btrfs: make extent_range_clear_dirty_for_io return void
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
d1310b2e
CM
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
d1310b2e
CM
215}
216
217void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 218 struct address_space *mapping)
d1310b2e 219{
6bef4d31 220 tree->state = RB_ROOT;
d1310b2e
CM
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
70dec807 223 spin_lock_init(&tree->lock);
d1310b2e 224 tree->mapping = mapping;
d1310b2e 225}
d1310b2e 226
b2950863 227static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
228{
229 struct extent_state *state;
d1310b2e
CM
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 232 if (!state)
d1310b2e
CM
233 return state;
234 state->state = 0;
d1310b2e 235 state->private = 0;
27a3507d 236 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 237 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
143bede5 240 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
241 return state;
242}
d1310b2e 243
4845e44f 244void free_extent_state(struct extent_state *state)
d1310b2e 245{
d1310b2e
CM
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
27a3507d 249 WARN_ON(extent_state_in_tree(state));
6d49ba1b 250 btrfs_leak_debug_del(&state->leak_list);
143bede5 251 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
252 kmem_cache_free(extent_state_cache, state);
253 }
254}
d1310b2e 255
f2071b21
FM
256static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
12cfbad9
FDBM
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
d1310b2e 262{
f2071b21 263 struct rb_node **p;
d397712b 264 struct rb_node *parent = NULL;
d1310b2e
CM
265 struct tree_entry *entry;
266
12cfbad9
FDBM
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
f2071b21 273 p = search_start ? &search_start : &root->rb_node;
d397712b 274 while (*p) {
d1310b2e
CM
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
12cfbad9 286do_insert:
d1310b2e
CM
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290}
291
80ea96b1 292static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
d1310b2e 297{
80ea96b1 298 struct rb_root *root = &tree->state;
12cfbad9 299 struct rb_node **n = &root->rb_node;
d1310b2e
CM
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
12cfbad9
FDBM
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
308 prev_entry = entry;
309
310 if (offset < entry->start)
12cfbad9 311 n = &(*n)->rb_left;
d1310b2e 312 else if (offset > entry->end)
12cfbad9 313 n = &(*n)->rb_right;
d397712b 314 else
12cfbad9 315 return *n;
d1310b2e
CM
316 }
317
12cfbad9
FDBM
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
d1310b2e
CM
323 if (prev_ret) {
324 orig_prev = prev;
d397712b 325 while (prev && offset > prev_entry->end) {
d1310b2e
CM
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 335 while (prev && offset < prev_entry->start) {
d1310b2e
CM
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342}
343
12cfbad9
FDBM
344static inline struct rb_node *
345tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
d1310b2e 349{
70dec807 350 struct rb_node *prev = NULL;
d1310b2e 351 struct rb_node *ret;
70dec807 352
12cfbad9 353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 354 if (!ret)
d1310b2e
CM
355 return prev;
356 return ret;
357}
358
12cfbad9
FDBM
359static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361{
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363}
364
9ed74f2d
JB
365static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367{
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371}
372
d1310b2e
CM
373/*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
1bf85046
JM
382static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
d1310b2e
CM
384{
385 struct extent_state *other;
386 struct rb_node *other_node;
387
5b21f2ed 388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 389 return;
d1310b2e
CM
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
9ed74f2d 396 merge_cb(tree, state, other);
d1310b2e 397 state->start = other->start;
d1310b2e 398 rb_erase(&other->rb_node, &tree->state);
27a3507d 399 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
9ed74f2d 408 merge_cb(tree, state, other);
df98b6e2 409 state->end = other->end;
df98b6e2 410 rb_erase(&other->rb_node, &tree->state);
27a3507d 411 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 412 free_extent_state(other);
d1310b2e
CM
413 }
414 }
d1310b2e
CM
415}
416
1bf85046 417static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 418 struct extent_state *state, unsigned *bits)
291d673e 419{
1bf85046
JM
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
422}
423
424static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 425 struct extent_state *state, unsigned *bits)
291d673e 426{
9ed74f2d
JB
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
429}
430
3150b699 431static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
3150b699 434
d1310b2e
CM
435/*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
447 struct rb_node ***p,
448 struct rb_node **parent,
d38ed27f 449 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
450{
451 struct rb_node *node;
452
31b1a2bd 453 if (end < start)
efe120a0 454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 455 end, start);
d1310b2e
CM
456 state->start = start;
457 state->end = end;
9ed74f2d 458
d38ed27f 459 set_state_bits(tree, state, bits, changeset);
3150b699 460
f2071b21 461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
466 "%llu %llu\n",
467 found->start, found->end, start, end);
d1310b2e
CM
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472}
473
1bf85046 474static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
475 u64 split)
476{
477 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
479}
480
d1310b2e
CM
481/*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497{
498 struct rb_node *node;
9ed74f2d
JB
499
500 split_cb(tree, orig, split);
501
d1310b2e
CM
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
f2071b21
FM
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
d1310b2e 509 if (node) {
d1310b2e
CM
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514}
515
cdc6a395
LZ
516static struct extent_state *next_state(struct extent_state *state)
517{
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523}
524
d1310b2e
CM
525/*
526 * utility function to clear some bits in an extent state struct.
1b303fc0 527 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
cdc6a395
LZ
532static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
fefdc557
QW
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
d1310b2e 536{
cdc6a395 537 struct extent_state *next;
9ee49a04 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 539
0ca1f7ce 540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
291d673e 545 clear_state_cb(tree, state, bits);
fefdc557 546 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 547 state->state &= ~bits_to_clear;
d1310b2e
CM
548 if (wake)
549 wake_up(&state->wq);
0ca1f7ce 550 if (state->state == 0) {
cdc6a395 551 next = next_state(state);
27a3507d 552 if (extent_state_in_tree(state)) {
d1310b2e 553 rb_erase(&state->rb_node, &tree->state);
27a3507d 554 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
cdc6a395 561 next = next_state(state);
d1310b2e 562 }
cdc6a395 563 return next;
d1310b2e
CM
564}
565
8233767a
XG
566static struct extent_state *
567alloc_extent_state_atomic(struct extent_state *prealloc)
568{
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573}
574
48a3b636 575static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
576{
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580}
581
d1310b2e
CM
582/*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
6763af84 592 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 593 */
fefdc557
QW
594static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
598{
599 struct extent_state *state;
2c64c53d 600 struct extent_state *cached;
d1310b2e
CM
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
5c939df5 603 u64 last_end;
d1310b2e 604 int err;
2ac55d41 605 int clear = 0;
d1310b2e 606
a5dee37d 607 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 608
7ee9e440
JB
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
0ca1f7ce
YZ
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
2ac55d41
JB
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
d1310b2e 618again:
d0164adc 619 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
d1310b2e 627 prealloc = alloc_extent_state(mask);
d1310b2e
CM
628 }
629
cad321ad 630 spin_lock(&tree->lock);
2c64c53d
CM
631 if (cached_state) {
632 cached = *cached_state;
2ac55d41
JB
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
27a3507d
FM
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
2ac55d41
JB
641 if (clear)
642 atomic_dec(&cached->refs);
2c64c53d 643 state = cached;
42daec29 644 goto hit_next;
2c64c53d 645 }
2ac55d41
JB
646 if (clear)
647 free_extent_state(cached);
2c64c53d 648 }
d1310b2e
CM
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
80ea96b1 653 node = tree_search(tree, start);
d1310b2e
CM
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 657hit_next:
d1310b2e
CM
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
5c939df5 661 last_end = state->end;
d1310b2e 662
0449314a 663 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
664 if (!(state->state & bits)) {
665 state = next_state(state);
0449314a 666 goto next;
cdc6a395 667 }
0449314a 668
d1310b2e
CM
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
8233767a
XG
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
d1310b2e 688 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
689 if (err)
690 extent_io_tree_panic(tree, err);
691
d1310b2e
CM
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
fefdc557
QW
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
d1ac6e41 698 goto next;
d1310b2e
CM
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
8233767a
XG
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
d1310b2e 711 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
712 if (err)
713 extent_io_tree_panic(tree, err);
714
d1310b2e
CM
715 if (wake)
716 wake_up(&state->wq);
42daec29 717
fefdc557 718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 719
d1310b2e
CM
720 prealloc = NULL;
721 goto out;
722 }
42daec29 723
fefdc557 724 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 725next:
5c939df5
YZ
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
cdc6a395 729 if (start <= end && state && !need_resched())
692e5759 730 goto hit_next;
d1310b2e
CM
731 goto search_again;
732
733out:
cad321ad 734 spin_unlock(&tree->lock);
d1310b2e
CM
735 if (prealloc)
736 free_extent_state(prealloc);
737
6763af84 738 return 0;
d1310b2e
CM
739
740search_again:
741 if (start > end)
742 goto out;
cad321ad 743 spin_unlock(&tree->lock);
d0164adc 744 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
745 cond_resched();
746 goto again;
747}
d1310b2e 748
143bede5
JM
749static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
641f5219
CH
751 __releases(tree->lock)
752 __acquires(tree->lock)
d1310b2e
CM
753{
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 756 spin_unlock(&tree->lock);
d1310b2e 757 schedule();
cad321ad 758 spin_lock(&tree->lock);
d1310b2e 759 finish_wait(&state->wq, &wait);
d1310b2e
CM
760}
761
762/*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
41074888
DS
767static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
d1310b2e
CM
769{
770 struct extent_state *state;
771 struct rb_node *node;
772
a5dee37d 773 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 774
cad321ad 775 spin_lock(&tree->lock);
d1310b2e
CM
776again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
80ea96b1 782 node = tree_search(tree, start);
c50d3e71 783process_node:
d1310b2e
CM
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
c50d3e71
FM
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
d1310b2e
CM
808 }
809out:
cad321ad 810 spin_unlock(&tree->lock);
d1310b2e 811}
d1310b2e 812
1bf85046 813static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 814 struct extent_state *state,
d38ed27f 815 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 816{
9ee49a04 817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 818
1bf85046 819 set_state_cb(tree, state, bits);
0ca1f7ce 820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
d38ed27f 824 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 825 state->state |= bits_to_set;
d1310b2e
CM
826}
827
e38e2ed7
FM
828static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
9ee49a04 830 unsigned flags)
2c64c53d
CM
831{
832 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 833 if (!flags || (state->state & flags)) {
2c64c53d
CM
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838}
839
e38e2ed7
FM
840static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842{
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845}
846
d1310b2e 847/*
1edbb734
CM
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 850 *
1edbb734
CM
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
d1310b2e 854 *
1edbb734 855 * [start, end] is inclusive This takes the tree lock.
d1310b2e 856 */
1edbb734 857
3fbe5c02
JM
858static int __must_check
859__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 860 unsigned bits, unsigned exclusive_bits,
41074888 861 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 862 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
863{
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
12cfbad9
FDBM
867 struct rb_node **p;
868 struct rb_node *parent;
d1310b2e 869 int err = 0;
d1310b2e
CM
870 u64 last_start;
871 u64 last_end;
42daec29 872
a5dee37d 873 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 874
0ca1f7ce 875 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 876again:
d0164adc 877 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 878 prealloc = alloc_extent_state(mask);
8233767a 879 BUG_ON(!prealloc);
d1310b2e
CM
880 }
881
cad321ad 882 spin_lock(&tree->lock);
9655d298
CM
883 if (cached_state && *cached_state) {
884 state = *cached_state;
df98b6e2 885 if (state->start <= start && state->end > start &&
27a3507d 886 extent_state_in_tree(state)) {
9655d298
CM
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
d1310b2e
CM
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
12cfbad9 895 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 896 if (!node) {
8233767a
XG
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
12cfbad9 899 err = insert_state(tree, prealloc, start, end,
d38ed27f 900 &p, &parent, &bits, changeset);
c2d904e0
JM
901 if (err)
902 extent_io_tree_panic(tree, err);
903
c42ac0bc 904 cache_state(prealloc, cached_state);
d1310b2e 905 prealloc = NULL;
d1310b2e
CM
906 goto out;
907 }
d1310b2e 908 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 909hit_next:
d1310b2e
CM
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
1edbb734 920 if (state->state & exclusive_bits) {
d1310b2e
CM
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
42daec29 925
d38ed27f 926 set_state_bits(tree, state, &bits, changeset);
2c64c53d 927 cache_state(state, cached_state);
d1310b2e 928 merge_state(tree, state);
5c939df5
YZ
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
d1ac6e41
LB
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
d1310b2e
CM
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
1edbb734 956 if (state->state & exclusive_bits) {
d1310b2e
CM
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
d1310b2e 964 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
965 if (err)
966 extent_io_tree_panic(tree, err);
967
d1310b2e
CM
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
d38ed27f 972 set_state_bits(tree, state, &bits, changeset);
2c64c53d 973 cache_state(state, cached_state);
d1310b2e 974 merge_state(tree, state);
5c939df5
YZ
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
d1ac6e41
LB
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
d1310b2e
CM
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
d397712b 997 this_end = last_start - 1;
8233767a
XG
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
c7f895a2
XG
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
d1310b2e 1006 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1007 NULL, NULL, &bits, changeset);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
9ed74f2d
JB
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
d1310b2e
CM
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1edbb734 1023 if (state->state & exclusive_bits) {
d1310b2e
CM
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
8233767a
XG
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
d1310b2e 1031 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1032 if (err)
1033 extent_io_tree_panic(tree, err);
d1310b2e 1034
d38ed27f 1035 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1036 cache_state(prealloc, cached_state);
d1310b2e
CM
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044out:
cad321ad 1045 spin_unlock(&tree->lock);
d1310b2e
CM
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051search_again:
1052 if (start > end)
1053 goto out;
cad321ad 1054 spin_unlock(&tree->lock);
d0164adc 1055 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1056 cond_resched();
1057 goto again;
1058}
d1310b2e 1059
41074888 1060int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1061 unsigned bits, u64 * failed_start,
41074888 1062 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1063{
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1065 cached_state, mask, NULL);
3fbe5c02
JM
1066}
1067
1068
462d6fac 1069/**
10983f2e
LB
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
462d6fac
JB
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
e6138876 1077 * @cached_state: state that we're going to cache
462d6fac
JB
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1087 unsigned bits, unsigned clear_bits,
e6138876 1088 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
12cfbad9
FDBM
1093 struct rb_node **p;
1094 struct rb_node *parent;
462d6fac
JB
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
c8fd3de7 1098 bool first_iteration = true;
462d6fac 1099
a5dee37d 1100 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1101
462d6fac 1102again:
d0164adc 1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
462d6fac 1111 prealloc = alloc_extent_state(mask);
c8fd3de7 1112 if (!prealloc && !first_iteration)
462d6fac
JB
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
e6138876
JB
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
27a3507d 1120 extent_state_in_tree(state)) {
e6138876
JB
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
462d6fac
JB
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
12cfbad9 1130 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
12cfbad9 1137 err = insert_state(tree, prealloc, start, end,
d38ed27f 1138 &p, &parent, &bits, NULL);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
462d6fac
JB
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
d38ed27f 1157 set_state_bits(tree, state, &bits, NULL);
e6138876 1158 cache_state(state, cached_state);
fefdc557 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1160 if (last_end == (u64)-1)
1161 goto out;
462d6fac 1162 start = last_end + 1;
d1ac6e41
LB
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
462d6fac
JB
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
462d6fac 1191 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1192 if (err)
1193 extent_io_tree_panic(tree, err);
462d6fac
JB
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
d38ed27f 1198 set_state_bits(tree, state, &bits, NULL);
e6138876 1199 cache_state(state, cached_state);
fefdc557
QW
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
462d6fac
JB
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
d1ac6e41
LB
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
462d6fac
JB
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
462d6fac
JB
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1236 NULL, NULL, &bits, NULL);
c2d904e0
JM
1237 if (err)
1238 extent_io_tree_panic(tree, err);
e6138876 1239 cache_state(prealloc, cached_state);
462d6fac
JB
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
462d6fac
JB
1256
1257 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1258 if (err)
1259 extent_io_tree_panic(tree, err);
462d6fac 1260
d38ed27f 1261 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1262 cache_state(prealloc, cached_state);
fefdc557 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
d0164adc 1281 if (gfpflags_allow_blocking(mask))
462d6fac 1282 cond_resched();
c8fd3de7 1283 first_iteration = false;
462d6fac
JB
1284 goto again;
1285}
1286
d1310b2e
CM
1287/* wrappers around set/clear extent bit */
1288int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 gfp_t mask)
1290{
3fbe5c02 1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1292 NULL, mask);
d1310b2e 1293}
d1310b2e
CM
1294
1295int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1296 unsigned bits, gfp_t mask)
d1310b2e 1297{
3fbe5c02 1298 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1299 NULL, mask);
d1310b2e 1300}
d1310b2e 1301
d38ed27f
QW
1302int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1305{
1306 /*
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1310 * range.
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 changeset);
1316}
1317
fefdc557
QW
1318int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1321{
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1324}
1325
d1310b2e 1326int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1327 unsigned bits, gfp_t mask)
d1310b2e 1328{
0f31871f
FM
1329 int wake = 0;
1330
1331 if (bits & EXTENT_LOCKED)
1332 wake = 1;
1333
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
d1310b2e 1335}
d1310b2e 1336
fefdc557
QW
1337int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1340{
1341 /*
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1344 */
1345 BUG_ON(bits & EXTENT_LOCKED);
1346
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 changeset);
1349}
1350
d1310b2e 1351int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1352 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1353{
1354 return set_extent_bit(tree, start, end,
fee187d9 1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1356 NULL, cached_state, mask);
d1310b2e 1357}
d1310b2e 1358
9e8a4a8b
LB
1359int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1361{
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1365}
1366
d1310b2e
CM
1367int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 gfp_t mask)
1369{
1370 return clear_extent_bit(tree, start, end,
32c00aff 1371 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1373}
d1310b2e
CM
1374
1375int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 gfp_t mask)
1377{
3fbe5c02 1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1379 NULL, mask);
d1310b2e 1380}
d1310b2e 1381
d1310b2e 1382int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1383 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1384{
6b67a320 1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1386 cached_state, mask);
d1310b2e 1387}
d1310b2e 1388
5fd02043
JB
1389int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1391{
2c64c53d 1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1393 cached_state, mask);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/*
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1399 */
1edbb734 1400int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1401 unsigned bits, struct extent_state **cached_state)
d1310b2e
CM
1402{
1403 int err;
1404 u64 failed_start;
9ee49a04 1405
d1310b2e 1406 while (1) {
3fbe5c02
JM
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
d38ed27f 1409 cached_state, GFP_NOFS, NULL);
d0082371 1410 if (err == -EEXIST) {
d1310b2e
CM
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
d0082371 1413 } else
d1310b2e 1414 break;
d1310b2e
CM
1415 WARN_ON(start > end);
1416 }
1417 return err;
1418}
d1310b2e 1419
d0082371 1420int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1421{
d0082371 1422 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1423}
1424
d0082371 1425int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1426{
1427 int err;
1428 u64 failed_start;
1429
3fbe5c02 1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1431 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1436 return 0;
6643558d 1437 }
25179201
JB
1438 return 1;
1439}
25179201 1440
2c64c53d
CM
1441int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1443{
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 mask);
1446}
1447
d0082371 1448int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1449{
2c64c53d 1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1451 GFP_NOFS);
d1310b2e 1452}
d1310b2e 1453
bd1fa4f0 1454void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611
CM
1455{
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1465 index++;
1466 }
4adaa611
CM
1467}
1468
1469int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1470{
1471 unsigned long index = start >> PAGE_CACHE_SHIFT;
1472 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1473 struct page *page;
1474
1475 while (index <= end_index) {
1476 page = find_get_page(inode->i_mapping, index);
1477 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1478 __set_page_dirty_nobuffers(page);
8d38633c 1479 account_page_redirty(page);
4adaa611
CM
1480 page_cache_release(page);
1481 index++;
1482 }
1483 return 0;
1484}
1485
d1310b2e
CM
1486/*
1487 * helper function to set both pages and extents in the tree writeback
1488 */
b2950863 1489static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1490{
1491 unsigned long index = start >> PAGE_CACHE_SHIFT;
1492 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1493 struct page *page;
1494
1495 while (index <= end_index) {
1496 page = find_get_page(tree->mapping, index);
79787eaa 1497 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1498 set_page_writeback(page);
1499 page_cache_release(page);
1500 index++;
1501 }
d1310b2e
CM
1502 return 0;
1503}
d1310b2e 1504
d352ac68
CM
1505/* find the first state struct with 'bits' set after 'start', and
1506 * return it. tree->lock must be held. NULL will returned if
1507 * nothing was found after 'start'
1508 */
48a3b636
ES
1509static struct extent_state *
1510find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1511 u64 start, unsigned bits)
d7fc640e
CM
1512{
1513 struct rb_node *node;
1514 struct extent_state *state;
1515
1516 /*
1517 * this search will find all the extents that end after
1518 * our range starts.
