Btrfs: don't invoke btrfs_invalidate_inodes() in the spin lock context
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
6d49ba1b 27#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
28static LIST_HEAD(buffers);
29static LIST_HEAD(states);
4bef0848 30
d397712b 31static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
32
33static inline
34void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
35{
36 unsigned long flags;
37
38 spin_lock_irqsave(&leak_lock, flags);
39 list_add(new, head);
40 spin_unlock_irqrestore(&leak_lock, flags);
41}
42
43static inline
44void btrfs_leak_debug_del(struct list_head *entry)
45{
46 unsigned long flags;
47
48 spin_lock_irqsave(&leak_lock, flags);
49 list_del(entry);
50 spin_unlock_irqrestore(&leak_lock, flags);
51}
52
53static inline
54void btrfs_leak_debug_check(void)
55{
56 struct extent_state *state;
57 struct extent_buffer *eb;
58
59 while (!list_empty(&states)) {
60 state = list_entry(states.next, struct extent_state, leak_list);
61 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
62 "state %lu in tree %p refs %d\n",
63 (unsigned long long)state->start,
64 (unsigned long long)state->end,
65 state->state, state->tree, atomic_read(&state->refs));
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
73 "refs %d\n", (unsigned long long)eb->start,
74 eb->len, atomic_read(&eb->refs));
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78}
79#else
80#define btrfs_leak_debug_add(new, head) do {} while (0)
81#define btrfs_leak_debug_del(entry) do {} while (0)
82#define btrfs_leak_debug_check() do {} while (0)
4bef0848 83#endif
d1310b2e 84
d1310b2e
CM
85#define BUFFER_LRU_MAX 64
86
87struct tree_entry {
88 u64 start;
89 u64 end;
d1310b2e
CM
90 struct rb_node rb_node;
91};
92
93struct extent_page_data {
94 struct bio *bio;
95 struct extent_io_tree *tree;
96 get_extent_t *get_extent;
de0022b9 97 unsigned long bio_flags;
771ed689
CM
98
99 /* tells writepage not to lock the state bits for this range
100 * it still does the unlocking
101 */
ffbd517d
CM
102 unsigned int extent_locked:1;
103
104 /* tells the submit_bio code to use a WRITE_SYNC */
105 unsigned int sync_io:1;
d1310b2e
CM
106};
107
0b32f4bb 108static noinline void flush_write_bio(void *data);
c2d904e0
JM
109static inline struct btrfs_fs_info *
110tree_fs_info(struct extent_io_tree *tree)
111{
112 return btrfs_sb(tree->mapping->host->i_sb);
113}
0b32f4bb 114
d1310b2e
CM
115int __init extent_io_init(void)
116{
837e1972 117 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
118 sizeof(struct extent_state), 0,
119 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
120 if (!extent_state_cache)
121 return -ENOMEM;
122
837e1972 123 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
124 sizeof(struct extent_buffer), 0,
125 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
126 if (!extent_buffer_cache)
127 goto free_state_cache;
128 return 0;
129
130free_state_cache:
131 kmem_cache_destroy(extent_state_cache);
132 return -ENOMEM;
133}
134
135void extent_io_exit(void)
136{
6d49ba1b 137 btrfs_leak_debug_check();
8c0a8537
KS
138
139 /*
140 * Make sure all delayed rcu free are flushed before we
141 * destroy caches.
142 */
143 rcu_barrier();
d1310b2e
CM
144 if (extent_state_cache)
145 kmem_cache_destroy(extent_state_cache);
146 if (extent_buffer_cache)
147 kmem_cache_destroy(extent_buffer_cache);
148}
149
150void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 151 struct address_space *mapping)
d1310b2e 152{
6bef4d31 153 tree->state = RB_ROOT;
19fe0a8b 154 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
155 tree->ops = NULL;
156 tree->dirty_bytes = 0;
70dec807 157 spin_lock_init(&tree->lock);
6af118ce 158 spin_lock_init(&tree->buffer_lock);
d1310b2e 159 tree->mapping = mapping;
d1310b2e 160}
d1310b2e 161
b2950863 162static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
163{
164 struct extent_state *state;
d1310b2e
CM
165
166 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 167 if (!state)
d1310b2e
CM
168 return state;
169 state->state = 0;
d1310b2e 170 state->private = 0;
70dec807 171 state->tree = NULL;
6d49ba1b 172 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
173 atomic_set(&state->refs, 1);
174 init_waitqueue_head(&state->wq);
143bede5 175 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
176 return state;
177}
d1310b2e 178
4845e44f 179void free_extent_state(struct extent_state *state)
d1310b2e 180{
d1310b2e
CM
181 if (!state)
182 return;
183 if (atomic_dec_and_test(&state->refs)) {
70dec807 184 WARN_ON(state->tree);
6d49ba1b 185 btrfs_leak_debug_del(&state->leak_list);
143bede5 186 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
187 kmem_cache_free(extent_state_cache, state);
188 }
189}
d1310b2e
CM
190
191static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
192 struct rb_node *node)
193{
d397712b
CM
194 struct rb_node **p = &root->rb_node;
195 struct rb_node *parent = NULL;
d1310b2e
CM
196 struct tree_entry *entry;
197
d397712b 198 while (*p) {
d1310b2e
CM
199 parent = *p;
200 entry = rb_entry(parent, struct tree_entry, rb_node);
201
202 if (offset < entry->start)
203 p = &(*p)->rb_left;
204 else if (offset > entry->end)
205 p = &(*p)->rb_right;
206 else
207 return parent;
208 }
209
d1310b2e
CM
210 rb_link_node(node, parent, p);
211 rb_insert_color(node, root);
212 return NULL;
213}
214
80ea96b1 215static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
216 struct rb_node **prev_ret,
217 struct rb_node **next_ret)
218{
80ea96b1 219 struct rb_root *root = &tree->state;
d397712b 220 struct rb_node *n = root->rb_node;
d1310b2e
CM
221 struct rb_node *prev = NULL;
222 struct rb_node *orig_prev = NULL;
223 struct tree_entry *entry;
224 struct tree_entry *prev_entry = NULL;
225
d397712b 226 while (n) {
d1310b2e
CM
227 entry = rb_entry(n, struct tree_entry, rb_node);
228 prev = n;
229 prev_entry = entry;
230
231 if (offset < entry->start)
232 n = n->rb_left;
233 else if (offset > entry->end)
234 n = n->rb_right;
d397712b 235 else
d1310b2e
CM
236 return n;
237 }
238
239 if (prev_ret) {
240 orig_prev = prev;
d397712b 241 while (prev && offset > prev_entry->end) {
d1310b2e
CM
242 prev = rb_next(prev);
243 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
244 }
245 *prev_ret = prev;
246 prev = orig_prev;
247 }
248
249 if (next_ret) {
250 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 251 while (prev && offset < prev_entry->start) {
d1310b2e
CM
252 prev = rb_prev(prev);
253 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
254 }
255 *next_ret = prev;
256 }
257 return NULL;
258}
259
80ea96b1
CM
260static inline struct rb_node *tree_search(struct extent_io_tree *tree,
261 u64 offset)
d1310b2e 262{
70dec807 263 struct rb_node *prev = NULL;
d1310b2e 264 struct rb_node *ret;
70dec807 265
80ea96b1 266 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 267 if (!ret)
d1310b2e
CM
268 return prev;
269 return ret;
270}
271
9ed74f2d
JB
272static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
273 struct extent_state *other)
274{
275 if (tree->ops && tree->ops->merge_extent_hook)
276 tree->ops->merge_extent_hook(tree->mapping->host, new,
277 other);
278}
279
d1310b2e
CM
280/*
281 * utility function to look for merge candidates inside a given range.
282 * Any extents with matching state are merged together into a single
283 * extent in the tree. Extents with EXTENT_IO in their state field
284 * are not merged because the end_io handlers need to be able to do
285 * operations on them without sleeping (or doing allocations/splits).
286 *
287 * This should be called with the tree lock held.
288 */
1bf85046
JM
289static void merge_state(struct extent_io_tree *tree,
290 struct extent_state *state)
d1310b2e
CM
291{
292 struct extent_state *other;
293 struct rb_node *other_node;
294
5b21f2ed 295 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 296 return;
d1310b2e
CM
297
298 other_node = rb_prev(&state->rb_node);
299 if (other_node) {
300 other = rb_entry(other_node, struct extent_state, rb_node);
301 if (other->end == state->start - 1 &&
302 other->state == state->state) {
9ed74f2d 303 merge_cb(tree, state, other);
d1310b2e 304 state->start = other->start;
70dec807 305 other->tree = NULL;
d1310b2e
CM
306 rb_erase(&other->rb_node, &tree->state);
307 free_extent_state(other);
308 }
309 }
310 other_node = rb_next(&state->rb_node);
311 if (other_node) {
312 other = rb_entry(other_node, struct extent_state, rb_node);
313 if (other->start == state->end + 1 &&
314 other->state == state->state) {
9ed74f2d 315 merge_cb(tree, state, other);
df98b6e2
JB
316 state->end = other->end;
317 other->tree = NULL;
318 rb_erase(&other->rb_node, &tree->state);
319 free_extent_state(other);
d1310b2e
CM
320 }
321 }
d1310b2e
CM
322}
323
1bf85046 324static void set_state_cb(struct extent_io_tree *tree,
41074888 325 struct extent_state *state, unsigned long *bits)
291d673e 326{
1bf85046
JM
327 if (tree->ops && tree->ops->set_bit_hook)
328 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
329}
330
331static void clear_state_cb(struct extent_io_tree *tree,
41074888 332 struct extent_state *state, unsigned long *bits)
291d673e 333{
9ed74f2d
JB
334 if (tree->ops && tree->ops->clear_bit_hook)
335 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
336}
337
3150b699 338static void set_state_bits(struct extent_io_tree *tree,
41074888 339 struct extent_state *state, unsigned long *bits);
3150b699 340
d1310b2e
CM
341/*
342 * insert an extent_state struct into the tree. 'bits' are set on the
343 * struct before it is inserted.
344 *
345 * This may return -EEXIST if the extent is already there, in which case the
346 * state struct is freed.
347 *
348 * The tree lock is not taken internally. This is a utility function and
349 * probably isn't what you want to call (see set/clear_extent_bit).
350 */
351static int insert_state(struct extent_io_tree *tree,
352 struct extent_state *state, u64 start, u64 end,
41074888 353 unsigned long *bits)
d1310b2e
CM
354{
355 struct rb_node *node;
356
31b1a2bd
JL
357 if (end < start)
358 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
d397712b
CM
359 (unsigned long long)end,
360 (unsigned long long)start);
d1310b2e
CM
361 state->start = start;
362 state->end = end;
9ed74f2d 363
3150b699
XG
364 set_state_bits(tree, state, bits);
365
d1310b2e
CM
366 node = tree_insert(&tree->state, end, &state->rb_node);
367 if (node) {
368 struct extent_state *found;
369 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
370 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
371 "%llu %llu\n", (unsigned long long)found->start,
372 (unsigned long long)found->end,
373 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
374 return -EEXIST;
375 }
70dec807 376 state->tree = tree;
d1310b2e
CM
377 merge_state(tree, state);
378 return 0;
379}
380
1bf85046 381static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
382 u64 split)
383{
384 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 385 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
386}
387
d1310b2e
CM
388/*
389 * split a given extent state struct in two, inserting the preallocated
390 * struct 'prealloc' as the newly created second half. 'split' indicates an
391 * offset inside 'orig' where it should be split.
392 *
393 * Before calling,
394 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
395 * are two extent state structs in the tree:
396 * prealloc: [orig->start, split - 1]
397 * orig: [ split, orig->end ]
398 *
399 * The tree locks are not taken by this function. They need to be held
400 * by the caller.
401 */
402static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
403 struct extent_state *prealloc, u64 split)
404{
405 struct rb_node *node;
9ed74f2d
JB
406
407 split_cb(tree, orig, split);
408
d1310b2e
CM
409 prealloc->start = orig->start;
410 prealloc->end = split - 1;
411 prealloc->state = orig->state;
412 orig->start = split;
413
414 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
415 if (node) {
d1310b2e
CM
416 free_extent_state(prealloc);
417 return -EEXIST;
418 }
70dec807 419 prealloc->tree = tree;
d1310b2e
CM
420 return 0;
421}
422
cdc6a395
LZ
423static struct extent_state *next_state(struct extent_state *state)
424{
425 struct rb_node *next = rb_next(&state->rb_node);
426 if (next)
427 return rb_entry(next, struct extent_state, rb_node);
428 else
429 return NULL;
430}
431
d1310b2e
CM
432/*
433 * utility function to clear some bits in an extent state struct.
1b303fc0 434 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
435 *
436 * If no bits are set on the state struct after clearing things, the
437 * struct is freed and removed from the tree
438 */
cdc6a395
LZ
439static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
440 struct extent_state *state,
41074888 441 unsigned long *bits, int wake)
d1310b2e 442{
cdc6a395 443 struct extent_state *next;
41074888 444 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 445
0ca1f7ce 446 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
447 u64 range = state->end - state->start + 1;
448 WARN_ON(range > tree->dirty_bytes);
449 tree->dirty_bytes -= range;
450 }
291d673e 451 clear_state_cb(tree, state, bits);
32c00aff 452 state->state &= ~bits_to_clear;
d1310b2e
CM
453 if (wake)
454 wake_up(&state->wq);
0ca1f7ce 455 if (state->state == 0) {
cdc6a395 456 next = next_state(state);
70dec807 457 if (state->tree) {
d1310b2e 458 rb_erase(&state->rb_node, &tree->state);
70dec807 459 state->tree = NULL;
d1310b2e
CM
460 free_extent_state(state);
461 } else {
462 WARN_ON(1);
463 }
464 } else {
465 merge_state(tree, state);
cdc6a395 466 next = next_state(state);
d1310b2e 467 }
cdc6a395 468 return next;
d1310b2e
CM
469}
470
8233767a
XG
471static struct extent_state *
472alloc_extent_state_atomic(struct extent_state *prealloc)
473{
474 if (!prealloc)
475 prealloc = alloc_extent_state(GFP_ATOMIC);
476
477 return prealloc;
478}
479
48a3b636 480static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
481{
482 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
483 "Extent tree was modified by another "
484 "thread while locked.");
485}
486
d1310b2e
CM
487/*
488 * clear some bits on a range in the tree. This may require splitting
489 * or inserting elements in the tree, so the gfp mask is used to
490 * indicate which allocations or sleeping are allowed.
491 *
492 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
493 * the given range from the tree regardless of state (ie for truncate).
494 *
495 * the range [start, end] is inclusive.
496 *
6763af84 497 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
498 */
499int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 500 unsigned long bits, int wake, int delete,
2c64c53d
CM
501 struct extent_state **cached_state,
502 gfp_t mask)
d1310b2e
CM
503{
504 struct extent_state *state;
2c64c53d 505 struct extent_state *cached;
d1310b2e
CM
506 struct extent_state *prealloc = NULL;
507 struct rb_node *node;
5c939df5 508 u64 last_end;
d1310b2e 509 int err;
2ac55d41 510 int clear = 0;
d1310b2e 511
0ca1f7ce
YZ
512 if (delete)
513 bits |= ~EXTENT_CTLBITS;
514 bits |= EXTENT_FIRST_DELALLOC;
515
2ac55d41
JB
516 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
517 clear = 1;
d1310b2e
CM
518again:
519 if (!prealloc && (mask & __GFP_WAIT)) {
520 prealloc = alloc_extent_state(mask);
521 if (!prealloc)
522 return -ENOMEM;
523 }
524
cad321ad 525 spin_lock(&tree->lock);
2c64c53d
CM
526 if (cached_state) {
527 cached = *cached_state;
2ac55d41
JB
528
529 if (clear) {
530 *cached_state = NULL;
531 cached_state = NULL;
532 }
533
df98b6e2
JB
534 if (cached && cached->tree && cached->start <= start &&
535 cached->end > start) {
2ac55d41
JB
536 if (clear)
537 atomic_dec(&cached->refs);
2c64c53d 538 state = cached;
42daec29 539 goto hit_next;
2c64c53d 540 }
2ac55d41
JB
541 if (clear)
542 free_extent_state(cached);
2c64c53d 543 }
d1310b2e
CM
544 /*
545 * this search will find the extents that end after
546 * our range starts
547 */
80ea96b1 548 node = tree_search(tree, start);
d1310b2e
CM
549 if (!node)
550 goto out;
551 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 552hit_next:
d1310b2e
CM
553 if (state->start > end)
554 goto out;
555 WARN_ON(state->end < start);
5c939df5 556 last_end = state->end;
d1310b2e 557
0449314a 558 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
559 if (!(state->state & bits)) {
560 state = next_state(state);
0449314a 561 goto next;
cdc6a395 562 }
0449314a 563
d1310b2e
CM
564 /*
565 * | ---- desired range ---- |
566 * | state | or
567 * | ------------- state -------------- |
568 *
569 * We need to split the extent we found, and may flip
570 * bits on second half.
571 *
572 * If the extent we found extends past our range, we
573 * just split and search again. It'll get split again
574 * the next time though.
575 *
576 * If the extent we found is inside our range, we clear
577 * the desired bit on it.
578 */
579
580 if (state->start < start) {
8233767a
XG
581 prealloc = alloc_extent_state_atomic(prealloc);
582 BUG_ON(!prealloc);
d1310b2e 583 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
584 if (err)
585 extent_io_tree_panic(tree, err);
586
d1310b2e
CM
587 prealloc = NULL;
588 if (err)
589 goto out;
590 if (state->end <= end) {
d1ac6e41
LB
591 state = clear_state_bit(tree, state, &bits, wake);
592 goto next;
d1310b2e
CM
593 }
594 goto search_again;
595 }
596 /*
597 * | ---- desired range ---- |
598 * | state |
599 * We need to split the extent, and clear the bit
600 * on the first half
601 */
602 if (state->start <= end && state->end > end) {
8233767a
XG
603 prealloc = alloc_extent_state_atomic(prealloc);
604 BUG_ON(!prealloc);
d1310b2e 605 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
606 if (err)
607 extent_io_tree_panic(tree, err);
608
d1310b2e
CM
609 if (wake)
610 wake_up(&state->wq);
42daec29 611
6763af84 612 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 613
d1310b2e
CM
614 prealloc = NULL;
615 goto out;
616 }
42daec29 617
cdc6a395 618 state = clear_state_bit(tree, state, &bits, wake);
0449314a 619next:
5c939df5
YZ
620 if (last_end == (u64)-1)
621 goto out;
622 start = last_end + 1;
cdc6a395 623 if (start <= end && state && !need_resched())
692e5759 624 goto hit_next;
d1310b2e
CM
625 goto search_again;
626
627out:
cad321ad 628 spin_unlock(&tree->lock);
d1310b2e
CM
629 if (prealloc)
630 free_extent_state(prealloc);
631
6763af84 632 return 0;
d1310b2e
CM
633
634search_again:
635 if (start > end)
636 goto out;
cad321ad 637 spin_unlock(&tree->lock);
d1310b2e
CM
638 if (mask & __GFP_WAIT)
639 cond_resched();
640 goto again;
641}
d1310b2e 642
143bede5
JM
643static void wait_on_state(struct extent_io_tree *tree,
644 struct extent_state *state)
641f5219
CH
645 __releases(tree->lock)
646 __acquires(tree->lock)
d1310b2e
CM
647{
648 DEFINE_WAIT(wait);
649 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 650 spin_unlock(&tree->lock);
d1310b2e 651 schedule();
cad321ad 652 spin_lock(&tree->lock);
d1310b2e 653 finish_wait(&state->wq, &wait);
d1310b2e
CM
654}
655
656/*
657 * waits for one or more bits to clear on a range in the state tree.
658 * The range [start, end] is inclusive.
