 9784 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9785 goto out_fail;
9786 }
9787
db0a669f 9788 ret = btrfs_add_link(trans, BTRFS_I(old_dir), BTRFS_I(new_inode),
cdd1fedf
DF
9789 old_dentry->d_name.name,
9790 old_dentry->d_name.len, 0, new_idx);
9791 if (ret) {
66642832 9792 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
9793 goto out_fail;
9794 }
9795
9796 if (old_inode->i_nlink == 1)
9797 BTRFS_I(old_inode)->dir_index = old_idx;
9798 if (new_inode->i_nlink == 1)
9799 BTRFS_I(new_inode)->dir_index = new_idx;
9800
86e8aa0e 9801 if (root_log_pinned) {
cdd1fedf 9802 parent = new_dentry->d_parent;
f85b7379
DS
9803 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
9804 parent);
cdd1fedf 9805 btrfs_end_log_trans(root);
86e8aa0e 9806 root_log_pinned = false;
cdd1fedf 9807 }
86e8aa0e 9808 if (dest_log_pinned) {
cdd1fedf 9809 parent = old_dentry->d_parent;
f85b7379
DS
9810 btrfs_log_new_name(trans, BTRFS_I(new_inode), BTRFS_I(new_dir),
9811 parent);
cdd1fedf 9812 btrfs_end_log_trans(dest);
86e8aa0e 9813 dest_log_pinned = false;
cdd1fedf
DF
9814 }
9815out_fail:
86e8aa0e
FM
9816 /*
9817 * If we have pinned a log and an error happened, we unpin tasks
9818 * trying to sync the log and force them to fallback to a transaction
9819 * commit if the log currently contains any of the inodes involved in
9820 * this rename operation (to ensure we do not persist a log with an
9821 * inconsistent state for any of these inodes or leading to any
9822 * inconsistencies when replayed). If the transaction was aborted, the
9823 * abortion reason is propagated to userspace when attempting to commit
9824 * the transaction. If the log does not contain any of these inodes, we
9825 * allow the tasks to sync it.
9826 */
9827 if (ret && (root_log_pinned || dest_log_pinned)) {
0f8939b8
NB
9828 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
9829 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
9830 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
86e8aa0e 9831 (new_inode &&
0f8939b8 9832 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 9833 btrfs_set_log_full_commit(fs_info, trans);
86e8aa0e
FM
9834
9835 if (root_log_pinned) {
9836 btrfs_end_log_trans(root);
9837 root_log_pinned = false;
9838 }
9839 if (dest_log_pinned) {
9840 btrfs_end_log_trans(dest);
9841 dest_log_pinned = false;
9842 }
9843 }
3a45bb20 9844 ret = btrfs_end_transaction(trans);
cdd1fedf
DF
9845out_notrans:
9846 if (new_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9847 up_read(&fs_info->subvol_sem);
cdd1fedf 9848 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9849 up_read(&fs_info->subvol_sem);
cdd1fedf
DF
9850
9851 return ret;
9852}
9853
9854static int btrfs_whiteout_for_rename(struct btrfs_trans_handle *trans,
9855 struct btrfs_root *root,
9856 struct inode *dir,
9857 struct dentry *dentry)
9858{
9859 int ret;
9860 struct inode *inode;
9861 u64 objectid;
9862 u64 index;
9863
9864 ret = btrfs_find_free_ino(root, &objectid);
9865 if (ret)
9866 return ret;
9867
9868 inode = btrfs_new_inode(trans, root, dir,
9869 dentry->d_name.name,
9870 dentry->d_name.len,
4a0cc7ca 9871 btrfs_ino(BTRFS_I(dir)),
cdd1fedf
DF
9872 objectid,
9873 S_IFCHR | WHITEOUT_MODE,
9874 &index);
9875
9876 if (IS_ERR(inode)) {
9877 ret = PTR_ERR(inode);
9878 return ret;
9879 }
9880
9881 inode->i_op = &btrfs_special_inode_operations;
9882 init_special_inode(inode, inode->i_mode,
9883 WHITEOUT_DEV);
9884
9885 ret = btrfs_init_inode_security(trans, inode, dir,
9886 &dentry->d_name);
9887 if (ret)
c9901618 9888 goto out;
cdd1fedf 9889
cef415af
NB
9890 ret = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
9891 BTRFS_I(inode), 0, index);
cdd1fedf 9892 if (ret)
c9901618 9893 goto out;
cdd1fedf
DF
9894
9895 ret = btrfs_update_inode(trans, root, inode);
c9901618 9896out:
cdd1fedf 9897 unlock_new_inode(inode);
c9901618
FM
9898 if (ret)
9899 inode_dec_link_count(inode);
cdd1fedf
DF
9900 iput(inode);
9901
c9901618 9902 return ret;
cdd1fedf
DF
9903}
9904
d397712b 9905static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
cdd1fedf
DF
9906 struct inode *new_dir, struct dentry *new_dentry,
9907 unsigned int flags)
39279cc3 9908{
0b246afa 9909 struct btrfs_fs_info *fs_info = btrfs_sb(old_dir->i_sb);
39279cc3 9910 struct btrfs_trans_handle *trans;
5062af35 9911 unsigned int trans_num_items;
39279cc3 9912 struct btrfs_root *root = BTRFS_I(old_dir)->root;
4df27c4d 9913 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
2b0143b5
DH
9914 struct inode *new_inode = d_inode(new_dentry);
9915 struct inode *old_inode = d_inode(old_dentry);
00e4e6b3 9916 u64 index = 0;
4df27c4d 9917 u64 root_objectid;
39279cc3 9918 int ret;
4a0cc7ca 9919 u64 old_ino = btrfs_ino(BTRFS_I(old_inode));
3dc9e8f7 9920 bool log_pinned = false;
39279cc3 9921
4a0cc7ca 9922 if (btrfs_ino(BTRFS_I(new_dir)) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
f679a840
YZ
9923 return -EPERM;
9924
4df27c4d 9925 /* we only allow rename subvolume link between subvolumes */
