Btrfs: make find_first_extent_bit be able to cache any state
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
27a3507d
FM
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1
DS
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
efe120a0 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
0b32f4bb 134static noinline void flush_write_bio(void *data);
c2d904e0
JM
135static inline struct btrfs_fs_info *
136tree_fs_info(struct extent_io_tree *tree)
137{
a5dee37d
JB
138 if (!tree->mapping)
139 return NULL;
c2d904e0
JM
140 return btrfs_sb(tree->mapping->host->i_sb);
141}
0b32f4bb 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b
CM
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
b208c2f7
DW
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7
DW
167free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
9be3395b
CM
171free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
d1310b2e
CM
175free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
9be3395b 177 extent_state_cache = NULL;
d1310b2e
CM
178 return -ENOMEM;
179}
180
181void extent_io_exit(void)
182{
6d49ba1b 183 btrfs_leak_debug_check();
8c0a8537
KS
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
d1310b2e
CM
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
d1310b2e
CM
196}
197
198void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 199 struct address_space *mapping)
d1310b2e 200{
6bef4d31 201 tree->state = RB_ROOT;
d1310b2e
CM
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
70dec807 204 spin_lock_init(&tree->lock);
d1310b2e 205 tree->mapping = mapping;
d1310b2e 206}
d1310b2e 207
b2950863 208static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
209{
210 struct extent_state *state;
d1310b2e
CM
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 213 if (!state)
d1310b2e
CM
214 return state;
215 state->state = 0;
d1310b2e 216 state->private = 0;
27a3507d 217 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 218 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
143bede5 221 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
222 return state;
223}
d1310b2e 224
4845e44f 225void free_extent_state(struct extent_state *state)
d1310b2e 226{
d1310b2e
CM
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
27a3507d 230 WARN_ON(extent_state_in_tree(state));
6d49ba1b 231 btrfs_leak_debug_del(&state->leak_list);
143bede5 232 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
233 kmem_cache_free(extent_state_cache, state);
234 }
235}
d1310b2e 236
f2071b21
FM
237static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
12cfbad9
FDBM
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
d1310b2e 243{
f2071b21 244 struct rb_node **p;
d397712b 245 struct rb_node *parent = NULL;
d1310b2e
CM
246 struct tree_entry *entry;
247
12cfbad9
FDBM
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
f2071b21 254 p = search_start ? &search_start : &root->rb_node;
d397712b 255 while (*p) {
d1310b2e
CM
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
12cfbad9 267do_insert:
d1310b2e
CM
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271}
272
80ea96b1 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
d1310b2e 278{
80ea96b1 279 struct rb_root *root = &tree->state;
12cfbad9 280 struct rb_node **n = &root->rb_node;
d1310b2e
CM
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
12cfbad9
FDBM
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
289 prev_entry = entry;
290
291 if (offset < entry->start)
12cfbad9 292 n = &(*n)->rb_left;
d1310b2e 293 else if (offset > entry->end)
12cfbad9 294 n = &(*n)->rb_right;
d397712b 295 else
12cfbad9 296 return *n;
d1310b2e
CM
297 }
298
12cfbad9
FDBM
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
d1310b2e
CM
304 if (prev_ret) {
305 orig_prev = prev;
d397712b 306 while (prev && offset > prev_entry->end) {
d1310b2e
CM
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 316 while (prev && offset < prev_entry->start) {
d1310b2e
CM
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323}
324
12cfbad9
FDBM
325static inline struct rb_node *
326tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
d1310b2e 330{
70dec807 331 struct rb_node *prev = NULL;
d1310b2e 332 struct rb_node *ret;
70dec807 333
12cfbad9 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 335 if (!ret)
d1310b2e
CM
336 return prev;
337 return ret;
338}
339
12cfbad9
FDBM
340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342{
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344}
345
9ed74f2d
JB
346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348{
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
41074888 399 struct extent_state *state, unsigned long *bits)
291d673e 400{
1bf85046
JM
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
41074888 406 struct extent_state *state, unsigned long *bits)
291d673e 407{
9ed74f2d
JB
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
41074888 413 struct extent_state *state, unsigned long *bits);
3150b699 414
d1310b2e
CM
415/*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
427 struct rb_node ***p,
428 struct rb_node **parent,
41074888 429 unsigned long *bits)
d1310b2e
CM
430{
431 struct rb_node *node;
432
31b1a2bd 433 if (end < start)
efe120a0 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 435 end, start);
d1310b2e
CM
436 state->start = start;
437 state->end = end;
9ed74f2d 438
3150b699
XG
439 set_state_bits(tree, state, bits);
440
f2071b21 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
446 "%llu %llu\n",
447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
41074888 514 unsigned long *bits, int wake)
d1310b2e 515{
cdc6a395 516 struct extent_state *next;
41074888 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 518
0ca1f7ce 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
291d673e 524 clear_state_cb(tree, state, bits);
32c00aff 525 state->state &= ~bits_to_clear;
d1310b2e
CM
526 if (wake)
527 wake_up(&state->wq);
0ca1f7ce 528 if (state->state == 0) {
cdc6a395 529 next = next_state(state);
27a3507d 530 if (extent_state_in_tree(state)) {
d1310b2e 531 rb_erase(&state->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
cdc6a395 539 next = next_state(state);
d1310b2e 540 }
cdc6a395 541 return next;
d1310b2e
CM
542}
543
8233767a
XG
544static struct extent_state *
545alloc_extent_state_atomic(struct extent_state *prealloc)
546{
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551}
552
48a3b636 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
554{
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558}
559
d1310b2e
CM
560/*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
6763af84 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
571 */
572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 573 unsigned long bits, int wake, int delete,
2c64c53d
CM
574 struct extent_state **cached_state,
575 gfp_t mask)
d1310b2e
CM
576{
577 struct extent_state *state;
2c64c53d 578 struct extent_state *cached;
d1310b2e
CM
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
5c939df5 581 u64 last_end;
d1310b2e 582 int err;
2ac55d41 583 int clear = 0;
d1310b2e 584
a5dee37d 585 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 586
7ee9e440
JB
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
0ca1f7ce
YZ
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
2ac55d41
JB
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
d1310b2e
CM
596again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
598 prealloc = alloc_extent_state(mask);
599 if (!prealloc)
600 return -ENOMEM;
601 }
602
cad321ad 603 spin_lock(&tree->lock);
2c64c53d
CM
604 if (cached_state) {
605 cached = *cached_state;
2ac55d41
JB
606
607 if (clear) {
608 *cached_state = NULL;
609 cached_state = NULL;
610 }
611
27a3507d
FM
612 if (cached && extent_state_in_tree(cached) &&
613 cached->start <= start && cached->end > start) {
2ac55d41
JB
614 if (clear)
615 atomic_dec(&cached->refs);
2c64c53d 616 state = cached;
42daec29 617 goto hit_next;
2c64c53d 618 }
2ac55d41
JB
619 if (clear)
620 free_extent_state(cached);
2c64c53d 621 }
d1310b2e
CM
622 /*
623 * this search will find the extents that end after
624 * our range starts
625 */
80ea96b1 626 node = tree_search(tree, start);
d1310b2e
CM
627 if (!node)
628 goto out;
629 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 630hit_next:
d1310b2e
CM
631 if (state->start > end)
632 goto out;
633 WARN_ON(state->end < start);
5c939df5 634 last_end = state->end;
d1310b2e 635
0449314a 636 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
637 if (!(state->state & bits)) {
638 state = next_state(state);
0449314a 639 goto next;
cdc6a395 640 }
0449314a 641
d1310b2e
CM
642 /*
643 * | ---- desired range ---- |
644 * | state | or
645 * | ------------- state -------------- |
646 *
647 * We need to split the extent we found, and may flip
648 * bits on second half.
649 *
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
653 *
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
656 */
657
658 if (state->start < start) {
8233767a
XG
659 prealloc = alloc_extent_state_atomic(prealloc);
660 BUG_ON(!prealloc);
d1310b2e 661 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
662 if (err)
663 extent_io_tree_panic(tree, err);
664
d1310b2e
CM
665 prealloc = NULL;
666 if (err)
667 goto out;
668 if (state->end <= end) {
d1ac6e41
LB
669 state = clear_state_bit(tree, state, &bits, wake);
670 goto next;
d1310b2e
CM
671 }
672 goto search_again;
673 }
674 /*
675 * | ---- desired range ---- |
676 * | state |
677 * We need to split the extent, and clear the bit
678 * on the first half
679 */
680 if (state->start <= end && state->end > end) {
8233767a
XG
681 prealloc = alloc_extent_state_atomic(prealloc);
682 BUG_ON(!prealloc);
d1310b2e 683 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
684 if (err)
685 extent_io_tree_panic(tree, err);
686
d1310b2e
CM
687 if (wake)
688 wake_up(&state->wq);
42daec29 689
6763af84 690 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 691
d1310b2e
CM
692 prealloc = NULL;
693 goto out;
694 }
42daec29 695
cdc6a395 696 state = clear_state_bit(tree, state, &bits, wake);
0449314a 697next:
5c939df5
YZ
698 if (last_end == (u64)-1)
699 goto out;
700 start = last_end + 1;
cdc6a395 701 if (start <= end && state && !need_resched())
692e5759 702 goto hit_next;
d1310b2e
CM
703 goto search_again;
704
705out:
cad321ad 706 spin_unlock(&tree->lock);
d1310b2e
CM
707 if (prealloc)
708 free_extent_state(prealloc);
709
6763af84 710 return 0;
d1310b2e
CM
711
712search_again:
713 if (start > end)
714 goto out;
cad321ad 715 spin_unlock(&tree->lock);
d1310b2e
CM
716 if (mask & __GFP_WAIT)
717 cond_resched();
718 goto again;
719}
d1310b2e 720
143bede5
JM
721static void wait_on_state(struct extent_io_tree *tree,
722 struct extent_state *state)
641f5219
CH
723 __releases(tree->lock)
724 __acquires(tree->lock)
d1310b2e
CM
725{
726 DEFINE_WAIT(wait);
727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 728 spin_unlock(&tree->lock);
d1310b2e 729 schedule();
cad321ad 730 spin_lock(&tree->lock);
d1310b2e 731 finish_wait(&state->wq, &wait);
d1310b2e
CM
732}
733
734/*
735 * waits for one or more bits to clear on a range in the state tree.
736 * The range [start, end] is inclusive.
737 * The tree lock is taken by this function
738 */
41074888
DS
739static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 unsigned long bits)
d1310b2e
CM
741{
742 struct extent_state *state;
743 struct rb_node *node;
744
a5dee37d 745 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 746
cad321ad 747 spin_lock(&tree->lock);
d1310b2e
CM
748again:
749 while (1) {
750 /*
751 * this search will find all the extents that end after
752 * our range starts
753 */
80ea96b1 754 node = tree_search(tree, start);
c50d3e71 755process_node:
d1310b2e
CM
756 if (!node)
757 break;
758
759 state = rb_entry(node, struct extent_state, rb_node);
760
761 if (state->start > end)
762 goto out;
763
764 if (state->state & bits) {
765 start = state->start;
766 atomic_inc(&state->refs);
767 wait_on_state(tree, state);
768 free_extent_state(state);
769 goto again;
770 }
771 start = state->end + 1;
772
773 if (start > end)
774 break;
775
c50d3e71
FM
776 if (!cond_resched_lock(&tree->lock)) {
777 node = rb_next(node);
778 goto process_node;
779 }
d1310b2e
CM
780 }
781out:
cad321ad 782 spin_unlock(&tree->lock);
d1310b2e 783}
d1310b2e 784
1bf85046 785static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 786 struct extent_state *state,
41074888 787 unsigned long *bits)
d1310b2e 788{
41074888 789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 790
1bf85046 791 set_state_cb(tree, state, bits);
0ca1f7ce 792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
793 u64 range = state->end - state->start + 1;
794 tree->dirty_bytes += range;
795 }
0ca1f7ce 796 state->state |= bits_to_set;
d1310b2e
CM
797}
798
e38e2ed7
FM
799static void cache_state_if_flags(struct extent_state *state,
800 struct extent_state **cached_ptr,
801 const u64 flags)
2c64c53d
CM
802{
803 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 804 if (!flags || (state->state & flags)) {
2c64c53d
CM
805 *cached_ptr = state;
806 atomic_inc(&state->refs);
807 }
808 }
809}
810
e38e2ed7
FM
811static void cache_state(struct extent_state *state,
812 struct extent_state **cached_ptr)
813{
814 return cache_state_if_flags(state, cached_ptr,
815 EXTENT_IOBITS | EXTENT_BOUNDARY);
816}
817
d1310b2e 818/*
1edbb734
CM
819 * set some bits on a range in the tree. This may require allocations or
820 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 821 *
1edbb734
CM
822 * If any of the exclusive bits are set, this will fail with -EEXIST if some
823 * part of the range already has the desired bits set. The start of the
824 * existing range is returned in failed_start in this case.
d1310b2e 825 *
1edbb734 826 * [start, end] is inclusive This takes the tree lock.
d1310b2e 827 */
1edbb734 828
3fbe5c02
JM
829static int __must_check
830__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
831 unsigned long bits, unsigned long exclusive_bits,
832 u64 *failed_start, struct extent_state **cached_state,
833 gfp_t mask)
d1310b2e
CM
834{
835 struct extent_state *state;
836 struct extent_state *prealloc = NULL;
837 struct rb_node *node;
12cfbad9
FDBM
838 struct rb_node **p;
839 struct rb_node *parent;
d1310b2e 840 int err = 0;
d1310b2e
CM
841 u64 last_start;
842 u64 last_end;
42daec29 843
a5dee37d 844 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 845
0ca1f7ce 846 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
847again:
848 if (!prealloc && (mask & __GFP_WAIT)) {
849 prealloc = alloc_extent_state(mask);
8233767a 850 BUG_ON(!prealloc);
d1310b2e
CM
851 }
852
cad321ad 853 spin_lock(&tree->lock);
9655d298
CM
854 if (cached_state && *cached_state) {
855 state = *cached_state;
df98b6e2 856 if (state->start <= start && state->end > start &&
27a3507d 857 extent_state_in_tree(state)) {
9655d298
CM
858 node = &state->rb_node;
859 goto hit_next;
860 }
861 }
d1310b2e
CM
862 /*
863 * this search will find all the extents that end after
864 * our range starts.
865 */
12cfbad9 866 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 867 if (!node) {
8233767a
XG
868 prealloc = alloc_extent_state_atomic(prealloc);
869 BUG_ON(!prealloc);
12cfbad9
FDBM
870 err = insert_state(tree, prealloc, start, end,
871 &p, &parent, &bits);
c2d904e0
JM
872 if (err)
873 extent_io_tree_panic(tree, err);
874
c42ac0bc 875 cache_state(prealloc, cached_state);
d1310b2e 876 prealloc = NULL;
d1310b2e
CM
877 goto out;
878 }
d1310b2e 879 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 880hit_next:
d1310b2e
CM
881 last_start = state->start;
882 last_end = state->end;
883
884 /*
885 * | ---- desired range ---- |
886 * | state |
887 *
888 * Just lock what we found and keep going
889 */
890 if (state->start == start && state->end <= end) {
1edbb734 891 if (state->state & exclusive_bits) {
d1310b2e
CM
892 *failed_start = state->start;
893 err = -EEXIST;
894 goto out;
895 }
42daec29 896
1bf85046 897 set_state_bits(tree, state, &bits);
2c64c53d 898 cache_state(state, cached_state);
d1310b2e 899 merge_state(tree, state);
5c939df5
YZ
900 if (last_end == (u64)-1)
901 goto out;
902 start = last_end + 1;
d1ac6e41
LB
903 state = next_state(state);
904 if (start < end && state && state->start == start &&
905 !need_resched())
906 goto hit_next;
d1310b2e
CM
907 goto search_again;
908 }
909
910 /*
911 * | ---- desired range ---- |
912 * | state |
913 * or
914 * | ------------- state -------------- |
915 *
916 * We need to split the extent we found, and may flip bits on
917 * second half.
918 *
919 * If the extent we found extends past our
920 * range, we just split and search again. It'll get split
921 * again the next time though.
922 *
923 * If the extent we found is inside our range, we set the
924 * desired bit on it.
925 */
926 if (state->start < start) {
1edbb734 927 if (state->state & exclusive_bits) {
d1310b2e
CM
928 *failed_start = start;
929 err = -EEXIST;
930 goto out;
931 }
8233767a
XG
932
933 prealloc = alloc_extent_state_atomic(prealloc);
934 BUG_ON(!prealloc);
d1310b2e 935 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
936 if (err)
937 extent_io_tree_panic(tree, err);
938
d1310b2e
CM
939 prealloc = NULL;
940 if (err)
941 goto out;
942 if (state->end <= end) {
1bf85046 943 set_state_bits(tree, state, &bits);
2c64c53d 944 cache_state(state, cached_state);
d1310b2e 945 merge_state(tree, state);
5c939df5
YZ
946 if (last_end == (u64)-1)
947 goto out;
948 start = last_end + 1;
d1ac6e41
LB
949 state = next_state(state);
950 if (start < end && state && state->start == start &&
951 !need_resched())
952 goto hit_next;
d1310b2e
CM
953 }
954 goto search_again;
955 }
956 /*
957 * | ---- desired range ---- |
958 * | state | or | state |
959 *
960 * There's a hole, we need to insert something in it and
961 * ignore the extent we found.
962 */
963 if (state->start > start) {
964 u64 this_end;
965 if (end < last_start)
966 this_end = end;
967 else
d397712b 968 this_end = last_start - 1;
8233767a
XG
969
970 prealloc = alloc_extent_state_atomic(prealloc);
971 BUG_ON(!prealloc);
c7f895a2
XG
972
973 /*
974 * Avoid to free 'prealloc' if it can be merged with
975 * the later extent.
976 */
d1310b2e 977 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 978 NULL, NULL, &bits);
c2d904e0
JM
979 if (err)
980 extent_io_tree_panic(tree, err);
981
9ed74f2d
JB
982 cache_state(prealloc, cached_state);
983 prealloc = NULL;
d1310b2e
CM
984 start = this_end + 1;
985 goto search_again;
986 }
987 /*
988 * | ---- desired range ---- |
989 * | state |
990 * We need to split the extent, and set the bit
991 * on the first half
992 */
993 if (state->start <= end && state->end > end) {
1edbb734 994 if (state->state & exclusive_bits) {
d1310b2e
CM
995 *failed_start = start;
996 err = -EEXIST;
997 goto out;
998 }
8233767a
XG
999
1000 prealloc = alloc_extent_state_atomic(prealloc);
1001 BUG_ON(!prealloc);
d1310b2e 1002 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1003 if (err)
1004 extent_io_tree_panic(tree, err);
d1310b2e 1005
1bf85046 1006 set_state_bits(tree, prealloc, &bits);
2c64c53d 1007 cache_state(prealloc, cached_state);
d1310b2e
CM
1008 merge_state(tree, prealloc);
1009 prealloc = NULL;
1010 goto out;
1011 }
1012
1013 goto search_again;
1014
1015out:
cad321ad 1016 spin_unlock(&tree->lock);
d1310b2e
CM
1017 if (prealloc)
1018 free_extent_state(prealloc);
1019
1020 return err;
1021
1022search_again:
1023 if (start > end)
1024 goto out;
cad321ad 1025 spin_unlock(&tree->lock);
d1310b2e
CM
1026 if (mask & __GFP_WAIT)
1027 cond_resched();
1028 goto again;
1029}
d1310b2e 1030
41074888
DS
1031int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1032 unsigned long bits, u64 * failed_start,
1033 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1034{
1035 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1036 cached_state, mask);
1037}
1038
1039
462d6fac 1040/**
10983f2e
LB
1041 * convert_extent_bit - convert all bits in a given range from one bit to
1042 * another
462d6fac
JB
1043 * @tree: the io tree to search
1044 * @start: the start offset in bytes
1045 * @end: the end offset in bytes (inclusive)
1046 * @bits: the bits to set in this range
1047 * @clear_bits: the bits to clear in this range
e6138876 1048 * @cached_state: state that we're going to cache
462d6fac
JB
1049 * @mask: the allocation mask
1050 *
1051 * This will go through and set bits for the given range. If any states exist
1052 * already in this range they are set with the given bit and cleared of the
1053 * clear_bits. This is only meant to be used by things that are mergeable, ie
1054 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1055 * boundary bits like LOCK.