659 * The tree lock is taken by this function
660 */
41074888
DS
661static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
662 unsigned long bits)
d1310b2e
CM
663{
664 struct extent_state *state;
665 struct rb_node *node;
666
cad321ad 667 spin_lock(&tree->lock);
d1310b2e
CM
668again:
669 while (1) {
670 /*
671 * this search will find all the extents that end after
672 * our range starts
673 */
80ea96b1 674 node = tree_search(tree, start);
d1310b2e
CM
675 if (!node)
676 break;
677
678 state = rb_entry(node, struct extent_state, rb_node);
679
680 if (state->start > end)
681 goto out;
682
683 if (state->state & bits) {
684 start = state->start;
685 atomic_inc(&state->refs);
686 wait_on_state(tree, state);
687 free_extent_state(state);
688 goto again;
689 }
690 start = state->end + 1;
691
692 if (start > end)
693 break;
694
ded91f08 695 cond_resched_lock(&tree->lock);
d1310b2e
CM
696 }
697out:
cad321ad 698 spin_unlock(&tree->lock);
d1310b2e 699}
d1310b2e 700
1bf85046 701static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 702 struct extent_state *state,
41074888 703 unsigned long *bits)
d1310b2e 704{
41074888 705 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 706
1bf85046 707 set_state_cb(tree, state, bits);
0ca1f7ce 708 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
709 u64 range = state->end - state->start + 1;
710 tree->dirty_bytes += range;
711 }
0ca1f7ce 712 state->state |= bits_to_set;
d1310b2e
CM
713}
714
2c64c53d
CM
715static void cache_state(struct extent_state *state,
716 struct extent_state **cached_ptr)
717{
718 if (cached_ptr && !(*cached_ptr)) {
719 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
720 *cached_ptr = state;
721 atomic_inc(&state->refs);
722 }
723 }
724}
725
507903b8
AJ
726static void uncache_state(struct extent_state **cached_ptr)
727{
728 if (cached_ptr && (*cached_ptr)) {
729 struct extent_state *state = *cached_ptr;
109b36a2
CM
730 *cached_ptr = NULL;
731 free_extent_state(state);
507903b8
AJ
732 }
733}
734
d1310b2e 735/*
1edbb734
CM
736 * set some bits on a range in the tree. This may require allocations or
737 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 738 *
1edbb734
CM
739 * If any of the exclusive bits are set, this will fail with -EEXIST if some
740 * part of the range already has the desired bits set. The start of the
741 * existing range is returned in failed_start in this case.
d1310b2e 742 *
1edbb734 743 * [start, end] is inclusive This takes the tree lock.
d1310b2e 744 */
1edbb734 745
3fbe5c02
JM
746static int __must_check
747__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
748 unsigned long bits, unsigned long exclusive_bits,
749 u64 *failed_start, struct extent_state **cached_state,
750 gfp_t mask)
d1310b2e
CM
751{
752 struct extent_state *state;
753 struct extent_state *prealloc = NULL;
754 struct rb_node *node;
d1310b2e 755 int err = 0;
d1310b2e
CM
756 u64 last_start;
757 u64 last_end;
42daec29 758
0ca1f7ce 759 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
760again:
761 if (!prealloc && (mask & __GFP_WAIT)) {
762 prealloc = alloc_extent_state(mask);
8233767a 763 BUG_ON(!prealloc);
d1310b2e
CM
764 }
765
cad321ad 766 spin_lock(&tree->lock);
9655d298
CM
767 if (cached_state && *cached_state) {
768 state = *cached_state;
df98b6e2
JB
769 if (state->start <= start && state->end > start &&
770 state->tree) {
9655d298
CM
771 node = &state->rb_node;
772 goto hit_next;
773 }
774 }
d1310b2e
CM
775 /*
776 * this search will find all the extents that end after
777 * our range starts.
778 */
80ea96b1 779 node = tree_search(tree, start);
d1310b2e 780 if (!node) {
8233767a
XG
781 prealloc = alloc_extent_state_atomic(prealloc);
782 BUG_ON(!prealloc);
0ca1f7ce 783 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
784 if (err)
785 extent_io_tree_panic(tree, err);
786
d1310b2e 787 prealloc = NULL;
d1310b2e
CM
788 goto out;
789 }
d1310b2e 790 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 791hit_next:
d1310b2e
CM
792 last_start = state->start;
793 last_end = state->end;
794
795 /*
796 * | ---- desired range ---- |
797 * | state |
798 *
799 * Just lock what we found and keep going
800 */
801 if (state->start == start && state->end <= end) {
1edbb734 802 if (state->state & exclusive_bits) {
d1310b2e
CM
803 *failed_start = state->start;
804 err = -EEXIST;
805 goto out;
806 }
42daec29 807
1bf85046 808 set_state_bits(tree, state, &bits);
2c64c53d 809 cache_state(state, cached_state);
d1310b2e 810 merge_state(tree, state);
5c939df5
YZ
811 if (last_end == (u64)-1)
812 goto out;
813 start = last_end + 1;
d1ac6e41
LB
814 state = next_state(state);
815 if (start < end && state && state->start == start &&
816 !need_resched())
817 goto hit_next;
d1310b2e
CM
818 goto search_again;
819 }
820
821 /*
822 * | ---- desired range ---- |
823 * | state |
824 * or
825 * | ------------- state -------------- |
826 *
827 * We need to split the extent we found, and may flip bits on
828 * second half.
829 *
830 * If the extent we found extends past our
831 * range, we just split and search again. It'll get split
832 * again the next time though.
833 *
834 * If the extent we found is inside our range, we set the
835 * desired bit on it.
836 */
837 if (state->start < start) {
1edbb734 838 if (state->state & exclusive_bits) {
d1310b2e
CM
839 *failed_start = start;
840 err = -EEXIST;
841 goto out;
842 }
8233767a
XG
843
844 prealloc = alloc_extent_state_atomic(prealloc);
845 BUG_ON(!prealloc);
d1310b2e 846 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
847 if (err)
848 extent_io_tree_panic(tree, err);
849
d1310b2e
CM
850 prealloc = NULL;
851 if (err)
852 goto out;
853 if (state->end <= end) {
1bf85046 854 set_state_bits(tree, state, &bits);
2c64c53d 855 cache_state(state, cached_state);
d1310b2e 856 merge_state(tree, state);
5c939df5
YZ
857 if (last_end == (u64)-1)
858 goto out;
859 start = last_end + 1;
d1ac6e41
LB
860 state = next_state(state);
861 if (start < end && state && state->start == start &&
862 !need_resched())
863 goto hit_next;
d1310b2e
CM
864 }
865 goto search_again;
866 }
867 /*
868 * | ---- desired range ---- |
869 * | state | or | state |
870 *
871 * There's a hole, we need to insert something in it and
872 * ignore the extent we found.
873 */
874 if (state->start > start) {
875 u64 this_end;
876 if (end < last_start)
877 this_end = end;
878 else
d397712b 879 this_end = last_start - 1;
8233767a
XG
880
881 prealloc = alloc_extent_state_atomic(prealloc);
882 BUG_ON(!prealloc);
c7f895a2
XG
883
884 /*
885 * Avoid to free 'prealloc' if it can be merged with
886 * the later extent.
887 */
d1310b2e 888 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 889 &bits);
c2d904e0
JM
890 if (err)
891 extent_io_tree_panic(tree, err);
892
9ed74f2d
JB
893 cache_state(prealloc, cached_state);
894 prealloc = NULL;
d1310b2e
CM
895 start = this_end + 1;
896 goto search_again;
897 }
898 /*
899 * | ---- desired range ---- |
900 * | state |
901 * We need to split the extent, and set the bit
902 * on the first half
903 */
904 if (state->start <= end && state->end > end) {
1edbb734 905 if (state->state & exclusive_bits) {
d1310b2e
CM
906 *failed_start = start;
907 err = -EEXIST;
908 goto out;
909 }
8233767a
XG
910
911 prealloc = alloc_extent_state_atomic(prealloc);
912 BUG_ON(!prealloc);
d1310b2e 913 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
914 if (err)
915 extent_io_tree_panic(tree, err);
d1310b2e 916
1bf85046 917 set_state_bits(tree, prealloc, &bits);
2c64c53d 918 cache_state(prealloc, cached_state);
d1310b2e
CM
919 merge_state(tree, prealloc);
920 prealloc = NULL;
921 goto out;
922 }
923
924 goto search_again;
925
926out:
cad321ad 927 spin_unlock(&tree->lock);
d1310b2e
CM
928 if (prealloc)
929 free_extent_state(prealloc);
930
931 return err;
932
933search_again:
934 if (start > end)
935 goto out;
cad321ad 936 spin_unlock(&tree->lock);
d1310b2e
CM
937 if (mask & __GFP_WAIT)
938 cond_resched();
939 goto again;
940}
d1310b2e 941
41074888
DS
942int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
943 unsigned long bits, u64 * failed_start,
944 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
945{
946 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
947 cached_state, mask);
948}
949
950
462d6fac 951/**
10983f2e
LB
952 * convert_extent_bit - convert all bits in a given range from one bit to
953 * another
462d6fac
JB
954 * @tree: the io tree to search
955 * @start: the start offset in bytes
956 * @end: the end offset in bytes (inclusive)
957 * @bits: the bits to set in this range
958 * @clear_bits: the bits to clear in this range
e6138876 959 * @cached_state: state that we're going to cache
462d6fac
JB
960 * @mask: the allocation mask
961 *
962 * This will go through and set bits for the given range. If any states exist
963 * already in this range they are set with the given bit and cleared of the
964 * clear_bits. This is only meant to be used by things that are mergeable, ie
965 * converting from say DELALLOC to DIRTY. This is not meant to be used with
966 * boundary bits like LOCK.
967 */
968int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 969 unsigned long bits, unsigned long clear_bits,
e6138876 970 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
971{
972 struct extent_state *state;
973 struct extent_state *prealloc = NULL;
974 struct rb_node *node;
975 int err = 0;
976 u64 last_start;
977 u64 last_end;
978
979again:
980 if (!prealloc && (mask & __GFP_WAIT)) {
981 prealloc = alloc_extent_state(mask);
982 if (!prealloc)
983 return -ENOMEM;
984 }
985
986 spin_lock(&tree->lock);
e6138876
JB
987 if (cached_state && *cached_state) {
988 state = *cached_state;
989 if (state->start <= start && state->end > start &&
990 state->tree) {
991 node = &state->rb_node;
992 goto hit_next;
993 }
994 }
995
462d6fac
JB
996 /*
997 * this search will find all the extents that end after
998 * our range starts.
999 */
1000 node = tree_search(tree, start);
1001 if (!node) {
1002 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1003 if (!prealloc) {
1004 err = -ENOMEM;
1005 goto out;
1006 }
462d6fac
JB
1007 err = insert_state(tree, prealloc, start, end, &bits);
1008 prealloc = NULL;
c2d904e0
JM
1009 if (err)
1010 extent_io_tree_panic(tree, err);
462d6fac
JB
1011 goto out;
1012 }
1013 state = rb_entry(node, struct extent_state, rb_node);
1014hit_next:
1015 last_start = state->start;
1016 last_end = state->end;
1017
1018 /*
1019 * | ---- desired range ---- |
1020 * | state |
1021 *
1022 * Just lock what we found and keep going
1023 */
1024 if (state->start == start && state->end <= end) {
462d6fac 1025 set_state_bits(tree, state, &bits);
e6138876 1026 cache_state(state, cached_state);
d1ac6e41 1027 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1028 if (last_end == (u64)-1)
1029 goto out;
462d6fac 1030 start = last_end + 1;
d1ac6e41
LB
1031 if (start < end && state && state->start == start &&
1032 !need_resched())
1033 goto hit_next;
462d6fac
JB
1034 goto search_again;
1035 }
1036
1037 /*
1038 * | ---- desired range ---- |
1039 * | state |
1040 * or
1041 * | ------------- state -------------- |
1042 *
1043 * We need to split the extent we found, and may flip bits on
1044 * second half.
1045 *
1046 * If the extent we found extends past our
1047 * range, we just split and search again. It'll get split
1048 * again the next time though.
1049 *
1050 * If the extent we found is inside our range, we set the
1051 * desired bit on it.
1052 */
1053 if (state->start < start) {
1054 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1055 if (!prealloc) {
1056 err = -ENOMEM;
1057 goto out;
1058 }
462d6fac 1059 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1060 if (err)
1061 extent_io_tree_panic(tree, err);
462d6fac
JB
1062 prealloc = NULL;
1063 if (err)
1064 goto out;
1065 if (state->end <= end) {
1066 set_state_bits(tree, state, &bits);
e6138876 1067 cache_state(state, cached_state);
d1ac6e41 1068 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1069 if (last_end == (u64)-1)
1070 goto out;
1071 start = last_end + 1;
d1ac6e41
LB
1072 if (start < end && state && state->start == start &&
1073 !need_resched())
1074 goto hit_next;
462d6fac
JB
1075 }
1076 goto search_again;
1077 }
1078 /*
1079 * | ---- desired range ---- |
1080 * | state | or | state |
1081 *
1082 * There's a hole, we need to insert something in it and
1083 * ignore the extent we found.
1084 */
1085 if (state->start > start) {
1086 u64 this_end;
1087 if (end < last_start)
1088 this_end = end;
1089 else
1090 this_end = last_start - 1;
1091
1092 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1093 if (!prealloc) {
1094 err = -ENOMEM;
1095 goto out;
1096 }
462d6fac
JB
1097
1098 /*
1099 * Avoid to free 'prealloc' if it can be merged with
1100 * the later extent.
1101 */
1102 err = insert_state(tree, prealloc, start, this_end,
1103 &bits);
c2d904e0
JM
1104 if (err)
1105 extent_io_tree_panic(tree, err);
e6138876 1106 cache_state(prealloc, cached_state);
462d6fac
JB
1107 prealloc = NULL;
1108 start = this_end + 1;
1109 goto search_again;
1110 }
1111 /*
1112 * | ---- desired range ---- |
1113 * | state |
1114 * We need to split the extent, and set the bit
1115 * on the first half
1116 */
1117 if (state->start <= end && state->end > end) {
1118 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1119 if (!prealloc) {
1120 err = -ENOMEM;
1121 goto out;
1122 }
462d6fac
JB
1123
1124 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1125 if (err)
1126 extent_io_tree_panic(tree, err);
462d6fac
JB
1127
1128 set_state_bits(tree, prealloc, &bits);
e6138876 1129 cache_state(prealloc, cached_state);
462d6fac 1130 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1131 prealloc = NULL;
1132 goto out;
1133 }
1134
1135 goto search_again;
1136
1137out:
1138 spin_unlock(&tree->lock);
1139 if (prealloc)
1140 free_extent_state(prealloc);
1141
1142 return err;
1143
1144search_again:
1145 if (start > end)
1146 goto out;
1147 spin_unlock(&tree->lock);
1148 if (mask & __GFP_WAIT)
1149 cond_resched();
1150 goto again;
1151}
1152
d1310b2e
CM
1153/* wrappers around set/clear extent bit */
1154int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1155 gfp_t mask)
1156{
3fbe5c02 1157 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1158 NULL, mask);
d1310b2e 1159}
d1310b2e
CM
1160
1161int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1162 unsigned long bits, gfp_t mask)
d1310b2e 1163{
3fbe5c02 1164 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1165 NULL, mask);
d1310b2e 1166}
d1310b2e
CM
1167
1168int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1169 unsigned long bits, gfp_t mask)
d1310b2e 1170{
2c64c53d 1171 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1172}
d1310b2e
CM
1173
1174int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1175 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1176{
1177 return set_extent_bit(tree, start, end,
fee187d9 1178 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1179 NULL, cached_state, mask);
d1310b2e 1180}
d1310b2e 1181
9e8a4a8b
LB
1182int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1183 struct extent_state **cached_state, gfp_t mask)
1184{
1185 return set_extent_bit(tree, start, end,
1186 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1187 NULL, cached_state, mask);
1188}
1189
d1310b2e
CM
1190int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1191 gfp_t mask)
1192{
1193 return clear_extent_bit(tree, start, end,
32c00aff 1194 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1195 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1196}
d1310b2e
CM
1197
1198int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1199 gfp_t mask)
1200{
3fbe5c02 1201 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1202 NULL, mask);
d1310b2e 1203}
d1310b2e 1204
d1310b2e 1205int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1206 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1207{
6b67a320 1208 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1209 cached_state, mask);
d1310b2e 1210}
d1310b2e 1211
5fd02043
JB
1212int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1213 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1214{
2c64c53d 1215 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1216 cached_state, mask);
d1310b2e 1217}
d1310b2e 1218
d352ac68
CM
1219/*
1220 * either insert or lock state struct between start and end use mask to tell
1221 * us if waiting is desired.
1222 */
1edbb734 1223int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1224 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1225{
1226 int err;
1227 u64 failed_start;
1228 while (1) {
3fbe5c02
JM
1229 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1230 EXTENT_LOCKED, &failed_start,
1231 cached_state, GFP_NOFS);
d0082371 1232 if (err == -EEXIST) {
d1310b2e
CM
1233 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1234 start = failed_start;
d0082371 1235 } else
d1310b2e 1236 break;
d1310b2e
CM
1237 WARN_ON(start > end);
1238 }
1239 return err;
1240}
d1310b2e 1241
d0082371 1242int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1243{
d0082371 1244 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1245}
1246
d0082371 1247int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1248{
1249 int err;
1250 u64 failed_start;
1251
3fbe5c02
JM
1252 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1253 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1254 if (err == -EEXIST) {
1255 if (failed_start > start)
1256 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1257 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1258 return 0;
6643558d 1259 }
25179201
JB
1260 return 1;
1261}
25179201 1262
2c64c53d
CM
1263int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1264 struct extent_state **cached, gfp_t mask)
1265{
1266 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1267 mask);
1268}
1269
d0082371 1270int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1271{
2c64c53d 1272 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1273 GFP_NOFS);
d1310b2e 1274}
d1310b2e 1275
4adaa611
CM
1276int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1277{
1278 unsigned long index = start >> PAGE_CACHE_SHIFT;
1279 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1280 struct page *page;
1281
1282 while (index <= end_index) {
1283 page = find_get_page(inode->i_mapping, index);
1284 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1285 clear_page_dirty_for_io(page);
1286 page_cache_release(page);
1287 index++;
1288 }
1289 return 0;
1290}
1291
1292int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1293{
1294 unsigned long index = start >> PAGE_CACHE_SHIFT;
1295 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1296 struct page *page;
1297
1298 while (index <= end_index) {
1299 page = find_get_page(inode->i_mapping, index);
1300 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1301 account_page_redirty(page);
1302 __set_page_dirty_nobuffers(page);
1303 page_cache_release(page);
1304 index++;
1305 }
1306 return 0;
1307}
1308
d1310b2e
CM
1309/*
1310 * helper function to set both pages and extents in the tree writeback
1311 */
b2950863 1312static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1313{
1314 unsigned long index = start >> PAGE_CACHE_SHIFT;
1315 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1316 struct page *page;
1317
1318 while (index <= end_index) {
1319 page = find_get_page(tree->mapping, index);
79787eaa 1320 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1321 set_page_writeback(page);
1322 page_cache_release(page);
1323 index++;
1324 }
d1310b2e
CM
1325 return 0;
1326}
d1310b2e 1327
d352ac68
CM
1328/* find the first state struct with 'bits' set after 'start', and
1329 * return it. tree->lock must be held. NULL will returned if
1330 * nothing was found after 'start'
1331 */
48a3b636
ES
1332static struct extent_state *
1333find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1334 u64 start, unsigned long bits)
d7fc640e
CM
1335{
1336 struct rb_node *node;
1337 struct extent_state *state;
1338
1339 /*
1340 * this search will find all the extents that end after
1341 * our range starts.
1342 */
1343 node = tree_search(tree, start);
d397712b 1344 if (!node)
d7fc640e 1345 goto out;
d7fc640e 1346
d397712b 1347 while (1) {
d7fc640e 1348 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1349 if (state->end >= start && (state->state & bits))
d7fc640e 1350 return state;
d397712b 1351
d7fc640e
CM
1352 node = rb_next(node);
1353 if (!node)
1354 break;
1355 }
1356out:
1357 return NULL;
1358}
d7fc640e 1359
69261c4b
XG
1360/*
1361 * find the first offset in the io tree with 'bits' set. zero is
1362 * returned if we find something, and *start_ret and *end_ret are
1363 * set to reflect the state struct that was found.