33345d01 9926 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
3394e160
CM
9927 return -EXDEV;
9928
33345d01 9929 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
4a0cc7ca 9930 (new_inode && btrfs_ino(BTRFS_I(new_inode)) == BTRFS_FIRST_FREE_OBJECTID))
39279cc3 9931 return -ENOTEMPTY;
5f39d397 9932
4df27c4d
YZ
9933 if (S_ISDIR(old_inode->i_mode) && new_inode &&
9934 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9935 return -ENOTEMPTY;
9c52057c
CM
9936
9937
9938 /* check for collisions, even if the name isn't there */
4871c158 9939 ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9c52057c
CM
9940 new_dentry->d_name.name,
9941 new_dentry->d_name.len);
9942
9943 if (ret) {
9944 if (ret == -EEXIST) {
9945 /* we shouldn't get
9946 * eexist without a new_inode */
fae7f21c 9947 if (WARN_ON(!new_inode)) {
9c52057c
CM
9948 return ret;
9949 }
9950 } else {
9951 /* maybe -EOVERFLOW */
9952 return ret;
9953 }
9954 }
9955 ret = 0;
9956
5a3f23d5 9957 /*
8d875f95
CM
9958 * we're using rename to replace one file with another. Start IO on it
9959 * now so we don't add too much work to the end of the transaction
5a3f23d5 9960 */
8d875f95 9961 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
5a3f23d5
CM
9962 filemap_flush(old_inode->i_mapping);
9963
76dda93c 9964 /* close the racy window with snapshot create/destroy ioctl */
33345d01 9965 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 9966 down_read(&fs_info->subvol_sem);
a22285a6
YZ
9967 /*
9968 * We want to reserve the absolute worst case amount of items. So if
9969 * both inodes are subvols and we need to unlink them then that would
9970 * require 4 item modifications, but if they are both normal inodes it
cdd1fedf 9971 * would require 5 item modifications, so we'll assume they are normal
a22285a6
YZ
9972 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9973 * should cover the worst case number of items we'll modify.
5062af35
FM
9974 * If our rename has the whiteout flag, we need more 5 units for the
9975 * new inode (1 inode item, 1 inode ref, 2 dir items and 1 xattr item
9976 * when selinux is enabled).
a22285a6 9977 */
5062af35
FM
9978 trans_num_items = 11;
9979 if (flags & RENAME_WHITEOUT)
9980 trans_num_items += 5;
9981 trans = btrfs_start_transaction(root, trans_num_items);
b44c59a8 9982 if (IS_ERR(trans)) {
cdd1fedf
DF
9983 ret = PTR_ERR(trans);
9984 goto out_notrans;
9985 }
76dda93c 9986
4df27c4d
YZ
9987 if (dest != root)
9988 btrfs_record_root_in_trans(trans, dest);
5f39d397 9989
877574e2 9990 ret = btrfs_set_inode_index(BTRFS_I(new_dir), &index);
a5719521
YZ
9991 if (ret)
9992 goto out_fail;
5a3f23d5 9993
67de1176 9994 BTRFS_I(old_inode)->dir_index = 0ULL;
33345d01 9995 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d 9996 /* force full log commit if subvolume involved. */
0b246afa 9997 btrfs_set_log_full_commit(fs_info, trans);
4df27c4d 9998 } else {
c4aba954
FM
9999 btrfs_pin_log_trans(root);
10000 log_pinned = true;
a5719521
YZ
10001 ret = btrfs_insert_inode_ref(trans, dest,
10002 new_dentry->d_name.name,
10003 new_dentry->d_name.len,
33345d01 10004 old_ino,
4a0cc7ca 10005 btrfs_ino(BTRFS_I(new_dir)), index);
a5719521
YZ
10006 if (ret)
10007 goto out_fail;
4df27c4d 10008 }
5a3f23d5 10009
0c4d2d95
JB
10010 inode_inc_iversion(old_dir);
10011 inode_inc_iversion(new_dir);
10012 inode_inc_iversion(old_inode);
04b285f3
DD
10013 old_dir->i_ctime = old_dir->i_mtime =
10014 new_dir->i_ctime = new_dir->i_mtime =
c2050a45 10015 old_inode->i_ctime = current_time(old_dir);
5f39d397 10016
12fcfd22 10017 if (old_dentry->d_parent != new_dentry->d_parent)
f85b7379
DS
10018 btrfs_record_unlink_dir(trans, BTRFS_I(old_dir),
10019 BTRFS_I(old_inode), 1);
12fcfd22 10020
33345d01 10021 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
4df27c4d
YZ
10022 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
10023 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
10024 old_dentry->d_name.name,
10025 old_dentry->d_name.len);
10026 } else {
4ec5934e
NB
10027 ret = __btrfs_unlink_inode(trans, root, BTRFS_I(old_dir),
10028 BTRFS_I(d_inode(old_dentry)),
92986796
AV
10029 old_dentry->d_name.name,
10030 old_dentry->d_name.len);
10031 if (!ret)
10032 ret = btrfs_update_inode(trans, root, old_inode);
4df27c4d 10033 }
79787eaa 10034 if (ret) {
66642832 10035 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10036 goto out_fail;
10037 }
39279cc3
CM
10038
10039 if (new_inode) {
0c4d2d95 10040 inode_inc_iversion(new_inode);
c2050a45 10041 new_inode->i_ctime = current_time(new_inode);
4a0cc7ca 10042 if (unlikely(btrfs_ino(BTRFS_I(new_inode)) ==
4df27c4d
YZ
10043 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
10044 root_objectid = BTRFS_I(new_inode)->location.objectid;
10045 ret = btrfs_unlink_subvol(trans, dest, new_dir,
10046 root_objectid,
10047 new_dentry->d_name.name,
10048 new_dentry->d_name.len);
10049 BUG_ON(new_inode->i_nlink == 0);
10050 } else {
4ec5934e
NB
10051 ret = btrfs_unlink_inode(trans, dest, BTRFS_I(new_dir),