1056 */
1057int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1058 unsigned long bits, unsigned long clear_bits,
e6138876 1059 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1060{
1061 struct extent_state *state;
1062 struct extent_state *prealloc = NULL;
1063 struct rb_node *node;
12cfbad9
FDBM
1064 struct rb_node **p;
1065 struct rb_node *parent;
462d6fac
JB
1066 int err = 0;
1067 u64 last_start;
1068 u64 last_end;
1069
a5dee37d 1070 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1071
462d6fac
JB
1072again:
1073 if (!prealloc && (mask & __GFP_WAIT)) {
1074 prealloc = alloc_extent_state(mask);
1075 if (!prealloc)
1076 return -ENOMEM;
1077 }
1078
1079 spin_lock(&tree->lock);
e6138876
JB
1080 if (cached_state && *cached_state) {
1081 state = *cached_state;
1082 if (state->start <= start && state->end > start &&
27a3507d 1083 extent_state_in_tree(state)) {
e6138876
JB
1084 node = &state->rb_node;
1085 goto hit_next;
1086 }
1087 }
1088
462d6fac
JB
1089 /*
1090 * this search will find all the extents that end after
1091 * our range starts.
1092 */
12cfbad9 1093 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1094 if (!node) {
1095 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1096 if (!prealloc) {
1097 err = -ENOMEM;
1098 goto out;
1099 }
12cfbad9
FDBM
1100 err = insert_state(tree, prealloc, start, end,
1101 &p, &parent, &bits);
c2d904e0
JM
1102 if (err)
1103 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1104 cache_state(prealloc, cached_state);
1105 prealloc = NULL;
462d6fac
JB
1106 goto out;
1107 }
1108 state = rb_entry(node, struct extent_state, rb_node);
1109hit_next:
1110 last_start = state->start;
1111 last_end = state->end;
1112
1113 /*
1114 * | ---- desired range ---- |
1115 * | state |
1116 *
1117 * Just lock what we found and keep going
1118 */
1119 if (state->start == start && state->end <= end) {
462d6fac 1120 set_state_bits(tree, state, &bits);
e6138876 1121 cache_state(state, cached_state);
d1ac6e41 1122 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1123 if (last_end == (u64)-1)
1124 goto out;
462d6fac 1125 start = last_end + 1;
d1ac6e41
LB
1126 if (start < end && state && state->start == start &&
1127 !need_resched())
1128 goto hit_next;
462d6fac
JB
1129 goto search_again;
1130 }
1131
1132 /*
1133 * | ---- desired range ---- |
1134 * | state |
1135 * or
1136 * | ------------- state -------------- |
1137 *
1138 * We need to split the extent we found, and may flip bits on
1139 * second half.
1140 *
1141 * If the extent we found extends past our
1142 * range, we just split and search again. It'll get split
1143 * again the next time though.
1144 *
1145 * If the extent we found is inside our range, we set the
1146 * desired bit on it.
1147 */
1148 if (state->start < start) {
1149 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1150 if (!prealloc) {
1151 err = -ENOMEM;
1152 goto out;
1153 }
462d6fac 1154 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1155 if (err)
1156 extent_io_tree_panic(tree, err);
462d6fac
JB
1157 prealloc = NULL;
1158 if (err)
1159 goto out;
1160 if (state->end <= end) {
1161 set_state_bits(tree, state, &bits);
e6138876 1162 cache_state(state, cached_state);
d1ac6e41 1163 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1164 if (last_end == (u64)-1)
1165 goto out;
1166 start = last_end + 1;
d1ac6e41
LB
1167 if (start < end && state && state->start == start &&
1168 !need_resched())
1169 goto hit_next;
462d6fac
JB
1170 }
1171 goto search_again;
1172 }
1173 /*
1174 * | ---- desired range ---- |
1175 * | state | or | state |
1176 *
1177 * There's a hole, we need to insert something in it and
1178 * ignore the extent we found.
1179 */
1180 if (state->start > start) {
1181 u64 this_end;
1182 if (end < last_start)
1183 this_end = end;
1184 else
1185 this_end = last_start - 1;
1186
1187 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1188 if (!prealloc) {
1189 err = -ENOMEM;
1190 goto out;
1191 }
462d6fac
JB
1192
1193 /*
1194 * Avoid to free 'prealloc' if it can be merged with
1195 * the later extent.
1196 */
1197 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1198 NULL, NULL, &bits);
c2d904e0
JM
1199 if (err)
1200 extent_io_tree_panic(tree, err);
e6138876 1201 cache_state(prealloc, cached_state);
462d6fac
JB
1202 prealloc = NULL;
1203 start = this_end + 1;
1204 goto search_again;
1205 }
1206 /*
1207 * | ---- desired range ---- |
1208 * | state |
1209 * We need to split the extent, and set the bit
1210 * on the first half
1211 */
1212 if (state->start <= end && state->end > end) {
1213 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1214 if (!prealloc) {
1215 err = -ENOMEM;
1216 goto out;
1217 }
462d6fac
JB
1218
1219 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1220 if (err)
1221 extent_io_tree_panic(tree, err);
462d6fac
JB
1222
1223 set_state_bits(tree, prealloc, &bits);
e6138876 1224 cache_state(prealloc, cached_state);
462d6fac 1225 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1226 prealloc = NULL;
1227 goto out;
1228 }
1229
1230 goto search_again;
1231
1232out:
1233 spin_unlock(&tree->lock);
1234 if (prealloc)
1235 free_extent_state(prealloc);
1236
1237 return err;
1238
1239search_again:
1240 if (start > end)
1241 goto out;
1242 spin_unlock(&tree->lock);
1243 if (mask & __GFP_WAIT)
1244 cond_resched();
1245 goto again;
1246}
1247
d1310b2e
CM
1248/* wrappers around set/clear extent bit */
1249int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1250 gfp_t mask)
1251{
3fbe5c02 1252 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1253 NULL, mask);
d1310b2e 1254}
d1310b2e
CM
1255
1256int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1257 unsigned long bits, gfp_t mask)
d1310b2e 1258{
3fbe5c02 1259 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1260 NULL, mask);
d1310b2e 1261}
d1310b2e
CM
1262
1263int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1264 unsigned long bits, gfp_t mask)
d1310b2e 1265{
2c64c53d 1266 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1267}
d1310b2e
CM
1268
1269int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1270 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1271{
1272 return set_extent_bit(tree, start, end,
fee187d9 1273 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1274 NULL, cached_state, mask);
d1310b2e 1275}
d1310b2e 1276
9e8a4a8b
LB
1277int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1278 struct extent_state **cached_state, gfp_t mask)
1279{
1280 return set_extent_bit(tree, start, end,
1281 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1282 NULL, cached_state, mask);
1283}
1284
d1310b2e
CM
1285int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1286 gfp_t mask)
1287{
1288 return clear_extent_bit(tree, start, end,
32c00aff 1289 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1290 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1291}
d1310b2e
CM
1292
1293int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1294 gfp_t mask)
1295{
3fbe5c02 1296 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1297 NULL, mask);
d1310b2e 1298}
d1310b2e 1299
d1310b2e 1300int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1301 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1302{
6b67a320 1303 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1304 cached_state, mask);
d1310b2e 1305}
d1310b2e 1306
5fd02043
JB
1307int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1308 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1309{
2c64c53d 1310 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1311 cached_state, mask);
d1310b2e 1312}
d1310b2e 1313
d352ac68
CM
1314/*
1315 * either insert or lock state struct between start and end use mask to tell
1316 * us if waiting is desired.
1317 */
1edbb734 1318int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1319 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1320{
1321 int err;
1322 u64 failed_start;
1323 while (1) {
3fbe5c02
JM
1324 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1325 EXTENT_LOCKED, &failed_start,
1326 cached_state, GFP_NOFS);
d0082371 1327 if (err == -EEXIST) {
d1310b2e
CM
1328 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1329 start = failed_start;
d0082371 1330 } else
d1310b2e 1331 break;
d1310b2e
CM
1332 WARN_ON(start > end);
1333 }
1334 return err;
1335}
d1310b2e 1336
d0082371 1337int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1338{
d0082371 1339 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1340}
1341
d0082371 1342int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1343{
1344 int err;
1345 u64 failed_start;
1346
3fbe5c02
JM
1347 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1348 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1349 if (err == -EEXIST) {
1350 if (failed_start > start)
1351 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1352 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1353 return 0;
6643558d 1354 }
25179201
JB
1355 return 1;
1356}
25179201 1357
2c64c53d
CM
1358int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1359 struct extent_state **cached, gfp_t mask)
1360{
1361 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1362 mask);
1363}
1364
d0082371 1365int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1366{
2c64c53d 1367 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1368 GFP_NOFS);
d1310b2e 1369}
d1310b2e 1370
4adaa611
CM
1371int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1372{
1373 unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 struct page *page;
1376
1377 while (index <= end_index) {
1378 page = find_get_page(inode->i_mapping, index);
1379 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1380 clear_page_dirty_for_io(page);
1381 page_cache_release(page);
1382 index++;
1383 }
1384 return 0;
1385}
1386
1387int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1388{
1389 unsigned long index = start >> PAGE_CACHE_SHIFT;
1390 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1391 struct page *page;
1392
1393 while (index <= end_index) {
1394 page = find_get_page(inode->i_mapping, index);
1395 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1396 account_page_redirty(page);
1397 __set_page_dirty_nobuffers(page);
1398 page_cache_release(page);
1399 index++;
1400 }
1401 return 0;
1402}
1403
d1310b2e
CM
1404/*
1405 * helper function to set both pages and extents in the tree writeback
1406 */
b2950863 1407static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1408{
1409 unsigned long index = start >> PAGE_CACHE_SHIFT;
1410 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1411 struct page *page;
1412
1413 while (index <= end_index) {
1414 page = find_get_page(tree->mapping, index);
79787eaa 1415 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1416 set_page_writeback(page);
1417 page_cache_release(page);
1418 index++;
1419 }
d1310b2e
CM
1420 return 0;
1421}
d1310b2e 1422
d352ac68
CM
1423/* find the first state struct with 'bits' set after 'start', and
1424 * return it. tree->lock must be held. NULL will returned if
1425 * nothing was found after 'start'
1426 */
48a3b636
ES
1427static struct extent_state *
1428find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1429 u64 start, unsigned long bits)
d7fc640e
CM
1430{
1431 struct rb_node *node;
1432 struct extent_state *state;
1433
1434 /*
1435 * this search will find all the extents that end after
1436 * our range starts.
1437 */
1438 node = tree_search(tree, start);
d397712b 1439 if (!node)
d7fc640e 1440 goto out;
d7fc640e 1441
d397712b 1442 while (1) {
d7fc640e 1443 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1444 if (state->end >= start && (state->state & bits))
d7fc640e 1445 return state;
d397712b 1446
d7fc640e
CM
1447 node = rb_next(node);
1448 if (!node)
1449 break;
1450 }
1451out:
1452 return NULL;
1453}
d7fc640e 1454
69261c4b
XG
1455/*
1456 * find the first offset in the io tree with 'bits' set. zero is
1457 * returned if we find something, and *start_ret and *end_ret are
1458 * set to reflect the state struct that was found.
1459 *
477d7eaf 1460 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1461 */
1462int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1463 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1464 struct extent_state **cached_state)
69261c4b
XG
1465{
1466 struct extent_state *state;
e6138876 1467 struct rb_node *n;
69261c4b
XG
1468 int ret = 1;
1469
1470 spin_lock(&tree->lock);
e6138876
JB
1471 if (cached_state && *cached_state) {
1472 state = *cached_state;
27a3507d 1473 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1474 n = rb_next(&state->rb_node);
1475 while (n) {
1476 state = rb_entry(n, struct extent_state,
1477 rb_node);
1478 if (state->state & bits)
1479 goto got_it;
1480 n = rb_next(n);
1481 }
1482 free_extent_state(*cached_state);
1483 *cached_state = NULL;
1484 goto out;
1485 }
1486 free_extent_state(*cached_state);
1487 *cached_state = NULL;
1488 }
1489
69261c4b 1490 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1491got_it:
69261c4b 1492 if (state) {
e38e2ed7 1493 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1494 *start_ret = state->start;
1495 *end_ret = state->end;
1496 ret = 0;
1497 }
e6138876 1498out:
69261c4b
XG
1499 spin_unlock(&tree->lock);
1500 return ret;
1501}
1502
d352ac68
CM
1503/*
1504 * find a contiguous range of bytes in the file marked as delalloc, not
1505 * more than 'max_bytes'. start and end are used to return the range,
1506 *
1507 * 1 is returned if we find something, 0 if nothing was in the tree
1508 */
c8b97818 1509static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1510 u64 *start, u64 *end, u64 max_bytes,
1511 struct extent_state **cached_state)
d1310b2e
CM
1512{
1513 struct rb_node *node;
1514 struct extent_state *state;
1515 u64 cur_start = *start;
1516 u64 found = 0;
1517 u64 total_bytes = 0;
1518
cad321ad 1519 spin_lock(&tree->lock);
c8b97818 1520
d1310b2e
CM
1521 /*
1522 * this search will find all the extents that end after
1523 * our range starts.
1524 */
80ea96b1 1525 node = tree_search(tree, cur_start);
2b114d1d 1526 if (!node) {
3b951516
CM
1527 if (!found)
1528 *end = (u64)-1;
d1310b2e
CM
1529 goto out;
1530 }
1531
d397712b 1532 while (1) {
d1310b2e 1533 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1534 if (found && (state->start != cur_start ||
1535 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1536 goto out;
1537 }
1538 if (!(state->state & EXTENT_DELALLOC)) {
1539 if (!found)
1540 *end = state->end;
1541 goto out;
1542 }
c2a128d2 1543 if (!found) {
d1310b2e 1544 *start = state->start;
c2a128d2
JB
1545 *cached_state = state;
1546 atomic_inc(&state->refs);
1547 }
d1310b2e
CM
1548 found++;
1549 *end = state->end;
1550 cur_start = state->end + 1;
1551 node = rb_next(node);
d1310b2e 1552 total_bytes += state->end - state->start + 1;
7bf811a5 1553 if (total_bytes >= max_bytes)
573aecaf 1554 break;
573aecaf 1555 if (!node)
d1310b2e
CM
1556 break;
1557 }
1558out:
cad321ad 1559 spin_unlock(&tree->lock);
d1310b2e
CM
1560 return found;
1561}
1562
143bede5
JM
1563static noinline void __unlock_for_delalloc(struct inode *inode,
1564 struct page *locked_page,
1565 u64 start, u64 end)
c8b97818
CM
1566{
1567 int ret;
1568 struct page *pages[16];
1569 unsigned long index = start >> PAGE_CACHE_SHIFT;
1570 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1571 unsigned long nr_pages = end_index - index + 1;
1572 int i;
1573
1574 if (index == locked_page->index && end_index == index)
143bede5 1575 return;
c8b97818 1576
d397712b 1577 while (nr_pages > 0) {
c8b97818 1578 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1579 min_t(unsigned long, nr_pages,
1580 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1581 for (i = 0; i < ret; i++) {
1582 if (pages[i] != locked_page)
1583 unlock_page(pages[i]);
1584 page_cache_release(pages[i]);
1585 }
1586 nr_pages -= ret;
1587 index += ret;
1588 cond_resched();
1589 }
c8b97818
CM
1590}
1591
1592static noinline int lock_delalloc_pages(struct inode *inode,
1593 struct page *locked_page,
1594 u64 delalloc_start,
1595 u64 delalloc_end)
1596{
1597 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1598 unsigned long start_index = index;
1599 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1600 unsigned long pages_locked = 0;
1601 struct page *pages[16];
1602 unsigned long nrpages;
1603 int ret;
1604 int i;
1605
1606 /* the caller is responsible for locking the start index */
1607 if (index == locked_page->index && index == end_index)
1608 return 0;
1609
1610 /* skip the page at the start index */
1611 nrpages = end_index - index + 1;
d397712b 1612 while (nrpages > 0) {
c8b97818 1613 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1614 min_t(unsigned long,
1615 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1616 if (ret == 0) {
1617 ret = -EAGAIN;
1618 goto done;
1619 }
1620 /* now we have an array of pages, lock them all */
1621 for (i = 0; i < ret; i++) {
1622 /*
1623 * the caller is taking responsibility for
1624 * locked_page
1625 */
771ed689 1626 if (pages[i] != locked_page) {
c8b97818 1627 lock_page(pages[i]);
f2b1c41c
CM
1628 if (!PageDirty(pages[i]) ||
1629 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1630 ret = -EAGAIN;
1631 unlock_page(pages[i]);
1632 page_cache_release(pages[i]);
1633 goto done;
1634 }
1635 }
c8b97818 1636 page_cache_release(pages[i]);
771ed689 1637 pages_locked++;
c8b97818 1638 }
c8b97818
CM
1639 nrpages -= ret;
1640 index += ret;
1641 cond_resched();
1642 }
1643 ret = 0;
1644done:
1645 if (ret && pages_locked) {
1646 __unlock_for_delalloc(inode, locked_page,
1647 delalloc_start,
1648 ((u64)(start_index + pages_locked - 1)) <<
1649 PAGE_CACHE_SHIFT);
1650 }
1651 return ret;
1652}
1653
1654/*
1655 * find a contiguous range of bytes in the file marked as delalloc, not
1656 * more than 'max_bytes'. start and end are used to return the range,
1657 *
1658 * 1 is returned if we find something, 0 if nothing was in the tree
1659 */
294e30fe
JB
1660STATIC u64 find_lock_delalloc_range(struct inode *inode,
1661 struct extent_io_tree *tree,
1662 struct page *locked_page, u64 *start,
1663 u64 *end, u64 max_bytes)
c8b97818
CM
1664{
1665 u64 delalloc_start;
1666 u64 delalloc_end;
1667 u64 found;
9655d298 1668 struct extent_state *cached_state = NULL;
c8b97818
CM
1669 int ret;
1670 int loops = 0;
1671
1672again:
1673 /* step one, find a bunch of delalloc bytes starting at start */
1674 delalloc_start = *start;
1675 delalloc_end = 0;
1676 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1677 max_bytes, &cached_state);
70b99e69 1678 if (!found || delalloc_end <= *start) {
c8b97818
CM
1679 *start = delalloc_start;
1680 *end = delalloc_end;
c2a128d2 1681 free_extent_state(cached_state);
385fe0be 1682 return 0;
c8b97818
CM
1683 }
1684
70b99e69
CM
1685 /*
1686 * start comes from the offset of locked_page. We have to lock
1687 * pages in order, so we can't process delalloc bytes before
1688 * locked_page
1689 */
d397712b 1690 if (delalloc_start < *start)
70b99e69 1691 delalloc_start = *start;
70b99e69 1692
c8b97818
CM
1693 /*
1694 * make sure to limit the number of pages we try to lock down
c8b97818 1695 */
7bf811a5
JB
1696 if (delalloc_end + 1 - delalloc_start > max_bytes)
1697 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1698
c8b97818
CM
1699 /* step two, lock all the pages after the page that has start */
1700 ret = lock_delalloc_pages(inode, locked_page,
1701 delalloc_start, delalloc_end);
1702 if (ret == -EAGAIN) {
1703 /* some of the pages are gone, lets avoid looping by
1704 * shortening the size of the delalloc range we're searching
1705 */
9655d298 1706 free_extent_state(cached_state);
7d788742 1707 cached_state = NULL;
c8b97818 1708 if (!loops) {
7bf811a5 1709 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1710 loops = 1;
1711 goto again;
1712 } else {
1713 found = 0;
1714 goto out_failed;
1715 }
1716 }
79787eaa 1717 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1718
1719 /* step three, lock the state bits for the whole range */
d0082371 1720 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1721
1722 /* then test to make sure it is all still delalloc */
1723 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1724 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1725 if (!ret) {
9655d298
CM
1726 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1727 &cached_state, GFP_NOFS);
c8b97818
CM
1728 __unlock_for_delalloc(inode, locked_page,
1729 delalloc_start, delalloc_end);
1730 cond_resched();
1731 goto again;
1732 }
9655d298 1733 free_extent_state(cached_state);
c8b97818
CM
1734 *start = delalloc_start;
1735 *end = delalloc_end;
1736out_failed:
1737 return found;
1738}
1739
c2790a2e
JB
1740int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1741 struct page *locked_page,
1742 unsigned long clear_bits,
1743 unsigned long page_ops)
c8b97818 1744{
c2790a2e 1745 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1746 int ret;
1747 struct page *pages[16];
1748 unsigned long index = start >> PAGE_CACHE_SHIFT;
1749 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1750 unsigned long nr_pages = end_index - index + 1;
1751 int i;
771ed689 1752
2c64c53d 1753 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1754 if (page_ops == 0)
771ed689 1755 return 0;
c8b97818 1756
704de49d
FM
1757 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1758 mapping_set_error(inode->i_mapping, -EIO);
1759
d397712b 1760 while (nr_pages > 0) {
c8b97818 1761 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1762 min_t(unsigned long,
1763 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1764 for (i = 0; i < ret; i++) {
8b62b72b 1765
c2790a2e 1766 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1767 SetPagePrivate2(pages[i]);
1768
c8b97818
CM
1769 if (pages[i] == locked_page) {
1770 page_cache_release(pages[i]);
1771 continue;
1772 }
c2790a2e 1773 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1774 clear_page_dirty_for_io(pages[i]);
c2790a2e 1775 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1776 set_page_writeback(pages[i]);
704de49d
FM
1777 if (page_ops & PAGE_SET_ERROR)
1778 SetPageError(pages[i]);
c2790a2e 1779 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1780 end_page_writeback(pages[i]);
c2790a2e 1781 if (page_ops & PAGE_UNLOCK)
771ed689 1782 unlock_page(pages[i]);
c8b97818
CM
1783 page_cache_release(pages[i]);
1784 }
1785 nr_pages -= ret;
1786 index += ret;
1787 cond_resched();
1788 }
1789 return 0;
1790}
c8b97818 1791
d352ac68
CM
1792/*
1793 * count the number of bytes in the tree that have a given bit(s)
1794 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1795 * cached. The total number found is returned.
