Btrfs: do not hold the file extent leaf locked when adding extent item
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27
28static LIST_HEAD(buffers);
29static LIST_HEAD(states);
4bef0848 30
b47eda86 31#define LEAK_DEBUG 0
3935127c 32#if LEAK_DEBUG
d397712b 33static DEFINE_SPINLOCK(leak_lock);
4bef0848 34#endif
d1310b2e 35
d1310b2e
CM
36#define BUFFER_LRU_MAX 64
37
38struct tree_entry {
39 u64 start;
40 u64 end;
d1310b2e
CM
41 struct rb_node rb_node;
42};
43
44struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
de0022b9 48 unsigned long bio_flags;
771ed689
CM
49
50 /* tells writepage not to lock the state bits for this range
51 * it still does the unlocking
52 */
ffbd517d
CM
53 unsigned int extent_locked:1;
54
55 /* tells the submit_bio code to use a WRITE_SYNC */
56 unsigned int sync_io:1;
d1310b2e
CM
57};
58
0b32f4bb 59static noinline void flush_write_bio(void *data);
c2d904e0
JM
60static inline struct btrfs_fs_info *
61tree_fs_info(struct extent_io_tree *tree)
62{
63 return btrfs_sb(tree->mapping->host->i_sb);
64}
0b32f4bb 65
d1310b2e
CM
66int __init extent_io_init(void)
67{
837e1972 68 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
69 sizeof(struct extent_state), 0,
70 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
71 if (!extent_state_cache)
72 return -ENOMEM;
73
837e1972 74 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
75 sizeof(struct extent_buffer), 0,
76 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
77 if (!extent_buffer_cache)
78 goto free_state_cache;
79 return 0;
80
81free_state_cache:
82 kmem_cache_destroy(extent_state_cache);
83 return -ENOMEM;
84}
85
86void extent_io_exit(void)
87{
88 struct extent_state *state;
2d2ae547 89 struct extent_buffer *eb;
d1310b2e
CM
90
91 while (!list_empty(&states)) {
2d2ae547 92 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
93 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
94 "state %lu in tree %p refs %d\n",
95 (unsigned long long)state->start,
96 (unsigned long long)state->end,
97 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 98 list_del(&state->leak_list);
d1310b2e
CM
99 kmem_cache_free(extent_state_cache, state);
100
101 }
102
2d2ae547
CM
103 while (!list_empty(&buffers)) {
104 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
105 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
106 "refs %d\n", (unsigned long long)eb->start,
107 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
108 list_del(&eb->leak_list);
109 kmem_cache_free(extent_buffer_cache, eb);
110 }
d1310b2e
CM
111 if (extent_state_cache)
112 kmem_cache_destroy(extent_state_cache);
113 if (extent_buffer_cache)
114 kmem_cache_destroy(extent_buffer_cache);
115}
116
117void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 118 struct address_space *mapping)
d1310b2e 119{
6bef4d31 120 tree->state = RB_ROOT;
19fe0a8b 121 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
122 tree->ops = NULL;
123 tree->dirty_bytes = 0;
70dec807 124 spin_lock_init(&tree->lock);
6af118ce 125 spin_lock_init(&tree->buffer_lock);
d1310b2e 126 tree->mapping = mapping;
d1310b2e 127}
d1310b2e 128
b2950863 129static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
130{
131 struct extent_state *state;
3935127c 132#if LEAK_DEBUG
2d2ae547 133 unsigned long flags;
4bef0848 134#endif
d1310b2e
CM
135
136 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 137 if (!state)
d1310b2e
CM
138 return state;
139 state->state = 0;
d1310b2e 140 state->private = 0;
70dec807 141 state->tree = NULL;
3935127c 142#if LEAK_DEBUG
2d2ae547
CM
143 spin_lock_irqsave(&leak_lock, flags);
144 list_add(&state->leak_list, &states);
145 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 146#endif
d1310b2e
CM
147 atomic_set(&state->refs, 1);
148 init_waitqueue_head(&state->wq);
143bede5 149 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
150 return state;
151}
d1310b2e 152
4845e44f 153void free_extent_state(struct extent_state *state)
d1310b2e 154{
d1310b2e
CM
155 if (!state)
156 return;
157 if (atomic_dec_and_test(&state->refs)) {
3935127c 158#if LEAK_DEBUG
2d2ae547 159 unsigned long flags;
4bef0848 160#endif
70dec807 161 WARN_ON(state->tree);
3935127c 162#if LEAK_DEBUG
2d2ae547
CM
163 spin_lock_irqsave(&leak_lock, flags);
164 list_del(&state->leak_list);
165 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 166#endif
143bede5 167 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
168 kmem_cache_free(extent_state_cache, state);
169 }
170}
d1310b2e
CM
171
172static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
173 struct rb_node *node)
174{
d397712b
CM
175 struct rb_node **p = &root->rb_node;
176 struct rb_node *parent = NULL;
d1310b2e
CM
177 struct tree_entry *entry;
178
d397712b 179 while (*p) {
d1310b2e
CM
180 parent = *p;
181 entry = rb_entry(parent, struct tree_entry, rb_node);
182
183 if (offset < entry->start)
184 p = &(*p)->rb_left;
185 else if (offset > entry->end)
186 p = &(*p)->rb_right;
187 else
188 return parent;
189 }
190
d1310b2e
CM
191 rb_link_node(node, parent, p);
192 rb_insert_color(node, root);
193 return NULL;
194}
195
80ea96b1 196static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
197 struct rb_node **prev_ret,
198 struct rb_node **next_ret)
199{
80ea96b1 200 struct rb_root *root = &tree->state;
d397712b 201 struct rb_node *n = root->rb_node;
d1310b2e
CM
202 struct rb_node *prev = NULL;
203 struct rb_node *orig_prev = NULL;
204 struct tree_entry *entry;
205 struct tree_entry *prev_entry = NULL;
206
d397712b 207 while (n) {
d1310b2e
CM
208 entry = rb_entry(n, struct tree_entry, rb_node);
209 prev = n;
210 prev_entry = entry;
211
212 if (offset < entry->start)
213 n = n->rb_left;
214 else if (offset > entry->end)
215 n = n->rb_right;
d397712b 216 else
d1310b2e
CM
217 return n;
218 }
219
220 if (prev_ret) {
221 orig_prev = prev;
d397712b 222 while (prev && offset > prev_entry->end) {
d1310b2e
CM
223 prev = rb_next(prev);
224 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
225 }
226 *prev_ret = prev;
227 prev = orig_prev;
228 }
229
230 if (next_ret) {
231 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 232 while (prev && offset < prev_entry->start) {
d1310b2e
CM
233 prev = rb_prev(prev);
234 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
235 }
236 *next_ret = prev;
237 }
238 return NULL;
239}
240
80ea96b1
CM
241static inline struct rb_node *tree_search(struct extent_io_tree *tree,
242 u64 offset)
d1310b2e 243{
70dec807 244 struct rb_node *prev = NULL;
d1310b2e 245 struct rb_node *ret;
70dec807 246
80ea96b1 247 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 248 if (!ret)
d1310b2e
CM
249 return prev;
250 return ret;
251}
252
9ed74f2d
JB
253static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
254 struct extent_state *other)
255{
256 if (tree->ops && tree->ops->merge_extent_hook)
257 tree->ops->merge_extent_hook(tree->mapping->host, new,
258 other);
259}
260
d1310b2e
CM
261/*
262 * utility function to look for merge candidates inside a given range.
263 * Any extents with matching state are merged together into a single
264 * extent in the tree. Extents with EXTENT_IO in their state field
265 * are not merged because the end_io handlers need to be able to do
266 * operations on them without sleeping (or doing allocations/splits).
267 *
268 * This should be called with the tree lock held.
269 */
1bf85046
JM
270static void merge_state(struct extent_io_tree *tree,
271 struct extent_state *state)
d1310b2e
CM
272{
273 struct extent_state *other;
274 struct rb_node *other_node;
275
5b21f2ed 276 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 277 return;
d1310b2e
CM
278
279 other_node = rb_prev(&state->rb_node);
280 if (other_node) {
281 other = rb_entry(other_node, struct extent_state, rb_node);
282 if (other->end == state->start - 1 &&
283 other->state == state->state) {
9ed74f2d 284 merge_cb(tree, state, other);
d1310b2e 285 state->start = other->start;
70dec807 286 other->tree = NULL;
d1310b2e
CM
287 rb_erase(&other->rb_node, &tree->state);
288 free_extent_state(other);
289 }
290 }
291 other_node = rb_next(&state->rb_node);
292 if (other_node) {
293 other = rb_entry(other_node, struct extent_state, rb_node);
294 if (other->start == state->end + 1 &&
295 other->state == state->state) {
9ed74f2d 296 merge_cb(tree, state, other);
df98b6e2
JB
297 state->end = other->end;
298 other->tree = NULL;
299 rb_erase(&other->rb_node, &tree->state);
300 free_extent_state(other);
d1310b2e
CM
301 }
302 }
d1310b2e
CM
303}
304
1bf85046 305static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 306 struct extent_state *state, int *bits)
291d673e 307{
1bf85046
JM
308 if (tree->ops && tree->ops->set_bit_hook)
309 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
310}
311
312static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 313 struct extent_state *state, int *bits)
291d673e 314{
9ed74f2d
JB
315 if (tree->ops && tree->ops->clear_bit_hook)
316 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
317}
318
3150b699
XG
319static void set_state_bits(struct extent_io_tree *tree,
320 struct extent_state *state, int *bits);
321
d1310b2e
CM
322/*
323 * insert an extent_state struct into the tree. 'bits' are set on the
324 * struct before it is inserted.
325 *
326 * This may return -EEXIST if the extent is already there, in which case the
327 * state struct is freed.
328 *
329 * The tree lock is not taken internally. This is a utility function and
330 * probably isn't what you want to call (see set/clear_extent_bit).
331 */
332static int insert_state(struct extent_io_tree *tree,
333 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 334 int *bits)
d1310b2e
CM
335{
336 struct rb_node *node;
337
338 if (end < start) {
d397712b
CM
339 printk(KERN_ERR "btrfs end < start %llu %llu\n",
340 (unsigned long long)end,
341 (unsigned long long)start);
d1310b2e
CM
342 WARN_ON(1);
343 }
d1310b2e
CM
344 state->start = start;
345 state->end = end;
9ed74f2d 346
3150b699
XG
347 set_state_bits(tree, state, bits);
348
d1310b2e
CM
349 node = tree_insert(&tree->state, end, &state->rb_node);
350 if (node) {
351 struct extent_state *found;
352 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
353 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
354 "%llu %llu\n", (unsigned long long)found->start,
355 (unsigned long long)found->end,
356 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
357 return -EEXIST;
358 }
70dec807 359 state->tree = tree;
d1310b2e
CM
360 merge_state(tree, state);
361 return 0;
362}
363
1bf85046 364static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
365 u64 split)
366{
367 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 368 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
369}
370
d1310b2e
CM
371/*
372 * split a given extent state struct in two, inserting the preallocated
373 * struct 'prealloc' as the newly created second half. 'split' indicates an
374 * offset inside 'orig' where it should be split.
375 *
376 * Before calling,
377 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
378 * are two extent state structs in the tree:
379 * prealloc: [orig->start, split - 1]
380 * orig: [ split, orig->end ]
381 *
382 * The tree locks are not taken by this function. They need to be held
383 * by the caller.
384 */
385static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
386 struct extent_state *prealloc, u64 split)
387{
388 struct rb_node *node;
9ed74f2d
JB
389
390 split_cb(tree, orig, split);
391
d1310b2e
CM
392 prealloc->start = orig->start;
393 prealloc->end = split - 1;
394 prealloc->state = orig->state;
395 orig->start = split;
396
397 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
398 if (node) {
d1310b2e
CM
399 free_extent_state(prealloc);
400 return -EEXIST;
401 }
70dec807 402 prealloc->tree = tree;
d1310b2e
CM
403 return 0;
404}
405
cdc6a395
LZ
406static struct extent_state *next_state(struct extent_state *state)
407{
408 struct rb_node *next = rb_next(&state->rb_node);
409 if (next)
410 return rb_entry(next, struct extent_state, rb_node);
411 else
412 return NULL;
413}
414
d1310b2e
CM
415/*
416 * utility function to clear some bits in an extent state struct.
1b303fc0 417 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
418 *
419 * If no bits are set on the state struct after clearing things, the
420 * struct is freed and removed from the tree
421 */
cdc6a395
LZ
422static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
423 struct extent_state *state,
424 int *bits, int wake)
d1310b2e 425{
cdc6a395 426 struct extent_state *next;
0ca1f7ce 427 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 428
0ca1f7ce 429 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
430 u64 range = state->end - state->start + 1;
431 WARN_ON(range > tree->dirty_bytes);
432 tree->dirty_bytes -= range;
433 }
291d673e 434 clear_state_cb(tree, state, bits);
32c00aff 435 state->state &= ~bits_to_clear;
d1310b2e
CM
436 if (wake)
437 wake_up(&state->wq);
0ca1f7ce 438 if (state->state == 0) {
cdc6a395 439 next = next_state(state);
70dec807 440 if (state->tree) {
d1310b2e 441 rb_erase(&state->rb_node, &tree->state);
70dec807 442 state->tree = NULL;
d1310b2e
CM
443 free_extent_state(state);
444 } else {
445 WARN_ON(1);
446 }
447 } else {
448 merge_state(tree, state);
cdc6a395 449 next = next_state(state);
d1310b2e 450 }
cdc6a395 451 return next;
d1310b2e
CM
452}
453
8233767a
XG
454static struct extent_state *
455alloc_extent_state_atomic(struct extent_state *prealloc)
456{
457 if (!prealloc)
458 prealloc = alloc_extent_state(GFP_ATOMIC);
459
460 return prealloc;
461}
462
c2d904e0
JM
463void extent_io_tree_panic(struct extent_io_tree *tree, int err)
464{
465 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
466 "Extent tree was modified by another "
467 "thread while locked.");
468}
469
d1310b2e
CM
470/*
471 * clear some bits on a range in the tree. This may require splitting
472 * or inserting elements in the tree, so the gfp mask is used to
473 * indicate which allocations or sleeping are allowed.
474 *
475 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
476 * the given range from the tree regardless of state (ie for truncate).
477 *
478 * the range [start, end] is inclusive.
479 *
6763af84 480 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
481 */
482int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
483 int bits, int wake, int delete,
484 struct extent_state **cached_state,
485 gfp_t mask)
d1310b2e
CM
486{
487 struct extent_state *state;
2c64c53d 488 struct extent_state *cached;
d1310b2e
CM
489 struct extent_state *prealloc = NULL;
490 struct rb_node *node;
5c939df5 491 u64 last_end;
d1310b2e 492 int err;
2ac55d41 493 int clear = 0;
d1310b2e 494
0ca1f7ce
YZ
495 if (delete)
496 bits |= ~EXTENT_CTLBITS;
497 bits |= EXTENT_FIRST_DELALLOC;
498
2ac55d41
JB
499 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
500 clear = 1;
d1310b2e
CM
501again:
502 if (!prealloc && (mask & __GFP_WAIT)) {
503 prealloc = alloc_extent_state(mask);
504 if (!prealloc)
505 return -ENOMEM;
506 }
507
cad321ad 508 spin_lock(&tree->lock);
2c64c53d
CM
509 if (cached_state) {
510 cached = *cached_state;
2ac55d41
JB
511
512 if (clear) {
513 *cached_state = NULL;
514 cached_state = NULL;
515 }
516
df98b6e2
JB
517 if (cached && cached->tree && cached->start <= start &&
518 cached->end > start) {
2ac55d41
JB
519 if (clear)
520 atomic_dec(&cached->refs);
2c64c53d 521 state = cached;
42daec29 522 goto hit_next;
2c64c53d 523 }
2ac55d41
JB
524 if (clear)
525 free_extent_state(cached);
2c64c53d 526 }
d1310b2e
CM
527 /*
528 * this search will find the extents that end after
529 * our range starts
530 */
80ea96b1 531 node = tree_search(tree, start);
d1310b2e
CM
532 if (!node)
533 goto out;
534 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 535hit_next:
d1310b2e
CM
536 if (state->start > end)
537 goto out;
538 WARN_ON(state->end < start);
5c939df5 539 last_end = state->end;
d1310b2e 540
0449314a 541 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
542 if (!(state->state & bits)) {
543 state = next_state(state);
0449314a 544 goto next;
cdc6a395 545 }
0449314a 546
d1310b2e
CM
547 /*
548 * | ---- desired range ---- |
549 * | state | or
550 * | ------------- state -------------- |
551 *
552 * We need to split the extent we found, and may flip
553 * bits on second half.
554 *
555 * If the extent we found extends past our range, we
556 * just split and search again. It'll get split again
557 * the next time though.
558 *
559 * If the extent we found is inside our range, we clear
560 * the desired bit on it.
561 */
562
563 if (state->start < start) {
8233767a
XG
564 prealloc = alloc_extent_state_atomic(prealloc);
565 BUG_ON(!prealloc);
d1310b2e 566 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
567 if (err)
568 extent_io_tree_panic(tree, err);
569
d1310b2e
CM
570 prealloc = NULL;
571 if (err)
572 goto out;
573 if (state->end <= end) {
d1ac6e41
LB
574 state = clear_state_bit(tree, state, &bits, wake);
575 goto next;
d1310b2e
CM
576 }
577 goto search_again;
578 }
579 /*
580 * | ---- desired range ---- |
581 * | state |
582 * We need to split the extent, and clear the bit
583 * on the first half
584 */
585 if (state->start <= end && state->end > end) {
8233767a
XG
586 prealloc = alloc_extent_state_atomic(prealloc);
587 BUG_ON(!prealloc);
d1310b2e 588 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
589 if (err)
590 extent_io_tree_panic(tree, err);
591
d1310b2e
CM
592 if (wake)
593 wake_up(&state->wq);
42daec29 594
6763af84 595 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 596
d1310b2e
CM
597 prealloc = NULL;
598 goto out;
599 }
42daec29 600
cdc6a395 601 state = clear_state_bit(tree, state, &bits, wake);
0449314a 602next:
5c939df5
YZ
603 if (last_end == (u64)-1)
604 goto out;
605 start = last_end + 1;
cdc6a395 606 if (start <= end && state && !need_resched())
692e5759 607 goto hit_next;
d1310b2e
CM
608 goto search_again;
609
610out:
cad321ad 611 spin_unlock(&tree->lock);
d1310b2e
CM
612 if (prealloc)
613 free_extent_state(prealloc);
614
6763af84 615 return 0;
d1310b2e
CM
616
617search_again:
618 if (start > end)
619 goto out;
cad321ad 620 spin_unlock(&tree->lock);
d1310b2e
CM
621 if (mask & __GFP_WAIT)
622 cond_resched();
623 goto again;
624}
d1310b2e 625
143bede5
JM
626static void wait_on_state(struct extent_io_tree *tree,
627 struct extent_state *state)
641f5219
CH
628 __releases(tree->lock)
629 __acquires(tree->lock)
d1310b2e
CM
630{
631 DEFINE_WAIT(wait);
632 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 633 spin_unlock(&tree->lock);
d1310b2e 634 schedule();
cad321ad 635 spin_lock(&tree->lock);
d1310b2e 636 finish_wait(&state->wq, &wait);
d1310b2e
CM
637}
638
639/*
640 * waits for one or more bits to clear on a range in the state tree.
641 * The range [start, end] is inclusive.
