Btrfs: deal with io_tree->mapping being NULL
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
c1c9ff7c
GU
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
6d49ba1b
ES
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
c1c9ff7c
GU
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78}
8d599ae1 79
a5dee37d
JB
80#define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 83 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 84{
a5dee37d
JB
85 struct inode *inode;
86 u64 isize;
8d599ae1 87
a5dee37d
JB
88 if (!tree->mapping)
89 return;
90
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
8d599ae1
DS
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 96 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
97 }
98}
6d49ba1b
ES
99#else
100#define btrfs_leak_debug_add(new, head) do {} while (0)
101#define btrfs_leak_debug_del(entry) do {} while (0)
102#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 103#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 104#endif
d1310b2e 105
d1310b2e
CM
106#define BUFFER_LRU_MAX 64
107
108struct tree_entry {
109 u64 start;
110 u64 end;
d1310b2e
CM
111 struct rb_node rb_node;
112};
113
114struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
de0022b9 118 unsigned long bio_flags;
771ed689
CM
119
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
122 */
ffbd517d
CM
123 unsigned int extent_locked:1;
124
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
d1310b2e
CM
127};
128
0b32f4bb 129static noinline void flush_write_bio(void *data);
c2d904e0
JM
130static inline struct btrfs_fs_info *
131tree_fs_info(struct extent_io_tree *tree)
132{
a5dee37d
JB
133 if (!tree->mapping)
134 return NULL;
c2d904e0
JM
135 return btrfs_sb(tree->mapping->host->i_sb);
136}
0b32f4bb 137
d1310b2e
CM
138int __init extent_io_init(void)
139{
837e1972 140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
143 if (!extent_state_cache)
144 return -ENOMEM;
145
837e1972 146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
149 if (!extent_buffer_cache)
150 goto free_state_cache;
9be3395b
CM
151
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
b208c2f7
DW
156
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
159
d1310b2e
CM
160 return 0;
161
b208c2f7
DW
162free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
165
9be3395b
CM
166free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
169
d1310b2e
CM
170free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
9be3395b 172 extent_state_cache = NULL;
d1310b2e
CM
173 return -ENOMEM;
174}
175
176void extent_io_exit(void)
177{
6d49ba1b 178 btrfs_leak_debug_check();
8c0a8537
KS
179
180 /*
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
183 */
184 rcu_barrier();
d1310b2e
CM
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
d1310b2e
CM
191}
192
193void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 194 struct address_space *mapping)
d1310b2e 195{
6bef4d31 196 tree->state = RB_ROOT;
19fe0a8b 197 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
198 tree->ops = NULL;
199 tree->dirty_bytes = 0;
70dec807 200 spin_lock_init(&tree->lock);
6af118ce 201 spin_lock_init(&tree->buffer_lock);
d1310b2e 202 tree->mapping = mapping;
d1310b2e 203}
d1310b2e 204
b2950863 205static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
206{
207 struct extent_state *state;
d1310b2e
CM
208
209 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 210 if (!state)
d1310b2e
CM
211 return state;
212 state->state = 0;
d1310b2e 213 state->private = 0;
70dec807 214 state->tree = NULL;
6d49ba1b 215 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
216 atomic_set(&state->refs, 1);
217 init_waitqueue_head(&state->wq);
143bede5 218 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
219 return state;
220}
d1310b2e 221
4845e44f 222void free_extent_state(struct extent_state *state)
d1310b2e 223{
d1310b2e
CM
224 if (!state)
225 return;
226 if (atomic_dec_and_test(&state->refs)) {
70dec807 227 WARN_ON(state->tree);
6d49ba1b 228 btrfs_leak_debug_del(&state->leak_list);
143bede5 229 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
230 kmem_cache_free(extent_state_cache, state);
231 }
232}
d1310b2e
CM
233
234static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
12cfbad9
FDBM
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
d1310b2e 238{
d397712b
CM
239 struct rb_node **p = &root->rb_node;
240 struct rb_node *parent = NULL;
d1310b2e
CM
241 struct tree_entry *entry;
242
12cfbad9
FDBM
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
247 }
248
d397712b 249 while (*p) {
d1310b2e
CM
250 parent = *p;
251 entry = rb_entry(parent, struct tree_entry, rb_node);
252
253 if (offset < entry->start)
254 p = &(*p)->rb_left;
255 else if (offset > entry->end)
256 p = &(*p)->rb_right;
257 else
258 return parent;
259 }
260
12cfbad9 261do_insert:
d1310b2e
CM
262 rb_link_node(node, parent, p);
263 rb_insert_color(node, root);
264 return NULL;
265}
266
80ea96b1 267static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
268 struct rb_node **prev_ret,
269 struct rb_node **next_ret,
270 struct rb_node ***p_ret,
271 struct rb_node **parent_ret)
d1310b2e 272{
80ea96b1 273 struct rb_root *root = &tree->state;
12cfbad9 274 struct rb_node **n = &root->rb_node;
d1310b2e
CM
275 struct rb_node *prev = NULL;
276 struct rb_node *orig_prev = NULL;
277 struct tree_entry *entry;
278 struct tree_entry *prev_entry = NULL;
279
12cfbad9
FDBM
280 while (*n) {
281 prev = *n;
282 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
283 prev_entry = entry;
284
285 if (offset < entry->start)
12cfbad9 286 n = &(*n)->rb_left;
d1310b2e 287 else if (offset > entry->end)
12cfbad9 288 n = &(*n)->rb_right;
d397712b 289 else
12cfbad9 290 return *n;
d1310b2e
CM
291 }
292
12cfbad9
FDBM
293 if (p_ret)
294 *p_ret = n;
295 if (parent_ret)
296 *parent_ret = prev;
297
d1310b2e
CM
298 if (prev_ret) {
299 orig_prev = prev;
d397712b 300 while (prev && offset > prev_entry->end) {
d1310b2e
CM
301 prev = rb_next(prev);
302 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
303 }
304 *prev_ret = prev;
305 prev = orig_prev;
306 }
307
308 if (next_ret) {
309 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 310 while (prev && offset < prev_entry->start) {
d1310b2e
CM
311 prev = rb_prev(prev);
312 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
313 }
314 *next_ret = prev;
315 }
316 return NULL;
317}
318
12cfbad9
FDBM
319static inline struct rb_node *
320tree_search_for_insert(struct extent_io_tree *tree,
321 u64 offset,
322 struct rb_node ***p_ret,
323 struct rb_node **parent_ret)
d1310b2e 324{
70dec807 325 struct rb_node *prev = NULL;
d1310b2e 326 struct rb_node *ret;
70dec807 327
12cfbad9 328 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 329 if (!ret)
d1310b2e
CM
330 return prev;
331 return ret;
332}
333
12cfbad9
FDBM
334static inline struct rb_node *tree_search(struct extent_io_tree *tree,
335 u64 offset)
336{
337 return tree_search_for_insert(tree, offset, NULL, NULL);
338}
339
9ed74f2d
JB
340static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
341 struct extent_state *other)
342{
343 if (tree->ops && tree->ops->merge_extent_hook)
344 tree->ops->merge_extent_hook(tree->mapping->host, new,
345 other);
346}
347
d1310b2e
CM
348/*
349 * utility function to look for merge candidates inside a given range.
350 * Any extents with matching state are merged together into a single
351 * extent in the tree. Extents with EXTENT_IO in their state field
352 * are not merged because the end_io handlers need to be able to do
353 * operations on them without sleeping (or doing allocations/splits).
354 *
355 * This should be called with the tree lock held.
356 */
1bf85046
JM
357static void merge_state(struct extent_io_tree *tree,
358 struct extent_state *state)
d1310b2e
CM
359{
360 struct extent_state *other;
361 struct rb_node *other_node;
362
5b21f2ed 363 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 364 return;
d1310b2e
CM
365
366 other_node = rb_prev(&state->rb_node);
367 if (other_node) {
368 other = rb_entry(other_node, struct extent_state, rb_node);
369 if (other->end == state->start - 1 &&
370 other->state == state->state) {
9ed74f2d 371 merge_cb(tree, state, other);
d1310b2e 372 state->start = other->start;
70dec807 373 other->tree = NULL;
d1310b2e
CM
374 rb_erase(&other->rb_node, &tree->state);
375 free_extent_state(other);
376 }
377 }
378 other_node = rb_next(&state->rb_node);
379 if (other_node) {
380 other = rb_entry(other_node, struct extent_state, rb_node);
381 if (other->start == state->end + 1 &&
382 other->state == state->state) {
9ed74f2d 383 merge_cb(tree, state, other);
df98b6e2
JB
384 state->end = other->end;
385 other->tree = NULL;
386 rb_erase(&other->rb_node, &tree->state);
387 free_extent_state(other);
d1310b2e
CM
388 }
389 }
d1310b2e
CM
390}
391
1bf85046 392static void set_state_cb(struct extent_io_tree *tree,
41074888 393 struct extent_state *state, unsigned long *bits)
291d673e 394{
1bf85046
JM
395 if (tree->ops && tree->ops->set_bit_hook)
396 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
397}
398
399static void clear_state_cb(struct extent_io_tree *tree,
41074888 400 struct extent_state *state, unsigned long *bits)
291d673e 401{
9ed74f2d
JB
402 if (tree->ops && tree->ops->clear_bit_hook)
403 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
404}
405
3150b699 406static void set_state_bits(struct extent_io_tree *tree,
41074888 407 struct extent_state *state, unsigned long *bits);
3150b699 408
d1310b2e
CM
409/*
410 * insert an extent_state struct into the tree. 'bits' are set on the
411 * struct before it is inserted.
412 *
413 * This may return -EEXIST if the extent is already there, in which case the
414 * state struct is freed.
415 *
416 * The tree lock is not taken internally. This is a utility function and
417 * probably isn't what you want to call (see set/clear_extent_bit).
418 */
419static int insert_state(struct extent_io_tree *tree,
420 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
421 struct rb_node ***p,
422 struct rb_node **parent,
41074888 423 unsigned long *bits)
d1310b2e
CM
424{
425 struct rb_node *node;
426
31b1a2bd
JL
427 if (end < start)
428 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
c1c9ff7c 429 end, start);
d1310b2e
CM
430 state->start = start;
431 state->end = end;
9ed74f2d 432
3150b699
XG
433 set_state_bits(tree, state, bits);
434
12cfbad9 435 node = tree_insert(&tree->state, end, &state->rb_node, p, parent);
d1310b2e
CM
436 if (node) {
437 struct extent_state *found;
438 found = rb_entry(node, struct extent_state, rb_node);
d397712b 439 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
c1c9ff7c
GU
440 "%llu %llu\n",
441 found->start, found->end, start, end);
d1310b2e
CM
442 return -EEXIST;
443 }
70dec807 444 state->tree = tree;
d1310b2e
CM
445 merge_state(tree, state);
446 return 0;
447}
448
1bf85046 449static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
450 u64 split)
451{
452 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 453 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
454}
455
d1310b2e
CM
456/*
457 * split a given extent state struct in two, inserting the preallocated
458 * struct 'prealloc' as the newly created second half. 'split' indicates an
459 * offset inside 'orig' where it should be split.
460 *
461 * Before calling,
462 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
463 * are two extent state structs in the tree:
464 * prealloc: [orig->start, split - 1]
465 * orig: [ split, orig->end ]
466 *
467 * The tree locks are not taken by this function. They need to be held
468 * by the caller.
469 */
470static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
471 struct extent_state *prealloc, u64 split)
472{
473 struct rb_node *node;
9ed74f2d
JB
474
475 split_cb(tree, orig, split);
476
d1310b2e
CM
477 prealloc->start = orig->start;
478 prealloc->end = split - 1;
479 prealloc->state = orig->state;
480 orig->start = split;
481
12cfbad9
FDBM
482 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node,
483 NULL, NULL);
d1310b2e 484 if (node) {
d1310b2e
CM
485 free_extent_state(prealloc);
486 return -EEXIST;
487 }
70dec807 488 prealloc->tree = tree;
d1310b2e
CM
489 return 0;
490}
491
cdc6a395
LZ
492static struct extent_state *next_state(struct extent_state *state)
493{
494 struct rb_node *next = rb_next(&state->rb_node);
495 if (next)
496 return rb_entry(next, struct extent_state, rb_node);
497 else
498 return NULL;
499}
500
d1310b2e
CM
501/*
502 * utility function to clear some bits in an extent state struct.
1b303fc0 503 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
504 *
505 * If no bits are set on the state struct after clearing things, the
506 * struct is freed and removed from the tree
507 */
cdc6a395
LZ
508static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
509 struct extent_state *state,
41074888 510 unsigned long *bits, int wake)
d1310b2e 511{
cdc6a395 512 struct extent_state *next;
41074888 513 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 514
0ca1f7ce 515 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
516 u64 range = state->end - state->start + 1;
517 WARN_ON(range > tree->dirty_bytes);
518 tree->dirty_bytes -= range;
519 }
291d673e 520 clear_state_cb(tree, state, bits);
32c00aff 521 state->state &= ~bits_to_clear;
d1310b2e
CM
522 if (wake)
523 wake_up(&state->wq);
0ca1f7ce 524 if (state->state == 0) {
cdc6a395 525 next = next_state(state);
70dec807 526 if (state->tree) {
d1310b2e 527 rb_erase(&state->rb_node, &tree->state);
70dec807 528 state->tree = NULL;
d1310b2e
CM
529 free_extent_state(state);
530 } else {
531 WARN_ON(1);
532 }
533 } else {
534 merge_state(tree, state);
cdc6a395 535 next = next_state(state);
d1310b2e 536 }
cdc6a395 537 return next;
d1310b2e
CM
538}
539
8233767a
XG
540static struct extent_state *
541alloc_extent_state_atomic(struct extent_state *prealloc)
542{
543 if (!prealloc)
544 prealloc = alloc_extent_state(GFP_ATOMIC);
545
546 return prealloc;
547}
548
48a3b636 549static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
550{
551 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
552 "Extent tree was modified by another "
553 "thread while locked.");
554}
555
d1310b2e
CM
556/*
557 * clear some bits on a range in the tree. This may require splitting
558 * or inserting elements in the tree, so the gfp mask is used to
559 * indicate which allocations or sleeping are allowed.
560 *
561 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
562 * the given range from the tree regardless of state (ie for truncate).
563 *
564 * the range [start, end] is inclusive.
565 *
6763af84 566 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
567 */
568int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 569 unsigned long bits, int wake, int delete,
2c64c53d
CM
570 struct extent_state **cached_state,
571 gfp_t mask)
d1310b2e
CM
572{
573 struct extent_state *state;
2c64c53d 574 struct extent_state *cached;
d1310b2e
CM
575 struct extent_state *prealloc = NULL;
576 struct rb_node *node;
5c939df5 577 u64 last_end;
d1310b2e 578 int err;
2ac55d41 579 int clear = 0;
d1310b2e 580
a5dee37d 581 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 582
7ee9e440
JB
583 if (bits & EXTENT_DELALLOC)
584 bits |= EXTENT_NORESERVE;
585
0ca1f7ce
YZ
586 if (delete)
587 bits |= ~EXTENT_CTLBITS;
588 bits |= EXTENT_FIRST_DELALLOC;
589
2ac55d41
JB
590 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
591 clear = 1;
d1310b2e
CM
592again:
593 if (!prealloc && (mask & __GFP_WAIT)) {
594 prealloc = alloc_extent_state(mask);
595 if (!prealloc)
596 return -ENOMEM;
597 }
598
cad321ad 599 spin_lock(&tree->lock);
2c64c53d
CM
600 if (cached_state) {
601 cached = *cached_state;
2ac55d41
JB
602
603 if (clear) {
604 *cached_state = NULL;
605 cached_state = NULL;
606 }
607
df98b6e2
JB
608 if (cached && cached->tree && cached->start <= start &&
609 cached->end > start) {
2ac55d41
JB
610 if (clear)
611 atomic_dec(&cached->refs);
2c64c53d 612 state = cached;
42daec29 613 goto hit_next;
2c64c53d 614 }
2ac55d41
JB
615 if (clear)
616 free_extent_state(cached);
2c64c53d 617 }
d1310b2e
CM
618 /*
619 * this search will find the extents that end after
620 * our range starts
621 */
80ea96b1 622 node = tree_search(tree, start);
d1310b2e
CM
623 if (!node)
624 goto out;
625 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 626hit_next:
d1310b2e
CM
627 if (state->start > end)
628 goto out;
629 WARN_ON(state->end < start);
5c939df5 630 last_end = state->end;
d1310b2e 631
0449314a 632 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
633 if (!(state->state & bits)) {
634 state = next_state(state);
0449314a 635 goto next;
cdc6a395 636 }
0449314a 637
d1310b2e
CM
638 /*
639 * | ---- desired range ---- |
640 * | state | or
641 * | ------------- state -------------- |
642 *
643 * We need to split the extent we found, and may flip
644 * bits on second half.
