Btrfs: modify repair_io_failure and make it suit direct io
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
27a3507d
FM
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1
DS
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
efe120a0 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
0b32f4bb 134static noinline void flush_write_bio(void *data);
c2d904e0
JM
135static inline struct btrfs_fs_info *
136tree_fs_info(struct extent_io_tree *tree)
137{
a5dee37d
JB
138 if (!tree->mapping)
139 return NULL;
c2d904e0
JM
140 return btrfs_sb(tree->mapping->host->i_sb);
141}
0b32f4bb 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b
CM
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
b208c2f7
DW
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7
DW
167free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
9be3395b
CM
171free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
d1310b2e
CM
175free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
9be3395b 177 extent_state_cache = NULL;
d1310b2e
CM
178 return -ENOMEM;
179}
180
181void extent_io_exit(void)
182{
6d49ba1b 183 btrfs_leak_debug_check();
8c0a8537
KS
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
d1310b2e
CM
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
d1310b2e
CM
196}
197
198void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 199 struct address_space *mapping)
d1310b2e 200{
6bef4d31 201 tree->state = RB_ROOT;
d1310b2e
CM
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
70dec807 204 spin_lock_init(&tree->lock);
d1310b2e 205 tree->mapping = mapping;
d1310b2e 206}
d1310b2e 207
b2950863 208static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
209{
210 struct extent_state *state;
d1310b2e
CM
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 213 if (!state)
d1310b2e
CM
214 return state;
215 state->state = 0;
d1310b2e 216 state->private = 0;
27a3507d 217 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 218 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
143bede5 221 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
222 return state;
223}
d1310b2e 224
4845e44f 225void free_extent_state(struct extent_state *state)
d1310b2e 226{
d1310b2e
CM
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
27a3507d 230 WARN_ON(extent_state_in_tree(state));
6d49ba1b 231 btrfs_leak_debug_del(&state->leak_list);
143bede5 232 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
233 kmem_cache_free(extent_state_cache, state);
234 }
235}
d1310b2e 236
f2071b21
FM
237static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
12cfbad9
FDBM
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
d1310b2e 243{
f2071b21 244 struct rb_node **p;
d397712b 245 struct rb_node *parent = NULL;
d1310b2e
CM
246 struct tree_entry *entry;
247
12cfbad9
FDBM
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
f2071b21 254 p = search_start ? &search_start : &root->rb_node;
d397712b 255 while (*p) {
d1310b2e
CM
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
12cfbad9 267do_insert:
d1310b2e
CM
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271}
272
80ea96b1 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
d1310b2e 278{
80ea96b1 279 struct rb_root *root = &tree->state;
12cfbad9 280 struct rb_node **n = &root->rb_node;
d1310b2e
CM
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
12cfbad9
FDBM
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
289 prev_entry = entry;
290
291 if (offset < entry->start)
12cfbad9 292 n = &(*n)->rb_left;
d1310b2e 293 else if (offset > entry->end)
12cfbad9 294 n = &(*n)->rb_right;
d397712b 295 else
12cfbad9 296 return *n;
d1310b2e
CM
297 }
298
12cfbad9
FDBM
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
d1310b2e
CM
304 if (prev_ret) {
305 orig_prev = prev;
d397712b 306 while (prev && offset > prev_entry->end) {
d1310b2e
CM
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 316 while (prev && offset < prev_entry->start) {
d1310b2e
CM
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323}
324
12cfbad9
FDBM
325static inline struct rb_node *
326tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
d1310b2e 330{
70dec807 331 struct rb_node *prev = NULL;
d1310b2e 332 struct rb_node *ret;
70dec807 333
12cfbad9 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 335 if (!ret)
d1310b2e
CM
336 return prev;
337 return ret;
338}
339
12cfbad9
FDBM
340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342{
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344}
345
9ed74f2d
JB
346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348{
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
41074888 399 struct extent_state *state, unsigned long *bits)
291d673e 400{
1bf85046
JM
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
41074888 406 struct extent_state *state, unsigned long *bits)
291d673e 407{
9ed74f2d
JB
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
41074888 413 struct extent_state *state, unsigned long *bits);
3150b699 414
d1310b2e
CM
415/*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
427 struct rb_node ***p,
428 struct rb_node **parent,
41074888 429 unsigned long *bits)
d1310b2e
CM
430{
431 struct rb_node *node;
432
31b1a2bd 433 if (end < start)
efe120a0 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 435 end, start);
d1310b2e
CM
436 state->start = start;
437 state->end = end;
9ed74f2d 438
3150b699
XG
439 set_state_bits(tree, state, bits);
440
f2071b21 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
446 "%llu %llu\n",
447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
41074888 514 unsigned long *bits, int wake)
d1310b2e 515{
cdc6a395 516 struct extent_state *next;
41074888 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 518
0ca1f7ce 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
291d673e 524 clear_state_cb(tree, state, bits);
32c00aff 525 state->state &= ~bits_to_clear;
d1310b2e
CM
526 if (wake)
527 wake_up(&state->wq);
0ca1f7ce 528 if (state->state == 0) {
cdc6a395 529 next = next_state(state);
27a3507d 530 if (extent_state_in_tree(state)) {
d1310b2e 531 rb_erase(&state->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
cdc6a395 539 next = next_state(state);
d1310b2e 540 }
cdc6a395 541 return next;
d1310b2e
CM
542}
543
8233767a
XG
544static struct extent_state *
545alloc_extent_state_atomic(struct extent_state *prealloc)
546{
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551}
552
48a3b636 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
554{
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558}
559
d1310b2e
CM
560/*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
6763af84 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
571 */
572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 573 unsigned long bits, int wake, int delete,
2c64c53d
CM
574 struct extent_state **cached_state,
575 gfp_t mask)
d1310b2e
CM
576{
577 struct extent_state *state;
2c64c53d 578 struct extent_state *cached;
d1310b2e
CM
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
5c939df5 581 u64 last_end;
d1310b2e 582 int err;
2ac55d41 583 int clear = 0;
d1310b2e 584
a5dee37d 585 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 586
7ee9e440
JB
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
0ca1f7ce
YZ
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
2ac55d41
JB
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
d1310b2e
CM
596again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
598 prealloc = alloc_extent_state(mask);
599 if (!prealloc)
600 return -ENOMEM;
601 }
602
cad321ad 603 spin_lock(&tree->lock);
2c64c53d
CM
604 if (cached_state) {
605 cached = *cached_state;
2ac55d41
JB
606
607 if (clear) {
608 *cached_state = NULL;
609 cached_state = NULL;
610 }
611
27a3507d
FM
612 if (cached && extent_state_in_tree(cached) &&
613 cached->start <= start && cached->end > start) {
2ac55d41
JB
614 if (clear)
615 atomic_dec(&cached->refs);
2c64c53d 616 state = cached;
42daec29 617 goto hit_next;
2c64c53d 618 }
2ac55d41
JB
619 if (clear)
620 free_extent_state(cached);
2c64c53d 621 }
d1310b2e
CM
622 /*
623 * this search will find the extents that end after
624 * our range starts
625 */
80ea96b1 626 node = tree_search(tree, start);
d1310b2e
CM
627 if (!node)
628 goto out;
629 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 630hit_next:
d1310b2e
CM
631 if (state->start > end)
632 goto out;
633 WARN_ON(state->end < start);
5c939df5 634 last_end = state->end;
d1310b2e 635
0449314a 636 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
637 if (!(state->state & bits)) {
638 state = next_state(state);
0449314a 639 goto next;
cdc6a395 640 }
0449314a 641
d1310b2e
CM
642 /*
643 * | ---- desired range ---- |
644 * | state | or
645 * | ------------- state -------------- |
646 *
647 * We need to split the extent we found, and may flip
648 * bits on second half.
649 *
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
653 *
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
656 */
657
658 if (state->start < start) {
8233767a
XG
659 prealloc = alloc_extent_state_atomic(prealloc);
660 BUG_ON(!prealloc);
d1310b2e 661 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
662 if (err)
663 extent_io_tree_panic(tree, err);
664
d1310b2e
CM
665 prealloc = NULL;
666 if (err)
667 goto out;
668 if (state->end <= end) {
d1ac6e41
LB
669 state = clear_state_bit(tree, state, &bits, wake);
670 goto next;
d1310b2e
CM
671 }
672 goto search_again;
673 }
674 /*
675 * | ---- desired range ---- |
676 * | state |
677 * We need to split the extent, and clear the bit
678 * on the first half
679 */
680 if (state->start <= end && state->end > end) {
8233767a
XG
681 prealloc = alloc_extent_state_atomic(prealloc);
682 BUG_ON(!prealloc);
d1310b2e 683 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
684 if (err)
685 extent_io_tree_panic(tree, err);
686
d1310b2e
CM
687 if (wake)
688 wake_up(&state->wq);
42daec29 689
6763af84 690 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 691
d1310b2e
CM
692 prealloc = NULL;
693 goto out;
694 }
42daec29 695
cdc6a395 696 state = clear_state_bit(tree, state, &bits, wake);
0449314a 697next:
5c939df5
YZ
698 if (last_end == (u64)-1)
699 goto out;
700 start = last_end + 1;
cdc6a395 701 if (start <= end && state && !need_resched())
692e5759 702 goto hit_next;
d1310b2e
CM
703 goto search_again;
704
705out:
cad321ad 706 spin_unlock(&tree->lock);
d1310b2e
CM
707 if (prealloc)
708 free_extent_state(prealloc);
709
6763af84 710 return 0;
d1310b2e
CM
711
712search_again:
713 if (start > end)
714 goto out;
cad321ad 715 spin_unlock(&tree->lock);
d1310b2e
CM
716 if (mask & __GFP_WAIT)
717 cond_resched();
718 goto again;
719}
d1310b2e 720
143bede5
JM
721static void wait_on_state(struct extent_io_tree *tree,
722 struct extent_state *state)
641f5219
CH
723 __releases(tree->lock)
724 __acquires(tree->lock)
d1310b2e
CM
725{
726 DEFINE_WAIT(wait);
727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 728 spin_unlock(&tree->lock);
d1310b2e 729 schedule();
cad321ad 730 spin_lock(&tree->lock);
d1310b2e 731 finish_wait(&state->wq, &wait);
d1310b2e
CM
732}
733
734/*
735 * waits for one or more bits to clear on a range in the state tree.
736 * The range [start, end] is inclusive.
737 * The tree lock is taken by this function
738 */
41074888
DS
739static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 unsigned long bits)
d1310b2e
CM
741{
742 struct extent_state *state;
743 struct rb_node *node;
744
a5dee37d 745 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 746
cad321ad 747 spin_lock(&tree->lock);
d1310b2e
CM
748again:
749 while (1) {
750 /*
751 * this search will find all the extents that end after
752 * our range starts
753 */
80ea96b1 754 node = tree_search(tree, start);
c50d3e71 755process_node:
d1310b2e
CM
756 if (!node)
757 break;
758
759 state = rb_entry(node, struct extent_state, rb_node);
760
761 if (state->start > end)
762 goto out;
763
764 if (state->state & bits) {
765 start = state->start;
766 atomic_inc(&state->refs);
767 wait_on_state(tree, state);
768 free_extent_state(state);
769 goto again;
770 }
771 start = state->end + 1;
772
773 if (start > end)
774 break;
775
c50d3e71
FM
776 if (!cond_resched_lock(&tree->lock)) {
777 node = rb_next(node);
778 goto process_node;
779 }
d1310b2e
CM
780 }
781out:
cad321ad 782 spin_unlock(&tree->lock);
d1310b2e 783}
d1310b2e 784
1bf85046 785static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 786 struct extent_state *state,
41074888 787 unsigned long *bits)
d1310b2e 788{
41074888 789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 790
1bf85046 791 set_state_cb(tree, state, bits);
0ca1f7ce 792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
793 u64 range = state->end - state->start + 1;
794 tree->dirty_bytes += range;
795 }
0ca1f7ce 796 state->state |= bits_to_set;
d1310b2e
CM
797}
798
2c64c53d
CM
799static void cache_state(struct extent_state *state,
800 struct extent_state **cached_ptr)
801{
802 if (cached_ptr && !(*cached_ptr)) {
803 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804 *cached_ptr = state;
805 atomic_inc(&state->refs);
806 }
807 }
808}
809
d1310b2e 810/*
1edbb734
CM
811 * set some bits on a range in the tree. This may require allocations or
812 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 813 *
1edbb734
CM
814 * If any of the exclusive bits are set, this will fail with -EEXIST if some
815 * part of the range already has the desired bits set. The start of the
816 * existing range is returned in failed_start in this case.
d1310b2e 817 *
1edbb734 818 * [start, end] is inclusive This takes the tree lock.
d1310b2e 819 */
1edbb734 820
3fbe5c02
JM
821static int __must_check
822__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
823 unsigned long bits, unsigned long exclusive_bits,
824 u64 *failed_start, struct extent_state **cached_state,
825 gfp_t mask)
d1310b2e
CM
826{
827 struct extent_state *state;
828 struct extent_state *prealloc = NULL;
829 struct rb_node *node;
12cfbad9
FDBM
830 struct rb_node **p;
831 struct rb_node *parent;
d1310b2e 832 int err = 0;
d1310b2e
CM
833 u64 last_start;
834 u64 last_end;
42daec29 835
a5dee37d 836 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 837
0ca1f7ce 838 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
839again:
840 if (!prealloc && (mask & __GFP_WAIT)) {
841 prealloc = alloc_extent_state(mask);
8233767a 842 BUG_ON(!prealloc);
d1310b2e
CM
843 }
844
cad321ad 845 spin_lock(&tree->lock);
9655d298
CM
846 if (cached_state && *cached_state) {
847 state = *cached_state;
df98b6e2 848 if (state->start <= start && state->end > start &&
27a3507d 849 extent_state_in_tree(state)) {
9655d298
CM
850 node = &state->rb_node;
851 goto hit_next;
852 }
853 }
d1310b2e
CM
854 /*
855 * this search will find all the extents that end after
856 * our range starts.
857 */
12cfbad9 858 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 859 if (!node) {
8233767a
XG
860 prealloc = alloc_extent_state_atomic(prealloc);
861 BUG_ON(!prealloc);
12cfbad9
FDBM
862 err = insert_state(tree, prealloc, start, end,
863 &p, &parent, &bits);
c2d904e0
JM
864 if (err)
865 extent_io_tree_panic(tree, err);
866
c42ac0bc 867 cache_state(prealloc, cached_state);
d1310b2e 868 prealloc = NULL;
d1310b2e
CM
869 goto out;
870 }
d1310b2e 871 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 872hit_next:
d1310b2e
CM
873 last_start = state->start;
874 last_end = state->end;
875
876 /*
877 * | ---- desired range ---- |
878 * | state |
879 *
880 * Just lock what we found and keep going
881 */
882 if (state->start == start && state->end <= end) {
1edbb734 883 if (state->state & exclusive_bits) {
d1310b2e
CM
884 *failed_start = state->start;
885 err = -EEXIST;
886 goto out;
887 }
42daec29 888
1bf85046 889 set_state_bits(tree, state, &bits);
2c64c53d 890 cache_state(state, cached_state);
d1310b2e 891 merge_state(tree, state);
5c939df5
YZ
892 if (last_end == (u64)-1)
893 goto out;
894 start = last_end + 1;
d1ac6e41
LB
895 state = next_state(state);
896 if (start < end && state && state->start == start &&
897 !need_resched())
898 goto hit_next;
d1310b2e
CM
899 goto search_again;
900 }
901
902 /*
903 * | ---- desired range ---- |
904 * | state |
905 * or
906 * | ------------- state -------------- |
907 *
908 * We need to split the extent we found, and may flip bits on
909 * second half.
910 *
911 * If the extent we found extends past our
912 * range, we just split and search again. It'll get split
913 * again the next time though.
914 *
915 * If the extent we found is inside our range, we set the
916 * desired bit on it.
917 */
918 if (state->start < start) {
1edbb734 919 if (state->state & exclusive_bits) {
d1310b2e
CM
920 *failed_start = start;
921 err = -EEXIST;
922 goto out;
923 }
8233767a
XG
924
925 prealloc = alloc_extent_state_atomic(prealloc);
926 BUG_ON(!prealloc);
d1310b2e 927 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
928 if (err)
929 extent_io_tree_panic(tree, err);
930
d1310b2e
CM
931 prealloc = NULL;
932 if (err)
933 goto out;
934 if (state->end <= end) {
1bf85046 935 set_state_bits(tree, state, &bits);
2c64c53d 936 cache_state(state, cached_state);
d1310b2e 937 merge_state(tree, state);
5c939df5
YZ
938 if (last_end == (u64)-1)
939 goto out;
940 start = last_end + 1;
d1ac6e41
LB
941 state = next_state(state);
942 if (start < end && state && state->start == start &&
943 !need_resched())
944 goto hit_next;
d1310b2e
CM
945 }
946 goto search_again;
947 }
948 /*
949 * | ---- desired range ---- |
950 * | state | or | state |
951 *
952 * There's a hole, we need to insert something in it and
953 * ignore the extent we found.
954 */
955 if (state->start > start) {
956 u64 this_end;
957 if (end < last_start)
958 this_end = end;
959 else
d397712b 960 this_end = last_start - 1;
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
c7f895a2
XG
964
965 /*
966 * Avoid to free 'prealloc' if it can be merged with
967 * the later extent.
968 */
d1310b2e 969 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 970 NULL, NULL, &bits);
c2d904e0
JM
971 if (err)
972 extent_io_tree_panic(tree, err);
973
9ed74f2d
JB
974 cache_state(prealloc, cached_state);
975 prealloc = NULL;
d1310b2e
CM
976 start = this_end + 1;
977 goto search_again;
978 }
979 /*
980 * | ---- desired range ---- |
981 * | state |
982 * We need to split the extent, and set the bit
983 * on the first half
984 */
985 if (state->start <= end && state->end > end) {
1edbb734 986 if (state->state & exclusive_bits) {
d1310b2e
CM
987 *failed_start = start;
988 err = -EEXIST;
989 goto out;
990 }
8233767a
XG
991
992 prealloc = alloc_extent_state_atomic(prealloc);
993 BUG_ON(!prealloc);
d1310b2e 994 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
995 if (err)
996 extent_io_tree_panic(tree, err);
d1310b2e 997
1bf85046 998 set_state_bits(tree, prealloc, &bits);
2c64c53d 999 cache_state(prealloc, cached_state);
d1310b2e
CM
1000 merge_state(tree, prealloc);
1001 prealloc = NULL;
1002 goto out;
1003 }
1004
1005 goto search_again;
1006
1007out:
cad321ad 1008 spin_unlock(&tree->lock);
d1310b2e
CM
1009 if (prealloc)
1010 free_extent_state(prealloc);
1011
1012 return err;
1013
1014search_again:
1015 if (start > end)
1016 goto out;
cad321ad 1017 spin_unlock(&tree->lock);
d1310b2e
CM
1018 if (mask & __GFP_WAIT)
1019 cond_resched();
1020 goto again;
1021}
d1310b2e 1022
41074888
DS
1023int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024 unsigned long bits, u64 * failed_start,
1025 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1026{
1027 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028 cached_state, mask);
1029}
1030
1031
462d6fac 1032/**
10983f2e
LB
1033 * convert_extent_bit - convert all bits in a given range from one bit to
1034 * another
462d6fac
JB
1035 * @tree: the io tree to search
1036 * @start: the start offset in bytes
1037 * @end: the end offset in bytes (inclusive)
1038 * @bits: the bits to set in this range
1039 * @clear_bits: the bits to clear in this range
e6138876 1040 * @cached_state: state that we're going to cache
462d6fac
JB
1041 * @mask: the allocation mask
1042 *
1043 * This will go through and set bits for the given range. If any states exist
1044 * already in this range they are set with the given bit and cleared of the
1045 * clear_bits. This is only meant to be used by things that are mergeable, ie
1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1047 * boundary bits like LOCK.