642 * The tree lock is taken by this function
643 */
143bede5 644void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
645{
646 struct extent_state *state;
647 struct rb_node *node;
648
cad321ad 649 spin_lock(&tree->lock);
d1310b2e
CM
650again:
651 while (1) {
652 /*
653 * this search will find all the extents that end after
654 * our range starts
655 */
80ea96b1 656 node = tree_search(tree, start);
d1310b2e
CM
657 if (!node)
658 break;
659
660 state = rb_entry(node, struct extent_state, rb_node);
661
662 if (state->start > end)
663 goto out;
664
665 if (state->state & bits) {
666 start = state->start;
667 atomic_inc(&state->refs);
668 wait_on_state(tree, state);
669 free_extent_state(state);
670 goto again;
671 }
672 start = state->end + 1;
673
674 if (start > end)
675 break;
676
ded91f08 677 cond_resched_lock(&tree->lock);
d1310b2e
CM
678 }
679out:
cad321ad 680 spin_unlock(&tree->lock);
d1310b2e 681}
d1310b2e 682
1bf85046 683static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 684 struct extent_state *state,
0ca1f7ce 685 int *bits)
d1310b2e 686{
0ca1f7ce 687 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 688
1bf85046 689 set_state_cb(tree, state, bits);
0ca1f7ce 690 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
691 u64 range = state->end - state->start + 1;
692 tree->dirty_bytes += range;
693 }
0ca1f7ce 694 state->state |= bits_to_set;
d1310b2e
CM
695}
696
2c64c53d
CM
697static void cache_state(struct extent_state *state,
698 struct extent_state **cached_ptr)
699{
700 if (cached_ptr && !(*cached_ptr)) {
701 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
702 *cached_ptr = state;
703 atomic_inc(&state->refs);
704 }
705 }
706}
707
507903b8
AJ
708static void uncache_state(struct extent_state **cached_ptr)
709{
710 if (cached_ptr && (*cached_ptr)) {
711 struct extent_state *state = *cached_ptr;
109b36a2
CM
712 *cached_ptr = NULL;
713 free_extent_state(state);
507903b8
AJ
714 }
715}
716
d1310b2e 717/*
1edbb734
CM
718 * set some bits on a range in the tree. This may require allocations or
719 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 720 *
1edbb734
CM
721 * If any of the exclusive bits are set, this will fail with -EEXIST if some
722 * part of the range already has the desired bits set. The start of the
723 * existing range is returned in failed_start in this case.
d1310b2e 724 *
1edbb734 725 * [start, end] is inclusive This takes the tree lock.
d1310b2e 726 */
1edbb734 727
3fbe5c02
JM
728static int __must_check
729__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
730 int bits, int exclusive_bits, u64 *failed_start,
731 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
732{
733 struct extent_state *state;
734 struct extent_state *prealloc = NULL;
735 struct rb_node *node;
d1310b2e 736 int err = 0;
d1310b2e
CM
737 u64 last_start;
738 u64 last_end;
42daec29 739
0ca1f7ce 740 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
741again:
742 if (!prealloc && (mask & __GFP_WAIT)) {
743 prealloc = alloc_extent_state(mask);
8233767a 744 BUG_ON(!prealloc);
d1310b2e
CM
745 }
746
cad321ad 747 spin_lock(&tree->lock);
9655d298
CM
748 if (cached_state && *cached_state) {
749 state = *cached_state;
df98b6e2
JB
750 if (state->start <= start && state->end > start &&
751 state->tree) {
9655d298
CM
752 node = &state->rb_node;
753 goto hit_next;
754 }
755 }
d1310b2e
CM
756 /*
757 * this search will find all the extents that end after
758 * our range starts.
759 */
80ea96b1 760 node = tree_search(tree, start);
d1310b2e 761 if (!node) {
8233767a
XG
762 prealloc = alloc_extent_state_atomic(prealloc);
763 BUG_ON(!prealloc);
0ca1f7ce 764 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
765 if (err)
766 extent_io_tree_panic(tree, err);
767
d1310b2e 768 prealloc = NULL;
d1310b2e
CM
769 goto out;
770 }
d1310b2e 771 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 772hit_next:
d1310b2e
CM
773 last_start = state->start;
774 last_end = state->end;
775
776 /*
777 * | ---- desired range ---- |
778 * | state |
779 *
780 * Just lock what we found and keep going
781 */
782 if (state->start == start && state->end <= end) {
1edbb734 783 if (state->state & exclusive_bits) {
d1310b2e
CM
784 *failed_start = state->start;
785 err = -EEXIST;
786 goto out;
787 }
42daec29 788
1bf85046 789 set_state_bits(tree, state, &bits);
2c64c53d 790 cache_state(state, cached_state);
d1310b2e 791 merge_state(tree, state);
5c939df5
YZ
792 if (last_end == (u64)-1)
793 goto out;
794 start = last_end + 1;
d1ac6e41
LB
795 state = next_state(state);
796 if (start < end && state && state->start == start &&
797 !need_resched())
798 goto hit_next;
d1310b2e
CM
799 goto search_again;
800 }
801
802 /*
803 * | ---- desired range ---- |
804 * | state |
805 * or
806 * | ------------- state -------------- |
807 *
808 * We need to split the extent we found, and may flip bits on
809 * second half.
810 *
811 * If the extent we found extends past our
812 * range, we just split and search again. It'll get split
813 * again the next time though.
814 *
815 * If the extent we found is inside our range, we set the
816 * desired bit on it.
817 */
818 if (state->start < start) {
1edbb734 819 if (state->state & exclusive_bits) {
d1310b2e
CM
820 *failed_start = start;
821 err = -EEXIST;
822 goto out;
823 }
8233767a
XG
824
825 prealloc = alloc_extent_state_atomic(prealloc);
826 BUG_ON(!prealloc);
d1310b2e 827 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
828 if (err)
829 extent_io_tree_panic(tree, err);
830
d1310b2e
CM
831 prealloc = NULL;
832 if (err)
833 goto out;
834 if (state->end <= end) {
1bf85046 835 set_state_bits(tree, state, &bits);
2c64c53d 836 cache_state(state, cached_state);
d1310b2e 837 merge_state(tree, state);
5c939df5
YZ
838 if (last_end == (u64)-1)
839 goto out;
840 start = last_end + 1;
d1ac6e41
LB
841 state = next_state(state);
842 if (start < end && state && state->start == start &&
843 !need_resched())
844 goto hit_next;
d1310b2e
CM
845 }
846 goto search_again;
847 }
848 /*
849 * | ---- desired range ---- |
850 * | state | or | state |
851 *
852 * There's a hole, we need to insert something in it and
853 * ignore the extent we found.
854 */
855 if (state->start > start) {
856 u64 this_end;
857 if (end < last_start)
858 this_end = end;
859 else
d397712b 860 this_end = last_start - 1;
8233767a
XG
861
862 prealloc = alloc_extent_state_atomic(prealloc);
863 BUG_ON(!prealloc);
c7f895a2
XG
864
865 /*
866 * Avoid to free 'prealloc' if it can be merged with
867 * the later extent.
868 */
d1310b2e 869 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 870 &bits);
c2d904e0
JM
871 if (err)
872 extent_io_tree_panic(tree, err);
873
9ed74f2d
JB
874 cache_state(prealloc, cached_state);
875 prealloc = NULL;
d1310b2e
CM
876 start = this_end + 1;
877 goto search_again;
878 }
879 /*
880 * | ---- desired range ---- |
881 * | state |
882 * We need to split the extent, and set the bit
883 * on the first half
884 */
885 if (state->start <= end && state->end > end) {
1edbb734 886 if (state->state & exclusive_bits) {
d1310b2e
CM
887 *failed_start = start;
888 err = -EEXIST;
889 goto out;
890 }
8233767a
XG
891
892 prealloc = alloc_extent_state_atomic(prealloc);
893 BUG_ON(!prealloc);
d1310b2e 894 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
895 if (err)
896 extent_io_tree_panic(tree, err);
d1310b2e 897
1bf85046 898 set_state_bits(tree, prealloc, &bits);
2c64c53d 899 cache_state(prealloc, cached_state);
d1310b2e
CM
900 merge_state(tree, prealloc);
901 prealloc = NULL;
902 goto out;
903 }
904
905 goto search_again;
906
907out:
cad321ad 908 spin_unlock(&tree->lock);
d1310b2e
CM
909 if (prealloc)
910 free_extent_state(prealloc);
911
912 return err;
913
914search_again:
915 if (start > end)
916 goto out;
cad321ad 917 spin_unlock(&tree->lock);
d1310b2e
CM
918 if (mask & __GFP_WAIT)
919 cond_resched();
920 goto again;
921}
d1310b2e 922
3fbe5c02
JM
923int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
924 u64 *failed_start, struct extent_state **cached_state,
925 gfp_t mask)
926{
927 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
928 cached_state, mask);
929}
930
931
462d6fac 932/**
10983f2e
LB
933 * convert_extent_bit - convert all bits in a given range from one bit to
934 * another
462d6fac
JB
935 * @tree: the io tree to search
936 * @start: the start offset in bytes
937 * @end: the end offset in bytes (inclusive)
938 * @bits: the bits to set in this range
939 * @clear_bits: the bits to clear in this range
940 * @mask: the allocation mask
941 *
942 * This will go through and set bits for the given range. If any states exist
943 * already in this range they are set with the given bit and cleared of the
944 * clear_bits. This is only meant to be used by things that are mergeable, ie
945 * converting from say DELALLOC to DIRTY. This is not meant to be used with
946 * boundary bits like LOCK.
947 */
948int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
949 int bits, int clear_bits, gfp_t mask)
950{
951 struct extent_state *state;
952 struct extent_state *prealloc = NULL;
953 struct rb_node *node;
954 int err = 0;
955 u64 last_start;
956 u64 last_end;
957
958again:
959 if (!prealloc && (mask & __GFP_WAIT)) {
960 prealloc = alloc_extent_state(mask);
961 if (!prealloc)
962 return -ENOMEM;
963 }
964
965 spin_lock(&tree->lock);
966 /*
967 * this search will find all the extents that end after
968 * our range starts.
969 */
970 node = tree_search(tree, start);
971 if (!node) {
972 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
973 if (!prealloc) {
974 err = -ENOMEM;
975 goto out;
976 }
462d6fac
JB
977 err = insert_state(tree, prealloc, start, end, &bits);
978 prealloc = NULL;
c2d904e0
JM
979 if (err)
980 extent_io_tree_panic(tree, err);
462d6fac
JB
981 goto out;
982 }
983 state = rb_entry(node, struct extent_state, rb_node);
984hit_next:
985 last_start = state->start;
986 last_end = state->end;
987
988 /*
989 * | ---- desired range ---- |
990 * | state |
991 *
992 * Just lock what we found and keep going
993 */
994 if (state->start == start && state->end <= end) {
462d6fac 995 set_state_bits(tree, state, &bits);
d1ac6e41 996 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
997 if (last_end == (u64)-1)
998 goto out;
462d6fac 999 start = last_end + 1;
d1ac6e41
LB
1000 if (start < end && state && state->start == start &&
1001 !need_resched())
1002 goto hit_next;
462d6fac
JB
1003 goto search_again;
1004 }
1005
1006 /*
1007 * | ---- desired range ---- |
1008 * | state |
1009 * or
1010 * | ------------- state -------------- |
1011 *
1012 * We need to split the extent we found, and may flip bits on
1013 * second half.
1014 *
1015 * If the extent we found extends past our
1016 * range, we just split and search again. It'll get split
1017 * again the next time though.
1018 *
1019 * If the extent we found is inside our range, we set the
1020 * desired bit on it.
1021 */
1022 if (state->start < start) {
1023 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1024 if (!prealloc) {
1025 err = -ENOMEM;
1026 goto out;
1027 }
462d6fac 1028 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1029 if (err)
1030 extent_io_tree_panic(tree, err);
462d6fac
JB
1031 prealloc = NULL;
1032 if (err)
1033 goto out;
1034 if (state->end <= end) {
1035 set_state_bits(tree, state, &bits);
d1ac6e41 1036 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1037 if (last_end == (u64)-1)
1038 goto out;
1039 start = last_end + 1;
d1ac6e41
LB
1040 if (start < end && state && state->start == start &&
1041 !need_resched())
1042 goto hit_next;
462d6fac
JB
1043 }
1044 goto search_again;
1045 }
1046 /*
1047 * | ---- desired range ---- |
1048 * | state | or | state |
1049 *
1050 * There's a hole, we need to insert something in it and
1051 * ignore the extent we found.
1052 */
1053 if (state->start > start) {
1054 u64 this_end;
1055 if (end < last_start)
1056 this_end = end;
1057 else
1058 this_end = last_start - 1;
1059
1060 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1061 if (!prealloc) {
1062 err = -ENOMEM;
1063 goto out;
1064 }
462d6fac
JB
1065
1066 /*
1067 * Avoid to free 'prealloc' if it can be merged with
1068 * the later extent.
1069 */
1070 err = insert_state(tree, prealloc, start, this_end,
1071 &bits);
c2d904e0
JM
1072 if (err)
1073 extent_io_tree_panic(tree, err);
462d6fac
JB
1074 prealloc = NULL;
1075 start = this_end + 1;
1076 goto search_again;
1077 }
1078 /*
1079 * | ---- desired range ---- |
1080 * | state |
1081 * We need to split the extent, and set the bit
1082 * on the first half
1083 */
1084 if (state->start <= end && state->end > end) {
1085 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1086 if (!prealloc) {
1087 err = -ENOMEM;
1088 goto out;
1089 }
462d6fac
JB
1090
1091 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1092 if (err)
1093 extent_io_tree_panic(tree, err);
462d6fac
JB
1094
1095 set_state_bits(tree, prealloc, &bits);
1096 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1097 prealloc = NULL;
1098 goto out;
1099 }
1100
1101 goto search_again;
1102
1103out:
1104 spin_unlock(&tree->lock);
1105 if (prealloc)
1106 free_extent_state(prealloc);
1107
1108 return err;
1109
1110search_again:
1111 if (start > end)
1112 goto out;
1113 spin_unlock(&tree->lock);
1114 if (mask & __GFP_WAIT)
1115 cond_resched();
1116 goto again;
1117}
1118
d1310b2e
CM
1119/* wrappers around set/clear extent bit */
1120int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1121 gfp_t mask)
1122{
3fbe5c02 1123 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1124 NULL, mask);
d1310b2e 1125}
d1310b2e
CM
1126
1127int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1128 int bits, gfp_t mask)
1129{
3fbe5c02 1130 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1131 NULL, mask);
d1310b2e 1132}
d1310b2e
CM
1133
1134int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1135 int bits, gfp_t mask)
1136{
2c64c53d 1137 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1138}
d1310b2e
CM
1139
1140int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1141 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1142{
1143 return set_extent_bit(tree, start, end,
fee187d9 1144 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1145 NULL, cached_state, mask);
d1310b2e 1146}
d1310b2e 1147
9e8a4a8b
LB
1148int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1149 struct extent_state **cached_state, gfp_t mask)
1150{
1151 return set_extent_bit(tree, start, end,
1152 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1153 NULL, cached_state, mask);
1154}
1155
d1310b2e
CM
1156int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1157 gfp_t mask)
1158{
1159 return clear_extent_bit(tree, start, end,
32c00aff 1160 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1161 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1162}
d1310b2e
CM
1163
1164int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1165 gfp_t mask)
1166{
3fbe5c02 1167 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1168 NULL, mask);
d1310b2e 1169}
d1310b2e 1170
d1310b2e 1171int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1172 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1173{
507903b8 1174 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
3fbe5c02 1175 cached_state, mask);
d1310b2e 1176}
d1310b2e 1177
5fd02043
JB
1178int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1179 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1180{
2c64c53d 1181 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1182 cached_state, mask);
d1310b2e 1183}
d1310b2e 1184
d352ac68
CM
1185/*
1186 * either insert or lock state struct between start and end use mask to tell
1187 * us if waiting is desired.
1188 */
1edbb734 1189int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1190 int bits, struct extent_state **cached_state)
d1310b2e
CM
1191{
1192 int err;
1193 u64 failed_start;
1194 while (1) {
3fbe5c02
JM
1195 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1196 EXTENT_LOCKED, &failed_start,
1197 cached_state, GFP_NOFS);
d0082371 1198 if (err == -EEXIST) {
d1310b2e
CM
1199 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1200 start = failed_start;
d0082371 1201 } else
d1310b2e 1202 break;
d1310b2e
CM
1203 WARN_ON(start > end);
1204 }
1205 return err;
1206}
d1310b2e 1207
d0082371 1208int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1209{
d0082371 1210 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1211}
1212
d0082371 1213int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1214{
1215 int err;
1216 u64 failed_start;
1217
3fbe5c02
JM
1218 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1219 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1220 if (err == -EEXIST) {
1221 if (failed_start > start)
1222 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1223 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1224 return 0;
6643558d 1225 }
25179201
JB
1226 return 1;
1227}
25179201 1228
2c64c53d
CM
1229int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1230 struct extent_state **cached, gfp_t mask)
1231{
1232 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1233 mask);
1234}
1235
d0082371 1236int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1237{
2c64c53d 1238 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1239 GFP_NOFS);
d1310b2e 1240}
d1310b2e 1241
d1310b2e
CM
1242/*
1243 * helper function to set both pages and extents in the tree writeback
1244 */
b2950863 1245static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1246{
1247 unsigned long index = start >> PAGE_CACHE_SHIFT;
1248 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1249 struct page *page;
1250
1251 while (index <= end_index) {
1252 page = find_get_page(tree->mapping, index);
79787eaa 1253 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1254 set_page_writeback(page);
1255 page_cache_release(page);
1256 index++;
1257 }
d1310b2e
CM
1258 return 0;
1259}
d1310b2e 1260
d352ac68
CM
1261/* find the first state struct with 'bits' set after 'start', and
1262 * return it. tree->lock must be held. NULL will returned if
1263 * nothing was found after 'start'
1264 */
d7fc640e
CM
1265struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1266 u64 start, int bits)
1267{
1268 struct rb_node *node;
1269 struct extent_state *state;
1270
1271 /*
1272 * this search will find all the extents that end after
1273 * our range starts.
1274 */
1275 node = tree_search(tree, start);
d397712b 1276 if (!node)
d7fc640e 1277 goto out;
d7fc640e 1278
d397712b 1279 while (1) {
d7fc640e 1280 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1281 if (state->end >= start && (state->state & bits))
d7fc640e 1282 return state;
d397712b 1283
d7fc640e
CM
1284 node = rb_next(node);
1285 if (!node)
1286 break;
1287 }
1288out:
1289 return NULL;
1290}
d7fc640e 1291
69261c4b
XG
1292/*
1293 * find the first offset in the io tree with 'bits' set. zero is
1294 * returned if we find something, and *start_ret and *end_ret are
1295 * set to reflect the state struct that was found.
1296 *
477d7eaf 1297 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1298 */
1299int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1300 u64 *start_ret, u64 *end_ret, int bits)
1301{
1302 struct extent_state *state;
1303 int ret = 1;
1304
1305 spin_lock(&tree->lock);
1306 state = find_first_extent_bit_state(tree, start, bits);
1307 if (state) {
1308 *start_ret = state->start;
1309 *end_ret = state->end;
1310 ret = 0;
1311 }
1312 spin_unlock(&tree->lock);
1313 return ret;
1314}
1315
d352ac68
CM
1316/*
1317 * find a contiguous range of bytes in the file marked as delalloc, not
1318 * more than 'max_bytes'. start and end are used to return the range,
1319 *
1320 * 1 is returned if we find something, 0 if nothing was in the tree
1321 */
c8b97818 1322static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1323 u64 *start, u64 *end, u64 max_bytes,
1324 struct extent_state **cached_state)
d1310b2e
CM
1325{
1326 struct rb_node *node;
1327 struct extent_state *state;
1328 u64 cur_start = *start;
1329 u64 found = 0;
1330 u64 total_bytes = 0;
1331
cad321ad 1332 spin_lock(&tree->lock);
c8b97818 1333
d1310b2e
CM
1334 /*
1335 * this search will find all the extents that end after
1336 * our range starts.