645 *
646 * If the extent we found extends past our range, we
647 * just split and search again. It'll get split again
648 * the next time though.
649 *
650 * If the extent we found is inside our range, we clear
651 * the desired bit on it.
652 */
653
654 if (state->start < start) {
8233767a
XG
655 prealloc = alloc_extent_state_atomic(prealloc);
656 BUG_ON(!prealloc);
d1310b2e 657 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
658 if (err)
659 extent_io_tree_panic(tree, err);
660
d1310b2e
CM
661 prealloc = NULL;
662 if (err)
663 goto out;
664 if (state->end <= end) {
d1ac6e41
LB
665 state = clear_state_bit(tree, state, &bits, wake);
666 goto next;
d1310b2e
CM
667 }
668 goto search_again;
669 }
670 /*
671 * | ---- desired range ---- |
672 * | state |
673 * We need to split the extent, and clear the bit
674 * on the first half
675 */
676 if (state->start <= end && state->end > end) {
8233767a
XG
677 prealloc = alloc_extent_state_atomic(prealloc);
678 BUG_ON(!prealloc);
d1310b2e 679 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
680 if (err)
681 extent_io_tree_panic(tree, err);
682
d1310b2e
CM
683 if (wake)
684 wake_up(&state->wq);
42daec29 685
6763af84 686 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 687
d1310b2e
CM
688 prealloc = NULL;
689 goto out;
690 }
42daec29 691
cdc6a395 692 state = clear_state_bit(tree, state, &bits, wake);
0449314a 693next:
5c939df5
YZ
694 if (last_end == (u64)-1)
695 goto out;
696 start = last_end + 1;
cdc6a395 697 if (start <= end && state && !need_resched())
692e5759 698 goto hit_next;
d1310b2e
CM
699 goto search_again;
700
701out:
cad321ad 702 spin_unlock(&tree->lock);
d1310b2e
CM
703 if (prealloc)
704 free_extent_state(prealloc);
705
6763af84 706 return 0;
d1310b2e
CM
707
708search_again:
709 if (start > end)
710 goto out;
cad321ad 711 spin_unlock(&tree->lock);
d1310b2e
CM
712 if (mask & __GFP_WAIT)
713 cond_resched();
714 goto again;
715}
d1310b2e 716
143bede5
JM
717static void wait_on_state(struct extent_io_tree *tree,
718 struct extent_state *state)
641f5219
CH
719 __releases(tree->lock)
720 __acquires(tree->lock)
d1310b2e
CM
721{
722 DEFINE_WAIT(wait);
723 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 724 spin_unlock(&tree->lock);
d1310b2e 725 schedule();
cad321ad 726 spin_lock(&tree->lock);
d1310b2e 727 finish_wait(&state->wq, &wait);
d1310b2e
CM
728}
729
730/*
731 * waits for one or more bits to clear on a range in the state tree.
732 * The range [start, end] is inclusive.
733 * The tree lock is taken by this function
734 */
41074888
DS
735static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
736 unsigned long bits)
d1310b2e
CM
737{
738 struct extent_state *state;
739 struct rb_node *node;
740
a5dee37d 741 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 742
cad321ad 743 spin_lock(&tree->lock);
d1310b2e
CM
744again:
745 while (1) {
746 /*
747 * this search will find all the extents that end after
748 * our range starts
749 */
80ea96b1 750 node = tree_search(tree, start);
d1310b2e
CM
751 if (!node)
752 break;
753
754 state = rb_entry(node, struct extent_state, rb_node);
755
756 if (state->start > end)
757 goto out;
758
759 if (state->state & bits) {
760 start = state->start;
761 atomic_inc(&state->refs);
762 wait_on_state(tree, state);
763 free_extent_state(state);
764 goto again;
765 }
766 start = state->end + 1;
767
768 if (start > end)
769 break;
770
ded91f08 771 cond_resched_lock(&tree->lock);
d1310b2e
CM
772 }
773out:
cad321ad 774 spin_unlock(&tree->lock);
d1310b2e 775}
d1310b2e 776
1bf85046 777static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 778 struct extent_state *state,
41074888 779 unsigned long *bits)
d1310b2e 780{
41074888 781 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 782
1bf85046 783 set_state_cb(tree, state, bits);
0ca1f7ce 784 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
785 u64 range = state->end - state->start + 1;
786 tree->dirty_bytes += range;
787 }
0ca1f7ce 788 state->state |= bits_to_set;
d1310b2e
CM
789}
790
2c64c53d
CM
791static void cache_state(struct extent_state *state,
792 struct extent_state **cached_ptr)
793{
794 if (cached_ptr && !(*cached_ptr)) {
795 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
796 *cached_ptr = state;
797 atomic_inc(&state->refs);
798 }
799 }
800}
801
d1310b2e 802/*
1edbb734
CM
803 * set some bits on a range in the tree. This may require allocations or
804 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 805 *
1edbb734
CM
806 * If any of the exclusive bits are set, this will fail with -EEXIST if some
807 * part of the range already has the desired bits set. The start of the
808 * existing range is returned in failed_start in this case.
d1310b2e 809 *
1edbb734 810 * [start, end] is inclusive This takes the tree lock.
d1310b2e 811 */
1edbb734 812
3fbe5c02
JM
813static int __must_check
814__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
815 unsigned long bits, unsigned long exclusive_bits,
816 u64 *failed_start, struct extent_state **cached_state,
817 gfp_t mask)
d1310b2e
CM
818{
819 struct extent_state *state;
820 struct extent_state *prealloc = NULL;
821 struct rb_node *node;
12cfbad9
FDBM
822 struct rb_node **p;
823 struct rb_node *parent;
d1310b2e 824 int err = 0;
d1310b2e
CM
825 u64 last_start;
826 u64 last_end;
42daec29 827
a5dee37d 828 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 829
0ca1f7ce 830 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
831again:
832 if (!prealloc && (mask & __GFP_WAIT)) {
833 prealloc = alloc_extent_state(mask);
8233767a 834 BUG_ON(!prealloc);
d1310b2e
CM
835 }
836
cad321ad 837 spin_lock(&tree->lock);
9655d298
CM
838 if (cached_state && *cached_state) {
839 state = *cached_state;
df98b6e2
JB
840 if (state->start <= start && state->end > start &&
841 state->tree) {
9655d298
CM
842 node = &state->rb_node;
843 goto hit_next;
844 }
845 }
d1310b2e
CM
846 /*
847 * this search will find all the extents that end after
848 * our range starts.
849 */
12cfbad9 850 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 851 if (!node) {
8233767a
XG
852 prealloc = alloc_extent_state_atomic(prealloc);
853 BUG_ON(!prealloc);
12cfbad9
FDBM
854 err = insert_state(tree, prealloc, start, end,
855 &p, &parent, &bits);
c2d904e0
JM
856 if (err)
857 extent_io_tree_panic(tree, err);
858
c42ac0bc 859 cache_state(prealloc, cached_state);
d1310b2e 860 prealloc = NULL;
d1310b2e
CM
861 goto out;
862 }
d1310b2e 863 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 864hit_next:
d1310b2e
CM
865 last_start = state->start;
866 last_end = state->end;
867
868 /*
869 * | ---- desired range ---- |
870 * | state |
871 *
872 * Just lock what we found and keep going
873 */
874 if (state->start == start && state->end <= end) {
1edbb734 875 if (state->state & exclusive_bits) {
d1310b2e
CM
876 *failed_start = state->start;
877 err = -EEXIST;
878 goto out;
879 }
42daec29 880
1bf85046 881 set_state_bits(tree, state, &bits);
2c64c53d 882 cache_state(state, cached_state);
d1310b2e 883 merge_state(tree, state);
5c939df5
YZ
884 if (last_end == (u64)-1)
885 goto out;
886 start = last_end + 1;
d1ac6e41
LB
887 state = next_state(state);
888 if (start < end && state && state->start == start &&
889 !need_resched())
890 goto hit_next;
d1310b2e
CM
891 goto search_again;
892 }
893
894 /*
895 * | ---- desired range ---- |
896 * | state |
897 * or
898 * | ------------- state -------------- |
899 *
900 * We need to split the extent we found, and may flip bits on
901 * second half.
902 *
903 * If the extent we found extends past our
904 * range, we just split and search again. It'll get split
905 * again the next time though.
906 *
907 * If the extent we found is inside our range, we set the
908 * desired bit on it.
909 */
910 if (state->start < start) {
1edbb734 911 if (state->state & exclusive_bits) {
d1310b2e
CM
912 *failed_start = start;
913 err = -EEXIST;
914 goto out;
915 }
8233767a
XG
916
917 prealloc = alloc_extent_state_atomic(prealloc);
918 BUG_ON(!prealloc);
d1310b2e 919 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
920 if (err)
921 extent_io_tree_panic(tree, err);
922
d1310b2e
CM
923 prealloc = NULL;
924 if (err)
925 goto out;
926 if (state->end <= end) {
1bf85046 927 set_state_bits(tree, state, &bits);
2c64c53d 928 cache_state(state, cached_state);
d1310b2e 929 merge_state(tree, state);
5c939df5
YZ
930 if (last_end == (u64)-1)
931 goto out;
932 start = last_end + 1;
d1ac6e41
LB
933 state = next_state(state);
934 if (start < end && state && state->start == start &&
935 !need_resched())
936 goto hit_next;
d1310b2e
CM
937 }
938 goto search_again;
939 }
940 /*
941 * | ---- desired range ---- |
942 * | state | or | state |
943 *
944 * There's a hole, we need to insert something in it and
945 * ignore the extent we found.
946 */
947 if (state->start > start) {
948 u64 this_end;
949 if (end < last_start)
950 this_end = end;
951 else
d397712b 952 this_end = last_start - 1;
8233767a
XG
953
954 prealloc = alloc_extent_state_atomic(prealloc);
955 BUG_ON(!prealloc);
c7f895a2
XG
956
957 /*
958 * Avoid to free 'prealloc' if it can be merged with
959 * the later extent.
960 */
d1310b2e 961 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 962 NULL, NULL, &bits);
c2d904e0
JM
963 if (err)
964 extent_io_tree_panic(tree, err);
965
9ed74f2d
JB
966 cache_state(prealloc, cached_state);
967 prealloc = NULL;
d1310b2e
CM
968 start = this_end + 1;
969 goto search_again;
970 }
971 /*
972 * | ---- desired range ---- |
973 * | state |
974 * We need to split the extent, and set the bit
975 * on the first half
976 */
977 if (state->start <= end && state->end > end) {
1edbb734 978 if (state->state & exclusive_bits) {
d1310b2e
CM
979 *failed_start = start;
980 err = -EEXIST;
981 goto out;
982 }
8233767a
XG
983
984 prealloc = alloc_extent_state_atomic(prealloc);
985 BUG_ON(!prealloc);
d1310b2e 986 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
987 if (err)
988 extent_io_tree_panic(tree, err);
d1310b2e 989
1bf85046 990 set_state_bits(tree, prealloc, &bits);
2c64c53d 991 cache_state(prealloc, cached_state);
d1310b2e
CM
992 merge_state(tree, prealloc);
993 prealloc = NULL;
994 goto out;
995 }
996
997 goto search_again;
998
999out:
cad321ad 1000 spin_unlock(&tree->lock);
d1310b2e
CM
1001 if (prealloc)
1002 free_extent_state(prealloc);
1003
1004 return err;
1005
1006search_again:
1007 if (start > end)
1008 goto out;
cad321ad 1009 spin_unlock(&tree->lock);
d1310b2e
CM
1010 if (mask & __GFP_WAIT)
1011 cond_resched();
1012 goto again;
1013}
d1310b2e 1014
41074888
DS
1015int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1016 unsigned long bits, u64 * failed_start,
1017 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1018{
1019 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1020 cached_state, mask);
1021}
1022
1023
462d6fac 1024/**
10983f2e
LB
1025 * convert_extent_bit - convert all bits in a given range from one bit to
1026 * another
462d6fac
JB
1027 * @tree: the io tree to search
1028 * @start: the start offset in bytes
1029 * @end: the end offset in bytes (inclusive)
1030 * @bits: the bits to set in this range
1031 * @clear_bits: the bits to clear in this range
e6138876 1032 * @cached_state: state that we're going to cache
462d6fac
JB
1033 * @mask: the allocation mask
1034 *
1035 * This will go through and set bits for the given range. If any states exist
1036 * already in this range they are set with the given bit and cleared of the
1037 * clear_bits. This is only meant to be used by things that are mergeable, ie
1038 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1039 * boundary bits like LOCK.
1040 */
1041int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1042 unsigned long bits, unsigned long clear_bits,
e6138876 1043 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1044{
1045 struct extent_state *state;
1046 struct extent_state *prealloc = NULL;
1047 struct rb_node *node;
12cfbad9
FDBM
1048 struct rb_node **p;
1049 struct rb_node *parent;
462d6fac
JB
1050 int err = 0;
1051 u64 last_start;
1052 u64 last_end;
1053
a5dee37d 1054 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1055
462d6fac
JB
1056again:
1057 if (!prealloc && (mask & __GFP_WAIT)) {
1058 prealloc = alloc_extent_state(mask);
1059 if (!prealloc)
1060 return -ENOMEM;
1061 }
1062
1063 spin_lock(&tree->lock);
e6138876
JB
1064 if (cached_state && *cached_state) {
1065 state = *cached_state;
1066 if (state->start <= start && state->end > start &&
1067 state->tree) {
1068 node = &state->rb_node;
1069 goto hit_next;
1070 }
1071 }
1072
462d6fac
JB
1073 /*
1074 * this search will find all the extents that end after
1075 * our range starts.
1076 */
12cfbad9 1077 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1078 if (!node) {
1079 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1080 if (!prealloc) {
1081 err = -ENOMEM;
1082 goto out;
1083 }
12cfbad9
FDBM
1084 err = insert_state(tree, prealloc, start, end,
1085 &p, &parent, &bits);
c2d904e0
JM
1086 if (err)
1087 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1088 cache_state(prealloc, cached_state);
1089 prealloc = NULL;
462d6fac
JB
1090 goto out;
1091 }
1092 state = rb_entry(node, struct extent_state, rb_node);
1093hit_next:
1094 last_start = state->start;
1095 last_end = state->end;
1096
1097 /*
1098 * | ---- desired range ---- |
1099 * | state |
1100 *
1101 * Just lock what we found and keep going
1102 */
1103 if (state->start == start && state->end <= end) {
462d6fac 1104 set_state_bits(tree, state, &bits);
e6138876 1105 cache_state(state, cached_state);
d1ac6e41 1106 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1107 if (last_end == (u64)-1)
1108 goto out;
462d6fac 1109 start = last_end + 1;
d1ac6e41
LB
1110 if (start < end && state && state->start == start &&
1111 !need_resched())
1112 goto hit_next;
462d6fac
JB
1113 goto search_again;
1114 }
1115
1116 /*
1117 * | ---- desired range ---- |
1118 * | state |
1119 * or
1120 * | ------------- state -------------- |
1121 *
1122 * We need to split the extent we found, and may flip bits on
1123 * second half.