1364 *
477d7eaf 1365 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1366 */
1367int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1368 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1369 struct extent_state **cached_state)
69261c4b
XG
1370{
1371 struct extent_state *state;
e6138876 1372 struct rb_node *n;
69261c4b
XG
1373 int ret = 1;
1374
1375 spin_lock(&tree->lock);
e6138876
JB
1376 if (cached_state && *cached_state) {
1377 state = *cached_state;
1378 if (state->end == start - 1 && state->tree) {
1379 n = rb_next(&state->rb_node);
1380 while (n) {
1381 state = rb_entry(n, struct extent_state,
1382 rb_node);
1383 if (state->state & bits)
1384 goto got_it;
1385 n = rb_next(n);
1386 }
1387 free_extent_state(*cached_state);
1388 *cached_state = NULL;
1389 goto out;
1390 }
1391 free_extent_state(*cached_state);
1392 *cached_state = NULL;
1393 }
1394
69261c4b 1395 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1396got_it:
69261c4b 1397 if (state) {
e6138876 1398 cache_state(state, cached_state);
69261c4b
XG
1399 *start_ret = state->start;
1400 *end_ret = state->end;
1401 ret = 0;
1402 }
e6138876 1403out:
69261c4b
XG
1404 spin_unlock(&tree->lock);
1405 return ret;
1406}
1407
d352ac68
CM
1408/*
1409 * find a contiguous range of bytes in the file marked as delalloc, not
1410 * more than 'max_bytes'. start and end are used to return the range,
1411 *
1412 * 1 is returned if we find something, 0 if nothing was in the tree
1413 */
c8b97818 1414static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1415 u64 *start, u64 *end, u64 max_bytes,
1416 struct extent_state **cached_state)
d1310b2e
CM
1417{
1418 struct rb_node *node;
1419 struct extent_state *state;
1420 u64 cur_start = *start;
1421 u64 found = 0;
1422 u64 total_bytes = 0;
1423
cad321ad 1424 spin_lock(&tree->lock);
c8b97818 1425
d1310b2e
CM
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
80ea96b1 1430 node = tree_search(tree, cur_start);
2b114d1d 1431 if (!node) {
3b951516
CM
1432 if (!found)
1433 *end = (u64)-1;
d1310b2e
CM
1434 goto out;
1435 }
1436
d397712b 1437 while (1) {
d1310b2e 1438 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1439 if (found && (state->start != cur_start ||
1440 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1441 goto out;
1442 }
1443 if (!(state->state & EXTENT_DELALLOC)) {
1444 if (!found)
1445 *end = state->end;
1446 goto out;
1447 }
c2a128d2 1448 if (!found) {
d1310b2e 1449 *start = state->start;
c2a128d2
JB
1450 *cached_state = state;
1451 atomic_inc(&state->refs);
1452 }
d1310b2e
CM
1453 found++;
1454 *end = state->end;
1455 cur_start = state->end + 1;
1456 node = rb_next(node);
1457 if (!node)
1458 break;
1459 total_bytes += state->end - state->start + 1;
1460 if (total_bytes >= max_bytes)
1461 break;
1462 }
1463out:
cad321ad 1464 spin_unlock(&tree->lock);
d1310b2e
CM
1465 return found;
1466}
1467
143bede5
JM
1468static noinline void __unlock_for_delalloc(struct inode *inode,
1469 struct page *locked_page,
1470 u64 start, u64 end)
c8b97818
CM
1471{
1472 int ret;
1473 struct page *pages[16];
1474 unsigned long index = start >> PAGE_CACHE_SHIFT;
1475 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1476 unsigned long nr_pages = end_index - index + 1;
1477 int i;
1478
1479 if (index == locked_page->index && end_index == index)
143bede5 1480 return;
c8b97818 1481
d397712b 1482 while (nr_pages > 0) {
c8b97818 1483 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1484 min_t(unsigned long, nr_pages,
1485 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1486 for (i = 0; i < ret; i++) {
1487 if (pages[i] != locked_page)
1488 unlock_page(pages[i]);
1489 page_cache_release(pages[i]);
1490 }
1491 nr_pages -= ret;
1492 index += ret;
1493 cond_resched();
1494 }
c8b97818
CM
1495}
1496
1497static noinline int lock_delalloc_pages(struct inode *inode,
1498 struct page *locked_page,
1499 u64 delalloc_start,
1500 u64 delalloc_end)
1501{
1502 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1503 unsigned long start_index = index;
1504 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1505 unsigned long pages_locked = 0;
1506 struct page *pages[16];
1507 unsigned long nrpages;
1508 int ret;
1509 int i;
1510
1511 /* the caller is responsible for locking the start index */
1512 if (index == locked_page->index && index == end_index)
1513 return 0;
1514
1515 /* skip the page at the start index */
1516 nrpages = end_index - index + 1;
d397712b 1517 while (nrpages > 0) {
c8b97818 1518 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1519 min_t(unsigned long,
1520 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1521 if (ret == 0) {
1522 ret = -EAGAIN;
1523 goto done;
1524 }
1525 /* now we have an array of pages, lock them all */
1526 for (i = 0; i < ret; i++) {
1527 /*
1528 * the caller is taking responsibility for
1529 * locked_page
1530 */
771ed689 1531 if (pages[i] != locked_page) {
c8b97818 1532 lock_page(pages[i]);
f2b1c41c
CM
1533 if (!PageDirty(pages[i]) ||
1534 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1535 ret = -EAGAIN;
1536 unlock_page(pages[i]);
1537 page_cache_release(pages[i]);
1538 goto done;
1539 }
1540 }
c8b97818 1541 page_cache_release(pages[i]);
771ed689 1542 pages_locked++;
c8b97818 1543 }
c8b97818
CM
1544 nrpages -= ret;
1545 index += ret;
1546 cond_resched();
1547 }
1548 ret = 0;
1549done:
1550 if (ret && pages_locked) {
1551 __unlock_for_delalloc(inode, locked_page,
1552 delalloc_start,
1553 ((u64)(start_index + pages_locked - 1)) <<
1554 PAGE_CACHE_SHIFT);
1555 }
1556 return ret;
1557}
1558
1559/*
1560 * find a contiguous range of bytes in the file marked as delalloc, not
1561 * more than 'max_bytes'. start and end are used to return the range,
1562 *
1563 * 1 is returned if we find something, 0 if nothing was in the tree
1564 */
1565static noinline u64 find_lock_delalloc_range(struct inode *inode,
1566 struct extent_io_tree *tree,
1567 struct page *locked_page,
1568 u64 *start, u64 *end,
1569 u64 max_bytes)
1570{
1571 u64 delalloc_start;
1572 u64 delalloc_end;
1573 u64 found;
9655d298 1574 struct extent_state *cached_state = NULL;
c8b97818
CM
1575 int ret;
1576 int loops = 0;
1577
1578again:
1579 /* step one, find a bunch of delalloc bytes starting at start */
1580 delalloc_start = *start;
1581 delalloc_end = 0;
1582 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1583 max_bytes, &cached_state);
70b99e69 1584 if (!found || delalloc_end <= *start) {
c8b97818
CM
1585 *start = delalloc_start;
1586 *end = delalloc_end;
c2a128d2 1587 free_extent_state(cached_state);
c8b97818
CM
1588 return found;
1589 }
1590
70b99e69
CM
1591 /*
1592 * start comes from the offset of locked_page. We have to lock
1593 * pages in order, so we can't process delalloc bytes before
1594 * locked_page
1595 */
d397712b 1596 if (delalloc_start < *start)
70b99e69 1597 delalloc_start = *start;
70b99e69 1598
c8b97818
CM
1599 /*
1600 * make sure to limit the number of pages we try to lock down
1601 * if we're looping.
1602 */
d397712b 1603 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1604 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1605
c8b97818
CM
1606 /* step two, lock all the pages after the page that has start */
1607 ret = lock_delalloc_pages(inode, locked_page,
1608 delalloc_start, delalloc_end);
1609 if (ret == -EAGAIN) {
1610 /* some of the pages are gone, lets avoid looping by
1611 * shortening the size of the delalloc range we're searching
1612 */
9655d298 1613 free_extent_state(cached_state);
c8b97818
CM
1614 if (!loops) {
1615 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1616 max_bytes = PAGE_CACHE_SIZE - offset;
1617 loops = 1;
1618 goto again;
1619 } else {
1620 found = 0;
1621 goto out_failed;
1622 }
1623 }
79787eaa 1624 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1625
1626 /* step three, lock the state bits for the whole range */
d0082371 1627 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1628
1629 /* then test to make sure it is all still delalloc */
1630 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1631 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1632 if (!ret) {
9655d298
CM
1633 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1634 &cached_state, GFP_NOFS);
c8b97818
CM
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start, delalloc_end);
1637 cond_resched();
1638 goto again;
1639 }
9655d298 1640 free_extent_state(cached_state);
c8b97818
CM
1641 *start = delalloc_start;
1642 *end = delalloc_end;
1643out_failed:
1644 return found;
1645}
1646
1647int extent_clear_unlock_delalloc(struct inode *inode,
1648 struct extent_io_tree *tree,
1649 u64 start, u64 end, struct page *locked_page,
a791e35e 1650 unsigned long op)
c8b97818
CM
1651{
1652 int ret;
1653 struct page *pages[16];
1654 unsigned long index = start >> PAGE_CACHE_SHIFT;
1655 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1656 unsigned long nr_pages = end_index - index + 1;
1657 int i;
41074888 1658 unsigned long clear_bits = 0;
c8b97818 1659
a791e35e 1660 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1661 clear_bits |= EXTENT_LOCKED;
a791e35e 1662 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1663 clear_bits |= EXTENT_DIRTY;
1664
a791e35e 1665 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1666 clear_bits |= EXTENT_DELALLOC;
1667
2c64c53d 1668 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1669 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1670 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1671 EXTENT_SET_PRIVATE2)))
771ed689 1672 return 0;
c8b97818 1673
d397712b 1674 while (nr_pages > 0) {
c8b97818 1675 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1676 min_t(unsigned long,
1677 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1678 for (i = 0; i < ret; i++) {
8b62b72b 1679
a791e35e 1680 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1681 SetPagePrivate2(pages[i]);
1682
c8b97818
CM
1683 if (pages[i] == locked_page) {
1684 page_cache_release(pages[i]);
1685 continue;
1686 }
a791e35e 1687 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1688 clear_page_dirty_for_io(pages[i]);
a791e35e 1689 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1690 set_page_writeback(pages[i]);
a791e35e 1691 if (op & EXTENT_END_WRITEBACK)
c8b97818 1692 end_page_writeback(pages[i]);
a791e35e 1693 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1694 unlock_page(pages[i]);
c8b97818
CM
1695 page_cache_release(pages[i]);
1696 }
1697 nr_pages -= ret;
1698 index += ret;
1699 cond_resched();
1700 }
1701 return 0;
1702}
c8b97818 1703
d352ac68
CM
1704/*
1705 * count the number of bytes in the tree that have a given bit(s)
1706 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1707 * cached. The total number found is returned.
1708 */
d1310b2e
CM
1709u64 count_range_bits(struct extent_io_tree *tree,
1710 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1711 unsigned long bits, int contig)
d1310b2e
CM
1712{
1713 struct rb_node *node;
1714 struct extent_state *state;
1715 u64 cur_start = *start;
1716 u64 total_bytes = 0;
ec29ed5b 1717 u64 last = 0;
d1310b2e
CM
1718 int found = 0;
1719
1720 if (search_end <= cur_start) {
d1310b2e
CM
1721 WARN_ON(1);
1722 return 0;
1723 }
1724
cad321ad 1725 spin_lock(&tree->lock);
d1310b2e
CM
1726 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1727 total_bytes = tree->dirty_bytes;
1728 goto out;
1729 }
1730 /*
1731 * this search will find all the extents that end after
1732 * our range starts.
1733 */
80ea96b1 1734 node = tree_search(tree, cur_start);
d397712b 1735 if (!node)
d1310b2e 1736 goto out;
d1310b2e 1737
d397712b 1738 while (1) {
d1310b2e
CM
1739 state = rb_entry(node, struct extent_state, rb_node);
1740 if (state->start > search_end)
1741 break;
ec29ed5b
CM
1742 if (contig && found && state->start > last + 1)
1743 break;
1744 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1745 total_bytes += min(search_end, state->end) + 1 -
1746 max(cur_start, state->start);
1747 if (total_bytes >= max_bytes)
1748 break;
1749 if (!found) {
af60bed2 1750 *start = max(cur_start, state->start);
d1310b2e
CM
1751 found = 1;
1752 }
ec29ed5b
CM
1753 last = state->end;
1754 } else if (contig && found) {
1755 break;
d1310b2e
CM
1756 }
1757 node = rb_next(node);
1758 if (!node)
1759 break;
1760 }
1761out:
cad321ad 1762 spin_unlock(&tree->lock);
d1310b2e
CM
1763 return total_bytes;
1764}
b2950863 1765
d352ac68
CM
1766/*
1767 * set the private field for a given byte offset in the tree. If there isn't
1768 * an extent_state there already, this does nothing.
1769 */
d1310b2e
CM
1770int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1771{
1772 struct rb_node *node;
1773 struct extent_state *state;
1774 int ret = 0;
1775
cad321ad 1776 spin_lock(&tree->lock);
d1310b2e
CM
1777 /*
1778 * this search will find all the extents that end after
1779 * our range starts.
1780 */
80ea96b1 1781 node = tree_search(tree, start);
2b114d1d 1782 if (!node) {
d1310b2e
CM
1783 ret = -ENOENT;
1784 goto out;
1785 }
1786 state = rb_entry(node, struct extent_state, rb_node);
1787 if (state->start != start) {
1788 ret = -ENOENT;
1789 goto out;
1790 }
1791 state->private = private;
1792out:
cad321ad 1793 spin_unlock(&tree->lock);
d1310b2e
CM
1794 return ret;
1795}
1796
e4100d98
MX
1797void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1798 int count)
1799{
1800 struct rb_node *node;
1801 struct extent_state *state;
1802
1803 spin_lock(&tree->lock);
1804 /*
1805 * this search will find all the extents that end after
1806 * our range starts.
1807 */
1808 node = tree_search(tree, start);
1809 BUG_ON(!node);
1810
1811 state = rb_entry(node, struct extent_state, rb_node);
1812 BUG_ON(state->start != start);
1813
1814 while (count) {
1815 state->private = *csums++;
1816 count--;
1817 state = next_state(state);
1818 }
1819 spin_unlock(&tree->lock);
1820}
1821
1822static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1823{
1824 struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1825
1826 return page_offset(bvec->bv_page) + bvec->bv_offset;
1827}
1828
1829void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1830 u32 csums[], int count)
1831{
1832 struct rb_node *node;
1833 struct extent_state *state = NULL;
1834 u64 start;
1835
1836 spin_lock(&tree->lock);
1837 do {
1838 start = __btrfs_get_bio_offset(bio, bio_index);
1839 if (state == NULL || state->start != start) {
1840 node = tree_search(tree, start);
1841 BUG_ON(!node);
1842
1843 state = rb_entry(node, struct extent_state, rb_node);
1844 BUG_ON(state->start != start);
1845 }
1846 state->private = *csums++;
1847 count--;
1848 bio_index++;
1849
1850 state = next_state(state);
1851 } while (count);
1852 spin_unlock(&tree->lock);
1853}
1854
d1310b2e
CM
1855int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1856{
1857 struct rb_node *node;
1858 struct extent_state *state;
1859 int ret = 0;
1860
cad321ad 1861 spin_lock(&tree->lock);
d1310b2e
CM
1862 /*
1863 * this search will find all the extents that end after
1864 * our range starts.
1865 */
80ea96b1 1866 node = tree_search(tree, start);
2b114d1d 1867 if (!node) {
d1310b2e
CM
1868 ret = -ENOENT;
1869 goto out;
1870 }
1871 state = rb_entry(node, struct extent_state, rb_node);
1872 if (state->start != start) {
1873 ret = -ENOENT;
1874 goto out;
1875 }
1876 *private = state->private;
1877out:
cad321ad 1878 spin_unlock(&tree->lock);
d1310b2e
CM
1879 return ret;
1880}
1881
1882/*
1883 * searches a range in the state tree for a given mask.
70dec807 1884 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1885 * has the bits set. Otherwise, 1 is returned if any bit in the
1886 * range is found set.
1887 */
1888int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1889 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1890{
1891 struct extent_state *state = NULL;
1892 struct rb_node *node;
1893 int bitset = 0;
d1310b2e 1894
cad321ad 1895 spin_lock(&tree->lock);
df98b6e2
JB
1896 if (cached && cached->tree && cached->start <= start &&
1897 cached->end > start)
9655d298
CM
1898 node = &cached->rb_node;
1899 else
1900 node = tree_search(tree, start);
d1310b2e
CM
1901 while (node && start <= end) {
1902 state = rb_entry(node, struct extent_state, rb_node);
1903
1904 if (filled && state->start > start) {
1905 bitset = 0;
1906 break;
1907 }
1908
1909 if (state->start > end)
1910 break;
1911
1912 if (state->state & bits) {
1913 bitset = 1;
1914 if (!filled)
1915 break;
1916 } else if (filled) {
1917 bitset = 0;
1918 break;
1919 }
46562cec
CM
1920
1921 if (state->end == (u64)-1)
1922 break;
1923
d1310b2e
CM
1924 start = state->end + 1;
1925 if (start > end)
1926 break;
1927 node = rb_next(node);
1928 if (!node) {
1929 if (filled)
1930 bitset = 0;
1931 break;
1932 }
1933 }
cad321ad 1934 spin_unlock(&tree->lock);
d1310b2e
CM
1935 return bitset;
1936}
d1310b2e
CM
1937
1938/*
1939 * helper function to set a given page up to date if all the
1940 * extents in the tree for that page are up to date
1941 */
143bede5 1942static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1943{
4eee4fa4 1944 u64 start = page_offset(page);
d1310b2e 1945 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1946 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1947 SetPageUptodate(page);
d1310b2e
CM
1948}
1949
1950/*
1951 * helper function to unlock a page if all the extents in the tree
1952 * for that page are unlocked
1953 */
143bede5 1954static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e 1955{
4eee4fa4 1956 u64 start = page_offset(page);
d1310b2e 1957 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1958 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1959 unlock_page(page);
d1310b2e
CM
1960}
1961
1962/*
1963 * helper function to end page writeback if all the extents
1964 * in the tree for that page are done with writeback
1965 */
143bede5
JM
1966static void check_page_writeback(struct extent_io_tree *tree,
1967 struct page *page)
d1310b2e 1968{
1edbb734 1969 end_page_writeback(page);
d1310b2e
CM
1970}
1971
4a54c8c1
JS
1972/*
1973 * When IO fails, either with EIO or csum verification fails, we
1974 * try other mirrors that might have a good copy of the data. This
1975 * io_failure_record is used to record state as we go through all the
1976 * mirrors. If another mirror has good data, the page is set up to date
1977 * and things continue. If a good mirror can't be found, the original
1978 * bio end_io callback is called to indicate things have failed.
