Btrfs: recheck bio against block device when we map the bio
[linux-2.6-block.git] / fs / btrfs / free-space-cache.c
CommitLineData
0f9dd46c
JB
1/*
2 * Copyright (C) 2008 Red Hat. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
96303081 19#include <linux/pagemap.h>
0f9dd46c 20#include <linux/sched.h>
5a0e3ad6 21#include <linux/slab.h>
96303081 22#include <linux/math64.h>
6ab60601 23#include <linux/ratelimit.h>
0f9dd46c 24#include "ctree.h"
fa9c0d79
CM
25#include "free-space-cache.h"
26#include "transaction.h"
0af3d00b 27#include "disk-io.h"
43be2146 28#include "extent_io.h"
581bb050 29#include "inode-map.h"
fa9c0d79 30
96303081
JB
31#define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
32#define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
0f9dd46c 33
34d52cb6 34static int link_free_space(struct btrfs_free_space_ctl *ctl,
0cb59c99 35 struct btrfs_free_space *info);
cd023e7b
JB
36static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
37 struct btrfs_free_space *info);
0cb59c99 38
0414efae
LZ
39static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
40 struct btrfs_path *path,
41 u64 offset)
0af3d00b
JB
42{
43 struct btrfs_key key;
44 struct btrfs_key location;
45 struct btrfs_disk_key disk_key;
46 struct btrfs_free_space_header *header;
47 struct extent_buffer *leaf;
48 struct inode *inode = NULL;
49 int ret;
50
0af3d00b 51 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 52 key.offset = offset;
0af3d00b
JB
53 key.type = 0;
54
55 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
56 if (ret < 0)
57 return ERR_PTR(ret);
58 if (ret > 0) {
b3b4aa74 59 btrfs_release_path(path);
0af3d00b
JB
60 return ERR_PTR(-ENOENT);
61 }
62
63 leaf = path->nodes[0];
64 header = btrfs_item_ptr(leaf, path->slots[0],
65 struct btrfs_free_space_header);
66 btrfs_free_space_key(leaf, header, &disk_key);
67 btrfs_disk_key_to_cpu(&location, &disk_key);
b3b4aa74 68 btrfs_release_path(path);
0af3d00b
JB
69
70 inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
71 if (!inode)
72 return ERR_PTR(-ENOENT);
73 if (IS_ERR(inode))
74 return inode;
75 if (is_bad_inode(inode)) {
76 iput(inode);
77 return ERR_PTR(-ENOENT);
78 }
79
528c0327
AV
80 mapping_set_gfp_mask(inode->i_mapping,
81 mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS);
adae52b9 82
0414efae
LZ
83 return inode;
84}
85
86struct inode *lookup_free_space_inode(struct btrfs_root *root,
87 struct btrfs_block_group_cache
88 *block_group, struct btrfs_path *path)
89{
90 struct inode *inode = NULL;
5b0e95bf 91 u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
0414efae
LZ
92
93 spin_lock(&block_group->lock);
94 if (block_group->inode)
95 inode = igrab(block_group->inode);
96 spin_unlock(&block_group->lock);
97 if (inode)
98 return inode;
99
100 inode = __lookup_free_space_inode(root, path,
101 block_group->key.objectid);
102 if (IS_ERR(inode))
103 return inode;
104
0af3d00b 105 spin_lock(&block_group->lock);
5b0e95bf 106 if (!((BTRFS_I(inode)->flags & flags) == flags)) {
2f356126 107 printk(KERN_INFO "Old style space inode found, converting.\n");
5b0e95bf
JB
108 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
109 BTRFS_INODE_NODATACOW;
2f356126
JB
110 block_group->disk_cache_state = BTRFS_DC_CLEAR;
111 }
112
300e4f8a 113 if (!block_group->iref) {
0af3d00b
JB
114 block_group->inode = igrab(inode);
115 block_group->iref = 1;
116 }
117 spin_unlock(&block_group->lock);
118
119 return inode;
120}
121
0414efae
LZ
122int __create_free_space_inode(struct btrfs_root *root,
123 struct btrfs_trans_handle *trans,
124 struct btrfs_path *path, u64 ino, u64 offset)
0af3d00b
JB
125{
126 struct btrfs_key key;
127 struct btrfs_disk_key disk_key;
128 struct btrfs_free_space_header *header;
129 struct btrfs_inode_item *inode_item;
130 struct extent_buffer *leaf;
5b0e95bf 131 u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC;
0af3d00b
JB
132 int ret;
133
0414efae 134 ret = btrfs_insert_empty_inode(trans, root, path, ino);
0af3d00b
JB
135 if (ret)
136 return ret;
137
5b0e95bf
JB
138 /* We inline crc's for the free disk space cache */
139 if (ino != BTRFS_FREE_INO_OBJECTID)
140 flags |= BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
141
0af3d00b
JB
142 leaf = path->nodes[0];
143 inode_item = btrfs_item_ptr(leaf, path->slots[0],
144 struct btrfs_inode_item);
145 btrfs_item_key(leaf, &disk_key, path->slots[0]);
146 memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
147 sizeof(*inode_item));
148 btrfs_set_inode_generation(leaf, inode_item, trans->transid);
149 btrfs_set_inode_size(leaf, inode_item, 0);
150 btrfs_set_inode_nbytes(leaf, inode_item, 0);
151 btrfs_set_inode_uid(leaf, inode_item, 0);
152 btrfs_set_inode_gid(leaf, inode_item, 0);
153 btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
5b0e95bf 154 btrfs_set_inode_flags(leaf, inode_item, flags);
0af3d00b
JB
155 btrfs_set_inode_nlink(leaf, inode_item, 1);
156 btrfs_set_inode_transid(leaf, inode_item, trans->transid);
0414efae 157 btrfs_set_inode_block_group(leaf, inode_item, offset);
0af3d00b 158 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 159 btrfs_release_path(path);
0af3d00b
JB
160
161 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 162 key.offset = offset;
0af3d00b
JB
163 key.type = 0;
164
165 ret = btrfs_insert_empty_item(trans, root, path, &key,
166 sizeof(struct btrfs_free_space_header));
167 if (ret < 0) {
b3b4aa74 168 btrfs_release_path(path);
0af3d00b
JB
169 return ret;
170 }
171 leaf = path->nodes[0];
172 header = btrfs_item_ptr(leaf, path->slots[0],
173 struct btrfs_free_space_header);
174 memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
175 btrfs_set_free_space_key(leaf, header, &disk_key);
176 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 177 btrfs_release_path(path);
0af3d00b
JB
178
179 return 0;
180}
181
0414efae
LZ
182int create_free_space_inode(struct btrfs_root *root,
183 struct btrfs_trans_handle *trans,
184 struct btrfs_block_group_cache *block_group,
185 struct btrfs_path *path)
186{
187 int ret;
188 u64 ino;
189
190 ret = btrfs_find_free_objectid(root, &ino);
191 if (ret < 0)
192 return ret;
193
194 return __create_free_space_inode(root, trans, path, ino,
195 block_group->key.objectid);
196}
197
0af3d00b
JB
198int btrfs_truncate_free_space_cache(struct btrfs_root *root,
199 struct btrfs_trans_handle *trans,
200 struct btrfs_path *path,
201 struct inode *inode)
202{
65450aa6 203 struct btrfs_block_rsv *rsv;
c8174313 204 u64 needed_bytes;
0af3d00b
JB
205 loff_t oldsize;
206 int ret = 0;
207
65450aa6 208 rsv = trans->block_rsv;
c8174313
JB
209 trans->block_rsv = &root->fs_info->global_block_rsv;
210
211 /* 1 for slack space, 1 for updating the inode */
212 needed_bytes = btrfs_calc_trunc_metadata_size(root, 1) +
213 btrfs_calc_trans_metadata_size(root, 1);
214
215 spin_lock(&trans->block_rsv->lock);
216 if (trans->block_rsv->reserved < needed_bytes) {
217 spin_unlock(&trans->block_rsv->lock);
218 trans->block_rsv = rsv;
219 return -ENOSPC;
220 }
221 spin_unlock(&trans->block_rsv->lock);
0af3d00b
JB
222
223 oldsize = i_size_read(inode);
224 btrfs_i_size_write(inode, 0);
225 truncate_pagecache(inode, oldsize, 0);
226
227 /*
228 * We don't need an orphan item because truncating the free space cache
229 * will never be split across transactions.
230 */
231 ret = btrfs_truncate_inode_items(trans, root, inode,
232 0, BTRFS_EXTENT_DATA_KEY);
65450aa6 233
0af3d00b 234 if (ret) {
c8174313 235 trans->block_rsv = rsv;
79787eaa 236 btrfs_abort_transaction(trans, root, ret);
0af3d00b
JB
237 return ret;
238 }
239
82d5902d 240 ret = btrfs_update_inode(trans, root, inode);
79787eaa
JM
241 if (ret)
242 btrfs_abort_transaction(trans, root, ret);
c8174313
JB
243 trans->block_rsv = rsv;
244
82d5902d 245 return ret;
0af3d00b
JB
246}
247
9d66e233
JB
248static int readahead_cache(struct inode *inode)
249{
250 struct file_ra_state *ra;
251 unsigned long last_index;
252
253 ra = kzalloc(sizeof(*ra), GFP_NOFS);
254 if (!ra)
255 return -ENOMEM;
256
257 file_ra_state_init(ra, inode->i_mapping);
258 last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
259
260 page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
261
262 kfree(ra);
263
264 return 0;
265}
266
a67509c3
JB
267struct io_ctl {
268 void *cur, *orig;
269 struct page *page;
270 struct page **pages;
271 struct btrfs_root *root;
272 unsigned long size;
273 int index;
274 int num_pages;
5b0e95bf 275 unsigned check_crcs:1;
a67509c3
JB
276};
277
278static int io_ctl_init(struct io_ctl *io_ctl, struct inode *inode,
279 struct btrfs_root *root)
280{
281 memset(io_ctl, 0, sizeof(struct io_ctl));
282 io_ctl->num_pages = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
283 PAGE_CACHE_SHIFT;
284 io_ctl->pages = kzalloc(sizeof(struct page *) * io_ctl->num_pages,
285 GFP_NOFS);
286 if (!io_ctl->pages)
287 return -ENOMEM;
288 io_ctl->root = root;
5b0e95bf
JB
289 if (btrfs_ino(inode) != BTRFS_FREE_INO_OBJECTID)
290 io_ctl->check_crcs = 1;
a67509c3
JB
291 return 0;
292}
293
294static void io_ctl_free(struct io_ctl *io_ctl)
295{
296 kfree(io_ctl->pages);
297}
298
299static void io_ctl_unmap_page(struct io_ctl *io_ctl)
300{
301 if (io_ctl->cur) {
302 kunmap(io_ctl->page);
303 io_ctl->cur = NULL;
304 io_ctl->orig = NULL;
305 }
306}
307
308static void io_ctl_map_page(struct io_ctl *io_ctl, int clear)
309{
310 WARN_ON(io_ctl->cur);
311 BUG_ON(io_ctl->index >= io_ctl->num_pages);
312 io_ctl->page = io_ctl->pages[io_ctl->index++];
313 io_ctl->cur = kmap(io_ctl->page);
314 io_ctl->orig = io_ctl->cur;
315 io_ctl->size = PAGE_CACHE_SIZE;
316 if (clear)
317 memset(io_ctl->cur, 0, PAGE_CACHE_SIZE);
318}
319
320static void io_ctl_drop_pages(struct io_ctl *io_ctl)
321{
322 int i;
323
324 io_ctl_unmap_page(io_ctl);
325
326 for (i = 0; i < io_ctl->num_pages; i++) {
a1ee5a45
LZ
327 if (io_ctl->pages[i]) {
328 ClearPageChecked(io_ctl->pages[i]);
329 unlock_page(io_ctl->pages[i]);
330 page_cache_release(io_ctl->pages[i]);
331 }
a67509c3
JB
332 }
333}
334
335static int io_ctl_prepare_pages(struct io_ctl *io_ctl, struct inode *inode,
336 int uptodate)
337{
338 struct page *page;
339 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
340 int i;
341
342 for (i = 0; i < io_ctl->num_pages; i++) {
343 page = find_or_create_page(inode->i_mapping, i, mask);
344 if (!page) {
345 io_ctl_drop_pages(io_ctl);
346 return -ENOMEM;
347 }
348 io_ctl->pages[i] = page;
349 if (uptodate && !PageUptodate(page)) {
350 btrfs_readpage(NULL, page);
351 lock_page(page);
352 if (!PageUptodate(page)) {
353 printk(KERN_ERR "btrfs: error reading free "
354 "space cache\n");
355 io_ctl_drop_pages(io_ctl);
356 return -EIO;
357 }
358 }
359 }
360
f7d61dcd
JB
361 for (i = 0; i < io_ctl->num_pages; i++) {
362 clear_page_dirty_for_io(io_ctl->pages[i]);
363 set_page_extent_mapped(io_ctl->pages[i]);
364 }
365
a67509c3
JB
366 return 0;
367}
368
369static void io_ctl_set_generation(struct io_ctl *io_ctl, u64 generation)
370{
528c0327 371 __le64 *val;
a67509c3
JB
372
373 io_ctl_map_page(io_ctl, 1);
374
375 /*
5b0e95bf
JB
376 * Skip the csum areas. If we don't check crcs then we just have a
377 * 64bit chunk at the front of the first page.
a67509c3 378 */
5b0e95bf
JB
379 if (io_ctl->check_crcs) {
380 io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
381 io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
382 } else {
383 io_ctl->cur += sizeof(u64);
384 io_ctl->size -= sizeof(u64) * 2;
385 }
a67509c3
JB
386
387 val = io_ctl->cur;
388 *val = cpu_to_le64(generation);
389 io_ctl->cur += sizeof(u64);
a67509c3
JB
390}
391
392static int io_ctl_check_generation(struct io_ctl *io_ctl, u64 generation)
393{
528c0327 394 __le64 *gen;
a67509c3 395
5b0e95bf
JB
396 /*
397 * Skip the crc area. If we don't check crcs then we just have a 64bit
398 * chunk at the front of the first page.
