Btrfs: add missing extent state caching calls
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
c1c9ff7c
GU
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
6d49ba1b
ES
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
c1c9ff7c
GU
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78}
8d599ae1
DS
79
80#define btrfs_debug_check_extent_io_range(inode, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct inode *inode, u64 start, u64 end)
84{
85 u64 isize = i_size_read(inode);
86
87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 printk_ratelimited(KERN_DEBUG
89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 90 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
91 }
92}
6d49ba1b
ES
93#else
94#define btrfs_leak_debug_add(new, head) do {} while (0)
95#define btrfs_leak_debug_del(entry) do {} while (0)
96#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 97#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 98#endif
d1310b2e 99
d1310b2e
CM
100#define BUFFER_LRU_MAX 64
101
102struct tree_entry {
103 u64 start;
104 u64 end;
d1310b2e
CM
105 struct rb_node rb_node;
106};
107
108struct extent_page_data {
109 struct bio *bio;
110 struct extent_io_tree *tree;
111 get_extent_t *get_extent;
de0022b9 112 unsigned long bio_flags;
771ed689
CM
113
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
ffbd517d
CM
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use a WRITE_SYNC */
120 unsigned int sync_io:1;
d1310b2e
CM
121};
122
0b32f4bb 123static noinline void flush_write_bio(void *data);
c2d904e0
JM
124static inline struct btrfs_fs_info *
125tree_fs_info(struct extent_io_tree *tree)
126{
127 return btrfs_sb(tree->mapping->host->i_sb);
128}
0b32f4bb 129
d1310b2e
CM
130int __init extent_io_init(void)
131{
837e1972 132 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
133 sizeof(struct extent_state), 0,
134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
135 if (!extent_state_cache)
136 return -ENOMEM;
137
837e1972 138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
139 sizeof(struct extent_buffer), 0,
140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
141 if (!extent_buffer_cache)
142 goto free_state_cache;
9be3395b
CM
143
144 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 offsetof(struct btrfs_io_bio, bio));
146 if (!btrfs_bioset)
147 goto free_buffer_cache;
b208c2f7
DW
148
149 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
150 goto free_bioset;
151
d1310b2e
CM
152 return 0;
153
b208c2f7
DW
154free_bioset:
155 bioset_free(btrfs_bioset);
156 btrfs_bioset = NULL;
157
9be3395b
CM
158free_buffer_cache:
159 kmem_cache_destroy(extent_buffer_cache);
160 extent_buffer_cache = NULL;
161
d1310b2e
CM
162free_state_cache:
163 kmem_cache_destroy(extent_state_cache);
9be3395b 164 extent_state_cache = NULL;
d1310b2e
CM
165 return -ENOMEM;
166}
167
168void extent_io_exit(void)
169{
6d49ba1b 170 btrfs_leak_debug_check();
8c0a8537
KS
171
172 /*
173 * Make sure all delayed rcu free are flushed before we
174 * destroy caches.
175 */
176 rcu_barrier();
d1310b2e
CM
177 if (extent_state_cache)
178 kmem_cache_destroy(extent_state_cache);
179 if (extent_buffer_cache)
180 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
181 if (btrfs_bioset)
182 bioset_free(btrfs_bioset);
d1310b2e
CM
183}
184
185void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 186 struct address_space *mapping)
d1310b2e 187{
6bef4d31 188 tree->state = RB_ROOT;
19fe0a8b 189 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
190 tree->ops = NULL;
191 tree->dirty_bytes = 0;
70dec807 192 spin_lock_init(&tree->lock);
6af118ce 193 spin_lock_init(&tree->buffer_lock);
d1310b2e 194 tree->mapping = mapping;
d1310b2e 195}
d1310b2e 196
b2950863 197static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
198{
199 struct extent_state *state;
d1310b2e
CM
200
201 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 202 if (!state)
d1310b2e
CM
203 return state;
204 state->state = 0;
d1310b2e 205 state->private = 0;
70dec807 206 state->tree = NULL;
6d49ba1b 207 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
208 atomic_set(&state->refs, 1);
209 init_waitqueue_head(&state->wq);
143bede5 210 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
211 return state;
212}
d1310b2e 213
4845e44f 214void free_extent_state(struct extent_state *state)
d1310b2e 215{
d1310b2e
CM
216 if (!state)
217 return;
218 if (atomic_dec_and_test(&state->refs)) {
70dec807 219 WARN_ON(state->tree);
6d49ba1b 220 btrfs_leak_debug_del(&state->leak_list);
143bede5 221 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
222 kmem_cache_free(extent_state_cache, state);
223 }
224}
d1310b2e
CM
225
226static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
227 struct rb_node *node)
228{
d397712b
CM
229 struct rb_node **p = &root->rb_node;
230 struct rb_node *parent = NULL;
d1310b2e
CM
231 struct tree_entry *entry;
232
d397712b 233 while (*p) {
d1310b2e
CM
234 parent = *p;
235 entry = rb_entry(parent, struct tree_entry, rb_node);
236
237 if (offset < entry->start)
238 p = &(*p)->rb_left;
239 else if (offset > entry->end)
240 p = &(*p)->rb_right;
241 else
242 return parent;
243 }
244
d1310b2e
CM
245 rb_link_node(node, parent, p);
246 rb_insert_color(node, root);
247 return NULL;
248}
249
80ea96b1 250static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
251 struct rb_node **prev_ret,
252 struct rb_node **next_ret)
253{
80ea96b1 254 struct rb_root *root = &tree->state;
d397712b 255 struct rb_node *n = root->rb_node;
d1310b2e
CM
256 struct rb_node *prev = NULL;
257 struct rb_node *orig_prev = NULL;
258 struct tree_entry *entry;
259 struct tree_entry *prev_entry = NULL;
260
d397712b 261 while (n) {
d1310b2e
CM
262 entry = rb_entry(n, struct tree_entry, rb_node);
263 prev = n;
264 prev_entry = entry;
265
266 if (offset < entry->start)
267 n = n->rb_left;
268 else if (offset > entry->end)
269 n = n->rb_right;
d397712b 270 else
d1310b2e
CM
271 return n;
272 }
273
274 if (prev_ret) {
275 orig_prev = prev;
d397712b 276 while (prev && offset > prev_entry->end) {
d1310b2e
CM
277 prev = rb_next(prev);
278 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
279 }
280 *prev_ret = prev;
281 prev = orig_prev;
282 }
283
284 if (next_ret) {
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 286 while (prev && offset < prev_entry->start) {
d1310b2e
CM
287 prev = rb_prev(prev);
288 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
289 }
290 *next_ret = prev;
291 }
292 return NULL;
293}
294
80ea96b1
CM
295static inline struct rb_node *tree_search(struct extent_io_tree *tree,
296 u64 offset)
d1310b2e 297{
70dec807 298 struct rb_node *prev = NULL;
d1310b2e 299 struct rb_node *ret;
70dec807 300
80ea96b1 301 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 302 if (!ret)
d1310b2e
CM
303 return prev;
304 return ret;
305}
306
9ed74f2d
JB
307static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
308 struct extent_state *other)
309{
310 if (tree->ops && tree->ops->merge_extent_hook)
311 tree->ops->merge_extent_hook(tree->mapping->host, new,
312 other);
313}
314
d1310b2e
CM
315/*
316 * utility function to look for merge candidates inside a given range.
317 * Any extents with matching state are merged together into a single
318 * extent in the tree. Extents with EXTENT_IO in their state field
319 * are not merged because the end_io handlers need to be able to do
320 * operations on them without sleeping (or doing allocations/splits).
321 *
322 * This should be called with the tree lock held.
323 */
1bf85046
JM
324static void merge_state(struct extent_io_tree *tree,
325 struct extent_state *state)
d1310b2e
CM
326{
327 struct extent_state *other;
328 struct rb_node *other_node;
329
5b21f2ed 330 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 331 return;
d1310b2e
CM
332
333 other_node = rb_prev(&state->rb_node);
334 if (other_node) {
335 other = rb_entry(other_node, struct extent_state, rb_node);
336 if (other->end == state->start - 1 &&
337 other->state == state->state) {
9ed74f2d 338 merge_cb(tree, state, other);
d1310b2e 339 state->start = other->start;
70dec807 340 other->tree = NULL;
d1310b2e
CM
341 rb_erase(&other->rb_node, &tree->state);
342 free_extent_state(other);
343 }
344 }
345 other_node = rb_next(&state->rb_node);
346 if (other_node) {
347 other = rb_entry(other_node, struct extent_state, rb_node);
348 if (other->start == state->end + 1 &&
349 other->state == state->state) {
9ed74f2d 350 merge_cb(tree, state, other);
df98b6e2
JB
351 state->end = other->end;
352 other->tree = NULL;
353 rb_erase(&other->rb_node, &tree->state);
354 free_extent_state(other);
d1310b2e
CM
355 }
356 }
d1310b2e
CM
357}
358
1bf85046 359static void set_state_cb(struct extent_io_tree *tree,
41074888 360 struct extent_state *state, unsigned long *bits)
291d673e 361{
1bf85046
JM
362 if (tree->ops && tree->ops->set_bit_hook)
363 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
364}
365
366static void clear_state_cb(struct extent_io_tree *tree,
41074888 367 struct extent_state *state, unsigned long *bits)
291d673e 368{
9ed74f2d
JB
369 if (tree->ops && tree->ops->clear_bit_hook)
370 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
371}
372
3150b699 373static void set_state_bits(struct extent_io_tree *tree,
41074888 374 struct extent_state *state, unsigned long *bits);
3150b699 375
d1310b2e
CM
376/*
377 * insert an extent_state struct into the tree. 'bits' are set on the
378 * struct before it is inserted.
379 *
380 * This may return -EEXIST if the extent is already there, in which case the
381 * state struct is freed.
382 *
383 * The tree lock is not taken internally. This is a utility function and
384 * probably isn't what you want to call (see set/clear_extent_bit).
385 */
386static int insert_state(struct extent_io_tree *tree,
387 struct extent_state *state, u64 start, u64 end,
41074888 388 unsigned long *bits)
d1310b2e
CM
389{
390 struct rb_node *node;
391
31b1a2bd
JL
392 if (end < start)
393 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
c1c9ff7c 394 end, start);
d1310b2e
CM
395 state->start = start;
396 state->end = end;
9ed74f2d 397
3150b699
XG
398 set_state_bits(tree, state, bits);
399
d1310b2e
CM
400 node = tree_insert(&tree->state, end, &state->rb_node);
401 if (node) {
402 struct extent_state *found;
403 found = rb_entry(node, struct extent_state, rb_node);
d397712b 404 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
c1c9ff7c
GU
405 "%llu %llu\n",
406 found->start, found->end, start, end);
d1310b2e
CM
407 return -EEXIST;
408 }
70dec807 409 state->tree = tree;
d1310b2e
CM
410 merge_state(tree, state);
411 return 0;
412}
413
1bf85046 414static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
415 u64 split)
416{
417 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 418 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
419}
420
d1310b2e
CM
421/*
422 * split a given extent state struct in two, inserting the preallocated
423 * struct 'prealloc' as the newly created second half. 'split' indicates an
424 * offset inside 'orig' where it should be split.
425 *
426 * Before calling,
427 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
428 * are two extent state structs in the tree:
429 * prealloc: [orig->start, split - 1]
430 * orig: [ split, orig->end ]
431 *
432 * The tree locks are not taken by this function. They need to be held
433 * by the caller.
434 */
435static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
436 struct extent_state *prealloc, u64 split)
437{
438 struct rb_node *node;
9ed74f2d
JB
439
440 split_cb(tree, orig, split);
441
d1310b2e
CM
442 prealloc->start = orig->start;
443 prealloc->end = split - 1;
444 prealloc->state = orig->state;
445 orig->start = split;
446
447 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
448 if (node) {
d1310b2e
CM
449 free_extent_state(prealloc);
450 return -EEXIST;
451 }
70dec807 452 prealloc->tree = tree;
d1310b2e
CM
453 return 0;
454}
455
cdc6a395
LZ
456static struct extent_state *next_state(struct extent_state *state)
457{
458 struct rb_node *next = rb_next(&state->rb_node);
459 if (next)
460 return rb_entry(next, struct extent_state, rb_node);
461 else
462 return NULL;
463}
464
d1310b2e
CM
465/*
466 * utility function to clear some bits in an extent state struct.
1b303fc0 467 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
468 *
469 * If no bits are set on the state struct after clearing things, the
470 * struct is freed and removed from the tree
471 */
cdc6a395
LZ
472static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
473 struct extent_state *state,
41074888 474 unsigned long *bits, int wake)
d1310b2e 475{
cdc6a395 476 struct extent_state *next;
41074888 477 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 478
0ca1f7ce 479 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
480 u64 range = state->end - state->start + 1;
481 WARN_ON(range > tree->dirty_bytes);
482 tree->dirty_bytes -= range;
483 }
291d673e 484 clear_state_cb(tree, state, bits);
32c00aff 485 state->state &= ~bits_to_clear;
d1310b2e
CM
486 if (wake)
487 wake_up(&state->wq);
0ca1f7ce 488 if (state->state == 0) {
cdc6a395 489 next = next_state(state);
70dec807 490 if (state->tree) {
d1310b2e 491 rb_erase(&state->rb_node, &tree->state);
70dec807 492 state->tree = NULL;
d1310b2e
CM
493 free_extent_state(state);
494 } else {
495 WARN_ON(1);
496 }
497 } else {
498 merge_state(tree, state);
cdc6a395 499 next = next_state(state);
d1310b2e 500 }
cdc6a395 501 return next;
d1310b2e
CM
502}
503
8233767a
XG
504static struct extent_state *
505alloc_extent_state_atomic(struct extent_state *prealloc)
506{
507 if (!prealloc)
508 prealloc = alloc_extent_state(GFP_ATOMIC);
509
510 return prealloc;
511}
512
48a3b636 513static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
514{
515 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
516 "Extent tree was modified by another "
517 "thread while locked.");
518}
519
d1310b2e
CM
520/*
521 * clear some bits on a range in the tree. This may require splitting
522 * or inserting elements in the tree, so the gfp mask is used to
523 * indicate which allocations or sleeping are allowed.
524 *
525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
526 * the given range from the tree regardless of state (ie for truncate).
527 *
528 * the range [start, end] is inclusive.
529 *
6763af84 530 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
531 */
532int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 533 unsigned long bits, int wake, int delete,
2c64c53d
CM
534 struct extent_state **cached_state,
535 gfp_t mask)
d1310b2e
CM
536{
537 struct extent_state *state;
2c64c53d 538 struct extent_state *cached;
d1310b2e
CM
539 struct extent_state *prealloc = NULL;
540 struct rb_node *node;
5c939df5 541 u64 last_end;
d1310b2e 542 int err;
2ac55d41 543 int clear = 0;
d1310b2e 544
8d599ae1
DS
545 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
546
7ee9e440
JB
547 if (bits & EXTENT_DELALLOC)
548 bits |= EXTENT_NORESERVE;
549
0ca1f7ce
YZ
550 if (delete)
551 bits |= ~EXTENT_CTLBITS;
552 bits |= EXTENT_FIRST_DELALLOC;
553
2ac55d41
JB
554 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
555 clear = 1;
d1310b2e
CM
556again:
557 if (!prealloc && (mask & __GFP_WAIT)) {
558 prealloc = alloc_extent_state(mask);
559 if (!prealloc)
560 return -ENOMEM;
561 }
562
cad321ad 563 spin_lock(&tree->lock);
2c64c53d
CM
564 if (cached_state) {
565 cached = *cached_state;
2ac55d41
JB
566
567 if (clear) {
568 *cached_state = NULL;
569 cached_state = NULL;
570 }
571
df98b6e2
JB
572 if (cached && cached->tree && cached->start <= start &&
573 cached->end > start) {
2ac55d41
JB
574 if (clear)
575 atomic_dec(&cached->refs);
2c64c53d 576 state = cached;
42daec29 577 goto hit_next;
2c64c53d 578 }
2ac55d41
JB
579 if (clear)
580 free_extent_state(cached);
2c64c53d 581 }
d1310b2e
CM
582 /*
583 * this search will find the extents that end after
584 * our range starts
585 */
80ea96b1 586 node = tree_search(tree, start);
d1310b2e
CM
587 if (!node)
588 goto out;
589 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 590hit_next:
d1310b2e
CM
591 if (state->start > end)
592 goto out;
593 WARN_ON(state->end < start);
5c939df5 594 last_end = state->end;
d1310b2e 595
0449314a 596 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
597 if (!(state->state & bits)) {
598 state = next_state(state);
0449314a 599 goto next;
cdc6a395 600 }
0449314a 601
d1310b2e
CM
602 /*
603 * | ---- desired range ---- |
604 * | state | or
605 * | ------------- state -------------- |
606 *
607 * We need to split the extent we found, and may flip
608 * bits on second half.
609 *
610 * If the extent we found extends past our range, we
611 * just split and search again. It'll get split again
612 * the next time though.
613 *
614 * If the extent we found is inside our range, we clear
615 * the desired bit on it.
616 */
617
618 if (state->start < start) {
8233767a
XG
619 prealloc = alloc_extent_state_atomic(prealloc);
620 BUG_ON(!prealloc);
d1310b2e 621 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
622 if (err)
623 extent_io_tree_panic(tree, err);
624
d1310b2e
CM
625 prealloc = NULL;
626 if (err)
627 goto out;
628 if (state->end <= end) {
d1ac6e41
LB
629 state = clear_state_bit(tree, state, &bits, wake);
630 goto next;
d1310b2e
CM
631 }
632 goto search_again;
633 }
634 /*
635 * | ---- desired range ---- |
636 * | state |
637 * We need to split the extent, and clear the bit
638 * on the first half
639 */
640 if (state->start <= end && state->end > end) {
8233767a
XG
641 prealloc = alloc_extent_state_atomic(prealloc);
642 BUG_ON(!prealloc);
d1310b2e 643 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
644 if (err)
645 extent_io_tree_panic(tree, err);
646
d1310b2e
CM
647 if (wake)
648 wake_up(&state->wq);
42daec29 649
6763af84 650 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 651
d1310b2e
CM
652 prealloc = NULL;
653 goto out;
654 }
42daec29 655
cdc6a395 656 state = clear_state_bit(tree, state, &bits, wake);
0449314a 657next:
5c939df5
YZ
658 if (last_end == (u64)-1)
659 goto out;
660 start = last_end + 1;
cdc6a395 661 if (start <= end && state && !need_resched())
692e5759 662 goto hit_next;
d1310b2e
CM
663 goto search_again;
664
665out:
cad321ad 666 spin_unlock(&tree->lock);
d1310b2e
CM
667 if (prealloc)
668 free_extent_state(prealloc);
669
6763af84 670 return 0;
d1310b2e
CM
671
672search_again:
673 if (start > end)
674 goto out;
cad321ad 675 spin_unlock(&tree->lock);
d1310b2e
CM
676 if (mask & __GFP_WAIT)
677 cond_resched();
678 goto again;
679}
d1310b2e 680
143bede5
JM
681static void wait_on_state(struct extent_io_tree *tree,
682 struct extent_state *state)
641f5219
CH
683 __releases(tree->lock)
684 __acquires(tree->lock)
d1310b2e
CM
685{
686 DEFINE_WAIT(wait);
687 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 688 spin_unlock(&tree->lock);
d1310b2e 689 schedule();
cad321ad 690 spin_lock(&tree->lock);
d1310b2e 691 finish_wait(&state->wq, &wait);
d1310b2e
CM
692}
693
694/*
695 * waits for one or more bits to clear on a range in the state tree.
696 * The range [start, end] is inclusive.