1979 */
1980struct io_failure_record {
1981 struct page *page;
1982 u64 start;
1983 u64 len;
1984 u64 logical;
1985 unsigned long bio_flags;
1986 int this_mirror;
1987 int failed_mirror;
1988 int in_validation;
1989};
1990
1991static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1992 int did_repair)
1993{
1994 int ret;
1995 int err = 0;
1996 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1997
1998 set_state_private(failure_tree, rec->start, 0);
1999 ret = clear_extent_bits(failure_tree, rec->start,
2000 rec->start + rec->len - 1,
2001 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2002 if (ret)
2003 err = ret;
2004
53b381b3
DW
2005 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2006 rec->start + rec->len - 1,
2007 EXTENT_DAMAGED, GFP_NOFS);
2008 if (ret && !err)
2009 err = ret;
4a54c8c1
JS
2010
2011 kfree(rec);
2012 return err;
2013}
2014
2015static void repair_io_failure_callback(struct bio *bio, int err)
2016{
2017 complete(bio->bi_private);
2018}
2019
2020/*
2021 * this bypasses the standard btrfs submit functions deliberately, as
2022 * the standard behavior is to write all copies in a raid setup. here we only
2023 * want to write the one bad copy. so we do the mapping for ourselves and issue
2024 * submit_bio directly.
3ec706c8 2025 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2026 * actually prevents the read that triggered the error from finishing.
2027 * currently, there can be no more than two copies of every data bit. thus,
2028 * exactly one rewrite is required.
2029 */
3ec706c8 2030int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2031 u64 length, u64 logical, struct page *page,
2032 int mirror_num)
2033{
2034 struct bio *bio;
2035 struct btrfs_device *dev;
2036 DECLARE_COMPLETION_ONSTACK(compl);
2037 u64 map_length = 0;
2038 u64 sector;
2039 struct btrfs_bio *bbio = NULL;
53b381b3 2040 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2041 int ret;
2042
2043 BUG_ON(!mirror_num);
2044
53b381b3
DW
2045 /* we can't repair anything in raid56 yet */
2046 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2047 return 0;
2048
4a54c8c1
JS
2049 bio = bio_alloc(GFP_NOFS, 1);
2050 if (!bio)
2051 return -EIO;
2052 bio->bi_private = &compl;
2053 bio->bi_end_io = repair_io_failure_callback;
2054 bio->bi_size = 0;
2055 map_length = length;
2056
3ec706c8 2057 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2058 &map_length, &bbio, mirror_num);
2059 if (ret) {
2060 bio_put(bio);
2061 return -EIO;
2062 }
2063 BUG_ON(mirror_num != bbio->mirror_num);
2064 sector = bbio->stripes[mirror_num-1].physical >> 9;
2065 bio->bi_sector = sector;
2066 dev = bbio->stripes[mirror_num-1].dev;
2067 kfree(bbio);
2068 if (!dev || !dev->bdev || !dev->writeable) {
2069 bio_put(bio);
2070 return -EIO;
2071 }
2072 bio->bi_bdev = dev->bdev;
4eee4fa4 2073 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2074 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2075 wait_for_completion(&compl);
2076
2077 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2078 /* try to remap that extent elsewhere? */
2079 bio_put(bio);
442a4f63 2080 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2081 return -EIO;
2082 }
2083
d5b025d5 2084 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2085 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2086 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2087
2088 bio_put(bio);
2089 return 0;
2090}
2091
ea466794
JB
2092int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2093 int mirror_num)
2094{
ea466794
JB
2095 u64 start = eb->start;
2096 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2097 int ret = 0;
ea466794
JB
2098
2099 for (i = 0; i < num_pages; i++) {
2100 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2101 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2102 start, p, mirror_num);
2103 if (ret)
2104 break;
2105 start += PAGE_CACHE_SIZE;
2106 }
2107
2108 return ret;
2109}
2110
4a54c8c1
JS
2111/*
2112 * each time an IO finishes, we do a fast check in the IO failure tree
2113 * to see if we need to process or clean up an io_failure_record
2114 */
2115static int clean_io_failure(u64 start, struct page *page)
2116{
2117 u64 private;
2118 u64 private_failure;
2119 struct io_failure_record *failrec;
3ec706c8 2120 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2121 struct extent_state *state;
2122 int num_copies;
2123 int did_repair = 0;
2124 int ret;
2125 struct inode *inode = page->mapping->host;
2126
2127 private = 0;
2128 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2129 (u64)-1, 1, EXTENT_DIRTY, 0);
2130 if (!ret)
2131 return 0;
2132
2133 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2134 &private_failure);
2135 if (ret)
2136 return 0;
2137
2138 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2139 BUG_ON(!failrec->this_mirror);
2140
2141 if (failrec->in_validation) {
2142 /* there was no real error, just free the record */
2143 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2144 failrec->start);
2145 did_repair = 1;
2146 goto out;
2147 }
2148
2149 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2150 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2151 failrec->start,
2152 EXTENT_LOCKED);
2153 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2154
2155 if (state && state->start == failrec->start) {
3ec706c8
SB
2156 fs_info = BTRFS_I(inode)->root->fs_info;
2157 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2158 failrec->len);
4a54c8c1 2159 if (num_copies > 1) {
3ec706c8 2160 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2161 failrec->logical, page,
2162 failrec->failed_mirror);
2163 did_repair = !ret;
2164 }
53b381b3 2165 ret = 0;
4a54c8c1
JS
2166 }
2167
2168out:
2169 if (!ret)
2170 ret = free_io_failure(inode, failrec, did_repair);
2171
2172 return ret;
2173}
2174
2175/*
2176 * this is a generic handler for readpage errors (default
2177 * readpage_io_failed_hook). if other copies exist, read those and write back
2178 * good data to the failed position. does not investigate in remapping the
2179 * failed extent elsewhere, hoping the device will be smart enough to do this as
2180 * needed
2181 */
2182
2183static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2184 u64 start, u64 end, int failed_mirror,
2185 struct extent_state *state)
2186{
2187 struct io_failure_record *failrec = NULL;
2188 u64 private;
2189 struct extent_map *em;
2190 struct inode *inode = page->mapping->host;
2191 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2192 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2193 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2194 struct bio *bio;
2195 int num_copies;
2196 int ret;
2197 int read_mode;
2198 u64 logical;
2199
2200 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2201
2202 ret = get_state_private(failure_tree, start, &private);
2203 if (ret) {
2204 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2205 if (!failrec)
2206 return -ENOMEM;
2207 failrec->start = start;
2208 failrec->len = end - start + 1;
2209 failrec->this_mirror = 0;
2210 failrec->bio_flags = 0;
2211 failrec->in_validation = 0;
2212
2213 read_lock(&em_tree->lock);
2214 em = lookup_extent_mapping(em_tree, start, failrec->len);
2215 if (!em) {
2216 read_unlock(&em_tree->lock);
2217 kfree(failrec);
2218 return -EIO;
2219 }
2220
2221 if (em->start > start || em->start + em->len < start) {
2222 free_extent_map(em);
2223 em = NULL;
2224 }
2225 read_unlock(&em_tree->lock);
2226
7a2d6a64 2227 if (!em) {
4a54c8c1
JS
2228 kfree(failrec);
2229 return -EIO;
2230 }
2231 logical = start - em->start;
2232 logical = em->block_start + logical;
2233 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2234 logical = em->block_start;
2235 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2236 extent_set_compress_type(&failrec->bio_flags,
2237 em->compress_type);
2238 }
2239 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2240 "len=%llu\n", logical, start, failrec->len);
2241 failrec->logical = logical;
2242 free_extent_map(em);
2243
2244 /* set the bits in the private failure tree */
2245 ret = set_extent_bits(failure_tree, start, end,
2246 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2247 if (ret >= 0)
2248 ret = set_state_private(failure_tree, start,
2249 (u64)(unsigned long)failrec);
2250 /* set the bits in the inode's tree */
2251 if (ret >= 0)
2252 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2253 GFP_NOFS);
2254 if (ret < 0) {
2255 kfree(failrec);
2256 return ret;
2257 }
2258 } else {
2259 failrec = (struct io_failure_record *)(unsigned long)private;
2260 pr_debug("bio_readpage_error: (found) logical=%llu, "
2261 "start=%llu, len=%llu, validation=%d\n",
2262 failrec->logical, failrec->start, failrec->len,
2263 failrec->in_validation);
2264 /*
2265 * when data can be on disk more than twice, add to failrec here
2266 * (e.g. with a list for failed_mirror) to make
2267 * clean_io_failure() clean all those errors at once.
2268 */
2269 }
5d964051
SB
2270 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2271 failrec->logical, failrec->len);
4a54c8c1
JS
2272 if (num_copies == 1) {
2273 /*
2274 * we only have a single copy of the data, so don't bother with
2275 * all the retry and error correction code that follows. no
2276 * matter what the error is, it is very likely to persist.
2277 */
2278 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2279 "state=%p, num_copies=%d, next_mirror %d, "
2280 "failed_mirror %d\n", state, num_copies,
2281 failrec->this_mirror, failed_mirror);
2282 free_io_failure(inode, failrec, 0);
2283 return -EIO;
2284 }
2285
2286 if (!state) {
2287 spin_lock(&tree->lock);
2288 state = find_first_extent_bit_state(tree, failrec->start,
2289 EXTENT_LOCKED);
2290 if (state && state->start != failrec->start)
2291 state = NULL;
2292 spin_unlock(&tree->lock);
2293 }
2294
2295 /*
2296 * there are two premises:
2297 * a) deliver good data to the caller
2298 * b) correct the bad sectors on disk
2299 */
2300 if (failed_bio->bi_vcnt > 1) {
2301 /*
2302 * to fulfill b), we need to know the exact failing sectors, as
2303 * we don't want to rewrite any more than the failed ones. thus,
2304 * we need separate read requests for the failed bio
2305 *
2306 * if the following BUG_ON triggers, our validation request got
2307 * merged. we need separate requests for our algorithm to work.
2308 */
2309 BUG_ON(failrec->in_validation);
2310 failrec->in_validation = 1;
2311 failrec->this_mirror = failed_mirror;
2312 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2313 } else {
2314 /*
2315 * we're ready to fulfill a) and b) alongside. get a good copy
2316 * of the failed sector and if we succeed, we have setup
2317 * everything for repair_io_failure to do the rest for us.
2318 */
2319 if (failrec->in_validation) {
2320 BUG_ON(failrec->this_mirror != failed_mirror);
2321 failrec->in_validation = 0;
2322 failrec->this_mirror = 0;
2323 }
2324 failrec->failed_mirror = failed_mirror;
2325 failrec->this_mirror++;
2326 if (failrec->this_mirror == failed_mirror)
2327 failrec->this_mirror++;
2328 read_mode = READ_SYNC;
2329 }
2330
2331 if (!state || failrec->this_mirror > num_copies) {
2332 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2333 "next_mirror %d, failed_mirror %d\n", state,
2334 num_copies, failrec->this_mirror, failed_mirror);
2335 free_io_failure(inode, failrec, 0);
2336 return -EIO;
2337 }
2338
2339 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2340 if (!bio) {
2341 free_io_failure(inode, failrec, 0);
2342 return -EIO;
2343 }
4a54c8c1
JS
2344 bio->bi_private = state;
2345 bio->bi_end_io = failed_bio->bi_end_io;
2346 bio->bi_sector = failrec->logical >> 9;
2347 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2348 bio->bi_size = 0;
2349
2350 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2351
2352 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2353 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2354 failrec->this_mirror, num_copies, failrec->in_validation);
2355
013bd4c3
TI
2356 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2357 failrec->this_mirror,
2358 failrec->bio_flags, 0);
2359 return ret;
4a54c8c1
JS
2360}
2361
d1310b2e
CM
2362/* lots and lots of room for performance fixes in the end_bio funcs */
2363
87826df0
JM
2364int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2365{
2366 int uptodate = (err == 0);
2367 struct extent_io_tree *tree;
2368 int ret;
2369
2370 tree = &BTRFS_I(page->mapping->host)->io_tree;
2371
2372 if (tree->ops && tree->ops->writepage_end_io_hook) {
2373 ret = tree->ops->writepage_end_io_hook(page, start,
2374 end, NULL, uptodate);
2375 if (ret)
2376 uptodate = 0;
2377 }
2378
87826df0 2379 if (!uptodate) {
87826df0
JM
2380 ClearPageUptodate(page);
2381 SetPageError(page);
2382 }
2383 return 0;
2384}
2385
d1310b2e
CM
2386/*
2387 * after a writepage IO is done, we need to:
2388 * clear the uptodate bits on error
2389 * clear the writeback bits in the extent tree for this IO
2390 * end_page_writeback if the page has no more pending IO
2391 *
2392 * Scheduling is not allowed, so the extent state tree is expected
2393 * to have one and only one object corresponding to this IO.
2394 */
d1310b2e 2395static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2396{
d1310b2e 2397 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2398 struct extent_io_tree *tree;
d1310b2e
CM
2399 u64 start;
2400 u64 end;
2401 int whole_page;
2402
d1310b2e
CM
2403 do {
2404 struct page *page = bvec->bv_page;
902b22f3
DW
2405 tree = &BTRFS_I(page->mapping->host)->io_tree;
2406
4eee4fa4 2407 start = page_offset(page) + bvec->bv_offset;
d1310b2e
CM
2408 end = start + bvec->bv_len - 1;
2409
2410 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2411 whole_page = 1;
2412 else
2413 whole_page = 0;
2414
2415 if (--bvec >= bio->bi_io_vec)
2416 prefetchw(&bvec->bv_page->flags);
1259ab75 2417
87826df0
JM
2418 if (end_extent_writepage(page, err, start, end))
2419 continue;
70dec807 2420
d1310b2e
CM
2421 if (whole_page)
2422 end_page_writeback(page);
2423 else
2424 check_page_writeback(tree, page);
d1310b2e 2425 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2426
d1310b2e 2427 bio_put(bio);
d1310b2e
CM
2428}
2429
2430/*
2431 * after a readpage IO is done, we need to:
2432 * clear the uptodate bits on error
2433 * set the uptodate bits if things worked
2434 * set the page up to date if all extents in the tree are uptodate
2435 * clear the lock bit in the extent tree
2436 * unlock the page if there are no other extents locked for it
2437 *
2438 * Scheduling is not allowed, so the extent state tree is expected
2439 * to have one and only one object corresponding to this IO.
2440 */
d1310b2e 2441static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2442{
2443 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2444 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2445 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2446 struct extent_io_tree *tree;
d1310b2e
CM
2447 u64 start;
2448 u64 end;
2449 int whole_page;
5cf1ab56 2450 int mirror;
d1310b2e
CM
2451 int ret;
2452
d20f7043
CM
2453 if (err)
2454 uptodate = 0;
2455
d1310b2e
CM
2456 do {
2457 struct page *page = bvec->bv_page;
507903b8
AJ
2458 struct extent_state *cached = NULL;
2459 struct extent_state *state;
2460
be3940c0
KO
2461 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2462 "mirror=%ld\n", (u64)bio->bi_sector, err,
4a54c8c1 2463 (long int)bio->bi_bdev);
902b22f3
DW
2464 tree = &BTRFS_I(page->mapping->host)->io_tree;
2465
4eee4fa4 2466 start = page_offset(page) + bvec->bv_offset;
d1310b2e
CM
2467 end = start + bvec->bv_len - 1;
2468
2469 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2470 whole_page = 1;
2471 else
2472 whole_page = 0;
2473
4125bf76 2474 if (++bvec <= bvec_end)
d1310b2e
CM
2475 prefetchw(&bvec->bv_page->flags);
2476
507903b8 2477 spin_lock(&tree->lock);
0d399205 2478 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2479 if (state && state->start == start) {
507903b8
AJ
2480 /*
2481 * take a reference on the state, unlock will drop
2482 * the ref
2483 */
2484 cache_state(state, &cached);
2485 }
2486 spin_unlock(&tree->lock);
2487
5cf1ab56 2488 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2489 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2490 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2491 state, mirror);
5ee0844d 2492 if (ret)
d1310b2e 2493 uptodate = 0;
5ee0844d 2494 else
4a54c8c1 2495 clean_io_failure(start, page);
d1310b2e 2496 }
ea466794 2497
ea466794 2498 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2499 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2500 if (!ret && !err &&
2501 test_bit(BIO_UPTODATE, &bio->bi_flags))
2502 uptodate = 1;
2503 } else if (!uptodate) {
f4a8e656
JS
2504 /*
2505 * The generic bio_readpage_error handles errors the
2506 * following way: If possible, new read requests are
2507 * created and submitted and will end up in
2508 * end_bio_extent_readpage as well (if we're lucky, not
2509 * in the !uptodate case). In that case it returns 0 and
2510 * we just go on with the next page in our bio. If it
2511 * can't handle the error it will return -EIO and we
2512 * remain responsible for that page.
