btrfs: make end_extent_writepage return void
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
d1310b2e
CM
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
d1310b2e
CM
215}
216
217void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 218 struct address_space *mapping)
d1310b2e 219{
6bef4d31 220 tree->state = RB_ROOT;
d1310b2e
CM
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
70dec807 223 spin_lock_init(&tree->lock);
d1310b2e 224 tree->mapping = mapping;
d1310b2e 225}
d1310b2e 226
b2950863 227static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
228{
229 struct extent_state *state;
d1310b2e
CM
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 232 if (!state)
d1310b2e
CM
233 return state;
234 state->state = 0;
d1310b2e 235 state->private = 0;
27a3507d 236 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 237 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
143bede5 240 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
241 return state;
242}
d1310b2e 243
4845e44f 244void free_extent_state(struct extent_state *state)
d1310b2e 245{
d1310b2e
CM
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
27a3507d 249 WARN_ON(extent_state_in_tree(state));
6d49ba1b 250 btrfs_leak_debug_del(&state->leak_list);
143bede5 251 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
252 kmem_cache_free(extent_state_cache, state);
253 }
254}
d1310b2e 255
f2071b21
FM
256static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
12cfbad9
FDBM
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
d1310b2e 262{
f2071b21 263 struct rb_node **p;
d397712b 264 struct rb_node *parent = NULL;
d1310b2e
CM
265 struct tree_entry *entry;
266
12cfbad9
FDBM
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
f2071b21 273 p = search_start ? &search_start : &root->rb_node;
d397712b 274 while (*p) {
d1310b2e
CM
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
12cfbad9 286do_insert:
d1310b2e
CM
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290}
291
80ea96b1 292static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
d1310b2e 297{
80ea96b1 298 struct rb_root *root = &tree->state;
12cfbad9 299 struct rb_node **n = &root->rb_node;
d1310b2e
CM
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
12cfbad9
FDBM
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
308 prev_entry = entry;
309
310 if (offset < entry->start)
12cfbad9 311 n = &(*n)->rb_left;
d1310b2e 312 else if (offset > entry->end)
12cfbad9 313 n = &(*n)->rb_right;
d397712b 314 else
12cfbad9 315 return *n;
d1310b2e
CM
316 }
317
12cfbad9
FDBM
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
d1310b2e
CM
323 if (prev_ret) {
324 orig_prev = prev;
d397712b 325 while (prev && offset > prev_entry->end) {
d1310b2e
CM
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 335 while (prev && offset < prev_entry->start) {
d1310b2e
CM
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342}
343
12cfbad9
FDBM
344static inline struct rb_node *
345tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
d1310b2e 349{
70dec807 350 struct rb_node *prev = NULL;
d1310b2e 351 struct rb_node *ret;
70dec807 352
12cfbad9 353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 354 if (!ret)
d1310b2e
CM
355 return prev;
356 return ret;
357}
358
12cfbad9
FDBM
359static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361{
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363}
364
9ed74f2d
JB
365static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367{
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371}
372
d1310b2e
CM
373/*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
1bf85046
JM
382static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
d1310b2e
CM
384{
385 struct extent_state *other;
386 struct rb_node *other_node;
387
5b21f2ed 388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 389 return;
d1310b2e
CM
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
9ed74f2d 396 merge_cb(tree, state, other);
d1310b2e 397 state->start = other->start;
d1310b2e 398 rb_erase(&other->rb_node, &tree->state);
27a3507d 399 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
9ed74f2d 408 merge_cb(tree, state, other);
df98b6e2 409 state->end = other->end;
df98b6e2 410 rb_erase(&other->rb_node, &tree->state);
27a3507d 411 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 412 free_extent_state(other);
d1310b2e
CM
413 }
414 }
d1310b2e
CM
415}
416
1bf85046 417static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 418 struct extent_state *state, unsigned *bits)
291d673e 419{
1bf85046
JM
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
422}
423
424static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 425 struct extent_state *state, unsigned *bits)
291d673e 426{
9ed74f2d
JB
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
429}
430
3150b699 431static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
3150b699 434
d1310b2e
CM
435/*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
447 struct rb_node ***p,
448 struct rb_node **parent,
d38ed27f 449 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
450{
451 struct rb_node *node;
452
31b1a2bd 453 if (end < start)
efe120a0 454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 455 end, start);
d1310b2e
CM
456 state->start = start;
457 state->end = end;
9ed74f2d 458
d38ed27f 459 set_state_bits(tree, state, bits, changeset);
3150b699 460
f2071b21 461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
466 "%llu %llu\n",
467 found->start, found->end, start, end);
d1310b2e
CM
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472}
473
1bf85046 474static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
475 u64 split)
476{
477 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
479}
480
d1310b2e
CM
481/*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497{
498 struct rb_node *node;
9ed74f2d
JB
499
500 split_cb(tree, orig, split);
501
d1310b2e
CM
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
f2071b21
FM
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
d1310b2e 509 if (node) {
d1310b2e
CM
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514}
515
cdc6a395
LZ
516static struct extent_state *next_state(struct extent_state *state)
517{
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523}
524
d1310b2e
CM
525/*
526 * utility function to clear some bits in an extent state struct.
1b303fc0 527 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
cdc6a395
LZ
532static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
fefdc557
QW
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
d1310b2e 536{
cdc6a395 537 struct extent_state *next;
9ee49a04 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 539
0ca1f7ce 540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
291d673e 545 clear_state_cb(tree, state, bits);
fefdc557 546 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 547 state->state &= ~bits_to_clear;
d1310b2e
CM
548 if (wake)
549 wake_up(&state->wq);
0ca1f7ce 550 if (state->state == 0) {
cdc6a395 551 next = next_state(state);
27a3507d 552 if (extent_state_in_tree(state)) {
d1310b2e 553 rb_erase(&state->rb_node, &tree->state);
27a3507d 554 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
cdc6a395 561 next = next_state(state);
d1310b2e 562 }
cdc6a395 563 return next;
d1310b2e
CM
564}
565
8233767a
XG
566static struct extent_state *
567alloc_extent_state_atomic(struct extent_state *prealloc)
568{
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573}
574
48a3b636 575static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
576{
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580}
581
d1310b2e
CM
582/*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
6763af84 592 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 593 */
fefdc557
QW
594static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
598{
599 struct extent_state *state;
2c64c53d 600 struct extent_state *cached;
d1310b2e
CM
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
5c939df5 603 u64 last_end;
d1310b2e 604 int err;
2ac55d41 605 int clear = 0;
d1310b2e 606
a5dee37d 607 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 608
7ee9e440
JB
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
0ca1f7ce
YZ
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
2ac55d41
JB
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
d1310b2e 618again:
d0164adc 619 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
d1310b2e 627 prealloc = alloc_extent_state(mask);
d1310b2e
CM
628 }
629
cad321ad 630 spin_lock(&tree->lock);
2c64c53d
CM
631 if (cached_state) {
632 cached = *cached_state;
2ac55d41
JB
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
27a3507d
FM
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
2ac55d41
JB
641 if (clear)
642 atomic_dec(&cached->refs);
2c64c53d 643 state = cached;
42daec29 644 goto hit_next;
2c64c53d 645 }
2ac55d41
JB
646 if (clear)
647 free_extent_state(cached);
2c64c53d 648 }
d1310b2e
CM
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
80ea96b1 653 node = tree_search(tree, start);
d1310b2e
CM
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 657hit_next:
d1310b2e
CM
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
5c939df5 661 last_end = state->end;
d1310b2e 662
0449314a 663 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
664 if (!(state->state & bits)) {
665 state = next_state(state);
0449314a 666 goto next;
cdc6a395 667 }
0449314a 668
d1310b2e
CM
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
8233767a
XG
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
d1310b2e 688 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
689 if (err)
690 extent_io_tree_panic(tree, err);
691
d1310b2e
CM
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
fefdc557
QW
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
d1ac6e41 698 goto next;
d1310b2e
CM
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
8233767a
XG
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
d1310b2e 711 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
712 if (err)
713 extent_io_tree_panic(tree, err);
714
d1310b2e
CM
715 if (wake)
716 wake_up(&state->wq);
42daec29 717
fefdc557 718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 719
d1310b2e
CM
720 prealloc = NULL;
721 goto out;
722 }
42daec29 723
fefdc557 724 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 725next:
5c939df5
YZ
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
cdc6a395 729 if (start <= end && state && !need_resched())
692e5759 730 goto hit_next;
d1310b2e
CM
731 goto search_again;
732
733out:
cad321ad 734 spin_unlock(&tree->lock);
d1310b2e
CM
735 if (prealloc)
736 free_extent_state(prealloc);
737
6763af84 738 return 0;
d1310b2e
CM
739
740search_again:
741 if (start > end)
742 goto out;
cad321ad 743 spin_unlock(&tree->lock);
d0164adc 744 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
745 cond_resched();
746 goto again;
747}
d1310b2e 748
143bede5
JM
749static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
641f5219
CH
751 __releases(tree->lock)
752 __acquires(tree->lock)
d1310b2e
CM
753{
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 756 spin_unlock(&tree->lock);
d1310b2e 757 schedule();
cad321ad 758 spin_lock(&tree->lock);
d1310b2e 759 finish_wait(&state->wq, &wait);
d1310b2e
CM
760}
761
762/*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
41074888
DS
767static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
d1310b2e
CM
769{
770 struct extent_state *state;
771 struct rb_node *node;
772
a5dee37d 773 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 774
cad321ad 775 spin_lock(&tree->lock);
d1310b2e
CM
776again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
80ea96b1 782 node = tree_search(tree, start);
c50d3e71 783process_node:
d1310b2e
CM
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
c50d3e71
FM
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
d1310b2e
CM
808 }
809out:
cad321ad 810 spin_unlock(&tree->lock);
d1310b2e 811}
d1310b2e 812
1bf85046 813static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 814 struct extent_state *state,
d38ed27f 815 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 816{
9ee49a04 817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 818
1bf85046 819 set_state_cb(tree, state, bits);
0ca1f7ce 820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
d38ed27f 824 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 825 state->state |= bits_to_set;
d1310b2e
CM
826}
827
e38e2ed7
FM
828static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
9ee49a04 830 unsigned flags)
2c64c53d
CM
831{
832 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 833 if (!flags || (state->state & flags)) {
2c64c53d
CM
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838}
839
e38e2ed7
FM
840static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842{
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845}
846
d1310b2e 847/*
1edbb734
CM
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 850 *
1edbb734
CM
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
d1310b2e 854 *
1edbb734 855 * [start, end] is inclusive This takes the tree lock.
d1310b2e 856 */
1edbb734 857
3fbe5c02
JM
858static int __must_check
859__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 860 unsigned bits, unsigned exclusive_bits,
41074888 861 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 862 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
863{
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
12cfbad9
FDBM
867 struct rb_node **p;
868 struct rb_node *parent;
d1310b2e 869 int err = 0;
d1310b2e
CM
870 u64 last_start;
871 u64 last_end;
42daec29 872
a5dee37d 873 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 874
0ca1f7ce 875 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 876again:
d0164adc 877 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 878 prealloc = alloc_extent_state(mask);
8233767a 879 BUG_ON(!prealloc);
d1310b2e
CM
880 }
881
cad321ad 882 spin_lock(&tree->lock);
9655d298
CM
883 if (cached_state && *cached_state) {
884 state = *cached_state;
df98b6e2 885 if (state->start <= start && state->end > start &&
27a3507d 886 extent_state_in_tree(state)) {
9655d298
CM
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
d1310b2e
CM
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
12cfbad9 895 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 896 if (!node) {
8233767a
XG
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
12cfbad9 899 err = insert_state(tree, prealloc, start, end,
d38ed27f 900 &p, &parent, &bits, changeset);
c2d904e0
JM
901 if (err)
902 extent_io_tree_panic(tree, err);
903
c42ac0bc 904 cache_state(prealloc, cached_state);
d1310b2e 905 prealloc = NULL;
d1310b2e
CM
906 goto out;
907 }
d1310b2e 908 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 909hit_next:
d1310b2e
CM
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
1edbb734 920 if (state->state & exclusive_bits) {
d1310b2e
CM
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
42daec29 925
d38ed27f 926 set_state_bits(tree, state, &bits, changeset);
2c64c53d 927 cache_state(state, cached_state);
d1310b2e 928 merge_state(tree, state);
5c939df5
YZ
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
d1ac6e41
LB
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
d1310b2e
CM
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
1edbb734 956 if (state->state & exclusive_bits) {
d1310b2e
CM
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
d1310b2e 964 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
965 if (err)
966 extent_io_tree_panic(tree, err);
967
d1310b2e
CM
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
d38ed27f 972 set_state_bits(tree, state, &bits, changeset);
2c64c53d 973 cache_state(state, cached_state);
d1310b2e 974 merge_state(tree, state);
5c939df5
YZ
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
d1ac6e41
LB
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
d1310b2e
CM
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
d397712b 997 this_end = last_start - 1;
8233767a
XG
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
c7f895a2
XG
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
d1310b2e 1006 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1007 NULL, NULL, &bits, changeset);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
9ed74f2d
JB
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
d1310b2e
CM
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1edbb734 1023 if (state->state & exclusive_bits) {
d1310b2e
CM
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
8233767a
XG
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
d1310b2e 1031 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1032 if (err)
1033 extent_io_tree_panic(tree, err);
d1310b2e 1034
d38ed27f 1035 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1036 cache_state(prealloc, cached_state);
d1310b2e
CM
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044out:
cad321ad 1045 spin_unlock(&tree->lock);
d1310b2e
CM
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051search_again:
1052 if (start > end)
1053 goto out;
cad321ad 1054 spin_unlock(&tree->lock);
d0164adc 1055 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1056 cond_resched();
1057 goto again;
1058}
d1310b2e 1059
41074888 1060int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1061 unsigned bits, u64 * failed_start,
41074888 1062 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1063{
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1065 cached_state, mask, NULL);
3fbe5c02
JM
1066}
1067
1068
462d6fac 1069/**
10983f2e
LB
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
462d6fac
JB
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
e6138876 1077 * @cached_state: state that we're going to cache
462d6fac
JB
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1087 unsigned bits, unsigned clear_bits,
e6138876 1088 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
12cfbad9
FDBM
1093 struct rb_node **p;
1094 struct rb_node *parent;
462d6fac
JB
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
c8fd3de7 1098 bool first_iteration = true;
462d6fac 1099
a5dee37d 1100 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1101
462d6fac 1102again:
d0164adc 1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
462d6fac 1111 prealloc = alloc_extent_state(mask);
c8fd3de7 1112 if (!prealloc && !first_iteration)
462d6fac
JB
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
e6138876
JB
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
27a3507d 1120 extent_state_in_tree(state)) {
e6138876
JB
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
462d6fac
JB
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
12cfbad9 1130 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
12cfbad9 1137 err = insert_state(tree, prealloc, start, end,
d38ed27f 1138 &p, &parent, &bits, NULL);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
462d6fac
JB
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
d38ed27f 1157 set_state_bits(tree, state, &bits, NULL);
e6138876 1158 cache_state(state, cached_state);
fefdc557 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1160 if (last_end == (u64)-1)
1161 goto out;
462d6fac 1162 start = last_end + 1;
d1ac6e41
LB
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
462d6fac
JB
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
462d6fac 1191 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1192 if (err)
1193 extent_io_tree_panic(tree, err);
462d6fac
JB
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
d38ed27f 1198 set_state_bits(tree, state, &bits, NULL);
e6138876 1199 cache_state(state, cached_state);
fefdc557
QW
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
462d6fac
JB
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
d1ac6e41
LB
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
462d6fac
JB
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
462d6fac
JB
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1236 NULL, NULL, &bits, NULL);
c2d904e0
JM
1237 if (err)
1238 extent_io_tree_panic(tree, err);
e6138876 1239 cache_state(prealloc, cached_state);
462d6fac
JB
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
462d6fac
JB
1256
1257 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1258 if (err)
1259 extent_io_tree_panic(tree, err);
462d6fac 1260
d38ed27f 1261 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1262 cache_state(prealloc, cached_state);
fefdc557 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
d0164adc 1281 if (gfpflags_allow_blocking(mask))
462d6fac 1282 cond_resched();
c8fd3de7 1283 first_iteration = false;
462d6fac
JB
1284 goto again;
1285}
1286
d1310b2e
CM
1287/* wrappers around set/clear extent bit */
1288int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 gfp_t mask)
1290{
3fbe5c02 1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1292 NULL, mask);
d1310b2e 1293}
d1310b2e
CM
1294
1295int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1296 unsigned bits, gfp_t mask)
d1310b2e 1297{
3fbe5c02 1298 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1299 NULL, mask);
d1310b2e 1300}
d1310b2e 1301
d38ed27f
QW
1302int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1305{
1306 /*
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1310 * range.
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 changeset);
1316}
1317
fefdc557
QW
1318int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1321{
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1324}
1325
d1310b2e 1326int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1327 unsigned bits, gfp_t mask)
d1310b2e 1328{
0f31871f
FM
1329 int wake = 0;
1330
1331 if (bits & EXTENT_LOCKED)
1332 wake = 1;
1333
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
d1310b2e 1335}
d1310b2e 1336
fefdc557
QW
1337int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1340{
1341 /*
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1344 */
1345 BUG_ON(bits & EXTENT_LOCKED);
1346
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 changeset);
1349}
1350
d1310b2e 1351int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1352 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1353{
1354 return set_extent_bit(tree, start, end,
fee187d9 1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1356 NULL, cached_state, mask);
d1310b2e 1357}
d1310b2e 1358
9e8a4a8b
LB
1359int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1361{
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1365}
1366
d1310b2e
CM
1367int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 gfp_t mask)
1369{
1370 return clear_extent_bit(tree, start, end,
32c00aff 1371 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1373}
d1310b2e
CM
1374
1375int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 gfp_t mask)
1377{
3fbe5c02 1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1379 NULL, mask);
d1310b2e 1380}
d1310b2e 1381
d1310b2e 1382int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1383 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1384{
6b67a320 1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1386 cached_state, mask);
d1310b2e 1387}
d1310b2e 1388
5fd02043
JB
1389int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1391{
2c64c53d 1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1393 cached_state, mask);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/*
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1399 */
1edbb734 1400int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1401 unsigned bits, struct extent_state **cached_state)
d1310b2e
CM
1402{
1403 int err;
1404 u64 failed_start;
9ee49a04 1405
d1310b2e 1406 while (1) {
3fbe5c02
JM
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
d38ed27f 1409 cached_state, GFP_NOFS, NULL);
d0082371 1410 if (err == -EEXIST) {
d1310b2e
CM
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
d0082371 1413 } else
d1310b2e 1414 break;
d1310b2e
CM
1415 WARN_ON(start > end);
1416 }
1417 return err;
1418}
d1310b2e 1419
d0082371 1420int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1421{
d0082371 1422 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1423}
1424
d0082371 1425int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1426{
1427 int err;
1428 u64 failed_start;
1429
3fbe5c02 1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1431 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1436 return 0;
6643558d 1437 }
25179201
JB
1438 return 1;
1439}
25179201 1440
2c64c53d
CM
1441int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1443{
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 mask);
1446}
1447
d0082371 1448int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1449{
2c64c53d 1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1451 GFP_NOFS);
d1310b2e 1452}
d1310b2e 1453
4adaa611
CM
1454int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455{
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1465 index++;
1466 }
1467 return 0;
1468}
1469
1470int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1471{
1472 unsigned long index = start >> PAGE_CACHE_SHIFT;
1473 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1474 struct page *page;
1475
1476 while (index <= end_index) {
1477 page = find_get_page(inode->i_mapping, index);
1478 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1479 __set_page_dirty_nobuffers(page);
8d38633c 1480 account_page_redirty(page);
4adaa611
CM
1481 page_cache_release(page);
1482 index++;
1483 }
1484 return 0;
1485}
1486
d1310b2e
CM
1487/*
1488 * helper function to set both pages and extents in the tree writeback
1489 */
b2950863 1490static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1491{
1492 unsigned long index = start >> PAGE_CACHE_SHIFT;
1493 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1494 struct page *page;
1495
1496 while (index <= end_index) {
1497 page = find_get_page(tree->mapping, index);
79787eaa 1498 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1499 set_page_writeback(page);
1500 page_cache_release(page);
1501 index++;
1502 }
d1310b2e
CM
1503 return 0;
1504}
d1310b2e 1505
d352ac68
CM
1506/* find the first state struct with 'bits' set after 'start', and
1507 * return it. tree->lock must be held. NULL will returned if
1508 * nothing was found after 'start'
1509 */
48a3b636
ES
1510static struct extent_state *
1511find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1512 u64 start, unsigned bits)
d7fc640e
CM
1513{
1514 struct rb_node *node;
1515 struct extent_state *state;
1516
1517 /*
1518 * this search will find all the extents that end after
1519 * our range starts.