399 */
400 if (io_ctl->check_crcs) {
401 io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
402 io_ctl->size -= sizeof(u64) +
403 (sizeof(u32) * io_ctl->num_pages);
404 } else {
405 io_ctl->cur += sizeof(u64);
406 io_ctl->size -= sizeof(u64) * 2;
407 }
a67509c3 408
a67509c3
JB
409 gen = io_ctl->cur;
410 if (le64_to_cpu(*gen) != generation) {
411 printk_ratelimited(KERN_ERR "btrfs: space cache generation "
412 "(%Lu) does not match inode (%Lu)\n", *gen,
413 generation);
414 io_ctl_unmap_page(io_ctl);
415 return -EIO;
416 }
417 io_ctl->cur += sizeof(u64);
5b0e95bf
JB
418 return 0;
419}
420
421static void io_ctl_set_crc(struct io_ctl *io_ctl, int index)
422{
423 u32 *tmp;
424 u32 crc = ~(u32)0;
425 unsigned offset = 0;
426
427 if (!io_ctl->check_crcs) {
428 io_ctl_unmap_page(io_ctl);
429 return;
430 }
431
432 if (index == 0)
cb54f257 433 offset = sizeof(u32) * io_ctl->num_pages;
5b0e95bf
JB
434
435 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
436 PAGE_CACHE_SIZE - offset);
437 btrfs_csum_final(crc, (char *)&crc);
438 io_ctl_unmap_page(io_ctl);
439 tmp = kmap(io_ctl->pages[0]);
440 tmp += index;
441 *tmp = crc;
442 kunmap(io_ctl->pages[0]);
443}
444
445static int io_ctl_check_crc(struct io_ctl *io_ctl, int index)
446{
447 u32 *tmp, val;
448 u32 crc = ~(u32)0;
449 unsigned offset = 0;
450
451 if (!io_ctl->check_crcs) {
452 io_ctl_map_page(io_ctl, 0);
453 return 0;
454 }
455
456 if (index == 0)
457 offset = sizeof(u32) * io_ctl->num_pages;
458
459 tmp = kmap(io_ctl->pages[0]);
460 tmp += index;
461 val = *tmp;
462 kunmap(io_ctl->pages[0]);
463
464 io_ctl_map_page(io_ctl, 0);
465 crc = btrfs_csum_data(io_ctl->root, io_ctl->orig + offset, crc,
466 PAGE_CACHE_SIZE - offset);
467 btrfs_csum_final(crc, (char *)&crc);
468 if (val != crc) {
469 printk_ratelimited(KERN_ERR "btrfs: csum mismatch on free "
470 "space cache\n");
471 io_ctl_unmap_page(io_ctl);
472 return -EIO;
473 }
474
a67509c3
JB
475 return 0;
476}
477
478static int io_ctl_add_entry(struct io_ctl *io_ctl, u64 offset, u64 bytes,
479 void *bitmap)
480{
481 struct btrfs_free_space_entry *entry;
482
483 if (!io_ctl->cur)
484 return -ENOSPC;
485
486 entry = io_ctl->cur;
487 entry->offset = cpu_to_le64(offset);
488 entry->bytes = cpu_to_le64(bytes);
489 entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
490 BTRFS_FREE_SPACE_EXTENT;
491 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
492 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
493
494 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
495 return 0;
496
5b0e95bf 497 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
498
499 /* No more pages to map */
500 if (io_ctl->index >= io_ctl->num_pages)
501 return 0;
502
503 /* map the next page */
504 io_ctl_map_page(io_ctl, 1);
505 return 0;
506}
507
508static int io_ctl_add_bitmap(struct io_ctl *io_ctl, void *bitmap)
509{
510 if (!io_ctl->cur)
511 return -ENOSPC;
512
513 /*
514 * If we aren't at the start of the current page, unmap this one and
515 * map the next one if there is any left.
516 */
517 if (io_ctl->cur != io_ctl->orig) {
5b0e95bf 518 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
519 if (io_ctl->index >= io_ctl->num_pages)
520 return -ENOSPC;
521 io_ctl_map_page(io_ctl, 0);
522 }
523
524 memcpy(io_ctl->cur, bitmap, PAGE_CACHE_SIZE);
5b0e95bf 525 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
526 if (io_ctl->index < io_ctl->num_pages)
527 io_ctl_map_page(io_ctl, 0);
528 return 0;
529}
530
531static void io_ctl_zero_remaining_pages(struct io_ctl *io_ctl)
532{
5b0e95bf
JB
533 /*
534 * If we're not on the boundary we know we've modified the page and we
535 * need to crc the page.
536 */
537 if (io_ctl->cur != io_ctl->orig)
538 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
539 else
540 io_ctl_unmap_page(io_ctl);
a67509c3
JB
541
542 while (io_ctl->index < io_ctl->num_pages) {
543 io_ctl_map_page(io_ctl, 1);
5b0e95bf 544 io_ctl_set_crc(io_ctl, io_ctl->index - 1);
a67509c3
JB
545 }
546}
547
5b0e95bf
JB
548static int io_ctl_read_entry(struct io_ctl *io_ctl,
549 struct btrfs_free_space *entry, u8 *type)
a67509c3
JB
550{
551 struct btrfs_free_space_entry *e;
2f120c05
JB
552 int ret;
553
554 if (!io_ctl->cur) {
555 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
556 if (ret)
557 return ret;
558 }
a67509c3
JB
559
560 e = io_ctl->cur;
561 entry->offset = le64_to_cpu(e->offset);
562 entry->bytes = le64_to_cpu(e->bytes);
5b0e95bf 563 *type = e->type;
a67509c3
JB
564 io_ctl->cur += sizeof(struct btrfs_free_space_entry);
565 io_ctl->size -= sizeof(struct btrfs_free_space_entry);
566
567 if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
5b0e95bf 568 return 0;
a67509c3
JB
569
570 io_ctl_unmap_page(io_ctl);
571
2f120c05 572 return 0;
a67509c3
JB
573}
574
5b0e95bf
JB
575static int io_ctl_read_bitmap(struct io_ctl *io_ctl,
576 struct btrfs_free_space *entry)
a67509c3 577{
5b0e95bf
JB
578 int ret;
579
5b0e95bf
JB
580 ret = io_ctl_check_crc(io_ctl, io_ctl->index);
581 if (ret)
582 return ret;
583
a67509c3
JB
584 memcpy(entry->bitmap, io_ctl->cur, PAGE_CACHE_SIZE);
585 io_ctl_unmap_page(io_ctl);
5b0e95bf
JB
586
587 return 0;
a67509c3
JB
588}
589
cd023e7b
JB
590/*
591 * Since we attach pinned extents after the fact we can have contiguous sections
592 * of free space that are split up in entries. This poses a problem with the
593 * tree logging stuff since it could have allocated across what appears to be 2
594 * entries since we would have merged the entries when adding the pinned extents
595 * back to the free space cache. So run through the space cache that we just
596 * loaded and merge contiguous entries. This will make the log replay stuff not
597 * blow up and it will make for nicer allocator behavior.
598 */
599static void merge_space_tree(struct btrfs_free_space_ctl *ctl)
600{
601 struct btrfs_free_space *e, *prev = NULL;
602 struct rb_node *n;
603
604again:
605 spin_lock(&ctl->tree_lock);
606 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
607 e = rb_entry(n, struct btrfs_free_space, offset_index);
608 if (!prev)
609 goto next;
610 if (e->bitmap || prev->bitmap)
611 goto next;
612 if (prev->offset + prev->bytes == e->offset) {
613 unlink_free_space(ctl, prev);
614 unlink_free_space(ctl, e);
615 prev->bytes += e->bytes;
616 kmem_cache_free(btrfs_free_space_cachep, e);
617 link_free_space(ctl, prev);
618 prev = NULL;
619 spin_unlock(&ctl->tree_lock);
620 goto again;
621 }
622next:
623 prev = e;
624 }
625 spin_unlock(&ctl->tree_lock);
626}
627
0414efae
LZ
628int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
629 struct btrfs_free_space_ctl *ctl,
630 struct btrfs_path *path, u64 offset)
9d66e233 631{
9d66e233
JB
632 struct btrfs_free_space_header *header;
633 struct extent_buffer *leaf;
a67509c3 634 struct io_ctl io_ctl;
9d66e233 635 struct btrfs_key key;
a67509c3 636 struct btrfs_free_space *e, *n;
9d66e233
JB
637 struct list_head bitmaps;
638 u64 num_entries;
639 u64 num_bitmaps;
640 u64 generation;
a67509c3 641 u8 type;
f6a39829 642 int ret = 0;
9d66e233
JB
643
644 INIT_LIST_HEAD(&bitmaps);
645
9d66e233 646 /* Nothing in the space cache, goodbye */
0414efae 647 if (!i_size_read(inode))
a67509c3 648 return 0;
9d66e233
JB
649
650 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 651 key.offset = offset;
9d66e233
JB
652 key.type = 0;
653
654 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
0414efae 655 if (ret < 0)
a67509c3 656 return 0;
0414efae 657 else if (ret > 0) {
945d8962 658 btrfs_release_path(path);
a67509c3 659 return 0;
9d66e233
JB
660 }
661
0414efae
LZ
662 ret = -1;
663
9d66e233
JB
664 leaf = path->nodes[0];
665 header = btrfs_item_ptr(leaf, path->slots[0],
666 struct btrfs_free_space_header);
667 num_entries = btrfs_free_space_entries(leaf, header);
668 num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
669 generation = btrfs_free_space_generation(leaf, header);
945d8962 670 btrfs_release_path(path);
9d66e233
JB
671
672 if (BTRFS_I(inode)->generation != generation) {
673 printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
0414efae 674 " not match free space cache generation (%llu)\n",
9d66e233 675 (unsigned long long)BTRFS_I(inode)->generation,
0414efae 676 (unsigned long long)generation);
a67509c3 677 return 0;
9d66e233
JB
678 }
679
680 if (!num_entries)
a67509c3 681 return 0;
9d66e233 682
706efc66
LZ
683 ret = io_ctl_init(&io_ctl, inode, root);
684 if (ret)
685 return ret;
686
9d66e233 687 ret = readahead_cache(inode);
0414efae 688 if (ret)
9d66e233 689 goto out;
9d66e233 690
a67509c3
JB
691 ret = io_ctl_prepare_pages(&io_ctl, inode, 1);
692 if (ret)
693 goto out;
9d66e233 694
5b0e95bf
JB
695 ret = io_ctl_check_crc(&io_ctl, 0);
696 if (ret)
697 goto free_cache;
698
a67509c3
JB
699 ret = io_ctl_check_generation(&io_ctl, generation);
700 if (ret)
701 goto free_cache;
9d66e233 702
a67509c3
JB
703 while (num_entries) {
704 e = kmem_cache_zalloc(btrfs_free_space_cachep,
705 GFP_NOFS);
706 if (!e)
9d66e233 707 goto free_cache;
9d66e233 708
5b0e95bf
JB
709 ret = io_ctl_read_entry(&io_ctl, e, &type);
710 if (ret) {
711 kmem_cache_free(btrfs_free_space_cachep, e);
712 goto free_cache;
713 }
714
a67509c3
JB
715 if (!e->bytes) {
716 kmem_cache_free(btrfs_free_space_cachep, e);
717 goto free_cache;
9d66e233 718 }
a67509c3
JB
719
720 if (type == BTRFS_FREE_SPACE_EXTENT) {
721 spin_lock(&ctl->tree_lock);
722 ret = link_free_space(ctl, e);
723 spin_unlock(&ctl->tree_lock);
724 if (ret) {
725 printk(KERN_ERR "Duplicate entries in "
726 "free space cache, dumping\n");
727 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
728 goto free_cache;
729 }
a67509c3
JB
730 } else {
731 BUG_ON(!num_bitmaps);
732 num_bitmaps--;
733 e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
734 if (!e->bitmap) {
735 kmem_cache_free(
736 btrfs_free_space_cachep, e);
9d66e233
JB
737 goto free_cache;
738 }
a67509c3
JB
739 spin_lock(&ctl->tree_lock);
740 ret = link_free_space(ctl, e);
741 ctl->total_bitmaps++;
742 ctl->op->recalc_thresholds(ctl);
743 spin_unlock(&ctl->tree_lock);
744 if (ret) {
745 printk(KERN_ERR "Duplicate entries in "
746 "free space cache, dumping\n");
dc89e982 747 kmem_cache_free(btrfs_free_space_cachep, e);
9d66e233
JB
748 goto free_cache;
749 }
a67509c3 750 list_add_tail(&e->list, &bitmaps);
9d66e233
JB
751 }
752
a67509c3
JB
753 num_entries--;
754 }
9d66e233 755
2f120c05
JB
756 io_ctl_unmap_page(&io_ctl);
757
a67509c3
JB
758 /*
759 * We add the bitmaps at the end of the entries in order that
760 * the bitmap entries are added to the cache.