2513 */
5cf1ab56 2514 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2515 if (ret == 0) {
3b951516
CM
2516 uptodate =
2517 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2518 if (err)
2519 uptodate = 0;
507903b8 2520 uncache_state(&cached);
7e38326f
CM
2521 continue;
2522 }
2523 }
d1310b2e 2524
0b32f4bb 2525 if (uptodate && tree->track_uptodate) {
507903b8 2526 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2527 GFP_ATOMIC);
771ed689 2528 }
507903b8 2529 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2530
70dec807
CM
2531 if (whole_page) {
2532 if (uptodate) {
2533 SetPageUptodate(page);
2534 } else {
2535 ClearPageUptodate(page);
2536 SetPageError(page);
2537 }
d1310b2e 2538 unlock_page(page);
70dec807
CM
2539 } else {
2540 if (uptodate) {
2541 check_page_uptodate(tree, page);
2542 } else {
2543 ClearPageUptodate(page);
2544 SetPageError(page);
2545 }
d1310b2e 2546 check_page_locked(tree, page);
70dec807 2547 }
4125bf76 2548 } while (bvec <= bvec_end);
d1310b2e
CM
2549
2550 bio_put(bio);
d1310b2e
CM
2551}
2552
88f794ed
MX
2553struct bio *
2554btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2555 gfp_t gfp_flags)
d1310b2e
CM
2556{
2557 struct bio *bio;
2558
2559 bio = bio_alloc(gfp_flags, nr_vecs);
2560
2561 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2562 while (!bio && (nr_vecs /= 2))
2563 bio = bio_alloc(gfp_flags, nr_vecs);
2564 }
2565
2566 if (bio) {
e1c4b745 2567 bio->bi_size = 0;
d1310b2e
CM
2568 bio->bi_bdev = bdev;
2569 bio->bi_sector = first_sector;
2570 }
2571 return bio;
2572}
2573
355808c2
JM
2574static int __must_check submit_one_bio(int rw, struct bio *bio,
2575 int mirror_num, unsigned long bio_flags)
d1310b2e 2576{
d1310b2e 2577 int ret = 0;
70dec807
CM
2578 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2579 struct page *page = bvec->bv_page;
2580 struct extent_io_tree *tree = bio->bi_private;
70dec807 2581 u64 start;
70dec807 2582
4eee4fa4 2583 start = page_offset(page) + bvec->bv_offset;
70dec807 2584
902b22f3 2585 bio->bi_private = NULL;
d1310b2e
CM
2586
2587 bio_get(bio);
2588
065631f6 2589 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2590 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2591 mirror_num, bio_flags, start);
0b86a832 2592 else
21adbd5c 2593 btrfsic_submit_bio(rw, bio);
4a54c8c1 2594
d1310b2e
CM
2595 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2596 ret = -EOPNOTSUPP;
2597 bio_put(bio);
2598 return ret;
2599}
2600
64a16701 2601static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2602 unsigned long offset, size_t size, struct bio *bio,
2603 unsigned long bio_flags)
2604{
2605 int ret = 0;
2606 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2607 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2608 bio_flags);
2609 BUG_ON(ret < 0);
2610 return ret;
2611
2612}
2613
d1310b2e
CM
2614static int submit_extent_page(int rw, struct extent_io_tree *tree,
2615 struct page *page, sector_t sector,
2616 size_t size, unsigned long offset,
2617 struct block_device *bdev,
2618 struct bio **bio_ret,
2619 unsigned long max_pages,
f188591e 2620 bio_end_io_t end_io_func,
c8b97818
CM
2621 int mirror_num,
2622 unsigned long prev_bio_flags,
2623 unsigned long bio_flags)
d1310b2e
CM
2624{
2625 int ret = 0;
2626 struct bio *bio;
2627 int nr;
c8b97818
CM
2628 int contig = 0;
2629 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2630 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2631 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2632
2633 if (bio_ret && *bio_ret) {
2634 bio = *bio_ret;
c8b97818
CM
2635 if (old_compressed)
2636 contig = bio->bi_sector == sector;
2637 else
2638 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2639 sector;
2640
2641 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2642 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2643 bio_add_page(bio, page, page_size, offset) < page_size) {
2644 ret = submit_one_bio(rw, bio, mirror_num,
2645 prev_bio_flags);
79787eaa
JM
2646 if (ret < 0)
2647 return ret;
d1310b2e
CM
2648 bio = NULL;
2649 } else {
2650 return 0;
2651 }
2652 }
c8b97818
CM
2653 if (this_compressed)
2654 nr = BIO_MAX_PAGES;
2655 else
2656 nr = bio_get_nr_vecs(bdev);
2657
88f794ed 2658 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2659 if (!bio)
2660 return -ENOMEM;
70dec807 2661
c8b97818 2662 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2663 bio->bi_end_io = end_io_func;
2664 bio->bi_private = tree;
70dec807 2665
d397712b 2666 if (bio_ret)
d1310b2e 2667 *bio_ret = bio;
d397712b 2668 else
c8b97818 2669 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2670
2671 return ret;
2672}
2673
48a3b636
ES
2674static void attach_extent_buffer_page(struct extent_buffer *eb,
2675 struct page *page)
d1310b2e
CM
2676{
2677 if (!PagePrivate(page)) {
2678 SetPagePrivate(page);
d1310b2e 2679 page_cache_get(page);
4f2de97a
JB
2680 set_page_private(page, (unsigned long)eb);
2681 } else {
2682 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2683 }
2684}
2685
4f2de97a 2686void set_page_extent_mapped(struct page *page)
d1310b2e 2687{
4f2de97a
JB
2688 if (!PagePrivate(page)) {
2689 SetPagePrivate(page);
2690 page_cache_get(page);
2691 set_page_private(page, EXTENT_PAGE_PRIVATE);
2692 }
d1310b2e
CM
2693}
2694
2695/*
2696 * basic readpage implementation. Locked extent state structs are inserted
2697 * into the tree that are removed when the IO is done (by the end_io
2698 * handlers)
79787eaa 2699 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2700 */
2701static int __extent_read_full_page(struct extent_io_tree *tree,
2702 struct page *page,
2703 get_extent_t *get_extent,
c8b97818 2704 struct bio **bio, int mirror_num,
d4c7ca86 2705 unsigned long *bio_flags, int rw)
d1310b2e
CM
2706{
2707 struct inode *inode = page->mapping->host;
4eee4fa4 2708 u64 start = page_offset(page);
d1310b2e
CM
2709 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2710 u64 end;
2711 u64 cur = start;
2712 u64 extent_offset;
2713 u64 last_byte = i_size_read(inode);
2714 u64 block_start;
2715 u64 cur_end;
2716 sector_t sector;
2717 struct extent_map *em;
2718 struct block_device *bdev;
11c65dcc 2719 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2720 int ret;
2721 int nr = 0;
306e16ce 2722 size_t pg_offset = 0;
d1310b2e 2723 size_t iosize;
c8b97818 2724 size_t disk_io_size;
d1310b2e 2725 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2726 unsigned long this_bio_flag = 0;
d1310b2e
CM
2727
2728 set_page_extent_mapped(page);
2729
90a887c9
DM
2730 if (!PageUptodate(page)) {
2731 if (cleancache_get_page(page) == 0) {
2732 BUG_ON(blocksize != PAGE_SIZE);
2733 goto out;
2734 }
2735 }
2736
d1310b2e 2737 end = page_end;
11c65dcc 2738 while (1) {
d0082371 2739 lock_extent(tree, start, end);
11c65dcc
JB
2740 ordered = btrfs_lookup_ordered_extent(inode, start);
2741 if (!ordered)
2742 break;
d0082371 2743 unlock_extent(tree, start, end);
11c65dcc
JB
2744 btrfs_start_ordered_extent(inode, ordered, 1);
2745 btrfs_put_ordered_extent(ordered);
2746 }
d1310b2e 2747
c8b97818
CM
2748 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2749 char *userpage;
2750 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2751
2752 if (zero_offset) {
2753 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2754 userpage = kmap_atomic(page);
c8b97818
CM
2755 memset(userpage + zero_offset, 0, iosize);
2756 flush_dcache_page(page);
7ac687d9 2757 kunmap_atomic(userpage);
c8b97818
CM
2758 }
2759 }
d1310b2e 2760 while (cur <= end) {
c8f2f24b
JB
2761 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2762
d1310b2e
CM
2763 if (cur >= last_byte) {
2764 char *userpage;
507903b8
AJ
2765 struct extent_state *cached = NULL;
2766
306e16ce 2767 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2768 userpage = kmap_atomic(page);
306e16ce 2769 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2770 flush_dcache_page(page);
7ac687d9 2771 kunmap_atomic(userpage);
d1310b2e 2772 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2773 &cached, GFP_NOFS);
2774 unlock_extent_cached(tree, cur, cur + iosize - 1,
2775 &cached, GFP_NOFS);
d1310b2e
CM
2776 break;
2777 }
306e16ce 2778 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2779 end - cur + 1, 0);
c704005d 2780 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2781 SetPageError(page);
d0082371 2782 unlock_extent(tree, cur, end);
d1310b2e
CM
2783 break;
2784 }
d1310b2e
CM
2785 extent_offset = cur - em->start;
2786 BUG_ON(extent_map_end(em) <= cur);
2787 BUG_ON(end < cur);
2788
261507a0 2789 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2790 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2791 extent_set_compress_type(&this_bio_flag,
2792 em->compress_type);
2793 }
c8b97818 2794
d1310b2e
CM
2795 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2796 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2797 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2798 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2799 disk_io_size = em->block_len;
2800 sector = em->block_start >> 9;
2801 } else {
2802 sector = (em->block_start + extent_offset) >> 9;
2803 disk_io_size = iosize;
2804 }
d1310b2e
CM
2805 bdev = em->bdev;
2806 block_start = em->block_start;
d899e052
YZ
2807 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2808 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2809 free_extent_map(em);
2810 em = NULL;
2811
2812 /* we've found a hole, just zero and go on */
2813 if (block_start == EXTENT_MAP_HOLE) {
2814 char *userpage;
507903b8
AJ
2815 struct extent_state *cached = NULL;
2816
7ac687d9 2817 userpage = kmap_atomic(page);
306e16ce 2818 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2819 flush_dcache_page(page);
7ac687d9 2820 kunmap_atomic(userpage);
d1310b2e
CM
2821
2822 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2823 &cached, GFP_NOFS);
2824 unlock_extent_cached(tree, cur, cur + iosize - 1,
2825 &cached, GFP_NOFS);
d1310b2e 2826 cur = cur + iosize;
306e16ce 2827 pg_offset += iosize;
d1310b2e
CM
2828 continue;
2829 }
2830 /* the get_extent function already copied into the page */
9655d298
CM
2831 if (test_range_bit(tree, cur, cur_end,
2832 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2833 check_page_uptodate(tree, page);
d0082371 2834 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2835 cur = cur + iosize;
306e16ce 2836 pg_offset += iosize;
d1310b2e
CM
2837 continue;
2838 }
70dec807
CM
2839 /* we have an inline extent but it didn't get marked up
2840 * to date. Error out
2841 */
2842 if (block_start == EXTENT_MAP_INLINE) {
2843 SetPageError(page);
d0082371 2844 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2845 cur = cur + iosize;
306e16ce 2846 pg_offset += iosize;
70dec807
CM
2847 continue;
2848 }
d1310b2e 2849
c8f2f24b 2850 pnr -= page->index;
d4c7ca86 2851 ret = submit_extent_page(rw, tree, page,
306e16ce 2852 sector, disk_io_size, pg_offset,
89642229 2853 bdev, bio, pnr,
c8b97818
CM
2854 end_bio_extent_readpage, mirror_num,
2855 *bio_flags,
2856 this_bio_flag);
c8f2f24b
JB
2857 if (!ret) {
2858 nr++;
2859 *bio_flags = this_bio_flag;
2860 } else {
d1310b2e 2861 SetPageError(page);
edd33c99
JB
2862 unlock_extent(tree, cur, cur + iosize - 1);
2863 }
d1310b2e 2864 cur = cur + iosize;
306e16ce 2865 pg_offset += iosize;
d1310b2e 2866 }
90a887c9 2867out:
d1310b2e
CM
2868 if (!nr) {
2869 if (!PageError(page))
2870 SetPageUptodate(page);
2871 unlock_page(page);
2872 }
2873 return 0;
2874}
2875
2876int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2877 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2878{
2879 struct bio *bio = NULL;
c8b97818 2880 unsigned long bio_flags = 0;
d1310b2e
CM
2881 int ret;
2882
8ddc7d9c 2883 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 2884 &bio_flags, READ);
d1310b2e 2885 if (bio)
8ddc7d9c 2886 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2887 return ret;
2888}
d1310b2e 2889
11c8349b
CM
2890static noinline void update_nr_written(struct page *page,
2891 struct writeback_control *wbc,
2892 unsigned long nr_written)
2893{
2894 wbc->nr_to_write -= nr_written;
2895 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2896 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2897 page->mapping->writeback_index = page->index + nr_written;
2898}
2899
d1310b2e
CM
2900/*
2901 * the writepage semantics are similar to regular writepage. extent
2902 * records are inserted to lock ranges in the tree, and as dirty areas
2903 * are found, they are marked writeback. Then the lock bits are removed
2904 * and the end_io handler clears the writeback ranges
2905 */
2906static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2907 void *data)
2908{
2909 struct inode *inode = page->mapping->host;
2910 struct extent_page_data *epd = data;
2911 struct extent_io_tree *tree = epd->tree;
4eee4fa4 2912 u64 start = page_offset(page);
d1310b2e
CM
2913 u64 delalloc_start;
2914 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2915 u64 end;
2916 u64 cur = start;
2917 u64 extent_offset;
2918 u64 last_byte = i_size_read(inode);
2919 u64 block_start;
2920 u64 iosize;
2921 sector_t sector;
2c64c53d 2922 struct extent_state *cached_state = NULL;
d1310b2e
CM
2923 struct extent_map *em;
2924 struct block_device *bdev;
2925 int ret;
2926 int nr = 0;
7f3c74fb 2927 size_t pg_offset = 0;
d1310b2e
CM
2928 size_t blocksize;
2929 loff_t i_size = i_size_read(inode);
2930 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2931 u64 nr_delalloc;
2932 u64 delalloc_end;
c8b97818
CM
2933 int page_started;
2934 int compressed;
ffbd517d 2935 int write_flags;
771ed689 2936 unsigned long nr_written = 0;
9e487107 2937 bool fill_delalloc = true;
d1310b2e 2938
ffbd517d 2939 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2940 write_flags = WRITE_SYNC;
ffbd517d
CM
2941 else
2942 write_flags = WRITE;
2943
1abe9b8a 2944 trace___extent_writepage(page, inode, wbc);
2945
d1310b2e 2946 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2947
2948 ClearPageError(page);
2949
7f3c74fb 2950 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2951 if (page->index > end_index ||
7f3c74fb 2952 (page->index == end_index && !pg_offset)) {
39be25cd 2953 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2954 unlock_page(page);
2955 return 0;
2956 }
2957
2958 if (page->index == end_index) {
2959 char *userpage;
2960
7ac687d9 2961 userpage = kmap_atomic(page);
7f3c74fb
CM
2962 memset(userpage + pg_offset, 0,
2963 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2964 kunmap_atomic(userpage);
211c17f5 2965 flush_dcache_page(page);
d1310b2e 2966 }
7f3c74fb 2967 pg_offset = 0;
d1310b2e
CM
2968
2969 set_page_extent_mapped(page);
2970
9e487107
JB
2971 if (!tree->ops || !tree->ops->fill_delalloc)
2972 fill_delalloc = false;
2973
d1310b2e
CM
2974 delalloc_start = start;
2975 delalloc_end = 0;
c8b97818 2976 page_started = 0;
9e487107 2977 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2978 u64 delalloc_to_write = 0;
11c8349b
CM
2979 /*
2980 * make sure the wbc mapping index is at least updated
2981 * to this page.
2982 */
2983 update_nr_written(page, wbc, 0);
2984
d397712b 2985 while (delalloc_end < page_end) {
771ed689 2986 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2987 page,
2988 &delalloc_start,
d1310b2e
CM
2989 &delalloc_end,
2990 128 * 1024 * 1024);
771ed689
CM
2991 if (nr_delalloc == 0) {
2992 delalloc_start = delalloc_end + 1;
2993 continue;
2994 }
013bd4c3
TI
2995 ret = tree->ops->fill_delalloc(inode, page,
2996 delalloc_start,
2997 delalloc_end,
2998 &page_started,
2999 &nr_written);
79787eaa
JM
3000 /* File system has been set read-only */
3001 if (ret) {
3002 SetPageError(page);
3003 goto done;
3004 }
f85d7d6c
CM
3005 /*
3006 * delalloc_end is already one less than the total
3007 * length, so we don't subtract one from
3008 * PAGE_CACHE_SIZE
3009 */
3010 delalloc_to_write += (delalloc_end - delalloc_start +
3011 PAGE_CACHE_SIZE) >>
3012 PAGE_CACHE_SHIFT;
d1310b2e 3013 delalloc_start = delalloc_end + 1;
d1310b2e 3014 }
f85d7d6c
CM
3015 if (wbc->nr_to_write < delalloc_to_write) {
3016 int thresh = 8192;
3017
3018 if (delalloc_to_write < thresh * 2)
3019 thresh = delalloc_to_write;
3020 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3021 thresh);
3022 }
c8b97818 3023
771ed689
CM
3024 /* did the fill delalloc function already unlock and start
3025 * the IO?
3026 */
3027 if (page_started) {
3028 ret = 0;
11c8349b
CM
3029 /*
3030 * we've unlocked the page, so we can't update
3031 * the mapping's writeback index, just update
3032 * nr_to_write.
3033 */
3034 wbc->nr_to_write -= nr_written;
3035 goto done_unlocked;
771ed689 3036 }
c8b97818 3037 }
247e743c 3038 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3039 ret = tree->ops->writepage_start_hook(page, start,
3040 page_end);
87826df0
JM
3041 if (ret) {
3042 /* Fixup worker will requeue */
3043 if (ret == -EBUSY)
3044 wbc->pages_skipped++;
3045 else
3046 redirty_page_for_writepage(wbc, page);
11c8349b 3047 update_nr_written(page, wbc, nr_written);
247e743c 3048 unlock_page(page);
771ed689 3049 ret = 0;
11c8349b 3050 goto done_unlocked;
247e743c
CM
3051 }
3052 }
3053
11c8349b
CM
3054 /*
3055 * we don't want to touch the inode after unlocking the page,
3056 * so we update the mapping writeback index now
3057 */
3058 update_nr_written(page, wbc, nr_written + 1);
771ed689 3059
d1310b2e 3060 end = page_end;
d1310b2e 3061 if (last_byte <= start) {
e6dcd2dc
CM
3062 if (tree->ops && tree->ops->writepage_end_io_hook)
3063 tree->ops->writepage_end_io_hook(page, start,
3064 page_end, NULL, 1);
d1310b2e
CM
3065 goto done;
3066 }
3067
d1310b2e
CM
3068 blocksize = inode->i_sb->s_blocksize;
3069
3070 while (cur <= end) {
3071 if (cur >= last_byte) {
e6dcd2dc
CM
3072 if (tree->ops && tree->ops->writepage_end_io_hook)
3073 tree->ops->writepage_end_io_hook(page, cur,
3074 page_end, NULL, 1);
d1310b2e
CM
3075 break;
3076 }
7f3c74fb 3077 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3078 end - cur + 1, 1);
c704005d 3079 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3080 SetPageError(page);
3081 break;
3082 }
3083
3084 extent_offset = cur - em->start;
3085 BUG_ON(extent_map_end(em) <= cur);
3086 BUG_ON(end < cur);
3087 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3088 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3089 sector = (em->block_start + extent_offset) >> 9;
3090 bdev = em->bdev;
3091 block_start = em->block_start;
c8b97818 3092 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3093 free_extent_map(em);
3094 em = NULL;
3095
c8b97818
CM
3096 /*
3097 * compressed and inline extents are written through other
3098 * paths in the FS
3099 */
3100 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3101 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3102 /*
3103 * end_io notification does not happen here for
3104 * compressed extents
3105 */
3106 if (!compressed && tree->ops &&
3107 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3108 tree->ops->writepage_end_io_hook(page, cur,
3109 cur + iosize - 1,
3110 NULL, 1);
c8b97818
CM
3111 else if (compressed) {
3112 /* we don't want to end_page_writeback on
3113 * a compressed extent. this happens
3114 * elsewhere
3115 */
3116 nr++;
3117 }
3118
3119 cur += iosize;
7f3c74fb 3120 pg_offset += iosize;
d1310b2e
CM
3121 continue;
3122 }
d1310b2e
CM
3123 /* leave this out until we have a page_mkwrite call */
3124 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3125 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3126 cur = cur + iosize;
7f3c74fb 3127 pg_offset += iosize;
d1310b2e
CM
3128 continue;
3129 }
c8b97818 3130
d1310b2e
CM
3131 if (tree->ops && tree->ops->writepage_io_hook) {
3132 ret = tree->ops->writepage_io_hook(page, cur,
3133 cur + iosize - 1);
3134 } else {
3135 ret = 0;
3136 }
1259ab75 3137 if (ret) {
d1310b2e 3138 SetPageError(page);
1259ab75 3139 } else {
d1310b2e 3140 unsigned long max_nr = end_index + 1;
7f3c74fb 3141
d1310b2e
CM
3142 set_range_writeback(tree, cur, cur + iosize - 1);
3143 if (!PageWriteback(page)) {
d397712b
CM
3144 printk(KERN_ERR "btrfs warning page %lu not "
3145 "writeback, cur %llu end %llu\n",
3146 page->index, (unsigned long long)cur,
d1310b2e
CM
3147 (unsigned long long)end);
3148 }
3149
ffbd517d
CM
3150 ret = submit_extent_page(write_flags, tree, page,
3151 sector, iosize, pg_offset,
3152 bdev, &epd->bio, max_nr,
c8b97818
CM
3153 end_bio_extent_writepage,
3154 0, 0, 0);
d1310b2e
CM
3155 if (ret)
3156 SetPageError(page);
3157 }
3158 cur = cur + iosize;
7f3c74fb 3159 pg_offset += iosize;
d1310b2e
CM
3160 nr++;
3161 }
3162done:
3163 if (nr == 0) {
3164 /* make sure the mapping tag for page dirty gets cleared */
3165 set_page_writeback(page);
3166 end_page_writeback(page);
3167 }
d1310b2e 3168 unlock_page(page);
771ed689 3169
11c8349b
CM
3170done_unlocked:
3171
2c64c53d
CM
3172 /* drop our reference on any cached states */
3173 free_extent_state(cached_state);
d1310b2e
CM
3174 return 0;
3175}
3176
0b32f4bb
JB
3177static int eb_wait(void *word)
3178{
3179 io_schedule();
3180 return 0;
3181}
3182
fd8b2b61 3183void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3184{
3185 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3186 TASK_UNINTERRUPTIBLE);
3187}
3188
3189static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3190 struct btrfs_fs_info *fs_info,
3191 struct extent_page_data *epd)
3192{
3193 unsigned long i, num_pages;
3194 int flush = 0;
3195 int ret = 0;
3196
3197 if (!btrfs_try_tree_write_lock(eb)) {
3198 flush = 1;
3199 flush_write_bio(epd);
3200 btrfs_tree_lock(eb);
3201 }
3202
3203 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3204 btrfs_tree_unlock(eb);
3205 if (!epd->sync_io)
3206 return 0;
3207 if (!flush) {
3208 flush_write_bio(epd);
3209 flush = 1;
3210 }
a098d8e8
CM
3211 while (1) {
3212 wait_on_extent_buffer_writeback(eb);
3213 btrfs_tree_lock(eb);
3214 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3215 break;
0b32f4bb 3216 btrfs_tree_unlock(eb);
0b32f4bb
JB
3217 }
3218 }
3219
51561ffe
JB
3220 /*
3221 * We need to do this to prevent races in people who check if the eb is
3222 * under IO since we can end up having no IO bits set for a short period
3223 * of time.