1048 */
1049int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1050 unsigned long bits, unsigned long clear_bits,
e6138876 1051 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1052{
1053 struct extent_state *state;
1054 struct extent_state *prealloc = NULL;
1055 struct rb_node *node;
12cfbad9
FDBM
1056 struct rb_node **p;
1057 struct rb_node *parent;
462d6fac
JB
1058 int err = 0;
1059 u64 last_start;
1060 u64 last_end;
1061
a5dee37d 1062 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1063
462d6fac
JB
1064again:
1065 if (!prealloc && (mask & __GFP_WAIT)) {
1066 prealloc = alloc_extent_state(mask);
1067 if (!prealloc)
1068 return -ENOMEM;
1069 }
1070
1071 spin_lock(&tree->lock);
e6138876
JB
1072 if (cached_state && *cached_state) {
1073 state = *cached_state;
1074 if (state->start <= start && state->end > start &&
27a3507d 1075 extent_state_in_tree(state)) {
e6138876
JB
1076 node = &state->rb_node;
1077 goto hit_next;
1078 }
1079 }
1080
462d6fac
JB
1081 /*
1082 * this search will find all the extents that end after
1083 * our range starts.
1084 */
12cfbad9 1085 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1086 if (!node) {
1087 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1088 if (!prealloc) {
1089 err = -ENOMEM;
1090 goto out;
1091 }
12cfbad9
FDBM
1092 err = insert_state(tree, prealloc, start, end,
1093 &p, &parent, &bits);
c2d904e0
JM
1094 if (err)
1095 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1096 cache_state(prealloc, cached_state);
1097 prealloc = NULL;
462d6fac
JB
1098 goto out;
1099 }
1100 state = rb_entry(node, struct extent_state, rb_node);
1101hit_next:
1102 last_start = state->start;
1103 last_end = state->end;
1104
1105 /*
1106 * | ---- desired range ---- |
1107 * | state |
1108 *
1109 * Just lock what we found and keep going
1110 */
1111 if (state->start == start && state->end <= end) {
462d6fac 1112 set_state_bits(tree, state, &bits);
e6138876 1113 cache_state(state, cached_state);
d1ac6e41 1114 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1115 if (last_end == (u64)-1)
1116 goto out;
462d6fac 1117 start = last_end + 1;
d1ac6e41
LB
1118 if (start < end && state && state->start == start &&
1119 !need_resched())
1120 goto hit_next;
462d6fac
JB
1121 goto search_again;
1122 }
1123
1124 /*
1125 * | ---- desired range ---- |
1126 * | state |
1127 * or
1128 * | ------------- state -------------- |
1129 *
1130 * We need to split the extent we found, and may flip bits on
1131 * second half.
1132 *
1133 * If the extent we found extends past our
1134 * range, we just split and search again. It'll get split
1135 * again the next time though.
1136 *
1137 * If the extent we found is inside our range, we set the
1138 * desired bit on it.
1139 */
1140 if (state->start < start) {
1141 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1142 if (!prealloc) {
1143 err = -ENOMEM;
1144 goto out;
1145 }
462d6fac 1146 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
462d6fac
JB
1149 prealloc = NULL;
1150 if (err)
1151 goto out;
1152 if (state->end <= end) {
1153 set_state_bits(tree, state, &bits);
e6138876 1154 cache_state(state, cached_state);
d1ac6e41 1155 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 }
1163 goto search_again;
1164 }
1165 /*
1166 * | ---- desired range ---- |
1167 * | state | or | state |
1168 *
1169 * There's a hole, we need to insert something in it and
1170 * ignore the extent we found.
1171 */
1172 if (state->start > start) {
1173 u64 this_end;
1174 if (end < last_start)
1175 this_end = end;
1176 else
1177 this_end = last_start - 1;
1178
1179 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1180 if (!prealloc) {
1181 err = -ENOMEM;
1182 goto out;
1183 }
462d6fac
JB
1184
1185 /*
1186 * Avoid to free 'prealloc' if it can be merged with
1187 * the later extent.
1188 */
1189 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1190 NULL, NULL, &bits);
c2d904e0
JM
1191 if (err)
1192 extent_io_tree_panic(tree, err);
e6138876 1193 cache_state(prealloc, cached_state);
462d6fac
JB
1194 prealloc = NULL;
1195 start = this_end + 1;
1196 goto search_again;
1197 }
1198 /*
1199 * | ---- desired range ---- |
1200 * | state |
1201 * We need to split the extent, and set the bit
1202 * on the first half
1203 */
1204 if (state->start <= end && state->end > end) {
1205 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1206 if (!prealloc) {
1207 err = -ENOMEM;
1208 goto out;
1209 }
462d6fac
JB
1210
1211 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1212 if (err)
1213 extent_io_tree_panic(tree, err);
462d6fac
JB
1214
1215 set_state_bits(tree, prealloc, &bits);
e6138876 1216 cache_state(prealloc, cached_state);
462d6fac 1217 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1218 prealloc = NULL;
1219 goto out;
1220 }
1221
1222 goto search_again;
1223
1224out:
1225 spin_unlock(&tree->lock);
1226 if (prealloc)
1227 free_extent_state(prealloc);
1228
1229 return err;
1230
1231search_again:
1232 if (start > end)
1233 goto out;
1234 spin_unlock(&tree->lock);
1235 if (mask & __GFP_WAIT)
1236 cond_resched();
1237 goto again;
1238}
1239
d1310b2e
CM
1240/* wrappers around set/clear extent bit */
1241int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243{
3fbe5c02 1244 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1245 NULL, mask);
d1310b2e 1246}
d1310b2e
CM
1247
1248int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1249 unsigned long bits, gfp_t mask)
d1310b2e 1250{
3fbe5c02 1251 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1252 NULL, mask);
d1310b2e 1253}
d1310b2e
CM
1254
1255int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1256 unsigned long bits, gfp_t mask)
d1310b2e 1257{
2c64c53d 1258 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1259}
d1310b2e
CM
1260
1261int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1262 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1263{
1264 return set_extent_bit(tree, start, end,
fee187d9 1265 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1266 NULL, cached_state, mask);
d1310b2e 1267}
d1310b2e 1268
9e8a4a8b
LB
1269int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270 struct extent_state **cached_state, gfp_t mask)
1271{
1272 return set_extent_bit(tree, start, end,
1273 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274 NULL, cached_state, mask);
1275}
1276
d1310b2e
CM
1277int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278 gfp_t mask)
1279{
1280 return clear_extent_bit(tree, start, end,
32c00aff 1281 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1282 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1283}
d1310b2e
CM
1284
1285int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286 gfp_t mask)
1287{
3fbe5c02 1288 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1289 NULL, mask);
d1310b2e 1290}
d1310b2e 1291
d1310b2e 1292int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1293 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1294{
6b67a320 1295 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1296 cached_state, mask);
d1310b2e 1297}
d1310b2e 1298
5fd02043
JB
1299int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1301{
2c64c53d 1302 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1303 cached_state, mask);
d1310b2e 1304}
d1310b2e 1305
d352ac68
CM
1306/*
1307 * either insert or lock state struct between start and end use mask to tell
1308 * us if waiting is desired.
1309 */
1edbb734 1310int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1311 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1312{
1313 int err;
1314 u64 failed_start;
1315 while (1) {
3fbe5c02
JM
1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317 EXTENT_LOCKED, &failed_start,
1318 cached_state, GFP_NOFS);
d0082371 1319 if (err == -EEXIST) {
d1310b2e
CM
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
d0082371 1322 } else
d1310b2e 1323 break;
d1310b2e
CM
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327}
d1310b2e 1328
d0082371 1329int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1330{
d0082371 1331 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1332}
1333
d0082371 1334int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1335{
1336 int err;
1337 u64 failed_start;
1338
3fbe5c02
JM
1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1341 if (err == -EEXIST) {
1342 if (failed_start > start)
1343 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1344 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1345 return 0;
6643558d 1346 }
25179201
JB
1347 return 1;
1348}
25179201 1349
2c64c53d
CM
1350int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351 struct extent_state **cached, gfp_t mask)
1352{
1353 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354 mask);
1355}
1356
d0082371 1357int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1358{
2c64c53d 1359 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1360 GFP_NOFS);
d1310b2e 1361}
d1310b2e 1362
4adaa611
CM
1363int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365 unsigned long index = start >> PAGE_CACHE_SHIFT;
1366 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 page_cache_release(page);
1374 index++;
1375 }
1376 return 0;
1377}
1378
1379int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380{
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 account_page_redirty(page);
1389 __set_page_dirty_nobuffers(page);
1390 page_cache_release(page);
1391 index++;
1392 }
1393 return 0;
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
b2950863 1399static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1400{
1401 unsigned long index = start >> PAGE_CACHE_SHIFT;
1402 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1408 set_page_writeback(page);
1409 page_cache_release(page);
1410 index++;
1411 }
d1310b2e
CM
1412 return 0;
1413}
d1310b2e 1414
d352ac68
CM
1415/* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
48a3b636
ES
1419static struct extent_state *
1420find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1421 u64 start, unsigned long bits)
d7fc640e
CM
1422{
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
d397712b 1431 if (!node)
d7fc640e 1432 goto out;
d7fc640e 1433
d397712b 1434 while (1) {
d7fc640e 1435 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1436 if (state->end >= start && (state->state & bits))
d7fc640e 1437 return state;
d397712b 1438
d7fc640e
CM
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443out:
1444 return NULL;
1445}
d7fc640e 1446
69261c4b
XG
1447/*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
477d7eaf 1452 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1453 */
1454int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1455 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1456 struct extent_state **cached_state)
69261c4b
XG
1457{
1458 struct extent_state *state;
e6138876 1459 struct rb_node *n;
69261c4b
XG
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
e6138876
JB
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
27a3507d 1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
69261c4b 1482 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1483got_it:
69261c4b 1484 if (state) {
e6138876 1485 cache_state(state, cached_state);
69261c4b
XG
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
e6138876 1490out:
69261c4b
XG
1491 spin_unlock(&tree->lock);
1492 return ret;
1493}
1494
d352ac68
CM
1495/*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
c8b97818 1501static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
d1310b2e
CM
1504{
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
cad321ad 1511 spin_lock(&tree->lock);
c8b97818 1512
d1310b2e
CM
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
80ea96b1 1517 node = tree_search(tree, cur_start);
2b114d1d 1518 if (!node) {
3b951516
CM
1519 if (!found)
1520 *end = (u64)-1;
d1310b2e
CM
1521 goto out;
1522 }
1523
d397712b 1524 while (1) {
d1310b2e 1525 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
c2a128d2 1535 if (!found) {
d1310b2e 1536 *start = state->start;
c2a128d2
JB
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
d1310b2e
CM
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
d1310b2e 1544 total_bytes += state->end - state->start + 1;
7bf811a5 1545 if (total_bytes >= max_bytes)
573aecaf 1546 break;
573aecaf 1547 if (!node)
d1310b2e
CM
1548 break;
1549 }
1550out:
cad321ad 1551 spin_unlock(&tree->lock);
d1310b2e
CM
1552 return found;
1553}
1554
143bede5
JM
1555static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
c8b97818
CM
1558{
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
143bede5 1567 return;
c8b97818 1568
d397712b 1569 while (nr_pages > 0) {
c8b97818 1570 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
c8b97818
CM
1582}
1583
1584static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588{
1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
d397712b 1604 while (nrpages > 0) {
c8b97818 1605 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
771ed689 1618 if (pages[i] != locked_page) {
c8b97818 1619 lock_page(pages[i]);
f2b1c41c
CM
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 page_cache_release(pages[i]);
1625 goto done;
1626 }
1627 }
c8b97818 1628 page_cache_release(pages[i]);
771ed689 1629 pages_locked++;
c8b97818 1630 }
c8b97818
CM
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_CACHE_SHIFT);
1642 }
1643 return ret;
1644}
1645
1646/*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
294e30fe
JB
1652STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
c8b97818
CM
1656{
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
9655d298 1660 struct extent_state *cached_state = NULL;
c8b97818
CM
1661 int ret;
1662 int loops = 0;
1663
1664again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1669 max_bytes, &cached_state);
70b99e69 1670 if (!found || delalloc_end <= *start) {
c8b97818
CM
1671 *start = delalloc_start;
1672 *end = delalloc_end;
c2a128d2 1673 free_extent_state(cached_state);
385fe0be 1674 return 0;
c8b97818
CM
1675 }
1676
70b99e69
CM
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
d397712b 1682 if (delalloc_start < *start)
70b99e69 1683 delalloc_start = *start;
70b99e69 1684
c8b97818
CM
1685 /*
1686 * make sure to limit the number of pages we try to lock down
c8b97818 1687 */
7bf811a5
JB
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1690
c8b97818
CM
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
9655d298 1698 free_extent_state(cached_state);
7d788742 1699 cached_state = NULL;
c8b97818 1700 if (!loops) {
7bf811a5 1701 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
79787eaa 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1710
1711 /* step three, lock the state bits for the whole range */
d0082371 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1716 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1717 if (!ret) {
9655d298
CM
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
c8b97818
CM
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
9655d298 1725 free_extent_state(cached_state);
c8b97818
CM
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728out_failed:
1729 return found;
1730}
1731
c2790a2e
JB
1732int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 struct page *locked_page,
1734 unsigned long clear_bits,
1735 unsigned long page_ops)
c8b97818 1736{
c2790a2e 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
771ed689 1744
2c64c53d 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1746 if (page_ops == 0)
771ed689 1747 return 0;
c8b97818 1748
d397712b 1749 while (nr_pages > 0) {
c8b97818 1750 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1753 for (i = 0; i < ret; i++) {
8b62b72b 1754
c2790a2e 1755 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1756 SetPagePrivate2(pages[i]);
1757
c8b97818
CM
1758 if (pages[i] == locked_page) {
1759 page_cache_release(pages[i]);
1760 continue;
1761 }
c2790a2e 1762 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1763 clear_page_dirty_for_io(pages[i]);
c2790a2e 1764 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1765 set_page_writeback(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1767 end_page_writeback(pages[i]);
c2790a2e 1768 if (page_ops & PAGE_UNLOCK)
771ed689 1769 unlock_page(pages[i]);
c8b97818
CM
1770 page_cache_release(pages[i]);
1771 }
1772 nr_pages -= ret;
1773 index += ret;
1774 cond_resched();
1775 }
1776 return 0;
1777}
c8b97818 1778
d352ac68
CM
1779/*
1780 * count the number of bytes in the tree that have a given bit(s)
1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1782 * cached. The total number found is returned.
1783 */
d1310b2e
CM
1784u64 count_range_bits(struct extent_io_tree *tree,
1785 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1786 unsigned long bits, int contig)
d1310b2e
CM
1787{
1788 struct rb_node *node;
1789 struct extent_state *state;
1790 u64 cur_start = *start;
1791 u64 total_bytes = 0;
ec29ed5b 1792 u64 last = 0;
d1310b2e
CM
1793 int found = 0;
1794
fae7f21c 1795 if (WARN_ON(search_end <= cur_start))
d1310b2e 1796 return 0;
d1310b2e 1797
cad321ad 1798 spin_lock(&tree->lock);
d1310b2e
CM
1799 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 total_bytes = tree->dirty_bytes;
1801 goto out;
1802 }
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
80ea96b1 1807 node = tree_search(tree, cur_start);
d397712b 1808 if (!node)
d1310b2e 1809 goto out;
d1310b2e 1810
d397712b 1811 while (1) {
d1310b2e
CM
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start > search_end)
1814 break;
ec29ed5b
CM
1815 if (contig && found && state->start > last + 1)
1816 break;
1817 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1818 total_bytes += min(search_end, state->end) + 1 -
1819 max(cur_start, state->start);
1820 if (total_bytes >= max_bytes)
1821 break;
1822 if (!found) {
af60bed2 1823 *start = max(cur_start, state->start);
d1310b2e
CM
1824 found = 1;
1825 }
ec29ed5b
CM
1826 last = state->end;
1827 } else if (contig && found) {
1828 break;
d1310b2e
CM
1829 }
1830 node = rb_next(node);
1831 if (!node)
1832 break;
1833 }
1834out:
cad321ad 1835 spin_unlock(&tree->lock);
d1310b2e
CM
1836 return total_bytes;
1837}
b2950863 1838
d352ac68
CM
1839/*
1840 * set the private field for a given byte offset in the tree. If there isn't
1841 * an extent_state there already, this does nothing.
1842 */
171170c1 1843static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1844{
1845 struct rb_node *node;
1846 struct extent_state *state;
1847 int ret = 0;
1848
cad321ad 1849 spin_lock(&tree->lock);
d1310b2e
CM
1850 /*
1851 * this search will find all the extents that end after
1852 * our range starts.
1853 */
80ea96b1 1854 node = tree_search(tree, start);
2b114d1d 1855 if (!node) {
d1310b2e
CM
1856 ret = -ENOENT;
1857 goto out;
1858 }
1859 state = rb_entry(node, struct extent_state, rb_node);
1860 if (state->start != start) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state->private = private;
1865out:
cad321ad 1866 spin_unlock(&tree->lock);
d1310b2e
CM
1867 return ret;
1868}
1869
1870int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871{
1872 struct rb_node *node;
1873 struct extent_state *state;
1874 int ret = 0;
1875
cad321ad 1876 spin_lock(&tree->lock);
d1310b2e
CM
1877 /*
1878 * this search will find all the extents that end after
1879 * our range starts.
1880 */
80ea96b1 1881 node = tree_search(tree, start);
2b114d1d 1882 if (!node) {
d1310b2e
CM
1883 ret = -ENOENT;
1884 goto out;
1885 }
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 if (state->start != start) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 *private = state->private;
1892out:
cad321ad 1893 spin_unlock(&tree->lock);
d1310b2e
CM
1894 return ret;
1895}
1896
1897/*
1898 * searches a range in the state tree for a given mask.
70dec807 1899 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1900 * has the bits set. Otherwise, 1 is returned if any bit in the
1901 * range is found set.