1124 *
1125 * If the extent we found extends past our
1126 * range, we just split and search again. It'll get split
1127 * again the next time though.
1128 *
1129 * If the extent we found is inside our range, we set the
1130 * desired bit on it.
1131 */
1132 if (state->start < start) {
1133 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1134 if (!prealloc) {
1135 err = -ENOMEM;
1136 goto out;
1137 }
462d6fac 1138 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
462d6fac
JB
1141 prealloc = NULL;
1142 if (err)
1143 goto out;
1144 if (state->end <= end) {
1145 set_state_bits(tree, state, &bits);
e6138876 1146 cache_state(state, cached_state);
d1ac6e41 1147 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1148 if (last_end == (u64)-1)
1149 goto out;
1150 start = last_end + 1;
d1ac6e41
LB
1151 if (start < end && state && state->start == start &&
1152 !need_resched())
1153 goto hit_next;
462d6fac
JB
1154 }
1155 goto search_again;
1156 }
1157 /*
1158 * | ---- desired range ---- |
1159 * | state | or | state |
1160 *
1161 * There's a hole, we need to insert something in it and
1162 * ignore the extent we found.
1163 */
1164 if (state->start > start) {
1165 u64 this_end;
1166 if (end < last_start)
1167 this_end = end;
1168 else
1169 this_end = last_start - 1;
1170
1171 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1172 if (!prealloc) {
1173 err = -ENOMEM;
1174 goto out;
1175 }
462d6fac
JB
1176
1177 /*
1178 * Avoid to free 'prealloc' if it can be merged with
1179 * the later extent.
1180 */
1181 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1182 NULL, NULL, &bits);
c2d904e0
JM
1183 if (err)
1184 extent_io_tree_panic(tree, err);
e6138876 1185 cache_state(prealloc, cached_state);
462d6fac
JB
1186 prealloc = NULL;
1187 start = this_end + 1;
1188 goto search_again;
1189 }
1190 /*
1191 * | ---- desired range ---- |
1192 * | state |
1193 * We need to split the extent, and set the bit
1194 * on the first half
1195 */
1196 if (state->start <= end && state->end > end) {
1197 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1198 if (!prealloc) {
1199 err = -ENOMEM;
1200 goto out;
1201 }
462d6fac
JB
1202
1203 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1204 if (err)
1205 extent_io_tree_panic(tree, err);
462d6fac
JB
1206
1207 set_state_bits(tree, prealloc, &bits);
e6138876 1208 cache_state(prealloc, cached_state);
462d6fac 1209 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1210 prealloc = NULL;
1211 goto out;
1212 }
1213
1214 goto search_again;
1215
1216out:
1217 spin_unlock(&tree->lock);
1218 if (prealloc)
1219 free_extent_state(prealloc);
1220
1221 return err;
1222
1223search_again:
1224 if (start > end)
1225 goto out;
1226 spin_unlock(&tree->lock);
1227 if (mask & __GFP_WAIT)
1228 cond_resched();
1229 goto again;
1230}
1231
d1310b2e
CM
1232/* wrappers around set/clear extent bit */
1233int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1235{
3fbe5c02 1236 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1237 NULL, mask);
d1310b2e 1238}
d1310b2e
CM
1239
1240int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1241 unsigned long bits, gfp_t mask)
d1310b2e 1242{
3fbe5c02 1243 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1244 NULL, mask);
d1310b2e 1245}
d1310b2e
CM
1246
1247int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1248 unsigned long bits, gfp_t mask)
d1310b2e 1249{
2c64c53d 1250 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1251}
d1310b2e
CM
1252
1253int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1254 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1255{
1256 return set_extent_bit(tree, start, end,
fee187d9 1257 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1258 NULL, cached_state, mask);
d1310b2e 1259}
d1310b2e 1260
9e8a4a8b
LB
1261int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1262 struct extent_state **cached_state, gfp_t mask)
1263{
1264 return set_extent_bit(tree, start, end,
1265 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1266 NULL, cached_state, mask);
1267}
1268
d1310b2e
CM
1269int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1270 gfp_t mask)
1271{
1272 return clear_extent_bit(tree, start, end,
32c00aff 1273 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1274 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1275}
d1310b2e
CM
1276
1277int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1278 gfp_t mask)
1279{
3fbe5c02 1280 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1281 NULL, mask);
d1310b2e 1282}
d1310b2e 1283
d1310b2e 1284int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1285 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1286{
6b67a320 1287 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1288 cached_state, mask);
d1310b2e 1289}
d1310b2e 1290
5fd02043
JB
1291int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1292 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1293{
2c64c53d 1294 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1295 cached_state, mask);
d1310b2e 1296}
d1310b2e 1297
d352ac68
CM
1298/*
1299 * either insert or lock state struct between start and end use mask to tell
1300 * us if waiting is desired.
1301 */
1edbb734 1302int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1303 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1304{
1305 int err;
1306 u64 failed_start;
1307 while (1) {
3fbe5c02
JM
1308 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1309 EXTENT_LOCKED, &failed_start,
1310 cached_state, GFP_NOFS);
d0082371 1311 if (err == -EEXIST) {
d1310b2e
CM
1312 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1313 start = failed_start;
d0082371 1314 } else
d1310b2e 1315 break;
d1310b2e
CM
1316 WARN_ON(start > end);
1317 }
1318 return err;
1319}
d1310b2e 1320
d0082371 1321int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1322{
d0082371 1323 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1324}
1325
d0082371 1326int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1327{
1328 int err;
1329 u64 failed_start;
1330
3fbe5c02
JM
1331 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1332 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1333 if (err == -EEXIST) {
1334 if (failed_start > start)
1335 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1336 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1337 return 0;
6643558d 1338 }
25179201
JB
1339 return 1;
1340}
25179201 1341
2c64c53d
CM
1342int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1343 struct extent_state **cached, gfp_t mask)
1344{
1345 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1346 mask);
1347}
1348
d0082371 1349int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1350{
2c64c53d 1351 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1352 GFP_NOFS);
d1310b2e 1353}
d1310b2e 1354
4adaa611
CM
1355int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1356{
1357 unsigned long index = start >> PAGE_CACHE_SHIFT;
1358 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359 struct page *page;
1360
1361 while (index <= end_index) {
1362 page = find_get_page(inode->i_mapping, index);
1363 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1364 clear_page_dirty_for_io(page);
1365 page_cache_release(page);
1366 index++;
1367 }
1368 return 0;
1369}
1370
1371int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1372{
1373 unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 struct page *page;
1376
1377 while (index <= end_index) {
1378 page = find_get_page(inode->i_mapping, index);
1379 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1380 account_page_redirty(page);
1381 __set_page_dirty_nobuffers(page);
1382 page_cache_release(page);
1383 index++;
1384 }
1385 return 0;
1386}
1387
d1310b2e
CM
1388/*
1389 * helper function to set both pages and extents in the tree writeback
1390 */
b2950863 1391static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1392{
1393 unsigned long index = start >> PAGE_CACHE_SHIFT;
1394 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1395 struct page *page;
1396
1397 while (index <= end_index) {
1398 page = find_get_page(tree->mapping, index);
79787eaa 1399 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1400 set_page_writeback(page);
1401 page_cache_release(page);
1402 index++;
1403 }
d1310b2e
CM
1404 return 0;
1405}
d1310b2e 1406
d352ac68
CM
1407/* find the first state struct with 'bits' set after 'start', and
1408 * return it. tree->lock must be held. NULL will returned if
1409 * nothing was found after 'start'
1410 */
48a3b636
ES
1411static struct extent_state *
1412find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1413 u64 start, unsigned long bits)
d7fc640e
CM
1414{
1415 struct rb_node *node;
1416 struct extent_state *state;
1417
1418 /*
1419 * this search will find all the extents that end after
1420 * our range starts.
1421 */
1422 node = tree_search(tree, start);
d397712b 1423 if (!node)
d7fc640e 1424 goto out;
d7fc640e 1425
d397712b 1426 while (1) {
d7fc640e 1427 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1428 if (state->end >= start && (state->state & bits))
d7fc640e 1429 return state;
d397712b 1430
d7fc640e
CM
1431 node = rb_next(node);
1432 if (!node)
1433 break;
1434 }
1435out:
1436 return NULL;
1437}
d7fc640e 1438
69261c4b
XG
1439/*
1440 * find the first offset in the io tree with 'bits' set. zero is
1441 * returned if we find something, and *start_ret and *end_ret are
1442 * set to reflect the state struct that was found.
1443 *
477d7eaf 1444 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1445 */
1446int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1447 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1448 struct extent_state **cached_state)
69261c4b
XG
1449{
1450 struct extent_state *state;
e6138876 1451 struct rb_node *n;
69261c4b
XG
1452 int ret = 1;
1453
1454 spin_lock(&tree->lock);
e6138876
JB
1455 if (cached_state && *cached_state) {
1456 state = *cached_state;
1457 if (state->end == start - 1 && state->tree) {
1458 n = rb_next(&state->rb_node);
1459 while (n) {
1460 state = rb_entry(n, struct extent_state,
1461 rb_node);
1462 if (state->state & bits)
1463 goto got_it;
1464 n = rb_next(n);
1465 }
1466 free_extent_state(*cached_state);
1467 *cached_state = NULL;
1468 goto out;
1469 }
1470 free_extent_state(*cached_state);
1471 *cached_state = NULL;
1472 }
1473
69261c4b 1474 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1475got_it:
69261c4b 1476 if (state) {
e6138876 1477 cache_state(state, cached_state);
69261c4b
XG
1478 *start_ret = state->start;
1479 *end_ret = state->end;
1480 ret = 0;
1481 }
e6138876 1482out:
69261c4b
XG
1483 spin_unlock(&tree->lock);
1484 return ret;
1485}
1486
d352ac68
CM
1487/*
1488 * find a contiguous range of bytes in the file marked as delalloc, not
1489 * more than 'max_bytes'. start and end are used to return the range,
1490 *
1491 * 1 is returned if we find something, 0 if nothing was in the tree
1492 */
c8b97818 1493static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1494 u64 *start, u64 *end, u64 max_bytes,
1495 struct extent_state **cached_state)
d1310b2e
CM
1496{
1497 struct rb_node *node;
1498 struct extent_state *state;
1499 u64 cur_start = *start;
1500 u64 found = 0;
1501 u64 total_bytes = 0;
1502
cad321ad 1503 spin_lock(&tree->lock);
c8b97818 1504
d1310b2e
CM
1505 /*
1506 * this search will find all the extents that end after
1507 * our range starts.
1508 */
80ea96b1 1509 node = tree_search(tree, cur_start);
2b114d1d 1510 if (!node) {
3b951516
CM
1511 if (!found)
1512 *end = (u64)-1;
d1310b2e
CM
1513 goto out;
1514 }
1515
d397712b 1516 while (1) {
d1310b2e 1517 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1518 if (found && (state->start != cur_start ||
1519 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1520 goto out;
1521 }
1522 if (!(state->state & EXTENT_DELALLOC)) {
1523 if (!found)
1524 *end = state->end;
1525 goto out;
1526 }
c2a128d2 1527 if (!found) {
d1310b2e 1528 *start = state->start;
c2a128d2
JB
1529 *cached_state = state;
1530 atomic_inc(&state->refs);
1531 }
d1310b2e
CM
1532 found++;
1533 *end = state->end;
1534 cur_start = state->end + 1;
1535 node = rb_next(node);
d1310b2e 1536 total_bytes += state->end - state->start + 1;
7bf811a5 1537 if (total_bytes >= max_bytes)
573aecaf 1538 break;
573aecaf 1539 if (!node)
d1310b2e
CM
1540 break;
1541 }
1542out:
cad321ad 1543 spin_unlock(&tree->lock);
d1310b2e
CM
1544 return found;
1545}
1546
143bede5
JM
1547static noinline void __unlock_for_delalloc(struct inode *inode,
1548 struct page *locked_page,
1549 u64 start, u64 end)
c8b97818
CM
1550{
1551 int ret;
1552 struct page *pages[16];
1553 unsigned long index = start >> PAGE_CACHE_SHIFT;
1554 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1555 unsigned long nr_pages = end_index - index + 1;
1556 int i;
1557
1558 if (index == locked_page->index && end_index == index)
143bede5 1559 return;
c8b97818 1560
d397712b 1561 while (nr_pages > 0) {
c8b97818 1562 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1563 min_t(unsigned long, nr_pages,
1564 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1565 for (i = 0; i < ret; i++) {
1566 if (pages[i] != locked_page)
1567 unlock_page(pages[i]);
1568 page_cache_release(pages[i]);
1569 }
1570 nr_pages -= ret;
1571 index += ret;
1572 cond_resched();
1573 }
c8b97818
CM
1574}
1575
1576static noinline int lock_delalloc_pages(struct inode *inode,
1577 struct page *locked_page,
1578 u64 delalloc_start,
1579 u64 delalloc_end)
1580{
1581 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1582 unsigned long start_index = index;
1583 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1584 unsigned long pages_locked = 0;
1585 struct page *pages[16];
1586 unsigned long nrpages;
1587 int ret;
1588 int i;
1589
1590 /* the caller is responsible for locking the start index */
1591 if (index == locked_page->index && index == end_index)
1592 return 0;
1593
1594 /* skip the page at the start index */
1595 nrpages = end_index - index + 1;
d397712b 1596 while (nrpages > 0) {
c8b97818 1597 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1598 min_t(unsigned long,
1599 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1600 if (ret == 0) {
1601 ret = -EAGAIN;
1602 goto done;
1603 }
1604 /* now we have an array of pages, lock them all */
1605 for (i = 0; i < ret; i++) {
1606 /*
1607 * the caller is taking responsibility for
1608 * locked_page
1609 */
771ed689 1610 if (pages[i] != locked_page) {
c8b97818 1611 lock_page(pages[i]);
f2b1c41c
CM
1612 if (!PageDirty(pages[i]) ||
1613 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1614 ret = -EAGAIN;
1615 unlock_page(pages[i]);
1616 page_cache_release(pages[i]);
1617 goto done;
1618 }
1619 }
c8b97818 1620 page_cache_release(pages[i]);
771ed689 1621 pages_locked++;
c8b97818 1622 }
c8b97818
CM
1623 nrpages -= ret;
1624 index += ret;
1625 cond_resched();
1626 }
1627 ret = 0;
1628done:
1629 if (ret && pages_locked) {
1630 __unlock_for_delalloc(inode, locked_page,
1631 delalloc_start,
1632 ((u64)(start_index + pages_locked - 1)) <<
1633 PAGE_CACHE_SHIFT);
1634 }
1635 return ret;
1636}
1637
1638/*
1639 * find a contiguous range of bytes in the file marked as delalloc, not
1640 * more than 'max_bytes'. start and end are used to return the range,
1641 *
1642 * 1 is returned if we find something, 0 if nothing was in the tree
1643 */
294e30fe
JB
1644STATIC u64 find_lock_delalloc_range(struct inode *inode,
1645 struct extent_io_tree *tree,
1646 struct page *locked_page, u64 *start,
1647 u64 *end, u64 max_bytes)
c8b97818
CM
1648{
1649 u64 delalloc_start;
1650 u64 delalloc_end;
1651 u64 found;
9655d298 1652 struct extent_state *cached_state = NULL;
c8b97818
CM
1653 int ret;
1654 int loops = 0;
1655
1656again:
1657 /* step one, find a bunch of delalloc bytes starting at start */
1658 delalloc_start = *start;
1659 delalloc_end = 0;
1660 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1661 max_bytes, &cached_state);
70b99e69 1662 if (!found || delalloc_end <= *start) {
c8b97818
CM
1663 *start = delalloc_start;
1664 *end = delalloc_end;
c2a128d2 1665 free_extent_state(cached_state);
385fe0be 1666 return 0;
c8b97818
CM
1667 }
1668
70b99e69
CM
1669 /*
1670 * start comes from the offset of locked_page. We have to lock
1671 * pages in order, so we can't process delalloc bytes before
1672 * locked_page
1673 */
d397712b 1674 if (delalloc_start < *start)
70b99e69 1675 delalloc_start = *start;
70b99e69 1676
c8b97818
CM
1677 /*
1678 * make sure to limit the number of pages we try to lock down
c8b97818 1679 */
7bf811a5
JB
1680 if (delalloc_end + 1 - delalloc_start > max_bytes)
1681 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1682
c8b97818
CM
1683 /* step two, lock all the pages after the page that has start */
1684 ret = lock_delalloc_pages(inode, locked_page,
1685 delalloc_start, delalloc_end);
1686 if (ret == -EAGAIN) {
1687 /* some of the pages are gone, lets avoid looping by
1688 * shortening the size of the delalloc range we're searching
1689 */
9655d298 1690 free_extent_state(cached_state);
c8b97818 1691 if (!loops) {
7bf811a5 1692 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1693 loops = 1;
1694 goto again;
1695 } else {
1696 found = 0;
1697 goto out_failed;
1698 }
1699 }
79787eaa 1700 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1701
1702 /* step three, lock the state bits for the whole range */
d0082371 1703 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1704
1705 /* then test to make sure it is all still delalloc */
1706 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1707 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1708 if (!ret) {
9655d298
CM
1709 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1710 &cached_state, GFP_NOFS);
c8b97818
CM
1711 __unlock_for_delalloc(inode, locked_page,
1712 delalloc_start, delalloc_end);
1713 cond_resched();
1714 goto again;
1715 }
9655d298 1716 free_extent_state(cached_state);
c8b97818
CM
1717 *start = delalloc_start;
1718 *end = delalloc_end;
1719out_failed:
1720 return found;
1721}
1722
c2790a2e
JB
1723int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1724 struct page *locked_page,
1725 unsigned long clear_bits,
1726 unsigned long page_ops)
c8b97818 1727{
c2790a2e 1728 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1729 int ret;
1730 struct page *pages[16];
1731 unsigned long index = start >> PAGE_CACHE_SHIFT;
1732 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1733 unsigned long nr_pages = end_index - index + 1;
1734 int i;
771ed689 1735
2c64c53d 1736 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1737 if (page_ops == 0)
771ed689 1738 return 0;
c8b97818 1739
d397712b 1740 while (nr_pages > 0) {
c8b97818 1741 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1742 min_t(unsigned long,
1743 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1744 for (i = 0; i < ret; i++) {
8b62b72b 1745
c2790a2e 1746 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1747 SetPagePrivate2(pages[i]);
1748
c8b97818
CM
1749 if (pages[i] == locked_page) {
1750 page_cache_release(pages[i]);
1751 continue;
1752 }
c2790a2e 1753 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1754 clear_page_dirty_for_io(pages[i]);
c2790a2e 1755 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1756 set_page_writeback(pages[i]);
c2790a2e 1757 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1758 end_page_writeback(pages[i]);
c2790a2e 1759 if (page_ops & PAGE_UNLOCK)
771ed689 1760 unlock_page(pages[i]);
c8b97818
CM
1761 page_cache_release(pages[i]);
1762 }
1763 nr_pages -= ret;
1764 index += ret;
1765 cond_resched();
1766 }
1767 return 0;
1768}
c8b97818 1769
d352ac68
CM
1770/*
1771 * count the number of bytes in the tree that have a given bit(s)
1772 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1773 * cached. The total number found is returned.