3224 */
3225 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3226 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3227 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3228 spin_unlock(&eb->refs_lock);
0b32f4bb 3229 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3230 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3231 -eb->len,
3232 fs_info->dirty_metadata_batch);
0b32f4bb 3233 ret = 1;
51561ffe
JB
3234 } else {
3235 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3236 }
3237
3238 btrfs_tree_unlock(eb);
3239
3240 if (!ret)
3241 return ret;
3242
3243 num_pages = num_extent_pages(eb->start, eb->len);
3244 for (i = 0; i < num_pages; i++) {
3245 struct page *p = extent_buffer_page(eb, i);
3246
3247 if (!trylock_page(p)) {
3248 if (!flush) {
3249 flush_write_bio(epd);
3250 flush = 1;
3251 }
3252 lock_page(p);
3253 }
3254 }
3255
3256 return ret;
3257}
3258
3259static void end_extent_buffer_writeback(struct extent_buffer *eb)
3260{
3261 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3262 smp_mb__after_clear_bit();
3263 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3264}
3265
3266static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3267{
3268 int uptodate = err == 0;
3269 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3270 struct extent_buffer *eb;
3271 int done;
3272
3273 do {
3274 struct page *page = bvec->bv_page;
3275
3276 bvec--;
3277 eb = (struct extent_buffer *)page->private;
3278 BUG_ON(!eb);
3279 done = atomic_dec_and_test(&eb->io_pages);
3280
3281 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3282 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3283 ClearPageUptodate(page);
3284 SetPageError(page);
3285 }
3286
3287 end_page_writeback(page);
3288
3289 if (!done)
3290 continue;
3291
3292 end_extent_buffer_writeback(eb);
3293 } while (bvec >= bio->bi_io_vec);
3294
3295 bio_put(bio);
3296
3297}
3298
3299static int write_one_eb(struct extent_buffer *eb,
3300 struct btrfs_fs_info *fs_info,
3301 struct writeback_control *wbc,
3302 struct extent_page_data *epd)
3303{
3304 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3305 u64 offset = eb->start;
3306 unsigned long i, num_pages;
de0022b9 3307 unsigned long bio_flags = 0;
d4c7ca86 3308 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3309 int ret = 0;
0b32f4bb
JB
3310
3311 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3312 num_pages = num_extent_pages(eb->start, eb->len);
3313 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3314 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3315 bio_flags = EXTENT_BIO_TREE_LOG;
3316
0b32f4bb
JB
3317 for (i = 0; i < num_pages; i++) {
3318 struct page *p = extent_buffer_page(eb, i);
3319
3320 clear_page_dirty_for_io(p);
3321 set_page_writeback(p);
3322 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3323 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3324 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3325 0, epd->bio_flags, bio_flags);
3326 epd->bio_flags = bio_flags;
0b32f4bb
JB
3327 if (ret) {
3328 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3329 SetPageError(p);
3330 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3331 end_extent_buffer_writeback(eb);
3332 ret = -EIO;
3333 break;
3334 }
3335 offset += PAGE_CACHE_SIZE;
3336 update_nr_written(p, wbc, 1);
3337 unlock_page(p);
3338 }
3339
3340 if (unlikely(ret)) {
3341 for (; i < num_pages; i++) {
3342 struct page *p = extent_buffer_page(eb, i);
3343 unlock_page(p);
3344 }
3345 }
3346
3347 return ret;
3348}
3349
3350int btree_write_cache_pages(struct address_space *mapping,
3351 struct writeback_control *wbc)
3352{
3353 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3354 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3355 struct extent_buffer *eb, *prev_eb = NULL;
3356 struct extent_page_data epd = {
3357 .bio = NULL,
3358 .tree = tree,
3359 .extent_locked = 0,
3360 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3361 .bio_flags = 0,
0b32f4bb
JB
3362 };
3363 int ret = 0;
3364 int done = 0;
3365 int nr_to_write_done = 0;
3366 struct pagevec pvec;
3367 int nr_pages;
3368 pgoff_t index;
3369 pgoff_t end; /* Inclusive */
3370 int scanned = 0;
3371 int tag;
3372
3373 pagevec_init(&pvec, 0);
3374 if (wbc->range_cyclic) {
3375 index = mapping->writeback_index; /* Start from prev offset */
3376 end = -1;
3377 } else {
3378 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3379 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3380 scanned = 1;
3381 }
3382 if (wbc->sync_mode == WB_SYNC_ALL)
3383 tag = PAGECACHE_TAG_TOWRITE;
3384 else
3385 tag = PAGECACHE_TAG_DIRTY;
3386retry:
3387 if (wbc->sync_mode == WB_SYNC_ALL)
3388 tag_pages_for_writeback(mapping, index, end);
3389 while (!done && !nr_to_write_done && (index <= end) &&
3390 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3391 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3392 unsigned i;
3393
3394 scanned = 1;
3395 for (i = 0; i < nr_pages; i++) {
3396 struct page *page = pvec.pages[i];
3397
3398 if (!PagePrivate(page))
3399 continue;
3400
3401 if (!wbc->range_cyclic && page->index > end) {
3402 done = 1;
3403 break;
3404 }
3405
b5bae261
JB
3406 spin_lock(&mapping->private_lock);
3407 if (!PagePrivate(page)) {
3408 spin_unlock(&mapping->private_lock);
3409 continue;
3410 }
3411
0b32f4bb 3412 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3413
3414 /*
3415 * Shouldn't happen and normally this would be a BUG_ON
3416 * but no sense in crashing the users box for something
3417 * we can survive anyway.
3418 */
0b32f4bb 3419 if (!eb) {
b5bae261 3420 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3421 WARN_ON(1);
3422 continue;
3423 }
3424
b5bae261
JB
3425 if (eb == prev_eb) {
3426 spin_unlock(&mapping->private_lock);
0b32f4bb 3427 continue;
b5bae261 3428 }
0b32f4bb 3429
b5bae261
JB
3430 ret = atomic_inc_not_zero(&eb->refs);
3431 spin_unlock(&mapping->private_lock);
3432 if (!ret)
0b32f4bb 3433 continue;
0b32f4bb
JB
3434
3435 prev_eb = eb;
3436 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3437 if (!ret) {
3438 free_extent_buffer(eb);
3439 continue;
3440 }
3441
3442 ret = write_one_eb(eb, fs_info, wbc, &epd);
3443 if (ret) {
3444 done = 1;
3445 free_extent_buffer(eb);
3446 break;
3447 }
3448 free_extent_buffer(eb);
3449
3450 /*
3451 * the filesystem may choose to bump up nr_to_write.
3452 * We have to make sure to honor the new nr_to_write
3453 * at any time
3454 */
3455 nr_to_write_done = wbc->nr_to_write <= 0;
3456 }
3457 pagevec_release(&pvec);
3458 cond_resched();
3459 }
3460 if (!scanned && !done) {
3461 /*
3462 * We hit the last page and there is more work to be done: wrap
3463 * back to the start of the file
3464 */
3465 scanned = 1;
3466 index = 0;
3467 goto retry;
3468 }
3469 flush_write_bio(&epd);
3470 return ret;
3471}
3472
d1310b2e 3473/**
4bef0848 3474 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3475 * @mapping: address space structure to write
3476 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3477 * @writepage: function called for each page
3478 * @data: data passed to writepage function
3479 *
3480 * If a page is already under I/O, write_cache_pages() skips it, even
3481 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3482 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3483 * and msync() need to guarantee that all the data which was dirty at the time
3484 * the call was made get new I/O started against them. If wbc->sync_mode is
3485 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3486 * existing IO to complete.
3487 */
b2950863 3488static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3489 struct address_space *mapping,
3490 struct writeback_control *wbc,
d2c3f4f6
CM
3491 writepage_t writepage, void *data,
3492 void (*flush_fn)(void *))
d1310b2e 3493{
7fd1a3f7 3494 struct inode *inode = mapping->host;
d1310b2e
CM
3495 int ret = 0;
3496 int done = 0;
f85d7d6c 3497 int nr_to_write_done = 0;
d1310b2e
CM
3498 struct pagevec pvec;
3499 int nr_pages;
3500 pgoff_t index;
3501 pgoff_t end; /* Inclusive */
3502 int scanned = 0;
f7aaa06b 3503 int tag;
d1310b2e 3504
7fd1a3f7
JB
3505 /*
3506 * We have to hold onto the inode so that ordered extents can do their
3507 * work when the IO finishes. The alternative to this is failing to add
3508 * an ordered extent if the igrab() fails there and that is a huge pain
3509 * to deal with, so instead just hold onto the inode throughout the
3510 * writepages operation. If it fails here we are freeing up the inode
3511 * anyway and we'd rather not waste our time writing out stuff that is
3512 * going to be truncated anyway.
3513 */
3514 if (!igrab(inode))
3515 return 0;
3516
d1310b2e
CM
3517 pagevec_init(&pvec, 0);
3518 if (wbc->range_cyclic) {
3519 index = mapping->writeback_index; /* Start from prev offset */
3520 end = -1;
3521 } else {
3522 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3523 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3524 scanned = 1;
3525 }
f7aaa06b
JB
3526 if (wbc->sync_mode == WB_SYNC_ALL)
3527 tag = PAGECACHE_TAG_TOWRITE;
3528 else
3529 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3530retry:
f7aaa06b
JB
3531 if (wbc->sync_mode == WB_SYNC_ALL)
3532 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3533 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3534 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3535 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3536 unsigned i;
3537
3538 scanned = 1;
3539 for (i = 0; i < nr_pages; i++) {
3540 struct page *page = pvec.pages[i];
3541
3542 /*
3543 * At this point we hold neither mapping->tree_lock nor
3544 * lock on the page itself: the page may be truncated or
3545 * invalidated (changing page->mapping to NULL), or even
3546 * swizzled back from swapper_space to tmpfs file
3547 * mapping
3548 */
c8f2f24b
JB
3549 if (!trylock_page(page)) {
3550 flush_fn(data);
3551 lock_page(page);
01d658f2 3552 }
d1310b2e
CM
3553
3554 if (unlikely(page->mapping != mapping)) {
3555 unlock_page(page);
3556 continue;
3557 }
3558
3559 if (!wbc->range_cyclic && page->index > end) {
3560 done = 1;
3561 unlock_page(page);
3562 continue;
3563 }
3564
d2c3f4f6 3565 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3566 if (PageWriteback(page))
3567 flush_fn(data);
d1310b2e 3568 wait_on_page_writeback(page);
d2c3f4f6 3569 }
d1310b2e
CM
3570
3571 if (PageWriteback(page) ||
3572 !clear_page_dirty_for_io(page)) {
3573 unlock_page(page);
3574 continue;
3575 }
3576
3577 ret = (*writepage)(page, wbc, data);
3578
3579 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3580 unlock_page(page);
3581 ret = 0;
3582 }
f85d7d6c 3583 if (ret)
d1310b2e 3584 done = 1;
f85d7d6c
CM
3585
3586 /*
3587 * the filesystem may choose to bump up nr_to_write.
3588 * We have to make sure to honor the new nr_to_write
3589 * at any time
3590 */
3591 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3592 }
3593 pagevec_release(&pvec);
3594 cond_resched();
3595 }
3596 if (!scanned && !done) {
3597 /*
3598 * We hit the last page and there is more work to be done: wrap
3599 * back to the start of the file
3600 */
3601 scanned = 1;
3602 index = 0;
3603 goto retry;
3604 }
7fd1a3f7 3605 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3606 return ret;
3607}
d1310b2e 3608
ffbd517d 3609static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3610{
d2c3f4f6 3611 if (epd->bio) {
355808c2
JM
3612 int rw = WRITE;
3613 int ret;
3614
ffbd517d 3615 if (epd->sync_io)
355808c2
JM
3616 rw = WRITE_SYNC;
3617
de0022b9 3618 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3619 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3620 epd->bio = NULL;
3621 }
3622}
3623
ffbd517d
CM
3624static noinline void flush_write_bio(void *data)
3625{
3626 struct extent_page_data *epd = data;
3627 flush_epd_write_bio(epd);
3628}
3629
d1310b2e
CM
3630int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3631 get_extent_t *get_extent,
3632 struct writeback_control *wbc)
3633{
3634 int ret;
d1310b2e
CM
3635 struct extent_page_data epd = {
3636 .bio = NULL,
3637 .tree = tree,
3638 .get_extent = get_extent,
771ed689 3639 .extent_locked = 0,
ffbd517d 3640 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3641 .bio_flags = 0,
d1310b2e 3642 };
d1310b2e 3643
d1310b2e
CM
3644 ret = __extent_writepage(page, wbc, &epd);
3645
ffbd517d 3646 flush_epd_write_bio(&epd);
d1310b2e
CM
3647 return ret;
3648}
d1310b2e 3649
771ed689
CM
3650int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3651 u64 start, u64 end, get_extent_t *get_extent,
3652 int mode)
3653{
3654 int ret = 0;
3655 struct address_space *mapping = inode->i_mapping;
3656 struct page *page;
3657 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3658 PAGE_CACHE_SHIFT;
3659
3660 struct extent_page_data epd = {
3661 .bio = NULL,
3662 .tree = tree,
3663 .get_extent = get_extent,
3664 .extent_locked = 1,
ffbd517d 3665 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3666 .bio_flags = 0,
771ed689
CM
3667 };
3668 struct writeback_control wbc_writepages = {
771ed689 3669 .sync_mode = mode,
771ed689
CM
3670 .nr_to_write = nr_pages * 2,
3671 .range_start = start,
3672 .range_end = end + 1,
3673 };
3674
d397712b 3675 while (start <= end) {
771ed689
CM
3676 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3677 if (clear_page_dirty_for_io(page))
3678 ret = __extent_writepage(page, &wbc_writepages, &epd);
3679 else {
3680 if (tree->ops && tree->ops->writepage_end_io_hook)
3681 tree->ops->writepage_end_io_hook(page, start,
3682 start + PAGE_CACHE_SIZE - 1,
3683 NULL, 1);
3684 unlock_page(page);
3685 }
3686 page_cache_release(page);
3687 start += PAGE_CACHE_SIZE;
3688 }
3689
ffbd517d 3690 flush_epd_write_bio(&epd);
771ed689
CM
3691 return ret;
3692}
d1310b2e
CM
3693
3694int extent_writepages(struct extent_io_tree *tree,
3695 struct address_space *mapping,
3696 get_extent_t *get_extent,
3697 struct writeback_control *wbc)
3698{
3699 int ret = 0;
3700 struct extent_page_data epd = {
3701 .bio = NULL,
3702 .tree = tree,
3703 .get_extent = get_extent,
771ed689 3704 .extent_locked = 0,
ffbd517d 3705 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3706 .bio_flags = 0,
d1310b2e
CM
3707 };
3708
4bef0848 3709 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3710 __extent_writepage, &epd,
3711 flush_write_bio);
ffbd517d 3712 flush_epd_write_bio(&epd);
d1310b2e
CM
3713 return ret;
3714}
d1310b2e
CM
3715
3716int extent_readpages(struct extent_io_tree *tree,
3717 struct address_space *mapping,
3718 struct list_head *pages, unsigned nr_pages,
3719 get_extent_t get_extent)
3720{
3721 struct bio *bio = NULL;
3722 unsigned page_idx;
c8b97818 3723 unsigned long bio_flags = 0;
67c9684f
LB
3724 struct page *pagepool[16];
3725 struct page *page;
3726 int i = 0;
3727 int nr = 0;
d1310b2e 3728
d1310b2e 3729 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3730 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3731
3732 prefetchw(&page->flags);
3733 list_del(&page->lru);
67c9684f 3734 if (add_to_page_cache_lru(page, mapping,
43e817a1 3735 page->index, GFP_NOFS)) {
67c9684f
LB
3736 page_cache_release(page);
3737 continue;
d1310b2e 3738 }
67c9684f
LB
3739
3740 pagepool[nr++] = page;
3741 if (nr < ARRAY_SIZE(pagepool))
3742 continue;
3743 for (i = 0; i < nr; i++) {
3744 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3745 &bio, 0, &bio_flags, READ);
67c9684f
LB
3746 page_cache_release(pagepool[i]);
3747 }
3748 nr = 0;
d1310b2e 3749 }
67c9684f
LB
3750 for (i = 0; i < nr; i++) {
3751 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3752 &bio, 0, &bio_flags, READ);
67c9684f 3753 page_cache_release(pagepool[i]);
d1310b2e 3754 }
67c9684f 3755
d1310b2e
CM
3756 BUG_ON(!list_empty(pages));
3757 if (bio)
79787eaa 3758 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3759 return 0;
3760}
d1310b2e
CM
3761
3762/*
3763 * basic invalidatepage code, this waits on any locked or writeback
3764 * ranges corresponding to the page, and then deletes any extent state
3765 * records from the tree
3766 */
3767int extent_invalidatepage(struct extent_io_tree *tree,
3768 struct page *page, unsigned long offset)
3769{
2ac55d41 3770 struct extent_state *cached_state = NULL;
4eee4fa4 3771 u64 start = page_offset(page);
d1310b2e
CM
3772 u64 end = start + PAGE_CACHE_SIZE - 1;
3773 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3774
fda2832f 3775 start += ALIGN(offset, blocksize);
d1310b2e
CM
3776 if (start > end)
3777 return 0;
3778
d0082371 3779 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3780 wait_on_page_writeback(page);
d1310b2e 3781 clear_extent_bit(tree, start, end,
32c00aff
JB
3782 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3783 EXTENT_DO_ACCOUNTING,
2ac55d41 3784 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3785 return 0;
3786}
d1310b2e 3787
7b13b7b1
CM
3788/*
3789 * a helper for releasepage, this tests for areas of the page that
3790 * are locked or under IO and drops the related state bits if it is safe
3791 * to drop the page.
3792 */
48a3b636
ES
3793static int try_release_extent_state(struct extent_map_tree *map,
3794 struct extent_io_tree *tree,
3795 struct page *page, gfp_t mask)
7b13b7b1 3796{
4eee4fa4 3797 u64 start = page_offset(page);
7b13b7b1
CM
3798 u64 end = start + PAGE_CACHE_SIZE - 1;
3799 int ret = 1;
3800
211f90e6 3801 if (test_range_bit(tree, start, end,
8b62b72b 3802 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3803 ret = 0;
3804 else {
3805 if ((mask & GFP_NOFS) == GFP_NOFS)
3806 mask = GFP_NOFS;
11ef160f
CM
3807 /*
3808 * at this point we can safely clear everything except the
3809 * locked bit and the nodatasum bit
3810 */
e3f24cc5 3811 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3812 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3813 0, 0, NULL, mask);
e3f24cc5
CM
3814
3815 /* if clear_extent_bit failed for enomem reasons,
3816 * we can't allow the release to continue.
