Btrfs: fix our overcommit math
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27
28static LIST_HEAD(buffers);
29static LIST_HEAD(states);
4bef0848 30
b47eda86 31#define LEAK_DEBUG 0
3935127c 32#if LEAK_DEBUG
d397712b 33static DEFINE_SPINLOCK(leak_lock);
4bef0848 34#endif
d1310b2e 35
d1310b2e
CM
36#define BUFFER_LRU_MAX 64
37
38struct tree_entry {
39 u64 start;
40 u64 end;
d1310b2e
CM
41 struct rb_node rb_node;
42};
43
44struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
771ed689
CM
48
49 /* tells writepage not to lock the state bits for this range
50 * it still does the unlocking
51 */
ffbd517d
CM
52 unsigned int extent_locked:1;
53
54 /* tells the submit_bio code to use a WRITE_SYNC */
55 unsigned int sync_io:1;
d1310b2e
CM
56};
57
0b32f4bb 58static noinline void flush_write_bio(void *data);
c2d904e0
JM
59static inline struct btrfs_fs_info *
60tree_fs_info(struct extent_io_tree *tree)
61{
62 return btrfs_sb(tree->mapping->host->i_sb);
63}
0b32f4bb 64
d1310b2e
CM
65int __init extent_io_init(void)
66{
9601e3f6
CH
67 extent_state_cache = kmem_cache_create("extent_state",
68 sizeof(struct extent_state), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
70 if (!extent_state_cache)
71 return -ENOMEM;
72
9601e3f6
CH
73 extent_buffer_cache = kmem_cache_create("extent_buffers",
74 sizeof(struct extent_buffer), 0,
75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
76 if (!extent_buffer_cache)
77 goto free_state_cache;
78 return 0;
79
80free_state_cache:
81 kmem_cache_destroy(extent_state_cache);
82 return -ENOMEM;
83}
84
85void extent_io_exit(void)
86{
87 struct extent_state *state;
2d2ae547 88 struct extent_buffer *eb;
d1310b2e
CM
89
90 while (!list_empty(&states)) {
2d2ae547 91 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
92 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 "state %lu in tree %p refs %d\n",
94 (unsigned long long)state->start,
95 (unsigned long long)state->end,
96 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 97 list_del(&state->leak_list);
d1310b2e
CM
98 kmem_cache_free(extent_state_cache, state);
99
100 }
101
2d2ae547
CM
102 while (!list_empty(&buffers)) {
103 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 "refs %d\n", (unsigned long long)eb->start,
106 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
107 list_del(&eb->leak_list);
108 kmem_cache_free(extent_buffer_cache, eb);
109 }
d1310b2e
CM
110 if (extent_state_cache)
111 kmem_cache_destroy(extent_state_cache);
112 if (extent_buffer_cache)
113 kmem_cache_destroy(extent_buffer_cache);
114}
115
116void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 117 struct address_space *mapping)
d1310b2e 118{
6bef4d31 119 tree->state = RB_ROOT;
19fe0a8b 120 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
121 tree->ops = NULL;
122 tree->dirty_bytes = 0;
70dec807 123 spin_lock_init(&tree->lock);
6af118ce 124 spin_lock_init(&tree->buffer_lock);
d1310b2e 125 tree->mapping = mapping;
d1310b2e 126}
d1310b2e 127
b2950863 128static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
129{
130 struct extent_state *state;
3935127c 131#if LEAK_DEBUG
2d2ae547 132 unsigned long flags;
4bef0848 133#endif
d1310b2e
CM
134
135 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 136 if (!state)
d1310b2e
CM
137 return state;
138 state->state = 0;
d1310b2e 139 state->private = 0;
70dec807 140 state->tree = NULL;
3935127c 141#if LEAK_DEBUG
2d2ae547
CM
142 spin_lock_irqsave(&leak_lock, flags);
143 list_add(&state->leak_list, &states);
144 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 145#endif
d1310b2e
CM
146 atomic_set(&state->refs, 1);
147 init_waitqueue_head(&state->wq);
143bede5 148 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
149 return state;
150}
d1310b2e 151
4845e44f 152void free_extent_state(struct extent_state *state)
d1310b2e 153{
d1310b2e
CM
154 if (!state)
155 return;
156 if (atomic_dec_and_test(&state->refs)) {
3935127c 157#if LEAK_DEBUG
2d2ae547 158 unsigned long flags;
4bef0848 159#endif
70dec807 160 WARN_ON(state->tree);
3935127c 161#if LEAK_DEBUG
2d2ae547
CM
162 spin_lock_irqsave(&leak_lock, flags);
163 list_del(&state->leak_list);
164 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 165#endif
143bede5 166 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
167 kmem_cache_free(extent_state_cache, state);
168 }
169}
d1310b2e
CM
170
171static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172 struct rb_node *node)
173{
d397712b
CM
174 struct rb_node **p = &root->rb_node;
175 struct rb_node *parent = NULL;
d1310b2e
CM
176 struct tree_entry *entry;
177
d397712b 178 while (*p) {
d1310b2e
CM
179 parent = *p;
180 entry = rb_entry(parent, struct tree_entry, rb_node);
181
182 if (offset < entry->start)
183 p = &(*p)->rb_left;
184 else if (offset > entry->end)
185 p = &(*p)->rb_right;
186 else
187 return parent;
188 }
189
d1310b2e
CM
190 rb_link_node(node, parent, p);
191 rb_insert_color(node, root);
192 return NULL;
193}
194
80ea96b1 195static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
196 struct rb_node **prev_ret,
197 struct rb_node **next_ret)
198{
80ea96b1 199 struct rb_root *root = &tree->state;
d397712b 200 struct rb_node *n = root->rb_node;
d1310b2e
CM
201 struct rb_node *prev = NULL;
202 struct rb_node *orig_prev = NULL;
203 struct tree_entry *entry;
204 struct tree_entry *prev_entry = NULL;
205
d397712b 206 while (n) {
d1310b2e
CM
207 entry = rb_entry(n, struct tree_entry, rb_node);
208 prev = n;
209 prev_entry = entry;
210
211 if (offset < entry->start)
212 n = n->rb_left;
213 else if (offset > entry->end)
214 n = n->rb_right;
d397712b 215 else
d1310b2e
CM
216 return n;
217 }
218
219 if (prev_ret) {
220 orig_prev = prev;
d397712b 221 while (prev && offset > prev_entry->end) {
d1310b2e
CM
222 prev = rb_next(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *prev_ret = prev;
226 prev = orig_prev;
227 }
228
229 if (next_ret) {
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 231 while (prev && offset < prev_entry->start) {
d1310b2e
CM
232 prev = rb_prev(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 }
235 *next_ret = prev;
236 }
237 return NULL;
238}
239
80ea96b1
CM
240static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 u64 offset)
d1310b2e 242{
70dec807 243 struct rb_node *prev = NULL;
d1310b2e 244 struct rb_node *ret;
70dec807 245
80ea96b1 246 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 247 if (!ret)
d1310b2e
CM
248 return prev;
249 return ret;
250}
251
9ed74f2d
JB
252static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 struct extent_state *other)
254{
255 if (tree->ops && tree->ops->merge_extent_hook)
256 tree->ops->merge_extent_hook(tree->mapping->host, new,
257 other);
258}
259
d1310b2e
CM
260/*
261 * utility function to look for merge candidates inside a given range.
262 * Any extents with matching state are merged together into a single
263 * extent in the tree. Extents with EXTENT_IO in their state field
264 * are not merged because the end_io handlers need to be able to do
265 * operations on them without sleeping (or doing allocations/splits).
266 *
267 * This should be called with the tree lock held.
268 */
1bf85046
JM
269static void merge_state(struct extent_io_tree *tree,
270 struct extent_state *state)
d1310b2e
CM
271{
272 struct extent_state *other;
273 struct rb_node *other_node;
274
5b21f2ed 275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 276 return;
d1310b2e
CM
277
278 other_node = rb_prev(&state->rb_node);
279 if (other_node) {
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->end == state->start - 1 &&
282 other->state == state->state) {
9ed74f2d 283 merge_cb(tree, state, other);
d1310b2e 284 state->start = other->start;
70dec807 285 other->tree = NULL;
d1310b2e
CM
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
288 }
289 }
290 other_node = rb_next(&state->rb_node);
291 if (other_node) {
292 other = rb_entry(other_node, struct extent_state, rb_node);
293 if (other->start == state->end + 1 &&
294 other->state == state->state) {
9ed74f2d 295 merge_cb(tree, state, other);
df98b6e2
JB
296 state->end = other->end;
297 other->tree = NULL;
298 rb_erase(&other->rb_node, &tree->state);
299 free_extent_state(other);
d1310b2e
CM
300 }
301 }
d1310b2e
CM
302}
303
1bf85046 304static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 305 struct extent_state *state, int *bits)
291d673e 306{
1bf85046
JM
307 if (tree->ops && tree->ops->set_bit_hook)
308 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
309}
310
311static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 312 struct extent_state *state, int *bits)
291d673e 313{
9ed74f2d
JB
314 if (tree->ops && tree->ops->clear_bit_hook)
315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
316}
317
3150b699
XG
318static void set_state_bits(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits);
320
d1310b2e
CM
321/*
322 * insert an extent_state struct into the tree. 'bits' are set on the
323 * struct before it is inserted.
324 *
325 * This may return -EEXIST if the extent is already there, in which case the
326 * state struct is freed.
327 *
328 * The tree lock is not taken internally. This is a utility function and
329 * probably isn't what you want to call (see set/clear_extent_bit).
330 */
331static int insert_state(struct extent_io_tree *tree,
332 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 333 int *bits)
d1310b2e
CM
334{
335 struct rb_node *node;
336
337 if (end < start) {
d397712b
CM
338 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 (unsigned long long)end,
340 (unsigned long long)start);
d1310b2e
CM
341 WARN_ON(1);
342 }
d1310b2e
CM
343 state->start = start;
344 state->end = end;
9ed74f2d 345
3150b699
XG
346 set_state_bits(tree, state, bits);
347
d1310b2e
CM
348 node = tree_insert(&tree->state, end, &state->rb_node);
349 if (node) {
350 struct extent_state *found;
351 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
352 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 "%llu %llu\n", (unsigned long long)found->start,
354 (unsigned long long)found->end,
355 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
356 return -EEXIST;
357 }
70dec807 358 state->tree = tree;
d1310b2e
CM
359 merge_state(tree, state);
360 return 0;
361}
362
1bf85046 363static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
364 u64 split)
365{
366 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 367 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
368}
369
d1310b2e
CM
370/*
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
374 *
375 * Before calling,
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
380 *
381 * The tree locks are not taken by this function. They need to be held
382 * by the caller.
383 */
384static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
386{
387 struct rb_node *node;
9ed74f2d
JB
388
389 split_cb(tree, orig, split);
390
d1310b2e
CM
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
394 orig->start = split;
395
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 if (node) {
d1310b2e
CM
398 free_extent_state(prealloc);
399 return -EEXIST;
400 }
70dec807 401 prealloc->tree = tree;
d1310b2e
CM
402 return 0;
403}
404
cdc6a395
LZ
405static struct extent_state *next_state(struct extent_state *state)
406{
407 struct rb_node *next = rb_next(&state->rb_node);
408 if (next)
409 return rb_entry(next, struct extent_state, rb_node);
410 else
411 return NULL;
412}
413
d1310b2e
CM
414/*
415 * utility function to clear some bits in an extent state struct.
1b303fc0 416 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
417 *
418 * If no bits are set on the state struct after clearing things, the
419 * struct is freed and removed from the tree
420 */
cdc6a395
LZ
421static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 struct extent_state *state,
423 int *bits, int wake)
d1310b2e 424{
cdc6a395 425 struct extent_state *next;
0ca1f7ce 426 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 427
0ca1f7ce 428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
429 u64 range = state->end - state->start + 1;
430 WARN_ON(range > tree->dirty_bytes);
431 tree->dirty_bytes -= range;
432 }
291d673e 433 clear_state_cb(tree, state, bits);
32c00aff 434 state->state &= ~bits_to_clear;
d1310b2e
CM
435 if (wake)
436 wake_up(&state->wq);
0ca1f7ce 437 if (state->state == 0) {
cdc6a395 438 next = next_state(state);
70dec807 439 if (state->tree) {
d1310b2e 440 rb_erase(&state->rb_node, &tree->state);
70dec807 441 state->tree = NULL;
d1310b2e
CM
442 free_extent_state(state);
443 } else {
444 WARN_ON(1);
445 }
446 } else {
447 merge_state(tree, state);
cdc6a395 448 next = next_state(state);
d1310b2e 449 }
cdc6a395 450 return next;
d1310b2e
CM
451}
452
8233767a
XG
453static struct extent_state *
454alloc_extent_state_atomic(struct extent_state *prealloc)
455{
456 if (!prealloc)
457 prealloc = alloc_extent_state(GFP_ATOMIC);
458
459 return prealloc;
460}
461
c2d904e0
JM
462void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463{
464 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 "Extent tree was modified by another "
466 "thread while locked.");
467}
468
d1310b2e
CM
469/*
470 * clear some bits on a range in the tree. This may require splitting
471 * or inserting elements in the tree, so the gfp mask is used to
472 * indicate which allocations or sleeping are allowed.
473 *
474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475 * the given range from the tree regardless of state (ie for truncate).
476 *
477 * the range [start, end] is inclusive.
478 *
6763af84 479 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
480 */
481int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
482 int bits, int wake, int delete,
483 struct extent_state **cached_state,
484 gfp_t mask)
d1310b2e
CM
485{
486 struct extent_state *state;
2c64c53d 487 struct extent_state *cached;
d1310b2e
CM
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
5c939df5 490 u64 last_end;
d1310b2e 491 int err;
2ac55d41 492 int clear = 0;
d1310b2e 493
0ca1f7ce
YZ
494 if (delete)
495 bits |= ~EXTENT_CTLBITS;
496 bits |= EXTENT_FIRST_DELALLOC;
497
2ac55d41
JB
498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 clear = 1;
d1310b2e
CM
500again:
501 if (!prealloc && (mask & __GFP_WAIT)) {
502 prealloc = alloc_extent_state(mask);
503 if (!prealloc)
504 return -ENOMEM;
505 }
506
cad321ad 507 spin_lock(&tree->lock);
2c64c53d
CM
508 if (cached_state) {
509 cached = *cached_state;
2ac55d41
JB
510
511 if (clear) {
512 *cached_state = NULL;
513 cached_state = NULL;
514 }
515
df98b6e2
JB
516 if (cached && cached->tree && cached->start <= start &&
517 cached->end > start) {
2ac55d41
JB
518 if (clear)
519 atomic_dec(&cached->refs);
2c64c53d 520 state = cached;
42daec29 521 goto hit_next;
2c64c53d 522 }
2ac55d41
JB
523 if (clear)
524 free_extent_state(cached);
2c64c53d 525 }
d1310b2e
CM
526 /*
527 * this search will find the extents that end after
528 * our range starts
529 */
80ea96b1 530 node = tree_search(tree, start);
d1310b2e
CM
531 if (!node)
532 goto out;
533 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 534hit_next:
d1310b2e
CM
535 if (state->start > end)
536 goto out;
537 WARN_ON(state->end < start);
5c939df5 538 last_end = state->end;
d1310b2e 539
0449314a 540 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
541 if (!(state->state & bits)) {
542 state = next_state(state);
0449314a 543 goto next;
cdc6a395 544 }
0449314a 545
d1310b2e
CM
546 /*
547 * | ---- desired range ---- |
548 * | state | or
549 * | ------------- state -------------- |
550 *
551 * We need to split the extent we found, and may flip
552 * bits on second half.
553 *
554 * If the extent we found extends past our range, we
555 * just split and search again. It'll get split again
556 * the next time though.
557 *
558 * If the extent we found is inside our range, we clear
559 * the desired bit on it.
560 */
561
562 if (state->start < start) {
8233767a
XG
563 prealloc = alloc_extent_state_atomic(prealloc);
564 BUG_ON(!prealloc);
d1310b2e 565 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
566 if (err)
567 extent_io_tree_panic(tree, err);
568
d1310b2e
CM
569 prealloc = NULL;
570 if (err)
571 goto out;
572 if (state->end <= end) {
d1ac6e41
LB
573 state = clear_state_bit(tree, state, &bits, wake);
574 goto next;
d1310b2e
CM
575 }
576 goto search_again;
577 }
578 /*
579 * | ---- desired range ---- |
580 * | state |
581 * We need to split the extent, and clear the bit
582 * on the first half
583 */
584 if (state->start <= end && state->end > end) {
8233767a
XG
585 prealloc = alloc_extent_state_atomic(prealloc);
586 BUG_ON(!prealloc);
d1310b2e 587 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
588 if (err)
589 extent_io_tree_panic(tree, err);
590
d1310b2e
CM
591 if (wake)
592 wake_up(&state->wq);
42daec29 593
6763af84 594 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 595
d1310b2e
CM
596 prealloc = NULL;
597 goto out;
598 }
42daec29 599
cdc6a395 600 state = clear_state_bit(tree, state, &bits, wake);
0449314a 601next:
5c939df5
YZ
602 if (last_end == (u64)-1)
603 goto out;
604 start = last_end + 1;
cdc6a395 605 if (start <= end && state && !need_resched())
692e5759 606 goto hit_next;
d1310b2e
CM
607 goto search_again;
608
609out:
cad321ad 610 spin_unlock(&tree->lock);
d1310b2e
CM
611 if (prealloc)
612 free_extent_state(prealloc);
613
6763af84 614 return 0;
d1310b2e
CM
615
616search_again:
617 if (start > end)
618 goto out;
cad321ad 619 spin_unlock(&tree->lock);
d1310b2e
CM
620 if (mask & __GFP_WAIT)
621 cond_resched();
622 goto again;
623}
d1310b2e 624
143bede5
JM
625static void wait_on_state(struct extent_io_tree *tree,
626 struct extent_state *state)
641f5219
CH
627 __releases(tree->lock)
628 __acquires(tree->lock)
d1310b2e
CM
629{
630 DEFINE_WAIT(wait);
631 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 632 spin_unlock(&tree->lock);
d1310b2e 633 schedule();
cad321ad 634 spin_lock(&tree->lock);
d1310b2e 635 finish_wait(&state->wq, &wait);
d1310b2e
CM
636}
637
638/*
639 * waits for one or more bits to clear on a range in the state tree.
640 * The range [start, end] is inclusive.