1774 */
d1310b2e
CM
1775u64 count_range_bits(struct extent_io_tree *tree,
1776 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1777 unsigned long bits, int contig)
d1310b2e
CM
1778{
1779 struct rb_node *node;
1780 struct extent_state *state;
1781 u64 cur_start = *start;
1782 u64 total_bytes = 0;
ec29ed5b 1783 u64 last = 0;
d1310b2e
CM
1784 int found = 0;
1785
fae7f21c 1786 if (WARN_ON(search_end <= cur_start))
d1310b2e 1787 return 0;
d1310b2e 1788
cad321ad 1789 spin_lock(&tree->lock);
d1310b2e
CM
1790 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1791 total_bytes = tree->dirty_bytes;
1792 goto out;
1793 }
1794 /*
1795 * this search will find all the extents that end after
1796 * our range starts.
1797 */
80ea96b1 1798 node = tree_search(tree, cur_start);
d397712b 1799 if (!node)
d1310b2e 1800 goto out;
d1310b2e 1801
d397712b 1802 while (1) {
d1310b2e
CM
1803 state = rb_entry(node, struct extent_state, rb_node);
1804 if (state->start > search_end)
1805 break;
ec29ed5b
CM
1806 if (contig && found && state->start > last + 1)
1807 break;
1808 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1809 total_bytes += min(search_end, state->end) + 1 -
1810 max(cur_start, state->start);
1811 if (total_bytes >= max_bytes)
1812 break;
1813 if (!found) {
af60bed2 1814 *start = max(cur_start, state->start);
d1310b2e
CM
1815 found = 1;
1816 }
ec29ed5b
CM
1817 last = state->end;
1818 } else if (contig && found) {
1819 break;
d1310b2e
CM
1820 }
1821 node = rb_next(node);
1822 if (!node)
1823 break;
1824 }
1825out:
cad321ad 1826 spin_unlock(&tree->lock);
d1310b2e
CM
1827 return total_bytes;
1828}
b2950863 1829
d352ac68
CM
1830/*
1831 * set the private field for a given byte offset in the tree. If there isn't
1832 * an extent_state there already, this does nothing.
1833 */
171170c1 1834static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1835{
1836 struct rb_node *node;
1837 struct extent_state *state;
1838 int ret = 0;
1839
cad321ad 1840 spin_lock(&tree->lock);
d1310b2e
CM
1841 /*
1842 * this search will find all the extents that end after
1843 * our range starts.
1844 */
80ea96b1 1845 node = tree_search(tree, start);
2b114d1d 1846 if (!node) {
d1310b2e
CM
1847 ret = -ENOENT;
1848 goto out;
1849 }
1850 state = rb_entry(node, struct extent_state, rb_node);
1851 if (state->start != start) {
1852 ret = -ENOENT;
1853 goto out;
1854 }
1855 state->private = private;
1856out:
cad321ad 1857 spin_unlock(&tree->lock);
d1310b2e
CM
1858 return ret;
1859}
1860
1861int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1862{
1863 struct rb_node *node;
1864 struct extent_state *state;
1865 int ret = 0;
1866
cad321ad 1867 spin_lock(&tree->lock);
d1310b2e
CM
1868 /*
1869 * this search will find all the extents that end after
1870 * our range starts.
1871 */
80ea96b1 1872 node = tree_search(tree, start);
2b114d1d 1873 if (!node) {
d1310b2e
CM
1874 ret = -ENOENT;
1875 goto out;
1876 }
1877 state = rb_entry(node, struct extent_state, rb_node);
1878 if (state->start != start) {
1879 ret = -ENOENT;
1880 goto out;
1881 }
1882 *private = state->private;
1883out:
cad321ad 1884 spin_unlock(&tree->lock);
d1310b2e
CM
1885 return ret;
1886}
1887
1888/*
1889 * searches a range in the state tree for a given mask.
70dec807 1890 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1891 * has the bits set. Otherwise, 1 is returned if any bit in the
1892 * range is found set.
1893 */
1894int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1895 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1896{
1897 struct extent_state *state = NULL;
1898 struct rb_node *node;
1899 int bitset = 0;
d1310b2e 1900
cad321ad 1901 spin_lock(&tree->lock);
df98b6e2
JB
1902 if (cached && cached->tree && cached->start <= start &&
1903 cached->end > start)
9655d298
CM
1904 node = &cached->rb_node;
1905 else
1906 node = tree_search(tree, start);
d1310b2e
CM
1907 while (node && start <= end) {
1908 state = rb_entry(node, struct extent_state, rb_node);
1909
1910 if (filled && state->start > start) {
1911 bitset = 0;
1912 break;
1913 }
1914
1915 if (state->start > end)
1916 break;
1917
1918 if (state->state & bits) {
1919 bitset = 1;
1920 if (!filled)
1921 break;
1922 } else if (filled) {
1923 bitset = 0;
1924 break;
1925 }
46562cec
CM
1926
1927 if (state->end == (u64)-1)
1928 break;
1929
d1310b2e
CM
1930 start = state->end + 1;
1931 if (start > end)
1932 break;
1933 node = rb_next(node);
1934 if (!node) {
1935 if (filled)
1936 bitset = 0;
1937 break;
1938 }
1939 }
cad321ad 1940 spin_unlock(&tree->lock);
d1310b2e
CM
1941 return bitset;
1942}
d1310b2e
CM
1943
1944/*
1945 * helper function to set a given page up to date if all the
1946 * extents in the tree for that page are up to date
1947 */
143bede5 1948static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1949{
4eee4fa4 1950 u64 start = page_offset(page);
d1310b2e 1951 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1952 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1953 SetPageUptodate(page);
d1310b2e
CM
1954}
1955
4a54c8c1
JS
1956/*
1957 * When IO fails, either with EIO or csum verification fails, we
1958 * try other mirrors that might have a good copy of the data. This
1959 * io_failure_record is used to record state as we go through all the
1960 * mirrors. If another mirror has good data, the page is set up to date
1961 * and things continue. If a good mirror can't be found, the original
1962 * bio end_io callback is called to indicate things have failed.
1963 */
1964struct io_failure_record {
1965 struct page *page;
1966 u64 start;
1967 u64 len;
1968 u64 logical;
1969 unsigned long bio_flags;
1970 int this_mirror;
1971 int failed_mirror;
1972 int in_validation;
1973};
1974
1975static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1976 int did_repair)
1977{
1978 int ret;
1979 int err = 0;
1980 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1981
1982 set_state_private(failure_tree, rec->start, 0);
1983 ret = clear_extent_bits(failure_tree, rec->start,
1984 rec->start + rec->len - 1,
1985 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1986 if (ret)
1987 err = ret;
1988
53b381b3
DW
1989 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1990 rec->start + rec->len - 1,
1991 EXTENT_DAMAGED, GFP_NOFS);
1992 if (ret && !err)
1993 err = ret;
4a54c8c1
JS
1994
1995 kfree(rec);
1996 return err;
1997}
1998
4a54c8c1
JS
1999/*
2000 * this bypasses the standard btrfs submit functions deliberately, as
2001 * the standard behavior is to write all copies in a raid setup. here we only
2002 * want to write the one bad copy. so we do the mapping for ourselves and issue
2003 * submit_bio directly.
3ec706c8 2004 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2005 * actually prevents the read that triggered the error from finishing.
2006 * currently, there can be no more than two copies of every data bit. thus,
2007 * exactly one rewrite is required.
2008 */
3ec706c8 2009int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2010 u64 length, u64 logical, struct page *page,
2011 int mirror_num)
2012{
2013 struct bio *bio;
2014 struct btrfs_device *dev;
4a54c8c1
JS
2015 u64 map_length = 0;
2016 u64 sector;
2017 struct btrfs_bio *bbio = NULL;
53b381b3 2018 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2019 int ret;
2020
908960c6 2021 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2022 BUG_ON(!mirror_num);
2023
53b381b3
DW
2024 /* we can't repair anything in raid56 yet */
2025 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2026 return 0;
2027
9be3395b 2028 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2029 if (!bio)
2030 return -EIO;
4a54c8c1
JS
2031 bio->bi_size = 0;
2032 map_length = length;
2033
3ec706c8 2034 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2035 &map_length, &bbio, mirror_num);
2036 if (ret) {
2037 bio_put(bio);
2038 return -EIO;
2039 }
2040 BUG_ON(mirror_num != bbio->mirror_num);
2041 sector = bbio->stripes[mirror_num-1].physical >> 9;
2042 bio->bi_sector = sector;
2043 dev = bbio->stripes[mirror_num-1].dev;
2044 kfree(bbio);
2045 if (!dev || !dev->bdev || !dev->writeable) {
2046 bio_put(bio);
2047 return -EIO;
2048 }
2049 bio->bi_bdev = dev->bdev;
4eee4fa4 2050 bio_add_page(bio, page, length, start - page_offset(page));
4a54c8c1 2051
c170bbb4 2052 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2053 /* try to remap that extent elsewhere? */
2054 bio_put(bio);
442a4f63 2055 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2056 return -EIO;
2057 }
2058
d5b025d5 2059 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2060 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2061 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2062
2063 bio_put(bio);
2064 return 0;
2065}
2066
ea466794
JB
2067int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2068 int mirror_num)
2069{
ea466794
JB
2070 u64 start = eb->start;
2071 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2072 int ret = 0;
ea466794 2073
908960c6
ID
2074 if (root->fs_info->sb->s_flags & MS_RDONLY)
2075 return -EROFS;
2076
ea466794
JB
2077 for (i = 0; i < num_pages; i++) {
2078 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2079 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2080 start, p, mirror_num);
2081 if (ret)
2082 break;
2083 start += PAGE_CACHE_SIZE;
2084 }
2085
2086 return ret;
2087}
2088
4a54c8c1
JS
2089/*
2090 * each time an IO finishes, we do a fast check in the IO failure tree
2091 * to see if we need to process or clean up an io_failure_record
2092 */
2093static int clean_io_failure(u64 start, struct page *page)
2094{
2095 u64 private;
2096 u64 private_failure;
2097 struct io_failure_record *failrec;
908960c6
ID
2098 struct inode *inode = page->mapping->host;
2099 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2100 struct extent_state *state;
2101 int num_copies;
2102 int did_repair = 0;
2103 int ret;
4a54c8c1
JS
2104
2105 private = 0;
2106 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2107 (u64)-1, 1, EXTENT_DIRTY, 0);
2108 if (!ret)
2109 return 0;
2110
2111 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2112 &private_failure);
2113 if (ret)
2114 return 0;
2115
2116 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2117 BUG_ON(!failrec->this_mirror);
2118
2119 if (failrec->in_validation) {
2120 /* there was no real error, just free the record */
2121 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2122 failrec->start);
2123 did_repair = 1;
2124 goto out;
2125 }
908960c6
ID
2126 if (fs_info->sb->s_flags & MS_RDONLY)
2127 goto out;
4a54c8c1
JS
2128
2129 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2130 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2131 failrec->start,
2132 EXTENT_LOCKED);
2133 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2134
883d0de4
MX
2135 if (state && state->start <= failrec->start &&
2136 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2137 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2138 failrec->len);
4a54c8c1 2139 if (num_copies > 1) {
3ec706c8 2140 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2141 failrec->logical, page,
2142 failrec->failed_mirror);
2143 did_repair = !ret;
2144 }
53b381b3 2145 ret = 0;
4a54c8c1
JS
2146 }
2147
2148out:
2149 if (!ret)
2150 ret = free_io_failure(inode, failrec, did_repair);
2151
2152 return ret;
2153}
2154
2155/*
2156 * this is a generic handler for readpage errors (default
2157 * readpage_io_failed_hook). if other copies exist, read those and write back
2158 * good data to the failed position. does not investigate in remapping the
2159 * failed extent elsewhere, hoping the device will be smart enough to do this as
2160 * needed
2161 */
2162
facc8a22
MX
2163static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2164 struct page *page, u64 start, u64 end,
2165 int failed_mirror)
4a54c8c1
JS
2166{
2167 struct io_failure_record *failrec = NULL;
2168 u64 private;
2169 struct extent_map *em;
2170 struct inode *inode = page->mapping->host;
2171 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2172 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2173 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2174 struct bio *bio;
facc8a22
MX
2175 struct btrfs_io_bio *btrfs_failed_bio;
2176 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2177 int num_copies;
2178 int ret;
2179 int read_mode;
2180 u64 logical;
2181
2182 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2183
2184 ret = get_state_private(failure_tree, start, &private);
2185 if (ret) {
2186 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2187 if (!failrec)
2188 return -ENOMEM;
2189 failrec->start = start;
2190 failrec->len = end - start + 1;
2191 failrec->this_mirror = 0;
2192 failrec->bio_flags = 0;
2193 failrec->in_validation = 0;
2194
2195 read_lock(&em_tree->lock);
2196 em = lookup_extent_mapping(em_tree, start, failrec->len);
2197 if (!em) {
2198 read_unlock(&em_tree->lock);
2199 kfree(failrec);
2200 return -EIO;
2201 }
2202
68ba990f 2203 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2204 free_extent_map(em);
2205 em = NULL;
2206 }
2207 read_unlock(&em_tree->lock);
2208
7a2d6a64 2209 if (!em) {
4a54c8c1
JS
2210 kfree(failrec);
2211 return -EIO;
2212 }
2213 logical = start - em->start;
2214 logical = em->block_start + logical;
2215 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2216 logical = em->block_start;
2217 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2218 extent_set_compress_type(&failrec->bio_flags,
2219 em->compress_type);
2220 }
2221 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2222 "len=%llu\n", logical, start, failrec->len);
2223 failrec->logical = logical;
2224 free_extent_map(em);
2225
2226 /* set the bits in the private failure tree */
2227 ret = set_extent_bits(failure_tree, start, end,
2228 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2229 if (ret >= 0)
2230 ret = set_state_private(failure_tree, start,
2231 (u64)(unsigned long)failrec);
2232 /* set the bits in the inode's tree */
2233 if (ret >= 0)
2234 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2235 GFP_NOFS);
2236 if (ret < 0) {
2237 kfree(failrec);
2238 return ret;
2239 }
2240 } else {
2241 failrec = (struct io_failure_record *)(unsigned long)private;
2242 pr_debug("bio_readpage_error: (found) logical=%llu, "
2243 "start=%llu, len=%llu, validation=%d\n",
2244 failrec->logical, failrec->start, failrec->len,
2245 failrec->in_validation);
2246 /*
2247 * when data can be on disk more than twice, add to failrec here
2248 * (e.g. with a list for failed_mirror) to make
2249 * clean_io_failure() clean all those errors at once.