1519 */
1520 node = tree_search(tree, start);
d397712b 1521 if (!node)
d7fc640e 1522 goto out;
d7fc640e 1523
d397712b 1524 while (1) {
d7fc640e 1525 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1526 if (state->end >= start && (state->state & bits))
d7fc640e 1527 return state;
d397712b 1528
d7fc640e
CM
1529 node = rb_next(node);
1530 if (!node)
1531 break;
1532 }
1533out:
1534 return NULL;
1535}
d7fc640e 1536
69261c4b
XG
1537/*
1538 * find the first offset in the io tree with 'bits' set. zero is
1539 * returned if we find something, and *start_ret and *end_ret are
1540 * set to reflect the state struct that was found.
1541 *
477d7eaf 1542 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1543 */
1544int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1545 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1546 struct extent_state **cached_state)
69261c4b
XG
1547{
1548 struct extent_state *state;
e6138876 1549 struct rb_node *n;
69261c4b
XG
1550 int ret = 1;
1551
1552 spin_lock(&tree->lock);
e6138876
JB
1553 if (cached_state && *cached_state) {
1554 state = *cached_state;
27a3507d 1555 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1556 n = rb_next(&state->rb_node);
1557 while (n) {
1558 state = rb_entry(n, struct extent_state,
1559 rb_node);
1560 if (state->state & bits)
1561 goto got_it;
1562 n = rb_next(n);
1563 }
1564 free_extent_state(*cached_state);
1565 *cached_state = NULL;
1566 goto out;
1567 }
1568 free_extent_state(*cached_state);
1569 *cached_state = NULL;
1570 }
1571
69261c4b 1572 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1573got_it:
69261c4b 1574 if (state) {
e38e2ed7 1575 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1576 *start_ret = state->start;
1577 *end_ret = state->end;
1578 ret = 0;
1579 }
e6138876 1580out:
69261c4b
XG
1581 spin_unlock(&tree->lock);
1582 return ret;
1583}
1584
d352ac68
CM
1585/*
1586 * find a contiguous range of bytes in the file marked as delalloc, not
1587 * more than 'max_bytes'. start and end are used to return the range,
1588 *
1589 * 1 is returned if we find something, 0 if nothing was in the tree
1590 */
c8b97818 1591static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1592 u64 *start, u64 *end, u64 max_bytes,
1593 struct extent_state **cached_state)
d1310b2e
CM
1594{
1595 struct rb_node *node;
1596 struct extent_state *state;
1597 u64 cur_start = *start;
1598 u64 found = 0;
1599 u64 total_bytes = 0;
1600
cad321ad 1601 spin_lock(&tree->lock);
c8b97818 1602
d1310b2e
CM
1603 /*
1604 * this search will find all the extents that end after
1605 * our range starts.
1606 */
80ea96b1 1607 node = tree_search(tree, cur_start);
2b114d1d 1608 if (!node) {
3b951516
CM
1609 if (!found)
1610 *end = (u64)-1;
d1310b2e
CM
1611 goto out;
1612 }
1613
d397712b 1614 while (1) {
d1310b2e 1615 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1616 if (found && (state->start != cur_start ||
1617 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1618 goto out;
1619 }
1620 if (!(state->state & EXTENT_DELALLOC)) {
1621 if (!found)
1622 *end = state->end;
1623 goto out;
1624 }
c2a128d2 1625 if (!found) {
d1310b2e 1626 *start = state->start;
c2a128d2
JB
1627 *cached_state = state;
1628 atomic_inc(&state->refs);
1629 }
d1310b2e
CM
1630 found++;
1631 *end = state->end;
1632 cur_start = state->end + 1;
1633 node = rb_next(node);
d1310b2e 1634 total_bytes += state->end - state->start + 1;
7bf811a5 1635 if (total_bytes >= max_bytes)
573aecaf 1636 break;
573aecaf 1637 if (!node)
d1310b2e
CM
1638 break;
1639 }
1640out:
cad321ad 1641 spin_unlock(&tree->lock);
d1310b2e
CM
1642 return found;
1643}
1644
143bede5
JM
1645static noinline void __unlock_for_delalloc(struct inode *inode,
1646 struct page *locked_page,
1647 u64 start, u64 end)
c8b97818
CM
1648{
1649 int ret;
1650 struct page *pages[16];
1651 unsigned long index = start >> PAGE_CACHE_SHIFT;
1652 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1653 unsigned long nr_pages = end_index - index + 1;
1654 int i;
1655
1656 if (index == locked_page->index && end_index == index)
143bede5 1657 return;
c8b97818 1658
d397712b 1659 while (nr_pages > 0) {
c8b97818 1660 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1661 min_t(unsigned long, nr_pages,
1662 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1663 for (i = 0; i < ret; i++) {
1664 if (pages[i] != locked_page)
1665 unlock_page(pages[i]);
1666 page_cache_release(pages[i]);
1667 }
1668 nr_pages -= ret;
1669 index += ret;
1670 cond_resched();
1671 }
c8b97818
CM
1672}
1673
1674static noinline int lock_delalloc_pages(struct inode *inode,
1675 struct page *locked_page,
1676 u64 delalloc_start,
1677 u64 delalloc_end)
1678{
1679 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1680 unsigned long start_index = index;
1681 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1682 unsigned long pages_locked = 0;
1683 struct page *pages[16];
1684 unsigned long nrpages;
1685 int ret;
1686 int i;
1687
1688 /* the caller is responsible for locking the start index */
1689 if (index == locked_page->index && index == end_index)
1690 return 0;
1691
1692 /* skip the page at the start index */
1693 nrpages = end_index - index + 1;
d397712b 1694 while (nrpages > 0) {
c8b97818 1695 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1696 min_t(unsigned long,
1697 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1698 if (ret == 0) {
1699 ret = -EAGAIN;
1700 goto done;
1701 }
1702 /* now we have an array of pages, lock them all */
1703 for (i = 0; i < ret; i++) {
1704 /*
1705 * the caller is taking responsibility for
1706 * locked_page
1707 */
771ed689 1708 if (pages[i] != locked_page) {
c8b97818 1709 lock_page(pages[i]);
f2b1c41c
CM
1710 if (!PageDirty(pages[i]) ||
1711 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1712 ret = -EAGAIN;
1713 unlock_page(pages[i]);
1714 page_cache_release(pages[i]);
1715 goto done;
1716 }
1717 }
c8b97818 1718 page_cache_release(pages[i]);
771ed689 1719 pages_locked++;
c8b97818 1720 }
c8b97818
CM
1721 nrpages -= ret;
1722 index += ret;
1723 cond_resched();
1724 }
1725 ret = 0;
1726done:
1727 if (ret && pages_locked) {
1728 __unlock_for_delalloc(inode, locked_page,
1729 delalloc_start,
1730 ((u64)(start_index + pages_locked - 1)) <<
1731 PAGE_CACHE_SHIFT);
1732 }
1733 return ret;
1734}
1735
1736/*
1737 * find a contiguous range of bytes in the file marked as delalloc, not
1738 * more than 'max_bytes'. start and end are used to return the range,
1739 *
1740 * 1 is returned if we find something, 0 if nothing was in the tree
1741 */
294e30fe
JB
1742STATIC u64 find_lock_delalloc_range(struct inode *inode,
1743 struct extent_io_tree *tree,
1744 struct page *locked_page, u64 *start,
1745 u64 *end, u64 max_bytes)
c8b97818
CM
1746{
1747 u64 delalloc_start;
1748 u64 delalloc_end;
1749 u64 found;
9655d298 1750 struct extent_state *cached_state = NULL;
c8b97818
CM
1751 int ret;
1752 int loops = 0;
1753
1754again:
1755 /* step one, find a bunch of delalloc bytes starting at start */
1756 delalloc_start = *start;
1757 delalloc_end = 0;
1758 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1759 max_bytes, &cached_state);
70b99e69 1760 if (!found || delalloc_end <= *start) {
c8b97818
CM
1761 *start = delalloc_start;
1762 *end = delalloc_end;
c2a128d2 1763 free_extent_state(cached_state);
385fe0be 1764 return 0;
c8b97818
CM
1765 }
1766
70b99e69
CM
1767 /*
1768 * start comes from the offset of locked_page. We have to lock
1769 * pages in order, so we can't process delalloc bytes before
1770 * locked_page
1771 */
d397712b 1772 if (delalloc_start < *start)
70b99e69 1773 delalloc_start = *start;
70b99e69 1774
c8b97818
CM
1775 /*
1776 * make sure to limit the number of pages we try to lock down
c8b97818 1777 */
7bf811a5
JB
1778 if (delalloc_end + 1 - delalloc_start > max_bytes)
1779 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1780
c8b97818
CM
1781 /* step two, lock all the pages after the page that has start */
1782 ret = lock_delalloc_pages(inode, locked_page,
1783 delalloc_start, delalloc_end);
1784 if (ret == -EAGAIN) {
1785 /* some of the pages are gone, lets avoid looping by
1786 * shortening the size of the delalloc range we're searching
1787 */
9655d298 1788 free_extent_state(cached_state);
7d788742 1789 cached_state = NULL;
c8b97818 1790 if (!loops) {
7bf811a5 1791 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1792 loops = 1;
1793 goto again;
1794 } else {
1795 found = 0;
1796 goto out_failed;
1797 }
1798 }
79787eaa 1799 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1800
1801 /* step three, lock the state bits for the whole range */
d0082371 1802 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1803
1804 /* then test to make sure it is all still delalloc */
1805 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1806 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1807 if (!ret) {
9655d298
CM
1808 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1809 &cached_state, GFP_NOFS);
c8b97818
CM
1810 __unlock_for_delalloc(inode, locked_page,
1811 delalloc_start, delalloc_end);
1812 cond_resched();
1813 goto again;
1814 }
9655d298 1815 free_extent_state(cached_state);
c8b97818
CM
1816 *start = delalloc_start;
1817 *end = delalloc_end;
1818out_failed:
1819 return found;
1820}
1821
a9d93e17 1822void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1823 struct page *locked_page,
9ee49a04 1824 unsigned clear_bits,
c2790a2e 1825 unsigned long page_ops)
c8b97818 1826{
c2790a2e 1827 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1828 int ret;
1829 struct page *pages[16];
1830 unsigned long index = start >> PAGE_CACHE_SHIFT;
1831 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1832 unsigned long nr_pages = end_index - index + 1;
1833 int i;
771ed689 1834
2c64c53d 1835 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1836 if (page_ops == 0)
a9d93e17 1837 return;
c8b97818 1838
704de49d
FM
1839 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1840 mapping_set_error(inode->i_mapping, -EIO);
1841
d397712b 1842 while (nr_pages > 0) {
c8b97818 1843 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1844 min_t(unsigned long,
1845 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1846 for (i = 0; i < ret; i++) {
8b62b72b 1847
c2790a2e 1848 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1849 SetPagePrivate2(pages[i]);
1850
c8b97818
CM
1851 if (pages[i] == locked_page) {
1852 page_cache_release(pages[i]);
1853 continue;
1854 }
c2790a2e 1855 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1856 clear_page_dirty_for_io(pages[i]);
c2790a2e 1857 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1858 set_page_writeback(pages[i]);
704de49d
FM
1859 if (page_ops & PAGE_SET_ERROR)
1860 SetPageError(pages[i]);
c2790a2e 1861 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1862 end_page_writeback(pages[i]);
c2790a2e 1863 if (page_ops & PAGE_UNLOCK)
771ed689 1864 unlock_page(pages[i]);
c8b97818
CM
1865 page_cache_release(pages[i]);
1866 }
1867 nr_pages -= ret;
1868 index += ret;
1869 cond_resched();
1870 }
c8b97818 1871}
c8b97818 1872
d352ac68
CM
1873/*
1874 * count the number of bytes in the tree that have a given bit(s)
1875 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1876 * cached. The total number found is returned.
1877 */
d1310b2e
CM
1878u64 count_range_bits(struct extent_io_tree *tree,
1879 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1880 unsigned bits, int contig)
d1310b2e
CM
1881{
1882 struct rb_node *node;
1883 struct extent_state *state;
1884 u64 cur_start = *start;
1885 u64 total_bytes = 0;
ec29ed5b 1886 u64 last = 0;
d1310b2e
CM
1887 int found = 0;
1888
fae7f21c 1889 if (WARN_ON(search_end <= cur_start))
d1310b2e 1890 return 0;
d1310b2e 1891
cad321ad 1892 spin_lock(&tree->lock);
d1310b2e
CM
1893 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1894 total_bytes = tree->dirty_bytes;
1895 goto out;
1896 }
1897 /*
1898 * this search will find all the extents that end after
1899 * our range starts.
1900 */
80ea96b1 1901 node = tree_search(tree, cur_start);
d397712b 1902 if (!node)
d1310b2e 1903 goto out;
d1310b2e 1904
d397712b 1905 while (1) {
d1310b2e
CM
1906 state = rb_entry(node, struct extent_state, rb_node);
1907 if (state->start > search_end)
1908 break;
ec29ed5b
CM
1909 if (contig && found && state->start > last + 1)
1910 break;
1911 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1912 total_bytes += min(search_end, state->end) + 1 -
1913 max(cur_start, state->start);
1914 if (total_bytes >= max_bytes)
1915 break;
1916 if (!found) {
af60bed2 1917 *start = max(cur_start, state->start);
d1310b2e
CM
1918 found = 1;
1919 }
ec29ed5b
CM
1920 last = state->end;
1921 } else if (contig && found) {
1922 break;
d1310b2e
CM
1923 }
1924 node = rb_next(node);
1925 if (!node)
1926 break;
1927 }
1928out:
cad321ad 1929 spin_unlock(&tree->lock);
d1310b2e
CM
1930 return total_bytes;
1931}
b2950863 1932
d352ac68
CM
1933/*
1934 * set the private field for a given byte offset in the tree. If there isn't
1935 * an extent_state there already, this does nothing.
1936 */
171170c1 1937static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1938{
1939 struct rb_node *node;
1940 struct extent_state *state;
1941 int ret = 0;
1942
cad321ad 1943 spin_lock(&tree->lock);
d1310b2e
CM
1944 /*
1945 * this search will find all the extents that end after
1946 * our range starts.
1947 */
80ea96b1 1948 node = tree_search(tree, start);
2b114d1d 1949 if (!node) {
d1310b2e
CM
1950 ret = -ENOENT;
1951 goto out;
1952 }
1953 state = rb_entry(node, struct extent_state, rb_node);
1954 if (state->start != start) {
1955 ret = -ENOENT;
1956 goto out;
1957 }
1958 state->private = private;
1959out:
cad321ad 1960 spin_unlock(&tree->lock);
d1310b2e
CM
1961 return ret;
1962}
1963
1964int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1965{
1966 struct rb_node *node;
1967 struct extent_state *state;
1968 int ret = 0;
1969
cad321ad 1970 spin_lock(&tree->lock);
d1310b2e
CM
1971 /*
1972 * this search will find all the extents that end after
1973 * our range starts.
1974 */
80ea96b1 1975 node = tree_search(tree, start);
2b114d1d 1976 if (!node) {
d1310b2e
CM
1977 ret = -ENOENT;
1978 goto out;
1979 }
1980 state = rb_entry(node, struct extent_state, rb_node);
1981 if (state->start != start) {
1982 ret = -ENOENT;
1983 goto out;
1984 }
1985 *private = state->private;
1986out:
cad321ad 1987 spin_unlock(&tree->lock);
d1310b2e
CM
1988 return ret;
1989}
1990
1991/*
1992 * searches a range in the state tree for a given mask.
70dec807 1993 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1994 * has the bits set. Otherwise, 1 is returned if any bit in the
1995 * range is found set.
1996 */
1997int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1998 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1999{
2000 struct extent_state *state = NULL;
2001 struct rb_node *node;
2002 int bitset = 0;
d1310b2e 2003
cad321ad 2004 spin_lock(&tree->lock);
27a3507d 2005 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2006 cached->end > start)
9655d298
CM
2007 node = &cached->rb_node;
2008 else
2009 node = tree_search(tree, start);
d1310b2e
CM
2010 while (node && start <= end) {
2011 state = rb_entry(node, struct extent_state, rb_node);
2012
2013 if (filled && state->start > start) {
2014 bitset = 0;
2015 break;
2016 }
2017
2018 if (state->start > end)
2019 break;
2020
2021 if (state->state & bits) {
2022 bitset = 1;
2023 if (!filled)
2024 break;
2025 } else if (filled) {
2026 bitset = 0;
2027 break;
2028 }
46562cec
CM
2029
2030 if (state->end == (u64)-1)
2031 break;
2032
d1310b2e
CM
2033 start = state->end + 1;
2034 if (start > end)
2035 break;
2036 node = rb_next(node);
2037 if (!node) {
2038 if (filled)
2039 bitset = 0;
2040 break;
2041 }
2042 }
cad321ad 2043 spin_unlock(&tree->lock);
d1310b2e
CM
2044 return bitset;
2045}
d1310b2e
CM
2046
2047/*
2048 * helper function to set a given page up to date if all the
2049 * extents in the tree for that page are up to date
2050 */
143bede5 2051static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2052{
4eee4fa4 2053 u64 start = page_offset(page);
d1310b2e 2054 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 2055 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2056 SetPageUptodate(page);
d1310b2e
CM
2057}
2058
8b110e39 2059int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
2060{
2061 int ret;
2062 int err = 0;
2063 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2064
2065 set_state_private(failure_tree, rec->start, 0);
2066 ret = clear_extent_bits(failure_tree, rec->start,
2067 rec->start + rec->len - 1,
2068 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2069 if (ret)
2070 err = ret;
2071
53b381b3
DW
2072 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2073 rec->start + rec->len - 1,
2074 EXTENT_DAMAGED, GFP_NOFS);
2075 if (ret && !err)
2076 err = ret;
4a54c8c1
JS
2077
2078 kfree(rec);
2079 return err;
2080}
2081
4a54c8c1
JS
2082/*
2083 * this bypasses the standard btrfs submit functions deliberately, as
2084 * the standard behavior is to write all copies in a raid setup. here we only
2085 * want to write the one bad copy. so we do the mapping for ourselves and issue
2086 * submit_bio directly.
3ec706c8 2087 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2088 * actually prevents the read that triggered the error from finishing.
2089 * currently, there can be no more than two copies of every data bit. thus,
2090 * exactly one rewrite is required.