1337 */
80ea96b1 1338 node = tree_search(tree, cur_start);
2b114d1d 1339 if (!node) {
3b951516
CM
1340 if (!found)
1341 *end = (u64)-1;
d1310b2e
CM
1342 goto out;
1343 }
1344
d397712b 1345 while (1) {
d1310b2e 1346 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1347 if (found && (state->start != cur_start ||
1348 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1349 goto out;
1350 }
1351 if (!(state->state & EXTENT_DELALLOC)) {
1352 if (!found)
1353 *end = state->end;
1354 goto out;
1355 }
c2a128d2 1356 if (!found) {
d1310b2e 1357 *start = state->start;
c2a128d2
JB
1358 *cached_state = state;
1359 atomic_inc(&state->refs);
1360 }
d1310b2e
CM
1361 found++;
1362 *end = state->end;
1363 cur_start = state->end + 1;
1364 node = rb_next(node);
1365 if (!node)
1366 break;
1367 total_bytes += state->end - state->start + 1;
1368 if (total_bytes >= max_bytes)
1369 break;
1370 }
1371out:
cad321ad 1372 spin_unlock(&tree->lock);
d1310b2e
CM
1373 return found;
1374}
1375
143bede5
JM
1376static noinline void __unlock_for_delalloc(struct inode *inode,
1377 struct page *locked_page,
1378 u64 start, u64 end)
c8b97818
CM
1379{
1380 int ret;
1381 struct page *pages[16];
1382 unsigned long index = start >> PAGE_CACHE_SHIFT;
1383 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1384 unsigned long nr_pages = end_index - index + 1;
1385 int i;
1386
1387 if (index == locked_page->index && end_index == index)
143bede5 1388 return;
c8b97818 1389
d397712b 1390 while (nr_pages > 0) {
c8b97818 1391 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1392 min_t(unsigned long, nr_pages,
1393 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1394 for (i = 0; i < ret; i++) {
1395 if (pages[i] != locked_page)
1396 unlock_page(pages[i]);
1397 page_cache_release(pages[i]);
1398 }
1399 nr_pages -= ret;
1400 index += ret;
1401 cond_resched();
1402 }
c8b97818
CM
1403}
1404
1405static noinline int lock_delalloc_pages(struct inode *inode,
1406 struct page *locked_page,
1407 u64 delalloc_start,
1408 u64 delalloc_end)
1409{
1410 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1411 unsigned long start_index = index;
1412 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1413 unsigned long pages_locked = 0;
1414 struct page *pages[16];
1415 unsigned long nrpages;
1416 int ret;
1417 int i;
1418
1419 /* the caller is responsible for locking the start index */
1420 if (index == locked_page->index && index == end_index)
1421 return 0;
1422
1423 /* skip the page at the start index */
1424 nrpages = end_index - index + 1;
d397712b 1425 while (nrpages > 0) {
c8b97818 1426 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1427 min_t(unsigned long,
1428 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1429 if (ret == 0) {
1430 ret = -EAGAIN;
1431 goto done;
1432 }
1433 /* now we have an array of pages, lock them all */
1434 for (i = 0; i < ret; i++) {
1435 /*
1436 * the caller is taking responsibility for
1437 * locked_page
1438 */
771ed689 1439 if (pages[i] != locked_page) {
c8b97818 1440 lock_page(pages[i]);
f2b1c41c
CM
1441 if (!PageDirty(pages[i]) ||
1442 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1443 ret = -EAGAIN;
1444 unlock_page(pages[i]);
1445 page_cache_release(pages[i]);
1446 goto done;
1447 }
1448 }
c8b97818 1449 page_cache_release(pages[i]);
771ed689 1450 pages_locked++;
c8b97818 1451 }
c8b97818
CM
1452 nrpages -= ret;
1453 index += ret;
1454 cond_resched();
1455 }
1456 ret = 0;
1457done:
1458 if (ret && pages_locked) {
1459 __unlock_for_delalloc(inode, locked_page,
1460 delalloc_start,
1461 ((u64)(start_index + pages_locked - 1)) <<
1462 PAGE_CACHE_SHIFT);
1463 }
1464 return ret;
1465}
1466
1467/*
1468 * find a contiguous range of bytes in the file marked as delalloc, not
1469 * more than 'max_bytes'. start and end are used to return the range,
1470 *
1471 * 1 is returned if we find something, 0 if nothing was in the tree
1472 */
1473static noinline u64 find_lock_delalloc_range(struct inode *inode,
1474 struct extent_io_tree *tree,
1475 struct page *locked_page,
1476 u64 *start, u64 *end,
1477 u64 max_bytes)
1478{
1479 u64 delalloc_start;
1480 u64 delalloc_end;
1481 u64 found;
9655d298 1482 struct extent_state *cached_state = NULL;
c8b97818
CM
1483 int ret;
1484 int loops = 0;
1485
1486again:
1487 /* step one, find a bunch of delalloc bytes starting at start */
1488 delalloc_start = *start;
1489 delalloc_end = 0;
1490 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1491 max_bytes, &cached_state);
70b99e69 1492 if (!found || delalloc_end <= *start) {
c8b97818
CM
1493 *start = delalloc_start;
1494 *end = delalloc_end;
c2a128d2 1495 free_extent_state(cached_state);
c8b97818
CM
1496 return found;
1497 }
1498
70b99e69
CM
1499 /*
1500 * start comes from the offset of locked_page. We have to lock
1501 * pages in order, so we can't process delalloc bytes before
1502 * locked_page
1503 */
d397712b 1504 if (delalloc_start < *start)
70b99e69 1505 delalloc_start = *start;
70b99e69 1506
c8b97818
CM
1507 /*
1508 * make sure to limit the number of pages we try to lock down
1509 * if we're looping.
1510 */
d397712b 1511 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1512 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1513
c8b97818
CM
1514 /* step two, lock all the pages after the page that has start */
1515 ret = lock_delalloc_pages(inode, locked_page,
1516 delalloc_start, delalloc_end);
1517 if (ret == -EAGAIN) {
1518 /* some of the pages are gone, lets avoid looping by
1519 * shortening the size of the delalloc range we're searching
1520 */
9655d298 1521 free_extent_state(cached_state);
c8b97818
CM
1522 if (!loops) {
1523 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1524 max_bytes = PAGE_CACHE_SIZE - offset;
1525 loops = 1;
1526 goto again;
1527 } else {
1528 found = 0;
1529 goto out_failed;
1530 }
1531 }
79787eaa 1532 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1533
1534 /* step three, lock the state bits for the whole range */
d0082371 1535 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1536
1537 /* then test to make sure it is all still delalloc */
1538 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1539 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1540 if (!ret) {
9655d298
CM
1541 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1542 &cached_state, GFP_NOFS);
c8b97818
CM
1543 __unlock_for_delalloc(inode, locked_page,
1544 delalloc_start, delalloc_end);
1545 cond_resched();
1546 goto again;
1547 }
9655d298 1548 free_extent_state(cached_state);
c8b97818
CM
1549 *start = delalloc_start;
1550 *end = delalloc_end;
1551out_failed:
1552 return found;
1553}
1554
1555int extent_clear_unlock_delalloc(struct inode *inode,
1556 struct extent_io_tree *tree,
1557 u64 start, u64 end, struct page *locked_page,
a791e35e 1558 unsigned long op)
c8b97818
CM
1559{
1560 int ret;
1561 struct page *pages[16];
1562 unsigned long index = start >> PAGE_CACHE_SHIFT;
1563 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1564 unsigned long nr_pages = end_index - index + 1;
1565 int i;
771ed689 1566 int clear_bits = 0;
c8b97818 1567
a791e35e 1568 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1569 clear_bits |= EXTENT_LOCKED;
a791e35e 1570 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1571 clear_bits |= EXTENT_DIRTY;
1572
a791e35e 1573 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1574 clear_bits |= EXTENT_DELALLOC;
1575
2c64c53d 1576 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1577 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1578 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1579 EXTENT_SET_PRIVATE2)))
771ed689 1580 return 0;
c8b97818 1581
d397712b 1582 while (nr_pages > 0) {
c8b97818 1583 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1584 min_t(unsigned long,
1585 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1586 for (i = 0; i < ret; i++) {
8b62b72b 1587
a791e35e 1588 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1589 SetPagePrivate2(pages[i]);
1590
c8b97818
CM
1591 if (pages[i] == locked_page) {
1592 page_cache_release(pages[i]);
1593 continue;
1594 }
a791e35e 1595 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1596 clear_page_dirty_for_io(pages[i]);
a791e35e 1597 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1598 set_page_writeback(pages[i]);
a791e35e 1599 if (op & EXTENT_END_WRITEBACK)
c8b97818 1600 end_page_writeback(pages[i]);
a791e35e 1601 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1602 unlock_page(pages[i]);
c8b97818
CM
1603 page_cache_release(pages[i]);
1604 }
1605 nr_pages -= ret;
1606 index += ret;
1607 cond_resched();
1608 }
1609 return 0;
1610}
c8b97818 1611
d352ac68
CM
1612/*
1613 * count the number of bytes in the tree that have a given bit(s)
1614 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1615 * cached. The total number found is returned.
1616 */
d1310b2e
CM
1617u64 count_range_bits(struct extent_io_tree *tree,
1618 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1619 unsigned long bits, int contig)
d1310b2e
CM
1620{
1621 struct rb_node *node;
1622 struct extent_state *state;
1623 u64 cur_start = *start;
1624 u64 total_bytes = 0;
ec29ed5b 1625 u64 last = 0;
d1310b2e
CM
1626 int found = 0;
1627
1628 if (search_end <= cur_start) {
d1310b2e
CM
1629 WARN_ON(1);
1630 return 0;
1631 }
1632
cad321ad 1633 spin_lock(&tree->lock);
d1310b2e
CM
1634 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1635 total_bytes = tree->dirty_bytes;
1636 goto out;
1637 }
1638 /*
1639 * this search will find all the extents that end after
1640 * our range starts.
1641 */
80ea96b1 1642 node = tree_search(tree, cur_start);
d397712b 1643 if (!node)
d1310b2e 1644 goto out;
d1310b2e 1645
d397712b 1646 while (1) {
d1310b2e
CM
1647 state = rb_entry(node, struct extent_state, rb_node);
1648 if (state->start > search_end)
1649 break;
ec29ed5b
CM
1650 if (contig && found && state->start > last + 1)
1651 break;
1652 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1653 total_bytes += min(search_end, state->end) + 1 -
1654 max(cur_start, state->start);
1655 if (total_bytes >= max_bytes)
1656 break;
1657 if (!found) {
af60bed2 1658 *start = max(cur_start, state->start);
d1310b2e
CM
1659 found = 1;
1660 }
ec29ed5b
CM
1661 last = state->end;
1662 } else if (contig && found) {
1663 break;
d1310b2e
CM
1664 }
1665 node = rb_next(node);
1666 if (!node)
1667 break;
1668 }
1669out:
cad321ad 1670 spin_unlock(&tree->lock);
d1310b2e
CM
1671 return total_bytes;
1672}
b2950863 1673
d352ac68
CM
1674/*
1675 * set the private field for a given byte offset in the tree. If there isn't
1676 * an extent_state there already, this does nothing.
1677 */
d1310b2e
CM
1678int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1679{
1680 struct rb_node *node;
1681 struct extent_state *state;
1682 int ret = 0;
1683
cad321ad 1684 spin_lock(&tree->lock);
d1310b2e
CM
1685 /*
1686 * this search will find all the extents that end after
1687 * our range starts.
1688 */
80ea96b1 1689 node = tree_search(tree, start);
2b114d1d 1690 if (!node) {
d1310b2e
CM
1691 ret = -ENOENT;
1692 goto out;
1693 }
1694 state = rb_entry(node, struct extent_state, rb_node);
1695 if (state->start != start) {
1696 ret = -ENOENT;
1697 goto out;
1698 }
1699 state->private = private;
1700out:
cad321ad 1701 spin_unlock(&tree->lock);
d1310b2e
CM
1702 return ret;
1703}
1704
1705int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1706{
1707 struct rb_node *node;
1708 struct extent_state *state;
1709 int ret = 0;
1710
cad321ad 1711 spin_lock(&tree->lock);
d1310b2e
CM
1712 /*
1713 * this search will find all the extents that end after
1714 * our range starts.
1715 */
80ea96b1 1716 node = tree_search(tree, start);
2b114d1d 1717 if (!node) {
d1310b2e
CM
1718 ret = -ENOENT;
1719 goto out;
1720 }
1721 state = rb_entry(node, struct extent_state, rb_node);
1722 if (state->start != start) {
1723 ret = -ENOENT;
1724 goto out;
1725 }
1726 *private = state->private;
1727out:
cad321ad 1728 spin_unlock(&tree->lock);
d1310b2e
CM
1729 return ret;
1730}
1731
1732/*
1733 * searches a range in the state tree for a given mask.
70dec807 1734 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1735 * has the bits set. Otherwise, 1 is returned if any bit in the
1736 * range is found set.
1737 */
1738int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1739 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1740{
1741 struct extent_state *state = NULL;
1742 struct rb_node *node;
1743 int bitset = 0;
d1310b2e 1744
cad321ad 1745 spin_lock(&tree->lock);
df98b6e2
JB
1746 if (cached && cached->tree && cached->start <= start &&
1747 cached->end > start)
9655d298
CM
1748 node = &cached->rb_node;
1749 else
1750 node = tree_search(tree, start);
d1310b2e
CM
1751 while (node && start <= end) {
1752 state = rb_entry(node, struct extent_state, rb_node);
1753
1754 if (filled && state->start > start) {
1755 bitset = 0;
1756 break;
1757 }
1758
1759 if (state->start > end)
1760 break;
1761
1762 if (state->state & bits) {
1763 bitset = 1;
1764 if (!filled)
1765 break;
1766 } else if (filled) {
1767 bitset = 0;
1768 break;
1769 }
46562cec
CM
1770
1771 if (state->end == (u64)-1)
1772 break;
1773
d1310b2e
CM
1774 start = state->end + 1;
1775 if (start > end)
1776 break;
1777 node = rb_next(node);
1778 if (!node) {
1779 if (filled)
1780 bitset = 0;
1781 break;
1782 }
1783 }
cad321ad 1784 spin_unlock(&tree->lock);
d1310b2e
CM
1785 return bitset;
1786}
d1310b2e
CM
1787
1788/*
1789 * helper function to set a given page up to date if all the
1790 * extents in the tree for that page are up to date
1791 */
143bede5 1792static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1793{
1794 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1795 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1796 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1797 SetPageUptodate(page);
d1310b2e
CM
1798}
1799
1800/*
1801 * helper function to unlock a page if all the extents in the tree
1802 * for that page are unlocked
1803 */
143bede5 1804static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1805{
1806 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1807 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1808 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1809 unlock_page(page);
d1310b2e
CM
1810}
1811
1812/*
1813 * helper function to end page writeback if all the extents
1814 * in the tree for that page are done with writeback
1815 */
143bede5
JM
1816static void check_page_writeback(struct extent_io_tree *tree,
1817 struct page *page)
d1310b2e 1818{
1edbb734 1819 end_page_writeback(page);
d1310b2e
CM
1820}
1821
4a54c8c1
JS
1822/*
1823 * When IO fails, either with EIO or csum verification fails, we
1824 * try other mirrors that might have a good copy of the data. This
1825 * io_failure_record is used to record state as we go through all the
1826 * mirrors. If another mirror has good data, the page is set up to date
1827 * and things continue. If a good mirror can't be found, the original
1828 * bio end_io callback is called to indicate things have failed.
1829 */
1830struct io_failure_record {
1831 struct page *page;
1832 u64 start;
1833 u64 len;
1834 u64 logical;
1835 unsigned long bio_flags;
1836 int this_mirror;
1837 int failed_mirror;
1838 int in_validation;
1839};
1840
1841static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1842 int did_repair)
1843{
1844 int ret;
1845 int err = 0;
1846 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1847
1848 set_state_private(failure_tree, rec->start, 0);
1849 ret = clear_extent_bits(failure_tree, rec->start,
1850 rec->start + rec->len - 1,
1851 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1852 if (ret)
1853 err = ret;
1854
1855 if (did_repair) {
1856 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1857 rec->start + rec->len - 1,
1858 EXTENT_DAMAGED, GFP_NOFS);
1859 if (ret && !err)
1860 err = ret;
1861 }
1862
1863 kfree(rec);
1864 return err;
1865}
1866
1867static void repair_io_failure_callback(struct bio *bio, int err)
1868{
1869 complete(bio->bi_private);
1870}
1871
1872/*
1873 * this bypasses the standard btrfs submit functions deliberately, as
1874 * the standard behavior is to write all copies in a raid setup. here we only
1875 * want to write the one bad copy. so we do the mapping for ourselves and issue
1876 * submit_bio directly.
1877 * to avoid any synchonization issues, wait for the data after writing, which
1878 * actually prevents the read that triggered the error from finishing.
1879 * currently, there can be no more than two copies of every data bit. thus,
1880 * exactly one rewrite is required.