641 * The tree lock is taken by this function
642 */
143bede5 643void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
644{
645 struct extent_state *state;
646 struct rb_node *node;
647
cad321ad 648 spin_lock(&tree->lock);
d1310b2e
CM
649again:
650 while (1) {
651 /*
652 * this search will find all the extents that end after
653 * our range starts
654 */
80ea96b1 655 node = tree_search(tree, start);
d1310b2e
CM
656 if (!node)
657 break;
658
659 state = rb_entry(node, struct extent_state, rb_node);
660
661 if (state->start > end)
662 goto out;
663
664 if (state->state & bits) {
665 start = state->start;
666 atomic_inc(&state->refs);
667 wait_on_state(tree, state);
668 free_extent_state(state);
669 goto again;
670 }
671 start = state->end + 1;
672
673 if (start > end)
674 break;
675
ded91f08 676 cond_resched_lock(&tree->lock);
d1310b2e
CM
677 }
678out:
cad321ad 679 spin_unlock(&tree->lock);
d1310b2e 680}
d1310b2e 681
1bf85046 682static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 683 struct extent_state *state,
0ca1f7ce 684 int *bits)
d1310b2e 685{
0ca1f7ce 686 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 687
1bf85046 688 set_state_cb(tree, state, bits);
0ca1f7ce 689 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
690 u64 range = state->end - state->start + 1;
691 tree->dirty_bytes += range;
692 }
0ca1f7ce 693 state->state |= bits_to_set;
d1310b2e
CM
694}
695
2c64c53d
CM
696static void cache_state(struct extent_state *state,
697 struct extent_state **cached_ptr)
698{
699 if (cached_ptr && !(*cached_ptr)) {
700 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
701 *cached_ptr = state;
702 atomic_inc(&state->refs);
703 }
704 }
705}
706
507903b8
AJ
707static void uncache_state(struct extent_state **cached_ptr)
708{
709 if (cached_ptr && (*cached_ptr)) {
710 struct extent_state *state = *cached_ptr;
109b36a2
CM
711 *cached_ptr = NULL;
712 free_extent_state(state);
507903b8
AJ
713 }
714}
715
d1310b2e 716/*
1edbb734
CM
717 * set some bits on a range in the tree. This may require allocations or
718 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 719 *
1edbb734
CM
720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
721 * part of the range already has the desired bits set. The start of the
722 * existing range is returned in failed_start in this case.
d1310b2e 723 *
1edbb734 724 * [start, end] is inclusive This takes the tree lock.
d1310b2e 725 */
1edbb734 726
3fbe5c02
JM
727static int __must_check
728__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729 int bits, int exclusive_bits, u64 *failed_start,
730 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
731{
732 struct extent_state *state;
733 struct extent_state *prealloc = NULL;
734 struct rb_node *node;
d1310b2e 735 int err = 0;
d1310b2e
CM
736 u64 last_start;
737 u64 last_end;
42daec29 738
0ca1f7ce 739 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
740again:
741 if (!prealloc && (mask & __GFP_WAIT)) {
742 prealloc = alloc_extent_state(mask);
8233767a 743 BUG_ON(!prealloc);
d1310b2e
CM
744 }
745
cad321ad 746 spin_lock(&tree->lock);
9655d298
CM
747 if (cached_state && *cached_state) {
748 state = *cached_state;
df98b6e2
JB
749 if (state->start <= start && state->end > start &&
750 state->tree) {
9655d298
CM
751 node = &state->rb_node;
752 goto hit_next;
753 }
754 }
d1310b2e
CM
755 /*
756 * this search will find all the extents that end after
757 * our range starts.
758 */
80ea96b1 759 node = tree_search(tree, start);
d1310b2e 760 if (!node) {
8233767a
XG
761 prealloc = alloc_extent_state_atomic(prealloc);
762 BUG_ON(!prealloc);
0ca1f7ce 763 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
764 if (err)
765 extent_io_tree_panic(tree, err);
766
d1310b2e 767 prealloc = NULL;
d1310b2e
CM
768 goto out;
769 }
d1310b2e 770 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 771hit_next:
d1310b2e
CM
772 last_start = state->start;
773 last_end = state->end;
774
775 /*
776 * | ---- desired range ---- |
777 * | state |
778 *
779 * Just lock what we found and keep going
780 */
781 if (state->start == start && state->end <= end) {
1edbb734 782 if (state->state & exclusive_bits) {
d1310b2e
CM
783 *failed_start = state->start;
784 err = -EEXIST;
785 goto out;
786 }
42daec29 787
1bf85046 788 set_state_bits(tree, state, &bits);
2c64c53d 789 cache_state(state, cached_state);
d1310b2e 790 merge_state(tree, state);
5c939df5
YZ
791 if (last_end == (u64)-1)
792 goto out;
793 start = last_end + 1;
d1ac6e41
LB
794 state = next_state(state);
795 if (start < end && state && state->start == start &&
796 !need_resched())
797 goto hit_next;
d1310b2e
CM
798 goto search_again;
799 }
800
801 /*
802 * | ---- desired range ---- |
803 * | state |
804 * or
805 * | ------------- state -------------- |
806 *
807 * We need to split the extent we found, and may flip bits on
808 * second half.
809 *
810 * If the extent we found extends past our
811 * range, we just split and search again. It'll get split
812 * again the next time though.
813 *
814 * If the extent we found is inside our range, we set the
815 * desired bit on it.
816 */
817 if (state->start < start) {
1edbb734 818 if (state->state & exclusive_bits) {
d1310b2e
CM
819 *failed_start = start;
820 err = -EEXIST;
821 goto out;
822 }
8233767a
XG
823
824 prealloc = alloc_extent_state_atomic(prealloc);
825 BUG_ON(!prealloc);
d1310b2e 826 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
827 if (err)
828 extent_io_tree_panic(tree, err);
829
d1310b2e
CM
830 prealloc = NULL;
831 if (err)
832 goto out;
833 if (state->end <= end) {
1bf85046 834 set_state_bits(tree, state, &bits);
2c64c53d 835 cache_state(state, cached_state);
d1310b2e 836 merge_state(tree, state);
5c939df5
YZ
837 if (last_end == (u64)-1)
838 goto out;
839 start = last_end + 1;
d1ac6e41
LB
840 state = next_state(state);
841 if (start < end && state && state->start == start &&
842 !need_resched())
843 goto hit_next;
d1310b2e
CM
844 }
845 goto search_again;
846 }
847 /*
848 * | ---- desired range ---- |
849 * | state | or | state |
850 *
851 * There's a hole, we need to insert something in it and
852 * ignore the extent we found.
853 */
854 if (state->start > start) {
855 u64 this_end;
856 if (end < last_start)
857 this_end = end;
858 else
d397712b 859 this_end = last_start - 1;
8233767a
XG
860
861 prealloc = alloc_extent_state_atomic(prealloc);
862 BUG_ON(!prealloc);
c7f895a2
XG
863
864 /*
865 * Avoid to free 'prealloc' if it can be merged with
866 * the later extent.
867 */
d1310b2e 868 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 869 &bits);
c2d904e0
JM
870 if (err)
871 extent_io_tree_panic(tree, err);
872
9ed74f2d
JB
873 cache_state(prealloc, cached_state);
874 prealloc = NULL;
d1310b2e
CM
875 start = this_end + 1;
876 goto search_again;
877 }
878 /*
879 * | ---- desired range ---- |
880 * | state |
881 * We need to split the extent, and set the bit
882 * on the first half
883 */
884 if (state->start <= end && state->end > end) {
1edbb734 885 if (state->state & exclusive_bits) {
d1310b2e
CM
886 *failed_start = start;
887 err = -EEXIST;
888 goto out;
889 }
8233767a
XG
890
891 prealloc = alloc_extent_state_atomic(prealloc);
892 BUG_ON(!prealloc);
d1310b2e 893 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
894 if (err)
895 extent_io_tree_panic(tree, err);
d1310b2e 896
1bf85046 897 set_state_bits(tree, prealloc, &bits);
2c64c53d 898 cache_state(prealloc, cached_state);
d1310b2e
CM
899 merge_state(tree, prealloc);
900 prealloc = NULL;
901 goto out;
902 }
903
904 goto search_again;
905
906out:
cad321ad 907 spin_unlock(&tree->lock);
d1310b2e
CM
908 if (prealloc)
909 free_extent_state(prealloc);
910
911 return err;
912
913search_again:
914 if (start > end)
915 goto out;
cad321ad 916 spin_unlock(&tree->lock);
d1310b2e
CM
917 if (mask & __GFP_WAIT)
918 cond_resched();
919 goto again;
920}
d1310b2e 921
3fbe5c02
JM
922int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923 u64 *failed_start, struct extent_state **cached_state,
924 gfp_t mask)
925{
926 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
927 cached_state, mask);
928}
929
930
462d6fac 931/**
10983f2e
LB
932 * convert_extent_bit - convert all bits in a given range from one bit to
933 * another
462d6fac
JB
934 * @tree: the io tree to search
935 * @start: the start offset in bytes
936 * @end: the end offset in bytes (inclusive)
937 * @bits: the bits to set in this range
938 * @clear_bits: the bits to clear in this range
939 * @mask: the allocation mask
940 *
941 * This will go through and set bits for the given range. If any states exist
942 * already in this range they are set with the given bit and cleared of the
943 * clear_bits. This is only meant to be used by things that are mergeable, ie
944 * converting from say DELALLOC to DIRTY. This is not meant to be used with
945 * boundary bits like LOCK.
946 */
947int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948 int bits, int clear_bits, gfp_t mask)
949{
950 struct extent_state *state;
951 struct extent_state *prealloc = NULL;
952 struct rb_node *node;
953 int err = 0;
954 u64 last_start;
955 u64 last_end;
956
957again:
958 if (!prealloc && (mask & __GFP_WAIT)) {
959 prealloc = alloc_extent_state(mask);
960 if (!prealloc)
961 return -ENOMEM;
962 }
963
964 spin_lock(&tree->lock);
965 /*
966 * this search will find all the extents that end after
967 * our range starts.
968 */
969 node = tree_search(tree, start);
970 if (!node) {
971 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
972 if (!prealloc) {
973 err = -ENOMEM;
974 goto out;
975 }
462d6fac
JB
976 err = insert_state(tree, prealloc, start, end, &bits);
977 prealloc = NULL;
c2d904e0
JM
978 if (err)
979 extent_io_tree_panic(tree, err);
462d6fac
JB
980 goto out;
981 }
982 state = rb_entry(node, struct extent_state, rb_node);
983hit_next:
984 last_start = state->start;
985 last_end = state->end;
986
987 /*
988 * | ---- desired range ---- |
989 * | state |
990 *
991 * Just lock what we found and keep going
992 */
993 if (state->start == start && state->end <= end) {
462d6fac 994 set_state_bits(tree, state, &bits);
d1ac6e41 995 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
996 if (last_end == (u64)-1)
997 goto out;
462d6fac 998 start = last_end + 1;
d1ac6e41
LB
999 if (start < end && state && state->start == start &&
1000 !need_resched())
1001 goto hit_next;
462d6fac
JB
1002 goto search_again;
1003 }
1004
1005 /*
1006 * | ---- desired range ---- |
1007 * | state |
1008 * or
1009 * | ------------- state -------------- |
1010 *
1011 * We need to split the extent we found, and may flip bits on
1012 * second half.
1013 *
1014 * If the extent we found extends past our
1015 * range, we just split and search again. It'll get split
1016 * again the next time though.
1017 *
1018 * If the extent we found is inside our range, we set the
1019 * desired bit on it.
1020 */
1021 if (state->start < start) {
1022 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1023 if (!prealloc) {
1024 err = -ENOMEM;
1025 goto out;
1026 }
462d6fac 1027 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
462d6fac
JB
1030 prealloc = NULL;
1031 if (err)
1032 goto out;
1033 if (state->end <= end) {
1034 set_state_bits(tree, state, &bits);
d1ac6e41 1035 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1036 if (last_end == (u64)-1)
1037 goto out;
1038 start = last_end + 1;
d1ac6e41
LB
1039 if (start < end && state && state->start == start &&
1040 !need_resched())
1041 goto hit_next;
462d6fac
JB
1042 }
1043 goto search_again;
1044 }
1045 /*
1046 * | ---- desired range ---- |
1047 * | state | or | state |
1048 *
1049 * There's a hole, we need to insert something in it and
1050 * ignore the extent we found.
1051 */
1052 if (state->start > start) {
1053 u64 this_end;
1054 if (end < last_start)
1055 this_end = end;
1056 else
1057 this_end = last_start - 1;
1058
1059 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1060 if (!prealloc) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
462d6fac
JB
1064
1065 /*
1066 * Avoid to free 'prealloc' if it can be merged with
1067 * the later extent.
1068 */
1069 err = insert_state(tree, prealloc, start, this_end,
1070 &bits);
c2d904e0
JM
1071 if (err)
1072 extent_io_tree_panic(tree, err);
462d6fac
JB
1073 prealloc = NULL;
1074 start = this_end + 1;
1075 goto search_again;
1076 }
1077 /*
1078 * | ---- desired range ---- |
1079 * | state |
1080 * We need to split the extent, and set the bit
1081 * on the first half
1082 */
1083 if (state->start <= end && state->end > end) {
1084 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1085 if (!prealloc) {
1086 err = -ENOMEM;
1087 goto out;
1088 }
462d6fac
JB
1089
1090 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1091 if (err)
1092 extent_io_tree_panic(tree, err);
462d6fac
JB
1093
1094 set_state_bits(tree, prealloc, &bits);
1095 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1096 prealloc = NULL;
1097 goto out;
1098 }
1099
1100 goto search_again;
1101
1102out:
1103 spin_unlock(&tree->lock);
1104 if (prealloc)
1105 free_extent_state(prealloc);
1106
1107 return err;
1108
1109search_again:
1110 if (start > end)
1111 goto out;
1112 spin_unlock(&tree->lock);
1113 if (mask & __GFP_WAIT)
1114 cond_resched();
1115 goto again;
1116}
1117
d1310b2e
CM
1118/* wrappers around set/clear extent bit */
1119int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1120 gfp_t mask)
1121{
3fbe5c02 1122 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1123 NULL, mask);
d1310b2e 1124}
d1310b2e
CM
1125
1126int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1127 int bits, gfp_t mask)
1128{
3fbe5c02 1129 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1130 NULL, mask);
d1310b2e 1131}
d1310b2e
CM
1132
1133int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134 int bits, gfp_t mask)
1135{
2c64c53d 1136 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1137}
d1310b2e
CM
1138
1139int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1140 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1141{
1142 return set_extent_bit(tree, start, end,
fee187d9 1143 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1144 NULL, cached_state, mask);
d1310b2e 1145}
d1310b2e 1146
9e8a4a8b
LB
1147int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1148 struct extent_state **cached_state, gfp_t mask)
1149{
1150 return set_extent_bit(tree, start, end,
1151 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1152 NULL, cached_state, mask);
1153}
1154
d1310b2e
CM
1155int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1156 gfp_t mask)
1157{
1158 return clear_extent_bit(tree, start, end,
32c00aff 1159 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1160 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1161}
d1310b2e
CM
1162
1163int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1164 gfp_t mask)
1165{
3fbe5c02 1166 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1167 NULL, mask);
d1310b2e 1168}
d1310b2e 1169
d1310b2e 1170int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1171 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1172{
507903b8 1173 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
3fbe5c02 1174 cached_state, mask);
d1310b2e 1175}
d1310b2e 1176
5fd02043
JB
1177int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1178 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1179{
2c64c53d 1180 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1181 cached_state, mask);
d1310b2e 1182}
d1310b2e 1183
d352ac68
CM
1184/*
1185 * either insert or lock state struct between start and end use mask to tell
1186 * us if waiting is desired.
1187 */
1edbb734 1188int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1189 int bits, struct extent_state **cached_state)
d1310b2e
CM
1190{
1191 int err;
1192 u64 failed_start;
1193 while (1) {
3fbe5c02
JM
1194 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1195 EXTENT_LOCKED, &failed_start,
1196 cached_state, GFP_NOFS);
d0082371 1197 if (err == -EEXIST) {
d1310b2e
CM
1198 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1199 start = failed_start;
d0082371 1200 } else
d1310b2e 1201 break;
d1310b2e
CM
1202 WARN_ON(start > end);
1203 }
1204 return err;
1205}
d1310b2e 1206
d0082371 1207int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1208{
d0082371 1209 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1210}
1211
d0082371 1212int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1213{
1214 int err;
1215 u64 failed_start;
1216
3fbe5c02
JM
1217 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1218 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1219 if (err == -EEXIST) {
1220 if (failed_start > start)
1221 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1222 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1223 return 0;
6643558d 1224 }
25179201
JB
1225 return 1;
1226}
25179201 1227
2c64c53d
CM
1228int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1229 struct extent_state **cached, gfp_t mask)
1230{
1231 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1232 mask);
1233}
1234
d0082371 1235int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1236{
2c64c53d 1237 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1238 GFP_NOFS);
d1310b2e 1239}
d1310b2e 1240
d1310b2e
CM
1241/*
1242 * helper function to set both pages and extents in the tree writeback
1243 */
b2950863 1244static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1245{
1246 unsigned long index = start >> PAGE_CACHE_SHIFT;
1247 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1248 struct page *page;
1249
1250 while (index <= end_index) {
1251 page = find_get_page(tree->mapping, index);
79787eaa 1252 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1253 set_page_writeback(page);
1254 page_cache_release(page);
1255 index++;
1256 }
d1310b2e
CM
1257 return 0;
1258}
d1310b2e 1259
d352ac68
CM
1260/* find the first state struct with 'bits' set after 'start', and
1261 * return it. tree->lock must be held. NULL will returned if
1262 * nothing was found after 'start'
1263 */
d7fc640e
CM
1264struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1265 u64 start, int bits)
1266{
1267 struct rb_node *node;
1268 struct extent_state *state;
1269
1270 /*
1271 * this search will find all the extents that end after
1272 * our range starts.
1273 */
1274 node = tree_search(tree, start);
d397712b 1275 if (!node)
d7fc640e 1276 goto out;
d7fc640e 1277
d397712b 1278 while (1) {
d7fc640e 1279 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1280 if (state->end >= start && (state->state & bits))
d7fc640e 1281 return state;
d397712b 1282
d7fc640e
CM
1283 node = rb_next(node);
1284 if (!node)
1285 break;
1286 }
1287out:
1288 return NULL;
1289}
d7fc640e 1290
69261c4b
XG
1291/*
1292 * find the first offset in the io tree with 'bits' set. zero is
1293 * returned if we find something, and *start_ret and *end_ret are
1294 * set to reflect the state struct that was found.
1295 *
477d7eaf 1296 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1297 */
1298int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1299 u64 *start_ret, u64 *end_ret, int bits)
1300{
1301 struct extent_state *state;
1302 int ret = 1;
1303
1304 spin_lock(&tree->lock);
1305 state = find_first_extent_bit_state(tree, start, bits);
1306 if (state) {
1307 *start_ret = state->start;
1308 *end_ret = state->end;
1309 ret = 0;
1310 }
1311 spin_unlock(&tree->lock);
1312 return ret;
1313}
1314
d352ac68
CM
1315/*
1316 * find a contiguous range of bytes in the file marked as delalloc, not
1317 * more than 'max_bytes'. start and end are used to return the range,
1318 *
1319 * 1 is returned if we find something, 0 if nothing was in the tree
1320 */
c8b97818 1321static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1322 u64 *start, u64 *end, u64 max_bytes,
1323 struct extent_state **cached_state)
d1310b2e
CM
1324{
1325 struct rb_node *node;
1326 struct extent_state *state;
1327 u64 cur_start = *start;
1328 u64 found = 0;
1329 u64 total_bytes = 0;
1330
cad321ad 1331 spin_lock(&tree->lock);
c8b97818 1332
d1310b2e
CM
1333 /*
1334 * this search will find all the extents that end after
1335 * our range starts.