1902 */
1903int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1904 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1905{
1906 struct extent_state *state = NULL;
1907 struct rb_node *node;
1908 int bitset = 0;
d1310b2e 1909
cad321ad 1910 spin_lock(&tree->lock);
27a3507d 1911 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1912 cached->end > start)
9655d298
CM
1913 node = &cached->rb_node;
1914 else
1915 node = tree_search(tree, start);
d1310b2e
CM
1916 while (node && start <= end) {
1917 state = rb_entry(node, struct extent_state, rb_node);
1918
1919 if (filled && state->start > start) {
1920 bitset = 0;
1921 break;
1922 }
1923
1924 if (state->start > end)
1925 break;
1926
1927 if (state->state & bits) {
1928 bitset = 1;
1929 if (!filled)
1930 break;
1931 } else if (filled) {
1932 bitset = 0;
1933 break;
1934 }
46562cec
CM
1935
1936 if (state->end == (u64)-1)
1937 break;
1938
d1310b2e
CM
1939 start = state->end + 1;
1940 if (start > end)
1941 break;
1942 node = rb_next(node);
1943 if (!node) {
1944 if (filled)
1945 bitset = 0;
1946 break;
1947 }
1948 }
cad321ad 1949 spin_unlock(&tree->lock);
d1310b2e
CM
1950 return bitset;
1951}
d1310b2e
CM
1952
1953/*
1954 * helper function to set a given page up to date if all the
1955 * extents in the tree for that page are up to date
1956 */
143bede5 1957static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1958{
4eee4fa4 1959 u64 start = page_offset(page);
d1310b2e 1960 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1961 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1962 SetPageUptodate(page);
d1310b2e
CM
1963}
1964
454ff3de 1965static int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1966{
1967 int ret;
1968 int err = 0;
1969 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1970
1971 set_state_private(failure_tree, rec->start, 0);
1972 ret = clear_extent_bits(failure_tree, rec->start,
1973 rec->start + rec->len - 1,
1974 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1975 if (ret)
1976 err = ret;
1977
53b381b3
DW
1978 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1979 rec->start + rec->len - 1,
1980 EXTENT_DAMAGED, GFP_NOFS);
1981 if (ret && !err)
1982 err = ret;
4a54c8c1
JS
1983
1984 kfree(rec);
1985 return err;
1986}
1987
4a54c8c1
JS
1988/*
1989 * this bypasses the standard btrfs submit functions deliberately, as
1990 * the standard behavior is to write all copies in a raid setup. here we only
1991 * want to write the one bad copy. so we do the mapping for ourselves and issue
1992 * submit_bio directly.
3ec706c8 1993 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1994 * actually prevents the read that triggered the error from finishing.
1995 * currently, there can be no more than two copies of every data bit. thus,
1996 * exactly one rewrite is required.
1997 */
3ec706c8 1998int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1 1999 u64 length, u64 logical, struct page *page,
ffdd2018 2000 unsigned int pg_offset, int mirror_num)
4a54c8c1
JS
2001{
2002 struct bio *bio;
2003 struct btrfs_device *dev;
4a54c8c1
JS
2004 u64 map_length = 0;
2005 u64 sector;
2006 struct btrfs_bio *bbio = NULL;
53b381b3 2007 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2008 int ret;
2009
908960c6 2010 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2011 BUG_ON(!mirror_num);
2012
53b381b3
DW
2013 /* we can't repair anything in raid56 yet */
2014 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2015 return 0;
2016
9be3395b 2017 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2018 if (!bio)
2019 return -EIO;
4f024f37 2020 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2021 map_length = length;
2022
3ec706c8 2023 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2024 &map_length, &bbio, mirror_num);
2025 if (ret) {
2026 bio_put(bio);
2027 return -EIO;
2028 }
2029 BUG_ON(mirror_num != bbio->mirror_num);
2030 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2031 bio->bi_iter.bi_sector = sector;
4a54c8c1
JS
2032 dev = bbio->stripes[mirror_num-1].dev;
2033 kfree(bbio);
2034 if (!dev || !dev->bdev || !dev->writeable) {
2035 bio_put(bio);
2036 return -EIO;
2037 }
2038 bio->bi_bdev = dev->bdev;
ffdd2018 2039 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2040
33879d45 2041 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2042 /* try to remap that extent elsewhere? */
2043 bio_put(bio);
442a4f63 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2045 return -EIO;
2046 }
2047
efe120a0
FH
2048 printk_ratelimited_in_rcu(KERN_INFO
2049 "BTRFS: read error corrected: ino %lu off %llu "
2050 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2051 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2052
2053 bio_put(bio);
2054 return 0;
2055}
2056
ea466794
JB
2057int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2058 int mirror_num)
2059{
ea466794
JB
2060 u64 start = eb->start;
2061 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2062 int ret = 0;
ea466794 2063
908960c6
ID
2064 if (root->fs_info->sb->s_flags & MS_RDONLY)
2065 return -EROFS;
2066
ea466794
JB
2067 for (i = 0; i < num_pages; i++) {
2068 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2069 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ffdd2018
MX
2070 start, p, start - page_offset(p),
2071 mirror_num);
ea466794
JB
2072 if (ret)
2073 break;
2074 start += PAGE_CACHE_SIZE;
2075 }
2076
2077 return ret;
2078}
2079
4a54c8c1
JS
2080/*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
2084static int clean_io_failure(u64 start, struct page *page)
2085{
2086 u64 private;
2087 u64 private_failure;
2088 struct io_failure_record *failrec;
908960c6
ID
2089 struct inode *inode = page->mapping->host;
2090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2091 struct extent_state *state;
2092 int num_copies;
4a54c8c1 2093 int ret;
4a54c8c1
JS
2094
2095 private = 0;
2096 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2097 (u64)-1, 1, EXTENT_DIRTY, 0);
2098 if (!ret)
2099 return 0;
2100
2101 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2102 &private_failure);
2103 if (ret)
2104 return 0;
2105
2106 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2107 BUG_ON(!failrec->this_mirror);
2108
2109 if (failrec->in_validation) {
2110 /* there was no real error, just free the record */
2111 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2112 failrec->start);
4a54c8c1
JS
2113 goto out;
2114 }
908960c6
ID
2115 if (fs_info->sb->s_flags & MS_RDONLY)
2116 goto out;
4a54c8c1
JS
2117
2118 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2119 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2120 failrec->start,
2121 EXTENT_LOCKED);
2122 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2123
883d0de4
MX
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
4a54c8c1 2128 if (num_copies > 1) {
454ff3de
MX
2129 repair_io_failure(fs_info, start, failrec->len,
2130 failrec->logical, page,
ffdd2018 2131 start - page_offset(page),
454ff3de 2132 failrec->failed_mirror);
4a54c8c1
JS
2133 }
2134 }
2135
2136out:
454ff3de 2137 free_io_failure(inode, failrec);
4a54c8c1 2138
454ff3de 2139 return 0;
4a54c8c1
JS
2140}
2141
2fe6303e
MX
2142int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2143 struct io_failure_record **failrec_ret)
4a54c8c1 2144{
2fe6303e 2145 struct io_failure_record *failrec;
4a54c8c1
JS
2146 u64 private;
2147 struct extent_map *em;
4a54c8c1
JS
2148 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2149 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2150 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2151 int ret;
4a54c8c1
JS
2152 u64 logical;
2153
4a54c8c1
JS
2154 ret = get_state_private(failure_tree, start, &private);
2155 if (ret) {
2156 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2157 if (!failrec)
2158 return -ENOMEM;
2fe6303e 2159
4a54c8c1
JS
2160 failrec->start = start;
2161 failrec->len = end - start + 1;
2162 failrec->this_mirror = 0;
2163 failrec->bio_flags = 0;
2164 failrec->in_validation = 0;
2165
2166 read_lock(&em_tree->lock);
2167 em = lookup_extent_mapping(em_tree, start, failrec->len);
2168 if (!em) {
2169 read_unlock(&em_tree->lock);
2170 kfree(failrec);
2171 return -EIO;
2172 }
2173
68ba990f 2174 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2175 free_extent_map(em);
2176 em = NULL;
2177 }
2178 read_unlock(&em_tree->lock);
7a2d6a64 2179 if (!em) {
4a54c8c1
JS
2180 kfree(failrec);
2181 return -EIO;
2182 }
2fe6303e 2183
4a54c8c1
JS
2184 logical = start - em->start;
2185 logical = em->block_start + logical;
2186 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2187 logical = em->block_start;
2188 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2189 extent_set_compress_type(&failrec->bio_flags,
2190 em->compress_type);
2191 }
2fe6303e
MX
2192
2193 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2194 logical, start, failrec->len);
2195
4a54c8c1
JS
2196 failrec->logical = logical;
2197 free_extent_map(em);
2198
2199 /* set the bits in the private failure tree */
2200 ret = set_extent_bits(failure_tree, start, end,
2201 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2202 if (ret >= 0)
2203 ret = set_state_private(failure_tree, start,
2204 (u64)(unsigned long)failrec);
2205 /* set the bits in the inode's tree */
2206 if (ret >= 0)
2207 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2208 GFP_NOFS);
2209 if (ret < 0) {
2210 kfree(failrec);
2211 return ret;
2212 }
2213 } else {
2214 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2215 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2216 failrec->logical, failrec->start, failrec->len,
2217 failrec->in_validation);
2218 /*
2219 * when data can be on disk more than twice, add to failrec here
2220 * (e.g. with a list for failed_mirror) to make
2221 * clean_io_failure() clean all those errors at once.
2222 */
2223 }
2fe6303e
MX
2224
2225 *failrec_ret = failrec;
2226
2227 return 0;
2228}
2229
2230int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2231 struct io_failure_record *failrec, int failed_mirror)
2232{
2233 int num_copies;
2234
5d964051
SB
2235 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2236 failrec->logical, failrec->len);
4a54c8c1
JS
2237 if (num_copies == 1) {
2238 /*
2239 * we only have a single copy of the data, so don't bother with
2240 * all the retry and error correction code that follows. no
2241 * matter what the error is, it is very likely to persist.
2242 */
2fe6303e 2243 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2244 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2245 return 0;
4a54c8c1
JS
2246 }
2247
4a54c8c1
JS
2248 /*
2249 * there are two premises:
2250 * a) deliver good data to the caller
2251 * b) correct the bad sectors on disk
2252 */
2253 if (failed_bio->bi_vcnt > 1) {
2254 /*
2255 * to fulfill b), we need to know the exact failing sectors, as
2256 * we don't want to rewrite any more than the failed ones. thus,
2257 * we need separate read requests for the failed bio
2258 *
2259 * if the following BUG_ON triggers, our validation request got
2260 * merged. we need separate requests for our algorithm to work.
2261 */
2262 BUG_ON(failrec->in_validation);
2263 failrec->in_validation = 1;
2264 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2265 } else {
2266 /*
2267 * we're ready to fulfill a) and b) alongside. get a good copy
2268 * of the failed sector and if we succeed, we have setup
2269 * everything for repair_io_failure to do the rest for us.
2270 */
2271 if (failrec->in_validation) {
2272 BUG_ON(failrec->this_mirror != failed_mirror);
2273 failrec->in_validation = 0;
2274 failrec->this_mirror = 0;
2275 }
2276 failrec->failed_mirror = failed_mirror;
2277 failrec->this_mirror++;
2278 if (failrec->this_mirror == failed_mirror)
2279 failrec->this_mirror++;
4a54c8c1
JS
2280 }
2281
facc8a22 2282 if (failrec->this_mirror > num_copies) {
2fe6303e 2283 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2284 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2285 return 0;
4a54c8c1
JS
2286 }
2287
2fe6303e
MX
2288 return 1;
2289}
2290
2291
2292struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2293 struct io_failure_record *failrec,
2294 struct page *page, int pg_offset, int icsum,
2295 bio_end_io_t *endio_func)
2296{
2297 struct bio *bio;
2298 struct btrfs_io_bio *btrfs_failed_bio;
2299 struct btrfs_io_bio *btrfs_bio;
2300
9be3395b 2301 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2302 if (!bio)
2303 return NULL;
2304
2305 bio->bi_end_io = endio_func;
4f024f37 2306 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2307 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2308 bio->bi_iter.bi_size = 0;
4a54c8c1 2309
facc8a22
MX
2310 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2311 if (btrfs_failed_bio->csum) {
2312 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2313 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2314
2315 btrfs_bio = btrfs_io_bio(bio);
2316 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2317 icsum *= csum_size;
2318 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2319 csum_size);
2320 }
2321
2fe6303e
MX
2322 bio_add_page(bio, page, failrec->len, pg_offset);
2323
2324 return bio;
2325}
2326
2327/*
2328 * this is a generic handler for readpage errors (default
2329 * readpage_io_failed_hook). if other copies exist, read those and write back
2330 * good data to the failed position. does not investigate in remapping the
2331 * failed extent elsewhere, hoping the device will be smart enough to do this as
2332 * needed
2333 */
2334
2335static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2336 struct page *page, u64 start, u64 end,
2337 int failed_mirror)
2338{
2339 struct io_failure_record *failrec;
2340 struct inode *inode = page->mapping->host;
2341 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2342 struct bio *bio;
2343 int read_mode;
2344 int ret;
2345
2346 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2347
2348 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2349 if (ret)
2350 return ret;
2351
2352 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2353 if (!ret) {
2354 free_io_failure(inode, failrec);
2355 return -EIO;
2356 }
2357
2358 if (failed_bio->bi_vcnt > 1)
2359 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2360 else
2361 read_mode = READ_SYNC;
2362
2363 phy_offset >>= inode->i_sb->s_blocksize_bits;
2364 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2365 start - page_offset(page),
2366 (int)phy_offset, failed_bio->bi_end_io);
2367 if (!bio) {
2368 free_io_failure(inode, failrec);
2369 return -EIO;
2370 }
4a54c8c1 2371
2fe6303e
MX
2372 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2373 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2374
013bd4c3
TI
2375 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2376 failrec->this_mirror,
2377 failrec->bio_flags, 0);
6c387ab2 2378 if (ret) {
454ff3de 2379 free_io_failure(inode, failrec);
6c387ab2
MX
2380 bio_put(bio);
2381 }
2382
013bd4c3 2383 return ret;
4a54c8c1
JS
2384}
2385
d1310b2e
CM
2386/* lots and lots of room for performance fixes in the end_bio funcs */
2387
87826df0
JM
2388int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2389{
2390 int uptodate = (err == 0);
2391 struct extent_io_tree *tree;
3e2426bd 2392 int ret = 0;
87826df0
JM
2393
2394 tree = &BTRFS_I(page->mapping->host)->io_tree;
2395
2396 if (tree->ops && tree->ops->writepage_end_io_hook) {
2397 ret = tree->ops->writepage_end_io_hook(page, start,
2398 end, NULL, uptodate);
2399 if (ret)
2400 uptodate = 0;
2401 }
2402
87826df0 2403 if (!uptodate) {
87826df0
JM
2404 ClearPageUptodate(page);
2405 SetPageError(page);
5dca6eea
LB
2406 ret = ret < 0 ? ret : -EIO;
2407 mapping_set_error(page->mapping, ret);
87826df0
JM
2408 }
2409 return 0;
2410}
2411
d1310b2e
CM
2412/*
2413 * after a writepage IO is done, we need to:
2414 * clear the uptodate bits on error
2415 * clear the writeback bits in the extent tree for this IO
2416 * end_page_writeback if the page has no more pending IO
2417 *
2418 * Scheduling is not allowed, so the extent state tree is expected
2419 * to have one and only one object corresponding to this IO.
2420 */
d1310b2e 2421static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2422{
2c30c71b 2423 struct bio_vec *bvec;
d1310b2e
CM
2424 u64 start;
2425 u64 end;
2c30c71b 2426 int i;
d1310b2e 2427
2c30c71b 2428 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2429 struct page *page = bvec->bv_page;
902b22f3 2430
17a5adcc
AO
2431 /* We always issue full-page reads, but if some block
2432 * in a page fails to read, blk_update_request() will
2433 * advance bv_offset and adjust bv_len to compensate.
2434 * Print a warning for nonzero offsets, and an error
2435 * if they don't add up to a full page. */
efe120a0
FH
2436 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2437 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2438 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2439 "partial page write in btrfs with offset %u and length %u",
2440 bvec->bv_offset, bvec->bv_len);
2441 else
2442 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2443 "incomplete page write in btrfs with offset %u and "
2444 "length %u",
2445 bvec->bv_offset, bvec->bv_len);
2446 }
d1310b2e 2447
17a5adcc
AO
2448 start = page_offset(page);
2449 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2450
87826df0
JM
2451 if (end_extent_writepage(page, err, start, end))
2452 continue;
70dec807 2453
17a5adcc 2454 end_page_writeback(page);
2c30c71b 2455 }
2b1f55b0 2456
d1310b2e 2457 bio_put(bio);
d1310b2e
CM
2458}
2459
883d0de4
MX
2460static void
2461endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2462 int uptodate)
2463{
2464 struct extent_state *cached = NULL;
2465 u64 end = start + len - 1;
2466
2467 if (uptodate && tree->track_uptodate)
2468 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2469 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2470}
2471
d1310b2e
CM
2472/*
2473 * after a readpage IO is done, we need to:
2474 * clear the uptodate bits on error
2475 * set the uptodate bits if things worked
2476 * set the page up to date if all extents in the tree are uptodate
2477 * clear the lock bit in the extent tree
2478 * unlock the page if there are no other extents locked for it
2479 *
2480 * Scheduling is not allowed, so the extent state tree is expected
2481 * to have one and only one object corresponding to this IO.
2482 */
d1310b2e 2483static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2484{
2c30c71b 2485 struct bio_vec *bvec;
d1310b2e 2486 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2487 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2488 struct extent_io_tree *tree;
facc8a22 2489 u64 offset = 0;
d1310b2e
CM
2490 u64 start;
2491 u64 end;
facc8a22 2492 u64 len;
883d0de4
MX
2493 u64 extent_start = 0;
2494 u64 extent_len = 0;
5cf1ab56 2495 int mirror;
d1310b2e 2496 int ret;
2c30c71b 2497 int i;
d1310b2e 2498
d20f7043
CM
2499 if (err)
2500 uptodate = 0;
2501
2c30c71b 2502 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2503 struct page *page = bvec->bv_page;
a71754fc 2504 struct inode *inode = page->mapping->host;
507903b8 2505
be3940c0 2506 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
c1dc0896 2507 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2508 io_bio->mirror_num);
a71754fc 2509 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2510
17a5adcc
AO
2511 /* We always issue full-page reads, but if some block
2512 * in a page fails to read, blk_update_request() will
2513 * advance bv_offset and adjust bv_len to compensate.