1796 */
d1310b2e
CM
1797u64 count_range_bits(struct extent_io_tree *tree,
1798 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1799 unsigned long bits, int contig)
d1310b2e
CM
1800{
1801 struct rb_node *node;
1802 struct extent_state *state;
1803 u64 cur_start = *start;
1804 u64 total_bytes = 0;
ec29ed5b 1805 u64 last = 0;
d1310b2e
CM
1806 int found = 0;
1807
fae7f21c 1808 if (WARN_ON(search_end <= cur_start))
d1310b2e 1809 return 0;
d1310b2e 1810
cad321ad 1811 spin_lock(&tree->lock);
d1310b2e
CM
1812 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1813 total_bytes = tree->dirty_bytes;
1814 goto out;
1815 }
1816 /*
1817 * this search will find all the extents that end after
1818 * our range starts.
1819 */
80ea96b1 1820 node = tree_search(tree, cur_start);
d397712b 1821 if (!node)
d1310b2e 1822 goto out;
d1310b2e 1823
d397712b 1824 while (1) {
d1310b2e
CM
1825 state = rb_entry(node, struct extent_state, rb_node);
1826 if (state->start > search_end)
1827 break;
ec29ed5b
CM
1828 if (contig && found && state->start > last + 1)
1829 break;
1830 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1831 total_bytes += min(search_end, state->end) + 1 -
1832 max(cur_start, state->start);
1833 if (total_bytes >= max_bytes)
1834 break;
1835 if (!found) {
af60bed2 1836 *start = max(cur_start, state->start);
d1310b2e
CM
1837 found = 1;
1838 }
ec29ed5b
CM
1839 last = state->end;
1840 } else if (contig && found) {
1841 break;
d1310b2e
CM
1842 }
1843 node = rb_next(node);
1844 if (!node)
1845 break;
1846 }
1847out:
cad321ad 1848 spin_unlock(&tree->lock);
d1310b2e
CM
1849 return total_bytes;
1850}
b2950863 1851
d352ac68
CM
1852/*
1853 * set the private field for a given byte offset in the tree. If there isn't
1854 * an extent_state there already, this does nothing.
1855 */
171170c1 1856static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1857{
1858 struct rb_node *node;
1859 struct extent_state *state;
1860 int ret = 0;
1861
cad321ad 1862 spin_lock(&tree->lock);
d1310b2e
CM
1863 /*
1864 * this search will find all the extents that end after
1865 * our range starts.
1866 */
80ea96b1 1867 node = tree_search(tree, start);
2b114d1d 1868 if (!node) {
d1310b2e
CM
1869 ret = -ENOENT;
1870 goto out;
1871 }
1872 state = rb_entry(node, struct extent_state, rb_node);
1873 if (state->start != start) {
1874 ret = -ENOENT;
1875 goto out;
1876 }
1877 state->private = private;
1878out:
cad321ad 1879 spin_unlock(&tree->lock);
d1310b2e
CM
1880 return ret;
1881}
1882
1883int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1884{
1885 struct rb_node *node;
1886 struct extent_state *state;
1887 int ret = 0;
1888
cad321ad 1889 spin_lock(&tree->lock);
d1310b2e
CM
1890 /*
1891 * this search will find all the extents that end after
1892 * our range starts.
1893 */
80ea96b1 1894 node = tree_search(tree, start);
2b114d1d 1895 if (!node) {
d1310b2e
CM
1896 ret = -ENOENT;
1897 goto out;
1898 }
1899 state = rb_entry(node, struct extent_state, rb_node);
1900 if (state->start != start) {
1901 ret = -ENOENT;
1902 goto out;
1903 }
1904 *private = state->private;
1905out:
cad321ad 1906 spin_unlock(&tree->lock);
d1310b2e
CM
1907 return ret;
1908}
1909
1910/*
1911 * searches a range in the state tree for a given mask.
70dec807 1912 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1913 * has the bits set. Otherwise, 1 is returned if any bit in the
1914 * range is found set.
1915 */
1916int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1917 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1918{
1919 struct extent_state *state = NULL;
1920 struct rb_node *node;
1921 int bitset = 0;
d1310b2e 1922
cad321ad 1923 spin_lock(&tree->lock);
27a3507d 1924 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1925 cached->end > start)
9655d298
CM
1926 node = &cached->rb_node;
1927 else
1928 node = tree_search(tree, start);
d1310b2e
CM
1929 while (node && start <= end) {
1930 state = rb_entry(node, struct extent_state, rb_node);
1931
1932 if (filled && state->start > start) {
1933 bitset = 0;
1934 break;
1935 }
1936
1937 if (state->start > end)
1938 break;
1939
1940 if (state->state & bits) {
1941 bitset = 1;
1942 if (!filled)
1943 break;
1944 } else if (filled) {
1945 bitset = 0;
1946 break;
1947 }
46562cec
CM
1948
1949 if (state->end == (u64)-1)
1950 break;
1951
d1310b2e
CM
1952 start = state->end + 1;
1953 if (start > end)
1954 break;
1955 node = rb_next(node);
1956 if (!node) {
1957 if (filled)
1958 bitset = 0;
1959 break;
1960 }
1961 }
cad321ad 1962 spin_unlock(&tree->lock);
d1310b2e
CM
1963 return bitset;
1964}
d1310b2e
CM
1965
1966/*
1967 * helper function to set a given page up to date if all the
1968 * extents in the tree for that page are up to date
1969 */
143bede5 1970static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1971{
4eee4fa4 1972 u64 start = page_offset(page);
d1310b2e 1973 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1974 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1975 SetPageUptodate(page);
d1310b2e
CM
1976}
1977
8b110e39 1978int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1979{
1980 int ret;
1981 int err = 0;
1982 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1983
1984 set_state_private(failure_tree, rec->start, 0);
1985 ret = clear_extent_bits(failure_tree, rec->start,
1986 rec->start + rec->len - 1,
1987 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1988 if (ret)
1989 err = ret;
1990
53b381b3
DW
1991 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1992 rec->start + rec->len - 1,
1993 EXTENT_DAMAGED, GFP_NOFS);
1994 if (ret && !err)
1995 err = ret;
4a54c8c1
JS
1996
1997 kfree(rec);
1998 return err;
1999}
2000
4a54c8c1
JS
2001/*
2002 * this bypasses the standard btrfs submit functions deliberately, as
2003 * the standard behavior is to write all copies in a raid setup. here we only
2004 * want to write the one bad copy. so we do the mapping for ourselves and issue
2005 * submit_bio directly.
3ec706c8 2006 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2007 * actually prevents the read that triggered the error from finishing.
2008 * currently, there can be no more than two copies of every data bit. thus,
2009 * exactly one rewrite is required.
2010 */
1203b681
MX
2011int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2012 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2013{
1203b681 2014 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2015 struct bio *bio;
2016 struct btrfs_device *dev;
4a54c8c1
JS
2017 u64 map_length = 0;
2018 u64 sector;
2019 struct btrfs_bio *bbio = NULL;
53b381b3 2020 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2021 int ret;
2022
908960c6 2023 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2024 BUG_ON(!mirror_num);
2025
53b381b3
DW
2026 /* we can't repair anything in raid56 yet */
2027 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2028 return 0;
2029
9be3395b 2030 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2031 if (!bio)
2032 return -EIO;
4f024f37 2033 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2034 map_length = length;
2035
3ec706c8 2036 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2037 &map_length, &bbio, mirror_num);
2038 if (ret) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 BUG_ON(mirror_num != bbio->mirror_num);
2043 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2044 bio->bi_iter.bi_sector = sector;
4a54c8c1
JS
2045 dev = bbio->stripes[mirror_num-1].dev;
2046 kfree(bbio);
2047 if (!dev || !dev->bdev || !dev->writeable) {
2048 bio_put(bio);
2049 return -EIO;
2050 }
2051 bio->bi_bdev = dev->bdev;
ffdd2018 2052 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2053
33879d45 2054 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2055 /* try to remap that extent elsewhere? */
2056 bio_put(bio);
442a4f63 2057 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2058 return -EIO;
2059 }
2060
efe120a0 2061 printk_ratelimited_in_rcu(KERN_INFO
1203b681
MX
2062 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2063 btrfs_ino(inode), start,
2064 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2065 bio_put(bio);
2066 return 0;
2067}
2068
ea466794
JB
2069int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2070 int mirror_num)
2071{
ea466794
JB
2072 u64 start = eb->start;
2073 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2074 int ret = 0;
ea466794 2075
908960c6
ID
2076 if (root->fs_info->sb->s_flags & MS_RDONLY)
2077 return -EROFS;
2078
ea466794 2079 for (i = 0; i < num_pages; i++) {
fb85fc9a 2080 struct page *p = eb->pages[i];
1203b681
MX
2081
2082 ret = repair_io_failure(root->fs_info->btree_inode, start,
2083 PAGE_CACHE_SIZE, start, p,
2084 start - page_offset(p), mirror_num);
ea466794
JB
2085 if (ret)
2086 break;
2087 start += PAGE_CACHE_SIZE;
2088 }
2089
2090 return ret;
2091}
2092
4a54c8c1
JS
2093/*
2094 * each time an IO finishes, we do a fast check in the IO failure tree
2095 * to see if we need to process or clean up an io_failure_record
2096 */
8b110e39
MX
2097int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2098 unsigned int pg_offset)
4a54c8c1
JS
2099{
2100 u64 private;
2101 u64 private_failure;
2102 struct io_failure_record *failrec;
908960c6 2103 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2104 struct extent_state *state;
2105 int num_copies;
4a54c8c1 2106 int ret;
4a54c8c1
JS
2107
2108 private = 0;
2109 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2110 (u64)-1, 1, EXTENT_DIRTY, 0);
2111 if (!ret)
2112 return 0;
2113
2114 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2115 &private_failure);
2116 if (ret)
2117 return 0;
2118
2119 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2120 BUG_ON(!failrec->this_mirror);
2121
2122 if (failrec->in_validation) {
2123 /* there was no real error, just free the record */
2124 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2125 failrec->start);
4a54c8c1
JS
2126 goto out;
2127 }
908960c6
ID
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
4a54c8c1
JS
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
883d0de4
MX
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
4a54c8c1 2141 if (num_copies > 1) {
1203b681 2142 repair_io_failure(inode, start, failrec->len,
454ff3de 2143 failrec->logical, page,
1203b681 2144 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2145 }
2146 }
2147
2148out:
454ff3de 2149 free_io_failure(inode, failrec);
4a54c8c1 2150
454ff3de 2151 return 0;
4a54c8c1
JS
2152}
2153
f612496b
MX
2154/*
2155 * Can be called when
2156 * - hold extent lock
2157 * - under ordered extent
2158 * - the inode is freeing
2159 */
2160void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2161{
2162 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2163 struct io_failure_record *failrec;
2164 struct extent_state *state, *next;
2165
2166 if (RB_EMPTY_ROOT(&failure_tree->state))
2167 return;
2168
2169 spin_lock(&failure_tree->lock);
2170 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2171 while (state) {
2172 if (state->start > end)
2173 break;
2174
2175 ASSERT(state->end <= end);
2176
2177 next = next_state(state);
2178
2179 failrec = (struct io_failure_record *)state->private;
2180 free_extent_state(state);
2181 kfree(failrec);
2182
2183 state = next;
2184 }
2185 spin_unlock(&failure_tree->lock);
2186}
2187
2fe6303e
MX
2188int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2189 struct io_failure_record **failrec_ret)
4a54c8c1 2190{
2fe6303e 2191 struct io_failure_record *failrec;
4a54c8c1
JS
2192 u64 private;
2193 struct extent_map *em;
4a54c8c1
JS
2194 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2195 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2196 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2197 int ret;
4a54c8c1
JS
2198 u64 logical;
2199
4a54c8c1
JS
2200 ret = get_state_private(failure_tree, start, &private);
2201 if (ret) {
2202 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2203 if (!failrec)
2204 return -ENOMEM;
2fe6303e 2205
4a54c8c1
JS
2206 failrec->start = start;
2207 failrec->len = end - start + 1;
2208 failrec->this_mirror = 0;
2209 failrec->bio_flags = 0;
2210 failrec->in_validation = 0;
2211
2212 read_lock(&em_tree->lock);
2213 em = lookup_extent_mapping(em_tree, start, failrec->len);
2214 if (!em) {
2215 read_unlock(&em_tree->lock);
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219
68ba990f 2220 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2221 free_extent_map(em);
2222 em = NULL;
2223 }
2224 read_unlock(&em_tree->lock);
7a2d6a64 2225 if (!em) {
4a54c8c1
JS
2226 kfree(failrec);
2227 return -EIO;
2228 }
2fe6303e 2229
4a54c8c1
JS
2230 logical = start - em->start;
2231 logical = em->block_start + logical;
2232 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2233 logical = em->block_start;
2234 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2235 extent_set_compress_type(&failrec->bio_flags,
2236 em->compress_type);
2237 }
2fe6303e
MX
2238
2239 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2240 logical, start, failrec->len);
2241
4a54c8c1
JS
2242 failrec->logical = logical;
2243 free_extent_map(em);
2244
2245 /* set the bits in the private failure tree */
2246 ret = set_extent_bits(failure_tree, start, end,
2247 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2248 if (ret >= 0)
2249 ret = set_state_private(failure_tree, start,
2250 (u64)(unsigned long)failrec);
2251 /* set the bits in the inode's tree */
2252 if (ret >= 0)
2253 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2254 GFP_NOFS);
2255 if (ret < 0) {
2256 kfree(failrec);
2257 return ret;
2258 }
2259 } else {
2260 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2261 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2262 failrec->logical, failrec->start, failrec->len,
2263 failrec->in_validation);
2264 /*
2265 * when data can be on disk more than twice, add to failrec here
2266 * (e.g. with a list for failed_mirror) to make
2267 * clean_io_failure() clean all those errors at once.
2268 */
2269 }
2fe6303e
MX
2270
2271 *failrec_ret = failrec;
2272
2273 return 0;
2274}
2275
2276int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2277 struct io_failure_record *failrec, int failed_mirror)
2278{
2279 int num_copies;
2280
5d964051
SB
2281 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2282 failrec->logical, failrec->len);
4a54c8c1
JS
2283 if (num_copies == 1) {
2284 /*
2285 * we only have a single copy of the data, so don't bother with
2286 * all the retry and error correction code that follows. no
2287 * matter what the error is, it is very likely to persist.
2288 */
2fe6303e 2289 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2290 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2291 return 0;
4a54c8c1
JS
2292 }
2293
4a54c8c1
JS
2294 /*
2295 * there are two premises:
2296 * a) deliver good data to the caller
2297 * b) correct the bad sectors on disk
2298 */
2299 if (failed_bio->bi_vcnt > 1) {
2300 /*
2301 * to fulfill b), we need to know the exact failing sectors, as
2302 * we don't want to rewrite any more than the failed ones. thus,
2303 * we need separate read requests for the failed bio
2304 *
2305 * if the following BUG_ON triggers, our validation request got
2306 * merged. we need separate requests for our algorithm to work.
2307 */
2308 BUG_ON(failrec->in_validation);
2309 failrec->in_validation = 1;
2310 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2311 } else {
2312 /*
2313 * we're ready to fulfill a) and b) alongside. get a good copy
2314 * of the failed sector and if we succeed, we have setup
2315 * everything for repair_io_failure to do the rest for us.
2316 */
2317 if (failrec->in_validation) {
2318 BUG_ON(failrec->this_mirror != failed_mirror);
2319 failrec->in_validation = 0;
2320 failrec->this_mirror = 0;
2321 }
2322 failrec->failed_mirror = failed_mirror;
2323 failrec->this_mirror++;
2324 if (failrec->this_mirror == failed_mirror)
2325 failrec->this_mirror++;
4a54c8c1
JS
2326 }
2327
facc8a22 2328 if (failrec->this_mirror > num_copies) {
2fe6303e 2329 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2330 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2331 return 0;
4a54c8c1
JS
2332 }
2333
2fe6303e
MX
2334 return 1;
2335}
2336
2337
2338struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2339 struct io_failure_record *failrec,
2340 struct page *page, int pg_offset, int icsum,
8b110e39 2341 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2342{
2343 struct bio *bio;
2344 struct btrfs_io_bio *btrfs_failed_bio;
2345 struct btrfs_io_bio *btrfs_bio;
2346
9be3395b 2347 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2348 if (!bio)
2349 return NULL;
2350
2351 bio->bi_end_io = endio_func;
4f024f37 2352 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2353 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2354 bio->bi_iter.bi_size = 0;
8b110e39 2355 bio->bi_private = data;
4a54c8c1 2356
facc8a22
MX
2357 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2358 if (btrfs_failed_bio->csum) {
2359 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2360 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2361
2362 btrfs_bio = btrfs_io_bio(bio);
2363 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2364 icsum *= csum_size;
2365 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2366 csum_size);
2367 }
2368
2fe6303e
MX
2369 bio_add_page(bio, page, failrec->len, pg_offset);
2370
2371 return bio;
2372}
2373
2374/*
2375 * this is a generic handler for readpage errors (default
2376 * readpage_io_failed_hook). if other copies exist, read those and write back
2377 * good data to the failed position. does not investigate in remapping the
2378 * failed extent elsewhere, hoping the device will be smart enough to do this as
2379 * needed
2380 */
2381
2382static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2383 struct page *page, u64 start, u64 end,
2384 int failed_mirror)
2385{
2386 struct io_failure_record *failrec;
2387 struct inode *inode = page->mapping->host;
2388 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2389 struct bio *bio;
2390 int read_mode;
2391 int ret;
2392
2393 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2394
2395 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2396 if (ret)
2397 return ret;
2398
2399 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2400 if (!ret) {
2401 free_io_failure(inode, failrec);
2402 return -EIO;
2403 }
2404
2405 if (failed_bio->bi_vcnt > 1)
2406 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2407 else
2408 read_mode = READ_SYNC;
2409
2410 phy_offset >>= inode->i_sb->s_blocksize_bits;
2411 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2412 start - page_offset(page),
8b110e39
MX
2413 (int)phy_offset, failed_bio->bi_end_io,
2414 NULL);
2fe6303e
MX
2415 if (!bio) {
2416 free_io_failure(inode, failrec);
2417 return -EIO;
2418 }
4a54c8c1 2419
2fe6303e
MX
2420 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2421 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2422
013bd4c3
TI
2423 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2424 failrec->this_mirror,
2425 failrec->bio_flags, 0);
6c387ab2 2426 if (ret) {
454ff3de 2427 free_io_failure(inode, failrec);
6c387ab2
MX
2428 bio_put(bio);
2429 }
2430
013bd4c3 2431 return ret;
4a54c8c1
JS
2432}
2433
d1310b2e
CM
2434/* lots and lots of room for performance fixes in the end_bio funcs */
2435
87826df0
JM
2436int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2437{
2438 int uptodate = (err == 0);
2439 struct extent_io_tree *tree;
3e2426bd 2440 int ret = 0;
87826df0
JM
2441
2442 tree = &BTRFS_I(page->mapping->host)->io_tree;
2443
2444 if (tree->ops && tree->ops->writepage_end_io_hook) {
2445 ret = tree->ops->writepage_end_io_hook(page, start,
2446 end, NULL, uptodate);
2447 if (ret)
2448 uptodate = 0;
2449 }
2450
87826df0 2451 if (!uptodate) {
87826df0
JM
2452 ClearPageUptodate(page);
2453 SetPageError(page);
5dca6eea
LB
2454 ret = ret < 0 ? ret : -EIO;
2455 mapping_set_error(page->mapping, ret);
87826df0
JM
2456 }
2457 return 0;
2458}
2459
d1310b2e
CM
2460/*
2461 * after a writepage IO is done, we need to:
2462 * clear the uptodate bits on error
2463 * clear the writeback bits in the extent tree for this IO
2464 * end_page_writeback if the page has no more pending IO
2465 *
2466 * Scheduling is not allowed, so the extent state tree is expected
2467 * to have one and only one object corresponding to this IO.