10052 BTRFS_I(d_inode(new_dentry)),
4df27c4d
YZ
10053 new_dentry->d_name.name,
10054 new_dentry->d_name.len);
10055 }
4ef31a45 10056 if (!ret && new_inode->i_nlink == 0)
73f2e545
NB
10057 ret = btrfs_orphan_add(trans,
10058 BTRFS_I(d_inode(new_dentry)));
79787eaa 10059 if (ret) {
66642832 10060 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10061 goto out_fail;
10062 }
39279cc3 10063 }
aec7477b 10064
db0a669f 10065 ret = btrfs_add_link(trans, BTRFS_I(new_dir), BTRFS_I(old_inode),
4df27c4d 10066 new_dentry->d_name.name,
a5719521 10067 new_dentry->d_name.len, 0, index);
79787eaa 10068 if (ret) {
66642832 10069 btrfs_abort_transaction(trans, ret);
79787eaa
JM
10070 goto out_fail;
10071 }
39279cc3 10072
67de1176
MX
10073 if (old_inode->i_nlink == 1)
10074 BTRFS_I(old_inode)->dir_index = index;
10075
3dc9e8f7 10076 if (log_pinned) {
10d9f309 10077 struct dentry *parent = new_dentry->d_parent;
3dc9e8f7 10078
f85b7379
DS
10079 btrfs_log_new_name(trans, BTRFS_I(old_inode), BTRFS_I(old_dir),
10080 parent);
4df27c4d 10081 btrfs_end_log_trans(root);
3dc9e8f7 10082 log_pinned = false;
4df27c4d 10083 }
cdd1fedf
DF
10084
10085 if (flags & RENAME_WHITEOUT) {
10086 ret = btrfs_whiteout_for_rename(trans, root, old_dir,
10087 old_dentry);
10088
10089 if (ret) {
66642832 10090 btrfs_abort_transaction(trans, ret);
cdd1fedf
DF
10091 goto out_fail;
10092 }
4df27c4d 10093 }
39279cc3 10094out_fail:
3dc9e8f7
FM
10095 /*
10096 * If we have pinned the log and an error happened, we unpin tasks
10097 * trying to sync the log and force them to fallback to a transaction
10098 * commit if the log currently contains any of the inodes involved in
10099 * this rename operation (to ensure we do not persist a log with an
10100 * inconsistent state for any of these inodes or leading to any
10101 * inconsistencies when replayed). If the transaction was aborted, the
10102 * abortion reason is propagated to userspace when attempting to commit
10103 * the transaction. If the log does not contain any of these inodes, we
10104 * allow the tasks to sync it.
10105 */
10106 if (ret && log_pinned) {
0f8939b8
NB
10107 if (btrfs_inode_in_log(BTRFS_I(old_dir), fs_info->generation) ||
10108 btrfs_inode_in_log(BTRFS_I(new_dir), fs_info->generation) ||
10109 btrfs_inode_in_log(BTRFS_I(old_inode), fs_info->generation) ||
3dc9e8f7 10110 (new_inode &&
0f8939b8 10111 btrfs_inode_in_log(BTRFS_I(new_inode), fs_info->generation)))
0b246afa 10112 btrfs_set_log_full_commit(fs_info, trans);
3dc9e8f7
FM
10113
10114 btrfs_end_log_trans(root);
10115 log_pinned = false;
10116 }
3a45bb20 10117 btrfs_end_transaction(trans);
b44c59a8 10118out_notrans:
33345d01 10119 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
0b246afa 10120 up_read(&fs_info->subvol_sem);
9ed74f2d 10121
39279cc3
CM
10122 return ret;
10123}
10124
80ace85c
MS
10125static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
10126 struct inode *new_dir, struct dentry *new_dentry,
10127 unsigned int flags)
10128{
cdd1fedf 10129 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
80ace85c
MS
10130 return -EINVAL;
10131
cdd1fedf
DF
10132 if (flags & RENAME_EXCHANGE)
10133 return btrfs_rename_exchange(old_dir, old_dentry, new_dir,
10134 new_dentry);
10135
10136 return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry, flags);
80ace85c
MS
10137}
10138
8ccf6f19
MX
10139static void btrfs_run_delalloc_work(struct btrfs_work *work)
10140{
10141 struct btrfs_delalloc_work *delalloc_work;
9f23e289 10142 struct inode *inode;
8ccf6f19
MX
10143
10144 delalloc_work = container_of(work, struct btrfs_delalloc_work,
10145 work);
9f23e289 10146 inode = delalloc_work->inode;
30424601
DS
10147 filemap_flush(inode->i_mapping);
10148 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
10149 &BTRFS_I(inode)->runtime_flags))
9f23e289 10150 filemap_flush(inode->i_mapping);
8ccf6f19
MX
10151
10152 if (delalloc_work->delay_iput)
9f23e289 10153 btrfs_add_delayed_iput(inode);
8ccf6f19 10154 else
9f23e289 10155 iput(inode);
8ccf6f19
MX
10156 complete(&delalloc_work->completion);
10157}
10158
10159struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
651d494a 10160 int delay_iput)
8ccf6f19
MX
10161{
10162 struct btrfs_delalloc_work *work;
10163
100d5702 10164 work = kmalloc(sizeof(*work), GFP_NOFS);
8ccf6f19
MX
10165 if (!work)
10166 return NULL;
10167
10168 init_completion(&work->completion);
10169 INIT_LIST_HEAD(&work->list);
10170 work->inode = inode;
8ccf6f19 10171 work->delay_iput = delay_iput;
9e0af237
LB
10172 WARN_ON_ONCE(!inode);
10173 btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
10174 btrfs_run_delalloc_work, NULL, NULL);
8ccf6f19
MX
10175
10176 return work;
10177}
10178
10179void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
10180{
10181 wait_for_completion(&work->completion);
100d5702 10182 kfree(work);
8ccf6f19
MX
10183}
10184
d352ac68
CM
10185/*
10186 * some fairly slow code that needs optimization. This walks the list
10187 * of all the inodes with pending delalloc and forces them to disk.