697 * The tree lock is taken by this function
698 */
41074888
DS
699static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700 unsigned long bits)
d1310b2e
CM
701{
702 struct extent_state *state;
703 struct rb_node *node;
704
8d599ae1
DS
705 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
706
cad321ad 707 spin_lock(&tree->lock);
d1310b2e
CM
708again:
709 while (1) {
710 /*
711 * this search will find all the extents that end after
712 * our range starts
713 */
80ea96b1 714 node = tree_search(tree, start);
d1310b2e
CM
715 if (!node)
716 break;
717
718 state = rb_entry(node, struct extent_state, rb_node);
719
720 if (state->start > end)
721 goto out;
722
723 if (state->state & bits) {
724 start = state->start;
725 atomic_inc(&state->refs);
726 wait_on_state(tree, state);
727 free_extent_state(state);
728 goto again;
729 }
730 start = state->end + 1;
731
732 if (start > end)
733 break;
734
ded91f08 735 cond_resched_lock(&tree->lock);
d1310b2e
CM
736 }
737out:
cad321ad 738 spin_unlock(&tree->lock);
d1310b2e 739}
d1310b2e 740
1bf85046 741static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 742 struct extent_state *state,
41074888 743 unsigned long *bits)
d1310b2e 744{
41074888 745 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 746
1bf85046 747 set_state_cb(tree, state, bits);
0ca1f7ce 748 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
749 u64 range = state->end - state->start + 1;
750 tree->dirty_bytes += range;
751 }
0ca1f7ce 752 state->state |= bits_to_set;
d1310b2e
CM
753}
754
2c64c53d
CM
755static void cache_state(struct extent_state *state,
756 struct extent_state **cached_ptr)
757{
758 if (cached_ptr && !(*cached_ptr)) {
759 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
760 *cached_ptr = state;
761 atomic_inc(&state->refs);
762 }
763 }
764}
765
d1310b2e 766/*
1edbb734
CM
767 * set some bits on a range in the tree. This may require allocations or
768 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 769 *
1edbb734
CM
770 * If any of the exclusive bits are set, this will fail with -EEXIST if some
771 * part of the range already has the desired bits set. The start of the
772 * existing range is returned in failed_start in this case.
d1310b2e 773 *
1edbb734 774 * [start, end] is inclusive This takes the tree lock.
d1310b2e 775 */
1edbb734 776
3fbe5c02
JM
777static int __must_check
778__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
779 unsigned long bits, unsigned long exclusive_bits,
780 u64 *failed_start, struct extent_state **cached_state,
781 gfp_t mask)
d1310b2e
CM
782{
783 struct extent_state *state;
784 struct extent_state *prealloc = NULL;
785 struct rb_node *node;
d1310b2e 786 int err = 0;
d1310b2e
CM
787 u64 last_start;
788 u64 last_end;
42daec29 789
8d599ae1
DS
790 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
791
0ca1f7ce 792 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
793again:
794 if (!prealloc && (mask & __GFP_WAIT)) {
795 prealloc = alloc_extent_state(mask);
8233767a 796 BUG_ON(!prealloc);
d1310b2e
CM
797 }
798
cad321ad 799 spin_lock(&tree->lock);
9655d298
CM
800 if (cached_state && *cached_state) {
801 state = *cached_state;
df98b6e2
JB
802 if (state->start <= start && state->end > start &&
803 state->tree) {
9655d298
CM
804 node = &state->rb_node;
805 goto hit_next;
806 }
807 }
d1310b2e
CM
808 /*
809 * this search will find all the extents that end after
810 * our range starts.
811 */
80ea96b1 812 node = tree_search(tree, start);
d1310b2e 813 if (!node) {
8233767a
XG
814 prealloc = alloc_extent_state_atomic(prealloc);
815 BUG_ON(!prealloc);
0ca1f7ce 816 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
817 if (err)
818 extent_io_tree_panic(tree, err);
819
c42ac0bc 820 cache_state(prealloc, cached_state);
d1310b2e 821 prealloc = NULL;
d1310b2e
CM
822 goto out;
823 }
d1310b2e 824 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 825hit_next:
d1310b2e
CM
826 last_start = state->start;
827 last_end = state->end;
828
829 /*
830 * | ---- desired range ---- |
831 * | state |
832 *
833 * Just lock what we found and keep going
834 */
835 if (state->start == start && state->end <= end) {
1edbb734 836 if (state->state & exclusive_bits) {
d1310b2e
CM
837 *failed_start = state->start;
838 err = -EEXIST;
839 goto out;
840 }
42daec29 841
1bf85046 842 set_state_bits(tree, state, &bits);
2c64c53d 843 cache_state(state, cached_state);
d1310b2e 844 merge_state(tree, state);
5c939df5
YZ
845 if (last_end == (u64)-1)
846 goto out;
847 start = last_end + 1;
d1ac6e41
LB
848 state = next_state(state);
849 if (start < end && state && state->start == start &&
850 !need_resched())
851 goto hit_next;
d1310b2e
CM
852 goto search_again;
853 }
854
855 /*
856 * | ---- desired range ---- |
857 * | state |
858 * or
859 * | ------------- state -------------- |
860 *
861 * We need to split the extent we found, and may flip bits on
862 * second half.
863 *
864 * If the extent we found extends past our
865 * range, we just split and search again. It'll get split
866 * again the next time though.
867 *
868 * If the extent we found is inside our range, we set the
869 * desired bit on it.
870 */
871 if (state->start < start) {
1edbb734 872 if (state->state & exclusive_bits) {
d1310b2e
CM
873 *failed_start = start;
874 err = -EEXIST;
875 goto out;
876 }
8233767a
XG
877
878 prealloc = alloc_extent_state_atomic(prealloc);
879 BUG_ON(!prealloc);
d1310b2e 880 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
881 if (err)
882 extent_io_tree_panic(tree, err);
883
d1310b2e
CM
884 prealloc = NULL;
885 if (err)
886 goto out;
887 if (state->end <= end) {
1bf85046 888 set_state_bits(tree, state, &bits);
2c64c53d 889 cache_state(state, cached_state);
d1310b2e 890 merge_state(tree, state);
5c939df5
YZ
891 if (last_end == (u64)-1)
892 goto out;
893 start = last_end + 1;
d1ac6e41
LB
894 state = next_state(state);
895 if (start < end && state && state->start == start &&
896 !need_resched())
897 goto hit_next;
d1310b2e
CM
898 }
899 goto search_again;
900 }
901 /*
902 * | ---- desired range ---- |
903 * | state | or | state |
904 *
905 * There's a hole, we need to insert something in it and
906 * ignore the extent we found.
907 */
908 if (state->start > start) {
909 u64 this_end;
910 if (end < last_start)
911 this_end = end;
912 else
d397712b 913 this_end = last_start - 1;
8233767a
XG
914
915 prealloc = alloc_extent_state_atomic(prealloc);
916 BUG_ON(!prealloc);
c7f895a2
XG
917
918 /*
919 * Avoid to free 'prealloc' if it can be merged with
920 * the later extent.
921 */
d1310b2e 922 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 923 &bits);
c2d904e0
JM
924 if (err)
925 extent_io_tree_panic(tree, err);
926
9ed74f2d
JB
927 cache_state(prealloc, cached_state);
928 prealloc = NULL;
d1310b2e
CM
929 start = this_end + 1;
930 goto search_again;
931 }
932 /*
933 * | ---- desired range ---- |
934 * | state |
935 * We need to split the extent, and set the bit
936 * on the first half
937 */
938 if (state->start <= end && state->end > end) {
1edbb734 939 if (state->state & exclusive_bits) {
d1310b2e
CM
940 *failed_start = start;
941 err = -EEXIST;
942 goto out;
943 }
8233767a
XG
944
945 prealloc = alloc_extent_state_atomic(prealloc);
946 BUG_ON(!prealloc);
d1310b2e 947 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
948 if (err)
949 extent_io_tree_panic(tree, err);
d1310b2e 950
1bf85046 951 set_state_bits(tree, prealloc, &bits);
2c64c53d 952 cache_state(prealloc, cached_state);
d1310b2e
CM
953 merge_state(tree, prealloc);
954 prealloc = NULL;
955 goto out;
956 }
957
958 goto search_again;
959
960out:
cad321ad 961 spin_unlock(&tree->lock);
d1310b2e
CM
962 if (prealloc)
963 free_extent_state(prealloc);
964
965 return err;
966
967search_again:
968 if (start > end)
969 goto out;
cad321ad 970 spin_unlock(&tree->lock);
d1310b2e
CM
971 if (mask & __GFP_WAIT)
972 cond_resched();
973 goto again;
974}
d1310b2e 975
41074888
DS
976int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
977 unsigned long bits, u64 * failed_start,
978 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
979{
980 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
981 cached_state, mask);
982}
983
984
462d6fac 985/**
10983f2e
LB
986 * convert_extent_bit - convert all bits in a given range from one bit to
987 * another
462d6fac
JB
988 * @tree: the io tree to search
989 * @start: the start offset in bytes
990 * @end: the end offset in bytes (inclusive)
991 * @bits: the bits to set in this range
992 * @clear_bits: the bits to clear in this range
e6138876 993 * @cached_state: state that we're going to cache
462d6fac
JB
994 * @mask: the allocation mask
995 *
996 * This will go through and set bits for the given range. If any states exist
997 * already in this range they are set with the given bit and cleared of the
998 * clear_bits. This is only meant to be used by things that are mergeable, ie
999 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1000 * boundary bits like LOCK.
1001 */
1002int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1003 unsigned long bits, unsigned long clear_bits,
e6138876 1004 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1005{
1006 struct extent_state *state;
1007 struct extent_state *prealloc = NULL;
1008 struct rb_node *node;
1009 int err = 0;
1010 u64 last_start;
1011 u64 last_end;
1012
8d599ae1
DS
1013 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1014
462d6fac
JB
1015again:
1016 if (!prealloc && (mask & __GFP_WAIT)) {
1017 prealloc = alloc_extent_state(mask);
1018 if (!prealloc)
1019 return -ENOMEM;
1020 }
1021
1022 spin_lock(&tree->lock);
e6138876
JB
1023 if (cached_state && *cached_state) {
1024 state = *cached_state;
1025 if (state->start <= start && state->end > start &&
1026 state->tree) {
1027 node = &state->rb_node;
1028 goto hit_next;
1029 }
1030 }
1031
462d6fac
JB
1032 /*
1033 * this search will find all the extents that end after
1034 * our range starts.
1035 */
1036 node = tree_search(tree, start);
1037 if (!node) {
1038 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1039 if (!prealloc) {
1040 err = -ENOMEM;
1041 goto out;
1042 }
462d6fac 1043 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
1044 if (err)
1045 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1046 cache_state(prealloc, cached_state);
1047 prealloc = NULL;
462d6fac
JB
1048 goto out;
1049 }
1050 state = rb_entry(node, struct extent_state, rb_node);
1051hit_next:
1052 last_start = state->start;
1053 last_end = state->end;
1054
1055 /*
1056 * | ---- desired range ---- |
1057 * | state |
1058 *
1059 * Just lock what we found and keep going
1060 */
1061 if (state->start == start && state->end <= end) {
462d6fac 1062 set_state_bits(tree, state, &bits);
e6138876 1063 cache_state(state, cached_state);
d1ac6e41 1064 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1065 if (last_end == (u64)-1)
1066 goto out;
462d6fac 1067 start = last_end + 1;
d1ac6e41
LB
1068 if (start < end && state && state->start == start &&
1069 !need_resched())
1070 goto hit_next;
462d6fac
JB
1071 goto search_again;
1072 }
1073
1074 /*
1075 * | ---- desired range ---- |
1076 * | state |
1077 * or
1078 * | ------------- state -------------- |
1079 *
1080 * We need to split the extent we found, and may flip bits on
1081 * second half.
1082 *
1083 * If the extent we found extends past our
1084 * range, we just split and search again. It'll get split
1085 * again the next time though.
1086 *
1087 * If the extent we found is inside our range, we set the
1088 * desired bit on it.
1089 */
1090 if (state->start < start) {
1091 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1092 if (!prealloc) {
1093 err = -ENOMEM;
1094 goto out;
1095 }
462d6fac 1096 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1097 if (err)
1098 extent_io_tree_panic(tree, err);
462d6fac
JB
1099 prealloc = NULL;
1100 if (err)
1101 goto out;
1102 if (state->end <= end) {
1103 set_state_bits(tree, state, &bits);
e6138876 1104 cache_state(state, cached_state);
d1ac6e41 1105 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1106 if (last_end == (u64)-1)
1107 goto out;
1108 start = last_end + 1;
d1ac6e41
LB
1109 if (start < end && state && state->start == start &&
1110 !need_resched())
1111 goto hit_next;
462d6fac
JB
1112 }
1113 goto search_again;
1114 }
1115 /*
1116 * | ---- desired range ---- |
1117 * | state | or | state |
1118 *
1119 * There's a hole, we need to insert something in it and
1120 * ignore the extent we found.
1121 */
1122 if (state->start > start) {
1123 u64 this_end;
1124 if (end < last_start)
1125 this_end = end;
1126 else
1127 this_end = last_start - 1;
1128
1129 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1130 if (!prealloc) {
1131 err = -ENOMEM;
1132 goto out;
1133 }
462d6fac
JB
1134
1135 /*
1136 * Avoid to free 'prealloc' if it can be merged with
1137 * the later extent.
1138 */
1139 err = insert_state(tree, prealloc, start, this_end,
1140 &bits);
c2d904e0
JM
1141 if (err)
1142 extent_io_tree_panic(tree, err);
e6138876 1143 cache_state(prealloc, cached_state);
462d6fac
JB
1144 prealloc = NULL;
1145 start = this_end + 1;
1146 goto search_again;
1147 }
1148 /*
1149 * | ---- desired range ---- |
1150 * | state |
1151 * We need to split the extent, and set the bit
1152 * on the first half
1153 */
1154 if (state->start <= end && state->end > end) {
1155 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1156 if (!prealloc) {
1157 err = -ENOMEM;
1158 goto out;
1159 }
462d6fac
JB
1160
1161 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1162 if (err)
1163 extent_io_tree_panic(tree, err);
462d6fac
JB
1164
1165 set_state_bits(tree, prealloc, &bits);
e6138876 1166 cache_state(prealloc, cached_state);
462d6fac 1167 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1168 prealloc = NULL;
1169 goto out;
1170 }
1171
1172 goto search_again;
1173
1174out:
1175 spin_unlock(&tree->lock);
1176 if (prealloc)
1177 free_extent_state(prealloc);
1178
1179 return err;
1180
1181search_again:
1182 if (start > end)
1183 goto out;
1184 spin_unlock(&tree->lock);
1185 if (mask & __GFP_WAIT)
1186 cond_resched();
1187 goto again;
1188}
1189
d1310b2e
CM
1190/* wrappers around set/clear extent bit */
1191int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1192 gfp_t mask)
1193{
3fbe5c02 1194 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1195 NULL, mask);
d1310b2e 1196}
d1310b2e
CM
1197
1198int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1199 unsigned long bits, gfp_t mask)
d1310b2e 1200{
3fbe5c02 1201 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1202 NULL, mask);
d1310b2e 1203}
d1310b2e
CM
1204
1205int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1206 unsigned long bits, gfp_t mask)
d1310b2e 1207{
2c64c53d 1208 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1209}
d1310b2e
CM
1210
1211int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1212 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1213{
1214 return set_extent_bit(tree, start, end,
fee187d9 1215 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1216 NULL, cached_state, mask);
d1310b2e 1217}
d1310b2e 1218
9e8a4a8b
LB
1219int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1220 struct extent_state **cached_state, gfp_t mask)
1221{
1222 return set_extent_bit(tree, start, end,
1223 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1224 NULL, cached_state, mask);
1225}
1226
d1310b2e
CM
1227int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1228 gfp_t mask)
1229{
1230 return clear_extent_bit(tree, start, end,
32c00aff 1231 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1232 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1233}
d1310b2e
CM
1234
1235int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1236 gfp_t mask)
1237{
3fbe5c02 1238 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1239 NULL, mask);
d1310b2e 1240}
d1310b2e 1241
d1310b2e 1242int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1243 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1244{
6b67a320 1245 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1246 cached_state, mask);
d1310b2e 1247}
d1310b2e 1248
5fd02043
JB
1249int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1250 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1251{
2c64c53d 1252 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1253 cached_state, mask);
d1310b2e 1254}
d1310b2e 1255
d352ac68
CM
1256/*
1257 * either insert or lock state struct between start and end use mask to tell
1258 * us if waiting is desired.
1259 */
1edbb734 1260int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1261 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1262{
1263 int err;
1264 u64 failed_start;
1265 while (1) {
3fbe5c02
JM
1266 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1267 EXTENT_LOCKED, &failed_start,
1268 cached_state, GFP_NOFS);
d0082371 1269 if (err == -EEXIST) {
d1310b2e
CM
1270 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1271 start = failed_start;
d0082371 1272 } else
d1310b2e 1273 break;
d1310b2e
CM
1274 WARN_ON(start > end);
1275 }
1276 return err;
1277}
d1310b2e 1278
d0082371 1279int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1280{
d0082371 1281 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1282}
1283
d0082371 1284int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1285{
1286 int err;
1287 u64 failed_start;
1288
3fbe5c02
JM
1289 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1290 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1291 if (err == -EEXIST) {
1292 if (failed_start > start)
1293 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1294 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1295 return 0;
6643558d 1296 }
25179201
JB
1297 return 1;
1298}
25179201 1299
2c64c53d
CM
1300int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1301 struct extent_state **cached, gfp_t mask)
1302{
1303 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1304 mask);
1305}
1306
d0082371 1307int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1308{
2c64c53d 1309 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1310 GFP_NOFS);
d1310b2e 1311}
d1310b2e 1312
4adaa611
CM
1313int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1314{
1315 unsigned long index = start >> PAGE_CACHE_SHIFT;
1316 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1317 struct page *page;
1318
1319 while (index <= end_index) {
1320 page = find_get_page(inode->i_mapping, index);
1321 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1322 clear_page_dirty_for_io(page);
1323 page_cache_release(page);
1324 index++;
1325 }
1326 return 0;
1327}
1328
1329int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1330{
1331 unsigned long index = start >> PAGE_CACHE_SHIFT;
1332 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1333 struct page *page;
1334
1335 while (index <= end_index) {
1336 page = find_get_page(inode->i_mapping, index);
1337 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1338 account_page_redirty(page);
1339 __set_page_dirty_nobuffers(page);
1340 page_cache_release(page);
1341 index++;
1342 }
1343 return 0;
1344}
1345
d1310b2e
CM
1346/*
1347 * helper function to set both pages and extents in the tree writeback
1348 */
b2950863 1349static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1350{
1351 unsigned long index = start >> PAGE_CACHE_SHIFT;
1352 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1353 struct page *page;
1354
1355 while (index <= end_index) {
1356 page = find_get_page(tree->mapping, index);
79787eaa 1357 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1358 set_page_writeback(page);
1359 page_cache_release(page);
1360 index++;
1361 }
d1310b2e
CM
1362 return 0;
1363}
d1310b2e 1364
d352ac68
CM
1365/* find the first state struct with 'bits' set after 'start', and
1366 * return it. tree->lock must be held. NULL will returned if
1367 * nothing was found after 'start'
1368 */
48a3b636
ES
1369static struct extent_state *
1370find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1371 u64 start, unsigned long bits)
d7fc640e
CM
1372{
1373 struct rb_node *node;
1374 struct extent_state *state;
1375
1376 /*
1377 * this search will find all the extents that end after
1378 * our range starts.
1379 */
1380 node = tree_search(tree, start);
d397712b 1381 if (!node)
d7fc640e 1382 goto out;
d7fc640e 1383
d397712b 1384 while (1) {
d7fc640e 1385 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1386 if (state->end >= start && (state->state & bits))
d7fc640e 1387 return state;
d397712b 1388
d7fc640e
CM
1389 node = rb_next(node);
1390 if (!node)
1391 break;
1392 }
1393out:
1394 return NULL;
1395}
d7fc640e 1396
69261c4b
XG
1397/*
1398 * find the first offset in the io tree with 'bits' set. zero is
1399 * returned if we find something, and *start_ret and *end_ret are
1400 * set to reflect the state struct that was found.