1881 */
1882int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1883 u64 length, u64 logical, struct page *page,
1884 int mirror_num)
1885{
1886 struct bio *bio;
1887 struct btrfs_device *dev;
1888 DECLARE_COMPLETION_ONSTACK(compl);
1889 u64 map_length = 0;
1890 u64 sector;
1891 struct btrfs_bio *bbio = NULL;
1892 int ret;
1893
1894 BUG_ON(!mirror_num);
1895
1896 bio = bio_alloc(GFP_NOFS, 1);
1897 if (!bio)
1898 return -EIO;
1899 bio->bi_private = &compl;
1900 bio->bi_end_io = repair_io_failure_callback;
1901 bio->bi_size = 0;
1902 map_length = length;
1903
1904 ret = btrfs_map_block(map_tree, WRITE, logical,
1905 &map_length, &bbio, mirror_num);
1906 if (ret) {
1907 bio_put(bio);
1908 return -EIO;
1909 }
1910 BUG_ON(mirror_num != bbio->mirror_num);
1911 sector = bbio->stripes[mirror_num-1].physical >> 9;
1912 bio->bi_sector = sector;
1913 dev = bbio->stripes[mirror_num-1].dev;
1914 kfree(bbio);
1915 if (!dev || !dev->bdev || !dev->writeable) {
1916 bio_put(bio);
1917 return -EIO;
1918 }
1919 bio->bi_bdev = dev->bdev;
1920 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1921 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1922 wait_for_completion(&compl);
1923
1924 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1925 /* try to remap that extent elsewhere? */
1926 bio_put(bio);
442a4f63 1927 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
1928 return -EIO;
1929 }
1930
d5b025d5 1931 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
1932 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1933 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
1934
1935 bio_put(bio);
1936 return 0;
1937}
1938
ea466794
JB
1939int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1940 int mirror_num)
1941{
1942 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1943 u64 start = eb->start;
1944 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 1945 int ret = 0;
ea466794
JB
1946
1947 for (i = 0; i < num_pages; i++) {
1948 struct page *p = extent_buffer_page(eb, i);
1949 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1950 start, p, mirror_num);
1951 if (ret)
1952 break;
1953 start += PAGE_CACHE_SIZE;
1954 }
1955
1956 return ret;
1957}
1958
4a54c8c1
JS
1959/*
1960 * each time an IO finishes, we do a fast check in the IO failure tree
1961 * to see if we need to process or clean up an io_failure_record
1962 */
1963static int clean_io_failure(u64 start, struct page *page)
1964{
1965 u64 private;
1966 u64 private_failure;
1967 struct io_failure_record *failrec;
1968 struct btrfs_mapping_tree *map_tree;
1969 struct extent_state *state;
1970 int num_copies;
1971 int did_repair = 0;
1972 int ret;
1973 struct inode *inode = page->mapping->host;
1974
1975 private = 0;
1976 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1977 (u64)-1, 1, EXTENT_DIRTY, 0);
1978 if (!ret)
1979 return 0;
1980
1981 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1982 &private_failure);
1983 if (ret)
1984 return 0;
1985
1986 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1987 BUG_ON(!failrec->this_mirror);
1988
1989 if (failrec->in_validation) {
1990 /* there was no real error, just free the record */
1991 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1992 failrec->start);
1993 did_repair = 1;
1994 goto out;
1995 }
1996
1997 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1998 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1999 failrec->start,
2000 EXTENT_LOCKED);
2001 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2002
2003 if (state && state->start == failrec->start) {
2004 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2005 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2006 failrec->len);
2007 if (num_copies > 1) {
2008 ret = repair_io_failure(map_tree, start, failrec->len,
2009 failrec->logical, page,
2010 failrec->failed_mirror);
2011 did_repair = !ret;
2012 }
2013 }
2014
2015out:
2016 if (!ret)
2017 ret = free_io_failure(inode, failrec, did_repair);
2018
2019 return ret;
2020}
2021
2022/*
2023 * this is a generic handler for readpage errors (default
2024 * readpage_io_failed_hook). if other copies exist, read those and write back
2025 * good data to the failed position. does not investigate in remapping the
2026 * failed extent elsewhere, hoping the device will be smart enough to do this as
2027 * needed
2028 */
2029
2030static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2031 u64 start, u64 end, int failed_mirror,
2032 struct extent_state *state)
2033{
2034 struct io_failure_record *failrec = NULL;
2035 u64 private;
2036 struct extent_map *em;
2037 struct inode *inode = page->mapping->host;
2038 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2039 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2040 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2041 struct bio *bio;
2042 int num_copies;
2043 int ret;
2044 int read_mode;
2045 u64 logical;
2046
2047 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2048
2049 ret = get_state_private(failure_tree, start, &private);
2050 if (ret) {
2051 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2052 if (!failrec)
2053 return -ENOMEM;
2054 failrec->start = start;
2055 failrec->len = end - start + 1;
2056 failrec->this_mirror = 0;
2057 failrec->bio_flags = 0;
2058 failrec->in_validation = 0;
2059
2060 read_lock(&em_tree->lock);
2061 em = lookup_extent_mapping(em_tree, start, failrec->len);
2062 if (!em) {
2063 read_unlock(&em_tree->lock);
2064 kfree(failrec);
2065 return -EIO;
2066 }
2067
2068 if (em->start > start || em->start + em->len < start) {
2069 free_extent_map(em);
2070 em = NULL;
2071 }
2072 read_unlock(&em_tree->lock);
2073
2074 if (!em || IS_ERR(em)) {
2075 kfree(failrec);
2076 return -EIO;
2077 }
2078 logical = start - em->start;
2079 logical = em->block_start + logical;
2080 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2081 logical = em->block_start;
2082 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2083 extent_set_compress_type(&failrec->bio_flags,
2084 em->compress_type);
2085 }
2086 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2087 "len=%llu\n", logical, start, failrec->len);
2088 failrec->logical = logical;
2089 free_extent_map(em);
2090
2091 /* set the bits in the private failure tree */
2092 ret = set_extent_bits(failure_tree, start, end,
2093 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2094 if (ret >= 0)
2095 ret = set_state_private(failure_tree, start,
2096 (u64)(unsigned long)failrec);
2097 /* set the bits in the inode's tree */
2098 if (ret >= 0)
2099 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2100 GFP_NOFS);
2101 if (ret < 0) {
2102 kfree(failrec);
2103 return ret;
2104 }
2105 } else {
2106 failrec = (struct io_failure_record *)(unsigned long)private;
2107 pr_debug("bio_readpage_error: (found) logical=%llu, "
2108 "start=%llu, len=%llu, validation=%d\n",
2109 failrec->logical, failrec->start, failrec->len,
2110 failrec->in_validation);
2111 /*
2112 * when data can be on disk more than twice, add to failrec here
2113 * (e.g. with a list for failed_mirror) to make
2114 * clean_io_failure() clean all those errors at once.
2115 */
2116 }
2117 num_copies = btrfs_num_copies(
2118 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2119 failrec->logical, failrec->len);
2120 if (num_copies == 1) {
2121 /*
2122 * we only have a single copy of the data, so don't bother with
2123 * all the retry and error correction code that follows. no
2124 * matter what the error is, it is very likely to persist.
2125 */
2126 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2127 "state=%p, num_copies=%d, next_mirror %d, "
2128 "failed_mirror %d\n", state, num_copies,
2129 failrec->this_mirror, failed_mirror);
2130 free_io_failure(inode, failrec, 0);
2131 return -EIO;
2132 }
2133
2134 if (!state) {
2135 spin_lock(&tree->lock);
2136 state = find_first_extent_bit_state(tree, failrec->start,
2137 EXTENT_LOCKED);
2138 if (state && state->start != failrec->start)
2139 state = NULL;
2140 spin_unlock(&tree->lock);
2141 }
2142
2143 /*
2144 * there are two premises:
2145 * a) deliver good data to the caller
2146 * b) correct the bad sectors on disk
2147 */
2148 if (failed_bio->bi_vcnt > 1) {
2149 /*
2150 * to fulfill b), we need to know the exact failing sectors, as
2151 * we don't want to rewrite any more than the failed ones. thus,
2152 * we need separate read requests for the failed bio
2153 *
2154 * if the following BUG_ON triggers, our validation request got
2155 * merged. we need separate requests for our algorithm to work.
2156 */
2157 BUG_ON(failrec->in_validation);
2158 failrec->in_validation = 1;
2159 failrec->this_mirror = failed_mirror;
2160 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2161 } else {
2162 /*
2163 * we're ready to fulfill a) and b) alongside. get a good copy
2164 * of the failed sector and if we succeed, we have setup
2165 * everything for repair_io_failure to do the rest for us.
2166 */
2167 if (failrec->in_validation) {
2168 BUG_ON(failrec->this_mirror != failed_mirror);
2169 failrec->in_validation = 0;
2170 failrec->this_mirror = 0;
2171 }
2172 failrec->failed_mirror = failed_mirror;
2173 failrec->this_mirror++;
2174 if (failrec->this_mirror == failed_mirror)
2175 failrec->this_mirror++;
2176 read_mode = READ_SYNC;
2177 }
2178
2179 if (!state || failrec->this_mirror > num_copies) {
2180 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2181 "next_mirror %d, failed_mirror %d\n", state,
2182 num_copies, failrec->this_mirror, failed_mirror);
2183 free_io_failure(inode, failrec, 0);
2184 return -EIO;
2185 }
2186
2187 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2188 if (!bio) {
2189 free_io_failure(inode, failrec, 0);
2190 return -EIO;
2191 }
4a54c8c1
JS
2192 bio->bi_private = state;
2193 bio->bi_end_io = failed_bio->bi_end_io;
2194 bio->bi_sector = failrec->logical >> 9;
2195 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2196 bio->bi_size = 0;
2197
2198 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2199
2200 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2201 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2202 failrec->this_mirror, num_copies, failrec->in_validation);
2203
013bd4c3
TI
2204 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2205 failrec->this_mirror,
2206 failrec->bio_flags, 0);
2207 return ret;
4a54c8c1
JS
2208}
2209
d1310b2e
CM
2210/* lots and lots of room for performance fixes in the end_bio funcs */
2211
87826df0
JM
2212int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2213{
2214 int uptodate = (err == 0);
2215 struct extent_io_tree *tree;
2216 int ret;
2217
2218 tree = &BTRFS_I(page->mapping->host)->io_tree;
2219
2220 if (tree->ops && tree->ops->writepage_end_io_hook) {
2221 ret = tree->ops->writepage_end_io_hook(page, start,
2222 end, NULL, uptodate);
2223 if (ret)
2224 uptodate = 0;
2225 }
2226
87826df0 2227 if (!uptodate) {
87826df0
JM
2228 ClearPageUptodate(page);
2229 SetPageError(page);
2230 }
2231 return 0;
2232}
2233
d1310b2e
CM
2234/*
2235 * after a writepage IO is done, we need to:
2236 * clear the uptodate bits on error
2237 * clear the writeback bits in the extent tree for this IO
2238 * end_page_writeback if the page has no more pending IO
2239 *
2240 * Scheduling is not allowed, so the extent state tree is expected
2241 * to have one and only one object corresponding to this IO.
2242 */
d1310b2e 2243static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2244{
d1310b2e 2245 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2246 struct extent_io_tree *tree;
d1310b2e
CM
2247 u64 start;
2248 u64 end;
2249 int whole_page;
2250
d1310b2e
CM
2251 do {
2252 struct page *page = bvec->bv_page;
902b22f3
DW
2253 tree = &BTRFS_I(page->mapping->host)->io_tree;
2254
d1310b2e
CM
2255 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2256 bvec->bv_offset;
2257 end = start + bvec->bv_len - 1;
2258
2259 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2260 whole_page = 1;
2261 else
2262 whole_page = 0;
2263
2264 if (--bvec >= bio->bi_io_vec)
2265 prefetchw(&bvec->bv_page->flags);
1259ab75 2266
87826df0
JM
2267 if (end_extent_writepage(page, err, start, end))
2268 continue;
70dec807 2269
d1310b2e
CM
2270 if (whole_page)
2271 end_page_writeback(page);
2272 else
2273 check_page_writeback(tree, page);
d1310b2e 2274 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2275
d1310b2e 2276 bio_put(bio);
d1310b2e
CM
2277}
2278
2279/*
2280 * after a readpage IO is done, we need to:
2281 * clear the uptodate bits on error
2282 * set the uptodate bits if things worked
2283 * set the page up to date if all extents in the tree are uptodate
2284 * clear the lock bit in the extent tree
2285 * unlock the page if there are no other extents locked for it
2286 *
2287 * Scheduling is not allowed, so the extent state tree is expected
2288 * to have one and only one object corresponding to this IO.
2289 */
d1310b2e 2290static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2291{
2292 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2293 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2294 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2295 struct extent_io_tree *tree;
d1310b2e
CM
2296 u64 start;
2297 u64 end;
2298 int whole_page;
5cf1ab56 2299 int mirror;
d1310b2e
CM
2300 int ret;
2301
d20f7043
CM
2302 if (err)
2303 uptodate = 0;
2304
d1310b2e
CM
2305 do {
2306 struct page *page = bvec->bv_page;
507903b8
AJ
2307 struct extent_state *cached = NULL;
2308 struct extent_state *state;
2309
be3940c0
KO
2310 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2311 "mirror=%ld\n", (u64)bio->bi_sector, err,
4a54c8c1 2312 (long int)bio->bi_bdev);
902b22f3
DW
2313 tree = &BTRFS_I(page->mapping->host)->io_tree;
2314
d1310b2e
CM
2315 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2316 bvec->bv_offset;
2317 end = start + bvec->bv_len - 1;
2318
2319 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2320 whole_page = 1;
2321 else
2322 whole_page = 0;
2323
4125bf76 2324 if (++bvec <= bvec_end)
d1310b2e
CM
2325 prefetchw(&bvec->bv_page->flags);
2326
507903b8 2327 spin_lock(&tree->lock);
0d399205 2328 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2329 if (state && state->start == start) {
507903b8
AJ
2330 /*
2331 * take a reference on the state, unlock will drop
2332 * the ref
2333 */
2334 cache_state(state, &cached);
2335 }
2336 spin_unlock(&tree->lock);
2337
5cf1ab56 2338 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2339 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2340 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2341 state, mirror);
5ee0844d 2342 if (ret)
d1310b2e 2343 uptodate = 0;
5ee0844d 2344 else
4a54c8c1 2345 clean_io_failure(start, page);
d1310b2e 2346 }
ea466794 2347
ea466794 2348 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2349 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2350 if (!ret && !err &&
2351 test_bit(BIO_UPTODATE, &bio->bi_flags))
2352 uptodate = 1;
2353 } else if (!uptodate) {
f4a8e656
JS
2354 /*
2355 * The generic bio_readpage_error handles errors the
2356 * following way: If possible, new read requests are
2357 * created and submitted and will end up in
2358 * end_bio_extent_readpage as well (if we're lucky, not
2359 * in the !uptodate case). In that case it returns 0 and
2360 * we just go on with the next page in our bio. If it
2361 * can't handle the error it will return -EIO and we
2362 * remain responsible for that page.
2363 */
5cf1ab56 2364 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2365 if (ret == 0) {
3b951516
CM
2366 uptodate =
2367 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2368 if (err)
2369 uptodate = 0;
507903b8 2370 uncache_state(&cached);
7e38326f
CM
2371 continue;
2372 }
2373 }
d1310b2e 2374
0b32f4bb 2375 if (uptodate && tree->track_uptodate) {
507903b8 2376 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2377 GFP_ATOMIC);
771ed689 2378 }
507903b8 2379 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2380
70dec807
CM
2381 if (whole_page) {
2382 if (uptodate) {
2383 SetPageUptodate(page);
2384 } else {
2385 ClearPageUptodate(page);
2386 SetPageError(page);
2387 }
d1310b2e 2388 unlock_page(page);
70dec807
CM
2389 } else {
2390 if (uptodate) {
2391 check_page_uptodate(tree, page);
2392 } else {
2393 ClearPageUptodate(page);
2394 SetPageError(page);
2395 }
d1310b2e 2396 check_page_locked(tree, page);
70dec807 2397 }
4125bf76 2398 } while (bvec <= bvec_end);
d1310b2e
CM
2399
2400 bio_put(bio);
d1310b2e
CM
2401}
2402
88f794ed
MX
2403struct bio *
2404btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2405 gfp_t gfp_flags)
d1310b2e
CM
2406{
2407 struct bio *bio;
2408
2409 bio = bio_alloc(gfp_flags, nr_vecs);
2410
2411 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2412 while (!bio && (nr_vecs /= 2))
2413 bio = bio_alloc(gfp_flags, nr_vecs);
2414 }
2415
2416 if (bio) {
e1c4b745 2417 bio->bi_size = 0;
d1310b2e
CM
2418 bio->bi_bdev = bdev;
2419 bio->bi_sector = first_sector;
2420 }
2421 return bio;
2422}
2423
79787eaa
JM
2424/*
2425 * Since writes are async, they will only return -ENOMEM.
2426 * Reads can return the full range of I/O error conditions.
