btrfs: make clear_extent_bit helpers static inline
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
d1310b2e
CM
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
d1310b2e
CM
215}
216
217void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 218 struct address_space *mapping)
d1310b2e 219{
6bef4d31 220 tree->state = RB_ROOT;
d1310b2e
CM
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
70dec807 223 spin_lock_init(&tree->lock);
d1310b2e 224 tree->mapping = mapping;
d1310b2e 225}
d1310b2e 226
b2950863 227static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
228{
229 struct extent_state *state;
d1310b2e
CM
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 232 if (!state)
d1310b2e
CM
233 return state;
234 state->state = 0;
d1310b2e 235 state->private = 0;
27a3507d 236 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 237 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
143bede5 240 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
241 return state;
242}
d1310b2e 243
4845e44f 244void free_extent_state(struct extent_state *state)
d1310b2e 245{
d1310b2e
CM
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
27a3507d 249 WARN_ON(extent_state_in_tree(state));
6d49ba1b 250 btrfs_leak_debug_del(&state->leak_list);
143bede5 251 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
252 kmem_cache_free(extent_state_cache, state);
253 }
254}
d1310b2e 255
f2071b21
FM
256static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
12cfbad9
FDBM
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
d1310b2e 262{
f2071b21 263 struct rb_node **p;
d397712b 264 struct rb_node *parent = NULL;
d1310b2e
CM
265 struct tree_entry *entry;
266
12cfbad9
FDBM
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
f2071b21 273 p = search_start ? &search_start : &root->rb_node;
d397712b 274 while (*p) {
d1310b2e
CM
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
12cfbad9 286do_insert:
d1310b2e
CM
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290}
291
80ea96b1 292static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
d1310b2e 297{
80ea96b1 298 struct rb_root *root = &tree->state;
12cfbad9 299 struct rb_node **n = &root->rb_node;
d1310b2e
CM
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
12cfbad9
FDBM
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
308 prev_entry = entry;
309
310 if (offset < entry->start)
12cfbad9 311 n = &(*n)->rb_left;
d1310b2e 312 else if (offset > entry->end)
12cfbad9 313 n = &(*n)->rb_right;
d397712b 314 else
12cfbad9 315 return *n;
d1310b2e
CM
316 }
317
12cfbad9
FDBM
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
d1310b2e
CM
323 if (prev_ret) {
324 orig_prev = prev;
d397712b 325 while (prev && offset > prev_entry->end) {
d1310b2e
CM
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 335 while (prev && offset < prev_entry->start) {
d1310b2e
CM
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342}
343
12cfbad9
FDBM
344static inline struct rb_node *
345tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
d1310b2e 349{
70dec807 350 struct rb_node *prev = NULL;
d1310b2e 351 struct rb_node *ret;
70dec807 352
12cfbad9 353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 354 if (!ret)
d1310b2e
CM
355 return prev;
356 return ret;
357}
358
12cfbad9
FDBM
359static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361{
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363}
364
9ed74f2d
JB
365static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367{
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371}
372
d1310b2e
CM
373/*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
1bf85046
JM
382static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
d1310b2e
CM
384{
385 struct extent_state *other;
386 struct rb_node *other_node;
387
5b21f2ed 388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 389 return;
d1310b2e
CM
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
9ed74f2d 396 merge_cb(tree, state, other);
d1310b2e 397 state->start = other->start;
d1310b2e 398 rb_erase(&other->rb_node, &tree->state);
27a3507d 399 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
9ed74f2d 408 merge_cb(tree, state, other);
df98b6e2 409 state->end = other->end;
df98b6e2 410 rb_erase(&other->rb_node, &tree->state);
27a3507d 411 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 412 free_extent_state(other);
d1310b2e
CM
413 }
414 }
d1310b2e
CM
415}
416
1bf85046 417static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 418 struct extent_state *state, unsigned *bits)
291d673e 419{
1bf85046
JM
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
422}
423
424static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 425 struct extent_state *state, unsigned *bits)
291d673e 426{
9ed74f2d
JB
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
429}
430
3150b699 431static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
3150b699 434
d1310b2e
CM
435/*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
447 struct rb_node ***p,
448 struct rb_node **parent,
d38ed27f 449 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
450{
451 struct rb_node *node;
452
31b1a2bd 453 if (end < start)
efe120a0 454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 455 end, start);
d1310b2e
CM
456 state->start = start;
457 state->end = end;
9ed74f2d 458
d38ed27f 459 set_state_bits(tree, state, bits, changeset);
3150b699 460
f2071b21 461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
466 "%llu %llu\n",
467 found->start, found->end, start, end);
d1310b2e
CM
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472}
473
1bf85046 474static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
475 u64 split)
476{
477 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
479}
480
d1310b2e
CM
481/*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497{
498 struct rb_node *node;
9ed74f2d
JB
499
500 split_cb(tree, orig, split);
501
d1310b2e
CM
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
f2071b21
FM
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
d1310b2e 509 if (node) {
d1310b2e
CM
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514}
515
cdc6a395
LZ
516static struct extent_state *next_state(struct extent_state *state)
517{
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523}
524
d1310b2e
CM
525/*
526 * utility function to clear some bits in an extent state struct.
1b303fc0 527 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
cdc6a395
LZ
532static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
fefdc557
QW
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
d1310b2e 536{
cdc6a395 537 struct extent_state *next;
9ee49a04 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 539
0ca1f7ce 540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
291d673e 545 clear_state_cb(tree, state, bits);
fefdc557 546 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 547 state->state &= ~bits_to_clear;
d1310b2e
CM
548 if (wake)
549 wake_up(&state->wq);
0ca1f7ce 550 if (state->state == 0) {
cdc6a395 551 next = next_state(state);
27a3507d 552 if (extent_state_in_tree(state)) {
d1310b2e 553 rb_erase(&state->rb_node, &tree->state);
27a3507d 554 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
cdc6a395 561 next = next_state(state);
d1310b2e 562 }
cdc6a395 563 return next;
d1310b2e
CM
564}
565
8233767a
XG
566static struct extent_state *
567alloc_extent_state_atomic(struct extent_state *prealloc)
568{
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573}
574
48a3b636 575static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
576{
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580}
581
d1310b2e
CM
582/*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
6763af84 592 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 593 */
fefdc557
QW
594static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
598{
599 struct extent_state *state;
2c64c53d 600 struct extent_state *cached;
d1310b2e
CM
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
5c939df5 603 u64 last_end;
d1310b2e 604 int err;
2ac55d41 605 int clear = 0;
d1310b2e 606
a5dee37d 607 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 608
7ee9e440
JB
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
0ca1f7ce
YZ
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
2ac55d41
JB
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
d1310b2e 618again:
d0164adc 619 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
d1310b2e 627 prealloc = alloc_extent_state(mask);
d1310b2e
CM
628 }
629
cad321ad 630 spin_lock(&tree->lock);
2c64c53d
CM
631 if (cached_state) {
632 cached = *cached_state;
2ac55d41
JB
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
27a3507d
FM
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
2ac55d41
JB
641 if (clear)
642 atomic_dec(&cached->refs);
2c64c53d 643 state = cached;
42daec29 644 goto hit_next;
2c64c53d 645 }
2ac55d41
JB
646 if (clear)
647 free_extent_state(cached);
2c64c53d 648 }
d1310b2e
CM
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
80ea96b1 653 node = tree_search(tree, start);
d1310b2e
CM
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 657hit_next:
d1310b2e
CM
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
5c939df5 661 last_end = state->end;
d1310b2e 662
0449314a 663 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
664 if (!(state->state & bits)) {
665 state = next_state(state);
0449314a 666 goto next;
cdc6a395 667 }
0449314a 668
d1310b2e
CM
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
8233767a
XG
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
d1310b2e 688 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
689 if (err)
690 extent_io_tree_panic(tree, err);
691
d1310b2e
CM
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
fefdc557
QW
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
d1ac6e41 698 goto next;
d1310b2e
CM
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
8233767a
XG
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
d1310b2e 711 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
712 if (err)
713 extent_io_tree_panic(tree, err);
714
d1310b2e
CM
715 if (wake)
716 wake_up(&state->wq);
42daec29 717
fefdc557 718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 719
d1310b2e
CM
720 prealloc = NULL;
721 goto out;
722 }
42daec29 723
fefdc557 724 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 725next:
5c939df5
YZ
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
cdc6a395 729 if (start <= end && state && !need_resched())
692e5759 730 goto hit_next;
d1310b2e
CM
731 goto search_again;
732
733out:
cad321ad 734 spin_unlock(&tree->lock);
d1310b2e
CM
735 if (prealloc)
736 free_extent_state(prealloc);
737
6763af84 738 return 0;
d1310b2e
CM
739
740search_again:
741 if (start > end)
742 goto out;
cad321ad 743 spin_unlock(&tree->lock);
d0164adc 744 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
745 cond_resched();
746 goto again;
747}
d1310b2e 748
143bede5
JM
749static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
641f5219
CH
751 __releases(tree->lock)
752 __acquires(tree->lock)
d1310b2e
CM
753{
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 756 spin_unlock(&tree->lock);
d1310b2e 757 schedule();
cad321ad 758 spin_lock(&tree->lock);
d1310b2e 759 finish_wait(&state->wq, &wait);
d1310b2e
CM
760}
761
762/*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
41074888
DS
767static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
d1310b2e
CM
769{
770 struct extent_state *state;
771 struct rb_node *node;
772
a5dee37d 773 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 774
cad321ad 775 spin_lock(&tree->lock);
d1310b2e
CM
776again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
80ea96b1 782 node = tree_search(tree, start);
c50d3e71 783process_node:
d1310b2e
CM
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
c50d3e71
FM
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
d1310b2e
CM
808 }
809out:
cad321ad 810 spin_unlock(&tree->lock);
d1310b2e 811}
d1310b2e 812
1bf85046 813static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 814 struct extent_state *state,
d38ed27f 815 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 816{
9ee49a04 817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 818
1bf85046 819 set_state_cb(tree, state, bits);
0ca1f7ce 820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
d38ed27f 824 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 825 state->state |= bits_to_set;
d1310b2e
CM
826}
827
e38e2ed7
FM
828static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
9ee49a04 830 unsigned flags)
2c64c53d
CM
831{
832 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 833 if (!flags || (state->state & flags)) {
2c64c53d
CM
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838}
839
e38e2ed7
FM
840static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842{
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845}
846
d1310b2e 847/*
1edbb734
CM
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 850 *
1edbb734
CM
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
d1310b2e 854 *
1edbb734 855 * [start, end] is inclusive This takes the tree lock.
d1310b2e 856 */
1edbb734 857
3fbe5c02
JM
858static int __must_check
859__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 860 unsigned bits, unsigned exclusive_bits,
41074888 861 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 862 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
863{
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
12cfbad9
FDBM
867 struct rb_node **p;
868 struct rb_node *parent;
d1310b2e 869 int err = 0;
d1310b2e
CM
870 u64 last_start;
871 u64 last_end;
42daec29 872
a5dee37d 873 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 874
0ca1f7ce 875 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 876again:
d0164adc 877 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 878 prealloc = alloc_extent_state(mask);
8233767a 879 BUG_ON(!prealloc);
d1310b2e
CM
880 }
881
cad321ad 882 spin_lock(&tree->lock);
9655d298
CM
883 if (cached_state && *cached_state) {
884 state = *cached_state;
df98b6e2 885 if (state->start <= start && state->end > start &&
27a3507d 886 extent_state_in_tree(state)) {
9655d298
CM
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
d1310b2e
CM
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
12cfbad9 895 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 896 if (!node) {
8233767a
XG
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
12cfbad9 899 err = insert_state(tree, prealloc, start, end,
d38ed27f 900 &p, &parent, &bits, changeset);
c2d904e0
JM
901 if (err)
902 extent_io_tree_panic(tree, err);
903
c42ac0bc 904 cache_state(prealloc, cached_state);
d1310b2e 905 prealloc = NULL;
d1310b2e
CM
906 goto out;
907 }
d1310b2e 908 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 909hit_next:
d1310b2e
CM
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
1edbb734 920 if (state->state & exclusive_bits) {
d1310b2e
CM
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
42daec29 925
d38ed27f 926 set_state_bits(tree, state, &bits, changeset);
2c64c53d 927 cache_state(state, cached_state);
d1310b2e 928 merge_state(tree, state);
5c939df5
YZ
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
d1ac6e41
LB
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
d1310b2e
CM
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
1edbb734 956 if (state->state & exclusive_bits) {
d1310b2e
CM
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
d1310b2e 964 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
965 if (err)
966 extent_io_tree_panic(tree, err);
967
d1310b2e
CM
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
d38ed27f 972 set_state_bits(tree, state, &bits, changeset);
2c64c53d 973 cache_state(state, cached_state);
d1310b2e 974 merge_state(tree, state);
5c939df5
YZ
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
d1ac6e41
LB
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
d1310b2e
CM
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
d397712b 997 this_end = last_start - 1;
8233767a
XG
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
c7f895a2
XG
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
d1310b2e 1006 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1007 NULL, NULL, &bits, changeset);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
9ed74f2d
JB
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
d1310b2e
CM
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1edbb734 1023 if (state->state & exclusive_bits) {
d1310b2e
CM
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
8233767a
XG
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
d1310b2e 1031 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1032 if (err)
1033 extent_io_tree_panic(tree, err);
d1310b2e 1034
d38ed27f 1035 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1036 cache_state(prealloc, cached_state);
d1310b2e
CM
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044out:
cad321ad 1045 spin_unlock(&tree->lock);
d1310b2e
CM
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051search_again:
1052 if (start > end)
1053 goto out;
cad321ad 1054 spin_unlock(&tree->lock);
d0164adc 1055 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1056 cond_resched();
1057 goto again;
1058}
d1310b2e 1059
41074888 1060int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1061 unsigned bits, u64 * failed_start,
41074888 1062 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1063{
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1065 cached_state, mask, NULL);
3fbe5c02
JM
1066}
1067
1068
462d6fac 1069/**
10983f2e
LB
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
462d6fac
JB
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
e6138876 1077 * @cached_state: state that we're going to cache
462d6fac
JB
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1087 unsigned bits, unsigned clear_bits,
e6138876 1088 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
12cfbad9
FDBM
1093 struct rb_node **p;
1094 struct rb_node *parent;
462d6fac
JB
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
c8fd3de7 1098 bool first_iteration = true;
462d6fac 1099
a5dee37d 1100 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1101
462d6fac 1102again:
d0164adc 1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
462d6fac 1111 prealloc = alloc_extent_state(mask);
c8fd3de7 1112 if (!prealloc && !first_iteration)
462d6fac
JB
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
e6138876
JB
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
27a3507d 1120 extent_state_in_tree(state)) {
e6138876
JB
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
462d6fac
JB
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
12cfbad9 1130 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
12cfbad9 1137 err = insert_state(tree, prealloc, start, end,
d38ed27f 1138 &p, &parent, &bits, NULL);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
462d6fac
JB
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
d38ed27f 1157 set_state_bits(tree, state, &bits, NULL);
e6138876 1158 cache_state(state, cached_state);
fefdc557 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1160 if (last_end == (u64)-1)
1161 goto out;
462d6fac 1162 start = last_end + 1;
d1ac6e41
LB
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
462d6fac
JB
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
462d6fac 1191 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1192 if (err)
1193 extent_io_tree_panic(tree, err);
462d6fac
JB
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
d38ed27f 1198 set_state_bits(tree, state, &bits, NULL);
e6138876 1199 cache_state(state, cached_state);
fefdc557
QW
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
462d6fac
JB
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
d1ac6e41
LB
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
462d6fac
JB
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
462d6fac
JB
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1236 NULL, NULL, &bits, NULL);
c2d904e0
JM
1237 if (err)
1238 extent_io_tree_panic(tree, err);
e6138876 1239 cache_state(prealloc, cached_state);
462d6fac
JB
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
462d6fac
JB
1256
1257 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1258 if (err)
1259 extent_io_tree_panic(tree, err);
462d6fac 1260
d38ed27f 1261 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1262 cache_state(prealloc, cached_state);
fefdc557 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
d0164adc 1281 if (gfpflags_allow_blocking(mask))
462d6fac 1282 cond_resched();
c8fd3de7 1283 first_iteration = false;
462d6fac
JB
1284 goto again;
1285}
1286
d1310b2e 1287/* wrappers around set/clear extent bit */
d38ed27f
QW
1288int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1289 unsigned bits, gfp_t mask,
1290 struct extent_changeset *changeset)
1291{
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1301 changeset);
1302}
1303
fefdc557
QW
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307{
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310}
1311
fefdc557
QW
1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, gfp_t mask,
1314 struct extent_changeset *changeset)
1315{
1316 /*
1317 * Don't support EXTENT_LOCKED case, same reason as
1318 * set_record_extent_bits().
1319 */
1320 BUG_ON(bits & EXTENT_LOCKED);
1321
1322 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1323 changeset);
1324}
1325
d352ac68
CM
1326/*
1327 * either insert or lock state struct between start and end use mask to tell
1328 * us if waiting is desired.
1329 */
1edbb734 1330int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1331 unsigned bits, struct extent_state **cached_state)
d1310b2e
CM
1332{
1333 int err;
1334 u64 failed_start;
9ee49a04 1335
d1310b2e 1336 while (1) {
3fbe5c02
JM
1337 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1338 EXTENT_LOCKED, &failed_start,
d38ed27f 1339 cached_state, GFP_NOFS, NULL);
d0082371 1340 if (err == -EEXIST) {
d1310b2e
CM
1341 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1342 start = failed_start;
d0082371 1343 } else
d1310b2e 1344 break;
d1310b2e
CM
1345 WARN_ON(start > end);
1346 }
1347 return err;
1348}
d1310b2e 1349
d0082371 1350int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1351{
d0082371 1352 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1353}
1354
d0082371 1355int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1356{
1357 int err;
1358 u64 failed_start;
1359
3fbe5c02 1360 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1361 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1362 if (err == -EEXIST) {
1363 if (failed_start > start)
1364 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1365 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1366 return 0;
6643558d 1367 }
25179201
JB
1368 return 1;
1369}
25179201 1370
4adaa611
CM
1371int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1372{
1373 unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 struct page *page;
1376
1377 while (index <= end_index) {
1378 page = find_get_page(inode->i_mapping, index);
1379 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1380 clear_page_dirty_for_io(page);
1381 page_cache_release(page);
1382 index++;
1383 }
1384 return 0;
1385}
1386
1387int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1388{
1389 unsigned long index = start >> PAGE_CACHE_SHIFT;
1390 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1391 struct page *page;
1392
1393 while (index <= end_index) {
1394 page = find_get_page(inode->i_mapping, index);
1395 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1396 __set_page_dirty_nobuffers(page);
8d38633c 1397 account_page_redirty(page);
4adaa611
CM
1398 page_cache_release(page);
1399 index++;
1400 }
1401 return 0;
1402}
1403
d1310b2e
CM
1404/*
1405 * helper function to set both pages and extents in the tree writeback
1406 */
b2950863 1407static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1408{
1409 unsigned long index = start >> PAGE_CACHE_SHIFT;
1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411 struct page *page;
1412
1413 while (index <= end_index) {
1414 page = find_get_page(tree->mapping, index);
79787eaa 1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1416 set_page_writeback(page);
1417 page_cache_release(page);
1418 index++;
1419 }
d1310b2e
CM
1420 return 0;
1421}
d1310b2e 1422
d352ac68
CM
1423/* find the first state struct with 'bits' set after 'start', and
1424 * return it. tree->lock must be held. NULL will returned if
1425 * nothing was found after 'start'
1426 */
48a3b636
ES
1427static struct extent_state *
1428find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1429 u64 start, unsigned bits)
d7fc640e
CM
1430{
1431 struct rb_node *node;
1432 struct extent_state *state;
1433
1434 /*
1435 * this search will find all the extents that end after
1436 * our range starts.