10188 */
6c255e67
MX
10189static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
10190 int nr)
ea8c2819 10191{
ea8c2819 10192 struct btrfs_inode *binode;
5b21f2ed 10193 struct inode *inode;
8ccf6f19
MX
10194 struct btrfs_delalloc_work *work, *next;
10195 struct list_head works;
1eafa6c7 10196 struct list_head splice;
8ccf6f19 10197 int ret = 0;
ea8c2819 10198
8ccf6f19 10199 INIT_LIST_HEAD(&works);
1eafa6c7 10200 INIT_LIST_HEAD(&splice);
63607cc8 10201
573bfb72 10202 mutex_lock(&root->delalloc_mutex);
eb73c1b7
MX
10203 spin_lock(&root->delalloc_lock);
10204 list_splice_init(&root->delalloc_inodes, &splice);
1eafa6c7
MX
10205 while (!list_empty(&splice)) {
10206 binode = list_entry(splice.next, struct btrfs_inode,
ea8c2819 10207 delalloc_inodes);
1eafa6c7 10208
eb73c1b7
MX
10209 list_move_tail(&binode->delalloc_inodes,
10210 &root->delalloc_inodes);
5b21f2ed 10211 inode = igrab(&binode->vfs_inode);
df0af1a5 10212 if (!inode) {
eb73c1b7 10213 cond_resched_lock(&root->delalloc_lock);
1eafa6c7 10214 continue;
df0af1a5 10215 }
eb73c1b7 10216 spin_unlock(&root->delalloc_lock);
1eafa6c7 10217
651d494a 10218 work = btrfs_alloc_delalloc_work(inode, delay_iput);
5d99a998 10219 if (!work) {
f4ab9ea7
JB
10220 if (delay_iput)
10221 btrfs_add_delayed_iput(inode);
10222 else
10223 iput(inode);
1eafa6c7 10224 ret = -ENOMEM;
a1ecaabb 10225 goto out;
5b21f2ed 10226 }
1eafa6c7 10227 list_add_tail(&work->list, &works);
a44903ab
QW
10228 btrfs_queue_work(root->fs_info->flush_workers,
10229 &work->work);
6c255e67
MX
10230 ret++;
10231 if (nr != -1 && ret >= nr)
a1ecaabb 10232 goto out;
5b21f2ed 10233 cond_resched();
eb73c1b7 10234 spin_lock(&root->delalloc_lock);
ea8c2819 10235 }
eb73c1b7 10236 spin_unlock(&root->delalloc_lock);
8c8bee1d 10237
a1ecaabb 10238out:
eb73c1b7
MX
10239 list_for_each_entry_safe(work, next, &works, list) {
10240 list_del_init(&work->list);
10241 btrfs_wait_and_free_delalloc_work(work);
10242 }
10243
10244 if (!list_empty_careful(&splice)) {
10245 spin_lock(&root->delalloc_lock);
10246 list_splice_tail(&splice, &root->delalloc_inodes);
10247 spin_unlock(&root->delalloc_lock);
10248 }
573bfb72 10249 mutex_unlock(&root->delalloc_mutex);
eb73c1b7
MX
10250 return ret;
10251}
1eafa6c7 10252
eb73c1b7
MX
10253int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
10254{
0b246afa 10255 struct btrfs_fs_info *fs_info = root->fs_info;
eb73c1b7 10256 int ret;
1eafa6c7 10257
0b246afa 10258 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10259 return -EROFS;
10260
6c255e67
MX
10261 ret = __start_delalloc_inodes(root, delay_iput, -1);
10262 if (ret > 0)
10263 ret = 0;
eb73c1b7
MX
10264 return ret;
10265}
10266
6c255e67
MX
10267int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
10268 int nr)
eb73c1b7
MX
10269{
10270 struct btrfs_root *root;
10271 struct list_head splice;
10272 int ret;
10273
2c21b4d7 10274 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
eb73c1b7
MX
10275 return -EROFS;
10276
10277 INIT_LIST_HEAD(&splice);
10278
573bfb72 10279 mutex_lock(&fs_info->delalloc_root_mutex);
eb73c1b7
MX
10280 spin_lock(&fs_info->delalloc_root_lock);
10281 list_splice_init(&fs_info->delalloc_roots, &splice);
6c255e67 10282 while (!list_empty(&splice) && nr) {
eb73c1b7
MX
10283 root = list_first_entry(&splice, struct btrfs_root,
10284 delalloc_root);
10285 root = btrfs_grab_fs_root(root);
10286 BUG_ON(!root);
10287 list_move_tail(&root->delalloc_root,
10288 &fs_info->delalloc_roots);
10289 spin_unlock(&fs_info->delalloc_root_lock);
10290
6c255e67 10291 ret = __start_delalloc_inodes(root, delay_iput, nr);
eb73c1b7 10292 btrfs_put_fs_root(root);
6c255e67 10293 if (ret < 0)
eb73c1b7
MX
10294 goto out;
10295
6c255e67
MX
10296 if (nr != -1) {
10297 nr -= ret;
10298 WARN_ON(nr < 0);
10299 }
eb73c1b7 10300 spin_lock(&fs_info->delalloc_root_lock);
8ccf6f19 10301 }
eb73c1b7 10302 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10303
6c255e67 10304 ret = 0;
eb73c1b7 10305out:
1eafa6c7 10306 if (!list_empty_careful(&splice)) {
eb73c1b7
MX
10307 spin_lock(&fs_info->delalloc_root_lock);
10308 list_splice_tail(&splice, &fs_info->delalloc_roots);
10309 spin_unlock(&fs_info->delalloc_root_lock);
1eafa6c7 10310 }
573bfb72 10311 mutex_unlock(&fs_info->delalloc_root_mutex);
8ccf6f19 10312 return ret;
ea8c2819
CM
10313}
10314
39279cc3
CM
10315static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
10316 const char *symname)
10317{
0b246afa 10318 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
39279cc3
CM
10319 struct btrfs_trans_handle *trans;
10320 struct btrfs_root *root = BTRFS_I(dir)->root;
10321 struct btrfs_path *path;
10322 struct btrfs_key key;
1832a6d5 10323 struct inode *inode = NULL;
39279cc3
CM
10324 int err;
10325 int drop_inode = 0;
10326 u64 objectid;
67871254 10327 u64 index = 0;
39279cc3
CM
10328 int name_len;
10329 int datasize;
5f39d397 10330 unsigned long ptr;
39279cc3 10331 struct btrfs_file_extent_item *ei;
5f39d397 10332 struct extent_buffer *leaf;
39279cc3 10333
f06becc4 10334 name_len = strlen(symname);
0b246afa 10335 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(fs_info))
39279cc3 10336 return -ENAMETOOLONG;
1832a6d5 10337
9ed74f2d
JB
10338 /*
10339 * 2 items for inode item and ref