2468 */
d1310b2e 2469static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2470{
2c30c71b 2471 struct bio_vec *bvec;
d1310b2e
CM
2472 u64 start;
2473 u64 end;
2c30c71b 2474 int i;
d1310b2e 2475
2c30c71b 2476 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2477 struct page *page = bvec->bv_page;
902b22f3 2478
17a5adcc
AO
2479 /* We always issue full-page reads, but if some block
2480 * in a page fails to read, blk_update_request() will
2481 * advance bv_offset and adjust bv_len to compensate.
2482 * Print a warning for nonzero offsets, and an error
2483 * if they don't add up to a full page. */
efe120a0
FH
2484 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2485 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2486 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2487 "partial page write in btrfs with offset %u and length %u",
2488 bvec->bv_offset, bvec->bv_len);
2489 else
2490 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2491 "incomplete page write in btrfs with offset %u and "
2492 "length %u",
2493 bvec->bv_offset, bvec->bv_len);
2494 }
d1310b2e 2495
17a5adcc
AO
2496 start = page_offset(page);
2497 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2498
87826df0
JM
2499 if (end_extent_writepage(page, err, start, end))
2500 continue;
70dec807 2501
17a5adcc 2502 end_page_writeback(page);
2c30c71b 2503 }
2b1f55b0 2504
d1310b2e 2505 bio_put(bio);
d1310b2e
CM
2506}
2507
883d0de4
MX
2508static void
2509endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2510 int uptodate)
2511{
2512 struct extent_state *cached = NULL;
2513 u64 end = start + len - 1;
2514
2515 if (uptodate && tree->track_uptodate)
2516 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2517 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2518}
2519
d1310b2e
CM
2520/*
2521 * after a readpage IO is done, we need to:
2522 * clear the uptodate bits on error
2523 * set the uptodate bits if things worked
2524 * set the page up to date if all extents in the tree are uptodate
2525 * clear the lock bit in the extent tree
2526 * unlock the page if there are no other extents locked for it
2527 *
2528 * Scheduling is not allowed, so the extent state tree is expected
2529 * to have one and only one object corresponding to this IO.
2530 */
d1310b2e 2531static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2532{
2c30c71b 2533 struct bio_vec *bvec;
d1310b2e 2534 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2535 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2536 struct extent_io_tree *tree;
facc8a22 2537 u64 offset = 0;
d1310b2e
CM
2538 u64 start;
2539 u64 end;
facc8a22 2540 u64 len;
883d0de4
MX
2541 u64 extent_start = 0;
2542 u64 extent_len = 0;
5cf1ab56 2543 int mirror;
d1310b2e 2544 int ret;
2c30c71b 2545 int i;
d1310b2e 2546
d20f7043
CM
2547 if (err)
2548 uptodate = 0;
2549
2c30c71b 2550 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2551 struct page *page = bvec->bv_page;
a71754fc 2552 struct inode *inode = page->mapping->host;
507903b8 2553
be3940c0 2554 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
c1dc0896 2555 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2556 io_bio->mirror_num);
a71754fc 2557 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2558
17a5adcc
AO
2559 /* We always issue full-page reads, but if some block
2560 * in a page fails to read, blk_update_request() will
2561 * advance bv_offset and adjust bv_len to compensate.
2562 * Print a warning for nonzero offsets, and an error
2563 * if they don't add up to a full page. */
efe120a0
FH
2564 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2565 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2566 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2567 "partial page read in btrfs with offset %u and length %u",
2568 bvec->bv_offset, bvec->bv_len);
2569 else
2570 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2571 "incomplete page read in btrfs with offset %u and "
2572 "length %u",
2573 bvec->bv_offset, bvec->bv_len);
2574 }
d1310b2e 2575
17a5adcc
AO
2576 start = page_offset(page);
2577 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2578 len = bvec->bv_len;
d1310b2e 2579
9be3395b 2580 mirror = io_bio->mirror_num;
f2a09da9
MX
2581 if (likely(uptodate && tree->ops &&
2582 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2583 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2584 page, start, end,
2585 mirror);
5ee0844d 2586 if (ret)
d1310b2e 2587 uptodate = 0;
5ee0844d 2588 else
1203b681 2589 clean_io_failure(inode, start, page, 0);
d1310b2e 2590 }
ea466794 2591
f2a09da9
MX
2592 if (likely(uptodate))
2593 goto readpage_ok;
2594
2595 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2596 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2597 if (!ret && !err &&
2598 test_bit(BIO_UPTODATE, &bio->bi_flags))
2599 uptodate = 1;
f2a09da9 2600 } else {
f4a8e656
JS
2601 /*
2602 * The generic bio_readpage_error handles errors the
2603 * following way: If possible, new read requests are
2604 * created and submitted and will end up in
2605 * end_bio_extent_readpage as well (if we're lucky, not
2606 * in the !uptodate case). In that case it returns 0 and
2607 * we just go on with the next page in our bio. If it
2608 * can't handle the error it will return -EIO and we
2609 * remain responsible for that page.
2610 */
facc8a22
MX
2611 ret = bio_readpage_error(bio, offset, page, start, end,
2612 mirror);
7e38326f 2613 if (ret == 0) {
3b951516
CM
2614 uptodate =
2615 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2616 if (err)
2617 uptodate = 0;
38c1c2e4 2618 offset += len;
7e38326f
CM
2619 continue;
2620 }
2621 }
f2a09da9 2622readpage_ok:
883d0de4 2623 if (likely(uptodate)) {
a71754fc
JB
2624 loff_t i_size = i_size_read(inode);
2625 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2626 unsigned off;
a71754fc
JB
2627
2628 /* Zero out the end if this page straddles i_size */
a583c026
LB
2629 off = i_size & (PAGE_CACHE_SIZE-1);
2630 if (page->index == end_index && off)
2631 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2632 SetPageUptodate(page);
70dec807 2633 } else {
17a5adcc
AO
2634 ClearPageUptodate(page);
2635 SetPageError(page);
70dec807 2636 }
17a5adcc 2637 unlock_page(page);
facc8a22 2638 offset += len;
883d0de4
MX
2639
2640 if (unlikely(!uptodate)) {
2641 if (extent_len) {
2642 endio_readpage_release_extent(tree,
2643 extent_start,
2644 extent_len, 1);
2645 extent_start = 0;
2646 extent_len = 0;
2647 }
2648 endio_readpage_release_extent(tree, start,
2649 end - start + 1, 0);
2650 } else if (!extent_len) {
2651 extent_start = start;
2652 extent_len = end + 1 - start;
2653 } else if (extent_start + extent_len == start) {
2654 extent_len += end + 1 - start;
2655 } else {
2656 endio_readpage_release_extent(tree, extent_start,
2657 extent_len, uptodate);
2658 extent_start = start;
2659 extent_len = end + 1 - start;
2660 }
2c30c71b 2661 }
d1310b2e 2662
883d0de4
MX
2663 if (extent_len)
2664 endio_readpage_release_extent(tree, extent_start, extent_len,
2665 uptodate);
facc8a22
MX
2666 if (io_bio->end_io)
2667 io_bio->end_io(io_bio, err);
d1310b2e 2668 bio_put(bio);
d1310b2e
CM
2669}
2670
9be3395b
CM
2671/*
2672 * this allocates from the btrfs_bioset. We're returning a bio right now
2673 * but you can call btrfs_io_bio for the appropriate container_of magic
2674 */
88f794ed
MX
2675struct bio *
2676btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2677 gfp_t gfp_flags)
d1310b2e 2678{
facc8a22 2679 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2680 struct bio *bio;
2681
9be3395b 2682 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2683
2684 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2685 while (!bio && (nr_vecs /= 2)) {
2686 bio = bio_alloc_bioset(gfp_flags,
2687 nr_vecs, btrfs_bioset);
2688 }
d1310b2e
CM
2689 }
2690
2691 if (bio) {
2692 bio->bi_bdev = bdev;
4f024f37 2693 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2694 btrfs_bio = btrfs_io_bio(bio);
2695 btrfs_bio->csum = NULL;
2696 btrfs_bio->csum_allocated = NULL;
2697 btrfs_bio->end_io = NULL;
d1310b2e
CM
2698 }
2699 return bio;
2700}
2701
9be3395b
CM
2702struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2703{
23ea8e5a
MX
2704 struct btrfs_io_bio *btrfs_bio;
2705 struct bio *new;
9be3395b 2706
23ea8e5a
MX
2707 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2708 if (new) {
2709 btrfs_bio = btrfs_io_bio(new);
2710 btrfs_bio->csum = NULL;
2711 btrfs_bio->csum_allocated = NULL;
2712 btrfs_bio->end_io = NULL;
2713 }
2714 return new;
2715}
9be3395b
CM
2716
2717/* this also allocates from the btrfs_bioset */
2718struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2719{
facc8a22
MX
2720 struct btrfs_io_bio *btrfs_bio;
2721 struct bio *bio;
2722
2723 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2724 if (bio) {
2725 btrfs_bio = btrfs_io_bio(bio);
2726 btrfs_bio->csum = NULL;
2727 btrfs_bio->csum_allocated = NULL;
2728 btrfs_bio->end_io = NULL;
2729 }
2730 return bio;
9be3395b
CM
2731}
2732
2733
355808c2
JM
2734static int __must_check submit_one_bio(int rw, struct bio *bio,
2735 int mirror_num, unsigned long bio_flags)
d1310b2e 2736{
d1310b2e 2737 int ret = 0;
70dec807
CM
2738 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2739 struct page *page = bvec->bv_page;
2740 struct extent_io_tree *tree = bio->bi_private;
70dec807 2741 u64 start;
70dec807 2742
4eee4fa4 2743 start = page_offset(page) + bvec->bv_offset;
70dec807 2744
902b22f3 2745 bio->bi_private = NULL;
d1310b2e
CM
2746
2747 bio_get(bio);
2748
065631f6 2749 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2750 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2751 mirror_num, bio_flags, start);
0b86a832 2752 else
21adbd5c 2753 btrfsic_submit_bio(rw, bio);
4a54c8c1 2754
d1310b2e
CM
2755 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2756 ret = -EOPNOTSUPP;
2757 bio_put(bio);
2758 return ret;
2759}
2760
64a16701 2761static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2762 unsigned long offset, size_t size, struct bio *bio,
2763 unsigned long bio_flags)
2764{
2765 int ret = 0;
2766 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2767 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2768 bio_flags);
2769 BUG_ON(ret < 0);
2770 return ret;
2771
2772}
2773
d1310b2e
CM
2774static int submit_extent_page(int rw, struct extent_io_tree *tree,
2775 struct page *page, sector_t sector,
2776 size_t size, unsigned long offset,
2777 struct block_device *bdev,
2778 struct bio **bio_ret,
2779 unsigned long max_pages,
f188591e 2780 bio_end_io_t end_io_func,
c8b97818
CM
2781 int mirror_num,
2782 unsigned long prev_bio_flags,
2783 unsigned long bio_flags)
d1310b2e
CM
2784{
2785 int ret = 0;
2786 struct bio *bio;
2787 int nr;
c8b97818
CM
2788 int contig = 0;
2789 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2790 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2791 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2792
2793 if (bio_ret && *bio_ret) {
2794 bio = *bio_ret;
c8b97818 2795 if (old_compressed)
4f024f37 2796 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2797 else
f73a1c7d 2798 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2799
2800 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2801 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2802 bio_add_page(bio, page, page_size, offset) < page_size) {
2803 ret = submit_one_bio(rw, bio, mirror_num,
2804 prev_bio_flags);
79787eaa
JM
2805 if (ret < 0)
2806 return ret;
d1310b2e
CM
2807 bio = NULL;
2808 } else {
2809 return 0;
2810 }
2811 }
c8b97818
CM
2812 if (this_compressed)
2813 nr = BIO_MAX_PAGES;
2814 else
2815 nr = bio_get_nr_vecs(bdev);
2816
88f794ed 2817 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2818 if (!bio)
2819 return -ENOMEM;
70dec807 2820
c8b97818 2821 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2822 bio->bi_end_io = end_io_func;
2823 bio->bi_private = tree;
70dec807 2824
d397712b 2825 if (bio_ret)
d1310b2e 2826 *bio_ret = bio;
d397712b 2827 else
c8b97818 2828 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2829
2830 return ret;
2831}
2832
48a3b636
ES
2833static void attach_extent_buffer_page(struct extent_buffer *eb,
2834 struct page *page)
d1310b2e
CM
2835{
2836 if (!PagePrivate(page)) {
2837 SetPagePrivate(page);
d1310b2e 2838 page_cache_get(page);
4f2de97a
JB
2839 set_page_private(page, (unsigned long)eb);
2840 } else {
2841 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2842 }
2843}
2844
4f2de97a 2845void set_page_extent_mapped(struct page *page)
d1310b2e 2846{
4f2de97a
JB
2847 if (!PagePrivate(page)) {
2848 SetPagePrivate(page);
2849 page_cache_get(page);
2850 set_page_private(page, EXTENT_PAGE_PRIVATE);
2851 }
d1310b2e
CM
2852}
2853
125bac01
MX
2854static struct extent_map *
2855__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2856 u64 start, u64 len, get_extent_t *get_extent,
2857 struct extent_map **em_cached)
2858{
2859 struct extent_map *em;
2860
2861 if (em_cached && *em_cached) {
2862 em = *em_cached;
cbc0e928 2863 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2864 start < extent_map_end(em)) {
2865 atomic_inc(&em->refs);
2866 return em;
2867 }
2868
2869 free_extent_map(em);
2870 *em_cached = NULL;
2871 }
2872
2873 em = get_extent(inode, page, pg_offset, start, len, 0);
2874 if (em_cached && !IS_ERR_OR_NULL(em)) {
2875 BUG_ON(*em_cached);
2876 atomic_inc(&em->refs);
2877 *em_cached = em;
2878 }
2879 return em;
2880}
d1310b2e
CM
2881/*
2882 * basic readpage implementation. Locked extent state structs are inserted
2883 * into the tree that are removed when the IO is done (by the end_io
2884 * handlers)
79787eaa 2885 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2886 */
9974090b
MX
2887static int __do_readpage(struct extent_io_tree *tree,
2888 struct page *page,
2889 get_extent_t *get_extent,
125bac01 2890 struct extent_map **em_cached,
9974090b
MX
2891 struct bio **bio, int mirror_num,
2892 unsigned long *bio_flags, int rw)
d1310b2e
CM
2893{
2894 struct inode *inode = page->mapping->host;
4eee4fa4 2895 u64 start = page_offset(page);
d1310b2e
CM
2896 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2897 u64 end;
2898 u64 cur = start;
2899 u64 extent_offset;
2900 u64 last_byte = i_size_read(inode);
2901 u64 block_start;
2902 u64 cur_end;
2903 sector_t sector;
2904 struct extent_map *em;
2905 struct block_device *bdev;
2906 int ret;
2907 int nr = 0;
4b384318 2908 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2909 size_t pg_offset = 0;
d1310b2e 2910 size_t iosize;
c8b97818 2911 size_t disk_io_size;
d1310b2e 2912 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2913 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2914
2915 set_page_extent_mapped(page);
2916
9974090b 2917 end = page_end;
90a887c9
DM
2918 if (!PageUptodate(page)) {
2919 if (cleancache_get_page(page) == 0) {
2920 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2921 unlock_extent(tree, start, end);
90a887c9
DM
2922 goto out;
2923 }
2924 }
2925
c8b97818
CM
2926 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2927 char *userpage;
2928 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2929
2930 if (zero_offset) {
2931 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2932 userpage = kmap_atomic(page);
c8b97818
CM
2933 memset(userpage + zero_offset, 0, iosize);
2934 flush_dcache_page(page);
7ac687d9 2935 kunmap_atomic(userpage);
c8b97818
CM
2936 }
2937 }
d1310b2e 2938 while (cur <= end) {
c8f2f24b
JB
2939 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2940
d1310b2e
CM
2941 if (cur >= last_byte) {
2942 char *userpage;
507903b8
AJ
2943 struct extent_state *cached = NULL;
2944
306e16ce 2945 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2946 userpage = kmap_atomic(page);
306e16ce 2947 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2948 flush_dcache_page(page);
7ac687d9 2949 kunmap_atomic(userpage);
d1310b2e 2950 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2951 &cached, GFP_NOFS);
4b384318
MF
2952 if (!parent_locked)
2953 unlock_extent_cached(tree, cur,
2954 cur + iosize - 1,
2955 &cached, GFP_NOFS);
d1310b2e
CM
2956 break;
2957 }
125bac01
MX
2958 em = __get_extent_map(inode, page, pg_offset, cur,
2959 end - cur + 1, get_extent, em_cached);
c704005d 2960 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2961 SetPageError(page);
4b384318
MF
2962 if (!parent_locked)
2963 unlock_extent(tree, cur, end);
d1310b2e
CM
2964 break;
2965 }
d1310b2e
CM
2966 extent_offset = cur - em->start;
2967 BUG_ON(extent_map_end(em) <= cur);
2968 BUG_ON(end < cur);
2969
261507a0 2970 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2971 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2972 extent_set_compress_type(&this_bio_flag,
2973 em->compress_type);
2974 }
c8b97818 2975
d1310b2e
CM
2976 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2977 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2978 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2979 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2980 disk_io_size = em->block_len;
2981 sector = em->block_start >> 9;
2982 } else {
2983 sector = (em->block_start + extent_offset) >> 9;
2984 disk_io_size = iosize;
2985 }
d1310b2e
CM
2986 bdev = em->bdev;
2987 block_start = em->block_start;
d899e052
YZ
2988 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2989 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2990 free_extent_map(em);
2991 em = NULL;
2992
2993 /* we've found a hole, just zero and go on */
2994 if (block_start == EXTENT_MAP_HOLE) {
2995 char *userpage;
507903b8
AJ
2996 struct extent_state *cached = NULL;
2997
7ac687d9 2998 userpage = kmap_atomic(page);
306e16ce 2999 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3000 flush_dcache_page(page);
7ac687d9 3001 kunmap_atomic(userpage);
d1310b2e
CM
3002
3003 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
3004 &cached, GFP_NOFS);
3005 unlock_extent_cached(tree, cur, cur + iosize - 1,
3006 &cached, GFP_NOFS);
d1310b2e 3007 cur = cur + iosize;
306e16ce 3008 pg_offset += iosize;
d1310b2e
CM
3009 continue;
3010 }
3011 /* the get_extent function already copied into the page */
9655d298
CM
3012 if (test_range_bit(tree, cur, cur_end,
3013 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3014 check_page_uptodate(tree, page);
4b384318
MF
3015 if (!parent_locked)
3016 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3017 cur = cur + iosize;
306e16ce 3018 pg_offset += iosize;
d1310b2e
CM
3019 continue;
3020 }
70dec807
CM
3021 /* we have an inline extent but it didn't get marked up
3022 * to date. Error out
3023 */
3024 if (block_start == EXTENT_MAP_INLINE) {
3025 SetPageError(page);
4b384318
MF
3026 if (!parent_locked)
3027 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3028 cur = cur + iosize;
306e16ce 3029 pg_offset += iosize;
70dec807
CM
3030 continue;
3031 }
d1310b2e 3032
c8f2f24b 3033 pnr -= page->index;
d4c7ca86 3034 ret = submit_extent_page(rw, tree, page,
306e16ce 3035 sector, disk_io_size, pg_offset,
89642229 3036 bdev, bio, pnr,
c8b97818
CM
3037 end_bio_extent_readpage, mirror_num,
3038 *bio_flags,
3039 this_bio_flag);
c8f2f24b
JB
3040 if (!ret) {
3041 nr++;
3042 *bio_flags = this_bio_flag;
3043 } else {
d1310b2e 3044 SetPageError(page);
4b384318
MF
3045 if (!parent_locked)
3046 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3047 }
d1310b2e 3048 cur = cur + iosize;
306e16ce 3049 pg_offset += iosize;
d1310b2e 3050 }
90a887c9 3051out:
d1310b2e
CM
3052 if (!nr) {
3053 if (!PageError(page))
3054 SetPageUptodate(page);
3055 unlock_page(page);
3056 }
3057 return 0;
3058}
3059
9974090b
MX
3060static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3061 struct page *pages[], int nr_pages,
3062 u64 start, u64 end,
3063 get_extent_t *get_extent,
125bac01 3064 struct extent_map **em_cached,
9974090b
MX
3065 struct bio **bio, int mirror_num,
3066 unsigned long *bio_flags, int rw)
3067{
3068 struct inode *inode;
3069 struct btrfs_ordered_extent *ordered;
3070 int index;
3071
3072 inode = pages[0]->mapping->host;
3073 while (1) {
3074 lock_extent(tree, start, end);
3075 ordered = btrfs_lookup_ordered_range(inode, start,
3076 end - start + 1);
3077 if (!ordered)
3078 break;
3079 unlock_extent(tree, start, end);
3080 btrfs_start_ordered_extent(inode, ordered, 1);
3081 btrfs_put_ordered_extent(ordered);
3082 }
3083
3084 for (index = 0; index < nr_pages; index++) {
125bac01
MX
3085 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3086 mirror_num, bio_flags, rw);
9974090b
MX
3087 page_cache_release(pages[index]);
3088 }
3089}
3090
3091static void __extent_readpages(struct extent_io_tree *tree,
3092 struct page *pages[],
3093 int nr_pages, get_extent_t *get_extent,
125bac01 3094 struct extent_map **em_cached,
9974090b
MX
3095 struct bio **bio, int mirror_num,
3096 unsigned long *bio_flags, int rw)
3097{
35a3621b 3098 u64 start = 0;
9974090b
MX
3099 u64 end = 0;
3100 u64 page_start;
3101 int index;
35a3621b 3102 int first_index = 0;
9974090b
MX
3103
3104 for (index = 0; index < nr_pages; index++) {
3105 page_start = page_offset(pages[index]);
3106 if (!end) {
3107 start = page_start;
3108 end = start + PAGE_CACHE_SIZE - 1;
3109 first_index = index;
3110 } else if (end + 1 == page_start) {
3111 end += PAGE_CACHE_SIZE;
3112 } else {
3113 __do_contiguous_readpages(tree, &pages[first_index],
3114 index - first_index, start,
125bac01
MX
3115 end, get_extent, em_cached,
3116 bio, mirror_num, bio_flags,
3117 rw);
9974090b
MX
3118 start = page_start;
3119 end = start + PAGE_CACHE_SIZE - 1;
3120 first_index = index;
3121 }
3122 }
3123
3124 if (end)
3125 __do_contiguous_readpages(tree, &pages[first_index],
3126 index - first_index, start,
125bac01 3127 end, get_extent, em_cached, bio,
9974090b
MX
3128 mirror_num, bio_flags, rw);
3129}
3130
3131static int __extent_read_full_page(struct extent_io_tree *tree,
3132 struct page *page,
3133 get_extent_t *get_extent,
3134 struct bio **bio, int mirror_num,
3135 unsigned long *bio_flags, int rw)
3136{
3137 struct inode *inode = page->mapping->host;
3138 struct btrfs_ordered_extent *ordered;
3139 u64 start = page_offset(page);
3140 u64 end = start + PAGE_CACHE_SIZE - 1;
3141 int ret;
3142
3143 while (1) {
3144 lock_extent(tree, start, end);
3145 ordered = btrfs_lookup_ordered_extent(inode, start);
3146 if (!ordered)
3147 break;
3148 unlock_extent(tree, start, end);
3149 btrfs_start_ordered_extent(inode, ordered, 1);
3150 btrfs_put_ordered_extent(ordered);
3151 }
3152
125bac01
MX
3153 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3154 bio_flags, rw);
9974090b
MX
3155 return ret;
3156}
3157
d1310b2e 3158int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3159 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3160{
3161 struct bio *bio = NULL;
c8b97818 3162 unsigned long bio_flags = 0;
d1310b2e
CM
3163 int ret;
3164
8ddc7d9c 3165 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3166 &bio_flags, READ);
d1310b2e 3167 if (bio)
8ddc7d9c 3168 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3169 return ret;
3170}
d1310b2e 3171
4b384318
MF
3172int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3173 get_extent_t *get_extent, int mirror_num)
3174{
3175 struct bio *bio = NULL;
3176 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3177 int ret;
3178
3179 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3180 &bio_flags, READ);
3181 if (bio)
3182 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3183 return ret;
3184}
3185
11c8349b
CM
3186static noinline void update_nr_written(struct page *page,
3187 struct writeback_control *wbc,
3188 unsigned long nr_written)
3189{
3190 wbc->nr_to_write -= nr_written;
3191 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3192 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3193 page->mapping->writeback_index = page->index + nr_written;
3194}
3195
d1310b2e 3196/*
40f76580
CM
3197 * helper for __extent_writepage, doing all of the delayed allocation setup.