2091 */
1203b681
MX
2092int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2093 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2094{
1203b681 2095 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2096 struct bio *bio;
2097 struct btrfs_device *dev;
4a54c8c1
JS
2098 u64 map_length = 0;
2099 u64 sector;
2100 struct btrfs_bio *bbio = NULL;
53b381b3 2101 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2102 int ret;
2103
908960c6 2104 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2105 BUG_ON(!mirror_num);
2106
53b381b3
DW
2107 /* we can't repair anything in raid56 yet */
2108 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2109 return 0;
2110
9be3395b 2111 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2112 if (!bio)
2113 return -EIO;
4f024f37 2114 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2115 map_length = length;
2116
3ec706c8 2117 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2118 &map_length, &bbio, mirror_num);
2119 if (ret) {
2120 bio_put(bio);
2121 return -EIO;
2122 }
2123 BUG_ON(mirror_num != bbio->mirror_num);
2124 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2125 bio->bi_iter.bi_sector = sector;
4a54c8c1 2126 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2127 btrfs_put_bbio(bbio);
4a54c8c1
JS
2128 if (!dev || !dev->bdev || !dev->writeable) {
2129 bio_put(bio);
2130 return -EIO;
2131 }
2132 bio->bi_bdev = dev->bdev;
ffdd2018 2133 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2134
33879d45 2135 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2136 /* try to remap that extent elsewhere? */
2137 bio_put(bio);
442a4f63 2138 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2139 return -EIO;
2140 }
2141
b14af3b4
DS
2142 btrfs_info_rl_in_rcu(fs_info,
2143 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2144 btrfs_ino(inode), start,
2145 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2146 bio_put(bio);
2147 return 0;
2148}
2149
ea466794
JB
2150int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2151 int mirror_num)
2152{
ea466794
JB
2153 u64 start = eb->start;
2154 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2155 int ret = 0;
ea466794 2156
908960c6
ID
2157 if (root->fs_info->sb->s_flags & MS_RDONLY)
2158 return -EROFS;
2159
ea466794 2160 for (i = 0; i < num_pages; i++) {
fb85fc9a 2161 struct page *p = eb->pages[i];
1203b681
MX
2162
2163 ret = repair_io_failure(root->fs_info->btree_inode, start,
2164 PAGE_CACHE_SIZE, start, p,
2165 start - page_offset(p), mirror_num);
ea466794
JB
2166 if (ret)
2167 break;
2168 start += PAGE_CACHE_SIZE;
2169 }
2170
2171 return ret;
2172}
2173
4a54c8c1
JS
2174/*
2175 * each time an IO finishes, we do a fast check in the IO failure tree
2176 * to see if we need to process or clean up an io_failure_record
2177 */
8b110e39
MX
2178int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2179 unsigned int pg_offset)
4a54c8c1
JS
2180{
2181 u64 private;
2182 u64 private_failure;
2183 struct io_failure_record *failrec;
908960c6 2184 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2185 struct extent_state *state;
2186 int num_copies;
4a54c8c1 2187 int ret;
4a54c8c1
JS
2188
2189 private = 0;
2190 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2191 (u64)-1, 1, EXTENT_DIRTY, 0);
2192 if (!ret)
2193 return 0;
2194
2195 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2196 &private_failure);
2197 if (ret)
2198 return 0;
2199
2200 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2201 BUG_ON(!failrec->this_mirror);
2202
2203 if (failrec->in_validation) {
2204 /* there was no real error, just free the record */
2205 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2206 failrec->start);
4a54c8c1
JS
2207 goto out;
2208 }
908960c6
ID
2209 if (fs_info->sb->s_flags & MS_RDONLY)
2210 goto out;
4a54c8c1
JS
2211
2212 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2213 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2214 failrec->start,
2215 EXTENT_LOCKED);
2216 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2217
883d0de4
MX
2218 if (state && state->start <= failrec->start &&
2219 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2220 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2221 failrec->len);
4a54c8c1 2222 if (num_copies > 1) {
1203b681 2223 repair_io_failure(inode, start, failrec->len,
454ff3de 2224 failrec->logical, page,
1203b681 2225 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2226 }
2227 }
2228
2229out:
454ff3de 2230 free_io_failure(inode, failrec);
4a54c8c1 2231
454ff3de 2232 return 0;
4a54c8c1
JS
2233}
2234
f612496b
MX
2235/*
2236 * Can be called when
2237 * - hold extent lock
2238 * - under ordered extent
2239 * - the inode is freeing
2240 */
2241void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2242{
2243 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2244 struct io_failure_record *failrec;
2245 struct extent_state *state, *next;
2246
2247 if (RB_EMPTY_ROOT(&failure_tree->state))
2248 return;
2249
2250 spin_lock(&failure_tree->lock);
2251 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2252 while (state) {
2253 if (state->start > end)
2254 break;
2255
2256 ASSERT(state->end <= end);
2257
2258 next = next_state(state);
2259
6e1103a6 2260 failrec = (struct io_failure_record *)(unsigned long)state->private;
f612496b
MX
2261 free_extent_state(state);
2262 kfree(failrec);
2263
2264 state = next;
2265 }
2266 spin_unlock(&failure_tree->lock);
2267}
2268
2fe6303e
MX
2269int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2270 struct io_failure_record **failrec_ret)
4a54c8c1 2271{
2fe6303e 2272 struct io_failure_record *failrec;
4a54c8c1
JS
2273 u64 private;
2274 struct extent_map *em;
4a54c8c1
JS
2275 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2276 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2277 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2278 int ret;
4a54c8c1
JS
2279 u64 logical;
2280
4a54c8c1
JS
2281 ret = get_state_private(failure_tree, start, &private);
2282 if (ret) {
2283 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2284 if (!failrec)
2285 return -ENOMEM;
2fe6303e 2286
4a54c8c1
JS
2287 failrec->start = start;
2288 failrec->len = end - start + 1;
2289 failrec->this_mirror = 0;
2290 failrec->bio_flags = 0;
2291 failrec->in_validation = 0;
2292
2293 read_lock(&em_tree->lock);
2294 em = lookup_extent_mapping(em_tree, start, failrec->len);
2295 if (!em) {
2296 read_unlock(&em_tree->lock);
2297 kfree(failrec);
2298 return -EIO;
2299 }
2300
68ba990f 2301 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2302 free_extent_map(em);
2303 em = NULL;
2304 }
2305 read_unlock(&em_tree->lock);
7a2d6a64 2306 if (!em) {
4a54c8c1
JS
2307 kfree(failrec);
2308 return -EIO;
2309 }
2fe6303e 2310
4a54c8c1
JS
2311 logical = start - em->start;
2312 logical = em->block_start + logical;
2313 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2314 logical = em->block_start;
2315 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2316 extent_set_compress_type(&failrec->bio_flags,
2317 em->compress_type);
2318 }
2fe6303e
MX
2319
2320 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2321 logical, start, failrec->len);
2322
4a54c8c1
JS
2323 failrec->logical = logical;
2324 free_extent_map(em);
2325
2326 /* set the bits in the private failure tree */
2327 ret = set_extent_bits(failure_tree, start, end,
2328 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2329 if (ret >= 0)
2330 ret = set_state_private(failure_tree, start,
2331 (u64)(unsigned long)failrec);
2332 /* set the bits in the inode's tree */
2333 if (ret >= 0)
2334 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2335 GFP_NOFS);
2336 if (ret < 0) {
2337 kfree(failrec);
2338 return ret;
2339 }
2340 } else {
2341 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2342 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2343 failrec->logical, failrec->start, failrec->len,
2344 failrec->in_validation);
2345 /*
2346 * when data can be on disk more than twice, add to failrec here
2347 * (e.g. with a list for failed_mirror) to make
2348 * clean_io_failure() clean all those errors at once.
2349 */
2350 }
2fe6303e
MX
2351
2352 *failrec_ret = failrec;
2353
2354 return 0;
2355}
2356
2357int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2358 struct io_failure_record *failrec, int failed_mirror)
2359{
2360 int num_copies;
2361
5d964051
SB
2362 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2363 failrec->logical, failrec->len);
4a54c8c1
JS
2364 if (num_copies == 1) {
2365 /*
2366 * we only have a single copy of the data, so don't bother with
2367 * all the retry and error correction code that follows. no
2368 * matter what the error is, it is very likely to persist.
2369 */
2fe6303e 2370 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2371 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2372 return 0;
4a54c8c1
JS
2373 }
2374
4a54c8c1
JS
2375 /*
2376 * there are two premises:
2377 * a) deliver good data to the caller
2378 * b) correct the bad sectors on disk
2379 */
2380 if (failed_bio->bi_vcnt > 1) {
2381 /*
2382 * to fulfill b), we need to know the exact failing sectors, as
2383 * we don't want to rewrite any more than the failed ones. thus,
2384 * we need separate read requests for the failed bio
2385 *
2386 * if the following BUG_ON triggers, our validation request got
2387 * merged. we need separate requests for our algorithm to work.
2388 */
2389 BUG_ON(failrec->in_validation);
2390 failrec->in_validation = 1;
2391 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2392 } else {
2393 /*
2394 * we're ready to fulfill a) and b) alongside. get a good copy
2395 * of the failed sector and if we succeed, we have setup
2396 * everything for repair_io_failure to do the rest for us.
2397 */
2398 if (failrec->in_validation) {
2399 BUG_ON(failrec->this_mirror != failed_mirror);
2400 failrec->in_validation = 0;
2401 failrec->this_mirror = 0;
2402 }
2403 failrec->failed_mirror = failed_mirror;
2404 failrec->this_mirror++;
2405 if (failrec->this_mirror == failed_mirror)
2406 failrec->this_mirror++;
4a54c8c1
JS
2407 }
2408
facc8a22 2409 if (failrec->this_mirror > num_copies) {
2fe6303e 2410 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2411 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2412 return 0;
4a54c8c1
JS
2413 }
2414
2fe6303e
MX
2415 return 1;
2416}
2417
2418
2419struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2420 struct io_failure_record *failrec,
2421 struct page *page, int pg_offset, int icsum,
8b110e39 2422 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2423{
2424 struct bio *bio;
2425 struct btrfs_io_bio *btrfs_failed_bio;
2426 struct btrfs_io_bio *btrfs_bio;
2427
9be3395b 2428 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2429 if (!bio)
2430 return NULL;
2431
2432 bio->bi_end_io = endio_func;
4f024f37 2433 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2434 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2435 bio->bi_iter.bi_size = 0;
8b110e39 2436 bio->bi_private = data;
4a54c8c1 2437
facc8a22
MX
2438 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2439 if (btrfs_failed_bio->csum) {
2440 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2441 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2442
2443 btrfs_bio = btrfs_io_bio(bio);
2444 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2445 icsum *= csum_size;
2446 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2447 csum_size);
2448 }
2449
2fe6303e
MX
2450 bio_add_page(bio, page, failrec->len, pg_offset);
2451
2452 return bio;
2453}
2454
2455/*
2456 * this is a generic handler for readpage errors (default
2457 * readpage_io_failed_hook). if other copies exist, read those and write back
2458 * good data to the failed position. does not investigate in remapping the
2459 * failed extent elsewhere, hoping the device will be smart enough to do this as
2460 * needed
2461 */
2462
2463static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2464 struct page *page, u64 start, u64 end,
2465 int failed_mirror)
2466{
2467 struct io_failure_record *failrec;
2468 struct inode *inode = page->mapping->host;
2469 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2470 struct bio *bio;
2471 int read_mode;
2472 int ret;
2473
2474 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2475
2476 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2477 if (ret)
2478 return ret;
2479
2480 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2481 if (!ret) {
2482 free_io_failure(inode, failrec);
2483 return -EIO;
2484 }
2485
2486 if (failed_bio->bi_vcnt > 1)
2487 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2488 else
2489 read_mode = READ_SYNC;
2490
2491 phy_offset >>= inode->i_sb->s_blocksize_bits;
2492 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2493 start - page_offset(page),
8b110e39
MX
2494 (int)phy_offset, failed_bio->bi_end_io,
2495 NULL);
2fe6303e
MX
2496 if (!bio) {
2497 free_io_failure(inode, failrec);
2498 return -EIO;
2499 }
4a54c8c1 2500
2fe6303e
MX
2501 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2502 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2503
013bd4c3
TI
2504 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2505 failrec->this_mirror,
2506 failrec->bio_flags, 0);
6c387ab2 2507 if (ret) {
454ff3de 2508 free_io_failure(inode, failrec);
6c387ab2
MX
2509 bio_put(bio);
2510 }
2511
013bd4c3 2512 return ret;
4a54c8c1
JS
2513}
2514
d1310b2e
CM
2515/* lots and lots of room for performance fixes in the end_bio funcs */
2516
b5227c07 2517void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2518{
2519 int uptodate = (err == 0);
2520 struct extent_io_tree *tree;
3e2426bd 2521 int ret = 0;
87826df0
JM
2522
2523 tree = &BTRFS_I(page->mapping->host)->io_tree;
2524
2525 if (tree->ops && tree->ops->writepage_end_io_hook) {
2526 ret = tree->ops->writepage_end_io_hook(page, start,
2527 end, NULL, uptodate);
2528 if (ret)
2529 uptodate = 0;
2530 }
2531
87826df0 2532 if (!uptodate) {
87826df0
JM
2533 ClearPageUptodate(page);
2534 SetPageError(page);
5dca6eea
LB
2535 ret = ret < 0 ? ret : -EIO;
2536 mapping_set_error(page->mapping, ret);
87826df0 2537 }
87826df0
JM
2538}
2539
d1310b2e
CM
2540/*
2541 * after a writepage IO is done, we need to:
2542 * clear the uptodate bits on error
2543 * clear the writeback bits in the extent tree for this IO
2544 * end_page_writeback if the page has no more pending IO
2545 *
2546 * Scheduling is not allowed, so the extent state tree is expected
2547 * to have one and only one object corresponding to this IO.
2548 */
4246a0b6 2549static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2550{
2c30c71b 2551 struct bio_vec *bvec;
d1310b2e
CM
2552 u64 start;
2553 u64 end;
2c30c71b 2554 int i;
d1310b2e 2555
2c30c71b 2556 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2557 struct page *page = bvec->bv_page;
902b22f3 2558
17a5adcc
AO
2559 /* We always issue full-page reads, but if some block
2560 * in a page fails to read, blk_update_request() will
2561 * advance bv_offset and adjust bv_len to compensate.
2562 * Print a warning for nonzero offsets, and an error
2563 * if they don't add up to a full page. */
efe120a0
FH
2564 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2565 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2566 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2567 "partial page write in btrfs with offset %u and length %u",
2568 bvec->bv_offset, bvec->bv_len);
2569 else
2570 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2571 "incomplete page write in btrfs with offset %u and "
2572 "length %u",
2573 bvec->bv_offset, bvec->bv_len);
2574 }
d1310b2e 2575
17a5adcc
AO
2576 start = page_offset(page);
2577 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2578
b5227c07 2579 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2580 end_page_writeback(page);
2c30c71b 2581 }
2b1f55b0 2582
d1310b2e 2583 bio_put(bio);
d1310b2e
CM
2584}
2585
883d0de4
MX
2586static void
2587endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2588 int uptodate)
2589{
2590 struct extent_state *cached = NULL;
2591 u64 end = start + len - 1;
2592
2593 if (uptodate && tree->track_uptodate)
2594 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2595 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2596}
2597
d1310b2e
CM
2598/*
2599 * after a readpage IO is done, we need to:
2600 * clear the uptodate bits on error
2601 * set the uptodate bits if things worked
2602 * set the page up to date if all extents in the tree are uptodate
2603 * clear the lock bit in the extent tree
2604 * unlock the page if there are no other extents locked for it
2605 *
2606 * Scheduling is not allowed, so the extent state tree is expected
2607 * to have one and only one object corresponding to this IO.
2608 */
4246a0b6 2609static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2610{
2c30c71b 2611 struct bio_vec *bvec;
4246a0b6 2612 int uptodate = !bio->bi_error;
facc8a22 2613 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2614 struct extent_io_tree *tree;
facc8a22 2615 u64 offset = 0;
d1310b2e
CM
2616 u64 start;
2617 u64 end;
facc8a22 2618 u64 len;
883d0de4
MX
2619 u64 extent_start = 0;
2620 u64 extent_len = 0;
5cf1ab56 2621 int mirror;
d1310b2e 2622 int ret;
2c30c71b 2623 int i;
d1310b2e 2624
2c30c71b 2625 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2626 struct page *page = bvec->bv_page;
a71754fc 2627 struct inode *inode = page->mapping->host;
507903b8 2628
be3940c0 2629 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2630 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2631 bio->bi_error, io_bio->mirror_num);
a71754fc 2632 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2633
17a5adcc
AO
2634 /* We always issue full-page reads, but if some block
2635 * in a page fails to read, blk_update_request() will
2636 * advance bv_offset and adjust bv_len to compensate.
2637 * Print a warning for nonzero offsets, and an error
2638 * if they don't add up to a full page. */
efe120a0
FH
2639 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2640 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2641 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2642 "partial page read in btrfs with offset %u and length %u",
2643 bvec->bv_offset, bvec->bv_len);
2644 else
2645 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2646 "incomplete page read in btrfs with offset %u and "
2647 "length %u",
2648 bvec->bv_offset, bvec->bv_len);
2649 }
d1310b2e 2650
17a5adcc
AO
2651 start = page_offset(page);
2652 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2653 len = bvec->bv_len;
d1310b2e 2654
9be3395b 2655 mirror = io_bio->mirror_num;
f2a09da9
MX
2656 if (likely(uptodate && tree->ops &&
2657 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2658 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2659 page, start, end,
2660 mirror);
5ee0844d 2661 if (ret)
d1310b2e 2662 uptodate = 0;
5ee0844d 2663 else
1203b681 2664 clean_io_failure(inode, start, page, 0);
d1310b2e 2665 }
ea466794 2666
f2a09da9
MX
2667 if (likely(uptodate))
2668 goto readpage_ok;
2669
2670 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2671 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2672 if (!ret && !bio->bi_error)
ea466794 2673 uptodate = 1;
f2a09da9 2674 } else {
f4a8e656
JS
2675 /*
2676 * The generic bio_readpage_error handles errors the
2677 * following way: If possible, new read requests are
2678 * created and submitted and will end up in
2679 * end_bio_extent_readpage as well (if we're lucky, not
2680 * in the !uptodate case). In that case it returns 0 and
2681 * we just go on with the next page in our bio. If it
2682 * can't handle the error it will return -EIO and we
2683 * remain responsible for that page.