1520 */
1521 node = tree_search(tree, start);
d397712b 1522 if (!node)
d7fc640e 1523 goto out;
d7fc640e 1524
d397712b 1525 while (1) {
d7fc640e 1526 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1527 if (state->end >= start && (state->state & bits))
d7fc640e 1528 return state;
d397712b 1529
d7fc640e
CM
1530 node = rb_next(node);
1531 if (!node)
1532 break;
1533 }
1534out:
1535 return NULL;
1536}
d7fc640e 1537
69261c4b
XG
1538/*
1539 * find the first offset in the io tree with 'bits' set. zero is
1540 * returned if we find something, and *start_ret and *end_ret are
1541 * set to reflect the state struct that was found.
1542 *
477d7eaf 1543 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1544 */
1545int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1546 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1547 struct extent_state **cached_state)
69261c4b
XG
1548{
1549 struct extent_state *state;
e6138876 1550 struct rb_node *n;
69261c4b
XG
1551 int ret = 1;
1552
1553 spin_lock(&tree->lock);
e6138876
JB
1554 if (cached_state && *cached_state) {
1555 state = *cached_state;
27a3507d 1556 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1557 n = rb_next(&state->rb_node);
1558 while (n) {
1559 state = rb_entry(n, struct extent_state,
1560 rb_node);
1561 if (state->state & bits)
1562 goto got_it;
1563 n = rb_next(n);
1564 }
1565 free_extent_state(*cached_state);
1566 *cached_state = NULL;
1567 goto out;
1568 }
1569 free_extent_state(*cached_state);
1570 *cached_state = NULL;
1571 }
1572
69261c4b 1573 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1574got_it:
69261c4b 1575 if (state) {
e38e2ed7 1576 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1577 *start_ret = state->start;
1578 *end_ret = state->end;
1579 ret = 0;
1580 }
e6138876 1581out:
69261c4b
XG
1582 spin_unlock(&tree->lock);
1583 return ret;
1584}
1585
d352ac68
CM
1586/*
1587 * find a contiguous range of bytes in the file marked as delalloc, not
1588 * more than 'max_bytes'. start and end are used to return the range,
1589 *
1590 * 1 is returned if we find something, 0 if nothing was in the tree
1591 */
c8b97818 1592static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1593 u64 *start, u64 *end, u64 max_bytes,
1594 struct extent_state **cached_state)
d1310b2e
CM
1595{
1596 struct rb_node *node;
1597 struct extent_state *state;
1598 u64 cur_start = *start;
1599 u64 found = 0;
1600 u64 total_bytes = 0;
1601
cad321ad 1602 spin_lock(&tree->lock);
c8b97818 1603
d1310b2e
CM
1604 /*
1605 * this search will find all the extents that end after
1606 * our range starts.
1607 */
80ea96b1 1608 node = tree_search(tree, cur_start);
2b114d1d 1609 if (!node) {
3b951516
CM
1610 if (!found)
1611 *end = (u64)-1;
d1310b2e
CM
1612 goto out;
1613 }
1614
d397712b 1615 while (1) {
d1310b2e 1616 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1617 if (found && (state->start != cur_start ||
1618 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1619 goto out;
1620 }
1621 if (!(state->state & EXTENT_DELALLOC)) {
1622 if (!found)
1623 *end = state->end;
1624 goto out;
1625 }
c2a128d2 1626 if (!found) {
d1310b2e 1627 *start = state->start;
c2a128d2
JB
1628 *cached_state = state;
1629 atomic_inc(&state->refs);
1630 }
d1310b2e
CM
1631 found++;
1632 *end = state->end;
1633 cur_start = state->end + 1;
1634 node = rb_next(node);
d1310b2e 1635 total_bytes += state->end - state->start + 1;
7bf811a5 1636 if (total_bytes >= max_bytes)
573aecaf 1637 break;
573aecaf 1638 if (!node)
d1310b2e
CM
1639 break;
1640 }
1641out:
cad321ad 1642 spin_unlock(&tree->lock);
d1310b2e
CM
1643 return found;
1644}
1645
143bede5
JM
1646static noinline void __unlock_for_delalloc(struct inode *inode,
1647 struct page *locked_page,
1648 u64 start, u64 end)
c8b97818
CM
1649{
1650 int ret;
1651 struct page *pages[16];
1652 unsigned long index = start >> PAGE_CACHE_SHIFT;
1653 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1654 unsigned long nr_pages = end_index - index + 1;
1655 int i;
1656
1657 if (index == locked_page->index && end_index == index)
143bede5 1658 return;
c8b97818 1659
d397712b 1660 while (nr_pages > 0) {
c8b97818 1661 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1662 min_t(unsigned long, nr_pages,
1663 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1664 for (i = 0; i < ret; i++) {
1665 if (pages[i] != locked_page)
1666 unlock_page(pages[i]);
1667 page_cache_release(pages[i]);
1668 }
1669 nr_pages -= ret;
1670 index += ret;
1671 cond_resched();
1672 }
c8b97818
CM
1673}
1674
1675static noinline int lock_delalloc_pages(struct inode *inode,
1676 struct page *locked_page,
1677 u64 delalloc_start,
1678 u64 delalloc_end)
1679{
1680 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1681 unsigned long start_index = index;
1682 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1683 unsigned long pages_locked = 0;
1684 struct page *pages[16];
1685 unsigned long nrpages;
1686 int ret;
1687 int i;
1688
1689 /* the caller is responsible for locking the start index */
1690 if (index == locked_page->index && index == end_index)
1691 return 0;
1692
1693 /* skip the page at the start index */
1694 nrpages = end_index - index + 1;
d397712b 1695 while (nrpages > 0) {
c8b97818 1696 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1697 min_t(unsigned long,
1698 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1699 if (ret == 0) {
1700 ret = -EAGAIN;
1701 goto done;
1702 }
1703 /* now we have an array of pages, lock them all */
1704 for (i = 0; i < ret; i++) {
1705 /*
1706 * the caller is taking responsibility for
1707 * locked_page
1708 */
771ed689 1709 if (pages[i] != locked_page) {
c8b97818 1710 lock_page(pages[i]);
f2b1c41c
CM
1711 if (!PageDirty(pages[i]) ||
1712 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1713 ret = -EAGAIN;
1714 unlock_page(pages[i]);
1715 page_cache_release(pages[i]);
1716 goto done;
1717 }
1718 }
c8b97818 1719 page_cache_release(pages[i]);
771ed689 1720 pages_locked++;
c8b97818 1721 }
c8b97818
CM
1722 nrpages -= ret;
1723 index += ret;
1724 cond_resched();
1725 }
1726 ret = 0;
1727done:
1728 if (ret && pages_locked) {
1729 __unlock_for_delalloc(inode, locked_page,
1730 delalloc_start,
1731 ((u64)(start_index + pages_locked - 1)) <<
1732 PAGE_CACHE_SHIFT);
1733 }
1734 return ret;
1735}
1736
1737/*
1738 * find a contiguous range of bytes in the file marked as delalloc, not
1739 * more than 'max_bytes'. start and end are used to return the range,
1740 *
1741 * 1 is returned if we find something, 0 if nothing was in the tree
1742 */
294e30fe
JB
1743STATIC u64 find_lock_delalloc_range(struct inode *inode,
1744 struct extent_io_tree *tree,
1745 struct page *locked_page, u64 *start,
1746 u64 *end, u64 max_bytes)
c8b97818
CM
1747{
1748 u64 delalloc_start;
1749 u64 delalloc_end;
1750 u64 found;
9655d298 1751 struct extent_state *cached_state = NULL;
c8b97818
CM
1752 int ret;
1753 int loops = 0;
1754
1755again:
1756 /* step one, find a bunch of delalloc bytes starting at start */
1757 delalloc_start = *start;
1758 delalloc_end = 0;
1759 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1760 max_bytes, &cached_state);
70b99e69 1761 if (!found || delalloc_end <= *start) {
c8b97818
CM
1762 *start = delalloc_start;
1763 *end = delalloc_end;
c2a128d2 1764 free_extent_state(cached_state);
385fe0be 1765 return 0;
c8b97818
CM
1766 }
1767
70b99e69
CM
1768 /*
1769 * start comes from the offset of locked_page. We have to lock
1770 * pages in order, so we can't process delalloc bytes before
1771 * locked_page
1772 */
d397712b 1773 if (delalloc_start < *start)
70b99e69 1774 delalloc_start = *start;
70b99e69 1775
c8b97818
CM
1776 /*
1777 * make sure to limit the number of pages we try to lock down
c8b97818 1778 */
7bf811a5
JB
1779 if (delalloc_end + 1 - delalloc_start > max_bytes)
1780 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1781
c8b97818
CM
1782 /* step two, lock all the pages after the page that has start */
1783 ret = lock_delalloc_pages(inode, locked_page,
1784 delalloc_start, delalloc_end);
1785 if (ret == -EAGAIN) {
1786 /* some of the pages are gone, lets avoid looping by
1787 * shortening the size of the delalloc range we're searching
1788 */
9655d298 1789 free_extent_state(cached_state);
7d788742 1790 cached_state = NULL;
c8b97818 1791 if (!loops) {
7bf811a5 1792 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1793 loops = 1;
1794 goto again;
1795 } else {
1796 found = 0;
1797 goto out_failed;
1798 }
1799 }
79787eaa 1800 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1801
1802 /* step three, lock the state bits for the whole range */
d0082371 1803 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1804
1805 /* then test to make sure it is all still delalloc */
1806 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1807 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1808 if (!ret) {
9655d298
CM
1809 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1810 &cached_state, GFP_NOFS);
c8b97818
CM
1811 __unlock_for_delalloc(inode, locked_page,
1812 delalloc_start, delalloc_end);
1813 cond_resched();
1814 goto again;
1815 }
9655d298 1816 free_extent_state(cached_state);
c8b97818
CM
1817 *start = delalloc_start;
1818 *end = delalloc_end;
1819out_failed:
1820 return found;
1821}
1822
a9d93e17 1823void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1824 struct page *locked_page,
9ee49a04 1825 unsigned clear_bits,
c2790a2e 1826 unsigned long page_ops)
c8b97818 1827{
c2790a2e 1828 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1829 int ret;
1830 struct page *pages[16];
1831 unsigned long index = start >> PAGE_CACHE_SHIFT;
1832 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1833 unsigned long nr_pages = end_index - index + 1;
1834 int i;
771ed689 1835
2c64c53d 1836 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1837 if (page_ops == 0)
a9d93e17 1838 return;
c8b97818 1839
704de49d
FM
1840 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1841 mapping_set_error(inode->i_mapping, -EIO);
1842
d397712b 1843 while (nr_pages > 0) {
c8b97818 1844 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1845 min_t(unsigned long,
1846 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1847 for (i = 0; i < ret; i++) {
8b62b72b 1848
c2790a2e 1849 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1850 SetPagePrivate2(pages[i]);
1851
c8b97818
CM
1852 if (pages[i] == locked_page) {
1853 page_cache_release(pages[i]);
1854 continue;
1855 }
c2790a2e 1856 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1857 clear_page_dirty_for_io(pages[i]);
c2790a2e 1858 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1859 set_page_writeback(pages[i]);
704de49d
FM
1860 if (page_ops & PAGE_SET_ERROR)
1861 SetPageError(pages[i]);
c2790a2e 1862 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1863 end_page_writeback(pages[i]);
c2790a2e 1864 if (page_ops & PAGE_UNLOCK)
771ed689 1865 unlock_page(pages[i]);
c8b97818
CM
1866 page_cache_release(pages[i]);
1867 }
1868 nr_pages -= ret;
1869 index += ret;
1870 cond_resched();
1871 }
c8b97818 1872}
c8b97818 1873
d352ac68
CM
1874/*
1875 * count the number of bytes in the tree that have a given bit(s)
1876 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1877 * cached. The total number found is returned.
1878 */
d1310b2e
CM
1879u64 count_range_bits(struct extent_io_tree *tree,
1880 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1881 unsigned bits, int contig)
d1310b2e
CM
1882{
1883 struct rb_node *node;
1884 struct extent_state *state;
1885 u64 cur_start = *start;
1886 u64 total_bytes = 0;
ec29ed5b 1887 u64 last = 0;
d1310b2e
CM
1888 int found = 0;
1889
fae7f21c 1890 if (WARN_ON(search_end <= cur_start))
d1310b2e 1891 return 0;
d1310b2e 1892
cad321ad 1893 spin_lock(&tree->lock);
d1310b2e
CM
1894 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1895 total_bytes = tree->dirty_bytes;
1896 goto out;
1897 }
1898 /*
1899 * this search will find all the extents that end after
1900 * our range starts.
1901 */
80ea96b1 1902 node = tree_search(tree, cur_start);
d397712b 1903 if (!node)
d1310b2e 1904 goto out;
d1310b2e 1905
d397712b 1906 while (1) {
d1310b2e
CM
1907 state = rb_entry(node, struct extent_state, rb_node);
1908 if (state->start > search_end)
1909 break;
ec29ed5b
CM
1910 if (contig && found && state->start > last + 1)
1911 break;
1912 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1913 total_bytes += min(search_end, state->end) + 1 -
1914 max(cur_start, state->start);
1915 if (total_bytes >= max_bytes)
1916 break;
1917 if (!found) {
af60bed2 1918 *start = max(cur_start, state->start);
d1310b2e
CM
1919 found = 1;
1920 }
ec29ed5b
CM
1921 last = state->end;
1922 } else if (contig && found) {
1923 break;
d1310b2e
CM
1924 }
1925 node = rb_next(node);
1926 if (!node)
1927 break;
1928 }
1929out:
cad321ad 1930 spin_unlock(&tree->lock);
d1310b2e
CM
1931 return total_bytes;
1932}
b2950863 1933
d352ac68
CM
1934/*
1935 * set the private field for a given byte offset in the tree. If there isn't
1936 * an extent_state there already, this does nothing.
1937 */
171170c1 1938static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1939{
1940 struct rb_node *node;
1941 struct extent_state *state;
1942 int ret = 0;
1943
cad321ad 1944 spin_lock(&tree->lock);
d1310b2e
CM
1945 /*
1946 * this search will find all the extents that end after
1947 * our range starts.
1948 */
80ea96b1 1949 node = tree_search(tree, start);
2b114d1d 1950 if (!node) {
d1310b2e
CM
1951 ret = -ENOENT;
1952 goto out;
1953 }
1954 state = rb_entry(node, struct extent_state, rb_node);
1955 if (state->start != start) {
1956 ret = -ENOENT;
1957 goto out;
1958 }
1959 state->private = private;
1960out:
cad321ad 1961 spin_unlock(&tree->lock);
d1310b2e
CM
1962 return ret;
1963}
1964
1965int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1966{
1967 struct rb_node *node;
1968 struct extent_state *state;
1969 int ret = 0;
1970
cad321ad 1971 spin_lock(&tree->lock);
d1310b2e
CM
1972 /*
1973 * this search will find all the extents that end after
1974 * our range starts.
1975 */
80ea96b1 1976 node = tree_search(tree, start);
2b114d1d 1977 if (!node) {
d1310b2e
CM
1978 ret = -ENOENT;
1979 goto out;
1980 }
1981 state = rb_entry(node, struct extent_state, rb_node);
1982 if (state->start != start) {
1983 ret = -ENOENT;
1984 goto out;
1985 }
1986 *private = state->private;
1987out:
cad321ad 1988 spin_unlock(&tree->lock);
d1310b2e
CM
1989 return ret;
1990}
1991
1992/*
1993 * searches a range in the state tree for a given mask.
70dec807 1994 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1995 * has the bits set. Otherwise, 1 is returned if any bit in the
1996 * range is found set.
1997 */
1998int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1999 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2000{
2001 struct extent_state *state = NULL;
2002 struct rb_node *node;
2003 int bitset = 0;
d1310b2e 2004
cad321ad 2005 spin_lock(&tree->lock);
27a3507d 2006 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2007 cached->end > start)
9655d298
CM
2008 node = &cached->rb_node;
2009 else
2010 node = tree_search(tree, start);
d1310b2e
CM
2011 while (node && start <= end) {
2012 state = rb_entry(node, struct extent_state, rb_node);
2013
2014 if (filled && state->start > start) {
2015 bitset = 0;
2016 break;
2017 }
2018
2019 if (state->start > end)
2020 break;
2021
2022 if (state->state & bits) {
2023 bitset = 1;
2024 if (!filled)
2025 break;
2026 } else if (filled) {
2027 bitset = 0;
2028 break;
2029 }
46562cec
CM
2030
2031 if (state->end == (u64)-1)
2032 break;
2033
d1310b2e
CM
2034 start = state->end + 1;
2035 if (start > end)
2036 break;
2037 node = rb_next(node);
2038 if (!node) {
2039 if (filled)
2040 bitset = 0;
2041 break;
2042 }
2043 }
cad321ad 2044 spin_unlock(&tree->lock);
d1310b2e
CM
2045 return bitset;
2046}
d1310b2e
CM
2047
2048/*
2049 * helper function to set a given page up to date if all the
2050 * extents in the tree for that page are up to date
2051 */
143bede5 2052static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2053{
4eee4fa4 2054 u64 start = page_offset(page);
d1310b2e 2055 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 2056 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2057 SetPageUptodate(page);
d1310b2e
CM
2058}
2059
8b110e39 2060int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
2061{
2062 int ret;
2063 int err = 0;
2064 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2065
2066 set_state_private(failure_tree, rec->start, 0);
2067 ret = clear_extent_bits(failure_tree, rec->start,
2068 rec->start + rec->len - 1,
2069 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2070 if (ret)
2071 err = ret;
2072
53b381b3
DW
2073 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2074 rec->start + rec->len - 1,
2075 EXTENT_DAMAGED, GFP_NOFS);
2076 if (ret && !err)
2077 err = ret;
4a54c8c1
JS
2078
2079 kfree(rec);
2080 return err;
2081}
2082
4a54c8c1
JS
2083/*
2084 * this bypasses the standard btrfs submit functions deliberately, as
2085 * the standard behavior is to write all copies in a raid setup. here we only
2086 * want to write the one bad copy. so we do the mapping for ourselves and issue
2087 * submit_bio directly.
3ec706c8 2088 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2089 * actually prevents the read that triggered the error from finishing.
2090 * currently, there can be no more than two copies of every data bit. thus,
2091 * exactly one rewrite is required.