1401 *
477d7eaf 1402 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1403 */
1404int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1405 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1406 struct extent_state **cached_state)
69261c4b
XG
1407{
1408 struct extent_state *state;
e6138876 1409 struct rb_node *n;
69261c4b
XG
1410 int ret = 1;
1411
1412 spin_lock(&tree->lock);
e6138876
JB
1413 if (cached_state && *cached_state) {
1414 state = *cached_state;
1415 if (state->end == start - 1 && state->tree) {
1416 n = rb_next(&state->rb_node);
1417 while (n) {
1418 state = rb_entry(n, struct extent_state,
1419 rb_node);
1420 if (state->state & bits)
1421 goto got_it;
1422 n = rb_next(n);
1423 }
1424 free_extent_state(*cached_state);
1425 *cached_state = NULL;
1426 goto out;
1427 }
1428 free_extent_state(*cached_state);
1429 *cached_state = NULL;
1430 }
1431
69261c4b 1432 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1433got_it:
69261c4b 1434 if (state) {
e6138876 1435 cache_state(state, cached_state);
69261c4b
XG
1436 *start_ret = state->start;
1437 *end_ret = state->end;
1438 ret = 0;
1439 }
e6138876 1440out:
69261c4b
XG
1441 spin_unlock(&tree->lock);
1442 return ret;
1443}
1444
d352ac68
CM
1445/*
1446 * find a contiguous range of bytes in the file marked as delalloc, not
1447 * more than 'max_bytes'. start and end are used to return the range,
1448 *
1449 * 1 is returned if we find something, 0 if nothing was in the tree
1450 */
c8b97818 1451static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1452 u64 *start, u64 *end, u64 max_bytes,
1453 struct extent_state **cached_state)
d1310b2e
CM
1454{
1455 struct rb_node *node;
1456 struct extent_state *state;
1457 u64 cur_start = *start;
1458 u64 found = 0;
1459 u64 total_bytes = 0;
1460
cad321ad 1461 spin_lock(&tree->lock);
c8b97818 1462
d1310b2e
CM
1463 /*
1464 * this search will find all the extents that end after
1465 * our range starts.
1466 */
80ea96b1 1467 node = tree_search(tree, cur_start);
2b114d1d 1468 if (!node) {
3b951516
CM
1469 if (!found)
1470 *end = (u64)-1;
d1310b2e
CM
1471 goto out;
1472 }
1473
d397712b 1474 while (1) {
d1310b2e 1475 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1476 if (found && (state->start != cur_start ||
1477 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1478 goto out;
1479 }
1480 if (!(state->state & EXTENT_DELALLOC)) {
1481 if (!found)
1482 *end = state->end;
1483 goto out;
1484 }
c2a128d2 1485 if (!found) {
d1310b2e 1486 *start = state->start;
c2a128d2
JB
1487 *cached_state = state;
1488 atomic_inc(&state->refs);
1489 }
d1310b2e
CM
1490 found++;
1491 *end = state->end;
1492 cur_start = state->end + 1;
1493 node = rb_next(node);
d1310b2e 1494 total_bytes += state->end - state->start + 1;
7bf811a5 1495 if (total_bytes >= max_bytes)
573aecaf 1496 break;
573aecaf 1497 if (!node)
d1310b2e
CM
1498 break;
1499 }
1500out:
cad321ad 1501 spin_unlock(&tree->lock);
d1310b2e
CM
1502 return found;
1503}
1504
143bede5
JM
1505static noinline void __unlock_for_delalloc(struct inode *inode,
1506 struct page *locked_page,
1507 u64 start, u64 end)
c8b97818
CM
1508{
1509 int ret;
1510 struct page *pages[16];
1511 unsigned long index = start >> PAGE_CACHE_SHIFT;
1512 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1513 unsigned long nr_pages = end_index - index + 1;
1514 int i;
1515
1516 if (index == locked_page->index && end_index == index)
143bede5 1517 return;
c8b97818 1518
d397712b 1519 while (nr_pages > 0) {
c8b97818 1520 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1521 min_t(unsigned long, nr_pages,
1522 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1523 for (i = 0; i < ret; i++) {
1524 if (pages[i] != locked_page)
1525 unlock_page(pages[i]);
1526 page_cache_release(pages[i]);
1527 }
1528 nr_pages -= ret;
1529 index += ret;
1530 cond_resched();
1531 }
c8b97818
CM
1532}
1533
1534static noinline int lock_delalloc_pages(struct inode *inode,
1535 struct page *locked_page,
1536 u64 delalloc_start,
1537 u64 delalloc_end)
1538{
1539 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1540 unsigned long start_index = index;
1541 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1542 unsigned long pages_locked = 0;
1543 struct page *pages[16];
1544 unsigned long nrpages;
1545 int ret;
1546 int i;
1547
1548 /* the caller is responsible for locking the start index */
1549 if (index == locked_page->index && index == end_index)
1550 return 0;
1551
1552 /* skip the page at the start index */
1553 nrpages = end_index - index + 1;
d397712b 1554 while (nrpages > 0) {
c8b97818 1555 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1556 min_t(unsigned long,
1557 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1558 if (ret == 0) {
1559 ret = -EAGAIN;
1560 goto done;
1561 }
1562 /* now we have an array of pages, lock them all */
1563 for (i = 0; i < ret; i++) {
1564 /*
1565 * the caller is taking responsibility for
1566 * locked_page
1567 */
771ed689 1568 if (pages[i] != locked_page) {
c8b97818 1569 lock_page(pages[i]);
f2b1c41c
CM
1570 if (!PageDirty(pages[i]) ||
1571 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1572 ret = -EAGAIN;
1573 unlock_page(pages[i]);
1574 page_cache_release(pages[i]);
1575 goto done;
1576 }
1577 }
c8b97818 1578 page_cache_release(pages[i]);
771ed689 1579 pages_locked++;
c8b97818 1580 }
c8b97818
CM
1581 nrpages -= ret;
1582 index += ret;
1583 cond_resched();
1584 }
1585 ret = 0;
1586done:
1587 if (ret && pages_locked) {
1588 __unlock_for_delalloc(inode, locked_page,
1589 delalloc_start,
1590 ((u64)(start_index + pages_locked - 1)) <<
1591 PAGE_CACHE_SHIFT);
1592 }
1593 return ret;
1594}
1595
1596/*
1597 * find a contiguous range of bytes in the file marked as delalloc, not
1598 * more than 'max_bytes'. start and end are used to return the range,
1599 *
1600 * 1 is returned if we find something, 0 if nothing was in the tree
1601 */
294e30fe
JB
1602STATIC u64 find_lock_delalloc_range(struct inode *inode,
1603 struct extent_io_tree *tree,
1604 struct page *locked_page, u64 *start,
1605 u64 *end, u64 max_bytes)
c8b97818
CM
1606{
1607 u64 delalloc_start;
1608 u64 delalloc_end;
1609 u64 found;
9655d298 1610 struct extent_state *cached_state = NULL;
c8b97818
CM
1611 int ret;
1612 int loops = 0;
1613
1614again:
1615 /* step one, find a bunch of delalloc bytes starting at start */
1616 delalloc_start = *start;
1617 delalloc_end = 0;
1618 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1619 max_bytes, &cached_state);
70b99e69 1620 if (!found || delalloc_end <= *start) {
c8b97818
CM
1621 *start = delalloc_start;
1622 *end = delalloc_end;
c2a128d2 1623 free_extent_state(cached_state);
385fe0be 1624 return 0;
c8b97818
CM
1625 }
1626
70b99e69
CM
1627 /*
1628 * start comes from the offset of locked_page. We have to lock
1629 * pages in order, so we can't process delalloc bytes before
1630 * locked_page
1631 */
d397712b 1632 if (delalloc_start < *start)
70b99e69 1633 delalloc_start = *start;
70b99e69 1634
c8b97818
CM
1635 /*
1636 * make sure to limit the number of pages we try to lock down
c8b97818 1637 */
7bf811a5
JB
1638 if (delalloc_end + 1 - delalloc_start > max_bytes)
1639 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1640
c8b97818
CM
1641 /* step two, lock all the pages after the page that has start */
1642 ret = lock_delalloc_pages(inode, locked_page,
1643 delalloc_start, delalloc_end);
1644 if (ret == -EAGAIN) {
1645 /* some of the pages are gone, lets avoid looping by
1646 * shortening the size of the delalloc range we're searching
1647 */
9655d298 1648 free_extent_state(cached_state);
c8b97818 1649 if (!loops) {
7bf811a5 1650 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1651 loops = 1;
1652 goto again;
1653 } else {
1654 found = 0;
1655 goto out_failed;
1656 }
1657 }
79787eaa 1658 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1659
1660 /* step three, lock the state bits for the whole range */
d0082371 1661 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1662
1663 /* then test to make sure it is all still delalloc */
1664 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1665 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1666 if (!ret) {
9655d298
CM
1667 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668 &cached_state, GFP_NOFS);
c8b97818
CM
1669 __unlock_for_delalloc(inode, locked_page,
1670 delalloc_start, delalloc_end);
1671 cond_resched();
1672 goto again;
1673 }
9655d298 1674 free_extent_state(cached_state);
c8b97818
CM
1675 *start = delalloc_start;
1676 *end = delalloc_end;
1677out_failed:
1678 return found;
1679}
1680
c2790a2e
JB
1681int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1682 struct page *locked_page,
1683 unsigned long clear_bits,
1684 unsigned long page_ops)
c8b97818 1685{
c2790a2e 1686 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1687 int ret;
1688 struct page *pages[16];
1689 unsigned long index = start >> PAGE_CACHE_SHIFT;
1690 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1691 unsigned long nr_pages = end_index - index + 1;
1692 int i;
771ed689 1693
2c64c53d 1694 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1695 if (page_ops == 0)
771ed689 1696 return 0;
c8b97818 1697
d397712b 1698 while (nr_pages > 0) {
c8b97818 1699 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1700 min_t(unsigned long,
1701 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1702 for (i = 0; i < ret; i++) {
8b62b72b 1703
c2790a2e 1704 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1705 SetPagePrivate2(pages[i]);
1706
c8b97818
CM
1707 if (pages[i] == locked_page) {
1708 page_cache_release(pages[i]);
1709 continue;
1710 }
c2790a2e 1711 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1712 clear_page_dirty_for_io(pages[i]);
c2790a2e 1713 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1714 set_page_writeback(pages[i]);
c2790a2e 1715 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1716 end_page_writeback(pages[i]);
c2790a2e 1717 if (page_ops & PAGE_UNLOCK)
771ed689 1718 unlock_page(pages[i]);
c8b97818
CM
1719 page_cache_release(pages[i]);
1720 }
1721 nr_pages -= ret;
1722 index += ret;
1723 cond_resched();
1724 }
1725 return 0;
1726}
c8b97818 1727
d352ac68
CM
1728/*
1729 * count the number of bytes in the tree that have a given bit(s)
1730 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1731 * cached. The total number found is returned.
1732 */
d1310b2e
CM
1733u64 count_range_bits(struct extent_io_tree *tree,
1734 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1735 unsigned long bits, int contig)
d1310b2e
CM
1736{
1737 struct rb_node *node;
1738 struct extent_state *state;
1739 u64 cur_start = *start;
1740 u64 total_bytes = 0;
ec29ed5b 1741 u64 last = 0;
d1310b2e
CM
1742 int found = 0;
1743
fae7f21c 1744 if (WARN_ON(search_end <= cur_start))
d1310b2e 1745 return 0;
d1310b2e 1746
cad321ad 1747 spin_lock(&tree->lock);
d1310b2e
CM
1748 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1749 total_bytes = tree->dirty_bytes;
1750 goto out;
1751 }
1752 /*
1753 * this search will find all the extents that end after
1754 * our range starts.
1755 */
80ea96b1 1756 node = tree_search(tree, cur_start);
d397712b 1757 if (!node)
d1310b2e 1758 goto out;
d1310b2e 1759
d397712b 1760 while (1) {
d1310b2e
CM
1761 state = rb_entry(node, struct extent_state, rb_node);
1762 if (state->start > search_end)
1763 break;
ec29ed5b
CM
1764 if (contig && found && state->start > last + 1)
1765 break;
1766 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1767 total_bytes += min(search_end, state->end) + 1 -
1768 max(cur_start, state->start);
1769 if (total_bytes >= max_bytes)
1770 break;
1771 if (!found) {
af60bed2 1772 *start = max(cur_start, state->start);
d1310b2e
CM
1773 found = 1;
1774 }
ec29ed5b
CM
1775 last = state->end;
1776 } else if (contig && found) {
1777 break;
d1310b2e
CM
1778 }
1779 node = rb_next(node);
1780 if (!node)
1781 break;
1782 }
1783out:
cad321ad 1784 spin_unlock(&tree->lock);
d1310b2e
CM
1785 return total_bytes;
1786}
b2950863 1787
d352ac68
CM
1788/*
1789 * set the private field for a given byte offset in the tree. If there isn't
1790 * an extent_state there already, this does nothing.
1791 */
171170c1 1792static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1793{
1794 struct rb_node *node;
1795 struct extent_state *state;
1796 int ret = 0;
1797
cad321ad 1798 spin_lock(&tree->lock);
d1310b2e
CM
1799 /*
1800 * this search will find all the extents that end after
1801 * our range starts.
1802 */
80ea96b1 1803 node = tree_search(tree, start);
2b114d1d 1804 if (!node) {
d1310b2e
CM
1805 ret = -ENOENT;
1806 goto out;
1807 }
1808 state = rb_entry(node, struct extent_state, rb_node);
1809 if (state->start != start) {
1810 ret = -ENOENT;
1811 goto out;
1812 }
1813 state->private = private;
1814out:
cad321ad 1815 spin_unlock(&tree->lock);
d1310b2e
CM
1816 return ret;
1817}
1818
1819int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1820{
1821 struct rb_node *node;
1822 struct extent_state *state;
1823 int ret = 0;
1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 /*
1827 * this search will find all the extents that end after
1828 * our range starts.
1829 */
80ea96b1 1830 node = tree_search(tree, start);
2b114d1d 1831 if (!node) {
d1310b2e
CM
1832 ret = -ENOENT;
1833 goto out;
1834 }
1835 state = rb_entry(node, struct extent_state, rb_node);
1836 if (state->start != start) {
1837 ret = -ENOENT;
1838 goto out;
1839 }
1840 *private = state->private;
1841out:
cad321ad 1842 spin_unlock(&tree->lock);
d1310b2e
CM
1843 return ret;
1844}
1845
1846/*
1847 * searches a range in the state tree for a given mask.
70dec807 1848 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1849 * has the bits set. Otherwise, 1 is returned if any bit in the
1850 * range is found set.
1851 */
1852int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1853 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1854{
1855 struct extent_state *state = NULL;
1856 struct rb_node *node;
1857 int bitset = 0;
d1310b2e 1858
cad321ad 1859 spin_lock(&tree->lock);
df98b6e2
JB
1860 if (cached && cached->tree && cached->start <= start &&
1861 cached->end > start)
9655d298
CM
1862 node = &cached->rb_node;
1863 else
1864 node = tree_search(tree, start);
d1310b2e
CM
1865 while (node && start <= end) {
1866 state = rb_entry(node, struct extent_state, rb_node);
1867
1868 if (filled && state->start > start) {
1869 bitset = 0;
1870 break;
1871 }
1872
1873 if (state->start > end)
1874 break;
1875
1876 if (state->state & bits) {
1877 bitset = 1;
1878 if (!filled)
1879 break;
1880 } else if (filled) {
1881 bitset = 0;
1882 break;
1883 }
46562cec
CM
1884
1885 if (state->end == (u64)-1)
1886 break;
1887
d1310b2e
CM
1888 start = state->end + 1;
1889 if (start > end)
1890 break;
1891 node = rb_next(node);
1892 if (!node) {
1893 if (filled)
1894 bitset = 0;
1895 break;
1896 }
1897 }
cad321ad 1898 spin_unlock(&tree->lock);
d1310b2e
CM
1899 return bitset;
1900}
d1310b2e
CM
1901
1902/*
1903 * helper function to set a given page up to date if all the
1904 * extents in the tree for that page are up to date
1905 */
143bede5 1906static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1907{
4eee4fa4 1908 u64 start = page_offset(page);
d1310b2e 1909 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1910 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1911 SetPageUptodate(page);
d1310b2e
CM
1912}
1913
4a54c8c1
JS
1914/*
1915 * When IO fails, either with EIO or csum verification fails, we
1916 * try other mirrors that might have a good copy of the data. This
1917 * io_failure_record is used to record state as we go through all the
1918 * mirrors. If another mirror has good data, the page is set up to date
1919 * and things continue. If a good mirror can't be found, the original
1920 * bio end_io callback is called to indicate things have failed.
1921 */
1922struct io_failure_record {
1923 struct page *page;
1924 u64 start;
1925 u64 len;
1926 u64 logical;
1927 unsigned long bio_flags;
1928 int this_mirror;
1929 int failed_mirror;
1930 int in_validation;
1931};
1932
1933static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1934 int did_repair)
1935{
1936 int ret;
1937 int err = 0;
1938 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1939
1940 set_state_private(failure_tree, rec->start, 0);
1941 ret = clear_extent_bits(failure_tree, rec->start,
1942 rec->start + rec->len - 1,
1943 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1944 if (ret)
1945 err = ret;
1946
53b381b3
DW
1947 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1948 rec->start + rec->len - 1,
1949 EXTENT_DAMAGED, GFP_NOFS);
1950 if (ret && !err)
1951 err = ret;
4a54c8c1
JS
1952
1953 kfree(rec);
1954 return err;
1955}
1956
4a54c8c1
JS
1957/*
1958 * this bypasses the standard btrfs submit functions deliberately, as
1959 * the standard behavior is to write all copies in a raid setup. here we only
1960 * want to write the one bad copy. so we do the mapping for ourselves and issue
1961 * submit_bio directly.
3ec706c8 1962 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1963 * actually prevents the read that triggered the error from finishing.
1964 * currently, there can be no more than two copies of every data bit. thus,
1965 * exactly one rewrite is required.