2250 */
2251 }
5d964051
SB
2252 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2253 failrec->logical, failrec->len);
4a54c8c1
JS
2254 if (num_copies == 1) {
2255 /*
2256 * we only have a single copy of the data, so don't bother with
2257 * all the retry and error correction code that follows. no
2258 * matter what the error is, it is very likely to persist.
2259 */
09a7f7a2
MX
2260 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2261 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2262 free_io_failure(inode, failrec, 0);
2263 return -EIO;
2264 }
2265
4a54c8c1
JS
2266 /*
2267 * there are two premises:
2268 * a) deliver good data to the caller
2269 * b) correct the bad sectors on disk
2270 */
2271 if (failed_bio->bi_vcnt > 1) {
2272 /*
2273 * to fulfill b), we need to know the exact failing sectors, as
2274 * we don't want to rewrite any more than the failed ones. thus,
2275 * we need separate read requests for the failed bio
2276 *
2277 * if the following BUG_ON triggers, our validation request got
2278 * merged. we need separate requests for our algorithm to work.
2279 */
2280 BUG_ON(failrec->in_validation);
2281 failrec->in_validation = 1;
2282 failrec->this_mirror = failed_mirror;
2283 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2284 } else {
2285 /*
2286 * we're ready to fulfill a) and b) alongside. get a good copy
2287 * of the failed sector and if we succeed, we have setup
2288 * everything for repair_io_failure to do the rest for us.
2289 */
2290 if (failrec->in_validation) {
2291 BUG_ON(failrec->this_mirror != failed_mirror);
2292 failrec->in_validation = 0;
2293 failrec->this_mirror = 0;
2294 }
2295 failrec->failed_mirror = failed_mirror;
2296 failrec->this_mirror++;
2297 if (failrec->this_mirror == failed_mirror)
2298 failrec->this_mirror++;
2299 read_mode = READ_SYNC;
2300 }
2301
facc8a22
MX
2302 if (failrec->this_mirror > num_copies) {
2303 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2304 num_copies, failrec->this_mirror, failed_mirror);
2305 free_io_failure(inode, failrec, 0);
2306 return -EIO;
2307 }
2308
9be3395b 2309 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2310 if (!bio) {
2311 free_io_failure(inode, failrec, 0);
2312 return -EIO;
2313 }
4a54c8c1
JS
2314 bio->bi_end_io = failed_bio->bi_end_io;
2315 bio->bi_sector = failrec->logical >> 9;
2316 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2317 bio->bi_size = 0;
2318
facc8a22
MX
2319 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2320 if (btrfs_failed_bio->csum) {
2321 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2322 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2323
2324 btrfs_bio = btrfs_io_bio(bio);
2325 btrfs_bio->csum = btrfs_bio->csum_inline;
2326 phy_offset >>= inode->i_sb->s_blocksize_bits;
2327 phy_offset *= csum_size;
2328 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2329 csum_size);
2330 }
2331
4a54c8c1
JS
2332 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2333
2334 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2335 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2336 failrec->this_mirror, num_copies, failrec->in_validation);
2337
013bd4c3
TI
2338 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2339 failrec->this_mirror,
2340 failrec->bio_flags, 0);
2341 return ret;
4a54c8c1
JS
2342}
2343
d1310b2e
CM
2344/* lots and lots of room for performance fixes in the end_bio funcs */
2345
87826df0
JM
2346int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2347{
2348 int uptodate = (err == 0);
2349 struct extent_io_tree *tree;
2350 int ret;
2351
2352 tree = &BTRFS_I(page->mapping->host)->io_tree;
2353
2354 if (tree->ops && tree->ops->writepage_end_io_hook) {
2355 ret = tree->ops->writepage_end_io_hook(page, start,
2356 end, NULL, uptodate);
2357 if (ret)
2358 uptodate = 0;
2359 }
2360
87826df0 2361 if (!uptodate) {
87826df0
JM
2362 ClearPageUptodate(page);
2363 SetPageError(page);
2364 }
2365 return 0;
2366}
2367
d1310b2e
CM
2368/*
2369 * after a writepage IO is done, we need to:
2370 * clear the uptodate bits on error
2371 * clear the writeback bits in the extent tree for this IO
2372 * end_page_writeback if the page has no more pending IO
2373 *
2374 * Scheduling is not allowed, so the extent state tree is expected
2375 * to have one and only one object corresponding to this IO.
2376 */
d1310b2e 2377static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2378{
d1310b2e 2379 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
d1310b2e
CM
2380 u64 start;
2381 u64 end;
d1310b2e 2382
d1310b2e
CM
2383 do {
2384 struct page *page = bvec->bv_page;
902b22f3 2385
17a5adcc
AO
2386 /* We always issue full-page reads, but if some block
2387 * in a page fails to read, blk_update_request() will
2388 * advance bv_offset and adjust bv_len to compensate.
2389 * Print a warning for nonzero offsets, and an error
2390 * if they don't add up to a full page. */
2391 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2392 printk("%s page write in btrfs with offset %u and length %u\n",
2393 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2394 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2395 bvec->bv_offset, bvec->bv_len);
d1310b2e 2396
17a5adcc
AO
2397 start = page_offset(page);
2398 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2399
2400 if (--bvec >= bio->bi_io_vec)
2401 prefetchw(&bvec->bv_page->flags);
1259ab75 2402
87826df0
JM
2403 if (end_extent_writepage(page, err, start, end))
2404 continue;
70dec807 2405
17a5adcc 2406 end_page_writeback(page);
d1310b2e 2407 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2408
d1310b2e 2409 bio_put(bio);
d1310b2e
CM
2410}
2411
883d0de4
MX
2412static void
2413endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2414 int uptodate)
2415{
2416 struct extent_state *cached = NULL;
2417 u64 end = start + len - 1;
2418
2419 if (uptodate && tree->track_uptodate)
2420 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2421 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2422}
2423
d1310b2e
CM
2424/*
2425 * after a readpage IO is done, we need to:
2426 * clear the uptodate bits on error
2427 * set the uptodate bits if things worked
2428 * set the page up to date if all extents in the tree are uptodate
2429 * clear the lock bit in the extent tree
2430 * unlock the page if there are no other extents locked for it
2431 *
2432 * Scheduling is not allowed, so the extent state tree is expected
2433 * to have one and only one object corresponding to this IO.
2434 */
d1310b2e 2435static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2436{
2437 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2438 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2439 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2440 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2441 struct extent_io_tree *tree;
facc8a22 2442 u64 offset = 0;
d1310b2e
CM
2443 u64 start;
2444 u64 end;
facc8a22 2445 u64 len;
883d0de4
MX
2446 u64 extent_start = 0;
2447 u64 extent_len = 0;
5cf1ab56 2448 int mirror;
d1310b2e
CM
2449 int ret;
2450
d20f7043
CM
2451 if (err)
2452 uptodate = 0;
2453
d1310b2e
CM
2454 do {
2455 struct page *page = bvec->bv_page;
a71754fc 2456 struct inode *inode = page->mapping->host;
507903b8 2457
be3940c0 2458 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2459 "mirror=%lu\n", (u64)bio->bi_sector, err,
2460 io_bio->mirror_num);
a71754fc 2461 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2462
17a5adcc
AO
2463 /* We always issue full-page reads, but if some block
2464 * in a page fails to read, blk_update_request() will
2465 * advance bv_offset and adjust bv_len to compensate.
2466 * Print a warning for nonzero offsets, and an error
2467 * if they don't add up to a full page. */
2468 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2469 printk("%s page read in btrfs with offset %u and length %u\n",
2470 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2471 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2472 bvec->bv_offset, bvec->bv_len);
d1310b2e 2473
17a5adcc
AO
2474 start = page_offset(page);
2475 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2476 len = bvec->bv_len;
d1310b2e 2477
4125bf76 2478 if (++bvec <= bvec_end)
d1310b2e
CM
2479 prefetchw(&bvec->bv_page->flags);
2480
9be3395b 2481 mirror = io_bio->mirror_num;
f2a09da9
MX
2482 if (likely(uptodate && tree->ops &&
2483 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2484 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2485 page, start, end,
2486 mirror);
5ee0844d 2487 if (ret)
d1310b2e 2488 uptodate = 0;
5ee0844d 2489 else
4a54c8c1 2490 clean_io_failure(start, page);
d1310b2e 2491 }
ea466794 2492
f2a09da9
MX
2493 if (likely(uptodate))
2494 goto readpage_ok;
2495
2496 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2497 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2498 if (!ret && !err &&
2499 test_bit(BIO_UPTODATE, &bio->bi_flags))
2500 uptodate = 1;
f2a09da9 2501 } else {
f4a8e656
JS
2502 /*
2503 * The generic bio_readpage_error handles errors the
2504 * following way: If possible, new read requests are
2505 * created and submitted and will end up in
2506 * end_bio_extent_readpage as well (if we're lucky, not
2507 * in the !uptodate case). In that case it returns 0 and
2508 * we just go on with the next page in our bio. If it
2509 * can't handle the error it will return -EIO and we
2510 * remain responsible for that page.
2511 */
facc8a22
MX
2512 ret = bio_readpage_error(bio, offset, page, start, end,
2513 mirror);
7e38326f 2514 if (ret == 0) {
3b951516
CM
2515 uptodate =
2516 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2517 if (err)
2518 uptodate = 0;
7e38326f
CM
2519 continue;
2520 }
2521 }
f2a09da9 2522readpage_ok:
883d0de4 2523 if (likely(uptodate)) {
a71754fc
JB
2524 loff_t i_size = i_size_read(inode);
2525 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2526 unsigned offset;
2527
2528 /* Zero out the end if this page straddles i_size */
2529 offset = i_size & (PAGE_CACHE_SIZE-1);
2530 if (page->index == end_index && offset)
2531 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2532 SetPageUptodate(page);
70dec807 2533 } else {
17a5adcc
AO
2534 ClearPageUptodate(page);
2535 SetPageError(page);
70dec807 2536 }
17a5adcc 2537 unlock_page(page);
facc8a22 2538 offset += len;
883d0de4
MX
2539
2540 if (unlikely(!uptodate)) {
2541 if (extent_len) {
2542 endio_readpage_release_extent(tree,
2543 extent_start,
2544 extent_len, 1);
2545 extent_start = 0;
2546 extent_len = 0;
2547 }
2548 endio_readpage_release_extent(tree, start,
2549 end - start + 1, 0);
2550 } else if (!extent_len) {
2551 extent_start = start;
2552 extent_len = end + 1 - start;
2553 } else if (extent_start + extent_len == start) {
2554 extent_len += end + 1 - start;
2555 } else {
2556 endio_readpage_release_extent(tree, extent_start,
2557 extent_len, uptodate);
2558 extent_start = start;
2559 extent_len = end + 1 - start;
2560 }
4125bf76 2561 } while (bvec <= bvec_end);
d1310b2e 2562
883d0de4
MX
2563 if (extent_len)
2564 endio_readpage_release_extent(tree, extent_start, extent_len,
2565 uptodate);
facc8a22
MX
2566 if (io_bio->end_io)
2567 io_bio->end_io(io_bio, err);
d1310b2e 2568 bio_put(bio);
d1310b2e
CM
2569}
2570
9be3395b
CM
2571/*
2572 * this allocates from the btrfs_bioset. We're returning a bio right now
2573 * but you can call btrfs_io_bio for the appropriate container_of magic
2574 */
88f794ed
MX
2575struct bio *
2576btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2577 gfp_t gfp_flags)
d1310b2e 2578{
facc8a22 2579 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2580 struct bio *bio;
2581
9be3395b 2582 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2583
2584 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2585 while (!bio && (nr_vecs /= 2)) {
2586 bio = bio_alloc_bioset(gfp_flags,
2587 nr_vecs, btrfs_bioset);
2588 }
d1310b2e
CM
2589 }
2590
2591 if (bio) {
e1c4b745 2592 bio->bi_size = 0;
d1310b2e
CM
2593 bio->bi_bdev = bdev;
2594 bio->bi_sector = first_sector;
facc8a22
MX
2595 btrfs_bio = btrfs_io_bio(bio);
2596 btrfs_bio->csum = NULL;
2597 btrfs_bio->csum_allocated = NULL;
2598 btrfs_bio->end_io = NULL;
d1310b2e
CM
2599 }
2600 return bio;
2601}
2602
9be3395b
CM
2603struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2604{
2605 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2606}
2607
2608
2609/* this also allocates from the btrfs_bioset */
2610struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2611{
facc8a22
MX
2612 struct btrfs_io_bio *btrfs_bio;
2613 struct bio *bio;
2614
2615 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2616 if (bio) {
2617 btrfs_bio = btrfs_io_bio(bio);
2618 btrfs_bio->csum = NULL;
2619 btrfs_bio->csum_allocated = NULL;
2620 btrfs_bio->end_io = NULL;
2621 }
2622 return bio;
9be3395b
CM
2623}
2624
2625
355808c2
JM
2626static int __must_check submit_one_bio(int rw, struct bio *bio,
2627 int mirror_num, unsigned long bio_flags)
d1310b2e 2628{
d1310b2e 2629 int ret = 0;
70dec807
CM
2630 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2631 struct page *page = bvec->bv_page;
2632 struct extent_io_tree *tree = bio->bi_private;
70dec807 2633 u64 start;
70dec807 2634
4eee4fa4 2635 start = page_offset(page) + bvec->bv_offset;
70dec807 2636
902b22f3 2637 bio->bi_private = NULL;
d1310b2e
CM
2638
2639 bio_get(bio);
2640
065631f6 2641 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2642 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2643 mirror_num, bio_flags, start);
0b86a832 2644 else
21adbd5c 2645 btrfsic_submit_bio(rw, bio);
4a54c8c1 2646
d1310b2e
CM
2647 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2648 ret = -EOPNOTSUPP;
2649 bio_put(bio);
2650 return ret;
2651}
2652
64a16701 2653static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2654 unsigned long offset, size_t size, struct bio *bio,
2655 unsigned long bio_flags)
2656{
2657 int ret = 0;
2658 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2659 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2660 bio_flags);
2661 BUG_ON(ret < 0);
2662 return ret;
2663
2664}
2665
d1310b2e
CM
2666static int submit_extent_page(int rw, struct extent_io_tree *tree,
2667 struct page *page, sector_t sector,
2668 size_t size, unsigned long offset,
2669 struct block_device *bdev,
2670 struct bio **bio_ret,
2671 unsigned long max_pages,
f188591e 2672 bio_end_io_t end_io_func,
c8b97818
CM
2673 int mirror_num,
2674 unsigned long prev_bio_flags,
2675 unsigned long bio_flags)
d1310b2e
CM
2676{
2677 int ret = 0;
2678 struct bio *bio;
2679 int nr;
c8b97818
CM
2680 int contig = 0;
2681 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2682 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2683 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2684
2685 if (bio_ret && *bio_ret) {
2686 bio = *bio_ret;
c8b97818
CM
2687 if (old_compressed)
2688 contig = bio->bi_sector == sector;
2689 else
f73a1c7d 2690 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2691
2692 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2693 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2694 bio_add_page(bio, page, page_size, offset) < page_size) {