2514 * Print a warning for nonzero offsets, and an error
2515 * if they don't add up to a full page. */
efe120a0
FH
2516 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2517 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2518 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2519 "partial page read in btrfs with offset %u and length %u",
2520 bvec->bv_offset, bvec->bv_len);
2521 else
2522 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2523 "incomplete page read in btrfs with offset %u and "
2524 "length %u",
2525 bvec->bv_offset, bvec->bv_len);
2526 }
d1310b2e 2527
17a5adcc
AO
2528 start = page_offset(page);
2529 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2530 len = bvec->bv_len;
d1310b2e 2531
9be3395b 2532 mirror = io_bio->mirror_num;
f2a09da9
MX
2533 if (likely(uptodate && tree->ops &&
2534 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2535 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2536 page, start, end,
2537 mirror);
5ee0844d 2538 if (ret)
d1310b2e 2539 uptodate = 0;
5ee0844d 2540 else
4a54c8c1 2541 clean_io_failure(start, page);
d1310b2e 2542 }
ea466794 2543
f2a09da9
MX
2544 if (likely(uptodate))
2545 goto readpage_ok;
2546
2547 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2548 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2549 if (!ret && !err &&
2550 test_bit(BIO_UPTODATE, &bio->bi_flags))
2551 uptodate = 1;
f2a09da9 2552 } else {
f4a8e656
JS
2553 /*
2554 * The generic bio_readpage_error handles errors the
2555 * following way: If possible, new read requests are
2556 * created and submitted and will end up in
2557 * end_bio_extent_readpage as well (if we're lucky, not
2558 * in the !uptodate case). In that case it returns 0 and
2559 * we just go on with the next page in our bio. If it
2560 * can't handle the error it will return -EIO and we
2561 * remain responsible for that page.
2562 */
facc8a22
MX
2563 ret = bio_readpage_error(bio, offset, page, start, end,
2564 mirror);
7e38326f 2565 if (ret == 0) {
3b951516
CM
2566 uptodate =
2567 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2568 if (err)
2569 uptodate = 0;
38c1c2e4 2570 offset += len;
7e38326f
CM
2571 continue;
2572 }
2573 }
f2a09da9 2574readpage_ok:
883d0de4 2575 if (likely(uptodate)) {
a71754fc
JB
2576 loff_t i_size = i_size_read(inode);
2577 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2578 unsigned off;
a71754fc
JB
2579
2580 /* Zero out the end if this page straddles i_size */
a583c026
LB
2581 off = i_size & (PAGE_CACHE_SIZE-1);
2582 if (page->index == end_index && off)
2583 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2584 SetPageUptodate(page);
70dec807 2585 } else {
17a5adcc
AO
2586 ClearPageUptodate(page);
2587 SetPageError(page);
70dec807 2588 }
17a5adcc 2589 unlock_page(page);
facc8a22 2590 offset += len;
883d0de4
MX
2591
2592 if (unlikely(!uptodate)) {
2593 if (extent_len) {
2594 endio_readpage_release_extent(tree,
2595 extent_start,
2596 extent_len, 1);
2597 extent_start = 0;
2598 extent_len = 0;
2599 }
2600 endio_readpage_release_extent(tree, start,
2601 end - start + 1, 0);
2602 } else if (!extent_len) {
2603 extent_start = start;
2604 extent_len = end + 1 - start;
2605 } else if (extent_start + extent_len == start) {
2606 extent_len += end + 1 - start;
2607 } else {
2608 endio_readpage_release_extent(tree, extent_start,
2609 extent_len, uptodate);
2610 extent_start = start;
2611 extent_len = end + 1 - start;
2612 }
2c30c71b 2613 }
d1310b2e 2614
883d0de4
MX
2615 if (extent_len)
2616 endio_readpage_release_extent(tree, extent_start, extent_len,
2617 uptodate);
facc8a22
MX
2618 if (io_bio->end_io)
2619 io_bio->end_io(io_bio, err);
d1310b2e 2620 bio_put(bio);
d1310b2e
CM
2621}
2622
9be3395b
CM
2623/*
2624 * this allocates from the btrfs_bioset. We're returning a bio right now
2625 * but you can call btrfs_io_bio for the appropriate container_of magic
2626 */
88f794ed
MX
2627struct bio *
2628btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2629 gfp_t gfp_flags)
d1310b2e 2630{
facc8a22 2631 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2632 struct bio *bio;
2633
9be3395b 2634 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2635
2636 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2637 while (!bio && (nr_vecs /= 2)) {
2638 bio = bio_alloc_bioset(gfp_flags,
2639 nr_vecs, btrfs_bioset);
2640 }
d1310b2e
CM
2641 }
2642
2643 if (bio) {
2644 bio->bi_bdev = bdev;
4f024f37 2645 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2646 btrfs_bio = btrfs_io_bio(bio);
2647 btrfs_bio->csum = NULL;
2648 btrfs_bio->csum_allocated = NULL;
2649 btrfs_bio->end_io = NULL;
d1310b2e
CM
2650 }
2651 return bio;
2652}
2653
9be3395b
CM
2654struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2655{
23ea8e5a
MX
2656 struct btrfs_io_bio *btrfs_bio;
2657 struct bio *new;
9be3395b 2658
23ea8e5a
MX
2659 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2660 if (new) {
2661 btrfs_bio = btrfs_io_bio(new);
2662 btrfs_bio->csum = NULL;
2663 btrfs_bio->csum_allocated = NULL;
2664 btrfs_bio->end_io = NULL;
2665 }
2666 return new;
2667}
9be3395b
CM
2668
2669/* this also allocates from the btrfs_bioset */
2670struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2671{
facc8a22
MX
2672 struct btrfs_io_bio *btrfs_bio;
2673 struct bio *bio;
2674
2675 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2676 if (bio) {
2677 btrfs_bio = btrfs_io_bio(bio);
2678 btrfs_bio->csum = NULL;
2679 btrfs_bio->csum_allocated = NULL;
2680 btrfs_bio->end_io = NULL;
2681 }
2682 return bio;
9be3395b
CM
2683}
2684
2685
355808c2
JM
2686static int __must_check submit_one_bio(int rw, struct bio *bio,
2687 int mirror_num, unsigned long bio_flags)
d1310b2e 2688{
d1310b2e 2689 int ret = 0;
70dec807
CM
2690 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2691 struct page *page = bvec->bv_page;
2692 struct extent_io_tree *tree = bio->bi_private;
70dec807 2693 u64 start;
70dec807 2694
4eee4fa4 2695 start = page_offset(page) + bvec->bv_offset;
70dec807 2696
902b22f3 2697 bio->bi_private = NULL;
d1310b2e
CM
2698
2699 bio_get(bio);
2700
065631f6 2701 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2702 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2703 mirror_num, bio_flags, start);
0b86a832 2704 else
21adbd5c 2705 btrfsic_submit_bio(rw, bio);
4a54c8c1 2706
d1310b2e
CM
2707 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2708 ret = -EOPNOTSUPP;
2709 bio_put(bio);
2710 return ret;
2711}
2712
64a16701 2713static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2714 unsigned long offset, size_t size, struct bio *bio,
2715 unsigned long bio_flags)
2716{
2717 int ret = 0;
2718 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2719 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2720 bio_flags);
2721 BUG_ON(ret < 0);
2722 return ret;
2723
2724}
2725
d1310b2e
CM
2726static int submit_extent_page(int rw, struct extent_io_tree *tree,
2727 struct page *page, sector_t sector,
2728 size_t size, unsigned long offset,
2729 struct block_device *bdev,
2730 struct bio **bio_ret,
2731 unsigned long max_pages,
f188591e 2732 bio_end_io_t end_io_func,
c8b97818
CM
2733 int mirror_num,
2734 unsigned long prev_bio_flags,
2735 unsigned long bio_flags)
d1310b2e
CM
2736{
2737 int ret = 0;
2738 struct bio *bio;
2739 int nr;
c8b97818
CM
2740 int contig = 0;
2741 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2742 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2743 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2744
2745 if (bio_ret && *bio_ret) {
2746 bio = *bio_ret;
c8b97818 2747 if (old_compressed)
4f024f37 2748 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2749 else
f73a1c7d 2750 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2751
2752 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2753 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2754 bio_add_page(bio, page, page_size, offset) < page_size) {
2755 ret = submit_one_bio(rw, bio, mirror_num,
2756 prev_bio_flags);
79787eaa
JM
2757 if (ret < 0)
2758 return ret;
d1310b2e
CM
2759 bio = NULL;
2760 } else {
2761 return 0;
2762 }
2763 }
c8b97818
CM
2764 if (this_compressed)
2765 nr = BIO_MAX_PAGES;
2766 else
2767 nr = bio_get_nr_vecs(bdev);
2768
88f794ed 2769 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2770 if (!bio)
2771 return -ENOMEM;
70dec807 2772
c8b97818 2773 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2774 bio->bi_end_io = end_io_func;
2775 bio->bi_private = tree;
70dec807 2776
d397712b 2777 if (bio_ret)
d1310b2e 2778 *bio_ret = bio;
d397712b 2779 else
c8b97818 2780 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2781
2782 return ret;
2783}
2784
48a3b636
ES
2785static void attach_extent_buffer_page(struct extent_buffer *eb,
2786 struct page *page)
d1310b2e
CM
2787{
2788 if (!PagePrivate(page)) {
2789 SetPagePrivate(page);
d1310b2e 2790 page_cache_get(page);
4f2de97a
JB
2791 set_page_private(page, (unsigned long)eb);
2792 } else {
2793 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2794 }
2795}
2796
4f2de97a 2797void set_page_extent_mapped(struct page *page)
d1310b2e 2798{
4f2de97a
JB
2799 if (!PagePrivate(page)) {
2800 SetPagePrivate(page);
2801 page_cache_get(page);
2802 set_page_private(page, EXTENT_PAGE_PRIVATE);
2803 }
d1310b2e
CM
2804}
2805
125bac01
MX
2806static struct extent_map *
2807__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2808 u64 start, u64 len, get_extent_t *get_extent,
2809 struct extent_map **em_cached)
2810{
2811 struct extent_map *em;
2812
2813 if (em_cached && *em_cached) {
2814 em = *em_cached;
cbc0e928 2815 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2816 start < extent_map_end(em)) {
2817 atomic_inc(&em->refs);
2818 return em;
2819 }
2820
2821 free_extent_map(em);
2822 *em_cached = NULL;
2823 }
2824
2825 em = get_extent(inode, page, pg_offset, start, len, 0);
2826 if (em_cached && !IS_ERR_OR_NULL(em)) {
2827 BUG_ON(*em_cached);
2828 atomic_inc(&em->refs);
2829 *em_cached = em;
2830 }
2831 return em;
2832}
d1310b2e
CM
2833/*
2834 * basic readpage implementation. Locked extent state structs are inserted
2835 * into the tree that are removed when the IO is done (by the end_io
2836 * handlers)
79787eaa 2837 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2838 */
9974090b
MX
2839static int __do_readpage(struct extent_io_tree *tree,
2840 struct page *page,
2841 get_extent_t *get_extent,
125bac01 2842 struct extent_map **em_cached,
9974090b
MX
2843 struct bio **bio, int mirror_num,
2844 unsigned long *bio_flags, int rw)
d1310b2e
CM
2845{
2846 struct inode *inode = page->mapping->host;
4eee4fa4 2847 u64 start = page_offset(page);
d1310b2e
CM
2848 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2849 u64 end;
2850 u64 cur = start;
2851 u64 extent_offset;
2852 u64 last_byte = i_size_read(inode);
2853 u64 block_start;
2854 u64 cur_end;
2855 sector_t sector;
2856 struct extent_map *em;
2857 struct block_device *bdev;
2858 int ret;
2859 int nr = 0;
4b384318 2860 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2861 size_t pg_offset = 0;
d1310b2e 2862 size_t iosize;
c8b97818 2863 size_t disk_io_size;
d1310b2e 2864 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2865 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2866
2867 set_page_extent_mapped(page);
2868
9974090b 2869 end = page_end;
90a887c9
DM
2870 if (!PageUptodate(page)) {
2871 if (cleancache_get_page(page) == 0) {
2872 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2873 unlock_extent(tree, start, end);
90a887c9
DM
2874 goto out;
2875 }
2876 }
2877
c8b97818
CM
2878 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2879 char *userpage;
2880 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2881
2882 if (zero_offset) {
2883 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2884 userpage = kmap_atomic(page);
c8b97818
CM
2885 memset(userpage + zero_offset, 0, iosize);
2886 flush_dcache_page(page);
7ac687d9 2887 kunmap_atomic(userpage);
c8b97818
CM
2888 }
2889 }
d1310b2e 2890 while (cur <= end) {
c8f2f24b
JB
2891 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2892
d1310b2e
CM
2893 if (cur >= last_byte) {
2894 char *userpage;
507903b8
AJ
2895 struct extent_state *cached = NULL;
2896
306e16ce 2897 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2898 userpage = kmap_atomic(page);
306e16ce 2899 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2900 flush_dcache_page(page);
7ac687d9 2901 kunmap_atomic(userpage);
d1310b2e 2902 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2903 &cached, GFP_NOFS);
4b384318
MF
2904 if (!parent_locked)
2905 unlock_extent_cached(tree, cur,
2906 cur + iosize - 1,
2907 &cached, GFP_NOFS);
d1310b2e
CM
2908 break;
2909 }
125bac01
MX
2910 em = __get_extent_map(inode, page, pg_offset, cur,
2911 end - cur + 1, get_extent, em_cached);
c704005d 2912 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2913 SetPageError(page);
4b384318
MF
2914 if (!parent_locked)
2915 unlock_extent(tree, cur, end);
d1310b2e
CM
2916 break;
2917 }
d1310b2e
CM
2918 extent_offset = cur - em->start;
2919 BUG_ON(extent_map_end(em) <= cur);
2920 BUG_ON(end < cur);
2921
261507a0 2922 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2923 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2924 extent_set_compress_type(&this_bio_flag,
2925 em->compress_type);
2926 }
c8b97818 2927
d1310b2e
CM
2928 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2929 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2930 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2931 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2932 disk_io_size = em->block_len;
2933 sector = em->block_start >> 9;
2934 } else {
2935 sector = (em->block_start + extent_offset) >> 9;
2936 disk_io_size = iosize;
2937 }
d1310b2e
CM
2938 bdev = em->bdev;
2939 block_start = em->block_start;
d899e052
YZ
2940 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2941 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2942 free_extent_map(em);
2943 em = NULL;
2944
2945 /* we've found a hole, just zero and go on */
2946 if (block_start == EXTENT_MAP_HOLE) {
2947 char *userpage;
507903b8
AJ
2948 struct extent_state *cached = NULL;
2949
7ac687d9 2950 userpage = kmap_atomic(page);
306e16ce 2951 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2952 flush_dcache_page(page);
7ac687d9 2953 kunmap_atomic(userpage);
d1310b2e
CM
2954
2955 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2956 &cached, GFP_NOFS);
2957 unlock_extent_cached(tree, cur, cur + iosize - 1,
2958 &cached, GFP_NOFS);
d1310b2e 2959 cur = cur + iosize;
306e16ce 2960 pg_offset += iosize;
d1310b2e
CM
2961 continue;
2962 }
2963 /* the get_extent function already copied into the page */
9655d298
CM
2964 if (test_range_bit(tree, cur, cur_end,
2965 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2966 check_page_uptodate(tree, page);
4b384318
MF
2967 if (!parent_locked)
2968 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2969 cur = cur + iosize;
306e16ce 2970 pg_offset += iosize;
d1310b2e
CM
2971 continue;
2972 }
70dec807
CM
2973 /* we have an inline extent but it didn't get marked up
2974 * to date. Error out
2975 */
2976 if (block_start == EXTENT_MAP_INLINE) {
2977 SetPageError(page);
4b384318
MF
2978 if (!parent_locked)
2979 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2980 cur = cur + iosize;
306e16ce 2981 pg_offset += iosize;
70dec807
CM
2982 continue;
2983 }
d1310b2e 2984
c8f2f24b 2985 pnr -= page->index;
d4c7ca86 2986 ret = submit_extent_page(rw, tree, page,
306e16ce 2987 sector, disk_io_size, pg_offset,
89642229 2988 bdev, bio, pnr,
c8b97818
CM
2989 end_bio_extent_readpage, mirror_num,
2990 *bio_flags,
2991 this_bio_flag);
c8f2f24b
JB
2992 if (!ret) {
2993 nr++;
2994 *bio_flags = this_bio_flag;
2995 } else {
d1310b2e 2996 SetPageError(page);
4b384318
MF
2997 if (!parent_locked)
2998 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2999 }
d1310b2e 3000 cur = cur + iosize;
306e16ce 3001 pg_offset += iosize;
d1310b2e 3002 }
90a887c9 3003out:
d1310b2e
CM
3004 if (!nr) {
3005 if (!PageError(page))
3006 SetPageUptodate(page);
3007 unlock_page(page);
3008 }
3009 return 0;
3010}
3011
9974090b
MX
3012static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3013 struct page *pages[], int nr_pages,
3014 u64 start, u64 end,
3015 get_extent_t *get_extent,
125bac01 3016 struct extent_map **em_cached,
9974090b
MX
3017 struct bio **bio, int mirror_num,
3018 unsigned long *bio_flags, int rw)
3019{
3020 struct inode *inode;
3021 struct btrfs_ordered_extent *ordered;
3022 int index;
3023
3024 inode = pages[0]->mapping->host;
3025 while (1) {
3026 lock_extent(tree, start, end);
3027 ordered = btrfs_lookup_ordered_range(inode, start,
3028 end - start + 1);
3029 if (!ordered)
3030 break;
3031 unlock_extent(tree, start, end);
3032 btrfs_start_ordered_extent(inode, ordered, 1);
3033 btrfs_put_ordered_extent(ordered);
3034 }
3035
3036 for (index = 0; index < nr_pages; index++) {
125bac01
MX
3037 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3038 mirror_num, bio_flags, rw);
9974090b
MX
3039 page_cache_release(pages[index]);
3040 }
3041}
3042
3043static void __extent_readpages(struct extent_io_tree *tree,
3044 struct page *pages[],
3045 int nr_pages, get_extent_t *get_extent,
125bac01 3046 struct extent_map **em_cached,
9974090b
MX
3047 struct bio **bio, int mirror_num,
3048 unsigned long *bio_flags, int rw)
3049{
35a3621b 3050 u64 start = 0;
9974090b
MX
3051 u64 end = 0;
3052 u64 page_start;
3053 int index;
35a3621b 3054 int first_index = 0;
9974090b
MX
3055
3056 for (index = 0; index < nr_pages; index++) {
3057 page_start = page_offset(pages[index]);
3058 if (!end) {
3059 start = page_start;
3060 end = start + PAGE_CACHE_SIZE - 1;
3061 first_index = index;
3062 } else if (end + 1 == page_start) {
3063 end += PAGE_CACHE_SIZE;
3064 } else {
3065 __do_contiguous_readpages(tree, &pages[first_index],
3066 index - first_index, start,
125bac01
MX
3067 end, get_extent, em_cached,
3068 bio, mirror_num, bio_flags,
3069 rw);
9974090b
MX
3070 start = page_start;
3071 end = start + PAGE_CACHE_SIZE - 1;
3072 first_index = index;
3073 }
3074 }
3075
3076 if (end)
3077 __do_contiguous_readpages(tree, &pages[first_index],
3078 index - first_index, start,
125bac01 3079 end, get_extent, em_cached, bio,
9974090b
MX
3080 mirror_num, bio_flags, rw);
3081}
3082
3083static int __extent_read_full_page(struct extent_io_tree *tree,
3084 struct page *page,
3085 get_extent_t *get_extent,
3086 struct bio **bio, int mirror_num,
3087 unsigned long *bio_flags, int rw)
3088{
3089 struct inode *inode = page->mapping->host;
3090 struct btrfs_ordered_extent *ordered;
3091 u64 start = page_offset(page);
3092 u64 end = start + PAGE_CACHE_SIZE - 1;
3093 int ret;
3094
3095 while (1) {
3096 lock_extent(tree, start, end);
3097 ordered = btrfs_lookup_ordered_extent(inode, start);
3098 if (!ordered)
3099 break;
3100 unlock_extent(tree, start, end);
3101 btrfs_start_ordered_extent(inode, ordered, 1);
3102 btrfs_put_ordered_extent(ordered);
3103 }
3104
125bac01
MX
3105 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3106 bio_flags, rw);
9974090b
MX
3107 return ret;
3108}
3109
d1310b2e 3110int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3111 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3112{
3113 struct bio *bio = NULL;
c8b97818 3114 unsigned long bio_flags = 0;
d1310b2e
CM
3115 int ret;
3116
8ddc7d9c 3117 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3118 &bio_flags, READ);
d1310b2e 3119 if (bio)
8ddc7d9c 3120 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3121 return ret;
3122}
d1310b2e 3123
4b384318
MF
3124int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3125 get_extent_t *get_extent, int mirror_num)
3126{
3127 struct bio *bio = NULL;
3128 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3129 int ret;
3130
3131 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3132 &bio_flags, READ);
3133 if (bio)
3134 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3135 return ret;
3136}
3137
11c8349b
CM
3138static noinline void update_nr_written(struct page *page,
3139 struct writeback_control *wbc,
3140 unsigned long nr_written)
3141{
3142 wbc->nr_to_write -= nr_written;
3143 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3144 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3145 page->mapping->writeback_index = page->index + nr_written;
3146}
3147
d1310b2e 3148/*
40f76580
CM
3149 * helper for __extent_writepage, doing all of the delayed allocation setup.