2684 */
facc8a22
MX
2685 ret = bio_readpage_error(bio, offset, page, start, end,
2686 mirror);
7e38326f 2687 if (ret == 0) {
4246a0b6 2688 uptodate = !bio->bi_error;
38c1c2e4 2689 offset += len;
7e38326f
CM
2690 continue;
2691 }
2692 }
f2a09da9 2693readpage_ok:
883d0de4 2694 if (likely(uptodate)) {
a71754fc
JB
2695 loff_t i_size = i_size_read(inode);
2696 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2697 unsigned off;
a71754fc
JB
2698
2699 /* Zero out the end if this page straddles i_size */
a583c026
LB
2700 off = i_size & (PAGE_CACHE_SIZE-1);
2701 if (page->index == end_index && off)
2702 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2703 SetPageUptodate(page);
70dec807 2704 } else {
17a5adcc
AO
2705 ClearPageUptodate(page);
2706 SetPageError(page);
70dec807 2707 }
17a5adcc 2708 unlock_page(page);
facc8a22 2709 offset += len;
883d0de4
MX
2710
2711 if (unlikely(!uptodate)) {
2712 if (extent_len) {
2713 endio_readpage_release_extent(tree,
2714 extent_start,
2715 extent_len, 1);
2716 extent_start = 0;
2717 extent_len = 0;
2718 }
2719 endio_readpage_release_extent(tree, start,
2720 end - start + 1, 0);
2721 } else if (!extent_len) {
2722 extent_start = start;
2723 extent_len = end + 1 - start;
2724 } else if (extent_start + extent_len == start) {
2725 extent_len += end + 1 - start;
2726 } else {
2727 endio_readpage_release_extent(tree, extent_start,
2728 extent_len, uptodate);
2729 extent_start = start;
2730 extent_len = end + 1 - start;
2731 }
2c30c71b 2732 }
d1310b2e 2733
883d0de4
MX
2734 if (extent_len)
2735 endio_readpage_release_extent(tree, extent_start, extent_len,
2736 uptodate);
facc8a22 2737 if (io_bio->end_io)
4246a0b6 2738 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2739 bio_put(bio);
d1310b2e
CM
2740}
2741
9be3395b
CM
2742/*
2743 * this allocates from the btrfs_bioset. We're returning a bio right now
2744 * but you can call btrfs_io_bio for the appropriate container_of magic
2745 */
88f794ed
MX
2746struct bio *
2747btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2748 gfp_t gfp_flags)
d1310b2e 2749{
facc8a22 2750 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2751 struct bio *bio;
2752
9be3395b 2753 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2754
2755 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2756 while (!bio && (nr_vecs /= 2)) {
2757 bio = bio_alloc_bioset(gfp_flags,
2758 nr_vecs, btrfs_bioset);
2759 }
d1310b2e
CM
2760 }
2761
2762 if (bio) {
2763 bio->bi_bdev = bdev;
4f024f37 2764 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2765 btrfs_bio = btrfs_io_bio(bio);
2766 btrfs_bio->csum = NULL;
2767 btrfs_bio->csum_allocated = NULL;
2768 btrfs_bio->end_io = NULL;
d1310b2e
CM
2769 }
2770 return bio;
2771}
2772
9be3395b
CM
2773struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2774{
23ea8e5a
MX
2775 struct btrfs_io_bio *btrfs_bio;
2776 struct bio *new;
9be3395b 2777
23ea8e5a
MX
2778 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2779 if (new) {
2780 btrfs_bio = btrfs_io_bio(new);
2781 btrfs_bio->csum = NULL;
2782 btrfs_bio->csum_allocated = NULL;
2783 btrfs_bio->end_io = NULL;
3a9508b0
CM
2784
2785#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2786 /* FIXME, put this into bio_clone_bioset */
2787 if (bio->bi_css)
2788 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2789#endif
23ea8e5a
MX
2790 }
2791 return new;
2792}
9be3395b
CM
2793
2794/* this also allocates from the btrfs_bioset */
2795struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2796{
facc8a22
MX
2797 struct btrfs_io_bio *btrfs_bio;
2798 struct bio *bio;
2799
2800 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2801 if (bio) {
2802 btrfs_bio = btrfs_io_bio(bio);
2803 btrfs_bio->csum = NULL;
2804 btrfs_bio->csum_allocated = NULL;
2805 btrfs_bio->end_io = NULL;
2806 }
2807 return bio;
9be3395b
CM
2808}
2809
2810
355808c2
JM
2811static int __must_check submit_one_bio(int rw, struct bio *bio,
2812 int mirror_num, unsigned long bio_flags)
d1310b2e 2813{
d1310b2e 2814 int ret = 0;
70dec807
CM
2815 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2816 struct page *page = bvec->bv_page;
2817 struct extent_io_tree *tree = bio->bi_private;
70dec807 2818 u64 start;
70dec807 2819
4eee4fa4 2820 start = page_offset(page) + bvec->bv_offset;
70dec807 2821
902b22f3 2822 bio->bi_private = NULL;
d1310b2e
CM
2823
2824 bio_get(bio);
2825
065631f6 2826 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2827 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2828 mirror_num, bio_flags, start);
0b86a832 2829 else
21adbd5c 2830 btrfsic_submit_bio(rw, bio);
4a54c8c1 2831
d1310b2e
CM
2832 bio_put(bio);
2833 return ret;
2834}
2835
64a16701 2836static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2837 unsigned long offset, size_t size, struct bio *bio,
2838 unsigned long bio_flags)
2839{
2840 int ret = 0;
2841 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2842 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2843 bio_flags);
2844 BUG_ON(ret < 0);
2845 return ret;
2846
2847}
2848
d1310b2e 2849static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2850 struct writeback_control *wbc,
d1310b2e
CM
2851 struct page *page, sector_t sector,
2852 size_t size, unsigned long offset,
2853 struct block_device *bdev,
2854 struct bio **bio_ret,
2855 unsigned long max_pages,
f188591e 2856 bio_end_io_t end_io_func,
c8b97818
CM
2857 int mirror_num,
2858 unsigned long prev_bio_flags,
005efedf
FM
2859 unsigned long bio_flags,
2860 bool force_bio_submit)
d1310b2e
CM
2861{
2862 int ret = 0;
2863 struct bio *bio;
c8b97818 2864 int contig = 0;
c8b97818 2865 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2866 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2867
2868 if (bio_ret && *bio_ret) {
2869 bio = *bio_ret;
c8b97818 2870 if (old_compressed)
4f024f37 2871 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2872 else
f73a1c7d 2873 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2874
2875 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2876 force_bio_submit ||
64a16701 2877 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2878 bio_add_page(bio, page, page_size, offset) < page_size) {
2879 ret = submit_one_bio(rw, bio, mirror_num,
2880 prev_bio_flags);
289454ad
NA
2881 if (ret < 0) {
2882 *bio_ret = NULL;
79787eaa 2883 return ret;
289454ad 2884 }
d1310b2e
CM
2885 bio = NULL;
2886 } else {
da2f0f74
CM
2887 if (wbc)
2888 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2889 return 0;
2890 }
2891 }
c8b97818 2892
b54ffb73
KO
2893 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2894 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2895 if (!bio)
2896 return -ENOMEM;
70dec807 2897
c8b97818 2898 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2899 bio->bi_end_io = end_io_func;
2900 bio->bi_private = tree;
da2f0f74
CM
2901 if (wbc) {
2902 wbc_init_bio(wbc, bio);
2903 wbc_account_io(wbc, page, page_size);
2904 }
70dec807 2905
d397712b 2906 if (bio_ret)
d1310b2e 2907 *bio_ret = bio;
d397712b 2908 else
c8b97818 2909 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2910
2911 return ret;
2912}
2913
48a3b636
ES
2914static void attach_extent_buffer_page(struct extent_buffer *eb,
2915 struct page *page)
d1310b2e
CM
2916{
2917 if (!PagePrivate(page)) {
2918 SetPagePrivate(page);
d1310b2e 2919 page_cache_get(page);
4f2de97a
JB
2920 set_page_private(page, (unsigned long)eb);
2921 } else {
2922 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2923 }
2924}
2925
4f2de97a 2926void set_page_extent_mapped(struct page *page)
d1310b2e 2927{
4f2de97a
JB
2928 if (!PagePrivate(page)) {
2929 SetPagePrivate(page);
2930 page_cache_get(page);
2931 set_page_private(page, EXTENT_PAGE_PRIVATE);
2932 }
d1310b2e
CM
2933}
2934
125bac01
MX
2935static struct extent_map *
2936__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2937 u64 start, u64 len, get_extent_t *get_extent,
2938 struct extent_map **em_cached)
2939{
2940 struct extent_map *em;
2941
2942 if (em_cached && *em_cached) {
2943 em = *em_cached;
cbc0e928 2944 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2945 start < extent_map_end(em)) {
2946 atomic_inc(&em->refs);
2947 return em;
2948 }
2949
2950 free_extent_map(em);
2951 *em_cached = NULL;
2952 }
2953
2954 em = get_extent(inode, page, pg_offset, start, len, 0);
2955 if (em_cached && !IS_ERR_OR_NULL(em)) {
2956 BUG_ON(*em_cached);
2957 atomic_inc(&em->refs);
2958 *em_cached = em;
2959 }
2960 return em;
2961}
d1310b2e
CM
2962/*
2963 * basic readpage implementation. Locked extent state structs are inserted
2964 * into the tree that are removed when the IO is done (by the end_io
2965 * handlers)
79787eaa 2966 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2967 */
9974090b
MX
2968static int __do_readpage(struct extent_io_tree *tree,
2969 struct page *page,
2970 get_extent_t *get_extent,
125bac01 2971 struct extent_map **em_cached,
9974090b 2972 struct bio **bio, int mirror_num,
005efedf
FM
2973 unsigned long *bio_flags, int rw,
2974 u64 *prev_em_start)
d1310b2e
CM
2975{
2976 struct inode *inode = page->mapping->host;
4eee4fa4 2977 u64 start = page_offset(page);
d1310b2e
CM
2978 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2979 u64 end;
2980 u64 cur = start;
2981 u64 extent_offset;
2982 u64 last_byte = i_size_read(inode);
2983 u64 block_start;
2984 u64 cur_end;
2985 sector_t sector;
2986 struct extent_map *em;
2987 struct block_device *bdev;
2988 int ret;
2989 int nr = 0;
4b384318 2990 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2991 size_t pg_offset = 0;
d1310b2e 2992 size_t iosize;
c8b97818 2993 size_t disk_io_size;
d1310b2e 2994 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2995 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2996
2997 set_page_extent_mapped(page);
2998
9974090b 2999 end = page_end;
90a887c9
DM
3000 if (!PageUptodate(page)) {
3001 if (cleancache_get_page(page) == 0) {
3002 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3003 unlock_extent(tree, start, end);
90a887c9
DM
3004 goto out;
3005 }
3006 }
3007
c8b97818
CM
3008 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3009 char *userpage;
3010 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3011
3012 if (zero_offset) {
3013 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 3014 userpage = kmap_atomic(page);
c8b97818
CM
3015 memset(userpage + zero_offset, 0, iosize);
3016 flush_dcache_page(page);
7ac687d9 3017 kunmap_atomic(userpage);
c8b97818
CM
3018 }
3019 }
d1310b2e 3020 while (cur <= end) {
c8f2f24b 3021 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
005efedf 3022 bool force_bio_submit = false;
c8f2f24b 3023
d1310b2e
CM
3024 if (cur >= last_byte) {
3025 char *userpage;
507903b8
AJ
3026 struct extent_state *cached = NULL;
3027
306e16ce 3028 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 3029 userpage = kmap_atomic(page);
306e16ce 3030 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3031 flush_dcache_page(page);
7ac687d9 3032 kunmap_atomic(userpage);
d1310b2e 3033 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3034 &cached, GFP_NOFS);
4b384318
MF
3035 if (!parent_locked)
3036 unlock_extent_cached(tree, cur,
3037 cur + iosize - 1,
3038 &cached, GFP_NOFS);
d1310b2e
CM
3039 break;
3040 }
125bac01
MX
3041 em = __get_extent_map(inode, page, pg_offset, cur,
3042 end - cur + 1, get_extent, em_cached);
c704005d 3043 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3044 SetPageError(page);
4b384318
MF
3045 if (!parent_locked)
3046 unlock_extent(tree, cur, end);
d1310b2e
CM
3047 break;
3048 }
d1310b2e
CM
3049 extent_offset = cur - em->start;
3050 BUG_ON(extent_map_end(em) <= cur);
3051 BUG_ON(end < cur);
3052
261507a0 3053 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3054 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3055 extent_set_compress_type(&this_bio_flag,
3056 em->compress_type);
3057 }
c8b97818 3058
d1310b2e
CM
3059 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3060 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3061 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3062 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3063 disk_io_size = em->block_len;
3064 sector = em->block_start >> 9;
3065 } else {
3066 sector = (em->block_start + extent_offset) >> 9;
3067 disk_io_size = iosize;
3068 }
d1310b2e
CM
3069 bdev = em->bdev;
3070 block_start = em->block_start;
d899e052
YZ
3071 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3072 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3073
3074 /*
3075 * If we have a file range that points to a compressed extent
3076 * and it's followed by a consecutive file range that points to
3077 * to the same compressed extent (possibly with a different
3078 * offset and/or length, so it either points to the whole extent
3079 * or only part of it), we must make sure we do not submit a
3080 * single bio to populate the pages for the 2 ranges because
3081 * this makes the compressed extent read zero out the pages
3082 * belonging to the 2nd range. Imagine the following scenario:
3083 *
3084 * File layout
3085 * [0 - 8K] [8K - 24K]
3086 * | |
3087 * | |
3088 * points to extent X, points to extent X,
3089 * offset 4K, length of 8K offset 0, length 16K
3090 *
3091 * [extent X, compressed length = 4K uncompressed length = 16K]
3092 *
3093 * If the bio to read the compressed extent covers both ranges,
3094 * it will decompress extent X into the pages belonging to the
3095 * first range and then it will stop, zeroing out the remaining
3096 * pages that belong to the other range that points to extent X.
3097 * So here we make sure we submit 2 bios, one for the first
3098 * range and another one for the third range. Both will target
3099 * the same physical extent from disk, but we can't currently
3100 * make the compressed bio endio callback populate the pages
3101 * for both ranges because each compressed bio is tightly
3102 * coupled with a single extent map, and each range can have
3103 * an extent map with a different offset value relative to the
3104 * uncompressed data of our extent and different lengths. This
3105 * is a corner case so we prioritize correctness over
3106 * non-optimal behavior (submitting 2 bios for the same extent).
3107 */
3108 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3109 prev_em_start && *prev_em_start != (u64)-1 &&
3110 *prev_em_start != em->orig_start)
3111 force_bio_submit = true;
3112
3113 if (prev_em_start)
3114 *prev_em_start = em->orig_start;
3115
d1310b2e
CM
3116 free_extent_map(em);
3117 em = NULL;
3118
3119 /* we've found a hole, just zero and go on */
3120 if (block_start == EXTENT_MAP_HOLE) {
3121 char *userpage;
507903b8
AJ
3122 struct extent_state *cached = NULL;
3123
7ac687d9 3124 userpage = kmap_atomic(page);
306e16ce 3125 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3126 flush_dcache_page(page);
7ac687d9 3127 kunmap_atomic(userpage);
d1310b2e
CM
3128
3129 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3130 &cached, GFP_NOFS);
5e6ecb36
FM
3131 if (parent_locked)
3132 free_extent_state(cached);
3133 else
3134 unlock_extent_cached(tree, cur,
3135 cur + iosize - 1,
3136 &cached, GFP_NOFS);
d1310b2e 3137 cur = cur + iosize;
306e16ce 3138 pg_offset += iosize;
d1310b2e
CM
3139 continue;
3140 }
3141 /* the get_extent function already copied into the page */
9655d298
CM
3142 if (test_range_bit(tree, cur, cur_end,
3143 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3144 check_page_uptodate(tree, page);
4b384318
MF
3145 if (!parent_locked)
3146 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3147 cur = cur + iosize;
306e16ce 3148 pg_offset += iosize;
d1310b2e
CM
3149 continue;
3150 }
70dec807
CM
3151 /* we have an inline extent but it didn't get marked up
3152 * to date. Error out
3153 */
3154 if (block_start == EXTENT_MAP_INLINE) {
3155 SetPageError(page);
4b384318
MF
3156 if (!parent_locked)
3157 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3158 cur = cur + iosize;
306e16ce 3159 pg_offset += iosize;
70dec807
CM
3160 continue;
3161 }
d1310b2e 3162
c8f2f24b 3163 pnr -= page->index;
da2f0f74 3164 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3165 sector, disk_io_size, pg_offset,
89642229 3166 bdev, bio, pnr,
c8b97818
CM
3167 end_bio_extent_readpage, mirror_num,
3168 *bio_flags,
005efedf
FM
3169 this_bio_flag,
3170 force_bio_submit);
c8f2f24b
JB
3171 if (!ret) {
3172 nr++;
3173 *bio_flags = this_bio_flag;
3174 } else {
d1310b2e 3175 SetPageError(page);
4b384318
MF
3176 if (!parent_locked)
3177 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3178 }
d1310b2e 3179 cur = cur + iosize;
306e16ce 3180 pg_offset += iosize;
d1310b2e 3181 }
90a887c9 3182out:
d1310b2e
CM
3183 if (!nr) {
3184 if (!PageError(page))
3185 SetPageUptodate(page);
3186 unlock_page(page);
3187 }
3188 return 0;
3189}
3190
9974090b
MX
3191static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3192 struct page *pages[], int nr_pages,
3193 u64 start, u64 end,
3194 get_extent_t *get_extent,
125bac01 3195 struct extent_map **em_cached,
9974090b 3196 struct bio **bio, int mirror_num,
808f80b4
FM
3197 unsigned long *bio_flags, int rw,
3198 u64 *prev_em_start)
9974090b
MX
3199{
3200 struct inode *inode;
3201 struct btrfs_ordered_extent *ordered;
3202 int index;
3203
3204 inode = pages[0]->mapping->host;
3205 while (1) {
3206 lock_extent(tree, start, end);
3207 ordered = btrfs_lookup_ordered_range(inode, start,
3208 end - start + 1);
3209 if (!ordered)
3210 break;
3211 unlock_extent(tree, start, end);
3212 btrfs_start_ordered_extent(inode, ordered, 1);
3213 btrfs_put_ordered_extent(ordered);
3214 }
3215
3216 for (index = 0; index < nr_pages; index++) {
125bac01 3217 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3218 mirror_num, bio_flags, rw, prev_em_start);
9974090b
MX
3219 page_cache_release(pages[index]);
3220 }
3221}
3222
3223static void __extent_readpages(struct extent_io_tree *tree,
3224 struct page *pages[],
3225 int nr_pages, get_extent_t *get_extent,
125bac01 3226 struct extent_map **em_cached,
9974090b 3227 struct bio **bio, int mirror_num,
808f80b4
FM
3228 unsigned long *bio_flags, int rw,
3229 u64 *prev_em_start)
9974090b 3230{
35a3621b 3231 u64 start = 0;
9974090b
MX
3232 u64 end = 0;
3233 u64 page_start;
3234 int index;
35a3621b 3235 int first_index = 0;
9974090b
MX
3236
3237 for (index = 0; index < nr_pages; index++) {
3238 page_start = page_offset(pages[index]);
3239 if (!end) {
3240 start = page_start;
3241 end = start + PAGE_CACHE_SIZE - 1;
3242 first_index = index;
3243 } else if (end + 1 == page_start) {
3244 end += PAGE_CACHE_SIZE;
3245 } else {
3246 __do_contiguous_readpages(tree, &pages[first_index],
3247 index - first_index, start,
125bac01
MX
3248 end, get_extent, em_cached,
3249 bio, mirror_num, bio_flags,
808f80b4 3250 rw, prev_em_start);
9974090b
MX
3251 start = page_start;
3252 end = start + PAGE_CACHE_SIZE - 1;
3253 first_index = index;
3254 }
3255 }
3256
3257 if (end)
3258 __do_contiguous_readpages(tree, &pages[first_index],
3259 index - first_index, start,
125bac01 3260 end, get_extent, em_cached, bio,
808f80b4
FM
3261 mirror_num, bio_flags, rw,
3262 prev_em_start);
9974090b
MX
3263}
3264
3265static int __extent_read_full_page(struct extent_io_tree *tree,
3266 struct page *page,
3267 get_extent_t *get_extent,
3268 struct bio **bio, int mirror_num,
3269 unsigned long *bio_flags, int rw)
3270{
3271 struct inode *inode = page->mapping->host;
3272 struct btrfs_ordered_extent *ordered;
3273 u64 start = page_offset(page);
3274 u64 end = start + PAGE_CACHE_SIZE - 1;
3275 int ret;
3276
3277 while (1) {
3278 lock_extent(tree, start, end);
3279 ordered = btrfs_lookup_ordered_extent(inode, start);
3280 if (!ordered)
3281 break;
3282 unlock_extent(tree, start, end);
3283 btrfs_start_ordered_extent(inode, ordered, 1);
3284 btrfs_put_ordered_extent(ordered);
3285 }
3286
125bac01 3287 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3288 bio_flags, rw, NULL);
9974090b
MX
3289 return ret;
3290}
3291
d1310b2e 3292int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3293 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3294{
3295 struct bio *bio = NULL;
c8b97818 3296 unsigned long bio_flags = 0;
d1310b2e
CM
3297 int ret;
3298
8ddc7d9c 3299 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3300 &bio_flags, READ);
d1310b2e 3301 if (bio)
8ddc7d9c 3302 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3303 return ret;
3304}
d1310b2e 3305
4b384318
MF
3306int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3307 get_extent_t *get_extent, int mirror_num)
3308{
3309 struct bio *bio = NULL;
3310 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3311 int ret;
3312
3313 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
005efedf 3314 &bio_flags, READ, NULL);
4b384318
MF
3315 if (bio)
3316 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3317 return ret;
3318}
3319
11c8349b
CM
3320static noinline void update_nr_written(struct page *page,
3321 struct writeback_control *wbc,
3322 unsigned long nr_written)
3323{
3324 wbc->nr_to_write -= nr_written;
3325 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3326 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3327 page->mapping->writeback_index = page->index + nr_written;
3328}
3329
d1310b2e 3330/*
40f76580
CM
3331 * helper for __extent_writepage, doing all of the delayed allocation setup.