1966 */
3ec706c8 1967int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
1968 u64 length, u64 logical, struct page *page,
1969 int mirror_num)
1970{
1971 struct bio *bio;
1972 struct btrfs_device *dev;
4a54c8c1
JS
1973 u64 map_length = 0;
1974 u64 sector;
1975 struct btrfs_bio *bbio = NULL;
53b381b3 1976 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
1977 int ret;
1978
908960c6 1979 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
1980 BUG_ON(!mirror_num);
1981
53b381b3
DW
1982 /* we can't repair anything in raid56 yet */
1983 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1984 return 0;
1985
9be3395b 1986 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
1987 if (!bio)
1988 return -EIO;
4a54c8c1
JS
1989 bio->bi_size = 0;
1990 map_length = length;
1991
3ec706c8 1992 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
1993 &map_length, &bbio, mirror_num);
1994 if (ret) {
1995 bio_put(bio);
1996 return -EIO;
1997 }
1998 BUG_ON(mirror_num != bbio->mirror_num);
1999 sector = bbio->stripes[mirror_num-1].physical >> 9;
2000 bio->bi_sector = sector;
2001 dev = bbio->stripes[mirror_num-1].dev;
2002 kfree(bbio);
2003 if (!dev || !dev->bdev || !dev->writeable) {
2004 bio_put(bio);
2005 return -EIO;
2006 }
2007 bio->bi_bdev = dev->bdev;
4eee4fa4 2008 bio_add_page(bio, page, length, start - page_offset(page));
4a54c8c1 2009
c170bbb4 2010 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2011 /* try to remap that extent elsewhere? */
2012 bio_put(bio);
442a4f63 2013 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2014 return -EIO;
2015 }
2016
d5b025d5 2017 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2018 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2019 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2020
2021 bio_put(bio);
2022 return 0;
2023}
2024
ea466794
JB
2025int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2026 int mirror_num)
2027{
ea466794
JB
2028 u64 start = eb->start;
2029 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2030 int ret = 0;
ea466794 2031
908960c6
ID
2032 if (root->fs_info->sb->s_flags & MS_RDONLY)
2033 return -EROFS;
2034
ea466794
JB
2035 for (i = 0; i < num_pages; i++) {
2036 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2037 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2038 start, p, mirror_num);
2039 if (ret)
2040 break;
2041 start += PAGE_CACHE_SIZE;
2042 }
2043
2044 return ret;
2045}
2046
4a54c8c1
JS
2047/*
2048 * each time an IO finishes, we do a fast check in the IO failure tree
2049 * to see if we need to process or clean up an io_failure_record
2050 */
2051static int clean_io_failure(u64 start, struct page *page)
2052{
2053 u64 private;
2054 u64 private_failure;
2055 struct io_failure_record *failrec;
908960c6
ID
2056 struct inode *inode = page->mapping->host;
2057 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2058 struct extent_state *state;
2059 int num_copies;
2060 int did_repair = 0;
2061 int ret;
4a54c8c1
JS
2062
2063 private = 0;
2064 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2065 (u64)-1, 1, EXTENT_DIRTY, 0);
2066 if (!ret)
2067 return 0;
2068
2069 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2070 &private_failure);
2071 if (ret)
2072 return 0;
2073
2074 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2075 BUG_ON(!failrec->this_mirror);
2076
2077 if (failrec->in_validation) {
2078 /* there was no real error, just free the record */
2079 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2080 failrec->start);
2081 did_repair = 1;
2082 goto out;
2083 }
908960c6
ID
2084 if (fs_info->sb->s_flags & MS_RDONLY)
2085 goto out;
4a54c8c1
JS
2086
2087 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2088 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2089 failrec->start,
2090 EXTENT_LOCKED);
2091 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2092
883d0de4
MX
2093 if (state && state->start <= failrec->start &&
2094 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2095 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2096 failrec->len);
4a54c8c1 2097 if (num_copies > 1) {
3ec706c8 2098 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2099 failrec->logical, page,
2100 failrec->failed_mirror);
2101 did_repair = !ret;
2102 }
53b381b3 2103 ret = 0;
4a54c8c1
JS
2104 }
2105
2106out:
2107 if (!ret)
2108 ret = free_io_failure(inode, failrec, did_repair);
2109
2110 return ret;
2111}
2112
2113/*
2114 * this is a generic handler for readpage errors (default
2115 * readpage_io_failed_hook). if other copies exist, read those and write back
2116 * good data to the failed position. does not investigate in remapping the
2117 * failed extent elsewhere, hoping the device will be smart enough to do this as
2118 * needed
2119 */
2120
facc8a22
MX
2121static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2122 struct page *page, u64 start, u64 end,
2123 int failed_mirror)
4a54c8c1
JS
2124{
2125 struct io_failure_record *failrec = NULL;
2126 u64 private;
2127 struct extent_map *em;
2128 struct inode *inode = page->mapping->host;
2129 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2130 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2131 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2132 struct bio *bio;
facc8a22
MX
2133 struct btrfs_io_bio *btrfs_failed_bio;
2134 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2135 int num_copies;
2136 int ret;
2137 int read_mode;
2138 u64 logical;
2139
2140 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2141
2142 ret = get_state_private(failure_tree, start, &private);
2143 if (ret) {
2144 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2145 if (!failrec)
2146 return -ENOMEM;
2147 failrec->start = start;
2148 failrec->len = end - start + 1;
2149 failrec->this_mirror = 0;
2150 failrec->bio_flags = 0;
2151 failrec->in_validation = 0;
2152
2153 read_lock(&em_tree->lock);
2154 em = lookup_extent_mapping(em_tree, start, failrec->len);
2155 if (!em) {
2156 read_unlock(&em_tree->lock);
2157 kfree(failrec);
2158 return -EIO;
2159 }
2160
68ba990f 2161 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2162 free_extent_map(em);
2163 em = NULL;
2164 }
2165 read_unlock(&em_tree->lock);
2166
7a2d6a64 2167 if (!em) {
4a54c8c1
JS
2168 kfree(failrec);
2169 return -EIO;
2170 }
2171 logical = start - em->start;
2172 logical = em->block_start + logical;
2173 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2174 logical = em->block_start;
2175 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2176 extent_set_compress_type(&failrec->bio_flags,
2177 em->compress_type);
2178 }
2179 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2180 "len=%llu\n", logical, start, failrec->len);
2181 failrec->logical = logical;
2182 free_extent_map(em);
2183
2184 /* set the bits in the private failure tree */
2185 ret = set_extent_bits(failure_tree, start, end,
2186 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2187 if (ret >= 0)
2188 ret = set_state_private(failure_tree, start,
2189 (u64)(unsigned long)failrec);
2190 /* set the bits in the inode's tree */
2191 if (ret >= 0)
2192 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2193 GFP_NOFS);
2194 if (ret < 0) {
2195 kfree(failrec);
2196 return ret;
2197 }
2198 } else {
2199 failrec = (struct io_failure_record *)(unsigned long)private;
2200 pr_debug("bio_readpage_error: (found) logical=%llu, "
2201 "start=%llu, len=%llu, validation=%d\n",
2202 failrec->logical, failrec->start, failrec->len,
2203 failrec->in_validation);
2204 /*
2205 * when data can be on disk more than twice, add to failrec here
2206 * (e.g. with a list for failed_mirror) to make
2207 * clean_io_failure() clean all those errors at once.
2208 */
2209 }
5d964051
SB
2210 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2211 failrec->logical, failrec->len);
4a54c8c1
JS
2212 if (num_copies == 1) {
2213 /*
2214 * we only have a single copy of the data, so don't bother with
2215 * all the retry and error correction code that follows. no
2216 * matter what the error is, it is very likely to persist.
2217 */
09a7f7a2
MX
2218 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2219 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2220 free_io_failure(inode, failrec, 0);
2221 return -EIO;
2222 }
2223
4a54c8c1
JS
2224 /*
2225 * there are two premises:
2226 * a) deliver good data to the caller
2227 * b) correct the bad sectors on disk
2228 */
2229 if (failed_bio->bi_vcnt > 1) {
2230 /*
2231 * to fulfill b), we need to know the exact failing sectors, as
2232 * we don't want to rewrite any more than the failed ones. thus,
2233 * we need separate read requests for the failed bio
2234 *
2235 * if the following BUG_ON triggers, our validation request got
2236 * merged. we need separate requests for our algorithm to work.
2237 */
2238 BUG_ON(failrec->in_validation);
2239 failrec->in_validation = 1;
2240 failrec->this_mirror = failed_mirror;
2241 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2242 } else {
2243 /*
2244 * we're ready to fulfill a) and b) alongside. get a good copy
2245 * of the failed sector and if we succeed, we have setup
2246 * everything for repair_io_failure to do the rest for us.
2247 */
2248 if (failrec->in_validation) {
2249 BUG_ON(failrec->this_mirror != failed_mirror);
2250 failrec->in_validation = 0;
2251 failrec->this_mirror = 0;
2252 }
2253 failrec->failed_mirror = failed_mirror;
2254 failrec->this_mirror++;
2255 if (failrec->this_mirror == failed_mirror)
2256 failrec->this_mirror++;
2257 read_mode = READ_SYNC;
2258 }
2259
facc8a22
MX
2260 if (failrec->this_mirror > num_copies) {
2261 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2262 num_copies, failrec->this_mirror, failed_mirror);
2263 free_io_failure(inode, failrec, 0);
2264 return -EIO;
2265 }
2266
9be3395b 2267 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2268 if (!bio) {
2269 free_io_failure(inode, failrec, 0);
2270 return -EIO;
2271 }
4a54c8c1
JS
2272 bio->bi_end_io = failed_bio->bi_end_io;
2273 bio->bi_sector = failrec->logical >> 9;
2274 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2275 bio->bi_size = 0;
2276
facc8a22
MX
2277 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2278 if (btrfs_failed_bio->csum) {
2279 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2280 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2281
2282 btrfs_bio = btrfs_io_bio(bio);
2283 btrfs_bio->csum = btrfs_bio->csum_inline;
2284 phy_offset >>= inode->i_sb->s_blocksize_bits;
2285 phy_offset *= csum_size;
2286 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2287 csum_size);
2288 }
2289
4a54c8c1
JS
2290 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2291
2292 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2293 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2294 failrec->this_mirror, num_copies, failrec->in_validation);
2295
013bd4c3
TI
2296 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2297 failrec->this_mirror,
2298 failrec->bio_flags, 0);
2299 return ret;
4a54c8c1
JS
2300}
2301
d1310b2e
CM
2302/* lots and lots of room for performance fixes in the end_bio funcs */
2303
87826df0
JM
2304int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2305{
2306 int uptodate = (err == 0);
2307 struct extent_io_tree *tree;
2308 int ret;
2309
2310 tree = &BTRFS_I(page->mapping->host)->io_tree;
2311
2312 if (tree->ops && tree->ops->writepage_end_io_hook) {
2313 ret = tree->ops->writepage_end_io_hook(page, start,
2314 end, NULL, uptodate);
2315 if (ret)
2316 uptodate = 0;
2317 }
2318
87826df0 2319 if (!uptodate) {
87826df0
JM
2320 ClearPageUptodate(page);
2321 SetPageError(page);
2322 }
2323 return 0;
2324}
2325
d1310b2e
CM
2326/*
2327 * after a writepage IO is done, we need to:
2328 * clear the uptodate bits on error
2329 * clear the writeback bits in the extent tree for this IO
2330 * end_page_writeback if the page has no more pending IO
2331 *
2332 * Scheduling is not allowed, so the extent state tree is expected
2333 * to have one and only one object corresponding to this IO.
2334 */
d1310b2e 2335static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2336{
d1310b2e 2337 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
d1310b2e
CM
2338 u64 start;
2339 u64 end;
d1310b2e 2340
d1310b2e
CM
2341 do {
2342 struct page *page = bvec->bv_page;
902b22f3 2343
17a5adcc
AO
2344 /* We always issue full-page reads, but if some block
2345 * in a page fails to read, blk_update_request() will
2346 * advance bv_offset and adjust bv_len to compensate.
2347 * Print a warning for nonzero offsets, and an error
2348 * if they don't add up to a full page. */
2349 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2350 printk("%s page write in btrfs with offset %u and length %u\n",
2351 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2352 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2353 bvec->bv_offset, bvec->bv_len);
d1310b2e 2354
17a5adcc
AO
2355 start = page_offset(page);
2356 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2357
2358 if (--bvec >= bio->bi_io_vec)
2359 prefetchw(&bvec->bv_page->flags);
1259ab75 2360
87826df0
JM
2361 if (end_extent_writepage(page, err, start, end))
2362 continue;
70dec807 2363
17a5adcc 2364 end_page_writeback(page);
d1310b2e 2365 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2366
d1310b2e 2367 bio_put(bio);
d1310b2e
CM
2368}
2369
883d0de4
MX
2370static void
2371endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2372 int uptodate)
2373{
2374 struct extent_state *cached = NULL;
2375 u64 end = start + len - 1;
2376
2377 if (uptodate && tree->track_uptodate)
2378 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2379 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2380}
2381
d1310b2e
CM
2382/*
2383 * after a readpage IO is done, we need to:
2384 * clear the uptodate bits on error
2385 * set the uptodate bits if things worked
2386 * set the page up to date if all extents in the tree are uptodate
2387 * clear the lock bit in the extent tree
2388 * unlock the page if there are no other extents locked for it
2389 *
2390 * Scheduling is not allowed, so the extent state tree is expected
2391 * to have one and only one object corresponding to this IO.
2392 */
d1310b2e 2393static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2394{
2395 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2396 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2397 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2398 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2399 struct extent_io_tree *tree;
facc8a22 2400 u64 offset = 0;
d1310b2e
CM
2401 u64 start;
2402 u64 end;
facc8a22 2403 u64 len;
883d0de4
MX
2404 u64 extent_start = 0;
2405 u64 extent_len = 0;
5cf1ab56 2406 int mirror;
d1310b2e
CM
2407 int ret;
2408
d20f7043
CM
2409 if (err)
2410 uptodate = 0;
2411
d1310b2e
CM
2412 do {
2413 struct page *page = bvec->bv_page;
a71754fc 2414 struct inode *inode = page->mapping->host;
507903b8 2415
be3940c0 2416 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2417 "mirror=%lu\n", (u64)bio->bi_sector, err,
2418 io_bio->mirror_num);
a71754fc 2419 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2420
17a5adcc
AO
2421 /* We always issue full-page reads, but if some block
2422 * in a page fails to read, blk_update_request() will
2423 * advance bv_offset and adjust bv_len to compensate.
2424 * Print a warning for nonzero offsets, and an error
2425 * if they don't add up to a full page. */
2426 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2427 printk("%s page read in btrfs with offset %u and length %u\n",
2428 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2429 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2430 bvec->bv_offset, bvec->bv_len);
d1310b2e 2431
17a5adcc
AO
2432 start = page_offset(page);
2433 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2434 len = bvec->bv_len;
d1310b2e 2435
4125bf76 2436 if (++bvec <= bvec_end)
d1310b2e
CM
2437 prefetchw(&bvec->bv_page->flags);
2438
9be3395b 2439 mirror = io_bio->mirror_num;
f2a09da9
MX
2440 if (likely(uptodate && tree->ops &&
2441 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2442 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2443 page, start, end,
2444 mirror);
5ee0844d 2445 if (ret)
d1310b2e 2446 uptodate = 0;
5ee0844d 2447 else
4a54c8c1 2448 clean_io_failure(start, page);
d1310b2e 2449 }
ea466794 2450
f2a09da9
MX
2451 if (likely(uptodate))
2452 goto readpage_ok;
2453
2454 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2455 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2456 if (!ret && !err &&
2457 test_bit(BIO_UPTODATE, &bio->bi_flags))
2458 uptodate = 1;
f2a09da9 2459 } else {
f4a8e656
JS
2460 /*
2461 * The generic bio_readpage_error handles errors the
2462 * following way: If possible, new read requests are
2463 * created and submitted and will end up in
2464 * end_bio_extent_readpage as well (if we're lucky, not
2465 * in the !uptodate case). In that case it returns 0 and
2466 * we just go on with the next page in our bio. If it
2467 * can't handle the error it will return -EIO and we
2468 * remain responsible for that page.
2469 */
facc8a22
MX
2470 ret = bio_readpage_error(bio, offset, page, start, end,
2471 mirror);
7e38326f 2472 if (ret == 0) {
3b951516
CM
2473 uptodate =
2474 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2475 if (err)
2476 uptodate = 0;
7e38326f
CM
2477 continue;
2478 }
2479 }
f2a09da9 2480readpage_ok:
883d0de4 2481 if (likely(uptodate)) {
a71754fc
JB
2482 loff_t i_size = i_size_read(inode);
2483 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2484 unsigned offset;
2485
2486 /* Zero out the end if this page straddles i_size */
2487 offset = i_size & (PAGE_CACHE_SIZE-1);
2488 if (page->index == end_index && offset)
2489 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2490 SetPageUptodate(page);
70dec807 2491 } else {
17a5adcc
AO
2492 ClearPageUptodate(page);
2493 SetPageError(page);
70dec807 2494 }
17a5adcc 2495 unlock_page(page);
facc8a22 2496 offset += len;
883d0de4
MX
2497
2498 if (unlikely(!uptodate)) {
2499 if (extent_len) {
2500 endio_readpage_release_extent(tree,
2501 extent_start,
2502 extent_len, 1);
2503 extent_start = 0;
2504 extent_len = 0;
2505 }
2506 endio_readpage_release_extent(tree, start,
2507 end - start + 1, 0);
2508 } else if (!extent_len) {
2509 extent_start = start;
2510 extent_len = end + 1 - start;
2511 } else if (extent_start + extent_len == start) {
2512 extent_len += end + 1 - start;
2513 } else {
2514 endio_readpage_release_extent(tree, extent_start,
2515 extent_len, uptodate);
2516 extent_start = start;
2517 extent_len = end + 1 - start;
2518 }
4125bf76 2519 } while (bvec <= bvec_end);
d1310b2e 2520
883d0de4
MX
2521 if (extent_len)
2522 endio_readpage_release_extent(tree, extent_start, extent_len,
2523 uptodate);
facc8a22
MX
2524 if (io_bio->end_io)
2525 io_bio->end_io(io_bio, err);
d1310b2e 2526 bio_put(bio);
d1310b2e
CM
2527}
2528
9be3395b
CM
2529/*
2530 * this allocates from the btrfs_bioset. We're returning a bio right now
2531 * but you can call btrfs_io_bio for the appropriate container_of magic
2532 */
88f794ed
MX
2533struct bio *
2534btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2535 gfp_t gfp_flags)
d1310b2e 2536{
facc8a22 2537 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2538 struct bio *bio;
2539
9be3395b 2540 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2541
2542 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2543 while (!bio && (nr_vecs /= 2)) {
2544 bio = bio_alloc_bioset(gfp_flags,
2545 nr_vecs, btrfs_bioset);
2546 }
d1310b2e
CM
2547 }
2548
2549 if (bio) {
e1c4b745 2550 bio->bi_size = 0;
d1310b2e
CM
2551 bio->bi_bdev = bdev;
2552 bio->bi_sector = first_sector;
facc8a22
MX
2553 btrfs_bio = btrfs_io_bio(bio);
2554 btrfs_bio->csum = NULL;
2555 btrfs_bio->csum_allocated = NULL;
2556 btrfs_bio->end_io = NULL;
d1310b2e
CM
2557 }
2558 return bio;
2559}
2560
9be3395b
CM
2561struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2562{
2563 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2564}
2565
2566
2567/* this also allocates from the btrfs_bioset */
2568struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2569{
facc8a22
MX
2570 struct btrfs_io_bio *btrfs_bio;
2571 struct bio *bio;
2572
2573 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2574 if (bio) {
2575 btrfs_bio = btrfs_io_bio(bio);
2576 btrfs_bio->csum = NULL;
2577 btrfs_bio->csum_allocated = NULL;
2578 btrfs_bio->end_io = NULL;
2579 }
2580 return bio;
9be3395b
CM
2581}
2582
2583
355808c2
JM
2584static int __must_check submit_one_bio(int rw, struct bio *bio,
2585 int mirror_num, unsigned long bio_flags)
d1310b2e 2586{
d1310b2e 2587 int ret = 0;
70dec807
CM
2588 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2589 struct page *page = bvec->bv_page;
2590 struct extent_io_tree *tree = bio->bi_private;
70dec807 2591 u64 start;
70dec807 2592
4eee4fa4 2593 start = page_offset(page) + bvec->bv_offset;
70dec807 2594
902b22f3 2595 bio->bi_private = NULL;
d1310b2e
CM
2596
2597 bio_get(bio);
2598
065631f6 2599 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2600 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2601 mirror_num, bio_flags, start);
0b86a832 2602 else
21adbd5c 2603 btrfsic_submit_bio(rw, bio);
4a54c8c1 2604
d1310b2e
CM
2605 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2606 ret = -EOPNOTSUPP;
2607 bio_put(bio);
2608 return ret;
2609}
2610
64a16701 2611static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2612 unsigned long offset, size_t size, struct bio *bio,
2613 unsigned long bio_flags)
2614{
2615 int ret = 0;
2616 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2617 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2618 bio_flags);
2619 BUG_ON(ret < 0);
2620 return ret;
2621
2622}
2623
d1310b2e
CM
2624static int submit_extent_page(int rw, struct extent_io_tree *tree,
2625 struct page *page, sector_t sector,
2626 size_t size, unsigned long offset,
2627 struct block_device *bdev,
2628 struct bio **bio_ret,
2629 unsigned long max_pages,
f188591e 2630 bio_end_io_t end_io_func,
c8b97818
CM
2631 int mirror_num,
2632 unsigned long prev_bio_flags,
2633 unsigned long bio_flags)
d1310b2e
CM
2634{
2635 int ret = 0;
2636 struct bio *bio;
2637 int nr;
c8b97818
CM
2638 int contig = 0;
2639 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2640 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2641 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2642
2643 if (bio_ret && *bio_ret) {
2644 bio = *bio_ret;
c8b97818
CM
2645 if (old_compressed)