761 */
762 list_for_each_entry_safe(e, n, &bitmaps, list) {
9d66e233 763 list_del_init(&e->list);
5b0e95bf
JB
764 ret = io_ctl_read_bitmap(&io_ctl, e);
765 if (ret)
766 goto free_cache;
9d66e233
JB
767 }
768
a67509c3 769 io_ctl_drop_pages(&io_ctl);
cd023e7b 770 merge_space_tree(ctl);
9d66e233
JB
771 ret = 1;
772out:
a67509c3 773 io_ctl_free(&io_ctl);
9d66e233 774 return ret;
9d66e233 775free_cache:
a67509c3 776 io_ctl_drop_pages(&io_ctl);
0414efae 777 __btrfs_remove_free_space_cache(ctl);
9d66e233
JB
778 goto out;
779}
780
0414efae
LZ
781int load_free_space_cache(struct btrfs_fs_info *fs_info,
782 struct btrfs_block_group_cache *block_group)
0cb59c99 783{
34d52cb6 784 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0414efae
LZ
785 struct btrfs_root *root = fs_info->tree_root;
786 struct inode *inode;
787 struct btrfs_path *path;
5b0e95bf 788 int ret = 0;
0414efae
LZ
789 bool matched;
790 u64 used = btrfs_block_group_used(&block_group->item);
791
0414efae
LZ
792 /*
793 * If this block group has been marked to be cleared for one reason or
794 * another then we can't trust the on disk cache, so just return.
795 */
9d66e233 796 spin_lock(&block_group->lock);
0414efae
LZ
797 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
798 spin_unlock(&block_group->lock);
799 return 0;
800 }
9d66e233 801 spin_unlock(&block_group->lock);
0414efae
LZ
802
803 path = btrfs_alloc_path();
804 if (!path)
805 return 0;
d53ba474
JB
806 path->search_commit_root = 1;
807 path->skip_locking = 1;
0414efae
LZ
808
809 inode = lookup_free_space_inode(root, block_group, path);
810 if (IS_ERR(inode)) {
811 btrfs_free_path(path);
812 return 0;
813 }
814
5b0e95bf
JB
815 /* We may have converted the inode and made the cache invalid. */
816 spin_lock(&block_group->lock);
817 if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
818 spin_unlock(&block_group->lock);
a7e221e9 819 btrfs_free_path(path);
5b0e95bf
JB
820 goto out;
821 }
822 spin_unlock(&block_group->lock);
823
0414efae
LZ
824 ret = __load_free_space_cache(fs_info->tree_root, inode, ctl,
825 path, block_group->key.objectid);
826 btrfs_free_path(path);
827 if (ret <= 0)
828 goto out;
829
830 spin_lock(&ctl->tree_lock);
831 matched = (ctl->free_space == (block_group->key.offset - used -
832 block_group->bytes_super));
833 spin_unlock(&ctl->tree_lock);
834
835 if (!matched) {
836 __btrfs_remove_free_space_cache(ctl);
837 printk(KERN_ERR "block group %llu has an wrong amount of free "
838 "space\n", block_group->key.objectid);
839 ret = -1;
840 }
841out:
842 if (ret < 0) {
843 /* This cache is bogus, make sure it gets cleared */
844 spin_lock(&block_group->lock);
845 block_group->disk_cache_state = BTRFS_DC_CLEAR;
846 spin_unlock(&block_group->lock);
82d5902d 847 ret = 0;
0414efae
LZ
848
849 printk(KERN_ERR "btrfs: failed to load free space cache "
850 "for block group %llu\n", block_group->key.objectid);
851 }
852
853 iput(inode);
854 return ret;
9d66e233
JB
855}
856
c09544e0
JB
857/**
858 * __btrfs_write_out_cache - write out cached info to an inode
859 * @root - the root the inode belongs to
860 * @ctl - the free space cache we are going to write out
861 * @block_group - the block_group for this cache if it belongs to a block_group
862 * @trans - the trans handle
863 * @path - the path to use
864 * @offset - the offset for the key we'll insert
865 *
866 * This function writes out a free space cache struct to disk for quick recovery
867 * on mount. This will return 0 if it was successfull in writing the cache out,
868 * and -1 if it was not.
869 */
0414efae
LZ
870int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
871 struct btrfs_free_space_ctl *ctl,
872 struct btrfs_block_group_cache *block_group,
873 struct btrfs_trans_handle *trans,
874 struct btrfs_path *path, u64 offset)
0cb59c99
JB
875{
876 struct btrfs_free_space_header *header;
877 struct extent_buffer *leaf;
0cb59c99
JB
878 struct rb_node *node;
879 struct list_head *pos, *n;
0cb59c99 880 struct extent_state *cached_state = NULL;
43be2146
JB
881 struct btrfs_free_cluster *cluster = NULL;
882 struct extent_io_tree *unpin = NULL;
a67509c3 883 struct io_ctl io_ctl;
0cb59c99
JB
884 struct list_head bitmap_list;
885 struct btrfs_key key;
db804f23 886 u64 start, extent_start, extent_end, len;
0cb59c99
JB
887 int entries = 0;
888 int bitmaps = 0;
c09544e0
JB
889 int ret;
890 int err = -1;
0cb59c99 891
0cb59c99
JB
892 INIT_LIST_HEAD(&bitmap_list);
893
0414efae
LZ
894 if (!i_size_read(inode))
895 return -1;
2b20982e 896
706efc66
LZ
897 ret = io_ctl_init(&io_ctl, inode, root);
898 if (ret)
899 return -1;
be1a12a0 900
43be2146 901 /* Get the cluster for this block_group if it exists */
0414efae 902 if (block_group && !list_empty(&block_group->cluster_list))
43be2146
JB
903 cluster = list_entry(block_group->cluster_list.next,
904 struct btrfs_free_cluster,
905 block_group_list);
906
a67509c3
JB
907 /* Lock all pages first so we can lock the extent safely. */
908 io_ctl_prepare_pages(&io_ctl, inode, 0);
0cb59c99 909
0cb59c99 910 lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
d0082371 911 0, &cached_state);
0cb59c99 912
f75b130e
JB
913 node = rb_first(&ctl->free_space_offset);
914 if (!node && cluster) {
915 node = rb_first(&cluster->root);
916 cluster = NULL;
917 }
918
5b0e95bf
JB
919 /* Make sure we can fit our crcs into the first page */
920 if (io_ctl.check_crcs &&
921 (io_ctl.num_pages * sizeof(u32)) >= PAGE_CACHE_SIZE) {
922 WARN_ON(1);
923 goto out_nospc;
924 }
925
a67509c3 926 io_ctl_set_generation(&io_ctl, trans->transid);
43be2146 927
a67509c3
JB
928 /* Write out the extent entries */
929 while (node) {
930 struct btrfs_free_space *e;
0cb59c99 931
a67509c3
JB
932 e = rb_entry(node, struct btrfs_free_space, offset_index);
933 entries++;
0cb59c99 934
a67509c3
JB
935 ret = io_ctl_add_entry(&io_ctl, e->offset, e->bytes,
936 e->bitmap);
937 if (ret)
938 goto out_nospc;
2f356126 939
a67509c3
JB
940 if (e->bitmap) {
941 list_add_tail(&e->list, &bitmap_list);
942 bitmaps++;
2f356126 943 }
a67509c3
JB
944 node = rb_next(node);
945 if (!node && cluster) {
946 node = rb_first(&cluster->root);
947 cluster = NULL;
43be2146 948 }
a67509c3 949 }
43be2146 950
a67509c3
JB
951 /*
952 * We want to add any pinned extents to our free space cache
953 * so we don't leak the space
954 */
db804f23
LZ
955
956 /*
957 * We shouldn't have switched the pinned extents yet so this is the
958 * right one
959 */
960 unpin = root->fs_info->pinned_extents;
961
962 if (block_group)
963 start = block_group->key.objectid;
964
a67509c3
JB
965 while (block_group && (start < block_group->key.objectid +
966 block_group->key.offset)) {
db804f23
LZ
967 ret = find_first_extent_bit(unpin, start,
968 &extent_start, &extent_end,
e6138876 969 EXTENT_DIRTY, NULL);
a67509c3
JB
970 if (ret) {
971 ret = 0;
972 break;
0cb59c99 973 }
0cb59c99 974
a67509c3 975 /* This pinned extent is out of our range */
db804f23 976 if (extent_start >= block_group->key.objectid +
a67509c3
JB
977 block_group->key.offset)
978 break;
2f356126 979
db804f23
LZ
980 extent_start = max(extent_start, start);
981 extent_end = min(block_group->key.objectid +
982 block_group->key.offset, extent_end + 1);
983 len = extent_end - extent_start;
0cb59c99 984
a67509c3 985 entries++;
db804f23 986 ret = io_ctl_add_entry(&io_ctl, extent_start, len, NULL);
a67509c3
JB
987 if (ret)
988 goto out_nospc;
0cb59c99 989
db804f23 990 start = extent_end;
a67509c3 991 }
0cb59c99
JB
992
993 /* Write out the bitmaps */
994 list_for_each_safe(pos, n, &bitmap_list) {
0cb59c99
JB
995 struct btrfs_free_space *entry =
996 list_entry(pos, struct btrfs_free_space, list);
997
a67509c3
JB
998 ret = io_ctl_add_bitmap(&io_ctl, entry->bitmap);
999 if (ret)
1000 goto out_nospc;
0cb59c99 1001 list_del_init(&entry->list);
be1a12a0
JB
1002 }
1003
0cb59c99 1004 /* Zero out the rest of the pages just to make sure */
a67509c3 1005 io_ctl_zero_remaining_pages(&io_ctl);
0cb59c99 1006
a67509c3
JB
1007 ret = btrfs_dirty_pages(root, inode, io_ctl.pages, io_ctl.num_pages,
1008 0, i_size_read(inode), &cached_state);
1009 io_ctl_drop_pages(&io_ctl);
0cb59c99
JB
1010 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1011 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1012
c09544e0 1013 if (ret)
2f356126 1014 goto out;
be1a12a0 1015
be1a12a0 1016
5fd02043 1017 btrfs_wait_ordered_range(inode, 0, (u64)-1);
0cb59c99
JB
1018
1019 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
0414efae 1020 key.offset = offset;
0cb59c99
JB
1021 key.type = 0;
1022
a9b5fcdd 1023 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
0cb59c99 1024 if (ret < 0) {
a67509c3 1025 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
5b0e95bf
JB
1026 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, NULL,
1027 GFP_NOFS);
2f356126 1028 goto out;
0cb59c99
JB
1029 }
1030 leaf = path->nodes[0];
1031 if (ret > 0) {
1032 struct btrfs_key found_key;
1033 BUG_ON(!path->slots[0]);
1034 path->slots[0]--;
1035 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1036 if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
0414efae 1037 found_key.offset != offset) {
a67509c3
JB
1038 clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1039 inode->i_size - 1,
5b0e95bf
JB
1040 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0,
1041 NULL, GFP_NOFS);
b3b4aa74 1042 btrfs_release_path(path);
2f356126 1043 goto out;
0cb59c99
JB
1044 }
1045 }
549b4fdb
JB
1046
1047 BTRFS_I(inode)->generation = trans->transid;
0cb59c99
JB
1048 header = btrfs_item_ptr(leaf, path->slots[0],
1049 struct btrfs_free_space_header);
1050 btrfs_set_free_space_entries(leaf, header, entries);
1051 btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1052 btrfs_set_free_space_generation(leaf, header, trans->transid);
1053 btrfs_mark_buffer_dirty(leaf);
b3b4aa74 1054 btrfs_release_path(path);
0cb59c99 1055
c09544e0 1056 err = 0;
2f356126 1057out:
a67509c3 1058 io_ctl_free(&io_ctl);
c09544e0 1059 if (err) {
a67509c3 1060 invalidate_inode_pages2(inode->i_mapping);
0cb59c99
JB
1061 BTRFS_I(inode)->generation = 0;
1062 }
0cb59c99 1063 btrfs_update_inode(trans, root, inode);
c09544e0 1064 return err;
a67509c3
JB
1065
1066out_nospc:
1067 list_for_each_safe(pos, n, &bitmap_list) {
1068 struct btrfs_free_space *entry =
1069 list_entry(pos, struct btrfs_free_space, list);
1070 list_del_init(&entry->list);
1071 }
1072 io_ctl_drop_pages(&io_ctl);
1073 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1074 i_size_read(inode) - 1, &cached_state, GFP_NOFS);
1075 goto out;
0414efae
LZ
1076}
1077
1078int btrfs_write_out_cache(struct btrfs_root *root,
1079 struct btrfs_trans_handle *trans,
1080 struct btrfs_block_group_cache *block_group,
1081 struct btrfs_path *path)
1082{
1083 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1084 struct inode *inode;
1085 int ret = 0;
1086
1087 root = root->fs_info->tree_root;
1088
1089 spin_lock(&block_group->lock);
1090 if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1091 spin_unlock(&block_group->lock);
1092 return 0;
1093 }
1094 spin_unlock(&block_group->lock);
1095
1096 inode = lookup_free_space_inode(root, block_group, path);
1097 if (IS_ERR(inode))
1098 return 0;
1099
1100 ret = __btrfs_write_out_cache(root, inode, ctl, block_group, trans,
1101 path, block_group->key.objectid);
c09544e0 1102 if (ret) {
0414efae
LZ
1103 spin_lock(&block_group->lock);
1104 block_group->disk_cache_state = BTRFS_DC_ERROR;
1105 spin_unlock(&block_group->lock);
82d5902d 1106 ret = 0;
c09544e0 1107#ifdef DEBUG
934e7d44 1108 printk(KERN_ERR "btrfs: failed to write free space cache "
0414efae 1109 "for block group %llu\n", block_group->key.objectid);
c09544e0 1110#endif
0414efae
LZ
1111 }
1112
0cb59c99
JB
1113 iput(inode);
1114 return ret;
1115}
1116
34d52cb6 1117static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
96303081 1118 u64 offset)
0f9dd46c 1119{
96303081
JB
1120 BUG_ON(offset < bitmap_start);
1121 offset -= bitmap_start;
34d52cb6 1122 return (unsigned long)(div_u64(offset, unit));
96303081 1123}
0f9dd46c 1124
34d52cb6 1125static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
96303081 1126{
34d52cb6 1127 return (unsigned long)(div_u64(bytes, unit));
96303081 1128}
0f9dd46c 1129
34d52cb6 1130static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1131 u64 offset)
1132{
1133 u64 bitmap_start;
1134 u64 bytes_per_bitmap;
0f9dd46c 1135
34d52cb6
LZ
1136 bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1137 bitmap_start = offset - ctl->start;
96303081
JB
1138 bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1139 bitmap_start *= bytes_per_bitmap;
34d52cb6 1140 bitmap_start += ctl->start;
0f9dd46c 1141
96303081 1142 return bitmap_start;
0f9dd46c
JB
1143}
1144
96303081
JB
1145static int tree_insert_offset(struct rb_root *root, u64 offset,
1146 struct rb_node *node, int bitmap)
0f9dd46c
JB
1147{
1148 struct rb_node **p = &root->rb_node;
1149 struct rb_node *parent = NULL;
1150 struct btrfs_free_space *info;
1151
1152 while (*p) {
1153 parent = *p;
96303081 1154 info = rb_entry(parent, struct btrfs_free_space, offset_index);
0f9dd46c 1155
96303081 1156 if (offset < info->offset) {
0f9dd46c 1157 p = &(*p)->rb_left;
96303081 1158 } else if (offset > info->offset) {
0f9dd46c 1159 p = &(*p)->rb_right;
96303081
JB
1160 } else {
1161 /*
1162 * we could have a bitmap entry and an extent entry
1163 * share the same offset. If this is the case, we want
1164 * the extent entry to always be found first if we do a
1165 * linear search through the tree, since we want to have
1166 * the quickest allocation time, and allocating from an
1167 * extent is faster than allocating from a bitmap. So
1168 * if we're inserting a bitmap and we find an entry at
1169 * this offset, we want to go right, or after this entry
1170 * logically. If we are inserting an extent and we've
1171 * found a bitmap, we want to go left, or before
1172 * logically.