1336 */
80ea96b1 1337 node = tree_search(tree, cur_start);
2b114d1d 1338 if (!node) {
3b951516
CM
1339 if (!found)
1340 *end = (u64)-1;
d1310b2e
CM
1341 goto out;
1342 }
1343
d397712b 1344 while (1) {
d1310b2e 1345 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1346 if (found && (state->start != cur_start ||
1347 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1348 goto out;
1349 }
1350 if (!(state->state & EXTENT_DELALLOC)) {
1351 if (!found)
1352 *end = state->end;
1353 goto out;
1354 }
c2a128d2 1355 if (!found) {
d1310b2e 1356 *start = state->start;
c2a128d2
JB
1357 *cached_state = state;
1358 atomic_inc(&state->refs);
1359 }
d1310b2e
CM
1360 found++;
1361 *end = state->end;
1362 cur_start = state->end + 1;
1363 node = rb_next(node);
1364 if (!node)
1365 break;
1366 total_bytes += state->end - state->start + 1;
1367 if (total_bytes >= max_bytes)
1368 break;
1369 }
1370out:
cad321ad 1371 spin_unlock(&tree->lock);
d1310b2e
CM
1372 return found;
1373}
1374
143bede5
JM
1375static noinline void __unlock_for_delalloc(struct inode *inode,
1376 struct page *locked_page,
1377 u64 start, u64 end)
c8b97818
CM
1378{
1379 int ret;
1380 struct page *pages[16];
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 unsigned long nr_pages = end_index - index + 1;
1384 int i;
1385
1386 if (index == locked_page->index && end_index == index)
143bede5 1387 return;
c8b97818 1388
d397712b 1389 while (nr_pages > 0) {
c8b97818 1390 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1391 min_t(unsigned long, nr_pages,
1392 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1393 for (i = 0; i < ret; i++) {
1394 if (pages[i] != locked_page)
1395 unlock_page(pages[i]);
1396 page_cache_release(pages[i]);
1397 }
1398 nr_pages -= ret;
1399 index += ret;
1400 cond_resched();
1401 }
c8b97818
CM
1402}
1403
1404static noinline int lock_delalloc_pages(struct inode *inode,
1405 struct page *locked_page,
1406 u64 delalloc_start,
1407 u64 delalloc_end)
1408{
1409 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1410 unsigned long start_index = index;
1411 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1412 unsigned long pages_locked = 0;
1413 struct page *pages[16];
1414 unsigned long nrpages;
1415 int ret;
1416 int i;
1417
1418 /* the caller is responsible for locking the start index */
1419 if (index == locked_page->index && index == end_index)
1420 return 0;
1421
1422 /* skip the page at the start index */
1423 nrpages = end_index - index + 1;
d397712b 1424 while (nrpages > 0) {
c8b97818 1425 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1426 min_t(unsigned long,
1427 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1428 if (ret == 0) {
1429 ret = -EAGAIN;
1430 goto done;
1431 }
1432 /* now we have an array of pages, lock them all */
1433 for (i = 0; i < ret; i++) {
1434 /*
1435 * the caller is taking responsibility for
1436 * locked_page
1437 */
771ed689 1438 if (pages[i] != locked_page) {
c8b97818 1439 lock_page(pages[i]);
f2b1c41c
CM
1440 if (!PageDirty(pages[i]) ||
1441 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1442 ret = -EAGAIN;
1443 unlock_page(pages[i]);
1444 page_cache_release(pages[i]);
1445 goto done;
1446 }
1447 }
c8b97818 1448 page_cache_release(pages[i]);
771ed689 1449 pages_locked++;
c8b97818 1450 }
c8b97818
CM
1451 nrpages -= ret;
1452 index += ret;
1453 cond_resched();
1454 }
1455 ret = 0;
1456done:
1457 if (ret && pages_locked) {
1458 __unlock_for_delalloc(inode, locked_page,
1459 delalloc_start,
1460 ((u64)(start_index + pages_locked - 1)) <<
1461 PAGE_CACHE_SHIFT);
1462 }
1463 return ret;
1464}
1465
1466/*
1467 * find a contiguous range of bytes in the file marked as delalloc, not
1468 * more than 'max_bytes'. start and end are used to return the range,
1469 *
1470 * 1 is returned if we find something, 0 if nothing was in the tree
1471 */
1472static noinline u64 find_lock_delalloc_range(struct inode *inode,
1473 struct extent_io_tree *tree,
1474 struct page *locked_page,
1475 u64 *start, u64 *end,
1476 u64 max_bytes)
1477{
1478 u64 delalloc_start;
1479 u64 delalloc_end;
1480 u64 found;
9655d298 1481 struct extent_state *cached_state = NULL;
c8b97818
CM
1482 int ret;
1483 int loops = 0;
1484
1485again:
1486 /* step one, find a bunch of delalloc bytes starting at start */
1487 delalloc_start = *start;
1488 delalloc_end = 0;
1489 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1490 max_bytes, &cached_state);
70b99e69 1491 if (!found || delalloc_end <= *start) {
c8b97818
CM
1492 *start = delalloc_start;
1493 *end = delalloc_end;
c2a128d2 1494 free_extent_state(cached_state);
c8b97818
CM
1495 return found;
1496 }
1497
70b99e69
CM
1498 /*
1499 * start comes from the offset of locked_page. We have to lock
1500 * pages in order, so we can't process delalloc bytes before
1501 * locked_page
1502 */
d397712b 1503 if (delalloc_start < *start)
70b99e69 1504 delalloc_start = *start;
70b99e69 1505
c8b97818
CM
1506 /*
1507 * make sure to limit the number of pages we try to lock down
1508 * if we're looping.
1509 */
d397712b 1510 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1511 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1512
c8b97818
CM
1513 /* step two, lock all the pages after the page that has start */
1514 ret = lock_delalloc_pages(inode, locked_page,
1515 delalloc_start, delalloc_end);
1516 if (ret == -EAGAIN) {
1517 /* some of the pages are gone, lets avoid looping by
1518 * shortening the size of the delalloc range we're searching
1519 */
9655d298 1520 free_extent_state(cached_state);
c8b97818
CM
1521 if (!loops) {
1522 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1523 max_bytes = PAGE_CACHE_SIZE - offset;
1524 loops = 1;
1525 goto again;
1526 } else {
1527 found = 0;
1528 goto out_failed;
1529 }
1530 }
79787eaa 1531 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1532
1533 /* step three, lock the state bits for the whole range */
d0082371 1534 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1535
1536 /* then test to make sure it is all still delalloc */
1537 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1538 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1539 if (!ret) {
9655d298
CM
1540 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1541 &cached_state, GFP_NOFS);
c8b97818
CM
1542 __unlock_for_delalloc(inode, locked_page,
1543 delalloc_start, delalloc_end);
1544 cond_resched();
1545 goto again;
1546 }
9655d298 1547 free_extent_state(cached_state);
c8b97818
CM
1548 *start = delalloc_start;
1549 *end = delalloc_end;
1550out_failed:
1551 return found;
1552}
1553
1554int extent_clear_unlock_delalloc(struct inode *inode,
1555 struct extent_io_tree *tree,
1556 u64 start, u64 end, struct page *locked_page,
a791e35e 1557 unsigned long op)
c8b97818
CM
1558{
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
771ed689 1565 int clear_bits = 0;
c8b97818 1566
a791e35e 1567 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1568 clear_bits |= EXTENT_LOCKED;
a791e35e 1569 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1570 clear_bits |= EXTENT_DIRTY;
1571
a791e35e 1572 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1573 clear_bits |= EXTENT_DELALLOC;
1574
2c64c53d 1575 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1576 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1577 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1578 EXTENT_SET_PRIVATE2)))
771ed689 1579 return 0;
c8b97818 1580
d397712b 1581 while (nr_pages > 0) {
c8b97818 1582 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1583 min_t(unsigned long,
1584 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1585 for (i = 0; i < ret; i++) {
8b62b72b 1586
a791e35e 1587 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1588 SetPagePrivate2(pages[i]);
1589
c8b97818
CM
1590 if (pages[i] == locked_page) {
1591 page_cache_release(pages[i]);
1592 continue;
1593 }
a791e35e 1594 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1595 clear_page_dirty_for_io(pages[i]);
a791e35e 1596 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1597 set_page_writeback(pages[i]);
a791e35e 1598 if (op & EXTENT_END_WRITEBACK)
c8b97818 1599 end_page_writeback(pages[i]);
a791e35e 1600 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1601 unlock_page(pages[i]);
c8b97818
CM
1602 page_cache_release(pages[i]);
1603 }
1604 nr_pages -= ret;
1605 index += ret;
1606 cond_resched();
1607 }
1608 return 0;
1609}
c8b97818 1610
d352ac68
CM
1611/*
1612 * count the number of bytes in the tree that have a given bit(s)
1613 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1614 * cached. The total number found is returned.
1615 */
d1310b2e
CM
1616u64 count_range_bits(struct extent_io_tree *tree,
1617 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1618 unsigned long bits, int contig)
d1310b2e
CM
1619{
1620 struct rb_node *node;
1621 struct extent_state *state;
1622 u64 cur_start = *start;
1623 u64 total_bytes = 0;
ec29ed5b 1624 u64 last = 0;
d1310b2e
CM
1625 int found = 0;
1626
1627 if (search_end <= cur_start) {
d1310b2e
CM
1628 WARN_ON(1);
1629 return 0;
1630 }
1631
cad321ad 1632 spin_lock(&tree->lock);
d1310b2e
CM
1633 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1634 total_bytes = tree->dirty_bytes;
1635 goto out;
1636 }
1637 /*
1638 * this search will find all the extents that end after
1639 * our range starts.
1640 */
80ea96b1 1641 node = tree_search(tree, cur_start);
d397712b 1642 if (!node)
d1310b2e 1643 goto out;
d1310b2e 1644
d397712b 1645 while (1) {
d1310b2e
CM
1646 state = rb_entry(node, struct extent_state, rb_node);
1647 if (state->start > search_end)
1648 break;
ec29ed5b
CM
1649 if (contig && found && state->start > last + 1)
1650 break;
1651 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1652 total_bytes += min(search_end, state->end) + 1 -
1653 max(cur_start, state->start);
1654 if (total_bytes >= max_bytes)
1655 break;
1656 if (!found) {
af60bed2 1657 *start = max(cur_start, state->start);
d1310b2e
CM
1658 found = 1;
1659 }
ec29ed5b
CM
1660 last = state->end;
1661 } else if (contig && found) {
1662 break;
d1310b2e
CM
1663 }
1664 node = rb_next(node);
1665 if (!node)
1666 break;
1667 }
1668out:
cad321ad 1669 spin_unlock(&tree->lock);
d1310b2e
CM
1670 return total_bytes;
1671}
b2950863 1672
d352ac68
CM
1673/*
1674 * set the private field for a given byte offset in the tree. If there isn't
1675 * an extent_state there already, this does nothing.
1676 */
d1310b2e
CM
1677int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1678{
1679 struct rb_node *node;
1680 struct extent_state *state;
1681 int ret = 0;
1682
cad321ad 1683 spin_lock(&tree->lock);
d1310b2e
CM
1684 /*
1685 * this search will find all the extents that end after
1686 * our range starts.
1687 */
80ea96b1 1688 node = tree_search(tree, start);
2b114d1d 1689 if (!node) {
d1310b2e
CM
1690 ret = -ENOENT;
1691 goto out;
1692 }
1693 state = rb_entry(node, struct extent_state, rb_node);
1694 if (state->start != start) {
1695 ret = -ENOENT;
1696 goto out;
1697 }
1698 state->private = private;
1699out:
cad321ad 1700 spin_unlock(&tree->lock);
d1310b2e
CM
1701 return ret;
1702}
1703
1704int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1705{
1706 struct rb_node *node;
1707 struct extent_state *state;
1708 int ret = 0;
1709
cad321ad 1710 spin_lock(&tree->lock);
d1310b2e
CM
1711 /*
1712 * this search will find all the extents that end after
1713 * our range starts.
1714 */
80ea96b1 1715 node = tree_search(tree, start);
2b114d1d 1716 if (!node) {
d1310b2e
CM
1717 ret = -ENOENT;
1718 goto out;
1719 }
1720 state = rb_entry(node, struct extent_state, rb_node);
1721 if (state->start != start) {
1722 ret = -ENOENT;
1723 goto out;
1724 }
1725 *private = state->private;
1726out:
cad321ad 1727 spin_unlock(&tree->lock);
d1310b2e
CM
1728 return ret;
1729}
1730
1731/*
1732 * searches a range in the state tree for a given mask.
70dec807 1733 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1734 * has the bits set. Otherwise, 1 is returned if any bit in the
1735 * range is found set.
1736 */
1737int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1738 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1739{
1740 struct extent_state *state = NULL;
1741 struct rb_node *node;
1742 int bitset = 0;
d1310b2e 1743
cad321ad 1744 spin_lock(&tree->lock);
df98b6e2
JB
1745 if (cached && cached->tree && cached->start <= start &&
1746 cached->end > start)
9655d298
CM
1747 node = &cached->rb_node;
1748 else
1749 node = tree_search(tree, start);
d1310b2e
CM
1750 while (node && start <= end) {
1751 state = rb_entry(node, struct extent_state, rb_node);
1752
1753 if (filled && state->start > start) {
1754 bitset = 0;
1755 break;
1756 }
1757
1758 if (state->start > end)
1759 break;
1760
1761 if (state->state & bits) {
1762 bitset = 1;
1763 if (!filled)
1764 break;
1765 } else if (filled) {
1766 bitset = 0;
1767 break;
1768 }
46562cec
CM
1769
1770 if (state->end == (u64)-1)
1771 break;
1772
d1310b2e
CM
1773 start = state->end + 1;
1774 if (start > end)
1775 break;
1776 node = rb_next(node);
1777 if (!node) {
1778 if (filled)
1779 bitset = 0;
1780 break;
1781 }
1782 }
cad321ad 1783 spin_unlock(&tree->lock);
d1310b2e
CM
1784 return bitset;
1785}
d1310b2e
CM
1786
1787/*
1788 * helper function to set a given page up to date if all the
1789 * extents in the tree for that page are up to date
1790 */
143bede5 1791static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1792{
1793 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1794 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1795 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1796 SetPageUptodate(page);
d1310b2e
CM
1797}
1798
1799/*
1800 * helper function to unlock a page if all the extents in the tree
1801 * for that page are unlocked
1802 */
143bede5 1803static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1804{
1805 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1806 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1807 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1808 unlock_page(page);
d1310b2e
CM
1809}
1810
1811/*
1812 * helper function to end page writeback if all the extents
1813 * in the tree for that page are done with writeback
1814 */
143bede5
JM
1815static void check_page_writeback(struct extent_io_tree *tree,
1816 struct page *page)
d1310b2e 1817{
1edbb734 1818 end_page_writeback(page);
d1310b2e
CM
1819}
1820
4a54c8c1
JS
1821/*
1822 * When IO fails, either with EIO or csum verification fails, we
1823 * try other mirrors that might have a good copy of the data. This
1824 * io_failure_record is used to record state as we go through all the
1825 * mirrors. If another mirror has good data, the page is set up to date
1826 * and things continue. If a good mirror can't be found, the original
1827 * bio end_io callback is called to indicate things have failed.
1828 */
1829struct io_failure_record {
1830 struct page *page;
1831 u64 start;
1832 u64 len;
1833 u64 logical;
1834 unsigned long bio_flags;
1835 int this_mirror;
1836 int failed_mirror;
1837 int in_validation;
1838};
1839
1840static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1841 int did_repair)
1842{
1843 int ret;
1844 int err = 0;
1845 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1846
1847 set_state_private(failure_tree, rec->start, 0);
1848 ret = clear_extent_bits(failure_tree, rec->start,
1849 rec->start + rec->len - 1,
1850 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1851 if (ret)
1852 err = ret;
1853
1854 if (did_repair) {
1855 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1856 rec->start + rec->len - 1,
1857 EXTENT_DAMAGED, GFP_NOFS);
1858 if (ret && !err)
1859 err = ret;
1860 }
1861
1862 kfree(rec);
1863 return err;
1864}
1865
1866static void repair_io_failure_callback(struct bio *bio, int err)
1867{
1868 complete(bio->bi_private);
1869}
1870
1871/*
1872 * this bypasses the standard btrfs submit functions deliberately, as
1873 * the standard behavior is to write all copies in a raid setup. here we only
1874 * want to write the one bad copy. so we do the mapping for ourselves and issue
1875 * submit_bio directly.
1876 * to avoid any synchonization issues, wait for the data after writing, which
1877 * actually prevents the read that triggered the error from finishing.
1878 * currently, there can be no more than two copies of every data bit. thus,
1879 * exactly one rewrite is required.