2646 contig = bio->bi_sector == sector;
2647 else
f73a1c7d 2648 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2649
2650 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2651 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2652 bio_add_page(bio, page, page_size, offset) < page_size) {
2653 ret = submit_one_bio(rw, bio, mirror_num,
2654 prev_bio_flags);
79787eaa
JM
2655 if (ret < 0)
2656 return ret;
d1310b2e
CM
2657 bio = NULL;
2658 } else {
2659 return 0;
2660 }
2661 }
c8b97818
CM
2662 if (this_compressed)
2663 nr = BIO_MAX_PAGES;
2664 else
2665 nr = bio_get_nr_vecs(bdev);
2666
88f794ed 2667 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2668 if (!bio)
2669 return -ENOMEM;
70dec807 2670
c8b97818 2671 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2672 bio->bi_end_io = end_io_func;
2673 bio->bi_private = tree;
70dec807 2674
d397712b 2675 if (bio_ret)
d1310b2e 2676 *bio_ret = bio;
d397712b 2677 else
c8b97818 2678 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2679
2680 return ret;
2681}
2682
48a3b636
ES
2683static void attach_extent_buffer_page(struct extent_buffer *eb,
2684 struct page *page)
d1310b2e
CM
2685{
2686 if (!PagePrivate(page)) {
2687 SetPagePrivate(page);
d1310b2e 2688 page_cache_get(page);
4f2de97a
JB
2689 set_page_private(page, (unsigned long)eb);
2690 } else {
2691 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2692 }
2693}
2694
4f2de97a 2695void set_page_extent_mapped(struct page *page)
d1310b2e 2696{
4f2de97a
JB
2697 if (!PagePrivate(page)) {
2698 SetPagePrivate(page);
2699 page_cache_get(page);
2700 set_page_private(page, EXTENT_PAGE_PRIVATE);
2701 }
d1310b2e
CM
2702}
2703
125bac01
MX
2704static struct extent_map *
2705__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2706 u64 start, u64 len, get_extent_t *get_extent,
2707 struct extent_map **em_cached)
2708{
2709 struct extent_map *em;
2710
2711 if (em_cached && *em_cached) {
2712 em = *em_cached;
2713 if (em->in_tree && start >= em->start &&
2714 start < extent_map_end(em)) {
2715 atomic_inc(&em->refs);
2716 return em;
2717 }
2718
2719 free_extent_map(em);
2720 *em_cached = NULL;
2721 }
2722
2723 em = get_extent(inode, page, pg_offset, start, len, 0);
2724 if (em_cached && !IS_ERR_OR_NULL(em)) {
2725 BUG_ON(*em_cached);
2726 atomic_inc(&em->refs);
2727 *em_cached = em;
2728 }
2729 return em;
2730}
d1310b2e
CM
2731/*
2732 * basic readpage implementation. Locked extent state structs are inserted
2733 * into the tree that are removed when the IO is done (by the end_io
2734 * handlers)
79787eaa 2735 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2736 */
9974090b
MX
2737static int __do_readpage(struct extent_io_tree *tree,
2738 struct page *page,
2739 get_extent_t *get_extent,
125bac01 2740 struct extent_map **em_cached,
9974090b
MX
2741 struct bio **bio, int mirror_num,
2742 unsigned long *bio_flags, int rw)
d1310b2e
CM
2743{
2744 struct inode *inode = page->mapping->host;
4eee4fa4 2745 u64 start = page_offset(page);
d1310b2e
CM
2746 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2747 u64 end;
2748 u64 cur = start;
2749 u64 extent_offset;
2750 u64 last_byte = i_size_read(inode);
2751 u64 block_start;
2752 u64 cur_end;
2753 sector_t sector;
2754 struct extent_map *em;
2755 struct block_device *bdev;
2756 int ret;
2757 int nr = 0;
4b384318 2758 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2759 size_t pg_offset = 0;
d1310b2e 2760 size_t iosize;
c8b97818 2761 size_t disk_io_size;
d1310b2e 2762 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2763 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2764
2765 set_page_extent_mapped(page);
2766
9974090b 2767 end = page_end;
90a887c9
DM
2768 if (!PageUptodate(page)) {
2769 if (cleancache_get_page(page) == 0) {
2770 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2771 unlock_extent(tree, start, end);
90a887c9
DM
2772 goto out;
2773 }
2774 }
2775
c8b97818
CM
2776 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2777 char *userpage;
2778 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2779
2780 if (zero_offset) {
2781 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2782 userpage = kmap_atomic(page);
c8b97818
CM
2783 memset(userpage + zero_offset, 0, iosize);
2784 flush_dcache_page(page);
7ac687d9 2785 kunmap_atomic(userpage);
c8b97818
CM
2786 }
2787 }
d1310b2e 2788 while (cur <= end) {
c8f2f24b
JB
2789 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2790
d1310b2e
CM
2791 if (cur >= last_byte) {
2792 char *userpage;
507903b8
AJ
2793 struct extent_state *cached = NULL;
2794
306e16ce 2795 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2796 userpage = kmap_atomic(page);
306e16ce 2797 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2798 flush_dcache_page(page);
7ac687d9 2799 kunmap_atomic(userpage);
d1310b2e 2800 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2801 &cached, GFP_NOFS);
4b384318
MF
2802 if (!parent_locked)
2803 unlock_extent_cached(tree, cur,
2804 cur + iosize - 1,
2805 &cached, GFP_NOFS);
d1310b2e
CM
2806 break;
2807 }
125bac01
MX
2808 em = __get_extent_map(inode, page, pg_offset, cur,
2809 end - cur + 1, get_extent, em_cached);
c704005d 2810 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2811 SetPageError(page);
4b384318
MF
2812 if (!parent_locked)
2813 unlock_extent(tree, cur, end);
d1310b2e
CM
2814 break;
2815 }
d1310b2e
CM
2816 extent_offset = cur - em->start;
2817 BUG_ON(extent_map_end(em) <= cur);
2818 BUG_ON(end < cur);
2819
261507a0 2820 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2821 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2822 extent_set_compress_type(&this_bio_flag,
2823 em->compress_type);
2824 }
c8b97818 2825
d1310b2e
CM
2826 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2827 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2828 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2829 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2830 disk_io_size = em->block_len;
2831 sector = em->block_start >> 9;
2832 } else {
2833 sector = (em->block_start + extent_offset) >> 9;
2834 disk_io_size = iosize;
2835 }
d1310b2e
CM
2836 bdev = em->bdev;
2837 block_start = em->block_start;
d899e052
YZ
2838 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2839 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2840 free_extent_map(em);
2841 em = NULL;
2842
2843 /* we've found a hole, just zero and go on */
2844 if (block_start == EXTENT_MAP_HOLE) {
2845 char *userpage;
507903b8
AJ
2846 struct extent_state *cached = NULL;
2847
7ac687d9 2848 userpage = kmap_atomic(page);
306e16ce 2849 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2850 flush_dcache_page(page);
7ac687d9 2851 kunmap_atomic(userpage);
d1310b2e
CM
2852
2853 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2854 &cached, GFP_NOFS);
2855 unlock_extent_cached(tree, cur, cur + iosize - 1,
2856 &cached, GFP_NOFS);
d1310b2e 2857 cur = cur + iosize;
306e16ce 2858 pg_offset += iosize;
d1310b2e
CM
2859 continue;
2860 }
2861 /* the get_extent function already copied into the page */
9655d298
CM
2862 if (test_range_bit(tree, cur, cur_end,
2863 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2864 check_page_uptodate(tree, page);
4b384318
MF
2865 if (!parent_locked)
2866 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2867 cur = cur + iosize;
306e16ce 2868 pg_offset += iosize;
d1310b2e
CM
2869 continue;
2870 }
70dec807
CM
2871 /* we have an inline extent but it didn't get marked up
2872 * to date. Error out
2873 */
2874 if (block_start == EXTENT_MAP_INLINE) {
2875 SetPageError(page);
4b384318
MF
2876 if (!parent_locked)
2877 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2878 cur = cur + iosize;
306e16ce 2879 pg_offset += iosize;
70dec807
CM
2880 continue;
2881 }
d1310b2e 2882
c8f2f24b 2883 pnr -= page->index;
d4c7ca86 2884 ret = submit_extent_page(rw, tree, page,
306e16ce 2885 sector, disk_io_size, pg_offset,
89642229 2886 bdev, bio, pnr,
c8b97818
CM
2887 end_bio_extent_readpage, mirror_num,
2888 *bio_flags,
2889 this_bio_flag);
c8f2f24b
JB
2890 if (!ret) {
2891 nr++;
2892 *bio_flags = this_bio_flag;
2893 } else {
d1310b2e 2894 SetPageError(page);
4b384318
MF
2895 if (!parent_locked)
2896 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2897 }
d1310b2e 2898 cur = cur + iosize;
306e16ce 2899 pg_offset += iosize;
d1310b2e 2900 }
90a887c9 2901out:
d1310b2e
CM
2902 if (!nr) {
2903 if (!PageError(page))
2904 SetPageUptodate(page);
2905 unlock_page(page);
2906 }
2907 return 0;
2908}
2909
9974090b
MX
2910static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2911 struct page *pages[], int nr_pages,
2912 u64 start, u64 end,
2913 get_extent_t *get_extent,
125bac01 2914 struct extent_map **em_cached,
9974090b
MX
2915 struct bio **bio, int mirror_num,
2916 unsigned long *bio_flags, int rw)
2917{
2918 struct inode *inode;
2919 struct btrfs_ordered_extent *ordered;
2920 int index;
2921
2922 inode = pages[0]->mapping->host;
2923 while (1) {
2924 lock_extent(tree, start, end);
2925 ordered = btrfs_lookup_ordered_range(inode, start,
2926 end - start + 1);
2927 if (!ordered)
2928 break;
2929 unlock_extent(tree, start, end);
2930 btrfs_start_ordered_extent(inode, ordered, 1);
2931 btrfs_put_ordered_extent(ordered);
2932 }
2933
2934 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2935 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2936 mirror_num, bio_flags, rw);
9974090b
MX
2937 page_cache_release(pages[index]);
2938 }
2939}
2940
2941static void __extent_readpages(struct extent_io_tree *tree,
2942 struct page *pages[],
2943 int nr_pages, get_extent_t *get_extent,
125bac01 2944 struct extent_map **em_cached,
9974090b
MX
2945 struct bio **bio, int mirror_num,
2946 unsigned long *bio_flags, int rw)
2947{
35a3621b 2948 u64 start = 0;
9974090b
MX
2949 u64 end = 0;
2950 u64 page_start;
2951 int index;
35a3621b 2952 int first_index = 0;
9974090b
MX
2953
2954 for (index = 0; index < nr_pages; index++) {
2955 page_start = page_offset(pages[index]);
2956 if (!end) {
2957 start = page_start;
2958 end = start + PAGE_CACHE_SIZE - 1;
2959 first_index = index;
2960 } else if (end + 1 == page_start) {
2961 end += PAGE_CACHE_SIZE;
2962 } else {
2963 __do_contiguous_readpages(tree, &pages[first_index],
2964 index - first_index, start,
125bac01
MX
2965 end, get_extent, em_cached,
2966 bio, mirror_num, bio_flags,
2967 rw);
9974090b
MX
2968 start = page_start;
2969 end = start + PAGE_CACHE_SIZE - 1;
2970 first_index = index;
2971 }
2972 }
2973
2974 if (end)
2975 __do_contiguous_readpages(tree, &pages[first_index],
2976 index - first_index, start,
125bac01 2977 end, get_extent, em_cached, bio,
9974090b
MX
2978 mirror_num, bio_flags, rw);
2979}
2980
2981static int __extent_read_full_page(struct extent_io_tree *tree,
2982 struct page *page,
2983 get_extent_t *get_extent,
2984 struct bio **bio, int mirror_num,
2985 unsigned long *bio_flags, int rw)
2986{
2987 struct inode *inode = page->mapping->host;
2988 struct btrfs_ordered_extent *ordered;
2989 u64 start = page_offset(page);
2990 u64 end = start + PAGE_CACHE_SIZE - 1;
2991 int ret;
2992
2993 while (1) {
2994 lock_extent(tree, start, end);
2995 ordered = btrfs_lookup_ordered_extent(inode, start);
2996 if (!ordered)
2997 break;
2998 unlock_extent(tree, start, end);
2999 btrfs_start_ordered_extent(inode, ordered, 1);
3000 btrfs_put_ordered_extent(ordered);
3001 }
3002
125bac01
MX
3003 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3004 bio_flags, rw);
9974090b
MX
3005 return ret;
3006}
3007
d1310b2e 3008int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3009 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3010{
3011 struct bio *bio = NULL;
c8b97818 3012 unsigned long bio_flags = 0;
d1310b2e
CM
3013 int ret;
3014
8ddc7d9c 3015 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3016 &bio_flags, READ);
d1310b2e 3017 if (bio)
8ddc7d9c 3018 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3019 return ret;
3020}
d1310b2e 3021
4b384318
MF
3022int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3023 get_extent_t *get_extent, int mirror_num)
3024{
3025 struct bio *bio = NULL;
3026 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3027 int ret;
3028
3029 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3030 &bio_flags, READ);
3031 if (bio)
3032 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3033 return ret;
3034}
3035
11c8349b
CM
3036static noinline void update_nr_written(struct page *page,
3037 struct writeback_control *wbc,
3038 unsigned long nr_written)
3039{
3040 wbc->nr_to_write -= nr_written;
3041 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3042 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3043 page->mapping->writeback_index = page->index + nr_written;
3044}
3045
d1310b2e
CM
3046/*
3047 * the writepage semantics are similar to regular writepage. extent
3048 * records are inserted to lock ranges in the tree, and as dirty areas
3049 * are found, they are marked writeback. Then the lock bits are removed
3050 * and the end_io handler clears the writeback ranges
3051 */
3052static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3053 void *data)
3054{
3055 struct inode *inode = page->mapping->host;
3056 struct extent_page_data *epd = data;
3057 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3058 u64 start = page_offset(page);
d1310b2e
CM
3059 u64 delalloc_start;
3060 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3061 u64 end;
3062 u64 cur = start;
3063 u64 extent_offset;
3064 u64 last_byte = i_size_read(inode);
3065 u64 block_start;
3066 u64 iosize;
3067 sector_t sector;
2c64c53d 3068 struct extent_state *cached_state = NULL;
d1310b2e
CM
3069 struct extent_map *em;
3070 struct block_device *bdev;
3071 int ret;
3072 int nr = 0;
7f3c74fb 3073 size_t pg_offset = 0;
d1310b2e
CM
3074 size_t blocksize;
3075 loff_t i_size = i_size_read(inode);
3076 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3077 u64 nr_delalloc;
3078 u64 delalloc_end;
c8b97818
CM
3079 int page_started;
3080 int compressed;
ffbd517d 3081 int write_flags;
771ed689 3082 unsigned long nr_written = 0;
9e487107 3083 bool fill_delalloc = true;
d1310b2e 3084
ffbd517d 3085 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3086 write_flags = WRITE_SYNC;
ffbd517d
CM
3087 else
3088 write_flags = WRITE;
3089
1abe9b8a 3090 trace___extent_writepage(page, inode, wbc);
3091
d1310b2e 3092 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3093
3094 ClearPageError(page);
3095
7f3c74fb 3096 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3097 if (page->index > end_index ||
7f3c74fb 3098 (page->index == end_index && !pg_offset)) {
d47992f8 3099 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3100 unlock_page(page);
3101 return 0;
3102 }
3103
3104 if (page->index == end_index) {
3105 char *userpage;
3106
7ac687d9 3107 userpage = kmap_atomic(page);
7f3c74fb
CM
3108 memset(userpage + pg_offset, 0,
3109 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3110 kunmap_atomic(userpage);
211c17f5 3111 flush_dcache_page(page);
d1310b2e 3112 }
7f3c74fb 3113 pg_offset = 0;
d1310b2e
CM
3114
3115 set_page_extent_mapped(page);
3116
9e487107
JB
3117 if (!tree->ops || !tree->ops->fill_delalloc)
3118 fill_delalloc = false;
3119
d1310b2e
CM
3120 delalloc_start = start;
3121 delalloc_end = 0;
c8b97818 3122 page_started = 0;
9e487107 3123 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3124 u64 delalloc_to_write = 0;
11c8349b
CM
3125 /*
3126 * make sure the wbc mapping index is at least updated
3127 * to this page.
3128 */
3129 update_nr_written(page, wbc, 0);
3130
d397712b 3131 while (delalloc_end < page_end) {
771ed689 3132 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3133 page,
3134 &delalloc_start,
d1310b2e
CM
3135 &delalloc_end,
3136 128 * 1024 * 1024);
771ed689
CM
3137 if (nr_delalloc == 0) {
3138 delalloc_start = delalloc_end + 1;
3139 continue;
3140 }
013bd4c3
TI
3141 ret = tree->ops->fill_delalloc(inode, page,
3142 delalloc_start,
3143 delalloc_end,
3144 &page_started,
3145 &nr_written);
79787eaa
JM
3146 /* File system has been set read-only */
3147 if (ret) {
3148 SetPageError(page);
3149 goto done;
3150 }
f85d7d6c
CM
3151 /*
3152 * delalloc_end is already one less than the total
3153 * length, so we don't subtract one from
3154 * PAGE_CACHE_SIZE
3155 */
3156 delalloc_to_write += (delalloc_end - delalloc_start +
3157 PAGE_CACHE_SIZE) >>
3158 PAGE_CACHE_SHIFT;
d1310b2e 3159 delalloc_start = delalloc_end + 1;
d1310b2e 3160 }
f85d7d6c
CM
3161 if (wbc->nr_to_write < delalloc_to_write) {
3162 int thresh = 8192;
3163
3164 if (delalloc_to_write < thresh * 2)
3165 thresh = delalloc_to_write;
3166 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3167 thresh);
3168 }
c8b97818 3169
771ed689
CM
3170 /* did the fill delalloc function already unlock and start
3171 * the IO?
3172 */
3173 if (page_started) {
3174 ret = 0;
11c8349b
CM
3175 /*
3176 * we've unlocked the page, so we can't update
3177 * the mapping's writeback index, just update
3178 * nr_to_write.
3179 */
3180 wbc->nr_to_write -= nr_written;
3181 goto done_unlocked;
771ed689 3182 }
c8b97818 3183 }
247e743c 3184 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3185 ret = tree->ops->writepage_start_hook(page, start,
3186 page_end);
87826df0
JM
3187 if (ret) {
3188 /* Fixup worker will requeue */
3189 if (ret == -EBUSY)
3190 wbc->pages_skipped++;
3191 else
3192 redirty_page_for_writepage(wbc, page);
11c8349b 3193 update_nr_written(page, wbc, nr_written);
247e743c 3194 unlock_page(page);
771ed689 3195 ret = 0;
11c8349b 3196 goto done_unlocked;
247e743c
CM
3197 }
3198 }
3199
11c8349b
CM
3200 /*
3201 * we don't want to touch the inode after unlocking the page,
3202 * so we update the mapping writeback index now
3203 */
3204 update_nr_written(page, wbc, nr_written + 1);
771ed689 3205
d1310b2e 3206 end = page_end;
d1310b2e 3207 if (last_byte <= start) {
e6dcd2dc
CM
3208 if (tree->ops && tree->ops->writepage_end_io_hook)
3209 tree->ops->writepage_end_io_hook(page, start,
3210 page_end, NULL, 1);
d1310b2e
CM
3211 goto done;
3212 }
3213
d1310b2e
CM
3214 blocksize = inode->i_sb->s_blocksize;
3215
3216 while (cur <= end) {
3217 if (cur >= last_byte) {
e6dcd2dc
CM
3218 if (tree->ops && tree->ops->writepage_end_io_hook)
3219 tree->ops->writepage_end_io_hook(page, cur,
3220 page_end, NULL, 1);
d1310b2e
CM
3221 break;
3222 }
7f3c74fb 3223 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3224 end - cur + 1, 1);
c704005d 3225 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3226 SetPageError(page);
3227 break;
3228 }
3229
3230 extent_offset = cur - em->start;
3231 BUG_ON(extent_map_end(em) <= cur);
3232 BUG_ON(end < cur);
3233 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3234 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3235 sector = (em->block_start + extent_offset) >> 9;
3236 bdev = em->bdev;
3237 block_start = em->block_start;
c8b97818 3238 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3239 free_extent_map(em);
3240 em = NULL;
3241
c8b97818
CM
3242 /*
3243 * compressed and inline extents are written through other
3244 * paths in the FS
3245 */
3246 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3247 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3248 /*
3249 * end_io notification does not happen here for
3250 * compressed extents
3251 */
3252 if (!compressed && tree->ops &&
3253 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3254 tree->ops->writepage_end_io_hook(page, cur,
3255 cur + iosize - 1,
3256 NULL, 1);
c8b97818
CM
3257 else if (compressed) {
3258 /* we don't want to end_page_writeback on
3259 * a compressed extent. this happens
3260 * elsewhere
3261 */
3262 nr++;
3263 }
3264
3265 cur += iosize;
7f3c74fb 3266 pg_offset += iosize;
d1310b2e
CM
3267 continue;
3268 }
d1310b2e
CM
3269 /* leave this out until we have a page_mkwrite call */
3270 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3271 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3272 cur = cur + iosize;
7f3c74fb 3273 pg_offset += iosize;
d1310b2e
CM
3274 continue;
3275 }
c8b97818 3276
d1310b2e
CM
3277 if (tree->ops && tree->ops->writepage_io_hook) {
3278 ret = tree->ops->writepage_io_hook(page, cur,
3279 cur + iosize - 1);
3280 } else {
3281 ret = 0;
3282 }
1259ab75 3283 if (ret) {
d1310b2e 3284 SetPageError(page);
1259ab75 3285 } else {
d1310b2e 3286 unsigned long max_nr = end_index + 1;
7f3c74fb 3287
d1310b2e
CM
3288 set_range_writeback(tree, cur, cur + iosize - 1);
3289 if (!PageWriteback(page)) {
d397712b
CM
3290 printk(KERN_ERR "btrfs warning page %lu not "
3291 "writeback, cur %llu end %llu\n",
c1c9ff7c 3292 page->index, cur, end);
d1310b2e
CM
3293 }
3294
ffbd517d
CM
3295 ret = submit_extent_page(write_flags, tree, page,
3296 sector, iosize, pg_offset,
3297 bdev, &epd->bio, max_nr,
c8b97818
CM
3298 end_bio_extent_writepage,
3299 0, 0, 0);
d1310b2e
CM
3300 if (ret)
3301 SetPageError(page);
3302 }
3303 cur = cur + iosize;
7f3c74fb 3304 pg_offset += iosize;
d1310b2e
CM
3305 nr++;
3306 }
3307done:
3308 if (nr == 0) {
3309 /* make sure the mapping tag for page dirty gets cleared */
3310 set_page_writeback(page);
3311 end_page_writeback(page);
3312 }
d1310b2e 3313 unlock_page(page);
771ed689 3314
11c8349b
CM
3315done_unlocked:
3316
2c64c53d
CM
3317 /* drop our reference on any cached states */
3318 free_extent_state(cached_state);
d1310b2e
CM
3319 return 0;
3320}
3321
0b32f4bb
JB
3322static int eb_wait(void *word)
3323{
3324 io_schedule();
3325 return 0;
3326}
3327
fd8b2b61 3328void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3329{
3330 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3331 TASK_UNINTERRUPTIBLE);
3332}
3333
3334static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3335 struct btrfs_fs_info *fs_info,
3336 struct extent_page_data *epd)
3337{
3338 unsigned long i, num_pages;
3339 int flush = 0;
3340 int ret = 0;
3341
3342 if (!btrfs_try_tree_write_lock(eb)) {
3343 flush = 1;
3344 flush_write_bio(epd);
3345 btrfs_tree_lock(eb);
3346 }
3347
3348 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3349 btrfs_tree_unlock(eb);
3350 if (!epd->sync_io)
3351 return 0;
3352 if (!flush) {
3353 flush_write_bio(epd);
3354 flush = 1;
3355 }
a098d8e8
CM
3356 while (1) {
3357 wait_on_extent_buffer_writeback(eb);
3358 btrfs_tree_lock(eb);
3359 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3360 break;
0b32f4bb 3361 btrfs_tree_unlock(eb);
0b32f4bb
JB
3362 }
3363 }
3364
51561ffe
JB
3365 /*
3366 * We need to do this to prevent races in people who check if the eb is
3367 * under IO since we can end up having no IO bits set for a short period
3368 * of time.