1173 */
1174 if (bitmap) {
207dde82
JB
1175 if (info->bitmap) {
1176 WARN_ON_ONCE(1);
1177 return -EEXIST;
1178 }
96303081
JB
1179 p = &(*p)->rb_right;
1180 } else {
207dde82
JB
1181 if (!info->bitmap) {
1182 WARN_ON_ONCE(1);
1183 return -EEXIST;
1184 }
96303081
JB
1185 p = &(*p)->rb_left;
1186 }
1187 }
0f9dd46c
JB
1188 }
1189
1190 rb_link_node(node, parent, p);
1191 rb_insert_color(node, root);
1192
1193 return 0;
1194}
1195
1196/*
70cb0743
JB
1197 * searches the tree for the given offset.
1198 *
96303081
JB
1199 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1200 * want a section that has at least bytes size and comes at or after the given
1201 * offset.
0f9dd46c 1202 */
96303081 1203static struct btrfs_free_space *
34d52cb6 1204tree_search_offset(struct btrfs_free_space_ctl *ctl,
96303081 1205 u64 offset, int bitmap_only, int fuzzy)
0f9dd46c 1206{
34d52cb6 1207 struct rb_node *n = ctl->free_space_offset.rb_node;
96303081
JB
1208 struct btrfs_free_space *entry, *prev = NULL;
1209
1210 /* find entry that is closest to the 'offset' */
1211 while (1) {
1212 if (!n) {
1213 entry = NULL;
1214 break;
1215 }
0f9dd46c 1216
0f9dd46c 1217 entry = rb_entry(n, struct btrfs_free_space, offset_index);
96303081 1218 prev = entry;
0f9dd46c 1219
96303081 1220 if (offset < entry->offset)
0f9dd46c 1221 n = n->rb_left;
96303081 1222 else if (offset > entry->offset)
0f9dd46c 1223 n = n->rb_right;
96303081 1224 else
0f9dd46c 1225 break;
0f9dd46c
JB
1226 }
1227
96303081
JB
1228 if (bitmap_only) {
1229 if (!entry)
1230 return NULL;
1231 if (entry->bitmap)
1232 return entry;
0f9dd46c 1233
96303081
JB
1234 /*
1235 * bitmap entry and extent entry may share same offset,
1236 * in that case, bitmap entry comes after extent entry.
1237 */
1238 n = rb_next(n);
1239 if (!n)
1240 return NULL;
1241 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1242 if (entry->offset != offset)
1243 return NULL;
0f9dd46c 1244
96303081
JB
1245 WARN_ON(!entry->bitmap);
1246 return entry;
1247 } else if (entry) {
1248 if (entry->bitmap) {
0f9dd46c 1249 /*
96303081
JB
1250 * if previous extent entry covers the offset,
1251 * we should return it instead of the bitmap entry
0f9dd46c 1252 */
96303081
JB
1253 n = &entry->offset_index;
1254 while (1) {
1255 n = rb_prev(n);
1256 if (!n)
1257 break;
1258 prev = rb_entry(n, struct btrfs_free_space,
1259 offset_index);
1260 if (!prev->bitmap) {
1261 if (prev->offset + prev->bytes > offset)
1262 entry = prev;
1263 break;
1264 }
0f9dd46c 1265 }
96303081
JB
1266 }
1267 return entry;
1268 }
1269
1270 if (!prev)
1271 return NULL;
1272
1273 /* find last entry before the 'offset' */
1274 entry = prev;
1275 if (entry->offset > offset) {
1276 n = rb_prev(&entry->offset_index);
1277 if (n) {
1278 entry = rb_entry(n, struct btrfs_free_space,
1279 offset_index);
1280 BUG_ON(entry->offset > offset);
0f9dd46c 1281 } else {
96303081
JB
1282 if (fuzzy)
1283 return entry;
1284 else
1285 return NULL;
0f9dd46c
JB
1286 }
1287 }
1288
96303081
JB
1289 if (entry->bitmap) {
1290 n = &entry->offset_index;
1291 while (1) {
1292 n = rb_prev(n);
1293 if (!n)
1294 break;
1295 prev = rb_entry(n, struct btrfs_free_space,
1296 offset_index);
1297 if (!prev->bitmap) {
1298 if (prev->offset + prev->bytes > offset)
1299 return prev;
1300 break;
1301 }
1302 }
34d52cb6 1303 if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
96303081
JB
1304 return entry;
1305 } else if (entry->offset + entry->bytes > offset)
1306 return entry;
1307
1308 if (!fuzzy)
1309 return NULL;
1310
1311 while (1) {
1312 if (entry->bitmap) {
1313 if (entry->offset + BITS_PER_BITMAP *
34d52cb6 1314 ctl->unit > offset)
96303081
JB
1315 break;
1316 } else {
1317 if (entry->offset + entry->bytes > offset)
1318 break;
1319 }
1320
1321 n = rb_next(&entry->offset_index);
1322 if (!n)
1323 return NULL;
1324 entry = rb_entry(n, struct btrfs_free_space, offset_index);
1325 }
1326 return entry;
0f9dd46c
JB
1327}
1328
f333adb5 1329static inline void
34d52cb6 1330__unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1331 struct btrfs_free_space *info)
0f9dd46c 1332{
34d52cb6
LZ
1333 rb_erase(&info->offset_index, &ctl->free_space_offset);
1334 ctl->free_extents--;
f333adb5
LZ
1335}
1336
34d52cb6 1337static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5
LZ
1338 struct btrfs_free_space *info)
1339{
34d52cb6
LZ
1340 __unlink_free_space(ctl, info);
1341 ctl->free_space -= info->bytes;
0f9dd46c
JB
1342}
1343
34d52cb6 1344static int link_free_space(struct btrfs_free_space_ctl *ctl,
0f9dd46c
JB
1345 struct btrfs_free_space *info)
1346{
1347 int ret = 0;
1348
96303081 1349 BUG_ON(!info->bitmap && !info->bytes);
34d52cb6 1350 ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
96303081 1351 &info->offset_index, (info->bitmap != NULL));
0f9dd46c
JB
1352 if (ret)
1353 return ret;
1354
34d52cb6
LZ
1355 ctl->free_space += info->bytes;
1356 ctl->free_extents++;
96303081
JB
1357 return ret;
1358}
1359
34d52cb6 1360static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
96303081 1361{
34d52cb6 1362 struct btrfs_block_group_cache *block_group = ctl->private;
25891f79
JB
1363 u64 max_bytes;
1364 u64 bitmap_bytes;
1365 u64 extent_bytes;
8eb2d829 1366 u64 size = block_group->key.offset;
34d52cb6
LZ
1367 u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
1368 int max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
1369
1370 BUG_ON(ctl->total_bitmaps > max_bitmaps);
96303081
JB
1371
1372 /*
1373 * The goal is to keep the total amount of memory used per 1gb of space
1374 * at or below 32k, so we need to adjust how much memory we allow to be
1375 * used by extent based free space tracking
1376 */
8eb2d829
LZ
1377 if (size < 1024 * 1024 * 1024)
1378 max_bytes = MAX_CACHE_BYTES_PER_GIG;
1379 else
1380 max_bytes = MAX_CACHE_BYTES_PER_GIG *
1381 div64_u64(size, 1024 * 1024 * 1024);
96303081 1382
25891f79
JB
1383 /*
1384 * we want to account for 1 more bitmap than what we have so we can make
1385 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1386 * we add more bitmaps.
1387 */
34d52cb6 1388 bitmap_bytes = (ctl->total_bitmaps + 1) * PAGE_CACHE_SIZE;
96303081 1389
25891f79 1390 if (bitmap_bytes >= max_bytes) {
34d52cb6 1391 ctl->extents_thresh = 0;
25891f79
JB
1392 return;
1393 }
96303081 1394
25891f79
JB
1395 /*
1396 * we want the extent entry threshold to always be at most 1/2 the maxw
1397 * bytes we can have, or whatever is less than that.
1398 */
1399 extent_bytes = max_bytes - bitmap_bytes;
1400 extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
96303081 1401
34d52cb6 1402 ctl->extents_thresh =
25891f79 1403 div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
96303081
JB
1404}
1405
bb3ac5a4
MX
1406static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1407 struct btrfs_free_space *info,
1408 u64 offset, u64 bytes)
96303081 1409{
f38b6e75 1410 unsigned long start, count;
96303081 1411
34d52cb6
LZ
1412 start = offset_to_bit(info->offset, ctl->unit, offset);
1413 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1414 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1415
f38b6e75 1416 bitmap_clear(info->bitmap, start, count);
96303081
JB
1417
1418 info->bytes -= bytes;
bb3ac5a4
MX
1419}
1420
1421static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1422 struct btrfs_free_space *info, u64 offset,
1423 u64 bytes)
1424{
1425 __bitmap_clear_bits(ctl, info, offset, bytes);
34d52cb6 1426 ctl->free_space -= bytes;
96303081
JB
1427}
1428
34d52cb6 1429static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
817d52f8
JB
1430 struct btrfs_free_space *info, u64 offset,
1431 u64 bytes)
96303081 1432{
f38b6e75 1433 unsigned long start, count;
96303081 1434
34d52cb6
LZ
1435 start = offset_to_bit(info->offset, ctl->unit, offset);
1436 count = bytes_to_bits(bytes, ctl->unit);
f38b6e75 1437 BUG_ON(start + count > BITS_PER_BITMAP);
96303081 1438
f38b6e75 1439 bitmap_set(info->bitmap, start, count);
96303081
JB
1440
1441 info->bytes += bytes;
34d52cb6 1442 ctl->free_space += bytes;
96303081
JB
1443}
1444
34d52cb6 1445static int search_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1446 struct btrfs_free_space *bitmap_info, u64 *offset,
1447 u64 *bytes)
1448{
1449 unsigned long found_bits = 0;
1450 unsigned long bits, i;
1451 unsigned long next_zero;
1452
34d52cb6 1453 i = offset_to_bit(bitmap_info->offset, ctl->unit,
96303081 1454 max_t(u64, *offset, bitmap_info->offset));
34d52cb6 1455 bits = bytes_to_bits(*bytes, ctl->unit);
96303081 1456
ebb3dad4 1457 for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
96303081
JB
1458 next_zero = find_next_zero_bit(bitmap_info->bitmap,
1459 BITS_PER_BITMAP, i);
1460 if ((next_zero - i) >= bits) {
1461 found_bits = next_zero - i;
1462 break;
1463 }
1464 i = next_zero;
1465 }
1466
1467 if (found_bits) {
34d52cb6
LZ
1468 *offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1469 *bytes = (u64)(found_bits) * ctl->unit;
96303081
JB
1470 return 0;
1471 }
1472
1473 return -1;
1474}
1475
34d52cb6
LZ
1476static struct btrfs_free_space *
1477find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes)
96303081
JB
1478{
1479 struct btrfs_free_space *entry;
1480 struct rb_node *node;
1481 int ret;
1482
34d52cb6 1483 if (!ctl->free_space_offset.rb_node)
96303081
JB
1484 return NULL;
1485
34d52cb6 1486 entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
96303081
JB
1487 if (!entry)
1488 return NULL;
1489
1490 for (node = &entry->offset_index; node; node = rb_next(node)) {
1491 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1492 if (entry->bytes < *bytes)
1493 continue;
1494
1495 if (entry->bitmap) {
34d52cb6 1496 ret = search_bitmap(ctl, entry, offset, bytes);
96303081
JB
1497 if (!ret)
1498 return entry;
1499 continue;
1500 }
1501
1502 *offset = entry->offset;
1503 *bytes = entry->bytes;
1504 return entry;
1505 }
1506
1507 return NULL;
1508}
1509
34d52cb6 1510static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1511 struct btrfs_free_space *info, u64 offset)
1512{
34d52cb6 1513 info->offset = offset_to_bitmap(ctl, offset);
f019f426 1514 info->bytes = 0;
f2d0f676 1515 INIT_LIST_HEAD(&info->list);
34d52cb6
LZ
1516 link_free_space(ctl, info);
1517 ctl->total_bitmaps++;
96303081 1518
34d52cb6 1519 ctl->op->recalc_thresholds(ctl);
96303081
JB
1520}
1521
34d52cb6 1522static void free_bitmap(struct btrfs_free_space_ctl *ctl,
edf6e2d1
LZ
1523 struct btrfs_free_space *bitmap_info)
1524{
34d52cb6 1525 unlink_free_space(ctl, bitmap_info);
edf6e2d1 1526 kfree(bitmap_info->bitmap);
dc89e982 1527 kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
34d52cb6
LZ
1528 ctl->total_bitmaps--;
1529 ctl->op->recalc_thresholds(ctl);
edf6e2d1
LZ
1530}
1531
34d52cb6 1532static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
96303081
JB
1533 struct btrfs_free_space *bitmap_info,
1534 u64 *offset, u64 *bytes)
1535{
1536 u64 end;
6606bb97
JB
1537 u64 search_start, search_bytes;
1538 int ret;
96303081
JB
1539
1540again:
34d52cb6 1541 end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
96303081 1542
6606bb97 1543 /*
bdb7d303
JB
1544 * We need to search for bits in this bitmap. We could only cover some
1545 * of the extent in this bitmap thanks to how we add space, so we need
1546 * to search for as much as it as we can and clear that amount, and then
1547 * go searching for the next bit.