3150 *
3151 * This returns 1 if our fill_delalloc function did all the work required
3152 * to write the page (copy into inline extent). In this case the IO has
3153 * been started and the page is already unlocked.
3154 *
3155 * This returns 0 if all went well (page still locked)
3156 * This returns < 0 if there were errors (page still locked)
d1310b2e 3157 */
40f76580
CM
3158static noinline_for_stack int writepage_delalloc(struct inode *inode,
3159 struct page *page, struct writeback_control *wbc,
3160 struct extent_page_data *epd,
3161 u64 delalloc_start,
3162 unsigned long *nr_written)
3163{
3164 struct extent_io_tree *tree = epd->tree;
3165 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3166 u64 nr_delalloc;
3167 u64 delalloc_to_write = 0;
3168 u64 delalloc_end = 0;
3169 int ret;
3170 int page_started = 0;
3171
3172 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3173 return 0;
3174
3175 while (delalloc_end < page_end) {
3176 nr_delalloc = find_lock_delalloc_range(inode, tree,
3177 page,
3178 &delalloc_start,
3179 &delalloc_end,
3180 128 * 1024 * 1024);
3181 if (nr_delalloc == 0) {
3182 delalloc_start = delalloc_end + 1;
3183 continue;
3184 }
3185 ret = tree->ops->fill_delalloc(inode, page,
3186 delalloc_start,
3187 delalloc_end,
3188 &page_started,
3189 nr_written);
3190 /* File system has been set read-only */
3191 if (ret) {
3192 SetPageError(page);
3193 /* fill_delalloc should be return < 0 for error
3194 * but just in case, we use > 0 here meaning the
3195 * IO is started, so we don't want to return > 0
3196 * unless things are going well.
3197 */
3198 ret = ret < 0 ? ret : -EIO;
3199 goto done;
3200 }
3201 /*
3202 * delalloc_end is already one less than the total
3203 * length, so we don't subtract one from
3204 * PAGE_CACHE_SIZE
3205 */
3206 delalloc_to_write += (delalloc_end - delalloc_start +
3207 PAGE_CACHE_SIZE) >>
3208 PAGE_CACHE_SHIFT;
3209 delalloc_start = delalloc_end + 1;
3210 }
3211 if (wbc->nr_to_write < delalloc_to_write) {
3212 int thresh = 8192;
3213
3214 if (delalloc_to_write < thresh * 2)
3215 thresh = delalloc_to_write;
3216 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3217 thresh);
3218 }
3219
3220 /* did the fill delalloc function already unlock and start
3221 * the IO?
3222 */
3223 if (page_started) {
3224 /*
3225 * we've unlocked the page, so we can't update
3226 * the mapping's writeback index, just update
3227 * nr_to_write.
3228 */
3229 wbc->nr_to_write -= *nr_written;
3230 return 1;
3231 }
3232
3233 ret = 0;
3234
3235done:
3236 return ret;
3237}
3238
3239/*
3240 * helper for __extent_writepage. This calls the writepage start hooks,
3241 * and does the loop to map the page into extents and bios.
3242 *
3243 * We return 1 if the IO is started and the page is unlocked,
3244 * 0 if all went well (page still locked)
3245 * < 0 if there were errors (page still locked)
3246 */
3247static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3248 struct page *page,
3249 struct writeback_control *wbc,
3250 struct extent_page_data *epd,
3251 loff_t i_size,
3252 unsigned long nr_written,
3253 int write_flags, int *nr_ret)
d1310b2e 3254{
d1310b2e 3255 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3256 u64 start = page_offset(page);
d1310b2e
CM
3257 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3258 u64 end;
3259 u64 cur = start;
3260 u64 extent_offset;
d1310b2e
CM
3261 u64 block_start;
3262 u64 iosize;
3263 sector_t sector;
2c64c53d 3264 struct extent_state *cached_state = NULL;
d1310b2e
CM
3265 struct extent_map *em;
3266 struct block_device *bdev;
7f3c74fb 3267 size_t pg_offset = 0;
d1310b2e 3268 size_t blocksize;
40f76580
CM
3269 int ret = 0;
3270 int nr = 0;
3271 bool compressed;
c8b97818 3272
247e743c 3273 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3274 ret = tree->ops->writepage_start_hook(page, start,
3275 page_end);
87826df0
JM
3276 if (ret) {
3277 /* Fixup worker will requeue */
3278 if (ret == -EBUSY)
3279 wbc->pages_skipped++;
3280 else
3281 redirty_page_for_writepage(wbc, page);
40f76580 3282
11c8349b 3283 update_nr_written(page, wbc, nr_written);
247e743c 3284 unlock_page(page);
40f76580 3285 ret = 1;
11c8349b 3286 goto done_unlocked;
247e743c
CM
3287 }
3288 }
3289
11c8349b
CM
3290 /*
3291 * we don't want to touch the inode after unlocking the page,
3292 * so we update the mapping writeback index now
3293 */
3294 update_nr_written(page, wbc, nr_written + 1);
771ed689 3295
d1310b2e 3296 end = page_end;
40f76580 3297 if (i_size <= start) {
e6dcd2dc
CM
3298 if (tree->ops && tree->ops->writepage_end_io_hook)
3299 tree->ops->writepage_end_io_hook(page, start,
3300 page_end, NULL, 1);
d1310b2e
CM
3301 goto done;
3302 }
3303
d1310b2e
CM
3304 blocksize = inode->i_sb->s_blocksize;
3305
3306 while (cur <= end) {
40f76580
CM
3307 u64 em_end;
3308 if (cur >= i_size) {
e6dcd2dc
CM
3309 if (tree->ops && tree->ops->writepage_end_io_hook)
3310 tree->ops->writepage_end_io_hook(page, cur,
3311 page_end, NULL, 1);
d1310b2e
CM
3312 break;
3313 }
7f3c74fb 3314 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3315 end - cur + 1, 1);
c704005d 3316 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3317 SetPageError(page);
61391d56 3318 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3319 break;
3320 }
3321
3322 extent_offset = cur - em->start;
40f76580
CM
3323 em_end = extent_map_end(em);
3324 BUG_ON(em_end <= cur);
d1310b2e 3325 BUG_ON(end < cur);
40f76580 3326 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3327 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3328 sector = (em->block_start + extent_offset) >> 9;
3329 bdev = em->bdev;
3330 block_start = em->block_start;
c8b97818 3331 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3332 free_extent_map(em);
3333 em = NULL;
3334
c8b97818
CM
3335 /*
3336 * compressed and inline extents are written through other
3337 * paths in the FS
3338 */
3339 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3340 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3341 /*
3342 * end_io notification does not happen here for
3343 * compressed extents
3344 */
3345 if (!compressed && tree->ops &&
3346 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3347 tree->ops->writepage_end_io_hook(page, cur,
3348 cur + iosize - 1,
3349 NULL, 1);
c8b97818
CM
3350 else if (compressed) {
3351 /* we don't want to end_page_writeback on
3352 * a compressed extent. this happens
3353 * elsewhere
3354 */
3355 nr++;
3356 }
3357
3358 cur += iosize;
7f3c74fb 3359 pg_offset += iosize;
d1310b2e
CM
3360 continue;
3361 }
c8b97818 3362
d1310b2e
CM
3363 if (tree->ops && tree->ops->writepage_io_hook) {
3364 ret = tree->ops->writepage_io_hook(page, cur,
3365 cur + iosize - 1);
3366 } else {
3367 ret = 0;
3368 }
1259ab75 3369 if (ret) {
d1310b2e 3370 SetPageError(page);
1259ab75 3371 } else {
40f76580 3372 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3373
d1310b2e
CM
3374 set_range_writeback(tree, cur, cur + iosize - 1);
3375 if (!PageWriteback(page)) {
efe120a0
FH
3376 btrfs_err(BTRFS_I(inode)->root->fs_info,
3377 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3378 page->index, cur, end);
d1310b2e
CM
3379 }
3380
ffbd517d
CM
3381 ret = submit_extent_page(write_flags, tree, page,
3382 sector, iosize, pg_offset,
3383 bdev, &epd->bio, max_nr,
c8b97818
CM
3384 end_bio_extent_writepage,
3385 0, 0, 0);
d1310b2e
CM
3386 if (ret)
3387 SetPageError(page);
3388 }
3389 cur = cur + iosize;
7f3c74fb 3390 pg_offset += iosize;
d1310b2e
CM
3391 nr++;
3392 }
40f76580
CM
3393done:
3394 *nr_ret = nr;
3395
3396done_unlocked:
3397
3398 /* drop our reference on any cached states */
3399 free_extent_state(cached_state);
3400 return ret;
3401}
3402
3403/*
3404 * the writepage semantics are similar to regular writepage. extent
3405 * records are inserted to lock ranges in the tree, and as dirty areas
3406 * are found, they are marked writeback. Then the lock bits are removed
3407 * and the end_io handler clears the writeback ranges
3408 */
3409static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3410 void *data)
3411{
3412 struct inode *inode = page->mapping->host;
3413 struct extent_page_data *epd = data;
3414 u64 start = page_offset(page);
3415 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3416 int ret;
3417 int nr = 0;
3418 size_t pg_offset = 0;
3419 loff_t i_size = i_size_read(inode);
3420 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3421 int write_flags;
3422 unsigned long nr_written = 0;
3423
3424 if (wbc->sync_mode == WB_SYNC_ALL)
3425 write_flags = WRITE_SYNC;
3426 else
3427 write_flags = WRITE;
3428
3429 trace___extent_writepage(page, inode, wbc);
3430
3431 WARN_ON(!PageLocked(page));
3432
3433 ClearPageError(page);
3434
3435 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3436 if (page->index > end_index ||
3437 (page->index == end_index && !pg_offset)) {
3438 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3439 unlock_page(page);
3440 return 0;
3441 }
3442
3443 if (page->index == end_index) {
3444 char *userpage;
3445
3446 userpage = kmap_atomic(page);
3447 memset(userpage + pg_offset, 0,
3448 PAGE_CACHE_SIZE - pg_offset);
3449 kunmap_atomic(userpage);
3450 flush_dcache_page(page);
3451 }
3452
3453 pg_offset = 0;
3454
3455 set_page_extent_mapped(page);
3456
3457 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3458 if (ret == 1)
3459 goto done_unlocked;
3460 if (ret)
3461 goto done;
3462
3463 ret = __extent_writepage_io(inode, page, wbc, epd,
3464 i_size, nr_written, write_flags, &nr);
3465 if (ret == 1)
3466 goto done_unlocked;
3467
d1310b2e
CM
3468done:
3469 if (nr == 0) {
3470 /* make sure the mapping tag for page dirty gets cleared */
3471 set_page_writeback(page);
3472 end_page_writeback(page);
3473 }
61391d56
FM
3474 if (PageError(page)) {
3475 ret = ret < 0 ? ret : -EIO;
3476 end_extent_writepage(page, ret, start, page_end);
3477 }
d1310b2e 3478 unlock_page(page);
40f76580 3479 return ret;
771ed689 3480
11c8349b 3481done_unlocked:
d1310b2e
CM
3482 return 0;
3483}
3484
fd8b2b61 3485void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3486{
74316201
N
3487 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3488 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3489}
3490
0e378df1
CM
3491static noinline_for_stack int
3492lock_extent_buffer_for_io(struct extent_buffer *eb,
3493 struct btrfs_fs_info *fs_info,
3494 struct extent_page_data *epd)
0b32f4bb
JB
3495{
3496 unsigned long i, num_pages;
3497 int flush = 0;
3498 int ret = 0;
3499
3500 if (!btrfs_try_tree_write_lock(eb)) {
3501 flush = 1;
3502 flush_write_bio(epd);
3503 btrfs_tree_lock(eb);
3504 }
3505
3506 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3507 btrfs_tree_unlock(eb);
3508 if (!epd->sync_io)
3509 return 0;
3510 if (!flush) {
3511 flush_write_bio(epd);
3512 flush = 1;
3513 }
a098d8e8
CM
3514 while (1) {
3515 wait_on_extent_buffer_writeback(eb);
3516 btrfs_tree_lock(eb);
3517 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3518 break;
0b32f4bb 3519 btrfs_tree_unlock(eb);
0b32f4bb
JB
3520 }
3521 }
3522
51561ffe
JB
3523 /*
3524 * We need to do this to prevent races in people who check if the eb is
3525 * under IO since we can end up having no IO bits set for a short period
3526 * of time.
3527 */
3528 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3529 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3530 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3531 spin_unlock(&eb->refs_lock);
0b32f4bb 3532 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3533 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3534 -eb->len,
3535 fs_info->dirty_metadata_batch);
0b32f4bb 3536 ret = 1;
51561ffe
JB
3537 } else {
3538 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3539 }
3540
3541 btrfs_tree_unlock(eb);
3542
3543 if (!ret)
3544 return ret;
3545
3546 num_pages = num_extent_pages(eb->start, eb->len);
3547 for (i = 0; i < num_pages; i++) {
3548 struct page *p = extent_buffer_page(eb, i);
3549
3550 if (!trylock_page(p)) {
3551 if (!flush) {
3552 flush_write_bio(epd);
3553 flush = 1;
3554 }
3555 lock_page(p);
3556 }
3557 }
3558
3559 return ret;
3560}
3561
3562static void end_extent_buffer_writeback(struct extent_buffer *eb)
3563{
3564 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3565 smp_mb__after_atomic();
0b32f4bb
JB
3566 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3567}
3568
3569static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3570{
2c30c71b 3571 struct bio_vec *bvec;
0b32f4bb 3572 struct extent_buffer *eb;
2c30c71b 3573 int i, done;
0b32f4bb 3574
2c30c71b 3575 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3576 struct page *page = bvec->bv_page;
3577
0b32f4bb
JB
3578 eb = (struct extent_buffer *)page->private;
3579 BUG_ON(!eb);
3580 done = atomic_dec_and_test(&eb->io_pages);
3581
2c30c71b 3582 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
0b32f4bb
JB
3583 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3584 ClearPageUptodate(page);
3585 SetPageError(page);
3586 }
3587
3588 end_page_writeback(page);
3589
3590 if (!done)
3591 continue;
3592
3593 end_extent_buffer_writeback(eb);
2c30c71b 3594 }
0b32f4bb
JB
3595
3596 bio_put(bio);
0b32f4bb
JB
3597}
3598
0e378df1 3599static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3600 struct btrfs_fs_info *fs_info,
3601 struct writeback_control *wbc,
3602 struct extent_page_data *epd)
3603{
3604 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3605 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3606 u64 offset = eb->start;
3607 unsigned long i, num_pages;
de0022b9 3608 unsigned long bio_flags = 0;
d4c7ca86 3609 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3610 int ret = 0;
0b32f4bb
JB
3611
3612 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3613 num_pages = num_extent_pages(eb->start, eb->len);
3614 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3615 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3616 bio_flags = EXTENT_BIO_TREE_LOG;
3617
0b32f4bb
JB
3618 for (i = 0; i < num_pages; i++) {
3619 struct page *p = extent_buffer_page(eb, i);
3620
3621 clear_page_dirty_for_io(p);
3622 set_page_writeback(p);
f28491e0 3623 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3624 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3625 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3626 0, epd->bio_flags, bio_flags);
3627 epd->bio_flags = bio_flags;
0b32f4bb
JB
3628 if (ret) {
3629 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3630 SetPageError(p);
3631 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3632 end_extent_buffer_writeback(eb);
3633 ret = -EIO;
3634 break;
3635 }
3636 offset += PAGE_CACHE_SIZE;
3637 update_nr_written(p, wbc, 1);
3638 unlock_page(p);
3639 }
3640
3641 if (unlikely(ret)) {
3642 for (; i < num_pages; i++) {
3643 struct page *p = extent_buffer_page(eb, i);
3644 unlock_page(p);
3645 }
3646 }
3647
3648 return ret;
3649}
3650
3651int btree_write_cache_pages(struct address_space *mapping,
3652 struct writeback_control *wbc)
3653{
3654 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3655 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3656 struct extent_buffer *eb, *prev_eb = NULL;
3657 struct extent_page_data epd = {
3658 .bio = NULL,
3659 .tree = tree,
3660 .extent_locked = 0,
3661 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3662 .bio_flags = 0,
0b32f4bb
JB
3663 };
3664 int ret = 0;
3665 int done = 0;
3666 int nr_to_write_done = 0;
3667 struct pagevec pvec;
3668 int nr_pages;
3669 pgoff_t index;
3670 pgoff_t end; /* Inclusive */
3671 int scanned = 0;
3672 int tag;
3673
3674 pagevec_init(&pvec, 0);
3675 if (wbc->range_cyclic) {
3676 index = mapping->writeback_index; /* Start from prev offset */
3677 end = -1;
3678 } else {
3679 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3680 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3681 scanned = 1;
3682 }
3683 if (wbc->sync_mode == WB_SYNC_ALL)
3684 tag = PAGECACHE_TAG_TOWRITE;
3685 else
3686 tag = PAGECACHE_TAG_DIRTY;
3687retry:
3688 if (wbc->sync_mode == WB_SYNC_ALL)
3689 tag_pages_for_writeback(mapping, index, end);
3690 while (!done && !nr_to_write_done && (index <= end) &&
3691 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3692 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3693 unsigned i;
3694
3695 scanned = 1;
3696 for (i = 0; i < nr_pages; i++) {
3697 struct page *page = pvec.pages[i];
3698
3699 if (!PagePrivate(page))
3700 continue;
3701
3702 if (!wbc->range_cyclic && page->index > end) {
3703 done = 1;
3704 break;
3705 }
3706
b5bae261
JB
3707 spin_lock(&mapping->private_lock);
3708 if (!PagePrivate(page)) {
3709 spin_unlock(&mapping->private_lock);
3710 continue;
3711 }
3712
0b32f4bb 3713 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3714
3715 /*
3716 * Shouldn't happen and normally this would be a BUG_ON
3717 * but no sense in crashing the users box for something
3718 * we can survive anyway.