3198 *
3199 * This returns 1 if our fill_delalloc function did all the work required
3200 * to write the page (copy into inline extent). In this case the IO has
3201 * been started and the page is already unlocked.
3202 *
3203 * This returns 0 if all went well (page still locked)
3204 * This returns < 0 if there were errors (page still locked)
d1310b2e 3205 */
40f76580
CM
3206static noinline_for_stack int writepage_delalloc(struct inode *inode,
3207 struct page *page, struct writeback_control *wbc,
3208 struct extent_page_data *epd,
3209 u64 delalloc_start,
3210 unsigned long *nr_written)
3211{
3212 struct extent_io_tree *tree = epd->tree;
3213 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3214 u64 nr_delalloc;
3215 u64 delalloc_to_write = 0;
3216 u64 delalloc_end = 0;
3217 int ret;
3218 int page_started = 0;
3219
3220 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3221 return 0;
3222
3223 while (delalloc_end < page_end) {
3224 nr_delalloc = find_lock_delalloc_range(inode, tree,
3225 page,
3226 &delalloc_start,
3227 &delalloc_end,
3228 128 * 1024 * 1024);
3229 if (nr_delalloc == 0) {
3230 delalloc_start = delalloc_end + 1;
3231 continue;
3232 }
3233 ret = tree->ops->fill_delalloc(inode, page,
3234 delalloc_start,
3235 delalloc_end,
3236 &page_started,
3237 nr_written);
3238 /* File system has been set read-only */
3239 if (ret) {
3240 SetPageError(page);
3241 /* fill_delalloc should be return < 0 for error
3242 * but just in case, we use > 0 here meaning the
3243 * IO is started, so we don't want to return > 0
3244 * unless things are going well.
3245 */
3246 ret = ret < 0 ? ret : -EIO;
3247 goto done;
3248 }
3249 /*
3250 * delalloc_end is already one less than the total
3251 * length, so we don't subtract one from
3252 * PAGE_CACHE_SIZE
3253 */
3254 delalloc_to_write += (delalloc_end - delalloc_start +
3255 PAGE_CACHE_SIZE) >>
3256 PAGE_CACHE_SHIFT;
3257 delalloc_start = delalloc_end + 1;
3258 }
3259 if (wbc->nr_to_write < delalloc_to_write) {
3260 int thresh = 8192;
3261
3262 if (delalloc_to_write < thresh * 2)
3263 thresh = delalloc_to_write;
3264 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3265 thresh);
3266 }
3267
3268 /* did the fill delalloc function already unlock and start
3269 * the IO?
3270 */
3271 if (page_started) {
3272 /*
3273 * we've unlocked the page, so we can't update
3274 * the mapping's writeback index, just update
3275 * nr_to_write.
3276 */
3277 wbc->nr_to_write -= *nr_written;
3278 return 1;
3279 }
3280
3281 ret = 0;
3282
3283done:
3284 return ret;
3285}
3286
3287/*
3288 * helper for __extent_writepage. This calls the writepage start hooks,
3289 * and does the loop to map the page into extents and bios.
3290 *
3291 * We return 1 if the IO is started and the page is unlocked,
3292 * 0 if all went well (page still locked)
3293 * < 0 if there were errors (page still locked)
3294 */
3295static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3296 struct page *page,
3297 struct writeback_control *wbc,
3298 struct extent_page_data *epd,
3299 loff_t i_size,
3300 unsigned long nr_written,
3301 int write_flags, int *nr_ret)
d1310b2e 3302{
d1310b2e 3303 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3304 u64 start = page_offset(page);
d1310b2e
CM
3305 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3306 u64 end;
3307 u64 cur = start;
3308 u64 extent_offset;
d1310b2e
CM
3309 u64 block_start;
3310 u64 iosize;
3311 sector_t sector;
2c64c53d 3312 struct extent_state *cached_state = NULL;
d1310b2e
CM
3313 struct extent_map *em;
3314 struct block_device *bdev;
7f3c74fb 3315 size_t pg_offset = 0;
d1310b2e 3316 size_t blocksize;
40f76580
CM
3317 int ret = 0;
3318 int nr = 0;
3319 bool compressed;
c8b97818 3320
247e743c 3321 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3322 ret = tree->ops->writepage_start_hook(page, start,
3323 page_end);
87826df0
JM
3324 if (ret) {
3325 /* Fixup worker will requeue */
3326 if (ret == -EBUSY)
3327 wbc->pages_skipped++;
3328 else
3329 redirty_page_for_writepage(wbc, page);
40f76580 3330
11c8349b 3331 update_nr_written(page, wbc, nr_written);
247e743c 3332 unlock_page(page);
40f76580 3333 ret = 1;
11c8349b 3334 goto done_unlocked;
247e743c
CM
3335 }
3336 }
3337
11c8349b
CM
3338 /*
3339 * we don't want to touch the inode after unlocking the page,
3340 * so we update the mapping writeback index now
3341 */
3342 update_nr_written(page, wbc, nr_written + 1);
771ed689 3343
d1310b2e 3344 end = page_end;
40f76580 3345 if (i_size <= start) {
e6dcd2dc
CM
3346 if (tree->ops && tree->ops->writepage_end_io_hook)
3347 tree->ops->writepage_end_io_hook(page, start,
3348 page_end, NULL, 1);
d1310b2e
CM
3349 goto done;
3350 }
3351
d1310b2e
CM
3352 blocksize = inode->i_sb->s_blocksize;
3353
3354 while (cur <= end) {
40f76580
CM
3355 u64 em_end;
3356 if (cur >= i_size) {
e6dcd2dc
CM
3357 if (tree->ops && tree->ops->writepage_end_io_hook)
3358 tree->ops->writepage_end_io_hook(page, cur,
3359 page_end, NULL, 1);
d1310b2e
CM
3360 break;
3361 }
7f3c74fb 3362 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3363 end - cur + 1, 1);
c704005d 3364 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3365 SetPageError(page);
61391d56 3366 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3367 break;
3368 }
3369
3370 extent_offset = cur - em->start;
40f76580
CM
3371 em_end = extent_map_end(em);
3372 BUG_ON(em_end <= cur);
d1310b2e 3373 BUG_ON(end < cur);
40f76580 3374 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3375 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3376 sector = (em->block_start + extent_offset) >> 9;
3377 bdev = em->bdev;
3378 block_start = em->block_start;
c8b97818 3379 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3380 free_extent_map(em);
3381 em = NULL;
3382
c8b97818
CM
3383 /*
3384 * compressed and inline extents are written through other
3385 * paths in the FS
3386 */
3387 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3388 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3389 /*
3390 * end_io notification does not happen here for
3391 * compressed extents
3392 */
3393 if (!compressed && tree->ops &&
3394 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3395 tree->ops->writepage_end_io_hook(page, cur,
3396 cur + iosize - 1,
3397 NULL, 1);
c8b97818
CM
3398 else if (compressed) {
3399 /* we don't want to end_page_writeback on
3400 * a compressed extent. this happens
3401 * elsewhere
3402 */
3403 nr++;
3404 }
3405
3406 cur += iosize;
7f3c74fb 3407 pg_offset += iosize;
d1310b2e
CM
3408 continue;
3409 }
c8b97818 3410
d1310b2e
CM
3411 if (tree->ops && tree->ops->writepage_io_hook) {
3412 ret = tree->ops->writepage_io_hook(page, cur,
3413 cur + iosize - 1);
3414 } else {
3415 ret = 0;
3416 }
1259ab75 3417 if (ret) {
d1310b2e 3418 SetPageError(page);
1259ab75 3419 } else {
40f76580 3420 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3421
d1310b2e
CM
3422 set_range_writeback(tree, cur, cur + iosize - 1);
3423 if (!PageWriteback(page)) {
efe120a0
FH
3424 btrfs_err(BTRFS_I(inode)->root->fs_info,
3425 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3426 page->index, cur, end);
d1310b2e
CM
3427 }
3428
ffbd517d
CM
3429 ret = submit_extent_page(write_flags, tree, page,
3430 sector, iosize, pg_offset,
3431 bdev, &epd->bio, max_nr,
c8b97818
CM
3432 end_bio_extent_writepage,
3433 0, 0, 0);
d1310b2e
CM
3434 if (ret)
3435 SetPageError(page);
3436 }
3437 cur = cur + iosize;
7f3c74fb 3438 pg_offset += iosize;
d1310b2e
CM
3439 nr++;
3440 }
40f76580
CM
3441done:
3442 *nr_ret = nr;
3443
3444done_unlocked:
3445
3446 /* drop our reference on any cached states */
3447 free_extent_state(cached_state);
3448 return ret;
3449}
3450
3451/*
3452 * the writepage semantics are similar to regular writepage. extent
3453 * records are inserted to lock ranges in the tree, and as dirty areas
3454 * are found, they are marked writeback. Then the lock bits are removed
3455 * and the end_io handler clears the writeback ranges
3456 */
3457static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3458 void *data)
3459{
3460 struct inode *inode = page->mapping->host;
3461 struct extent_page_data *epd = data;
3462 u64 start = page_offset(page);
3463 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3464 int ret;
3465 int nr = 0;
3466 size_t pg_offset = 0;
3467 loff_t i_size = i_size_read(inode);
3468 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3469 int write_flags;
3470 unsigned long nr_written = 0;
3471
3472 if (wbc->sync_mode == WB_SYNC_ALL)
3473 write_flags = WRITE_SYNC;
3474 else
3475 write_flags = WRITE;
3476
3477 trace___extent_writepage(page, inode, wbc);
3478
3479 WARN_ON(!PageLocked(page));
3480
3481 ClearPageError(page);
3482
3483 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3484 if (page->index > end_index ||
3485 (page->index == end_index && !pg_offset)) {
3486 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3487 unlock_page(page);
3488 return 0;
3489 }
3490
3491 if (page->index == end_index) {
3492 char *userpage;
3493
3494 userpage = kmap_atomic(page);
3495 memset(userpage + pg_offset, 0,
3496 PAGE_CACHE_SIZE - pg_offset);
3497 kunmap_atomic(userpage);
3498 flush_dcache_page(page);
3499 }
3500
3501 pg_offset = 0;
3502
3503 set_page_extent_mapped(page);
3504
3505 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3506 if (ret == 1)
3507 goto done_unlocked;
3508 if (ret)
3509 goto done;
3510
3511 ret = __extent_writepage_io(inode, page, wbc, epd,
3512 i_size, nr_written, write_flags, &nr);
3513 if (ret == 1)
3514 goto done_unlocked;
3515
d1310b2e
CM
3516done:
3517 if (nr == 0) {
3518 /* make sure the mapping tag for page dirty gets cleared */
3519 set_page_writeback(page);
3520 end_page_writeback(page);
3521 }
61391d56
FM
3522 if (PageError(page)) {
3523 ret = ret < 0 ? ret : -EIO;
3524 end_extent_writepage(page, ret, start, page_end);
3525 }
d1310b2e 3526 unlock_page(page);
40f76580 3527 return ret;
771ed689 3528
11c8349b 3529done_unlocked:
d1310b2e
CM
3530 return 0;
3531}
3532
fd8b2b61 3533void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3534{
74316201
N
3535 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3536 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3537}
3538
0e378df1
CM
3539static noinline_for_stack int
3540lock_extent_buffer_for_io(struct extent_buffer *eb,
3541 struct btrfs_fs_info *fs_info,
3542 struct extent_page_data *epd)
0b32f4bb
JB
3543{
3544 unsigned long i, num_pages;
3545 int flush = 0;
3546 int ret = 0;
3547
3548 if (!btrfs_try_tree_write_lock(eb)) {
3549 flush = 1;
3550 flush_write_bio(epd);
3551 btrfs_tree_lock(eb);
3552 }
3553
3554 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3555 btrfs_tree_unlock(eb);
3556 if (!epd->sync_io)
3557 return 0;
3558 if (!flush) {
3559 flush_write_bio(epd);
3560 flush = 1;
3561 }
a098d8e8
CM
3562 while (1) {
3563 wait_on_extent_buffer_writeback(eb);
3564 btrfs_tree_lock(eb);
3565 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3566 break;
0b32f4bb 3567 btrfs_tree_unlock(eb);
0b32f4bb
JB
3568 }
3569 }
3570
51561ffe
JB
3571 /*
3572 * We need to do this to prevent races in people who check if the eb is
3573 * under IO since we can end up having no IO bits set for a short period
3574 * of time.
3575 */
3576 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3577 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3578 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3579 spin_unlock(&eb->refs_lock);
0b32f4bb 3580 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3581 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3582 -eb->len,
3583 fs_info->dirty_metadata_batch);
0b32f4bb 3584 ret = 1;
51561ffe
JB
3585 } else {
3586 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3587 }
3588
3589 btrfs_tree_unlock(eb);
3590
3591 if (!ret)
3592 return ret;
3593
3594 num_pages = num_extent_pages(eb->start, eb->len);
3595 for (i = 0; i < num_pages; i++) {
fb85fc9a 3596 struct page *p = eb->pages[i];
0b32f4bb
JB
3597
3598 if (!trylock_page(p)) {
3599 if (!flush) {
3600 flush_write_bio(epd);
3601 flush = 1;
3602 }
3603 lock_page(p);
3604 }
3605 }
3606
3607 return ret;
3608}
3609
3610static void end_extent_buffer_writeback(struct extent_buffer *eb)
3611{
3612 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3613 smp_mb__after_atomic();
0b32f4bb
JB
3614 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3615}
3616
656f30db
FM
3617static void set_btree_ioerr(struct page *page)
3618{
3619 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3620 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3621
3622 SetPageError(page);
3623 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3624 return;
3625
3626 /*
3627 * If writeback for a btree extent that doesn't belong to a log tree
3628 * failed, increment the counter transaction->eb_write_errors.
3629 * We do this because while the transaction is running and before it's
3630 * committing (when we call filemap_fdata[write|wait]_range against
3631 * the btree inode), we might have
3632 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3633 * returns an error or an error happens during writeback, when we're
3634 * committing the transaction we wouldn't know about it, since the pages
3635 * can be no longer dirty nor marked anymore for writeback (if a
3636 * subsequent modification to the extent buffer didn't happen before the
3637 * transaction commit), which makes filemap_fdata[write|wait]_range not
3638 * able to find the pages tagged with SetPageError at transaction
3639 * commit time. So if this happens we must abort the transaction,
3640 * otherwise we commit a super block with btree roots that point to
3641 * btree nodes/leafs whose content on disk is invalid - either garbage
3642 * or the content of some node/leaf from a past generation that got
3643 * cowed or deleted and is no longer valid.
3644 *
3645 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3646 * not be enough - we need to distinguish between log tree extents vs
3647 * non-log tree extents, and the next filemap_fdatawait_range() call
3648 * will catch and clear such errors in the mapping - and that call might
3649 * be from a log sync and not from a transaction commit. Also, checking
3650 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3651 * not done and would not be reliable - the eb might have been released
3652 * from memory and reading it back again means that flag would not be
3653 * set (since it's a runtime flag, not persisted on disk).