2092 */
1203b681
MX
2093int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2094 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2095{
1203b681 2096 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2097 struct bio *bio;
2098 struct btrfs_device *dev;
4a54c8c1
JS
2099 u64 map_length = 0;
2100 u64 sector;
2101 struct btrfs_bio *bbio = NULL;
53b381b3 2102 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2103 int ret;
2104
908960c6 2105 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2106 BUG_ON(!mirror_num);
2107
53b381b3
DW
2108 /* we can't repair anything in raid56 yet */
2109 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2110 return 0;
2111
9be3395b 2112 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2113 if (!bio)
2114 return -EIO;
4f024f37 2115 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2116 map_length = length;
2117
3ec706c8 2118 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2119 &map_length, &bbio, mirror_num);
2120 if (ret) {
2121 bio_put(bio);
2122 return -EIO;
2123 }
2124 BUG_ON(mirror_num != bbio->mirror_num);
2125 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2126 bio->bi_iter.bi_sector = sector;
4a54c8c1 2127 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2128 btrfs_put_bbio(bbio);
4a54c8c1
JS
2129 if (!dev || !dev->bdev || !dev->writeable) {
2130 bio_put(bio);
2131 return -EIO;
2132 }
2133 bio->bi_bdev = dev->bdev;
ffdd2018 2134 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2135
33879d45 2136 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2137 /* try to remap that extent elsewhere? */
2138 bio_put(bio);
442a4f63 2139 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2140 return -EIO;
2141 }
2142
b14af3b4
DS
2143 btrfs_info_rl_in_rcu(fs_info,
2144 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2145 btrfs_ino(inode), start,
2146 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2147 bio_put(bio);
2148 return 0;
2149}
2150
ea466794
JB
2151int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2152 int mirror_num)
2153{
ea466794
JB
2154 u64 start = eb->start;
2155 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2156 int ret = 0;
ea466794 2157
908960c6
ID
2158 if (root->fs_info->sb->s_flags & MS_RDONLY)
2159 return -EROFS;
2160
ea466794 2161 for (i = 0; i < num_pages; i++) {
fb85fc9a 2162 struct page *p = eb->pages[i];
1203b681
MX
2163
2164 ret = repair_io_failure(root->fs_info->btree_inode, start,
2165 PAGE_CACHE_SIZE, start, p,
2166 start - page_offset(p), mirror_num);
ea466794
JB
2167 if (ret)
2168 break;
2169 start += PAGE_CACHE_SIZE;
2170 }
2171
2172 return ret;
2173}
2174
4a54c8c1
JS
2175/*
2176 * each time an IO finishes, we do a fast check in the IO failure tree
2177 * to see if we need to process or clean up an io_failure_record
2178 */
8b110e39
MX
2179int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2180 unsigned int pg_offset)
4a54c8c1
JS
2181{
2182 u64 private;
2183 u64 private_failure;
2184 struct io_failure_record *failrec;
908960c6 2185 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2186 struct extent_state *state;
2187 int num_copies;
4a54c8c1 2188 int ret;
4a54c8c1
JS
2189
2190 private = 0;
2191 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2192 (u64)-1, 1, EXTENT_DIRTY, 0);
2193 if (!ret)
2194 return 0;
2195
2196 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2197 &private_failure);
2198 if (ret)
2199 return 0;
2200
2201 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2202 BUG_ON(!failrec->this_mirror);
2203
2204 if (failrec->in_validation) {
2205 /* there was no real error, just free the record */
2206 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2207 failrec->start);
4a54c8c1
JS
2208 goto out;
2209 }
908960c6
ID
2210 if (fs_info->sb->s_flags & MS_RDONLY)
2211 goto out;
4a54c8c1
JS
2212
2213 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2214 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2215 failrec->start,
2216 EXTENT_LOCKED);
2217 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2218
883d0de4
MX
2219 if (state && state->start <= failrec->start &&
2220 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2221 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2222 failrec->len);
4a54c8c1 2223 if (num_copies > 1) {
1203b681 2224 repair_io_failure(inode, start, failrec->len,
454ff3de 2225 failrec->logical, page,
1203b681 2226 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2227 }
2228 }
2229
2230out:
454ff3de 2231 free_io_failure(inode, failrec);
4a54c8c1 2232
454ff3de 2233 return 0;
4a54c8c1
JS
2234}
2235
f612496b
MX
2236/*
2237 * Can be called when
2238 * - hold extent lock
2239 * - under ordered extent
2240 * - the inode is freeing
2241 */
2242void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2243{
2244 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2245 struct io_failure_record *failrec;
2246 struct extent_state *state, *next;
2247
2248 if (RB_EMPTY_ROOT(&failure_tree->state))
2249 return;
2250
2251 spin_lock(&failure_tree->lock);
2252 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2253 while (state) {
2254 if (state->start > end)
2255 break;
2256
2257 ASSERT(state->end <= end);
2258
2259 next = next_state(state);
2260
6e1103a6 2261 failrec = (struct io_failure_record *)(unsigned long)state->private;
f612496b
MX
2262 free_extent_state(state);
2263 kfree(failrec);
2264
2265 state = next;
2266 }
2267 spin_unlock(&failure_tree->lock);
2268}
2269
2fe6303e
MX
2270int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2271 struct io_failure_record **failrec_ret)
4a54c8c1 2272{
2fe6303e 2273 struct io_failure_record *failrec;
4a54c8c1
JS
2274 u64 private;
2275 struct extent_map *em;
4a54c8c1
JS
2276 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2277 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2278 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2279 int ret;
4a54c8c1
JS
2280 u64 logical;
2281
4a54c8c1
JS
2282 ret = get_state_private(failure_tree, start, &private);
2283 if (ret) {
2284 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2285 if (!failrec)
2286 return -ENOMEM;
2fe6303e 2287
4a54c8c1
JS
2288 failrec->start = start;
2289 failrec->len = end - start + 1;
2290 failrec->this_mirror = 0;
2291 failrec->bio_flags = 0;
2292 failrec->in_validation = 0;
2293
2294 read_lock(&em_tree->lock);
2295 em = lookup_extent_mapping(em_tree, start, failrec->len);
2296 if (!em) {
2297 read_unlock(&em_tree->lock);
2298 kfree(failrec);
2299 return -EIO;
2300 }
2301
68ba990f 2302 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2303 free_extent_map(em);
2304 em = NULL;
2305 }
2306 read_unlock(&em_tree->lock);
7a2d6a64 2307 if (!em) {
4a54c8c1
JS
2308 kfree(failrec);
2309 return -EIO;
2310 }
2fe6303e 2311
4a54c8c1
JS
2312 logical = start - em->start;
2313 logical = em->block_start + logical;
2314 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2315 logical = em->block_start;
2316 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2317 extent_set_compress_type(&failrec->bio_flags,
2318 em->compress_type);
2319 }
2fe6303e
MX
2320
2321 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2322 logical, start, failrec->len);
2323
4a54c8c1
JS
2324 failrec->logical = logical;
2325 free_extent_map(em);
2326
2327 /* set the bits in the private failure tree */
2328 ret = set_extent_bits(failure_tree, start, end,
2329 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2330 if (ret >= 0)
2331 ret = set_state_private(failure_tree, start,
2332 (u64)(unsigned long)failrec);
2333 /* set the bits in the inode's tree */
2334 if (ret >= 0)
2335 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2336 GFP_NOFS);
2337 if (ret < 0) {
2338 kfree(failrec);
2339 return ret;
2340 }
2341 } else {
2342 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2343 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2344 failrec->logical, failrec->start, failrec->len,
2345 failrec->in_validation);
2346 /*
2347 * when data can be on disk more than twice, add to failrec here
2348 * (e.g. with a list for failed_mirror) to make
2349 * clean_io_failure() clean all those errors at once.
2350 */
2351 }
2fe6303e
MX
2352
2353 *failrec_ret = failrec;
2354
2355 return 0;
2356}
2357
2358int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2359 struct io_failure_record *failrec, int failed_mirror)
2360{
2361 int num_copies;
2362
5d964051
SB
2363 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2364 failrec->logical, failrec->len);
4a54c8c1
JS
2365 if (num_copies == 1) {
2366 /*
2367 * we only have a single copy of the data, so don't bother with
2368 * all the retry and error correction code that follows. no
2369 * matter what the error is, it is very likely to persist.
2370 */
2fe6303e 2371 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2372 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2373 return 0;
4a54c8c1
JS
2374 }
2375
4a54c8c1
JS
2376 /*
2377 * there are two premises:
2378 * a) deliver good data to the caller
2379 * b) correct the bad sectors on disk
2380 */
2381 if (failed_bio->bi_vcnt > 1) {
2382 /*
2383 * to fulfill b), we need to know the exact failing sectors, as
2384 * we don't want to rewrite any more than the failed ones. thus,
2385 * we need separate read requests for the failed bio
2386 *
2387 * if the following BUG_ON triggers, our validation request got
2388 * merged. we need separate requests for our algorithm to work.
2389 */
2390 BUG_ON(failrec->in_validation);
2391 failrec->in_validation = 1;
2392 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2393 } else {
2394 /*
2395 * we're ready to fulfill a) and b) alongside. get a good copy
2396 * of the failed sector and if we succeed, we have setup
2397 * everything for repair_io_failure to do the rest for us.
2398 */
2399 if (failrec->in_validation) {
2400 BUG_ON(failrec->this_mirror != failed_mirror);
2401 failrec->in_validation = 0;
2402 failrec->this_mirror = 0;
2403 }
2404 failrec->failed_mirror = failed_mirror;
2405 failrec->this_mirror++;
2406 if (failrec->this_mirror == failed_mirror)
2407 failrec->this_mirror++;
4a54c8c1
JS
2408 }
2409
facc8a22 2410 if (failrec->this_mirror > num_copies) {
2fe6303e 2411 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2412 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2413 return 0;
4a54c8c1
JS
2414 }
2415
2fe6303e
MX
2416 return 1;
2417}
2418
2419
2420struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2421 struct io_failure_record *failrec,
2422 struct page *page, int pg_offset, int icsum,
8b110e39 2423 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2424{
2425 struct bio *bio;
2426 struct btrfs_io_bio *btrfs_failed_bio;
2427 struct btrfs_io_bio *btrfs_bio;
2428
9be3395b 2429 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2430 if (!bio)
2431 return NULL;
2432
2433 bio->bi_end_io = endio_func;
4f024f37 2434 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2435 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2436 bio->bi_iter.bi_size = 0;
8b110e39 2437 bio->bi_private = data;
4a54c8c1 2438
facc8a22
MX
2439 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2440 if (btrfs_failed_bio->csum) {
2441 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2442 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2443
2444 btrfs_bio = btrfs_io_bio(bio);
2445 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2446 icsum *= csum_size;
2447 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2448 csum_size);
2449 }
2450
2fe6303e
MX
2451 bio_add_page(bio, page, failrec->len, pg_offset);
2452
2453 return bio;
2454}
2455
2456/*
2457 * this is a generic handler for readpage errors (default
2458 * readpage_io_failed_hook). if other copies exist, read those and write back
2459 * good data to the failed position. does not investigate in remapping the
2460 * failed extent elsewhere, hoping the device will be smart enough to do this as
2461 * needed
2462 */
2463
2464static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2465 struct page *page, u64 start, u64 end,
2466 int failed_mirror)
2467{
2468 struct io_failure_record *failrec;
2469 struct inode *inode = page->mapping->host;
2470 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2471 struct bio *bio;
2472 int read_mode;
2473 int ret;
2474
2475 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2476
2477 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2478 if (ret)
2479 return ret;
2480
2481 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2482 if (!ret) {
2483 free_io_failure(inode, failrec);
2484 return -EIO;
2485 }
2486
2487 if (failed_bio->bi_vcnt > 1)
2488 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2489 else
2490 read_mode = READ_SYNC;
2491
2492 phy_offset >>= inode->i_sb->s_blocksize_bits;
2493 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2494 start - page_offset(page),
8b110e39
MX
2495 (int)phy_offset, failed_bio->bi_end_io,
2496 NULL);
2fe6303e
MX
2497 if (!bio) {
2498 free_io_failure(inode, failrec);
2499 return -EIO;
2500 }
4a54c8c1 2501
2fe6303e
MX
2502 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2503 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2504
013bd4c3
TI
2505 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2506 failrec->this_mirror,
2507 failrec->bio_flags, 0);
6c387ab2 2508 if (ret) {
454ff3de 2509 free_io_failure(inode, failrec);
6c387ab2
MX
2510 bio_put(bio);
2511 }
2512
013bd4c3 2513 return ret;
4a54c8c1
JS
2514}
2515
d1310b2e
CM
2516/* lots and lots of room for performance fixes in the end_bio funcs */
2517
b5227c07 2518void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2519{
2520 int uptodate = (err == 0);
2521 struct extent_io_tree *tree;
3e2426bd 2522 int ret = 0;
87826df0
JM
2523
2524 tree = &BTRFS_I(page->mapping->host)->io_tree;
2525
2526 if (tree->ops && tree->ops->writepage_end_io_hook) {
2527 ret = tree->ops->writepage_end_io_hook(page, start,
2528 end, NULL, uptodate);
2529 if (ret)
2530 uptodate = 0;
2531 }
2532
87826df0 2533 if (!uptodate) {
87826df0
JM
2534 ClearPageUptodate(page);
2535 SetPageError(page);
5dca6eea
LB
2536 ret = ret < 0 ? ret : -EIO;
2537 mapping_set_error(page->mapping, ret);
87826df0 2538 }
87826df0
JM
2539}
2540
d1310b2e
CM
2541/*
2542 * after a writepage IO is done, we need to:
2543 * clear the uptodate bits on error
2544 * clear the writeback bits in the extent tree for this IO
2545 * end_page_writeback if the page has no more pending IO
2546 *
2547 * Scheduling is not allowed, so the extent state tree is expected
2548 * to have one and only one object corresponding to this IO.
2549 */
4246a0b6 2550static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2551{
2c30c71b 2552 struct bio_vec *bvec;
d1310b2e
CM
2553 u64 start;
2554 u64 end;
2c30c71b 2555 int i;
d1310b2e 2556
2c30c71b 2557 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2558 struct page *page = bvec->bv_page;
902b22f3 2559
17a5adcc
AO
2560 /* We always issue full-page reads, but if some block
2561 * in a page fails to read, blk_update_request() will
2562 * advance bv_offset and adjust bv_len to compensate.
2563 * Print a warning for nonzero offsets, and an error
2564 * if they don't add up to a full page. */
efe120a0
FH
2565 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2566 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2567 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2568 "partial page write in btrfs with offset %u and length %u",
2569 bvec->bv_offset, bvec->bv_len);
2570 else
2571 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2572 "incomplete page write in btrfs with offset %u and "
2573 "length %u",
2574 bvec->bv_offset, bvec->bv_len);
2575 }
d1310b2e 2576
17a5adcc
AO
2577 start = page_offset(page);
2578 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2579
b5227c07 2580 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2581 end_page_writeback(page);
2c30c71b 2582 }
2b1f55b0 2583
d1310b2e 2584 bio_put(bio);
d1310b2e
CM
2585}
2586
883d0de4
MX
2587static void
2588endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2589 int uptodate)
2590{
2591 struct extent_state *cached = NULL;
2592 u64 end = start + len - 1;
2593
2594 if (uptodate && tree->track_uptodate)
2595 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2596 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2597}
2598
d1310b2e
CM
2599/*
2600 * after a readpage IO is done, we need to:
2601 * clear the uptodate bits on error
2602 * set the uptodate bits if things worked
2603 * set the page up to date if all extents in the tree are uptodate
2604 * clear the lock bit in the extent tree
2605 * unlock the page if there are no other extents locked for it
2606 *
2607 * Scheduling is not allowed, so the extent state tree is expected
2608 * to have one and only one object corresponding to this IO.
2609 */
4246a0b6 2610static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2611{
2c30c71b 2612 struct bio_vec *bvec;
4246a0b6 2613 int uptodate = !bio->bi_error;
facc8a22 2614 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2615 struct extent_io_tree *tree;
facc8a22 2616 u64 offset = 0;
d1310b2e
CM
2617 u64 start;
2618 u64 end;
facc8a22 2619 u64 len;
883d0de4
MX
2620 u64 extent_start = 0;
2621 u64 extent_len = 0;
5cf1ab56 2622 int mirror;
d1310b2e 2623 int ret;
2c30c71b 2624 int i;
d1310b2e 2625
2c30c71b 2626 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2627 struct page *page = bvec->bv_page;
a71754fc 2628 struct inode *inode = page->mapping->host;
507903b8 2629
be3940c0 2630 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2631 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2632 bio->bi_error, io_bio->mirror_num);
a71754fc 2633 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2634
17a5adcc
AO
2635 /* We always issue full-page reads, but if some block
2636 * in a page fails to read, blk_update_request() will
2637 * advance bv_offset and adjust bv_len to compensate.
2638 * Print a warning for nonzero offsets, and an error
2639 * if they don't add up to a full page. */
efe120a0
FH
2640 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2641 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2642 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2643 "partial page read in btrfs with offset %u and length %u",
2644 bvec->bv_offset, bvec->bv_len);
2645 else
2646 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2647 "incomplete page read in btrfs with offset %u and "
2648 "length %u",
2649 bvec->bv_offset, bvec->bv_len);
2650 }
d1310b2e 2651
17a5adcc
AO
2652 start = page_offset(page);
2653 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2654 len = bvec->bv_len;
d1310b2e 2655
9be3395b 2656 mirror = io_bio->mirror_num;
f2a09da9
MX
2657 if (likely(uptodate && tree->ops &&
2658 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2659 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2660 page, start, end,
2661 mirror);
5ee0844d 2662 if (ret)
d1310b2e 2663 uptodate = 0;
5ee0844d 2664 else
1203b681 2665 clean_io_failure(inode, start, page, 0);
d1310b2e 2666 }
ea466794 2667
f2a09da9
MX
2668 if (likely(uptodate))
2669 goto readpage_ok;
2670
2671 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2672 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2673 if (!ret && !bio->bi_error)
ea466794 2674 uptodate = 1;
f2a09da9 2675 } else {
f4a8e656
JS
2676 /*
2677 * The generic bio_readpage_error handles errors the
2678 * following way: If possible, new read requests are
2679 * created and submitted and will end up in
2680 * end_bio_extent_readpage as well (if we're lucky, not
2681 * in the !uptodate case). In that case it returns 0 and
2682 * we just go on with the next page in our bio. If it
2683 * can't handle the error it will return -EIO and we
2684 * remain responsible for that page.