1437 */
1438 node = tree_search(tree, start);
d397712b 1439 if (!node)
d7fc640e 1440 goto out;
d7fc640e 1441
d397712b 1442 while (1) {
d7fc640e 1443 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1444 if (state->end >= start && (state->state & bits))
d7fc640e 1445 return state;
d397712b 1446
d7fc640e
CM
1447 node = rb_next(node);
1448 if (!node)
1449 break;
1450 }
1451out:
1452 return NULL;
1453}
d7fc640e 1454
69261c4b
XG
1455/*
1456 * find the first offset in the io tree with 'bits' set. zero is
1457 * returned if we find something, and *start_ret and *end_ret are
1458 * set to reflect the state struct that was found.
1459 *
477d7eaf 1460 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1461 */
1462int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1463 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1464 struct extent_state **cached_state)
69261c4b
XG
1465{
1466 struct extent_state *state;
e6138876 1467 struct rb_node *n;
69261c4b
XG
1468 int ret = 1;
1469
1470 spin_lock(&tree->lock);
e6138876
JB
1471 if (cached_state && *cached_state) {
1472 state = *cached_state;
27a3507d 1473 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1474 n = rb_next(&state->rb_node);
1475 while (n) {
1476 state = rb_entry(n, struct extent_state,
1477 rb_node);
1478 if (state->state & bits)
1479 goto got_it;
1480 n = rb_next(n);
1481 }
1482 free_extent_state(*cached_state);
1483 *cached_state = NULL;
1484 goto out;
1485 }
1486 free_extent_state(*cached_state);
1487 *cached_state = NULL;
1488 }
1489
69261c4b 1490 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1491got_it:
69261c4b 1492 if (state) {
e38e2ed7 1493 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1494 *start_ret = state->start;
1495 *end_ret = state->end;
1496 ret = 0;
1497 }
e6138876 1498out:
69261c4b
XG
1499 spin_unlock(&tree->lock);
1500 return ret;
1501}
1502
d352ac68
CM
1503/*
1504 * find a contiguous range of bytes in the file marked as delalloc, not
1505 * more than 'max_bytes'. start and end are used to return the range,
1506 *
1507 * 1 is returned if we find something, 0 if nothing was in the tree
1508 */
c8b97818 1509static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1510 u64 *start, u64 *end, u64 max_bytes,
1511 struct extent_state **cached_state)
d1310b2e
CM
1512{
1513 struct rb_node *node;
1514 struct extent_state *state;
1515 u64 cur_start = *start;
1516 u64 found = 0;
1517 u64 total_bytes = 0;
1518
cad321ad 1519 spin_lock(&tree->lock);
c8b97818 1520
d1310b2e
CM
1521 /*
1522 * this search will find all the extents that end after
1523 * our range starts.
1524 */
80ea96b1 1525 node = tree_search(tree, cur_start);
2b114d1d 1526 if (!node) {
3b951516
CM
1527 if (!found)
1528 *end = (u64)-1;
d1310b2e
CM
1529 goto out;
1530 }
1531
d397712b 1532 while (1) {
d1310b2e 1533 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1534 if (found && (state->start != cur_start ||
1535 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1536 goto out;
1537 }
1538 if (!(state->state & EXTENT_DELALLOC)) {
1539 if (!found)
1540 *end = state->end;
1541 goto out;
1542 }
c2a128d2 1543 if (!found) {
d1310b2e 1544 *start = state->start;
c2a128d2
JB
1545 *cached_state = state;
1546 atomic_inc(&state->refs);
1547 }
d1310b2e
CM
1548 found++;
1549 *end = state->end;
1550 cur_start = state->end + 1;
1551 node = rb_next(node);
d1310b2e 1552 total_bytes += state->end - state->start + 1;
7bf811a5 1553 if (total_bytes >= max_bytes)
573aecaf 1554 break;
573aecaf 1555 if (!node)
d1310b2e
CM
1556 break;
1557 }
1558out:
cad321ad 1559 spin_unlock(&tree->lock);
d1310b2e
CM
1560 return found;
1561}
1562
143bede5
JM
1563static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
c8b97818
CM
1566{
1567 int ret;
1568 struct page *pages[16];
1569 unsigned long index = start >> PAGE_CACHE_SHIFT;
1570 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1571 unsigned long nr_pages = end_index - index + 1;
1572 int i;
1573
1574 if (index == locked_page->index && end_index == index)
143bede5 1575 return;
c8b97818 1576
d397712b 1577 while (nr_pages > 0) {
c8b97818 1578 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1579 min_t(unsigned long, nr_pages,
1580 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1581 for (i = 0; i < ret; i++) {
1582 if (pages[i] != locked_page)
1583 unlock_page(pages[i]);
1584 page_cache_release(pages[i]);
1585 }
1586 nr_pages -= ret;
1587 index += ret;
1588 cond_resched();
1589 }
c8b97818
CM
1590}
1591
1592static noinline int lock_delalloc_pages(struct inode *inode,
1593 struct page *locked_page,
1594 u64 delalloc_start,
1595 u64 delalloc_end)
1596{
1597 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1598 unsigned long start_index = index;
1599 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1600 unsigned long pages_locked = 0;
1601 struct page *pages[16];
1602 unsigned long nrpages;
1603 int ret;
1604 int i;
1605
1606 /* the caller is responsible for locking the start index */
1607 if (index == locked_page->index && index == end_index)
1608 return 0;
1609
1610 /* skip the page at the start index */
1611 nrpages = end_index - index + 1;
d397712b 1612 while (nrpages > 0) {
c8b97818 1613 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1614 min_t(unsigned long,
1615 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1616 if (ret == 0) {
1617 ret = -EAGAIN;
1618 goto done;
1619 }
1620 /* now we have an array of pages, lock them all */
1621 for (i = 0; i < ret; i++) {
1622 /*
1623 * the caller is taking responsibility for
1624 * locked_page
1625 */
771ed689 1626 if (pages[i] != locked_page) {
c8b97818 1627 lock_page(pages[i]);
f2b1c41c
CM
1628 if (!PageDirty(pages[i]) ||
1629 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1630 ret = -EAGAIN;
1631 unlock_page(pages[i]);
1632 page_cache_release(pages[i]);
1633 goto done;
1634 }
1635 }
c8b97818 1636 page_cache_release(pages[i]);
771ed689 1637 pages_locked++;
c8b97818 1638 }
c8b97818
CM
1639 nrpages -= ret;
1640 index += ret;
1641 cond_resched();
1642 }
1643 ret = 0;
1644done:
1645 if (ret && pages_locked) {
1646 __unlock_for_delalloc(inode, locked_page,
1647 delalloc_start,
1648 ((u64)(start_index + pages_locked - 1)) <<
1649 PAGE_CACHE_SHIFT);
1650 }
1651 return ret;
1652}
1653
1654/*
1655 * find a contiguous range of bytes in the file marked as delalloc, not
1656 * more than 'max_bytes'. start and end are used to return the range,
1657 *
1658 * 1 is returned if we find something, 0 if nothing was in the tree
1659 */
294e30fe
JB
1660STATIC u64 find_lock_delalloc_range(struct inode *inode,
1661 struct extent_io_tree *tree,
1662 struct page *locked_page, u64 *start,
1663 u64 *end, u64 max_bytes)
c8b97818
CM
1664{
1665 u64 delalloc_start;
1666 u64 delalloc_end;
1667 u64 found;
9655d298 1668 struct extent_state *cached_state = NULL;
c8b97818
CM
1669 int ret;
1670 int loops = 0;
1671
1672again:
1673 /* step one, find a bunch of delalloc bytes starting at start */
1674 delalloc_start = *start;
1675 delalloc_end = 0;
1676 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1677 max_bytes, &cached_state);
70b99e69 1678 if (!found || delalloc_end <= *start) {
c8b97818
CM
1679 *start = delalloc_start;
1680 *end = delalloc_end;
c2a128d2 1681 free_extent_state(cached_state);
385fe0be 1682 return 0;
c8b97818
CM
1683 }
1684
70b99e69
CM
1685 /*
1686 * start comes from the offset of locked_page. We have to lock
1687 * pages in order, so we can't process delalloc bytes before
1688 * locked_page
1689 */
d397712b 1690 if (delalloc_start < *start)
70b99e69 1691 delalloc_start = *start;
70b99e69 1692
c8b97818
CM
1693 /*
1694 * make sure to limit the number of pages we try to lock down
c8b97818 1695 */
7bf811a5
JB
1696 if (delalloc_end + 1 - delalloc_start > max_bytes)
1697 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1698
c8b97818
CM
1699 /* step two, lock all the pages after the page that has start */
1700 ret = lock_delalloc_pages(inode, locked_page,
1701 delalloc_start, delalloc_end);
1702 if (ret == -EAGAIN) {
1703 /* some of the pages are gone, lets avoid looping by
1704 * shortening the size of the delalloc range we're searching
1705 */
9655d298 1706 free_extent_state(cached_state);
7d788742 1707 cached_state = NULL;
c8b97818 1708 if (!loops) {
7bf811a5 1709 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1710 loops = 1;
1711 goto again;
1712 } else {
1713 found = 0;
1714 goto out_failed;
1715 }
1716 }
79787eaa 1717 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1718
1719 /* step three, lock the state bits for the whole range */
d0082371 1720 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1721
1722 /* then test to make sure it is all still delalloc */
1723 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1724 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1725 if (!ret) {
9655d298
CM
1726 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1727 &cached_state, GFP_NOFS);
c8b97818
CM
1728 __unlock_for_delalloc(inode, locked_page,
1729 delalloc_start, delalloc_end);
1730 cond_resched();
1731 goto again;
1732 }
9655d298 1733 free_extent_state(cached_state);
c8b97818
CM
1734 *start = delalloc_start;
1735 *end = delalloc_end;
1736out_failed:
1737 return found;
1738}
1739
c2790a2e
JB
1740int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1741 struct page *locked_page,
9ee49a04 1742 unsigned clear_bits,
c2790a2e 1743 unsigned long page_ops)
c8b97818 1744{
c2790a2e 1745 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1746 int ret;
1747 struct page *pages[16];
1748 unsigned long index = start >> PAGE_CACHE_SHIFT;
1749 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1750 unsigned long nr_pages = end_index - index + 1;
1751 int i;
771ed689 1752
2c64c53d 1753 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1754 if (page_ops == 0)
771ed689 1755 return 0;
c8b97818 1756
704de49d
FM
1757 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1758 mapping_set_error(inode->i_mapping, -EIO);
1759
d397712b 1760 while (nr_pages > 0) {
c8b97818 1761 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1762 min_t(unsigned long,
1763 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1764 for (i = 0; i < ret; i++) {
8b62b72b 1765
c2790a2e 1766 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1767 SetPagePrivate2(pages[i]);
1768
c8b97818
CM
1769 if (pages[i] == locked_page) {
1770 page_cache_release(pages[i]);
1771 continue;
1772 }
c2790a2e 1773 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1774 clear_page_dirty_for_io(pages[i]);
c2790a2e 1775 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1776 set_page_writeback(pages[i]);
704de49d
FM
1777 if (page_ops & PAGE_SET_ERROR)
1778 SetPageError(pages[i]);
c2790a2e 1779 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1780 end_page_writeback(pages[i]);
c2790a2e 1781 if (page_ops & PAGE_UNLOCK)
771ed689 1782 unlock_page(pages[i]);
c8b97818
CM
1783 page_cache_release(pages[i]);
1784 }
1785 nr_pages -= ret;
1786 index += ret;
1787 cond_resched();
1788 }
1789 return 0;
1790}
c8b97818 1791
d352ac68
CM
1792/*
1793 * count the number of bytes in the tree that have a given bit(s)
1794 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1795 * cached. The total number found is returned.
1796 */
d1310b2e
CM
1797u64 count_range_bits(struct extent_io_tree *tree,
1798 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1799 unsigned bits, int contig)
d1310b2e
CM
1800{
1801 struct rb_node *node;
1802 struct extent_state *state;
1803 u64 cur_start = *start;
1804 u64 total_bytes = 0;
ec29ed5b 1805 u64 last = 0;
d1310b2e
CM
1806 int found = 0;
1807
fae7f21c 1808 if (WARN_ON(search_end <= cur_start))
d1310b2e 1809 return 0;
d1310b2e 1810
cad321ad 1811 spin_lock(&tree->lock);
d1310b2e
CM
1812 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1813 total_bytes = tree->dirty_bytes;
1814 goto out;
1815 }
1816 /*
1817 * this search will find all the extents that end after
1818 * our range starts.
1819 */
80ea96b1 1820 node = tree_search(tree, cur_start);
d397712b 1821 if (!node)
d1310b2e 1822 goto out;
d1310b2e 1823
d397712b 1824 while (1) {
d1310b2e
CM
1825 state = rb_entry(node, struct extent_state, rb_node);
1826 if (state->start > search_end)
1827 break;
ec29ed5b
CM
1828 if (contig && found && state->start > last + 1)
1829 break;
1830 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1831 total_bytes += min(search_end, state->end) + 1 -
1832 max(cur_start, state->start);
1833 if (total_bytes >= max_bytes)
1834 break;
1835 if (!found) {
af60bed2 1836 *start = max(cur_start, state->start);
d1310b2e
CM
1837 found = 1;
1838 }
ec29ed5b
CM
1839 last = state->end;
1840 } else if (contig && found) {
1841 break;
d1310b2e
CM
1842 }
1843 node = rb_next(node);
1844 if (!node)
1845 break;
1846 }
1847out:
cad321ad 1848 spin_unlock(&tree->lock);
d1310b2e
CM
1849 return total_bytes;
1850}
b2950863 1851
d352ac68
CM
1852/*
1853 * set the private field for a given byte offset in the tree. If there isn't
1854 * an extent_state there already, this does nothing.
1855 */
171170c1 1856static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1857{
1858 struct rb_node *node;
1859 struct extent_state *state;
1860 int ret = 0;
1861
cad321ad 1862 spin_lock(&tree->lock);
d1310b2e
CM
1863 /*
1864 * this search will find all the extents that end after
1865 * our range starts.
1866 */
80ea96b1 1867 node = tree_search(tree, start);
2b114d1d 1868 if (!node) {
d1310b2e
CM
1869 ret = -ENOENT;
1870 goto out;
1871 }
1872 state = rb_entry(node, struct extent_state, rb_node);
1873 if (state->start != start) {
1874 ret = -ENOENT;
1875 goto out;
1876 }
1877 state->private = private;
1878out:
cad321ad 1879 spin_unlock(&tree->lock);
d1310b2e
CM
1880 return ret;
1881}
1882
1883int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1884{
1885 struct rb_node *node;
1886 struct extent_state *state;
1887 int ret = 0;
1888
cad321ad 1889 spin_lock(&tree->lock);
d1310b2e
CM
1890 /*
1891 * this search will find all the extents that end after
1892 * our range starts.
1893 */
80ea96b1 1894 node = tree_search(tree, start);
2b114d1d 1895 if (!node) {
d1310b2e
CM
1896 ret = -ENOENT;
1897 goto out;
1898 }
1899 state = rb_entry(node, struct extent_state, rb_node);
1900 if (state->start != start) {
1901 ret = -ENOENT;
1902 goto out;
1903 }
1904 *private = state->private;
1905out:
cad321ad 1906 spin_unlock(&tree->lock);
d1310b2e
CM
1907 return ret;
1908}
1909
1910/*
1911 * searches a range in the state tree for a given mask.
70dec807 1912 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1913 * has the bits set. Otherwise, 1 is returned if any bit in the
1914 * range is found set.
1915 */
1916int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1917 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1918{
1919 struct extent_state *state = NULL;
1920 struct rb_node *node;
1921 int bitset = 0;
d1310b2e 1922
cad321ad 1923 spin_lock(&tree->lock);
27a3507d 1924 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1925 cached->end > start)
9655d298
CM
1926 node = &cached->rb_node;
1927 else
1928 node = tree_search(tree, start);
d1310b2e
CM
1929 while (node && start <= end) {
1930 state = rb_entry(node, struct extent_state, rb_node);
1931
1932 if (filled && state->start > start) {
1933 bitset = 0;
1934 break;
1935 }
1936
1937 if (state->start > end)
1938 break;
1939
1940 if (state->state & bits) {
1941 bitset = 1;
1942 if (!filled)
1943 break;
1944 } else if (filled) {
1945 bitset = 0;
1946 break;
1947 }
46562cec
CM
1948
1949 if (state->end == (u64)-1)
1950 break;
1951
d1310b2e
CM
1952 start = state->end + 1;
1953 if (start > end)
1954 break;
1955 node = rb_next(node);
1956 if (!node) {
1957 if (filled)
1958 bitset = 0;
1959 break;
1960 }
1961 }
cad321ad 1962 spin_unlock(&tree->lock);
d1310b2e
CM
1963 return bitset;
1964}
d1310b2e
CM
1965
1966/*
1967 * helper function to set a given page up to date if all the
1968 * extents in the tree for that page are up to date
1969 */
143bede5 1970static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1971{
4eee4fa4 1972 u64 start = page_offset(page);
d1310b2e 1973 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1974 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1975 SetPageUptodate(page);
d1310b2e
CM
1976}
1977
8b110e39 1978int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1979{
1980 int ret;
1981 int err = 0;
1982 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1983
1984 set_state_private(failure_tree, rec->start, 0);
1985 ret = clear_extent_bits(failure_tree, rec->start,
1986 rec->start + rec->len - 1,
1987 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1988 if (ret)
1989 err = ret;
1990
53b381b3
DW
1991 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1992 rec->start + rec->len - 1,
1993 EXTENT_DAMAGED, GFP_NOFS);
1994 if (ret && !err)
1995 err = ret;
4a54c8c1
JS
1996
1997 kfree(rec);
1998 return err;
1999}
2000
4a54c8c1
JS
2001/*
2002 * this bypasses the standard btrfs submit functions deliberately, as
2003 * the standard behavior is to write all copies in a raid setup. here we only
2004 * want to write the one bad copy. so we do the mapping for ourselves and issue
2005 * submit_bio directly.
3ec706c8 2006 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2007 * actually prevents the read that triggered the error from finishing.
2008 * currently, there can be no more than two copies of every data bit. thus,
2009 * exactly one rewrite is required.