6606bb97
JB
1548 */
1549 search_start = *offset;
bdb7d303 1550 search_bytes = ctl->unit;
13dbc089 1551 search_bytes = min(search_bytes, end - search_start + 1);
34d52cb6 1552 ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes);
6606bb97
JB
1553 BUG_ON(ret < 0 || search_start != *offset);
1554
bdb7d303
JB
1555 /* We may have found more bits than what we need */
1556 search_bytes = min(search_bytes, *bytes);
1557
1558 /* Cannot clear past the end of the bitmap */
1559 search_bytes = min(search_bytes, end - search_start + 1);
1560
1561 bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
1562 *offset += search_bytes;
1563 *bytes -= search_bytes;
96303081
JB
1564
1565 if (*bytes) {
6606bb97 1566 struct rb_node *next = rb_next(&bitmap_info->offset_index);
edf6e2d1 1567 if (!bitmap_info->bytes)
34d52cb6 1568 free_bitmap(ctl, bitmap_info);
96303081 1569
6606bb97
JB
1570 /*
1571 * no entry after this bitmap, but we still have bytes to
1572 * remove, so something has gone wrong.
1573 */
1574 if (!next)
96303081
JB
1575 return -EINVAL;
1576
6606bb97
JB
1577 bitmap_info = rb_entry(next, struct btrfs_free_space,
1578 offset_index);
1579
1580 /*
1581 * if the next entry isn't a bitmap we need to return to let the
1582 * extent stuff do its work.
1583 */
96303081
JB
1584 if (!bitmap_info->bitmap)
1585 return -EAGAIN;
1586
6606bb97
JB
1587 /*
1588 * Ok the next item is a bitmap, but it may not actually hold
1589 * the information for the rest of this free space stuff, so
1590 * look for it, and if we don't find it return so we can try
1591 * everything over again.
1592 */
1593 search_start = *offset;
bdb7d303 1594 search_bytes = ctl->unit;
34d52cb6 1595 ret = search_bitmap(ctl, bitmap_info, &search_start,
6606bb97
JB
1596 &search_bytes);
1597 if (ret < 0 || search_start != *offset)
1598 return -EAGAIN;
1599
96303081 1600 goto again;
edf6e2d1 1601 } else if (!bitmap_info->bytes)
34d52cb6 1602 free_bitmap(ctl, bitmap_info);
96303081
JB
1603
1604 return 0;
1605}
1606
2cdc342c
JB
1607static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
1608 struct btrfs_free_space *info, u64 offset,
1609 u64 bytes)
1610{
1611 u64 bytes_to_set = 0;
1612 u64 end;
1613
1614 end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
1615
1616 bytes_to_set = min(end - offset, bytes);
1617
1618 bitmap_set_bits(ctl, info, offset, bytes_to_set);
1619
1620 return bytes_to_set;
1621
1622}
1623
34d52cb6
LZ
1624static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
1625 struct btrfs_free_space *info)
96303081 1626{
34d52cb6 1627 struct btrfs_block_group_cache *block_group = ctl->private;
96303081
JB
1628
1629 /*
1630 * If we are below the extents threshold then we can add this as an
1631 * extent, and don't have to deal with the bitmap
1632 */
34d52cb6 1633 if (ctl->free_extents < ctl->extents_thresh) {
32cb0840
JB
1634 /*
1635 * If this block group has some small extents we don't want to
1636 * use up all of our free slots in the cache with them, we want
1637 * to reserve them to larger extents, however if we have plent
1638 * of cache left then go ahead an dadd them, no sense in adding
1639 * the overhead of a bitmap if we don't have to.
1640 */
1641 if (info->bytes <= block_group->sectorsize * 4) {
34d52cb6
LZ
1642 if (ctl->free_extents * 2 <= ctl->extents_thresh)
1643 return false;
32cb0840 1644 } else {
34d52cb6 1645 return false;
32cb0840
JB
1646 }
1647 }
96303081
JB
1648
1649 /*
1650 * some block groups are so tiny they can't be enveloped by a bitmap, so
1651 * don't even bother to create a bitmap for this
1652 */
1653 if (BITS_PER_BITMAP * block_group->sectorsize >
1654 block_group->key.offset)
34d52cb6
LZ
1655 return false;
1656
1657 return true;
1658}
1659
2cdc342c
JB
1660static struct btrfs_free_space_op free_space_op = {
1661 .recalc_thresholds = recalculate_thresholds,
1662 .use_bitmap = use_bitmap,
1663};
1664
34d52cb6
LZ
1665static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
1666 struct btrfs_free_space *info)
1667{
1668 struct btrfs_free_space *bitmap_info;
2cdc342c 1669 struct btrfs_block_group_cache *block_group = NULL;
34d52cb6 1670 int added = 0;
2cdc342c 1671 u64 bytes, offset, bytes_added;
34d52cb6 1672 int ret;
96303081
JB
1673
1674 bytes = info->bytes;
1675 offset = info->offset;
1676
34d52cb6
LZ
1677 if (!ctl->op->use_bitmap(ctl, info))
1678 return 0;
1679
2cdc342c
JB
1680 if (ctl->op == &free_space_op)
1681 block_group = ctl->private;
38e87880 1682again:
2cdc342c
JB
1683 /*
1684 * Since we link bitmaps right into the cluster we need to see if we
1685 * have a cluster here, and if so and it has our bitmap we need to add
1686 * the free space to that bitmap.
1687 */
1688 if (block_group && !list_empty(&block_group->cluster_list)) {
1689 struct btrfs_free_cluster *cluster;
1690 struct rb_node *node;
1691 struct btrfs_free_space *entry;
1692
1693 cluster = list_entry(block_group->cluster_list.next,
1694 struct btrfs_free_cluster,
1695 block_group_list);
1696 spin_lock(&cluster->lock);
1697 node = rb_first(&cluster->root);
1698 if (!node) {
1699 spin_unlock(&cluster->lock);
38e87880 1700 goto no_cluster_bitmap;
2cdc342c
JB
1701 }
1702
1703 entry = rb_entry(node, struct btrfs_free_space, offset_index);
1704 if (!entry->bitmap) {
1705 spin_unlock(&cluster->lock);
38e87880 1706 goto no_cluster_bitmap;
2cdc342c
JB
1707 }
1708
1709 if (entry->offset == offset_to_bitmap(ctl, offset)) {
1710 bytes_added = add_bytes_to_bitmap(ctl, entry,
1711 offset, bytes);
1712 bytes -= bytes_added;
1713 offset += bytes_added;
1714 }
1715 spin_unlock(&cluster->lock);
1716 if (!bytes) {
1717 ret = 1;
1718 goto out;
1719 }
1720 }
38e87880
CM
1721
1722no_cluster_bitmap:
34d52cb6 1723 bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
96303081
JB
1724 1, 0);
1725 if (!bitmap_info) {
1726 BUG_ON(added);
1727 goto new_bitmap;
1728 }
1729
2cdc342c
JB
1730 bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes);
1731 bytes -= bytes_added;
1732 offset += bytes_added;
1733 added = 0;
96303081
JB
1734
1735 if (!bytes) {
1736 ret = 1;
1737 goto out;
1738 } else
1739 goto again;
1740
1741new_bitmap:
1742 if (info && info->bitmap) {
34d52cb6 1743 add_new_bitmap(ctl, info, offset);
96303081
JB
1744 added = 1;
1745 info = NULL;
1746 goto again;
1747 } else {
34d52cb6 1748 spin_unlock(&ctl->tree_lock);
96303081
JB
1749
1750 /* no pre-allocated info, allocate a new one */
1751 if (!info) {
dc89e982
JB
1752 info = kmem_cache_zalloc(btrfs_free_space_cachep,
1753 GFP_NOFS);
96303081 1754 if (!info) {
34d52cb6 1755 spin_lock(&ctl->tree_lock);
96303081
JB
1756 ret = -ENOMEM;
1757 goto out;
1758 }
1759 }
1760
1761 /* allocate the bitmap */
1762 info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
34d52cb6 1763 spin_lock(&ctl->tree_lock);
96303081
JB
1764 if (!info->bitmap) {
1765 ret = -ENOMEM;
1766 goto out;
1767 }
1768 goto again;
1769 }
1770
1771out:
1772 if (info) {
1773 if (info->bitmap)
1774 kfree(info->bitmap);
dc89e982 1775 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1776 }
0f9dd46c
JB
1777
1778 return ret;
1779}
1780
945d8962 1781static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
f333adb5 1782 struct btrfs_free_space *info, bool update_stat)
0f9dd46c 1783{
120d66ee
LZ
1784 struct btrfs_free_space *left_info;
1785 struct btrfs_free_space *right_info;
1786 bool merged = false;
1787 u64 offset = info->offset;
1788 u64 bytes = info->bytes;
6226cb0a 1789
0f9dd46c
JB
1790 /*
1791 * first we want to see if there is free space adjacent to the range we
1792 * are adding, if there is remove that struct and add a new one to
1793 * cover the entire range
1794 */
34d52cb6 1795 right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
96303081
JB
1796 if (right_info && rb_prev(&right_info->offset_index))
1797 left_info = rb_entry(rb_prev(&right_info->offset_index),
1798 struct btrfs_free_space, offset_index);
1799 else
34d52cb6 1800 left_info = tree_search_offset(ctl, offset - 1, 0, 0);
0f9dd46c 1801
96303081 1802 if (right_info && !right_info->bitmap) {
f333adb5 1803 if (update_stat)
34d52cb6 1804 unlink_free_space(ctl, right_info);
f333adb5 1805 else
34d52cb6 1806 __unlink_free_space(ctl, right_info);
6226cb0a 1807 info->bytes += right_info->bytes;
dc89e982 1808 kmem_cache_free(btrfs_free_space_cachep, right_info);
120d66ee 1809 merged = true;
0f9dd46c
JB
1810 }
1811
96303081
JB
1812 if (left_info && !left_info->bitmap &&
1813 left_info->offset + left_info->bytes == offset) {
f333adb5 1814 if (update_stat)
34d52cb6 1815 unlink_free_space(ctl, left_info);
f333adb5 1816 else
34d52cb6 1817 __unlink_free_space(ctl, left_info);
6226cb0a
JB
1818 info->offset = left_info->offset;
1819 info->bytes += left_info->bytes;
dc89e982 1820 kmem_cache_free(btrfs_free_space_cachep, left_info);
120d66ee 1821 merged = true;
0f9dd46c
JB
1822 }
1823
120d66ee
LZ
1824 return merged;
1825}
1826
581bb050
LZ
1827int __btrfs_add_free_space(struct btrfs_free_space_ctl *ctl,
1828 u64 offset, u64 bytes)
120d66ee
LZ
1829{
1830 struct btrfs_free_space *info;
1831 int ret = 0;
1832
dc89e982 1833 info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
120d66ee
LZ
1834 if (!info)
1835 return -ENOMEM;
1836
1837 info->offset = offset;
1838 info->bytes = bytes;
1839
34d52cb6 1840 spin_lock(&ctl->tree_lock);
120d66ee 1841
34d52cb6 1842 if (try_merge_free_space(ctl, info, true))
120d66ee
LZ
1843 goto link;
1844
1845 /*
1846 * There was no extent directly to the left or right of this new
1847 * extent then we know we're going to have to allocate a new extent, so
1848 * before we do that see if we need to drop this into a bitmap
1849 */
34d52cb6 1850 ret = insert_into_bitmap(ctl, info);
120d66ee
LZ
1851 if (ret < 0) {
1852 goto out;
1853 } else if (ret) {
1854 ret = 0;
1855 goto out;
1856 }
1857link:
34d52cb6 1858 ret = link_free_space(ctl, info);
0f9dd46c 1859 if (ret)
dc89e982 1860 kmem_cache_free(btrfs_free_space_cachep, info);
96303081 1861out:
34d52cb6 1862 spin_unlock(&ctl->tree_lock);
6226cb0a 1863
0f9dd46c 1864 if (ret) {
96303081 1865 printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
c293498b 1866 BUG_ON(ret == -EEXIST);
0f9dd46c
JB
1867 }
1868
0f9dd46c
JB
1869 return ret;
1870}
1871
6226cb0a
JB
1872int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
1873 u64 offset, u64 bytes)
0f9dd46c 1874{
34d52cb6 1875 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1876 struct btrfs_free_space *info;
1877 int ret = 0;
1878
34d52cb6 1879 spin_lock(&ctl->tree_lock);
6226cb0a 1880
96303081 1881again:
bdb7d303
JB
1882 if (!bytes)
1883 goto out_lock;
1884
34d52cb6 1885 info = tree_search_offset(ctl, offset, 0, 0);
96303081 1886 if (!info) {
6606bb97
JB
1887 /*
1888 * oops didn't find an extent that matched the space we wanted
1889 * to remove, look for a bitmap instead
1890 */
34d52cb6 1891 info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
6606bb97
JB
1892 1, 0);
1893 if (!info) {
24a70313
CM
1894 /* the tree logging code might be calling us before we
1895 * have fully loaded the free space rbtree for this
1896 * block group. So it is possible the entry won't
1897 * be in the rbtree yet at all. The caching code
1898 * will make sure not to put it in the rbtree if
1899 * the logging code has pinned it.