10340 * 2 items for dir items
9269d12b
FM
10341 * 1 item for updating parent inode item
10342 * 1 item for the inline extent item
9ed74f2d
JB
10343 * 1 item for xattr if selinux is on
10344 */
9269d12b 10345 trans = btrfs_start_transaction(root, 7);
a22285a6
YZ
10346 if (IS_ERR(trans))
10347 return PTR_ERR(trans);
1832a6d5 10348
581bb050
LZ
10349 err = btrfs_find_free_ino(root, &objectid);
10350 if (err)
10351 goto out_unlock;
10352
aec7477b 10353 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
f85b7379
DS
10354 dentry->d_name.len, btrfs_ino(BTRFS_I(dir)),
10355 objectid, S_IFLNK|S_IRWXUGO, &index);
7cf96da3
TI
10356 if (IS_ERR(inode)) {
10357 err = PTR_ERR(inode);
39279cc3 10358 goto out_unlock;
7cf96da3 10359 }
39279cc3 10360
ad19db71
CS
10361 /*
10362 * If the active LSM wants to access the inode during
10363 * d_instantiate it needs these. Smack checks to see
10364 * if the filesystem supports xattrs by looking at the
10365 * ops vector.
10366 */
10367 inode->i_fop = &btrfs_file_operations;
10368 inode->i_op = &btrfs_file_inode_operations;
b0d5d10f 10369 inode->i_mapping->a_ops = &btrfs_aops;
b0d5d10f
CM
10370 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10371
10372 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
10373 if (err)
10374 goto out_unlock_inode;
ad19db71 10375
39279cc3 10376 path = btrfs_alloc_path();
d8926bb3
MF
10377 if (!path) {
10378 err = -ENOMEM;
b0d5d10f 10379 goto out_unlock_inode;
d8926bb3 10380 }
4a0cc7ca 10381 key.objectid = btrfs_ino(BTRFS_I(inode));
39279cc3 10382 key.offset = 0;
962a298f 10383 key.type = BTRFS_EXTENT_DATA_KEY;
39279cc3
CM
10384 datasize = btrfs_file_extent_calc_inline_size(name_len);
10385 err = btrfs_insert_empty_item(trans, root, path, &key,
10386 datasize);
54aa1f4d 10387 if (err) {
b0839166 10388 btrfs_free_path(path);
b0d5d10f 10389 goto out_unlock_inode;
54aa1f4d 10390 }
5f39d397
CM
10391 leaf = path->nodes[0];
10392 ei = btrfs_item_ptr(leaf, path->slots[0],
10393 struct btrfs_file_extent_item);
10394 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
10395 btrfs_set_file_extent_type(leaf, ei,
39279cc3 10396 BTRFS_FILE_EXTENT_INLINE);
c8b97818
CM
10397 btrfs_set_file_extent_encryption(leaf, ei, 0);
10398 btrfs_set_file_extent_compression(leaf, ei, 0);
10399 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
10400 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
10401
39279cc3 10402 ptr = btrfs_file_extent_inline_start(ei);
5f39d397
CM
10403 write_extent_buffer(leaf, symname, ptr, name_len);
10404 btrfs_mark_buffer_dirty(leaf);
39279cc3 10405 btrfs_free_path(path);
5f39d397 10406
39279cc3 10407 inode->i_op = &btrfs_symlink_inode_operations;
21fc61c7 10408 inode_nohighmem(inode);
39279cc3 10409 inode->i_mapping->a_ops = &btrfs_symlink_aops;
d899e052 10410 inode_set_bytes(inode, name_len);
6ef06d27 10411 btrfs_i_size_write(BTRFS_I(inode), name_len);
54aa1f4d 10412 err = btrfs_update_inode(trans, root, inode);
d50866d0
FM
10413 /*
10414 * Last step, add directory indexes for our symlink inode. This is the
10415 * last step to avoid extra cleanup of these indexes if an error happens
10416 * elsewhere above.
10417 */
10418 if (!err)
cef415af
NB
10419 err = btrfs_add_nondir(trans, BTRFS_I(dir), dentry,
10420 BTRFS_I(inode), 0, index);
b0d5d10f 10421 if (err) {
54aa1f4d 10422 drop_inode = 1;
b0d5d10f
CM
10423 goto out_unlock_inode;
10424 }
10425
10426 unlock_new_inode(inode);
10427 d_instantiate(dentry, inode);
39279cc3
CM
10428
10429out_unlock:
3a45bb20 10430 btrfs_end_transaction(trans);
39279cc3
CM
10431 if (drop_inode) {
10432 inode_dec_link_count(inode);
10433 iput(inode);
10434 }
2ff7e61e 10435 btrfs_btree_balance_dirty(fs_info);
39279cc3 10436 return err;
b0d5d10f
CM
10437
10438out_unlock_inode:
10439 drop_inode = 1;
10440 unlock_new_inode(inode);
10441 goto out_unlock;
39279cc3 10442}
16432985 10443
0af3d00b
JB
10444static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
10445 u64 start, u64 num_bytes, u64 min_size,
10446 loff_t actual_len, u64 *alloc_hint,
10447 struct btrfs_trans_handle *trans)
d899e052 10448{
0b246afa 10449 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
5dc562c5
JB
10450 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
10451 struct extent_map *em;
d899e052
YZ
10452 struct btrfs_root *root = BTRFS_I(inode)->root;
10453 struct btrfs_key ins;
d899e052 10454 u64 cur_offset = start;
55a61d1d 10455 u64 i_size;
154ea289 10456 u64 cur_bytes;
0b670dc4 10457 u64 last_alloc = (u64)-1;
d899e052 10458 int ret = 0;
0af3d00b 10459 bool own_trans = true;
18513091 10460 u64 end = start + num_bytes - 1;
d899e052 10461
0af3d00b
JB
10462 if (trans)
10463 own_trans = false;
d899e052 10464 while (num_bytes > 0) {
0af3d00b
JB
10465 if (own_trans) {
10466 trans = btrfs_start_transaction(root, 3);
10467 if (IS_ERR(trans)) {
10468 ret = PTR_ERR(trans);
10469 break;
10470 }
5a303d5d
YZ
10471 }
10472
ee22184b 10473 cur_bytes = min_t(u64, num_bytes, SZ_256M);
154ea289 10474 cur_bytes = max(cur_bytes, min_size);
0b670dc4
JB
10475 /*
10476 * If we are severely fragmented we could end up with really
10477 * small allocations, so if the allocator is returning small
10478 * chunks lets make its job easier by only searching for those
10479 * sized chunks.