1880 */
1881int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1882 u64 length, u64 logical, struct page *page,
1883 int mirror_num)
1884{
1885 struct bio *bio;
1886 struct btrfs_device *dev;
1887 DECLARE_COMPLETION_ONSTACK(compl);
1888 u64 map_length = 0;
1889 u64 sector;
1890 struct btrfs_bio *bbio = NULL;
1891 int ret;
1892
1893 BUG_ON(!mirror_num);
1894
1895 bio = bio_alloc(GFP_NOFS, 1);
1896 if (!bio)
1897 return -EIO;
1898 bio->bi_private = &compl;
1899 bio->bi_end_io = repair_io_failure_callback;
1900 bio->bi_size = 0;
1901 map_length = length;
1902
1903 ret = btrfs_map_block(map_tree, WRITE, logical,
1904 &map_length, &bbio, mirror_num);
1905 if (ret) {
1906 bio_put(bio);
1907 return -EIO;
1908 }
1909 BUG_ON(mirror_num != bbio->mirror_num);
1910 sector = bbio->stripes[mirror_num-1].physical >> 9;
1911 bio->bi_sector = sector;
1912 dev = bbio->stripes[mirror_num-1].dev;
1913 kfree(bbio);
1914 if (!dev || !dev->bdev || !dev->writeable) {
1915 bio_put(bio);
1916 return -EIO;
1917 }
1918 bio->bi_bdev = dev->bdev;
1919 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1920 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1921 wait_for_completion(&compl);
1922
1923 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1924 /* try to remap that extent elsewhere? */
1925 bio_put(bio);
442a4f63 1926 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
1927 return -EIO;
1928 }
1929
d5b025d5 1930 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
1931 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1932 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
1933
1934 bio_put(bio);
1935 return 0;
1936}
1937
ea466794
JB
1938int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1939 int mirror_num)
1940{
1941 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1942 u64 start = eb->start;
1943 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 1944 int ret = 0;
ea466794
JB
1945
1946 for (i = 0; i < num_pages; i++) {
1947 struct page *p = extent_buffer_page(eb, i);
1948 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1949 start, p, mirror_num);
1950 if (ret)
1951 break;
1952 start += PAGE_CACHE_SIZE;
1953 }
1954
1955 return ret;
1956}
1957
4a54c8c1
JS
1958/*
1959 * each time an IO finishes, we do a fast check in the IO failure tree
1960 * to see if we need to process or clean up an io_failure_record
1961 */
1962static int clean_io_failure(u64 start, struct page *page)
1963{
1964 u64 private;
1965 u64 private_failure;
1966 struct io_failure_record *failrec;
1967 struct btrfs_mapping_tree *map_tree;
1968 struct extent_state *state;
1969 int num_copies;
1970 int did_repair = 0;
1971 int ret;
1972 struct inode *inode = page->mapping->host;
1973
1974 private = 0;
1975 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1976 (u64)-1, 1, EXTENT_DIRTY, 0);
1977 if (!ret)
1978 return 0;
1979
1980 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1981 &private_failure);
1982 if (ret)
1983 return 0;
1984
1985 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1986 BUG_ON(!failrec->this_mirror);
1987
1988 if (failrec->in_validation) {
1989 /* there was no real error, just free the record */
1990 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1991 failrec->start);
1992 did_repair = 1;
1993 goto out;
1994 }
1995
1996 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1997 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1998 failrec->start,
1999 EXTENT_LOCKED);
2000 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2001
2002 if (state && state->start == failrec->start) {
2003 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
2004 num_copies = btrfs_num_copies(map_tree, failrec->logical,
2005 failrec->len);
2006 if (num_copies > 1) {
2007 ret = repair_io_failure(map_tree, start, failrec->len,
2008 failrec->logical, page,
2009 failrec->failed_mirror);
2010 did_repair = !ret;
2011 }
2012 }
2013
2014out:
2015 if (!ret)
2016 ret = free_io_failure(inode, failrec, did_repair);
2017
2018 return ret;
2019}
2020
2021/*
2022 * this is a generic handler for readpage errors (default
2023 * readpage_io_failed_hook). if other copies exist, read those and write back
2024 * good data to the failed position. does not investigate in remapping the
2025 * failed extent elsewhere, hoping the device will be smart enough to do this as
2026 * needed
2027 */
2028
2029static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2030 u64 start, u64 end, int failed_mirror,
2031 struct extent_state *state)
2032{
2033 struct io_failure_record *failrec = NULL;
2034 u64 private;
2035 struct extent_map *em;
2036 struct inode *inode = page->mapping->host;
2037 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2038 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2039 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2040 struct bio *bio;
2041 int num_copies;
2042 int ret;
2043 int read_mode;
2044 u64 logical;
2045
2046 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2047
2048 ret = get_state_private(failure_tree, start, &private);
2049 if (ret) {
2050 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2051 if (!failrec)
2052 return -ENOMEM;
2053 failrec->start = start;
2054 failrec->len = end - start + 1;
2055 failrec->this_mirror = 0;
2056 failrec->bio_flags = 0;
2057 failrec->in_validation = 0;
2058
2059 read_lock(&em_tree->lock);
2060 em = lookup_extent_mapping(em_tree, start, failrec->len);
2061 if (!em) {
2062 read_unlock(&em_tree->lock);
2063 kfree(failrec);
2064 return -EIO;
2065 }
2066
2067 if (em->start > start || em->start + em->len < start) {
2068 free_extent_map(em);
2069 em = NULL;
2070 }
2071 read_unlock(&em_tree->lock);
2072
2073 if (!em || IS_ERR(em)) {
2074 kfree(failrec);
2075 return -EIO;
2076 }
2077 logical = start - em->start;
2078 logical = em->block_start + logical;
2079 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2080 logical = em->block_start;
2081 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2082 extent_set_compress_type(&failrec->bio_flags,
2083 em->compress_type);
2084 }
2085 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2086 "len=%llu\n", logical, start, failrec->len);
2087 failrec->logical = logical;
2088 free_extent_map(em);
2089
2090 /* set the bits in the private failure tree */
2091 ret = set_extent_bits(failure_tree, start, end,
2092 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2093 if (ret >= 0)
2094 ret = set_state_private(failure_tree, start,
2095 (u64)(unsigned long)failrec);
2096 /* set the bits in the inode's tree */
2097 if (ret >= 0)
2098 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2099 GFP_NOFS);
2100 if (ret < 0) {
2101 kfree(failrec);
2102 return ret;
2103 }
2104 } else {
2105 failrec = (struct io_failure_record *)(unsigned long)private;
2106 pr_debug("bio_readpage_error: (found) logical=%llu, "
2107 "start=%llu, len=%llu, validation=%d\n",
2108 failrec->logical, failrec->start, failrec->len,
2109 failrec->in_validation);
2110 /*
2111 * when data can be on disk more than twice, add to failrec here
2112 * (e.g. with a list for failed_mirror) to make
2113 * clean_io_failure() clean all those errors at once.
2114 */
2115 }
2116 num_copies = btrfs_num_copies(
2117 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2118 failrec->logical, failrec->len);
2119 if (num_copies == 1) {
2120 /*
2121 * we only have a single copy of the data, so don't bother with
2122 * all the retry and error correction code that follows. no
2123 * matter what the error is, it is very likely to persist.
2124 */
2125 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2126 "state=%p, num_copies=%d, next_mirror %d, "
2127 "failed_mirror %d\n", state, num_copies,
2128 failrec->this_mirror, failed_mirror);
2129 free_io_failure(inode, failrec, 0);
2130 return -EIO;
2131 }
2132
2133 if (!state) {
2134 spin_lock(&tree->lock);
2135 state = find_first_extent_bit_state(tree, failrec->start,
2136 EXTENT_LOCKED);
2137 if (state && state->start != failrec->start)
2138 state = NULL;
2139 spin_unlock(&tree->lock);
2140 }
2141
2142 /*
2143 * there are two premises:
2144 * a) deliver good data to the caller
2145 * b) correct the bad sectors on disk
2146 */
2147 if (failed_bio->bi_vcnt > 1) {
2148 /*
2149 * to fulfill b), we need to know the exact failing sectors, as
2150 * we don't want to rewrite any more than the failed ones. thus,
2151 * we need separate read requests for the failed bio
2152 *
2153 * if the following BUG_ON triggers, our validation request got
2154 * merged. we need separate requests for our algorithm to work.
2155 */
2156 BUG_ON(failrec->in_validation);
2157 failrec->in_validation = 1;
2158 failrec->this_mirror = failed_mirror;
2159 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2160 } else {
2161 /*
2162 * we're ready to fulfill a) and b) alongside. get a good copy
2163 * of the failed sector and if we succeed, we have setup
2164 * everything for repair_io_failure to do the rest for us.
2165 */
2166 if (failrec->in_validation) {
2167 BUG_ON(failrec->this_mirror != failed_mirror);
2168 failrec->in_validation = 0;
2169 failrec->this_mirror = 0;
2170 }
2171 failrec->failed_mirror = failed_mirror;
2172 failrec->this_mirror++;
2173 if (failrec->this_mirror == failed_mirror)
2174 failrec->this_mirror++;
2175 read_mode = READ_SYNC;
2176 }
2177
2178 if (!state || failrec->this_mirror > num_copies) {
2179 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2180 "next_mirror %d, failed_mirror %d\n", state,
2181 num_copies, failrec->this_mirror, failed_mirror);
2182 free_io_failure(inode, failrec, 0);
2183 return -EIO;
2184 }
2185
2186 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2187 if (!bio) {
2188 free_io_failure(inode, failrec, 0);
2189 return -EIO;
2190 }
4a54c8c1
JS
2191 bio->bi_private = state;
2192 bio->bi_end_io = failed_bio->bi_end_io;
2193 bio->bi_sector = failrec->logical >> 9;
2194 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2195 bio->bi_size = 0;
2196
2197 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2198
2199 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2200 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2201 failrec->this_mirror, num_copies, failrec->in_validation);
2202
013bd4c3
TI
2203 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2204 failrec->this_mirror,
2205 failrec->bio_flags, 0);
2206 return ret;
4a54c8c1
JS
2207}
2208
d1310b2e
CM
2209/* lots and lots of room for performance fixes in the end_bio funcs */
2210
87826df0
JM
2211int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2212{
2213 int uptodate = (err == 0);
2214 struct extent_io_tree *tree;
2215 int ret;
2216
2217 tree = &BTRFS_I(page->mapping->host)->io_tree;
2218
2219 if (tree->ops && tree->ops->writepage_end_io_hook) {
2220 ret = tree->ops->writepage_end_io_hook(page, start,
2221 end, NULL, uptodate);
2222 if (ret)
2223 uptodate = 0;
2224 }
2225
87826df0 2226 if (!uptodate) {
87826df0
JM
2227 ClearPageUptodate(page);
2228 SetPageError(page);
2229 }
2230 return 0;
2231}
2232
d1310b2e
CM
2233/*
2234 * after a writepage IO is done, we need to:
2235 * clear the uptodate bits on error
2236 * clear the writeback bits in the extent tree for this IO
2237 * end_page_writeback if the page has no more pending IO
2238 *
2239 * Scheduling is not allowed, so the extent state tree is expected
2240 * to have one and only one object corresponding to this IO.
2241 */
d1310b2e 2242static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2243{
d1310b2e 2244 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2245 struct extent_io_tree *tree;
d1310b2e
CM
2246 u64 start;
2247 u64 end;
2248 int whole_page;
2249
d1310b2e
CM
2250 do {
2251 struct page *page = bvec->bv_page;
902b22f3
DW
2252 tree = &BTRFS_I(page->mapping->host)->io_tree;
2253
d1310b2e
CM
2254 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2255 bvec->bv_offset;
2256 end = start + bvec->bv_len - 1;
2257
2258 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2259 whole_page = 1;
2260 else
2261 whole_page = 0;
2262
2263 if (--bvec >= bio->bi_io_vec)
2264 prefetchw(&bvec->bv_page->flags);
1259ab75 2265
87826df0
JM
2266 if (end_extent_writepage(page, err, start, end))
2267 continue;
70dec807 2268
d1310b2e
CM
2269 if (whole_page)
2270 end_page_writeback(page);
2271 else
2272 check_page_writeback(tree, page);
d1310b2e 2273 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2274
d1310b2e 2275 bio_put(bio);
d1310b2e
CM
2276}
2277
2278/*
2279 * after a readpage IO is done, we need to:
2280 * clear the uptodate bits on error
2281 * set the uptodate bits if things worked
2282 * set the page up to date if all extents in the tree are uptodate
2283 * clear the lock bit in the extent tree
2284 * unlock the page if there are no other extents locked for it
2285 *
2286 * Scheduling is not allowed, so the extent state tree is expected
2287 * to have one and only one object corresponding to this IO.
2288 */
d1310b2e 2289static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2290{
2291 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2292 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2293 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2294 struct extent_io_tree *tree;
d1310b2e
CM
2295 u64 start;
2296 u64 end;
2297 int whole_page;
5cf1ab56 2298 int mirror;
d1310b2e
CM
2299 int ret;
2300
d20f7043
CM
2301 if (err)
2302 uptodate = 0;
2303
d1310b2e
CM
2304 do {
2305 struct page *page = bvec->bv_page;
507903b8
AJ
2306 struct extent_state *cached = NULL;
2307 struct extent_state *state;
2308
4a54c8c1
JS
2309 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2310 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2311 (long int)bio->bi_bdev);
902b22f3
DW
2312 tree = &BTRFS_I(page->mapping->host)->io_tree;
2313
d1310b2e
CM
2314 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2315 bvec->bv_offset;
2316 end = start + bvec->bv_len - 1;
2317
2318 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2319 whole_page = 1;
2320 else
2321 whole_page = 0;
2322
4125bf76 2323 if (++bvec <= bvec_end)
d1310b2e
CM
2324 prefetchw(&bvec->bv_page->flags);
2325
507903b8 2326 spin_lock(&tree->lock);
0d399205 2327 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2328 if (state && state->start == start) {
507903b8
AJ
2329 /*
2330 * take a reference on the state, unlock will drop
2331 * the ref
2332 */
2333 cache_state(state, &cached);
2334 }
2335 spin_unlock(&tree->lock);
2336
5cf1ab56 2337 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2338 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2339 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2340 state, mirror);
5ee0844d 2341 if (ret)
d1310b2e 2342 uptodate = 0;
5ee0844d 2343 else
4a54c8c1 2344 clean_io_failure(start, page);
d1310b2e 2345 }
ea466794 2346
ea466794 2347 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2348 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2349 if (!ret && !err &&
2350 test_bit(BIO_UPTODATE, &bio->bi_flags))
2351 uptodate = 1;
2352 } else if (!uptodate) {
f4a8e656
JS
2353 /*
2354 * The generic bio_readpage_error handles errors the
2355 * following way: If possible, new read requests are
2356 * created and submitted and will end up in
2357 * end_bio_extent_readpage as well (if we're lucky, not
2358 * in the !uptodate case). In that case it returns 0 and
2359 * we just go on with the next page in our bio. If it
2360 * can't handle the error it will return -EIO and we
2361 * remain responsible for that page.
2362 */
5cf1ab56 2363 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2364 if (ret == 0) {
3b951516
CM
2365 uptodate =
2366 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2367 if (err)
2368 uptodate = 0;
507903b8 2369 uncache_state(&cached);
7e38326f
CM
2370 continue;
2371 }
2372 }
d1310b2e 2373
0b32f4bb 2374 if (uptodate && tree->track_uptodate) {
507903b8 2375 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2376 GFP_ATOMIC);
771ed689 2377 }
507903b8 2378 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2379
70dec807
CM
2380 if (whole_page) {
2381 if (uptodate) {
2382 SetPageUptodate(page);
2383 } else {
2384 ClearPageUptodate(page);
2385 SetPageError(page);
2386 }
d1310b2e 2387 unlock_page(page);
70dec807
CM
2388 } else {
2389 if (uptodate) {
2390 check_page_uptodate(tree, page);
2391 } else {
2392 ClearPageUptodate(page);
2393 SetPageError(page);
2394 }
d1310b2e 2395 check_page_locked(tree, page);
70dec807 2396 }
4125bf76 2397 } while (bvec <= bvec_end);
d1310b2e
CM
2398
2399 bio_put(bio);
d1310b2e
CM
2400}
2401
88f794ed
MX
2402struct bio *
2403btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2404 gfp_t gfp_flags)
d1310b2e
CM
2405{
2406 struct bio *bio;
2407
2408 bio = bio_alloc(gfp_flags, nr_vecs);
2409
2410 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2411 while (!bio && (nr_vecs /= 2))
2412 bio = bio_alloc(gfp_flags, nr_vecs);
2413 }
2414
2415 if (bio) {
e1c4b745 2416 bio->bi_size = 0;
d1310b2e
CM
2417 bio->bi_bdev = bdev;
2418 bio->bi_sector = first_sector;
2419 }
2420 return bio;
2421}
2422
79787eaa
JM
2423/*
2424 * Since writes are async, they will only return -ENOMEM.
2425 * Reads can return the full range of I/O error conditions.