3817 */
3818 if (ret < 0)
3819 ret = 0;
3820 else
3821 ret = 1;
7b13b7b1
CM
3822 }
3823 return ret;
3824}
7b13b7b1 3825
d1310b2e
CM
3826/*
3827 * a helper for releasepage. As long as there are no locked extents
3828 * in the range corresponding to the page, both state records and extent
3829 * map records are removed
3830 */
3831int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3832 struct extent_io_tree *tree, struct page *page,
3833 gfp_t mask)
d1310b2e
CM
3834{
3835 struct extent_map *em;
4eee4fa4 3836 u64 start = page_offset(page);
d1310b2e 3837 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3838
70dec807
CM
3839 if ((mask & __GFP_WAIT) &&
3840 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3841 u64 len;
70dec807 3842 while (start <= end) {
39b5637f 3843 len = end - start + 1;
890871be 3844 write_lock(&map->lock);
39b5637f 3845 em = lookup_extent_mapping(map, start, len);
285190d9 3846 if (!em) {
890871be 3847 write_unlock(&map->lock);
70dec807
CM
3848 break;
3849 }
7f3c74fb
CM
3850 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3851 em->start != start) {
890871be 3852 write_unlock(&map->lock);
70dec807
CM
3853 free_extent_map(em);
3854 break;
3855 }
3856 if (!test_range_bit(tree, em->start,
3857 extent_map_end(em) - 1,
8b62b72b 3858 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3859 0, NULL)) {
70dec807
CM
3860 remove_extent_mapping(map, em);
3861 /* once for the rb tree */
3862 free_extent_map(em);
3863 }
3864 start = extent_map_end(em);
890871be 3865 write_unlock(&map->lock);
70dec807
CM
3866
3867 /* once for us */
d1310b2e
CM
3868 free_extent_map(em);
3869 }
d1310b2e 3870 }
7b13b7b1 3871 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3872}
d1310b2e 3873
ec29ed5b
CM
3874/*
3875 * helper function for fiemap, which doesn't want to see any holes.
3876 * This maps until we find something past 'last'
3877 */
3878static struct extent_map *get_extent_skip_holes(struct inode *inode,
3879 u64 offset,
3880 u64 last,
3881 get_extent_t *get_extent)
3882{
3883 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3884 struct extent_map *em;
3885 u64 len;
3886
3887 if (offset >= last)
3888 return NULL;
3889
3890 while(1) {
3891 len = last - offset;
3892 if (len == 0)
3893 break;
fda2832f 3894 len = ALIGN(len, sectorsize);
ec29ed5b 3895 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3896 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3897 return em;
3898
3899 /* if this isn't a hole return it */
3900 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3901 em->block_start != EXTENT_MAP_HOLE) {
3902 return em;
3903 }
3904
3905 /* this is a hole, advance to the next extent */
3906 offset = extent_map_end(em);
3907 free_extent_map(em);
3908 if (offset >= last)
3909 break;
3910 }
3911 return NULL;
3912}
3913
1506fcc8
YS
3914int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3915 __u64 start, __u64 len, get_extent_t *get_extent)
3916{
975f84fe 3917 int ret = 0;
1506fcc8
YS
3918 u64 off = start;
3919 u64 max = start + len;
3920 u32 flags = 0;
975f84fe
JB
3921 u32 found_type;
3922 u64 last;
ec29ed5b 3923 u64 last_for_get_extent = 0;
1506fcc8 3924 u64 disko = 0;
ec29ed5b 3925 u64 isize = i_size_read(inode);
975f84fe 3926 struct btrfs_key found_key;
1506fcc8 3927 struct extent_map *em = NULL;
2ac55d41 3928 struct extent_state *cached_state = NULL;
975f84fe
JB
3929 struct btrfs_path *path;
3930 struct btrfs_file_extent_item *item;
1506fcc8 3931 int end = 0;
ec29ed5b
CM
3932 u64 em_start = 0;
3933 u64 em_len = 0;
3934 u64 em_end = 0;
1506fcc8 3935 unsigned long emflags;
1506fcc8
YS
3936
3937 if (len == 0)
3938 return -EINVAL;
3939
975f84fe
JB
3940 path = btrfs_alloc_path();
3941 if (!path)
3942 return -ENOMEM;
3943 path->leave_spinning = 1;
3944
4d479cf0
JB
3945 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3946 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3947
ec29ed5b
CM
3948 /*
3949 * lookup the last file extent. We're not using i_size here
3950 * because there might be preallocation past i_size
3951 */
975f84fe 3952 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3953 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3954 if (ret < 0) {
3955 btrfs_free_path(path);
3956 return ret;
3957 }
3958 WARN_ON(!ret);
3959 path->slots[0]--;
3960 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3961 struct btrfs_file_extent_item);
3962 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3963 found_type = btrfs_key_type(&found_key);
3964
ec29ed5b 3965 /* No extents, but there might be delalloc bits */
33345d01 3966 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3967 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3968 /* have to trust i_size as the end */
3969 last = (u64)-1;
3970 last_for_get_extent = isize;
3971 } else {
3972 /*
3973 * remember the start of the last extent. There are a
3974 * bunch of different factors that go into the length of the
3975 * extent, so its much less complex to remember where it started
3976 */
3977 last = found_key.offset;
3978 last_for_get_extent = last + 1;
975f84fe 3979 }
975f84fe
JB
3980 btrfs_free_path(path);
3981
ec29ed5b
CM
3982 /*
3983 * we might have some extents allocated but more delalloc past those
3984 * extents. so, we trust isize unless the start of the last extent is
3985 * beyond isize
3986 */
3987 if (last < isize) {
3988 last = (u64)-1;
3989 last_for_get_extent = isize;
3990 }
3991
a52f4cd2 3992 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 3993 &cached_state);
ec29ed5b 3994
4d479cf0 3995 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3996 get_extent);
1506fcc8
YS
3997 if (!em)
3998 goto out;
3999 if (IS_ERR(em)) {
4000 ret = PTR_ERR(em);
4001 goto out;
4002 }
975f84fe 4003
1506fcc8 4004 while (!end) {
ea8efc74
CM
4005 u64 offset_in_extent;
4006
4007 /* break if the extent we found is outside the range */
4008 if (em->start >= max || extent_map_end(em) < off)
4009 break;
4010
4011 /*
4012 * get_extent may return an extent that starts before our
4013 * requested range. We have to make sure the ranges
4014 * we return to fiemap always move forward and don't
4015 * overlap, so adjust the offsets here
4016 */
4017 em_start = max(em->start, off);
1506fcc8 4018
ea8efc74
CM
4019 /*
4020 * record the offset from the start of the extent
4021 * for adjusting the disk offset below
4022 */
4023 offset_in_extent = em_start - em->start;
ec29ed5b 4024 em_end = extent_map_end(em);
ea8efc74 4025 em_len = em_end - em_start;
ec29ed5b 4026 emflags = em->flags;
1506fcc8
YS
4027 disko = 0;
4028 flags = 0;
4029
ea8efc74
CM
4030 /*
4031 * bump off for our next call to get_extent
4032 */
4033 off = extent_map_end(em);
4034 if (off >= max)
4035 end = 1;
4036
93dbfad7 4037 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4038 end = 1;
4039 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4040 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4041 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4042 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4043 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4044 flags |= (FIEMAP_EXTENT_DELALLOC |
4045 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4046 } else {
ea8efc74 4047 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4048 }
4049 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4050 flags |= FIEMAP_EXTENT_ENCODED;
4051
1506fcc8
YS
4052 free_extent_map(em);
4053 em = NULL;
ec29ed5b
CM
4054 if ((em_start >= last) || em_len == (u64)-1 ||
4055 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4056 flags |= FIEMAP_EXTENT_LAST;
4057 end = 1;
4058 }
4059
ec29ed5b
CM
4060 /* now scan forward to see if this is really the last extent. */
4061 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4062 get_extent);
4063 if (IS_ERR(em)) {
4064 ret = PTR_ERR(em);
4065 goto out;
4066 }
4067 if (!em) {
975f84fe
JB
4068 flags |= FIEMAP_EXTENT_LAST;
4069 end = 1;
4070 }
ec29ed5b
CM
4071 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4072 em_len, flags);
4073 if (ret)
4074 goto out_free;
1506fcc8
YS
4075 }
4076out_free:
4077 free_extent_map(em);
4078out:
a52f4cd2 4079 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4080 &cached_state, GFP_NOFS);
1506fcc8
YS
4081 return ret;
4082}
4083
727011e0
CM
4084static void __free_extent_buffer(struct extent_buffer *eb)
4085{
6d49ba1b 4086 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4087 kmem_cache_free(extent_buffer_cache, eb);
4088}
4089
d1310b2e
CM
4090static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4091 u64 start,
4092 unsigned long len,
4093 gfp_t mask)
4094{
4095 struct extent_buffer *eb = NULL;
4096
d1310b2e 4097 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4098 if (eb == NULL)
4099 return NULL;
d1310b2e
CM
4100 eb->start = start;
4101 eb->len = len;
4f2de97a 4102 eb->tree = tree;
815a51c7 4103 eb->bflags = 0;
bd681513
CM
4104 rwlock_init(&eb->lock);
4105 atomic_set(&eb->write_locks, 0);
4106 atomic_set(&eb->read_locks, 0);
4107 atomic_set(&eb->blocking_readers, 0);
4108 atomic_set(&eb->blocking_writers, 0);
4109 atomic_set(&eb->spinning_readers, 0);
4110 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4111 eb->lock_nested = 0;
bd681513
CM
4112 init_waitqueue_head(&eb->write_lock_wq);
4113 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4114
6d49ba1b
ES
4115 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4116
3083ee2e 4117 spin_lock_init(&eb->refs_lock);
d1310b2e 4118 atomic_set(&eb->refs, 1);
0b32f4bb 4119 atomic_set(&eb->io_pages, 0);
727011e0 4120
b8dae313
DS
4121 /*
4122 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4123 */
4124 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4125 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4126 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4127
4128 return eb;
4129}
4130
815a51c7
JS
4131struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4132{
4133 unsigned long i;
4134 struct page *p;
4135 struct extent_buffer *new;
4136 unsigned long num_pages = num_extent_pages(src->start, src->len);
4137
4138 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4139 if (new == NULL)
4140 return NULL;
4141
4142 for (i = 0; i < num_pages; i++) {
4143 p = alloc_page(GFP_ATOMIC);
4144 BUG_ON(!p);
4145 attach_extent_buffer_page(new, p);
4146 WARN_ON(PageDirty(p));
4147 SetPageUptodate(p);
4148 new->pages[i] = p;
4149 }
4150
4151 copy_extent_buffer(new, src, 0, 0, src->len);
4152 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4153 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4154
4155 return new;
4156}
4157
4158struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4159{
4160 struct extent_buffer *eb;
4161 unsigned long num_pages = num_extent_pages(0, len);
4162 unsigned long i;
4163
4164 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4165 if (!eb)
4166 return NULL;
4167
4168 for (i = 0; i < num_pages; i++) {
4169 eb->pages[i] = alloc_page(GFP_ATOMIC);
4170 if (!eb->pages[i])
4171 goto err;
4172 }
4173 set_extent_buffer_uptodate(eb);
4174 btrfs_set_header_nritems(eb, 0);
4175 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4176
4177 return eb;
4178err:
84167d19
SB
4179 for (; i > 0; i--)
4180 __free_page(eb->pages[i - 1]);
815a51c7
JS
4181 __free_extent_buffer(eb);
4182 return NULL;
4183}
4184
0b32f4bb 4185static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4186{
0b32f4bb
JB
4187 return (atomic_read(&eb->io_pages) ||
4188 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4189 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4190}
4191
897ca6e9
MX
4192/*
4193 * Helper for releasing extent buffer page.
4194 */
4195static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4196 unsigned long start_idx)
4197{
4198 unsigned long index;
39bab87b 4199 unsigned long num_pages;
897ca6e9 4200 struct page *page;
815a51c7 4201 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4202
0b32f4bb 4203 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4204
39bab87b
WSH
4205 num_pages = num_extent_pages(eb->start, eb->len);
4206 index = start_idx + num_pages;
897ca6e9
MX
4207 if (start_idx >= index)
4208 return;
4209
4210 do {
4211 index--;
4212 page = extent_buffer_page(eb, index);
815a51c7 4213 if (page && mapped) {
4f2de97a
JB
4214 spin_lock(&page->mapping->private_lock);
4215 /*
4216 * We do this since we'll remove the pages after we've
4217 * removed the eb from the radix tree, so we could race
4218 * and have this page now attached to the new eb. So
4219 * only clear page_private if it's still connected to
4220 * this eb.
4221 */
4222 if (PagePrivate(page) &&
4223 page->private == (unsigned long)eb) {
0b32f4bb 4224 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4225 BUG_ON(PageDirty(page));
4226 BUG_ON(PageWriteback(page));
4f2de97a
JB
4227 /*
4228 * We need to make sure we haven't be attached
4229 * to a new eb.
4230 */
4231 ClearPagePrivate(page);
4232 set_page_private(page, 0);
4233 /* One for the page private */
4234 page_cache_release(page);
4235 }
4236 spin_unlock(&page->mapping->private_lock);
4237
815a51c7
JS
4238 }
4239 if (page) {
4f2de97a 4240 /* One for when we alloced the page */
897ca6e9 4241 page_cache_release(page);
4f2de97a 4242 }
897ca6e9
MX
4243 } while (index != start_idx);
4244}
4245
4246/*
4247 * Helper for releasing the extent buffer.
4248 */
4249static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4250{
4251 btrfs_release_extent_buffer_page(eb, 0);
4252 __free_extent_buffer(eb);
4253}
4254
0b32f4bb
JB
4255static void check_buffer_tree_ref(struct extent_buffer *eb)
4256{
242e18c7 4257 int refs;
0b32f4bb
JB
4258 /* the ref bit is tricky. We have to make sure it is set
4259 * if we have the buffer dirty. Otherwise the
4260 * code to free a buffer can end up dropping a dirty
4261 * page
4262 *
4263 * Once the ref bit is set, it won't go away while the
4264 * buffer is dirty or in writeback, and it also won't
4265 * go away while we have the reference count on the
4266 * eb bumped.
4267 *
4268 * We can't just set the ref bit without bumping the
4269 * ref on the eb because free_extent_buffer might
4270 * see the ref bit and try to clear it. If this happens
4271 * free_extent_buffer might end up dropping our original
4272 * ref by mistake and freeing the page before we are able
4273 * to add one more ref.
4274 *
4275 * So bump the ref count first, then set the bit. If someone
4276 * beat us to it, drop the ref we added.
4277 */
242e18c7
CM
4278 refs = atomic_read(&eb->refs);
4279 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4280 return;
4281
594831c4
JB
4282 spin_lock(&eb->refs_lock);
4283 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4284 atomic_inc(&eb->refs);
594831c4 4285 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4286}
4287
5df4235e
JB
4288static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4289{
4290 unsigned long num_pages, i;
4291
0b32f4bb
JB
4292 check_buffer_tree_ref(eb);
4293
5df4235e
JB
4294 num_pages = num_extent_pages(eb->start, eb->len);
4295 for (i = 0; i < num_pages; i++) {
4296 struct page *p = extent_buffer_page(eb, i);
4297 mark_page_accessed(p);
4298 }
4299}
4300
d1310b2e 4301struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4302 u64 start, unsigned long len)
d1310b2e
CM
4303{
4304 unsigned long num_pages = num_extent_pages(start, len);
4305 unsigned long i;
4306 unsigned long index = start >> PAGE_CACHE_SHIFT;
4307 struct extent_buffer *eb;
6af118ce 4308 struct extent_buffer *exists = NULL;
d1310b2e
CM
4309 struct page *p;
4310 struct address_space *mapping = tree->mapping;
4311 int uptodate = 1;
19fe0a8b 4312 int ret;
d1310b2e 4313
19fe0a8b
MX
4314 rcu_read_lock();
4315 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4316 if (eb && atomic_inc_not_zero(&eb->refs)) {
4317 rcu_read_unlock();
5df4235e 4318 mark_extent_buffer_accessed(eb);
6af118ce
CM
4319 return eb;
4320 }
19fe0a8b 4321 rcu_read_unlock();
6af118ce 4322
ba144192 4323 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4324 if (!eb)
d1310b2e
CM
4325 return NULL;
4326
727011e0 4327 for (i = 0; i < num_pages; i++, index++) {
a6591715 4328 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4329 if (!p)
6af118ce 4330 goto free_eb;
4f2de97a
JB
4331
4332 spin_lock(&mapping->private_lock);
4333 if (PagePrivate(p)) {
4334 /*
4335 * We could have already allocated an eb for this page
4336 * and attached one so lets see if we can get a ref on
4337 * the existing eb, and if we can we know it's good and
4338 * we can just return that one, else we know we can just
4339 * overwrite page->private.
4340 */
4341 exists = (struct extent_buffer *)p->private;
4342 if (atomic_inc_not_zero(&exists->refs)) {
4343 spin_unlock(&mapping->private_lock);
4344 unlock_page(p);
17de39ac 4345 page_cache_release(p);
5df4235e 4346 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4347 goto free_eb;
4348 }
4349
0b32f4bb 4350 /*
4f2de97a
JB
4351 * Do this so attach doesn't complain and we need to
4352 * drop the ref the old guy had.
4353 */
4354 ClearPagePrivate(p);
0b32f4bb 4355 WARN_ON(PageDirty(p));
4f2de97a 4356 page_cache_release(p);
d1310b2e 4357 }
4f2de97a
JB
4358 attach_extent_buffer_page(eb, p);
4359 spin_unlock(&mapping->private_lock);
0b32f4bb 4360 WARN_ON(PageDirty(p));
d1310b2e 4361 mark_page_accessed(p);
727011e0 4362 eb->pages[i] = p;
d1310b2e
CM
4363 if (!PageUptodate(p))
4364 uptodate = 0;
eb14ab8e
CM
4365
4366 /*
4367 * see below about how we avoid a nasty race with release page
4368 * and why we unlock later
4369 */
d1310b2e
CM
4370 }
4371 if (uptodate)
b4ce94de 4372 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4373again:
19fe0a8b
MX
4374 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4375 if (ret)
4376 goto free_eb;
4377
6af118ce 4378 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4379 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4380 if (ret == -EEXIST) {
4381 exists = radix_tree_lookup(&tree->buffer,
4382 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4383 if (!atomic_inc_not_zero(&exists->refs)) {
4384 spin_unlock(&tree->buffer_lock);
4385 radix_tree_preload_end();
115391d2
JB
4386 exists = NULL;
4387 goto again;
4388 }
6af118ce 4389 spin_unlock(&tree->buffer_lock);
19fe0a8b 4390 radix_tree_preload_end();
5df4235e 4391 mark_extent_buffer_accessed(exists);
6af118ce
CM
4392 goto free_eb;
4393 }
6af118ce 4394 /* add one reference for the tree */
0b32f4bb 4395 check_buffer_tree_ref(eb);
f044ba78 4396 spin_unlock(&tree->buffer_lock);
19fe0a8b 4397 radix_tree_preload_end();
eb14ab8e
CM
4398
4399 /*
4400 * there is a race where release page may have
4401 * tried to find this extent buffer in the radix
4402 * but failed. It will tell the VM it is safe to
4403 * reclaim the, and it will clear the page private bit.