3654 *
3655 * Using the flags below in the btree inode also makes us achieve the
3656 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3657 * writeback for all dirty pages and before filemap_fdatawait_range()
3658 * is called, the writeback for all dirty pages had already finished
3659 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3660 * filemap_fdatawait_range() would return success, as it could not know
3661 * that writeback errors happened (the pages were no longer tagged for
3662 * writeback).
3663 */
3664 switch (eb->log_index) {
3665 case -1:
3666 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3667 break;
3668 case 0:
3669 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3670 break;
3671 case 1:
3672 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3673 break;
3674 default:
3675 BUG(); /* unexpected, logic error */
3676 }
3677}
3678
0b32f4bb
JB
3679static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3680{
2c30c71b 3681 struct bio_vec *bvec;
0b32f4bb 3682 struct extent_buffer *eb;
2c30c71b 3683 int i, done;
0b32f4bb 3684
2c30c71b 3685 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3686 struct page *page = bvec->bv_page;
3687
0b32f4bb
JB
3688 eb = (struct extent_buffer *)page->private;
3689 BUG_ON(!eb);
3690 done = atomic_dec_and_test(&eb->io_pages);
3691
656f30db 3692 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3693 ClearPageUptodate(page);
656f30db 3694 set_btree_ioerr(page);
0b32f4bb
JB
3695 }
3696
3697 end_page_writeback(page);
3698
3699 if (!done)
3700 continue;
3701
3702 end_extent_buffer_writeback(eb);
2c30c71b 3703 }
0b32f4bb
JB
3704
3705 bio_put(bio);
0b32f4bb
JB
3706}
3707
0e378df1 3708static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3709 struct btrfs_fs_info *fs_info,
3710 struct writeback_control *wbc,
3711 struct extent_page_data *epd)
3712{
3713 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3714 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3715 u64 offset = eb->start;
3716 unsigned long i, num_pages;
de0022b9 3717 unsigned long bio_flags = 0;
d4c7ca86 3718 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3719 int ret = 0;
0b32f4bb 3720
656f30db 3721 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3722 num_pages = num_extent_pages(eb->start, eb->len);
3723 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3724 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3725 bio_flags = EXTENT_BIO_TREE_LOG;
3726
0b32f4bb 3727 for (i = 0; i < num_pages; i++) {
fb85fc9a 3728 struct page *p = eb->pages[i];
0b32f4bb
JB
3729
3730 clear_page_dirty_for_io(p);
3731 set_page_writeback(p);
f28491e0 3732 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3733 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3734 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3735 0, epd->bio_flags, bio_flags);
3736 epd->bio_flags = bio_flags;
0b32f4bb 3737 if (ret) {
656f30db 3738 set_btree_ioerr(p);
55e3bd2e 3739 end_page_writeback(p);
0b32f4bb
JB
3740 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3741 end_extent_buffer_writeback(eb);
3742 ret = -EIO;
3743 break;
3744 }
3745 offset += PAGE_CACHE_SIZE;
3746 update_nr_written(p, wbc, 1);
3747 unlock_page(p);
3748 }
3749
3750 if (unlikely(ret)) {
3751 for (; i < num_pages; i++) {
bbf65cf0 3752 struct page *p = eb->pages[i];
81465028 3753 clear_page_dirty_for_io(p);
0b32f4bb
JB
3754 unlock_page(p);
3755 }
3756 }
3757
3758 return ret;
3759}
3760
3761int btree_write_cache_pages(struct address_space *mapping,
3762 struct writeback_control *wbc)
3763{
3764 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3765 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3766 struct extent_buffer *eb, *prev_eb = NULL;
3767 struct extent_page_data epd = {
3768 .bio = NULL,
3769 .tree = tree,
3770 .extent_locked = 0,
3771 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3772 .bio_flags = 0,
0b32f4bb
JB
3773 };
3774 int ret = 0;
3775 int done = 0;
3776 int nr_to_write_done = 0;
3777 struct pagevec pvec;
3778 int nr_pages;
3779 pgoff_t index;
3780 pgoff_t end; /* Inclusive */
3781 int scanned = 0;
3782 int tag;
3783
3784 pagevec_init(&pvec, 0);
3785 if (wbc->range_cyclic) {
3786 index = mapping->writeback_index; /* Start from prev offset */
3787 end = -1;
3788 } else {
3789 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3790 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3791 scanned = 1;
3792 }
3793 if (wbc->sync_mode == WB_SYNC_ALL)
3794 tag = PAGECACHE_TAG_TOWRITE;
3795 else
3796 tag = PAGECACHE_TAG_DIRTY;
3797retry:
3798 if (wbc->sync_mode == WB_SYNC_ALL)
3799 tag_pages_for_writeback(mapping, index, end);
3800 while (!done && !nr_to_write_done && (index <= end) &&
3801 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3802 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3803 unsigned i;
3804
3805 scanned = 1;
3806 for (i = 0; i < nr_pages; i++) {
3807 struct page *page = pvec.pages[i];
3808
3809 if (!PagePrivate(page))
3810 continue;
3811
3812 if (!wbc->range_cyclic && page->index > end) {
3813 done = 1;
3814 break;
3815 }
3816
b5bae261
JB
3817 spin_lock(&mapping->private_lock);
3818 if (!PagePrivate(page)) {
3819 spin_unlock(&mapping->private_lock);
3820 continue;
3821 }
3822
0b32f4bb 3823 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3824
3825 /*
3826 * Shouldn't happen and normally this would be a BUG_ON
3827 * but no sense in crashing the users box for something
3828 * we can survive anyway.
3829 */
fae7f21c 3830 if (WARN_ON(!eb)) {
b5bae261 3831 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3832 continue;
3833 }
3834
b5bae261
JB
3835 if (eb == prev_eb) {
3836 spin_unlock(&mapping->private_lock);
0b32f4bb 3837 continue;
b5bae261 3838 }
0b32f4bb 3839
b5bae261
JB
3840 ret = atomic_inc_not_zero(&eb->refs);
3841 spin_unlock(&mapping->private_lock);
3842 if (!ret)
0b32f4bb 3843 continue;
0b32f4bb
JB
3844
3845 prev_eb = eb;
3846 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3847 if (!ret) {
3848 free_extent_buffer(eb);
3849 continue;
3850 }
3851
3852 ret = write_one_eb(eb, fs_info, wbc, &epd);
3853 if (ret) {
3854 done = 1;
3855 free_extent_buffer(eb);
3856 break;
3857 }
3858 free_extent_buffer(eb);
3859
3860 /*
3861 * the filesystem may choose to bump up nr_to_write.
3862 * We have to make sure to honor the new nr_to_write
3863 * at any time
3864 */
3865 nr_to_write_done = wbc->nr_to_write <= 0;
3866 }
3867 pagevec_release(&pvec);
3868 cond_resched();
3869 }
3870 if (!scanned && !done) {
3871 /*
3872 * We hit the last page and there is more work to be done: wrap
3873 * back to the start of the file
3874 */
3875 scanned = 1;
3876 index = 0;
3877 goto retry;
3878 }
3879 flush_write_bio(&epd);
3880 return ret;
3881}
3882
d1310b2e 3883/**
4bef0848 3884 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3885 * @mapping: address space structure to write
3886 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3887 * @writepage: function called for each page
3888 * @data: data passed to writepage function
3889 *
3890 * If a page is already under I/O, write_cache_pages() skips it, even
3891 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3892 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3893 * and msync() need to guarantee that all the data which was dirty at the time
3894 * the call was made get new I/O started against them. If wbc->sync_mode is
3895 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3896 * existing IO to complete.
3897 */
b2950863 3898static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3899 struct address_space *mapping,
3900 struct writeback_control *wbc,
d2c3f4f6
CM
3901 writepage_t writepage, void *data,
3902 void (*flush_fn)(void *))
d1310b2e 3903{
7fd1a3f7 3904 struct inode *inode = mapping->host;
d1310b2e
CM
3905 int ret = 0;
3906 int done = 0;
61391d56 3907 int err = 0;
f85d7d6c 3908 int nr_to_write_done = 0;
d1310b2e
CM
3909 struct pagevec pvec;
3910 int nr_pages;
3911 pgoff_t index;
3912 pgoff_t end; /* Inclusive */
3913 int scanned = 0;
f7aaa06b 3914 int tag;
d1310b2e 3915
7fd1a3f7
JB
3916 /*
3917 * We have to hold onto the inode so that ordered extents can do their
3918 * work when the IO finishes. The alternative to this is failing to add
3919 * an ordered extent if the igrab() fails there and that is a huge pain
3920 * to deal with, so instead just hold onto the inode throughout the
3921 * writepages operation. If it fails here we are freeing up the inode
3922 * anyway and we'd rather not waste our time writing out stuff that is
3923 * going to be truncated anyway.
3924 */
3925 if (!igrab(inode))
3926 return 0;
3927
d1310b2e
CM
3928 pagevec_init(&pvec, 0);
3929 if (wbc->range_cyclic) {
3930 index = mapping->writeback_index; /* Start from prev offset */
3931 end = -1;
3932 } else {
3933 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3934 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3935 scanned = 1;
3936 }
f7aaa06b
JB
3937 if (wbc->sync_mode == WB_SYNC_ALL)
3938 tag = PAGECACHE_TAG_TOWRITE;
3939 else
3940 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3941retry:
f7aaa06b
JB
3942 if (wbc->sync_mode == WB_SYNC_ALL)
3943 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3944 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3945 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3946 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3947 unsigned i;
3948
3949 scanned = 1;
3950 for (i = 0; i < nr_pages; i++) {
3951 struct page *page = pvec.pages[i];
3952
3953 /*
3954 * At this point we hold neither mapping->tree_lock nor
3955 * lock on the page itself: the page may be truncated or
3956 * invalidated (changing page->mapping to NULL), or even
3957 * swizzled back from swapper_space to tmpfs file
3958 * mapping
3959 */
c8f2f24b
JB
3960 if (!trylock_page(page)) {
3961 flush_fn(data);
3962 lock_page(page);
01d658f2 3963 }
d1310b2e
CM
3964
3965 if (unlikely(page->mapping != mapping)) {
3966 unlock_page(page);
3967 continue;
3968 }
3969
3970 if (!wbc->range_cyclic && page->index > end) {
3971 done = 1;
3972 unlock_page(page);
3973 continue;
3974 }
3975
d2c3f4f6 3976 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3977 if (PageWriteback(page))
3978 flush_fn(data);
d1310b2e 3979 wait_on_page_writeback(page);
d2c3f4f6 3980 }
d1310b2e
CM
3981
3982 if (PageWriteback(page) ||
3983 !clear_page_dirty_for_io(page)) {
3984 unlock_page(page);
3985 continue;
3986 }
3987
3988 ret = (*writepage)(page, wbc, data);
3989
3990 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3991 unlock_page(page);
3992 ret = 0;
3993 }
61391d56
FM
3994 if (!err && ret < 0)
3995 err = ret;
f85d7d6c
CM
3996
3997 /*
3998 * the filesystem may choose to bump up nr_to_write.
3999 * We have to make sure to honor the new nr_to_write
4000 * at any time
4001 */
4002 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4003 }
4004 pagevec_release(&pvec);
4005 cond_resched();
4006 }
61391d56 4007 if (!scanned && !done && !err) {
d1310b2e
CM
4008 /*
4009 * We hit the last page and there is more work to be done: wrap
4010 * back to the start of the file
4011 */
4012 scanned = 1;
4013 index = 0;
4014 goto retry;
4015 }
7fd1a3f7 4016 btrfs_add_delayed_iput(inode);
61391d56 4017 return err;
d1310b2e 4018}
d1310b2e 4019
ffbd517d 4020static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4021{
d2c3f4f6 4022 if (epd->bio) {
355808c2
JM
4023 int rw = WRITE;
4024 int ret;
4025
ffbd517d 4026 if (epd->sync_io)
355808c2
JM
4027 rw = WRITE_SYNC;
4028
de0022b9 4029 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4030 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4031 epd->bio = NULL;
4032 }
4033}
4034
ffbd517d
CM
4035static noinline void flush_write_bio(void *data)
4036{
4037 struct extent_page_data *epd = data;
4038 flush_epd_write_bio(epd);
4039}
4040
d1310b2e
CM
4041int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4042 get_extent_t *get_extent,
4043 struct writeback_control *wbc)
4044{
4045 int ret;
d1310b2e
CM
4046 struct extent_page_data epd = {
4047 .bio = NULL,
4048 .tree = tree,
4049 .get_extent = get_extent,
771ed689 4050 .extent_locked = 0,
ffbd517d 4051 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4052 .bio_flags = 0,
d1310b2e 4053 };
d1310b2e 4054
d1310b2e
CM
4055 ret = __extent_writepage(page, wbc, &epd);
4056
ffbd517d 4057 flush_epd_write_bio(&epd);
d1310b2e
CM
4058 return ret;
4059}
d1310b2e 4060
771ed689
CM
4061int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4062 u64 start, u64 end, get_extent_t *get_extent,
4063 int mode)
4064{
4065 int ret = 0;
4066 struct address_space *mapping = inode->i_mapping;
4067 struct page *page;
4068 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4069 PAGE_CACHE_SHIFT;
4070
4071 struct extent_page_data epd = {
4072 .bio = NULL,
4073 .tree = tree,
4074 .get_extent = get_extent,
4075 .extent_locked = 1,
ffbd517d 4076 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4077 .bio_flags = 0,
771ed689
CM
4078 };
4079 struct writeback_control wbc_writepages = {
771ed689 4080 .sync_mode = mode,
771ed689
CM
4081 .nr_to_write = nr_pages * 2,
4082 .range_start = start,
4083 .range_end = end + 1,
4084 };
4085
d397712b 4086 while (start <= end) {
771ed689
CM
4087 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4088 if (clear_page_dirty_for_io(page))
4089 ret = __extent_writepage(page, &wbc_writepages, &epd);
4090 else {
4091 if (tree->ops && tree->ops->writepage_end_io_hook)
4092 tree->ops->writepage_end_io_hook(page, start,
4093 start + PAGE_CACHE_SIZE - 1,
4094 NULL, 1);
4095 unlock_page(page);
4096 }
4097 page_cache_release(page);
4098 start += PAGE_CACHE_SIZE;
4099 }
4100
ffbd517d 4101 flush_epd_write_bio(&epd);
771ed689
CM
4102 return ret;
4103}
d1310b2e
CM
4104
4105int extent_writepages(struct extent_io_tree *tree,
4106 struct address_space *mapping,
4107 get_extent_t *get_extent,
4108 struct writeback_control *wbc)
4109{
4110 int ret = 0;
4111 struct extent_page_data epd = {
4112 .bio = NULL,
4113 .tree = tree,
4114 .get_extent = get_extent,
771ed689 4115 .extent_locked = 0,
ffbd517d 4116 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4117 .bio_flags = 0,
d1310b2e
CM
4118 };
4119
4bef0848 4120 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4121 __extent_writepage, &epd,
4122 flush_write_bio);
ffbd517d 4123 flush_epd_write_bio(&epd);
d1310b2e
CM
4124 return ret;
4125}
d1310b2e
CM
4126
4127int extent_readpages(struct extent_io_tree *tree,
4128 struct address_space *mapping,
4129 struct list_head *pages, unsigned nr_pages,
4130 get_extent_t get_extent)
4131{
4132 struct bio *bio = NULL;
4133 unsigned page_idx;
c8b97818 4134 unsigned long bio_flags = 0;
67c9684f
LB
4135 struct page *pagepool[16];
4136 struct page *page;
125bac01 4137 struct extent_map *em_cached = NULL;
67c9684f 4138 int nr = 0;
d1310b2e 4139
d1310b2e 4140 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4141 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4142
4143 prefetchw(&page->flags);
4144 list_del(&page->lru);
67c9684f 4145 if (add_to_page_cache_lru(page, mapping,
43e817a1 4146 page->index, GFP_NOFS)) {
67c9684f
LB
4147 page_cache_release(page);
4148 continue;
d1310b2e 4149 }
67c9684f
LB
4150
4151 pagepool[nr++] = page;
4152 if (nr < ARRAY_SIZE(pagepool))
4153 continue;
125bac01 4154 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4155 &bio, 0, &bio_flags, READ);
67c9684f 4156 nr = 0;
d1310b2e 4157 }
9974090b 4158 if (nr)
125bac01 4159 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4160 &bio, 0, &bio_flags, READ);
67c9684f 4161
125bac01
MX
4162 if (em_cached)
4163 free_extent_map(em_cached);
4164
d1310b2e
CM
4165 BUG_ON(!list_empty(pages));
4166 if (bio)
79787eaa 4167 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4168 return 0;
4169}
d1310b2e
CM
4170
4171/*
4172 * basic invalidatepage code, this waits on any locked or writeback
4173 * ranges corresponding to the page, and then deletes any extent state
4174 * records from the tree
4175 */
4176int extent_invalidatepage(struct extent_io_tree *tree,
4177 struct page *page, unsigned long offset)
4178{
2ac55d41 4179 struct extent_state *cached_state = NULL;
4eee4fa4 4180 u64 start = page_offset(page);
d1310b2e
CM
4181 u64 end = start + PAGE_CACHE_SIZE - 1;
4182 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4183
fda2832f 4184 start += ALIGN(offset, blocksize);
d1310b2e
CM
4185 if (start > end)
4186 return 0;
4187
d0082371 4188 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4189 wait_on_page_writeback(page);
d1310b2e 4190 clear_extent_bit(tree, start, end,
32c00aff
JB
4191 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4192 EXTENT_DO_ACCOUNTING,
2ac55d41 4193 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4194 return 0;
4195}
d1310b2e 4196
7b13b7b1
CM
4197/*
4198 * a helper for releasepage, this tests for areas of the page that
4199 * are locked or under IO and drops the related state bits if it is safe
4200 * to drop the page.
4201 */
48a3b636
ES
4202static int try_release_extent_state(struct extent_map_tree *map,
4203 struct extent_io_tree *tree,
4204 struct page *page, gfp_t mask)
7b13b7b1 4205{
4eee4fa4 4206 u64 start = page_offset(page);
7b13b7b1
CM
4207 u64 end = start + PAGE_CACHE_SIZE - 1;
4208 int ret = 1;
4209
211f90e6 4210 if (test_range_bit(tree, start, end,
8b62b72b 4211 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4212 ret = 0;
4213 else {
4214 if ((mask & GFP_NOFS) == GFP_NOFS)
4215 mask = GFP_NOFS;
11ef160f
CM
4216 /*
4217 * at this point we can safely clear everything except the
4218 * locked bit and the nodatasum bit
4219 */
e3f24cc5 4220 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4221 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4222 0, 0, NULL, mask);
e3f24cc5
CM
4223
4224 /* if clear_extent_bit failed for enomem reasons,
4225 * we can't allow the release to continue.
4226 */
4227 if (ret < 0)
4228 ret = 0;
4229 else
4230 ret = 1;
7b13b7b1
CM
4231 }
4232 return ret;
4233}
7b13b7b1 4234
d1310b2e
CM
4235/*
4236 * a helper for releasepage. As long as there are no locked extents
4237 * in the range corresponding to the page, both state records and extent
4238 * map records are removed
4239 */
4240int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4241 struct extent_io_tree *tree, struct page *page,
4242 gfp_t mask)
d1310b2e
CM
4243{
4244 struct extent_map *em;
4eee4fa4 4245 u64 start = page_offset(page);
d1310b2e 4246 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4247
70dec807
CM
4248 if ((mask & __GFP_WAIT) &&
4249 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4250 u64 len;
70dec807 4251 while (start <= end) {
39b5637f 4252 len = end - start + 1;
890871be 4253 write_lock(&map->lock);
39b5637f 4254 em = lookup_extent_mapping(map, start, len);
285190d9 4255 if (!em) {
890871be 4256 write_unlock(&map->lock);
70dec807
CM
4257 break;
4258 }
7f3c74fb
CM
4259 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4260 em->start != start) {
890871be 4261 write_unlock(&map->lock);
70dec807
CM
4262 free_extent_map(em);
4263 break;
4264 }
4265 if (!test_range_bit(tree, em->start,
4266 extent_map_end(em) - 1,
8b62b72b 4267 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4268 0, NULL)) {
70dec807
CM
4269 remove_extent_mapping(map, em);
4270 /* once for the rb tree */
4271 free_extent_map(em);
4272 }
4273 start = extent_map_end(em);
890871be 4274 write_unlock(&map->lock);
70dec807
CM
4275
4276 /* once for us */
d1310b2e
CM
4277 free_extent_map(em);
4278 }
d1310b2e 4279 }
7b13b7b1 4280 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4281}
d1310b2e 4282
ec29ed5b
CM
4283/*
4284 * helper function for fiemap, which doesn't want to see any holes.