2685 */
facc8a22
MX
2686 ret = bio_readpage_error(bio, offset, page, start, end,
2687 mirror);
7e38326f 2688 if (ret == 0) {
4246a0b6 2689 uptodate = !bio->bi_error;
38c1c2e4 2690 offset += len;
7e38326f
CM
2691 continue;
2692 }
2693 }
f2a09da9 2694readpage_ok:
883d0de4 2695 if (likely(uptodate)) {
a71754fc
JB
2696 loff_t i_size = i_size_read(inode);
2697 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2698 unsigned off;
a71754fc
JB
2699
2700 /* Zero out the end if this page straddles i_size */
a583c026
LB
2701 off = i_size & (PAGE_CACHE_SIZE-1);
2702 if (page->index == end_index && off)
2703 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2704 SetPageUptodate(page);
70dec807 2705 } else {
17a5adcc
AO
2706 ClearPageUptodate(page);
2707 SetPageError(page);
70dec807 2708 }
17a5adcc 2709 unlock_page(page);
facc8a22 2710 offset += len;
883d0de4
MX
2711
2712 if (unlikely(!uptodate)) {
2713 if (extent_len) {
2714 endio_readpage_release_extent(tree,
2715 extent_start,
2716 extent_len, 1);
2717 extent_start = 0;
2718 extent_len = 0;
2719 }
2720 endio_readpage_release_extent(tree, start,
2721 end - start + 1, 0);
2722 } else if (!extent_len) {
2723 extent_start = start;
2724 extent_len = end + 1 - start;
2725 } else if (extent_start + extent_len == start) {
2726 extent_len += end + 1 - start;
2727 } else {
2728 endio_readpage_release_extent(tree, extent_start,
2729 extent_len, uptodate);
2730 extent_start = start;
2731 extent_len = end + 1 - start;
2732 }
2c30c71b 2733 }
d1310b2e 2734
883d0de4
MX
2735 if (extent_len)
2736 endio_readpage_release_extent(tree, extent_start, extent_len,
2737 uptodate);
facc8a22 2738 if (io_bio->end_io)
4246a0b6 2739 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2740 bio_put(bio);
d1310b2e
CM
2741}
2742
9be3395b
CM
2743/*
2744 * this allocates from the btrfs_bioset. We're returning a bio right now
2745 * but you can call btrfs_io_bio for the appropriate container_of magic
2746 */
88f794ed
MX
2747struct bio *
2748btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2749 gfp_t gfp_flags)
d1310b2e 2750{
facc8a22 2751 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2752 struct bio *bio;
2753
9be3395b 2754 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2755
2756 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2757 while (!bio && (nr_vecs /= 2)) {
2758 bio = bio_alloc_bioset(gfp_flags,
2759 nr_vecs, btrfs_bioset);
2760 }
d1310b2e
CM
2761 }
2762
2763 if (bio) {
2764 bio->bi_bdev = bdev;
4f024f37 2765 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2766 btrfs_bio = btrfs_io_bio(bio);
2767 btrfs_bio->csum = NULL;
2768 btrfs_bio->csum_allocated = NULL;
2769 btrfs_bio->end_io = NULL;
d1310b2e
CM
2770 }
2771 return bio;
2772}
2773
9be3395b
CM
2774struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2775{
23ea8e5a
MX
2776 struct btrfs_io_bio *btrfs_bio;
2777 struct bio *new;
9be3395b 2778
23ea8e5a
MX
2779 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2780 if (new) {
2781 btrfs_bio = btrfs_io_bio(new);
2782 btrfs_bio->csum = NULL;
2783 btrfs_bio->csum_allocated = NULL;
2784 btrfs_bio->end_io = NULL;
3a9508b0
CM
2785
2786#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2787 /* FIXME, put this into bio_clone_bioset */
2788 if (bio->bi_css)
2789 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2790#endif
23ea8e5a
MX
2791 }
2792 return new;
2793}
9be3395b
CM
2794
2795/* this also allocates from the btrfs_bioset */
2796struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2797{
facc8a22
MX
2798 struct btrfs_io_bio *btrfs_bio;
2799 struct bio *bio;
2800
2801 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2802 if (bio) {
2803 btrfs_bio = btrfs_io_bio(bio);
2804 btrfs_bio->csum = NULL;
2805 btrfs_bio->csum_allocated = NULL;
2806 btrfs_bio->end_io = NULL;
2807 }
2808 return bio;
9be3395b
CM
2809}
2810
2811
355808c2
JM
2812static int __must_check submit_one_bio(int rw, struct bio *bio,
2813 int mirror_num, unsigned long bio_flags)
d1310b2e 2814{
d1310b2e 2815 int ret = 0;
70dec807
CM
2816 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2817 struct page *page = bvec->bv_page;
2818 struct extent_io_tree *tree = bio->bi_private;
70dec807 2819 u64 start;
70dec807 2820
4eee4fa4 2821 start = page_offset(page) + bvec->bv_offset;
70dec807 2822
902b22f3 2823 bio->bi_private = NULL;
d1310b2e
CM
2824
2825 bio_get(bio);
2826
065631f6 2827 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2828 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2829 mirror_num, bio_flags, start);
0b86a832 2830 else
21adbd5c 2831 btrfsic_submit_bio(rw, bio);
4a54c8c1 2832
d1310b2e
CM
2833 bio_put(bio);
2834 return ret;
2835}
2836
64a16701 2837static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2838 unsigned long offset, size_t size, struct bio *bio,
2839 unsigned long bio_flags)
2840{
2841 int ret = 0;
2842 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2843 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2844 bio_flags);
2845 BUG_ON(ret < 0);
2846 return ret;
2847
2848}
2849
d1310b2e 2850static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2851 struct writeback_control *wbc,
d1310b2e
CM
2852 struct page *page, sector_t sector,
2853 size_t size, unsigned long offset,
2854 struct block_device *bdev,
2855 struct bio **bio_ret,
2856 unsigned long max_pages,
f188591e 2857 bio_end_io_t end_io_func,
c8b97818
CM
2858 int mirror_num,
2859 unsigned long prev_bio_flags,
005efedf
FM
2860 unsigned long bio_flags,
2861 bool force_bio_submit)
d1310b2e
CM
2862{
2863 int ret = 0;
2864 struct bio *bio;
c8b97818 2865 int contig = 0;
c8b97818 2866 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2867 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2868
2869 if (bio_ret && *bio_ret) {
2870 bio = *bio_ret;
c8b97818 2871 if (old_compressed)
4f024f37 2872 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2873 else
f73a1c7d 2874 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2875
2876 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2877 force_bio_submit ||
64a16701 2878 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2879 bio_add_page(bio, page, page_size, offset) < page_size) {
2880 ret = submit_one_bio(rw, bio, mirror_num,
2881 prev_bio_flags);
289454ad
NA
2882 if (ret < 0) {
2883 *bio_ret = NULL;
79787eaa 2884 return ret;
289454ad 2885 }
d1310b2e
CM
2886 bio = NULL;
2887 } else {
da2f0f74
CM
2888 if (wbc)
2889 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2890 return 0;
2891 }
2892 }
c8b97818 2893
b54ffb73
KO
2894 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2895 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2896 if (!bio)
2897 return -ENOMEM;
70dec807 2898
c8b97818 2899 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2900 bio->bi_end_io = end_io_func;
2901 bio->bi_private = tree;
da2f0f74
CM
2902 if (wbc) {
2903 wbc_init_bio(wbc, bio);
2904 wbc_account_io(wbc, page, page_size);
2905 }
70dec807 2906
d397712b 2907 if (bio_ret)
d1310b2e 2908 *bio_ret = bio;
d397712b 2909 else
c8b97818 2910 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2911
2912 return ret;
2913}
2914
48a3b636
ES
2915static void attach_extent_buffer_page(struct extent_buffer *eb,
2916 struct page *page)
d1310b2e
CM
2917{
2918 if (!PagePrivate(page)) {
2919 SetPagePrivate(page);
d1310b2e 2920 page_cache_get(page);
4f2de97a
JB
2921 set_page_private(page, (unsigned long)eb);
2922 } else {
2923 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2924 }
2925}
2926
4f2de97a 2927void set_page_extent_mapped(struct page *page)
d1310b2e 2928{
4f2de97a
JB
2929 if (!PagePrivate(page)) {
2930 SetPagePrivate(page);
2931 page_cache_get(page);
2932 set_page_private(page, EXTENT_PAGE_PRIVATE);
2933 }
d1310b2e
CM
2934}
2935
125bac01
MX
2936static struct extent_map *
2937__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2938 u64 start, u64 len, get_extent_t *get_extent,
2939 struct extent_map **em_cached)
2940{
2941 struct extent_map *em;
2942
2943 if (em_cached && *em_cached) {
2944 em = *em_cached;
cbc0e928 2945 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2946 start < extent_map_end(em)) {
2947 atomic_inc(&em->refs);
2948 return em;
2949 }
2950
2951 free_extent_map(em);
2952 *em_cached = NULL;
2953 }
2954
2955 em = get_extent(inode, page, pg_offset, start, len, 0);
2956 if (em_cached && !IS_ERR_OR_NULL(em)) {
2957 BUG_ON(*em_cached);
2958 atomic_inc(&em->refs);
2959 *em_cached = em;
2960 }
2961 return em;
2962}
d1310b2e
CM
2963/*
2964 * basic readpage implementation. Locked extent state structs are inserted
2965 * into the tree that are removed when the IO is done (by the end_io
2966 * handlers)
79787eaa 2967 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2968 */
9974090b
MX
2969static int __do_readpage(struct extent_io_tree *tree,
2970 struct page *page,
2971 get_extent_t *get_extent,
125bac01 2972 struct extent_map **em_cached,
9974090b 2973 struct bio **bio, int mirror_num,
005efedf
FM
2974 unsigned long *bio_flags, int rw,
2975 u64 *prev_em_start)
d1310b2e
CM
2976{
2977 struct inode *inode = page->mapping->host;
4eee4fa4 2978 u64 start = page_offset(page);
d1310b2e
CM
2979 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2980 u64 end;
2981 u64 cur = start;
2982 u64 extent_offset;
2983 u64 last_byte = i_size_read(inode);
2984 u64 block_start;
2985 u64 cur_end;
2986 sector_t sector;
2987 struct extent_map *em;
2988 struct block_device *bdev;
2989 int ret;
2990 int nr = 0;
4b384318 2991 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2992 size_t pg_offset = 0;
d1310b2e 2993 size_t iosize;
c8b97818 2994 size_t disk_io_size;
d1310b2e 2995 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2996 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2997
2998 set_page_extent_mapped(page);
2999
9974090b 3000 end = page_end;
90a887c9
DM
3001 if (!PageUptodate(page)) {
3002 if (cleancache_get_page(page) == 0) {
3003 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3004 unlock_extent(tree, start, end);
90a887c9
DM
3005 goto out;
3006 }
3007 }
3008
c8b97818
CM
3009 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3010 char *userpage;
3011 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3012
3013 if (zero_offset) {
3014 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 3015 userpage = kmap_atomic(page);
c8b97818
CM
3016 memset(userpage + zero_offset, 0, iosize);
3017 flush_dcache_page(page);
7ac687d9 3018 kunmap_atomic(userpage);
c8b97818
CM
3019 }
3020 }
d1310b2e 3021 while (cur <= end) {
c8f2f24b 3022 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
005efedf 3023 bool force_bio_submit = false;
c8f2f24b 3024
d1310b2e
CM
3025 if (cur >= last_byte) {
3026 char *userpage;
507903b8
AJ
3027 struct extent_state *cached = NULL;
3028
306e16ce 3029 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 3030 userpage = kmap_atomic(page);
306e16ce 3031 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3032 flush_dcache_page(page);
7ac687d9 3033 kunmap_atomic(userpage);
d1310b2e 3034 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3035 &cached, GFP_NOFS);
4b384318
MF
3036 if (!parent_locked)
3037 unlock_extent_cached(tree, cur,
3038 cur + iosize - 1,
3039 &cached, GFP_NOFS);
d1310b2e
CM
3040 break;
3041 }
125bac01
MX
3042 em = __get_extent_map(inode, page, pg_offset, cur,
3043 end - cur + 1, get_extent, em_cached);
c704005d 3044 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3045 SetPageError(page);
4b384318
MF
3046 if (!parent_locked)
3047 unlock_extent(tree, cur, end);
d1310b2e
CM
3048 break;
3049 }
d1310b2e
CM
3050 extent_offset = cur - em->start;
3051 BUG_ON(extent_map_end(em) <= cur);
3052 BUG_ON(end < cur);
3053
261507a0 3054 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3055 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3056 extent_set_compress_type(&this_bio_flag,
3057 em->compress_type);
3058 }
c8b97818 3059
d1310b2e
CM
3060 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3061 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3062 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3063 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3064 disk_io_size = em->block_len;
3065 sector = em->block_start >> 9;
3066 } else {
3067 sector = (em->block_start + extent_offset) >> 9;
3068 disk_io_size = iosize;
3069 }
d1310b2e
CM
3070 bdev = em->bdev;
3071 block_start = em->block_start;
d899e052
YZ
3072 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3073 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3074
3075 /*
3076 * If we have a file range that points to a compressed extent
3077 * and it's followed by a consecutive file range that points to
3078 * to the same compressed extent (possibly with a different
3079 * offset and/or length, so it either points to the whole extent
3080 * or only part of it), we must make sure we do not submit a
3081 * single bio to populate the pages for the 2 ranges because
3082 * this makes the compressed extent read zero out the pages
3083 * belonging to the 2nd range. Imagine the following scenario:
3084 *
3085 * File layout
3086 * [0 - 8K] [8K - 24K]
3087 * | |
3088 * | |
3089 * points to extent X, points to extent X,
3090 * offset 4K, length of 8K offset 0, length 16K
3091 *
3092 * [extent X, compressed length = 4K uncompressed length = 16K]
3093 *
3094 * If the bio to read the compressed extent covers both ranges,
3095 * it will decompress extent X into the pages belonging to the
3096 * first range and then it will stop, zeroing out the remaining
3097 * pages that belong to the other range that points to extent X.
3098 * So here we make sure we submit 2 bios, one for the first
3099 * range and another one for the third range. Both will target
3100 * the same physical extent from disk, but we can't currently
3101 * make the compressed bio endio callback populate the pages
3102 * for both ranges because each compressed bio is tightly
3103 * coupled with a single extent map, and each range can have
3104 * an extent map with a different offset value relative to the
3105 * uncompressed data of our extent and different lengths. This
3106 * is a corner case so we prioritize correctness over
3107 * non-optimal behavior (submitting 2 bios for the same extent).
3108 */
3109 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3110 prev_em_start && *prev_em_start != (u64)-1 &&
3111 *prev_em_start != em->orig_start)
3112 force_bio_submit = true;
3113
3114 if (prev_em_start)
3115 *prev_em_start = em->orig_start;
3116
d1310b2e
CM
3117 free_extent_map(em);
3118 em = NULL;
3119
3120 /* we've found a hole, just zero and go on */
3121 if (block_start == EXTENT_MAP_HOLE) {
3122 char *userpage;
507903b8
AJ
3123 struct extent_state *cached = NULL;
3124
7ac687d9 3125 userpage = kmap_atomic(page);
306e16ce 3126 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3127 flush_dcache_page(page);
7ac687d9 3128 kunmap_atomic(userpage);
d1310b2e
CM
3129
3130 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3131 &cached, GFP_NOFS);
5e6ecb36
FM
3132 if (parent_locked)
3133 free_extent_state(cached);
3134 else
3135 unlock_extent_cached(tree, cur,
3136 cur + iosize - 1,
3137 &cached, GFP_NOFS);
d1310b2e 3138 cur = cur + iosize;
306e16ce 3139 pg_offset += iosize;
d1310b2e
CM
3140 continue;
3141 }
3142 /* the get_extent function already copied into the page */
9655d298
CM
3143 if (test_range_bit(tree, cur, cur_end,
3144 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3145 check_page_uptodate(tree, page);
4b384318
MF
3146 if (!parent_locked)
3147 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3148 cur = cur + iosize;
306e16ce 3149 pg_offset += iosize;
d1310b2e
CM
3150 continue;
3151 }
70dec807
CM
3152 /* we have an inline extent but it didn't get marked up
3153 * to date. Error out
3154 */
3155 if (block_start == EXTENT_MAP_INLINE) {
3156 SetPageError(page);
4b384318
MF
3157 if (!parent_locked)
3158 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3159 cur = cur + iosize;
306e16ce 3160 pg_offset += iosize;
70dec807
CM
3161 continue;
3162 }
d1310b2e 3163
c8f2f24b 3164 pnr -= page->index;
da2f0f74 3165 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3166 sector, disk_io_size, pg_offset,
89642229 3167 bdev, bio, pnr,
c8b97818
CM
3168 end_bio_extent_readpage, mirror_num,
3169 *bio_flags,
005efedf
FM
3170 this_bio_flag,
3171 force_bio_submit);
c8f2f24b
JB
3172 if (!ret) {
3173 nr++;
3174 *bio_flags = this_bio_flag;
3175 } else {
d1310b2e 3176 SetPageError(page);
4b384318
MF
3177 if (!parent_locked)
3178 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3179 }
d1310b2e 3180 cur = cur + iosize;
306e16ce 3181 pg_offset += iosize;
d1310b2e 3182 }
90a887c9 3183out:
d1310b2e
CM
3184 if (!nr) {
3185 if (!PageError(page))
3186 SetPageUptodate(page);
3187 unlock_page(page);
3188 }
3189 return 0;
3190}
3191
9974090b
MX
3192static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3193 struct page *pages[], int nr_pages,
3194 u64 start, u64 end,
3195 get_extent_t *get_extent,
125bac01 3196 struct extent_map **em_cached,
9974090b 3197 struct bio **bio, int mirror_num,
808f80b4
FM
3198 unsigned long *bio_flags, int rw,
3199 u64 *prev_em_start)
9974090b
MX
3200{
3201 struct inode *inode;
3202 struct btrfs_ordered_extent *ordered;
3203 int index;
3204
3205 inode = pages[0]->mapping->host;
3206 while (1) {
3207 lock_extent(tree, start, end);
3208 ordered = btrfs_lookup_ordered_range(inode, start,
3209 end - start + 1);
3210 if (!ordered)
3211 break;
3212 unlock_extent(tree, start, end);
3213 btrfs_start_ordered_extent(inode, ordered, 1);
3214 btrfs_put_ordered_extent(ordered);
3215 }
3216
3217 for (index = 0; index < nr_pages; index++) {
125bac01 3218 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3219 mirror_num, bio_flags, rw, prev_em_start);
9974090b
MX
3220 page_cache_release(pages[index]);
3221 }
3222}
3223
3224static void __extent_readpages(struct extent_io_tree *tree,
3225 struct page *pages[],
3226 int nr_pages, get_extent_t *get_extent,
125bac01 3227 struct extent_map **em_cached,
9974090b 3228 struct bio **bio, int mirror_num,
808f80b4
FM
3229 unsigned long *bio_flags, int rw,
3230 u64 *prev_em_start)
9974090b 3231{
35a3621b 3232 u64 start = 0;
9974090b
MX
3233 u64 end = 0;
3234 u64 page_start;
3235 int index;
35a3621b 3236 int first_index = 0;
9974090b
MX
3237
3238 for (index = 0; index < nr_pages; index++) {
3239 page_start = page_offset(pages[index]);
3240 if (!end) {
3241 start = page_start;
3242 end = start + PAGE_CACHE_SIZE - 1;
3243 first_index = index;
3244 } else if (end + 1 == page_start) {
3245 end += PAGE_CACHE_SIZE;
3246 } else {
3247 __do_contiguous_readpages(tree, &pages[first_index],
3248 index - first_index, start,
125bac01
MX
3249 end, get_extent, em_cached,
3250 bio, mirror_num, bio_flags,
808f80b4 3251 rw, prev_em_start);
9974090b
MX
3252 start = page_start;
3253 end = start + PAGE_CACHE_SIZE - 1;
3254 first_index = index;
3255 }
3256 }
3257
3258 if (end)
3259 __do_contiguous_readpages(tree, &pages[first_index],
3260 index - first_index, start,
125bac01 3261 end, get_extent, em_cached, bio,
808f80b4
FM
3262 mirror_num, bio_flags, rw,
3263 prev_em_start);
9974090b
MX
3264}
3265
3266static int __extent_read_full_page(struct extent_io_tree *tree,
3267 struct page *page,
3268 get_extent_t *get_extent,
3269 struct bio **bio, int mirror_num,
3270 unsigned long *bio_flags, int rw)
3271{
3272 struct inode *inode = page->mapping->host;
3273 struct btrfs_ordered_extent *ordered;
3274 u64 start = page_offset(page);
3275 u64 end = start + PAGE_CACHE_SIZE - 1;
3276 int ret;
3277
3278 while (1) {
3279 lock_extent(tree, start, end);
3280 ordered = btrfs_lookup_ordered_extent(inode, start);
3281 if (!ordered)
3282 break;
3283 unlock_extent(tree, start, end);
3284 btrfs_start_ordered_extent(inode, ordered, 1);
3285 btrfs_put_ordered_extent(ordered);
3286 }
3287
125bac01 3288 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3289 bio_flags, rw, NULL);
9974090b
MX
3290 return ret;
3291}
3292
d1310b2e 3293int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3294 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3295{
3296 struct bio *bio = NULL;
c8b97818 3297 unsigned long bio_flags = 0;
d1310b2e
CM
3298 int ret;
3299
8ddc7d9c 3300 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3301 &bio_flags, READ);
d1310b2e 3302 if (bio)
8ddc7d9c 3303 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3304 return ret;
3305}
d1310b2e 3306
4b384318
MF
3307int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3308 get_extent_t *get_extent, int mirror_num)
3309{
3310 struct bio *bio = NULL;
3311 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3312 int ret;
3313
3314 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
005efedf 3315 &bio_flags, READ, NULL);
4b384318
MF
3316 if (bio)
3317 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3318 return ret;
3319}
3320
11c8349b
CM
3321static noinline void update_nr_written(struct page *page,
3322 struct writeback_control *wbc,
3323 unsigned long nr_written)
3324{
3325 wbc->nr_to_write -= nr_written;
3326 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3327 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3328 page->mapping->writeback_index = page->index + nr_written;
3329}
3330
d1310b2e 3331/*
40f76580
CM
3332 * helper for __extent_writepage, doing all of the delayed allocation setup.