3332 *
3333 * This returns 1 if our fill_delalloc function did all the work required
3334 * to write the page (copy into inline extent). In this case the IO has
3335 * been started and the page is already unlocked.
3336 *
3337 * This returns 0 if all went well (page still locked)
3338 * This returns < 0 if there were errors (page still locked)
d1310b2e 3339 */
40f76580
CM
3340static noinline_for_stack int writepage_delalloc(struct inode *inode,
3341 struct page *page, struct writeback_control *wbc,
3342 struct extent_page_data *epd,
3343 u64 delalloc_start,
3344 unsigned long *nr_written)
3345{
3346 struct extent_io_tree *tree = epd->tree;
3347 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3348 u64 nr_delalloc;
3349 u64 delalloc_to_write = 0;
3350 u64 delalloc_end = 0;
3351 int ret;
3352 int page_started = 0;
3353
3354 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3355 return 0;
3356
3357 while (delalloc_end < page_end) {
3358 nr_delalloc = find_lock_delalloc_range(inode, tree,
3359 page,
3360 &delalloc_start,
3361 &delalloc_end,
dcab6a3b 3362 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3363 if (nr_delalloc == 0) {
3364 delalloc_start = delalloc_end + 1;
3365 continue;
3366 }
3367 ret = tree->ops->fill_delalloc(inode, page,
3368 delalloc_start,
3369 delalloc_end,
3370 &page_started,
3371 nr_written);
3372 /* File system has been set read-only */
3373 if (ret) {
3374 SetPageError(page);
3375 /* fill_delalloc should be return < 0 for error
3376 * but just in case, we use > 0 here meaning the
3377 * IO is started, so we don't want to return > 0
3378 * unless things are going well.
3379 */
3380 ret = ret < 0 ? ret : -EIO;
3381 goto done;
3382 }
3383 /*
3384 * delalloc_end is already one less than the total
3385 * length, so we don't subtract one from
3386 * PAGE_CACHE_SIZE
3387 */
3388 delalloc_to_write += (delalloc_end - delalloc_start +
3389 PAGE_CACHE_SIZE) >>
3390 PAGE_CACHE_SHIFT;
3391 delalloc_start = delalloc_end + 1;
3392 }
3393 if (wbc->nr_to_write < delalloc_to_write) {
3394 int thresh = 8192;
3395
3396 if (delalloc_to_write < thresh * 2)
3397 thresh = delalloc_to_write;
3398 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3399 thresh);
3400 }
3401
3402 /* did the fill delalloc function already unlock and start
3403 * the IO?
3404 */
3405 if (page_started) {
3406 /*
3407 * we've unlocked the page, so we can't update
3408 * the mapping's writeback index, just update
3409 * nr_to_write.
3410 */
3411 wbc->nr_to_write -= *nr_written;
3412 return 1;
3413 }
3414
3415 ret = 0;
3416
3417done:
3418 return ret;
3419}
3420
3421/*
3422 * helper for __extent_writepage. This calls the writepage start hooks,
3423 * and does the loop to map the page into extents and bios.
3424 *
3425 * We return 1 if the IO is started and the page is unlocked,
3426 * 0 if all went well (page still locked)
3427 * < 0 if there were errors (page still locked)
3428 */
3429static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3430 struct page *page,
3431 struct writeback_control *wbc,
3432 struct extent_page_data *epd,
3433 loff_t i_size,
3434 unsigned long nr_written,
3435 int write_flags, int *nr_ret)
d1310b2e 3436{
d1310b2e 3437 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3438 u64 start = page_offset(page);
d1310b2e
CM
3439 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3440 u64 end;
3441 u64 cur = start;
3442 u64 extent_offset;
d1310b2e
CM
3443 u64 block_start;
3444 u64 iosize;
3445 sector_t sector;
2c64c53d 3446 struct extent_state *cached_state = NULL;
d1310b2e
CM
3447 struct extent_map *em;
3448 struct block_device *bdev;
7f3c74fb 3449 size_t pg_offset = 0;
d1310b2e 3450 size_t blocksize;
40f76580
CM
3451 int ret = 0;
3452 int nr = 0;
3453 bool compressed;
c8b97818 3454
247e743c 3455 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3456 ret = tree->ops->writepage_start_hook(page, start,
3457 page_end);
87826df0
JM
3458 if (ret) {
3459 /* Fixup worker will requeue */
3460 if (ret == -EBUSY)
3461 wbc->pages_skipped++;
3462 else
3463 redirty_page_for_writepage(wbc, page);
40f76580 3464
11c8349b 3465 update_nr_written(page, wbc, nr_written);
247e743c 3466 unlock_page(page);
40f76580 3467 ret = 1;
11c8349b 3468 goto done_unlocked;
247e743c
CM
3469 }
3470 }
3471
11c8349b
CM
3472 /*
3473 * we don't want to touch the inode after unlocking the page,
3474 * so we update the mapping writeback index now
3475 */
3476 update_nr_written(page, wbc, nr_written + 1);
771ed689 3477
d1310b2e 3478 end = page_end;
40f76580 3479 if (i_size <= start) {
e6dcd2dc
CM
3480 if (tree->ops && tree->ops->writepage_end_io_hook)
3481 tree->ops->writepage_end_io_hook(page, start,
3482 page_end, NULL, 1);
d1310b2e
CM
3483 goto done;
3484 }
3485
d1310b2e
CM
3486 blocksize = inode->i_sb->s_blocksize;
3487
3488 while (cur <= end) {
40f76580
CM
3489 u64 em_end;
3490 if (cur >= i_size) {
e6dcd2dc
CM
3491 if (tree->ops && tree->ops->writepage_end_io_hook)
3492 tree->ops->writepage_end_io_hook(page, cur,
3493 page_end, NULL, 1);
d1310b2e
CM
3494 break;
3495 }
7f3c74fb 3496 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3497 end - cur + 1, 1);
c704005d 3498 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3499 SetPageError(page);
61391d56 3500 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3501 break;
3502 }
3503
3504 extent_offset = cur - em->start;
40f76580
CM
3505 em_end = extent_map_end(em);
3506 BUG_ON(em_end <= cur);
d1310b2e 3507 BUG_ON(end < cur);
40f76580 3508 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3509 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3510 sector = (em->block_start + extent_offset) >> 9;
3511 bdev = em->bdev;
3512 block_start = em->block_start;
c8b97818 3513 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3514 free_extent_map(em);
3515 em = NULL;
3516
c8b97818
CM
3517 /*
3518 * compressed and inline extents are written through other
3519 * paths in the FS
3520 */
3521 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3522 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3523 /*
3524 * end_io notification does not happen here for
3525 * compressed extents
3526 */
3527 if (!compressed && tree->ops &&
3528 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3529 tree->ops->writepage_end_io_hook(page, cur,
3530 cur + iosize - 1,
3531 NULL, 1);
c8b97818
CM
3532 else if (compressed) {
3533 /* we don't want to end_page_writeback on
3534 * a compressed extent. this happens
3535 * elsewhere
3536 */
3537 nr++;
3538 }
3539
3540 cur += iosize;
7f3c74fb 3541 pg_offset += iosize;
d1310b2e
CM
3542 continue;
3543 }
c8b97818 3544
d1310b2e
CM
3545 if (tree->ops && tree->ops->writepage_io_hook) {
3546 ret = tree->ops->writepage_io_hook(page, cur,
3547 cur + iosize - 1);
3548 } else {
3549 ret = 0;
3550 }
1259ab75 3551 if (ret) {
d1310b2e 3552 SetPageError(page);
1259ab75 3553 } else {
40f76580 3554 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3555
d1310b2e
CM
3556 set_range_writeback(tree, cur, cur + iosize - 1);
3557 if (!PageWriteback(page)) {
efe120a0
FH
3558 btrfs_err(BTRFS_I(inode)->root->fs_info,
3559 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3560 page->index, cur, end);
d1310b2e
CM
3561 }
3562
da2f0f74 3563 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3564 sector, iosize, pg_offset,
3565 bdev, &epd->bio, max_nr,
c8b97818 3566 end_bio_extent_writepage,
005efedf 3567 0, 0, 0, false);
d1310b2e
CM
3568 if (ret)
3569 SetPageError(page);
3570 }
3571 cur = cur + iosize;
7f3c74fb 3572 pg_offset += iosize;
d1310b2e
CM
3573 nr++;
3574 }
40f76580
CM
3575done:
3576 *nr_ret = nr;
3577
3578done_unlocked:
3579
3580 /* drop our reference on any cached states */
3581 free_extent_state(cached_state);
3582 return ret;
3583}
3584
3585/*
3586 * the writepage semantics are similar to regular writepage. extent
3587 * records are inserted to lock ranges in the tree, and as dirty areas
3588 * are found, they are marked writeback. Then the lock bits are removed
3589 * and the end_io handler clears the writeback ranges
3590 */
3591static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3592 void *data)
3593{
3594 struct inode *inode = page->mapping->host;
3595 struct extent_page_data *epd = data;
3596 u64 start = page_offset(page);
3597 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3598 int ret;
3599 int nr = 0;
3600 size_t pg_offset = 0;
3601 loff_t i_size = i_size_read(inode);
3602 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3603 int write_flags;
3604 unsigned long nr_written = 0;
3605
3606 if (wbc->sync_mode == WB_SYNC_ALL)
3607 write_flags = WRITE_SYNC;
3608 else
3609 write_flags = WRITE;
3610
3611 trace___extent_writepage(page, inode, wbc);
3612
3613 WARN_ON(!PageLocked(page));
3614
3615 ClearPageError(page);
3616
3617 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3618 if (page->index > end_index ||
3619 (page->index == end_index && !pg_offset)) {
3620 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3621 unlock_page(page);
3622 return 0;
3623 }
3624
3625 if (page->index == end_index) {
3626 char *userpage;
3627
3628 userpage = kmap_atomic(page);
3629 memset(userpage + pg_offset, 0,
3630 PAGE_CACHE_SIZE - pg_offset);
3631 kunmap_atomic(userpage);
3632 flush_dcache_page(page);
3633 }
3634
3635 pg_offset = 0;
3636
3637 set_page_extent_mapped(page);
3638
3639 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3640 if (ret == 1)
3641 goto done_unlocked;
3642 if (ret)
3643 goto done;
3644
3645 ret = __extent_writepage_io(inode, page, wbc, epd,
3646 i_size, nr_written, write_flags, &nr);
3647 if (ret == 1)
3648 goto done_unlocked;
3649
d1310b2e
CM
3650done:
3651 if (nr == 0) {
3652 /* make sure the mapping tag for page dirty gets cleared */
3653 set_page_writeback(page);
3654 end_page_writeback(page);
3655 }
61391d56
FM
3656 if (PageError(page)) {
3657 ret = ret < 0 ? ret : -EIO;
3658 end_extent_writepage(page, ret, start, page_end);
3659 }
d1310b2e 3660 unlock_page(page);
40f76580 3661 return ret;
771ed689 3662
11c8349b 3663done_unlocked:
d1310b2e
CM
3664 return 0;
3665}
3666
fd8b2b61 3667void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3668{
74316201
N
3669 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3670 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3671}
3672
0e378df1
CM
3673static noinline_for_stack int
3674lock_extent_buffer_for_io(struct extent_buffer *eb,
3675 struct btrfs_fs_info *fs_info,
3676 struct extent_page_data *epd)
0b32f4bb
JB
3677{
3678 unsigned long i, num_pages;
3679 int flush = 0;
3680 int ret = 0;
3681
3682 if (!btrfs_try_tree_write_lock(eb)) {
3683 flush = 1;
3684 flush_write_bio(epd);
3685 btrfs_tree_lock(eb);
3686 }
3687
3688 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3689 btrfs_tree_unlock(eb);
3690 if (!epd->sync_io)
3691 return 0;
3692 if (!flush) {
3693 flush_write_bio(epd);
3694 flush = 1;
3695 }
a098d8e8
CM
3696 while (1) {
3697 wait_on_extent_buffer_writeback(eb);
3698 btrfs_tree_lock(eb);
3699 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3700 break;
0b32f4bb 3701 btrfs_tree_unlock(eb);
0b32f4bb
JB
3702 }
3703 }
3704
51561ffe
JB
3705 /*
3706 * We need to do this to prevent races in people who check if the eb is
3707 * under IO since we can end up having no IO bits set for a short period
3708 * of time.
3709 */
3710 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3711 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3712 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3713 spin_unlock(&eb->refs_lock);
0b32f4bb 3714 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3715 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3716 -eb->len,
3717 fs_info->dirty_metadata_batch);
0b32f4bb 3718 ret = 1;
51561ffe
JB
3719 } else {
3720 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3721 }
3722
3723 btrfs_tree_unlock(eb);
3724
3725 if (!ret)
3726 return ret;
3727
3728 num_pages = num_extent_pages(eb->start, eb->len);
3729 for (i = 0; i < num_pages; i++) {
fb85fc9a 3730 struct page *p = eb->pages[i];
0b32f4bb
JB
3731
3732 if (!trylock_page(p)) {
3733 if (!flush) {
3734 flush_write_bio(epd);
3735 flush = 1;
3736 }
3737 lock_page(p);
3738 }
3739 }
3740
3741 return ret;
3742}
3743
3744static void end_extent_buffer_writeback(struct extent_buffer *eb)
3745{
3746 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3747 smp_mb__after_atomic();
0b32f4bb
JB
3748 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3749}
3750
656f30db
FM
3751static void set_btree_ioerr(struct page *page)
3752{
3753 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3754 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3755
3756 SetPageError(page);
3757 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3758 return;
3759
3760 /*
3761 * If writeback for a btree extent that doesn't belong to a log tree
3762 * failed, increment the counter transaction->eb_write_errors.
3763 * We do this because while the transaction is running and before it's
3764 * committing (when we call filemap_fdata[write|wait]_range against
3765 * the btree inode), we might have
3766 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3767 * returns an error or an error happens during writeback, when we're
3768 * committing the transaction we wouldn't know about it, since the pages
3769 * can be no longer dirty nor marked anymore for writeback (if a
3770 * subsequent modification to the extent buffer didn't happen before the
3771 * transaction commit), which makes filemap_fdata[write|wait]_range not
3772 * able to find the pages tagged with SetPageError at transaction
3773 * commit time. So if this happens we must abort the transaction,
3774 * otherwise we commit a super block with btree roots that point to
3775 * btree nodes/leafs whose content on disk is invalid - either garbage
3776 * or the content of some node/leaf from a past generation that got
3777 * cowed or deleted and is no longer valid.
3778 *
3779 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3780 * not be enough - we need to distinguish between log tree extents vs
3781 * non-log tree extents, and the next filemap_fdatawait_range() call
3782 * will catch and clear such errors in the mapping - and that call might
3783 * be from a log sync and not from a transaction commit. Also, checking
3784 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3785 * not done and would not be reliable - the eb might have been released
3786 * from memory and reading it back again means that flag would not be
3787 * set (since it's a runtime flag, not persisted on disk).
3788 *
3789 * Using the flags below in the btree inode also makes us achieve the
3790 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3791 * writeback for all dirty pages and before filemap_fdatawait_range()
3792 * is called, the writeback for all dirty pages had already finished
3793 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3794 * filemap_fdatawait_range() would return success, as it could not know
3795 * that writeback errors happened (the pages were no longer tagged for
3796 * writeback).
3797 */
3798 switch (eb->log_index) {
3799 case -1:
3800 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3801 break;
3802 case 0:
3803 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3804 break;
3805 case 1:
3806 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3807 break;
3808 default:
3809 BUG(); /* unexpected, logic error */
3810 }
3811}
3812
4246a0b6 3813static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3814{
2c30c71b 3815 struct bio_vec *bvec;
0b32f4bb 3816 struct extent_buffer *eb;
2c30c71b 3817 int i, done;
0b32f4bb 3818
2c30c71b 3819 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3820 struct page *page = bvec->bv_page;
3821
0b32f4bb
JB
3822 eb = (struct extent_buffer *)page->private;
3823 BUG_ON(!eb);
3824 done = atomic_dec_and_test(&eb->io_pages);
3825
4246a0b6
CH
3826 if (bio->bi_error ||
3827 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3828 ClearPageUptodate(page);
656f30db 3829 set_btree_ioerr(page);
0b32f4bb
JB
3830 }
3831
3832 end_page_writeback(page);
3833
3834 if (!done)
3835 continue;
3836
3837 end_extent_buffer_writeback(eb);
2c30c71b 3838 }
0b32f4bb
JB
3839
3840 bio_put(bio);
0b32f4bb
JB
3841}
3842
0e378df1 3843static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3844 struct btrfs_fs_info *fs_info,
3845 struct writeback_control *wbc,
3846 struct extent_page_data *epd)
3847{
3848 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3849 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3850 u64 offset = eb->start;
3851 unsigned long i, num_pages;
de0022b9 3852 unsigned long bio_flags = 0;
d4c7ca86 3853 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3854 int ret = 0;
0b32f4bb 3855
656f30db 3856 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3857 num_pages = num_extent_pages(eb->start, eb->len);
3858 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3859 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3860 bio_flags = EXTENT_BIO_TREE_LOG;
3861
0b32f4bb 3862 for (i = 0; i < num_pages; i++) {
fb85fc9a 3863 struct page *p = eb->pages[i];
0b32f4bb
JB
3864
3865 clear_page_dirty_for_io(p);
3866 set_page_writeback(p);
da2f0f74 3867 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
0b32f4bb
JB
3868 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3869 -1, end_bio_extent_buffer_writepage,
005efedf 3870 0, epd->bio_flags, bio_flags, false);
de0022b9 3871 epd->bio_flags = bio_flags;
0b32f4bb 3872 if (ret) {
656f30db 3873 set_btree_ioerr(p);
55e3bd2e 3874 end_page_writeback(p);
0b32f4bb
JB
3875 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3876 end_extent_buffer_writeback(eb);
3877 ret = -EIO;
3878 break;
3879 }
3880 offset += PAGE_CACHE_SIZE;
3881 update_nr_written(p, wbc, 1);
3882 unlock_page(p);
3883 }
3884
3885 if (unlikely(ret)) {
3886 for (; i < num_pages; i++) {
bbf65cf0 3887 struct page *p = eb->pages[i];
81465028 3888 clear_page_dirty_for_io(p);
0b32f4bb
JB
3889 unlock_page(p);
3890 }
3891 }
3892
3893 return ret;
3894}
3895
3896int btree_write_cache_pages(struct address_space *mapping,
3897 struct writeback_control *wbc)
3898{
3899 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3900 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3901 struct extent_buffer *eb, *prev_eb = NULL;
3902 struct extent_page_data epd = {
3903 .bio = NULL,
3904 .tree = tree,
3905 .extent_locked = 0,
3906 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3907 .bio_flags = 0,
0b32f4bb
JB
3908 };
3909 int ret = 0;
3910 int done = 0;
3911 int nr_to_write_done = 0;
3912 struct pagevec pvec;
3913 int nr_pages;
3914 pgoff_t index;
3915 pgoff_t end; /* Inclusive */
3916 int scanned = 0;
3917 int tag;
3918
3919 pagevec_init(&pvec, 0);
3920 if (wbc->range_cyclic) {
3921 index = mapping->writeback_index; /* Start from prev offset */
3922 end = -1;
3923 } else {
3924 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3925 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3926 scanned = 1;
3927 }
3928 if (wbc->sync_mode == WB_SYNC_ALL)
3929 tag = PAGECACHE_TAG_TOWRITE;
3930 else
3931 tag = PAGECACHE_TAG_DIRTY;
3932retry:
3933 if (wbc->sync_mode == WB_SYNC_ALL)
3934 tag_pages_for_writeback(mapping, index, end);
3935 while (!done && !nr_to_write_done && (index <= end) &&
3936 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3937 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3938 unsigned i;
3939
3940 scanned = 1;
3941 for (i = 0; i < nr_pages; i++) {
3942 struct page *page = pvec.pages[i];
3943
3944 if (!PagePrivate(page))
3945 continue;
3946
3947 if (!wbc->range_cyclic && page->index > end) {
3948 done = 1;
3949 break;
3950 }
3951
b5bae261
JB
3952 spin_lock(&mapping->private_lock);
3953 if (!PagePrivate(page)) {
3954 spin_unlock(&mapping->private_lock);
3955 continue;
3956 }
3957
0b32f4bb 3958 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3959
3960 /*
3961 * Shouldn't happen and normally this would be a BUG_ON
3962 * but no sense in crashing the users box for something
3963 * we can survive anyway.