4404 * We must make sure to set the page private bit properly
4405 * after the extent buffer is in the radix tree so
4406 * it doesn't get lost
4407 */
727011e0
CM
4408 SetPageChecked(eb->pages[0]);
4409 for (i = 1; i < num_pages; i++) {
4410 p = extent_buffer_page(eb, i);
727011e0
CM
4411 ClearPageChecked(p);
4412 unlock_page(p);
4413 }
4414 unlock_page(eb->pages[0]);
d1310b2e
CM
4415 return eb;
4416
6af118ce 4417free_eb:
727011e0
CM
4418 for (i = 0; i < num_pages; i++) {
4419 if (eb->pages[i])
4420 unlock_page(eb->pages[i]);
4421 }
eb14ab8e 4422
17de39ac 4423 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4424 btrfs_release_extent_buffer(eb);
6af118ce 4425 return exists;
d1310b2e 4426}
d1310b2e
CM
4427
4428struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4429 u64 start, unsigned long len)
d1310b2e 4430{
d1310b2e 4431 struct extent_buffer *eb;
d1310b2e 4432
19fe0a8b
MX
4433 rcu_read_lock();
4434 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4435 if (eb && atomic_inc_not_zero(&eb->refs)) {
4436 rcu_read_unlock();
5df4235e 4437 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4438 return eb;
4439 }
4440 rcu_read_unlock();
0f9dd46c 4441
19fe0a8b 4442 return NULL;
d1310b2e 4443}
d1310b2e 4444
3083ee2e
JB
4445static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4446{
4447 struct extent_buffer *eb =
4448 container_of(head, struct extent_buffer, rcu_head);
4449
4450 __free_extent_buffer(eb);
4451}
4452
3083ee2e 4453/* Expects to have eb->eb_lock already held */
f7a52a40 4454static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4455{
4456 WARN_ON(atomic_read(&eb->refs) == 0);
4457 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4458 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4459 spin_unlock(&eb->refs_lock);
4460 } else {
4461 struct extent_io_tree *tree = eb->tree;
3083ee2e 4462
815a51c7 4463 spin_unlock(&eb->refs_lock);
3083ee2e 4464
815a51c7
JS
4465 spin_lock(&tree->buffer_lock);
4466 radix_tree_delete(&tree->buffer,
4467 eb->start >> PAGE_CACHE_SHIFT);
4468 spin_unlock(&tree->buffer_lock);
4469 }
3083ee2e
JB
4470
4471 /* Should be safe to release our pages at this point */
4472 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4473 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4474 return 1;
3083ee2e
JB
4475 }
4476 spin_unlock(&eb->refs_lock);
e64860aa
JB
4477
4478 return 0;
3083ee2e
JB
4479}
4480
d1310b2e
CM
4481void free_extent_buffer(struct extent_buffer *eb)
4482{
242e18c7
CM
4483 int refs;
4484 int old;
d1310b2e
CM
4485 if (!eb)
4486 return;
4487
242e18c7
CM
4488 while (1) {
4489 refs = atomic_read(&eb->refs);
4490 if (refs <= 3)
4491 break;
4492 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4493 if (old == refs)
4494 return;
4495 }
4496
3083ee2e 4497 spin_lock(&eb->refs_lock);
815a51c7
JS
4498 if (atomic_read(&eb->refs) == 2 &&
4499 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4500 atomic_dec(&eb->refs);
4501
3083ee2e
JB
4502 if (atomic_read(&eb->refs) == 2 &&
4503 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4504 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4505 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4506 atomic_dec(&eb->refs);
4507
4508 /*
4509 * I know this is terrible, but it's temporary until we stop tracking
4510 * the uptodate bits and such for the extent buffers.
4511 */
f7a52a40 4512 release_extent_buffer(eb);
3083ee2e
JB
4513}
4514
4515void free_extent_buffer_stale(struct extent_buffer *eb)
4516{
4517 if (!eb)
d1310b2e
CM
4518 return;
4519
3083ee2e
JB
4520 spin_lock(&eb->refs_lock);
4521 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4522
0b32f4bb 4523 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4524 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4525 atomic_dec(&eb->refs);
f7a52a40 4526 release_extent_buffer(eb);
d1310b2e 4527}
d1310b2e 4528
1d4284bd 4529void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4530{
d1310b2e
CM
4531 unsigned long i;
4532 unsigned long num_pages;
4533 struct page *page;
4534
d1310b2e
CM
4535 num_pages = num_extent_pages(eb->start, eb->len);
4536
4537 for (i = 0; i < num_pages; i++) {
4538 page = extent_buffer_page(eb, i);
b9473439 4539 if (!PageDirty(page))
d2c3f4f6
CM
4540 continue;
4541
a61e6f29 4542 lock_page(page);
eb14ab8e
CM
4543 WARN_ON(!PagePrivate(page));
4544
d1310b2e 4545 clear_page_dirty_for_io(page);
0ee0fda0 4546 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4547 if (!PageDirty(page)) {
4548 radix_tree_tag_clear(&page->mapping->page_tree,
4549 page_index(page),
4550 PAGECACHE_TAG_DIRTY);
4551 }
0ee0fda0 4552 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4553 ClearPageError(page);
a61e6f29 4554 unlock_page(page);
d1310b2e 4555 }
0b32f4bb 4556 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4557}
d1310b2e 4558
0b32f4bb 4559int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4560{
4561 unsigned long i;
4562 unsigned long num_pages;
b9473439 4563 int was_dirty = 0;
d1310b2e 4564
0b32f4bb
JB
4565 check_buffer_tree_ref(eb);
4566
b9473439 4567 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4568
d1310b2e 4569 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4570 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4571 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4572
b9473439 4573 for (i = 0; i < num_pages; i++)
0b32f4bb 4574 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4575 return was_dirty;
d1310b2e 4576}
d1310b2e 4577
0b32f4bb 4578int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4579{
4580 unsigned long i;
4581 struct page *page;
4582 unsigned long num_pages;
4583
b4ce94de 4584 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4585 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4586 for (i = 0; i < num_pages; i++) {
4587 page = extent_buffer_page(eb, i);
33958dc6
CM
4588 if (page)
4589 ClearPageUptodate(page);
1259ab75
CM
4590 }
4591 return 0;
4592}
4593
0b32f4bb 4594int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4595{
4596 unsigned long i;
4597 struct page *page;
4598 unsigned long num_pages;
4599
0b32f4bb 4600 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4601 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4602 for (i = 0; i < num_pages; i++) {
4603 page = extent_buffer_page(eb, i);
d1310b2e
CM
4604 SetPageUptodate(page);
4605 }
4606 return 0;
4607}
d1310b2e 4608
0b32f4bb 4609int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4610{
0b32f4bb 4611 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4612}
d1310b2e
CM
4613
4614int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4615 struct extent_buffer *eb, u64 start, int wait,
f188591e 4616 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4617{
4618 unsigned long i;
4619 unsigned long start_i;
4620 struct page *page;
4621 int err;
4622 int ret = 0;
ce9adaa5
CM
4623 int locked_pages = 0;
4624 int all_uptodate = 1;
d1310b2e 4625 unsigned long num_pages;
727011e0 4626 unsigned long num_reads = 0;
a86c12c7 4627 struct bio *bio = NULL;
c8b97818 4628 unsigned long bio_flags = 0;
a86c12c7 4629
b4ce94de 4630 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4631 return 0;
4632
d1310b2e
CM
4633 if (start) {
4634 WARN_ON(start < eb->start);
4635 start_i = (start >> PAGE_CACHE_SHIFT) -
4636 (eb->start >> PAGE_CACHE_SHIFT);
4637 } else {
4638 start_i = 0;
4639 }
4640
4641 num_pages = num_extent_pages(eb->start, eb->len);
4642 for (i = start_i; i < num_pages; i++) {
4643 page = extent_buffer_page(eb, i);
bb82ab88 4644 if (wait == WAIT_NONE) {
2db04966 4645 if (!trylock_page(page))
ce9adaa5 4646 goto unlock_exit;
d1310b2e
CM
4647 } else {
4648 lock_page(page);
4649 }
ce9adaa5 4650 locked_pages++;
727011e0
CM
4651 if (!PageUptodate(page)) {
4652 num_reads++;
ce9adaa5 4653 all_uptodate = 0;
727011e0 4654 }
ce9adaa5
CM
4655 }
4656 if (all_uptodate) {
4657 if (start_i == 0)
b4ce94de 4658 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4659 goto unlock_exit;
4660 }
4661
ea466794 4662 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4663 eb->read_mirror = 0;
0b32f4bb 4664 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4665 for (i = start_i; i < num_pages; i++) {
4666 page = extent_buffer_page(eb, i);
ce9adaa5 4667 if (!PageUptodate(page)) {
f188591e 4668 ClearPageError(page);
a86c12c7 4669 err = __extent_read_full_page(tree, page,
f188591e 4670 get_extent, &bio,
d4c7ca86
JB
4671 mirror_num, &bio_flags,
4672 READ | REQ_META);
d397712b 4673 if (err)
d1310b2e 4674 ret = err;
d1310b2e
CM
4675 } else {
4676 unlock_page(page);
4677 }
4678 }
4679
355808c2 4680 if (bio) {
d4c7ca86
JB
4681 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4682 bio_flags);
79787eaa
JM
4683 if (err)
4684 return err;
355808c2 4685 }
a86c12c7 4686
bb82ab88 4687 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4688 return ret;
d397712b 4689
d1310b2e
CM
4690 for (i = start_i; i < num_pages; i++) {
4691 page = extent_buffer_page(eb, i);
4692 wait_on_page_locked(page);
d397712b 4693 if (!PageUptodate(page))
d1310b2e 4694 ret = -EIO;
d1310b2e 4695 }
d397712b 4696
d1310b2e 4697 return ret;
ce9adaa5
CM
4698
4699unlock_exit:
4700 i = start_i;
d397712b 4701 while (locked_pages > 0) {
ce9adaa5
CM
4702 page = extent_buffer_page(eb, i);
4703 i++;
4704 unlock_page(page);
4705 locked_pages--;
4706 }
4707 return ret;
d1310b2e 4708}
d1310b2e
CM
4709
4710void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4711 unsigned long start,
4712 unsigned long len)
4713{
4714 size_t cur;
4715 size_t offset;
4716 struct page *page;
4717 char *kaddr;
4718 char *dst = (char *)dstv;
4719 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4720 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4721
4722 WARN_ON(start > eb->len);
4723 WARN_ON(start + len > eb->start + eb->len);
4724
4725 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4726
d397712b 4727 while (len > 0) {
d1310b2e 4728 page = extent_buffer_page(eb, i);
d1310b2e
CM
4729
4730 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4731 kaddr = page_address(page);
d1310b2e 4732 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4733
4734 dst += cur;
4735 len -= cur;
4736 offset = 0;
4737 i++;
4738 }
4739}
d1310b2e
CM
4740
4741int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4742 unsigned long min_len, char **map,
d1310b2e 4743 unsigned long *map_start,
a6591715 4744 unsigned long *map_len)
d1310b2e
CM
4745{
4746 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4747 char *kaddr;
4748 struct page *p;
4749 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4750 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4751 unsigned long end_i = (start_offset + start + min_len - 1) >>
4752 PAGE_CACHE_SHIFT;
4753
4754 if (i != end_i)
4755 return -EINVAL;
4756
4757 if (i == 0) {
4758 offset = start_offset;
4759 *map_start = 0;
4760 } else {
4761 offset = 0;
4762 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4763 }
d397712b 4764
d1310b2e 4765 if (start + min_len > eb->len) {
31b1a2bd 4766 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
d397712b
CM
4767 "wanted %lu %lu\n", (unsigned long long)eb->start,
4768 eb->len, start, min_len);
85026533 4769 return -EINVAL;
d1310b2e
CM
4770 }
4771
4772 p = extent_buffer_page(eb, i);
a6591715 4773 kaddr = page_address(p);
d1310b2e
CM
4774 *map = kaddr + offset;
4775 *map_len = PAGE_CACHE_SIZE - offset;
4776 return 0;
4777}
d1310b2e 4778
d1310b2e
CM
4779int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4780 unsigned long start,
4781 unsigned long len)
4782{
4783 size_t cur;
4784 size_t offset;
4785 struct page *page;
4786 char *kaddr;
4787 char *ptr = (char *)ptrv;
4788 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4789 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4790 int ret = 0;
4791
4792 WARN_ON(start > eb->len);
4793 WARN_ON(start + len > eb->start + eb->len);
4794
4795 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4796
d397712b 4797 while (len > 0) {
d1310b2e 4798 page = extent_buffer_page(eb, i);
d1310b2e
CM
4799
4800 cur = min(len, (PAGE_CACHE_SIZE - offset));
4801
a6591715 4802 kaddr = page_address(page);
d1310b2e 4803 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4804 if (ret)
4805 break;
4806
4807 ptr += cur;
4808 len -= cur;
4809 offset = 0;
4810 i++;
4811 }
4812 return ret;
4813}
d1310b2e
CM
4814
4815void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4816 unsigned long start, unsigned long len)
4817{
4818 size_t cur;
4819 size_t offset;
4820 struct page *page;
4821 char *kaddr;
4822 char *src = (char *)srcv;
4823 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4824 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4825
4826 WARN_ON(start > eb->len);
4827 WARN_ON(start + len > eb->start + eb->len);
4828
4829 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4830
d397712b 4831 while (len > 0) {
d1310b2e
CM
4832 page = extent_buffer_page(eb, i);
4833 WARN_ON(!PageUptodate(page));
4834
4835 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4836 kaddr = page_address(page);
d1310b2e 4837 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4838
4839 src += cur;
4840 len -= cur;
4841 offset = 0;
4842 i++;
4843 }
4844}
d1310b2e
CM
4845
4846void memset_extent_buffer(struct extent_buffer *eb, char c,
4847 unsigned long start, unsigned long len)
4848{
4849 size_t cur;
4850 size_t offset;
4851 struct page *page;
4852 char *kaddr;
4853 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4854 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4855
4856 WARN_ON(start > eb->len);
4857 WARN_ON(start + len > eb->start + eb->len);
4858
4859 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4860
d397712b 4861 while (len > 0) {
d1310b2e
CM
4862 page = extent_buffer_page(eb, i);
4863 WARN_ON(!PageUptodate(page));
4864
4865 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4866 kaddr = page_address(page);
d1310b2e 4867 memset(kaddr + offset, c, cur);
d1310b2e
CM
4868
4869 len -= cur;
4870 offset = 0;
4871 i++;
4872 }
4873}
d1310b2e
CM
4874
4875void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4876 unsigned long dst_offset, unsigned long src_offset,
4877 unsigned long len)
4878{
4879 u64 dst_len = dst->len;
4880 size_t cur;
4881 size_t offset;
4882 struct page *page;
4883 char *kaddr;
4884 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4885 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4886
4887 WARN_ON(src->len != dst_len);
4888
4889 offset = (start_offset + dst_offset) &
4890 ((unsigned long)PAGE_CACHE_SIZE - 1);
4891
d397712b 4892 while (len > 0) {
d1310b2e
CM
4893 page = extent_buffer_page(dst, i);
4894 WARN_ON(!PageUptodate(page));
4895
4896 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4897
a6591715 4898 kaddr = page_address(page);
d1310b2e 4899 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4900
4901 src_offset += cur;
4902 len -= cur;
4903 offset = 0;
4904 i++;
4905 }
4906}
d1310b2e
CM
4907
4908static void move_pages(struct page *dst_page, struct page *src_page,
4909 unsigned long dst_off, unsigned long src_off,
4910 unsigned long len)
4911{
a6591715 4912 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4913 if (dst_page == src_page) {
4914 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4915 } else {
a6591715 4916 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4917 char *p = dst_kaddr + dst_off + len;
4918 char *s = src_kaddr + src_off + len;
4919
4920 while (len--)
4921 *--p = *--s;
d1310b2e 4922 }
d1310b2e
CM
4923}
4924
3387206f
ST
4925static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4926{
4927 unsigned long distance = (src > dst) ? src - dst : dst - src;
4928 return distance < len;
4929}
4930
d1310b2e
CM
4931static void copy_pages(struct page *dst_page, struct page *src_page,
4932 unsigned long dst_off, unsigned long src_off,
4933 unsigned long len)
4934{
a6591715 4935 char *dst_kaddr = page_address(dst_page);
d1310b2e 4936 char *src_kaddr;
727011e0 4937 int must_memmove = 0;
d1310b2e 4938
3387206f 4939 if (dst_page != src_page) {
a6591715 4940 src_kaddr = page_address(src_page);
3387206f 4941 } else {
d1310b2e 4942 src_kaddr = dst_kaddr;
727011e0
CM
4943 if (areas_overlap(src_off, dst_off, len))
4944 must_memmove = 1;
3387206f 4945 }
d1310b2e 4946
727011e0
CM
4947 if (must_memmove)
4948 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4949 else
4950 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4951}
4952
4953void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4954 unsigned long src_offset, unsigned long len)
4955{
4956 size_t cur;
4957 size_t dst_off_in_page;
4958 size_t src_off_in_page;
4959 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4960 unsigned long dst_i;
4961 unsigned long src_i;
4962
4963 if (src_offset + len > dst->len) {
d397712b
CM
4964 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4965 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4966 BUG_ON(1);
4967 }
4968 if (dst_offset + len > dst->len) {
d397712b
CM
4969 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4970 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4971 BUG_ON(1);
4972 }
4973
d397712b 4974 while (len > 0) {
d1310b2e
CM
4975 dst_off_in_page = (start_offset + dst_offset) &
4976 ((unsigned long)PAGE_CACHE_SIZE - 1);
4977 src_off_in_page = (start_offset + src_offset) &
4978 ((unsigned long)PAGE_CACHE_SIZE - 1);
4979
4980 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4981 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4982
4983 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4984 src_off_in_page));
4985 cur = min_t(unsigned long, cur,
4986 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4987
4988 copy_pages(extent_buffer_page(dst, dst_i),
4989 extent_buffer_page(dst, src_i),
4990 dst_off_in_page, src_off_in_page, cur);
4991
4992 src_offset += cur;
4993 dst_offset += cur;
4994 len -= cur;
4995 }
4996}
d1310b2e
CM
4997
4998void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4999 unsigned long src_offset, unsigned long len)
5000{
5001 size_t cur;
5002 size_t dst_off_in_page;
5003 size_t src_off_in_page;
5004 unsigned long dst_end = dst_offset + len - 1;
5005 unsigned long src_end = src_offset + len - 1;
5006 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5007 unsigned long dst_i;
5008 unsigned long src_i;
5009
5010 if (src_offset + len > dst->len) {
d397712b
CM
5011 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5012 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5013 BUG_ON(1);
5014 }
5015 if (dst_offset + len > dst->len) {
d397712b
CM
5016 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5017 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5018 BUG_ON(1);
5019 }
727011e0 5020 if (dst_offset < src_offset) {
d1310b2e
CM
5021 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5022 return;
5023 }
d397712b 5024 while (len > 0) {
d1310b2e
CM
5025 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5026 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5027
5028 dst_off_in_page = (start_offset + dst_end) &
5029 ((unsigned long)PAGE_CACHE_SIZE - 1);
5030 src_off_in_page = (start_offset + src_end) &
5031 ((unsigned long)PAGE_CACHE_SIZE - 1);
5032
5033 cur = min_t(unsigned long, len, src_off_in_page + 1);
5034 cur = min(cur, dst_off_in_page + 1);
5035 move_pages(extent_buffer_page(dst, dst_i),
5036 extent_buffer_page(dst, src_i),
5037 dst_off_in_page - cur + 1,
5038 src_off_in_page - cur + 1, cur);
5039
5040 dst_end -= cur;
5041 src_end -= cur;
5042 len -= cur;
5043 }
5044}
6af118ce 5045
f7a52a40 5046int try_release_extent_buffer(struct page *page)
19fe0a8b 5047{
6af118ce 5048 struct extent_buffer *eb;
6af118ce 5049
3083ee2e
JB
5050 /*
5051 * We need to make sure noboody is attaching this page to an eb right
5052 * now.
5053 */
5054 spin_lock(&page->mapping->private_lock);
5055 if (!PagePrivate(page)) {
5056 spin_unlock(&page->mapping->private_lock);
4f2de97a 5057 return 1;
45f49bce 5058 }
6af118ce 5059
3083ee2e
JB
5060 eb = (struct extent_buffer *)page->private;
5061 BUG_ON(!eb);
19fe0a8b
MX
5062
5063 /*
3083ee2e
JB
5064 * This is a little awful but should be ok, we need to make sure that
5065 * the eb doesn't disappear out from under us while we're looking at
5066 * this page.
19fe0a8b 5067 */
3083ee2e 5068 spin_lock(&eb->refs_lock);
0b32f4bb 5069 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5070 spin_unlock(&eb->refs_lock);
5071 spin_unlock(&page->mapping->private_lock);
5072 return 0;
b9473439 5073 }
3083ee2e 5074 spin_unlock(&page->mapping->private_lock);
897ca6e9 5075
19fe0a8b 5076 /*
3083ee2e
JB
5077 * If tree ref isn't set then we know the ref on this eb is a real ref,
5078 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5079 */
3083ee2e
JB
5080 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5081 spin_unlock(&eb->refs_lock);
5082 return 0;
b9473439 5083 }
19fe0a8b 5084
f7a52a40 5085 return release_extent_buffer(eb);
6af118ce 5086}