1900 */
6606bb97
JB
1901 goto out_lock;
1902 }
96303081
JB
1903 }
1904
bdb7d303 1905 if (!info->bitmap) {
34d52cb6 1906 unlink_free_space(ctl, info);
bdb7d303
JB
1907 if (offset == info->offset) {
1908 u64 to_free = min(bytes, info->bytes);
1909
1910 info->bytes -= to_free;
1911 info->offset += to_free;
1912 if (info->bytes) {
1913 ret = link_free_space(ctl, info);
1914 WARN_ON(ret);
1915 } else {
1916 kmem_cache_free(btrfs_free_space_cachep, info);
1917 }
0f9dd46c 1918
bdb7d303
JB
1919 offset += to_free;
1920 bytes -= to_free;
1921 goto again;
1922 } else {
1923 u64 old_end = info->bytes + info->offset;
9b49c9b9 1924
bdb7d303 1925 info->bytes = offset - info->offset;
34d52cb6 1926 ret = link_free_space(ctl, info);
96303081
JB
1927 WARN_ON(ret);
1928 if (ret)
1929 goto out_lock;
96303081 1930
bdb7d303
JB
1931 /* Not enough bytes in this entry to satisfy us */
1932 if (old_end < offset + bytes) {
1933 bytes -= old_end - offset;
1934 offset = old_end;
1935 goto again;
1936 } else if (old_end == offset + bytes) {
1937 /* all done */
1938 goto out_lock;
1939 }
1940 spin_unlock(&ctl->tree_lock);
1941
1942 ret = btrfs_add_free_space(block_group, offset + bytes,
1943 old_end - (offset + bytes));
1944 WARN_ON(ret);
1945 goto out;
1946 }
0f9dd46c 1947 }
96303081 1948
34d52cb6 1949 ret = remove_from_bitmap(ctl, info, &offset, &bytes);
96303081
JB
1950 if (ret == -EAGAIN)
1951 goto again;
79787eaa 1952 BUG_ON(ret); /* logic error */
96303081 1953out_lock:
34d52cb6 1954 spin_unlock(&ctl->tree_lock);
0f9dd46c 1955out:
25179201
JB
1956 return ret;
1957}
1958
0f9dd46c
JB
1959void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
1960 u64 bytes)
1961{
34d52cb6 1962 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c
JB
1963 struct btrfs_free_space *info;
1964 struct rb_node *n;
1965 int count = 0;
1966
34d52cb6 1967 for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
0f9dd46c 1968 info = rb_entry(n, struct btrfs_free_space, offset_index);
f6175efa 1969 if (info->bytes >= bytes && !block_group->ro)
0f9dd46c 1970 count++;
96303081 1971 printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
21380931 1972 (unsigned long long)info->offset,
96303081
JB
1973 (unsigned long long)info->bytes,
1974 (info->bitmap) ? "yes" : "no");
0f9dd46c 1975 }
96303081
JB
1976 printk(KERN_INFO "block group has cluster?: %s\n",
1977 list_empty(&block_group->cluster_list) ? "no" : "yes");
0f9dd46c
JB
1978 printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
1979 "\n", count);
1980}
1981
34d52cb6 1982void btrfs_init_free_space_ctl(struct btrfs_block_group_cache *block_group)
0f9dd46c 1983{
34d52cb6 1984 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
0f9dd46c 1985
34d52cb6
LZ
1986 spin_lock_init(&ctl->tree_lock);
1987 ctl->unit = block_group->sectorsize;
1988 ctl->start = block_group->key.objectid;
1989 ctl->private = block_group;
1990 ctl->op = &free_space_op;
0f9dd46c 1991
34d52cb6
LZ
1992 /*
1993 * we only want to have 32k of ram per block group for keeping
1994 * track of free space, and if we pass 1/2 of that we want to
1995 * start converting things over to using bitmaps
1996 */
1997 ctl->extents_thresh = ((1024 * 32) / 2) /
1998 sizeof(struct btrfs_free_space);
0f9dd46c
JB
1999}
2000
fa9c0d79
CM
2001/*
2002 * for a given cluster, put all of its extents back into the free
2003 * space cache. If the block group passed doesn't match the block group
2004 * pointed to by the cluster, someone else raced in and freed the
2005 * cluster already. In that case, we just return without changing anything
2006 */
2007static int
2008__btrfs_return_cluster_to_free_space(
2009 struct btrfs_block_group_cache *block_group,
2010 struct btrfs_free_cluster *cluster)
2011{
34d52cb6 2012 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2013 struct btrfs_free_space *entry;
2014 struct rb_node *node;
2015
2016 spin_lock(&cluster->lock);
2017 if (cluster->block_group != block_group)
2018 goto out;
2019
96303081 2020 cluster->block_group = NULL;
fa9c0d79 2021 cluster->window_start = 0;
96303081 2022 list_del_init(&cluster->block_group_list);
96303081 2023
fa9c0d79 2024 node = rb_first(&cluster->root);
96303081 2025 while (node) {
4e69b598
JB
2026 bool bitmap;
2027
fa9c0d79
CM
2028 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2029 node = rb_next(&entry->offset_index);
2030 rb_erase(&entry->offset_index, &cluster->root);
4e69b598
JB
2031
2032 bitmap = (entry->bitmap != NULL);
2033 if (!bitmap)
34d52cb6
LZ
2034 try_merge_free_space(ctl, entry, false);
2035 tree_insert_offset(&ctl->free_space_offset,
4e69b598 2036 entry->offset, &entry->offset_index, bitmap);
fa9c0d79 2037 }
6bef4d31 2038 cluster->root = RB_ROOT;
96303081 2039
fa9c0d79
CM
2040out:
2041 spin_unlock(&cluster->lock);
96303081 2042 btrfs_put_block_group(block_group);
fa9c0d79
CM
2043 return 0;
2044}
2045
09655373 2046void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl *ctl)
0f9dd46c
JB
2047{
2048 struct btrfs_free_space *info;
2049 struct rb_node *node;
581bb050 2050
581bb050
LZ
2051 while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2052 info = rb_entry(node, struct btrfs_free_space, offset_index);
9b90f513
JB
2053 if (!info->bitmap) {
2054 unlink_free_space(ctl, info);
2055 kmem_cache_free(btrfs_free_space_cachep, info);
2056 } else {
2057 free_bitmap(ctl, info);
2058 }
581bb050
LZ
2059 if (need_resched()) {
2060 spin_unlock(&ctl->tree_lock);
2061 cond_resched();
2062 spin_lock(&ctl->tree_lock);
2063 }
2064 }
09655373
CM
2065}
2066
2067void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2068{
2069 spin_lock(&ctl->tree_lock);
2070 __btrfs_remove_free_space_cache_locked(ctl);
581bb050
LZ
2071 spin_unlock(&ctl->tree_lock);
2072}
2073
2074void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
2075{
2076 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79 2077 struct btrfs_free_cluster *cluster;
96303081 2078 struct list_head *head;
0f9dd46c 2079
34d52cb6 2080 spin_lock(&ctl->tree_lock);
96303081
JB
2081 while ((head = block_group->cluster_list.next) !=
2082 &block_group->cluster_list) {
2083 cluster = list_entry(head, struct btrfs_free_cluster,
2084 block_group_list);
fa9c0d79
CM
2085
2086 WARN_ON(cluster->block_group != block_group);
2087 __btrfs_return_cluster_to_free_space(block_group, cluster);
96303081 2088 if (need_resched()) {
34d52cb6 2089 spin_unlock(&ctl->tree_lock);
96303081 2090 cond_resched();
34d52cb6 2091 spin_lock(&ctl->tree_lock);
96303081 2092 }
fa9c0d79 2093 }
09655373 2094 __btrfs_remove_free_space_cache_locked(ctl);
34d52cb6 2095 spin_unlock(&ctl->tree_lock);
fa9c0d79 2096
0f9dd46c
JB
2097}
2098
6226cb0a
JB
2099u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
2100 u64 offset, u64 bytes, u64 empty_size)
0f9dd46c 2101{
34d52cb6 2102 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
6226cb0a 2103 struct btrfs_free_space *entry = NULL;
96303081 2104 u64 bytes_search = bytes + empty_size;
6226cb0a 2105 u64 ret = 0;
0f9dd46c 2106
34d52cb6
LZ
2107 spin_lock(&ctl->tree_lock);
2108 entry = find_free_space(ctl, &offset, &bytes_search);
6226cb0a 2109 if (!entry)
96303081
JB
2110 goto out;
2111
2112 ret = offset;
2113 if (entry->bitmap) {
34d52cb6 2114 bitmap_clear_bits(ctl, entry, offset, bytes);
edf6e2d1 2115 if (!entry->bytes)
34d52cb6 2116 free_bitmap(ctl, entry);
96303081 2117 } else {
34d52cb6 2118 unlink_free_space(ctl, entry);
6226cb0a
JB
2119 entry->offset += bytes;
2120 entry->bytes -= bytes;
6226cb0a 2121 if (!entry->bytes)
dc89e982 2122 kmem_cache_free(btrfs_free_space_cachep, entry);
6226cb0a 2123 else
34d52cb6 2124 link_free_space(ctl, entry);
6226cb0a 2125 }
0f9dd46c 2126
96303081 2127out:
34d52cb6 2128 spin_unlock(&ctl->tree_lock);
817d52f8 2129
0f9dd46c
JB
2130 return ret;
2131}
fa9c0d79
CM
2132
2133/*
2134 * given a cluster, put all of its extents back into the free space
2135 * cache. If a block group is passed, this function will only free
2136 * a cluster that belongs to the passed block group.
2137 *
2138 * Otherwise, it'll get a reference on the block group pointed to by the
2139 * cluster and remove the cluster from it.