3964 */
fae7f21c 3965 if (WARN_ON(!eb)) {
b5bae261 3966 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3967 continue;
3968 }
3969
b5bae261
JB
3970 if (eb == prev_eb) {
3971 spin_unlock(&mapping->private_lock);
0b32f4bb 3972 continue;
b5bae261 3973 }
0b32f4bb 3974
b5bae261
JB
3975 ret = atomic_inc_not_zero(&eb->refs);
3976 spin_unlock(&mapping->private_lock);
3977 if (!ret)
0b32f4bb 3978 continue;
0b32f4bb
JB
3979
3980 prev_eb = eb;
3981 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3982 if (!ret) {
3983 free_extent_buffer(eb);
3984 continue;
3985 }
3986
3987 ret = write_one_eb(eb, fs_info, wbc, &epd);
3988 if (ret) {
3989 done = 1;
3990 free_extent_buffer(eb);
3991 break;
3992 }
3993 free_extent_buffer(eb);
3994
3995 /*
3996 * the filesystem may choose to bump up nr_to_write.
3997 * We have to make sure to honor the new nr_to_write
3998 * at any time
3999 */
4000 nr_to_write_done = wbc->nr_to_write <= 0;
4001 }
4002 pagevec_release(&pvec);
4003 cond_resched();
4004 }
4005 if (!scanned && !done) {
4006 /*
4007 * We hit the last page and there is more work to be done: wrap
4008 * back to the start of the file
4009 */
4010 scanned = 1;
4011 index = 0;
4012 goto retry;
4013 }
4014 flush_write_bio(&epd);
4015 return ret;
4016}
4017
d1310b2e 4018/**
4bef0848 4019 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4020 * @mapping: address space structure to write
4021 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4022 * @writepage: function called for each page
4023 * @data: data passed to writepage function
4024 *
4025 * If a page is already under I/O, write_cache_pages() skips it, even
4026 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4027 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4028 * and msync() need to guarantee that all the data which was dirty at the time
4029 * the call was made get new I/O started against them. If wbc->sync_mode is
4030 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4031 * existing IO to complete.
4032 */
b2950863 4033static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
4034 struct address_space *mapping,
4035 struct writeback_control *wbc,
d2c3f4f6
CM
4036 writepage_t writepage, void *data,
4037 void (*flush_fn)(void *))
d1310b2e 4038{
7fd1a3f7 4039 struct inode *inode = mapping->host;
d1310b2e
CM
4040 int ret = 0;
4041 int done = 0;
61391d56 4042 int err = 0;
f85d7d6c 4043 int nr_to_write_done = 0;
d1310b2e
CM
4044 struct pagevec pvec;
4045 int nr_pages;
4046 pgoff_t index;
4047 pgoff_t end; /* Inclusive */
4048 int scanned = 0;
f7aaa06b 4049 int tag;
d1310b2e 4050
7fd1a3f7
JB
4051 /*
4052 * We have to hold onto the inode so that ordered extents can do their
4053 * work when the IO finishes. The alternative to this is failing to add
4054 * an ordered extent if the igrab() fails there and that is a huge pain
4055 * to deal with, so instead just hold onto the inode throughout the
4056 * writepages operation. If it fails here we are freeing up the inode
4057 * anyway and we'd rather not waste our time writing out stuff that is
4058 * going to be truncated anyway.
4059 */
4060 if (!igrab(inode))
4061 return 0;
4062
d1310b2e
CM
4063 pagevec_init(&pvec, 0);
4064 if (wbc->range_cyclic) {
4065 index = mapping->writeback_index; /* Start from prev offset */
4066 end = -1;
4067 } else {
4068 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4069 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4070 scanned = 1;
4071 }
f7aaa06b
JB
4072 if (wbc->sync_mode == WB_SYNC_ALL)
4073 tag = PAGECACHE_TAG_TOWRITE;
4074 else
4075 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4076retry:
f7aaa06b
JB
4077 if (wbc->sync_mode == WB_SYNC_ALL)
4078 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 4079 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
4080 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4081 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
4082 unsigned i;
4083
4084 scanned = 1;
4085 for (i = 0; i < nr_pages; i++) {
4086 struct page *page = pvec.pages[i];
4087
4088 /*
4089 * At this point we hold neither mapping->tree_lock nor
4090 * lock on the page itself: the page may be truncated or
4091 * invalidated (changing page->mapping to NULL), or even
4092 * swizzled back from swapper_space to tmpfs file
4093 * mapping
4094 */
c8f2f24b
JB
4095 if (!trylock_page(page)) {
4096 flush_fn(data);
4097 lock_page(page);
01d658f2 4098 }
d1310b2e
CM
4099
4100 if (unlikely(page->mapping != mapping)) {
4101 unlock_page(page);
4102 continue;
4103 }
4104
4105 if (!wbc->range_cyclic && page->index > end) {
4106 done = 1;
4107 unlock_page(page);
4108 continue;
4109 }
4110
d2c3f4f6 4111 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4112 if (PageWriteback(page))
4113 flush_fn(data);
d1310b2e 4114 wait_on_page_writeback(page);
d2c3f4f6 4115 }
d1310b2e
CM
4116
4117 if (PageWriteback(page) ||
4118 !clear_page_dirty_for_io(page)) {
4119 unlock_page(page);
4120 continue;
4121 }
4122
4123 ret = (*writepage)(page, wbc, data);
4124
4125 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4126 unlock_page(page);
4127 ret = 0;
4128 }
61391d56
FM
4129 if (!err && ret < 0)
4130 err = ret;
f85d7d6c
CM
4131
4132 /*
4133 * the filesystem may choose to bump up nr_to_write.
4134 * We have to make sure to honor the new nr_to_write
4135 * at any time
4136 */
4137 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4138 }
4139 pagevec_release(&pvec);
4140 cond_resched();
4141 }
61391d56 4142 if (!scanned && !done && !err) {
d1310b2e
CM
4143 /*
4144 * We hit the last page and there is more work to be done: wrap
4145 * back to the start of the file
4146 */
4147 scanned = 1;
4148 index = 0;
4149 goto retry;
4150 }
7fd1a3f7 4151 btrfs_add_delayed_iput(inode);
61391d56 4152 return err;
d1310b2e 4153}
d1310b2e 4154
ffbd517d 4155static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4156{
d2c3f4f6 4157 if (epd->bio) {
355808c2
JM
4158 int rw = WRITE;
4159 int ret;
4160
ffbd517d 4161 if (epd->sync_io)
355808c2
JM
4162 rw = WRITE_SYNC;
4163
de0022b9 4164 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4165 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4166 epd->bio = NULL;
4167 }
4168}
4169
ffbd517d
CM
4170static noinline void flush_write_bio(void *data)
4171{
4172 struct extent_page_data *epd = data;
4173 flush_epd_write_bio(epd);
4174}
4175
d1310b2e
CM
4176int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4177 get_extent_t *get_extent,
4178 struct writeback_control *wbc)
4179{
4180 int ret;
d1310b2e
CM
4181 struct extent_page_data epd = {
4182 .bio = NULL,
4183 .tree = tree,
4184 .get_extent = get_extent,
771ed689 4185 .extent_locked = 0,
ffbd517d 4186 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4187 .bio_flags = 0,
d1310b2e 4188 };
d1310b2e 4189
d1310b2e
CM
4190 ret = __extent_writepage(page, wbc, &epd);
4191
ffbd517d 4192 flush_epd_write_bio(&epd);
d1310b2e
CM
4193 return ret;
4194}
d1310b2e 4195
771ed689
CM
4196int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4197 u64 start, u64 end, get_extent_t *get_extent,
4198 int mode)
4199{
4200 int ret = 0;
4201 struct address_space *mapping = inode->i_mapping;
4202 struct page *page;
4203 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4204 PAGE_CACHE_SHIFT;
4205
4206 struct extent_page_data epd = {
4207 .bio = NULL,
4208 .tree = tree,
4209 .get_extent = get_extent,
4210 .extent_locked = 1,
ffbd517d 4211 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4212 .bio_flags = 0,
771ed689
CM
4213 };
4214 struct writeback_control wbc_writepages = {
771ed689 4215 .sync_mode = mode,
771ed689
CM
4216 .nr_to_write = nr_pages * 2,
4217 .range_start = start,
4218 .range_end = end + 1,
4219 };
4220
d397712b 4221 while (start <= end) {
771ed689
CM
4222 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4223 if (clear_page_dirty_for_io(page))
4224 ret = __extent_writepage(page, &wbc_writepages, &epd);
4225 else {
4226 if (tree->ops && tree->ops->writepage_end_io_hook)
4227 tree->ops->writepage_end_io_hook(page, start,
4228 start + PAGE_CACHE_SIZE - 1,
4229 NULL, 1);
4230 unlock_page(page);
4231 }
4232 page_cache_release(page);
4233 start += PAGE_CACHE_SIZE;
4234 }
4235
ffbd517d 4236 flush_epd_write_bio(&epd);
771ed689
CM
4237 return ret;
4238}
d1310b2e
CM
4239
4240int extent_writepages(struct extent_io_tree *tree,
4241 struct address_space *mapping,
4242 get_extent_t *get_extent,
4243 struct writeback_control *wbc)
4244{
4245 int ret = 0;
4246 struct extent_page_data epd = {
4247 .bio = NULL,
4248 .tree = tree,
4249 .get_extent = get_extent,
771ed689 4250 .extent_locked = 0,
ffbd517d 4251 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4252 .bio_flags = 0,
d1310b2e
CM
4253 };
4254
4bef0848 4255 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4256 __extent_writepage, &epd,
4257 flush_write_bio);
ffbd517d 4258 flush_epd_write_bio(&epd);
d1310b2e
CM
4259 return ret;
4260}
d1310b2e
CM
4261
4262int extent_readpages(struct extent_io_tree *tree,
4263 struct address_space *mapping,
4264 struct list_head *pages, unsigned nr_pages,
4265 get_extent_t get_extent)
4266{
4267 struct bio *bio = NULL;
4268 unsigned page_idx;
c8b97818 4269 unsigned long bio_flags = 0;
67c9684f
LB
4270 struct page *pagepool[16];
4271 struct page *page;
125bac01 4272 struct extent_map *em_cached = NULL;
67c9684f 4273 int nr = 0;
808f80b4 4274 u64 prev_em_start = (u64)-1;
d1310b2e 4275
d1310b2e 4276 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4277 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4278
4279 prefetchw(&page->flags);
4280 list_del(&page->lru);
67c9684f 4281 if (add_to_page_cache_lru(page, mapping,
43e817a1 4282 page->index, GFP_NOFS)) {
67c9684f
LB
4283 page_cache_release(page);
4284 continue;
d1310b2e 4285 }
67c9684f
LB
4286
4287 pagepool[nr++] = page;
4288 if (nr < ARRAY_SIZE(pagepool))
4289 continue;
125bac01 4290 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4291 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4292 nr = 0;
d1310b2e 4293 }
9974090b 4294 if (nr)
125bac01 4295 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4296 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4297
125bac01
MX
4298 if (em_cached)
4299 free_extent_map(em_cached);
4300
d1310b2e
CM
4301 BUG_ON(!list_empty(pages));
4302 if (bio)
79787eaa 4303 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4304 return 0;
4305}
d1310b2e
CM
4306
4307/*
4308 * basic invalidatepage code, this waits on any locked or writeback
4309 * ranges corresponding to the page, and then deletes any extent state
4310 * records from the tree
4311 */
4312int extent_invalidatepage(struct extent_io_tree *tree,
4313 struct page *page, unsigned long offset)
4314{
2ac55d41 4315 struct extent_state *cached_state = NULL;
4eee4fa4 4316 u64 start = page_offset(page);
d1310b2e
CM
4317 u64 end = start + PAGE_CACHE_SIZE - 1;
4318 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4319
fda2832f 4320 start += ALIGN(offset, blocksize);
d1310b2e
CM
4321 if (start > end)
4322 return 0;
4323
d0082371 4324 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4325 wait_on_page_writeback(page);
d1310b2e 4326 clear_extent_bit(tree, start, end,
32c00aff
JB
4327 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4328 EXTENT_DO_ACCOUNTING,
2ac55d41 4329 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4330 return 0;
4331}
d1310b2e 4332
7b13b7b1
CM
4333/*
4334 * a helper for releasepage, this tests for areas of the page that
4335 * are locked or under IO and drops the related state bits if it is safe
4336 * to drop the page.
4337 */
48a3b636
ES
4338static int try_release_extent_state(struct extent_map_tree *map,
4339 struct extent_io_tree *tree,
4340 struct page *page, gfp_t mask)
7b13b7b1 4341{
4eee4fa4 4342 u64 start = page_offset(page);
7b13b7b1
CM
4343 u64 end = start + PAGE_CACHE_SIZE - 1;
4344 int ret = 1;
4345
211f90e6 4346 if (test_range_bit(tree, start, end,
8b62b72b 4347 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4348 ret = 0;
4349 else {
4350 if ((mask & GFP_NOFS) == GFP_NOFS)
4351 mask = GFP_NOFS;
11ef160f
CM
4352 /*
4353 * at this point we can safely clear everything except the
4354 * locked bit and the nodatasum bit
4355 */
e3f24cc5 4356 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4357 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4358 0, 0, NULL, mask);
e3f24cc5
CM
4359
4360 /* if clear_extent_bit failed for enomem reasons,
4361 * we can't allow the release to continue.
4362 */
4363 if (ret < 0)
4364 ret = 0;
4365 else
4366 ret = 1;
7b13b7b1
CM
4367 }
4368 return ret;
4369}
7b13b7b1 4370
d1310b2e
CM
4371/*
4372 * a helper for releasepage. As long as there are no locked extents
4373 * in the range corresponding to the page, both state records and extent
4374 * map records are removed
4375 */
4376int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4377 struct extent_io_tree *tree, struct page *page,
4378 gfp_t mask)
d1310b2e
CM
4379{
4380 struct extent_map *em;
4eee4fa4 4381 u64 start = page_offset(page);
d1310b2e 4382 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4383
d0164adc 4384 if (gfpflags_allow_blocking(mask) &&
70dec807 4385 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4386 u64 len;
70dec807 4387 while (start <= end) {
39b5637f 4388 len = end - start + 1;
890871be 4389 write_lock(&map->lock);
39b5637f 4390 em = lookup_extent_mapping(map, start, len);
285190d9 4391 if (!em) {
890871be 4392 write_unlock(&map->lock);
70dec807
CM
4393 break;
4394 }
7f3c74fb
CM
4395 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4396 em->start != start) {
890871be 4397 write_unlock(&map->lock);
70dec807
CM
4398 free_extent_map(em);
4399 break;
4400 }
4401 if (!test_range_bit(tree, em->start,
4402 extent_map_end(em) - 1,
8b62b72b 4403 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4404 0, NULL)) {
70dec807
CM
4405 remove_extent_mapping(map, em);
4406 /* once for the rb tree */
4407 free_extent_map(em);
4408 }
4409 start = extent_map_end(em);
890871be 4410 write_unlock(&map->lock);
70dec807
CM
4411
4412 /* once for us */
d1310b2e
CM
4413 free_extent_map(em);
4414 }
d1310b2e 4415 }
7b13b7b1 4416 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4417}
d1310b2e 4418
ec29ed5b
CM
4419/*
4420 * helper function for fiemap, which doesn't want to see any holes.