2695 ret = submit_one_bio(rw, bio, mirror_num,
2696 prev_bio_flags);
79787eaa
JM
2697 if (ret < 0)
2698 return ret;
d1310b2e
CM
2699 bio = NULL;
2700 } else {
2701 return 0;
2702 }
2703 }
c8b97818
CM
2704 if (this_compressed)
2705 nr = BIO_MAX_PAGES;
2706 else
2707 nr = bio_get_nr_vecs(bdev);
2708
88f794ed 2709 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2710 if (!bio)
2711 return -ENOMEM;
70dec807 2712
c8b97818 2713 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2714 bio->bi_end_io = end_io_func;
2715 bio->bi_private = tree;
70dec807 2716
d397712b 2717 if (bio_ret)
d1310b2e 2718 *bio_ret = bio;
d397712b 2719 else
c8b97818 2720 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2721
2722 return ret;
2723}
2724
48a3b636
ES
2725static void attach_extent_buffer_page(struct extent_buffer *eb,
2726 struct page *page)
d1310b2e
CM
2727{
2728 if (!PagePrivate(page)) {
2729 SetPagePrivate(page);
d1310b2e 2730 page_cache_get(page);
4f2de97a
JB
2731 set_page_private(page, (unsigned long)eb);
2732 } else {
2733 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2734 }
2735}
2736
4f2de97a 2737void set_page_extent_mapped(struct page *page)
d1310b2e 2738{
4f2de97a
JB
2739 if (!PagePrivate(page)) {
2740 SetPagePrivate(page);
2741 page_cache_get(page);
2742 set_page_private(page, EXTENT_PAGE_PRIVATE);
2743 }
d1310b2e
CM
2744}
2745
125bac01
MX
2746static struct extent_map *
2747__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2748 u64 start, u64 len, get_extent_t *get_extent,
2749 struct extent_map **em_cached)
2750{
2751 struct extent_map *em;
2752
2753 if (em_cached && *em_cached) {
2754 em = *em_cached;
2755 if (em->in_tree && start >= em->start &&
2756 start < extent_map_end(em)) {
2757 atomic_inc(&em->refs);
2758 return em;
2759 }
2760
2761 free_extent_map(em);
2762 *em_cached = NULL;
2763 }
2764
2765 em = get_extent(inode, page, pg_offset, start, len, 0);
2766 if (em_cached && !IS_ERR_OR_NULL(em)) {
2767 BUG_ON(*em_cached);
2768 atomic_inc(&em->refs);
2769 *em_cached = em;
2770 }
2771 return em;
2772}
d1310b2e
CM
2773/*
2774 * basic readpage implementation. Locked extent state structs are inserted
2775 * into the tree that are removed when the IO is done (by the end_io
2776 * handlers)
79787eaa 2777 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2778 */
9974090b
MX
2779static int __do_readpage(struct extent_io_tree *tree,
2780 struct page *page,
2781 get_extent_t *get_extent,
125bac01 2782 struct extent_map **em_cached,
9974090b
MX
2783 struct bio **bio, int mirror_num,
2784 unsigned long *bio_flags, int rw)
d1310b2e
CM
2785{
2786 struct inode *inode = page->mapping->host;
4eee4fa4 2787 u64 start = page_offset(page);
d1310b2e
CM
2788 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2789 u64 end;
2790 u64 cur = start;
2791 u64 extent_offset;
2792 u64 last_byte = i_size_read(inode);
2793 u64 block_start;
2794 u64 cur_end;
2795 sector_t sector;
2796 struct extent_map *em;
2797 struct block_device *bdev;
2798 int ret;
2799 int nr = 0;
4b384318 2800 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2801 size_t pg_offset = 0;
d1310b2e 2802 size_t iosize;
c8b97818 2803 size_t disk_io_size;
d1310b2e 2804 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2805 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2806
2807 set_page_extent_mapped(page);
2808
9974090b 2809 end = page_end;
90a887c9
DM
2810 if (!PageUptodate(page)) {
2811 if (cleancache_get_page(page) == 0) {
2812 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2813 unlock_extent(tree, start, end);
90a887c9
DM
2814 goto out;
2815 }
2816 }
2817
c8b97818
CM
2818 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2819 char *userpage;
2820 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2821
2822 if (zero_offset) {
2823 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2824 userpage = kmap_atomic(page);
c8b97818
CM
2825 memset(userpage + zero_offset, 0, iosize);
2826 flush_dcache_page(page);
7ac687d9 2827 kunmap_atomic(userpage);
c8b97818
CM
2828 }
2829 }
d1310b2e 2830 while (cur <= end) {
c8f2f24b
JB
2831 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2832
d1310b2e
CM
2833 if (cur >= last_byte) {
2834 char *userpage;
507903b8
AJ
2835 struct extent_state *cached = NULL;
2836
306e16ce 2837 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2838 userpage = kmap_atomic(page);
306e16ce 2839 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2840 flush_dcache_page(page);
7ac687d9 2841 kunmap_atomic(userpage);
d1310b2e 2842 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2843 &cached, GFP_NOFS);
4b384318
MF
2844 if (!parent_locked)
2845 unlock_extent_cached(tree, cur,
2846 cur + iosize - 1,
2847 &cached, GFP_NOFS);
d1310b2e
CM
2848 break;
2849 }
125bac01
MX
2850 em = __get_extent_map(inode, page, pg_offset, cur,
2851 end - cur + 1, get_extent, em_cached);
c704005d 2852 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2853 SetPageError(page);
4b384318
MF
2854 if (!parent_locked)
2855 unlock_extent(tree, cur, end);
d1310b2e
CM
2856 break;
2857 }
d1310b2e
CM
2858 extent_offset = cur - em->start;
2859 BUG_ON(extent_map_end(em) <= cur);
2860 BUG_ON(end < cur);
2861
261507a0 2862 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2863 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2864 extent_set_compress_type(&this_bio_flag,
2865 em->compress_type);
2866 }
c8b97818 2867
d1310b2e
CM
2868 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2869 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2870 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2871 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2872 disk_io_size = em->block_len;
2873 sector = em->block_start >> 9;
2874 } else {
2875 sector = (em->block_start + extent_offset) >> 9;
2876 disk_io_size = iosize;
2877 }
d1310b2e
CM
2878 bdev = em->bdev;
2879 block_start = em->block_start;
d899e052
YZ
2880 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2881 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2882 free_extent_map(em);
2883 em = NULL;
2884
2885 /* we've found a hole, just zero and go on */
2886 if (block_start == EXTENT_MAP_HOLE) {
2887 char *userpage;
507903b8
AJ
2888 struct extent_state *cached = NULL;
2889
7ac687d9 2890 userpage = kmap_atomic(page);
306e16ce 2891 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2892 flush_dcache_page(page);
7ac687d9 2893 kunmap_atomic(userpage);
d1310b2e
CM
2894
2895 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2896 &cached, GFP_NOFS);
2897 unlock_extent_cached(tree, cur, cur + iosize - 1,
2898 &cached, GFP_NOFS);
d1310b2e 2899 cur = cur + iosize;
306e16ce 2900 pg_offset += iosize;
d1310b2e
CM
2901 continue;
2902 }
2903 /* the get_extent function already copied into the page */
9655d298
CM
2904 if (test_range_bit(tree, cur, cur_end,
2905 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2906 check_page_uptodate(tree, page);
4b384318
MF
2907 if (!parent_locked)
2908 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2909 cur = cur + iosize;
306e16ce 2910 pg_offset += iosize;
d1310b2e
CM
2911 continue;
2912 }
70dec807
CM
2913 /* we have an inline extent but it didn't get marked up
2914 * to date. Error out
2915 */
2916 if (block_start == EXTENT_MAP_INLINE) {
2917 SetPageError(page);
4b384318
MF
2918 if (!parent_locked)
2919 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2920 cur = cur + iosize;
306e16ce 2921 pg_offset += iosize;
70dec807
CM
2922 continue;
2923 }
d1310b2e 2924
c8f2f24b 2925 pnr -= page->index;
d4c7ca86 2926 ret = submit_extent_page(rw, tree, page,
306e16ce 2927 sector, disk_io_size, pg_offset,
89642229 2928 bdev, bio, pnr,
c8b97818
CM
2929 end_bio_extent_readpage, mirror_num,
2930 *bio_flags,
2931 this_bio_flag);
c8f2f24b
JB
2932 if (!ret) {
2933 nr++;
2934 *bio_flags = this_bio_flag;
2935 } else {
d1310b2e 2936 SetPageError(page);
4b384318
MF
2937 if (!parent_locked)
2938 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2939 }
d1310b2e 2940 cur = cur + iosize;
306e16ce 2941 pg_offset += iosize;
d1310b2e 2942 }
90a887c9 2943out:
d1310b2e
CM
2944 if (!nr) {
2945 if (!PageError(page))
2946 SetPageUptodate(page);
2947 unlock_page(page);
2948 }
2949 return 0;
2950}
2951
9974090b
MX
2952static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2953 struct page *pages[], int nr_pages,
2954 u64 start, u64 end,
2955 get_extent_t *get_extent,
125bac01 2956 struct extent_map **em_cached,
9974090b
MX
2957 struct bio **bio, int mirror_num,
2958 unsigned long *bio_flags, int rw)
2959{
2960 struct inode *inode;
2961 struct btrfs_ordered_extent *ordered;
2962 int index;
2963
2964 inode = pages[0]->mapping->host;
2965 while (1) {
2966 lock_extent(tree, start, end);
2967 ordered = btrfs_lookup_ordered_range(inode, start,
2968 end - start + 1);
2969 if (!ordered)
2970 break;
2971 unlock_extent(tree, start, end);
2972 btrfs_start_ordered_extent(inode, ordered, 1);
2973 btrfs_put_ordered_extent(ordered);
2974 }
2975
2976 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2977 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2978 mirror_num, bio_flags, rw);
9974090b
MX
2979 page_cache_release(pages[index]);
2980 }
2981}
2982
2983static void __extent_readpages(struct extent_io_tree *tree,
2984 struct page *pages[],
2985 int nr_pages, get_extent_t *get_extent,
125bac01 2986 struct extent_map **em_cached,
9974090b
MX
2987 struct bio **bio, int mirror_num,
2988 unsigned long *bio_flags, int rw)
2989{
35a3621b 2990 u64 start = 0;
9974090b
MX
2991 u64 end = 0;
2992 u64 page_start;
2993 int index;
35a3621b 2994 int first_index = 0;
9974090b
MX
2995
2996 for (index = 0; index < nr_pages; index++) {
2997 page_start = page_offset(pages[index]);
2998 if (!end) {
2999 start = page_start;
3000 end = start + PAGE_CACHE_SIZE - 1;
3001 first_index = index;
3002 } else if (end + 1 == page_start) {
3003 end += PAGE_CACHE_SIZE;
3004 } else {
3005 __do_contiguous_readpages(tree, &pages[first_index],
3006 index - first_index, start,
125bac01
MX
3007 end, get_extent, em_cached,
3008 bio, mirror_num, bio_flags,
3009 rw);
9974090b
MX
3010 start = page_start;
3011 end = start + PAGE_CACHE_SIZE - 1;
3012 first_index = index;
3013 }
3014 }
3015
3016 if (end)
3017 __do_contiguous_readpages(tree, &pages[first_index],
3018 index - first_index, start,
125bac01 3019 end, get_extent, em_cached, bio,
9974090b
MX
3020 mirror_num, bio_flags, rw);
3021}
3022
3023static int __extent_read_full_page(struct extent_io_tree *tree,
3024 struct page *page,
3025 get_extent_t *get_extent,
3026 struct bio **bio, int mirror_num,
3027 unsigned long *bio_flags, int rw)
3028{
3029 struct inode *inode = page->mapping->host;
3030 struct btrfs_ordered_extent *ordered;
3031 u64 start = page_offset(page);
3032 u64 end = start + PAGE_CACHE_SIZE - 1;
3033 int ret;
3034
3035 while (1) {
3036 lock_extent(tree, start, end);
3037 ordered = btrfs_lookup_ordered_extent(inode, start);
3038 if (!ordered)
3039 break;
3040 unlock_extent(tree, start, end);
3041 btrfs_start_ordered_extent(inode, ordered, 1);
3042 btrfs_put_ordered_extent(ordered);
3043 }
3044
125bac01
MX
3045 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3046 bio_flags, rw);
9974090b
MX
3047 return ret;
3048}
3049
d1310b2e 3050int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3051 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3052{
3053 struct bio *bio = NULL;
c8b97818 3054 unsigned long bio_flags = 0;
d1310b2e
CM
3055 int ret;
3056
8ddc7d9c 3057 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3058 &bio_flags, READ);
d1310b2e 3059 if (bio)
8ddc7d9c 3060 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3061 return ret;
3062}
d1310b2e 3063
4b384318
MF
3064int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3065 get_extent_t *get_extent, int mirror_num)
3066{
3067 struct bio *bio = NULL;
3068 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3069 int ret;
3070
3071 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3072 &bio_flags, READ);
3073 if (bio)
3074 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3075 return ret;
3076}
3077
11c8349b
CM
3078static noinline void update_nr_written(struct page *page,
3079 struct writeback_control *wbc,
3080 unsigned long nr_written)
3081{
3082 wbc->nr_to_write -= nr_written;
3083 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3084 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3085 page->mapping->writeback_index = page->index + nr_written;
3086}
3087
d1310b2e
CM
3088/*
3089 * the writepage semantics are similar to regular writepage. extent
3090 * records are inserted to lock ranges in the tree, and as dirty areas
3091 * are found, they are marked writeback. Then the lock bits are removed
3092 * and the end_io handler clears the writeback ranges
3093 */
3094static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3095 void *data)
3096{
3097 struct inode *inode = page->mapping->host;
3098 struct extent_page_data *epd = data;
3099 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3100 u64 start = page_offset(page);
d1310b2e
CM
3101 u64 delalloc_start;
3102 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3103 u64 end;
3104 u64 cur = start;
3105 u64 extent_offset;
3106 u64 last_byte = i_size_read(inode);
3107 u64 block_start;
3108 u64 iosize;
3109 sector_t sector;
2c64c53d 3110 struct extent_state *cached_state = NULL;
d1310b2e
CM
3111 struct extent_map *em;
3112 struct block_device *bdev;
3113 int ret;
3114 int nr = 0;
7f3c74fb 3115 size_t pg_offset = 0;
d1310b2e
CM
3116 size_t blocksize;
3117 loff_t i_size = i_size_read(inode);
3118 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3119 u64 nr_delalloc;
3120 u64 delalloc_end;
c8b97818
CM
3121 int page_started;
3122 int compressed;
ffbd517d 3123 int write_flags;
771ed689 3124 unsigned long nr_written = 0;
9e487107 3125 bool fill_delalloc = true;
d1310b2e 3126
ffbd517d 3127 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3128 write_flags = WRITE_SYNC;
ffbd517d
CM
3129 else
3130 write_flags = WRITE;
3131
1abe9b8a 3132 trace___extent_writepage(page, inode, wbc);
3133
d1310b2e 3134 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3135
3136 ClearPageError(page);
3137
7f3c74fb 3138 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3139 if (page->index > end_index ||
7f3c74fb 3140 (page->index == end_index && !pg_offset)) {
d47992f8 3141 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3142 unlock_page(page);
3143 return 0;
3144 }
3145
3146 if (page->index == end_index) {
3147 char *userpage;
3148
7ac687d9 3149 userpage = kmap_atomic(page);
7f3c74fb
CM
3150 memset(userpage + pg_offset, 0,
3151 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3152 kunmap_atomic(userpage);
211c17f5 3153 flush_dcache_page(page);
d1310b2e 3154 }
7f3c74fb 3155 pg_offset = 0;
d1310b2e
CM
3156
3157 set_page_extent_mapped(page);
3158
9e487107
JB
3159 if (!tree->ops || !tree->ops->fill_delalloc)
3160 fill_delalloc = false;
3161
d1310b2e
CM
3162 delalloc_start = start;
3163 delalloc_end = 0;
c8b97818 3164 page_started = 0;
9e487107 3165 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3166 u64 delalloc_to_write = 0;
11c8349b
CM
3167 /*
3168 * make sure the wbc mapping index is at least updated
3169 * to this page.