2010 */
1203b681
MX
2011int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2012 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2013{
1203b681 2014 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2015 struct bio *bio;
2016 struct btrfs_device *dev;
4a54c8c1
JS
2017 u64 map_length = 0;
2018 u64 sector;
2019 struct btrfs_bio *bbio = NULL;
53b381b3 2020 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2021 int ret;
2022
908960c6 2023 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2024 BUG_ON(!mirror_num);
2025
53b381b3
DW
2026 /* we can't repair anything in raid56 yet */
2027 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2028 return 0;
2029
9be3395b 2030 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2031 if (!bio)
2032 return -EIO;
4f024f37 2033 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2034 map_length = length;
2035
3ec706c8 2036 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2037 &map_length, &bbio, mirror_num);
2038 if (ret) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 BUG_ON(mirror_num != bbio->mirror_num);
2043 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2044 bio->bi_iter.bi_sector = sector;
4a54c8c1 2045 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2046 btrfs_put_bbio(bbio);
4a54c8c1
JS
2047 if (!dev || !dev->bdev || !dev->writeable) {
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
ffdd2018 2052 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2053
33879d45 2054 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2055 /* try to remap that extent elsewhere? */
2056 bio_put(bio);
442a4f63 2057 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2058 return -EIO;
2059 }
2060
b14af3b4
DS
2061 btrfs_info_rl_in_rcu(fs_info,
2062 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2063 btrfs_ino(inode), start,
2064 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2065 bio_put(bio);
2066 return 0;
2067}
2068
ea466794
JB
2069int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2070 int mirror_num)
2071{
ea466794
JB
2072 u64 start = eb->start;
2073 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2074 int ret = 0;
ea466794 2075
908960c6
ID
2076 if (root->fs_info->sb->s_flags & MS_RDONLY)
2077 return -EROFS;
2078
ea466794 2079 for (i = 0; i < num_pages; i++) {
fb85fc9a 2080 struct page *p = eb->pages[i];
1203b681
MX
2081
2082 ret = repair_io_failure(root->fs_info->btree_inode, start,
2083 PAGE_CACHE_SIZE, start, p,
2084 start - page_offset(p), mirror_num);
ea466794
JB
2085 if (ret)
2086 break;
2087 start += PAGE_CACHE_SIZE;
2088 }
2089
2090 return ret;
2091}
2092
4a54c8c1
JS
2093/*
2094 * each time an IO finishes, we do a fast check in the IO failure tree
2095 * to see if we need to process or clean up an io_failure_record
2096 */
8b110e39
MX
2097int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2098 unsigned int pg_offset)
4a54c8c1
JS
2099{
2100 u64 private;
2101 u64 private_failure;
2102 struct io_failure_record *failrec;
908960c6 2103 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2104 struct extent_state *state;
2105 int num_copies;
4a54c8c1 2106 int ret;
4a54c8c1
JS
2107
2108 private = 0;
2109 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 (u64)-1, 1, EXTENT_DIRTY, 0);
2111 if (!ret)
2112 return 0;
2113
2114 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2115 &private_failure);
2116 if (ret)
2117 return 0;
2118
2119 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2120 BUG_ON(!failrec->this_mirror);
2121
2122 if (failrec->in_validation) {
2123 /* there was no real error, just free the record */
2124 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2125 failrec->start);
4a54c8c1
JS
2126 goto out;
2127 }
908960c6
ID
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
4a54c8c1
JS
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
883d0de4
MX
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
4a54c8c1 2141 if (num_copies > 1) {
1203b681 2142 repair_io_failure(inode, start, failrec->len,
454ff3de 2143 failrec->logical, page,
1203b681 2144 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2145 }
2146 }
2147
2148out:
454ff3de 2149 free_io_failure(inode, failrec);
4a54c8c1 2150
454ff3de 2151 return 0;
4a54c8c1
JS
2152}
2153
f612496b
MX
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
2160void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161{
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
6e1103a6 2179 failrec = (struct io_failure_record *)(unsigned long)state->private;
f612496b
MX
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186}
2187
2fe6303e
MX
2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 struct io_failure_record **failrec_ret)
4a54c8c1 2190{
2fe6303e 2191 struct io_failure_record *failrec;
4a54c8c1
JS
2192 u64 private;
2193 struct extent_map *em;
4a54c8c1
JS
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2197 int ret;
4a54c8c1
JS
2198 u64 logical;
2199
4a54c8c1
JS
2200 ret = get_state_private(failure_tree, start, &private);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2fe6303e 2205
4a54c8c1
JS
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
68ba990f 2220 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
7a2d6a64 2225 if (!em) {
4a54c8c1
JS
2226 kfree(failrec);
2227 return -EIO;
2228 }
2fe6303e 2229
4a54c8c1
JS
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2fe6303e
MX
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
4a54c8c1
JS
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
2247 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2248 if (ret >= 0)
2249 ret = set_state_private(failure_tree, start,
2250 (u64)(unsigned long)failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2254 GFP_NOFS);
2255 if (ret < 0) {
2256 kfree(failrec);
2257 return ret;
2258 }
2259 } else {
2260 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2261 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2262 failrec->logical, failrec->start, failrec->len,
2263 failrec->in_validation);
2264 /*
2265 * when data can be on disk more than twice, add to failrec here
2266 * (e.g. with a list for failed_mirror) to make
2267 * clean_io_failure() clean all those errors at once.
2268 */
2269 }
2fe6303e
MX
2270
2271 *failrec_ret = failrec;
2272
2273 return 0;
2274}
2275
2276int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2277 struct io_failure_record *failrec, int failed_mirror)
2278{
2279 int num_copies;
2280
5d964051
SB
2281 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2282 failrec->logical, failrec->len);
4a54c8c1
JS
2283 if (num_copies == 1) {
2284 /*
2285 * we only have a single copy of the data, so don't bother with
2286 * all the retry and error correction code that follows. no
2287 * matter what the error is, it is very likely to persist.
2288 */
2fe6303e 2289 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2290 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2291 return 0;
4a54c8c1
JS
2292 }
2293
4a54c8c1
JS
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
4a54c8c1
JS
2326 }
2327
facc8a22 2328 if (failrec->this_mirror > num_copies) {
2fe6303e 2329 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2330 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2331 return 0;
4a54c8c1
JS
2332 }
2333
2fe6303e
MX
2334 return 1;
2335}
2336
2337
2338struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2339 struct io_failure_record *failrec,
2340 struct page *page, int pg_offset, int icsum,
8b110e39 2341 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2342{
2343 struct bio *bio;
2344 struct btrfs_io_bio *btrfs_failed_bio;
2345 struct btrfs_io_bio *btrfs_bio;
2346
9be3395b 2347 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2348 if (!bio)
2349 return NULL;
2350
2351 bio->bi_end_io = endio_func;
4f024f37 2352 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2353 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2354 bio->bi_iter.bi_size = 0;
8b110e39 2355 bio->bi_private = data;
4a54c8c1 2356
facc8a22
MX
2357 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2358 if (btrfs_failed_bio->csum) {
2359 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2360 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2361
2362 btrfs_bio = btrfs_io_bio(bio);
2363 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2364 icsum *= csum_size;
2365 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2366 csum_size);
2367 }
2368
2fe6303e
MX
2369 bio_add_page(bio, page, failrec->len, pg_offset);
2370
2371 return bio;
2372}
2373
2374/*
2375 * this is a generic handler for readpage errors (default
2376 * readpage_io_failed_hook). if other copies exist, read those and write back
2377 * good data to the failed position. does not investigate in remapping the
2378 * failed extent elsewhere, hoping the device will be smart enough to do this as
2379 * needed
2380 */
2381
2382static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2383 struct page *page, u64 start, u64 end,
2384 int failed_mirror)
2385{
2386 struct io_failure_record *failrec;
2387 struct inode *inode = page->mapping->host;
2388 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2389 struct bio *bio;
2390 int read_mode;
2391 int ret;
2392
2393 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2394
2395 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2396 if (ret)
2397 return ret;
2398
2399 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2400 if (!ret) {
2401 free_io_failure(inode, failrec);
2402 return -EIO;
2403 }
2404
2405 if (failed_bio->bi_vcnt > 1)
2406 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2407 else
2408 read_mode = READ_SYNC;
2409
2410 phy_offset >>= inode->i_sb->s_blocksize_bits;
2411 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2412 start - page_offset(page),
8b110e39
MX
2413 (int)phy_offset, failed_bio->bi_end_io,
2414 NULL);
2fe6303e
MX
2415 if (!bio) {
2416 free_io_failure(inode, failrec);
2417 return -EIO;
2418 }
4a54c8c1 2419
2fe6303e
MX
2420 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2421 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2422
013bd4c3
TI
2423 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2424 failrec->this_mirror,
2425 failrec->bio_flags, 0);
6c387ab2 2426 if (ret) {
454ff3de 2427 free_io_failure(inode, failrec);
6c387ab2
MX
2428 bio_put(bio);
2429 }
2430
013bd4c3 2431 return ret;
4a54c8c1
JS
2432}
2433
d1310b2e
CM
2434/* lots and lots of room for performance fixes in the end_bio funcs */
2435
87826df0
JM
2436int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437{
2438 int uptodate = (err == 0);
2439 struct extent_io_tree *tree;
3e2426bd 2440 int ret = 0;
87826df0
JM
2441
2442 tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444 if (tree->ops && tree->ops->writepage_end_io_hook) {
2445 ret = tree->ops->writepage_end_io_hook(page, start,
2446 end, NULL, uptodate);
2447 if (ret)
2448 uptodate = 0;
2449 }
2450
87826df0 2451 if (!uptodate) {
87826df0
JM
2452 ClearPageUptodate(page);
2453 SetPageError(page);
5dca6eea
LB
2454 ret = ret < 0 ? ret : -EIO;
2455 mapping_set_error(page->mapping, ret);
87826df0
JM
2456 }
2457 return 0;
2458}
2459
d1310b2e
CM
2460/*
2461 * after a writepage IO is done, we need to:
2462 * clear the uptodate bits on error
2463 * clear the writeback bits in the extent tree for this IO
2464 * end_page_writeback if the page has no more pending IO
2465 *
2466 * Scheduling is not allowed, so the extent state tree is expected
2467 * to have one and only one object corresponding to this IO.
2468 */
4246a0b6 2469static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2470{
2c30c71b 2471 struct bio_vec *bvec;
d1310b2e
CM
2472 u64 start;
2473 u64 end;
2c30c71b 2474 int i;
d1310b2e 2475
2c30c71b 2476 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2477 struct page *page = bvec->bv_page;
902b22f3 2478
17a5adcc
AO
2479 /* We always issue full-page reads, but if some block
2480 * in a page fails to read, blk_update_request() will
2481 * advance bv_offset and adjust bv_len to compensate.
2482 * Print a warning for nonzero offsets, and an error
2483 * if they don't add up to a full page. */
efe120a0
FH
2484 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2485 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2486 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "partial page write in btrfs with offset %u and length %u",
2488 bvec->bv_offset, bvec->bv_len);
2489 else
2490 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2491 "incomplete page write in btrfs with offset %u and "
2492 "length %u",
2493 bvec->bv_offset, bvec->bv_len);
2494 }
d1310b2e 2495
17a5adcc
AO
2496 start = page_offset(page);
2497 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2498
4246a0b6 2499 if (end_extent_writepage(page, bio->bi_error, start, end))
87826df0 2500 continue;
70dec807 2501
17a5adcc 2502 end_page_writeback(page);
2c30c71b 2503 }
2b1f55b0 2504
d1310b2e 2505 bio_put(bio);
d1310b2e
CM
2506}
2507
883d0de4
MX
2508static void
2509endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2510 int uptodate)
2511{
2512 struct extent_state *cached = NULL;
2513 u64 end = start + len - 1;
2514
2515 if (uptodate && tree->track_uptodate)
2516 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2517 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2518}
2519
d1310b2e
CM
2520/*
2521 * after a readpage IO is done, we need to:
2522 * clear the uptodate bits on error
2523 * set the uptodate bits if things worked
2524 * set the page up to date if all extents in the tree are uptodate
2525 * clear the lock bit in the extent tree
2526 * unlock the page if there are no other extents locked for it
2527 *
2528 * Scheduling is not allowed, so the extent state tree is expected
2529 * to have one and only one object corresponding to this IO.
2530 */
4246a0b6 2531static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2532{
2c30c71b 2533 struct bio_vec *bvec;
4246a0b6 2534 int uptodate = !bio->bi_error;
facc8a22 2535 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2536 struct extent_io_tree *tree;
facc8a22 2537 u64 offset = 0;
d1310b2e
CM
2538 u64 start;
2539 u64 end;
facc8a22 2540 u64 len;
883d0de4
MX
2541 u64 extent_start = 0;
2542 u64 extent_len = 0;
5cf1ab56 2543 int mirror;
d1310b2e 2544 int ret;
2c30c71b 2545 int i;
d1310b2e 2546
2c30c71b 2547 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2548 struct page *page = bvec->bv_page;
a71754fc 2549 struct inode *inode = page->mapping->host;
507903b8 2550
be3940c0 2551 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2552 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2553 bio->bi_error, io_bio->mirror_num);
a71754fc 2554 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2555
17a5adcc
AO
2556 /* We always issue full-page reads, but if some block
2557 * in a page fails to read, blk_update_request() will
2558 * advance bv_offset and adjust bv_len to compensate.
2559 * Print a warning for nonzero offsets, and an error
2560 * if they don't add up to a full page. */
efe120a0
FH
2561 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2562 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2563 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2564 "partial page read in btrfs with offset %u and length %u",
2565 bvec->bv_offset, bvec->bv_len);
2566 else
2567 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2568 "incomplete page read in btrfs with offset %u and "
2569 "length %u",
2570 bvec->bv_offset, bvec->bv_len);
2571 }
d1310b2e 2572
17a5adcc
AO
2573 start = page_offset(page);
2574 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2575 len = bvec->bv_len;
d1310b2e 2576
9be3395b 2577 mirror = io_bio->mirror_num;
f2a09da9
MX
2578 if (likely(uptodate && tree->ops &&
2579 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2580 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2581 page, start, end,
2582 mirror);
5ee0844d 2583 if (ret)
d1310b2e 2584 uptodate = 0;
5ee0844d 2585 else
1203b681 2586 clean_io_failure(inode, start, page, 0);
d1310b2e 2587 }
ea466794 2588
f2a09da9
MX
2589 if (likely(uptodate))
2590 goto readpage_ok;
2591
2592 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2593 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2594 if (!ret && !bio->bi_error)
ea466794 2595 uptodate = 1;
f2a09da9 2596 } else {
f4a8e656
JS
2597 /*
2598 * The generic bio_readpage_error handles errors the
2599 * following way: If possible, new read requests are
2600 * created and submitted and will end up in
2601 * end_bio_extent_readpage as well (if we're lucky, not
2602 * in the !uptodate case). In that case it returns 0 and
2603 * we just go on with the next page in our bio. If it
2604 * can't handle the error it will return -EIO and we
2605 * remain responsible for that page.