4285 * This maps until we find something past 'last'
4286 */
4287static struct extent_map *get_extent_skip_holes(struct inode *inode,
4288 u64 offset,
4289 u64 last,
4290 get_extent_t *get_extent)
4291{
4292 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4293 struct extent_map *em;
4294 u64 len;
4295
4296 if (offset >= last)
4297 return NULL;
4298
67871254 4299 while (1) {
ec29ed5b
CM
4300 len = last - offset;
4301 if (len == 0)
4302 break;
fda2832f 4303 len = ALIGN(len, sectorsize);
ec29ed5b 4304 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4305 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4306 return em;
4307
4308 /* if this isn't a hole return it */
4309 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4310 em->block_start != EXTENT_MAP_HOLE) {
4311 return em;
4312 }
4313
4314 /* this is a hole, advance to the next extent */
4315 offset = extent_map_end(em);
4316 free_extent_map(em);
4317 if (offset >= last)
4318 break;
4319 }
4320 return NULL;
4321}
4322
1506fcc8
YS
4323int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4324 __u64 start, __u64 len, get_extent_t *get_extent)
4325{
975f84fe 4326 int ret = 0;
1506fcc8
YS
4327 u64 off = start;
4328 u64 max = start + len;
4329 u32 flags = 0;
975f84fe
JB
4330 u32 found_type;
4331 u64 last;
ec29ed5b 4332 u64 last_for_get_extent = 0;
1506fcc8 4333 u64 disko = 0;
ec29ed5b 4334 u64 isize = i_size_read(inode);
975f84fe 4335 struct btrfs_key found_key;
1506fcc8 4336 struct extent_map *em = NULL;
2ac55d41 4337 struct extent_state *cached_state = NULL;
975f84fe 4338 struct btrfs_path *path;
dc046b10 4339 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4340 int end = 0;
ec29ed5b
CM
4341 u64 em_start = 0;
4342 u64 em_len = 0;
4343 u64 em_end = 0;
1506fcc8
YS
4344
4345 if (len == 0)
4346 return -EINVAL;
4347
975f84fe
JB
4348 path = btrfs_alloc_path();
4349 if (!path)
4350 return -ENOMEM;
4351 path->leave_spinning = 1;
4352
2c91943b
QW
4353 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4354 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4355
ec29ed5b
CM
4356 /*
4357 * lookup the last file extent. We're not using i_size here
4358 * because there might be preallocation past i_size
4359 */
dc046b10
JB
4360 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4361 0);
975f84fe
JB
4362 if (ret < 0) {
4363 btrfs_free_path(path);
4364 return ret;
4365 }
4366 WARN_ON(!ret);
4367 path->slots[0]--;
975f84fe 4368 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4369 found_type = found_key.type;
975f84fe 4370
ec29ed5b 4371 /* No extents, but there might be delalloc bits */
33345d01 4372 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4373 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4374 /* have to trust i_size as the end */
4375 last = (u64)-1;
4376 last_for_get_extent = isize;
4377 } else {
4378 /*
4379 * remember the start of the last extent. There are a
4380 * bunch of different factors that go into the length of the
4381 * extent, so its much less complex to remember where it started
4382 */
4383 last = found_key.offset;
4384 last_for_get_extent = last + 1;
975f84fe 4385 }
fe09e16c 4386 btrfs_release_path(path);
975f84fe 4387
ec29ed5b
CM
4388 /*
4389 * we might have some extents allocated but more delalloc past those
4390 * extents. so, we trust isize unless the start of the last extent is
4391 * beyond isize
4392 */
4393 if (last < isize) {
4394 last = (u64)-1;
4395 last_for_get_extent = isize;
4396 }
4397
a52f4cd2 4398 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4399 &cached_state);
ec29ed5b 4400
4d479cf0 4401 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4402 get_extent);
1506fcc8
YS
4403 if (!em)
4404 goto out;
4405 if (IS_ERR(em)) {
4406 ret = PTR_ERR(em);
4407 goto out;
4408 }
975f84fe 4409
1506fcc8 4410 while (!end) {
b76bb701 4411 u64 offset_in_extent = 0;
ea8efc74
CM
4412
4413 /* break if the extent we found is outside the range */
4414 if (em->start >= max || extent_map_end(em) < off)
4415 break;
4416
4417 /*
4418 * get_extent may return an extent that starts before our
4419 * requested range. We have to make sure the ranges
4420 * we return to fiemap always move forward and don't
4421 * overlap, so adjust the offsets here
4422 */
4423 em_start = max(em->start, off);
1506fcc8 4424
ea8efc74
CM
4425 /*
4426 * record the offset from the start of the extent
b76bb701
JB
4427 * for adjusting the disk offset below. Only do this if the
4428 * extent isn't compressed since our in ram offset may be past
4429 * what we have actually allocated on disk.
ea8efc74 4430 */
b76bb701
JB
4431 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4432 offset_in_extent = em_start - em->start;
ec29ed5b 4433 em_end = extent_map_end(em);
ea8efc74 4434 em_len = em_end - em_start;
1506fcc8
YS
4435 disko = 0;
4436 flags = 0;
4437
ea8efc74
CM
4438 /*
4439 * bump off for our next call to get_extent
4440 */
4441 off = extent_map_end(em);
4442 if (off >= max)
4443 end = 1;
4444
93dbfad7 4445 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4446 end = 1;
4447 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4448 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4449 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4450 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4451 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4452 flags |= (FIEMAP_EXTENT_DELALLOC |
4453 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4454 } else if (fieinfo->fi_extents_max) {
4455 u64 bytenr = em->block_start -
4456 (em->start - em->orig_start);
fe09e16c 4457
ea8efc74 4458 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4459
4460 /*
4461 * As btrfs supports shared space, this information
4462 * can be exported to userspace tools via
dc046b10
JB
4463 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4464 * then we're just getting a count and we can skip the
4465 * lookup stuff.
fe09e16c 4466 */
dc046b10
JB
4467 ret = btrfs_check_shared(NULL, root->fs_info,
4468 root->objectid,
4469 btrfs_ino(inode), bytenr);
4470 if (ret < 0)
fe09e16c 4471 goto out_free;
dc046b10 4472 if (ret)
fe09e16c 4473 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4474 ret = 0;
1506fcc8
YS
4475 }
4476 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4477 flags |= FIEMAP_EXTENT_ENCODED;
4478
1506fcc8
YS
4479 free_extent_map(em);
4480 em = NULL;
ec29ed5b
CM
4481 if ((em_start >= last) || em_len == (u64)-1 ||
4482 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4483 flags |= FIEMAP_EXTENT_LAST;
4484 end = 1;
4485 }
4486
ec29ed5b
CM
4487 /* now scan forward to see if this is really the last extent. */
4488 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4489 get_extent);
4490 if (IS_ERR(em)) {
4491 ret = PTR_ERR(em);
4492 goto out;
4493 }
4494 if (!em) {
975f84fe
JB
4495 flags |= FIEMAP_EXTENT_LAST;
4496 end = 1;
4497 }
ec29ed5b
CM
4498 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4499 em_len, flags);
4500 if (ret)
4501 goto out_free;
1506fcc8
YS
4502 }
4503out_free:
4504 free_extent_map(em);
4505out:
fe09e16c 4506 btrfs_free_path(path);
a52f4cd2 4507 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4508 &cached_state, GFP_NOFS);
1506fcc8
YS
4509 return ret;
4510}
4511
727011e0
CM
4512static void __free_extent_buffer(struct extent_buffer *eb)
4513{
6d49ba1b 4514 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4515 kmem_cache_free(extent_buffer_cache, eb);
4516}
4517
a26e8c9f 4518int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4519{
4520 return (atomic_read(&eb->io_pages) ||
4521 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4522 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4523}
4524
4525/*
4526 * Helper for releasing extent buffer page.
4527 */
a50924e3 4528static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4529{
4530 unsigned long index;
db7f3436
JB
4531 struct page *page;
4532 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4533
4534 BUG_ON(extent_buffer_under_io(eb));
4535
a50924e3
DS
4536 index = num_extent_pages(eb->start, eb->len);
4537 if (index == 0)
db7f3436
JB
4538 return;
4539
4540 do {
4541 index--;
fb85fc9a 4542 page = eb->pages[index];
db7f3436
JB
4543 if (page && mapped) {
4544 spin_lock(&page->mapping->private_lock);
4545 /*
4546 * We do this since we'll remove the pages after we've
4547 * removed the eb from the radix tree, so we could race
4548 * and have this page now attached to the new eb. So
4549 * only clear page_private if it's still connected to
4550 * this eb.
4551 */
4552 if (PagePrivate(page) &&
4553 page->private == (unsigned long)eb) {
4554 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4555 BUG_ON(PageDirty(page));
4556 BUG_ON(PageWriteback(page));
4557 /*
4558 * We need to make sure we haven't be attached
4559 * to a new eb.
4560 */
4561 ClearPagePrivate(page);
4562 set_page_private(page, 0);
4563 /* One for the page private */
4564 page_cache_release(page);
4565 }
4566 spin_unlock(&page->mapping->private_lock);
4567
4568 }
4569 if (page) {
4570 /* One for when we alloced the page */
4571 page_cache_release(page);
4572 }
a50924e3 4573 } while (index != 0);
db7f3436
JB
4574}
4575
4576/*
4577 * Helper for releasing the extent buffer.
4578 */
4579static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4580{
a50924e3 4581 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4582 __free_extent_buffer(eb);
4583}
4584
f28491e0
JB
4585static struct extent_buffer *
4586__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4587 unsigned long len, gfp_t mask)
d1310b2e
CM
4588{
4589 struct extent_buffer *eb = NULL;
4590
d1310b2e 4591 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4592 if (eb == NULL)
4593 return NULL;
d1310b2e
CM
4594 eb->start = start;
4595 eb->len = len;
f28491e0 4596 eb->fs_info = fs_info;
815a51c7 4597 eb->bflags = 0;
bd681513
CM
4598 rwlock_init(&eb->lock);
4599 atomic_set(&eb->write_locks, 0);
4600 atomic_set(&eb->read_locks, 0);
4601 atomic_set(&eb->blocking_readers, 0);
4602 atomic_set(&eb->blocking_writers, 0);
4603 atomic_set(&eb->spinning_readers, 0);
4604 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4605 eb->lock_nested = 0;
bd681513
CM
4606 init_waitqueue_head(&eb->write_lock_wq);
4607 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4608
6d49ba1b
ES
4609 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4610
3083ee2e 4611 spin_lock_init(&eb->refs_lock);
d1310b2e 4612 atomic_set(&eb->refs, 1);
0b32f4bb 4613 atomic_set(&eb->io_pages, 0);
727011e0 4614
b8dae313
DS
4615 /*
4616 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4617 */
4618 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4619 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4620 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4621
4622 return eb;
4623}
4624
815a51c7
JS
4625struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4626{
4627 unsigned long i;
4628 struct page *p;
4629 struct extent_buffer *new;
4630 unsigned long num_pages = num_extent_pages(src->start, src->len);
4631
9ec72677 4632 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4633 if (new == NULL)
4634 return NULL;
4635
4636 for (i = 0; i < num_pages; i++) {
9ec72677 4637 p = alloc_page(GFP_NOFS);
db7f3436
JB
4638 if (!p) {
4639 btrfs_release_extent_buffer(new);
4640 return NULL;
4641 }
815a51c7
JS
4642 attach_extent_buffer_page(new, p);
4643 WARN_ON(PageDirty(p));
4644 SetPageUptodate(p);
4645 new->pages[i] = p;
4646 }
4647
4648 copy_extent_buffer(new, src, 0, 0, src->len);
4649 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4650 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4651
4652 return new;
4653}
4654
4655struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4656{
4657 struct extent_buffer *eb;
4658 unsigned long num_pages = num_extent_pages(0, len);
4659 unsigned long i;
4660
9ec72677 4661 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4662 if (!eb)
4663 return NULL;
4664
4665 for (i = 0; i < num_pages; i++) {
9ec72677 4666 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4667 if (!eb->pages[i])
4668 goto err;
4669 }
4670 set_extent_buffer_uptodate(eb);
4671 btrfs_set_header_nritems(eb, 0);
4672 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4673
4674 return eb;
4675err:
84167d19
SB
4676 for (; i > 0; i--)
4677 __free_page(eb->pages[i - 1]);
815a51c7
JS
4678 __free_extent_buffer(eb);
4679 return NULL;
4680}
4681
0b32f4bb
JB
4682static void check_buffer_tree_ref(struct extent_buffer *eb)
4683{
242e18c7 4684 int refs;
0b32f4bb
JB
4685 /* the ref bit is tricky. We have to make sure it is set
4686 * if we have the buffer dirty. Otherwise the
4687 * code to free a buffer can end up dropping a dirty
4688 * page
4689 *
4690 * Once the ref bit is set, it won't go away while the
4691 * buffer is dirty or in writeback, and it also won't
4692 * go away while we have the reference count on the
4693 * eb bumped.
4694 *
4695 * We can't just set the ref bit without bumping the
4696 * ref on the eb because free_extent_buffer might
4697 * see the ref bit and try to clear it. If this happens
4698 * free_extent_buffer might end up dropping our original
4699 * ref by mistake and freeing the page before we are able
4700 * to add one more ref.
4701 *
4702 * So bump the ref count first, then set the bit. If someone
4703 * beat us to it, drop the ref we added.
4704 */
242e18c7
CM
4705 refs = atomic_read(&eb->refs);
4706 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4707 return;
4708
594831c4
JB
4709 spin_lock(&eb->refs_lock);
4710 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4711 atomic_inc(&eb->refs);
594831c4 4712 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4713}
4714
2457aec6
MG
4715static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4716 struct page *accessed)
5df4235e
JB
4717{
4718 unsigned long num_pages, i;
4719
0b32f4bb
JB
4720 check_buffer_tree_ref(eb);
4721
5df4235e
JB
4722 num_pages = num_extent_pages(eb->start, eb->len);
4723 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4724 struct page *p = eb->pages[i];
4725
2457aec6
MG
4726 if (p != accessed)
4727 mark_page_accessed(p);
5df4235e
JB
4728 }
4729}
4730
f28491e0
JB
4731struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4732 u64 start)
452c75c3
CS
4733{
4734 struct extent_buffer *eb;
4735
4736 rcu_read_lock();
f28491e0
JB
4737 eb = radix_tree_lookup(&fs_info->buffer_radix,
4738 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4739 if (eb && atomic_inc_not_zero(&eb->refs)) {
4740 rcu_read_unlock();
2457aec6 4741 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4742 return eb;
4743 }
4744 rcu_read_unlock();
4745
4746 return NULL;
4747}
4748
faa2dbf0
JB
4749#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4750struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4751 u64 start, unsigned long len)
4752{
4753 struct extent_buffer *eb, *exists = NULL;
4754 int ret;
4755
4756 eb = find_extent_buffer(fs_info, start);
4757 if (eb)
4758 return eb;
4759 eb = alloc_dummy_extent_buffer(start, len);
4760 if (!eb)
4761 return NULL;
4762 eb->fs_info = fs_info;
4763again:
4764 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4765 if (ret)
4766 goto free_eb;
4767 spin_lock(&fs_info->buffer_lock);
4768 ret = radix_tree_insert(&fs_info->buffer_radix,
4769 start >> PAGE_CACHE_SHIFT, eb);
4770 spin_unlock(&fs_info->buffer_lock);
4771 radix_tree_preload_end();
4772 if (ret == -EEXIST) {
4773 exists = find_extent_buffer(fs_info, start);
4774 if (exists)
4775 goto free_eb;
4776 else
4777 goto again;
4778 }
4779 check_buffer_tree_ref(eb);
4780 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4781
4782 /*
4783 * We will free dummy extent buffer's if they come into
4784 * free_extent_buffer with a ref count of 2, but if we are using this we
4785 * want the buffers to stay in memory until we're done with them, so
4786 * bump the ref count again.
4787 */
4788 atomic_inc(&eb->refs);
4789 return eb;
4790free_eb:
4791 btrfs_release_extent_buffer(eb);
4792 return exists;
4793}
4794#endif
4795
f28491e0 4796struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4797 u64 start, unsigned long len)
d1310b2e
CM
4798{
4799 unsigned long num_pages = num_extent_pages(start, len);
4800 unsigned long i;
4801 unsigned long index = start >> PAGE_CACHE_SHIFT;
4802 struct extent_buffer *eb;
6af118ce 4803 struct extent_buffer *exists = NULL;
d1310b2e 4804 struct page *p;
f28491e0 4805 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4806 int uptodate = 1;
19fe0a8b 4807 int ret;
d1310b2e 4808
f28491e0 4809 eb = find_extent_buffer(fs_info, start);
452c75c3 4810 if (eb)
6af118ce 4811 return eb;
6af118ce 4812
f28491e0 4813 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4814 if (!eb)
d1310b2e
CM
4815 return NULL;
4816
727011e0 4817 for (i = 0; i < num_pages; i++, index++) {
a6591715 4818 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4819 if (!p)
6af118ce 4820 goto free_eb;
4f2de97a
JB
4821
4822 spin_lock(&mapping->private_lock);
4823 if (PagePrivate(p)) {
4824 /*
4825 * We could have already allocated an eb for this page
4826 * and attached one so lets see if we can get a ref on
4827 * the existing eb, and if we can we know it's good and
4828 * we can just return that one, else we know we can just
4829 * overwrite page->private.
4830 */
4831 exists = (struct extent_buffer *)p->private;
4832 if (atomic_inc_not_zero(&exists->refs)) {
4833 spin_unlock(&mapping->private_lock);
4834 unlock_page(p);
17de39ac 4835 page_cache_release(p);
2457aec6 4836 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4837 goto free_eb;
4838 }
4839
0b32f4bb 4840 /*
4f2de97a
JB
4841 * Do this so attach doesn't complain and we need to
4842 * drop the ref the old guy had.
4843 */
4844 ClearPagePrivate(p);
0b32f4bb 4845 WARN_ON(PageDirty(p));
4f2de97a 4846 page_cache_release(p);
d1310b2e 4847 }
4f2de97a
JB
4848 attach_extent_buffer_page(eb, p);
4849 spin_unlock(&mapping->private_lock);
0b32f4bb 4850 WARN_ON(PageDirty(p));
727011e0 4851 eb->pages[i] = p;
d1310b2e
CM
4852 if (!PageUptodate(p))
4853 uptodate = 0;
eb14ab8e
CM
4854
4855 /*
4856 * see below about how we avoid a nasty race with release page
4857 * and why we unlock later
4858 */
d1310b2e
CM
4859 }
4860 if (uptodate)
b4ce94de 4861 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4862again:
19fe0a8b
MX
4863 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4864 if (ret)
4865 goto free_eb;
4866
f28491e0
JB
4867 spin_lock(&fs_info->buffer_lock);
4868 ret = radix_tree_insert(&fs_info->buffer_radix,
4869 start >> PAGE_CACHE_SHIFT, eb);
4870 spin_unlock(&fs_info->buffer_lock);
452c75c3 4871 radix_tree_preload_end();
19fe0a8b 4872 if (ret == -EEXIST) {
f28491e0 4873 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4874 if (exists)
4875 goto free_eb;
4876 else
115391d2 4877 goto again;
6af118ce 4878 }
6af118ce 4879 /* add one reference for the tree */
0b32f4bb 4880 check_buffer_tree_ref(eb);
34b41ace 4881 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4882
4883 /*
4884 * there is a race where release page may have
4885 * tried to find this extent buffer in the radix
4886 * but failed. It will tell the VM it is safe to
4887 * reclaim the, and it will clear the page private bit.