3719 */
fae7f21c 3720 if (WARN_ON(!eb)) {
b5bae261 3721 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3722 continue;
3723 }
3724
b5bae261
JB
3725 if (eb == prev_eb) {
3726 spin_unlock(&mapping->private_lock);
0b32f4bb 3727 continue;
b5bae261 3728 }
0b32f4bb 3729
b5bae261
JB
3730 ret = atomic_inc_not_zero(&eb->refs);
3731 spin_unlock(&mapping->private_lock);
3732 if (!ret)
0b32f4bb 3733 continue;
0b32f4bb
JB
3734
3735 prev_eb = eb;
3736 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3737 if (!ret) {
3738 free_extent_buffer(eb);
3739 continue;
3740 }
3741
3742 ret = write_one_eb(eb, fs_info, wbc, &epd);
3743 if (ret) {
3744 done = 1;
3745 free_extent_buffer(eb);
3746 break;
3747 }
3748 free_extent_buffer(eb);
3749
3750 /*
3751 * the filesystem may choose to bump up nr_to_write.
3752 * We have to make sure to honor the new nr_to_write
3753 * at any time
3754 */
3755 nr_to_write_done = wbc->nr_to_write <= 0;
3756 }
3757 pagevec_release(&pvec);
3758 cond_resched();
3759 }
3760 if (!scanned && !done) {
3761 /*
3762 * We hit the last page and there is more work to be done: wrap
3763 * back to the start of the file
3764 */
3765 scanned = 1;
3766 index = 0;
3767 goto retry;
3768 }
3769 flush_write_bio(&epd);
3770 return ret;
3771}
3772
d1310b2e 3773/**
4bef0848 3774 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3775 * @mapping: address space structure to write
3776 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3777 * @writepage: function called for each page
3778 * @data: data passed to writepage function
3779 *
3780 * If a page is already under I/O, write_cache_pages() skips it, even
3781 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3782 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3783 * and msync() need to guarantee that all the data which was dirty at the time
3784 * the call was made get new I/O started against them. If wbc->sync_mode is
3785 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3786 * existing IO to complete.
3787 */
b2950863 3788static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3789 struct address_space *mapping,
3790 struct writeback_control *wbc,
d2c3f4f6
CM
3791 writepage_t writepage, void *data,
3792 void (*flush_fn)(void *))
d1310b2e 3793{
7fd1a3f7 3794 struct inode *inode = mapping->host;
d1310b2e
CM
3795 int ret = 0;
3796 int done = 0;
61391d56 3797 int err = 0;
f85d7d6c 3798 int nr_to_write_done = 0;
d1310b2e
CM
3799 struct pagevec pvec;
3800 int nr_pages;
3801 pgoff_t index;
3802 pgoff_t end; /* Inclusive */
3803 int scanned = 0;
f7aaa06b 3804 int tag;
d1310b2e 3805
7fd1a3f7
JB
3806 /*
3807 * We have to hold onto the inode so that ordered extents can do their
3808 * work when the IO finishes. The alternative to this is failing to add
3809 * an ordered extent if the igrab() fails there and that is a huge pain
3810 * to deal with, so instead just hold onto the inode throughout the
3811 * writepages operation. If it fails here we are freeing up the inode
3812 * anyway and we'd rather not waste our time writing out stuff that is
3813 * going to be truncated anyway.
3814 */
3815 if (!igrab(inode))
3816 return 0;
3817
d1310b2e
CM
3818 pagevec_init(&pvec, 0);
3819 if (wbc->range_cyclic) {
3820 index = mapping->writeback_index; /* Start from prev offset */
3821 end = -1;
3822 } else {
3823 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3824 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3825 scanned = 1;
3826 }
f7aaa06b
JB
3827 if (wbc->sync_mode == WB_SYNC_ALL)
3828 tag = PAGECACHE_TAG_TOWRITE;
3829 else
3830 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3831retry:
f7aaa06b
JB
3832 if (wbc->sync_mode == WB_SYNC_ALL)
3833 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3834 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3835 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3836 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3837 unsigned i;
3838
3839 scanned = 1;
3840 for (i = 0; i < nr_pages; i++) {
3841 struct page *page = pvec.pages[i];
3842
3843 /*
3844 * At this point we hold neither mapping->tree_lock nor
3845 * lock on the page itself: the page may be truncated or
3846 * invalidated (changing page->mapping to NULL), or even
3847 * swizzled back from swapper_space to tmpfs file
3848 * mapping
3849 */
c8f2f24b
JB
3850 if (!trylock_page(page)) {
3851 flush_fn(data);
3852 lock_page(page);
01d658f2 3853 }
d1310b2e
CM
3854
3855 if (unlikely(page->mapping != mapping)) {
3856 unlock_page(page);
3857 continue;
3858 }
3859
3860 if (!wbc->range_cyclic && page->index > end) {
3861 done = 1;
3862 unlock_page(page);
3863 continue;
3864 }
3865
d2c3f4f6 3866 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3867 if (PageWriteback(page))
3868 flush_fn(data);
d1310b2e 3869 wait_on_page_writeback(page);
d2c3f4f6 3870 }
d1310b2e
CM
3871
3872 if (PageWriteback(page) ||
3873 !clear_page_dirty_for_io(page)) {
3874 unlock_page(page);
3875 continue;
3876 }
3877
3878 ret = (*writepage)(page, wbc, data);
3879
3880 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3881 unlock_page(page);
3882 ret = 0;
3883 }
61391d56
FM
3884 if (!err && ret < 0)
3885 err = ret;
f85d7d6c
CM
3886
3887 /*
3888 * the filesystem may choose to bump up nr_to_write.
3889 * We have to make sure to honor the new nr_to_write
3890 * at any time
3891 */
3892 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3893 }
3894 pagevec_release(&pvec);
3895 cond_resched();
3896 }
61391d56 3897 if (!scanned && !done && !err) {
d1310b2e
CM
3898 /*
3899 * We hit the last page and there is more work to be done: wrap
3900 * back to the start of the file
3901 */
3902 scanned = 1;
3903 index = 0;
3904 goto retry;
3905 }
7fd1a3f7 3906 btrfs_add_delayed_iput(inode);
61391d56 3907 return err;
d1310b2e 3908}
d1310b2e 3909
ffbd517d 3910static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3911{
d2c3f4f6 3912 if (epd->bio) {
355808c2
JM
3913 int rw = WRITE;
3914 int ret;
3915
ffbd517d 3916 if (epd->sync_io)
355808c2
JM
3917 rw = WRITE_SYNC;
3918
de0022b9 3919 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3920 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3921 epd->bio = NULL;
3922 }
3923}
3924
ffbd517d
CM
3925static noinline void flush_write_bio(void *data)
3926{
3927 struct extent_page_data *epd = data;
3928 flush_epd_write_bio(epd);
3929}
3930
d1310b2e
CM
3931int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3932 get_extent_t *get_extent,
3933 struct writeback_control *wbc)
3934{
3935 int ret;
d1310b2e
CM
3936 struct extent_page_data epd = {
3937 .bio = NULL,
3938 .tree = tree,
3939 .get_extent = get_extent,
771ed689 3940 .extent_locked = 0,
ffbd517d 3941 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3942 .bio_flags = 0,
d1310b2e 3943 };
d1310b2e 3944
d1310b2e
CM
3945 ret = __extent_writepage(page, wbc, &epd);
3946
ffbd517d 3947 flush_epd_write_bio(&epd);
d1310b2e
CM
3948 return ret;
3949}
d1310b2e 3950
771ed689
CM
3951int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3952 u64 start, u64 end, get_extent_t *get_extent,
3953 int mode)
3954{
3955 int ret = 0;
3956 struct address_space *mapping = inode->i_mapping;
3957 struct page *page;
3958 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3959 PAGE_CACHE_SHIFT;
3960
3961 struct extent_page_data epd = {
3962 .bio = NULL,
3963 .tree = tree,
3964 .get_extent = get_extent,
3965 .extent_locked = 1,
ffbd517d 3966 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3967 .bio_flags = 0,
771ed689
CM
3968 };
3969 struct writeback_control wbc_writepages = {
771ed689 3970 .sync_mode = mode,
771ed689
CM
3971 .nr_to_write = nr_pages * 2,
3972 .range_start = start,
3973 .range_end = end + 1,
3974 };
3975
d397712b 3976 while (start <= end) {
771ed689
CM
3977 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3978 if (clear_page_dirty_for_io(page))
3979 ret = __extent_writepage(page, &wbc_writepages, &epd);
3980 else {
3981 if (tree->ops && tree->ops->writepage_end_io_hook)
3982 tree->ops->writepage_end_io_hook(page, start,
3983 start + PAGE_CACHE_SIZE - 1,
3984 NULL, 1);
3985 unlock_page(page);
3986 }
3987 page_cache_release(page);
3988 start += PAGE_CACHE_SIZE;
3989 }
3990
ffbd517d 3991 flush_epd_write_bio(&epd);
771ed689
CM
3992 return ret;
3993}
d1310b2e
CM
3994
3995int extent_writepages(struct extent_io_tree *tree,
3996 struct address_space *mapping,
3997 get_extent_t *get_extent,
3998 struct writeback_control *wbc)
3999{
4000 int ret = 0;
4001 struct extent_page_data epd = {
4002 .bio = NULL,
4003 .tree = tree,
4004 .get_extent = get_extent,
771ed689 4005 .extent_locked = 0,
ffbd517d 4006 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4007 .bio_flags = 0,
d1310b2e
CM
4008 };
4009
4bef0848 4010 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4011 __extent_writepage, &epd,
4012 flush_write_bio);
ffbd517d 4013 flush_epd_write_bio(&epd);
d1310b2e
CM
4014 return ret;
4015}
d1310b2e
CM
4016
4017int extent_readpages(struct extent_io_tree *tree,
4018 struct address_space *mapping,
4019 struct list_head *pages, unsigned nr_pages,
4020 get_extent_t get_extent)
4021{
4022 struct bio *bio = NULL;
4023 unsigned page_idx;
c8b97818 4024 unsigned long bio_flags = 0;
67c9684f
LB
4025 struct page *pagepool[16];
4026 struct page *page;
125bac01 4027 struct extent_map *em_cached = NULL;
67c9684f 4028 int nr = 0;
d1310b2e 4029
d1310b2e 4030 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4031 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4032
4033 prefetchw(&page->flags);
4034 list_del(&page->lru);
67c9684f 4035 if (add_to_page_cache_lru(page, mapping,
43e817a1 4036 page->index, GFP_NOFS)) {
67c9684f
LB
4037 page_cache_release(page);
4038 continue;
d1310b2e 4039 }
67c9684f
LB
4040
4041 pagepool[nr++] = page;
4042 if (nr < ARRAY_SIZE(pagepool))
4043 continue;
125bac01 4044 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4045 &bio, 0, &bio_flags, READ);
67c9684f 4046 nr = 0;
d1310b2e 4047 }
9974090b 4048 if (nr)
125bac01 4049 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4050 &bio, 0, &bio_flags, READ);
67c9684f 4051
125bac01
MX
4052 if (em_cached)
4053 free_extent_map(em_cached);
4054
d1310b2e
CM
4055 BUG_ON(!list_empty(pages));
4056 if (bio)
79787eaa 4057 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4058 return 0;
4059}
d1310b2e
CM
4060
4061/*
4062 * basic invalidatepage code, this waits on any locked or writeback
4063 * ranges corresponding to the page, and then deletes any extent state
4064 * records from the tree
4065 */
4066int extent_invalidatepage(struct extent_io_tree *tree,
4067 struct page *page, unsigned long offset)
4068{
2ac55d41 4069 struct extent_state *cached_state = NULL;
4eee4fa4 4070 u64 start = page_offset(page);
d1310b2e
CM
4071 u64 end = start + PAGE_CACHE_SIZE - 1;
4072 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4073
fda2832f 4074 start += ALIGN(offset, blocksize);
d1310b2e
CM
4075 if (start > end)
4076 return 0;
4077
d0082371 4078 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4079 wait_on_page_writeback(page);
d1310b2e 4080 clear_extent_bit(tree, start, end,
32c00aff
JB
4081 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4082 EXTENT_DO_ACCOUNTING,
2ac55d41 4083 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4084 return 0;
4085}
d1310b2e 4086
7b13b7b1
CM
4087/*
4088 * a helper for releasepage, this tests for areas of the page that
4089 * are locked or under IO and drops the related state bits if it is safe
4090 * to drop the page.
4091 */
48a3b636
ES
4092static int try_release_extent_state(struct extent_map_tree *map,
4093 struct extent_io_tree *tree,
4094 struct page *page, gfp_t mask)
7b13b7b1 4095{
4eee4fa4 4096 u64 start = page_offset(page);
7b13b7b1
CM
4097 u64 end = start + PAGE_CACHE_SIZE - 1;
4098 int ret = 1;
4099
211f90e6 4100 if (test_range_bit(tree, start, end,
8b62b72b 4101 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4102 ret = 0;
4103 else {
4104 if ((mask & GFP_NOFS) == GFP_NOFS)
4105 mask = GFP_NOFS;
11ef160f
CM
4106 /*
4107 * at this point we can safely clear everything except the
4108 * locked bit and the nodatasum bit
4109 */
e3f24cc5 4110 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4111 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4112 0, 0, NULL, mask);
e3f24cc5
CM
4113
4114 /* if clear_extent_bit failed for enomem reasons,
4115 * we can't allow the release to continue.
4116 */
4117 if (ret < 0)
4118 ret = 0;
4119 else
4120 ret = 1;
7b13b7b1
CM
4121 }
4122 return ret;
4123}
7b13b7b1 4124
d1310b2e
CM
4125/*
4126 * a helper for releasepage. As long as there are no locked extents
4127 * in the range corresponding to the page, both state records and extent
4128 * map records are removed
4129 */
4130int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4131 struct extent_io_tree *tree, struct page *page,
4132 gfp_t mask)
d1310b2e
CM
4133{
4134 struct extent_map *em;
4eee4fa4 4135 u64 start = page_offset(page);
d1310b2e 4136 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4137
70dec807
CM
4138 if ((mask & __GFP_WAIT) &&
4139 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4140 u64 len;
70dec807 4141 while (start <= end) {
39b5637f 4142 len = end - start + 1;
890871be 4143 write_lock(&map->lock);
39b5637f 4144 em = lookup_extent_mapping(map, start, len);
285190d9 4145 if (!em) {
890871be 4146 write_unlock(&map->lock);
70dec807
CM
4147 break;
4148 }
7f3c74fb
CM
4149 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4150 em->start != start) {
890871be 4151 write_unlock(&map->lock);
70dec807
CM
4152 free_extent_map(em);
4153 break;
4154 }
4155 if (!test_range_bit(tree, em->start,
4156 extent_map_end(em) - 1,
8b62b72b 4157 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4158 0, NULL)) {
70dec807
CM
4159 remove_extent_mapping(map, em);
4160 /* once for the rb tree */
4161 free_extent_map(em);
4162 }
4163 start = extent_map_end(em);
890871be 4164 write_unlock(&map->lock);
70dec807
CM
4165
4166 /* once for us */
d1310b2e
CM
4167 free_extent_map(em);
4168 }
d1310b2e 4169 }
7b13b7b1 4170 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4171}
d1310b2e 4172
ec29ed5b
CM
4173/*
4174 * helper function for fiemap, which doesn't want to see any holes.