3333 *
3334 * This returns 1 if our fill_delalloc function did all the work required
3335 * to write the page (copy into inline extent). In this case the IO has
3336 * been started and the page is already unlocked.
3337 *
3338 * This returns 0 if all went well (page still locked)
3339 * This returns < 0 if there were errors (page still locked)
d1310b2e 3340 */
40f76580
CM
3341static noinline_for_stack int writepage_delalloc(struct inode *inode,
3342 struct page *page, struct writeback_control *wbc,
3343 struct extent_page_data *epd,
3344 u64 delalloc_start,
3345 unsigned long *nr_written)
3346{
3347 struct extent_io_tree *tree = epd->tree;
3348 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3349 u64 nr_delalloc;
3350 u64 delalloc_to_write = 0;
3351 u64 delalloc_end = 0;
3352 int ret;
3353 int page_started = 0;
3354
3355 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3356 return 0;
3357
3358 while (delalloc_end < page_end) {
3359 nr_delalloc = find_lock_delalloc_range(inode, tree,
3360 page,
3361 &delalloc_start,
3362 &delalloc_end,
dcab6a3b 3363 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3364 if (nr_delalloc == 0) {
3365 delalloc_start = delalloc_end + 1;
3366 continue;
3367 }
3368 ret = tree->ops->fill_delalloc(inode, page,
3369 delalloc_start,
3370 delalloc_end,
3371 &page_started,
3372 nr_written);
3373 /* File system has been set read-only */
3374 if (ret) {
3375 SetPageError(page);
3376 /* fill_delalloc should be return < 0 for error
3377 * but just in case, we use > 0 here meaning the
3378 * IO is started, so we don't want to return > 0
3379 * unless things are going well.
3380 */
3381 ret = ret < 0 ? ret : -EIO;
3382 goto done;
3383 }
3384 /*
3385 * delalloc_end is already one less than the total
3386 * length, so we don't subtract one from
3387 * PAGE_CACHE_SIZE
3388 */
3389 delalloc_to_write += (delalloc_end - delalloc_start +
3390 PAGE_CACHE_SIZE) >>
3391 PAGE_CACHE_SHIFT;
3392 delalloc_start = delalloc_end + 1;
3393 }
3394 if (wbc->nr_to_write < delalloc_to_write) {
3395 int thresh = 8192;
3396
3397 if (delalloc_to_write < thresh * 2)
3398 thresh = delalloc_to_write;
3399 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3400 thresh);
3401 }
3402
3403 /* did the fill delalloc function already unlock and start
3404 * the IO?
3405 */
3406 if (page_started) {
3407 /*
3408 * we've unlocked the page, so we can't update
3409 * the mapping's writeback index, just update
3410 * nr_to_write.
3411 */
3412 wbc->nr_to_write -= *nr_written;
3413 return 1;
3414 }
3415
3416 ret = 0;
3417
3418done:
3419 return ret;
3420}
3421
3422/*
3423 * helper for __extent_writepage. This calls the writepage start hooks,
3424 * and does the loop to map the page into extents and bios.
3425 *
3426 * We return 1 if the IO is started and the page is unlocked,
3427 * 0 if all went well (page still locked)
3428 * < 0 if there were errors (page still locked)
3429 */
3430static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3431 struct page *page,
3432 struct writeback_control *wbc,
3433 struct extent_page_data *epd,
3434 loff_t i_size,
3435 unsigned long nr_written,
3436 int write_flags, int *nr_ret)
d1310b2e 3437{
d1310b2e 3438 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3439 u64 start = page_offset(page);
d1310b2e
CM
3440 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3441 u64 end;
3442 u64 cur = start;
3443 u64 extent_offset;
d1310b2e
CM
3444 u64 block_start;
3445 u64 iosize;
3446 sector_t sector;
2c64c53d 3447 struct extent_state *cached_state = NULL;
d1310b2e
CM
3448 struct extent_map *em;
3449 struct block_device *bdev;
7f3c74fb 3450 size_t pg_offset = 0;
d1310b2e 3451 size_t blocksize;
40f76580
CM
3452 int ret = 0;
3453 int nr = 0;
3454 bool compressed;
c8b97818 3455
247e743c 3456 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3457 ret = tree->ops->writepage_start_hook(page, start,
3458 page_end);
87826df0
JM
3459 if (ret) {
3460 /* Fixup worker will requeue */
3461 if (ret == -EBUSY)
3462 wbc->pages_skipped++;
3463 else
3464 redirty_page_for_writepage(wbc, page);
40f76580 3465
11c8349b 3466 update_nr_written(page, wbc, nr_written);
247e743c 3467 unlock_page(page);
40f76580 3468 ret = 1;
11c8349b 3469 goto done_unlocked;
247e743c
CM
3470 }
3471 }
3472
11c8349b
CM
3473 /*
3474 * we don't want to touch the inode after unlocking the page,
3475 * so we update the mapping writeback index now
3476 */
3477 update_nr_written(page, wbc, nr_written + 1);
771ed689 3478
d1310b2e 3479 end = page_end;
40f76580 3480 if (i_size <= start) {
e6dcd2dc
CM
3481 if (tree->ops && tree->ops->writepage_end_io_hook)
3482 tree->ops->writepage_end_io_hook(page, start,
3483 page_end, NULL, 1);
d1310b2e
CM
3484 goto done;
3485 }
3486
d1310b2e
CM
3487 blocksize = inode->i_sb->s_blocksize;
3488
3489 while (cur <= end) {
40f76580
CM
3490 u64 em_end;
3491 if (cur >= i_size) {
e6dcd2dc
CM
3492 if (tree->ops && tree->ops->writepage_end_io_hook)
3493 tree->ops->writepage_end_io_hook(page, cur,
3494 page_end, NULL, 1);
d1310b2e
CM
3495 break;
3496 }
7f3c74fb 3497 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3498 end - cur + 1, 1);
c704005d 3499 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3500 SetPageError(page);
61391d56 3501 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3502 break;
3503 }
3504
3505 extent_offset = cur - em->start;
40f76580
CM
3506 em_end = extent_map_end(em);
3507 BUG_ON(em_end <= cur);
d1310b2e 3508 BUG_ON(end < cur);
40f76580 3509 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3510 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3511 sector = (em->block_start + extent_offset) >> 9;
3512 bdev = em->bdev;
3513 block_start = em->block_start;
c8b97818 3514 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3515 free_extent_map(em);
3516 em = NULL;
3517
c8b97818
CM
3518 /*
3519 * compressed and inline extents are written through other
3520 * paths in the FS
3521 */
3522 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3523 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3524 /*
3525 * end_io notification does not happen here for
3526 * compressed extents
3527 */
3528 if (!compressed && tree->ops &&
3529 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3530 tree->ops->writepage_end_io_hook(page, cur,
3531 cur + iosize - 1,
3532 NULL, 1);
c8b97818
CM
3533 else if (compressed) {
3534 /* we don't want to end_page_writeback on
3535 * a compressed extent. this happens
3536 * elsewhere
3537 */
3538 nr++;
3539 }
3540
3541 cur += iosize;
7f3c74fb 3542 pg_offset += iosize;
d1310b2e
CM
3543 continue;
3544 }
c8b97818 3545
d1310b2e
CM
3546 if (tree->ops && tree->ops->writepage_io_hook) {
3547 ret = tree->ops->writepage_io_hook(page, cur,
3548 cur + iosize - 1);
3549 } else {
3550 ret = 0;
3551 }
1259ab75 3552 if (ret) {
d1310b2e 3553 SetPageError(page);
1259ab75 3554 } else {
40f76580 3555 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3556
d1310b2e
CM
3557 set_range_writeback(tree, cur, cur + iosize - 1);
3558 if (!PageWriteback(page)) {
efe120a0
FH
3559 btrfs_err(BTRFS_I(inode)->root->fs_info,
3560 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3561 page->index, cur, end);
d1310b2e
CM
3562 }
3563
da2f0f74 3564 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3565 sector, iosize, pg_offset,
3566 bdev, &epd->bio, max_nr,
c8b97818 3567 end_bio_extent_writepage,
005efedf 3568 0, 0, 0, false);
d1310b2e
CM
3569 if (ret)
3570 SetPageError(page);
3571 }
3572 cur = cur + iosize;
7f3c74fb 3573 pg_offset += iosize;
d1310b2e
CM
3574 nr++;
3575 }
40f76580
CM
3576done:
3577 *nr_ret = nr;
3578
3579done_unlocked:
3580
3581 /* drop our reference on any cached states */
3582 free_extent_state(cached_state);
3583 return ret;
3584}
3585
3586/*
3587 * the writepage semantics are similar to regular writepage. extent
3588 * records are inserted to lock ranges in the tree, and as dirty areas
3589 * are found, they are marked writeback. Then the lock bits are removed
3590 * and the end_io handler clears the writeback ranges
3591 */
3592static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3593 void *data)
3594{
3595 struct inode *inode = page->mapping->host;
3596 struct extent_page_data *epd = data;
3597 u64 start = page_offset(page);
3598 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3599 int ret;
3600 int nr = 0;
3601 size_t pg_offset = 0;
3602 loff_t i_size = i_size_read(inode);
3603 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3604 int write_flags;
3605 unsigned long nr_written = 0;
3606
3607 if (wbc->sync_mode == WB_SYNC_ALL)
3608 write_flags = WRITE_SYNC;
3609 else
3610 write_flags = WRITE;
3611
3612 trace___extent_writepage(page, inode, wbc);
3613
3614 WARN_ON(!PageLocked(page));
3615
3616 ClearPageError(page);
3617
3618 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3619 if (page->index > end_index ||
3620 (page->index == end_index && !pg_offset)) {
3621 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3622 unlock_page(page);
3623 return 0;
3624 }
3625
3626 if (page->index == end_index) {
3627 char *userpage;
3628
3629 userpage = kmap_atomic(page);
3630 memset(userpage + pg_offset, 0,
3631 PAGE_CACHE_SIZE - pg_offset);
3632 kunmap_atomic(userpage);
3633 flush_dcache_page(page);
3634 }
3635
3636 pg_offset = 0;
3637
3638 set_page_extent_mapped(page);
3639
3640 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3641 if (ret == 1)
3642 goto done_unlocked;
3643 if (ret)
3644 goto done;
3645
3646 ret = __extent_writepage_io(inode, page, wbc, epd,
3647 i_size, nr_written, write_flags, &nr);
3648 if (ret == 1)
3649 goto done_unlocked;
3650
d1310b2e
CM
3651done:
3652 if (nr == 0) {
3653 /* make sure the mapping tag for page dirty gets cleared */
3654 set_page_writeback(page);
3655 end_page_writeback(page);
3656 }
61391d56
FM
3657 if (PageError(page)) {
3658 ret = ret < 0 ? ret : -EIO;
3659 end_extent_writepage(page, ret, start, page_end);
3660 }
d1310b2e 3661 unlock_page(page);
40f76580 3662 return ret;
771ed689 3663
11c8349b 3664done_unlocked:
d1310b2e
CM
3665 return 0;
3666}
3667
fd8b2b61 3668void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3669{
74316201
N
3670 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3671 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3672}
3673
0e378df1
CM
3674static noinline_for_stack int
3675lock_extent_buffer_for_io(struct extent_buffer *eb,
3676 struct btrfs_fs_info *fs_info,
3677 struct extent_page_data *epd)
0b32f4bb
JB
3678{
3679 unsigned long i, num_pages;
3680 int flush = 0;
3681 int ret = 0;
3682
3683 if (!btrfs_try_tree_write_lock(eb)) {
3684 flush = 1;
3685 flush_write_bio(epd);
3686 btrfs_tree_lock(eb);
3687 }
3688
3689 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3690 btrfs_tree_unlock(eb);
3691 if (!epd->sync_io)
3692 return 0;
3693 if (!flush) {
3694 flush_write_bio(epd);
3695 flush = 1;
3696 }
a098d8e8
CM
3697 while (1) {
3698 wait_on_extent_buffer_writeback(eb);
3699 btrfs_tree_lock(eb);
3700 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3701 break;
0b32f4bb 3702 btrfs_tree_unlock(eb);
0b32f4bb
JB
3703 }
3704 }
3705
51561ffe
JB
3706 /*
3707 * We need to do this to prevent races in people who check if the eb is
3708 * under IO since we can end up having no IO bits set for a short period
3709 * of time.
3710 */
3711 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3712 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3713 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3714 spin_unlock(&eb->refs_lock);
0b32f4bb 3715 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3716 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3717 -eb->len,
3718 fs_info->dirty_metadata_batch);
0b32f4bb 3719 ret = 1;
51561ffe
JB
3720 } else {
3721 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3722 }
3723
3724 btrfs_tree_unlock(eb);
3725
3726 if (!ret)
3727 return ret;
3728
3729 num_pages = num_extent_pages(eb->start, eb->len);
3730 for (i = 0; i < num_pages; i++) {
fb85fc9a 3731 struct page *p = eb->pages[i];
0b32f4bb
JB
3732
3733 if (!trylock_page(p)) {
3734 if (!flush) {
3735 flush_write_bio(epd);
3736 flush = 1;
3737 }
3738 lock_page(p);
3739 }
3740 }
3741
3742 return ret;
3743}
3744
3745static void end_extent_buffer_writeback(struct extent_buffer *eb)
3746{
3747 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3748 smp_mb__after_atomic();
0b32f4bb
JB
3749 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3750}
3751
656f30db
FM
3752static void set_btree_ioerr(struct page *page)
3753{
3754 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3755 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3756
3757 SetPageError(page);
3758 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3759 return;
3760
3761 /*
3762 * If writeback for a btree extent that doesn't belong to a log tree
3763 * failed, increment the counter transaction->eb_write_errors.
3764 * We do this because while the transaction is running and before it's
3765 * committing (when we call filemap_fdata[write|wait]_range against
3766 * the btree inode), we might have
3767 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3768 * returns an error or an error happens during writeback, when we're
3769 * committing the transaction we wouldn't know about it, since the pages
3770 * can be no longer dirty nor marked anymore for writeback (if a
3771 * subsequent modification to the extent buffer didn't happen before the
3772 * transaction commit), which makes filemap_fdata[write|wait]_range not
3773 * able to find the pages tagged with SetPageError at transaction
3774 * commit time. So if this happens we must abort the transaction,
3775 * otherwise we commit a super block with btree roots that point to
3776 * btree nodes/leafs whose content on disk is invalid - either garbage
3777 * or the content of some node/leaf from a past generation that got
3778 * cowed or deleted and is no longer valid.
3779 *
3780 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3781 * not be enough - we need to distinguish between log tree extents vs
3782 * non-log tree extents, and the next filemap_fdatawait_range() call
3783 * will catch and clear such errors in the mapping - and that call might
3784 * be from a log sync and not from a transaction commit. Also, checking
3785 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3786 * not done and would not be reliable - the eb might have been released
3787 * from memory and reading it back again means that flag would not be
3788 * set (since it's a runtime flag, not persisted on disk).
3789 *
3790 * Using the flags below in the btree inode also makes us achieve the
3791 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3792 * writeback for all dirty pages and before filemap_fdatawait_range()
3793 * is called, the writeback for all dirty pages had already finished
3794 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3795 * filemap_fdatawait_range() would return success, as it could not know
3796 * that writeback errors happened (the pages were no longer tagged for
3797 * writeback).
3798 */
3799 switch (eb->log_index) {
3800 case -1:
3801 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3802 break;
3803 case 0:
3804 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3805 break;
3806 case 1:
3807 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3808 break;
3809 default:
3810 BUG(); /* unexpected, logic error */
3811 }
3812}
3813
4246a0b6 3814static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3815{
2c30c71b 3816 struct bio_vec *bvec;
0b32f4bb 3817 struct extent_buffer *eb;
2c30c71b 3818 int i, done;
0b32f4bb 3819
2c30c71b 3820 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3821 struct page *page = bvec->bv_page;
3822
0b32f4bb
JB
3823 eb = (struct extent_buffer *)page->private;
3824 BUG_ON(!eb);
3825 done = atomic_dec_and_test(&eb->io_pages);
3826
4246a0b6
CH
3827 if (bio->bi_error ||
3828 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3829 ClearPageUptodate(page);
656f30db 3830 set_btree_ioerr(page);
0b32f4bb
JB
3831 }
3832
3833 end_page_writeback(page);
3834
3835 if (!done)
3836 continue;
3837
3838 end_extent_buffer_writeback(eb);
2c30c71b 3839 }
0b32f4bb
JB
3840
3841 bio_put(bio);
0b32f4bb
JB
3842}
3843
0e378df1 3844static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3845 struct btrfs_fs_info *fs_info,
3846 struct writeback_control *wbc,
3847 struct extent_page_data *epd)
3848{
3849 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3850 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3851 u64 offset = eb->start;
3852 unsigned long i, num_pages;
de0022b9 3853 unsigned long bio_flags = 0;
d4c7ca86 3854 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3855 int ret = 0;
0b32f4bb 3856
656f30db 3857 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3858 num_pages = num_extent_pages(eb->start, eb->len);
3859 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3860 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3861 bio_flags = EXTENT_BIO_TREE_LOG;
3862
0b32f4bb 3863 for (i = 0; i < num_pages; i++) {
fb85fc9a 3864 struct page *p = eb->pages[i];
0b32f4bb
JB
3865
3866 clear_page_dirty_for_io(p);
3867 set_page_writeback(p);
da2f0f74 3868 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
0b32f4bb
JB
3869 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3870 -1, end_bio_extent_buffer_writepage,
005efedf 3871 0, epd->bio_flags, bio_flags, false);
de0022b9 3872 epd->bio_flags = bio_flags;
0b32f4bb 3873 if (ret) {
656f30db 3874 set_btree_ioerr(p);
55e3bd2e 3875 end_page_writeback(p);
0b32f4bb
JB
3876 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3877 end_extent_buffer_writeback(eb);
3878 ret = -EIO;
3879 break;
3880 }
3881 offset += PAGE_CACHE_SIZE;
3882 update_nr_written(p, wbc, 1);
3883 unlock_page(p);
3884 }
3885
3886 if (unlikely(ret)) {
3887 for (; i < num_pages; i++) {
bbf65cf0 3888 struct page *p = eb->pages[i];
81465028 3889 clear_page_dirty_for_io(p);
0b32f4bb
JB
3890 unlock_page(p);
3891 }
3892 }
3893
3894 return ret;
3895}
3896
3897int btree_write_cache_pages(struct address_space *mapping,
3898 struct writeback_control *wbc)
3899{
3900 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3901 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3902 struct extent_buffer *eb, *prev_eb = NULL;
3903 struct extent_page_data epd = {
3904 .bio = NULL,
3905 .tree = tree,
3906 .extent_locked = 0,
3907 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3908 .bio_flags = 0,
0b32f4bb
JB
3909 };
3910 int ret = 0;
3911 int done = 0;
3912 int nr_to_write_done = 0;
3913 struct pagevec pvec;
3914 int nr_pages;
3915 pgoff_t index;
3916 pgoff_t end; /* Inclusive */
3917 int scanned = 0;
3918 int tag;
3919
3920 pagevec_init(&pvec, 0);
3921 if (wbc->range_cyclic) {
3922 index = mapping->writeback_index; /* Start from prev offset */
3923 end = -1;
3924 } else {
3925 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3926 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3927 scanned = 1;
3928 }
3929 if (wbc->sync_mode == WB_SYNC_ALL)
3930 tag = PAGECACHE_TAG_TOWRITE;
3931 else
3932 tag = PAGECACHE_TAG_DIRTY;
3933retry:
3934 if (wbc->sync_mode == WB_SYNC_ALL)
3935 tag_pages_for_writeback(mapping, index, end);
3936 while (!done && !nr_to_write_done && (index <= end) &&
3937 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3938 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3939 unsigned i;
3940
3941 scanned = 1;
3942 for (i = 0; i < nr_pages; i++) {
3943 struct page *page = pvec.pages[i];
3944
3945 if (!PagePrivate(page))
3946 continue;
3947
3948 if (!wbc->range_cyclic && page->index > end) {
3949 done = 1;
3950 break;
3951 }
3952
b5bae261
JB
3953 spin_lock(&mapping->private_lock);
3954 if (!PagePrivate(page)) {
3955 spin_unlock(&mapping->private_lock);
3956 continue;
3957 }
3958
0b32f4bb 3959 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3960
3961 /*
3962 * Shouldn't happen and normally this would be a BUG_ON
3963 * but no sense in crashing the users box for something
3964 * we can survive anyway.