2426 */
355808c2
JM
2427static int __must_check submit_one_bio(int rw, struct bio *bio,
2428 int mirror_num, unsigned long bio_flags)
d1310b2e 2429{
d1310b2e 2430 int ret = 0;
70dec807
CM
2431 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2432 struct page *page = bvec->bv_page;
2433 struct extent_io_tree *tree = bio->bi_private;
70dec807 2434 u64 start;
70dec807
CM
2435
2436 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2437
902b22f3 2438 bio->bi_private = NULL;
d1310b2e
CM
2439
2440 bio_get(bio);
2441
065631f6 2442 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2443 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2444 mirror_num, bio_flags, start);
0b86a832 2445 else
21adbd5c 2446 btrfsic_submit_bio(rw, bio);
4a54c8c1 2447
d1310b2e
CM
2448 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2449 ret = -EOPNOTSUPP;
2450 bio_put(bio);
2451 return ret;
2452}
2453
3444a972
JM
2454static int merge_bio(struct extent_io_tree *tree, struct page *page,
2455 unsigned long offset, size_t size, struct bio *bio,
2456 unsigned long bio_flags)
2457{
2458 int ret = 0;
2459 if (tree->ops && tree->ops->merge_bio_hook)
2460 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2461 bio_flags);
2462 BUG_ON(ret < 0);
2463 return ret;
2464
2465}
2466
d1310b2e
CM
2467static int submit_extent_page(int rw, struct extent_io_tree *tree,
2468 struct page *page, sector_t sector,
2469 size_t size, unsigned long offset,
2470 struct block_device *bdev,
2471 struct bio **bio_ret,
2472 unsigned long max_pages,
f188591e 2473 bio_end_io_t end_io_func,
c8b97818
CM
2474 int mirror_num,
2475 unsigned long prev_bio_flags,
2476 unsigned long bio_flags)
d1310b2e
CM
2477{
2478 int ret = 0;
2479 struct bio *bio;
2480 int nr;
c8b97818
CM
2481 int contig = 0;
2482 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2483 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2484 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2485
2486 if (bio_ret && *bio_ret) {
2487 bio = *bio_ret;
c8b97818
CM
2488 if (old_compressed)
2489 contig = bio->bi_sector == sector;
2490 else
2491 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2492 sector;
2493
2494 if (prev_bio_flags != bio_flags || !contig ||
3444a972 2495 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2496 bio_add_page(bio, page, page_size, offset) < page_size) {
2497 ret = submit_one_bio(rw, bio, mirror_num,
2498 prev_bio_flags);
79787eaa
JM
2499 if (ret < 0)
2500 return ret;
d1310b2e
CM
2501 bio = NULL;
2502 } else {
2503 return 0;
2504 }
2505 }
c8b97818
CM
2506 if (this_compressed)
2507 nr = BIO_MAX_PAGES;
2508 else
2509 nr = bio_get_nr_vecs(bdev);
2510
88f794ed 2511 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2512 if (!bio)
2513 return -ENOMEM;
70dec807 2514
c8b97818 2515 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2516 bio->bi_end_io = end_io_func;
2517 bio->bi_private = tree;
70dec807 2518
d397712b 2519 if (bio_ret)
d1310b2e 2520 *bio_ret = bio;
d397712b 2521 else
c8b97818 2522 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2523
2524 return ret;
2525}
2526
4f2de97a 2527void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2528{
2529 if (!PagePrivate(page)) {
2530 SetPagePrivate(page);
d1310b2e 2531 page_cache_get(page);
4f2de97a
JB
2532 set_page_private(page, (unsigned long)eb);
2533 } else {
2534 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2535 }
2536}
2537
4f2de97a 2538void set_page_extent_mapped(struct page *page)
d1310b2e 2539{
4f2de97a
JB
2540 if (!PagePrivate(page)) {
2541 SetPagePrivate(page);
2542 page_cache_get(page);
2543 set_page_private(page, EXTENT_PAGE_PRIVATE);
2544 }
d1310b2e
CM
2545}
2546
2547/*
2548 * basic readpage implementation. Locked extent state structs are inserted
2549 * into the tree that are removed when the IO is done (by the end_io
2550 * handlers)
79787eaa 2551 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2552 */
2553static int __extent_read_full_page(struct extent_io_tree *tree,
2554 struct page *page,
2555 get_extent_t *get_extent,
c8b97818
CM
2556 struct bio **bio, int mirror_num,
2557 unsigned long *bio_flags)
d1310b2e
CM
2558{
2559 struct inode *inode = page->mapping->host;
2560 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2561 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2562 u64 end;
2563 u64 cur = start;
2564 u64 extent_offset;
2565 u64 last_byte = i_size_read(inode);
2566 u64 block_start;
2567 u64 cur_end;
2568 sector_t sector;
2569 struct extent_map *em;
2570 struct block_device *bdev;
11c65dcc 2571 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2572 int ret;
2573 int nr = 0;
306e16ce 2574 size_t pg_offset = 0;
d1310b2e 2575 size_t iosize;
c8b97818 2576 size_t disk_io_size;
d1310b2e 2577 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2578 unsigned long this_bio_flag = 0;
d1310b2e
CM
2579
2580 set_page_extent_mapped(page);
2581
90a887c9
DM
2582 if (!PageUptodate(page)) {
2583 if (cleancache_get_page(page) == 0) {
2584 BUG_ON(blocksize != PAGE_SIZE);
2585 goto out;
2586 }
2587 }
2588
d1310b2e 2589 end = page_end;
11c65dcc 2590 while (1) {
d0082371 2591 lock_extent(tree, start, end);
11c65dcc
JB
2592 ordered = btrfs_lookup_ordered_extent(inode, start);
2593 if (!ordered)
2594 break;
d0082371 2595 unlock_extent(tree, start, end);
11c65dcc
JB
2596 btrfs_start_ordered_extent(inode, ordered, 1);
2597 btrfs_put_ordered_extent(ordered);
2598 }
d1310b2e 2599
c8b97818
CM
2600 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2601 char *userpage;
2602 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2603
2604 if (zero_offset) {
2605 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2606 userpage = kmap_atomic(page);
c8b97818
CM
2607 memset(userpage + zero_offset, 0, iosize);
2608 flush_dcache_page(page);
7ac687d9 2609 kunmap_atomic(userpage);
c8b97818
CM
2610 }
2611 }
d1310b2e
CM
2612 while (cur <= end) {
2613 if (cur >= last_byte) {
2614 char *userpage;
507903b8
AJ
2615 struct extent_state *cached = NULL;
2616
306e16ce 2617 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2618 userpage = kmap_atomic(page);
306e16ce 2619 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2620 flush_dcache_page(page);
7ac687d9 2621 kunmap_atomic(userpage);
d1310b2e 2622 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2623 &cached, GFP_NOFS);
2624 unlock_extent_cached(tree, cur, cur + iosize - 1,
2625 &cached, GFP_NOFS);
d1310b2e
CM
2626 break;
2627 }
306e16ce 2628 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2629 end - cur + 1, 0);
c704005d 2630 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2631 SetPageError(page);
d0082371 2632 unlock_extent(tree, cur, end);
d1310b2e
CM
2633 break;
2634 }
d1310b2e
CM
2635 extent_offset = cur - em->start;
2636 BUG_ON(extent_map_end(em) <= cur);
2637 BUG_ON(end < cur);
2638
261507a0 2639 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2640 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2641 extent_set_compress_type(&this_bio_flag,
2642 em->compress_type);
2643 }
c8b97818 2644
d1310b2e
CM
2645 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2646 cur_end = min(extent_map_end(em) - 1, end);
2647 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2648 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2649 disk_io_size = em->block_len;
2650 sector = em->block_start >> 9;
2651 } else {
2652 sector = (em->block_start + extent_offset) >> 9;
2653 disk_io_size = iosize;
2654 }
d1310b2e
CM
2655 bdev = em->bdev;
2656 block_start = em->block_start;
d899e052
YZ
2657 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2658 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2659 free_extent_map(em);
2660 em = NULL;
2661
2662 /* we've found a hole, just zero and go on */
2663 if (block_start == EXTENT_MAP_HOLE) {
2664 char *userpage;
507903b8
AJ
2665 struct extent_state *cached = NULL;
2666
7ac687d9 2667 userpage = kmap_atomic(page);
306e16ce 2668 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2669 flush_dcache_page(page);
7ac687d9 2670 kunmap_atomic(userpage);
d1310b2e
CM
2671
2672 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2673 &cached, GFP_NOFS);
2674 unlock_extent_cached(tree, cur, cur + iosize - 1,
2675 &cached, GFP_NOFS);
d1310b2e 2676 cur = cur + iosize;
306e16ce 2677 pg_offset += iosize;
d1310b2e
CM
2678 continue;
2679 }
2680 /* the get_extent function already copied into the page */
9655d298
CM
2681 if (test_range_bit(tree, cur, cur_end,
2682 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2683 check_page_uptodate(tree, page);
d0082371 2684 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2685 cur = cur + iosize;
306e16ce 2686 pg_offset += iosize;
d1310b2e
CM
2687 continue;
2688 }
70dec807
CM
2689 /* we have an inline extent but it didn't get marked up
2690 * to date. Error out
2691 */
2692 if (block_start == EXTENT_MAP_INLINE) {
2693 SetPageError(page);
d0082371 2694 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2695 cur = cur + iosize;
306e16ce 2696 pg_offset += iosize;
70dec807
CM
2697 continue;
2698 }
d1310b2e
CM
2699
2700 ret = 0;
2701 if (tree->ops && tree->ops->readpage_io_hook) {
2702 ret = tree->ops->readpage_io_hook(page, cur,
2703 cur + iosize - 1);
2704 }
2705 if (!ret) {
89642229
CM
2706 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2707 pnr -= page->index;
d1310b2e 2708 ret = submit_extent_page(READ, tree, page,
306e16ce 2709 sector, disk_io_size, pg_offset,
89642229 2710 bdev, bio, pnr,
c8b97818
CM
2711 end_bio_extent_readpage, mirror_num,
2712 *bio_flags,
2713 this_bio_flag);
79787eaa 2714 BUG_ON(ret == -ENOMEM);
89642229 2715 nr++;
c8b97818 2716 *bio_flags = this_bio_flag;
d1310b2e
CM
2717 }
2718 if (ret)
2719 SetPageError(page);
2720 cur = cur + iosize;
306e16ce 2721 pg_offset += iosize;
d1310b2e 2722 }
90a887c9 2723out:
d1310b2e
CM
2724 if (!nr) {
2725 if (!PageError(page))
2726 SetPageUptodate(page);
2727 unlock_page(page);
2728 }
2729 return 0;
2730}
2731
2732int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2733 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2734{
2735 struct bio *bio = NULL;
c8b97818 2736 unsigned long bio_flags = 0;
d1310b2e
CM
2737 int ret;
2738
8ddc7d9c 2739 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2740 &bio_flags);
d1310b2e 2741 if (bio)
8ddc7d9c 2742 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2743 return ret;
2744}
d1310b2e 2745
11c8349b
CM
2746static noinline void update_nr_written(struct page *page,
2747 struct writeback_control *wbc,
2748 unsigned long nr_written)
2749{
2750 wbc->nr_to_write -= nr_written;
2751 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2752 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2753 page->mapping->writeback_index = page->index + nr_written;
2754}
2755
d1310b2e
CM
2756/*
2757 * the writepage semantics are similar to regular writepage. extent
2758 * records are inserted to lock ranges in the tree, and as dirty areas
2759 * are found, they are marked writeback. Then the lock bits are removed
2760 * and the end_io handler clears the writeback ranges
2761 */
2762static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2763 void *data)
2764{
2765 struct inode *inode = page->mapping->host;
2766 struct extent_page_data *epd = data;
2767 struct extent_io_tree *tree = epd->tree;
2768 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2769 u64 delalloc_start;
2770 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2771 u64 end;
2772 u64 cur = start;
2773 u64 extent_offset;
2774 u64 last_byte = i_size_read(inode);
2775 u64 block_start;
2776 u64 iosize;
2777 sector_t sector;
2c64c53d 2778 struct extent_state *cached_state = NULL;
d1310b2e
CM
2779 struct extent_map *em;
2780 struct block_device *bdev;
2781 int ret;
2782 int nr = 0;
7f3c74fb 2783 size_t pg_offset = 0;
d1310b2e
CM
2784 size_t blocksize;
2785 loff_t i_size = i_size_read(inode);
2786 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2787 u64 nr_delalloc;
2788 u64 delalloc_end;
c8b97818
CM
2789 int page_started;
2790 int compressed;
ffbd517d 2791 int write_flags;
771ed689 2792 unsigned long nr_written = 0;
9e487107 2793 bool fill_delalloc = true;
d1310b2e 2794
ffbd517d 2795 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2796 write_flags = WRITE_SYNC;
ffbd517d
CM
2797 else
2798 write_flags = WRITE;
2799
1abe9b8a 2800 trace___extent_writepage(page, inode, wbc);
2801
d1310b2e 2802 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2803
2804 ClearPageError(page);
2805
7f3c74fb 2806 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2807 if (page->index > end_index ||
7f3c74fb 2808 (page->index == end_index && !pg_offset)) {
39be25cd 2809 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2810 unlock_page(page);
2811 return 0;
2812 }
2813
2814 if (page->index == end_index) {
2815 char *userpage;
2816
7ac687d9 2817 userpage = kmap_atomic(page);
7f3c74fb
CM
2818 memset(userpage + pg_offset, 0,
2819 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2820 kunmap_atomic(userpage);
211c17f5 2821 flush_dcache_page(page);
d1310b2e 2822 }
7f3c74fb 2823 pg_offset = 0;
d1310b2e
CM
2824
2825 set_page_extent_mapped(page);
2826
9e487107
JB
2827 if (!tree->ops || !tree->ops->fill_delalloc)
2828 fill_delalloc = false;
2829
d1310b2e
CM
2830 delalloc_start = start;
2831 delalloc_end = 0;
c8b97818 2832 page_started = 0;
9e487107 2833 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2834 u64 delalloc_to_write = 0;
11c8349b
CM
2835 /*
2836 * make sure the wbc mapping index is at least updated
2837 * to this page.
2838 */
2839 update_nr_written(page, wbc, 0);
2840
d397712b 2841 while (delalloc_end < page_end) {
771ed689 2842 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2843 page,
2844 &delalloc_start,
d1310b2e
CM
2845 &delalloc_end,
2846 128 * 1024 * 1024);
771ed689
CM
2847 if (nr_delalloc == 0) {
2848 delalloc_start = delalloc_end + 1;
2849 continue;
2850 }
013bd4c3
TI
2851 ret = tree->ops->fill_delalloc(inode, page,
2852 delalloc_start,
2853 delalloc_end,
2854 &page_started,
2855 &nr_written);
79787eaa
JM
2856 /* File system has been set read-only */
2857 if (ret) {
2858 SetPageError(page);
2859 goto done;
2860 }
f85d7d6c
CM
2861 /*
2862 * delalloc_end is already one less than the total
2863 * length, so we don't subtract one from
2864 * PAGE_CACHE_SIZE
2865 */
2866 delalloc_to_write += (delalloc_end - delalloc_start +
2867 PAGE_CACHE_SIZE) >>
2868 PAGE_CACHE_SHIFT;
d1310b2e 2869 delalloc_start = delalloc_end + 1;
d1310b2e 2870 }
f85d7d6c
CM
2871 if (wbc->nr_to_write < delalloc_to_write) {
2872 int thresh = 8192;
2873
2874 if (delalloc_to_write < thresh * 2)
2875 thresh = delalloc_to_write;
2876 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2877 thresh);
2878 }
c8b97818 2879
771ed689
CM
2880 /* did the fill delalloc function already unlock and start
2881 * the IO?
2882 */
2883 if (page_started) {
2884 ret = 0;
11c8349b
CM
2885 /*
2886 * we've unlocked the page, so we can't update
2887 * the mapping's writeback index, just update
2888 * nr_to_write.
2889 */
2890 wbc->nr_to_write -= nr_written;
2891 goto done_unlocked;
771ed689 2892 }
c8b97818 2893 }
247e743c 2894 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2895 ret = tree->ops->writepage_start_hook(page, start,
2896 page_end);
87826df0
JM
2897 if (ret) {
2898 /* Fixup worker will requeue */
2899 if (ret == -EBUSY)
2900 wbc->pages_skipped++;
2901 else
2902 redirty_page_for_writepage(wbc, page);
11c8349b 2903 update_nr_written(page, wbc, nr_written);
247e743c 2904 unlock_page(page);
771ed689 2905 ret = 0;
11c8349b 2906 goto done_unlocked;
247e743c
CM
2907 }
2908 }
2909
11c8349b
CM
2910 /*
2911 * we don't want to touch the inode after unlocking the page,
2912 * so we update the mapping writeback index now
2913 */
2914 update_nr_written(page, wbc, nr_written + 1);
771ed689 2915
d1310b2e 2916 end = page_end;
d1310b2e 2917 if (last_byte <= start) {
e6dcd2dc
CM
2918 if (tree->ops && tree->ops->writepage_end_io_hook)
2919 tree->ops->writepage_end_io_hook(page, start,
2920 page_end, NULL, 1);
d1310b2e
CM
2921 goto done;
2922 }
2923
d1310b2e
CM
2924 blocksize = inode->i_sb->s_blocksize;
2925
2926 while (cur <= end) {
2927 if (cur >= last_byte) {
e6dcd2dc
CM
2928 if (tree->ops && tree->ops->writepage_end_io_hook)
2929 tree->ops->writepage_end_io_hook(page, cur,
2930 page_end, NULL, 1);
d1310b2e
CM
2931 break;
2932 }
7f3c74fb 2933 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2934 end - cur + 1, 1);
c704005d 2935 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2936 SetPageError(page);
2937 break;
2938 }
2939
2940 extent_offset = cur - em->start;
2941 BUG_ON(extent_map_end(em) <= cur);
2942 BUG_ON(end < cur);
2943 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2944 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2945 sector = (em->block_start + extent_offset) >> 9;
2946 bdev = em->bdev;
2947 block_start = em->block_start;
c8b97818 2948 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2949 free_extent_map(em);
2950 em = NULL;
2951
c8b97818
CM
2952 /*
2953 * compressed and inline extents are written through other
2954 * paths in the FS
2955 */
2956 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2957 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2958 /*
2959 * end_io notification does not happen here for
2960 * compressed extents
2961 */
2962 if (!compressed && tree->ops &&
2963 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2964 tree->ops->writepage_end_io_hook(page, cur,
2965 cur + iosize - 1,
2966 NULL, 1);
c8b97818
CM
2967 else if (compressed) {
2968 /* we don't want to end_page_writeback on
2969 * a compressed extent. this happens
2970 * elsewhere
2971 */
2972 nr++;
2973 }
2974
2975 cur += iosize;
7f3c74fb 2976 pg_offset += iosize;
d1310b2e
CM
2977 continue;
2978 }
d1310b2e
CM
2979 /* leave this out until we have a page_mkwrite call */
2980 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2981 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2982 cur = cur + iosize;
7f3c74fb 2983 pg_offset += iosize;
d1310b2e
CM
2984 continue;
2985 }
c8b97818 2986
d1310b2e
CM
2987 if (tree->ops && tree->ops->writepage_io_hook) {
2988 ret = tree->ops->writepage_io_hook(page, cur,
2989 cur + iosize - 1);
2990 } else {
2991 ret = 0;
2992 }
1259ab75 2993 if (ret) {
d1310b2e 2994 SetPageError(page);
1259ab75 2995 } else {
d1310b2e 2996 unsigned long max_nr = end_index + 1;
7f3c74fb 2997
d1310b2e
CM
2998 set_range_writeback(tree, cur, cur + iosize - 1);
2999 if (!PageWriteback(page)) {
d397712b
CM
3000 printk(KERN_ERR "btrfs warning page %lu not "
3001 "writeback, cur %llu end %llu\n",
3002 page->index, (unsigned long long)cur,
d1310b2e
CM
3003 (unsigned long long)end);
3004 }
3005
ffbd517d
CM
3006 ret = submit_extent_page(write_flags, tree, page,
3007 sector, iosize, pg_offset,
3008 bdev, &epd->bio, max_nr,
c8b97818
CM
3009 end_bio_extent_writepage,
3010 0, 0, 0);
d1310b2e
CM
3011 if (ret)
3012 SetPageError(page);
3013 }
3014 cur = cur + iosize;
7f3c74fb 3015 pg_offset += iosize;
d1310b2e
CM
3016 nr++;
3017 }
3018done:
3019 if (nr == 0) {
3020 /* make sure the mapping tag for page dirty gets cleared */
3021 set_page_writeback(page);
3022 end_page_writeback(page);
3023 }
d1310b2e 3024 unlock_page(page);
771ed689 3025
11c8349b
CM
3026done_unlocked:
3027
2c64c53d
CM
3028 /* drop our reference on any cached states */
3029 free_extent_state(cached_state);
d1310b2e
CM
3030 return 0;
3031}
3032
0b32f4bb
JB
3033static int eb_wait(void *word)
3034{
3035 io_schedule();
3036 return 0;
3037}
3038
3039static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3040{
3041 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3042 TASK_UNINTERRUPTIBLE);
3043}
3044
3045static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3046 struct btrfs_fs_info *fs_info,
3047 struct extent_page_data *epd)
3048{
3049 unsigned long i, num_pages;
3050 int flush = 0;
3051 int ret = 0;
3052
3053 if (!btrfs_try_tree_write_lock(eb)) {
3054 flush = 1;
3055 flush_write_bio(epd);
3056 btrfs_tree_lock(eb);
3057 }
3058
3059 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3060 btrfs_tree_unlock(eb);
3061 if (!epd->sync_io)
3062 return 0;
3063 if (!flush) {
3064 flush_write_bio(epd);
3065 flush = 1;
3066 }
a098d8e8
CM
3067 while (1) {
3068 wait_on_extent_buffer_writeback(eb);
3069 btrfs_tree_lock(eb);
3070 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3071 break;
0b32f4bb 3072 btrfs_tree_unlock(eb);
0b32f4bb
JB
3073 }
3074 }
3075
51561ffe
JB
3076 /*
3077 * We need to do this to prevent races in people who check if the eb is
3078 * under IO since we can end up having no IO bits set for a short period
3079 * of time.