3170 */
3171 update_nr_written(page, wbc, 0);
3172
d397712b 3173 while (delalloc_end < page_end) {
771ed689 3174 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3175 page,
3176 &delalloc_start,
d1310b2e
CM
3177 &delalloc_end,
3178 128 * 1024 * 1024);
771ed689
CM
3179 if (nr_delalloc == 0) {
3180 delalloc_start = delalloc_end + 1;
3181 continue;
3182 }
013bd4c3
TI
3183 ret = tree->ops->fill_delalloc(inode, page,
3184 delalloc_start,
3185 delalloc_end,
3186 &page_started,
3187 &nr_written);
79787eaa
JM
3188 /* File system has been set read-only */
3189 if (ret) {
3190 SetPageError(page);
3191 goto done;
3192 }
f85d7d6c
CM
3193 /*
3194 * delalloc_end is already one less than the total
3195 * length, so we don't subtract one from
3196 * PAGE_CACHE_SIZE
3197 */
3198 delalloc_to_write += (delalloc_end - delalloc_start +
3199 PAGE_CACHE_SIZE) >>
3200 PAGE_CACHE_SHIFT;
d1310b2e 3201 delalloc_start = delalloc_end + 1;
d1310b2e 3202 }
f85d7d6c
CM
3203 if (wbc->nr_to_write < delalloc_to_write) {
3204 int thresh = 8192;
3205
3206 if (delalloc_to_write < thresh * 2)
3207 thresh = delalloc_to_write;
3208 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3209 thresh);
3210 }
c8b97818 3211
771ed689
CM
3212 /* did the fill delalloc function already unlock and start
3213 * the IO?
3214 */
3215 if (page_started) {
3216 ret = 0;
11c8349b
CM
3217 /*
3218 * we've unlocked the page, so we can't update
3219 * the mapping's writeback index, just update
3220 * nr_to_write.
3221 */
3222 wbc->nr_to_write -= nr_written;
3223 goto done_unlocked;
771ed689 3224 }
c8b97818 3225 }
247e743c 3226 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3227 ret = tree->ops->writepage_start_hook(page, start,
3228 page_end);
87826df0
JM
3229 if (ret) {
3230 /* Fixup worker will requeue */
3231 if (ret == -EBUSY)
3232 wbc->pages_skipped++;
3233 else
3234 redirty_page_for_writepage(wbc, page);
11c8349b 3235 update_nr_written(page, wbc, nr_written);
247e743c 3236 unlock_page(page);
771ed689 3237 ret = 0;
11c8349b 3238 goto done_unlocked;
247e743c
CM
3239 }
3240 }
3241
11c8349b
CM
3242 /*
3243 * we don't want to touch the inode after unlocking the page,
3244 * so we update the mapping writeback index now
3245 */
3246 update_nr_written(page, wbc, nr_written + 1);
771ed689 3247
d1310b2e 3248 end = page_end;
d1310b2e 3249 if (last_byte <= start) {
e6dcd2dc
CM
3250 if (tree->ops && tree->ops->writepage_end_io_hook)
3251 tree->ops->writepage_end_io_hook(page, start,
3252 page_end, NULL, 1);
d1310b2e
CM
3253 goto done;
3254 }
3255
d1310b2e
CM
3256 blocksize = inode->i_sb->s_blocksize;
3257
3258 while (cur <= end) {
3259 if (cur >= last_byte) {
e6dcd2dc
CM
3260 if (tree->ops && tree->ops->writepage_end_io_hook)
3261 tree->ops->writepage_end_io_hook(page, cur,
3262 page_end, NULL, 1);
d1310b2e
CM
3263 break;
3264 }
7f3c74fb 3265 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3266 end - cur + 1, 1);
c704005d 3267 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3268 SetPageError(page);
3269 break;
3270 }
3271
3272 extent_offset = cur - em->start;
3273 BUG_ON(extent_map_end(em) <= cur);
3274 BUG_ON(end < cur);
3275 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3276 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3277 sector = (em->block_start + extent_offset) >> 9;
3278 bdev = em->bdev;
3279 block_start = em->block_start;
c8b97818 3280 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3281 free_extent_map(em);
3282 em = NULL;
3283
c8b97818
CM
3284 /*
3285 * compressed and inline extents are written through other
3286 * paths in the FS
3287 */
3288 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3289 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3290 /*
3291 * end_io notification does not happen here for
3292 * compressed extents
3293 */
3294 if (!compressed && tree->ops &&
3295 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3296 tree->ops->writepage_end_io_hook(page, cur,
3297 cur + iosize - 1,
3298 NULL, 1);
c8b97818
CM
3299 else if (compressed) {
3300 /* we don't want to end_page_writeback on
3301 * a compressed extent. this happens
3302 * elsewhere
3303 */
3304 nr++;
3305 }
3306
3307 cur += iosize;
7f3c74fb 3308 pg_offset += iosize;
d1310b2e
CM
3309 continue;
3310 }
d1310b2e
CM
3311 /* leave this out until we have a page_mkwrite call */
3312 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3313 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3314 cur = cur + iosize;
7f3c74fb 3315 pg_offset += iosize;
d1310b2e
CM
3316 continue;
3317 }
c8b97818 3318
d1310b2e
CM
3319 if (tree->ops && tree->ops->writepage_io_hook) {
3320 ret = tree->ops->writepage_io_hook(page, cur,
3321 cur + iosize - 1);
3322 } else {
3323 ret = 0;
3324 }
1259ab75 3325 if (ret) {
d1310b2e 3326 SetPageError(page);
1259ab75 3327 } else {
d1310b2e 3328 unsigned long max_nr = end_index + 1;
7f3c74fb 3329
d1310b2e
CM
3330 set_range_writeback(tree, cur, cur + iosize - 1);
3331 if (!PageWriteback(page)) {
d397712b
CM
3332 printk(KERN_ERR "btrfs warning page %lu not "
3333 "writeback, cur %llu end %llu\n",
c1c9ff7c 3334 page->index, cur, end);
d1310b2e
CM
3335 }
3336
ffbd517d
CM
3337 ret = submit_extent_page(write_flags, tree, page,
3338 sector, iosize, pg_offset,
3339 bdev, &epd->bio, max_nr,
c8b97818
CM
3340 end_bio_extent_writepage,
3341 0, 0, 0);
d1310b2e
CM
3342 if (ret)
3343 SetPageError(page);
3344 }
3345 cur = cur + iosize;
7f3c74fb 3346 pg_offset += iosize;
d1310b2e
CM
3347 nr++;
3348 }
3349done:
3350 if (nr == 0) {
3351 /* make sure the mapping tag for page dirty gets cleared */
3352 set_page_writeback(page);
3353 end_page_writeback(page);
3354 }
d1310b2e 3355 unlock_page(page);
771ed689 3356
11c8349b
CM
3357done_unlocked:
3358
2c64c53d
CM
3359 /* drop our reference on any cached states */
3360 free_extent_state(cached_state);
d1310b2e
CM
3361 return 0;
3362}
3363
0b32f4bb
JB
3364static int eb_wait(void *word)
3365{
3366 io_schedule();
3367 return 0;
3368}
3369
fd8b2b61 3370void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3371{
3372 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3373 TASK_UNINTERRUPTIBLE);
3374}
3375
3376static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3377 struct btrfs_fs_info *fs_info,
3378 struct extent_page_data *epd)
3379{
3380 unsigned long i, num_pages;
3381 int flush = 0;
3382 int ret = 0;
3383
3384 if (!btrfs_try_tree_write_lock(eb)) {
3385 flush = 1;
3386 flush_write_bio(epd);
3387 btrfs_tree_lock(eb);
3388 }
3389
3390 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3391 btrfs_tree_unlock(eb);
3392 if (!epd->sync_io)
3393 return 0;
3394 if (!flush) {
3395 flush_write_bio(epd);
3396 flush = 1;
3397 }
a098d8e8
CM
3398 while (1) {
3399 wait_on_extent_buffer_writeback(eb);
3400 btrfs_tree_lock(eb);
3401 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3402 break;
0b32f4bb 3403 btrfs_tree_unlock(eb);
0b32f4bb
JB
3404 }
3405 }
3406
51561ffe
JB
3407 /*
3408 * We need to do this to prevent races in people who check if the eb is
3409 * under IO since we can end up having no IO bits set for a short period
3410 * of time.
3411 */
3412 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3413 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3414 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3415 spin_unlock(&eb->refs_lock);
0b32f4bb 3416 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3417 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3418 -eb->len,
3419 fs_info->dirty_metadata_batch);
0b32f4bb 3420 ret = 1;
51561ffe
JB
3421 } else {
3422 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3423 }
3424
3425 btrfs_tree_unlock(eb);
3426
3427 if (!ret)
3428 return ret;
3429
3430 num_pages = num_extent_pages(eb->start, eb->len);
3431 for (i = 0; i < num_pages; i++) {
3432 struct page *p = extent_buffer_page(eb, i);
3433
3434 if (!trylock_page(p)) {
3435 if (!flush) {
3436 flush_write_bio(epd);
3437 flush = 1;
3438 }
3439 lock_page(p);
3440 }
3441 }
3442
3443 return ret;
3444}
3445
3446static void end_extent_buffer_writeback(struct extent_buffer *eb)
3447{
3448 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3449 smp_mb__after_clear_bit();
3450 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3451}
3452
3453static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3454{
3455 int uptodate = err == 0;
3456 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3457 struct extent_buffer *eb;
3458 int done;
3459
3460 do {
3461 struct page *page = bvec->bv_page;
3462
3463 bvec--;
3464 eb = (struct extent_buffer *)page->private;
3465 BUG_ON(!eb);
3466 done = atomic_dec_and_test(&eb->io_pages);
3467
3468 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3469 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3470 ClearPageUptodate(page);
3471 SetPageError(page);
3472 }
3473
3474 end_page_writeback(page);
3475
3476 if (!done)
3477 continue;
3478
3479 end_extent_buffer_writeback(eb);
3480 } while (bvec >= bio->bi_io_vec);
3481
3482 bio_put(bio);
3483
3484}
3485
3486static int write_one_eb(struct extent_buffer *eb,
3487 struct btrfs_fs_info *fs_info,
3488 struct writeback_control *wbc,
3489 struct extent_page_data *epd)
3490{
3491 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3492 u64 offset = eb->start;
3493 unsigned long i, num_pages;
de0022b9 3494 unsigned long bio_flags = 0;
d4c7ca86 3495 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3496 int ret = 0;
0b32f4bb
JB
3497
3498 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3499 num_pages = num_extent_pages(eb->start, eb->len);
3500 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3501 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3502 bio_flags = EXTENT_BIO_TREE_LOG;
3503
0b32f4bb
JB
3504 for (i = 0; i < num_pages; i++) {
3505 struct page *p = extent_buffer_page(eb, i);
3506
3507 clear_page_dirty_for_io(p);
3508 set_page_writeback(p);
3509 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3510 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3511 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3512 0, epd->bio_flags, bio_flags);
3513 epd->bio_flags = bio_flags;
0b32f4bb
JB
3514 if (ret) {
3515 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3516 SetPageError(p);
3517 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3518 end_extent_buffer_writeback(eb);
3519 ret = -EIO;
3520 break;
3521 }
3522 offset += PAGE_CACHE_SIZE;
3523 update_nr_written(p, wbc, 1);
3524 unlock_page(p);
3525 }
3526
3527 if (unlikely(ret)) {
3528 for (; i < num_pages; i++) {
3529 struct page *p = extent_buffer_page(eb, i);
3530 unlock_page(p);
3531 }
3532 }
3533
3534 return ret;
3535}
3536
3537int btree_write_cache_pages(struct address_space *mapping,
3538 struct writeback_control *wbc)
3539{
3540 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3541 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3542 struct extent_buffer *eb, *prev_eb = NULL;
3543 struct extent_page_data epd = {
3544 .bio = NULL,
3545 .tree = tree,
3546 .extent_locked = 0,
3547 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3548 .bio_flags = 0,
0b32f4bb
JB
3549 };
3550 int ret = 0;
3551 int done = 0;
3552 int nr_to_write_done = 0;
3553 struct pagevec pvec;
3554 int nr_pages;
3555 pgoff_t index;
3556 pgoff_t end; /* Inclusive */
3557 int scanned = 0;
3558 int tag;
3559
3560 pagevec_init(&pvec, 0);
3561 if (wbc->range_cyclic) {
3562 index = mapping->writeback_index; /* Start from prev offset */
3563 end = -1;
3564 } else {
3565 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3566 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3567 scanned = 1;
3568 }
3569 if (wbc->sync_mode == WB_SYNC_ALL)
3570 tag = PAGECACHE_TAG_TOWRITE;
3571 else
3572 tag = PAGECACHE_TAG_DIRTY;
3573retry:
3574 if (wbc->sync_mode == WB_SYNC_ALL)
3575 tag_pages_for_writeback(mapping, index, end);
3576 while (!done && !nr_to_write_done && (index <= end) &&
3577 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3578 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3579 unsigned i;
3580
3581 scanned = 1;
3582 for (i = 0; i < nr_pages; i++) {
3583 struct page *page = pvec.pages[i];
3584
3585 if (!PagePrivate(page))
3586 continue;
3587
3588 if (!wbc->range_cyclic && page->index > end) {
3589 done = 1;
3590 break;
3591 }
3592
b5bae261
JB
3593 spin_lock(&mapping->private_lock);
3594 if (!PagePrivate(page)) {
3595 spin_unlock(&mapping->private_lock);
3596 continue;
3597 }
3598
0b32f4bb 3599 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3600
3601 /*
3602 * Shouldn't happen and normally this would be a BUG_ON
3603 * but no sense in crashing the users box for something
3604 * we can survive anyway.
3605 */
fae7f21c 3606 if (WARN_ON(!eb)) {
b5bae261 3607 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3608 continue;
3609 }
3610
b5bae261
JB
3611 if (eb == prev_eb) {
3612 spin_unlock(&mapping->private_lock);
0b32f4bb 3613 continue;
b5bae261 3614 }
0b32f4bb 3615
b5bae261
JB
3616 ret = atomic_inc_not_zero(&eb->refs);
3617 spin_unlock(&mapping->private_lock);
3618 if (!ret)
0b32f4bb 3619 continue;
0b32f4bb
JB
3620
3621 prev_eb = eb;
3622 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3623 if (!ret) {
3624 free_extent_buffer(eb);
3625 continue;
3626 }
3627
3628 ret = write_one_eb(eb, fs_info, wbc, &epd);
3629 if (ret) {
3630 done = 1;
3631 free_extent_buffer(eb);
3632 break;
3633 }
3634 free_extent_buffer(eb);
3635
3636 /*
3637 * the filesystem may choose to bump up nr_to_write.