3965 */
fae7f21c 3966 if (WARN_ON(!eb)) {
b5bae261 3967 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3968 continue;
3969 }
3970
b5bae261
JB
3971 if (eb == prev_eb) {
3972 spin_unlock(&mapping->private_lock);
0b32f4bb 3973 continue;
b5bae261 3974 }
0b32f4bb 3975
b5bae261
JB
3976 ret = atomic_inc_not_zero(&eb->refs);
3977 spin_unlock(&mapping->private_lock);
3978 if (!ret)
0b32f4bb 3979 continue;
0b32f4bb
JB
3980
3981 prev_eb = eb;
3982 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3983 if (!ret) {
3984 free_extent_buffer(eb);
3985 continue;
3986 }
3987
3988 ret = write_one_eb(eb, fs_info, wbc, &epd);
3989 if (ret) {
3990 done = 1;
3991 free_extent_buffer(eb);
3992 break;
3993 }
3994 free_extent_buffer(eb);
3995
3996 /*
3997 * the filesystem may choose to bump up nr_to_write.
3998 * We have to make sure to honor the new nr_to_write
3999 * at any time
4000 */
4001 nr_to_write_done = wbc->nr_to_write <= 0;
4002 }
4003 pagevec_release(&pvec);
4004 cond_resched();
4005 }
4006 if (!scanned && !done) {
4007 /*
4008 * We hit the last page and there is more work to be done: wrap
4009 * back to the start of the file
4010 */
4011 scanned = 1;
4012 index = 0;
4013 goto retry;
4014 }
4015 flush_write_bio(&epd);
4016 return ret;
4017}
4018
d1310b2e 4019/**
4bef0848 4020 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4021 * @mapping: address space structure to write
4022 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4023 * @writepage: function called for each page
4024 * @data: data passed to writepage function
4025 *
4026 * If a page is already under I/O, write_cache_pages() skips it, even
4027 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4028 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4029 * and msync() need to guarantee that all the data which was dirty at the time
4030 * the call was made get new I/O started against them. If wbc->sync_mode is
4031 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4032 * existing IO to complete.
4033 */
b2950863 4034static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
4035 struct address_space *mapping,
4036 struct writeback_control *wbc,
d2c3f4f6
CM
4037 writepage_t writepage, void *data,
4038 void (*flush_fn)(void *))
d1310b2e 4039{
7fd1a3f7 4040 struct inode *inode = mapping->host;
d1310b2e
CM
4041 int ret = 0;
4042 int done = 0;
61391d56 4043 int err = 0;
f85d7d6c 4044 int nr_to_write_done = 0;
d1310b2e
CM
4045 struct pagevec pvec;
4046 int nr_pages;
4047 pgoff_t index;
4048 pgoff_t end; /* Inclusive */
4049 int scanned = 0;
f7aaa06b 4050 int tag;
d1310b2e 4051
7fd1a3f7
JB
4052 /*
4053 * We have to hold onto the inode so that ordered extents can do their
4054 * work when the IO finishes. The alternative to this is failing to add
4055 * an ordered extent if the igrab() fails there and that is a huge pain
4056 * to deal with, so instead just hold onto the inode throughout the
4057 * writepages operation. If it fails here we are freeing up the inode
4058 * anyway and we'd rather not waste our time writing out stuff that is
4059 * going to be truncated anyway.
4060 */
4061 if (!igrab(inode))
4062 return 0;
4063
d1310b2e
CM
4064 pagevec_init(&pvec, 0);
4065 if (wbc->range_cyclic) {
4066 index = mapping->writeback_index; /* Start from prev offset */
4067 end = -1;
4068 } else {
4069 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4070 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4071 scanned = 1;
4072 }
f7aaa06b
JB
4073 if (wbc->sync_mode == WB_SYNC_ALL)
4074 tag = PAGECACHE_TAG_TOWRITE;
4075 else
4076 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4077retry:
f7aaa06b
JB
4078 if (wbc->sync_mode == WB_SYNC_ALL)
4079 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 4080 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
4081 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4082 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
4083 unsigned i;
4084
4085 scanned = 1;
4086 for (i = 0; i < nr_pages; i++) {
4087 struct page *page = pvec.pages[i];
4088
4089 /*
4090 * At this point we hold neither mapping->tree_lock nor
4091 * lock on the page itself: the page may be truncated or
4092 * invalidated (changing page->mapping to NULL), or even
4093 * swizzled back from swapper_space to tmpfs file
4094 * mapping
4095 */
c8f2f24b
JB
4096 if (!trylock_page(page)) {
4097 flush_fn(data);
4098 lock_page(page);
01d658f2 4099 }
d1310b2e
CM
4100
4101 if (unlikely(page->mapping != mapping)) {
4102 unlock_page(page);
4103 continue;
4104 }
4105
4106 if (!wbc->range_cyclic && page->index > end) {
4107 done = 1;
4108 unlock_page(page);
4109 continue;
4110 }
4111
d2c3f4f6 4112 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4113 if (PageWriteback(page))
4114 flush_fn(data);
d1310b2e 4115 wait_on_page_writeback(page);
d2c3f4f6 4116 }
d1310b2e
CM
4117
4118 if (PageWriteback(page) ||
4119 !clear_page_dirty_for_io(page)) {
4120 unlock_page(page);
4121 continue;
4122 }
4123
4124 ret = (*writepage)(page, wbc, data);
4125
4126 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4127 unlock_page(page);
4128 ret = 0;
4129 }
61391d56
FM
4130 if (!err && ret < 0)
4131 err = ret;
f85d7d6c
CM
4132
4133 /*
4134 * the filesystem may choose to bump up nr_to_write.
4135 * We have to make sure to honor the new nr_to_write
4136 * at any time
4137 */
4138 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4139 }
4140 pagevec_release(&pvec);
4141 cond_resched();
4142 }
61391d56 4143 if (!scanned && !done && !err) {
d1310b2e
CM
4144 /*
4145 * We hit the last page and there is more work to be done: wrap
4146 * back to the start of the file
4147 */
4148 scanned = 1;
4149 index = 0;
4150 goto retry;
4151 }
7fd1a3f7 4152 btrfs_add_delayed_iput(inode);
61391d56 4153 return err;
d1310b2e 4154}
d1310b2e 4155
ffbd517d 4156static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4157{
d2c3f4f6 4158 if (epd->bio) {
355808c2
JM
4159 int rw = WRITE;
4160 int ret;
4161
ffbd517d 4162 if (epd->sync_io)
355808c2
JM
4163 rw = WRITE_SYNC;
4164
de0022b9 4165 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4166 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4167 epd->bio = NULL;
4168 }
4169}
4170
ffbd517d
CM
4171static noinline void flush_write_bio(void *data)
4172{
4173 struct extent_page_data *epd = data;
4174 flush_epd_write_bio(epd);
4175}
4176
d1310b2e
CM
4177int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4178 get_extent_t *get_extent,
4179 struct writeback_control *wbc)
4180{
4181 int ret;
d1310b2e
CM
4182 struct extent_page_data epd = {
4183 .bio = NULL,
4184 .tree = tree,
4185 .get_extent = get_extent,
771ed689 4186 .extent_locked = 0,
ffbd517d 4187 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4188 .bio_flags = 0,
d1310b2e 4189 };
d1310b2e 4190
d1310b2e
CM
4191 ret = __extent_writepage(page, wbc, &epd);
4192
ffbd517d 4193 flush_epd_write_bio(&epd);
d1310b2e
CM
4194 return ret;
4195}
d1310b2e 4196
771ed689
CM
4197int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4198 u64 start, u64 end, get_extent_t *get_extent,
4199 int mode)
4200{
4201 int ret = 0;
4202 struct address_space *mapping = inode->i_mapping;
4203 struct page *page;
4204 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4205 PAGE_CACHE_SHIFT;
4206
4207 struct extent_page_data epd = {
4208 .bio = NULL,
4209 .tree = tree,
4210 .get_extent = get_extent,
4211 .extent_locked = 1,
ffbd517d 4212 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4213 .bio_flags = 0,
771ed689
CM
4214 };
4215 struct writeback_control wbc_writepages = {
771ed689 4216 .sync_mode = mode,
771ed689
CM
4217 .nr_to_write = nr_pages * 2,
4218 .range_start = start,
4219 .range_end = end + 1,
4220 };
4221
d397712b 4222 while (start <= end) {
771ed689
CM
4223 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4224 if (clear_page_dirty_for_io(page))
4225 ret = __extent_writepage(page, &wbc_writepages, &epd);
4226 else {
4227 if (tree->ops && tree->ops->writepage_end_io_hook)
4228 tree->ops->writepage_end_io_hook(page, start,
4229 start + PAGE_CACHE_SIZE - 1,
4230 NULL, 1);
4231 unlock_page(page);
4232 }
4233 page_cache_release(page);
4234 start += PAGE_CACHE_SIZE;
4235 }
4236
ffbd517d 4237 flush_epd_write_bio(&epd);
771ed689
CM
4238 return ret;
4239}
d1310b2e
CM
4240
4241int extent_writepages(struct extent_io_tree *tree,
4242 struct address_space *mapping,
4243 get_extent_t *get_extent,
4244 struct writeback_control *wbc)
4245{
4246 int ret = 0;
4247 struct extent_page_data epd = {
4248 .bio = NULL,
4249 .tree = tree,
4250 .get_extent = get_extent,
771ed689 4251 .extent_locked = 0,
ffbd517d 4252 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4253 .bio_flags = 0,
d1310b2e
CM
4254 };
4255
4bef0848 4256 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4257 __extent_writepage, &epd,
4258 flush_write_bio);
ffbd517d 4259 flush_epd_write_bio(&epd);
d1310b2e
CM
4260 return ret;
4261}
d1310b2e
CM
4262
4263int extent_readpages(struct extent_io_tree *tree,
4264 struct address_space *mapping,
4265 struct list_head *pages, unsigned nr_pages,
4266 get_extent_t get_extent)
4267{
4268 struct bio *bio = NULL;
4269 unsigned page_idx;
c8b97818 4270 unsigned long bio_flags = 0;
67c9684f
LB
4271 struct page *pagepool[16];
4272 struct page *page;
125bac01 4273 struct extent_map *em_cached = NULL;
67c9684f 4274 int nr = 0;
808f80b4 4275 u64 prev_em_start = (u64)-1;
d1310b2e 4276
d1310b2e 4277 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4278 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4279
4280 prefetchw(&page->flags);
4281 list_del(&page->lru);
67c9684f 4282 if (add_to_page_cache_lru(page, mapping,
43e817a1 4283 page->index, GFP_NOFS)) {
67c9684f
LB
4284 page_cache_release(page);
4285 continue;
d1310b2e 4286 }
67c9684f
LB
4287
4288 pagepool[nr++] = page;
4289 if (nr < ARRAY_SIZE(pagepool))
4290 continue;
125bac01 4291 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4292 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4293 nr = 0;
d1310b2e 4294 }
9974090b 4295 if (nr)
125bac01 4296 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4297 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4298
125bac01
MX
4299 if (em_cached)
4300 free_extent_map(em_cached);
4301
d1310b2e
CM
4302 BUG_ON(!list_empty(pages));
4303 if (bio)
79787eaa 4304 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4305 return 0;
4306}
d1310b2e
CM
4307
4308/*
4309 * basic invalidatepage code, this waits on any locked or writeback
4310 * ranges corresponding to the page, and then deletes any extent state
4311 * records from the tree
4312 */
4313int extent_invalidatepage(struct extent_io_tree *tree,
4314 struct page *page, unsigned long offset)
4315{
2ac55d41 4316 struct extent_state *cached_state = NULL;
4eee4fa4 4317 u64 start = page_offset(page);
d1310b2e
CM
4318 u64 end = start + PAGE_CACHE_SIZE - 1;
4319 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4320
fda2832f 4321 start += ALIGN(offset, blocksize);
d1310b2e
CM
4322 if (start > end)
4323 return 0;
4324
d0082371 4325 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4326 wait_on_page_writeback(page);
d1310b2e 4327 clear_extent_bit(tree, start, end,
32c00aff
JB
4328 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4329 EXTENT_DO_ACCOUNTING,
2ac55d41 4330 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4331 return 0;
4332}
d1310b2e 4333
7b13b7b1
CM
4334/*
4335 * a helper for releasepage, this tests for areas of the page that
4336 * are locked or under IO and drops the related state bits if it is safe
4337 * to drop the page.
4338 */
48a3b636
ES
4339static int try_release_extent_state(struct extent_map_tree *map,
4340 struct extent_io_tree *tree,
4341 struct page *page, gfp_t mask)
7b13b7b1 4342{
4eee4fa4 4343 u64 start = page_offset(page);
7b13b7b1
CM
4344 u64 end = start + PAGE_CACHE_SIZE - 1;
4345 int ret = 1;
4346
211f90e6 4347 if (test_range_bit(tree, start, end,
8b62b72b 4348 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4349 ret = 0;
4350 else {
4351 if ((mask & GFP_NOFS) == GFP_NOFS)
4352 mask = GFP_NOFS;
11ef160f
CM
4353 /*
4354 * at this point we can safely clear everything except the
4355 * locked bit and the nodatasum bit
4356 */
e3f24cc5 4357 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4358 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4359 0, 0, NULL, mask);
e3f24cc5
CM
4360
4361 /* if clear_extent_bit failed for enomem reasons,
4362 * we can't allow the release to continue.
4363 */
4364 if (ret < 0)
4365 ret = 0;
4366 else
4367 ret = 1;
7b13b7b1
CM
4368 }
4369 return ret;
4370}
7b13b7b1 4371
d1310b2e
CM
4372/*
4373 * a helper for releasepage. As long as there are no locked extents
4374 * in the range corresponding to the page, both state records and extent
4375 * map records are removed
4376 */
4377int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4378 struct extent_io_tree *tree, struct page *page,
4379 gfp_t mask)
d1310b2e
CM
4380{
4381 struct extent_map *em;
4eee4fa4 4382 u64 start = page_offset(page);
d1310b2e 4383 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4384
d0164adc 4385 if (gfpflags_allow_blocking(mask) &&
70dec807 4386 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4387 u64 len;
70dec807 4388 while (start <= end) {
39b5637f 4389 len = end - start + 1;
890871be 4390 write_lock(&map->lock);
39b5637f 4391 em = lookup_extent_mapping(map, start, len);
285190d9 4392 if (!em) {
890871be 4393 write_unlock(&map->lock);
70dec807
CM
4394 break;
4395 }
7f3c74fb
CM
4396 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4397 em->start != start) {
890871be 4398 write_unlock(&map->lock);
70dec807
CM
4399 free_extent_map(em);
4400 break;
4401 }
4402 if (!test_range_bit(tree, em->start,
4403 extent_map_end(em) - 1,
8b62b72b 4404 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4405 0, NULL)) {
70dec807
CM
4406 remove_extent_mapping(map, em);
4407 /* once for the rb tree */
4408 free_extent_map(em);
4409 }
4410 start = extent_map_end(em);
890871be 4411 write_unlock(&map->lock);
70dec807
CM
4412
4413 /* once for us */
d1310b2e
CM
4414 free_extent_map(em);
4415 }
d1310b2e 4416 }
7b13b7b1 4417 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4418}
d1310b2e 4419
ec29ed5b
CM
4420/*
4421 * helper function for fiemap, which doesn't want to see any holes.