3080 */
3081 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3082 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3083 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3084 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3085 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3086 spin_lock(&fs_info->delalloc_lock);
3087 if (fs_info->dirty_metadata_bytes >= eb->len)
3088 fs_info->dirty_metadata_bytes -= eb->len;
3089 else
3090 WARN_ON(1);
3091 spin_unlock(&fs_info->delalloc_lock);
3092 ret = 1;
51561ffe
JB
3093 } else {
3094 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3095 }
3096
3097 btrfs_tree_unlock(eb);
3098
3099 if (!ret)
3100 return ret;
3101
3102 num_pages = num_extent_pages(eb->start, eb->len);
3103 for (i = 0; i < num_pages; i++) {
3104 struct page *p = extent_buffer_page(eb, i);
3105
3106 if (!trylock_page(p)) {
3107 if (!flush) {
3108 flush_write_bio(epd);
3109 flush = 1;
3110 }
3111 lock_page(p);
3112 }
3113 }
3114
3115 return ret;
3116}
3117
3118static void end_extent_buffer_writeback(struct extent_buffer *eb)
3119{
3120 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3121 smp_mb__after_clear_bit();
3122 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3123}
3124
3125static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3126{
3127 int uptodate = err == 0;
3128 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3129 struct extent_buffer *eb;
3130 int done;
3131
3132 do {
3133 struct page *page = bvec->bv_page;
3134
3135 bvec--;
3136 eb = (struct extent_buffer *)page->private;
3137 BUG_ON(!eb);
3138 done = atomic_dec_and_test(&eb->io_pages);
3139
3140 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3141 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3142 ClearPageUptodate(page);
3143 SetPageError(page);
3144 }
3145
3146 end_page_writeback(page);
3147
3148 if (!done)
3149 continue;
3150
3151 end_extent_buffer_writeback(eb);
3152 } while (bvec >= bio->bi_io_vec);
3153
3154 bio_put(bio);
3155
3156}
3157
3158static int write_one_eb(struct extent_buffer *eb,
3159 struct btrfs_fs_info *fs_info,
3160 struct writeback_control *wbc,
3161 struct extent_page_data *epd)
3162{
3163 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3164 u64 offset = eb->start;
3165 unsigned long i, num_pages;
3166 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
d7dbe9e7 3167 int ret = 0;
0b32f4bb
JB
3168
3169 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3170 num_pages = num_extent_pages(eb->start, eb->len);
3171 atomic_set(&eb->io_pages, num_pages);
3172 for (i = 0; i < num_pages; i++) {
3173 struct page *p = extent_buffer_page(eb, i);
3174
3175 clear_page_dirty_for_io(p);
3176 set_page_writeback(p);
3177 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3178 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3179 -1, end_bio_extent_buffer_writepage,
3180 0, 0, 0);
3181 if (ret) {
3182 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3183 SetPageError(p);
3184 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3185 end_extent_buffer_writeback(eb);
3186 ret = -EIO;
3187 break;
3188 }
3189 offset += PAGE_CACHE_SIZE;
3190 update_nr_written(p, wbc, 1);
3191 unlock_page(p);
3192 }
3193
3194 if (unlikely(ret)) {
3195 for (; i < num_pages; i++) {
3196 struct page *p = extent_buffer_page(eb, i);
3197 unlock_page(p);
3198 }
3199 }
3200
3201 return ret;
3202}
3203
3204int btree_write_cache_pages(struct address_space *mapping,
3205 struct writeback_control *wbc)
3206{
3207 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3208 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3209 struct extent_buffer *eb, *prev_eb = NULL;
3210 struct extent_page_data epd = {
3211 .bio = NULL,
3212 .tree = tree,
3213 .extent_locked = 0,
3214 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3215 };
3216 int ret = 0;
3217 int done = 0;
3218 int nr_to_write_done = 0;
3219 struct pagevec pvec;
3220 int nr_pages;
3221 pgoff_t index;
3222 pgoff_t end; /* Inclusive */
3223 int scanned = 0;
3224 int tag;
3225
3226 pagevec_init(&pvec, 0);
3227 if (wbc->range_cyclic) {
3228 index = mapping->writeback_index; /* Start from prev offset */
3229 end = -1;
3230 } else {
3231 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3232 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3233 scanned = 1;
3234 }
3235 if (wbc->sync_mode == WB_SYNC_ALL)
3236 tag = PAGECACHE_TAG_TOWRITE;
3237 else
3238 tag = PAGECACHE_TAG_DIRTY;
3239retry:
3240 if (wbc->sync_mode == WB_SYNC_ALL)
3241 tag_pages_for_writeback(mapping, index, end);
3242 while (!done && !nr_to_write_done && (index <= end) &&
3243 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3244 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3245 unsigned i;
3246
3247 scanned = 1;
3248 for (i = 0; i < nr_pages; i++) {
3249 struct page *page = pvec.pages[i];
3250
3251 if (!PagePrivate(page))
3252 continue;
3253
3254 if (!wbc->range_cyclic && page->index > end) {
3255 done = 1;
3256 break;
3257 }
3258
3259 eb = (struct extent_buffer *)page->private;
3260 if (!eb) {
3261 WARN_ON(1);
3262 continue;
3263 }
3264
3265 if (eb == prev_eb)
3266 continue;
3267
3268 if (!atomic_inc_not_zero(&eb->refs)) {
3269 WARN_ON(1);
3270 continue;
3271 }
3272
3273 prev_eb = eb;
3274 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3275 if (!ret) {
3276 free_extent_buffer(eb);
3277 continue;
3278 }
3279
3280 ret = write_one_eb(eb, fs_info, wbc, &epd);
3281 if (ret) {
3282 done = 1;
3283 free_extent_buffer(eb);
3284 break;
3285 }
3286 free_extent_buffer(eb);
3287
3288 /*
3289 * the filesystem may choose to bump up nr_to_write.
3290 * We have to make sure to honor the new nr_to_write
3291 * at any time
3292 */
3293 nr_to_write_done = wbc->nr_to_write <= 0;
3294 }
3295 pagevec_release(&pvec);
3296 cond_resched();
3297 }
3298 if (!scanned && !done) {
3299 /*
3300 * We hit the last page and there is more work to be done: wrap
3301 * back to the start of the file
3302 */
3303 scanned = 1;
3304 index = 0;
3305 goto retry;
3306 }
3307 flush_write_bio(&epd);
3308 return ret;
3309}
3310
d1310b2e 3311/**
4bef0848 3312 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3313 * @mapping: address space structure to write
3314 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3315 * @writepage: function called for each page
3316 * @data: data passed to writepage function
3317 *
3318 * If a page is already under I/O, write_cache_pages() skips it, even
3319 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3320 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3321 * and msync() need to guarantee that all the data which was dirty at the time
3322 * the call was made get new I/O started against them. If wbc->sync_mode is
3323 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3324 * existing IO to complete.
3325 */
b2950863 3326static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3327 struct address_space *mapping,
3328 struct writeback_control *wbc,
d2c3f4f6
CM
3329 writepage_t writepage, void *data,
3330 void (*flush_fn)(void *))
d1310b2e 3331{
7fd1a3f7 3332 struct inode *inode = mapping->host;
d1310b2e
CM
3333 int ret = 0;
3334 int done = 0;
f85d7d6c 3335 int nr_to_write_done = 0;
d1310b2e
CM
3336 struct pagevec pvec;
3337 int nr_pages;
3338 pgoff_t index;
3339 pgoff_t end; /* Inclusive */
3340 int scanned = 0;
f7aaa06b 3341 int tag;
d1310b2e 3342
7fd1a3f7
JB
3343 /*
3344 * We have to hold onto the inode so that ordered extents can do their
3345 * work when the IO finishes. The alternative to this is failing to add
3346 * an ordered extent if the igrab() fails there and that is a huge pain
3347 * to deal with, so instead just hold onto the inode throughout the
3348 * writepages operation. If it fails here we are freeing up the inode
3349 * anyway and we'd rather not waste our time writing out stuff that is
3350 * going to be truncated anyway.
3351 */
3352 if (!igrab(inode))
3353 return 0;
3354
d1310b2e
CM
3355 pagevec_init(&pvec, 0);
3356 if (wbc->range_cyclic) {
3357 index = mapping->writeback_index; /* Start from prev offset */
3358 end = -1;
3359 } else {
3360 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3361 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3362 scanned = 1;
3363 }
f7aaa06b
JB
3364 if (wbc->sync_mode == WB_SYNC_ALL)
3365 tag = PAGECACHE_TAG_TOWRITE;
3366 else
3367 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3368retry:
f7aaa06b
JB
3369 if (wbc->sync_mode == WB_SYNC_ALL)
3370 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3371 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3372 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3373 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3374 unsigned i;
3375
3376 scanned = 1;
3377 for (i = 0; i < nr_pages; i++) {
3378 struct page *page = pvec.pages[i];
3379
3380 /*
3381 * At this point we hold neither mapping->tree_lock nor
3382 * lock on the page itself: the page may be truncated or
3383 * invalidated (changing page->mapping to NULL), or even
3384 * swizzled back from swapper_space to tmpfs file
3385 * mapping
3386 */
01d658f2
CM
3387 if (tree->ops &&
3388 tree->ops->write_cache_pages_lock_hook) {
3389 tree->ops->write_cache_pages_lock_hook(page,
3390 data, flush_fn);
3391 } else {
3392 if (!trylock_page(page)) {
3393 flush_fn(data);
3394 lock_page(page);
3395 }
3396 }
d1310b2e
CM
3397
3398 if (unlikely(page->mapping != mapping)) {
3399 unlock_page(page);
3400 continue;
3401 }
3402
3403 if (!wbc->range_cyclic && page->index > end) {
3404 done = 1;
3405 unlock_page(page);
3406 continue;
3407 }
3408
d2c3f4f6 3409 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3410 if (PageWriteback(page))
3411 flush_fn(data);
d1310b2e 3412 wait_on_page_writeback(page);
d2c3f4f6 3413 }
d1310b2e
CM
3414
3415 if (PageWriteback(page) ||
3416 !clear_page_dirty_for_io(page)) {
3417 unlock_page(page);
3418 continue;
3419 }
3420
3421 ret = (*writepage)(page, wbc, data);
3422
3423 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3424 unlock_page(page);
3425 ret = 0;
3426 }
f85d7d6c 3427 if (ret)
d1310b2e 3428 done = 1;
f85d7d6c
CM
3429
3430 /*
3431 * the filesystem may choose to bump up nr_to_write.
3432 * We have to make sure to honor the new nr_to_write
3433 * at any time
3434 */
3435 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3436 }
3437 pagevec_release(&pvec);
3438 cond_resched();
3439 }
3440 if (!scanned && !done) {
3441 /*
3442 * We hit the last page and there is more work to be done: wrap
3443 * back to the start of the file
3444 */
3445 scanned = 1;
3446 index = 0;
3447 goto retry;
3448 }
7fd1a3f7 3449 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3450 return ret;
3451}
d1310b2e 3452
ffbd517d 3453static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3454{
d2c3f4f6 3455 if (epd->bio) {
355808c2
JM
3456 int rw = WRITE;
3457 int ret;
3458
ffbd517d 3459 if (epd->sync_io)
355808c2
JM
3460 rw = WRITE_SYNC;
3461
3462 ret = submit_one_bio(rw, epd->bio, 0, 0);
79787eaa 3463 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3464 epd->bio = NULL;
3465 }
3466}
3467
ffbd517d
CM
3468static noinline void flush_write_bio(void *data)
3469{
3470 struct extent_page_data *epd = data;
3471 flush_epd_write_bio(epd);
3472}
3473
d1310b2e
CM
3474int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3475 get_extent_t *get_extent,
3476 struct writeback_control *wbc)
3477{
3478 int ret;
d1310b2e
CM
3479 struct extent_page_data epd = {
3480 .bio = NULL,
3481 .tree = tree,
3482 .get_extent = get_extent,
771ed689 3483 .extent_locked = 0,
ffbd517d 3484 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3485 };
d1310b2e 3486
d1310b2e
CM
3487 ret = __extent_writepage(page, wbc, &epd);
3488
ffbd517d 3489 flush_epd_write_bio(&epd);
d1310b2e
CM
3490 return ret;
3491}
d1310b2e 3492
771ed689
CM
3493int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3494 u64 start, u64 end, get_extent_t *get_extent,
3495 int mode)
3496{
3497 int ret = 0;
3498 struct address_space *mapping = inode->i_mapping;
3499 struct page *page;
3500 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3501 PAGE_CACHE_SHIFT;
3502
3503 struct extent_page_data epd = {
3504 .bio = NULL,
3505 .tree = tree,
3506 .get_extent = get_extent,
3507 .extent_locked = 1,
ffbd517d 3508 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3509 };
3510 struct writeback_control wbc_writepages = {
771ed689 3511 .sync_mode = mode,
771ed689
CM
3512 .nr_to_write = nr_pages * 2,
3513 .range_start = start,
3514 .range_end = end + 1,
3515 };
3516
d397712b 3517 while (start <= end) {
771ed689
CM
3518 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3519 if (clear_page_dirty_for_io(page))
3520 ret = __extent_writepage(page, &wbc_writepages, &epd);
3521 else {
3522 if (tree->ops && tree->ops->writepage_end_io_hook)
3523 tree->ops->writepage_end_io_hook(page, start,
3524 start + PAGE_CACHE_SIZE - 1,
3525 NULL, 1);
3526 unlock_page(page);
3527 }
3528 page_cache_release(page);
3529 start += PAGE_CACHE_SIZE;
3530 }
3531
ffbd517d 3532 flush_epd_write_bio(&epd);
771ed689
CM
3533 return ret;
3534}
d1310b2e
CM
3535
3536int extent_writepages(struct extent_io_tree *tree,
3537 struct address_space *mapping,
3538 get_extent_t *get_extent,
3539 struct writeback_control *wbc)
3540{
3541 int ret = 0;
3542 struct extent_page_data epd = {
3543 .bio = NULL,
3544 .tree = tree,
3545 .get_extent = get_extent,
771ed689 3546 .extent_locked = 0,
ffbd517d 3547 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3548 };
3549
4bef0848 3550 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3551 __extent_writepage, &epd,
3552 flush_write_bio);
ffbd517d 3553 flush_epd_write_bio(&epd);
d1310b2e
CM
3554 return ret;
3555}
d1310b2e
CM
3556
3557int extent_readpages(struct extent_io_tree *tree,
3558 struct address_space *mapping,
3559 struct list_head *pages, unsigned nr_pages,
3560 get_extent_t get_extent)
3561{
3562 struct bio *bio = NULL;
3563 unsigned page_idx;
c8b97818 3564 unsigned long bio_flags = 0;
67c9684f
LB
3565 struct page *pagepool[16];
3566 struct page *page;
3567 int i = 0;
3568 int nr = 0;
d1310b2e 3569
d1310b2e 3570 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3571 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3572
3573 prefetchw(&page->flags);
3574 list_del(&page->lru);
67c9684f 3575 if (add_to_page_cache_lru(page, mapping,
43e817a1 3576 page->index, GFP_NOFS)) {
67c9684f
LB
3577 page_cache_release(page);
3578 continue;
d1310b2e 3579 }
67c9684f
LB
3580
3581 pagepool[nr++] = page;
3582 if (nr < ARRAY_SIZE(pagepool))
3583 continue;
3584 for (i = 0; i < nr; i++) {
3585 __extent_read_full_page(tree, pagepool[i], get_extent,
3586 &bio, 0, &bio_flags);
3587 page_cache_release(pagepool[i]);
3588 }
3589 nr = 0;
d1310b2e 3590 }
67c9684f
LB
3591 for (i = 0; i < nr; i++) {
3592 __extent_read_full_page(tree, pagepool[i], get_extent,
3593 &bio, 0, &bio_flags);
3594 page_cache_release(pagepool[i]);
d1310b2e 3595 }
67c9684f 3596
d1310b2e
CM
3597 BUG_ON(!list_empty(pages));
3598 if (bio)
79787eaa 3599 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3600 return 0;
3601}
d1310b2e
CM
3602
3603/*
3604 * basic invalidatepage code, this waits on any locked or writeback
3605 * ranges corresponding to the page, and then deletes any extent state
3606 * records from the tree
3607 */
3608int extent_invalidatepage(struct extent_io_tree *tree,
3609 struct page *page, unsigned long offset)
3610{
2ac55d41 3611 struct extent_state *cached_state = NULL;
d1310b2e
CM
3612 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3613 u64 end = start + PAGE_CACHE_SIZE - 1;
3614 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3615
d397712b 3616 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3617 if (start > end)
3618 return 0;
3619
d0082371 3620 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3621 wait_on_page_writeback(page);
d1310b2e 3622 clear_extent_bit(tree, start, end,
32c00aff
JB
3623 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3624 EXTENT_DO_ACCOUNTING,
2ac55d41 3625 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3626 return 0;
3627}
d1310b2e 3628
7b13b7b1
CM
3629/*
3630 * a helper for releasepage, this tests for areas of the page that
3631 * are locked or under IO and drops the related state bits if it is safe
3632 * to drop the page.
3633 */
3634int try_release_extent_state(struct extent_map_tree *map,
3635 struct extent_io_tree *tree, struct page *page,
3636 gfp_t mask)
3637{
3638 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3639 u64 end = start + PAGE_CACHE_SIZE - 1;
3640 int ret = 1;
3641
211f90e6 3642 if (test_range_bit(tree, start, end,
8b62b72b 3643 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3644 ret = 0;
3645 else {
3646 if ((mask & GFP_NOFS) == GFP_NOFS)
3647 mask = GFP_NOFS;
11ef160f
CM
3648 /*
3649 * at this point we can safely clear everything except the
3650 * locked bit and the nodatasum bit
3651 */
e3f24cc5 3652 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3653 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3654 0, 0, NULL, mask);
e3f24cc5
CM
3655
3656 /* if clear_extent_bit failed for enomem reasons,
3657 * we can't allow the release to continue.
3658 */
3659 if (ret < 0)
3660 ret = 0;
3661 else
3662 ret = 1;
7b13b7b1
CM
3663 }
3664 return ret;
3665}
7b13b7b1 3666
d1310b2e
CM
3667/*
3668 * a helper for releasepage. As long as there are no locked extents
3669 * in the range corresponding to the page, both state records and extent
3670 * map records are removed
3671 */
3672int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3673 struct extent_io_tree *tree, struct page *page,
3674 gfp_t mask)
d1310b2e
CM
3675{
3676 struct extent_map *em;
3677 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3678 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3679
70dec807
CM
3680 if ((mask & __GFP_WAIT) &&
3681 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3682 u64 len;
70dec807 3683 while (start <= end) {
39b5637f 3684 len = end - start + 1;
890871be 3685 write_lock(&map->lock);
39b5637f 3686 em = lookup_extent_mapping(map, start, len);
285190d9 3687 if (!em) {
890871be 3688 write_unlock(&map->lock);
70dec807
CM
3689 break;
3690 }
7f3c74fb
CM
3691 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3692 em->start != start) {
890871be 3693 write_unlock(&map->lock);
70dec807
CM
3694 free_extent_map(em);
3695 break;
3696 }
3697 if (!test_range_bit(tree, em->start,
3698 extent_map_end(em) - 1,
8b62b72b 3699 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3700 0, NULL)) {
70dec807
CM
3701 remove_extent_mapping(map, em);
3702 /* once for the rb tree */
3703 free_extent_map(em);
3704 }
3705 start = extent_map_end(em);
890871be 3706 write_unlock(&map->lock);
70dec807
CM
3707
3708 /* once for us */
d1310b2e
CM
3709 free_extent_map(em);
3710 }
d1310b2e 3711 }
7b13b7b1 3712 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3713}
d1310b2e 3714
ec29ed5b
CM
3715/*
3716 * helper function for fiemap, which doesn't want to see any holes.