2427 */
355808c2
JM
2428static int __must_check submit_one_bio(int rw, struct bio *bio,
2429 int mirror_num, unsigned long bio_flags)
d1310b2e 2430{
d1310b2e 2431 int ret = 0;
70dec807
CM
2432 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2433 struct page *page = bvec->bv_page;
2434 struct extent_io_tree *tree = bio->bi_private;
70dec807 2435 u64 start;
70dec807
CM
2436
2437 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2438
902b22f3 2439 bio->bi_private = NULL;
d1310b2e
CM
2440
2441 bio_get(bio);
2442
065631f6 2443 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2444 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2445 mirror_num, bio_flags, start);
0b86a832 2446 else
21adbd5c 2447 btrfsic_submit_bio(rw, bio);
4a54c8c1 2448
d1310b2e
CM
2449 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2450 ret = -EOPNOTSUPP;
2451 bio_put(bio);
2452 return ret;
2453}
2454
3444a972
JM
2455static int merge_bio(struct extent_io_tree *tree, struct page *page,
2456 unsigned long offset, size_t size, struct bio *bio,
2457 unsigned long bio_flags)
2458{
2459 int ret = 0;
2460 if (tree->ops && tree->ops->merge_bio_hook)
2461 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2462 bio_flags);
2463 BUG_ON(ret < 0);
2464 return ret;
2465
2466}
2467
d1310b2e
CM
2468static int submit_extent_page(int rw, struct extent_io_tree *tree,
2469 struct page *page, sector_t sector,
2470 size_t size, unsigned long offset,
2471 struct block_device *bdev,
2472 struct bio **bio_ret,
2473 unsigned long max_pages,
f188591e 2474 bio_end_io_t end_io_func,
c8b97818
CM
2475 int mirror_num,
2476 unsigned long prev_bio_flags,
2477 unsigned long bio_flags)
d1310b2e
CM
2478{
2479 int ret = 0;
2480 struct bio *bio;
2481 int nr;
c8b97818
CM
2482 int contig = 0;
2483 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2484 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2485 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2486
2487 if (bio_ret && *bio_ret) {
2488 bio = *bio_ret;
c8b97818
CM
2489 if (old_compressed)
2490 contig = bio->bi_sector == sector;
2491 else
2492 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2493 sector;
2494
2495 if (prev_bio_flags != bio_flags || !contig ||
3444a972 2496 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2497 bio_add_page(bio, page, page_size, offset) < page_size) {
2498 ret = submit_one_bio(rw, bio, mirror_num,
2499 prev_bio_flags);
79787eaa
JM
2500 if (ret < 0)
2501 return ret;
d1310b2e
CM
2502 bio = NULL;
2503 } else {
2504 return 0;
2505 }
2506 }
c8b97818
CM
2507 if (this_compressed)
2508 nr = BIO_MAX_PAGES;
2509 else
2510 nr = bio_get_nr_vecs(bdev);
2511
88f794ed 2512 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2513 if (!bio)
2514 return -ENOMEM;
70dec807 2515
c8b97818 2516 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2517 bio->bi_end_io = end_io_func;
2518 bio->bi_private = tree;
70dec807 2519
d397712b 2520 if (bio_ret)
d1310b2e 2521 *bio_ret = bio;
d397712b 2522 else
c8b97818 2523 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2524
2525 return ret;
2526}
2527
4f2de97a 2528void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2529{
2530 if (!PagePrivate(page)) {
2531 SetPagePrivate(page);
d1310b2e 2532 page_cache_get(page);
4f2de97a
JB
2533 set_page_private(page, (unsigned long)eb);
2534 } else {
2535 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2536 }
2537}
2538
4f2de97a 2539void set_page_extent_mapped(struct page *page)
d1310b2e 2540{
4f2de97a
JB
2541 if (!PagePrivate(page)) {
2542 SetPagePrivate(page);
2543 page_cache_get(page);
2544 set_page_private(page, EXTENT_PAGE_PRIVATE);
2545 }
d1310b2e
CM
2546}
2547
2548/*
2549 * basic readpage implementation. Locked extent state structs are inserted
2550 * into the tree that are removed when the IO is done (by the end_io
2551 * handlers)
79787eaa 2552 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2553 */
2554static int __extent_read_full_page(struct extent_io_tree *tree,
2555 struct page *page,
2556 get_extent_t *get_extent,
c8b97818
CM
2557 struct bio **bio, int mirror_num,
2558 unsigned long *bio_flags)
d1310b2e
CM
2559{
2560 struct inode *inode = page->mapping->host;
2561 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2562 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2563 u64 end;
2564 u64 cur = start;
2565 u64 extent_offset;
2566 u64 last_byte = i_size_read(inode);
2567 u64 block_start;
2568 u64 cur_end;
2569 sector_t sector;
2570 struct extent_map *em;
2571 struct block_device *bdev;
11c65dcc 2572 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2573 int ret;
2574 int nr = 0;
306e16ce 2575 size_t pg_offset = 0;
d1310b2e 2576 size_t iosize;
c8b97818 2577 size_t disk_io_size;
d1310b2e 2578 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2579 unsigned long this_bio_flag = 0;
d1310b2e
CM
2580
2581 set_page_extent_mapped(page);
2582
90a887c9
DM
2583 if (!PageUptodate(page)) {
2584 if (cleancache_get_page(page) == 0) {
2585 BUG_ON(blocksize != PAGE_SIZE);
2586 goto out;
2587 }
2588 }
2589
d1310b2e 2590 end = page_end;
11c65dcc 2591 while (1) {
d0082371 2592 lock_extent(tree, start, end);
11c65dcc
JB
2593 ordered = btrfs_lookup_ordered_extent(inode, start);
2594 if (!ordered)
2595 break;
d0082371 2596 unlock_extent(tree, start, end);
11c65dcc
JB
2597 btrfs_start_ordered_extent(inode, ordered, 1);
2598 btrfs_put_ordered_extent(ordered);
2599 }
d1310b2e 2600
c8b97818
CM
2601 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2602 char *userpage;
2603 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2604
2605 if (zero_offset) {
2606 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2607 userpage = kmap_atomic(page);
c8b97818
CM
2608 memset(userpage + zero_offset, 0, iosize);
2609 flush_dcache_page(page);
7ac687d9 2610 kunmap_atomic(userpage);
c8b97818
CM
2611 }
2612 }
d1310b2e
CM
2613 while (cur <= end) {
2614 if (cur >= last_byte) {
2615 char *userpage;
507903b8
AJ
2616 struct extent_state *cached = NULL;
2617
306e16ce 2618 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2619 userpage = kmap_atomic(page);
306e16ce 2620 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2621 flush_dcache_page(page);
7ac687d9 2622 kunmap_atomic(userpage);
d1310b2e 2623 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2624 &cached, GFP_NOFS);
2625 unlock_extent_cached(tree, cur, cur + iosize - 1,
2626 &cached, GFP_NOFS);
d1310b2e
CM
2627 break;
2628 }
306e16ce 2629 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2630 end - cur + 1, 0);
c704005d 2631 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2632 SetPageError(page);
d0082371 2633 unlock_extent(tree, cur, end);
d1310b2e
CM
2634 break;
2635 }
d1310b2e
CM
2636 extent_offset = cur - em->start;
2637 BUG_ON(extent_map_end(em) <= cur);
2638 BUG_ON(end < cur);
2639
261507a0 2640 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2641 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2642 extent_set_compress_type(&this_bio_flag,
2643 em->compress_type);
2644 }
c8b97818 2645
d1310b2e
CM
2646 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2647 cur_end = min(extent_map_end(em) - 1, end);
2648 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2649 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2650 disk_io_size = em->block_len;
2651 sector = em->block_start >> 9;
2652 } else {
2653 sector = (em->block_start + extent_offset) >> 9;
2654 disk_io_size = iosize;
2655 }
d1310b2e
CM
2656 bdev = em->bdev;
2657 block_start = em->block_start;
d899e052
YZ
2658 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2659 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2660 free_extent_map(em);
2661 em = NULL;
2662
2663 /* we've found a hole, just zero and go on */
2664 if (block_start == EXTENT_MAP_HOLE) {
2665 char *userpage;
507903b8
AJ
2666 struct extent_state *cached = NULL;
2667
7ac687d9 2668 userpage = kmap_atomic(page);
306e16ce 2669 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2670 flush_dcache_page(page);
7ac687d9 2671 kunmap_atomic(userpage);
d1310b2e
CM
2672
2673 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2674 &cached, GFP_NOFS);
2675 unlock_extent_cached(tree, cur, cur + iosize - 1,
2676 &cached, GFP_NOFS);
d1310b2e 2677 cur = cur + iosize;
306e16ce 2678 pg_offset += iosize;
d1310b2e
CM
2679 continue;
2680 }
2681 /* the get_extent function already copied into the page */
9655d298
CM
2682 if (test_range_bit(tree, cur, cur_end,
2683 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2684 check_page_uptodate(tree, page);
d0082371 2685 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2686 cur = cur + iosize;
306e16ce 2687 pg_offset += iosize;
d1310b2e
CM
2688 continue;
2689 }
70dec807
CM
2690 /* we have an inline extent but it didn't get marked up
2691 * to date. Error out
2692 */
2693 if (block_start == EXTENT_MAP_INLINE) {
2694 SetPageError(page);
d0082371 2695 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2696 cur = cur + iosize;
306e16ce 2697 pg_offset += iosize;
70dec807
CM
2698 continue;
2699 }
d1310b2e
CM
2700
2701 ret = 0;
2702 if (tree->ops && tree->ops->readpage_io_hook) {
2703 ret = tree->ops->readpage_io_hook(page, cur,
2704 cur + iosize - 1);
2705 }
2706 if (!ret) {
89642229
CM
2707 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2708 pnr -= page->index;
d1310b2e 2709 ret = submit_extent_page(READ, tree, page,
306e16ce 2710 sector, disk_io_size, pg_offset,
89642229 2711 bdev, bio, pnr,
c8b97818
CM
2712 end_bio_extent_readpage, mirror_num,
2713 *bio_flags,
2714 this_bio_flag);
79787eaa 2715 BUG_ON(ret == -ENOMEM);
89642229 2716 nr++;
c8b97818 2717 *bio_flags = this_bio_flag;
d1310b2e
CM
2718 }
2719 if (ret)
2720 SetPageError(page);
2721 cur = cur + iosize;
306e16ce 2722 pg_offset += iosize;
d1310b2e 2723 }
90a887c9 2724out:
d1310b2e
CM
2725 if (!nr) {
2726 if (!PageError(page))
2727 SetPageUptodate(page);
2728 unlock_page(page);
2729 }
2730 return 0;
2731}
2732
2733int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2734 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2735{
2736 struct bio *bio = NULL;
c8b97818 2737 unsigned long bio_flags = 0;
d1310b2e
CM
2738 int ret;
2739
8ddc7d9c 2740 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2741 &bio_flags);
d1310b2e 2742 if (bio)
8ddc7d9c 2743 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2744 return ret;
2745}
d1310b2e 2746
11c8349b
CM
2747static noinline void update_nr_written(struct page *page,
2748 struct writeback_control *wbc,
2749 unsigned long nr_written)
2750{
2751 wbc->nr_to_write -= nr_written;
2752 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2753 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2754 page->mapping->writeback_index = page->index + nr_written;
2755}
2756
d1310b2e
CM
2757/*
2758 * the writepage semantics are similar to regular writepage. extent
2759 * records are inserted to lock ranges in the tree, and as dirty areas
2760 * are found, they are marked writeback. Then the lock bits are removed
2761 * and the end_io handler clears the writeback ranges
2762 */
2763static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2764 void *data)
2765{
2766 struct inode *inode = page->mapping->host;
2767 struct extent_page_data *epd = data;
2768 struct extent_io_tree *tree = epd->tree;
2769 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2770 u64 delalloc_start;
2771 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2772 u64 end;
2773 u64 cur = start;
2774 u64 extent_offset;
2775 u64 last_byte = i_size_read(inode);
2776 u64 block_start;
2777 u64 iosize;
2778 sector_t sector;
2c64c53d 2779 struct extent_state *cached_state = NULL;
d1310b2e
CM
2780 struct extent_map *em;
2781 struct block_device *bdev;
2782 int ret;
2783 int nr = 0;
7f3c74fb 2784 size_t pg_offset = 0;
d1310b2e
CM
2785 size_t blocksize;
2786 loff_t i_size = i_size_read(inode);
2787 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2788 u64 nr_delalloc;
2789 u64 delalloc_end;
c8b97818
CM
2790 int page_started;
2791 int compressed;
ffbd517d 2792 int write_flags;
771ed689 2793 unsigned long nr_written = 0;
9e487107 2794 bool fill_delalloc = true;
d1310b2e 2795
ffbd517d 2796 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2797 write_flags = WRITE_SYNC;
ffbd517d
CM
2798 else
2799 write_flags = WRITE;
2800
1abe9b8a 2801 trace___extent_writepage(page, inode, wbc);
2802
d1310b2e 2803 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2804
2805 ClearPageError(page);
2806
7f3c74fb 2807 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2808 if (page->index > end_index ||
7f3c74fb 2809 (page->index == end_index && !pg_offset)) {
39be25cd 2810 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2811 unlock_page(page);
2812 return 0;
2813 }
2814
2815 if (page->index == end_index) {
2816 char *userpage;
2817
7ac687d9 2818 userpage = kmap_atomic(page);
7f3c74fb
CM
2819 memset(userpage + pg_offset, 0,
2820 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2821 kunmap_atomic(userpage);
211c17f5 2822 flush_dcache_page(page);
d1310b2e 2823 }
7f3c74fb 2824 pg_offset = 0;
d1310b2e
CM
2825
2826 set_page_extent_mapped(page);
2827
9e487107
JB
2828 if (!tree->ops || !tree->ops->fill_delalloc)
2829 fill_delalloc = false;
2830
d1310b2e
CM
2831 delalloc_start = start;
2832 delalloc_end = 0;
c8b97818 2833 page_started = 0;
9e487107 2834 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2835 u64 delalloc_to_write = 0;
11c8349b
CM
2836 /*
2837 * make sure the wbc mapping index is at least updated
2838 * to this page.
2839 */
2840 update_nr_written(page, wbc, 0);
2841
d397712b 2842 while (delalloc_end < page_end) {
771ed689 2843 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2844 page,
2845 &delalloc_start,
d1310b2e
CM
2846 &delalloc_end,
2847 128 * 1024 * 1024);
771ed689
CM
2848 if (nr_delalloc == 0) {
2849 delalloc_start = delalloc_end + 1;
2850 continue;
2851 }
013bd4c3
TI
2852 ret = tree->ops->fill_delalloc(inode, page,
2853 delalloc_start,
2854 delalloc_end,
2855 &page_started,
2856 &nr_written);
79787eaa
JM
2857 /* File system has been set read-only */
2858 if (ret) {
2859 SetPageError(page);
2860 goto done;
2861 }
f85d7d6c
CM
2862 /*
2863 * delalloc_end is already one less than the total
2864 * length, so we don't subtract one from
2865 * PAGE_CACHE_SIZE
2866 */
2867 delalloc_to_write += (delalloc_end - delalloc_start +
2868 PAGE_CACHE_SIZE) >>
2869 PAGE_CACHE_SHIFT;
d1310b2e 2870 delalloc_start = delalloc_end + 1;
d1310b2e 2871 }
f85d7d6c
CM
2872 if (wbc->nr_to_write < delalloc_to_write) {
2873 int thresh = 8192;
2874
2875 if (delalloc_to_write < thresh * 2)
2876 thresh = delalloc_to_write;
2877 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2878 thresh);
2879 }
c8b97818 2880
771ed689
CM
2881 /* did the fill delalloc function already unlock and start
2882 * the IO?
2883 */
2884 if (page_started) {
2885 ret = 0;
11c8349b
CM
2886 /*
2887 * we've unlocked the page, so we can't update
2888 * the mapping's writeback index, just update
2889 * nr_to_write.
2890 */
2891 wbc->nr_to_write -= nr_written;
2892 goto done_unlocked;
771ed689 2893 }
c8b97818 2894 }
247e743c 2895 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2896 ret = tree->ops->writepage_start_hook(page, start,
2897 page_end);
87826df0
JM
2898 if (ret) {
2899 /* Fixup worker will requeue */
2900 if (ret == -EBUSY)
2901 wbc->pages_skipped++;
2902 else
2903 redirty_page_for_writepage(wbc, page);
11c8349b 2904 update_nr_written(page, wbc, nr_written);
247e743c 2905 unlock_page(page);
771ed689 2906 ret = 0;
11c8349b 2907 goto done_unlocked;
247e743c
CM
2908 }
2909 }
2910
11c8349b
CM
2911 /*
2912 * we don't want to touch the inode after unlocking the page,
2913 * so we update the mapping writeback index now
2914 */
2915 update_nr_written(page, wbc, nr_written + 1);
771ed689 2916
d1310b2e 2917 end = page_end;
d1310b2e 2918 if (last_byte <= start) {
e6dcd2dc
CM
2919 if (tree->ops && tree->ops->writepage_end_io_hook)
2920 tree->ops->writepage_end_io_hook(page, start,
2921 page_end, NULL, 1);
d1310b2e
CM
2922 goto done;
2923 }
2924
d1310b2e
CM
2925 blocksize = inode->i_sb->s_blocksize;
2926
2927 while (cur <= end) {
2928 if (cur >= last_byte) {
e6dcd2dc
CM
2929 if (tree->ops && tree->ops->writepage_end_io_hook)
2930 tree->ops->writepage_end_io_hook(page, cur,
2931 page_end, NULL, 1);
d1310b2e
CM
2932 break;
2933 }
7f3c74fb 2934 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2935 end - cur + 1, 1);
c704005d 2936 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2937 SetPageError(page);
2938 break;
2939 }
2940
2941 extent_offset = cur - em->start;
2942 BUG_ON(extent_map_end(em) <= cur);
2943 BUG_ON(end < cur);
2944 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2945 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2946 sector = (em->block_start + extent_offset) >> 9;
2947 bdev = em->bdev;
2948 block_start = em->block_start;
c8b97818 2949 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2950 free_extent_map(em);
2951 em = NULL;
2952
c8b97818
CM
2953 /*
2954 * compressed and inline extents are written through other
2955 * paths in the FS
2956 */
2957 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2958 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2959 /*
2960 * end_io notification does not happen here for
2961 * compressed extents
2962 */
2963 if (!compressed && tree->ops &&
2964 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2965 tree->ops->writepage_end_io_hook(page, cur,
2966 cur + iosize - 1,
2967 NULL, 1);
c8b97818
CM
2968 else if (compressed) {
2969 /* we don't want to end_page_writeback on
2970 * a compressed extent. this happens
2971 * elsewhere
2972 */
2973 nr++;
2974 }
2975
2976 cur += iosize;
7f3c74fb 2977 pg_offset += iosize;
d1310b2e
CM
2978 continue;
2979 }
d1310b2e
CM
2980 /* leave this out until we have a page_mkwrite call */
2981 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2982 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2983 cur = cur + iosize;
7f3c74fb 2984 pg_offset += iosize;
d1310b2e
CM
2985 continue;
2986 }
c8b97818 2987
d1310b2e
CM
2988 if (tree->ops && tree->ops->writepage_io_hook) {
2989 ret = tree->ops->writepage_io_hook(page, cur,
2990 cur + iosize - 1);
2991 } else {
2992 ret = 0;
2993 }
1259ab75 2994 if (ret) {
d1310b2e 2995 SetPageError(page);
1259ab75 2996 } else {
d1310b2e 2997 unsigned long max_nr = end_index + 1;
7f3c74fb 2998
d1310b2e
CM
2999 set_range_writeback(tree, cur, cur + iosize - 1);
3000 if (!PageWriteback(page)) {
d397712b
CM
3001 printk(KERN_ERR "btrfs warning page %lu not "
3002 "writeback, cur %llu end %llu\n",
3003 page->index, (unsigned long long)cur,
d1310b2e
CM
3004 (unsigned long long)end);
3005 }
3006
ffbd517d
CM
3007 ret = submit_extent_page(write_flags, tree, page,
3008 sector, iosize, pg_offset,
3009 bdev, &epd->bio, max_nr,
c8b97818
CM
3010 end_bio_extent_writepage,
3011 0, 0, 0);
d1310b2e
CM
3012 if (ret)
3013 SetPageError(page);
3014 }
3015 cur = cur + iosize;
7f3c74fb 3016 pg_offset += iosize;
d1310b2e
CM
3017 nr++;
3018 }
3019done:
3020 if (nr == 0) {
3021 /* make sure the mapping tag for page dirty gets cleared */
3022 set_page_writeback(page);
3023 end_page_writeback(page);
3024 }
d1310b2e 3025 unlock_page(page);
771ed689 3026
11c8349b
CM
3027done_unlocked:
3028
2c64c53d
CM
3029 /* drop our reference on any cached states */
3030 free_extent_state(cached_state);
d1310b2e
CM
3031 return 0;
3032}
3033
0b32f4bb
JB
3034static int eb_wait(void *word)
3035{
3036 io_schedule();
3037 return 0;
3038}
3039
3040static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3041{
3042 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3043 TASK_UNINTERRUPTIBLE);
3044}
3045
3046static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3047 struct btrfs_fs_info *fs_info,
3048 struct extent_page_data *epd)
3049{
3050 unsigned long i, num_pages;
3051 int flush = 0;
3052 int ret = 0;
3053
3054 if (!btrfs_try_tree_write_lock(eb)) {
3055 flush = 1;
3056 flush_write_bio(epd);
3057 btrfs_tree_lock(eb);
3058 }
3059
3060 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3061 btrfs_tree_unlock(eb);
3062 if (!epd->sync_io)
3063 return 0;
3064 if (!flush) {
3065 flush_write_bio(epd);
3066 flush = 1;
3067 }
a098d8e8
CM
3068 while (1) {
3069 wait_on_extent_buffer_writeback(eb);
3070 btrfs_tree_lock(eb);
3071 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3072 break;
0b32f4bb 3073 btrfs_tree_unlock(eb);
0b32f4bb
JB
3074 }
3075 }
3076
51561ffe
JB
3077 /*
3078 * We need to do this to prevent races in people who check if the eb is
3079 * under IO since we can end up having no IO bits set for a short period
3080 * of time.