2606 */
facc8a22
MX
2607 ret = bio_readpage_error(bio, offset, page, start, end,
2608 mirror);
7e38326f 2609 if (ret == 0) {
4246a0b6 2610 uptodate = !bio->bi_error;
38c1c2e4 2611 offset += len;
7e38326f
CM
2612 continue;
2613 }
2614 }
f2a09da9 2615readpage_ok:
883d0de4 2616 if (likely(uptodate)) {
a71754fc
JB
2617 loff_t i_size = i_size_read(inode);
2618 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2619 unsigned off;
a71754fc
JB
2620
2621 /* Zero out the end if this page straddles i_size */
a583c026
LB
2622 off = i_size & (PAGE_CACHE_SIZE-1);
2623 if (page->index == end_index && off)
2624 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2625 SetPageUptodate(page);
70dec807 2626 } else {
17a5adcc
AO
2627 ClearPageUptodate(page);
2628 SetPageError(page);
70dec807 2629 }
17a5adcc 2630 unlock_page(page);
facc8a22 2631 offset += len;
883d0de4
MX
2632
2633 if (unlikely(!uptodate)) {
2634 if (extent_len) {
2635 endio_readpage_release_extent(tree,
2636 extent_start,
2637 extent_len, 1);
2638 extent_start = 0;
2639 extent_len = 0;
2640 }
2641 endio_readpage_release_extent(tree, start,
2642 end - start + 1, 0);
2643 } else if (!extent_len) {
2644 extent_start = start;
2645 extent_len = end + 1 - start;
2646 } else if (extent_start + extent_len == start) {
2647 extent_len += end + 1 - start;
2648 } else {
2649 endio_readpage_release_extent(tree, extent_start,
2650 extent_len, uptodate);
2651 extent_start = start;
2652 extent_len = end + 1 - start;
2653 }
2c30c71b 2654 }
d1310b2e 2655
883d0de4
MX
2656 if (extent_len)
2657 endio_readpage_release_extent(tree, extent_start, extent_len,
2658 uptodate);
facc8a22 2659 if (io_bio->end_io)
4246a0b6 2660 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2661 bio_put(bio);
d1310b2e
CM
2662}
2663
9be3395b
CM
2664/*
2665 * this allocates from the btrfs_bioset. We're returning a bio right now
2666 * but you can call btrfs_io_bio for the appropriate container_of magic
2667 */
88f794ed
MX
2668struct bio *
2669btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2670 gfp_t gfp_flags)
d1310b2e 2671{
facc8a22 2672 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2673 struct bio *bio;
2674
9be3395b 2675 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2676
2677 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2678 while (!bio && (nr_vecs /= 2)) {
2679 bio = bio_alloc_bioset(gfp_flags,
2680 nr_vecs, btrfs_bioset);
2681 }
d1310b2e
CM
2682 }
2683
2684 if (bio) {
2685 bio->bi_bdev = bdev;
4f024f37 2686 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2687 btrfs_bio = btrfs_io_bio(bio);
2688 btrfs_bio->csum = NULL;
2689 btrfs_bio->csum_allocated = NULL;
2690 btrfs_bio->end_io = NULL;
d1310b2e
CM
2691 }
2692 return bio;
2693}
2694
9be3395b
CM
2695struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2696{
23ea8e5a
MX
2697 struct btrfs_io_bio *btrfs_bio;
2698 struct bio *new;
9be3395b 2699
23ea8e5a
MX
2700 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2701 if (new) {
2702 btrfs_bio = btrfs_io_bio(new);
2703 btrfs_bio->csum = NULL;
2704 btrfs_bio->csum_allocated = NULL;
2705 btrfs_bio->end_io = NULL;
3a9508b0
CM
2706
2707#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2708 /* FIXME, put this into bio_clone_bioset */
2709 if (bio->bi_css)
2710 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2711#endif
23ea8e5a
MX
2712 }
2713 return new;
2714}
9be3395b
CM
2715
2716/* this also allocates from the btrfs_bioset */
2717struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2718{
facc8a22
MX
2719 struct btrfs_io_bio *btrfs_bio;
2720 struct bio *bio;
2721
2722 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2723 if (bio) {
2724 btrfs_bio = btrfs_io_bio(bio);
2725 btrfs_bio->csum = NULL;
2726 btrfs_bio->csum_allocated = NULL;
2727 btrfs_bio->end_io = NULL;
2728 }
2729 return bio;
9be3395b
CM
2730}
2731
2732
355808c2
JM
2733static int __must_check submit_one_bio(int rw, struct bio *bio,
2734 int mirror_num, unsigned long bio_flags)
d1310b2e 2735{
d1310b2e 2736 int ret = 0;
70dec807
CM
2737 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2738 struct page *page = bvec->bv_page;
2739 struct extent_io_tree *tree = bio->bi_private;
70dec807 2740 u64 start;
70dec807 2741
4eee4fa4 2742 start = page_offset(page) + bvec->bv_offset;
70dec807 2743
902b22f3 2744 bio->bi_private = NULL;
d1310b2e
CM
2745
2746 bio_get(bio);
2747
065631f6 2748 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2749 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2750 mirror_num, bio_flags, start);
0b86a832 2751 else
21adbd5c 2752 btrfsic_submit_bio(rw, bio);
4a54c8c1 2753
d1310b2e
CM
2754 bio_put(bio);
2755 return ret;
2756}
2757
64a16701 2758static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2759 unsigned long offset, size_t size, struct bio *bio,
2760 unsigned long bio_flags)
2761{
2762 int ret = 0;
2763 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2764 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2765 bio_flags);
2766 BUG_ON(ret < 0);
2767 return ret;
2768
2769}
2770
d1310b2e 2771static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2772 struct writeback_control *wbc,
d1310b2e
CM
2773 struct page *page, sector_t sector,
2774 size_t size, unsigned long offset,
2775 struct block_device *bdev,
2776 struct bio **bio_ret,
2777 unsigned long max_pages,
f188591e 2778 bio_end_io_t end_io_func,
c8b97818
CM
2779 int mirror_num,
2780 unsigned long prev_bio_flags,
005efedf
FM
2781 unsigned long bio_flags,
2782 bool force_bio_submit)
d1310b2e
CM
2783{
2784 int ret = 0;
2785 struct bio *bio;
c8b97818 2786 int contig = 0;
c8b97818 2787 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2788 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2789
2790 if (bio_ret && *bio_ret) {
2791 bio = *bio_ret;
c8b97818 2792 if (old_compressed)
4f024f37 2793 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2794 else
f73a1c7d 2795 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2796
2797 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2798 force_bio_submit ||
64a16701 2799 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2800 bio_add_page(bio, page, page_size, offset) < page_size) {
2801 ret = submit_one_bio(rw, bio, mirror_num,
2802 prev_bio_flags);
289454ad
NA
2803 if (ret < 0) {
2804 *bio_ret = NULL;
79787eaa 2805 return ret;
289454ad 2806 }
d1310b2e
CM
2807 bio = NULL;
2808 } else {
da2f0f74
CM
2809 if (wbc)
2810 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2811 return 0;
2812 }
2813 }
c8b97818 2814
b54ffb73
KO
2815 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2816 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2817 if (!bio)
2818 return -ENOMEM;
70dec807 2819
c8b97818 2820 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2821 bio->bi_end_io = end_io_func;
2822 bio->bi_private = tree;
da2f0f74
CM
2823 if (wbc) {
2824 wbc_init_bio(wbc, bio);
2825 wbc_account_io(wbc, page, page_size);
2826 }
70dec807 2827
d397712b 2828 if (bio_ret)
d1310b2e 2829 *bio_ret = bio;
d397712b 2830 else
c8b97818 2831 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2832
2833 return ret;
2834}
2835
48a3b636
ES
2836static void attach_extent_buffer_page(struct extent_buffer *eb,
2837 struct page *page)
d1310b2e
CM
2838{
2839 if (!PagePrivate(page)) {
2840 SetPagePrivate(page);
d1310b2e 2841 page_cache_get(page);
4f2de97a
JB
2842 set_page_private(page, (unsigned long)eb);
2843 } else {
2844 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2845 }
2846}
2847
4f2de97a 2848void set_page_extent_mapped(struct page *page)
d1310b2e 2849{
4f2de97a
JB
2850 if (!PagePrivate(page)) {
2851 SetPagePrivate(page);
2852 page_cache_get(page);
2853 set_page_private(page, EXTENT_PAGE_PRIVATE);
2854 }
d1310b2e
CM
2855}
2856
125bac01
MX
2857static struct extent_map *
2858__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2859 u64 start, u64 len, get_extent_t *get_extent,
2860 struct extent_map **em_cached)
2861{
2862 struct extent_map *em;
2863
2864 if (em_cached && *em_cached) {
2865 em = *em_cached;
cbc0e928 2866 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2867 start < extent_map_end(em)) {
2868 atomic_inc(&em->refs);
2869 return em;
2870 }
2871
2872 free_extent_map(em);
2873 *em_cached = NULL;
2874 }
2875
2876 em = get_extent(inode, page, pg_offset, start, len, 0);
2877 if (em_cached && !IS_ERR_OR_NULL(em)) {
2878 BUG_ON(*em_cached);
2879 atomic_inc(&em->refs);
2880 *em_cached = em;
2881 }
2882 return em;
2883}
d1310b2e
CM
2884/*
2885 * basic readpage implementation. Locked extent state structs are inserted
2886 * into the tree that are removed when the IO is done (by the end_io
2887 * handlers)
79787eaa 2888 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2889 */
9974090b
MX
2890static int __do_readpage(struct extent_io_tree *tree,
2891 struct page *page,
2892 get_extent_t *get_extent,
125bac01 2893 struct extent_map **em_cached,
9974090b 2894 struct bio **bio, int mirror_num,
005efedf
FM
2895 unsigned long *bio_flags, int rw,
2896 u64 *prev_em_start)
d1310b2e
CM
2897{
2898 struct inode *inode = page->mapping->host;
4eee4fa4 2899 u64 start = page_offset(page);
d1310b2e
CM
2900 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2901 u64 end;
2902 u64 cur = start;
2903 u64 extent_offset;
2904 u64 last_byte = i_size_read(inode);
2905 u64 block_start;
2906 u64 cur_end;
2907 sector_t sector;
2908 struct extent_map *em;
2909 struct block_device *bdev;
2910 int ret;
2911 int nr = 0;
4b384318 2912 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2913 size_t pg_offset = 0;
d1310b2e 2914 size_t iosize;
c8b97818 2915 size_t disk_io_size;
d1310b2e 2916 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2917 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2918
2919 set_page_extent_mapped(page);
2920
9974090b 2921 end = page_end;
90a887c9
DM
2922 if (!PageUptodate(page)) {
2923 if (cleancache_get_page(page) == 0) {
2924 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2925 unlock_extent(tree, start, end);
90a887c9
DM
2926 goto out;
2927 }
2928 }
2929
c8b97818
CM
2930 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2931 char *userpage;
2932 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2933
2934 if (zero_offset) {
2935 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2936 userpage = kmap_atomic(page);
c8b97818
CM
2937 memset(userpage + zero_offset, 0, iosize);
2938 flush_dcache_page(page);
7ac687d9 2939 kunmap_atomic(userpage);
c8b97818
CM
2940 }
2941 }
d1310b2e 2942 while (cur <= end) {
c8f2f24b 2943 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
005efedf 2944 bool force_bio_submit = false;
c8f2f24b 2945
d1310b2e
CM
2946 if (cur >= last_byte) {
2947 char *userpage;
507903b8
AJ
2948 struct extent_state *cached = NULL;
2949
306e16ce 2950 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2951 userpage = kmap_atomic(page);
306e16ce 2952 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2953 flush_dcache_page(page);
7ac687d9 2954 kunmap_atomic(userpage);
d1310b2e 2955 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2956 &cached, GFP_NOFS);
4b384318
MF
2957 if (!parent_locked)
2958 unlock_extent_cached(tree, cur,
2959 cur + iosize - 1,
2960 &cached, GFP_NOFS);
d1310b2e
CM
2961 break;
2962 }
125bac01
MX
2963 em = __get_extent_map(inode, page, pg_offset, cur,
2964 end - cur + 1, get_extent, em_cached);
c704005d 2965 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2966 SetPageError(page);
4b384318
MF
2967 if (!parent_locked)
2968 unlock_extent(tree, cur, end);
d1310b2e
CM
2969 break;
2970 }
d1310b2e
CM
2971 extent_offset = cur - em->start;
2972 BUG_ON(extent_map_end(em) <= cur);
2973 BUG_ON(end < cur);
2974
261507a0 2975 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2976 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2977 extent_set_compress_type(&this_bio_flag,
2978 em->compress_type);
2979 }
c8b97818 2980
d1310b2e
CM
2981 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2982 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2983 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2984 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2985 disk_io_size = em->block_len;
2986 sector = em->block_start >> 9;
2987 } else {
2988 sector = (em->block_start + extent_offset) >> 9;
2989 disk_io_size = iosize;
2990 }
d1310b2e
CM
2991 bdev = em->bdev;
2992 block_start = em->block_start;
d899e052
YZ
2993 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2994 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2995
2996 /*
2997 * If we have a file range that points to a compressed extent
2998 * and it's followed by a consecutive file range that points to
2999 * to the same compressed extent (possibly with a different
3000 * offset and/or length, so it either points to the whole extent
3001 * or only part of it), we must make sure we do not submit a
3002 * single bio to populate the pages for the 2 ranges because
3003 * this makes the compressed extent read zero out the pages
3004 * belonging to the 2nd range. Imagine the following scenario:
3005 *
3006 * File layout
3007 * [0 - 8K] [8K - 24K]
3008 * | |
3009 * | |
3010 * points to extent X, points to extent X,
3011 * offset 4K, length of 8K offset 0, length 16K
3012 *
3013 * [extent X, compressed length = 4K uncompressed length = 16K]
3014 *
3015 * If the bio to read the compressed extent covers both ranges,
3016 * it will decompress extent X into the pages belonging to the
3017 * first range and then it will stop, zeroing out the remaining
3018 * pages that belong to the other range that points to extent X.
3019 * So here we make sure we submit 2 bios, one for the first
3020 * range and another one for the third range. Both will target
3021 * the same physical extent from disk, but we can't currently
3022 * make the compressed bio endio callback populate the pages
3023 * for both ranges because each compressed bio is tightly
3024 * coupled with a single extent map, and each range can have
3025 * an extent map with a different offset value relative to the
3026 * uncompressed data of our extent and different lengths. This
3027 * is a corner case so we prioritize correctness over
3028 * non-optimal behavior (submitting 2 bios for the same extent).
3029 */
3030 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3031 prev_em_start && *prev_em_start != (u64)-1 &&
3032 *prev_em_start != em->orig_start)
3033 force_bio_submit = true;
3034
3035 if (prev_em_start)
3036 *prev_em_start = em->orig_start;
3037
d1310b2e
CM
3038 free_extent_map(em);
3039 em = NULL;
3040
3041 /* we've found a hole, just zero and go on */
3042 if (block_start == EXTENT_MAP_HOLE) {
3043 char *userpage;
507903b8
AJ
3044 struct extent_state *cached = NULL;
3045
7ac687d9 3046 userpage = kmap_atomic(page);
306e16ce 3047 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3048 flush_dcache_page(page);
7ac687d9 3049 kunmap_atomic(userpage);
d1310b2e
CM
3050
3051 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3052 &cached, GFP_NOFS);
5e6ecb36
FM
3053 if (parent_locked)
3054 free_extent_state(cached);
3055 else
3056 unlock_extent_cached(tree, cur,
3057 cur + iosize - 1,
3058 &cached, GFP_NOFS);
d1310b2e 3059 cur = cur + iosize;
306e16ce 3060 pg_offset += iosize;
d1310b2e
CM
3061 continue;
3062 }
3063 /* the get_extent function already copied into the page */
9655d298
CM
3064 if (test_range_bit(tree, cur, cur_end,
3065 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3066 check_page_uptodate(tree, page);
4b384318
MF
3067 if (!parent_locked)
3068 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3069 cur = cur + iosize;
306e16ce 3070 pg_offset += iosize;
d1310b2e
CM
3071 continue;
3072 }
70dec807
CM
3073 /* we have an inline extent but it didn't get marked up
3074 * to date. Error out
3075 */
3076 if (block_start == EXTENT_MAP_INLINE) {
3077 SetPageError(page);
4b384318
MF
3078 if (!parent_locked)
3079 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3080 cur = cur + iosize;
306e16ce 3081 pg_offset += iosize;
70dec807
CM
3082 continue;
3083 }
d1310b2e 3084
c8f2f24b 3085 pnr -= page->index;
da2f0f74 3086 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3087 sector, disk_io_size, pg_offset,
89642229 3088 bdev, bio, pnr,
c8b97818
CM
3089 end_bio_extent_readpage, mirror_num,
3090 *bio_flags,
005efedf
FM
3091 this_bio_flag,
3092 force_bio_submit);
c8f2f24b
JB
3093 if (!ret) {
3094 nr++;
3095 *bio_flags = this_bio_flag;
3096 } else {
d1310b2e 3097 SetPageError(page);
4b384318
MF
3098 if (!parent_locked)
3099 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3100 }
d1310b2e 3101 cur = cur + iosize;
306e16ce 3102 pg_offset += iosize;
d1310b2e 3103 }
90a887c9 3104out:
d1310b2e
CM
3105 if (!nr) {
3106 if (!PageError(page))
3107 SetPageUptodate(page);
3108 unlock_page(page);
3109 }
3110 return 0;
3111}
3112
9974090b
MX
3113static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3114 struct page *pages[], int nr_pages,
3115 u64 start, u64 end,
3116 get_extent_t *get_extent,
125bac01 3117 struct extent_map **em_cached,
9974090b 3118 struct bio **bio, int mirror_num,
808f80b4
FM
3119 unsigned long *bio_flags, int rw,
3120 u64 *prev_em_start)
9974090b
MX
3121{
3122 struct inode *inode;
3123 struct btrfs_ordered_extent *ordered;
3124 int index;
3125
3126 inode = pages[0]->mapping->host;
3127 while (1) {
3128 lock_extent(tree, start, end);
3129 ordered = btrfs_lookup_ordered_range(inode, start,
3130 end - start + 1);
3131 if (!ordered)
3132 break;
3133 unlock_extent(tree, start, end);
3134 btrfs_start_ordered_extent(inode, ordered, 1);
3135 btrfs_put_ordered_extent(ordered);
3136 }
3137
3138 for (index = 0; index < nr_pages; index++) {
125bac01 3139 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3140 mirror_num, bio_flags, rw, prev_em_start);
9974090b
MX
3141 page_cache_release(pages[index]);
3142 }
3143}
3144
3145static void __extent_readpages(struct extent_io_tree *tree,
3146 struct page *pages[],
3147 int nr_pages, get_extent_t *get_extent,
125bac01 3148 struct extent_map **em_cached,
9974090b 3149 struct bio **bio, int mirror_num,
808f80b4
FM
3150 unsigned long *bio_flags, int rw,
3151 u64 *prev_em_start)
9974090b 3152{
35a3621b 3153 u64 start = 0;
9974090b
MX
3154 u64 end = 0;
3155 u64 page_start;
3156 int index;
35a3621b 3157 int first_index = 0;
9974090b
MX
3158
3159 for (index = 0; index < nr_pages; index++) {
3160 page_start = page_offset(pages[index]);
3161 if (!end) {
3162 start = page_start;
3163 end = start + PAGE_CACHE_SIZE - 1;
3164 first_index = index;
3165 } else if (end + 1 == page_start) {
3166 end += PAGE_CACHE_SIZE;
3167 } else {
3168 __do_contiguous_readpages(tree, &pages[first_index],
3169 index - first_index, start,
125bac01
MX
3170 end, get_extent, em_cached,
3171 bio, mirror_num, bio_flags,
808f80b4 3172 rw, prev_em_start);
9974090b
MX
3173 start = page_start;
3174 end = start + PAGE_CACHE_SIZE - 1;
3175 first_index = index;
3176 }
3177 }
3178
3179 if (end)
3180 __do_contiguous_readpages(tree, &pages[first_index],
3181 index - first_index, start,
125bac01 3182 end, get_extent, em_cached, bio,
808f80b4
FM
3183 mirror_num, bio_flags, rw,
3184 prev_em_start);
9974090b
MX
3185}
3186
3187static int __extent_read_full_page(struct extent_io_tree *tree,
3188 struct page *page,
3189 get_extent_t *get_extent,
3190 struct bio **bio, int mirror_num,
3191 unsigned long *bio_flags, int rw)
3192{
3193 struct inode *inode = page->mapping->host;
3194 struct btrfs_ordered_extent *ordered;
3195 u64 start = page_offset(page);
3196 u64 end = start + PAGE_CACHE_SIZE - 1;
3197 int ret;
3198
3199 while (1) {
3200 lock_extent(tree, start, end);
3201 ordered = btrfs_lookup_ordered_extent(inode, start);
3202 if (!ordered)
3203 break;
3204 unlock_extent(tree, start, end);
3205 btrfs_start_ordered_extent(inode, ordered, 1);
3206 btrfs_put_ordered_extent(ordered);
3207 }
3208
125bac01 3209 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3210 bio_flags, rw, NULL);
9974090b
MX
3211 return ret;
3212}
3213
d1310b2e 3214int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3215 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3216{
3217 struct bio *bio = NULL;
c8b97818 3218 unsigned long bio_flags = 0;
d1310b2e
CM
3219 int ret;
3220
8ddc7d9c 3221 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3222 &bio_flags, READ);
d1310b2e 3223 if (bio)
8ddc7d9c 3224 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3225 return ret;
3226}
d1310b2e 3227
4b384318
MF
3228int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3229 get_extent_t *get_extent, int mirror_num)
3230{
3231 struct bio *bio = NULL;
3232 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3233 int ret;
3234
3235 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
005efedf 3236 &bio_flags, READ, NULL);
4b384318
MF
3237 if (bio)
3238 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3239 return ret;
3240}
3241
11c8349b
CM
3242static noinline void update_nr_written(struct page *page,
3243 struct writeback_control *wbc,
3244 unsigned long nr_written)
3245{
3246 wbc->nr_to_write -= nr_written;
3247 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3248 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3249 page->mapping->writeback_index = page->index + nr_written;
3250}
3251
d1310b2e 3252/*
40f76580
CM
3253 * helper for __extent_writepage, doing all of the delayed allocation setup.
3254 *
3255 * This returns 1 if our fill_delalloc function did all the work required
3256 * to write the page (copy into inline extent). In this case the IO has
3257 * been started and the page is already unlocked.
3258 *
3259 * This returns 0 if all went well (page still locked)
3260 * This returns < 0 if there were errors (page still locked)
d1310b2e 3261 */
40f76580
CM
3262static noinline_for_stack int writepage_delalloc(struct inode *inode,
3263 struct page *page, struct writeback_control *wbc,
3264 struct extent_page_data *epd,
3265 u64 delalloc_start,
3266 unsigned long *nr_written)
3267{
3268 struct extent_io_tree *tree = epd->tree;
3269 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3270 u64 nr_delalloc;
3271 u64 delalloc_to_write = 0;
3272 u64 delalloc_end = 0;
3273 int ret;
3274 int page_started = 0;
3275
3276 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3277 return 0;
3278
3279 while (delalloc_end < page_end) {
3280 nr_delalloc = find_lock_delalloc_range(inode, tree,
3281 page,
3282 &delalloc_start,
3283 &delalloc_end,
dcab6a3b 3284 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3285 if (nr_delalloc == 0) {
3286 delalloc_start = delalloc_end + 1;
3287 continue;
3288 }
3289 ret = tree->ops->fill_delalloc(inode, page,
3290 delalloc_start,
3291 delalloc_end,
3292 &page_started,
3293 nr_written);
3294 /* File system has been set read-only */
3295 if (ret) {
3296 SetPageError(page);
3297 /* fill_delalloc should be return < 0 for error
3298 * but just in case, we use > 0 here meaning the
3299 * IO is started, so we don't want to return > 0
3300 * unless things are going well.