3717 * This maps until we find something past 'last'
3718 */
3719static struct extent_map *get_extent_skip_holes(struct inode *inode,
3720 u64 offset,
3721 u64 last,
3722 get_extent_t *get_extent)
3723{
3724 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3725 struct extent_map *em;
3726 u64 len;
3727
3728 if (offset >= last)
3729 return NULL;
3730
3731 while(1) {
3732 len = last - offset;
3733 if (len == 0)
3734 break;
3735 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3736 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3737 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3738 return em;
3739
3740 /* if this isn't a hole return it */
3741 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3742 em->block_start != EXTENT_MAP_HOLE) {
3743 return em;
3744 }
3745
3746 /* this is a hole, advance to the next extent */
3747 offset = extent_map_end(em);
3748 free_extent_map(em);
3749 if (offset >= last)
3750 break;
3751 }
3752 return NULL;
3753}
3754
1506fcc8
YS
3755int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3756 __u64 start, __u64 len, get_extent_t *get_extent)
3757{
975f84fe 3758 int ret = 0;
1506fcc8
YS
3759 u64 off = start;
3760 u64 max = start + len;
3761 u32 flags = 0;
975f84fe
JB
3762 u32 found_type;
3763 u64 last;
ec29ed5b 3764 u64 last_for_get_extent = 0;
1506fcc8 3765 u64 disko = 0;
ec29ed5b 3766 u64 isize = i_size_read(inode);
975f84fe 3767 struct btrfs_key found_key;
1506fcc8 3768 struct extent_map *em = NULL;
2ac55d41 3769 struct extent_state *cached_state = NULL;
975f84fe
JB
3770 struct btrfs_path *path;
3771 struct btrfs_file_extent_item *item;
1506fcc8 3772 int end = 0;
ec29ed5b
CM
3773 u64 em_start = 0;
3774 u64 em_len = 0;
3775 u64 em_end = 0;
1506fcc8 3776 unsigned long emflags;
1506fcc8
YS
3777
3778 if (len == 0)
3779 return -EINVAL;
3780
975f84fe
JB
3781 path = btrfs_alloc_path();
3782 if (!path)
3783 return -ENOMEM;
3784 path->leave_spinning = 1;
3785
4d479cf0
JB
3786 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3787 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3788
ec29ed5b
CM
3789 /*
3790 * lookup the last file extent. We're not using i_size here
3791 * because there might be preallocation past i_size
3792 */
975f84fe 3793 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3794 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3795 if (ret < 0) {
3796 btrfs_free_path(path);
3797 return ret;
3798 }
3799 WARN_ON(!ret);
3800 path->slots[0]--;
3801 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3802 struct btrfs_file_extent_item);
3803 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3804 found_type = btrfs_key_type(&found_key);
3805
ec29ed5b 3806 /* No extents, but there might be delalloc bits */
33345d01 3807 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3808 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3809 /* have to trust i_size as the end */
3810 last = (u64)-1;
3811 last_for_get_extent = isize;
3812 } else {
3813 /*
3814 * remember the start of the last extent. There are a
3815 * bunch of different factors that go into the length of the
3816 * extent, so its much less complex to remember where it started
3817 */
3818 last = found_key.offset;
3819 last_for_get_extent = last + 1;
975f84fe 3820 }
975f84fe
JB
3821 btrfs_free_path(path);
3822
ec29ed5b
CM
3823 /*
3824 * we might have some extents allocated but more delalloc past those
3825 * extents. so, we trust isize unless the start of the last extent is
3826 * beyond isize
3827 */
3828 if (last < isize) {
3829 last = (u64)-1;
3830 last_for_get_extent = isize;
3831 }
3832
2ac55d41 3833 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3834 &cached_state);
ec29ed5b 3835
4d479cf0 3836 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3837 get_extent);
1506fcc8
YS
3838 if (!em)
3839 goto out;
3840 if (IS_ERR(em)) {
3841 ret = PTR_ERR(em);
3842 goto out;
3843 }
975f84fe 3844
1506fcc8 3845 while (!end) {
ea8efc74
CM
3846 u64 offset_in_extent;
3847
3848 /* break if the extent we found is outside the range */
3849 if (em->start >= max || extent_map_end(em) < off)
3850 break;
3851
3852 /*
3853 * get_extent may return an extent that starts before our
3854 * requested range. We have to make sure the ranges
3855 * we return to fiemap always move forward and don't
3856 * overlap, so adjust the offsets here
3857 */
3858 em_start = max(em->start, off);
1506fcc8 3859
ea8efc74
CM
3860 /*
3861 * record the offset from the start of the extent
3862 * for adjusting the disk offset below
3863 */
3864 offset_in_extent = em_start - em->start;
ec29ed5b 3865 em_end = extent_map_end(em);
ea8efc74 3866 em_len = em_end - em_start;
ec29ed5b 3867 emflags = em->flags;
1506fcc8
YS
3868 disko = 0;
3869 flags = 0;
3870
ea8efc74
CM
3871 /*
3872 * bump off for our next call to get_extent
3873 */
3874 off = extent_map_end(em);
3875 if (off >= max)
3876 end = 1;
3877
93dbfad7 3878 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3879 end = 1;
3880 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3881 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3882 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3883 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3884 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3885 flags |= (FIEMAP_EXTENT_DELALLOC |
3886 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3887 } else {
ea8efc74 3888 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3889 }
3890 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3891 flags |= FIEMAP_EXTENT_ENCODED;
3892
1506fcc8
YS
3893 free_extent_map(em);
3894 em = NULL;
ec29ed5b
CM
3895 if ((em_start >= last) || em_len == (u64)-1 ||
3896 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3897 flags |= FIEMAP_EXTENT_LAST;
3898 end = 1;
3899 }
3900
ec29ed5b
CM
3901 /* now scan forward to see if this is really the last extent. */
3902 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3903 get_extent);
3904 if (IS_ERR(em)) {
3905 ret = PTR_ERR(em);
3906 goto out;
3907 }
3908 if (!em) {
975f84fe
JB
3909 flags |= FIEMAP_EXTENT_LAST;
3910 end = 1;
3911 }
ec29ed5b
CM
3912 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3913 em_len, flags);
3914 if (ret)
3915 goto out_free;
1506fcc8
YS
3916 }
3917out_free:
3918 free_extent_map(em);
3919out:
2ac55d41
JB
3920 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3921 &cached_state, GFP_NOFS);
1506fcc8
YS
3922 return ret;
3923}
3924
4a54c8c1 3925inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3926 unsigned long i)
3927{
727011e0 3928 return eb->pages[i];
d1310b2e
CM
3929}
3930
4a54c8c1 3931inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3932{
6af118ce
CM
3933 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3934 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3935}
3936
727011e0
CM
3937static void __free_extent_buffer(struct extent_buffer *eb)
3938{
3939#if LEAK_DEBUG
3940 unsigned long flags;
3941 spin_lock_irqsave(&leak_lock, flags);
3942 list_del(&eb->leak_list);
3943 spin_unlock_irqrestore(&leak_lock, flags);
3944#endif
3945 if (eb->pages && eb->pages != eb->inline_pages)
3946 kfree(eb->pages);
3947 kmem_cache_free(extent_buffer_cache, eb);
3948}
3949
d1310b2e
CM
3950static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3951 u64 start,
3952 unsigned long len,
3953 gfp_t mask)
3954{
3955 struct extent_buffer *eb = NULL;
3935127c 3956#if LEAK_DEBUG
2d2ae547 3957 unsigned long flags;
4bef0848 3958#endif
d1310b2e 3959
d1310b2e 3960 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3961 if (eb == NULL)
3962 return NULL;
d1310b2e
CM
3963 eb->start = start;
3964 eb->len = len;
4f2de97a 3965 eb->tree = tree;
815a51c7 3966 eb->bflags = 0;
bd681513
CM
3967 rwlock_init(&eb->lock);
3968 atomic_set(&eb->write_locks, 0);
3969 atomic_set(&eb->read_locks, 0);
3970 atomic_set(&eb->blocking_readers, 0);
3971 atomic_set(&eb->blocking_writers, 0);
3972 atomic_set(&eb->spinning_readers, 0);
3973 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3974 eb->lock_nested = 0;
bd681513
CM
3975 init_waitqueue_head(&eb->write_lock_wq);
3976 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3977
3935127c 3978#if LEAK_DEBUG
2d2ae547
CM
3979 spin_lock_irqsave(&leak_lock, flags);
3980 list_add(&eb->leak_list, &buffers);
3981 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3982#endif
3083ee2e 3983 spin_lock_init(&eb->refs_lock);
d1310b2e 3984 atomic_set(&eb->refs, 1);
0b32f4bb 3985 atomic_set(&eb->io_pages, 0);
727011e0
CM
3986
3987 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3988 struct page **pages;
3989 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3990 PAGE_CACHE_SHIFT;
3991 pages = kzalloc(num_pages, mask);
3992 if (!pages) {
3993 __free_extent_buffer(eb);
3994 return NULL;
3995 }
3996 eb->pages = pages;
3997 } else {
3998 eb->pages = eb->inline_pages;
3999 }
d1310b2e
CM
4000
4001 return eb;
4002}
4003
815a51c7
JS
4004struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4005{
4006 unsigned long i;
4007 struct page *p;
4008 struct extent_buffer *new;
4009 unsigned long num_pages = num_extent_pages(src->start, src->len);
4010
4011 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4012 if (new == NULL)
4013 return NULL;
4014
4015 for (i = 0; i < num_pages; i++) {
4016 p = alloc_page(GFP_ATOMIC);
4017 BUG_ON(!p);
4018 attach_extent_buffer_page(new, p);
4019 WARN_ON(PageDirty(p));
4020 SetPageUptodate(p);
4021 new->pages[i] = p;
4022 }
4023
4024 copy_extent_buffer(new, src, 0, 0, src->len);
4025 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4026 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4027
4028 return new;
4029}
4030
4031struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4032{
4033 struct extent_buffer *eb;
4034 unsigned long num_pages = num_extent_pages(0, len);
4035 unsigned long i;
4036
4037 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4038 if (!eb)
4039 return NULL;
4040
4041 for (i = 0; i < num_pages; i++) {
4042 eb->pages[i] = alloc_page(GFP_ATOMIC);
4043 if (!eb->pages[i])
4044 goto err;
4045 }
4046 set_extent_buffer_uptodate(eb);
4047 btrfs_set_header_nritems(eb, 0);
4048 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4049
4050 return eb;
4051err:
4052 for (i--; i > 0; i--)
4053 __free_page(eb->pages[i]);
4054 __free_extent_buffer(eb);
4055 return NULL;
4056}
4057
0b32f4bb 4058static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4059{
0b32f4bb
JB
4060 return (atomic_read(&eb->io_pages) ||
4061 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4062 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4063}
4064
897ca6e9
MX
4065/*
4066 * Helper for releasing extent buffer page.
4067 */
4068static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4069 unsigned long start_idx)
4070{
4071 unsigned long index;
39bab87b 4072 unsigned long num_pages;
897ca6e9 4073 struct page *page;
815a51c7 4074 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4075
0b32f4bb 4076 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4077
39bab87b
WSH
4078 num_pages = num_extent_pages(eb->start, eb->len);
4079 index = start_idx + num_pages;
897ca6e9
MX
4080 if (start_idx >= index)
4081 return;
4082
4083 do {
4084 index--;
4085 page = extent_buffer_page(eb, index);
815a51c7 4086 if (page && mapped) {
4f2de97a
JB
4087 spin_lock(&page->mapping->private_lock);
4088 /*
4089 * We do this since we'll remove the pages after we've
4090 * removed the eb from the radix tree, so we could race
4091 * and have this page now attached to the new eb. So
4092 * only clear page_private if it's still connected to
4093 * this eb.
4094 */
4095 if (PagePrivate(page) &&
4096 page->private == (unsigned long)eb) {
0b32f4bb 4097 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4098 BUG_ON(PageDirty(page));
4099 BUG_ON(PageWriteback(page));
4f2de97a
JB
4100 /*
4101 * We need to make sure we haven't be attached
4102 * to a new eb.
4103 */
4104 ClearPagePrivate(page);
4105 set_page_private(page, 0);
4106 /* One for the page private */
4107 page_cache_release(page);
4108 }
4109 spin_unlock(&page->mapping->private_lock);
4110
815a51c7
JS
4111 }
4112 if (page) {
4f2de97a 4113 /* One for when we alloced the page */
897ca6e9 4114 page_cache_release(page);
4f2de97a 4115 }
897ca6e9
MX
4116 } while (index != start_idx);
4117}
4118
4119/*
4120 * Helper for releasing the extent buffer.
4121 */
4122static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4123{
4124 btrfs_release_extent_buffer_page(eb, 0);
4125 __free_extent_buffer(eb);
4126}
4127
0b32f4bb
JB
4128static void check_buffer_tree_ref(struct extent_buffer *eb)
4129{
4130 /* the ref bit is tricky. We have to make sure it is set
4131 * if we have the buffer dirty. Otherwise the
4132 * code to free a buffer can end up dropping a dirty
4133 * page
4134 *
4135 * Once the ref bit is set, it won't go away while the
4136 * buffer is dirty or in writeback, and it also won't
4137 * go away while we have the reference count on the
4138 * eb bumped.
4139 *
4140 * We can't just set the ref bit without bumping the
4141 * ref on the eb because free_extent_buffer might
4142 * see the ref bit and try to clear it. If this happens
4143 * free_extent_buffer might end up dropping our original
4144 * ref by mistake and freeing the page before we are able
4145 * to add one more ref.
4146 *
4147 * So bump the ref count first, then set the bit. If someone
4148 * beat us to it, drop the ref we added.
4149 */
594831c4
JB
4150 spin_lock(&eb->refs_lock);
4151 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4152 atomic_inc(&eb->refs);
594831c4 4153 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4154}
4155
5df4235e
JB
4156static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4157{
4158 unsigned long num_pages, i;
4159
0b32f4bb
JB
4160 check_buffer_tree_ref(eb);
4161
5df4235e
JB
4162 num_pages = num_extent_pages(eb->start, eb->len);
4163 for (i = 0; i < num_pages; i++) {
4164 struct page *p = extent_buffer_page(eb, i);
4165 mark_page_accessed(p);
4166 }
4167}
4168
d1310b2e 4169struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4170 u64 start, unsigned long len)
d1310b2e
CM
4171{
4172 unsigned long num_pages = num_extent_pages(start, len);
4173 unsigned long i;
4174 unsigned long index = start >> PAGE_CACHE_SHIFT;
4175 struct extent_buffer *eb;
6af118ce 4176 struct extent_buffer *exists = NULL;
d1310b2e
CM
4177 struct page *p;
4178 struct address_space *mapping = tree->mapping;
4179 int uptodate = 1;
19fe0a8b 4180 int ret;
d1310b2e 4181
19fe0a8b
MX
4182 rcu_read_lock();
4183 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4184 if (eb && atomic_inc_not_zero(&eb->refs)) {
4185 rcu_read_unlock();
5df4235e 4186 mark_extent_buffer_accessed(eb);
6af118ce
CM
4187 return eb;
4188 }
19fe0a8b 4189 rcu_read_unlock();
6af118ce 4190
ba144192 4191 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4192 if (!eb)
d1310b2e
CM
4193 return NULL;
4194
727011e0 4195 for (i = 0; i < num_pages; i++, index++) {
a6591715 4196 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4197 if (!p) {
4198 WARN_ON(1);
6af118ce 4199 goto free_eb;
d1310b2e 4200 }
4f2de97a
JB
4201
4202 spin_lock(&mapping->private_lock);
4203 if (PagePrivate(p)) {
4204 /*
4205 * We could have already allocated an eb for this page
4206 * and attached one so lets see if we can get a ref on
4207 * the existing eb, and if we can we know it's good and
4208 * we can just return that one, else we know we can just
4209 * overwrite page->private.
4210 */
4211 exists = (struct extent_buffer *)p->private;
4212 if (atomic_inc_not_zero(&exists->refs)) {
4213 spin_unlock(&mapping->private_lock);
4214 unlock_page(p);
17de39ac 4215 page_cache_release(p);
5df4235e 4216 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4217 goto free_eb;
4218 }
4219
0b32f4bb 4220 /*
4f2de97a
JB
4221 * Do this so attach doesn't complain and we need to
4222 * drop the ref the old guy had.
4223 */
4224 ClearPagePrivate(p);
0b32f4bb 4225 WARN_ON(PageDirty(p));
4f2de97a 4226 page_cache_release(p);
d1310b2e 4227 }
4f2de97a
JB
4228 attach_extent_buffer_page(eb, p);
4229 spin_unlock(&mapping->private_lock);
0b32f4bb 4230 WARN_ON(PageDirty(p));
d1310b2e 4231 mark_page_accessed(p);
727011e0 4232 eb->pages[i] = p;
d1310b2e
CM
4233 if (!PageUptodate(p))
4234 uptodate = 0;
eb14ab8e
CM
4235
4236 /*
4237 * see below about how we avoid a nasty race with release page
4238 * and why we unlock later
4239 */
d1310b2e
CM
4240 }
4241 if (uptodate)
b4ce94de 4242 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4243again:
19fe0a8b
MX
4244 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4245 if (ret)
4246 goto free_eb;
4247
6af118ce 4248 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4249 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4250 if (ret == -EEXIST) {
4251 exists = radix_tree_lookup(&tree->buffer,
4252 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4253 if (!atomic_inc_not_zero(&exists->refs)) {
4254 spin_unlock(&tree->buffer_lock);
4255 radix_tree_preload_end();
115391d2
JB
4256 exists = NULL;
4257 goto again;
4258 }
6af118ce 4259 spin_unlock(&tree->buffer_lock);
19fe0a8b 4260 radix_tree_preload_end();
5df4235e 4261 mark_extent_buffer_accessed(exists);
6af118ce
CM
4262 goto free_eb;
4263 }
6af118ce 4264 /* add one reference for the tree */
0b32f4bb 4265 check_buffer_tree_ref(eb);
f044ba78 4266 spin_unlock(&tree->buffer_lock);
19fe0a8b 4267 radix_tree_preload_end();
eb14ab8e
CM
4268
4269 /*
4270 * there is a race where release page may have
4271 * tried to find this extent buffer in the radix
4272 * but failed. It will tell the VM it is safe to
4273 * reclaim the, and it will clear the page private bit.
4274 * We must make sure to set the page private bit properly
4275 * after the extent buffer is in the radix tree so
4276 * it doesn't get lost
4277 */
727011e0
CM
4278 SetPageChecked(eb->pages[0]);
4279 for (i = 1; i < num_pages; i++) {
4280 p = extent_buffer_page(eb, i);
727011e0
CM
4281 ClearPageChecked(p);
4282 unlock_page(p);
4283 }
4284 unlock_page(eb->pages[0]);
d1310b2e
CM
4285 return eb;
4286
6af118ce 4287free_eb:
727011e0
CM
4288 for (i = 0; i < num_pages; i++) {
4289 if (eb->pages[i])
4290 unlock_page(eb->pages[i]);
4291 }
eb14ab8e 4292
17de39ac 4293 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4294 btrfs_release_extent_buffer(eb);
6af118ce 4295 return exists;
d1310b2e 4296}
d1310b2e
CM
4297
4298struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4299 u64 start, unsigned long len)
d1310b2e 4300{
d1310b2e 4301 struct extent_buffer *eb;
d1310b2e 4302
19fe0a8b
MX
4303 rcu_read_lock();
4304 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4305 if (eb && atomic_inc_not_zero(&eb->refs)) {
4306 rcu_read_unlock();
5df4235e 4307 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4308 return eb;
4309 }
4310 rcu_read_unlock();
0f9dd46c 4311
19fe0a8b 4312 return NULL;
d1310b2e 4313}
d1310b2e 4314
3083ee2e
JB
4315static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4316{
4317 struct extent_buffer *eb =
4318 container_of(head, struct extent_buffer, rcu_head);
4319
4320 __free_extent_buffer(eb);
4321}
4322
3083ee2e 4323/* Expects to have eb->eb_lock already held */
e64860aa 4324static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
3083ee2e
JB
4325{
4326 WARN_ON(atomic_read(&eb->refs) == 0);
4327 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4328 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4329 spin_unlock(&eb->refs_lock);
4330 } else {
4331 struct extent_io_tree *tree = eb->tree;
3083ee2e 4332
815a51c7 4333 spin_unlock(&eb->refs_lock);
3083ee2e 4334
815a51c7
JS
4335 spin_lock(&tree->buffer_lock);
4336 radix_tree_delete(&tree->buffer,
4337 eb->start >> PAGE_CACHE_SHIFT);
4338 spin_unlock(&tree->buffer_lock);
4339 }
3083ee2e
JB
4340
4341 /* Should be safe to release our pages at this point */
4342 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4343 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4344 return 1;
3083ee2e
JB
4345 }
4346 spin_unlock(&eb->refs_lock);
e64860aa
JB
4347
4348 return 0;
3083ee2e
JB
4349}
4350
d1310b2e
CM
4351void free_extent_buffer(struct extent_buffer *eb)
4352{
d1310b2e
CM
4353 if (!eb)
4354 return;
4355
3083ee2e 4356 spin_lock(&eb->refs_lock);
815a51c7
JS
4357 if (atomic_read(&eb->refs) == 2 &&
4358 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4359 atomic_dec(&eb->refs);
4360
3083ee2e
JB
4361 if (atomic_read(&eb->refs) == 2 &&
4362 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4363 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4364 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4365 atomic_dec(&eb->refs);
4366
4367 /*
4368 * I know this is terrible, but it's temporary until we stop tracking
4369 * the uptodate bits and such for the extent buffers.