3369 */
3370 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3371 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3372 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3373 spin_unlock(&eb->refs_lock);
0b32f4bb 3374 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3375 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3376 -eb->len,
3377 fs_info->dirty_metadata_batch);
0b32f4bb 3378 ret = 1;
51561ffe
JB
3379 } else {
3380 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3381 }
3382
3383 btrfs_tree_unlock(eb);
3384
3385 if (!ret)
3386 return ret;
3387
3388 num_pages = num_extent_pages(eb->start, eb->len);
3389 for (i = 0; i < num_pages; i++) {
3390 struct page *p = extent_buffer_page(eb, i);
3391
3392 if (!trylock_page(p)) {
3393 if (!flush) {
3394 flush_write_bio(epd);
3395 flush = 1;
3396 }
3397 lock_page(p);
3398 }
3399 }
3400
3401 return ret;
3402}
3403
3404static void end_extent_buffer_writeback(struct extent_buffer *eb)
3405{
3406 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3407 smp_mb__after_clear_bit();
3408 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3409}
3410
3411static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3412{
3413 int uptodate = err == 0;
3414 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3415 struct extent_buffer *eb;
3416 int done;
3417
3418 do {
3419 struct page *page = bvec->bv_page;
3420
3421 bvec--;
3422 eb = (struct extent_buffer *)page->private;
3423 BUG_ON(!eb);
3424 done = atomic_dec_and_test(&eb->io_pages);
3425
3426 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3427 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3428 ClearPageUptodate(page);
3429 SetPageError(page);
3430 }
3431
3432 end_page_writeback(page);
3433
3434 if (!done)
3435 continue;
3436
3437 end_extent_buffer_writeback(eb);
3438 } while (bvec >= bio->bi_io_vec);
3439
3440 bio_put(bio);
3441
3442}
3443
3444static int write_one_eb(struct extent_buffer *eb,
3445 struct btrfs_fs_info *fs_info,
3446 struct writeback_control *wbc,
3447 struct extent_page_data *epd)
3448{
3449 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3450 u64 offset = eb->start;
3451 unsigned long i, num_pages;
de0022b9 3452 unsigned long bio_flags = 0;
d4c7ca86 3453 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3454 int ret = 0;
0b32f4bb
JB
3455
3456 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3457 num_pages = num_extent_pages(eb->start, eb->len);
3458 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3459 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3460 bio_flags = EXTENT_BIO_TREE_LOG;
3461
0b32f4bb
JB
3462 for (i = 0; i < num_pages; i++) {
3463 struct page *p = extent_buffer_page(eb, i);
3464
3465 clear_page_dirty_for_io(p);
3466 set_page_writeback(p);
3467 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3468 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3469 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3470 0, epd->bio_flags, bio_flags);
3471 epd->bio_flags = bio_flags;
0b32f4bb
JB
3472 if (ret) {
3473 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3474 SetPageError(p);
3475 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3476 end_extent_buffer_writeback(eb);
3477 ret = -EIO;
3478 break;
3479 }
3480 offset += PAGE_CACHE_SIZE;
3481 update_nr_written(p, wbc, 1);
3482 unlock_page(p);
3483 }
3484
3485 if (unlikely(ret)) {
3486 for (; i < num_pages; i++) {
3487 struct page *p = extent_buffer_page(eb, i);
3488 unlock_page(p);
3489 }
3490 }
3491
3492 return ret;
3493}
3494
3495int btree_write_cache_pages(struct address_space *mapping,
3496 struct writeback_control *wbc)
3497{
3498 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3499 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3500 struct extent_buffer *eb, *prev_eb = NULL;
3501 struct extent_page_data epd = {
3502 .bio = NULL,
3503 .tree = tree,
3504 .extent_locked = 0,
3505 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3506 .bio_flags = 0,
0b32f4bb
JB
3507 };
3508 int ret = 0;
3509 int done = 0;
3510 int nr_to_write_done = 0;
3511 struct pagevec pvec;
3512 int nr_pages;
3513 pgoff_t index;
3514 pgoff_t end; /* Inclusive */
3515 int scanned = 0;
3516 int tag;
3517
3518 pagevec_init(&pvec, 0);
3519 if (wbc->range_cyclic) {
3520 index = mapping->writeback_index; /* Start from prev offset */
3521 end = -1;
3522 } else {
3523 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3524 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3525 scanned = 1;
3526 }
3527 if (wbc->sync_mode == WB_SYNC_ALL)
3528 tag = PAGECACHE_TAG_TOWRITE;
3529 else
3530 tag = PAGECACHE_TAG_DIRTY;
3531retry:
3532 if (wbc->sync_mode == WB_SYNC_ALL)
3533 tag_pages_for_writeback(mapping, index, end);
3534 while (!done && !nr_to_write_done && (index <= end) &&
3535 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3536 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3537 unsigned i;
3538
3539 scanned = 1;
3540 for (i = 0; i < nr_pages; i++) {
3541 struct page *page = pvec.pages[i];
3542
3543 if (!PagePrivate(page))
3544 continue;
3545
3546 if (!wbc->range_cyclic && page->index > end) {
3547 done = 1;
3548 break;
3549 }
3550
b5bae261
JB
3551 spin_lock(&mapping->private_lock);
3552 if (!PagePrivate(page)) {
3553 spin_unlock(&mapping->private_lock);
3554 continue;
3555 }
3556
0b32f4bb 3557 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3558
3559 /*
3560 * Shouldn't happen and normally this would be a BUG_ON
3561 * but no sense in crashing the users box for something
3562 * we can survive anyway.
3563 */
fae7f21c 3564 if (WARN_ON(!eb)) {
b5bae261 3565 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3566 continue;
3567 }
3568
b5bae261
JB
3569 if (eb == prev_eb) {
3570 spin_unlock(&mapping->private_lock);
0b32f4bb 3571 continue;
b5bae261 3572 }
0b32f4bb 3573
b5bae261
JB
3574 ret = atomic_inc_not_zero(&eb->refs);
3575 spin_unlock(&mapping->private_lock);
3576 if (!ret)
0b32f4bb 3577 continue;
0b32f4bb
JB
3578
3579 prev_eb = eb;
3580 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3581 if (!ret) {
3582 free_extent_buffer(eb);
3583 continue;
3584 }
3585
3586 ret = write_one_eb(eb, fs_info, wbc, &epd);
3587 if (ret) {
3588 done = 1;
3589 free_extent_buffer(eb);
3590 break;
3591 }
3592 free_extent_buffer(eb);
3593
3594 /*
3595 * the filesystem may choose to bump up nr_to_write.
3596 * We have to make sure to honor the new nr_to_write
3597 * at any time
3598 */
3599 nr_to_write_done = wbc->nr_to_write <= 0;
3600 }
3601 pagevec_release(&pvec);
3602 cond_resched();
3603 }
3604 if (!scanned && !done) {
3605 /*
3606 * We hit the last page and there is more work to be done: wrap
3607 * back to the start of the file
3608 */
3609 scanned = 1;
3610 index = 0;
3611 goto retry;
3612 }
3613 flush_write_bio(&epd);
3614 return ret;
3615}
3616
d1310b2e 3617/**
4bef0848 3618 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3619 * @mapping: address space structure to write
3620 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3621 * @writepage: function called for each page
3622 * @data: data passed to writepage function
3623 *
3624 * If a page is already under I/O, write_cache_pages() skips it, even
3625 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3626 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3627 * and msync() need to guarantee that all the data which was dirty at the time
3628 * the call was made get new I/O started against them. If wbc->sync_mode is
3629 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3630 * existing IO to complete.
3631 */
b2950863 3632static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3633 struct address_space *mapping,
3634 struct writeback_control *wbc,
d2c3f4f6
CM
3635 writepage_t writepage, void *data,
3636 void (*flush_fn)(void *))
d1310b2e 3637{
7fd1a3f7 3638 struct inode *inode = mapping->host;
d1310b2e
CM
3639 int ret = 0;
3640 int done = 0;
f85d7d6c 3641 int nr_to_write_done = 0;
d1310b2e
CM
3642 struct pagevec pvec;
3643 int nr_pages;
3644 pgoff_t index;
3645 pgoff_t end; /* Inclusive */
3646 int scanned = 0;
f7aaa06b 3647 int tag;
d1310b2e 3648
7fd1a3f7
JB
3649 /*
3650 * We have to hold onto the inode so that ordered extents can do their
3651 * work when the IO finishes. The alternative to this is failing to add
3652 * an ordered extent if the igrab() fails there and that is a huge pain
3653 * to deal with, so instead just hold onto the inode throughout the
3654 * writepages operation. If it fails here we are freeing up the inode
3655 * anyway and we'd rather not waste our time writing out stuff that is
3656 * going to be truncated anyway.
3657 */
3658 if (!igrab(inode))
3659 return 0;
3660
d1310b2e
CM
3661 pagevec_init(&pvec, 0);
3662 if (wbc->range_cyclic) {
3663 index = mapping->writeback_index; /* Start from prev offset */
3664 end = -1;
3665 } else {
3666 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3667 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3668 scanned = 1;
3669 }
f7aaa06b
JB
3670 if (wbc->sync_mode == WB_SYNC_ALL)
3671 tag = PAGECACHE_TAG_TOWRITE;
3672 else
3673 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3674retry:
f7aaa06b
JB
3675 if (wbc->sync_mode == WB_SYNC_ALL)
3676 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3677 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3678 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3679 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3680 unsigned i;
3681
3682 scanned = 1;
3683 for (i = 0; i < nr_pages; i++) {
3684 struct page *page = pvec.pages[i];
3685
3686 /*
3687 * At this point we hold neither mapping->tree_lock nor
3688 * lock on the page itself: the page may be truncated or
3689 * invalidated (changing page->mapping to NULL), or even
3690 * swizzled back from swapper_space to tmpfs file
3691 * mapping
3692 */
c8f2f24b
JB
3693 if (!trylock_page(page)) {
3694 flush_fn(data);
3695 lock_page(page);
01d658f2 3696 }
d1310b2e
CM
3697
3698 if (unlikely(page->mapping != mapping)) {
3699 unlock_page(page);
3700 continue;
3701 }
3702
3703 if (!wbc->range_cyclic && page->index > end) {
3704 done = 1;
3705 unlock_page(page);
3706 continue;
3707 }
3708
d2c3f4f6 3709 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3710 if (PageWriteback(page))
3711 flush_fn(data);
d1310b2e 3712 wait_on_page_writeback(page);
d2c3f4f6 3713 }
d1310b2e
CM
3714
3715 if (PageWriteback(page) ||
3716 !clear_page_dirty_for_io(page)) {
3717 unlock_page(page);
3718 continue;
3719 }
3720
3721 ret = (*writepage)(page, wbc, data);
3722
3723 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3724 unlock_page(page);
3725 ret = 0;
3726 }
f85d7d6c 3727 if (ret)
d1310b2e 3728 done = 1;
f85d7d6c
CM
3729
3730 /*
3731 * the filesystem may choose to bump up nr_to_write.
3732 * We have to make sure to honor the new nr_to_write
3733 * at any time
3734 */
3735 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3736 }
3737 pagevec_release(&pvec);
3738 cond_resched();
3739 }
3740 if (!scanned && !done) {
3741 /*
3742 * We hit the last page and there is more work to be done: wrap
3743 * back to the start of the file
3744 */
3745 scanned = 1;
3746 index = 0;
3747 goto retry;
3748 }
7fd1a3f7 3749 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3750 return ret;
3751}
d1310b2e 3752
ffbd517d 3753static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3754{
d2c3f4f6 3755 if (epd->bio) {
355808c2
JM
3756 int rw = WRITE;
3757 int ret;
3758
ffbd517d 3759 if (epd->sync_io)
355808c2
JM
3760 rw = WRITE_SYNC;
3761
de0022b9 3762 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3763 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3764 epd->bio = NULL;
3765 }
3766}
3767
ffbd517d
CM
3768static noinline void flush_write_bio(void *data)
3769{
3770 struct extent_page_data *epd = data;
3771 flush_epd_write_bio(epd);
3772}
3773
d1310b2e
CM
3774int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3775 get_extent_t *get_extent,
3776 struct writeback_control *wbc)
3777{
3778 int ret;
d1310b2e
CM
3779 struct extent_page_data epd = {
3780 .bio = NULL,
3781 .tree = tree,
3782 .get_extent = get_extent,
771ed689 3783 .extent_locked = 0,
ffbd517d 3784 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3785 .bio_flags = 0,
d1310b2e 3786 };
d1310b2e 3787
d1310b2e
CM
3788 ret = __extent_writepage(page, wbc, &epd);
3789
ffbd517d 3790 flush_epd_write_bio(&epd);
d1310b2e
CM
3791 return ret;
3792}
d1310b2e 3793
771ed689
CM
3794int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3795 u64 start, u64 end, get_extent_t *get_extent,
3796 int mode)
3797{
3798 int ret = 0;
3799 struct address_space *mapping = inode->i_mapping;
3800 struct page *page;
3801 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3802 PAGE_CACHE_SHIFT;
3803
3804 struct extent_page_data epd = {
3805 .bio = NULL,
3806 .tree = tree,
3807 .get_extent = get_extent,
3808 .extent_locked = 1,
ffbd517d 3809 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3810 .bio_flags = 0,
771ed689
CM
3811 };
3812 struct writeback_control wbc_writepages = {
771ed689 3813 .sync_mode = mode,
771ed689
CM
3814 .nr_to_write = nr_pages * 2,
3815 .range_start = start,
3816 .range_end = end + 1,
3817 };
3818
d397712b 3819 while (start <= end) {
771ed689
CM
3820 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3821 if (clear_page_dirty_for_io(page))
3822 ret = __extent_writepage(page, &wbc_writepages, &epd);
3823 else {
3824 if (tree->ops && tree->ops->writepage_end_io_hook)
3825 tree->ops->writepage_end_io_hook(page, start,
3826 start + PAGE_CACHE_SIZE - 1,
3827 NULL, 1);
3828 unlock_page(page);
3829 }
3830 page_cache_release(page);
3831 start += PAGE_CACHE_SIZE;
3832 }
3833
ffbd517d 3834 flush_epd_write_bio(&epd);
771ed689
CM
3835 return ret;
3836}
d1310b2e
CM
3837
3838int extent_writepages(struct extent_io_tree *tree,
3839 struct address_space *mapping,
3840 get_extent_t *get_extent,
3841 struct writeback_control *wbc)
3842{
3843 int ret = 0;
3844 struct extent_page_data epd = {
3845 .bio = NULL,
3846 .tree = tree,
3847 .get_extent = get_extent,
771ed689 3848 .extent_locked = 0,
ffbd517d 3849 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3850 .bio_flags = 0,
d1310b2e
CM
3851 };
3852
4bef0848 3853 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3854 __extent_writepage, &epd,
3855 flush_write_bio);
ffbd517d 3856 flush_epd_write_bio(&epd);
d1310b2e
CM
3857 return ret;
3858}
d1310b2e
CM
3859
3860int extent_readpages(struct extent_io_tree *tree,
3861 struct address_space *mapping,
3862 struct list_head *pages, unsigned nr_pages,
3863 get_extent_t get_extent)
3864{
3865 struct bio *bio = NULL;
3866 unsigned page_idx;
c8b97818 3867 unsigned long bio_flags = 0;
67c9684f
LB
3868 struct page *pagepool[16];
3869 struct page *page;
125bac01 3870 struct extent_map *em_cached = NULL;
67c9684f 3871 int nr = 0;
d1310b2e 3872
d1310b2e 3873 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3874 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3875
3876 prefetchw(&page->flags);
3877 list_del(&page->lru);
67c9684f 3878 if (add_to_page_cache_lru(page, mapping,
43e817a1 3879 page->index, GFP_NOFS)) {
67c9684f
LB
3880 page_cache_release(page);
3881 continue;
d1310b2e 3882 }
67c9684f
LB
3883
3884 pagepool[nr++] = page;
3885 if (nr < ARRAY_SIZE(pagepool))
3886 continue;
125bac01 3887 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3888 &bio, 0, &bio_flags, READ);
67c9684f 3889 nr = 0;
d1310b2e 3890 }
9974090b 3891 if (nr)
125bac01 3892 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3893 &bio, 0, &bio_flags, READ);
67c9684f 3894
125bac01
MX
3895 if (em_cached)
3896 free_extent_map(em_cached);
3897
d1310b2e
CM
3898 BUG_ON(!list_empty(pages));
3899 if (bio)
79787eaa 3900 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3901 return 0;
3902}
d1310b2e
CM
3903
3904/*
3905 * basic invalidatepage code, this waits on any locked or writeback
3906 * ranges corresponding to the page, and then deletes any extent state
3907 * records from the tree
3908 */
3909int extent_invalidatepage(struct extent_io_tree *tree,
3910 struct page *page, unsigned long offset)
3911{
2ac55d41 3912 struct extent_state *cached_state = NULL;
4eee4fa4 3913 u64 start = page_offset(page);
d1310b2e
CM
3914 u64 end = start + PAGE_CACHE_SIZE - 1;
3915 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3916
fda2832f 3917 start += ALIGN(offset, blocksize);
d1310b2e
CM
3918 if (start > end)
3919 return 0;
3920
d0082371 3921 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3922 wait_on_page_writeback(page);
d1310b2e 3923 clear_extent_bit(tree, start, end,
32c00aff
JB
3924 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3925 EXTENT_DO_ACCOUNTING,
2ac55d41 3926 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3927 return 0;
3928}
d1310b2e 3929
7b13b7b1
CM
3930/*
3931 * a helper for releasepage, this tests for areas of the page that
3932 * are locked or under IO and drops the related state bits if it is safe
3933 * to drop the page.