2140 */
2141int btrfs_return_cluster_to_free_space(
2142 struct btrfs_block_group_cache *block_group,
2143 struct btrfs_free_cluster *cluster)
2144{
34d52cb6 2145 struct btrfs_free_space_ctl *ctl;
fa9c0d79
CM
2146 int ret;
2147
2148 /* first, get a safe pointer to the block group */
2149 spin_lock(&cluster->lock);
2150 if (!block_group) {
2151 block_group = cluster->block_group;
2152 if (!block_group) {
2153 spin_unlock(&cluster->lock);
2154 return 0;
2155 }
2156 } else if (cluster->block_group != block_group) {
2157 /* someone else has already freed it don't redo their work */
2158 spin_unlock(&cluster->lock);
2159 return 0;
2160 }
2161 atomic_inc(&block_group->count);
2162 spin_unlock(&cluster->lock);
2163
34d52cb6
LZ
2164 ctl = block_group->free_space_ctl;
2165
fa9c0d79 2166 /* now return any extents the cluster had on it */
34d52cb6 2167 spin_lock(&ctl->tree_lock);
fa9c0d79 2168 ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
34d52cb6 2169 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2170
2171 /* finally drop our ref */
2172 btrfs_put_block_group(block_group);
2173 return ret;
2174}
2175
96303081
JB
2176static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
2177 struct btrfs_free_cluster *cluster,
4e69b598 2178 struct btrfs_free_space *entry,
96303081
JB
2179 u64 bytes, u64 min_start)
2180{
34d52cb6 2181 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2182 int err;
2183 u64 search_start = cluster->window_start;
2184 u64 search_bytes = bytes;
2185 u64 ret = 0;
2186
96303081
JB
2187 search_start = min_start;
2188 search_bytes = bytes;
2189
34d52cb6 2190 err = search_bitmap(ctl, entry, &search_start, &search_bytes);
96303081 2191 if (err)
4e69b598 2192 return 0;
96303081
JB
2193
2194 ret = search_start;
bb3ac5a4 2195 __bitmap_clear_bits(ctl, entry, ret, bytes);
96303081
JB
2196
2197 return ret;
2198}
2199
fa9c0d79
CM
2200/*
2201 * given a cluster, try to allocate 'bytes' from it, returns 0
2202 * if it couldn't find anything suitably large, or a logical disk offset
2203 * if things worked out
2204 */
2205u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
2206 struct btrfs_free_cluster *cluster, u64 bytes,
2207 u64 min_start)
2208{
34d52cb6 2209 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
fa9c0d79
CM
2210 struct btrfs_free_space *entry = NULL;
2211 struct rb_node *node;
2212 u64 ret = 0;
2213
2214 spin_lock(&cluster->lock);
2215 if (bytes > cluster->max_size)
2216 goto out;
2217
2218 if (cluster->block_group != block_group)
2219 goto out;
2220
2221 node = rb_first(&cluster->root);
2222 if (!node)
2223 goto out;
2224
2225 entry = rb_entry(node, struct btrfs_free_space, offset_index);
fa9c0d79 2226 while(1) {
4e69b598
JB
2227 if (entry->bytes < bytes ||
2228 (!entry->bitmap && entry->offset < min_start)) {
fa9c0d79
CM
2229 node = rb_next(&entry->offset_index);
2230 if (!node)
2231 break;
2232 entry = rb_entry(node, struct btrfs_free_space,
2233 offset_index);
2234 continue;
2235 }
fa9c0d79 2236
4e69b598
JB
2237 if (entry->bitmap) {
2238 ret = btrfs_alloc_from_bitmap(block_group,
2239 cluster, entry, bytes,
0b4a9d24 2240 cluster->window_start);
4e69b598 2241 if (ret == 0) {
4e69b598
JB
2242 node = rb_next(&entry->offset_index);
2243 if (!node)
2244 break;
2245 entry = rb_entry(node, struct btrfs_free_space,
2246 offset_index);
2247 continue;
2248 }
9b230628 2249 cluster->window_start += bytes;
4e69b598 2250 } else {
4e69b598
JB
2251 ret = entry->offset;
2252
2253 entry->offset += bytes;
2254 entry->bytes -= bytes;
2255 }
fa9c0d79 2256
5e71b5d5 2257 if (entry->bytes == 0)
fa9c0d79 2258 rb_erase(&entry->offset_index, &cluster->root);
fa9c0d79
CM
2259 break;
2260 }
2261out:
2262 spin_unlock(&cluster->lock);
96303081 2263
5e71b5d5
LZ
2264 if (!ret)
2265 return 0;
2266
34d52cb6 2267 spin_lock(&ctl->tree_lock);
5e71b5d5 2268
34d52cb6 2269 ctl->free_space -= bytes;
5e71b5d5 2270 if (entry->bytes == 0) {
34d52cb6 2271 ctl->free_extents--;
4e69b598
JB
2272 if (entry->bitmap) {
2273 kfree(entry->bitmap);
34d52cb6
LZ
2274 ctl->total_bitmaps--;
2275 ctl->op->recalc_thresholds(ctl);
4e69b598 2276 }
dc89e982 2277 kmem_cache_free(btrfs_free_space_cachep, entry);
5e71b5d5
LZ
2278 }
2279
34d52cb6 2280 spin_unlock(&ctl->tree_lock);
5e71b5d5 2281
fa9c0d79
CM
2282 return ret;
2283}
2284
96303081
JB
2285static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
2286 struct btrfs_free_space *entry,
2287 struct btrfs_free_cluster *cluster,
1bb91902
AO
2288 u64 offset, u64 bytes,
2289 u64 cont1_bytes, u64 min_bytes)
96303081 2290{
34d52cb6 2291 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
96303081
JB
2292 unsigned long next_zero;
2293 unsigned long i;
1bb91902
AO
2294 unsigned long want_bits;
2295 unsigned long min_bits;
96303081
JB
2296 unsigned long found_bits;
2297 unsigned long start = 0;
2298 unsigned long total_found = 0;
4e69b598 2299 int ret;
96303081
JB
2300
2301 i = offset_to_bit(entry->offset, block_group->sectorsize,
2302 max_t(u64, offset, entry->offset));
1bb91902
AO
2303 want_bits = bytes_to_bits(bytes, block_group->sectorsize);
2304 min_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
96303081
JB
2305
2306again:
2307 found_bits = 0;
ebb3dad4 2308 for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
96303081
JB
2309 next_zero = find_next_zero_bit(entry->bitmap,
2310 BITS_PER_BITMAP, i);
1bb91902 2311 if (next_zero - i >= min_bits) {
96303081
JB
2312 found_bits = next_zero - i;
2313 break;
2314 }
2315 i = next_zero;
2316 }
2317
2318 if (!found_bits)
4e69b598 2319 return -ENOSPC;
96303081 2320
1bb91902 2321 if (!total_found) {
96303081 2322 start = i;
b78d09bc 2323 cluster->max_size = 0;
96303081
JB
2324 }
2325
2326 total_found += found_bits;
2327
2328 if (cluster->max_size < found_bits * block_group->sectorsize)
2329 cluster->max_size = found_bits * block_group->sectorsize;
2330
1bb91902
AO
2331 if (total_found < want_bits || cluster->max_size < cont1_bytes) {
2332 i = next_zero + 1;
96303081
JB
2333 goto again;
2334 }
2335
2336 cluster->window_start = start * block_group->sectorsize +
2337 entry->offset;
34d52cb6 2338 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2339 ret = tree_insert_offset(&cluster->root, entry->offset,
2340 &entry->offset_index, 1);
79787eaa 2341 BUG_ON(ret); /* -EEXIST; Logic error */
96303081 2342
3f7de037
JB
2343 trace_btrfs_setup_cluster(block_group, cluster,
2344 total_found * block_group->sectorsize, 1);
96303081
JB
2345 return 0;
2346}
2347
4e69b598
JB
2348/*
2349 * This searches the block group for just extents to fill the cluster with.
1bb91902
AO
2350 * Try to find a cluster with at least bytes total bytes, at least one
2351 * extent of cont1_bytes, and other clusters of at least min_bytes.
4e69b598 2352 */
3de85bb9
JB
2353static noinline int
2354setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
2355 struct btrfs_free_cluster *cluster,
2356 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2357 u64 cont1_bytes, u64 min_bytes)
4e69b598 2358{
34d52cb6 2359 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598
JB
2360 struct btrfs_free_space *first = NULL;
2361 struct btrfs_free_space *entry = NULL;
4e69b598
JB
2362 struct btrfs_free_space *last;
2363 struct rb_node *node;
2364 u64 window_start;
2365 u64 window_free;
2366 u64 max_extent;
3f7de037 2367 u64 total_size = 0;
4e69b598 2368
34d52cb6 2369 entry = tree_search_offset(ctl, offset, 0, 1);
4e69b598
JB
2370 if (!entry)
2371 return -ENOSPC;
2372
2373 /*
2374 * We don't want bitmaps, so just move along until we find a normal
2375 * extent entry.
2376 */
1bb91902
AO
2377 while (entry->bitmap || entry->bytes < min_bytes) {
2378 if (entry->bitmap && list_empty(&entry->list))
86d4a77b 2379 list_add_tail(&entry->list, bitmaps);
4e69b598
JB
2380 node = rb_next(&entry->offset_index);
2381 if (!node)
2382 return -ENOSPC;
2383 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2384 }
2385
2386 window_start = entry->offset;
2387 window_free = entry->bytes;
2388 max_extent = entry->bytes;
2389 first = entry;
2390 last = entry;
4e69b598 2391
1bb91902
AO
2392 for (node = rb_next(&entry->offset_index); node;
2393 node = rb_next(&entry->offset_index)) {
4e69b598
JB
2394 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2395
86d4a77b
JB
2396 if (entry->bitmap) {
2397 if (list_empty(&entry->list))
2398 list_add_tail(&entry->list, bitmaps);
4e69b598 2399 continue;
86d4a77b
JB
2400 }
2401
1bb91902
AO
2402 if (entry->bytes < min_bytes)
2403 continue;
2404
2405 last = entry;
2406 window_free += entry->bytes;
2407 if (entry->bytes > max_extent)
4e69b598 2408 max_extent = entry->bytes;
4e69b598
JB
2409 }
2410
1bb91902
AO
2411 if (window_free < bytes || max_extent < cont1_bytes)
2412 return -ENOSPC;
2413
4e69b598
JB
2414 cluster->window_start = first->offset;
2415
2416 node = &first->offset_index;
2417
2418 /*
2419 * now we've found our entries, pull them out of the free space
2420 * cache and put them into the cluster rbtree
2421 */
2422 do {
2423 int ret;
2424
2425 entry = rb_entry(node, struct btrfs_free_space, offset_index);
2426 node = rb_next(&entry->offset_index);
1bb91902 2427 if (entry->bitmap || entry->bytes < min_bytes)
4e69b598
JB
2428 continue;
2429
34d52cb6 2430 rb_erase(&entry->offset_index, &ctl->free_space_offset);
4e69b598
JB
2431 ret = tree_insert_offset(&cluster->root, entry->offset,
2432 &entry->offset_index, 0);
3f7de037 2433 total_size += entry->bytes;
79787eaa 2434 BUG_ON(ret); /* -EEXIST; Logic error */
4e69b598
JB
2435 } while (node && entry != last);
2436
2437 cluster->max_size = max_extent;
3f7de037 2438 trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
4e69b598
JB
2439 return 0;
2440}
2441
2442/*
2443 * This specifically looks for bitmaps that may work in the cluster, we assume
2444 * that we have already failed to find extents that will work.
2445 */
3de85bb9
JB
2446static noinline int
2447setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
2448 struct btrfs_free_cluster *cluster,
2449 struct list_head *bitmaps, u64 offset, u64 bytes,
1bb91902 2450 u64 cont1_bytes, u64 min_bytes)
4e69b598 2451{
34d52cb6 2452 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
4e69b598 2453 struct btrfs_free_space *entry;
4e69b598 2454 int ret = -ENOSPC;
0f0fbf1d 2455 u64 bitmap_offset = offset_to_bitmap(ctl, offset);
4e69b598 2456
34d52cb6 2457 if (ctl->total_bitmaps == 0)
4e69b598
JB
2458 return -ENOSPC;
2459
0f0fbf1d
LZ
2460 /*
2461 * The bitmap that covers offset won't be in the list unless offset
2462 * is just its start offset.
2463 */
2464 entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
2465 if (entry->offset != bitmap_offset) {
2466 entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
2467 if (entry && list_empty(&entry->list))
2468 list_add(&entry->list, bitmaps);
2469 }
2470
86d4a77b 2471 list_for_each_entry(entry, bitmaps, list) {
357b9784 2472 if (entry->bytes < bytes)
86d4a77b
JB
2473 continue;
2474 ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
1bb91902 2475 bytes, cont1_bytes, min_bytes);
86d4a77b
JB
2476 if (!ret)
2477 return 0;
2478 }
2479
2480 /*
52621cb6
LZ
2481 * The bitmaps list has all the bitmaps that record free space
2482 * starting after offset, so no more search is required.
86d4a77b 2483 */
52621cb6 2484 return -ENOSPC;
4e69b598
JB
2485}
2486
fa9c0d79
CM
2487/*
2488 * here we try to find a cluster of blocks in a block group. The goal
1bb91902 2489 * is to find at least bytes+empty_size.
fa9c0d79
CM
2490 * We might not find them all in one contiguous area.
2491 *
2492 * returns zero and sets up cluster if things worked out, otherwise
2493 * it returns -enospc
2494 */
2495int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
451d7585 2496 struct btrfs_root *root,
fa9c0d79
CM
2497 struct btrfs_block_group_cache *block_group,
2498 struct btrfs_free_cluster *cluster,
2499 u64 offset, u64 bytes, u64 empty_size)
2500{
34d52cb6 2501 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
86d4a77b 2502 struct btrfs_free_space *entry, *tmp;
52621cb6 2503 LIST_HEAD(bitmaps);
fa9c0d79 2504 u64 min_bytes;
1bb91902 2505 u64 cont1_bytes;
fa9c0d79
CM
2506 int ret;
2507
1bb91902
AO
2508 /*
2509 * Choose the minimum extent size we'll require for this
2510 * cluster. For SSD_SPREAD, don't allow any fragmentation.
2511 * For metadata, allow allocates with smaller extents. For
2512 * data, keep it dense.
2513 */
451d7585 2514 if (btrfs_test_opt(root, SSD_SPREAD)) {
1bb91902 2515 cont1_bytes = min_bytes = bytes + empty_size;
451d7585 2516 } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
1bb91902
AO
2517 cont1_bytes = bytes;
2518 min_bytes = block_group->sectorsize;
2519 } else {
2520 cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
2521 min_bytes = block_group->sectorsize;
2522 }
fa9c0d79 2523
34d52cb6 2524 spin_lock(&ctl->tree_lock);
7d0d2e8e
JB
2525
2526 /*
2527 * If we know we don't have enough space to make a cluster don't even
2528 * bother doing all the work to try and find one.