4175 * This maps until we find something past 'last'
4176 */
4177static struct extent_map *get_extent_skip_holes(struct inode *inode,
4178 u64 offset,
4179 u64 last,
4180 get_extent_t *get_extent)
4181{
4182 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4183 struct extent_map *em;
4184 u64 len;
4185
4186 if (offset >= last)
4187 return NULL;
4188
67871254 4189 while (1) {
ec29ed5b
CM
4190 len = last - offset;
4191 if (len == 0)
4192 break;
fda2832f 4193 len = ALIGN(len, sectorsize);
ec29ed5b 4194 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4195 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4196 return em;
4197
4198 /* if this isn't a hole return it */
4199 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4200 em->block_start != EXTENT_MAP_HOLE) {
4201 return em;
4202 }
4203
4204 /* this is a hole, advance to the next extent */
4205 offset = extent_map_end(em);
4206 free_extent_map(em);
4207 if (offset >= last)
4208 break;
4209 }
4210 return NULL;
4211}
4212
1506fcc8
YS
4213int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4214 __u64 start, __u64 len, get_extent_t *get_extent)
4215{
975f84fe 4216 int ret = 0;
1506fcc8
YS
4217 u64 off = start;
4218 u64 max = start + len;
4219 u32 flags = 0;
975f84fe
JB
4220 u32 found_type;
4221 u64 last;
ec29ed5b 4222 u64 last_for_get_extent = 0;
1506fcc8 4223 u64 disko = 0;
ec29ed5b 4224 u64 isize = i_size_read(inode);
975f84fe 4225 struct btrfs_key found_key;
1506fcc8 4226 struct extent_map *em = NULL;
2ac55d41 4227 struct extent_state *cached_state = NULL;
975f84fe 4228 struct btrfs_path *path;
dc046b10 4229 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4230 int end = 0;
ec29ed5b
CM
4231 u64 em_start = 0;
4232 u64 em_len = 0;
4233 u64 em_end = 0;
1506fcc8
YS
4234
4235 if (len == 0)
4236 return -EINVAL;
4237
975f84fe
JB
4238 path = btrfs_alloc_path();
4239 if (!path)
4240 return -ENOMEM;
4241 path->leave_spinning = 1;
4242
2c91943b
QW
4243 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4244 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4245
ec29ed5b
CM
4246 /*
4247 * lookup the last file extent. We're not using i_size here
4248 * because there might be preallocation past i_size
4249 */
dc046b10
JB
4250 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4251 0);
975f84fe
JB
4252 if (ret < 0) {
4253 btrfs_free_path(path);
4254 return ret;
4255 }
4256 WARN_ON(!ret);
4257 path->slots[0]--;
975f84fe 4258 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4259 found_type = found_key.type;
975f84fe 4260
ec29ed5b 4261 /* No extents, but there might be delalloc bits */
33345d01 4262 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4263 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4264 /* have to trust i_size as the end */
4265 last = (u64)-1;
4266 last_for_get_extent = isize;
4267 } else {
4268 /*
4269 * remember the start of the last extent. There are a
4270 * bunch of different factors that go into the length of the
4271 * extent, so its much less complex to remember where it started
4272 */
4273 last = found_key.offset;
4274 last_for_get_extent = last + 1;
975f84fe 4275 }
fe09e16c 4276 btrfs_release_path(path);
975f84fe 4277
ec29ed5b
CM
4278 /*
4279 * we might have some extents allocated but more delalloc past those
4280 * extents. so, we trust isize unless the start of the last extent is
4281 * beyond isize
4282 */
4283 if (last < isize) {
4284 last = (u64)-1;
4285 last_for_get_extent = isize;
4286 }
4287
a52f4cd2 4288 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4289 &cached_state);
ec29ed5b 4290
4d479cf0 4291 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4292 get_extent);
1506fcc8
YS
4293 if (!em)
4294 goto out;
4295 if (IS_ERR(em)) {
4296 ret = PTR_ERR(em);
4297 goto out;
4298 }
975f84fe 4299
1506fcc8 4300 while (!end) {
b76bb701 4301 u64 offset_in_extent = 0;
ea8efc74
CM
4302
4303 /* break if the extent we found is outside the range */
4304 if (em->start >= max || extent_map_end(em) < off)
4305 break;
4306
4307 /*
4308 * get_extent may return an extent that starts before our
4309 * requested range. We have to make sure the ranges
4310 * we return to fiemap always move forward and don't
4311 * overlap, so adjust the offsets here
4312 */
4313 em_start = max(em->start, off);
1506fcc8 4314
ea8efc74
CM
4315 /*
4316 * record the offset from the start of the extent
b76bb701
JB
4317 * for adjusting the disk offset below. Only do this if the
4318 * extent isn't compressed since our in ram offset may be past
4319 * what we have actually allocated on disk.
ea8efc74 4320 */
b76bb701
JB
4321 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4322 offset_in_extent = em_start - em->start;
ec29ed5b 4323 em_end = extent_map_end(em);
ea8efc74 4324 em_len = em_end - em_start;
1506fcc8
YS
4325 disko = 0;
4326 flags = 0;
4327
ea8efc74
CM
4328 /*
4329 * bump off for our next call to get_extent
4330 */
4331 off = extent_map_end(em);
4332 if (off >= max)
4333 end = 1;
4334
93dbfad7 4335 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4336 end = 1;
4337 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4338 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4339 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4340 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4341 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4342 flags |= (FIEMAP_EXTENT_DELALLOC |
4343 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4344 } else if (fieinfo->fi_extents_max) {
4345 u64 bytenr = em->block_start -
4346 (em->start - em->orig_start);
fe09e16c 4347
ea8efc74 4348 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4349
4350 /*
4351 * As btrfs supports shared space, this information
4352 * can be exported to userspace tools via
dc046b10
JB
4353 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4354 * then we're just getting a count and we can skip the
4355 * lookup stuff.
fe09e16c 4356 */
dc046b10
JB
4357 ret = btrfs_check_shared(NULL, root->fs_info,
4358 root->objectid,
4359 btrfs_ino(inode), bytenr);
4360 if (ret < 0)
fe09e16c 4361 goto out_free;
dc046b10 4362 if (ret)
fe09e16c 4363 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4364 ret = 0;
1506fcc8
YS
4365 }
4366 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4367 flags |= FIEMAP_EXTENT_ENCODED;
4368
1506fcc8
YS
4369 free_extent_map(em);
4370 em = NULL;
ec29ed5b
CM
4371 if ((em_start >= last) || em_len == (u64)-1 ||
4372 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4373 flags |= FIEMAP_EXTENT_LAST;
4374 end = 1;
4375 }
4376
ec29ed5b
CM
4377 /* now scan forward to see if this is really the last extent. */
4378 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4379 get_extent);
4380 if (IS_ERR(em)) {
4381 ret = PTR_ERR(em);
4382 goto out;
4383 }
4384 if (!em) {
975f84fe
JB
4385 flags |= FIEMAP_EXTENT_LAST;
4386 end = 1;
4387 }
ec29ed5b
CM
4388 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4389 em_len, flags);
4390 if (ret)
4391 goto out_free;
1506fcc8
YS
4392 }
4393out_free:
4394 free_extent_map(em);
4395out:
fe09e16c 4396 btrfs_free_path(path);
a52f4cd2 4397 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4398 &cached_state, GFP_NOFS);
1506fcc8
YS
4399 return ret;
4400}
4401
727011e0
CM
4402static void __free_extent_buffer(struct extent_buffer *eb)
4403{
6d49ba1b 4404 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4405 kmem_cache_free(extent_buffer_cache, eb);
4406}
4407
a26e8c9f 4408int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4409{
4410 return (atomic_read(&eb->io_pages) ||
4411 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4412 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4413}
4414
4415/*
4416 * Helper for releasing extent buffer page.
4417 */
4418static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4419 unsigned long start_idx)
4420{
4421 unsigned long index;
4422 unsigned long num_pages;
4423 struct page *page;
4424 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4425
4426 BUG_ON(extent_buffer_under_io(eb));
4427
4428 num_pages = num_extent_pages(eb->start, eb->len);
4429 index = start_idx + num_pages;
4430 if (start_idx >= index)
4431 return;
4432
4433 do {
4434 index--;
4435 page = extent_buffer_page(eb, index);
4436 if (page && mapped) {
4437 spin_lock(&page->mapping->private_lock);
4438 /*
4439 * We do this since we'll remove the pages after we've
4440 * removed the eb from the radix tree, so we could race
4441 * and have this page now attached to the new eb. So
4442 * only clear page_private if it's still connected to
4443 * this eb.
4444 */
4445 if (PagePrivate(page) &&
4446 page->private == (unsigned long)eb) {
4447 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4448 BUG_ON(PageDirty(page));
4449 BUG_ON(PageWriteback(page));
4450 /*
4451 * We need to make sure we haven't be attached
4452 * to a new eb.
4453 */
4454 ClearPagePrivate(page);
4455 set_page_private(page, 0);
4456 /* One for the page private */
4457 page_cache_release(page);
4458 }
4459 spin_unlock(&page->mapping->private_lock);
4460
4461 }
4462 if (page) {
4463 /* One for when we alloced the page */
4464 page_cache_release(page);
4465 }
4466 } while (index != start_idx);
4467}
4468
4469/*
4470 * Helper for releasing the extent buffer.
4471 */
4472static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4473{
4474 btrfs_release_extent_buffer_page(eb, 0);
4475 __free_extent_buffer(eb);
4476}
4477
f28491e0
JB
4478static struct extent_buffer *
4479__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4480 unsigned long len, gfp_t mask)
d1310b2e
CM
4481{
4482 struct extent_buffer *eb = NULL;
4483
d1310b2e 4484 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4485 if (eb == NULL)
4486 return NULL;
d1310b2e
CM
4487 eb->start = start;
4488 eb->len = len;
f28491e0 4489 eb->fs_info = fs_info;
815a51c7 4490 eb->bflags = 0;
bd681513
CM
4491 rwlock_init(&eb->lock);
4492 atomic_set(&eb->write_locks, 0);
4493 atomic_set(&eb->read_locks, 0);
4494 atomic_set(&eb->blocking_readers, 0);
4495 atomic_set(&eb->blocking_writers, 0);
4496 atomic_set(&eb->spinning_readers, 0);
4497 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4498 eb->lock_nested = 0;
bd681513
CM
4499 init_waitqueue_head(&eb->write_lock_wq);
4500 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4501
6d49ba1b
ES
4502 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4503
3083ee2e 4504 spin_lock_init(&eb->refs_lock);
d1310b2e 4505 atomic_set(&eb->refs, 1);
0b32f4bb 4506 atomic_set(&eb->io_pages, 0);
727011e0 4507
b8dae313
DS
4508 /*
4509 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4510 */
4511 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4512 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4513 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4514
4515 return eb;
4516}
4517
815a51c7
JS
4518struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4519{
4520 unsigned long i;
4521 struct page *p;
4522 struct extent_buffer *new;
4523 unsigned long num_pages = num_extent_pages(src->start, src->len);
4524
9ec72677 4525 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4526 if (new == NULL)
4527 return NULL;
4528
4529 for (i = 0; i < num_pages; i++) {
9ec72677 4530 p = alloc_page(GFP_NOFS);
db7f3436
JB
4531 if (!p) {
4532 btrfs_release_extent_buffer(new);
4533 return NULL;
4534 }
815a51c7
JS
4535 attach_extent_buffer_page(new, p);
4536 WARN_ON(PageDirty(p));
4537 SetPageUptodate(p);
4538 new->pages[i] = p;
4539 }
4540
4541 copy_extent_buffer(new, src, 0, 0, src->len);
4542 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4543 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4544
4545 return new;
4546}
4547
4548struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4549{
4550 struct extent_buffer *eb;
4551 unsigned long num_pages = num_extent_pages(0, len);
4552 unsigned long i;
4553
9ec72677 4554 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4555 if (!eb)
4556 return NULL;
4557
4558 for (i = 0; i < num_pages; i++) {
9ec72677 4559 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4560 if (!eb->pages[i])
4561 goto err;
4562 }
4563 set_extent_buffer_uptodate(eb);
4564 btrfs_set_header_nritems(eb, 0);
4565 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4566
4567 return eb;
4568err:
84167d19
SB
4569 for (; i > 0; i--)
4570 __free_page(eb->pages[i - 1]);
815a51c7
JS
4571 __free_extent_buffer(eb);
4572 return NULL;
4573}
4574
0b32f4bb
JB
4575static void check_buffer_tree_ref(struct extent_buffer *eb)
4576{
242e18c7 4577 int refs;
0b32f4bb
JB
4578 /* the ref bit is tricky. We have to make sure it is set
4579 * if we have the buffer dirty. Otherwise the
4580 * code to free a buffer can end up dropping a dirty
4581 * page
4582 *
4583 * Once the ref bit is set, it won't go away while the
4584 * buffer is dirty or in writeback, and it also won't
4585 * go away while we have the reference count on the
4586 * eb bumped.
4587 *
4588 * We can't just set the ref bit without bumping the
4589 * ref on the eb because free_extent_buffer might
4590 * see the ref bit and try to clear it. If this happens
4591 * free_extent_buffer might end up dropping our original
4592 * ref by mistake and freeing the page before we are able
4593 * to add one more ref.
4594 *
4595 * So bump the ref count first, then set the bit. If someone
4596 * beat us to it, drop the ref we added.
4597 */
242e18c7
CM
4598 refs = atomic_read(&eb->refs);
4599 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4600 return;
4601
594831c4
JB
4602 spin_lock(&eb->refs_lock);
4603 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4604 atomic_inc(&eb->refs);
594831c4 4605 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4606}
4607
2457aec6
MG
4608static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4609 struct page *accessed)
5df4235e
JB
4610{
4611 unsigned long num_pages, i;
4612
0b32f4bb
JB
4613 check_buffer_tree_ref(eb);
4614
5df4235e
JB
4615 num_pages = num_extent_pages(eb->start, eb->len);
4616 for (i = 0; i < num_pages; i++) {
4617 struct page *p = extent_buffer_page(eb, i);
2457aec6
MG
4618 if (p != accessed)
4619 mark_page_accessed(p);
5df4235e
JB
4620 }
4621}
4622
f28491e0
JB
4623struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4624 u64 start)
452c75c3
CS
4625{
4626 struct extent_buffer *eb;
4627
4628 rcu_read_lock();
f28491e0
JB
4629 eb = radix_tree_lookup(&fs_info->buffer_radix,
4630 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4631 if (eb && atomic_inc_not_zero(&eb->refs)) {
4632 rcu_read_unlock();
2457aec6 4633 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4634 return eb;
4635 }
4636 rcu_read_unlock();
4637
4638 return NULL;
4639}
4640
faa2dbf0
JB
4641#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4642struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4643 u64 start, unsigned long len)
4644{
4645 struct extent_buffer *eb, *exists = NULL;
4646 int ret;
4647
4648 eb = find_extent_buffer(fs_info, start);
4649 if (eb)
4650 return eb;
4651 eb = alloc_dummy_extent_buffer(start, len);
4652 if (!eb)
4653 return NULL;
4654 eb->fs_info = fs_info;
4655again:
4656 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4657 if (ret)
4658 goto free_eb;
4659 spin_lock(&fs_info->buffer_lock);
4660 ret = radix_tree_insert(&fs_info->buffer_radix,
4661 start >> PAGE_CACHE_SHIFT, eb);
4662 spin_unlock(&fs_info->buffer_lock);
4663 radix_tree_preload_end();
4664 if (ret == -EEXIST) {
4665 exists = find_extent_buffer(fs_info, start);
4666 if (exists)
4667 goto free_eb;
4668 else
4669 goto again;
4670 }
4671 check_buffer_tree_ref(eb);
4672 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4673
4674 /*
4675 * We will free dummy extent buffer's if they come into
4676 * free_extent_buffer with a ref count of 2, but if we are using this we
4677 * want the buffers to stay in memory until we're done with them, so
4678 * bump the ref count again.
4679 */
4680 atomic_inc(&eb->refs);
4681 return eb;
4682free_eb:
4683 btrfs_release_extent_buffer(eb);
4684 return exists;
4685}
4686#endif
4687
f28491e0 4688struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4689 u64 start, unsigned long len)
d1310b2e
CM
4690{
4691 unsigned long num_pages = num_extent_pages(start, len);
4692 unsigned long i;
4693 unsigned long index = start >> PAGE_CACHE_SHIFT;
4694 struct extent_buffer *eb;
6af118ce 4695 struct extent_buffer *exists = NULL;
d1310b2e 4696 struct page *p;
f28491e0 4697 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4698 int uptodate = 1;
19fe0a8b 4699 int ret;
d1310b2e 4700
f28491e0 4701 eb = find_extent_buffer(fs_info, start);
452c75c3 4702 if (eb)
6af118ce 4703 return eb;
6af118ce 4704
f28491e0 4705 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4706 if (!eb)
d1310b2e
CM
4707 return NULL;
4708
727011e0 4709 for (i = 0; i < num_pages; i++, index++) {
a6591715 4710 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4711 if (!p)
6af118ce 4712 goto free_eb;
4f2de97a
JB
4713
4714 spin_lock(&mapping->private_lock);
4715 if (PagePrivate(p)) {
4716 /*
4717 * We could have already allocated an eb for this page
4718 * and attached one so lets see if we can get a ref on
4719 * the existing eb, and if we can we know it's good and
4720 * we can just return that one, else we know we can just
4721 * overwrite page->private.
4722 */
4723 exists = (struct extent_buffer *)p->private;
4724 if (atomic_inc_not_zero(&exists->refs)) {
4725 spin_unlock(&mapping->private_lock);
4726 unlock_page(p);
17de39ac 4727 page_cache_release(p);
2457aec6 4728 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4729 goto free_eb;
4730 }
4731
0b32f4bb 4732 /*
4f2de97a
JB
4733 * Do this so attach doesn't complain and we need to
4734 * drop the ref the old guy had.
4735 */
4736 ClearPagePrivate(p);
0b32f4bb 4737 WARN_ON(PageDirty(p));
4f2de97a 4738 page_cache_release(p);
d1310b2e 4739 }
4f2de97a
JB
4740 attach_extent_buffer_page(eb, p);
4741 spin_unlock(&mapping->private_lock);
0b32f4bb 4742 WARN_ON(PageDirty(p));
727011e0 4743 eb->pages[i] = p;
d1310b2e
CM
4744 if (!PageUptodate(p))
4745 uptodate = 0;
eb14ab8e
CM
4746
4747 /*
4748 * see below about how we avoid a nasty race with release page
4749 * and why we unlock later
4750 */
d1310b2e
CM
4751 }
4752 if (uptodate)
b4ce94de 4753 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4754again:
19fe0a8b
MX
4755 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4756 if (ret)
4757 goto free_eb;
4758
f28491e0
JB
4759 spin_lock(&fs_info->buffer_lock);
4760 ret = radix_tree_insert(&fs_info->buffer_radix,
4761 start >> PAGE_CACHE_SHIFT, eb);
4762 spin_unlock(&fs_info->buffer_lock);
452c75c3 4763 radix_tree_preload_end();
19fe0a8b 4764 if (ret == -EEXIST) {
f28491e0 4765 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4766 if (exists)
4767 goto free_eb;
4768 else
115391d2 4769 goto again;
6af118ce 4770 }
6af118ce 4771 /* add one reference for the tree */
0b32f4bb 4772 check_buffer_tree_ref(eb);
34b41ace 4773 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4774
4775 /*
4776 * there is a race where release page may have
4777 * tried to find this extent buffer in the radix
4778 * but failed. It will tell the VM it is safe to
4779 * reclaim the, and it will clear the page private bit.
4780 * We must make sure to set the page private bit properly
4781 * after the extent buffer is in the radix tree so
4782 * it doesn't get lost
4783 */
727011e0
CM
4784 SetPageChecked(eb->pages[0]);
4785 for (i = 1; i < num_pages; i++) {
4786 p = extent_buffer_page(eb, i);
727011e0
CM
4787 ClearPageChecked(p);
4788 unlock_page(p);
4789 }
4790 unlock_page(eb->pages[0]);
d1310b2e
CM
4791 return eb;
4792
6af118ce 4793free_eb:
727011e0
CM
4794 for (i = 0; i < num_pages; i++) {
4795 if (eb->pages[i])
4796 unlock_page(eb->pages[i]);
4797 }
eb14ab8e 4798
17de39ac 4799 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4800 btrfs_release_extent_buffer(eb);
6af118ce 4801 return exists;
d1310b2e 4802}
d1310b2e 4803
3083ee2e
JB
4804static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4805{
4806 struct extent_buffer *eb =
4807 container_of(head, struct extent_buffer, rcu_head);
4808
4809 __free_extent_buffer(eb);
4810}
4811
3083ee2e 4812/* Expects to have eb->eb_lock already held */
f7a52a40 4813static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4814{
4815 WARN_ON(atomic_read(&eb->refs) == 0);
4816 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4817 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4818 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4819
815a51c7 4820 spin_unlock(&eb->refs_lock);
3083ee2e 4821
f28491e0
JB
4822 spin_lock(&fs_info->buffer_lock);
4823 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4824 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4825 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4826 } else {
4827 spin_unlock(&eb->refs_lock);
815a51c7 4828 }
3083ee2e
JB
4829
4830 /* Should be safe to release our pages at this point */
4831 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4832 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4833 return 1;
3083ee2e
JB
4834 }
4835 spin_unlock(&eb->refs_lock);
e64860aa
JB
4836
4837 return 0;
3083ee2e
JB
4838}
4839
d1310b2e
CM
4840void free_extent_buffer(struct extent_buffer *eb)
4841{
242e18c7
CM
4842 int refs;
4843 int old;
d1310b2e
CM
4844 if (!eb)
4845 return;
4846
242e18c7
CM
4847 while (1) {
4848 refs = atomic_read(&eb->refs);
4849 if (refs <= 3)
4850 break;
4851 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4852 if (old == refs)
4853 return;
4854 }
4855
3083ee2e 4856 spin_lock(&eb->refs_lock);
815a51c7
JS
4857 if (atomic_read(&eb->refs) == 2 &&
4858 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4859 atomic_dec(&eb->refs);
4860
3083ee2e
JB
4861 if (atomic_read(&eb->refs) == 2 &&
4862 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4863 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4864 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4865 atomic_dec(&eb->refs);
4866
4867 /*
4868 * I know this is terrible, but it's temporary until we stop tracking
4869 * the uptodate bits and such for the extent buffers.