4422 * This maps until we find something past 'last'
4423 */
4424static struct extent_map *get_extent_skip_holes(struct inode *inode,
4425 u64 offset,
4426 u64 last,
4427 get_extent_t *get_extent)
4428{
4429 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4430 struct extent_map *em;
4431 u64 len;
4432
4433 if (offset >= last)
4434 return NULL;
4435
67871254 4436 while (1) {
ec29ed5b
CM
4437 len = last - offset;
4438 if (len == 0)
4439 break;
fda2832f 4440 len = ALIGN(len, sectorsize);
ec29ed5b 4441 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4442 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4443 return em;
4444
4445 /* if this isn't a hole return it */
4446 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4447 em->block_start != EXTENT_MAP_HOLE) {
4448 return em;
4449 }
4450
4451 /* this is a hole, advance to the next extent */
4452 offset = extent_map_end(em);
4453 free_extent_map(em);
4454 if (offset >= last)
4455 break;
4456 }
4457 return NULL;
4458}
4459
1506fcc8
YS
4460int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4461 __u64 start, __u64 len, get_extent_t *get_extent)
4462{
975f84fe 4463 int ret = 0;
1506fcc8
YS
4464 u64 off = start;
4465 u64 max = start + len;
4466 u32 flags = 0;
975f84fe
JB
4467 u32 found_type;
4468 u64 last;
ec29ed5b 4469 u64 last_for_get_extent = 0;
1506fcc8 4470 u64 disko = 0;
ec29ed5b 4471 u64 isize = i_size_read(inode);
975f84fe 4472 struct btrfs_key found_key;
1506fcc8 4473 struct extent_map *em = NULL;
2ac55d41 4474 struct extent_state *cached_state = NULL;
975f84fe 4475 struct btrfs_path *path;
dc046b10 4476 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4477 int end = 0;
ec29ed5b
CM
4478 u64 em_start = 0;
4479 u64 em_len = 0;
4480 u64 em_end = 0;
1506fcc8
YS
4481
4482 if (len == 0)
4483 return -EINVAL;
4484
975f84fe
JB
4485 path = btrfs_alloc_path();
4486 if (!path)
4487 return -ENOMEM;
4488 path->leave_spinning = 1;
4489
2c91943b
QW
4490 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4491 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4492
ec29ed5b
CM
4493 /*
4494 * lookup the last file extent. We're not using i_size here
4495 * because there might be preallocation past i_size
4496 */
dc046b10
JB
4497 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4498 0);
975f84fe
JB
4499 if (ret < 0) {
4500 btrfs_free_path(path);
4501 return ret;
4502 }
4503 WARN_ON(!ret);
4504 path->slots[0]--;
975f84fe 4505 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4506 found_type = found_key.type;
975f84fe 4507
ec29ed5b 4508 /* No extents, but there might be delalloc bits */
33345d01 4509 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4510 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4511 /* have to trust i_size as the end */
4512 last = (u64)-1;
4513 last_for_get_extent = isize;
4514 } else {
4515 /*
4516 * remember the start of the last extent. There are a
4517 * bunch of different factors that go into the length of the
4518 * extent, so its much less complex to remember where it started
4519 */
4520 last = found_key.offset;
4521 last_for_get_extent = last + 1;
975f84fe 4522 }
fe09e16c 4523 btrfs_release_path(path);
975f84fe 4524
ec29ed5b
CM
4525 /*
4526 * we might have some extents allocated but more delalloc past those
4527 * extents. so, we trust isize unless the start of the last extent is
4528 * beyond isize
4529 */
4530 if (last < isize) {
4531 last = (u64)-1;
4532 last_for_get_extent = isize;
4533 }
4534
a52f4cd2 4535 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4536 &cached_state);
ec29ed5b 4537
4d479cf0 4538 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4539 get_extent);
1506fcc8
YS
4540 if (!em)
4541 goto out;
4542 if (IS_ERR(em)) {
4543 ret = PTR_ERR(em);
4544 goto out;
4545 }
975f84fe 4546
1506fcc8 4547 while (!end) {
b76bb701 4548 u64 offset_in_extent = 0;
ea8efc74
CM
4549
4550 /* break if the extent we found is outside the range */
4551 if (em->start >= max || extent_map_end(em) < off)
4552 break;
4553
4554 /*
4555 * get_extent may return an extent that starts before our
4556 * requested range. We have to make sure the ranges
4557 * we return to fiemap always move forward and don't
4558 * overlap, so adjust the offsets here
4559 */
4560 em_start = max(em->start, off);
1506fcc8 4561
ea8efc74
CM
4562 /*
4563 * record the offset from the start of the extent
b76bb701
JB
4564 * for adjusting the disk offset below. Only do this if the
4565 * extent isn't compressed since our in ram offset may be past
4566 * what we have actually allocated on disk.
ea8efc74 4567 */
b76bb701
JB
4568 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4569 offset_in_extent = em_start - em->start;
ec29ed5b 4570 em_end = extent_map_end(em);
ea8efc74 4571 em_len = em_end - em_start;
1506fcc8
YS
4572 disko = 0;
4573 flags = 0;
4574
ea8efc74
CM
4575 /*
4576 * bump off for our next call to get_extent
4577 */
4578 off = extent_map_end(em);
4579 if (off >= max)
4580 end = 1;
4581
93dbfad7 4582 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4583 end = 1;
4584 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4585 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4586 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4587 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4588 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4589 flags |= (FIEMAP_EXTENT_DELALLOC |
4590 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4591 } else if (fieinfo->fi_extents_max) {
4592 u64 bytenr = em->block_start -
4593 (em->start - em->orig_start);
fe09e16c 4594
ea8efc74 4595 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4596
4597 /*
4598 * As btrfs supports shared space, this information
4599 * can be exported to userspace tools via
dc046b10
JB
4600 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4601 * then we're just getting a count and we can skip the
4602 * lookup stuff.
fe09e16c 4603 */
dc046b10
JB
4604 ret = btrfs_check_shared(NULL, root->fs_info,
4605 root->objectid,
4606 btrfs_ino(inode), bytenr);
4607 if (ret < 0)
fe09e16c 4608 goto out_free;
dc046b10 4609 if (ret)
fe09e16c 4610 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4611 ret = 0;
1506fcc8
YS
4612 }
4613 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4614 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4615 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4616 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4617
1506fcc8
YS
4618 free_extent_map(em);
4619 em = NULL;
ec29ed5b
CM
4620 if ((em_start >= last) || em_len == (u64)-1 ||
4621 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4622 flags |= FIEMAP_EXTENT_LAST;
4623 end = 1;
4624 }
4625
ec29ed5b
CM
4626 /* now scan forward to see if this is really the last extent. */
4627 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4628 get_extent);
4629 if (IS_ERR(em)) {
4630 ret = PTR_ERR(em);
4631 goto out;
4632 }
4633 if (!em) {
975f84fe
JB
4634 flags |= FIEMAP_EXTENT_LAST;
4635 end = 1;
4636 }
ec29ed5b
CM
4637 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4638 em_len, flags);
26e726af
CS
4639 if (ret) {
4640 if (ret == 1)
4641 ret = 0;
ec29ed5b 4642 goto out_free;
26e726af 4643 }
1506fcc8
YS
4644 }
4645out_free:
4646 free_extent_map(em);
4647out:
fe09e16c 4648 btrfs_free_path(path);
a52f4cd2 4649 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4650 &cached_state, GFP_NOFS);
1506fcc8
YS
4651 return ret;
4652}
4653
727011e0
CM
4654static void __free_extent_buffer(struct extent_buffer *eb)
4655{
6d49ba1b 4656 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4657 kmem_cache_free(extent_buffer_cache, eb);
4658}
4659
a26e8c9f 4660int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4661{
4662 return (atomic_read(&eb->io_pages) ||
4663 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4664 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4665}
4666
4667/*
4668 * Helper for releasing extent buffer page.
4669 */
a50924e3 4670static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4671{
4672 unsigned long index;
db7f3436
JB
4673 struct page *page;
4674 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4675
4676 BUG_ON(extent_buffer_under_io(eb));
4677
a50924e3
DS
4678 index = num_extent_pages(eb->start, eb->len);
4679 if (index == 0)
db7f3436
JB
4680 return;
4681
4682 do {
4683 index--;
fb85fc9a 4684 page = eb->pages[index];
5d2361db
FL
4685 if (!page)
4686 continue;
4687 if (mapped)
db7f3436 4688 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4689 /*
4690 * We do this since we'll remove the pages after we've
4691 * removed the eb from the radix tree, so we could race
4692 * and have this page now attached to the new eb. So
4693 * only clear page_private if it's still connected to
4694 * this eb.
4695 */
4696 if (PagePrivate(page) &&
4697 page->private == (unsigned long)eb) {
4698 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4699 BUG_ON(PageDirty(page));
4700 BUG_ON(PageWriteback(page));
db7f3436 4701 /*
5d2361db
FL
4702 * We need to make sure we haven't be attached
4703 * to a new eb.
db7f3436 4704 */
5d2361db
FL
4705 ClearPagePrivate(page);
4706 set_page_private(page, 0);
4707 /* One for the page private */
db7f3436
JB
4708 page_cache_release(page);
4709 }
5d2361db
FL
4710
4711 if (mapped)
4712 spin_unlock(&page->mapping->private_lock);
4713
4714 /* One for when we alloced the page */
4715 page_cache_release(page);
a50924e3 4716 } while (index != 0);
db7f3436
JB
4717}
4718
4719/*
4720 * Helper for releasing the extent buffer.
4721 */
4722static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4723{
a50924e3 4724 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4725 __free_extent_buffer(eb);
4726}
4727
f28491e0
JB
4728static struct extent_buffer *
4729__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4730 unsigned long len)
d1310b2e
CM
4731{
4732 struct extent_buffer *eb = NULL;
4733
d1b5c567 4734 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4735 eb->start = start;
4736 eb->len = len;
f28491e0 4737 eb->fs_info = fs_info;
815a51c7 4738 eb->bflags = 0;
bd681513
CM
4739 rwlock_init(&eb->lock);
4740 atomic_set(&eb->write_locks, 0);
4741 atomic_set(&eb->read_locks, 0);
4742 atomic_set(&eb->blocking_readers, 0);
4743 atomic_set(&eb->blocking_writers, 0);
4744 atomic_set(&eb->spinning_readers, 0);
4745 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4746 eb->lock_nested = 0;
bd681513
CM
4747 init_waitqueue_head(&eb->write_lock_wq);
4748 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4749
6d49ba1b
ES
4750 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4751
3083ee2e 4752 spin_lock_init(&eb->refs_lock);
d1310b2e 4753 atomic_set(&eb->refs, 1);
0b32f4bb 4754 atomic_set(&eb->io_pages, 0);
727011e0 4755
b8dae313
DS
4756 /*
4757 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4758 */
4759 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4760 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4761 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4762
4763 return eb;
4764}
4765
815a51c7
JS
4766struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4767{
4768 unsigned long i;
4769 struct page *p;
4770 struct extent_buffer *new;
4771 unsigned long num_pages = num_extent_pages(src->start, src->len);
4772
3f556f78 4773 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4774 if (new == NULL)
4775 return NULL;
4776
4777 for (i = 0; i < num_pages; i++) {
9ec72677 4778 p = alloc_page(GFP_NOFS);
db7f3436
JB
4779 if (!p) {
4780 btrfs_release_extent_buffer(new);
4781 return NULL;
4782 }
815a51c7
JS
4783 attach_extent_buffer_page(new, p);
4784 WARN_ON(PageDirty(p));
4785 SetPageUptodate(p);
4786 new->pages[i] = p;
4787 }
4788
4789 copy_extent_buffer(new, src, 0, 0, src->len);
4790 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4791 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4792
4793 return new;
4794}
4795
3f556f78
DS
4796struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4797 u64 start)
815a51c7
JS
4798{
4799 struct extent_buffer *eb;
3f556f78
DS
4800 unsigned long len;
4801 unsigned long num_pages;
815a51c7
JS
4802 unsigned long i;
4803
3f556f78
DS
4804 if (!fs_info) {
4805 /*
4806 * Called only from tests that don't always have a fs_info
4807 * available, but we know that nodesize is 4096
4808 */
4809 len = 4096;
4810 } else {
4811 len = fs_info->tree_root->nodesize;
4812 }
4813 num_pages = num_extent_pages(0, len);
4814
4815 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4816 if (!eb)
4817 return NULL;
4818
4819 for (i = 0; i < num_pages; i++) {
9ec72677 4820 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4821 if (!eb->pages[i])
4822 goto err;
4823 }
4824 set_extent_buffer_uptodate(eb);
4825 btrfs_set_header_nritems(eb, 0);
4826 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4827
4828 return eb;
4829err:
84167d19
SB
4830 for (; i > 0; i--)
4831 __free_page(eb->pages[i - 1]);
815a51c7
JS
4832 __free_extent_buffer(eb);
4833 return NULL;
4834}
4835
0b32f4bb
JB
4836static void check_buffer_tree_ref(struct extent_buffer *eb)
4837{
242e18c7 4838 int refs;
0b32f4bb
JB
4839 /* the ref bit is tricky. We have to make sure it is set
4840 * if we have the buffer dirty. Otherwise the
4841 * code to free a buffer can end up dropping a dirty
4842 * page
4843 *
4844 * Once the ref bit is set, it won't go away while the
4845 * buffer is dirty or in writeback, and it also won't
4846 * go away while we have the reference count on the
4847 * eb bumped.
4848 *
4849 * We can't just set the ref bit without bumping the
4850 * ref on the eb because free_extent_buffer might
4851 * see the ref bit and try to clear it. If this happens
4852 * free_extent_buffer might end up dropping our original
4853 * ref by mistake and freeing the page before we are able
4854 * to add one more ref.
4855 *
4856 * So bump the ref count first, then set the bit. If someone
4857 * beat us to it, drop the ref we added.
4858 */
242e18c7
CM
4859 refs = atomic_read(&eb->refs);
4860 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4861 return;
4862
594831c4
JB
4863 spin_lock(&eb->refs_lock);
4864 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4865 atomic_inc(&eb->refs);
594831c4 4866 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4867}
4868
2457aec6
MG
4869static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4870 struct page *accessed)
5df4235e
JB
4871{
4872 unsigned long num_pages, i;
4873
0b32f4bb
JB
4874 check_buffer_tree_ref(eb);
4875
5df4235e
JB
4876 num_pages = num_extent_pages(eb->start, eb->len);
4877 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4878 struct page *p = eb->pages[i];
4879
2457aec6
MG
4880 if (p != accessed)
4881 mark_page_accessed(p);
5df4235e
JB
4882 }
4883}
4884
f28491e0
JB
4885struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4886 u64 start)
452c75c3
CS
4887{
4888 struct extent_buffer *eb;
4889
4890 rcu_read_lock();
f28491e0
JB
4891 eb = radix_tree_lookup(&fs_info->buffer_radix,
4892 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4893 if (eb && atomic_inc_not_zero(&eb->refs)) {
4894 rcu_read_unlock();
062c19e9
FM
4895 /*
4896 * Lock our eb's refs_lock to avoid races with
4897 * free_extent_buffer. When we get our eb it might be flagged
4898 * with EXTENT_BUFFER_STALE and another task running
4899 * free_extent_buffer might have seen that flag set,
4900 * eb->refs == 2, that the buffer isn't under IO (dirty and
4901 * writeback flags not set) and it's still in the tree (flag
4902 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4903 * of decrementing the extent buffer's reference count twice.
4904 * So here we could race and increment the eb's reference count,
4905 * clear its stale flag, mark it as dirty and drop our reference
4906 * before the other task finishes executing free_extent_buffer,
4907 * which would later result in an attempt to free an extent
4908 * buffer that is dirty.
4909 */
4910 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4911 spin_lock(&eb->refs_lock);
4912 spin_unlock(&eb->refs_lock);
4913 }
2457aec6 4914 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4915 return eb;
4916 }
4917 rcu_read_unlock();
4918
4919 return NULL;
4920}
4921
faa2dbf0
JB
4922#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4923struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4924 u64 start)
faa2dbf0
JB
4925{
4926 struct extent_buffer *eb, *exists = NULL;
4927 int ret;
4928
4929 eb = find_extent_buffer(fs_info, start);
4930 if (eb)
4931 return eb;
3f556f78 4932 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4933 if (!eb)
4934 return NULL;
4935 eb->fs_info = fs_info;
4936again:
4937 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4938 if (ret)
4939 goto free_eb;
4940 spin_lock(&fs_info->buffer_lock);
4941 ret = radix_tree_insert(&fs_info->buffer_radix,
4942 start >> PAGE_CACHE_SHIFT, eb);
4943 spin_unlock(&fs_info->buffer_lock);
4944 radix_tree_preload_end();
4945 if (ret == -EEXIST) {
4946 exists = find_extent_buffer(fs_info, start);
4947 if (exists)
4948 goto free_eb;
4949 else
4950 goto again;
4951 }
4952 check_buffer_tree_ref(eb);
4953 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4954
4955 /*
4956 * We will free dummy extent buffer's if they come into
4957 * free_extent_buffer with a ref count of 2, but if we are using this we
4958 * want the buffers to stay in memory until we're done with them, so
4959 * bump the ref count again.
4960 */
4961 atomic_inc(&eb->refs);
4962 return eb;
4963free_eb:
4964 btrfs_release_extent_buffer(eb);
4965 return exists;
4966}
4967#endif
4968
f28491e0 4969struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4970 u64 start)
d1310b2e 4971{
ce3e6984 4972 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4973 unsigned long num_pages = num_extent_pages(start, len);
4974 unsigned long i;
4975 unsigned long index = start >> PAGE_CACHE_SHIFT;
4976 struct extent_buffer *eb;
6af118ce 4977 struct extent_buffer *exists = NULL;
d1310b2e 4978 struct page *p;
f28491e0 4979 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4980 int uptodate = 1;
19fe0a8b 4981 int ret;
d1310b2e 4982
f28491e0 4983 eb = find_extent_buffer(fs_info, start);
452c75c3 4984 if (eb)
6af118ce 4985 return eb;
6af118ce 4986
23d79d81 4987 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4988 if (!eb)
d1310b2e
CM
4989 return NULL;
4990
727011e0 4991 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4992 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4993 if (!p)
6af118ce 4994 goto free_eb;
4f2de97a
JB
4995
4996 spin_lock(&mapping->private_lock);
4997 if (PagePrivate(p)) {
4998 /*
4999 * We could have already allocated an eb for this page
5000 * and attached one so lets see if we can get a ref on
5001 * the existing eb, and if we can we know it's good and
5002 * we can just return that one, else we know we can just
5003 * overwrite page->private.
5004 */
5005 exists = (struct extent_buffer *)p->private;
5006 if (atomic_inc_not_zero(&exists->refs)) {
5007 spin_unlock(&mapping->private_lock);
5008 unlock_page(p);
17de39ac 5009 page_cache_release(p);
2457aec6 5010 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5011 goto free_eb;
5012 }
5ca64f45 5013 exists = NULL;
4f2de97a 5014
0b32f4bb 5015 /*
4f2de97a
JB
5016 * Do this so attach doesn't complain and we need to
5017 * drop the ref the old guy had.
5018 */
5019 ClearPagePrivate(p);
0b32f4bb 5020 WARN_ON(PageDirty(p));
4f2de97a 5021 page_cache_release(p);
d1310b2e 5022 }
4f2de97a
JB
5023 attach_extent_buffer_page(eb, p);
5024 spin_unlock(&mapping->private_lock);
0b32f4bb 5025 WARN_ON(PageDirty(p));
727011e0 5026 eb->pages[i] = p;
d1310b2e
CM
5027 if (!PageUptodate(p))
5028 uptodate = 0;
eb14ab8e
CM
5029
5030 /*
5031 * see below about how we avoid a nasty race with release page
5032 * and why we unlock later
5033 */
d1310b2e
CM
5034 }
5035 if (uptodate)
b4ce94de 5036 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5037again:
19fe0a8b
MX
5038 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5039 if (ret)
5040 goto free_eb;
5041
f28491e0
JB
5042 spin_lock(&fs_info->buffer_lock);
5043 ret = radix_tree_insert(&fs_info->buffer_radix,
5044 start >> PAGE_CACHE_SHIFT, eb);
5045 spin_unlock(&fs_info->buffer_lock);
452c75c3 5046 radix_tree_preload_end();
19fe0a8b 5047 if (ret == -EEXIST) {
f28491e0 5048 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5049 if (exists)
5050 goto free_eb;
5051 else
115391d2 5052 goto again;
6af118ce 5053 }
6af118ce 5054 /* add one reference for the tree */
0b32f4bb 5055 check_buffer_tree_ref(eb);
34b41ace 5056 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5057
5058 /*
5059 * there is a race where release page may have
5060 * tried to find this extent buffer in the radix
5061 * but failed. It will tell the VM it is safe to
5062 * reclaim the, and it will clear the page private bit.