10480 */
10481 cur_bytes = min(cur_bytes, last_alloc);
18513091
WX
10482 ret = btrfs_reserve_extent(root, cur_bytes, cur_bytes,
10483 min_size, 0, *alloc_hint, &ins, 1, 0);
5a303d5d 10484 if (ret) {
0af3d00b 10485 if (own_trans)
3a45bb20 10486 btrfs_end_transaction(trans);
a22285a6 10487 break;
d899e052 10488 }
0b246afa 10489 btrfs_dec_block_group_reservations(fs_info, ins.objectid);
5a303d5d 10490
0b670dc4 10491 last_alloc = ins.offset;
d899e052
YZ
10492 ret = insert_reserved_file_extent(trans, inode,
10493 cur_offset, ins.objectid,
10494 ins.offset, ins.offset,
920bbbfb 10495 ins.offset, 0, 0, 0,
d899e052 10496 BTRFS_FILE_EXTENT_PREALLOC);
79787eaa 10497 if (ret) {
2ff7e61e 10498 btrfs_free_reserved_extent(fs_info, ins.objectid,
e570fd27 10499 ins.offset, 0);
66642832 10500 btrfs_abort_transaction(trans, ret);
79787eaa 10501 if (own_trans)
3a45bb20 10502 btrfs_end_transaction(trans);
79787eaa
JM
10503 break;
10504 }
31193213 10505
dcdbc059 10506 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
a1ed835e 10507 cur_offset + ins.offset -1, 0);
5a303d5d 10508
5dc562c5
JB
10509 em = alloc_extent_map();
10510 if (!em) {
10511 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
10512 &BTRFS_I(inode)->runtime_flags);
10513 goto next;
10514 }
10515
10516 em->start = cur_offset;
10517 em->orig_start = cur_offset;
10518 em->len = ins.offset;
10519 em->block_start = ins.objectid;
10520 em->block_len = ins.offset;
b4939680 10521 em->orig_block_len = ins.offset;
cc95bef6 10522 em->ram_bytes = ins.offset;
0b246afa 10523 em->bdev = fs_info->fs_devices->latest_bdev;
5dc562c5
JB
10524 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
10525 em->generation = trans->transid;
10526
10527 while (1) {
10528 write_lock(&em_tree->lock);
09a2a8f9 10529 ret = add_extent_mapping(em_tree, em, 1);
5dc562c5
JB
10530 write_unlock(&em_tree->lock);
10531 if (ret != -EEXIST)
10532 break;
dcdbc059 10533 btrfs_drop_extent_cache(BTRFS_I(inode), cur_offset,
5dc562c5
JB
10534 cur_offset + ins.offset - 1,
10535 0);
10536 }
10537 free_extent_map(em);
10538next:
d899e052
YZ
10539 num_bytes -= ins.offset;
10540 cur_offset += ins.offset;
efa56464 10541 *alloc_hint = ins.objectid + ins.offset;
5a303d5d 10542
0c4d2d95 10543 inode_inc_iversion(inode);
c2050a45 10544 inode->i_ctime = current_time(inode);
6cbff00f 10545 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
d899e052 10546 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
efa56464
YZ
10547 (actual_len > inode->i_size) &&
10548 (cur_offset > inode->i_size)) {
d1ea6a61 10549 if (cur_offset > actual_len)
55a61d1d 10550 i_size = actual_len;
d1ea6a61 10551 else
55a61d1d
JB
10552 i_size = cur_offset;
10553 i_size_write(inode, i_size);
10554 btrfs_ordered_update_i_size(inode, i_size, NULL);
5a303d5d
YZ
10555 }
10556
d899e052 10557 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
10558
10559 if (ret) {
66642832 10560 btrfs_abort_transaction(trans, ret);
79787eaa 10561 if (own_trans)
3a45bb20 10562 btrfs_end_transaction(trans);
79787eaa
JM
10563 break;
10564 }
d899e052 10565
0af3d00b 10566 if (own_trans)
3a45bb20 10567 btrfs_end_transaction(trans);
5a303d5d 10568 }
18513091 10569 if (cur_offset < end)
bc42bda2 10570 btrfs_free_reserved_data_space(inode, NULL, cur_offset,
18513091 10571 end - cur_offset + 1);
d899e052
YZ
10572 return ret;
10573}
10574
0af3d00b
JB
10575int btrfs_prealloc_file_range(struct inode *inode, int mode,
10576 u64 start, u64 num_bytes, u64 min_size,
10577 loff_t actual_len, u64 *alloc_hint)
10578{
10579 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10580 min_size, actual_len, alloc_hint,
10581 NULL);
10582}
10583
10584int btrfs_prealloc_file_range_trans(struct inode *inode,
10585 struct btrfs_trans_handle *trans, int mode,
10586 u64 start, u64 num_bytes, u64 min_size,
10587 loff_t actual_len, u64 *alloc_hint)
10588{
10589 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
10590 min_size, actual_len, alloc_hint, trans);
10591}
10592
e6dcd2dc
CM
10593static int btrfs_set_page_dirty(struct page *page)
10594{
e6dcd2dc
CM
10595 return __set_page_dirty_nobuffers(page);
10596}
10597
10556cb2 10598static int btrfs_permission(struct inode *inode, int mask)
fdebe2bd 10599{
b83cc969 10600 struct btrfs_root *root = BTRFS_I(inode)->root;
cb6db4e5 10601 umode_t mode = inode->i_mode;
b83cc969 10602
cb6db4e5
JM
10603 if (mask & MAY_WRITE &&
10604 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
10605 if (btrfs_root_readonly(root))
10606 return -EROFS;