3081 */
3082 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3083 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3084 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3085 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3086 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3087 spin_lock(&fs_info->delalloc_lock);
3088 if (fs_info->dirty_metadata_bytes >= eb->len)
3089 fs_info->dirty_metadata_bytes -= eb->len;
3090 else
3091 WARN_ON(1);
3092 spin_unlock(&fs_info->delalloc_lock);
3093 ret = 1;
51561ffe
JB
3094 } else {
3095 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3096 }
3097
3098 btrfs_tree_unlock(eb);
3099
3100 if (!ret)
3101 return ret;
3102
3103 num_pages = num_extent_pages(eb->start, eb->len);
3104 for (i = 0; i < num_pages; i++) {
3105 struct page *p = extent_buffer_page(eb, i);
3106
3107 if (!trylock_page(p)) {
3108 if (!flush) {
3109 flush_write_bio(epd);
3110 flush = 1;
3111 }
3112 lock_page(p);
3113 }
3114 }
3115
3116 return ret;
3117}
3118
3119static void end_extent_buffer_writeback(struct extent_buffer *eb)
3120{
3121 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3122 smp_mb__after_clear_bit();
3123 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3124}
3125
3126static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3127{
3128 int uptodate = err == 0;
3129 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3130 struct extent_buffer *eb;
3131 int done;
3132
3133 do {
3134 struct page *page = bvec->bv_page;
3135
3136 bvec--;
3137 eb = (struct extent_buffer *)page->private;
3138 BUG_ON(!eb);
3139 done = atomic_dec_and_test(&eb->io_pages);
3140
3141 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3142 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3143 ClearPageUptodate(page);
3144 SetPageError(page);
3145 }
3146
3147 end_page_writeback(page);
3148
3149 if (!done)
3150 continue;
3151
3152 end_extent_buffer_writeback(eb);
3153 } while (bvec >= bio->bi_io_vec);
3154
3155 bio_put(bio);
3156
3157}
3158
3159static int write_one_eb(struct extent_buffer *eb,
3160 struct btrfs_fs_info *fs_info,
3161 struct writeback_control *wbc,
3162 struct extent_page_data *epd)
3163{
3164 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3165 u64 offset = eb->start;
3166 unsigned long i, num_pages;
de0022b9 3167 unsigned long bio_flags = 0;
0b32f4bb 3168 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
d7dbe9e7 3169 int ret = 0;
0b32f4bb
JB
3170
3171 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3172 num_pages = num_extent_pages(eb->start, eb->len);
3173 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3174 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3175 bio_flags = EXTENT_BIO_TREE_LOG;
3176
0b32f4bb
JB
3177 for (i = 0; i < num_pages; i++) {
3178 struct page *p = extent_buffer_page(eb, i);
3179
3180 clear_page_dirty_for_io(p);
3181 set_page_writeback(p);
3182 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3183 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3184 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3185 0, epd->bio_flags, bio_flags);
3186 epd->bio_flags = bio_flags;
0b32f4bb
JB
3187 if (ret) {
3188 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3189 SetPageError(p);
3190 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3191 end_extent_buffer_writeback(eb);
3192 ret = -EIO;
3193 break;
3194 }
3195 offset += PAGE_CACHE_SIZE;
3196 update_nr_written(p, wbc, 1);
3197 unlock_page(p);
3198 }
3199
3200 if (unlikely(ret)) {
3201 for (; i < num_pages; i++) {
3202 struct page *p = extent_buffer_page(eb, i);
3203 unlock_page(p);
3204 }
3205 }
3206
3207 return ret;
3208}
3209
3210int btree_write_cache_pages(struct address_space *mapping,
3211 struct writeback_control *wbc)
3212{
3213 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3214 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3215 struct extent_buffer *eb, *prev_eb = NULL;
3216 struct extent_page_data epd = {
3217 .bio = NULL,
3218 .tree = tree,
3219 .extent_locked = 0,
3220 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3221 .bio_flags = 0,
0b32f4bb
JB
3222 };
3223 int ret = 0;
3224 int done = 0;
3225 int nr_to_write_done = 0;
3226 struct pagevec pvec;
3227 int nr_pages;
3228 pgoff_t index;
3229 pgoff_t end; /* Inclusive */
3230 int scanned = 0;
3231 int tag;
3232
3233 pagevec_init(&pvec, 0);
3234 if (wbc->range_cyclic) {
3235 index = mapping->writeback_index; /* Start from prev offset */
3236 end = -1;
3237 } else {
3238 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3239 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3240 scanned = 1;
3241 }
3242 if (wbc->sync_mode == WB_SYNC_ALL)
3243 tag = PAGECACHE_TAG_TOWRITE;
3244 else
3245 tag = PAGECACHE_TAG_DIRTY;
3246retry:
3247 if (wbc->sync_mode == WB_SYNC_ALL)
3248 tag_pages_for_writeback(mapping, index, end);
3249 while (!done && !nr_to_write_done && (index <= end) &&
3250 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3251 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3252 unsigned i;
3253
3254 scanned = 1;
3255 for (i = 0; i < nr_pages; i++) {
3256 struct page *page = pvec.pages[i];
3257
3258 if (!PagePrivate(page))
3259 continue;
3260
3261 if (!wbc->range_cyclic && page->index > end) {
3262 done = 1;
3263 break;
3264 }
3265
b5bae261
JB
3266 spin_lock(&mapping->private_lock);
3267 if (!PagePrivate(page)) {
3268 spin_unlock(&mapping->private_lock);
3269 continue;
3270 }
3271
0b32f4bb 3272 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3273
3274 /*
3275 * Shouldn't happen and normally this would be a BUG_ON
3276 * but no sense in crashing the users box for something
3277 * we can survive anyway.
3278 */
0b32f4bb 3279 if (!eb) {
b5bae261 3280 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3281 WARN_ON(1);
3282 continue;
3283 }
3284
b5bae261
JB
3285 if (eb == prev_eb) {
3286 spin_unlock(&mapping->private_lock);
0b32f4bb 3287 continue;
b5bae261 3288 }
0b32f4bb 3289
b5bae261
JB
3290 ret = atomic_inc_not_zero(&eb->refs);
3291 spin_unlock(&mapping->private_lock);
3292 if (!ret)
0b32f4bb 3293 continue;
0b32f4bb
JB
3294
3295 prev_eb = eb;
3296 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3297 if (!ret) {
3298 free_extent_buffer(eb);
3299 continue;
3300 }
3301
3302 ret = write_one_eb(eb, fs_info, wbc, &epd);
3303 if (ret) {
3304 done = 1;
3305 free_extent_buffer(eb);
3306 break;
3307 }
3308 free_extent_buffer(eb);
3309
3310 /*
3311 * the filesystem may choose to bump up nr_to_write.
3312 * We have to make sure to honor the new nr_to_write
3313 * at any time
3314 */
3315 nr_to_write_done = wbc->nr_to_write <= 0;
3316 }
3317 pagevec_release(&pvec);
3318 cond_resched();
3319 }
3320 if (!scanned && !done) {
3321 /*
3322 * We hit the last page and there is more work to be done: wrap
3323 * back to the start of the file
3324 */
3325 scanned = 1;
3326 index = 0;
3327 goto retry;
3328 }
3329 flush_write_bio(&epd);
3330 return ret;
3331}
3332
d1310b2e 3333/**
4bef0848 3334 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3335 * @mapping: address space structure to write
3336 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3337 * @writepage: function called for each page
3338 * @data: data passed to writepage function
3339 *
3340 * If a page is already under I/O, write_cache_pages() skips it, even
3341 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3342 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3343 * and msync() need to guarantee that all the data which was dirty at the time
3344 * the call was made get new I/O started against them. If wbc->sync_mode is
3345 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3346 * existing IO to complete.
3347 */
b2950863 3348static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3349 struct address_space *mapping,
3350 struct writeback_control *wbc,
d2c3f4f6
CM
3351 writepage_t writepage, void *data,
3352 void (*flush_fn)(void *))
d1310b2e 3353{
7fd1a3f7 3354 struct inode *inode = mapping->host;
d1310b2e
CM
3355 int ret = 0;
3356 int done = 0;
f85d7d6c 3357 int nr_to_write_done = 0;
d1310b2e
CM
3358 struct pagevec pvec;
3359 int nr_pages;
3360 pgoff_t index;
3361 pgoff_t end; /* Inclusive */
3362 int scanned = 0;
f7aaa06b 3363 int tag;
d1310b2e 3364
7fd1a3f7
JB
3365 /*
3366 * We have to hold onto the inode so that ordered extents can do their
3367 * work when the IO finishes. The alternative to this is failing to add
3368 * an ordered extent if the igrab() fails there and that is a huge pain
3369 * to deal with, so instead just hold onto the inode throughout the
3370 * writepages operation. If it fails here we are freeing up the inode
3371 * anyway and we'd rather not waste our time writing out stuff that is
3372 * going to be truncated anyway.
3373 */
3374 if (!igrab(inode))
3375 return 0;
3376
d1310b2e
CM
3377 pagevec_init(&pvec, 0);
3378 if (wbc->range_cyclic) {
3379 index = mapping->writeback_index; /* Start from prev offset */
3380 end = -1;
3381 } else {
3382 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3383 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3384 scanned = 1;
3385 }
f7aaa06b
JB
3386 if (wbc->sync_mode == WB_SYNC_ALL)
3387 tag = PAGECACHE_TAG_TOWRITE;
3388 else
3389 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3390retry:
f7aaa06b
JB
3391 if (wbc->sync_mode == WB_SYNC_ALL)
3392 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3393 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3394 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3395 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3396 unsigned i;
3397
3398 scanned = 1;
3399 for (i = 0; i < nr_pages; i++) {
3400 struct page *page = pvec.pages[i];
3401
3402 /*
3403 * At this point we hold neither mapping->tree_lock nor
3404 * lock on the page itself: the page may be truncated or
3405 * invalidated (changing page->mapping to NULL), or even
3406 * swizzled back from swapper_space to tmpfs file
3407 * mapping
3408 */
01d658f2
CM
3409 if (tree->ops &&
3410 tree->ops->write_cache_pages_lock_hook) {
3411 tree->ops->write_cache_pages_lock_hook(page,
3412 data, flush_fn);
3413 } else {
3414 if (!trylock_page(page)) {
3415 flush_fn(data);
3416 lock_page(page);
3417 }
3418 }
d1310b2e
CM
3419
3420 if (unlikely(page->mapping != mapping)) {
3421 unlock_page(page);
3422 continue;
3423 }
3424
3425 if (!wbc->range_cyclic && page->index > end) {
3426 done = 1;
3427 unlock_page(page);
3428 continue;
3429 }
3430
d2c3f4f6 3431 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3432 if (PageWriteback(page))
3433 flush_fn(data);
d1310b2e 3434 wait_on_page_writeback(page);
d2c3f4f6 3435 }
d1310b2e
CM
3436
3437 if (PageWriteback(page) ||
3438 !clear_page_dirty_for_io(page)) {
3439 unlock_page(page);
3440 continue;
3441 }
3442
3443 ret = (*writepage)(page, wbc, data);
3444
3445 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3446 unlock_page(page);
3447 ret = 0;
3448 }
f85d7d6c 3449 if (ret)
d1310b2e 3450 done = 1;
f85d7d6c
CM
3451
3452 /*
3453 * the filesystem may choose to bump up nr_to_write.
3454 * We have to make sure to honor the new nr_to_write
3455 * at any time
3456 */
3457 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3458 }
3459 pagevec_release(&pvec);
3460 cond_resched();
3461 }
3462 if (!scanned && !done) {
3463 /*
3464 * We hit the last page and there is more work to be done: wrap
3465 * back to the start of the file
3466 */
3467 scanned = 1;
3468 index = 0;
3469 goto retry;
3470 }
7fd1a3f7 3471 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3472 return ret;
3473}
d1310b2e 3474
ffbd517d 3475static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3476{
d2c3f4f6 3477 if (epd->bio) {
355808c2
JM
3478 int rw = WRITE;
3479 int ret;
3480
ffbd517d 3481 if (epd->sync_io)
355808c2
JM
3482 rw = WRITE_SYNC;
3483
de0022b9 3484 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3485 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3486 epd->bio = NULL;
3487 }
3488}
3489
ffbd517d
CM
3490static noinline void flush_write_bio(void *data)
3491{
3492 struct extent_page_data *epd = data;
3493 flush_epd_write_bio(epd);
3494}
3495
d1310b2e
CM
3496int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3497 get_extent_t *get_extent,
3498 struct writeback_control *wbc)
3499{
3500 int ret;
d1310b2e
CM
3501 struct extent_page_data epd = {
3502 .bio = NULL,
3503 .tree = tree,
3504 .get_extent = get_extent,
771ed689 3505 .extent_locked = 0,
ffbd517d 3506 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3507 .bio_flags = 0,
d1310b2e 3508 };
d1310b2e 3509
d1310b2e
CM
3510 ret = __extent_writepage(page, wbc, &epd);
3511
ffbd517d 3512 flush_epd_write_bio(&epd);
d1310b2e
CM
3513 return ret;
3514}
d1310b2e 3515
771ed689
CM
3516int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3517 u64 start, u64 end, get_extent_t *get_extent,
3518 int mode)
3519{
3520 int ret = 0;
3521 struct address_space *mapping = inode->i_mapping;
3522 struct page *page;
3523 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3524 PAGE_CACHE_SHIFT;
3525
3526 struct extent_page_data epd = {
3527 .bio = NULL,
3528 .tree = tree,
3529 .get_extent = get_extent,
3530 .extent_locked = 1,
ffbd517d 3531 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3532 .bio_flags = 0,
771ed689
CM
3533 };
3534 struct writeback_control wbc_writepages = {
771ed689 3535 .sync_mode = mode,
771ed689
CM
3536 .nr_to_write = nr_pages * 2,
3537 .range_start = start,
3538 .range_end = end + 1,
3539 };
3540
d397712b 3541 while (start <= end) {
771ed689
CM
3542 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3543 if (clear_page_dirty_for_io(page))
3544 ret = __extent_writepage(page, &wbc_writepages, &epd);
3545 else {
3546 if (tree->ops && tree->ops->writepage_end_io_hook)
3547 tree->ops->writepage_end_io_hook(page, start,
3548 start + PAGE_CACHE_SIZE - 1,
3549 NULL, 1);
3550 unlock_page(page);
3551 }
3552 page_cache_release(page);
3553 start += PAGE_CACHE_SIZE;
3554 }
3555
ffbd517d 3556 flush_epd_write_bio(&epd);
771ed689
CM
3557 return ret;
3558}
d1310b2e
CM
3559
3560int extent_writepages(struct extent_io_tree *tree,
3561 struct address_space *mapping,
3562 get_extent_t *get_extent,
3563 struct writeback_control *wbc)
3564{
3565 int ret = 0;
3566 struct extent_page_data epd = {
3567 .bio = NULL,
3568 .tree = tree,
3569 .get_extent = get_extent,
771ed689 3570 .extent_locked = 0,
ffbd517d 3571 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3572 .bio_flags = 0,
d1310b2e
CM
3573 };
3574
4bef0848 3575 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3576 __extent_writepage, &epd,
3577 flush_write_bio);
ffbd517d 3578 flush_epd_write_bio(&epd);
d1310b2e
CM
3579 return ret;
3580}
d1310b2e
CM
3581
3582int extent_readpages(struct extent_io_tree *tree,
3583 struct address_space *mapping,
3584 struct list_head *pages, unsigned nr_pages,
3585 get_extent_t get_extent)
3586{
3587 struct bio *bio = NULL;
3588 unsigned page_idx;
c8b97818 3589 unsigned long bio_flags = 0;
67c9684f
LB
3590 struct page *pagepool[16];
3591 struct page *page;
3592 int i = 0;
3593 int nr = 0;
d1310b2e 3594
d1310b2e 3595 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3596 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3597
3598 prefetchw(&page->flags);
3599 list_del(&page->lru);
67c9684f 3600 if (add_to_page_cache_lru(page, mapping,
43e817a1 3601 page->index, GFP_NOFS)) {
67c9684f
LB
3602 page_cache_release(page);
3603 continue;
d1310b2e 3604 }
67c9684f
LB
3605
3606 pagepool[nr++] = page;
3607 if (nr < ARRAY_SIZE(pagepool))
3608 continue;
3609 for (i = 0; i < nr; i++) {
3610 __extent_read_full_page(tree, pagepool[i], get_extent,
3611 &bio, 0, &bio_flags);
3612 page_cache_release(pagepool[i]);
3613 }
3614 nr = 0;
d1310b2e 3615 }
67c9684f
LB
3616 for (i = 0; i < nr; i++) {
3617 __extent_read_full_page(tree, pagepool[i], get_extent,
3618 &bio, 0, &bio_flags);
3619 page_cache_release(pagepool[i]);
d1310b2e 3620 }
67c9684f 3621
d1310b2e
CM
3622 BUG_ON(!list_empty(pages));
3623 if (bio)
79787eaa 3624 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3625 return 0;
3626}
d1310b2e
CM
3627
3628/*
3629 * basic invalidatepage code, this waits on any locked or writeback
3630 * ranges corresponding to the page, and then deletes any extent state
3631 * records from the tree
3632 */
3633int extent_invalidatepage(struct extent_io_tree *tree,
3634 struct page *page, unsigned long offset)
3635{
2ac55d41 3636 struct extent_state *cached_state = NULL;
d1310b2e
CM
3637 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3638 u64 end = start + PAGE_CACHE_SIZE - 1;
3639 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3640
d397712b 3641 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3642 if (start > end)
3643 return 0;
3644
d0082371 3645 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3646 wait_on_page_writeback(page);
d1310b2e 3647 clear_extent_bit(tree, start, end,
32c00aff
JB
3648 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3649 EXTENT_DO_ACCOUNTING,
2ac55d41 3650 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3651 return 0;
3652}
d1310b2e 3653
7b13b7b1
CM
3654/*
3655 * a helper for releasepage, this tests for areas of the page that
3656 * are locked or under IO and drops the related state bits if it is safe
3657 * to drop the page.
3658 */
3659int try_release_extent_state(struct extent_map_tree *map,
3660 struct extent_io_tree *tree, struct page *page,
3661 gfp_t mask)
3662{
3663 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3664 u64 end = start + PAGE_CACHE_SIZE - 1;
3665 int ret = 1;
3666
211f90e6 3667 if (test_range_bit(tree, start, end,
8b62b72b 3668 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3669 ret = 0;
3670 else {
3671 if ((mask & GFP_NOFS) == GFP_NOFS)
3672 mask = GFP_NOFS;
11ef160f
CM
3673 /*
3674 * at this point we can safely clear everything except the
3675 * locked bit and the nodatasum bit
3676 */
e3f24cc5 3677 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3678 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3679 0, 0, NULL, mask);
e3f24cc5
CM
3680
3681 /* if clear_extent_bit failed for enomem reasons,
3682 * we can't allow the release to continue.
3683 */
3684 if (ret < 0)
3685 ret = 0;
3686 else
3687 ret = 1;
7b13b7b1
CM
3688 }
3689 return ret;
3690}
7b13b7b1 3691
d1310b2e
CM
3692/*
3693 * a helper for releasepage. As long as there are no locked extents
3694 * in the range corresponding to the page, both state records and extent
3695 * map records are removed
3696 */
3697int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3698 struct extent_io_tree *tree, struct page *page,
3699 gfp_t mask)
d1310b2e
CM
3700{
3701 struct extent_map *em;
3702 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3703 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3704
70dec807
CM
3705 if ((mask & __GFP_WAIT) &&
3706 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3707 u64 len;
70dec807 3708 while (start <= end) {
39b5637f 3709 len = end - start + 1;
890871be 3710 write_lock(&map->lock);
39b5637f 3711 em = lookup_extent_mapping(map, start, len);
285190d9 3712 if (!em) {
890871be 3713 write_unlock(&map->lock);
70dec807
CM
3714 break;
3715 }
7f3c74fb
CM
3716 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3717 em->start != start) {
890871be 3718 write_unlock(&map->lock);
70dec807
CM
3719 free_extent_map(em);
3720 break;
3721 }
3722 if (!test_range_bit(tree, em->start,
3723 extent_map_end(em) - 1,
8b62b72b 3724 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3725 0, NULL)) {
70dec807
CM
3726 remove_extent_mapping(map, em);
3727 /* once for the rb tree */
3728 free_extent_map(em);
3729 }
3730 start = extent_map_end(em);
890871be 3731 write_unlock(&map->lock);
70dec807
CM
3732
3733 /* once for us */
d1310b2e
CM
3734 free_extent_map(em);
3735 }
d1310b2e 3736 }
7b13b7b1 3737 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3738}
d1310b2e 3739
ec29ed5b
CM
3740/*
3741 * helper function for fiemap, which doesn't want to see any holes.