3301 */
3302 ret = ret < 0 ? ret : -EIO;
3303 goto done;
3304 }
3305 /*
3306 * delalloc_end is already one less than the total
3307 * length, so we don't subtract one from
3308 * PAGE_CACHE_SIZE
3309 */
3310 delalloc_to_write += (delalloc_end - delalloc_start +
3311 PAGE_CACHE_SIZE) >>
3312 PAGE_CACHE_SHIFT;
3313 delalloc_start = delalloc_end + 1;
3314 }
3315 if (wbc->nr_to_write < delalloc_to_write) {
3316 int thresh = 8192;
3317
3318 if (delalloc_to_write < thresh * 2)
3319 thresh = delalloc_to_write;
3320 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3321 thresh);
3322 }
3323
3324 /* did the fill delalloc function already unlock and start
3325 * the IO?
3326 */
3327 if (page_started) {
3328 /*
3329 * we've unlocked the page, so we can't update
3330 * the mapping's writeback index, just update
3331 * nr_to_write.
3332 */
3333 wbc->nr_to_write -= *nr_written;
3334 return 1;
3335 }
3336
3337 ret = 0;
3338
3339done:
3340 return ret;
3341}
3342
3343/*
3344 * helper for __extent_writepage. This calls the writepage start hooks,
3345 * and does the loop to map the page into extents and bios.
3346 *
3347 * We return 1 if the IO is started and the page is unlocked,
3348 * 0 if all went well (page still locked)
3349 * < 0 if there were errors (page still locked)
3350 */
3351static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3352 struct page *page,
3353 struct writeback_control *wbc,
3354 struct extent_page_data *epd,
3355 loff_t i_size,
3356 unsigned long nr_written,
3357 int write_flags, int *nr_ret)
d1310b2e 3358{
d1310b2e 3359 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3360 u64 start = page_offset(page);
d1310b2e
CM
3361 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3362 u64 end;
3363 u64 cur = start;
3364 u64 extent_offset;
d1310b2e
CM
3365 u64 block_start;
3366 u64 iosize;
3367 sector_t sector;
2c64c53d 3368 struct extent_state *cached_state = NULL;
d1310b2e
CM
3369 struct extent_map *em;
3370 struct block_device *bdev;
7f3c74fb 3371 size_t pg_offset = 0;
d1310b2e 3372 size_t blocksize;
40f76580
CM
3373 int ret = 0;
3374 int nr = 0;
3375 bool compressed;
c8b97818 3376
247e743c 3377 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3378 ret = tree->ops->writepage_start_hook(page, start,
3379 page_end);
87826df0
JM
3380 if (ret) {
3381 /* Fixup worker will requeue */
3382 if (ret == -EBUSY)
3383 wbc->pages_skipped++;
3384 else
3385 redirty_page_for_writepage(wbc, page);
40f76580 3386
11c8349b 3387 update_nr_written(page, wbc, nr_written);
247e743c 3388 unlock_page(page);
40f76580 3389 ret = 1;
11c8349b 3390 goto done_unlocked;
247e743c
CM
3391 }
3392 }
3393
11c8349b
CM
3394 /*
3395 * we don't want to touch the inode after unlocking the page,
3396 * so we update the mapping writeback index now
3397 */
3398 update_nr_written(page, wbc, nr_written + 1);
771ed689 3399
d1310b2e 3400 end = page_end;
40f76580 3401 if (i_size <= start) {
e6dcd2dc
CM
3402 if (tree->ops && tree->ops->writepage_end_io_hook)
3403 tree->ops->writepage_end_io_hook(page, start,
3404 page_end, NULL, 1);
d1310b2e
CM
3405 goto done;
3406 }
3407
d1310b2e
CM
3408 blocksize = inode->i_sb->s_blocksize;
3409
3410 while (cur <= end) {
40f76580
CM
3411 u64 em_end;
3412 if (cur >= i_size) {
e6dcd2dc
CM
3413 if (tree->ops && tree->ops->writepage_end_io_hook)
3414 tree->ops->writepage_end_io_hook(page, cur,
3415 page_end, NULL, 1);
d1310b2e
CM
3416 break;
3417 }
7f3c74fb 3418 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3419 end - cur + 1, 1);
c704005d 3420 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3421 SetPageError(page);
61391d56 3422 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3423 break;
3424 }
3425
3426 extent_offset = cur - em->start;
40f76580
CM
3427 em_end = extent_map_end(em);
3428 BUG_ON(em_end <= cur);
d1310b2e 3429 BUG_ON(end < cur);
40f76580 3430 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3431 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3432 sector = (em->block_start + extent_offset) >> 9;
3433 bdev = em->bdev;
3434 block_start = em->block_start;
c8b97818 3435 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3436 free_extent_map(em);
3437 em = NULL;
3438
c8b97818
CM
3439 /*
3440 * compressed and inline extents are written through other
3441 * paths in the FS
3442 */
3443 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3444 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3445 /*
3446 * end_io notification does not happen here for
3447 * compressed extents
3448 */
3449 if (!compressed && tree->ops &&
3450 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3451 tree->ops->writepage_end_io_hook(page, cur,
3452 cur + iosize - 1,
3453 NULL, 1);
c8b97818
CM
3454 else if (compressed) {
3455 /* we don't want to end_page_writeback on
3456 * a compressed extent. this happens
3457 * elsewhere
3458 */
3459 nr++;
3460 }
3461
3462 cur += iosize;
7f3c74fb 3463 pg_offset += iosize;
d1310b2e
CM
3464 continue;
3465 }
c8b97818 3466
d1310b2e
CM
3467 if (tree->ops && tree->ops->writepage_io_hook) {
3468 ret = tree->ops->writepage_io_hook(page, cur,
3469 cur + iosize - 1);
3470 } else {
3471 ret = 0;
3472 }
1259ab75 3473 if (ret) {
d1310b2e 3474 SetPageError(page);
1259ab75 3475 } else {
40f76580 3476 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3477
d1310b2e
CM
3478 set_range_writeback(tree, cur, cur + iosize - 1);
3479 if (!PageWriteback(page)) {
efe120a0
FH
3480 btrfs_err(BTRFS_I(inode)->root->fs_info,
3481 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3482 page->index, cur, end);
d1310b2e
CM
3483 }
3484
da2f0f74 3485 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3486 sector, iosize, pg_offset,
3487 bdev, &epd->bio, max_nr,
c8b97818 3488 end_bio_extent_writepage,
005efedf 3489 0, 0, 0, false);
d1310b2e
CM
3490 if (ret)
3491 SetPageError(page);
3492 }
3493 cur = cur + iosize;
7f3c74fb 3494 pg_offset += iosize;
d1310b2e
CM
3495 nr++;
3496 }
40f76580
CM
3497done:
3498 *nr_ret = nr;
3499
3500done_unlocked:
3501
3502 /* drop our reference on any cached states */
3503 free_extent_state(cached_state);
3504 return ret;
3505}
3506
3507/*
3508 * the writepage semantics are similar to regular writepage. extent
3509 * records are inserted to lock ranges in the tree, and as dirty areas
3510 * are found, they are marked writeback. Then the lock bits are removed
3511 * and the end_io handler clears the writeback ranges
3512 */
3513static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3514 void *data)
3515{
3516 struct inode *inode = page->mapping->host;
3517 struct extent_page_data *epd = data;
3518 u64 start = page_offset(page);
3519 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3520 int ret;
3521 int nr = 0;
3522 size_t pg_offset = 0;
3523 loff_t i_size = i_size_read(inode);
3524 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3525 int write_flags;
3526 unsigned long nr_written = 0;
3527
3528 if (wbc->sync_mode == WB_SYNC_ALL)
3529 write_flags = WRITE_SYNC;
3530 else
3531 write_flags = WRITE;
3532
3533 trace___extent_writepage(page, inode, wbc);
3534
3535 WARN_ON(!PageLocked(page));
3536
3537 ClearPageError(page);
3538
3539 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3540 if (page->index > end_index ||
3541 (page->index == end_index && !pg_offset)) {
3542 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3543 unlock_page(page);
3544 return 0;
3545 }
3546
3547 if (page->index == end_index) {
3548 char *userpage;
3549
3550 userpage = kmap_atomic(page);
3551 memset(userpage + pg_offset, 0,
3552 PAGE_CACHE_SIZE - pg_offset);
3553 kunmap_atomic(userpage);
3554 flush_dcache_page(page);
3555 }
3556
3557 pg_offset = 0;
3558
3559 set_page_extent_mapped(page);
3560
3561 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3562 if (ret == 1)
3563 goto done_unlocked;
3564 if (ret)
3565 goto done;
3566
3567 ret = __extent_writepage_io(inode, page, wbc, epd,
3568 i_size, nr_written, write_flags, &nr);
3569 if (ret == 1)
3570 goto done_unlocked;
3571
d1310b2e
CM
3572done:
3573 if (nr == 0) {
3574 /* make sure the mapping tag for page dirty gets cleared */
3575 set_page_writeback(page);
3576 end_page_writeback(page);
3577 }
61391d56
FM
3578 if (PageError(page)) {
3579 ret = ret < 0 ? ret : -EIO;
3580 end_extent_writepage(page, ret, start, page_end);
3581 }
d1310b2e 3582 unlock_page(page);
40f76580 3583 return ret;
771ed689 3584
11c8349b 3585done_unlocked:
d1310b2e
CM
3586 return 0;
3587}
3588
fd8b2b61 3589void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3590{
74316201
N
3591 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3592 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3593}
3594
0e378df1
CM
3595static noinline_for_stack int
3596lock_extent_buffer_for_io(struct extent_buffer *eb,
3597 struct btrfs_fs_info *fs_info,
3598 struct extent_page_data *epd)
0b32f4bb
JB
3599{
3600 unsigned long i, num_pages;
3601 int flush = 0;
3602 int ret = 0;
3603
3604 if (!btrfs_try_tree_write_lock(eb)) {
3605 flush = 1;
3606 flush_write_bio(epd);
3607 btrfs_tree_lock(eb);
3608 }
3609
3610 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3611 btrfs_tree_unlock(eb);
3612 if (!epd->sync_io)
3613 return 0;
3614 if (!flush) {
3615 flush_write_bio(epd);
3616 flush = 1;
3617 }
a098d8e8
CM
3618 while (1) {
3619 wait_on_extent_buffer_writeback(eb);
3620 btrfs_tree_lock(eb);
3621 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3622 break;
0b32f4bb 3623 btrfs_tree_unlock(eb);
0b32f4bb
JB
3624 }
3625 }
3626
51561ffe
JB
3627 /*
3628 * We need to do this to prevent races in people who check if the eb is
3629 * under IO since we can end up having no IO bits set for a short period
3630 * of time.
3631 */
3632 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3633 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3634 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3635 spin_unlock(&eb->refs_lock);
0b32f4bb 3636 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3637 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3638 -eb->len,
3639 fs_info->dirty_metadata_batch);
0b32f4bb 3640 ret = 1;
51561ffe
JB
3641 } else {
3642 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3643 }
3644
3645 btrfs_tree_unlock(eb);
3646
3647 if (!ret)
3648 return ret;
3649
3650 num_pages = num_extent_pages(eb->start, eb->len);
3651 for (i = 0; i < num_pages; i++) {
fb85fc9a 3652 struct page *p = eb->pages[i];
0b32f4bb
JB
3653
3654 if (!trylock_page(p)) {
3655 if (!flush) {
3656 flush_write_bio(epd);
3657 flush = 1;
3658 }
3659 lock_page(p);
3660 }
3661 }
3662
3663 return ret;
3664}
3665
3666static void end_extent_buffer_writeback(struct extent_buffer *eb)
3667{
3668 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3669 smp_mb__after_atomic();
0b32f4bb
JB
3670 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3671}
3672
656f30db
FM
3673static void set_btree_ioerr(struct page *page)
3674{
3675 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3676 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3677
3678 SetPageError(page);
3679 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3680 return;
3681
3682 /*
3683 * If writeback for a btree extent that doesn't belong to a log tree
3684 * failed, increment the counter transaction->eb_write_errors.
3685 * We do this because while the transaction is running and before it's
3686 * committing (when we call filemap_fdata[write|wait]_range against
3687 * the btree inode), we might have
3688 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3689 * returns an error or an error happens during writeback, when we're
3690 * committing the transaction we wouldn't know about it, since the pages
3691 * can be no longer dirty nor marked anymore for writeback (if a
3692 * subsequent modification to the extent buffer didn't happen before the
3693 * transaction commit), which makes filemap_fdata[write|wait]_range not
3694 * able to find the pages tagged with SetPageError at transaction
3695 * commit time. So if this happens we must abort the transaction,
3696 * otherwise we commit a super block with btree roots that point to
3697 * btree nodes/leafs whose content on disk is invalid - either garbage
3698 * or the content of some node/leaf from a past generation that got
3699 * cowed or deleted and is no longer valid.
3700 *
3701 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3702 * not be enough - we need to distinguish between log tree extents vs
3703 * non-log tree extents, and the next filemap_fdatawait_range() call
3704 * will catch and clear such errors in the mapping - and that call might
3705 * be from a log sync and not from a transaction commit. Also, checking
3706 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3707 * not done and would not be reliable - the eb might have been released
3708 * from memory and reading it back again means that flag would not be
3709 * set (since it's a runtime flag, not persisted on disk).
3710 *
3711 * Using the flags below in the btree inode also makes us achieve the
3712 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3713 * writeback for all dirty pages and before filemap_fdatawait_range()
3714 * is called, the writeback for all dirty pages had already finished
3715 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3716 * filemap_fdatawait_range() would return success, as it could not know
3717 * that writeback errors happened (the pages were no longer tagged for
3718 * writeback).
3719 */
3720 switch (eb->log_index) {
3721 case -1:
3722 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3723 break;
3724 case 0:
3725 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3726 break;
3727 case 1:
3728 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3729 break;
3730 default:
3731 BUG(); /* unexpected, logic error */
3732 }
3733}
3734
4246a0b6 3735static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3736{
2c30c71b 3737 struct bio_vec *bvec;
0b32f4bb 3738 struct extent_buffer *eb;
2c30c71b 3739 int i, done;
0b32f4bb 3740
2c30c71b 3741 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3742 struct page *page = bvec->bv_page;
3743
0b32f4bb
JB
3744 eb = (struct extent_buffer *)page->private;
3745 BUG_ON(!eb);
3746 done = atomic_dec_and_test(&eb->io_pages);
3747
4246a0b6
CH
3748 if (bio->bi_error ||
3749 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3750 ClearPageUptodate(page);
656f30db 3751 set_btree_ioerr(page);
0b32f4bb
JB
3752 }
3753
3754 end_page_writeback(page);
3755
3756 if (!done)
3757 continue;
3758
3759 end_extent_buffer_writeback(eb);
2c30c71b 3760 }
0b32f4bb
JB
3761
3762 bio_put(bio);
0b32f4bb
JB
3763}
3764
0e378df1 3765static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3766 struct btrfs_fs_info *fs_info,
3767 struct writeback_control *wbc,
3768 struct extent_page_data *epd)
3769{
3770 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3771 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3772 u64 offset = eb->start;
3773 unsigned long i, num_pages;
de0022b9 3774 unsigned long bio_flags = 0;
d4c7ca86 3775 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3776 int ret = 0;
0b32f4bb 3777
656f30db 3778 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3779 num_pages = num_extent_pages(eb->start, eb->len);
3780 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3781 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3782 bio_flags = EXTENT_BIO_TREE_LOG;
3783
0b32f4bb 3784 for (i = 0; i < num_pages; i++) {
fb85fc9a 3785 struct page *p = eb->pages[i];
0b32f4bb
JB
3786
3787 clear_page_dirty_for_io(p);
3788 set_page_writeback(p);
da2f0f74 3789 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
0b32f4bb
JB
3790 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3791 -1, end_bio_extent_buffer_writepage,
005efedf 3792 0, epd->bio_flags, bio_flags, false);
de0022b9 3793 epd->bio_flags = bio_flags;
0b32f4bb 3794 if (ret) {
656f30db 3795 set_btree_ioerr(p);
55e3bd2e 3796 end_page_writeback(p);
0b32f4bb
JB
3797 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3798 end_extent_buffer_writeback(eb);
3799 ret = -EIO;
3800 break;
3801 }
3802 offset += PAGE_CACHE_SIZE;
3803 update_nr_written(p, wbc, 1);
3804 unlock_page(p);
3805 }
3806
3807 if (unlikely(ret)) {
3808 for (; i < num_pages; i++) {
bbf65cf0 3809 struct page *p = eb->pages[i];
81465028 3810 clear_page_dirty_for_io(p);
0b32f4bb
JB
3811 unlock_page(p);
3812 }
3813 }
3814
3815 return ret;
3816}
3817
3818int btree_write_cache_pages(struct address_space *mapping,
3819 struct writeback_control *wbc)
3820{
3821 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3822 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3823 struct extent_buffer *eb, *prev_eb = NULL;
3824 struct extent_page_data epd = {
3825 .bio = NULL,
3826 .tree = tree,
3827 .extent_locked = 0,
3828 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3829 .bio_flags = 0,
0b32f4bb
JB
3830 };
3831 int ret = 0;
3832 int done = 0;
3833 int nr_to_write_done = 0;
3834 struct pagevec pvec;
3835 int nr_pages;
3836 pgoff_t index;
3837 pgoff_t end; /* Inclusive */
3838 int scanned = 0;
3839 int tag;
3840
3841 pagevec_init(&pvec, 0);
3842 if (wbc->range_cyclic) {
3843 index = mapping->writeback_index; /* Start from prev offset */
3844 end = -1;
3845 } else {
3846 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3847 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3848 scanned = 1;
3849 }
3850 if (wbc->sync_mode == WB_SYNC_ALL)
3851 tag = PAGECACHE_TAG_TOWRITE;
3852 else
3853 tag = PAGECACHE_TAG_DIRTY;
3854retry:
3855 if (wbc->sync_mode == WB_SYNC_ALL)
3856 tag_pages_for_writeback(mapping, index, end);
3857 while (!done && !nr_to_write_done && (index <= end) &&
3858 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3859 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3860 unsigned i;
3861
3862 scanned = 1;
3863 for (i = 0; i < nr_pages; i++) {
3864 struct page *page = pvec.pages[i];
3865
3866 if (!PagePrivate(page))
3867 continue;
3868
3869 if (!wbc->range_cyclic && page->index > end) {
3870 done = 1;
3871 break;
3872 }
3873
b5bae261
JB
3874 spin_lock(&mapping->private_lock);
3875 if (!PagePrivate(page)) {
3876 spin_unlock(&mapping->private_lock);
3877 continue;
3878 }
3879
0b32f4bb 3880 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3881
3882 /*
3883 * Shouldn't happen and normally this would be a BUG_ON
3884 * but no sense in crashing the users box for something
3885 * we can survive anyway.