10607 if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
10608 return -EACCES;
10609 }
2830ba7f 10610 return generic_permission(inode, mask);
fdebe2bd 10611}
39279cc3 10612
ef3b9af5
FM
10613static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
10614{
2ff7e61e 10615 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
ef3b9af5
FM
10616 struct btrfs_trans_handle *trans;
10617 struct btrfs_root *root = BTRFS_I(dir)->root;
10618 struct inode *inode = NULL;
10619 u64 objectid;
10620 u64 index;
10621 int ret = 0;
10622
10623 /*
10624 * 5 units required for adding orphan entry
10625 */
10626 trans = btrfs_start_transaction(root, 5);
10627 if (IS_ERR(trans))
10628 return PTR_ERR(trans);
10629
10630 ret = btrfs_find_free_ino(root, &objectid);
10631 if (ret)
10632 goto out;
10633
10634 inode = btrfs_new_inode(trans, root, dir, NULL, 0,
f85b7379 10635 btrfs_ino(BTRFS_I(dir)), objectid, mode, &index);
ef3b9af5
FM
10636 if (IS_ERR(inode)) {
10637 ret = PTR_ERR(inode);
10638 inode = NULL;
10639 goto out;
10640 }
10641
ef3b9af5
FM
10642 inode->i_fop = &btrfs_file_operations;
10643 inode->i_op = &btrfs_file_inode_operations;
10644
10645 inode->i_mapping->a_ops = &btrfs_aops;
ef3b9af5
FM
10646 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
10647
b0d5d10f
CM
10648 ret = btrfs_init_inode_security(trans, inode, dir, NULL);
10649 if (ret)
10650 goto out_inode;
10651
10652 ret = btrfs_update_inode(trans, root, inode);
10653 if (ret)
10654 goto out_inode;
73f2e545 10655 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
ef3b9af5 10656 if (ret)
b0d5d10f 10657 goto out_inode;
ef3b9af5 10658
5762b5c9
FM
10659 /*
10660 * We set number of links to 0 in btrfs_new_inode(), and here we set
10661 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
10662 * through:
10663 *
10664 * d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
10665 */
10666 set_nlink(inode, 1);
b0d5d10f 10667 unlock_new_inode(inode);
ef3b9af5
FM
10668 d_tmpfile(dentry, inode);
10669 mark_inode_dirty(inode);
10670
10671out:
3a45bb20 10672 btrfs_end_transaction(trans);
ef3b9af5
FM
10673 if (ret)
10674 iput(inode);
2ff7e61e
JM
10675 btrfs_balance_delayed_items(fs_info);
10676 btrfs_btree_balance_dirty(fs_info);
ef3b9af5 10677 return ret;
b0d5d10f
CM
10678
10679out_inode:
10680 unlock_new_inode(inode);
10681 goto out;
10682
ef3b9af5
FM
10683}
10684
20a7db8a 10685__attribute__((const))
9d0d1c8b 10686static int btrfs_readpage_io_failed_hook(struct page *page, int failed_mirror)
20a7db8a 10687{
9d0d1c8b 10688 return -EAGAIN;
20a7db8a
DS
10689}
10690
c6100a4b
JB
10691static struct btrfs_fs_info *iotree_fs_info(void *private_data)
10692{
10693 struct inode *inode = private_data;
10694 return btrfs_sb(inode->i_sb);
10695}
10696
10697static void btrfs_check_extent_io_range(void *private_data, const char *caller,
10698 u64 start, u64 end)
10699{
10700 struct inode *inode = private_data;
10701 u64 isize;
10702
10703 isize = i_size_read(inode);
10704 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
10705 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
10706 "%s: ino %llu isize %llu odd range [%llu,%llu]",
10707 caller, btrfs_ino(BTRFS_I(inode)), isize, start, end);
10708 }
10709}
10710
10711void btrfs_set_range_writeback(void *private_data, u64 start, u64 end)
10712{
10713 struct inode *inode = private_data;
10714 unsigned long index = start >> PAGE_SHIFT;
10715 unsigned long end_index = end >> PAGE_SHIFT;
10716 struct page *page;
10717
10718 while (index <= end_index) {
10719 page = find_get_page(inode->i_mapping, index);
10720 ASSERT(page); /* Pages should be in the extent_io_tree */
10721 set_page_writeback(page);
10722 put_page(page);
10723 index++;
10724 }
10725}
10726
6e1d5dcc 10727static const struct inode_operations btrfs_dir_inode_operations = {
3394e160 10728 .getattr = btrfs_getattr,
39279cc3
CM
10729 .lookup = btrfs_lookup,
10730 .create = btrfs_create,
10731 .unlink = btrfs_unlink,
10732 .link = btrfs_link,
10733 .mkdir = btrfs_mkdir,
10734 .rmdir = btrfs_rmdir,
2773bf00 10735 .rename = btrfs_rename2,
39279cc3
CM
10736 .symlink = btrfs_symlink,
10737 .setattr = btrfs_setattr,
618e21d5 10738 .mknod = btrfs_mknod,
5103e947 10739 .listxattr = btrfs_listxattr,
fdebe2bd 10740 .permission = btrfs_permission,
4e34e719 10741 .get_acl = btrfs_get_acl,
996a710d 10742 .set_acl = btrfs_set_acl,
93fd63c2 10743 .update_time = btrfs_update_time,
ef3b9af5 10744 .tmpfile = btrfs_tmpfile,
39279cc3 10745};
6e1d5dcc 10746static const struct inode_operations btrfs_dir_ro_inode_operations = {