3934 */
48a3b636
ES
3935static int try_release_extent_state(struct extent_map_tree *map,
3936 struct extent_io_tree *tree,
3937 struct page *page, gfp_t mask)
7b13b7b1 3938{
4eee4fa4 3939 u64 start = page_offset(page);
7b13b7b1
CM
3940 u64 end = start + PAGE_CACHE_SIZE - 1;
3941 int ret = 1;
3942
211f90e6 3943 if (test_range_bit(tree, start, end,
8b62b72b 3944 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3945 ret = 0;
3946 else {
3947 if ((mask & GFP_NOFS) == GFP_NOFS)
3948 mask = GFP_NOFS;
11ef160f
CM
3949 /*
3950 * at this point we can safely clear everything except the
3951 * locked bit and the nodatasum bit
3952 */
e3f24cc5 3953 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3954 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3955 0, 0, NULL, mask);
e3f24cc5
CM
3956
3957 /* if clear_extent_bit failed for enomem reasons,
3958 * we can't allow the release to continue.
3959 */
3960 if (ret < 0)
3961 ret = 0;
3962 else
3963 ret = 1;
7b13b7b1
CM
3964 }
3965 return ret;
3966}
7b13b7b1 3967
d1310b2e
CM
3968/*
3969 * a helper for releasepage. As long as there are no locked extents
3970 * in the range corresponding to the page, both state records and extent
3971 * map records are removed
3972 */
3973int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3974 struct extent_io_tree *tree, struct page *page,
3975 gfp_t mask)
d1310b2e
CM
3976{
3977 struct extent_map *em;
4eee4fa4 3978 u64 start = page_offset(page);
d1310b2e 3979 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3980
70dec807
CM
3981 if ((mask & __GFP_WAIT) &&
3982 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3983 u64 len;
70dec807 3984 while (start <= end) {
39b5637f 3985 len = end - start + 1;
890871be 3986 write_lock(&map->lock);
39b5637f 3987 em = lookup_extent_mapping(map, start, len);
285190d9 3988 if (!em) {
890871be 3989 write_unlock(&map->lock);
70dec807
CM
3990 break;
3991 }
7f3c74fb
CM
3992 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3993 em->start != start) {
890871be 3994 write_unlock(&map->lock);
70dec807
CM
3995 free_extent_map(em);
3996 break;
3997 }
3998 if (!test_range_bit(tree, em->start,
3999 extent_map_end(em) - 1,
8b62b72b 4000 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4001 0, NULL)) {
70dec807
CM
4002 remove_extent_mapping(map, em);
4003 /* once for the rb tree */
4004 free_extent_map(em);
4005 }
4006 start = extent_map_end(em);
890871be 4007 write_unlock(&map->lock);
70dec807
CM
4008
4009 /* once for us */
d1310b2e
CM
4010 free_extent_map(em);
4011 }
d1310b2e 4012 }
7b13b7b1 4013 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4014}
d1310b2e 4015
ec29ed5b
CM
4016/*
4017 * helper function for fiemap, which doesn't want to see any holes.
4018 * This maps until we find something past 'last'
4019 */
4020static struct extent_map *get_extent_skip_holes(struct inode *inode,
4021 u64 offset,
4022 u64 last,
4023 get_extent_t *get_extent)
4024{
4025 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4026 struct extent_map *em;
4027 u64 len;
4028
4029 if (offset >= last)
4030 return NULL;
4031
67871254 4032 while (1) {
ec29ed5b
CM
4033 len = last - offset;
4034 if (len == 0)
4035 break;
fda2832f 4036 len = ALIGN(len, sectorsize);
ec29ed5b 4037 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4038 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4039 return em;
4040
4041 /* if this isn't a hole return it */
4042 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4043 em->block_start != EXTENT_MAP_HOLE) {
4044 return em;
4045 }
4046
4047 /* this is a hole, advance to the next extent */
4048 offset = extent_map_end(em);
4049 free_extent_map(em);
4050 if (offset >= last)
4051 break;
4052 }
4053 return NULL;
4054}
4055
fe09e16c
LB
4056static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4057{
4058 unsigned long cnt = *((unsigned long *)ctx);
4059
4060 cnt++;
4061 *((unsigned long *)ctx) = cnt;
4062
4063 /* Now we're sure that the extent is shared. */
4064 if (cnt > 1)
4065 return 1;
4066 return 0;
4067}
4068
1506fcc8
YS
4069int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4070 __u64 start, __u64 len, get_extent_t *get_extent)
4071{
975f84fe 4072 int ret = 0;
1506fcc8
YS
4073 u64 off = start;
4074 u64 max = start + len;
4075 u32 flags = 0;
975f84fe
JB
4076 u32 found_type;
4077 u64 last;
ec29ed5b 4078 u64 last_for_get_extent = 0;
1506fcc8 4079 u64 disko = 0;
ec29ed5b 4080 u64 isize = i_size_read(inode);
975f84fe 4081 struct btrfs_key found_key;
1506fcc8 4082 struct extent_map *em = NULL;
2ac55d41 4083 struct extent_state *cached_state = NULL;
975f84fe 4084 struct btrfs_path *path;
1506fcc8 4085 int end = 0;
ec29ed5b
CM
4086 u64 em_start = 0;
4087 u64 em_len = 0;
4088 u64 em_end = 0;
1506fcc8
YS
4089
4090 if (len == 0)
4091 return -EINVAL;
4092
975f84fe
JB
4093 path = btrfs_alloc_path();
4094 if (!path)
4095 return -ENOMEM;
4096 path->leave_spinning = 1;
4097
4d479cf0
JB
4098 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4099 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4100
ec29ed5b
CM
4101 /*
4102 * lookup the last file extent. We're not using i_size here
4103 * because there might be preallocation past i_size
4104 */
975f84fe 4105 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4106 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4107 if (ret < 0) {
4108 btrfs_free_path(path);
4109 return ret;
4110 }
4111 WARN_ON(!ret);
4112 path->slots[0]--;
975f84fe
JB
4113 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4114 found_type = btrfs_key_type(&found_key);
4115
ec29ed5b 4116 /* No extents, but there might be delalloc bits */
33345d01 4117 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4118 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4119 /* have to trust i_size as the end */
4120 last = (u64)-1;
4121 last_for_get_extent = isize;
4122 } else {
4123 /*
4124 * remember the start of the last extent. There are a
4125 * bunch of different factors that go into the length of the
4126 * extent, so its much less complex to remember where it started
4127 */
4128 last = found_key.offset;
4129 last_for_get_extent = last + 1;
975f84fe 4130 }
fe09e16c 4131 btrfs_release_path(path);
975f84fe 4132
ec29ed5b
CM
4133 /*
4134 * we might have some extents allocated but more delalloc past those
4135 * extents. so, we trust isize unless the start of the last extent is
4136 * beyond isize
4137 */
4138 if (last < isize) {
4139 last = (u64)-1;
4140 last_for_get_extent = isize;
4141 }
4142
a52f4cd2 4143 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4144 &cached_state);
ec29ed5b 4145
4d479cf0 4146 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4147 get_extent);
1506fcc8
YS
4148 if (!em)
4149 goto out;
4150 if (IS_ERR(em)) {
4151 ret = PTR_ERR(em);
4152 goto out;
4153 }
975f84fe 4154
1506fcc8 4155 while (!end) {
b76bb701 4156 u64 offset_in_extent = 0;
ea8efc74
CM
4157
4158 /* break if the extent we found is outside the range */
4159 if (em->start >= max || extent_map_end(em) < off)
4160 break;
4161
4162 /*
4163 * get_extent may return an extent that starts before our
4164 * requested range. We have to make sure the ranges
4165 * we return to fiemap always move forward and don't
4166 * overlap, so adjust the offsets here
4167 */
4168 em_start = max(em->start, off);
1506fcc8 4169
ea8efc74
CM
4170 /*
4171 * record the offset from the start of the extent
b76bb701
JB
4172 * for adjusting the disk offset below. Only do this if the
4173 * extent isn't compressed since our in ram offset may be past
4174 * what we have actually allocated on disk.
ea8efc74 4175 */
b76bb701
JB
4176 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4177 offset_in_extent = em_start - em->start;
ec29ed5b 4178 em_end = extent_map_end(em);
ea8efc74 4179 em_len = em_end - em_start;
1506fcc8
YS
4180 disko = 0;
4181 flags = 0;
4182
ea8efc74
CM
4183 /*
4184 * bump off for our next call to get_extent
4185 */
4186 off = extent_map_end(em);
4187 if (off >= max)
4188 end = 1;
4189
93dbfad7 4190 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4191 end = 1;
4192 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4193 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4194 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4195 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4196 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4197 flags |= (FIEMAP_EXTENT_DELALLOC |
4198 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4199 } else {
fe09e16c
LB
4200 unsigned long ref_cnt = 0;
4201
ea8efc74 4202 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4203
4204 /*
4205 * As btrfs supports shared space, this information
4206 * can be exported to userspace tools via
4207 * flag FIEMAP_EXTENT_SHARED.
4208 */
4209 ret = iterate_inodes_from_logical(
4210 em->block_start,
4211 BTRFS_I(inode)->root->fs_info,
4212 path, count_ext_ref, &ref_cnt);
4213 if (ret < 0 && ret != -ENOENT)
4214 goto out_free;
4215
4216 if (ref_cnt > 1)
4217 flags |= FIEMAP_EXTENT_SHARED;
1506fcc8
YS
4218 }
4219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4220 flags |= FIEMAP_EXTENT_ENCODED;
4221
1506fcc8
YS
4222 free_extent_map(em);
4223 em = NULL;
ec29ed5b
CM
4224 if ((em_start >= last) || em_len == (u64)-1 ||
4225 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4226 flags |= FIEMAP_EXTENT_LAST;
4227 end = 1;
4228 }
4229
ec29ed5b
CM
4230 /* now scan forward to see if this is really the last extent. */
4231 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4232 get_extent);
4233 if (IS_ERR(em)) {
4234 ret = PTR_ERR(em);
4235 goto out;
4236 }
4237 if (!em) {
975f84fe
JB
4238 flags |= FIEMAP_EXTENT_LAST;
4239 end = 1;
4240 }
ec29ed5b
CM
4241 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4242 em_len, flags);
4243 if (ret)
4244 goto out_free;
1506fcc8
YS
4245 }
4246out_free:
4247 free_extent_map(em);
4248out:
fe09e16c 4249 btrfs_free_path(path);
a52f4cd2 4250 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4251 &cached_state, GFP_NOFS);
1506fcc8
YS
4252 return ret;
4253}
4254
727011e0
CM
4255static void __free_extent_buffer(struct extent_buffer *eb)
4256{
6d49ba1b 4257 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4258 kmem_cache_free(extent_buffer_cache, eb);
4259}
4260
db7f3436
JB
4261static int extent_buffer_under_io(struct extent_buffer *eb)
4262{
4263 return (atomic_read(&eb->io_pages) ||
4264 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4265 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4266}
4267
4268/*
4269 * Helper for releasing extent buffer page.
4270 */
4271static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4272 unsigned long start_idx)
4273{
4274 unsigned long index;
4275 unsigned long num_pages;
4276 struct page *page;
4277 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4278
4279 BUG_ON(extent_buffer_under_io(eb));
4280
4281 num_pages = num_extent_pages(eb->start, eb->len);
4282 index = start_idx + num_pages;
4283 if (start_idx >= index)
4284 return;
4285
4286 do {
4287 index--;
4288 page = extent_buffer_page(eb, index);
4289 if (page && mapped) {
4290 spin_lock(&page->mapping->private_lock);
4291 /*
4292 * We do this since we'll remove the pages after we've
4293 * removed the eb from the radix tree, so we could race
4294 * and have this page now attached to the new eb. So
4295 * only clear page_private if it's still connected to
4296 * this eb.
4297 */
4298 if (PagePrivate(page) &&
4299 page->private == (unsigned long)eb) {
4300 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4301 BUG_ON(PageDirty(page));
4302 BUG_ON(PageWriteback(page));
4303 /*
4304 * We need to make sure we haven't be attached
4305 * to a new eb.
4306 */
4307 ClearPagePrivate(page);
4308 set_page_private(page, 0);
4309 /* One for the page private */
4310 page_cache_release(page);
4311 }
4312 spin_unlock(&page->mapping->private_lock);
4313
4314 }
4315 if (page) {
4316 /* One for when we alloced the page */
4317 page_cache_release(page);
4318 }
4319 } while (index != start_idx);
4320}
4321
4322/*
4323 * Helper for releasing the extent buffer.
4324 */
4325static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4326{
4327 btrfs_release_extent_buffer_page(eb, 0);
4328 __free_extent_buffer(eb);
4329}
4330
d1310b2e
CM
4331static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4332 u64 start,
4333 unsigned long len,
4334 gfp_t mask)
4335{
4336 struct extent_buffer *eb = NULL;
4337
d1310b2e 4338 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4339 if (eb == NULL)
4340 return NULL;
d1310b2e
CM
4341 eb->start = start;
4342 eb->len = len;
4f2de97a 4343 eb->tree = tree;
815a51c7 4344 eb->bflags = 0;
bd681513
CM
4345 rwlock_init(&eb->lock);
4346 atomic_set(&eb->write_locks, 0);
4347 atomic_set(&eb->read_locks, 0);
4348 atomic_set(&eb->blocking_readers, 0);
4349 atomic_set(&eb->blocking_writers, 0);
4350 atomic_set(&eb->spinning_readers, 0);
4351 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4352 eb->lock_nested = 0;
bd681513
CM
4353 init_waitqueue_head(&eb->write_lock_wq);
4354 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4355
6d49ba1b
ES
4356 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4357
3083ee2e 4358 spin_lock_init(&eb->refs_lock);
d1310b2e 4359 atomic_set(&eb->refs, 1);
0b32f4bb 4360 atomic_set(&eb->io_pages, 0);
727011e0 4361
b8dae313
DS
4362 /*
4363 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4364 */
4365 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4366 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4367 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4368
4369 return eb;
4370}
4371
815a51c7
JS
4372struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4373{
4374 unsigned long i;
4375 struct page *p;
4376 struct extent_buffer *new;
4377 unsigned long num_pages = num_extent_pages(src->start, src->len);
4378
9ec72677 4379 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4380 if (new == NULL)
4381 return NULL;
4382
4383 for (i = 0; i < num_pages; i++) {
9ec72677 4384 p = alloc_page(GFP_NOFS);
db7f3436
JB
4385 if (!p) {
4386 btrfs_release_extent_buffer(new);
4387 return NULL;
4388 }
815a51c7
JS
4389 attach_extent_buffer_page(new, p);
4390 WARN_ON(PageDirty(p));
4391 SetPageUptodate(p);
4392 new->pages[i] = p;
4393 }
4394
4395 copy_extent_buffer(new, src, 0, 0, src->len);
4396 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4397 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4398
4399 return new;
4400}
4401
4402struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4403{
4404 struct extent_buffer *eb;
4405 unsigned long num_pages = num_extent_pages(0, len);
4406 unsigned long i;
4407
9ec72677 4408 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4409 if (!eb)
4410 return NULL;
4411
4412 for (i = 0; i < num_pages; i++) {
9ec72677 4413 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4414 if (!eb->pages[i])
4415 goto err;
4416 }
4417 set_extent_buffer_uptodate(eb);
4418 btrfs_set_header_nritems(eb, 0);
4419 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4420
4421 return eb;
4422err:
84167d19
SB
4423 for (; i > 0; i--)
4424 __free_page(eb->pages[i - 1]);
815a51c7
JS
4425 __free_extent_buffer(eb);
4426 return NULL;
4427}
4428
0b32f4bb
JB
4429static void check_buffer_tree_ref(struct extent_buffer *eb)
4430{
242e18c7 4431 int refs;
0b32f4bb
JB
4432 /* the ref bit is tricky. We have to make sure it is set
4433 * if we have the buffer dirty. Otherwise the
4434 * code to free a buffer can end up dropping a dirty
4435 * page
4436 *
4437 * Once the ref bit is set, it won't go away while the
4438 * buffer is dirty or in writeback, and it also won't
4439 * go away while we have the reference count on the
4440 * eb bumped.
4441 *
4442 * We can't just set the ref bit without bumping the
4443 * ref on the eb because free_extent_buffer might
4444 * see the ref bit and try to clear it. If this happens
4445 * free_extent_buffer might end up dropping our original
4446 * ref by mistake and freeing the page before we are able
4447 * to add one more ref.
4448 *
4449 * So bump the ref count first, then set the bit. If someone
4450 * beat us to it, drop the ref we added.
4451 */
242e18c7
CM
4452 refs = atomic_read(&eb->refs);
4453 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4454 return;
4455
594831c4
JB
4456 spin_lock(&eb->refs_lock);
4457 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4458 atomic_inc(&eb->refs);
594831c4 4459 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4460}
4461
5df4235e
JB
4462static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4463{
4464 unsigned long num_pages, i;
4465
0b32f4bb
JB
4466 check_buffer_tree_ref(eb);
4467
5df4235e
JB
4468 num_pages = num_extent_pages(eb->start, eb->len);
4469 for (i = 0; i < num_pages; i++) {
4470 struct page *p = extent_buffer_page(eb, i);
4471 mark_page_accessed(p);
4472 }
4473}
4474
452c75c3
CS
4475struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4476 u64 start)
4477{
4478 struct extent_buffer *eb;
4479
4480 rcu_read_lock();
4481 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4482 if (eb && atomic_inc_not_zero(&eb->refs)) {
4483 rcu_read_unlock();
4484 mark_extent_buffer_accessed(eb);
4485 return eb;
4486 }
4487 rcu_read_unlock();
4488
4489 return NULL;
4490}
4491
d1310b2e 4492struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4493 u64 start, unsigned long len)
d1310b2e
CM
4494{
4495 unsigned long num_pages = num_extent_pages(start, len);
4496 unsigned long i;
4497 unsigned long index = start >> PAGE_CACHE_SHIFT;
4498 struct extent_buffer *eb;
6af118ce 4499 struct extent_buffer *exists = NULL;
d1310b2e
CM
4500 struct page *p;
4501 struct address_space *mapping = tree->mapping;
4502 int uptodate = 1;
19fe0a8b 4503 int ret;
d1310b2e 4504
452c75c3
CS
4505
4506 eb = find_extent_buffer(tree, start);
4507 if (eb)
6af118ce 4508 return eb;
6af118ce 4509
ba144192 4510 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4511 if (!eb)
d1310b2e
CM
4512 return NULL;
4513
727011e0 4514 for (i = 0; i < num_pages; i++, index++) {
a6591715 4515 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4516 if (!p)
6af118ce 4517 goto free_eb;
4f2de97a
JB
4518
4519 spin_lock(&mapping->private_lock);
4520 if (PagePrivate(p)) {
4521 /*
4522 * We could have already allocated an eb for this page
4523 * and attached one so lets see if we can get a ref on
4524 * the existing eb, and if we can we know it's good and
4525 * we can just return that one, else we know we can just
4526 * overwrite page->private.
4527 */
4528 exists = (struct extent_buffer *)p->private;
4529 if (atomic_inc_not_zero(&exists->refs)) {
4530 spin_unlock(&mapping->private_lock);
4531 unlock_page(p);
17de39ac 4532 page_cache_release(p);
5df4235e 4533 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4534 goto free_eb;
4535 }
4536
0b32f4bb 4537 /*
4f2de97a
JB
4538 * Do this so attach doesn't complain and we need to
4539 * drop the ref the old guy had.
4540 */
4541 ClearPagePrivate(p);
0b32f4bb 4542 WARN_ON(PageDirty(p));
4f2de97a 4543 page_cache_release(p);
d1310b2e 4544 }
4f2de97a
JB
4545 attach_extent_buffer_page(eb, p);
4546 spin_unlock(&mapping->private_lock);
0b32f4bb 4547 WARN_ON(PageDirty(p));
d1310b2e 4548 mark_page_accessed(p);
727011e0 4549 eb->pages[i] = p;
d1310b2e
CM
4550 if (!PageUptodate(p))
4551 uptodate = 0;
eb14ab8e
CM
4552
4553 /*
4554 * see below about how we avoid a nasty race with release page
4555 * and why we unlock later
4556 */
d1310b2e
CM
4557 }
4558 if (uptodate)
b4ce94de 4559 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4560again:
19fe0a8b
MX
4561 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4562 if (ret)
4563 goto free_eb;
4564
6af118ce 4565 spin_lock(&tree->buffer_lock);
19fe0a8b 4566 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
452c75c3
CS
4567 spin_unlock(&tree->buffer_lock);
4568 radix_tree_preload_end();
19fe0a8b 4569 if (ret == -EEXIST) {
452c75c3
CS
4570 exists = find_extent_buffer(tree, start);
4571 if (exists)
4572 goto free_eb;
4573 else
115391d2 4574 goto again;
6af118ce 4575 }
6af118ce 4576 /* add one reference for the tree */
0b32f4bb 4577 check_buffer_tree_ref(eb);
eb14ab8e
CM
4578
4579 /*
4580 * there is a race where release page may have
4581 * tried to find this extent buffer in the radix
4582 * but failed. It will tell the VM it is safe to
4583 * reclaim the, and it will clear the page private bit.