2529 */
1bb91902 2530 if (ctl->free_space < bytes) {
34d52cb6 2531 spin_unlock(&ctl->tree_lock);
7d0d2e8e
JB
2532 return -ENOSPC;
2533 }
2534
fa9c0d79
CM
2535 spin_lock(&cluster->lock);
2536
2537 /* someone already found a cluster, hooray */
2538 if (cluster->block_group) {
2539 ret = 0;
2540 goto out;
2541 }
fa9c0d79 2542
3f7de037
JB
2543 trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
2544 min_bytes);
2545
2546 INIT_LIST_HEAD(&bitmaps);
86d4a77b 2547 ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
1bb91902
AO
2548 bytes + empty_size,
2549 cont1_bytes, min_bytes);
4e69b598 2550 if (ret)
86d4a77b 2551 ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
1bb91902
AO
2552 offset, bytes + empty_size,
2553 cont1_bytes, min_bytes);
86d4a77b
JB
2554
2555 /* Clear our temporary list */
2556 list_for_each_entry_safe(entry, tmp, &bitmaps, list)
2557 list_del_init(&entry->list);
fa9c0d79 2558
4e69b598
JB
2559 if (!ret) {
2560 atomic_inc(&block_group->count);
2561 list_add_tail(&cluster->block_group_list,
2562 &block_group->cluster_list);
2563 cluster->block_group = block_group;
3f7de037
JB
2564 } else {
2565 trace_btrfs_failed_cluster_setup(block_group);
fa9c0d79 2566 }
fa9c0d79
CM
2567out:
2568 spin_unlock(&cluster->lock);
34d52cb6 2569 spin_unlock(&ctl->tree_lock);
fa9c0d79
CM
2570
2571 return ret;
2572}
2573
2574/*
2575 * simple code to zero out a cluster
2576 */
2577void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
2578{
2579 spin_lock_init(&cluster->lock);
2580 spin_lock_init(&cluster->refill_lock);
6bef4d31 2581 cluster->root = RB_ROOT;
fa9c0d79
CM
2582 cluster->max_size = 0;
2583 INIT_LIST_HEAD(&cluster->block_group_list);
2584 cluster->block_group = NULL;
2585}
2586
7fe1e641
LZ
2587static int do_trimming(struct btrfs_block_group_cache *block_group,
2588 u64 *total_trimmed, u64 start, u64 bytes,
2589 u64 reserved_start, u64 reserved_bytes)
f7039b1d 2590{
7fe1e641 2591 struct btrfs_space_info *space_info = block_group->space_info;
f7039b1d 2592 struct btrfs_fs_info *fs_info = block_group->fs_info;
7fe1e641
LZ
2593 int ret;
2594 int update = 0;
2595 u64 trimmed = 0;
f7039b1d 2596
7fe1e641
LZ
2597 spin_lock(&space_info->lock);
2598 spin_lock(&block_group->lock);
2599 if (!block_group->ro) {
2600 block_group->reserved += reserved_bytes;
2601 space_info->bytes_reserved += reserved_bytes;
2602 update = 1;
2603 }
2604 spin_unlock(&block_group->lock);
2605 spin_unlock(&space_info->lock);
2606
2607 ret = btrfs_error_discard_extent(fs_info->extent_root,
2608 start, bytes, &trimmed);
2609 if (!ret)
2610 *total_trimmed += trimmed;
2611
2612 btrfs_add_free_space(block_group, reserved_start, reserved_bytes);
2613
2614 if (update) {
2615 spin_lock(&space_info->lock);
2616 spin_lock(&block_group->lock);
2617 if (block_group->ro)
2618 space_info->bytes_readonly += reserved_bytes;
2619 block_group->reserved -= reserved_bytes;
2620 space_info->bytes_reserved -= reserved_bytes;
2621 spin_unlock(&space_info->lock);
2622 spin_unlock(&block_group->lock);
2623 }
2624
2625 return ret;
2626}
2627
2628static int trim_no_bitmap(struct btrfs_block_group_cache *block_group,
2629 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2630{
2631 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2632 struct btrfs_free_space *entry;
2633 struct rb_node *node;
2634 int ret = 0;
2635 u64 extent_start;
2636 u64 extent_bytes;
2637 u64 bytes;
f7039b1d
LD
2638
2639 while (start < end) {
34d52cb6 2640 spin_lock(&ctl->tree_lock);
f7039b1d 2641
34d52cb6
LZ
2642 if (ctl->free_space < minlen) {
2643 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2644 break;
2645 }
2646
34d52cb6 2647 entry = tree_search_offset(ctl, start, 0, 1);
7fe1e641 2648 if (!entry) {
34d52cb6 2649 spin_unlock(&ctl->tree_lock);
f7039b1d
LD
2650 break;
2651 }
2652
7fe1e641
LZ
2653 /* skip bitmaps */
2654 while (entry->bitmap) {
2655 node = rb_next(&entry->offset_index);
2656 if (!node) {
34d52cb6 2657 spin_unlock(&ctl->tree_lock);
7fe1e641 2658 goto out;
f7039b1d 2659 }
7fe1e641
LZ
2660 entry = rb_entry(node, struct btrfs_free_space,
2661 offset_index);
f7039b1d
LD
2662 }
2663
7fe1e641
LZ
2664 if (entry->offset >= end) {
2665 spin_unlock(&ctl->tree_lock);
2666 break;
f7039b1d
LD
2667 }
2668
7fe1e641
LZ
2669 extent_start = entry->offset;
2670 extent_bytes = entry->bytes;
2671 start = max(start, extent_start);
2672 bytes = min(extent_start + extent_bytes, end) - start;
2673 if (bytes < minlen) {
2674 spin_unlock(&ctl->tree_lock);
2675 goto next;
f7039b1d
LD
2676 }
2677
7fe1e641
LZ
2678 unlink_free_space(ctl, entry);
2679 kmem_cache_free(btrfs_free_space_cachep, entry);
2680
34d52cb6 2681 spin_unlock(&ctl->tree_lock);
f7039b1d 2682
7fe1e641
LZ
2683 ret = do_trimming(block_group, total_trimmed, start, bytes,
2684 extent_start, extent_bytes);
2685 if (ret)
2686 break;
2687next:
2688 start += bytes;
f7039b1d 2689
7fe1e641
LZ
2690 if (fatal_signal_pending(current)) {
2691 ret = -ERESTARTSYS;
2692 break;
2693 }
2694
2695 cond_resched();
2696 }
2697out:
2698 return ret;
2699}
2700
2701static int trim_bitmaps(struct btrfs_block_group_cache *block_group,
2702 u64 *total_trimmed, u64 start, u64 end, u64 minlen)
2703{
2704 struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2705 struct btrfs_free_space *entry;
2706 int ret = 0;
2707 int ret2;
2708 u64 bytes;
2709 u64 offset = offset_to_bitmap(ctl, start);
2710
2711 while (offset < end) {
2712 bool next_bitmap = false;
2713
2714 spin_lock(&ctl->tree_lock);
2715
2716 if (ctl->free_space < minlen) {
2717 spin_unlock(&ctl->tree_lock);
2718 break;
2719 }
2720
2721 entry = tree_search_offset(ctl, offset, 1, 0);
2722 if (!entry) {
2723 spin_unlock(&ctl->tree_lock);
2724 next_bitmap = true;
2725 goto next;
2726 }
2727
2728 bytes = minlen;
2729 ret2 = search_bitmap(ctl, entry, &start, &bytes);
2730 if (ret2 || start >= end) {
2731 spin_unlock(&ctl->tree_lock);
2732 next_bitmap = true;
2733 goto next;
2734 }
2735
2736 bytes = min(bytes, end - start);
2737 if (bytes < minlen) {
2738 spin_unlock(&ctl->tree_lock);
2739 goto next;
2740 }
2741
2742 bitmap_clear_bits(ctl, entry, start, bytes);
2743 if (entry->bytes == 0)
2744 free_bitmap(ctl, entry);
2745
2746 spin_unlock(&ctl->tree_lock);
2747
2748 ret = do_trimming(block_group, total_trimmed, start, bytes,
2749 start, bytes);
2750 if (ret)
2751 break;
2752next:
2753 if (next_bitmap) {
2754 offset += BITS_PER_BITMAP * ctl->unit;
2755 } else {
2756 start += bytes;
2757 if (start >= offset + BITS_PER_BITMAP * ctl->unit)
2758 offset += BITS_PER_BITMAP * ctl->unit;
f7039b1d 2759 }
f7039b1d
LD
2760
2761 if (fatal_signal_pending(current)) {
2762 ret = -ERESTARTSYS;
2763 break;
2764 }
2765
2766 cond_resched();
2767 }
2768
2769 return ret;
2770}
581bb050 2771
7fe1e641
LZ
2772int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
2773 u64 *trimmed, u64 start, u64 end, u64 minlen)
2774{
2775 int ret;
2776
2777 *trimmed = 0;
2778
2779 ret = trim_no_bitmap(block_group, trimmed, start, end, minlen);
2780 if (ret)
2781 return ret;
2782
2783 ret = trim_bitmaps(block_group, trimmed, start, end, minlen);
2784
2785 return ret;
2786}
2787
581bb050
LZ
2788/*
2789 * Find the left-most item in the cache tree, and then return the
2790 * smallest inode number in the item.
2791 *
2792 * Note: the returned inode number may not be the smallest one in
2793 * the tree, if the left-most item is a bitmap.
2794 */
2795u64 btrfs_find_ino_for_alloc(struct btrfs_root *fs_root)
2796{
2797 struct btrfs_free_space_ctl *ctl = fs_root->free_ino_ctl;
2798 struct btrfs_free_space *entry = NULL;
2799 u64 ino = 0;
2800
2801 spin_lock(&ctl->tree_lock);
2802
2803 if (RB_EMPTY_ROOT(&ctl->free_space_offset))
2804 goto out;
2805
2806 entry = rb_entry(rb_first(&ctl->free_space_offset),
2807 struct btrfs_free_space, offset_index);
2808
2809 if (!entry->bitmap) {
2810 ino = entry->offset;
2811
2812 unlink_free_space(ctl, entry);
2813 entry->offset++;
2814 entry->bytes--;
2815 if (!entry->bytes)
2816 kmem_cache_free(btrfs_free_space_cachep, entry);
2817 else
2818 link_free_space(ctl, entry);
2819 } else {
2820 u64 offset = 0;
2821 u64 count = 1;
2822 int ret;
2823
2824 ret = search_bitmap(ctl, entry, &offset, &count);
79787eaa 2825 /* Logic error; Should be empty if it can't find anything */
581bb050
LZ
2826 BUG_ON(ret);
2827
2828 ino = offset;
2829 bitmap_clear_bits(ctl, entry, offset, 1);
2830 if (entry->bytes == 0)
2831 free_bitmap(ctl, entry);
2832 }
2833out:
2834 spin_unlock(&ctl->tree_lock);
2835
2836 return ino;
2837}
82d5902d
LZ
2838
2839struct inode *lookup_free_ino_inode(struct btrfs_root *root,
2840 struct btrfs_path *path)
2841{
2842 struct inode *inode = NULL;
2843
2844 spin_lock(&root->cache_lock);
2845 if (root->cache_inode)
2846 inode = igrab(root->cache_inode);
2847 spin_unlock(&root->cache_lock);
2848 if (inode)
2849 return inode;
2850
2851 inode = __lookup_free_space_inode(root, path, 0);
2852 if (IS_ERR(inode))
2853 return inode;
2854
2855 spin_lock(&root->cache_lock);
7841cb28 2856 if (!btrfs_fs_closing(root->fs_info))
82d5902d
LZ
2857 root->cache_inode = igrab(inode);
2858 spin_unlock(&root->cache_lock);
2859
2860 return inode;
2861}
2862
2863int create_free_ino_inode(struct btrfs_root *root,
2864 struct btrfs_trans_handle *trans,
2865 struct btrfs_path *path)
2866{
2867 return __create_free_space_inode(root, trans, path,
2868 BTRFS_FREE_INO_OBJECTID, 0);
2869}
2870
2871int load_free_ino_cache(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2872{
2873 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2874 struct btrfs_path *path;
2875 struct inode *inode;
2876 int ret = 0;
2877 u64 root_gen = btrfs_root_generation(&root->root_item);
2878
4b9465cb
CM
2879 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2880 return 0;
2881
82d5902d
LZ
2882 /*
2883 * If we're unmounting then just return, since this does a search on the
2884 * normal root and not the commit root and we could deadlock.
2885 */
7841cb28 2886 if (btrfs_fs_closing(fs_info))
82d5902d
LZ
2887 return 0;
2888
2889 path = btrfs_alloc_path();
2890 if (!path)
2891 return 0;
2892
2893 inode = lookup_free_ino_inode(root, path);
2894 if (IS_ERR(inode))
2895 goto out;
2896
2897 if (root_gen != BTRFS_I(inode)->generation)
2898 goto out_put;
2899
2900 ret = __load_free_space_cache(root, inode, ctl, path, 0);
2901
2902 if (ret < 0)
2903 printk(KERN_ERR "btrfs: failed to load free ino cache for "
2904 "root %llu\n", root->root_key.objectid);
2905out_put:
2906 iput(inode);
2907out:
2908 btrfs_free_path(path);
2909 return ret;
2910}
2911
2912int btrfs_write_out_ino_cache(struct btrfs_root *root,
2913 struct btrfs_trans_handle *trans,
2914 struct btrfs_path *path)
2915{
2916 struct btrfs_free_space_ctl *ctl = root->free_ino_ctl;
2917 struct inode *inode;
2918 int ret;
2919
4b9465cb
CM
2920 if (!btrfs_test_opt(root, INODE_MAP_CACHE))
2921 return 0;
2922
82d5902d
LZ
2923 inode = lookup_free_ino_inode(root, path);
2924 if (IS_ERR(inode))
2925 return 0;
2926
2927 ret = __btrfs_write_out_cache(root, inode, ctl, NULL, trans, path, 0);
c09544e0
JB
2928 if (ret) {
2929 btrfs_delalloc_release_metadata(inode, inode->i_size);
2930#ifdef DEBUG
82d5902d
LZ
2931 printk(KERN_ERR "btrfs: failed to write free ino cache "
2932 "for root %llu\n", root->root_key.objectid);
c09544e0
JB
2933#endif
2934 }
82d5902d
LZ
2935
2936 iput(inode);
2937 return ret;
2938}