39279cc3 10747 .lookup = btrfs_lookup,
fdebe2bd 10748 .permission = btrfs_permission,
93fd63c2 10749 .update_time = btrfs_update_time,
39279cc3 10750};
76dda93c 10751
828c0950 10752static const struct file_operations btrfs_dir_file_operations = {
39279cc3
CM
10753 .llseek = generic_file_llseek,
10754 .read = generic_read_dir,
02dbfc99 10755 .iterate_shared = btrfs_real_readdir,
23b5ec74 10756 .open = btrfs_opendir,
34287aa3 10757 .unlocked_ioctl = btrfs_ioctl,
39279cc3 10758#ifdef CONFIG_COMPAT
4c63c245 10759 .compat_ioctl = btrfs_compat_ioctl,
39279cc3 10760#endif
6bf13c0c 10761 .release = btrfs_release_file,
e02119d5 10762 .fsync = btrfs_sync_file,
39279cc3
CM
10763};
10764
20e5506b 10765static const struct extent_io_ops btrfs_extent_io_ops = {
4d53dddb 10766 /* mandatory callbacks */
065631f6 10767 .submit_bio_hook = btrfs_submit_bio_hook,
07157aac 10768 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
4d53dddb 10769 .merge_bio_hook = btrfs_merge_bio_hook,
9d0d1c8b 10770 .readpage_io_failed_hook = btrfs_readpage_io_failed_hook,
c6100a4b
JB
10771 .tree_fs_info = iotree_fs_info,
10772 .set_range_writeback = btrfs_set_range_writeback,
4d53dddb
DS
10773
10774 /* optional callbacks */
10775 .fill_delalloc = run_delalloc_range,
e6dcd2dc 10776 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
247e743c 10777 .writepage_start_hook = btrfs_writepage_start_hook,
b0c68f8b
CM
10778 .set_bit_hook = btrfs_set_bit_hook,
10779 .clear_bit_hook = btrfs_clear_bit_hook,
9ed74f2d
JB
10780 .merge_extent_hook = btrfs_merge_extent_hook,
10781 .split_extent_hook = btrfs_split_extent_hook,
c6100a4b 10782 .check_extent_io_range = btrfs_check_extent_io_range,
07157aac
CM
10783};
10784
35054394
CM
10785/*
10786 * btrfs doesn't support the bmap operation because swapfiles
10787 * use bmap to make a mapping of extents in the file. They assume
10788 * these extents won't change over the life of the file and they
10789 * use the bmap result to do IO directly to the drive.
10790 *
10791 * the btrfs bmap call would return logical addresses that aren't
10792 * suitable for IO and they also will change frequently as COW
10793 * operations happen. So, swapfile + btrfs == corruption.
10794 *
10795 * For now we're avoiding this by dropping bmap.
10796 */
7f09410b 10797static const struct address_space_operations btrfs_aops = {
39279cc3
CM
10798 .readpage = btrfs_readpage,
10799 .writepage = btrfs_writepage,
b293f02e 10800 .writepages = btrfs_writepages,
3ab2fb5a 10801 .readpages = btrfs_readpages,
16432985 10802 .direct_IO = btrfs_direct_IO,
a52d9a80
CM
10803 .invalidatepage = btrfs_invalidatepage,
10804 .releasepage = btrfs_releasepage,
e6dcd2dc 10805 .set_page_dirty = btrfs_set_page_dirty,
465fdd97 10806 .error_remove_page = generic_error_remove_page,
39279cc3
CM
10807};
10808
7f09410b 10809static const struct address_space_operations btrfs_symlink_aops = {
39279cc3
CM
10810 .readpage = btrfs_readpage,
10811 .writepage = btrfs_writepage,
2bf5a725
CM
10812 .invalidatepage = btrfs_invalidatepage,
10813 .releasepage = btrfs_releasepage,
39279cc3
CM
10814};
10815
6e1d5dcc 10816static const struct inode_operations btrfs_file_inode_operations = {
39279cc3
CM
10817 .getattr = btrfs_getattr,
10818 .setattr = btrfs_setattr,
5103e947 10819 .listxattr = btrfs_listxattr,
fdebe2bd 10820 .permission = btrfs_permission,
1506fcc8 10821 .fiemap = btrfs_fiemap,
4e34e719 10822 .get_acl = btrfs_get_acl,
996a710d 10823 .set_acl = btrfs_set_acl,
e41f941a 10824 .update_time = btrfs_update_time,
39279cc3 10825};
6e1d5dcc 10826static const struct inode_operations btrfs_special_inode_operations = {
618e21d5
JB
10827 .getattr = btrfs_getattr,
10828 .setattr = btrfs_setattr,
fdebe2bd 10829 .permission = btrfs_permission,
33268eaf 10830 .listxattr = btrfs_listxattr,
4e34e719 10831 .get_acl = btrfs_get_acl,
996a710d 10832 .set_acl = btrfs_set_acl,
e41f941a 10833 .update_time = btrfs_update_time,
618e21d5 10834};
6e1d5dcc 10835static const struct inode_operations btrfs_symlink_inode_operations = {
6b255391 10836 .get_link = page_get_link,
f209561a 10837 .getattr = btrfs_getattr,
22c44fe6 10838 .setattr = btrfs_setattr,
fdebe2bd 10839 .permission = btrfs_permission,
0279b4cd 10840 .listxattr = btrfs_listxattr,
e41f941a 10841 .update_time = btrfs_update_time,
39279cc3 10842};
76dda93c 10843
82d339d9 10844const struct dentry_operations btrfs_dentry_operations = {
76dda93c 10845 .d_delete = btrfs_dentry_delete,
b4aff1f8 10846 .d_release = btrfs_dentry_release,
76dda93c 10847};