4888 * We must make sure to set the page private bit properly
4889 * after the extent buffer is in the radix tree so
4890 * it doesn't get lost
4891 */
727011e0
CM
4892 SetPageChecked(eb->pages[0]);
4893 for (i = 1; i < num_pages; i++) {
fb85fc9a 4894 p = eb->pages[i];
727011e0
CM
4895 ClearPageChecked(p);
4896 unlock_page(p);
4897 }
4898 unlock_page(eb->pages[0]);
d1310b2e
CM
4899 return eb;
4900
6af118ce 4901free_eb:
727011e0
CM
4902 for (i = 0; i < num_pages; i++) {
4903 if (eb->pages[i])
4904 unlock_page(eb->pages[i]);
4905 }
eb14ab8e 4906
17de39ac 4907 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4908 btrfs_release_extent_buffer(eb);
6af118ce 4909 return exists;
d1310b2e 4910}
d1310b2e 4911
3083ee2e
JB
4912static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4913{
4914 struct extent_buffer *eb =
4915 container_of(head, struct extent_buffer, rcu_head);
4916
4917 __free_extent_buffer(eb);
4918}
4919
3083ee2e 4920/* Expects to have eb->eb_lock already held */
f7a52a40 4921static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4922{
4923 WARN_ON(atomic_read(&eb->refs) == 0);
4924 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4925 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4926 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4927
815a51c7 4928 spin_unlock(&eb->refs_lock);
3083ee2e 4929
f28491e0
JB
4930 spin_lock(&fs_info->buffer_lock);
4931 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4932 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4933 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4934 } else {
4935 spin_unlock(&eb->refs_lock);
815a51c7 4936 }
3083ee2e
JB
4937
4938 /* Should be safe to release our pages at this point */
a50924e3 4939 btrfs_release_extent_buffer_page(eb);
3083ee2e 4940 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4941 return 1;
3083ee2e
JB
4942 }
4943 spin_unlock(&eb->refs_lock);
e64860aa
JB
4944
4945 return 0;
3083ee2e
JB
4946}
4947
d1310b2e
CM
4948void free_extent_buffer(struct extent_buffer *eb)
4949{
242e18c7
CM
4950 int refs;
4951 int old;
d1310b2e
CM
4952 if (!eb)
4953 return;
4954
242e18c7
CM
4955 while (1) {
4956 refs = atomic_read(&eb->refs);
4957 if (refs <= 3)
4958 break;
4959 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4960 if (old == refs)
4961 return;
4962 }
4963
3083ee2e 4964 spin_lock(&eb->refs_lock);
815a51c7
JS
4965 if (atomic_read(&eb->refs) == 2 &&
4966 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4967 atomic_dec(&eb->refs);
4968
3083ee2e
JB
4969 if (atomic_read(&eb->refs) == 2 &&
4970 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4971 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4972 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4973 atomic_dec(&eb->refs);
4974
4975 /*
4976 * I know this is terrible, but it's temporary until we stop tracking
4977 * the uptodate bits and such for the extent buffers.
4978 */
f7a52a40 4979 release_extent_buffer(eb);
3083ee2e
JB
4980}
4981
4982void free_extent_buffer_stale(struct extent_buffer *eb)
4983{
4984 if (!eb)
d1310b2e
CM
4985 return;
4986
3083ee2e
JB
4987 spin_lock(&eb->refs_lock);
4988 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4989
0b32f4bb 4990 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4991 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4992 atomic_dec(&eb->refs);
f7a52a40 4993 release_extent_buffer(eb);
d1310b2e 4994}
d1310b2e 4995
1d4284bd 4996void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4997{
d1310b2e
CM
4998 unsigned long i;
4999 unsigned long num_pages;
5000 struct page *page;
5001
d1310b2e
CM
5002 num_pages = num_extent_pages(eb->start, eb->len);
5003
5004 for (i = 0; i < num_pages; i++) {
fb85fc9a 5005 page = eb->pages[i];
b9473439 5006 if (!PageDirty(page))
d2c3f4f6
CM
5007 continue;
5008
a61e6f29 5009 lock_page(page);
eb14ab8e
CM
5010 WARN_ON(!PagePrivate(page));
5011
d1310b2e 5012 clear_page_dirty_for_io(page);
0ee0fda0 5013 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5014 if (!PageDirty(page)) {
5015 radix_tree_tag_clear(&page->mapping->page_tree,
5016 page_index(page),
5017 PAGECACHE_TAG_DIRTY);
5018 }
0ee0fda0 5019 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5020 ClearPageError(page);
a61e6f29 5021 unlock_page(page);
d1310b2e 5022 }
0b32f4bb 5023 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5024}
d1310b2e 5025
0b32f4bb 5026int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5027{
5028 unsigned long i;
5029 unsigned long num_pages;
b9473439 5030 int was_dirty = 0;
d1310b2e 5031
0b32f4bb
JB
5032 check_buffer_tree_ref(eb);
5033
b9473439 5034 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5035
d1310b2e 5036 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5037 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5038 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5039
b9473439 5040 for (i = 0; i < num_pages; i++)
fb85fc9a 5041 set_page_dirty(eb->pages[i]);
b9473439 5042 return was_dirty;
d1310b2e 5043}
d1310b2e 5044
0b32f4bb 5045int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5046{
5047 unsigned long i;
5048 struct page *page;
5049 unsigned long num_pages;
5050
b4ce94de 5051 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5052 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5053 for (i = 0; i < num_pages; i++) {
fb85fc9a 5054 page = eb->pages[i];
33958dc6
CM
5055 if (page)
5056 ClearPageUptodate(page);
1259ab75
CM
5057 }
5058 return 0;
5059}
5060
0b32f4bb 5061int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5062{
5063 unsigned long i;
5064 struct page *page;
5065 unsigned long num_pages;
5066
0b32f4bb 5067 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5068 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5069 for (i = 0; i < num_pages; i++) {
fb85fc9a 5070 page = eb->pages[i];
d1310b2e
CM
5071 SetPageUptodate(page);
5072 }
5073 return 0;
5074}
d1310b2e 5075
0b32f4bb 5076int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5077{
0b32f4bb 5078 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5079}
d1310b2e
CM
5080
5081int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5082 struct extent_buffer *eb, u64 start, int wait,
f188591e 5083 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5084{
5085 unsigned long i;
5086 unsigned long start_i;
5087 struct page *page;
5088 int err;
5089 int ret = 0;
ce9adaa5
CM
5090 int locked_pages = 0;
5091 int all_uptodate = 1;
d1310b2e 5092 unsigned long num_pages;
727011e0 5093 unsigned long num_reads = 0;
a86c12c7 5094 struct bio *bio = NULL;
c8b97818 5095 unsigned long bio_flags = 0;
a86c12c7 5096
b4ce94de 5097 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5098 return 0;
5099
d1310b2e
CM
5100 if (start) {
5101 WARN_ON(start < eb->start);
5102 start_i = (start >> PAGE_CACHE_SHIFT) -
5103 (eb->start >> PAGE_CACHE_SHIFT);
5104 } else {
5105 start_i = 0;
5106 }
5107
5108 num_pages = num_extent_pages(eb->start, eb->len);
5109 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5110 page = eb->pages[i];
bb82ab88 5111 if (wait == WAIT_NONE) {
2db04966 5112 if (!trylock_page(page))
ce9adaa5 5113 goto unlock_exit;
d1310b2e
CM
5114 } else {
5115 lock_page(page);
5116 }
ce9adaa5 5117 locked_pages++;
727011e0
CM
5118 if (!PageUptodate(page)) {
5119 num_reads++;
ce9adaa5 5120 all_uptodate = 0;
727011e0 5121 }
ce9adaa5
CM
5122 }
5123 if (all_uptodate) {
5124 if (start_i == 0)
b4ce94de 5125 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5126 goto unlock_exit;
5127 }
5128
656f30db 5129 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5130 eb->read_mirror = 0;
0b32f4bb 5131 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5132 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5133 page = eb->pages[i];
ce9adaa5 5134 if (!PageUptodate(page)) {
f188591e 5135 ClearPageError(page);
a86c12c7 5136 err = __extent_read_full_page(tree, page,
f188591e 5137 get_extent, &bio,
d4c7ca86
JB
5138 mirror_num, &bio_flags,
5139 READ | REQ_META);
d397712b 5140 if (err)
d1310b2e 5141 ret = err;
d1310b2e
CM
5142 } else {
5143 unlock_page(page);
5144 }
5145 }
5146
355808c2 5147 if (bio) {
d4c7ca86
JB
5148 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5149 bio_flags);
79787eaa
JM
5150 if (err)
5151 return err;
355808c2 5152 }
a86c12c7 5153
bb82ab88 5154 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5155 return ret;
d397712b 5156
d1310b2e 5157 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5158 page = eb->pages[i];
d1310b2e 5159 wait_on_page_locked(page);
d397712b 5160 if (!PageUptodate(page))
d1310b2e 5161 ret = -EIO;
d1310b2e 5162 }
d397712b 5163
d1310b2e 5164 return ret;
ce9adaa5
CM
5165
5166unlock_exit:
5167 i = start_i;
d397712b 5168 while (locked_pages > 0) {
fb85fc9a 5169 page = eb->pages[i];
ce9adaa5
CM
5170 i++;
5171 unlock_page(page);
5172 locked_pages--;
5173 }
5174 return ret;
d1310b2e 5175}
d1310b2e
CM
5176
5177void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5178 unsigned long start,
5179 unsigned long len)
5180{
5181 size_t cur;
5182 size_t offset;
5183 struct page *page;
5184 char *kaddr;
5185 char *dst = (char *)dstv;
5186 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5187 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5188
5189 WARN_ON(start > eb->len);
5190 WARN_ON(start + len > eb->start + eb->len);
5191
778746b5 5192 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5193
d397712b 5194 while (len > 0) {
fb85fc9a 5195 page = eb->pages[i];
d1310b2e
CM
5196
5197 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5198 kaddr = page_address(page);
d1310b2e 5199 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5200
5201 dst += cur;
5202 len -= cur;
5203 offset = 0;
5204 i++;
5205 }
5206}
d1310b2e 5207
550ac1d8
GH
5208int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5209 unsigned long start,
5210 unsigned long len)
5211{
5212 size_t cur;
5213 size_t offset;
5214 struct page *page;
5215 char *kaddr;
5216 char __user *dst = (char __user *)dstv;
5217 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5218 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5219 int ret = 0;
5220
5221 WARN_ON(start > eb->len);
5222 WARN_ON(start + len > eb->start + eb->len);
5223
5224 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5225
5226 while (len > 0) {
fb85fc9a 5227 page = eb->pages[i];
550ac1d8
GH
5228
5229 cur = min(len, (PAGE_CACHE_SIZE - offset));
5230 kaddr = page_address(page);
5231 if (copy_to_user(dst, kaddr + offset, cur)) {
5232 ret = -EFAULT;
5233 break;
5234 }
5235
5236 dst += cur;
5237 len -= cur;
5238 offset = 0;
5239 i++;
5240 }
5241
5242 return ret;
5243}
5244
d1310b2e 5245int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5246 unsigned long min_len, char **map,
d1310b2e 5247 unsigned long *map_start,
a6591715 5248 unsigned long *map_len)
d1310b2e
CM
5249{
5250 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5251 char *kaddr;
5252 struct page *p;
5253 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5254 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5255 unsigned long end_i = (start_offset + start + min_len - 1) >>
5256 PAGE_CACHE_SHIFT;
5257
5258 if (i != end_i)
5259 return -EINVAL;
5260
5261 if (i == 0) {
5262 offset = start_offset;
5263 *map_start = 0;
5264 } else {
5265 offset = 0;
5266 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5267 }
d397712b 5268
d1310b2e 5269 if (start + min_len > eb->len) {
31b1a2bd 5270 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5271 "wanted %lu %lu\n",
5272 eb->start, eb->len, start, min_len);
85026533 5273 return -EINVAL;
d1310b2e
CM
5274 }
5275
fb85fc9a 5276 p = eb->pages[i];
a6591715 5277 kaddr = page_address(p);
d1310b2e
CM
5278 *map = kaddr + offset;
5279 *map_len = PAGE_CACHE_SIZE - offset;
5280 return 0;
5281}
d1310b2e 5282
d1310b2e
CM
5283int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5284 unsigned long start,
5285 unsigned long len)
5286{
5287 size_t cur;
5288 size_t offset;
5289 struct page *page;
5290 char *kaddr;
5291 char *ptr = (char *)ptrv;
5292 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5293 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5294 int ret = 0;
5295
5296 WARN_ON(start > eb->len);
5297 WARN_ON(start + len > eb->start + eb->len);
5298
778746b5 5299 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5300
d397712b 5301 while (len > 0) {
fb85fc9a 5302 page = eb->pages[i];
d1310b2e
CM
5303
5304 cur = min(len, (PAGE_CACHE_SIZE - offset));
5305
a6591715 5306 kaddr = page_address(page);
d1310b2e 5307 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5308 if (ret)
5309 break;
5310
5311 ptr += cur;
5312 len -= cur;
5313 offset = 0;
5314 i++;
5315 }
5316 return ret;
5317}
d1310b2e
CM
5318
5319void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5320 unsigned long start, unsigned long len)
5321{
5322 size_t cur;
5323 size_t offset;
5324 struct page *page;
5325 char *kaddr;
5326 char *src = (char *)srcv;
5327 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5328 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5329
5330 WARN_ON(start > eb->len);
5331 WARN_ON(start + len > eb->start + eb->len);
5332
778746b5 5333 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5334
d397712b 5335 while (len > 0) {
fb85fc9a 5336 page = eb->pages[i];
d1310b2e
CM
5337 WARN_ON(!PageUptodate(page));
5338
5339 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5340 kaddr = page_address(page);
d1310b2e 5341 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5342
5343 src += cur;
5344 len -= cur;
5345 offset = 0;
5346 i++;
5347 }
5348}
d1310b2e
CM
5349
5350void memset_extent_buffer(struct extent_buffer *eb, char c,
5351 unsigned long start, unsigned long len)
5352{
5353 size_t cur;
5354 size_t offset;
5355 struct page *page;
5356 char *kaddr;
5357 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5358 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5359
5360 WARN_ON(start > eb->len);
5361 WARN_ON(start + len > eb->start + eb->len);
5362
778746b5 5363 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5364
d397712b 5365 while (len > 0) {
fb85fc9a 5366 page = eb->pages[i];
d1310b2e
CM
5367 WARN_ON(!PageUptodate(page));
5368
5369 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5370 kaddr = page_address(page);
d1310b2e 5371 memset(kaddr + offset, c, cur);
d1310b2e
CM
5372
5373 len -= cur;
5374 offset = 0;
5375 i++;
5376 }
5377}
d1310b2e
CM
5378
5379void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5380 unsigned long dst_offset, unsigned long src_offset,
5381 unsigned long len)
5382{
5383 u64 dst_len = dst->len;
5384 size_t cur;
5385 size_t offset;
5386 struct page *page;
5387 char *kaddr;
5388 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5389 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5390
5391 WARN_ON(src->len != dst_len);
5392
5393 offset = (start_offset + dst_offset) &
778746b5 5394 (PAGE_CACHE_SIZE - 1);
d1310b2e 5395
d397712b 5396 while (len > 0) {
fb85fc9a 5397 page = dst->pages[i];
d1310b2e
CM
5398 WARN_ON(!PageUptodate(page));
5399
5400 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5401
a6591715 5402 kaddr = page_address(page);
d1310b2e 5403 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5404
5405 src_offset += cur;
5406 len -= cur;
5407 offset = 0;
5408 i++;
5409 }
5410}
d1310b2e 5411
3387206f
ST
5412static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5413{
5414 unsigned long distance = (src > dst) ? src - dst : dst - src;
5415 return distance < len;
5416}
5417
d1310b2e
CM
5418static void copy_pages(struct page *dst_page, struct page *src_page,
5419 unsigned long dst_off, unsigned long src_off,
5420 unsigned long len)
5421{
a6591715 5422 char *dst_kaddr = page_address(dst_page);
d1310b2e 5423 char *src_kaddr;
727011e0 5424 int must_memmove = 0;
d1310b2e 5425
3387206f 5426 if (dst_page != src_page) {
a6591715 5427 src_kaddr = page_address(src_page);
3387206f 5428 } else {
d1310b2e 5429 src_kaddr = dst_kaddr;
727011e0
CM
5430 if (areas_overlap(src_off, dst_off, len))
5431 must_memmove = 1;
3387206f 5432 }
d1310b2e 5433
727011e0
CM
5434 if (must_memmove)
5435 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5436 else
5437 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5438}
5439
5440void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5441 unsigned long src_offset, unsigned long len)
5442{
5443 size_t cur;
5444 size_t dst_off_in_page;
5445 size_t src_off_in_page;
5446 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5447 unsigned long dst_i;
5448 unsigned long src_i;
5449
5450 if (src_offset + len > dst->len) {
efe120a0 5451 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5452 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5453 BUG_ON(1);
5454 }
5455 if (dst_offset + len > dst->len) {
efe120a0 5456 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5457 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5458 BUG_ON(1);
5459 }
5460
d397712b 5461 while (len > 0) {
d1310b2e 5462 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5463 (PAGE_CACHE_SIZE - 1);
d1310b2e 5464 src_off_in_page = (start_offset + src_offset) &
778746b5 5465 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5466
5467 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5468 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5469
5470 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5471 src_off_in_page));
5472 cur = min_t(unsigned long, cur,
5473 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5474
fb85fc9a 5475 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5476 dst_off_in_page, src_off_in_page, cur);
5477
5478 src_offset += cur;
5479 dst_offset += cur;
5480 len -= cur;
5481 }
5482}
d1310b2e
CM
5483
5484void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5485 unsigned long src_offset, unsigned long len)
5486{
5487 size_t cur;
5488 size_t dst_off_in_page;
5489 size_t src_off_in_page;
5490 unsigned long dst_end = dst_offset + len - 1;
5491 unsigned long src_end = src_offset + len - 1;
5492 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5493 unsigned long dst_i;
5494 unsigned long src_i;
5495
5496 if (src_offset + len > dst->len) {
efe120a0 5497 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5498 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5499 BUG_ON(1);
5500 }
5501 if (dst_offset + len > dst->len) {
efe120a0 5502 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5503 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5504 BUG_ON(1);
5505 }
727011e0 5506 if (dst_offset < src_offset) {
d1310b2e
CM
5507 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5508 return;
5509 }
d397712b 5510 while (len > 0) {
d1310b2e
CM
5511 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5512 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5513
5514 dst_off_in_page = (start_offset + dst_end) &
778746b5 5515 (PAGE_CACHE_SIZE - 1);
d1310b2e 5516 src_off_in_page = (start_offset + src_end) &
778746b5 5517 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5518
5519 cur = min_t(unsigned long, len, src_off_in_page + 1);
5520 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5521 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5522 dst_off_in_page - cur + 1,
5523 src_off_in_page - cur + 1, cur);
5524
5525 dst_end -= cur;
5526 src_end -= cur;
5527 len -= cur;
5528 }
5529}
6af118ce 5530
f7a52a40 5531int try_release_extent_buffer(struct page *page)
19fe0a8b 5532{
6af118ce 5533 struct extent_buffer *eb;
6af118ce 5534
3083ee2e
JB
5535 /*
5536 * We need to make sure noboody is attaching this page to an eb right
5537 * now.
5538 */
5539 spin_lock(&page->mapping->private_lock);
5540 if (!PagePrivate(page)) {
5541 spin_unlock(&page->mapping->private_lock);
4f2de97a 5542 return 1;
45f49bce 5543 }
6af118ce 5544
3083ee2e
JB
5545 eb = (struct extent_buffer *)page->private;
5546 BUG_ON(!eb);
19fe0a8b
MX
5547
5548 /*
3083ee2e
JB
5549 * This is a little awful but should be ok, we need to make sure that
5550 * the eb doesn't disappear out from under us while we're looking at
5551 * this page.
19fe0a8b 5552 */
3083ee2e 5553 spin_lock(&eb->refs_lock);
0b32f4bb 5554 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5555 spin_unlock(&eb->refs_lock);
5556 spin_unlock(&page->mapping->private_lock);
5557 return 0;
b9473439 5558 }
3083ee2e 5559 spin_unlock(&page->mapping->private_lock);
897ca6e9 5560
19fe0a8b 5561 /*
3083ee2e
JB
5562 * If tree ref isn't set then we know the ref on this eb is a real ref,
5563 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5564 */
3083ee2e
JB
5565 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5566 spin_unlock(&eb->refs_lock);
5567 return 0;
b9473439 5568 }
19fe0a8b 5569
f7a52a40 5570 return release_extent_buffer(eb);
6af118ce 5571}