4421 * This maps until we find something past 'last'
4422 */
4423static struct extent_map *get_extent_skip_holes(struct inode *inode,
4424 u64 offset,
4425 u64 last,
4426 get_extent_t *get_extent)
4427{
4428 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4429 struct extent_map *em;
4430 u64 len;
4431
4432 if (offset >= last)
4433 return NULL;
4434
67871254 4435 while (1) {
ec29ed5b
CM
4436 len = last - offset;
4437 if (len == 0)
4438 break;
fda2832f 4439 len = ALIGN(len, sectorsize);
ec29ed5b 4440 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4441 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4442 return em;
4443
4444 /* if this isn't a hole return it */
4445 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4446 em->block_start != EXTENT_MAP_HOLE) {
4447 return em;
4448 }
4449
4450 /* this is a hole, advance to the next extent */
4451 offset = extent_map_end(em);
4452 free_extent_map(em);
4453 if (offset >= last)
4454 break;
4455 }
4456 return NULL;
4457}
4458
1506fcc8
YS
4459int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4460 __u64 start, __u64 len, get_extent_t *get_extent)
4461{
975f84fe 4462 int ret = 0;
1506fcc8
YS
4463 u64 off = start;
4464 u64 max = start + len;
4465 u32 flags = 0;
975f84fe
JB
4466 u32 found_type;
4467 u64 last;
ec29ed5b 4468 u64 last_for_get_extent = 0;
1506fcc8 4469 u64 disko = 0;
ec29ed5b 4470 u64 isize = i_size_read(inode);
975f84fe 4471 struct btrfs_key found_key;
1506fcc8 4472 struct extent_map *em = NULL;
2ac55d41 4473 struct extent_state *cached_state = NULL;
975f84fe 4474 struct btrfs_path *path;
dc046b10 4475 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4476 int end = 0;
ec29ed5b
CM
4477 u64 em_start = 0;
4478 u64 em_len = 0;
4479 u64 em_end = 0;
1506fcc8
YS
4480
4481 if (len == 0)
4482 return -EINVAL;
4483
975f84fe
JB
4484 path = btrfs_alloc_path();
4485 if (!path)
4486 return -ENOMEM;
4487 path->leave_spinning = 1;
4488
2c91943b
QW
4489 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4490 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4491
ec29ed5b
CM
4492 /*
4493 * lookup the last file extent. We're not using i_size here
4494 * because there might be preallocation past i_size
4495 */
dc046b10
JB
4496 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4497 0);
975f84fe
JB
4498 if (ret < 0) {
4499 btrfs_free_path(path);
4500 return ret;
4501 }
4502 WARN_ON(!ret);
4503 path->slots[0]--;
975f84fe 4504 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4505 found_type = found_key.type;
975f84fe 4506
ec29ed5b 4507 /* No extents, but there might be delalloc bits */
33345d01 4508 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4509 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4510 /* have to trust i_size as the end */
4511 last = (u64)-1;
4512 last_for_get_extent = isize;
4513 } else {
4514 /*
4515 * remember the start of the last extent. There are a
4516 * bunch of different factors that go into the length of the
4517 * extent, so its much less complex to remember where it started
4518 */
4519 last = found_key.offset;
4520 last_for_get_extent = last + 1;
975f84fe 4521 }
fe09e16c 4522 btrfs_release_path(path);
975f84fe 4523
ec29ed5b
CM
4524 /*
4525 * we might have some extents allocated but more delalloc past those
4526 * extents. so, we trust isize unless the start of the last extent is
4527 * beyond isize
4528 */
4529 if (last < isize) {
4530 last = (u64)-1;
4531 last_for_get_extent = isize;
4532 }
4533
a52f4cd2 4534 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4535 &cached_state);
ec29ed5b 4536
4d479cf0 4537 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4538 get_extent);
1506fcc8
YS
4539 if (!em)
4540 goto out;
4541 if (IS_ERR(em)) {
4542 ret = PTR_ERR(em);
4543 goto out;
4544 }
975f84fe 4545
1506fcc8 4546 while (!end) {
b76bb701 4547 u64 offset_in_extent = 0;
ea8efc74
CM
4548
4549 /* break if the extent we found is outside the range */
4550 if (em->start >= max || extent_map_end(em) < off)
4551 break;
4552
4553 /*
4554 * get_extent may return an extent that starts before our
4555 * requested range. We have to make sure the ranges
4556 * we return to fiemap always move forward and don't
4557 * overlap, so adjust the offsets here
4558 */
4559 em_start = max(em->start, off);
1506fcc8 4560
ea8efc74
CM
4561 /*
4562 * record the offset from the start of the extent
b76bb701
JB
4563 * for adjusting the disk offset below. Only do this if the
4564 * extent isn't compressed since our in ram offset may be past
4565 * what we have actually allocated on disk.
ea8efc74 4566 */
b76bb701
JB
4567 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4568 offset_in_extent = em_start - em->start;
ec29ed5b 4569 em_end = extent_map_end(em);
ea8efc74 4570 em_len = em_end - em_start;
1506fcc8
YS
4571 disko = 0;
4572 flags = 0;
4573
ea8efc74
CM
4574 /*
4575 * bump off for our next call to get_extent
4576 */
4577 off = extent_map_end(em);
4578 if (off >= max)
4579 end = 1;
4580
93dbfad7 4581 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4582 end = 1;
4583 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4584 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4585 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4586 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4587 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4588 flags |= (FIEMAP_EXTENT_DELALLOC |
4589 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4590 } else if (fieinfo->fi_extents_max) {
4591 u64 bytenr = em->block_start -
4592 (em->start - em->orig_start);
fe09e16c 4593
ea8efc74 4594 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4595
4596 /*
4597 * As btrfs supports shared space, this information
4598 * can be exported to userspace tools via
dc046b10
JB
4599 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4600 * then we're just getting a count and we can skip the
4601 * lookup stuff.
fe09e16c 4602 */
dc046b10
JB
4603 ret = btrfs_check_shared(NULL, root->fs_info,
4604 root->objectid,
4605 btrfs_ino(inode), bytenr);
4606 if (ret < 0)
fe09e16c 4607 goto out_free;
dc046b10 4608 if (ret)
fe09e16c 4609 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4610 ret = 0;
1506fcc8
YS
4611 }
4612 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4613 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4614 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4615 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4616
1506fcc8
YS
4617 free_extent_map(em);
4618 em = NULL;
ec29ed5b
CM
4619 if ((em_start >= last) || em_len == (u64)-1 ||
4620 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4621 flags |= FIEMAP_EXTENT_LAST;
4622 end = 1;
4623 }
4624
ec29ed5b
CM
4625 /* now scan forward to see if this is really the last extent. */
4626 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4627 get_extent);
4628 if (IS_ERR(em)) {
4629 ret = PTR_ERR(em);
4630 goto out;
4631 }
4632 if (!em) {
975f84fe
JB
4633 flags |= FIEMAP_EXTENT_LAST;
4634 end = 1;
4635 }
ec29ed5b
CM
4636 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4637 em_len, flags);
26e726af
CS
4638 if (ret) {
4639 if (ret == 1)
4640 ret = 0;
ec29ed5b 4641 goto out_free;
26e726af 4642 }
1506fcc8
YS
4643 }
4644out_free:
4645 free_extent_map(em);
4646out:
fe09e16c 4647 btrfs_free_path(path);
a52f4cd2 4648 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4649 &cached_state, GFP_NOFS);
1506fcc8
YS
4650 return ret;
4651}
4652
727011e0
CM
4653static void __free_extent_buffer(struct extent_buffer *eb)
4654{
6d49ba1b 4655 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4656 kmem_cache_free(extent_buffer_cache, eb);
4657}
4658
a26e8c9f 4659int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4660{
4661 return (atomic_read(&eb->io_pages) ||
4662 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4663 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4664}
4665
4666/*
4667 * Helper for releasing extent buffer page.
4668 */
a50924e3 4669static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4670{
4671 unsigned long index;
db7f3436
JB
4672 struct page *page;
4673 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4674
4675 BUG_ON(extent_buffer_under_io(eb));
4676
a50924e3
DS
4677 index = num_extent_pages(eb->start, eb->len);
4678 if (index == 0)
db7f3436
JB
4679 return;
4680
4681 do {
4682 index--;
fb85fc9a 4683 page = eb->pages[index];
5d2361db
FL
4684 if (!page)
4685 continue;
4686 if (mapped)
db7f3436 4687 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4688 /*
4689 * We do this since we'll remove the pages after we've
4690 * removed the eb from the radix tree, so we could race
4691 * and have this page now attached to the new eb. So
4692 * only clear page_private if it's still connected to
4693 * this eb.
4694 */
4695 if (PagePrivate(page) &&
4696 page->private == (unsigned long)eb) {
4697 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4698 BUG_ON(PageDirty(page));
4699 BUG_ON(PageWriteback(page));
db7f3436 4700 /*
5d2361db
FL
4701 * We need to make sure we haven't be attached
4702 * to a new eb.
db7f3436 4703 */
5d2361db
FL
4704 ClearPagePrivate(page);
4705 set_page_private(page, 0);
4706 /* One for the page private */
db7f3436
JB
4707 page_cache_release(page);
4708 }
5d2361db
FL
4709
4710 if (mapped)
4711 spin_unlock(&page->mapping->private_lock);
4712
4713 /* One for when we alloced the page */
4714 page_cache_release(page);
a50924e3 4715 } while (index != 0);
db7f3436
JB
4716}
4717
4718/*
4719 * Helper for releasing the extent buffer.
4720 */
4721static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4722{
a50924e3 4723 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4724 __free_extent_buffer(eb);
4725}
4726
f28491e0
JB
4727static struct extent_buffer *
4728__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4729 unsigned long len)
d1310b2e
CM
4730{
4731 struct extent_buffer *eb = NULL;
4732
d1b5c567 4733 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4734 eb->start = start;
4735 eb->len = len;
f28491e0 4736 eb->fs_info = fs_info;
815a51c7 4737 eb->bflags = 0;
bd681513
CM
4738 rwlock_init(&eb->lock);
4739 atomic_set(&eb->write_locks, 0);
4740 atomic_set(&eb->read_locks, 0);
4741 atomic_set(&eb->blocking_readers, 0);
4742 atomic_set(&eb->blocking_writers, 0);
4743 atomic_set(&eb->spinning_readers, 0);
4744 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4745 eb->lock_nested = 0;
bd681513
CM
4746 init_waitqueue_head(&eb->write_lock_wq);
4747 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4748
6d49ba1b
ES
4749 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4750
3083ee2e 4751 spin_lock_init(&eb->refs_lock);
d1310b2e 4752 atomic_set(&eb->refs, 1);
0b32f4bb 4753 atomic_set(&eb->io_pages, 0);
727011e0 4754
b8dae313
DS
4755 /*
4756 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4757 */
4758 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4759 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4760 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4761
4762 return eb;
4763}
4764
815a51c7
JS
4765struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4766{
4767 unsigned long i;
4768 struct page *p;
4769 struct extent_buffer *new;
4770 unsigned long num_pages = num_extent_pages(src->start, src->len);
4771
3f556f78 4772 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4773 if (new == NULL)
4774 return NULL;
4775
4776 for (i = 0; i < num_pages; i++) {
9ec72677 4777 p = alloc_page(GFP_NOFS);
db7f3436
JB
4778 if (!p) {
4779 btrfs_release_extent_buffer(new);
4780 return NULL;
4781 }
815a51c7
JS
4782 attach_extent_buffer_page(new, p);
4783 WARN_ON(PageDirty(p));
4784 SetPageUptodate(p);
4785 new->pages[i] = p;
4786 }
4787
4788 copy_extent_buffer(new, src, 0, 0, src->len);
4789 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4790 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4791
4792 return new;
4793}
4794
3f556f78
DS
4795struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4796 u64 start)
815a51c7
JS
4797{
4798 struct extent_buffer *eb;
3f556f78
DS
4799 unsigned long len;
4800 unsigned long num_pages;
815a51c7
JS
4801 unsigned long i;
4802
3f556f78
DS
4803 if (!fs_info) {
4804 /*
4805 * Called only from tests that don't always have a fs_info
4806 * available, but we know that nodesize is 4096
4807 */
4808 len = 4096;
4809 } else {
4810 len = fs_info->tree_root->nodesize;
4811 }
4812 num_pages = num_extent_pages(0, len);
4813
4814 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4815 if (!eb)
4816 return NULL;
4817
4818 for (i = 0; i < num_pages; i++) {
9ec72677 4819 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4820 if (!eb->pages[i])
4821 goto err;
4822 }
4823 set_extent_buffer_uptodate(eb);
4824 btrfs_set_header_nritems(eb, 0);
4825 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4826
4827 return eb;
4828err:
84167d19
SB
4829 for (; i > 0; i--)
4830 __free_page(eb->pages[i - 1]);
815a51c7
JS
4831 __free_extent_buffer(eb);
4832 return NULL;
4833}
4834
0b32f4bb
JB
4835static void check_buffer_tree_ref(struct extent_buffer *eb)
4836{
242e18c7 4837 int refs;
0b32f4bb
JB
4838 /* the ref bit is tricky. We have to make sure it is set
4839 * if we have the buffer dirty. Otherwise the
4840 * code to free a buffer can end up dropping a dirty
4841 * page
4842 *
4843 * Once the ref bit is set, it won't go away while the
4844 * buffer is dirty or in writeback, and it also won't
4845 * go away while we have the reference count on the
4846 * eb bumped.
4847 *
4848 * We can't just set the ref bit without bumping the
4849 * ref on the eb because free_extent_buffer might
4850 * see the ref bit and try to clear it. If this happens
4851 * free_extent_buffer might end up dropping our original
4852 * ref by mistake and freeing the page before we are able
4853 * to add one more ref.
4854 *
4855 * So bump the ref count first, then set the bit. If someone
4856 * beat us to it, drop the ref we added.
4857 */
242e18c7
CM
4858 refs = atomic_read(&eb->refs);
4859 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4860 return;
4861
594831c4
JB
4862 spin_lock(&eb->refs_lock);
4863 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4864 atomic_inc(&eb->refs);
594831c4 4865 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4866}
4867
2457aec6
MG
4868static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4869 struct page *accessed)
5df4235e
JB
4870{
4871 unsigned long num_pages, i;
4872
0b32f4bb
JB
4873 check_buffer_tree_ref(eb);
4874
5df4235e
JB
4875 num_pages = num_extent_pages(eb->start, eb->len);
4876 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4877 struct page *p = eb->pages[i];
4878
2457aec6
MG
4879 if (p != accessed)
4880 mark_page_accessed(p);
5df4235e
JB
4881 }
4882}
4883
f28491e0
JB
4884struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4885 u64 start)
452c75c3
CS
4886{
4887 struct extent_buffer *eb;
4888
4889 rcu_read_lock();
f28491e0
JB
4890 eb = radix_tree_lookup(&fs_info->buffer_radix,
4891 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4892 if (eb && atomic_inc_not_zero(&eb->refs)) {
4893 rcu_read_unlock();
062c19e9
FM
4894 /*
4895 * Lock our eb's refs_lock to avoid races with
4896 * free_extent_buffer. When we get our eb it might be flagged
4897 * with EXTENT_BUFFER_STALE and another task running
4898 * free_extent_buffer might have seen that flag set,
4899 * eb->refs == 2, that the buffer isn't under IO (dirty and
4900 * writeback flags not set) and it's still in the tree (flag
4901 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4902 * of decrementing the extent buffer's reference count twice.
4903 * So here we could race and increment the eb's reference count,
4904 * clear its stale flag, mark it as dirty and drop our reference
4905 * before the other task finishes executing free_extent_buffer,
4906 * which would later result in an attempt to free an extent
4907 * buffer that is dirty.
4908 */
4909 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4910 spin_lock(&eb->refs_lock);
4911 spin_unlock(&eb->refs_lock);
4912 }
2457aec6 4913 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4914 return eb;
4915 }
4916 rcu_read_unlock();
4917
4918 return NULL;
4919}
4920
faa2dbf0
JB
4921#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4922struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4923 u64 start)
faa2dbf0
JB
4924{
4925 struct extent_buffer *eb, *exists = NULL;
4926 int ret;
4927
4928 eb = find_extent_buffer(fs_info, start);
4929 if (eb)
4930 return eb;
3f556f78 4931 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4932 if (!eb)
4933 return NULL;
4934 eb->fs_info = fs_info;
4935again:
4936 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4937 if (ret)
4938 goto free_eb;
4939 spin_lock(&fs_info->buffer_lock);
4940 ret = radix_tree_insert(&fs_info->buffer_radix,
4941 start >> PAGE_CACHE_SHIFT, eb);
4942 spin_unlock(&fs_info->buffer_lock);
4943 radix_tree_preload_end();
4944 if (ret == -EEXIST) {
4945 exists = find_extent_buffer(fs_info, start);
4946 if (exists)
4947 goto free_eb;
4948 else
4949 goto again;
4950 }
4951 check_buffer_tree_ref(eb);
4952 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4953
4954 /*
4955 * We will free dummy extent buffer's if they come into
4956 * free_extent_buffer with a ref count of 2, but if we are using this we
4957 * want the buffers to stay in memory until we're done with them, so
4958 * bump the ref count again.
4959 */
4960 atomic_inc(&eb->refs);
4961 return eb;
4962free_eb:
4963 btrfs_release_extent_buffer(eb);
4964 return exists;
4965}
4966#endif
4967
f28491e0 4968struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4969 u64 start)
d1310b2e 4970{
ce3e6984 4971 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4972 unsigned long num_pages = num_extent_pages(start, len);
4973 unsigned long i;
4974 unsigned long index = start >> PAGE_CACHE_SHIFT;
4975 struct extent_buffer *eb;
6af118ce 4976 struct extent_buffer *exists = NULL;
d1310b2e 4977 struct page *p;
f28491e0 4978 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4979 int uptodate = 1;
19fe0a8b 4980 int ret;
d1310b2e 4981
f28491e0 4982 eb = find_extent_buffer(fs_info, start);
452c75c3 4983 if (eb)
6af118ce 4984 return eb;
6af118ce 4985
23d79d81 4986 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4987 if (!eb)
d1310b2e
CM
4988 return NULL;
4989
727011e0 4990 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4991 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4992 if (!p)
6af118ce 4993 goto free_eb;
4f2de97a
JB
4994
4995 spin_lock(&mapping->private_lock);
4996 if (PagePrivate(p)) {
4997 /*
4998 * We could have already allocated an eb for this page
4999 * and attached one so lets see if we can get a ref on
5000 * the existing eb, and if we can we know it's good and
5001 * we can just return that one, else we know we can just
5002 * overwrite page->private.
5003 */
5004 exists = (struct extent_buffer *)p->private;
5005 if (atomic_inc_not_zero(&exists->refs)) {
5006 spin_unlock(&mapping->private_lock);
5007 unlock_page(p);
17de39ac 5008 page_cache_release(p);
2457aec6 5009 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5010 goto free_eb;
5011 }
5ca64f45 5012 exists = NULL;
4f2de97a 5013
0b32f4bb 5014 /*
4f2de97a
JB
5015 * Do this so attach doesn't complain and we need to
5016 * drop the ref the old guy had.
5017 */
5018 ClearPagePrivate(p);
0b32f4bb 5019 WARN_ON(PageDirty(p));
4f2de97a 5020 page_cache_release(p);
d1310b2e 5021 }
4f2de97a
JB
5022 attach_extent_buffer_page(eb, p);
5023 spin_unlock(&mapping->private_lock);
0b32f4bb 5024 WARN_ON(PageDirty(p));
727011e0 5025 eb->pages[i] = p;
d1310b2e
CM
5026 if (!PageUptodate(p))
5027 uptodate = 0;
eb14ab8e
CM
5028
5029 /*
5030 * see below about how we avoid a nasty race with release page
5031 * and why we unlock later
5032 */
d1310b2e
CM
5033 }
5034 if (uptodate)
b4ce94de 5035 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5036again:
19fe0a8b
MX
5037 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5038 if (ret)
5039 goto free_eb;
5040
f28491e0
JB
5041 spin_lock(&fs_info->buffer_lock);
5042 ret = radix_tree_insert(&fs_info->buffer_radix,
5043 start >> PAGE_CACHE_SHIFT, eb);
5044 spin_unlock(&fs_info->buffer_lock);
452c75c3 5045 radix_tree_preload_end();
19fe0a8b 5046 if (ret == -EEXIST) {
f28491e0 5047 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5048 if (exists)
5049 goto free_eb;
5050 else
115391d2 5051 goto again;
6af118ce 5052 }
6af118ce 5053 /* add one reference for the tree */
0b32f4bb 5054 check_buffer_tree_ref(eb);
34b41ace 5055 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5056
5057 /*
5058 * there is a race where release page may have
5059 * tried to find this extent buffer in the radix
5060 * but failed. It will tell the VM it is safe to
5061 * reclaim the, and it will clear the page private bit.