5063 * We must make sure to set the page private bit properly
5064 * after the extent buffer is in the radix tree so
5065 * it doesn't get lost
5066 */
727011e0
CM
5067 SetPageChecked(eb->pages[0]);
5068 for (i = 1; i < num_pages; i++) {
fb85fc9a 5069 p = eb->pages[i];
727011e0
CM
5070 ClearPageChecked(p);
5071 unlock_page(p);
5072 }
5073 unlock_page(eb->pages[0]);
d1310b2e
CM
5074 return eb;
5075
6af118ce 5076free_eb:
5ca64f45 5077 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5078 for (i = 0; i < num_pages; i++) {
5079 if (eb->pages[i])
5080 unlock_page(eb->pages[i]);
5081 }
eb14ab8e 5082
897ca6e9 5083 btrfs_release_extent_buffer(eb);
6af118ce 5084 return exists;
d1310b2e 5085}
d1310b2e 5086
3083ee2e
JB
5087static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5088{
5089 struct extent_buffer *eb =
5090 container_of(head, struct extent_buffer, rcu_head);
5091
5092 __free_extent_buffer(eb);
5093}
5094
3083ee2e 5095/* Expects to have eb->eb_lock already held */
f7a52a40 5096static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5097{
5098 WARN_ON(atomic_read(&eb->refs) == 0);
5099 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5100 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5101 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5102
815a51c7 5103 spin_unlock(&eb->refs_lock);
3083ee2e 5104
f28491e0
JB
5105 spin_lock(&fs_info->buffer_lock);
5106 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 5107 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 5108 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5109 } else {
5110 spin_unlock(&eb->refs_lock);
815a51c7 5111 }
3083ee2e
JB
5112
5113 /* Should be safe to release our pages at this point */
a50924e3 5114 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5115#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5116 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5117 __free_extent_buffer(eb);
5118 return 1;
5119 }
5120#endif
3083ee2e 5121 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5122 return 1;
3083ee2e
JB
5123 }
5124 spin_unlock(&eb->refs_lock);
e64860aa
JB
5125
5126 return 0;
3083ee2e
JB
5127}
5128
d1310b2e
CM
5129void free_extent_buffer(struct extent_buffer *eb)
5130{
242e18c7
CM
5131 int refs;
5132 int old;
d1310b2e
CM
5133 if (!eb)
5134 return;
5135
242e18c7
CM
5136 while (1) {
5137 refs = atomic_read(&eb->refs);
5138 if (refs <= 3)
5139 break;
5140 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5141 if (old == refs)
5142 return;
5143 }
5144
3083ee2e 5145 spin_lock(&eb->refs_lock);
815a51c7
JS
5146 if (atomic_read(&eb->refs) == 2 &&
5147 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5148 atomic_dec(&eb->refs);
5149
3083ee2e
JB
5150 if (atomic_read(&eb->refs) == 2 &&
5151 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5152 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5153 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5154 atomic_dec(&eb->refs);
5155
5156 /*
5157 * I know this is terrible, but it's temporary until we stop tracking
5158 * the uptodate bits and such for the extent buffers.
5159 */
f7a52a40 5160 release_extent_buffer(eb);
3083ee2e
JB
5161}
5162
5163void free_extent_buffer_stale(struct extent_buffer *eb)
5164{
5165 if (!eb)
d1310b2e
CM
5166 return;
5167
3083ee2e
JB
5168 spin_lock(&eb->refs_lock);
5169 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5170
0b32f4bb 5171 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5172 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5173 atomic_dec(&eb->refs);
f7a52a40 5174 release_extent_buffer(eb);
d1310b2e 5175}
d1310b2e 5176
1d4284bd 5177void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5178{
d1310b2e
CM
5179 unsigned long i;
5180 unsigned long num_pages;
5181 struct page *page;
5182
d1310b2e
CM
5183 num_pages = num_extent_pages(eb->start, eb->len);
5184
5185 for (i = 0; i < num_pages; i++) {
fb85fc9a 5186 page = eb->pages[i];
b9473439 5187 if (!PageDirty(page))
d2c3f4f6
CM
5188 continue;
5189
a61e6f29 5190 lock_page(page);
eb14ab8e
CM
5191 WARN_ON(!PagePrivate(page));
5192
d1310b2e 5193 clear_page_dirty_for_io(page);
0ee0fda0 5194 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5195 if (!PageDirty(page)) {
5196 radix_tree_tag_clear(&page->mapping->page_tree,
5197 page_index(page),
5198 PAGECACHE_TAG_DIRTY);
5199 }
0ee0fda0 5200 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5201 ClearPageError(page);
a61e6f29 5202 unlock_page(page);
d1310b2e 5203 }
0b32f4bb 5204 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5205}
d1310b2e 5206
0b32f4bb 5207int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5208{
5209 unsigned long i;
5210 unsigned long num_pages;
b9473439 5211 int was_dirty = 0;
d1310b2e 5212
0b32f4bb
JB
5213 check_buffer_tree_ref(eb);
5214
b9473439 5215 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5216
d1310b2e 5217 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5218 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5219 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5220
b9473439 5221 for (i = 0; i < num_pages; i++)
fb85fc9a 5222 set_page_dirty(eb->pages[i]);
b9473439 5223 return was_dirty;
d1310b2e 5224}
d1310b2e 5225
69ba3927 5226void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5227{
5228 unsigned long i;
5229 struct page *page;
5230 unsigned long num_pages;
5231
b4ce94de 5232 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5233 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5234 for (i = 0; i < num_pages; i++) {
fb85fc9a 5235 page = eb->pages[i];
33958dc6
CM
5236 if (page)
5237 ClearPageUptodate(page);
1259ab75 5238 }
1259ab75
CM
5239}
5240
09c25a8c 5241void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5242{
5243 unsigned long i;
5244 struct page *page;
5245 unsigned long num_pages;
5246
0b32f4bb 5247 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5248 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5249 for (i = 0; i < num_pages; i++) {
fb85fc9a 5250 page = eb->pages[i];
d1310b2e
CM
5251 SetPageUptodate(page);
5252 }
d1310b2e 5253}
d1310b2e 5254
0b32f4bb 5255int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5256{
0b32f4bb 5257 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5258}
d1310b2e
CM
5259
5260int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5261 struct extent_buffer *eb, u64 start, int wait,
f188591e 5262 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5263{
5264 unsigned long i;
5265 unsigned long start_i;
5266 struct page *page;
5267 int err;
5268 int ret = 0;
ce9adaa5
CM
5269 int locked_pages = 0;
5270 int all_uptodate = 1;
d1310b2e 5271 unsigned long num_pages;
727011e0 5272 unsigned long num_reads = 0;
a86c12c7 5273 struct bio *bio = NULL;
c8b97818 5274 unsigned long bio_flags = 0;
a86c12c7 5275
b4ce94de 5276 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5277 return 0;
5278
d1310b2e
CM
5279 if (start) {
5280 WARN_ON(start < eb->start);
5281 start_i = (start >> PAGE_CACHE_SHIFT) -
5282 (eb->start >> PAGE_CACHE_SHIFT);
5283 } else {
5284 start_i = 0;
5285 }
5286
5287 num_pages = num_extent_pages(eb->start, eb->len);
5288 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5289 page = eb->pages[i];
bb82ab88 5290 if (wait == WAIT_NONE) {
2db04966 5291 if (!trylock_page(page))
ce9adaa5 5292 goto unlock_exit;
d1310b2e
CM
5293 } else {
5294 lock_page(page);
5295 }
ce9adaa5 5296 locked_pages++;
727011e0
CM
5297 if (!PageUptodate(page)) {
5298 num_reads++;
ce9adaa5 5299 all_uptodate = 0;
727011e0 5300 }
ce9adaa5
CM
5301 }
5302 if (all_uptodate) {
5303 if (start_i == 0)
b4ce94de 5304 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5305 goto unlock_exit;
5306 }
5307
656f30db 5308 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5309 eb->read_mirror = 0;
0b32f4bb 5310 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5311 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5312 page = eb->pages[i];
ce9adaa5 5313 if (!PageUptodate(page)) {
f188591e 5314 ClearPageError(page);
a86c12c7 5315 err = __extent_read_full_page(tree, page,
f188591e 5316 get_extent, &bio,
d4c7ca86
JB
5317 mirror_num, &bio_flags,
5318 READ | REQ_META);
d397712b 5319 if (err)
d1310b2e 5320 ret = err;
d1310b2e
CM
5321 } else {
5322 unlock_page(page);
5323 }
5324 }
5325
355808c2 5326 if (bio) {
d4c7ca86
JB
5327 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5328 bio_flags);
79787eaa
JM
5329 if (err)
5330 return err;
355808c2 5331 }
a86c12c7 5332
bb82ab88 5333 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5334 return ret;
d397712b 5335
d1310b2e 5336 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5337 page = eb->pages[i];
d1310b2e 5338 wait_on_page_locked(page);
d397712b 5339 if (!PageUptodate(page))
d1310b2e 5340 ret = -EIO;
d1310b2e 5341 }
d397712b 5342
d1310b2e 5343 return ret;
ce9adaa5
CM
5344
5345unlock_exit:
5346 i = start_i;
d397712b 5347 while (locked_pages > 0) {
fb85fc9a 5348 page = eb->pages[i];
ce9adaa5
CM
5349 i++;
5350 unlock_page(page);
5351 locked_pages--;
5352 }
5353 return ret;
d1310b2e 5354}
d1310b2e
CM
5355
5356void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5357 unsigned long start,
5358 unsigned long len)
5359{
5360 size_t cur;
5361 size_t offset;
5362 struct page *page;
5363 char *kaddr;
5364 char *dst = (char *)dstv;
5365 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5366 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5367
5368 WARN_ON(start > eb->len);
5369 WARN_ON(start + len > eb->start + eb->len);
5370
778746b5 5371 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5372
d397712b 5373 while (len > 0) {
fb85fc9a 5374 page = eb->pages[i];
d1310b2e
CM
5375
5376 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5377 kaddr = page_address(page);
d1310b2e 5378 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5379
5380 dst += cur;
5381 len -= cur;
5382 offset = 0;
5383 i++;
5384 }
5385}
d1310b2e 5386
550ac1d8
GH
5387int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5388 unsigned long start,
5389 unsigned long len)
5390{
5391 size_t cur;
5392 size_t offset;
5393 struct page *page;
5394 char *kaddr;
5395 char __user *dst = (char __user *)dstv;
5396 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5397 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5398 int ret = 0;
5399
5400 WARN_ON(start > eb->len);
5401 WARN_ON(start + len > eb->start + eb->len);
5402
5403 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5404
5405 while (len > 0) {
fb85fc9a 5406 page = eb->pages[i];
550ac1d8
GH
5407
5408 cur = min(len, (PAGE_CACHE_SIZE - offset));
5409 kaddr = page_address(page);
5410 if (copy_to_user(dst, kaddr + offset, cur)) {
5411 ret = -EFAULT;
5412 break;
5413 }
5414
5415 dst += cur;
5416 len -= cur;
5417 offset = 0;
5418 i++;
5419 }
5420
5421 return ret;
5422}
5423
d1310b2e 5424int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5425 unsigned long min_len, char **map,
d1310b2e 5426 unsigned long *map_start,
a6591715 5427 unsigned long *map_len)
d1310b2e
CM
5428{
5429 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5430 char *kaddr;
5431 struct page *p;
5432 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5433 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5434 unsigned long end_i = (start_offset + start + min_len - 1) >>
5435 PAGE_CACHE_SHIFT;
5436
5437 if (i != end_i)
5438 return -EINVAL;
5439
5440 if (i == 0) {
5441 offset = start_offset;
5442 *map_start = 0;
5443 } else {
5444 offset = 0;
5445 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5446 }
d397712b 5447
d1310b2e 5448 if (start + min_len > eb->len) {
31b1a2bd 5449 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5450 "wanted %lu %lu\n",
5451 eb->start, eb->len, start, min_len);
85026533 5452 return -EINVAL;
d1310b2e
CM
5453 }
5454
fb85fc9a 5455 p = eb->pages[i];
a6591715 5456 kaddr = page_address(p);
d1310b2e
CM
5457 *map = kaddr + offset;
5458 *map_len = PAGE_CACHE_SIZE - offset;
5459 return 0;
5460}
d1310b2e 5461
d1310b2e
CM
5462int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5463 unsigned long start,
5464 unsigned long len)
5465{
5466 size_t cur;
5467 size_t offset;
5468 struct page *page;
5469 char *kaddr;
5470 char *ptr = (char *)ptrv;
5471 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5472 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5473 int ret = 0;
5474
5475 WARN_ON(start > eb->len);
5476 WARN_ON(start + len > eb->start + eb->len);
5477
778746b5 5478 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5479
d397712b 5480 while (len > 0) {
fb85fc9a 5481 page = eb->pages[i];
d1310b2e
CM
5482
5483 cur = min(len, (PAGE_CACHE_SIZE - offset));
5484
a6591715 5485 kaddr = page_address(page);
d1310b2e 5486 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5487 if (ret)
5488 break;
5489
5490 ptr += cur;
5491 len -= cur;
5492 offset = 0;
5493 i++;
5494 }
5495 return ret;
5496}
d1310b2e
CM
5497
5498void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5499 unsigned long start, unsigned long len)
5500{
5501 size_t cur;
5502 size_t offset;
5503 struct page *page;
5504 char *kaddr;
5505 char *src = (char *)srcv;
5506 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5507 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5508
5509 WARN_ON(start > eb->len);
5510 WARN_ON(start + len > eb->start + eb->len);
5511
778746b5 5512 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5513
d397712b 5514 while (len > 0) {
fb85fc9a 5515 page = eb->pages[i];
d1310b2e
CM
5516 WARN_ON(!PageUptodate(page));
5517
5518 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5519 kaddr = page_address(page);
d1310b2e 5520 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5521
5522 src += cur;
5523 len -= cur;
5524 offset = 0;
5525 i++;
5526 }
5527}
d1310b2e
CM
5528
5529void memset_extent_buffer(struct extent_buffer *eb, char c,
5530 unsigned long start, unsigned long len)
5531{
5532 size_t cur;
5533 size_t offset;
5534 struct page *page;
5535 char *kaddr;
5536 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5537 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5538
5539 WARN_ON(start > eb->len);
5540 WARN_ON(start + len > eb->start + eb->len);
5541
778746b5 5542 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5543
d397712b 5544 while (len > 0) {
fb85fc9a 5545 page = eb->pages[i];
d1310b2e
CM
5546 WARN_ON(!PageUptodate(page));
5547
5548 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5549 kaddr = page_address(page);
d1310b2e 5550 memset(kaddr + offset, c, cur);
d1310b2e
CM
5551
5552 len -= cur;
5553 offset = 0;
5554 i++;
5555 }
5556}
d1310b2e
CM
5557
5558void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5559 unsigned long dst_offset, unsigned long src_offset,
5560 unsigned long len)
5561{
5562 u64 dst_len = dst->len;
5563 size_t cur;
5564 size_t offset;
5565 struct page *page;
5566 char *kaddr;
5567 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5568 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5569
5570 WARN_ON(src->len != dst_len);
5571
5572 offset = (start_offset + dst_offset) &
778746b5 5573 (PAGE_CACHE_SIZE - 1);
d1310b2e 5574
d397712b 5575 while (len > 0) {
fb85fc9a 5576 page = dst->pages[i];
d1310b2e
CM
5577 WARN_ON(!PageUptodate(page));
5578
5579 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5580
a6591715 5581 kaddr = page_address(page);
d1310b2e 5582 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5583
5584 src_offset += cur;
5585 len -= cur;
5586 offset = 0;
5587 i++;
5588 }
5589}
d1310b2e 5590
3387206f
ST
5591static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5592{
5593 unsigned long distance = (src > dst) ? src - dst : dst - src;
5594 return distance < len;
5595}
5596
d1310b2e
CM
5597static void copy_pages(struct page *dst_page, struct page *src_page,
5598 unsigned long dst_off, unsigned long src_off,
5599 unsigned long len)
5600{
a6591715 5601 char *dst_kaddr = page_address(dst_page);
d1310b2e 5602 char *src_kaddr;
727011e0 5603 int must_memmove = 0;
d1310b2e 5604
3387206f 5605 if (dst_page != src_page) {
a6591715 5606 src_kaddr = page_address(src_page);
3387206f 5607 } else {
d1310b2e 5608 src_kaddr = dst_kaddr;
727011e0
CM
5609 if (areas_overlap(src_off, dst_off, len))
5610 must_memmove = 1;
3387206f 5611 }
d1310b2e 5612
727011e0
CM
5613 if (must_memmove)
5614 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5615 else
5616 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5617}
5618
5619void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5620 unsigned long src_offset, unsigned long len)
5621{
5622 size_t cur;
5623 size_t dst_off_in_page;
5624 size_t src_off_in_page;
5625 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5626 unsigned long dst_i;
5627 unsigned long src_i;
5628
5629 if (src_offset + len > dst->len) {
f14d104d
DS
5630 btrfs_err(dst->fs_info,
5631 "memmove bogus src_offset %lu move "
5632 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5633 BUG_ON(1);
5634 }
5635 if (dst_offset + len > dst->len) {
f14d104d
DS
5636 btrfs_err(dst->fs_info,
5637 "memmove bogus dst_offset %lu move "
5638 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5639 BUG_ON(1);
5640 }
5641
d397712b 5642 while (len > 0) {
d1310b2e 5643 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5644 (PAGE_CACHE_SIZE - 1);
d1310b2e 5645 src_off_in_page = (start_offset + src_offset) &
778746b5 5646 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5647
5648 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5649 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5650
5651 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5652 src_off_in_page));
5653 cur = min_t(unsigned long, cur,
5654 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5655
fb85fc9a 5656 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5657 dst_off_in_page, src_off_in_page, cur);
5658
5659 src_offset += cur;
5660 dst_offset += cur;
5661 len -= cur;
5662 }
5663}
d1310b2e
CM
5664
5665void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5666 unsigned long src_offset, unsigned long len)
5667{
5668 size_t cur;
5669 size_t dst_off_in_page;
5670 size_t src_off_in_page;
5671 unsigned long dst_end = dst_offset + len - 1;
5672 unsigned long src_end = src_offset + len - 1;
5673 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5674 unsigned long dst_i;
5675 unsigned long src_i;
5676
5677 if (src_offset + len > dst->len) {
f14d104d
DS
5678 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5679 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5680 BUG_ON(1);
5681 }
5682 if (dst_offset + len > dst->len) {
f14d104d
DS
5683 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5684 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5685 BUG_ON(1);
5686 }
727011e0 5687 if (dst_offset < src_offset) {
d1310b2e
CM
5688 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5689 return;
5690 }
d397712b 5691 while (len > 0) {
d1310b2e
CM
5692 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5693 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5694
5695 dst_off_in_page = (start_offset + dst_end) &
778746b5 5696 (PAGE_CACHE_SIZE - 1);
d1310b2e 5697 src_off_in_page = (start_offset + src_end) &
778746b5 5698 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5699
5700 cur = min_t(unsigned long, len, src_off_in_page + 1);
5701 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5702 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5703 dst_off_in_page - cur + 1,
5704 src_off_in_page - cur + 1, cur);
5705
5706 dst_end -= cur;
5707 src_end -= cur;
5708 len -= cur;
5709 }
5710}
6af118ce 5711
f7a52a40 5712int try_release_extent_buffer(struct page *page)
19fe0a8b 5713{
6af118ce 5714 struct extent_buffer *eb;
6af118ce 5715
3083ee2e
JB
5716 /*
5717 * We need to make sure noboody is attaching this page to an eb right
5718 * now.
5719 */
5720 spin_lock(&page->mapping->private_lock);
5721 if (!PagePrivate(page)) {
5722 spin_unlock(&page->mapping->private_lock);
4f2de97a 5723 return 1;
45f49bce 5724 }
6af118ce 5725
3083ee2e
JB
5726 eb = (struct extent_buffer *)page->private;
5727 BUG_ON(!eb);
19fe0a8b
MX
5728
5729 /*
3083ee2e
JB
5730 * This is a little awful but should be ok, we need to make sure that
5731 * the eb doesn't disappear out from under us while we're looking at
5732 * this page.
19fe0a8b 5733 */
3083ee2e 5734 spin_lock(&eb->refs_lock);
0b32f4bb 5735 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5736 spin_unlock(&eb->refs_lock);
5737 spin_unlock(&page->mapping->private_lock);
5738 return 0;
b9473439 5739 }
3083ee2e 5740 spin_unlock(&page->mapping->private_lock);
897ca6e9 5741
19fe0a8b 5742 /*
3083ee2e
JB
5743 * If tree ref isn't set then we know the ref on this eb is a real ref,
5744 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5745 */
3083ee2e
JB
5746 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5747 spin_unlock(&eb->refs_lock);
5748 return 0;
b9473439 5749 }
19fe0a8b 5750
f7a52a40 5751 return release_extent_buffer(eb);
6af118ce 5752}