4584 * We must make sure to set the page private bit properly
4585 * after the extent buffer is in the radix tree so
4586 * it doesn't get lost
4587 */
727011e0
CM
4588 SetPageChecked(eb->pages[0]);
4589 for (i = 1; i < num_pages; i++) {
4590 p = extent_buffer_page(eb, i);
727011e0
CM
4591 ClearPageChecked(p);
4592 unlock_page(p);
4593 }
4594 unlock_page(eb->pages[0]);
d1310b2e
CM
4595 return eb;
4596
6af118ce 4597free_eb:
727011e0
CM
4598 for (i = 0; i < num_pages; i++) {
4599 if (eb->pages[i])
4600 unlock_page(eb->pages[i]);
4601 }
eb14ab8e 4602
17de39ac 4603 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4604 btrfs_release_extent_buffer(eb);
6af118ce 4605 return exists;
d1310b2e 4606}
d1310b2e 4607
3083ee2e
JB
4608static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4609{
4610 struct extent_buffer *eb =
4611 container_of(head, struct extent_buffer, rcu_head);
4612
4613 __free_extent_buffer(eb);
4614}
4615
3083ee2e 4616/* Expects to have eb->eb_lock already held */
f7a52a40 4617static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4618{
4619 WARN_ON(atomic_read(&eb->refs) == 0);
4620 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4621 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4622 spin_unlock(&eb->refs_lock);
4623 } else {
4624 struct extent_io_tree *tree = eb->tree;
3083ee2e 4625
815a51c7 4626 spin_unlock(&eb->refs_lock);
3083ee2e 4627
815a51c7
JS
4628 spin_lock(&tree->buffer_lock);
4629 radix_tree_delete(&tree->buffer,
4630 eb->start >> PAGE_CACHE_SHIFT);
4631 spin_unlock(&tree->buffer_lock);
4632 }
3083ee2e
JB
4633
4634 /* Should be safe to release our pages at this point */
4635 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4636 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4637 return 1;
3083ee2e
JB
4638 }
4639 spin_unlock(&eb->refs_lock);
e64860aa
JB
4640
4641 return 0;
3083ee2e
JB
4642}
4643
d1310b2e
CM
4644void free_extent_buffer(struct extent_buffer *eb)
4645{
242e18c7
CM
4646 int refs;
4647 int old;
d1310b2e
CM
4648 if (!eb)
4649 return;
4650
242e18c7
CM
4651 while (1) {
4652 refs = atomic_read(&eb->refs);
4653 if (refs <= 3)
4654 break;
4655 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4656 if (old == refs)
4657 return;
4658 }
4659
3083ee2e 4660 spin_lock(&eb->refs_lock);
815a51c7
JS
4661 if (atomic_read(&eb->refs) == 2 &&
4662 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4663 atomic_dec(&eb->refs);
4664
3083ee2e
JB
4665 if (atomic_read(&eb->refs) == 2 &&
4666 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4667 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4668 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4669 atomic_dec(&eb->refs);
4670
4671 /*
4672 * I know this is terrible, but it's temporary until we stop tracking
4673 * the uptodate bits and such for the extent buffers.
4674 */
f7a52a40 4675 release_extent_buffer(eb);
3083ee2e
JB
4676}
4677
4678void free_extent_buffer_stale(struct extent_buffer *eb)
4679{
4680 if (!eb)
d1310b2e
CM
4681 return;
4682
3083ee2e
JB
4683 spin_lock(&eb->refs_lock);
4684 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4685
0b32f4bb 4686 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4687 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4688 atomic_dec(&eb->refs);
f7a52a40 4689 release_extent_buffer(eb);
d1310b2e 4690}
d1310b2e 4691
1d4284bd 4692void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4693{
d1310b2e
CM
4694 unsigned long i;
4695 unsigned long num_pages;
4696 struct page *page;
4697
d1310b2e
CM
4698 num_pages = num_extent_pages(eb->start, eb->len);
4699
4700 for (i = 0; i < num_pages; i++) {
4701 page = extent_buffer_page(eb, i);
b9473439 4702 if (!PageDirty(page))
d2c3f4f6
CM
4703 continue;
4704
a61e6f29 4705 lock_page(page);
eb14ab8e
CM
4706 WARN_ON(!PagePrivate(page));
4707
d1310b2e 4708 clear_page_dirty_for_io(page);
0ee0fda0 4709 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4710 if (!PageDirty(page)) {
4711 radix_tree_tag_clear(&page->mapping->page_tree,
4712 page_index(page),
4713 PAGECACHE_TAG_DIRTY);
4714 }
0ee0fda0 4715 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4716 ClearPageError(page);
a61e6f29 4717 unlock_page(page);
d1310b2e 4718 }
0b32f4bb 4719 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4720}
d1310b2e 4721
0b32f4bb 4722int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4723{
4724 unsigned long i;
4725 unsigned long num_pages;
b9473439 4726 int was_dirty = 0;
d1310b2e 4727
0b32f4bb
JB
4728 check_buffer_tree_ref(eb);
4729
b9473439 4730 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4731
d1310b2e 4732 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4733 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4734 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4735
b9473439 4736 for (i = 0; i < num_pages; i++)
0b32f4bb 4737 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4738 return was_dirty;
d1310b2e 4739}
d1310b2e 4740
0b32f4bb 4741int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4742{
4743 unsigned long i;
4744 struct page *page;
4745 unsigned long num_pages;
4746
b4ce94de 4747 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4748 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4749 for (i = 0; i < num_pages; i++) {
4750 page = extent_buffer_page(eb, i);
33958dc6
CM
4751 if (page)
4752 ClearPageUptodate(page);
1259ab75
CM
4753 }
4754 return 0;
4755}
4756
0b32f4bb 4757int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4758{
4759 unsigned long i;
4760 struct page *page;
4761 unsigned long num_pages;
4762
0b32f4bb 4763 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4764 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4765 for (i = 0; i < num_pages; i++) {
4766 page = extent_buffer_page(eb, i);
d1310b2e
CM
4767 SetPageUptodate(page);
4768 }
4769 return 0;
4770}
d1310b2e 4771
0b32f4bb 4772int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4773{
0b32f4bb 4774 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4775}
d1310b2e
CM
4776
4777int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4778 struct extent_buffer *eb, u64 start, int wait,
f188591e 4779 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4780{
4781 unsigned long i;
4782 unsigned long start_i;
4783 struct page *page;
4784 int err;
4785 int ret = 0;
ce9adaa5
CM
4786 int locked_pages = 0;
4787 int all_uptodate = 1;
d1310b2e 4788 unsigned long num_pages;
727011e0 4789 unsigned long num_reads = 0;
a86c12c7 4790 struct bio *bio = NULL;
c8b97818 4791 unsigned long bio_flags = 0;
a86c12c7 4792
b4ce94de 4793 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4794 return 0;
4795
d1310b2e
CM
4796 if (start) {
4797 WARN_ON(start < eb->start);
4798 start_i = (start >> PAGE_CACHE_SHIFT) -
4799 (eb->start >> PAGE_CACHE_SHIFT);
4800 } else {
4801 start_i = 0;
4802 }
4803
4804 num_pages = num_extent_pages(eb->start, eb->len);
4805 for (i = start_i; i < num_pages; i++) {
4806 page = extent_buffer_page(eb, i);
bb82ab88 4807 if (wait == WAIT_NONE) {
2db04966 4808 if (!trylock_page(page))
ce9adaa5 4809 goto unlock_exit;
d1310b2e
CM
4810 } else {
4811 lock_page(page);
4812 }
ce9adaa5 4813 locked_pages++;
727011e0
CM
4814 if (!PageUptodate(page)) {
4815 num_reads++;
ce9adaa5 4816 all_uptodate = 0;
727011e0 4817 }
ce9adaa5
CM
4818 }
4819 if (all_uptodate) {
4820 if (start_i == 0)
b4ce94de 4821 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4822 goto unlock_exit;
4823 }
4824
ea466794 4825 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4826 eb->read_mirror = 0;
0b32f4bb 4827 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4828 for (i = start_i; i < num_pages; i++) {
4829 page = extent_buffer_page(eb, i);
ce9adaa5 4830 if (!PageUptodate(page)) {
f188591e 4831 ClearPageError(page);
a86c12c7 4832 err = __extent_read_full_page(tree, page,
f188591e 4833 get_extent, &bio,
d4c7ca86
JB
4834 mirror_num, &bio_flags,
4835 READ | REQ_META);
d397712b 4836 if (err)
d1310b2e 4837 ret = err;
d1310b2e
CM
4838 } else {
4839 unlock_page(page);
4840 }
4841 }
4842
355808c2 4843 if (bio) {
d4c7ca86
JB
4844 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4845 bio_flags);
79787eaa
JM
4846 if (err)
4847 return err;
355808c2 4848 }
a86c12c7 4849
bb82ab88 4850 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4851 return ret;
d397712b 4852
d1310b2e
CM
4853 for (i = start_i; i < num_pages; i++) {
4854 page = extent_buffer_page(eb, i);
4855 wait_on_page_locked(page);
d397712b 4856 if (!PageUptodate(page))
d1310b2e 4857 ret = -EIO;
d1310b2e 4858 }
d397712b 4859
d1310b2e 4860 return ret;
ce9adaa5
CM
4861
4862unlock_exit:
4863 i = start_i;
d397712b 4864 while (locked_pages > 0) {
ce9adaa5
CM
4865 page = extent_buffer_page(eb, i);
4866 i++;
4867 unlock_page(page);
4868 locked_pages--;
4869 }
4870 return ret;
d1310b2e 4871}
d1310b2e
CM
4872
4873void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4874 unsigned long start,
4875 unsigned long len)
4876{
4877 size_t cur;
4878 size_t offset;
4879 struct page *page;
4880 char *kaddr;
4881 char *dst = (char *)dstv;
4882 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4883 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4884
4885 WARN_ON(start > eb->len);
4886 WARN_ON(start + len > eb->start + eb->len);
4887
778746b5 4888 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4889
d397712b 4890 while (len > 0) {
d1310b2e 4891 page = extent_buffer_page(eb, i);
d1310b2e
CM
4892
4893 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4894 kaddr = page_address(page);
d1310b2e 4895 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4896
4897 dst += cur;
4898 len -= cur;
4899 offset = 0;
4900 i++;
4901 }
4902}
d1310b2e
CM
4903
4904int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4905 unsigned long min_len, char **map,
d1310b2e 4906 unsigned long *map_start,
a6591715 4907 unsigned long *map_len)
d1310b2e
CM
4908{
4909 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4910 char *kaddr;
4911 struct page *p;
4912 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4913 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4914 unsigned long end_i = (start_offset + start + min_len - 1) >>
4915 PAGE_CACHE_SHIFT;
4916
4917 if (i != end_i)
4918 return -EINVAL;
4919
4920 if (i == 0) {
4921 offset = start_offset;
4922 *map_start = 0;
4923 } else {
4924 offset = 0;
4925 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4926 }
d397712b 4927
d1310b2e 4928 if (start + min_len > eb->len) {
31b1a2bd 4929 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
4930 "wanted %lu %lu\n",
4931 eb->start, eb->len, start, min_len);
85026533 4932 return -EINVAL;
d1310b2e
CM
4933 }
4934
4935 p = extent_buffer_page(eb, i);
a6591715 4936 kaddr = page_address(p);
d1310b2e
CM
4937 *map = kaddr + offset;
4938 *map_len = PAGE_CACHE_SIZE - offset;
4939 return 0;
4940}
d1310b2e 4941
d1310b2e
CM
4942int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4943 unsigned long start,
4944 unsigned long len)
4945{
4946 size_t cur;
4947 size_t offset;
4948 struct page *page;
4949 char *kaddr;
4950 char *ptr = (char *)ptrv;
4951 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4952 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4953 int ret = 0;
4954
4955 WARN_ON(start > eb->len);
4956 WARN_ON(start + len > eb->start + eb->len);
4957
778746b5 4958 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4959
d397712b 4960 while (len > 0) {
d1310b2e 4961 page = extent_buffer_page(eb, i);
d1310b2e
CM
4962
4963 cur = min(len, (PAGE_CACHE_SIZE - offset));
4964
a6591715 4965 kaddr = page_address(page);
d1310b2e 4966 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4967 if (ret)
4968 break;
4969
4970 ptr += cur;
4971 len -= cur;
4972 offset = 0;
4973 i++;
4974 }
4975 return ret;
4976}
d1310b2e
CM
4977
4978void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4979 unsigned long start, unsigned long len)
4980{
4981 size_t cur;
4982 size_t offset;
4983 struct page *page;
4984 char *kaddr;
4985 char *src = (char *)srcv;
4986 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4987 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4988
4989 WARN_ON(start > eb->len);
4990 WARN_ON(start + len > eb->start + eb->len);
4991
778746b5 4992 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4993
d397712b 4994 while (len > 0) {
d1310b2e
CM
4995 page = extent_buffer_page(eb, i);
4996 WARN_ON(!PageUptodate(page));
4997
4998 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4999 kaddr = page_address(page);
d1310b2e 5000 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5001
5002 src += cur;
5003 len -= cur;
5004 offset = 0;
5005 i++;
5006 }
5007}
d1310b2e
CM
5008
5009void memset_extent_buffer(struct extent_buffer *eb, char c,
5010 unsigned long start, unsigned long len)
5011{
5012 size_t cur;
5013 size_t offset;
5014 struct page *page;
5015 char *kaddr;
5016 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5017 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5018
5019 WARN_ON(start > eb->len);
5020 WARN_ON(start + len > eb->start + eb->len);
5021
778746b5 5022 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5023
d397712b 5024 while (len > 0) {
d1310b2e
CM
5025 page = extent_buffer_page(eb, i);
5026 WARN_ON(!PageUptodate(page));
5027
5028 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5029 kaddr = page_address(page);
d1310b2e 5030 memset(kaddr + offset, c, cur);
d1310b2e
CM
5031
5032 len -= cur;
5033 offset = 0;
5034 i++;
5035 }
5036}
d1310b2e
CM
5037
5038void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5039 unsigned long dst_offset, unsigned long src_offset,
5040 unsigned long len)
5041{
5042 u64 dst_len = dst->len;
5043 size_t cur;
5044 size_t offset;
5045 struct page *page;
5046 char *kaddr;
5047 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5048 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5049
5050 WARN_ON(src->len != dst_len);
5051
5052 offset = (start_offset + dst_offset) &
778746b5 5053 (PAGE_CACHE_SIZE - 1);
d1310b2e 5054
d397712b 5055 while (len > 0) {
d1310b2e
CM
5056 page = extent_buffer_page(dst, i);
5057 WARN_ON(!PageUptodate(page));
5058
5059 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5060
a6591715 5061 kaddr = page_address(page);
d1310b2e 5062 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5063
5064 src_offset += cur;
5065 len -= cur;
5066 offset = 0;
5067 i++;
5068 }
5069}
d1310b2e 5070
3387206f
ST
5071static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5072{
5073 unsigned long distance = (src > dst) ? src - dst : dst - src;
5074 return distance < len;
5075}
5076
d1310b2e
CM
5077static void copy_pages(struct page *dst_page, struct page *src_page,
5078 unsigned long dst_off, unsigned long src_off,
5079 unsigned long len)
5080{
a6591715 5081 char *dst_kaddr = page_address(dst_page);
d1310b2e 5082 char *src_kaddr;
727011e0 5083 int must_memmove = 0;
d1310b2e 5084
3387206f 5085 if (dst_page != src_page) {
a6591715 5086 src_kaddr = page_address(src_page);
3387206f 5087 } else {
d1310b2e 5088 src_kaddr = dst_kaddr;
727011e0
CM
5089 if (areas_overlap(src_off, dst_off, len))
5090 must_memmove = 1;
3387206f 5091 }
d1310b2e 5092
727011e0
CM
5093 if (must_memmove)
5094 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5095 else
5096 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5097}
5098
5099void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5100 unsigned long src_offset, unsigned long len)
5101{
5102 size_t cur;
5103 size_t dst_off_in_page;
5104 size_t src_off_in_page;
5105 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5106 unsigned long dst_i;
5107 unsigned long src_i;
5108
5109 if (src_offset + len > dst->len) {
d397712b
CM
5110 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5111 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5112 BUG_ON(1);
5113 }
5114 if (dst_offset + len > dst->len) {
d397712b
CM
5115 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5116 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5117 BUG_ON(1);
5118 }
5119
d397712b 5120 while (len > 0) {
d1310b2e 5121 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5122 (PAGE_CACHE_SIZE - 1);
d1310b2e 5123 src_off_in_page = (start_offset + src_offset) &
778746b5 5124 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5125
5126 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5127 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5128
5129 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5130 src_off_in_page));
5131 cur = min_t(unsigned long, cur,
5132 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5133
5134 copy_pages(extent_buffer_page(dst, dst_i),
5135 extent_buffer_page(dst, src_i),
5136 dst_off_in_page, src_off_in_page, cur);
5137
5138 src_offset += cur;
5139 dst_offset += cur;
5140 len -= cur;
5141 }
5142}
d1310b2e
CM
5143
5144void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5145 unsigned long src_offset, unsigned long len)
5146{
5147 size_t cur;
5148 size_t dst_off_in_page;
5149 size_t src_off_in_page;
5150 unsigned long dst_end = dst_offset + len - 1;
5151 unsigned long src_end = src_offset + len - 1;
5152 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5153 unsigned long dst_i;
5154 unsigned long src_i;
5155
5156 if (src_offset + len > dst->len) {
d397712b
CM
5157 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5158 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5159 BUG_ON(1);
5160 }
5161 if (dst_offset + len > dst->len) {
d397712b
CM
5162 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5163 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5164 BUG_ON(1);
5165 }
727011e0 5166 if (dst_offset < src_offset) {
d1310b2e
CM
5167 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5168 return;
5169 }
d397712b 5170 while (len > 0) {
d1310b2e
CM
5171 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5172 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5173
5174 dst_off_in_page = (start_offset + dst_end) &
778746b5 5175 (PAGE_CACHE_SIZE - 1);
d1310b2e 5176 src_off_in_page = (start_offset + src_end) &
778746b5 5177 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5178
5179 cur = min_t(unsigned long, len, src_off_in_page + 1);
5180 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5181 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5182 extent_buffer_page(dst, src_i),
5183 dst_off_in_page - cur + 1,
5184 src_off_in_page - cur + 1, cur);
5185
5186 dst_end -= cur;
5187 src_end -= cur;
5188 len -= cur;
5189 }
5190}
6af118ce 5191
f7a52a40 5192int try_release_extent_buffer(struct page *page)
19fe0a8b 5193{
6af118ce 5194 struct extent_buffer *eb;
6af118ce 5195
3083ee2e
JB
5196 /*
5197 * We need to make sure noboody is attaching this page to an eb right
5198 * now.
5199 */
5200 spin_lock(&page->mapping->private_lock);
5201 if (!PagePrivate(page)) {
5202 spin_unlock(&page->mapping->private_lock);
4f2de97a 5203 return 1;
45f49bce 5204 }
6af118ce 5205
3083ee2e
JB
5206 eb = (struct extent_buffer *)page->private;
5207 BUG_ON(!eb);
19fe0a8b
MX
5208
5209 /*
3083ee2e
JB
5210 * This is a little awful but should be ok, we need to make sure that
5211 * the eb doesn't disappear out from under us while we're looking at
5212 * this page.
19fe0a8b 5213 */
3083ee2e 5214 spin_lock(&eb->refs_lock);
0b32f4bb 5215 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5216 spin_unlock(&eb->refs_lock);
5217 spin_unlock(&page->mapping->private_lock);
5218 return 0;
b9473439 5219 }
3083ee2e 5220 spin_unlock(&page->mapping->private_lock);
897ca6e9 5221
19fe0a8b 5222 /*
3083ee2e
JB
5223 * If tree ref isn't set then we know the ref on this eb is a real ref,
5224 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5225 */
3083ee2e
JB
5226 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5227 spin_unlock(&eb->refs_lock);
5228 return 0;
b9473439 5229 }
19fe0a8b 5230
f7a52a40 5231 return release_extent_buffer(eb);
6af118ce 5232}