3886 */
fae7f21c 3887 if (WARN_ON(!eb)) {
b5bae261 3888 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3889 continue;
3890 }
3891
b5bae261
JB
3892 if (eb == prev_eb) {
3893 spin_unlock(&mapping->private_lock);
0b32f4bb 3894 continue;
b5bae261 3895 }
0b32f4bb 3896
b5bae261
JB
3897 ret = atomic_inc_not_zero(&eb->refs);
3898 spin_unlock(&mapping->private_lock);
3899 if (!ret)
0b32f4bb 3900 continue;
0b32f4bb
JB
3901
3902 prev_eb = eb;
3903 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3904 if (!ret) {
3905 free_extent_buffer(eb);
3906 continue;
3907 }
3908
3909 ret = write_one_eb(eb, fs_info, wbc, &epd);
3910 if (ret) {
3911 done = 1;
3912 free_extent_buffer(eb);
3913 break;
3914 }
3915 free_extent_buffer(eb);
3916
3917 /*
3918 * the filesystem may choose to bump up nr_to_write.
3919 * We have to make sure to honor the new nr_to_write
3920 * at any time
3921 */
3922 nr_to_write_done = wbc->nr_to_write <= 0;
3923 }
3924 pagevec_release(&pvec);
3925 cond_resched();
3926 }
3927 if (!scanned && !done) {
3928 /*
3929 * We hit the last page and there is more work to be done: wrap
3930 * back to the start of the file
3931 */
3932 scanned = 1;
3933 index = 0;
3934 goto retry;
3935 }
3936 flush_write_bio(&epd);
3937 return ret;
3938}
3939
d1310b2e 3940/**
4bef0848 3941 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3942 * @mapping: address space structure to write
3943 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3944 * @writepage: function called for each page
3945 * @data: data passed to writepage function
3946 *
3947 * If a page is already under I/O, write_cache_pages() skips it, even
3948 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3949 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3950 * and msync() need to guarantee that all the data which was dirty at the time
3951 * the call was made get new I/O started against them. If wbc->sync_mode is
3952 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3953 * existing IO to complete.
3954 */
b2950863 3955static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3956 struct address_space *mapping,
3957 struct writeback_control *wbc,
d2c3f4f6
CM
3958 writepage_t writepage, void *data,
3959 void (*flush_fn)(void *))
d1310b2e 3960{
7fd1a3f7 3961 struct inode *inode = mapping->host;
d1310b2e
CM
3962 int ret = 0;
3963 int done = 0;
61391d56 3964 int err = 0;
f85d7d6c 3965 int nr_to_write_done = 0;
d1310b2e
CM
3966 struct pagevec pvec;
3967 int nr_pages;
3968 pgoff_t index;
3969 pgoff_t end; /* Inclusive */
3970 int scanned = 0;
f7aaa06b 3971 int tag;
d1310b2e 3972
7fd1a3f7
JB
3973 /*
3974 * We have to hold onto the inode so that ordered extents can do their
3975 * work when the IO finishes. The alternative to this is failing to add
3976 * an ordered extent if the igrab() fails there and that is a huge pain
3977 * to deal with, so instead just hold onto the inode throughout the
3978 * writepages operation. If it fails here we are freeing up the inode
3979 * anyway and we'd rather not waste our time writing out stuff that is
3980 * going to be truncated anyway.
3981 */
3982 if (!igrab(inode))
3983 return 0;
3984
d1310b2e
CM
3985 pagevec_init(&pvec, 0);
3986 if (wbc->range_cyclic) {
3987 index = mapping->writeback_index; /* Start from prev offset */
3988 end = -1;
3989 } else {
3990 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3991 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3992 scanned = 1;
3993 }
f7aaa06b
JB
3994 if (wbc->sync_mode == WB_SYNC_ALL)
3995 tag = PAGECACHE_TAG_TOWRITE;
3996 else
3997 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3998retry:
f7aaa06b
JB
3999 if (wbc->sync_mode == WB_SYNC_ALL)
4000 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 4001 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
4002 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4003 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
4004 unsigned i;
4005
4006 scanned = 1;
4007 for (i = 0; i < nr_pages; i++) {
4008 struct page *page = pvec.pages[i];
4009
4010 /*
4011 * At this point we hold neither mapping->tree_lock nor
4012 * lock on the page itself: the page may be truncated or
4013 * invalidated (changing page->mapping to NULL), or even
4014 * swizzled back from swapper_space to tmpfs file
4015 * mapping
4016 */
c8f2f24b
JB
4017 if (!trylock_page(page)) {
4018 flush_fn(data);
4019 lock_page(page);
01d658f2 4020 }
d1310b2e
CM
4021
4022 if (unlikely(page->mapping != mapping)) {
4023 unlock_page(page);
4024 continue;
4025 }
4026
4027 if (!wbc->range_cyclic && page->index > end) {
4028 done = 1;
4029 unlock_page(page);
4030 continue;
4031 }
4032
d2c3f4f6 4033 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4034 if (PageWriteback(page))
4035 flush_fn(data);
d1310b2e 4036 wait_on_page_writeback(page);
d2c3f4f6 4037 }
d1310b2e
CM
4038
4039 if (PageWriteback(page) ||
4040 !clear_page_dirty_for_io(page)) {
4041 unlock_page(page);
4042 continue;
4043 }
4044
4045 ret = (*writepage)(page, wbc, data);
4046
4047 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4048 unlock_page(page);
4049 ret = 0;
4050 }
61391d56
FM
4051 if (!err && ret < 0)
4052 err = ret;
f85d7d6c
CM
4053
4054 /*
4055 * the filesystem may choose to bump up nr_to_write.
4056 * We have to make sure to honor the new nr_to_write
4057 * at any time
4058 */
4059 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4060 }
4061 pagevec_release(&pvec);
4062 cond_resched();
4063 }
61391d56 4064 if (!scanned && !done && !err) {
d1310b2e
CM
4065 /*
4066 * We hit the last page and there is more work to be done: wrap
4067 * back to the start of the file
4068 */
4069 scanned = 1;
4070 index = 0;
4071 goto retry;
4072 }
7fd1a3f7 4073 btrfs_add_delayed_iput(inode);
61391d56 4074 return err;
d1310b2e 4075}
d1310b2e 4076
ffbd517d 4077static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4078{
d2c3f4f6 4079 if (epd->bio) {
355808c2
JM
4080 int rw = WRITE;
4081 int ret;
4082
ffbd517d 4083 if (epd->sync_io)
355808c2
JM
4084 rw = WRITE_SYNC;
4085
de0022b9 4086 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4087 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4088 epd->bio = NULL;
4089 }
4090}
4091
ffbd517d
CM
4092static noinline void flush_write_bio(void *data)
4093{
4094 struct extent_page_data *epd = data;
4095 flush_epd_write_bio(epd);
4096}
4097
d1310b2e
CM
4098int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4099 get_extent_t *get_extent,
4100 struct writeback_control *wbc)
4101{
4102 int ret;
d1310b2e
CM
4103 struct extent_page_data epd = {
4104 .bio = NULL,
4105 .tree = tree,
4106 .get_extent = get_extent,
771ed689 4107 .extent_locked = 0,
ffbd517d 4108 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4109 .bio_flags = 0,
d1310b2e 4110 };
d1310b2e 4111
d1310b2e
CM
4112 ret = __extent_writepage(page, wbc, &epd);
4113
ffbd517d 4114 flush_epd_write_bio(&epd);
d1310b2e
CM
4115 return ret;
4116}
d1310b2e 4117
771ed689
CM
4118int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4119 u64 start, u64 end, get_extent_t *get_extent,
4120 int mode)
4121{
4122 int ret = 0;
4123 struct address_space *mapping = inode->i_mapping;
4124 struct page *page;
4125 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4126 PAGE_CACHE_SHIFT;
4127
4128 struct extent_page_data epd = {
4129 .bio = NULL,
4130 .tree = tree,
4131 .get_extent = get_extent,
4132 .extent_locked = 1,
ffbd517d 4133 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4134 .bio_flags = 0,
771ed689
CM
4135 };
4136 struct writeback_control wbc_writepages = {
771ed689 4137 .sync_mode = mode,
771ed689
CM
4138 .nr_to_write = nr_pages * 2,
4139 .range_start = start,
4140 .range_end = end + 1,
4141 };
4142
d397712b 4143 while (start <= end) {
771ed689
CM
4144 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4145 if (clear_page_dirty_for_io(page))
4146 ret = __extent_writepage(page, &wbc_writepages, &epd);
4147 else {
4148 if (tree->ops && tree->ops->writepage_end_io_hook)
4149 tree->ops->writepage_end_io_hook(page, start,
4150 start + PAGE_CACHE_SIZE - 1,
4151 NULL, 1);
4152 unlock_page(page);
4153 }
4154 page_cache_release(page);
4155 start += PAGE_CACHE_SIZE;
4156 }
4157
ffbd517d 4158 flush_epd_write_bio(&epd);
771ed689
CM
4159 return ret;
4160}
d1310b2e
CM
4161
4162int extent_writepages(struct extent_io_tree *tree,
4163 struct address_space *mapping,
4164 get_extent_t *get_extent,
4165 struct writeback_control *wbc)
4166{
4167 int ret = 0;
4168 struct extent_page_data epd = {
4169 .bio = NULL,
4170 .tree = tree,
4171 .get_extent = get_extent,
771ed689 4172 .extent_locked = 0,
ffbd517d 4173 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4174 .bio_flags = 0,
d1310b2e
CM
4175 };
4176
4bef0848 4177 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4178 __extent_writepage, &epd,
4179 flush_write_bio);
ffbd517d 4180 flush_epd_write_bio(&epd);
d1310b2e
CM
4181 return ret;
4182}
d1310b2e
CM
4183
4184int extent_readpages(struct extent_io_tree *tree,
4185 struct address_space *mapping,
4186 struct list_head *pages, unsigned nr_pages,
4187 get_extent_t get_extent)
4188{
4189 struct bio *bio = NULL;
4190 unsigned page_idx;
c8b97818 4191 unsigned long bio_flags = 0;
67c9684f
LB
4192 struct page *pagepool[16];
4193 struct page *page;
125bac01 4194 struct extent_map *em_cached = NULL;
67c9684f 4195 int nr = 0;
808f80b4 4196 u64 prev_em_start = (u64)-1;
d1310b2e 4197
d1310b2e 4198 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4199 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4200
4201 prefetchw(&page->flags);
4202 list_del(&page->lru);
67c9684f 4203 if (add_to_page_cache_lru(page, mapping,
43e817a1 4204 page->index, GFP_NOFS)) {
67c9684f
LB
4205 page_cache_release(page);
4206 continue;
d1310b2e 4207 }
67c9684f
LB
4208
4209 pagepool[nr++] = page;
4210 if (nr < ARRAY_SIZE(pagepool))
4211 continue;
125bac01 4212 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4213 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4214 nr = 0;
d1310b2e 4215 }
9974090b 4216 if (nr)
125bac01 4217 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4218 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4219
125bac01
MX
4220 if (em_cached)
4221 free_extent_map(em_cached);
4222
d1310b2e
CM
4223 BUG_ON(!list_empty(pages));
4224 if (bio)
79787eaa 4225 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4226 return 0;
4227}
d1310b2e
CM
4228
4229/*
4230 * basic invalidatepage code, this waits on any locked or writeback
4231 * ranges corresponding to the page, and then deletes any extent state
4232 * records from the tree
4233 */
4234int extent_invalidatepage(struct extent_io_tree *tree,
4235 struct page *page, unsigned long offset)
4236{
2ac55d41 4237 struct extent_state *cached_state = NULL;
4eee4fa4 4238 u64 start = page_offset(page);
d1310b2e
CM
4239 u64 end = start + PAGE_CACHE_SIZE - 1;
4240 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4241
fda2832f 4242 start += ALIGN(offset, blocksize);
d1310b2e
CM
4243 if (start > end)
4244 return 0;
4245
d0082371 4246 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4247 wait_on_page_writeback(page);
d1310b2e 4248 clear_extent_bit(tree, start, end,
32c00aff
JB
4249 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4250 EXTENT_DO_ACCOUNTING,
2ac55d41 4251 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4252 return 0;
4253}
d1310b2e 4254
7b13b7b1
CM
4255/*
4256 * a helper for releasepage, this tests for areas of the page that
4257 * are locked or under IO and drops the related state bits if it is safe
4258 * to drop the page.
4259 */
48a3b636
ES
4260static int try_release_extent_state(struct extent_map_tree *map,
4261 struct extent_io_tree *tree,
4262 struct page *page, gfp_t mask)
7b13b7b1 4263{
4eee4fa4 4264 u64 start = page_offset(page);
7b13b7b1
CM
4265 u64 end = start + PAGE_CACHE_SIZE - 1;
4266 int ret = 1;
4267
211f90e6 4268 if (test_range_bit(tree, start, end,
8b62b72b 4269 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4270 ret = 0;
4271 else {
4272 if ((mask & GFP_NOFS) == GFP_NOFS)
4273 mask = GFP_NOFS;
11ef160f
CM
4274 /*
4275 * at this point we can safely clear everything except the
4276 * locked bit and the nodatasum bit
4277 */
e3f24cc5 4278 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4279 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4280 0, 0, NULL, mask);
e3f24cc5
CM
4281
4282 /* if clear_extent_bit failed for enomem reasons,
4283 * we can't allow the release to continue.
4284 */
4285 if (ret < 0)
4286 ret = 0;
4287 else
4288 ret = 1;
7b13b7b1
CM
4289 }
4290 return ret;
4291}
7b13b7b1 4292
d1310b2e
CM
4293/*
4294 * a helper for releasepage. As long as there are no locked extents
4295 * in the range corresponding to the page, both state records and extent
4296 * map records are removed
4297 */
4298int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4299 struct extent_io_tree *tree, struct page *page,
4300 gfp_t mask)
d1310b2e
CM
4301{
4302 struct extent_map *em;
4eee4fa4 4303 u64 start = page_offset(page);
d1310b2e 4304 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4305
d0164adc 4306 if (gfpflags_allow_blocking(mask) &&
70dec807 4307 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4308 u64 len;
70dec807 4309 while (start <= end) {
39b5637f 4310 len = end - start + 1;
890871be 4311 write_lock(&map->lock);
39b5637f 4312 em = lookup_extent_mapping(map, start, len);
285190d9 4313 if (!em) {
890871be 4314 write_unlock(&map->lock);
70dec807
CM
4315 break;
4316 }
7f3c74fb
CM
4317 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4318 em->start != start) {
890871be 4319 write_unlock(&map->lock);
70dec807
CM
4320 free_extent_map(em);
4321 break;
4322 }
4323 if (!test_range_bit(tree, em->start,
4324 extent_map_end(em) - 1,
8b62b72b 4325 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4326 0, NULL)) {
70dec807
CM
4327 remove_extent_mapping(map, em);
4328 /* once for the rb tree */
4329 free_extent_map(em);
4330 }
4331 start = extent_map_end(em);
890871be 4332 write_unlock(&map->lock);
70dec807
CM
4333
4334 /* once for us */
d1310b2e
CM
4335 free_extent_map(em);
4336 }
d1310b2e 4337 }
7b13b7b1 4338 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4339}
d1310b2e 4340
ec29ed5b
CM
4341/*
4342 * helper function for fiemap, which doesn't want to see any holes.
4343 * This maps until we find something past 'last'
4344 */
4345static struct extent_map *get_extent_skip_holes(struct inode *inode,
4346 u64 offset,
4347 u64 last,
4348 get_extent_t *get_extent)
4349{
4350 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4351 struct extent_map *em;
4352 u64 len;
4353
4354 if (offset >= last)
4355 return NULL;
4356
67871254 4357 while (1) {
ec29ed5b
CM
4358 len = last - offset;
4359 if (len == 0)
4360 break;
fda2832f 4361 len = ALIGN(len, sectorsize);
ec29ed5b 4362 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4363 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4364 return em;
4365
4366 /* if this isn't a hole return it */
4367 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4368 em->block_start != EXTENT_MAP_HOLE) {
4369 return em;
4370 }
4371
4372 /* this is a hole, advance to the next extent */
4373 offset = extent_map_end(em);
4374 free_extent_map(em);
4375 if (offset >= last)
4376 break;
4377 }
4378 return NULL;
4379}
4380
1506fcc8
YS
4381int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4382 __u64 start, __u64 len, get_extent_t *get_extent)
4383{
975f84fe 4384 int ret = 0;
1506fcc8
YS
4385 u64 off = start;
4386 u64 max = start + len;
4387 u32 flags = 0;
975f84fe
JB
4388 u32 found_type;
4389 u64 last;
ec29ed5b 4390 u64 last_for_get_extent = 0;
1506fcc8 4391 u64 disko = 0;
ec29ed5b 4392 u64 isize = i_size_read(inode);
975f84fe 4393 struct btrfs_key found_key;
1506fcc8 4394 struct extent_map *em = NULL;
2ac55d41 4395 struct extent_state *cached_state = NULL;
975f84fe 4396 struct btrfs_path *path;
dc046b10 4397 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4398 int end = 0;
ec29ed5b
CM
4399 u64 em_start = 0;
4400 u64 em_len = 0;
4401 u64 em_end = 0;
1506fcc8
YS
4402
4403 if (len == 0)
4404 return -EINVAL;
4405
975f84fe
JB
4406 path = btrfs_alloc_path();
4407 if (!path)
4408 return -ENOMEM;
4409 path->leave_spinning = 1;
4410
2c91943b
QW
4411 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4412 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4413
ec29ed5b
CM
4414 /*
4415 * lookup the last file extent. We're not using i_size here
4416 * because there might be preallocation past i_size
4417 */
dc046b10
JB
4418 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4419 0);
975f84fe
JB
4420 if (ret < 0) {
4421 btrfs_free_path(path);
4422 return ret;
4423 }
4424 WARN_ON(!ret);
4425 path->slots[0]--;
975f84fe 4426 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4427 found_type = found_key.type;
975f84fe 4428
ec29ed5b 4429 /* No extents, but there might be delalloc bits */
33345d01 4430 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4431 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4432 /* have to trust i_size as the end */
4433 last = (u64)-1;
4434 last_for_get_extent = isize;
4435 } else {
4436 /*
4437 * remember the start of the last extent. There are a
4438 * bunch of different factors that go into the length of the
4439 * extent, so its much less complex to remember where it started
4440 */
4441 last = found_key.offset;
4442 last_for_get_extent = last + 1;
975f84fe 4443 }
fe09e16c 4444 btrfs_release_path(path);
975f84fe 4445
ec29ed5b
CM
4446 /*
4447 * we might have some extents allocated but more delalloc past those
4448 * extents. so, we trust isize unless the start of the last extent is
4449 * beyond isize
4450 */
4451 if (last < isize) {
4452 last = (u64)-1;
4453 last_for_get_extent = isize;
4454 }
4455
a52f4cd2 4456 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4457 &cached_state);
ec29ed5b 4458
4d479cf0 4459 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4460 get_extent);
1506fcc8
YS
4461 if (!em)
4462 goto out;
4463 if (IS_ERR(em)) {
4464 ret = PTR_ERR(em);
4465 goto out;
4466 }
975f84fe 4467
1506fcc8 4468 while (!end) {
b76bb701 4469 u64 offset_in_extent = 0;
ea8efc74
CM
4470
4471 /* break if the extent we found is outside the range */
4472 if (em->start >= max || extent_map_end(em) < off)
4473 break;
4474
4475 /*
4476 * get_extent may return an extent that starts before our
4477 * requested range. We have to make sure the ranges
4478 * we return to fiemap always move forward and don't
4479 * overlap, so adjust the offsets here
4480 */
4481 em_start = max(em->start, off);
1506fcc8 4482
ea8efc74
CM
4483 /*
4484 * record the offset from the start of the extent
b76bb701
JB
4485 * for adjusting the disk offset below. Only do this if the
4486 * extent isn't compressed since our in ram offset may be past
4487 * what we have actually allocated on disk.