4870 */
f7a52a40 4871 release_extent_buffer(eb);
3083ee2e
JB
4872}
4873
4874void free_extent_buffer_stale(struct extent_buffer *eb)
4875{
4876 if (!eb)
d1310b2e
CM
4877 return;
4878
3083ee2e
JB
4879 spin_lock(&eb->refs_lock);
4880 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4881
0b32f4bb 4882 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4883 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4884 atomic_dec(&eb->refs);
f7a52a40 4885 release_extent_buffer(eb);
d1310b2e 4886}
d1310b2e 4887
1d4284bd 4888void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4889{
d1310b2e
CM
4890 unsigned long i;
4891 unsigned long num_pages;
4892 struct page *page;
4893
d1310b2e
CM
4894 num_pages = num_extent_pages(eb->start, eb->len);
4895
4896 for (i = 0; i < num_pages; i++) {
4897 page = extent_buffer_page(eb, i);
b9473439 4898 if (!PageDirty(page))
d2c3f4f6
CM
4899 continue;
4900
a61e6f29 4901 lock_page(page);
eb14ab8e
CM
4902 WARN_ON(!PagePrivate(page));
4903
d1310b2e 4904 clear_page_dirty_for_io(page);
0ee0fda0 4905 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4906 if (!PageDirty(page)) {
4907 radix_tree_tag_clear(&page->mapping->page_tree,
4908 page_index(page),
4909 PAGECACHE_TAG_DIRTY);
4910 }
0ee0fda0 4911 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4912 ClearPageError(page);
a61e6f29 4913 unlock_page(page);
d1310b2e 4914 }
0b32f4bb 4915 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4916}
d1310b2e 4917
0b32f4bb 4918int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4919{
4920 unsigned long i;
4921 unsigned long num_pages;
b9473439 4922 int was_dirty = 0;
d1310b2e 4923
0b32f4bb
JB
4924 check_buffer_tree_ref(eb);
4925
b9473439 4926 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4927
d1310b2e 4928 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4929 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4930 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4931
b9473439 4932 for (i = 0; i < num_pages; i++)
0b32f4bb 4933 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4934 return was_dirty;
d1310b2e 4935}
d1310b2e 4936
0b32f4bb 4937int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4938{
4939 unsigned long i;
4940 struct page *page;
4941 unsigned long num_pages;
4942
b4ce94de 4943 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4944 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4945 for (i = 0; i < num_pages; i++) {
4946 page = extent_buffer_page(eb, i);
33958dc6
CM
4947 if (page)
4948 ClearPageUptodate(page);
1259ab75
CM
4949 }
4950 return 0;
4951}
4952
0b32f4bb 4953int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4954{
4955 unsigned long i;
4956 struct page *page;
4957 unsigned long num_pages;
4958
0b32f4bb 4959 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4960 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4961 for (i = 0; i < num_pages; i++) {
4962 page = extent_buffer_page(eb, i);
d1310b2e
CM
4963 SetPageUptodate(page);
4964 }
4965 return 0;
4966}
d1310b2e 4967
0b32f4bb 4968int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4969{
0b32f4bb 4970 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4971}
d1310b2e
CM
4972
4973int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4974 struct extent_buffer *eb, u64 start, int wait,
f188591e 4975 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4976{
4977 unsigned long i;
4978 unsigned long start_i;
4979 struct page *page;
4980 int err;
4981 int ret = 0;
ce9adaa5
CM
4982 int locked_pages = 0;
4983 int all_uptodate = 1;
d1310b2e 4984 unsigned long num_pages;
727011e0 4985 unsigned long num_reads = 0;
a86c12c7 4986 struct bio *bio = NULL;
c8b97818 4987 unsigned long bio_flags = 0;
a86c12c7 4988
b4ce94de 4989 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4990 return 0;
4991
d1310b2e
CM
4992 if (start) {
4993 WARN_ON(start < eb->start);
4994 start_i = (start >> PAGE_CACHE_SHIFT) -
4995 (eb->start >> PAGE_CACHE_SHIFT);
4996 } else {
4997 start_i = 0;
4998 }
4999
5000 num_pages = num_extent_pages(eb->start, eb->len);
5001 for (i = start_i; i < num_pages; i++) {
5002 page = extent_buffer_page(eb, i);
bb82ab88 5003 if (wait == WAIT_NONE) {
2db04966 5004 if (!trylock_page(page))
ce9adaa5 5005 goto unlock_exit;
d1310b2e
CM
5006 } else {
5007 lock_page(page);
5008 }
ce9adaa5 5009 locked_pages++;
727011e0
CM
5010 if (!PageUptodate(page)) {
5011 num_reads++;
ce9adaa5 5012 all_uptodate = 0;
727011e0 5013 }
ce9adaa5
CM
5014 }
5015 if (all_uptodate) {
5016 if (start_i == 0)
b4ce94de 5017 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5018 goto unlock_exit;
5019 }
5020
ea466794 5021 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 5022 eb->read_mirror = 0;
0b32f4bb 5023 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
5024 for (i = start_i; i < num_pages; i++) {
5025 page = extent_buffer_page(eb, i);
ce9adaa5 5026 if (!PageUptodate(page)) {
f188591e 5027 ClearPageError(page);
a86c12c7 5028 err = __extent_read_full_page(tree, page,
f188591e 5029 get_extent, &bio,
d4c7ca86
JB
5030 mirror_num, &bio_flags,
5031 READ | REQ_META);
d397712b 5032 if (err)
d1310b2e 5033 ret = err;
d1310b2e
CM
5034 } else {
5035 unlock_page(page);
5036 }
5037 }
5038
355808c2 5039 if (bio) {
d4c7ca86
JB
5040 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5041 bio_flags);
79787eaa
JM
5042 if (err)
5043 return err;
355808c2 5044 }
a86c12c7 5045
bb82ab88 5046 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5047 return ret;
d397712b 5048
d1310b2e
CM
5049 for (i = start_i; i < num_pages; i++) {
5050 page = extent_buffer_page(eb, i);
5051 wait_on_page_locked(page);
d397712b 5052 if (!PageUptodate(page))
d1310b2e 5053 ret = -EIO;
d1310b2e 5054 }
d397712b 5055
d1310b2e 5056 return ret;
ce9adaa5
CM
5057
5058unlock_exit:
5059 i = start_i;
d397712b 5060 while (locked_pages > 0) {
ce9adaa5
CM
5061 page = extent_buffer_page(eb, i);
5062 i++;
5063 unlock_page(page);
5064 locked_pages--;
5065 }
5066 return ret;
d1310b2e 5067}
d1310b2e
CM
5068
5069void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5070 unsigned long start,
5071 unsigned long len)
5072{
5073 size_t cur;
5074 size_t offset;
5075 struct page *page;
5076 char *kaddr;
5077 char *dst = (char *)dstv;
5078 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5079 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5080
5081 WARN_ON(start > eb->len);
5082 WARN_ON(start + len > eb->start + eb->len);
5083
778746b5 5084 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5085
d397712b 5086 while (len > 0) {
d1310b2e 5087 page = extent_buffer_page(eb, i);
d1310b2e
CM
5088
5089 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5090 kaddr = page_address(page);
d1310b2e 5091 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5092
5093 dst += cur;
5094 len -= cur;
5095 offset = 0;
5096 i++;
5097 }
5098}
d1310b2e 5099
550ac1d8
GH
5100int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5101 unsigned long start,
5102 unsigned long len)
5103{
5104 size_t cur;
5105 size_t offset;
5106 struct page *page;
5107 char *kaddr;
5108 char __user *dst = (char __user *)dstv;
5109 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5110 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5111 int ret = 0;
5112
5113 WARN_ON(start > eb->len);
5114 WARN_ON(start + len > eb->start + eb->len);
5115
5116 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5117
5118 while (len > 0) {
5119 page = extent_buffer_page(eb, i);
5120
5121 cur = min(len, (PAGE_CACHE_SIZE - offset));
5122 kaddr = page_address(page);
5123 if (copy_to_user(dst, kaddr + offset, cur)) {
5124 ret = -EFAULT;
5125 break;
5126 }
5127
5128 dst += cur;
5129 len -= cur;
5130 offset = 0;
5131 i++;
5132 }
5133
5134 return ret;
5135}
5136
d1310b2e 5137int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5138 unsigned long min_len, char **map,
d1310b2e 5139 unsigned long *map_start,
a6591715 5140 unsigned long *map_len)
d1310b2e
CM
5141{
5142 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5143 char *kaddr;
5144 struct page *p;
5145 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5146 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5147 unsigned long end_i = (start_offset + start + min_len - 1) >>
5148 PAGE_CACHE_SHIFT;
5149
5150 if (i != end_i)
5151 return -EINVAL;
5152
5153 if (i == 0) {
5154 offset = start_offset;
5155 *map_start = 0;
5156 } else {
5157 offset = 0;
5158 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5159 }
d397712b 5160
d1310b2e 5161 if (start + min_len > eb->len) {
31b1a2bd 5162 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5163 "wanted %lu %lu\n",
5164 eb->start, eb->len, start, min_len);
85026533 5165 return -EINVAL;
d1310b2e
CM
5166 }
5167
5168 p = extent_buffer_page(eb, i);
a6591715 5169 kaddr = page_address(p);
d1310b2e
CM
5170 *map = kaddr + offset;
5171 *map_len = PAGE_CACHE_SIZE - offset;
5172 return 0;
5173}
d1310b2e 5174
d1310b2e
CM
5175int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5176 unsigned long start,
5177 unsigned long len)
5178{
5179 size_t cur;
5180 size_t offset;
5181 struct page *page;
5182 char *kaddr;
5183 char *ptr = (char *)ptrv;
5184 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5185 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5186 int ret = 0;
5187
5188 WARN_ON(start > eb->len);
5189 WARN_ON(start + len > eb->start + eb->len);
5190
778746b5 5191 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5192
d397712b 5193 while (len > 0) {
d1310b2e 5194 page = extent_buffer_page(eb, i);
d1310b2e
CM
5195
5196 cur = min(len, (PAGE_CACHE_SIZE - offset));
5197
a6591715 5198 kaddr = page_address(page);
d1310b2e 5199 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5200 if (ret)
5201 break;
5202
5203 ptr += cur;
5204 len -= cur;
5205 offset = 0;
5206 i++;
5207 }
5208 return ret;
5209}
d1310b2e
CM
5210
5211void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5212 unsigned long start, unsigned long len)
5213{
5214 size_t cur;
5215 size_t offset;
5216 struct page *page;
5217 char *kaddr;
5218 char *src = (char *)srcv;
5219 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5220 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5221
5222 WARN_ON(start > eb->len);
5223 WARN_ON(start + len > eb->start + eb->len);
5224
778746b5 5225 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5226
d397712b 5227 while (len > 0) {
d1310b2e
CM
5228 page = extent_buffer_page(eb, i);
5229 WARN_ON(!PageUptodate(page));
5230
5231 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5232 kaddr = page_address(page);
d1310b2e 5233 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5234
5235 src += cur;
5236 len -= cur;
5237 offset = 0;
5238 i++;
5239 }
5240}
d1310b2e
CM
5241
5242void memset_extent_buffer(struct extent_buffer *eb, char c,
5243 unsigned long start, unsigned long len)
5244{
5245 size_t cur;
5246 size_t offset;
5247 struct page *page;
5248 char *kaddr;
5249 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5250 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5251
5252 WARN_ON(start > eb->len);
5253 WARN_ON(start + len > eb->start + eb->len);
5254
778746b5 5255 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5256
d397712b 5257 while (len > 0) {
d1310b2e
CM
5258 page = extent_buffer_page(eb, i);
5259 WARN_ON(!PageUptodate(page));
5260
5261 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5262 kaddr = page_address(page);
d1310b2e 5263 memset(kaddr + offset, c, cur);
d1310b2e
CM
5264
5265 len -= cur;
5266 offset = 0;
5267 i++;
5268 }
5269}
d1310b2e
CM
5270
5271void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5272 unsigned long dst_offset, unsigned long src_offset,
5273 unsigned long len)
5274{
5275 u64 dst_len = dst->len;
5276 size_t cur;
5277 size_t offset;
5278 struct page *page;
5279 char *kaddr;
5280 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5281 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5282
5283 WARN_ON(src->len != dst_len);
5284
5285 offset = (start_offset + dst_offset) &
778746b5 5286 (PAGE_CACHE_SIZE - 1);
d1310b2e 5287
d397712b 5288 while (len > 0) {
d1310b2e
CM
5289 page = extent_buffer_page(dst, i);
5290 WARN_ON(!PageUptodate(page));
5291
5292 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5293
a6591715 5294 kaddr = page_address(page);
d1310b2e 5295 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5296
5297 src_offset += cur;
5298 len -= cur;
5299 offset = 0;
5300 i++;
5301 }
5302}
d1310b2e 5303
3387206f
ST
5304static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5305{
5306 unsigned long distance = (src > dst) ? src - dst : dst - src;
5307 return distance < len;
5308}
5309
d1310b2e
CM
5310static void copy_pages(struct page *dst_page, struct page *src_page,
5311 unsigned long dst_off, unsigned long src_off,
5312 unsigned long len)
5313{
a6591715 5314 char *dst_kaddr = page_address(dst_page);
d1310b2e 5315 char *src_kaddr;
727011e0 5316 int must_memmove = 0;
d1310b2e 5317
3387206f 5318 if (dst_page != src_page) {
a6591715 5319 src_kaddr = page_address(src_page);
3387206f 5320 } else {
d1310b2e 5321 src_kaddr = dst_kaddr;
727011e0
CM
5322 if (areas_overlap(src_off, dst_off, len))
5323 must_memmove = 1;
3387206f 5324 }
d1310b2e 5325
727011e0
CM
5326 if (must_memmove)
5327 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5328 else
5329 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5330}
5331
5332void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5333 unsigned long src_offset, unsigned long len)
5334{
5335 size_t cur;
5336 size_t dst_off_in_page;
5337 size_t src_off_in_page;
5338 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5339 unsigned long dst_i;
5340 unsigned long src_i;
5341
5342 if (src_offset + len > dst->len) {
efe120a0 5343 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5344 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5345 BUG_ON(1);
5346 }
5347 if (dst_offset + len > dst->len) {
efe120a0 5348 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5349 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5350 BUG_ON(1);
5351 }
5352
d397712b 5353 while (len > 0) {
d1310b2e 5354 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5355 (PAGE_CACHE_SIZE - 1);
d1310b2e 5356 src_off_in_page = (start_offset + src_offset) &
778746b5 5357 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5358
5359 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5360 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5361
5362 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5363 src_off_in_page));
5364 cur = min_t(unsigned long, cur,
5365 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5366
5367 copy_pages(extent_buffer_page(dst, dst_i),
5368 extent_buffer_page(dst, src_i),
5369 dst_off_in_page, src_off_in_page, cur);
5370
5371 src_offset += cur;
5372 dst_offset += cur;
5373 len -= cur;
5374 }
5375}
d1310b2e
CM
5376
5377void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5378 unsigned long src_offset, unsigned long len)
5379{
5380 size_t cur;
5381 size_t dst_off_in_page;
5382 size_t src_off_in_page;
5383 unsigned long dst_end = dst_offset + len - 1;
5384 unsigned long src_end = src_offset + len - 1;
5385 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5386 unsigned long dst_i;
5387 unsigned long src_i;
5388
5389 if (src_offset + len > dst->len) {
efe120a0 5390 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5391 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5392 BUG_ON(1);
5393 }
5394 if (dst_offset + len > dst->len) {
efe120a0 5395 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5396 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5397 BUG_ON(1);
5398 }
727011e0 5399 if (dst_offset < src_offset) {
d1310b2e
CM
5400 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5401 return;
5402 }
d397712b 5403 while (len > 0) {
d1310b2e
CM
5404 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5405 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5406
5407 dst_off_in_page = (start_offset + dst_end) &
778746b5 5408 (PAGE_CACHE_SIZE - 1);
d1310b2e 5409 src_off_in_page = (start_offset + src_end) &
778746b5 5410 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5411
5412 cur = min_t(unsigned long, len, src_off_in_page + 1);
5413 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5414 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5415 extent_buffer_page(dst, src_i),
5416 dst_off_in_page - cur + 1,
5417 src_off_in_page - cur + 1, cur);
5418
5419 dst_end -= cur;
5420 src_end -= cur;
5421 len -= cur;
5422 }
5423}
6af118ce 5424
f7a52a40 5425int try_release_extent_buffer(struct page *page)
19fe0a8b 5426{
6af118ce 5427 struct extent_buffer *eb;
6af118ce 5428
3083ee2e
JB
5429 /*
5430 * We need to make sure noboody is attaching this page to an eb right
5431 * now.
5432 */
5433 spin_lock(&page->mapping->private_lock);
5434 if (!PagePrivate(page)) {
5435 spin_unlock(&page->mapping->private_lock);
4f2de97a 5436 return 1;
45f49bce 5437 }
6af118ce 5438
3083ee2e
JB
5439 eb = (struct extent_buffer *)page->private;
5440 BUG_ON(!eb);
19fe0a8b
MX
5441
5442 /*
3083ee2e
JB
5443 * This is a little awful but should be ok, we need to make sure that
5444 * the eb doesn't disappear out from under us while we're looking at
5445 * this page.
19fe0a8b 5446 */
3083ee2e 5447 spin_lock(&eb->refs_lock);
0b32f4bb 5448 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5449 spin_unlock(&eb->refs_lock);
5450 spin_unlock(&page->mapping->private_lock);
5451 return 0;
b9473439 5452 }
3083ee2e 5453 spin_unlock(&page->mapping->private_lock);
897ca6e9 5454
19fe0a8b 5455 /*
3083ee2e
JB
5456 * If tree ref isn't set then we know the ref on this eb is a real ref,
5457 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5458 */
3083ee2e
JB
5459 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5460 spin_unlock(&eb->refs_lock);
5461 return 0;
b9473439 5462 }
19fe0a8b 5463
f7a52a40 5464 return release_extent_buffer(eb);
6af118ce 5465}