5062 * We must make sure to set the page private bit properly
5063 * after the extent buffer is in the radix tree so
5064 * it doesn't get lost
5065 */
727011e0
CM
5066 SetPageChecked(eb->pages[0]);
5067 for (i = 1; i < num_pages; i++) {
fb85fc9a 5068 p = eb->pages[i];
727011e0
CM
5069 ClearPageChecked(p);
5070 unlock_page(p);
5071 }
5072 unlock_page(eb->pages[0]);
d1310b2e
CM
5073 return eb;
5074
6af118ce 5075free_eb:
5ca64f45 5076 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5077 for (i = 0; i < num_pages; i++) {
5078 if (eb->pages[i])
5079 unlock_page(eb->pages[i]);
5080 }
eb14ab8e 5081
897ca6e9 5082 btrfs_release_extent_buffer(eb);
6af118ce 5083 return exists;
d1310b2e 5084}
d1310b2e 5085
3083ee2e
JB
5086static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5087{
5088 struct extent_buffer *eb =
5089 container_of(head, struct extent_buffer, rcu_head);
5090
5091 __free_extent_buffer(eb);
5092}
5093
3083ee2e 5094/* Expects to have eb->eb_lock already held */
f7a52a40 5095static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5096{
5097 WARN_ON(atomic_read(&eb->refs) == 0);
5098 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5099 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5100 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5101
815a51c7 5102 spin_unlock(&eb->refs_lock);
3083ee2e 5103
f28491e0
JB
5104 spin_lock(&fs_info->buffer_lock);
5105 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 5106 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 5107 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5108 } else {
5109 spin_unlock(&eb->refs_lock);
815a51c7 5110 }
3083ee2e
JB
5111
5112 /* Should be safe to release our pages at this point */
a50924e3 5113 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5114#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5115 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5116 __free_extent_buffer(eb);
5117 return 1;
5118 }
5119#endif
3083ee2e 5120 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5121 return 1;
3083ee2e
JB
5122 }
5123 spin_unlock(&eb->refs_lock);
e64860aa
JB
5124
5125 return 0;
3083ee2e
JB
5126}
5127
d1310b2e
CM
5128void free_extent_buffer(struct extent_buffer *eb)
5129{
242e18c7
CM
5130 int refs;
5131 int old;
d1310b2e
CM
5132 if (!eb)
5133 return;
5134
242e18c7
CM
5135 while (1) {
5136 refs = atomic_read(&eb->refs);
5137 if (refs <= 3)
5138 break;
5139 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5140 if (old == refs)
5141 return;
5142 }
5143
3083ee2e 5144 spin_lock(&eb->refs_lock);
815a51c7
JS
5145 if (atomic_read(&eb->refs) == 2 &&
5146 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5147 atomic_dec(&eb->refs);
5148
3083ee2e
JB
5149 if (atomic_read(&eb->refs) == 2 &&
5150 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5151 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5152 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5153 atomic_dec(&eb->refs);
5154
5155 /*
5156 * I know this is terrible, but it's temporary until we stop tracking
5157 * the uptodate bits and such for the extent buffers.
5158 */
f7a52a40 5159 release_extent_buffer(eb);
3083ee2e
JB
5160}
5161
5162void free_extent_buffer_stale(struct extent_buffer *eb)
5163{
5164 if (!eb)
d1310b2e
CM
5165 return;
5166
3083ee2e
JB
5167 spin_lock(&eb->refs_lock);
5168 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5169
0b32f4bb 5170 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5171 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5172 atomic_dec(&eb->refs);
f7a52a40 5173 release_extent_buffer(eb);
d1310b2e 5174}
d1310b2e 5175
1d4284bd 5176void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5177{
d1310b2e
CM
5178 unsigned long i;
5179 unsigned long num_pages;
5180 struct page *page;
5181
d1310b2e
CM
5182 num_pages = num_extent_pages(eb->start, eb->len);
5183
5184 for (i = 0; i < num_pages; i++) {
fb85fc9a 5185 page = eb->pages[i];
b9473439 5186 if (!PageDirty(page))
d2c3f4f6
CM
5187 continue;
5188
a61e6f29 5189 lock_page(page);
eb14ab8e
CM
5190 WARN_ON(!PagePrivate(page));
5191
d1310b2e 5192 clear_page_dirty_for_io(page);
0ee0fda0 5193 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5194 if (!PageDirty(page)) {
5195 radix_tree_tag_clear(&page->mapping->page_tree,
5196 page_index(page),
5197 PAGECACHE_TAG_DIRTY);
5198 }
0ee0fda0 5199 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5200 ClearPageError(page);
a61e6f29 5201 unlock_page(page);
d1310b2e 5202 }
0b32f4bb 5203 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5204}
d1310b2e 5205
0b32f4bb 5206int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5207{
5208 unsigned long i;
5209 unsigned long num_pages;
b9473439 5210 int was_dirty = 0;
d1310b2e 5211
0b32f4bb
JB
5212 check_buffer_tree_ref(eb);
5213
b9473439 5214 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5215
d1310b2e 5216 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5217 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5218 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5219
b9473439 5220 for (i = 0; i < num_pages; i++)
fb85fc9a 5221 set_page_dirty(eb->pages[i]);
b9473439 5222 return was_dirty;
d1310b2e 5223}
d1310b2e 5224
69ba3927 5225void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5226{
5227 unsigned long i;
5228 struct page *page;
5229 unsigned long num_pages;
5230
b4ce94de 5231 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5232 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5233 for (i = 0; i < num_pages; i++) {
fb85fc9a 5234 page = eb->pages[i];
33958dc6
CM
5235 if (page)
5236 ClearPageUptodate(page);
1259ab75 5237 }
1259ab75
CM
5238}
5239
09c25a8c 5240void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5241{
5242 unsigned long i;
5243 struct page *page;
5244 unsigned long num_pages;
5245
0b32f4bb 5246 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5247 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5248 for (i = 0; i < num_pages; i++) {
fb85fc9a 5249 page = eb->pages[i];
d1310b2e
CM
5250 SetPageUptodate(page);
5251 }
d1310b2e 5252}
d1310b2e 5253
0b32f4bb 5254int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5255{
0b32f4bb 5256 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5257}
d1310b2e
CM
5258
5259int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5260 struct extent_buffer *eb, u64 start, int wait,
f188591e 5261 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5262{
5263 unsigned long i;
5264 unsigned long start_i;
5265 struct page *page;
5266 int err;
5267 int ret = 0;
ce9adaa5
CM
5268 int locked_pages = 0;
5269 int all_uptodate = 1;
d1310b2e 5270 unsigned long num_pages;
727011e0 5271 unsigned long num_reads = 0;
a86c12c7 5272 struct bio *bio = NULL;
c8b97818 5273 unsigned long bio_flags = 0;
a86c12c7 5274
b4ce94de 5275 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5276 return 0;
5277
d1310b2e
CM
5278 if (start) {
5279 WARN_ON(start < eb->start);
5280 start_i = (start >> PAGE_CACHE_SHIFT) -
5281 (eb->start >> PAGE_CACHE_SHIFT);
5282 } else {
5283 start_i = 0;
5284 }
5285
5286 num_pages = num_extent_pages(eb->start, eb->len);
5287 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5288 page = eb->pages[i];
bb82ab88 5289 if (wait == WAIT_NONE) {
2db04966 5290 if (!trylock_page(page))
ce9adaa5 5291 goto unlock_exit;
d1310b2e
CM
5292 } else {
5293 lock_page(page);
5294 }
ce9adaa5 5295 locked_pages++;
727011e0
CM
5296 if (!PageUptodate(page)) {
5297 num_reads++;
ce9adaa5 5298 all_uptodate = 0;
727011e0 5299 }
ce9adaa5
CM
5300 }
5301 if (all_uptodate) {
5302 if (start_i == 0)
b4ce94de 5303 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5304 goto unlock_exit;
5305 }
5306
656f30db 5307 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5308 eb->read_mirror = 0;
0b32f4bb 5309 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5310 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5311 page = eb->pages[i];
ce9adaa5 5312 if (!PageUptodate(page)) {
f188591e 5313 ClearPageError(page);
a86c12c7 5314 err = __extent_read_full_page(tree, page,
f188591e 5315 get_extent, &bio,
d4c7ca86
JB
5316 mirror_num, &bio_flags,
5317 READ | REQ_META);
d397712b 5318 if (err)
d1310b2e 5319 ret = err;
d1310b2e
CM
5320 } else {
5321 unlock_page(page);
5322 }
5323 }
5324
355808c2 5325 if (bio) {
d4c7ca86
JB
5326 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5327 bio_flags);
79787eaa
JM
5328 if (err)
5329 return err;
355808c2 5330 }
a86c12c7 5331
bb82ab88 5332 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5333 return ret;
d397712b 5334
d1310b2e 5335 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5336 page = eb->pages[i];
d1310b2e 5337 wait_on_page_locked(page);
d397712b 5338 if (!PageUptodate(page))
d1310b2e 5339 ret = -EIO;
d1310b2e 5340 }
d397712b 5341
d1310b2e 5342 return ret;
ce9adaa5
CM
5343
5344unlock_exit:
5345 i = start_i;
d397712b 5346 while (locked_pages > 0) {
fb85fc9a 5347 page = eb->pages[i];
ce9adaa5
CM
5348 i++;
5349 unlock_page(page);
5350 locked_pages--;
5351 }
5352 return ret;
d1310b2e 5353}
d1310b2e
CM
5354
5355void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5356 unsigned long start,
5357 unsigned long len)
5358{
5359 size_t cur;
5360 size_t offset;
5361 struct page *page;
5362 char *kaddr;
5363 char *dst = (char *)dstv;
5364 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5365 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5366
5367 WARN_ON(start > eb->len);
5368 WARN_ON(start + len > eb->start + eb->len);
5369
778746b5 5370 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5371
d397712b 5372 while (len > 0) {
fb85fc9a 5373 page = eb->pages[i];
d1310b2e
CM
5374
5375 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5376 kaddr = page_address(page);
d1310b2e 5377 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5378
5379 dst += cur;
5380 len -= cur;
5381 offset = 0;
5382 i++;
5383 }
5384}
d1310b2e 5385
550ac1d8
GH
5386int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5387 unsigned long start,
5388 unsigned long len)
5389{
5390 size_t cur;
5391 size_t offset;
5392 struct page *page;
5393 char *kaddr;
5394 char __user *dst = (char __user *)dstv;
5395 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5396 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5397 int ret = 0;
5398
5399 WARN_ON(start > eb->len);
5400 WARN_ON(start + len > eb->start + eb->len);
5401
5402 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5403
5404 while (len > 0) {
fb85fc9a 5405 page = eb->pages[i];
550ac1d8
GH
5406
5407 cur = min(len, (PAGE_CACHE_SIZE - offset));
5408 kaddr = page_address(page);
5409 if (copy_to_user(dst, kaddr + offset, cur)) {
5410 ret = -EFAULT;
5411 break;
5412 }
5413
5414 dst += cur;
5415 len -= cur;
5416 offset = 0;
5417 i++;
5418 }
5419
5420 return ret;
5421}
5422
d1310b2e 5423int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5424 unsigned long min_len, char **map,
d1310b2e 5425 unsigned long *map_start,
a6591715 5426 unsigned long *map_len)
d1310b2e
CM
5427{
5428 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5429 char *kaddr;
5430 struct page *p;
5431 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5432 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5433 unsigned long end_i = (start_offset + start + min_len - 1) >>
5434 PAGE_CACHE_SHIFT;
5435
5436 if (i != end_i)
5437 return -EINVAL;
5438
5439 if (i == 0) {
5440 offset = start_offset;
5441 *map_start = 0;
5442 } else {
5443 offset = 0;
5444 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5445 }
d397712b 5446
d1310b2e 5447 if (start + min_len > eb->len) {
31b1a2bd 5448 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5449 "wanted %lu %lu\n",
5450 eb->start, eb->len, start, min_len);
85026533 5451 return -EINVAL;
d1310b2e
CM
5452 }
5453
fb85fc9a 5454 p = eb->pages[i];
a6591715 5455 kaddr = page_address(p);
d1310b2e
CM
5456 *map = kaddr + offset;
5457 *map_len = PAGE_CACHE_SIZE - offset;
5458 return 0;
5459}
d1310b2e 5460
d1310b2e
CM
5461int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5462 unsigned long start,
5463 unsigned long len)
5464{
5465 size_t cur;
5466 size_t offset;
5467 struct page *page;
5468 char *kaddr;
5469 char *ptr = (char *)ptrv;
5470 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5471 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5472 int ret = 0;
5473
5474 WARN_ON(start > eb->len);
5475 WARN_ON(start + len > eb->start + eb->len);
5476
778746b5 5477 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5478
d397712b 5479 while (len > 0) {
fb85fc9a 5480 page = eb->pages[i];
d1310b2e
CM
5481
5482 cur = min(len, (PAGE_CACHE_SIZE - offset));
5483
a6591715 5484 kaddr = page_address(page);
d1310b2e 5485 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5486 if (ret)
5487 break;
5488
5489 ptr += cur;
5490 len -= cur;
5491 offset = 0;
5492 i++;
5493 }
5494 return ret;
5495}
d1310b2e
CM
5496
5497void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5498 unsigned long start, unsigned long len)
5499{
5500 size_t cur;
5501 size_t offset;
5502 struct page *page;
5503 char *kaddr;
5504 char *src = (char *)srcv;
5505 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5506 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5507
5508 WARN_ON(start > eb->len);
5509 WARN_ON(start + len > eb->start + eb->len);
5510
778746b5 5511 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5512
d397712b 5513 while (len > 0) {
fb85fc9a 5514 page = eb->pages[i];
d1310b2e
CM
5515 WARN_ON(!PageUptodate(page));
5516
5517 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5518 kaddr = page_address(page);
d1310b2e 5519 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5520
5521 src += cur;
5522 len -= cur;
5523 offset = 0;
5524 i++;
5525 }
5526}
d1310b2e
CM
5527
5528void memset_extent_buffer(struct extent_buffer *eb, char c,
5529 unsigned long start, unsigned long len)
5530{
5531 size_t cur;
5532 size_t offset;
5533 struct page *page;
5534 char *kaddr;
5535 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5536 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5537
5538 WARN_ON(start > eb->len);
5539 WARN_ON(start + len > eb->start + eb->len);
5540
778746b5 5541 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5542
d397712b 5543 while (len > 0) {
fb85fc9a 5544 page = eb->pages[i];
d1310b2e
CM
5545 WARN_ON(!PageUptodate(page));
5546
5547 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5548 kaddr = page_address(page);
d1310b2e 5549 memset(kaddr + offset, c, cur);
d1310b2e
CM
5550
5551 len -= cur;
5552 offset = 0;
5553 i++;
5554 }
5555}
d1310b2e
CM
5556
5557void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5558 unsigned long dst_offset, unsigned long src_offset,
5559 unsigned long len)
5560{
5561 u64 dst_len = dst->len;
5562 size_t cur;
5563 size_t offset;
5564 struct page *page;
5565 char *kaddr;
5566 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5567 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5568
5569 WARN_ON(src->len != dst_len);
5570
5571 offset = (start_offset + dst_offset) &
778746b5 5572 (PAGE_CACHE_SIZE - 1);
d1310b2e 5573
d397712b 5574 while (len > 0) {
fb85fc9a 5575 page = dst->pages[i];
d1310b2e
CM
5576 WARN_ON(!PageUptodate(page));
5577
5578 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5579
a6591715 5580 kaddr = page_address(page);
d1310b2e 5581 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5582
5583 src_offset += cur;
5584 len -= cur;
5585 offset = 0;
5586 i++;
5587 }
5588}
d1310b2e 5589
3387206f
ST
5590static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5591{
5592 unsigned long distance = (src > dst) ? src - dst : dst - src;
5593 return distance < len;
5594}
5595
d1310b2e
CM
5596static void copy_pages(struct page *dst_page, struct page *src_page,
5597 unsigned long dst_off, unsigned long src_off,
5598 unsigned long len)
5599{
a6591715 5600 char *dst_kaddr = page_address(dst_page);
d1310b2e 5601 char *src_kaddr;
727011e0 5602 int must_memmove = 0;
d1310b2e 5603
3387206f 5604 if (dst_page != src_page) {
a6591715 5605 src_kaddr = page_address(src_page);
3387206f 5606 } else {
d1310b2e 5607 src_kaddr = dst_kaddr;
727011e0
CM
5608 if (areas_overlap(src_off, dst_off, len))
5609 must_memmove = 1;
3387206f 5610 }
d1310b2e 5611
727011e0
CM
5612 if (must_memmove)
5613 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5614 else
5615 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5616}
5617
5618void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5619 unsigned long src_offset, unsigned long len)
5620{
5621 size_t cur;
5622 size_t dst_off_in_page;
5623 size_t src_off_in_page;
5624 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5625 unsigned long dst_i;
5626 unsigned long src_i;
5627
5628 if (src_offset + len > dst->len) {
f14d104d
DS
5629 btrfs_err(dst->fs_info,
5630 "memmove bogus src_offset %lu move "
5631 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5632 BUG_ON(1);
5633 }
5634 if (dst_offset + len > dst->len) {
f14d104d
DS
5635 btrfs_err(dst->fs_info,
5636 "memmove bogus dst_offset %lu move "
5637 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5638 BUG_ON(1);
5639 }
5640
d397712b 5641 while (len > 0) {
d1310b2e 5642 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5643 (PAGE_CACHE_SIZE - 1);
d1310b2e 5644 src_off_in_page = (start_offset + src_offset) &
778746b5 5645 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5646
5647 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5648 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5649
5650 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5651 src_off_in_page));
5652 cur = min_t(unsigned long, cur,
5653 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5654
fb85fc9a 5655 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5656 dst_off_in_page, src_off_in_page, cur);
5657
5658 src_offset += cur;
5659 dst_offset += cur;
5660 len -= cur;
5661 }
5662}
d1310b2e
CM
5663
5664void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5665 unsigned long src_offset, unsigned long len)
5666{
5667 size_t cur;
5668 size_t dst_off_in_page;
5669 size_t src_off_in_page;
5670 unsigned long dst_end = dst_offset + len - 1;
5671 unsigned long src_end = src_offset + len - 1;
5672 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5673 unsigned long dst_i;
5674 unsigned long src_i;
5675
5676 if (src_offset + len > dst->len) {
f14d104d
DS
5677 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5678 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5679 BUG_ON(1);
5680 }
5681 if (dst_offset + len > dst->len) {
f14d104d
DS
5682 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5683 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5684 BUG_ON(1);
5685 }
727011e0 5686 if (dst_offset < src_offset) {
d1310b2e
CM
5687 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5688 return;
5689 }
d397712b 5690 while (len > 0) {
d1310b2e
CM
5691 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5692 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5693
5694 dst_off_in_page = (start_offset + dst_end) &
778746b5 5695 (PAGE_CACHE_SIZE - 1);
d1310b2e 5696 src_off_in_page = (start_offset + src_end) &
778746b5 5697 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5698
5699 cur = min_t(unsigned long, len, src_off_in_page + 1);
5700 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5701 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5702 dst_off_in_page - cur + 1,
5703 src_off_in_page - cur + 1, cur);
5704
5705 dst_end -= cur;
5706 src_end -= cur;
5707 len -= cur;
5708 }
5709}
6af118ce 5710
f7a52a40 5711int try_release_extent_buffer(struct page *page)
19fe0a8b 5712{
6af118ce 5713 struct extent_buffer *eb;
6af118ce 5714
3083ee2e
JB
5715 /*
5716 * We need to make sure noboody is attaching this page to an eb right
5717 * now.
5718 */
5719 spin_lock(&page->mapping->private_lock);
5720 if (!PagePrivate(page)) {
5721 spin_unlock(&page->mapping->private_lock);
4f2de97a 5722 return 1;
45f49bce 5723 }
6af118ce 5724
3083ee2e
JB
5725 eb = (struct extent_buffer *)page->private;
5726 BUG_ON(!eb);
19fe0a8b
MX
5727
5728 /*
3083ee2e
JB
5729 * This is a little awful but should be ok, we need to make sure that
5730 * the eb doesn't disappear out from under us while we're looking at
5731 * this page.
19fe0a8b 5732 */
3083ee2e 5733 spin_lock(&eb->refs_lock);
0b32f4bb 5734 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5735 spin_unlock(&eb->refs_lock);
5736 spin_unlock(&page->mapping->private_lock);
5737 return 0;
b9473439 5738 }
3083ee2e 5739 spin_unlock(&page->mapping->private_lock);
897ca6e9 5740
19fe0a8b 5741 /*
3083ee2e
JB
5742 * If tree ref isn't set then we know the ref on this eb is a real ref,
5743 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5744 */
3083ee2e
JB
5745 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5746 spin_unlock(&eb->refs_lock);
5747 return 0;
b9473439 5748 }
19fe0a8b 5749
f7a52a40 5750 return release_extent_buffer(eb);
6af118ce 5751}