3742 * This maps until we find something past 'last'
3743 */
3744static struct extent_map *get_extent_skip_holes(struct inode *inode,
3745 u64 offset,
3746 u64 last,
3747 get_extent_t *get_extent)
3748{
3749 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3750 struct extent_map *em;
3751 u64 len;
3752
3753 if (offset >= last)
3754 return NULL;
3755
3756 while(1) {
3757 len = last - offset;
3758 if (len == 0)
3759 break;
3760 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3761 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3762 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3763 return em;
3764
3765 /* if this isn't a hole return it */
3766 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3767 em->block_start != EXTENT_MAP_HOLE) {
3768 return em;
3769 }
3770
3771 /* this is a hole, advance to the next extent */
3772 offset = extent_map_end(em);
3773 free_extent_map(em);
3774 if (offset >= last)
3775 break;
3776 }
3777 return NULL;
3778}
3779
1506fcc8
YS
3780int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3781 __u64 start, __u64 len, get_extent_t *get_extent)
3782{
975f84fe 3783 int ret = 0;
1506fcc8
YS
3784 u64 off = start;
3785 u64 max = start + len;
3786 u32 flags = 0;
975f84fe
JB
3787 u32 found_type;
3788 u64 last;
ec29ed5b 3789 u64 last_for_get_extent = 0;
1506fcc8 3790 u64 disko = 0;
ec29ed5b 3791 u64 isize = i_size_read(inode);
975f84fe 3792 struct btrfs_key found_key;
1506fcc8 3793 struct extent_map *em = NULL;
2ac55d41 3794 struct extent_state *cached_state = NULL;
975f84fe
JB
3795 struct btrfs_path *path;
3796 struct btrfs_file_extent_item *item;
1506fcc8 3797 int end = 0;
ec29ed5b
CM
3798 u64 em_start = 0;
3799 u64 em_len = 0;
3800 u64 em_end = 0;
1506fcc8 3801 unsigned long emflags;
1506fcc8
YS
3802
3803 if (len == 0)
3804 return -EINVAL;
3805
975f84fe
JB
3806 path = btrfs_alloc_path();
3807 if (!path)
3808 return -ENOMEM;
3809 path->leave_spinning = 1;
3810
4d479cf0
JB
3811 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3812 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3813
ec29ed5b
CM
3814 /*
3815 * lookup the last file extent. We're not using i_size here
3816 * because there might be preallocation past i_size
3817 */
975f84fe 3818 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3819 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3820 if (ret < 0) {
3821 btrfs_free_path(path);
3822 return ret;
3823 }
3824 WARN_ON(!ret);
3825 path->slots[0]--;
3826 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3827 struct btrfs_file_extent_item);
3828 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3829 found_type = btrfs_key_type(&found_key);
3830
ec29ed5b 3831 /* No extents, but there might be delalloc bits */
33345d01 3832 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3833 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3834 /* have to trust i_size as the end */
3835 last = (u64)-1;
3836 last_for_get_extent = isize;
3837 } else {
3838 /*
3839 * remember the start of the last extent. There are a
3840 * bunch of different factors that go into the length of the
3841 * extent, so its much less complex to remember where it started
3842 */
3843 last = found_key.offset;
3844 last_for_get_extent = last + 1;
975f84fe 3845 }
975f84fe
JB
3846 btrfs_free_path(path);
3847
ec29ed5b
CM
3848 /*
3849 * we might have some extents allocated but more delalloc past those
3850 * extents. so, we trust isize unless the start of the last extent is
3851 * beyond isize
3852 */
3853 if (last < isize) {
3854 last = (u64)-1;
3855 last_for_get_extent = isize;
3856 }
3857
2ac55d41 3858 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3859 &cached_state);
ec29ed5b 3860
4d479cf0 3861 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3862 get_extent);
1506fcc8
YS
3863 if (!em)
3864 goto out;
3865 if (IS_ERR(em)) {
3866 ret = PTR_ERR(em);
3867 goto out;
3868 }
975f84fe 3869
1506fcc8 3870 while (!end) {
ea8efc74
CM
3871 u64 offset_in_extent;
3872
3873 /* break if the extent we found is outside the range */
3874 if (em->start >= max || extent_map_end(em) < off)
3875 break;
3876
3877 /*
3878 * get_extent may return an extent that starts before our
3879 * requested range. We have to make sure the ranges
3880 * we return to fiemap always move forward and don't
3881 * overlap, so adjust the offsets here
3882 */
3883 em_start = max(em->start, off);
1506fcc8 3884
ea8efc74
CM
3885 /*
3886 * record the offset from the start of the extent
3887 * for adjusting the disk offset below
3888 */
3889 offset_in_extent = em_start - em->start;
ec29ed5b 3890 em_end = extent_map_end(em);
ea8efc74 3891 em_len = em_end - em_start;
ec29ed5b 3892 emflags = em->flags;
1506fcc8
YS
3893 disko = 0;
3894 flags = 0;
3895
ea8efc74
CM
3896 /*
3897 * bump off for our next call to get_extent
3898 */
3899 off = extent_map_end(em);
3900 if (off >= max)
3901 end = 1;
3902
93dbfad7 3903 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3904 end = 1;
3905 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3906 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3907 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3908 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3909 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3910 flags |= (FIEMAP_EXTENT_DELALLOC |
3911 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3912 } else {
ea8efc74 3913 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3914 }
3915 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3916 flags |= FIEMAP_EXTENT_ENCODED;
3917
1506fcc8
YS
3918 free_extent_map(em);
3919 em = NULL;
ec29ed5b
CM
3920 if ((em_start >= last) || em_len == (u64)-1 ||
3921 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3922 flags |= FIEMAP_EXTENT_LAST;
3923 end = 1;
3924 }
3925
ec29ed5b
CM
3926 /* now scan forward to see if this is really the last extent. */
3927 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3928 get_extent);
3929 if (IS_ERR(em)) {
3930 ret = PTR_ERR(em);
3931 goto out;
3932 }
3933 if (!em) {
975f84fe
JB
3934 flags |= FIEMAP_EXTENT_LAST;
3935 end = 1;
3936 }
ec29ed5b
CM
3937 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3938 em_len, flags);
3939 if (ret)
3940 goto out_free;
1506fcc8
YS
3941 }
3942out_free:
3943 free_extent_map(em);
3944out:
2ac55d41
JB
3945 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3946 &cached_state, GFP_NOFS);
1506fcc8
YS
3947 return ret;
3948}
3949
4a54c8c1 3950inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3951 unsigned long i)
3952{
727011e0 3953 return eb->pages[i];
d1310b2e
CM
3954}
3955
4a54c8c1 3956inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3957{
6af118ce
CM
3958 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3959 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3960}
3961
727011e0
CM
3962static void __free_extent_buffer(struct extent_buffer *eb)
3963{
3964#if LEAK_DEBUG
3965 unsigned long flags;
3966 spin_lock_irqsave(&leak_lock, flags);
3967 list_del(&eb->leak_list);
3968 spin_unlock_irqrestore(&leak_lock, flags);
3969#endif
3970 if (eb->pages && eb->pages != eb->inline_pages)
3971 kfree(eb->pages);
3972 kmem_cache_free(extent_buffer_cache, eb);
3973}
3974
d1310b2e
CM
3975static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3976 u64 start,
3977 unsigned long len,
3978 gfp_t mask)
3979{
3980 struct extent_buffer *eb = NULL;
3935127c 3981#if LEAK_DEBUG
2d2ae547 3982 unsigned long flags;
4bef0848 3983#endif
d1310b2e 3984
d1310b2e 3985 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3986 if (eb == NULL)
3987 return NULL;
d1310b2e
CM
3988 eb->start = start;
3989 eb->len = len;
4f2de97a 3990 eb->tree = tree;
815a51c7 3991 eb->bflags = 0;
bd681513
CM
3992 rwlock_init(&eb->lock);
3993 atomic_set(&eb->write_locks, 0);
3994 atomic_set(&eb->read_locks, 0);
3995 atomic_set(&eb->blocking_readers, 0);
3996 atomic_set(&eb->blocking_writers, 0);
3997 atomic_set(&eb->spinning_readers, 0);
3998 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3999 eb->lock_nested = 0;
bd681513
CM
4000 init_waitqueue_head(&eb->write_lock_wq);
4001 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4002
3935127c 4003#if LEAK_DEBUG
2d2ae547
CM
4004 spin_lock_irqsave(&leak_lock, flags);
4005 list_add(&eb->leak_list, &buffers);
4006 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 4007#endif
3083ee2e 4008 spin_lock_init(&eb->refs_lock);
d1310b2e 4009 atomic_set(&eb->refs, 1);
0b32f4bb 4010 atomic_set(&eb->io_pages, 0);
727011e0
CM
4011
4012 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
4013 struct page **pages;
4014 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
4015 PAGE_CACHE_SHIFT;
4016 pages = kzalloc(num_pages, mask);
4017 if (!pages) {
4018 __free_extent_buffer(eb);
4019 return NULL;
4020 }
4021 eb->pages = pages;
4022 } else {
4023 eb->pages = eb->inline_pages;
4024 }
d1310b2e
CM
4025
4026 return eb;
4027}
4028
815a51c7
JS
4029struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4030{
4031 unsigned long i;
4032 struct page *p;
4033 struct extent_buffer *new;
4034 unsigned long num_pages = num_extent_pages(src->start, src->len);
4035
4036 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4037 if (new == NULL)
4038 return NULL;
4039
4040 for (i = 0; i < num_pages; i++) {
4041 p = alloc_page(GFP_ATOMIC);
4042 BUG_ON(!p);
4043 attach_extent_buffer_page(new, p);
4044 WARN_ON(PageDirty(p));
4045 SetPageUptodate(p);
4046 new->pages[i] = p;
4047 }
4048
4049 copy_extent_buffer(new, src, 0, 0, src->len);
4050 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4051 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4052
4053 return new;
4054}
4055
4056struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4057{
4058 struct extent_buffer *eb;
4059 unsigned long num_pages = num_extent_pages(0, len);
4060 unsigned long i;
4061
4062 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4063 if (!eb)
4064 return NULL;
4065
4066 for (i = 0; i < num_pages; i++) {
4067 eb->pages[i] = alloc_page(GFP_ATOMIC);
4068 if (!eb->pages[i])
4069 goto err;
4070 }
4071 set_extent_buffer_uptodate(eb);
4072 btrfs_set_header_nritems(eb, 0);
4073 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4074
4075 return eb;
4076err:
4077 for (i--; i > 0; i--)
4078 __free_page(eb->pages[i]);
4079 __free_extent_buffer(eb);
4080 return NULL;
4081}
4082
0b32f4bb 4083static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4084{
0b32f4bb
JB
4085 return (atomic_read(&eb->io_pages) ||
4086 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4087 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4088}
4089
897ca6e9
MX
4090/*
4091 * Helper for releasing extent buffer page.
4092 */
4093static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4094 unsigned long start_idx)
4095{
4096 unsigned long index;
39bab87b 4097 unsigned long num_pages;
897ca6e9 4098 struct page *page;
815a51c7 4099 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4100
0b32f4bb 4101 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4102
39bab87b
WSH
4103 num_pages = num_extent_pages(eb->start, eb->len);
4104 index = start_idx + num_pages;
897ca6e9
MX
4105 if (start_idx >= index)
4106 return;
4107
4108 do {
4109 index--;
4110 page = extent_buffer_page(eb, index);
815a51c7 4111 if (page && mapped) {
4f2de97a
JB
4112 spin_lock(&page->mapping->private_lock);
4113 /*
4114 * We do this since we'll remove the pages after we've
4115 * removed the eb from the radix tree, so we could race
4116 * and have this page now attached to the new eb. So
4117 * only clear page_private if it's still connected to
4118 * this eb.
4119 */
4120 if (PagePrivate(page) &&
4121 page->private == (unsigned long)eb) {
0b32f4bb 4122 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4123 BUG_ON(PageDirty(page));
4124 BUG_ON(PageWriteback(page));
4f2de97a
JB
4125 /*
4126 * We need to make sure we haven't be attached
4127 * to a new eb.
4128 */
4129 ClearPagePrivate(page);
4130 set_page_private(page, 0);
4131 /* One for the page private */
4132 page_cache_release(page);
4133 }
4134 spin_unlock(&page->mapping->private_lock);
4135
815a51c7
JS
4136 }
4137 if (page) {
4f2de97a 4138 /* One for when we alloced the page */
897ca6e9 4139 page_cache_release(page);
4f2de97a 4140 }
897ca6e9
MX
4141 } while (index != start_idx);
4142}
4143
4144/*
4145 * Helper for releasing the extent buffer.
4146 */
4147static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4148{
4149 btrfs_release_extent_buffer_page(eb, 0);
4150 __free_extent_buffer(eb);
4151}
4152
0b32f4bb
JB
4153static void check_buffer_tree_ref(struct extent_buffer *eb)
4154{
4155 /* the ref bit is tricky. We have to make sure it is set
4156 * if we have the buffer dirty. Otherwise the
4157 * code to free a buffer can end up dropping a dirty
4158 * page
4159 *
4160 * Once the ref bit is set, it won't go away while the
4161 * buffer is dirty or in writeback, and it also won't
4162 * go away while we have the reference count on the
4163 * eb bumped.
4164 *
4165 * We can't just set the ref bit without bumping the
4166 * ref on the eb because free_extent_buffer might
4167 * see the ref bit and try to clear it. If this happens
4168 * free_extent_buffer might end up dropping our original
4169 * ref by mistake and freeing the page before we are able
4170 * to add one more ref.
4171 *
4172 * So bump the ref count first, then set the bit. If someone
4173 * beat us to it, drop the ref we added.
4174 */
594831c4
JB
4175 spin_lock(&eb->refs_lock);
4176 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4177 atomic_inc(&eb->refs);
594831c4 4178 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4179}
4180
5df4235e
JB
4181static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4182{
4183 unsigned long num_pages, i;
4184
0b32f4bb
JB
4185 check_buffer_tree_ref(eb);
4186
5df4235e
JB
4187 num_pages = num_extent_pages(eb->start, eb->len);
4188 for (i = 0; i < num_pages; i++) {
4189 struct page *p = extent_buffer_page(eb, i);
4190 mark_page_accessed(p);
4191 }
4192}
4193
d1310b2e 4194struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4195 u64 start, unsigned long len)
d1310b2e
CM
4196{
4197 unsigned long num_pages = num_extent_pages(start, len);
4198 unsigned long i;
4199 unsigned long index = start >> PAGE_CACHE_SHIFT;
4200 struct extent_buffer *eb;
6af118ce 4201 struct extent_buffer *exists = NULL;
d1310b2e
CM
4202 struct page *p;
4203 struct address_space *mapping = tree->mapping;
4204 int uptodate = 1;
19fe0a8b 4205 int ret;
d1310b2e 4206
19fe0a8b
MX
4207 rcu_read_lock();
4208 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4209 if (eb && atomic_inc_not_zero(&eb->refs)) {
4210 rcu_read_unlock();
5df4235e 4211 mark_extent_buffer_accessed(eb);
6af118ce
CM
4212 return eb;
4213 }
19fe0a8b 4214 rcu_read_unlock();
6af118ce 4215
ba144192 4216 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4217 if (!eb)
d1310b2e
CM
4218 return NULL;
4219
727011e0 4220 for (i = 0; i < num_pages; i++, index++) {
a6591715 4221 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4222 if (!p) {
4223 WARN_ON(1);
6af118ce 4224 goto free_eb;
d1310b2e 4225 }
4f2de97a
JB
4226
4227 spin_lock(&mapping->private_lock);
4228 if (PagePrivate(p)) {
4229 /*
4230 * We could have already allocated an eb for this page
4231 * and attached one so lets see if we can get a ref on
4232 * the existing eb, and if we can we know it's good and
4233 * we can just return that one, else we know we can just
4234 * overwrite page->private.
4235 */
4236 exists = (struct extent_buffer *)p->private;
4237 if (atomic_inc_not_zero(&exists->refs)) {
4238 spin_unlock(&mapping->private_lock);
4239 unlock_page(p);
17de39ac 4240 page_cache_release(p);
5df4235e 4241 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4242 goto free_eb;
4243 }
4244
0b32f4bb 4245 /*
4f2de97a
JB
4246 * Do this so attach doesn't complain and we need to
4247 * drop the ref the old guy had.
4248 */
4249 ClearPagePrivate(p);
0b32f4bb 4250 WARN_ON(PageDirty(p));
4f2de97a 4251 page_cache_release(p);
d1310b2e 4252 }
4f2de97a
JB
4253 attach_extent_buffer_page(eb, p);
4254 spin_unlock(&mapping->private_lock);
0b32f4bb 4255 WARN_ON(PageDirty(p));
d1310b2e 4256 mark_page_accessed(p);
727011e0 4257 eb->pages[i] = p;
d1310b2e
CM
4258 if (!PageUptodate(p))
4259 uptodate = 0;
eb14ab8e
CM
4260
4261 /*
4262 * see below about how we avoid a nasty race with release page
4263 * and why we unlock later
4264 */
d1310b2e
CM
4265 }
4266 if (uptodate)
b4ce94de 4267 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4268again:
19fe0a8b
MX
4269 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4270 if (ret)
4271 goto free_eb;
4272
6af118ce 4273 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4274 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4275 if (ret == -EEXIST) {
4276 exists = radix_tree_lookup(&tree->buffer,
4277 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4278 if (!atomic_inc_not_zero(&exists->refs)) {
4279 spin_unlock(&tree->buffer_lock);
4280 radix_tree_preload_end();
115391d2
JB
4281 exists = NULL;
4282 goto again;
4283 }
6af118ce 4284 spin_unlock(&tree->buffer_lock);
19fe0a8b 4285 radix_tree_preload_end();
5df4235e 4286 mark_extent_buffer_accessed(exists);
6af118ce
CM
4287 goto free_eb;
4288 }
6af118ce 4289 /* add one reference for the tree */
0b32f4bb 4290 check_buffer_tree_ref(eb);
f044ba78 4291 spin_unlock(&tree->buffer_lock);
19fe0a8b 4292 radix_tree_preload_end();
eb14ab8e
CM
4293
4294 /*
4295 * there is a race where release page may have
4296 * tried to find this extent buffer in the radix
4297 * but failed. It will tell the VM it is safe to
4298 * reclaim the, and it will clear the page private bit.
4299 * We must make sure to set the page private bit properly
4300 * after the extent buffer is in the radix tree so
4301 * it doesn't get lost
4302 */
727011e0
CM
4303 SetPageChecked(eb->pages[0]);
4304 for (i = 1; i < num_pages; i++) {
4305 p = extent_buffer_page(eb, i);
727011e0
CM
4306 ClearPageChecked(p);
4307 unlock_page(p);
4308 }
4309 unlock_page(eb->pages[0]);
d1310b2e
CM
4310 return eb;
4311
6af118ce 4312free_eb:
727011e0
CM
4313 for (i = 0; i < num_pages; i++) {
4314 if (eb->pages[i])
4315 unlock_page(eb->pages[i]);
4316 }
eb14ab8e 4317
17de39ac 4318 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4319 btrfs_release_extent_buffer(eb);
6af118ce 4320 return exists;
d1310b2e 4321}
d1310b2e
CM
4322
4323struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4324 u64 start, unsigned long len)
d1310b2e 4325{
d1310b2e 4326 struct extent_buffer *eb;
d1310b2e 4327
19fe0a8b
MX
4328 rcu_read_lock();
4329 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4330 if (eb && atomic_inc_not_zero(&eb->refs)) {
4331 rcu_read_unlock();
5df4235e 4332 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4333 return eb;
4334 }
4335 rcu_read_unlock();
0f9dd46c 4336
19fe0a8b 4337 return NULL;
d1310b2e 4338}
d1310b2e 4339
3083ee2e
JB
4340static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4341{
4342 struct extent_buffer *eb =
4343 container_of(head, struct extent_buffer, rcu_head);
4344
4345 __free_extent_buffer(eb);
4346}
4347
3083ee2e 4348/* Expects to have eb->eb_lock already held */
e64860aa 4349static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
3083ee2e
JB
4350{
4351 WARN_ON(atomic_read(&eb->refs) == 0);
4352 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4353 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4354 spin_unlock(&eb->refs_lock);
4355 } else {
4356 struct extent_io_tree *tree = eb->tree;
3083ee2e 4357
815a51c7 4358 spin_unlock(&eb->refs_lock);
3083ee2e 4359
815a51c7
JS
4360 spin_lock(&tree->buffer_lock);
4361 radix_tree_delete(&tree->buffer,
4362 eb->start >> PAGE_CACHE_SHIFT);
4363 spin_unlock(&tree->buffer_lock);
4364 }
3083ee2e
JB
4365
4366 /* Should be safe to release our pages at this point */
4367 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4368 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4369 return 1;
3083ee2e
JB
4370 }
4371 spin_unlock(&eb->refs_lock);
e64860aa
JB
4372
4373 return 0;
3083ee2e
JB
4374}
4375
d1310b2e
CM
4376void free_extent_buffer(struct extent_buffer *eb)
4377{
d1310b2e
CM
4378 if (!eb)
4379 return;
4380
3083ee2e 4381 spin_lock(&eb->refs_lock);
815a51c7
JS
4382 if (atomic_read(&eb->refs) == 2 &&
4383 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4384 atomic_dec(&eb->refs);
4385
3083ee2e
JB
4386 if (atomic_read(&eb->refs) == 2 &&
4387 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4388 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4389 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4390 atomic_dec(&eb->refs);
4391
4392 /*
4393 * I know this is terrible, but it's temporary until we stop tracking
4394 * the uptodate bits and such for the extent buffers.