ea8efc74 4488 */
b76bb701
JB
4489 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4490 offset_in_extent = em_start - em->start;
ec29ed5b 4491 em_end = extent_map_end(em);
ea8efc74 4492 em_len = em_end - em_start;
1506fcc8
YS
4493 disko = 0;
4494 flags = 0;
4495
ea8efc74
CM
4496 /*
4497 * bump off for our next call to get_extent
4498 */
4499 off = extent_map_end(em);
4500 if (off >= max)
4501 end = 1;
4502
93dbfad7 4503 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4504 end = 1;
4505 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4506 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4507 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4508 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4509 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4510 flags |= (FIEMAP_EXTENT_DELALLOC |
4511 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4512 } else if (fieinfo->fi_extents_max) {
4513 u64 bytenr = em->block_start -
4514 (em->start - em->orig_start);
fe09e16c 4515
ea8efc74 4516 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4517
4518 /*
4519 * As btrfs supports shared space, this information
4520 * can be exported to userspace tools via
dc046b10
JB
4521 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4522 * then we're just getting a count and we can skip the
4523 * lookup stuff.
fe09e16c 4524 */
dc046b10
JB
4525 ret = btrfs_check_shared(NULL, root->fs_info,
4526 root->objectid,
4527 btrfs_ino(inode), bytenr);
4528 if (ret < 0)
fe09e16c 4529 goto out_free;
dc046b10 4530 if (ret)
fe09e16c 4531 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4532 ret = 0;
1506fcc8
YS
4533 }
4534 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4535 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4536 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4537 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4538
1506fcc8
YS
4539 free_extent_map(em);
4540 em = NULL;
ec29ed5b
CM
4541 if ((em_start >= last) || em_len == (u64)-1 ||
4542 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4543 flags |= FIEMAP_EXTENT_LAST;
4544 end = 1;
4545 }
4546
ec29ed5b
CM
4547 /* now scan forward to see if this is really the last extent. */
4548 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4549 get_extent);
4550 if (IS_ERR(em)) {
4551 ret = PTR_ERR(em);
4552 goto out;
4553 }
4554 if (!em) {
975f84fe
JB
4555 flags |= FIEMAP_EXTENT_LAST;
4556 end = 1;
4557 }
ec29ed5b
CM
4558 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4559 em_len, flags);
26e726af
CS
4560 if (ret) {
4561 if (ret == 1)
4562 ret = 0;
ec29ed5b 4563 goto out_free;
26e726af 4564 }
1506fcc8
YS
4565 }
4566out_free:
4567 free_extent_map(em);
4568out:
fe09e16c 4569 btrfs_free_path(path);
a52f4cd2 4570 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4571 &cached_state, GFP_NOFS);
1506fcc8
YS
4572 return ret;
4573}
4574
727011e0
CM
4575static void __free_extent_buffer(struct extent_buffer *eb)
4576{
6d49ba1b 4577 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4578 kmem_cache_free(extent_buffer_cache, eb);
4579}
4580
a26e8c9f 4581int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4582{
4583 return (atomic_read(&eb->io_pages) ||
4584 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4585 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4586}
4587
4588/*
4589 * Helper for releasing extent buffer page.
4590 */
a50924e3 4591static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4592{
4593 unsigned long index;
db7f3436
JB
4594 struct page *page;
4595 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4596
4597 BUG_ON(extent_buffer_under_io(eb));
4598
a50924e3
DS
4599 index = num_extent_pages(eb->start, eb->len);
4600 if (index == 0)
db7f3436
JB
4601 return;
4602
4603 do {
4604 index--;
fb85fc9a 4605 page = eb->pages[index];
5d2361db
FL
4606 if (!page)
4607 continue;
4608 if (mapped)
db7f3436 4609 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4610 /*
4611 * We do this since we'll remove the pages after we've
4612 * removed the eb from the radix tree, so we could race
4613 * and have this page now attached to the new eb. So
4614 * only clear page_private if it's still connected to
4615 * this eb.
4616 */
4617 if (PagePrivate(page) &&
4618 page->private == (unsigned long)eb) {
4619 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4620 BUG_ON(PageDirty(page));
4621 BUG_ON(PageWriteback(page));
db7f3436 4622 /*
5d2361db
FL
4623 * We need to make sure we haven't be attached
4624 * to a new eb.
db7f3436 4625 */
5d2361db
FL
4626 ClearPagePrivate(page);
4627 set_page_private(page, 0);
4628 /* One for the page private */
db7f3436
JB
4629 page_cache_release(page);
4630 }
5d2361db
FL
4631
4632 if (mapped)
4633 spin_unlock(&page->mapping->private_lock);
4634
4635 /* One for when we alloced the page */
4636 page_cache_release(page);
a50924e3 4637 } while (index != 0);
db7f3436
JB
4638}
4639
4640/*
4641 * Helper for releasing the extent buffer.
4642 */
4643static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4644{
a50924e3 4645 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4646 __free_extent_buffer(eb);
4647}
4648
f28491e0
JB
4649static struct extent_buffer *
4650__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4651 unsigned long len)
d1310b2e
CM
4652{
4653 struct extent_buffer *eb = NULL;
4654
d1b5c567 4655 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4656 eb->start = start;
4657 eb->len = len;
f28491e0 4658 eb->fs_info = fs_info;
815a51c7 4659 eb->bflags = 0;
bd681513
CM
4660 rwlock_init(&eb->lock);
4661 atomic_set(&eb->write_locks, 0);
4662 atomic_set(&eb->read_locks, 0);
4663 atomic_set(&eb->blocking_readers, 0);
4664 atomic_set(&eb->blocking_writers, 0);
4665 atomic_set(&eb->spinning_readers, 0);
4666 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4667 eb->lock_nested = 0;
bd681513
CM
4668 init_waitqueue_head(&eb->write_lock_wq);
4669 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4670
6d49ba1b
ES
4671 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4672
3083ee2e 4673 spin_lock_init(&eb->refs_lock);
d1310b2e 4674 atomic_set(&eb->refs, 1);
0b32f4bb 4675 atomic_set(&eb->io_pages, 0);
727011e0 4676
b8dae313
DS
4677 /*
4678 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4679 */
4680 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4681 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4682 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4683
4684 return eb;
4685}
4686
815a51c7
JS
4687struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4688{
4689 unsigned long i;
4690 struct page *p;
4691 struct extent_buffer *new;
4692 unsigned long num_pages = num_extent_pages(src->start, src->len);
4693
3f556f78 4694 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4695 if (new == NULL)
4696 return NULL;
4697
4698 for (i = 0; i < num_pages; i++) {
9ec72677 4699 p = alloc_page(GFP_NOFS);
db7f3436
JB
4700 if (!p) {
4701 btrfs_release_extent_buffer(new);
4702 return NULL;
4703 }
815a51c7
JS
4704 attach_extent_buffer_page(new, p);
4705 WARN_ON(PageDirty(p));
4706 SetPageUptodate(p);
4707 new->pages[i] = p;
4708 }
4709
4710 copy_extent_buffer(new, src, 0, 0, src->len);
4711 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4712 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4713
4714 return new;
4715}
4716
3f556f78
DS
4717struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4718 u64 start)
815a51c7
JS
4719{
4720 struct extent_buffer *eb;
3f556f78
DS
4721 unsigned long len;
4722 unsigned long num_pages;
815a51c7
JS
4723 unsigned long i;
4724
3f556f78
DS
4725 if (!fs_info) {
4726 /*
4727 * Called only from tests that don't always have a fs_info
4728 * available, but we know that nodesize is 4096
4729 */
4730 len = 4096;
4731 } else {
4732 len = fs_info->tree_root->nodesize;
4733 }
4734 num_pages = num_extent_pages(0, len);
4735
4736 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4737 if (!eb)
4738 return NULL;
4739
4740 for (i = 0; i < num_pages; i++) {
9ec72677 4741 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4742 if (!eb->pages[i])
4743 goto err;
4744 }
4745 set_extent_buffer_uptodate(eb);
4746 btrfs_set_header_nritems(eb, 0);
4747 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4748
4749 return eb;
4750err:
84167d19
SB
4751 for (; i > 0; i--)
4752 __free_page(eb->pages[i - 1]);
815a51c7
JS
4753 __free_extent_buffer(eb);
4754 return NULL;
4755}
4756
0b32f4bb
JB
4757static void check_buffer_tree_ref(struct extent_buffer *eb)
4758{
242e18c7 4759 int refs;
0b32f4bb
JB
4760 /* the ref bit is tricky. We have to make sure it is set
4761 * if we have the buffer dirty. Otherwise the
4762 * code to free a buffer can end up dropping a dirty
4763 * page
4764 *
4765 * Once the ref bit is set, it won't go away while the
4766 * buffer is dirty or in writeback, and it also won't
4767 * go away while we have the reference count on the
4768 * eb bumped.
4769 *
4770 * We can't just set the ref bit without bumping the
4771 * ref on the eb because free_extent_buffer might
4772 * see the ref bit and try to clear it. If this happens
4773 * free_extent_buffer might end up dropping our original
4774 * ref by mistake and freeing the page before we are able
4775 * to add one more ref.
4776 *
4777 * So bump the ref count first, then set the bit. If someone
4778 * beat us to it, drop the ref we added.
4779 */
242e18c7
CM
4780 refs = atomic_read(&eb->refs);
4781 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4782 return;
4783
594831c4
JB
4784 spin_lock(&eb->refs_lock);
4785 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4786 atomic_inc(&eb->refs);
594831c4 4787 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4788}
4789
2457aec6
MG
4790static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4791 struct page *accessed)
5df4235e
JB
4792{
4793 unsigned long num_pages, i;
4794
0b32f4bb
JB
4795 check_buffer_tree_ref(eb);
4796
5df4235e
JB
4797 num_pages = num_extent_pages(eb->start, eb->len);
4798 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4799 struct page *p = eb->pages[i];
4800
2457aec6
MG
4801 if (p != accessed)
4802 mark_page_accessed(p);
5df4235e
JB
4803 }
4804}
4805
f28491e0
JB
4806struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4807 u64 start)
452c75c3
CS
4808{
4809 struct extent_buffer *eb;
4810
4811 rcu_read_lock();
f28491e0
JB
4812 eb = radix_tree_lookup(&fs_info->buffer_radix,
4813 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4814 if (eb && atomic_inc_not_zero(&eb->refs)) {
4815 rcu_read_unlock();
062c19e9
FM
4816 /*
4817 * Lock our eb's refs_lock to avoid races with
4818 * free_extent_buffer. When we get our eb it might be flagged
4819 * with EXTENT_BUFFER_STALE and another task running
4820 * free_extent_buffer might have seen that flag set,
4821 * eb->refs == 2, that the buffer isn't under IO (dirty and
4822 * writeback flags not set) and it's still in the tree (flag
4823 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4824 * of decrementing the extent buffer's reference count twice.
4825 * So here we could race and increment the eb's reference count,
4826 * clear its stale flag, mark it as dirty and drop our reference
4827 * before the other task finishes executing free_extent_buffer,
4828 * which would later result in an attempt to free an extent
4829 * buffer that is dirty.
4830 */
4831 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4832 spin_lock(&eb->refs_lock);
4833 spin_unlock(&eb->refs_lock);
4834 }
2457aec6 4835 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4836 return eb;
4837 }
4838 rcu_read_unlock();
4839
4840 return NULL;
4841}
4842
faa2dbf0
JB
4843#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4844struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4845 u64 start)
faa2dbf0
JB
4846{
4847 struct extent_buffer *eb, *exists = NULL;
4848 int ret;
4849
4850 eb = find_extent_buffer(fs_info, start);
4851 if (eb)
4852 return eb;
3f556f78 4853 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4854 if (!eb)
4855 return NULL;
4856 eb->fs_info = fs_info;
4857again:
4858 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4859 if (ret)
4860 goto free_eb;
4861 spin_lock(&fs_info->buffer_lock);
4862 ret = radix_tree_insert(&fs_info->buffer_radix,
4863 start >> PAGE_CACHE_SHIFT, eb);
4864 spin_unlock(&fs_info->buffer_lock);
4865 radix_tree_preload_end();
4866 if (ret == -EEXIST) {
4867 exists = find_extent_buffer(fs_info, start);
4868 if (exists)
4869 goto free_eb;
4870 else
4871 goto again;
4872 }
4873 check_buffer_tree_ref(eb);
4874 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4875
4876 /*
4877 * We will free dummy extent buffer's if they come into
4878 * free_extent_buffer with a ref count of 2, but if we are using this we
4879 * want the buffers to stay in memory until we're done with them, so
4880 * bump the ref count again.
4881 */
4882 atomic_inc(&eb->refs);
4883 return eb;
4884free_eb:
4885 btrfs_release_extent_buffer(eb);
4886 return exists;
4887}
4888#endif
4889
f28491e0 4890struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4891 u64 start)
d1310b2e 4892{
ce3e6984 4893 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4894 unsigned long num_pages = num_extent_pages(start, len);
4895 unsigned long i;
4896 unsigned long index = start >> PAGE_CACHE_SHIFT;
4897 struct extent_buffer *eb;
6af118ce 4898 struct extent_buffer *exists = NULL;
d1310b2e 4899 struct page *p;
f28491e0 4900 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4901 int uptodate = 1;
19fe0a8b 4902 int ret;
d1310b2e 4903
f28491e0 4904 eb = find_extent_buffer(fs_info, start);
452c75c3 4905 if (eb)
6af118ce 4906 return eb;
6af118ce 4907
23d79d81 4908 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4909 if (!eb)
d1310b2e
CM
4910 return NULL;
4911
727011e0 4912 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4913 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4914 if (!p)
6af118ce 4915 goto free_eb;
4f2de97a
JB
4916
4917 spin_lock(&mapping->private_lock);
4918 if (PagePrivate(p)) {
4919 /*
4920 * We could have already allocated an eb for this page
4921 * and attached one so lets see if we can get a ref on
4922 * the existing eb, and if we can we know it's good and
4923 * we can just return that one, else we know we can just
4924 * overwrite page->private.
4925 */
4926 exists = (struct extent_buffer *)p->private;
4927 if (atomic_inc_not_zero(&exists->refs)) {
4928 spin_unlock(&mapping->private_lock);
4929 unlock_page(p);
17de39ac 4930 page_cache_release(p);
2457aec6 4931 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4932 goto free_eb;
4933 }
5ca64f45 4934 exists = NULL;
4f2de97a 4935
0b32f4bb 4936 /*
4f2de97a
JB
4937 * Do this so attach doesn't complain and we need to
4938 * drop the ref the old guy had.
4939 */
4940 ClearPagePrivate(p);
0b32f4bb 4941 WARN_ON(PageDirty(p));
4f2de97a 4942 page_cache_release(p);
d1310b2e 4943 }
4f2de97a
JB
4944 attach_extent_buffer_page(eb, p);
4945 spin_unlock(&mapping->private_lock);
0b32f4bb 4946 WARN_ON(PageDirty(p));
727011e0 4947 eb->pages[i] = p;
d1310b2e
CM
4948 if (!PageUptodate(p))
4949 uptodate = 0;
eb14ab8e
CM
4950
4951 /*
4952 * see below about how we avoid a nasty race with release page
4953 * and why we unlock later
4954 */
d1310b2e
CM
4955 }
4956 if (uptodate)
b4ce94de 4957 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4958again:
19fe0a8b
MX
4959 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4960 if (ret)
4961 goto free_eb;
4962
f28491e0
JB
4963 spin_lock(&fs_info->buffer_lock);
4964 ret = radix_tree_insert(&fs_info->buffer_radix,
4965 start >> PAGE_CACHE_SHIFT, eb);
4966 spin_unlock(&fs_info->buffer_lock);
452c75c3 4967 radix_tree_preload_end();
19fe0a8b 4968 if (ret == -EEXIST) {
f28491e0 4969 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4970 if (exists)
4971 goto free_eb;
4972 else
115391d2 4973 goto again;
6af118ce 4974 }
6af118ce 4975 /* add one reference for the tree */
0b32f4bb 4976 check_buffer_tree_ref(eb);
34b41ace 4977 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4978
4979 /*
4980 * there is a race where release page may have
4981 * tried to find this extent buffer in the radix
4982 * but failed. It will tell the VM it is safe to
4983 * reclaim the, and it will clear the page private bit.
4984 * We must make sure to set the page private bit properly
4985 * after the extent buffer is in the radix tree so
4986 * it doesn't get lost
4987 */
727011e0
CM
4988 SetPageChecked(eb->pages[0]);
4989 for (i = 1; i < num_pages; i++) {
fb85fc9a 4990 p = eb->pages[i];
727011e0
CM
4991 ClearPageChecked(p);
4992 unlock_page(p);
4993 }
4994 unlock_page(eb->pages[0]);
d1310b2e
CM
4995 return eb;
4996
6af118ce 4997free_eb:
5ca64f45 4998 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4999 for (i = 0; i < num_pages; i++) {
5000 if (eb->pages[i])
5001 unlock_page(eb->pages[i]);
5002 }
eb14ab8e 5003
897ca6e9 5004 btrfs_release_extent_buffer(eb);
6af118ce 5005 return exists;
d1310b2e 5006}
d1310b2e 5007
3083ee2e
JB
5008static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5009{
5010 struct extent_buffer *eb =
5011 container_of(head, struct extent_buffer, rcu_head);
5012
5013 __free_extent_buffer(eb);
5014}
5015
3083ee2e 5016/* Expects to have eb->eb_lock already held */
f7a52a40 5017static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5018{
5019 WARN_ON(atomic_read(&eb->refs) == 0);
5020 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5021 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5022 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5023
815a51c7 5024 spin_unlock(&eb->refs_lock);
3083ee2e 5025
f28491e0
JB
5026 spin_lock(&fs_info->buffer_lock);
5027 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 5028 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 5029 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5030 } else {
5031 spin_unlock(&eb->refs_lock);
815a51c7 5032 }
3083ee2e
JB
5033
5034 /* Should be safe to release our pages at this point */
a50924e3 5035 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5036#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5037 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5038 __free_extent_buffer(eb);
5039 return 1;
5040 }
5041#endif
3083ee2e 5042 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5043 return 1;
3083ee2e
JB
5044 }
5045 spin_unlock(&eb->refs_lock);
e64860aa
JB
5046
5047 return 0;
3083ee2e
JB
5048}
5049
d1310b2e
CM
5050void free_extent_buffer(struct extent_buffer *eb)
5051{
242e18c7
CM
5052 int refs;
5053 int old;
d1310b2e
CM
5054 if (!eb)
5055 return;
5056
242e18c7
CM
5057 while (1) {
5058 refs = atomic_read(&eb->refs);
5059 if (refs <= 3)
5060 break;
5061 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5062 if (old == refs)
5063 return;
5064 }
5065
3083ee2e 5066 spin_lock(&eb->refs_lock);
815a51c7
JS
5067 if (atomic_read(&eb->refs) == 2 &&
5068 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5069 atomic_dec(&eb->refs);
5070
3083ee2e
JB
5071 if (atomic_read(&eb->refs) == 2 &&
5072 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5073 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5074 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5075 atomic_dec(&eb->refs);
5076
5077 /*
5078 * I know this is terrible, but it's temporary until we stop tracking
5079 * the uptodate bits and such for the extent buffers.