4370 */
4371 release_extent_buffer(eb, GFP_ATOMIC);
4372}
4373
4374void free_extent_buffer_stale(struct extent_buffer *eb)
4375{
4376 if (!eb)
d1310b2e
CM
4377 return;
4378
3083ee2e
JB
4379 spin_lock(&eb->refs_lock);
4380 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4381
0b32f4bb 4382 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4383 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4384 atomic_dec(&eb->refs);
4385 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4386}
d1310b2e 4387
1d4284bd 4388void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4389{
d1310b2e
CM
4390 unsigned long i;
4391 unsigned long num_pages;
4392 struct page *page;
4393
d1310b2e
CM
4394 num_pages = num_extent_pages(eb->start, eb->len);
4395
4396 for (i = 0; i < num_pages; i++) {
4397 page = extent_buffer_page(eb, i);
b9473439 4398 if (!PageDirty(page))
d2c3f4f6
CM
4399 continue;
4400
a61e6f29 4401 lock_page(page);
eb14ab8e
CM
4402 WARN_ON(!PagePrivate(page));
4403
d1310b2e 4404 clear_page_dirty_for_io(page);
0ee0fda0 4405 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4406 if (!PageDirty(page)) {
4407 radix_tree_tag_clear(&page->mapping->page_tree,
4408 page_index(page),
4409 PAGECACHE_TAG_DIRTY);
4410 }
0ee0fda0 4411 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4412 ClearPageError(page);
a61e6f29 4413 unlock_page(page);
d1310b2e 4414 }
0b32f4bb 4415 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4416}
d1310b2e 4417
0b32f4bb 4418int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4419{
4420 unsigned long i;
4421 unsigned long num_pages;
b9473439 4422 int was_dirty = 0;
d1310b2e 4423
0b32f4bb
JB
4424 check_buffer_tree_ref(eb);
4425
b9473439 4426 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4427
d1310b2e 4428 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4429 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4430 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4431
b9473439 4432 for (i = 0; i < num_pages; i++)
0b32f4bb 4433 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4434 return was_dirty;
d1310b2e 4435}
d1310b2e 4436
0b32f4bb 4437static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4438{
4439 if (len < PAGE_CACHE_SIZE)
4440 return 1;
4441 if (start & (PAGE_CACHE_SIZE - 1))
4442 return 1;
4443 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4444 return 1;
4445 return 0;
4446}
4447
0b32f4bb 4448int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4449{
4450 unsigned long i;
4451 struct page *page;
4452 unsigned long num_pages;
4453
b4ce94de 4454 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4455 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4456 for (i = 0; i < num_pages; i++) {
4457 page = extent_buffer_page(eb, i);
33958dc6
CM
4458 if (page)
4459 ClearPageUptodate(page);
1259ab75
CM
4460 }
4461 return 0;
4462}
4463
0b32f4bb 4464int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4465{
4466 unsigned long i;
4467 struct page *page;
4468 unsigned long num_pages;
4469
0b32f4bb 4470 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4471 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4472 for (i = 0; i < num_pages; i++) {
4473 page = extent_buffer_page(eb, i);
d1310b2e
CM
4474 SetPageUptodate(page);
4475 }
4476 return 0;
4477}
d1310b2e 4478
ce9adaa5
CM
4479int extent_range_uptodate(struct extent_io_tree *tree,
4480 u64 start, u64 end)
4481{
4482 struct page *page;
4483 int ret;
4484 int pg_uptodate = 1;
4485 int uptodate;
4486 unsigned long index;
4487
0b32f4bb 4488 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4489 ret = test_range_bit(tree, start, end,
4490 EXTENT_UPTODATE, 1, NULL);
4491 if (ret)
4492 return 1;
4493 }
d397712b 4494 while (start <= end) {
ce9adaa5
CM
4495 index = start >> PAGE_CACHE_SHIFT;
4496 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4497 if (!page)
4498 return 1;
ce9adaa5
CM
4499 uptodate = PageUptodate(page);
4500 page_cache_release(page);
4501 if (!uptodate) {
4502 pg_uptodate = 0;
4503 break;
4504 }
4505 start += PAGE_CACHE_SIZE;
4506 }
4507 return pg_uptodate;
4508}
4509
0b32f4bb 4510int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4511{
0b32f4bb 4512 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4513}
d1310b2e
CM
4514
4515int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4516 struct extent_buffer *eb, u64 start, int wait,
f188591e 4517 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4518{
4519 unsigned long i;
4520 unsigned long start_i;
4521 struct page *page;
4522 int err;
4523 int ret = 0;
ce9adaa5
CM
4524 int locked_pages = 0;
4525 int all_uptodate = 1;
d1310b2e 4526 unsigned long num_pages;
727011e0 4527 unsigned long num_reads = 0;
a86c12c7 4528 struct bio *bio = NULL;
c8b97818 4529 unsigned long bio_flags = 0;
a86c12c7 4530
b4ce94de 4531 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4532 return 0;
4533
d1310b2e
CM
4534 if (start) {
4535 WARN_ON(start < eb->start);
4536 start_i = (start >> PAGE_CACHE_SHIFT) -
4537 (eb->start >> PAGE_CACHE_SHIFT);
4538 } else {
4539 start_i = 0;
4540 }
4541
4542 num_pages = num_extent_pages(eb->start, eb->len);
4543 for (i = start_i; i < num_pages; i++) {
4544 page = extent_buffer_page(eb, i);
bb82ab88 4545 if (wait == WAIT_NONE) {
2db04966 4546 if (!trylock_page(page))
ce9adaa5 4547 goto unlock_exit;
d1310b2e
CM
4548 } else {
4549 lock_page(page);
4550 }
ce9adaa5 4551 locked_pages++;
727011e0
CM
4552 if (!PageUptodate(page)) {
4553 num_reads++;
ce9adaa5 4554 all_uptodate = 0;
727011e0 4555 }
ce9adaa5
CM
4556 }
4557 if (all_uptodate) {
4558 if (start_i == 0)
b4ce94de 4559 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4560 goto unlock_exit;
4561 }
4562
ea466794 4563 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4564 eb->read_mirror = 0;
0b32f4bb 4565 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4566 for (i = start_i; i < num_pages; i++) {
4567 page = extent_buffer_page(eb, i);
ce9adaa5 4568 if (!PageUptodate(page)) {
f188591e 4569 ClearPageError(page);
a86c12c7 4570 err = __extent_read_full_page(tree, page,
f188591e 4571 get_extent, &bio,
c8b97818 4572 mirror_num, &bio_flags);
d397712b 4573 if (err)
d1310b2e 4574 ret = err;
d1310b2e
CM
4575 } else {
4576 unlock_page(page);
4577 }
4578 }
4579
355808c2
JM
4580 if (bio) {
4581 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4582 if (err)
4583 return err;
355808c2 4584 }
a86c12c7 4585
bb82ab88 4586 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4587 return ret;
d397712b 4588
d1310b2e
CM
4589 for (i = start_i; i < num_pages; i++) {
4590 page = extent_buffer_page(eb, i);
4591 wait_on_page_locked(page);
d397712b 4592 if (!PageUptodate(page))
d1310b2e 4593 ret = -EIO;
d1310b2e 4594 }
d397712b 4595
d1310b2e 4596 return ret;
ce9adaa5
CM
4597
4598unlock_exit:
4599 i = start_i;
d397712b 4600 while (locked_pages > 0) {
ce9adaa5
CM
4601 page = extent_buffer_page(eb, i);
4602 i++;
4603 unlock_page(page);
4604 locked_pages--;
4605 }
4606 return ret;
d1310b2e 4607}
d1310b2e
CM
4608
4609void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4610 unsigned long start,
4611 unsigned long len)
4612{
4613 size_t cur;
4614 size_t offset;
4615 struct page *page;
4616 char *kaddr;
4617 char *dst = (char *)dstv;
4618 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4619 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4620
4621 WARN_ON(start > eb->len);
4622 WARN_ON(start + len > eb->start + eb->len);
4623
4624 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4625
d397712b 4626 while (len > 0) {
d1310b2e 4627 page = extent_buffer_page(eb, i);
d1310b2e
CM
4628
4629 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4630 kaddr = page_address(page);
d1310b2e 4631 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4632
4633 dst += cur;
4634 len -= cur;
4635 offset = 0;
4636 i++;
4637 }
4638}
d1310b2e
CM
4639
4640int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4641 unsigned long min_len, char **map,
d1310b2e 4642 unsigned long *map_start,
a6591715 4643 unsigned long *map_len)
d1310b2e
CM
4644{
4645 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4646 char *kaddr;
4647 struct page *p;
4648 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4649 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4650 unsigned long end_i = (start_offset + start + min_len - 1) >>
4651 PAGE_CACHE_SHIFT;
4652
4653 if (i != end_i)
4654 return -EINVAL;
4655
4656 if (i == 0) {
4657 offset = start_offset;
4658 *map_start = 0;
4659 } else {
4660 offset = 0;
4661 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4662 }
d397712b 4663
d1310b2e 4664 if (start + min_len > eb->len) {
d397712b
CM
4665 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4666 "wanted %lu %lu\n", (unsigned long long)eb->start,
4667 eb->len, start, min_len);
d1310b2e 4668 WARN_ON(1);
85026533 4669 return -EINVAL;
d1310b2e
CM
4670 }
4671
4672 p = extent_buffer_page(eb, i);
a6591715 4673 kaddr = page_address(p);
d1310b2e
CM
4674 *map = kaddr + offset;
4675 *map_len = PAGE_CACHE_SIZE - offset;
4676 return 0;
4677}
d1310b2e 4678
d1310b2e
CM
4679int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4680 unsigned long start,
4681 unsigned long len)
4682{
4683 size_t cur;
4684 size_t offset;
4685 struct page *page;
4686 char *kaddr;
4687 char *ptr = (char *)ptrv;
4688 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4689 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4690 int ret = 0;
4691
4692 WARN_ON(start > eb->len);
4693 WARN_ON(start + len > eb->start + eb->len);
4694
4695 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4696
d397712b 4697 while (len > 0) {
d1310b2e 4698 page = extent_buffer_page(eb, i);
d1310b2e
CM
4699
4700 cur = min(len, (PAGE_CACHE_SIZE - offset));
4701
a6591715 4702 kaddr = page_address(page);
d1310b2e 4703 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4704 if (ret)
4705 break;
4706
4707 ptr += cur;
4708 len -= cur;
4709 offset = 0;
4710 i++;
4711 }
4712 return ret;
4713}
d1310b2e
CM
4714
4715void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4716 unsigned long start, unsigned long len)
4717{
4718 size_t cur;
4719 size_t offset;
4720 struct page *page;
4721 char *kaddr;
4722 char *src = (char *)srcv;
4723 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4724 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4725
4726 WARN_ON(start > eb->len);
4727 WARN_ON(start + len > eb->start + eb->len);
4728
4729 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4730
d397712b 4731 while (len > 0) {
d1310b2e
CM
4732 page = extent_buffer_page(eb, i);
4733 WARN_ON(!PageUptodate(page));
4734
4735 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4736 kaddr = page_address(page);
d1310b2e 4737 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4738
4739 src += cur;
4740 len -= cur;
4741 offset = 0;
4742 i++;
4743 }
4744}
d1310b2e
CM
4745
4746void memset_extent_buffer(struct extent_buffer *eb, char c,
4747 unsigned long start, unsigned long len)
4748{
4749 size_t cur;
4750 size_t offset;
4751 struct page *page;
4752 char *kaddr;
4753 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4754 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4755
4756 WARN_ON(start > eb->len);
4757 WARN_ON(start + len > eb->start + eb->len);
4758
4759 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4760
d397712b 4761 while (len > 0) {
d1310b2e
CM
4762 page = extent_buffer_page(eb, i);
4763 WARN_ON(!PageUptodate(page));
4764
4765 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4766 kaddr = page_address(page);
d1310b2e 4767 memset(kaddr + offset, c, cur);
d1310b2e
CM
4768
4769 len -= cur;
4770 offset = 0;
4771 i++;
4772 }
4773}
d1310b2e
CM
4774
4775void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4776 unsigned long dst_offset, unsigned long src_offset,
4777 unsigned long len)
4778{
4779 u64 dst_len = dst->len;
4780 size_t cur;
4781 size_t offset;
4782 struct page *page;
4783 char *kaddr;
4784 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4785 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4786
4787 WARN_ON(src->len != dst_len);
4788
4789 offset = (start_offset + dst_offset) &
4790 ((unsigned long)PAGE_CACHE_SIZE - 1);
4791
d397712b 4792 while (len > 0) {
d1310b2e
CM
4793 page = extent_buffer_page(dst, i);
4794 WARN_ON(!PageUptodate(page));
4795
4796 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4797
a6591715 4798 kaddr = page_address(page);
d1310b2e 4799 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4800
4801 src_offset += cur;
4802 len -= cur;
4803 offset = 0;
4804 i++;
4805 }
4806}
d1310b2e
CM
4807
4808static void move_pages(struct page *dst_page, struct page *src_page,
4809 unsigned long dst_off, unsigned long src_off,
4810 unsigned long len)
4811{
a6591715 4812 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4813 if (dst_page == src_page) {
4814 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4815 } else {
a6591715 4816 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4817 char *p = dst_kaddr + dst_off + len;
4818 char *s = src_kaddr + src_off + len;
4819
4820 while (len--)
4821 *--p = *--s;
d1310b2e 4822 }
d1310b2e
CM
4823}
4824
3387206f
ST
4825static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4826{
4827 unsigned long distance = (src > dst) ? src - dst : dst - src;
4828 return distance < len;
4829}
4830
d1310b2e
CM
4831static void copy_pages(struct page *dst_page, struct page *src_page,
4832 unsigned long dst_off, unsigned long src_off,
4833 unsigned long len)
4834{
a6591715 4835 char *dst_kaddr = page_address(dst_page);
d1310b2e 4836 char *src_kaddr;
727011e0 4837 int must_memmove = 0;
d1310b2e 4838
3387206f 4839 if (dst_page != src_page) {
a6591715 4840 src_kaddr = page_address(src_page);
3387206f 4841 } else {
d1310b2e 4842 src_kaddr = dst_kaddr;
727011e0
CM
4843 if (areas_overlap(src_off, dst_off, len))
4844 must_memmove = 1;
3387206f 4845 }
d1310b2e 4846
727011e0
CM
4847 if (must_memmove)
4848 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4849 else
4850 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4851}
4852
4853void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4854 unsigned long src_offset, unsigned long len)
4855{
4856 size_t cur;
4857 size_t dst_off_in_page;
4858 size_t src_off_in_page;
4859 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4860 unsigned long dst_i;
4861 unsigned long src_i;
4862
4863 if (src_offset + len > dst->len) {
d397712b
CM
4864 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4865 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4866 BUG_ON(1);
4867 }
4868 if (dst_offset + len > dst->len) {
d397712b
CM
4869 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4870 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4871 BUG_ON(1);
4872 }
4873
d397712b 4874 while (len > 0) {
d1310b2e
CM
4875 dst_off_in_page = (start_offset + dst_offset) &
4876 ((unsigned long)PAGE_CACHE_SIZE - 1);
4877 src_off_in_page = (start_offset + src_offset) &
4878 ((unsigned long)PAGE_CACHE_SIZE - 1);
4879
4880 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4881 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4882
4883 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4884 src_off_in_page));
4885 cur = min_t(unsigned long, cur,
4886 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4887
4888 copy_pages(extent_buffer_page(dst, dst_i),
4889 extent_buffer_page(dst, src_i),
4890 dst_off_in_page, src_off_in_page, cur);
4891
4892 src_offset += cur;
4893 dst_offset += cur;
4894 len -= cur;
4895 }
4896}
d1310b2e
CM
4897
4898void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4899 unsigned long src_offset, unsigned long len)
4900{
4901 size_t cur;
4902 size_t dst_off_in_page;
4903 size_t src_off_in_page;
4904 unsigned long dst_end = dst_offset + len - 1;
4905 unsigned long src_end = src_offset + len - 1;
4906 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4907 unsigned long dst_i;
4908 unsigned long src_i;
4909
4910 if (src_offset + len > dst->len) {
d397712b
CM
4911 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4912 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4913 BUG_ON(1);
4914 }
4915 if (dst_offset + len > dst->len) {
d397712b
CM
4916 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4917 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4918 BUG_ON(1);
4919 }
727011e0 4920 if (dst_offset < src_offset) {
d1310b2e
CM
4921 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4922 return;
4923 }
d397712b 4924 while (len > 0) {
d1310b2e
CM
4925 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4926 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4927
4928 dst_off_in_page = (start_offset + dst_end) &
4929 ((unsigned long)PAGE_CACHE_SIZE - 1);
4930 src_off_in_page = (start_offset + src_end) &
4931 ((unsigned long)PAGE_CACHE_SIZE - 1);
4932
4933 cur = min_t(unsigned long, len, src_off_in_page + 1);
4934 cur = min(cur, dst_off_in_page + 1);
4935 move_pages(extent_buffer_page(dst, dst_i),
4936 extent_buffer_page(dst, src_i),
4937 dst_off_in_page - cur + 1,
4938 src_off_in_page - cur + 1, cur);
4939
4940 dst_end -= cur;
4941 src_end -= cur;
4942 len -= cur;
4943 }
4944}
6af118ce 4945
3083ee2e 4946int try_release_extent_buffer(struct page *page, gfp_t mask)
19fe0a8b 4947{
6af118ce 4948 struct extent_buffer *eb;
6af118ce 4949
3083ee2e
JB
4950 /*
4951 * We need to make sure noboody is attaching this page to an eb right
4952 * now.
4953 */
4954 spin_lock(&page->mapping->private_lock);
4955 if (!PagePrivate(page)) {
4956 spin_unlock(&page->mapping->private_lock);
4f2de97a 4957 return 1;
45f49bce 4958 }
6af118ce 4959
3083ee2e
JB
4960 eb = (struct extent_buffer *)page->private;
4961 BUG_ON(!eb);
19fe0a8b
MX
4962
4963 /*
3083ee2e
JB
4964 * This is a little awful but should be ok, we need to make sure that
4965 * the eb doesn't disappear out from under us while we're looking at
4966 * this page.
19fe0a8b 4967 */
3083ee2e 4968 spin_lock(&eb->refs_lock);
0b32f4bb 4969 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4970 spin_unlock(&eb->refs_lock);
4971 spin_unlock(&page->mapping->private_lock);
4972 return 0;
b9473439 4973 }
3083ee2e 4974 spin_unlock(&page->mapping->private_lock);
897ca6e9 4975
3083ee2e
JB
4976 if ((mask & GFP_NOFS) == GFP_NOFS)
4977 mask = GFP_NOFS;
19fe0a8b 4978
19fe0a8b 4979 /*
3083ee2e
JB
4980 * If tree ref isn't set then we know the ref on this eb is a real ref,
4981 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4982 */
3083ee2e
JB
4983 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4984 spin_unlock(&eb->refs_lock);
4985 return 0;
b9473439 4986 }
19fe0a8b 4987
e64860aa 4988 return release_extent_buffer(eb, mask);
6af118ce 4989}