4395 */
4396 release_extent_buffer(eb, GFP_ATOMIC);
4397}
4398
4399void free_extent_buffer_stale(struct extent_buffer *eb)
4400{
4401 if (!eb)
d1310b2e
CM
4402 return;
4403
3083ee2e
JB
4404 spin_lock(&eb->refs_lock);
4405 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4406
0b32f4bb 4407 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4408 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4409 atomic_dec(&eb->refs);
4410 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4411}
d1310b2e 4412
1d4284bd 4413void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4414{
d1310b2e
CM
4415 unsigned long i;
4416 unsigned long num_pages;
4417 struct page *page;
4418
d1310b2e
CM
4419 num_pages = num_extent_pages(eb->start, eb->len);
4420
4421 for (i = 0; i < num_pages; i++) {
4422 page = extent_buffer_page(eb, i);
b9473439 4423 if (!PageDirty(page))
d2c3f4f6
CM
4424 continue;
4425
a61e6f29 4426 lock_page(page);
eb14ab8e
CM
4427 WARN_ON(!PagePrivate(page));
4428
d1310b2e 4429 clear_page_dirty_for_io(page);
0ee0fda0 4430 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4431 if (!PageDirty(page)) {
4432 radix_tree_tag_clear(&page->mapping->page_tree,
4433 page_index(page),
4434 PAGECACHE_TAG_DIRTY);
4435 }
0ee0fda0 4436 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4437 ClearPageError(page);
a61e6f29 4438 unlock_page(page);
d1310b2e 4439 }
0b32f4bb 4440 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4441}
d1310b2e 4442
0b32f4bb 4443int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4444{
4445 unsigned long i;
4446 unsigned long num_pages;
b9473439 4447 int was_dirty = 0;
d1310b2e 4448
0b32f4bb
JB
4449 check_buffer_tree_ref(eb);
4450
b9473439 4451 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4452
d1310b2e 4453 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4454 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4455 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4456
b9473439 4457 for (i = 0; i < num_pages; i++)
0b32f4bb 4458 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4459 return was_dirty;
d1310b2e 4460}
d1310b2e 4461
0b32f4bb 4462static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4463{
4464 if (len < PAGE_CACHE_SIZE)
4465 return 1;
4466 if (start & (PAGE_CACHE_SIZE - 1))
4467 return 1;
4468 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4469 return 1;
4470 return 0;
4471}
4472
0b32f4bb 4473int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4474{
4475 unsigned long i;
4476 struct page *page;
4477 unsigned long num_pages;
4478
b4ce94de 4479 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4480 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4481 for (i = 0; i < num_pages; i++) {
4482 page = extent_buffer_page(eb, i);
33958dc6
CM
4483 if (page)
4484 ClearPageUptodate(page);
1259ab75
CM
4485 }
4486 return 0;
4487}
4488
0b32f4bb 4489int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4490{
4491 unsigned long i;
4492 struct page *page;
4493 unsigned long num_pages;
4494
0b32f4bb 4495 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4496 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4497 for (i = 0; i < num_pages; i++) {
4498 page = extent_buffer_page(eb, i);
d1310b2e
CM
4499 SetPageUptodate(page);
4500 }
4501 return 0;
4502}
d1310b2e 4503
ce9adaa5
CM
4504int extent_range_uptodate(struct extent_io_tree *tree,
4505 u64 start, u64 end)
4506{
4507 struct page *page;
4508 int ret;
4509 int pg_uptodate = 1;
4510 int uptodate;
4511 unsigned long index;
4512
0b32f4bb 4513 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4514 ret = test_range_bit(tree, start, end,
4515 EXTENT_UPTODATE, 1, NULL);
4516 if (ret)
4517 return 1;
4518 }
d397712b 4519 while (start <= end) {
ce9adaa5
CM
4520 index = start >> PAGE_CACHE_SHIFT;
4521 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4522 if (!page)
4523 return 1;
ce9adaa5
CM
4524 uptodate = PageUptodate(page);
4525 page_cache_release(page);
4526 if (!uptodate) {
4527 pg_uptodate = 0;
4528 break;
4529 }
4530 start += PAGE_CACHE_SIZE;
4531 }
4532 return pg_uptodate;
4533}
4534
0b32f4bb 4535int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4536{
0b32f4bb 4537 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4538}
d1310b2e
CM
4539
4540int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4541 struct extent_buffer *eb, u64 start, int wait,
f188591e 4542 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4543{
4544 unsigned long i;
4545 unsigned long start_i;
4546 struct page *page;
4547 int err;
4548 int ret = 0;
ce9adaa5
CM
4549 int locked_pages = 0;
4550 int all_uptodate = 1;
d1310b2e 4551 unsigned long num_pages;
727011e0 4552 unsigned long num_reads = 0;
a86c12c7 4553 struct bio *bio = NULL;
c8b97818 4554 unsigned long bio_flags = 0;
a86c12c7 4555
b4ce94de 4556 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4557 return 0;
4558
d1310b2e
CM
4559 if (start) {
4560 WARN_ON(start < eb->start);
4561 start_i = (start >> PAGE_CACHE_SHIFT) -
4562 (eb->start >> PAGE_CACHE_SHIFT);
4563 } else {
4564 start_i = 0;
4565 }
4566
4567 num_pages = num_extent_pages(eb->start, eb->len);
4568 for (i = start_i; i < num_pages; i++) {
4569 page = extent_buffer_page(eb, i);
bb82ab88 4570 if (wait == WAIT_NONE) {
2db04966 4571 if (!trylock_page(page))
ce9adaa5 4572 goto unlock_exit;
d1310b2e
CM
4573 } else {
4574 lock_page(page);
4575 }
ce9adaa5 4576 locked_pages++;
727011e0
CM
4577 if (!PageUptodate(page)) {
4578 num_reads++;
ce9adaa5 4579 all_uptodate = 0;
727011e0 4580 }
ce9adaa5
CM
4581 }
4582 if (all_uptodate) {
4583 if (start_i == 0)
b4ce94de 4584 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4585 goto unlock_exit;
4586 }
4587
ea466794 4588 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4589 eb->read_mirror = 0;
0b32f4bb 4590 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4591 for (i = start_i; i < num_pages; i++) {
4592 page = extent_buffer_page(eb, i);
ce9adaa5 4593 if (!PageUptodate(page)) {
f188591e 4594 ClearPageError(page);
a86c12c7 4595 err = __extent_read_full_page(tree, page,
f188591e 4596 get_extent, &bio,
c8b97818 4597 mirror_num, &bio_flags);
d397712b 4598 if (err)
d1310b2e 4599 ret = err;
d1310b2e
CM
4600 } else {
4601 unlock_page(page);
4602 }
4603 }
4604
355808c2
JM
4605 if (bio) {
4606 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4607 if (err)
4608 return err;
355808c2 4609 }
a86c12c7 4610
bb82ab88 4611 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4612 return ret;
d397712b 4613
d1310b2e
CM
4614 for (i = start_i; i < num_pages; i++) {
4615 page = extent_buffer_page(eb, i);
4616 wait_on_page_locked(page);
d397712b 4617 if (!PageUptodate(page))
d1310b2e 4618 ret = -EIO;
d1310b2e 4619 }
d397712b 4620
d1310b2e 4621 return ret;
ce9adaa5
CM
4622
4623unlock_exit:
4624 i = start_i;
d397712b 4625 while (locked_pages > 0) {
ce9adaa5
CM
4626 page = extent_buffer_page(eb, i);
4627 i++;
4628 unlock_page(page);
4629 locked_pages--;
4630 }
4631 return ret;
d1310b2e 4632}
d1310b2e
CM
4633
4634void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4635 unsigned long start,
4636 unsigned long len)
4637{
4638 size_t cur;
4639 size_t offset;
4640 struct page *page;
4641 char *kaddr;
4642 char *dst = (char *)dstv;
4643 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4644 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4645
4646 WARN_ON(start > eb->len);
4647 WARN_ON(start + len > eb->start + eb->len);
4648
4649 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4650
d397712b 4651 while (len > 0) {
d1310b2e 4652 page = extent_buffer_page(eb, i);
d1310b2e
CM
4653
4654 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4655 kaddr = page_address(page);
d1310b2e 4656 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4657
4658 dst += cur;
4659 len -= cur;
4660 offset = 0;
4661 i++;
4662 }
4663}
d1310b2e
CM
4664
4665int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4666 unsigned long min_len, char **map,
d1310b2e 4667 unsigned long *map_start,
a6591715 4668 unsigned long *map_len)
d1310b2e
CM
4669{
4670 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4671 char *kaddr;
4672 struct page *p;
4673 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4674 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4675 unsigned long end_i = (start_offset + start + min_len - 1) >>
4676 PAGE_CACHE_SHIFT;
4677
4678 if (i != end_i)
4679 return -EINVAL;
4680
4681 if (i == 0) {
4682 offset = start_offset;
4683 *map_start = 0;
4684 } else {
4685 offset = 0;
4686 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4687 }
d397712b 4688
d1310b2e 4689 if (start + min_len > eb->len) {
d397712b
CM
4690 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4691 "wanted %lu %lu\n", (unsigned long long)eb->start,
4692 eb->len, start, min_len);
d1310b2e 4693 WARN_ON(1);
85026533 4694 return -EINVAL;
d1310b2e
CM
4695 }
4696
4697 p = extent_buffer_page(eb, i);
a6591715 4698 kaddr = page_address(p);
d1310b2e
CM
4699 *map = kaddr + offset;
4700 *map_len = PAGE_CACHE_SIZE - offset;
4701 return 0;
4702}
d1310b2e 4703
d1310b2e
CM
4704int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4705 unsigned long start,
4706 unsigned long len)
4707{
4708 size_t cur;
4709 size_t offset;
4710 struct page *page;
4711 char *kaddr;
4712 char *ptr = (char *)ptrv;
4713 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4714 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4715 int ret = 0;
4716
4717 WARN_ON(start > eb->len);
4718 WARN_ON(start + len > eb->start + eb->len);
4719
4720 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4721
d397712b 4722 while (len > 0) {
d1310b2e 4723 page = extent_buffer_page(eb, i);
d1310b2e
CM
4724
4725 cur = min(len, (PAGE_CACHE_SIZE - offset));
4726
a6591715 4727 kaddr = page_address(page);
d1310b2e 4728 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4729 if (ret)
4730 break;
4731
4732 ptr += cur;
4733 len -= cur;
4734 offset = 0;
4735 i++;
4736 }
4737 return ret;
4738}
d1310b2e
CM
4739
4740void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4741 unsigned long start, unsigned long len)
4742{
4743 size_t cur;
4744 size_t offset;
4745 struct page *page;
4746 char *kaddr;
4747 char *src = (char *)srcv;
4748 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4749 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4750
4751 WARN_ON(start > eb->len);
4752 WARN_ON(start + len > eb->start + eb->len);
4753
4754 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4755
d397712b 4756 while (len > 0) {
d1310b2e
CM
4757 page = extent_buffer_page(eb, i);
4758 WARN_ON(!PageUptodate(page));
4759
4760 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4761 kaddr = page_address(page);
d1310b2e 4762 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4763
4764 src += cur;
4765 len -= cur;
4766 offset = 0;
4767 i++;
4768 }
4769}
d1310b2e
CM
4770
4771void memset_extent_buffer(struct extent_buffer *eb, char c,
4772 unsigned long start, unsigned long len)
4773{
4774 size_t cur;
4775 size_t offset;
4776 struct page *page;
4777 char *kaddr;
4778 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4779 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4780
4781 WARN_ON(start > eb->len);
4782 WARN_ON(start + len > eb->start + eb->len);
4783
4784 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4785
d397712b 4786 while (len > 0) {
d1310b2e
CM
4787 page = extent_buffer_page(eb, i);
4788 WARN_ON(!PageUptodate(page));
4789
4790 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4791 kaddr = page_address(page);
d1310b2e 4792 memset(kaddr + offset, c, cur);
d1310b2e
CM
4793
4794 len -= cur;
4795 offset = 0;
4796 i++;
4797 }
4798}
d1310b2e
CM
4799
4800void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4801 unsigned long dst_offset, unsigned long src_offset,
4802 unsigned long len)
4803{
4804 u64 dst_len = dst->len;
4805 size_t cur;
4806 size_t offset;
4807 struct page *page;
4808 char *kaddr;
4809 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4810 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4811
4812 WARN_ON(src->len != dst_len);
4813
4814 offset = (start_offset + dst_offset) &
4815 ((unsigned long)PAGE_CACHE_SIZE - 1);
4816
d397712b 4817 while (len > 0) {
d1310b2e
CM
4818 page = extent_buffer_page(dst, i);
4819 WARN_ON(!PageUptodate(page));
4820
4821 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4822
a6591715 4823 kaddr = page_address(page);
d1310b2e 4824 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4825
4826 src_offset += cur;
4827 len -= cur;
4828 offset = 0;
4829 i++;
4830 }
4831}
d1310b2e
CM
4832
4833static void move_pages(struct page *dst_page, struct page *src_page,
4834 unsigned long dst_off, unsigned long src_off,
4835 unsigned long len)
4836{
a6591715 4837 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4838 if (dst_page == src_page) {
4839 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4840 } else {
a6591715 4841 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4842 char *p = dst_kaddr + dst_off + len;
4843 char *s = src_kaddr + src_off + len;
4844
4845 while (len--)
4846 *--p = *--s;
d1310b2e 4847 }
d1310b2e
CM
4848}
4849
3387206f
ST
4850static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4851{
4852 unsigned long distance = (src > dst) ? src - dst : dst - src;
4853 return distance < len;
4854}
4855
d1310b2e
CM
4856static void copy_pages(struct page *dst_page, struct page *src_page,
4857 unsigned long dst_off, unsigned long src_off,
4858 unsigned long len)
4859{
a6591715 4860 char *dst_kaddr = page_address(dst_page);
d1310b2e 4861 char *src_kaddr;
727011e0 4862 int must_memmove = 0;
d1310b2e 4863
3387206f 4864 if (dst_page != src_page) {
a6591715 4865 src_kaddr = page_address(src_page);
3387206f 4866 } else {
d1310b2e 4867 src_kaddr = dst_kaddr;
727011e0
CM
4868 if (areas_overlap(src_off, dst_off, len))
4869 must_memmove = 1;
3387206f 4870 }
d1310b2e 4871
727011e0
CM
4872 if (must_memmove)
4873 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4874 else
4875 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4876}
4877
4878void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4879 unsigned long src_offset, unsigned long len)
4880{
4881 size_t cur;
4882 size_t dst_off_in_page;
4883 size_t src_off_in_page;
4884 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4885 unsigned long dst_i;
4886 unsigned long src_i;
4887
4888 if (src_offset + len > dst->len) {
d397712b
CM
4889 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4890 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4891 BUG_ON(1);
4892 }
4893 if (dst_offset + len > dst->len) {
d397712b
CM
4894 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4895 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4896 BUG_ON(1);
4897 }
4898
d397712b 4899 while (len > 0) {
d1310b2e
CM
4900 dst_off_in_page = (start_offset + dst_offset) &
4901 ((unsigned long)PAGE_CACHE_SIZE - 1);
4902 src_off_in_page = (start_offset + src_offset) &
4903 ((unsigned long)PAGE_CACHE_SIZE - 1);
4904
4905 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4906 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4907
4908 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4909 src_off_in_page));
4910 cur = min_t(unsigned long, cur,
4911 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4912
4913 copy_pages(extent_buffer_page(dst, dst_i),
4914 extent_buffer_page(dst, src_i),
4915 dst_off_in_page, src_off_in_page, cur);
4916
4917 src_offset += cur;
4918 dst_offset += cur;
4919 len -= cur;
4920 }
4921}
d1310b2e
CM
4922
4923void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4924 unsigned long src_offset, unsigned long len)
4925{
4926 size_t cur;
4927 size_t dst_off_in_page;
4928 size_t src_off_in_page;
4929 unsigned long dst_end = dst_offset + len - 1;
4930 unsigned long src_end = src_offset + len - 1;
4931 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4932 unsigned long dst_i;
4933 unsigned long src_i;
4934
4935 if (src_offset + len > dst->len) {
d397712b
CM
4936 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4937 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4938 BUG_ON(1);
4939 }
4940 if (dst_offset + len > dst->len) {
d397712b
CM
4941 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4942 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4943 BUG_ON(1);
4944 }
727011e0 4945 if (dst_offset < src_offset) {
d1310b2e
CM
4946 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4947 return;
4948 }
d397712b 4949 while (len > 0) {
d1310b2e
CM
4950 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4951 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4952
4953 dst_off_in_page = (start_offset + dst_end) &
4954 ((unsigned long)PAGE_CACHE_SIZE - 1);
4955 src_off_in_page = (start_offset + src_end) &
4956 ((unsigned long)PAGE_CACHE_SIZE - 1);
4957
4958 cur = min_t(unsigned long, len, src_off_in_page + 1);
4959 cur = min(cur, dst_off_in_page + 1);
4960 move_pages(extent_buffer_page(dst, dst_i),
4961 extent_buffer_page(dst, src_i),
4962 dst_off_in_page - cur + 1,
4963 src_off_in_page - cur + 1, cur);
4964
4965 dst_end -= cur;
4966 src_end -= cur;
4967 len -= cur;
4968 }
4969}
6af118ce 4970
3083ee2e 4971int try_release_extent_buffer(struct page *page, gfp_t mask)
19fe0a8b 4972{
6af118ce 4973 struct extent_buffer *eb;
6af118ce 4974
3083ee2e
JB
4975 /*
4976 * We need to make sure noboody is attaching this page to an eb right
4977 * now.
4978 */
4979 spin_lock(&page->mapping->private_lock);
4980 if (!PagePrivate(page)) {
4981 spin_unlock(&page->mapping->private_lock);
4f2de97a 4982 return 1;
45f49bce 4983 }
6af118ce 4984
3083ee2e
JB
4985 eb = (struct extent_buffer *)page->private;
4986 BUG_ON(!eb);
19fe0a8b
MX
4987
4988 /*
3083ee2e
JB
4989 * This is a little awful but should be ok, we need to make sure that
4990 * the eb doesn't disappear out from under us while we're looking at
4991 * this page.
19fe0a8b 4992 */
3083ee2e 4993 spin_lock(&eb->refs_lock);
0b32f4bb 4994 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4995 spin_unlock(&eb->refs_lock);
4996 spin_unlock(&page->mapping->private_lock);
4997 return 0;
b9473439 4998 }
3083ee2e 4999 spin_unlock(&page->mapping->private_lock);
897ca6e9 5000
3083ee2e
JB
5001 if ((mask & GFP_NOFS) == GFP_NOFS)
5002 mask = GFP_NOFS;
19fe0a8b 5003
19fe0a8b 5004 /*
3083ee2e
JB
5005 * If tree ref isn't set then we know the ref on this eb is a real ref,
5006 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5007 */
3083ee2e
JB
5008 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5009 spin_unlock(&eb->refs_lock);
5010 return 0;
b9473439 5011 }
19fe0a8b 5012
e64860aa 5013 return release_extent_buffer(eb, mask);
6af118ce 5014}