5080 */
f7a52a40 5081 release_extent_buffer(eb);
3083ee2e
JB
5082}
5083
5084void free_extent_buffer_stale(struct extent_buffer *eb)
5085{
5086 if (!eb)
d1310b2e
CM
5087 return;
5088
3083ee2e
JB
5089 spin_lock(&eb->refs_lock);
5090 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5091
0b32f4bb 5092 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5093 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5094 atomic_dec(&eb->refs);
f7a52a40 5095 release_extent_buffer(eb);
d1310b2e 5096}
d1310b2e 5097
1d4284bd 5098void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5099{
d1310b2e
CM
5100 unsigned long i;
5101 unsigned long num_pages;
5102 struct page *page;
5103
d1310b2e
CM
5104 num_pages = num_extent_pages(eb->start, eb->len);
5105
5106 for (i = 0; i < num_pages; i++) {
fb85fc9a 5107 page = eb->pages[i];
b9473439 5108 if (!PageDirty(page))
d2c3f4f6
CM
5109 continue;
5110
a61e6f29 5111 lock_page(page);
eb14ab8e
CM
5112 WARN_ON(!PagePrivate(page));
5113
d1310b2e 5114 clear_page_dirty_for_io(page);
0ee0fda0 5115 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5116 if (!PageDirty(page)) {
5117 radix_tree_tag_clear(&page->mapping->page_tree,
5118 page_index(page),
5119 PAGECACHE_TAG_DIRTY);
5120 }
0ee0fda0 5121 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5122 ClearPageError(page);
a61e6f29 5123 unlock_page(page);
d1310b2e 5124 }
0b32f4bb 5125 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5126}
d1310b2e 5127
0b32f4bb 5128int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5129{
5130 unsigned long i;
5131 unsigned long num_pages;
b9473439 5132 int was_dirty = 0;
d1310b2e 5133
0b32f4bb
JB
5134 check_buffer_tree_ref(eb);
5135
b9473439 5136 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5137
d1310b2e 5138 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5139 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5140 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5141
b9473439 5142 for (i = 0; i < num_pages; i++)
fb85fc9a 5143 set_page_dirty(eb->pages[i]);
b9473439 5144 return was_dirty;
d1310b2e 5145}
d1310b2e 5146
0b32f4bb 5147int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5148{
5149 unsigned long i;
5150 struct page *page;
5151 unsigned long num_pages;
5152
b4ce94de 5153 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5154 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5155 for (i = 0; i < num_pages; i++) {
fb85fc9a 5156 page = eb->pages[i];
33958dc6
CM
5157 if (page)
5158 ClearPageUptodate(page);
1259ab75
CM
5159 }
5160 return 0;
5161}
5162
0b32f4bb 5163int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5164{
5165 unsigned long i;
5166 struct page *page;
5167 unsigned long num_pages;
5168
0b32f4bb 5169 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5170 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5171 for (i = 0; i < num_pages; i++) {
fb85fc9a 5172 page = eb->pages[i];
d1310b2e
CM
5173 SetPageUptodate(page);
5174 }
5175 return 0;
5176}
d1310b2e 5177
0b32f4bb 5178int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5179{
0b32f4bb 5180 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5181}
d1310b2e
CM
5182
5183int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5184 struct extent_buffer *eb, u64 start, int wait,
f188591e 5185 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5186{
5187 unsigned long i;
5188 unsigned long start_i;
5189 struct page *page;
5190 int err;
5191 int ret = 0;
ce9adaa5
CM
5192 int locked_pages = 0;
5193 int all_uptodate = 1;
d1310b2e 5194 unsigned long num_pages;
727011e0 5195 unsigned long num_reads = 0;
a86c12c7 5196 struct bio *bio = NULL;
c8b97818 5197 unsigned long bio_flags = 0;
a86c12c7 5198
b4ce94de 5199 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5200 return 0;
5201
d1310b2e
CM
5202 if (start) {
5203 WARN_ON(start < eb->start);
5204 start_i = (start >> PAGE_CACHE_SHIFT) -
5205 (eb->start >> PAGE_CACHE_SHIFT);
5206 } else {
5207 start_i = 0;
5208 }
5209
5210 num_pages = num_extent_pages(eb->start, eb->len);
5211 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5212 page = eb->pages[i];
bb82ab88 5213 if (wait == WAIT_NONE) {
2db04966 5214 if (!trylock_page(page))
ce9adaa5 5215 goto unlock_exit;
d1310b2e
CM
5216 } else {
5217 lock_page(page);
5218 }
ce9adaa5 5219 locked_pages++;
727011e0
CM
5220 if (!PageUptodate(page)) {
5221 num_reads++;
ce9adaa5 5222 all_uptodate = 0;
727011e0 5223 }
ce9adaa5
CM
5224 }
5225 if (all_uptodate) {
5226 if (start_i == 0)
b4ce94de 5227 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5228 goto unlock_exit;
5229 }
5230
656f30db 5231 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5232 eb->read_mirror = 0;
0b32f4bb 5233 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5234 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5235 page = eb->pages[i];
ce9adaa5 5236 if (!PageUptodate(page)) {
f188591e 5237 ClearPageError(page);
a86c12c7 5238 err = __extent_read_full_page(tree, page,
f188591e 5239 get_extent, &bio,
d4c7ca86
JB
5240 mirror_num, &bio_flags,
5241 READ | REQ_META);
d397712b 5242 if (err)
d1310b2e 5243 ret = err;
d1310b2e
CM
5244 } else {
5245 unlock_page(page);
5246 }
5247 }
5248
355808c2 5249 if (bio) {
d4c7ca86
JB
5250 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5251 bio_flags);
79787eaa
JM
5252 if (err)
5253 return err;
355808c2 5254 }
a86c12c7 5255
bb82ab88 5256 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5257 return ret;
d397712b 5258
d1310b2e 5259 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5260 page = eb->pages[i];
d1310b2e 5261 wait_on_page_locked(page);
d397712b 5262 if (!PageUptodate(page))
d1310b2e 5263 ret = -EIO;
d1310b2e 5264 }
d397712b 5265
d1310b2e 5266 return ret;
ce9adaa5
CM
5267
5268unlock_exit:
5269 i = start_i;
d397712b 5270 while (locked_pages > 0) {
fb85fc9a 5271 page = eb->pages[i];
ce9adaa5
CM
5272 i++;
5273 unlock_page(page);
5274 locked_pages--;
5275 }
5276 return ret;
d1310b2e 5277}
d1310b2e
CM
5278
5279void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5280 unsigned long start,
5281 unsigned long len)
5282{
5283 size_t cur;
5284 size_t offset;
5285 struct page *page;
5286 char *kaddr;
5287 char *dst = (char *)dstv;
5288 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5289 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5290
5291 WARN_ON(start > eb->len);
5292 WARN_ON(start + len > eb->start + eb->len);
5293
778746b5 5294 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5295
d397712b 5296 while (len > 0) {
fb85fc9a 5297 page = eb->pages[i];
d1310b2e
CM
5298
5299 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5300 kaddr = page_address(page);
d1310b2e 5301 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5302
5303 dst += cur;
5304 len -= cur;
5305 offset = 0;
5306 i++;
5307 }
5308}
d1310b2e 5309
550ac1d8
GH
5310int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5311 unsigned long start,
5312 unsigned long len)
5313{
5314 size_t cur;
5315 size_t offset;
5316 struct page *page;
5317 char *kaddr;
5318 char __user *dst = (char __user *)dstv;
5319 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5320 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5321 int ret = 0;
5322
5323 WARN_ON(start > eb->len);
5324 WARN_ON(start + len > eb->start + eb->len);
5325
5326 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5327
5328 while (len > 0) {
fb85fc9a 5329 page = eb->pages[i];
550ac1d8
GH
5330
5331 cur = min(len, (PAGE_CACHE_SIZE - offset));
5332 kaddr = page_address(page);
5333 if (copy_to_user(dst, kaddr + offset, cur)) {
5334 ret = -EFAULT;
5335 break;
5336 }
5337
5338 dst += cur;
5339 len -= cur;
5340 offset = 0;
5341 i++;
5342 }
5343
5344 return ret;
5345}
5346
d1310b2e 5347int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5348 unsigned long min_len, char **map,
d1310b2e 5349 unsigned long *map_start,
a6591715 5350 unsigned long *map_len)
d1310b2e
CM
5351{
5352 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5353 char *kaddr;
5354 struct page *p;
5355 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5357 unsigned long end_i = (start_offset + start + min_len - 1) >>
5358 PAGE_CACHE_SHIFT;
5359
5360 if (i != end_i)
5361 return -EINVAL;
5362
5363 if (i == 0) {
5364 offset = start_offset;
5365 *map_start = 0;
5366 } else {
5367 offset = 0;
5368 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5369 }
d397712b 5370
d1310b2e 5371 if (start + min_len > eb->len) {
31b1a2bd 5372 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5373 "wanted %lu %lu\n",
5374 eb->start, eb->len, start, min_len);
85026533 5375 return -EINVAL;
d1310b2e
CM
5376 }
5377
fb85fc9a 5378 p = eb->pages[i];
a6591715 5379 kaddr = page_address(p);
d1310b2e
CM
5380 *map = kaddr + offset;
5381 *map_len = PAGE_CACHE_SIZE - offset;
5382 return 0;
5383}
d1310b2e 5384
d1310b2e
CM
5385int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5386 unsigned long start,
5387 unsigned long len)
5388{
5389 size_t cur;
5390 size_t offset;
5391 struct page *page;
5392 char *kaddr;
5393 char *ptr = (char *)ptrv;
5394 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5395 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5396 int ret = 0;
5397
5398 WARN_ON(start > eb->len);
5399 WARN_ON(start + len > eb->start + eb->len);
5400
778746b5 5401 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5402
d397712b 5403 while (len > 0) {
fb85fc9a 5404 page = eb->pages[i];
d1310b2e
CM
5405
5406 cur = min(len, (PAGE_CACHE_SIZE - offset));
5407
a6591715 5408 kaddr = page_address(page);
d1310b2e 5409 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5410 if (ret)
5411 break;
5412
5413 ptr += cur;
5414 len -= cur;
5415 offset = 0;
5416 i++;
5417 }
5418 return ret;
5419}
d1310b2e
CM
5420
5421void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5422 unsigned long start, unsigned long len)
5423{
5424 size_t cur;
5425 size_t offset;
5426 struct page *page;
5427 char *kaddr;
5428 char *src = (char *)srcv;
5429 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5430 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5431
5432 WARN_ON(start > eb->len);
5433 WARN_ON(start + len > eb->start + eb->len);
5434
778746b5 5435 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5436
d397712b 5437 while (len > 0) {
fb85fc9a 5438 page = eb->pages[i];
d1310b2e
CM
5439 WARN_ON(!PageUptodate(page));
5440
5441 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5442 kaddr = page_address(page);
d1310b2e 5443 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5444
5445 src += cur;
5446 len -= cur;
5447 offset = 0;
5448 i++;
5449 }
5450}
d1310b2e
CM
5451
5452void memset_extent_buffer(struct extent_buffer *eb, char c,
5453 unsigned long start, unsigned long len)
5454{
5455 size_t cur;
5456 size_t offset;
5457 struct page *page;
5458 char *kaddr;
5459 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5460 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5461
5462 WARN_ON(start > eb->len);
5463 WARN_ON(start + len > eb->start + eb->len);
5464
778746b5 5465 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5466
d397712b 5467 while (len > 0) {
fb85fc9a 5468 page = eb->pages[i];
d1310b2e
CM
5469 WARN_ON(!PageUptodate(page));
5470
5471 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5472 kaddr = page_address(page);
d1310b2e 5473 memset(kaddr + offset, c, cur);
d1310b2e
CM
5474
5475 len -= cur;
5476 offset = 0;
5477 i++;
5478 }
5479}
d1310b2e
CM
5480
5481void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5482 unsigned long dst_offset, unsigned long src_offset,
5483 unsigned long len)
5484{
5485 u64 dst_len = dst->len;
5486 size_t cur;
5487 size_t offset;
5488 struct page *page;
5489 char *kaddr;
5490 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5491 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5492
5493 WARN_ON(src->len != dst_len);
5494
5495 offset = (start_offset + dst_offset) &
778746b5 5496 (PAGE_CACHE_SIZE - 1);
d1310b2e 5497
d397712b 5498 while (len > 0) {
fb85fc9a 5499 page = dst->pages[i];
d1310b2e
CM
5500 WARN_ON(!PageUptodate(page));
5501
5502 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5503
a6591715 5504 kaddr = page_address(page);
d1310b2e 5505 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5506
5507 src_offset += cur;
5508 len -= cur;
5509 offset = 0;
5510 i++;
5511 }
5512}
d1310b2e 5513
3387206f
ST
5514static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5515{
5516 unsigned long distance = (src > dst) ? src - dst : dst - src;
5517 return distance < len;
5518}
5519
d1310b2e
CM
5520static void copy_pages(struct page *dst_page, struct page *src_page,
5521 unsigned long dst_off, unsigned long src_off,
5522 unsigned long len)
5523{
a6591715 5524 char *dst_kaddr = page_address(dst_page);
d1310b2e 5525 char *src_kaddr;
727011e0 5526 int must_memmove = 0;
d1310b2e 5527
3387206f 5528 if (dst_page != src_page) {
a6591715 5529 src_kaddr = page_address(src_page);
3387206f 5530 } else {
d1310b2e 5531 src_kaddr = dst_kaddr;
727011e0
CM
5532 if (areas_overlap(src_off, dst_off, len))
5533 must_memmove = 1;
3387206f 5534 }
d1310b2e 5535
727011e0
CM
5536 if (must_memmove)
5537 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5538 else
5539 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5540}
5541
5542void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5543 unsigned long src_offset, unsigned long len)
5544{
5545 size_t cur;
5546 size_t dst_off_in_page;
5547 size_t src_off_in_page;
5548 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5549 unsigned long dst_i;
5550 unsigned long src_i;
5551
5552 if (src_offset + len > dst->len) {
f14d104d
DS
5553 btrfs_err(dst->fs_info,
5554 "memmove bogus src_offset %lu move "
5555 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5556 BUG_ON(1);
5557 }
5558 if (dst_offset + len > dst->len) {
f14d104d
DS
5559 btrfs_err(dst->fs_info,
5560 "memmove bogus dst_offset %lu move "
5561 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5562 BUG_ON(1);
5563 }
5564
d397712b 5565 while (len > 0) {
d1310b2e 5566 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5567 (PAGE_CACHE_SIZE - 1);
d1310b2e 5568 src_off_in_page = (start_offset + src_offset) &
778746b5 5569 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5570
5571 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5572 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5573
5574 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5575 src_off_in_page));
5576 cur = min_t(unsigned long, cur,
5577 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5578
fb85fc9a 5579 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5580 dst_off_in_page, src_off_in_page, cur);
5581
5582 src_offset += cur;
5583 dst_offset += cur;
5584 len -= cur;
5585 }
5586}
d1310b2e
CM
5587
5588void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5589 unsigned long src_offset, unsigned long len)
5590{
5591 size_t cur;
5592 size_t dst_off_in_page;
5593 size_t src_off_in_page;
5594 unsigned long dst_end = dst_offset + len - 1;
5595 unsigned long src_end = src_offset + len - 1;
5596 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5597 unsigned long dst_i;
5598 unsigned long src_i;
5599
5600 if (src_offset + len > dst->len) {
f14d104d
DS
5601 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5602 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5603 BUG_ON(1);
5604 }
5605 if (dst_offset + len > dst->len) {
f14d104d
DS
5606 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5607 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5608 BUG_ON(1);
5609 }
727011e0 5610 if (dst_offset < src_offset) {
d1310b2e
CM
5611 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5612 return;
5613 }
d397712b 5614 while (len > 0) {
d1310b2e
CM
5615 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5616 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5617
5618 dst_off_in_page = (start_offset + dst_end) &
778746b5 5619 (PAGE_CACHE_SIZE - 1);
d1310b2e 5620 src_off_in_page = (start_offset + src_end) &
778746b5 5621 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5622
5623 cur = min_t(unsigned long, len, src_off_in_page + 1);
5624 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5625 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5626 dst_off_in_page - cur + 1,
5627 src_off_in_page - cur + 1, cur);
5628
5629 dst_end -= cur;
5630 src_end -= cur;
5631 len -= cur;
5632 }
5633}
6af118ce 5634
f7a52a40 5635int try_release_extent_buffer(struct page *page)
19fe0a8b 5636{
6af118ce 5637 struct extent_buffer *eb;
6af118ce 5638
3083ee2e
JB
5639 /*
5640 * We need to make sure noboody is attaching this page to an eb right
5641 * now.
5642 */
5643 spin_lock(&page->mapping->private_lock);
5644 if (!PagePrivate(page)) {
5645 spin_unlock(&page->mapping->private_lock);
4f2de97a 5646 return 1;
45f49bce 5647 }
6af118ce 5648
3083ee2e
JB
5649 eb = (struct extent_buffer *)page->private;
5650 BUG_ON(!eb);
19fe0a8b
MX
5651
5652 /*
3083ee2e
JB
5653 * This is a little awful but should be ok, we need to make sure that
5654 * the eb doesn't disappear out from under us while we're looking at
5655 * this page.
19fe0a8b 5656 */
3083ee2e 5657 spin_lock(&eb->refs_lock);
0b32f4bb 5658 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5659 spin_unlock(&eb->refs_lock);
5660 spin_unlock(&page->mapping->private_lock);
5661 return 0;
b9473439 5662 }
3083ee2e 5663 spin_unlock(&page->mapping->private_lock);
897ca6e9 5664
19fe0a8b 5665 /*
3083ee2e
JB
5666 * If tree ref isn't set then we know the ref on this eb is a real ref,
5667 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5668 */
3083ee2e
JB
5669 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5670 spin_unlock(&eb->refs_lock);
5671 return 0;
b9473439 5672 }
19fe0a8b 5673
f7a52a40 5674 return release_extent_buffer(eb);
6af118ce 5675}