3638 * We have to make sure to honor the new nr_to_write
3639 * at any time
3640 */
3641 nr_to_write_done = wbc->nr_to_write <= 0;
3642 }
3643 pagevec_release(&pvec);
3644 cond_resched();
3645 }
3646 if (!scanned && !done) {
3647 /*
3648 * We hit the last page and there is more work to be done: wrap
3649 * back to the start of the file
3650 */
3651 scanned = 1;
3652 index = 0;
3653 goto retry;
3654 }
3655 flush_write_bio(&epd);
3656 return ret;
3657}
3658
d1310b2e 3659/**
4bef0848 3660 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3661 * @mapping: address space structure to write
3662 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3663 * @writepage: function called for each page
3664 * @data: data passed to writepage function
3665 *
3666 * If a page is already under I/O, write_cache_pages() skips it, even
3667 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3668 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3669 * and msync() need to guarantee that all the data which was dirty at the time
3670 * the call was made get new I/O started against them. If wbc->sync_mode is
3671 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3672 * existing IO to complete.
3673 */
b2950863 3674static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3675 struct address_space *mapping,
3676 struct writeback_control *wbc,
d2c3f4f6
CM
3677 writepage_t writepage, void *data,
3678 void (*flush_fn)(void *))
d1310b2e 3679{
7fd1a3f7 3680 struct inode *inode = mapping->host;
d1310b2e
CM
3681 int ret = 0;
3682 int done = 0;
f85d7d6c 3683 int nr_to_write_done = 0;
d1310b2e
CM
3684 struct pagevec pvec;
3685 int nr_pages;
3686 pgoff_t index;
3687 pgoff_t end; /* Inclusive */
3688 int scanned = 0;
f7aaa06b 3689 int tag;
d1310b2e 3690
7fd1a3f7
JB
3691 /*
3692 * We have to hold onto the inode so that ordered extents can do their
3693 * work when the IO finishes. The alternative to this is failing to add
3694 * an ordered extent if the igrab() fails there and that is a huge pain
3695 * to deal with, so instead just hold onto the inode throughout the
3696 * writepages operation. If it fails here we are freeing up the inode
3697 * anyway and we'd rather not waste our time writing out stuff that is
3698 * going to be truncated anyway.
3699 */
3700 if (!igrab(inode))
3701 return 0;
3702
d1310b2e
CM
3703 pagevec_init(&pvec, 0);
3704 if (wbc->range_cyclic) {
3705 index = mapping->writeback_index; /* Start from prev offset */
3706 end = -1;
3707 } else {
3708 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3709 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3710 scanned = 1;
3711 }
f7aaa06b
JB
3712 if (wbc->sync_mode == WB_SYNC_ALL)
3713 tag = PAGECACHE_TAG_TOWRITE;
3714 else
3715 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3716retry:
f7aaa06b
JB
3717 if (wbc->sync_mode == WB_SYNC_ALL)
3718 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3719 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3720 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3721 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3722 unsigned i;
3723
3724 scanned = 1;
3725 for (i = 0; i < nr_pages; i++) {
3726 struct page *page = pvec.pages[i];
3727
3728 /*
3729 * At this point we hold neither mapping->tree_lock nor
3730 * lock on the page itself: the page may be truncated or
3731 * invalidated (changing page->mapping to NULL), or even
3732 * swizzled back from swapper_space to tmpfs file
3733 * mapping
3734 */
c8f2f24b
JB
3735 if (!trylock_page(page)) {
3736 flush_fn(data);
3737 lock_page(page);
01d658f2 3738 }
d1310b2e
CM
3739
3740 if (unlikely(page->mapping != mapping)) {
3741 unlock_page(page);
3742 continue;
3743 }
3744
3745 if (!wbc->range_cyclic && page->index > end) {
3746 done = 1;
3747 unlock_page(page);
3748 continue;
3749 }
3750
d2c3f4f6 3751 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3752 if (PageWriteback(page))
3753 flush_fn(data);
d1310b2e 3754 wait_on_page_writeback(page);
d2c3f4f6 3755 }
d1310b2e
CM
3756
3757 if (PageWriteback(page) ||
3758 !clear_page_dirty_for_io(page)) {
3759 unlock_page(page);
3760 continue;
3761 }
3762
3763 ret = (*writepage)(page, wbc, data);
3764
3765 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3766 unlock_page(page);
3767 ret = 0;
3768 }
f85d7d6c 3769 if (ret)
d1310b2e 3770 done = 1;
f85d7d6c
CM
3771
3772 /*
3773 * the filesystem may choose to bump up nr_to_write.
3774 * We have to make sure to honor the new nr_to_write
3775 * at any time
3776 */
3777 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3778 }
3779 pagevec_release(&pvec);
3780 cond_resched();
3781 }
3782 if (!scanned && !done) {
3783 /*
3784 * We hit the last page and there is more work to be done: wrap
3785 * back to the start of the file
3786 */
3787 scanned = 1;
3788 index = 0;
3789 goto retry;
3790 }
7fd1a3f7 3791 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3792 return ret;
3793}
d1310b2e 3794
ffbd517d 3795static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3796{
d2c3f4f6 3797 if (epd->bio) {
355808c2
JM
3798 int rw = WRITE;
3799 int ret;
3800
ffbd517d 3801 if (epd->sync_io)
355808c2
JM
3802 rw = WRITE_SYNC;
3803
de0022b9 3804 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3805 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3806 epd->bio = NULL;
3807 }
3808}
3809
ffbd517d
CM
3810static noinline void flush_write_bio(void *data)
3811{
3812 struct extent_page_data *epd = data;
3813 flush_epd_write_bio(epd);
3814}
3815
d1310b2e
CM
3816int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3817 get_extent_t *get_extent,
3818 struct writeback_control *wbc)
3819{
3820 int ret;
d1310b2e
CM
3821 struct extent_page_data epd = {
3822 .bio = NULL,
3823 .tree = tree,
3824 .get_extent = get_extent,
771ed689 3825 .extent_locked = 0,
ffbd517d 3826 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3827 .bio_flags = 0,
d1310b2e 3828 };
d1310b2e 3829
d1310b2e
CM
3830 ret = __extent_writepage(page, wbc, &epd);
3831
ffbd517d 3832 flush_epd_write_bio(&epd);
d1310b2e
CM
3833 return ret;
3834}
d1310b2e 3835
771ed689
CM
3836int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3837 u64 start, u64 end, get_extent_t *get_extent,
3838 int mode)
3839{
3840 int ret = 0;
3841 struct address_space *mapping = inode->i_mapping;
3842 struct page *page;
3843 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3844 PAGE_CACHE_SHIFT;
3845
3846 struct extent_page_data epd = {
3847 .bio = NULL,
3848 .tree = tree,
3849 .get_extent = get_extent,
3850 .extent_locked = 1,
ffbd517d 3851 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3852 .bio_flags = 0,
771ed689
CM
3853 };
3854 struct writeback_control wbc_writepages = {
771ed689 3855 .sync_mode = mode,
771ed689
CM
3856 .nr_to_write = nr_pages * 2,
3857 .range_start = start,
3858 .range_end = end + 1,
3859 };
3860
d397712b 3861 while (start <= end) {
771ed689
CM
3862 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3863 if (clear_page_dirty_for_io(page))
3864 ret = __extent_writepage(page, &wbc_writepages, &epd);
3865 else {
3866 if (tree->ops && tree->ops->writepage_end_io_hook)
3867 tree->ops->writepage_end_io_hook(page, start,
3868 start + PAGE_CACHE_SIZE - 1,
3869 NULL, 1);
3870 unlock_page(page);
3871 }
3872 page_cache_release(page);
3873 start += PAGE_CACHE_SIZE;
3874 }
3875
ffbd517d 3876 flush_epd_write_bio(&epd);
771ed689
CM
3877 return ret;
3878}
d1310b2e
CM
3879
3880int extent_writepages(struct extent_io_tree *tree,
3881 struct address_space *mapping,
3882 get_extent_t *get_extent,
3883 struct writeback_control *wbc)
3884{
3885 int ret = 0;
3886 struct extent_page_data epd = {
3887 .bio = NULL,
3888 .tree = tree,
3889 .get_extent = get_extent,
771ed689 3890 .extent_locked = 0,
ffbd517d 3891 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3892 .bio_flags = 0,
d1310b2e
CM
3893 };
3894
4bef0848 3895 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3896 __extent_writepage, &epd,
3897 flush_write_bio);
ffbd517d 3898 flush_epd_write_bio(&epd);
d1310b2e
CM
3899 return ret;
3900}
d1310b2e
CM
3901
3902int extent_readpages(struct extent_io_tree *tree,
3903 struct address_space *mapping,
3904 struct list_head *pages, unsigned nr_pages,
3905 get_extent_t get_extent)
3906{
3907 struct bio *bio = NULL;
3908 unsigned page_idx;
c8b97818 3909 unsigned long bio_flags = 0;
67c9684f
LB
3910 struct page *pagepool[16];
3911 struct page *page;
125bac01 3912 struct extent_map *em_cached = NULL;
67c9684f 3913 int nr = 0;
d1310b2e 3914
d1310b2e 3915 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3916 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3917
3918 prefetchw(&page->flags);
3919 list_del(&page->lru);
67c9684f 3920 if (add_to_page_cache_lru(page, mapping,
43e817a1 3921 page->index, GFP_NOFS)) {
67c9684f
LB
3922 page_cache_release(page);
3923 continue;
d1310b2e 3924 }
67c9684f
LB
3925
3926 pagepool[nr++] = page;
3927 if (nr < ARRAY_SIZE(pagepool))
3928 continue;
125bac01 3929 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3930 &bio, 0, &bio_flags, READ);
67c9684f 3931 nr = 0;
d1310b2e 3932 }
9974090b 3933 if (nr)
125bac01 3934 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3935 &bio, 0, &bio_flags, READ);
67c9684f 3936
125bac01
MX
3937 if (em_cached)
3938 free_extent_map(em_cached);
3939
d1310b2e
CM
3940 BUG_ON(!list_empty(pages));
3941 if (bio)
79787eaa 3942 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3943 return 0;
3944}
d1310b2e
CM
3945
3946/*
3947 * basic invalidatepage code, this waits on any locked or writeback
3948 * ranges corresponding to the page, and then deletes any extent state
3949 * records from the tree
3950 */
3951int extent_invalidatepage(struct extent_io_tree *tree,
3952 struct page *page, unsigned long offset)
3953{
2ac55d41 3954 struct extent_state *cached_state = NULL;
4eee4fa4 3955 u64 start = page_offset(page);
d1310b2e
CM
3956 u64 end = start + PAGE_CACHE_SIZE - 1;
3957 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3958
fda2832f 3959 start += ALIGN(offset, blocksize);
d1310b2e
CM
3960 if (start > end)
3961 return 0;
3962
d0082371 3963 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3964 wait_on_page_writeback(page);
d1310b2e 3965 clear_extent_bit(tree, start, end,
32c00aff
JB
3966 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3967 EXTENT_DO_ACCOUNTING,
2ac55d41 3968 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3969 return 0;
3970}
d1310b2e 3971
7b13b7b1
CM
3972/*
3973 * a helper for releasepage, this tests for areas of the page that
3974 * are locked or under IO and drops the related state bits if it is safe
3975 * to drop the page.
3976 */
48a3b636
ES
3977static int try_release_extent_state(struct extent_map_tree *map,
3978 struct extent_io_tree *tree,
3979 struct page *page, gfp_t mask)
7b13b7b1 3980{
4eee4fa4 3981 u64 start = page_offset(page);
7b13b7b1
CM
3982 u64 end = start + PAGE_CACHE_SIZE - 1;
3983 int ret = 1;
3984
211f90e6 3985 if (test_range_bit(tree, start, end,
8b62b72b 3986 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3987 ret = 0;
3988 else {
3989 if ((mask & GFP_NOFS) == GFP_NOFS)
3990 mask = GFP_NOFS;
11ef160f
CM
3991 /*
3992 * at this point we can safely clear everything except the
3993 * locked bit and the nodatasum bit
3994 */
e3f24cc5 3995 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3996 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3997 0, 0, NULL, mask);
e3f24cc5
CM
3998
3999 /* if clear_extent_bit failed for enomem reasons,
4000 * we can't allow the release to continue.
4001 */
4002 if (ret < 0)
4003 ret = 0;
4004 else
4005 ret = 1;
7b13b7b1
CM
4006 }
4007 return ret;
4008}
7b13b7b1 4009
d1310b2e
CM
4010/*
4011 * a helper for releasepage. As long as there are no locked extents
4012 * in the range corresponding to the page, both state records and extent
4013 * map records are removed
4014 */
4015int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4016 struct extent_io_tree *tree, struct page *page,
4017 gfp_t mask)
d1310b2e
CM
4018{
4019 struct extent_map *em;
4eee4fa4 4020 u64 start = page_offset(page);
d1310b2e 4021 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4022
70dec807
CM
4023 if ((mask & __GFP_WAIT) &&
4024 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4025 u64 len;
70dec807 4026 while (start <= end) {
39b5637f 4027 len = end - start + 1;
890871be 4028 write_lock(&map->lock);
39b5637f 4029 em = lookup_extent_mapping(map, start, len);
285190d9 4030 if (!em) {
890871be 4031 write_unlock(&map->lock);
70dec807
CM
4032 break;
4033 }
7f3c74fb
CM
4034 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4035 em->start != start) {
890871be 4036 write_unlock(&map->lock);
70dec807
CM
4037 free_extent_map(em);
4038 break;
4039 }
4040 if (!test_range_bit(tree, em->start,
4041 extent_map_end(em) - 1,
8b62b72b 4042 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4043 0, NULL)) {
70dec807
CM
4044 remove_extent_mapping(map, em);
4045 /* once for the rb tree */
4046 free_extent_map(em);
4047 }
4048 start = extent_map_end(em);
890871be 4049 write_unlock(&map->lock);
70dec807
CM
4050
4051 /* once for us */
d1310b2e
CM
4052 free_extent_map(em);
4053 }
d1310b2e 4054 }
7b13b7b1 4055 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4056}
d1310b2e 4057
ec29ed5b
CM
4058/*
4059 * helper function for fiemap, which doesn't want to see any holes.
4060 * This maps until we find something past 'last'
4061 */
4062static struct extent_map *get_extent_skip_holes(struct inode *inode,
4063 u64 offset,
4064 u64 last,
4065 get_extent_t *get_extent)
4066{
4067 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4068 struct extent_map *em;
4069 u64 len;
4070
4071 if (offset >= last)
4072 return NULL;
4073
67871254 4074 while (1) {
ec29ed5b
CM
4075 len = last - offset;
4076 if (len == 0)
4077 break;
fda2832f 4078 len = ALIGN(len, sectorsize);
ec29ed5b 4079 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4080 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4081 return em;
4082
4083 /* if this isn't a hole return it */
4084 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4085 em->block_start != EXTENT_MAP_HOLE) {
4086 return em;
4087 }
4088
4089 /* this is a hole, advance to the next extent */
4090 offset = extent_map_end(em);
4091 free_extent_map(em);
4092 if (offset >= last)
4093 break;
4094 }
4095 return NULL;
4096}
4097
fe09e16c
LB
4098static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4099{
4100 unsigned long cnt = *((unsigned long *)ctx);
4101
4102 cnt++;
4103 *((unsigned long *)ctx) = cnt;
4104
4105 /* Now we're sure that the extent is shared. */
4106 if (cnt > 1)
4107 return 1;
4108 return 0;
4109}
4110
1506fcc8
YS
4111int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4112 __u64 start, __u64 len, get_extent_t *get_extent)
4113{
975f84fe 4114 int ret = 0;
1506fcc8
YS
4115 u64 off = start;
4116 u64 max = start + len;
4117 u32 flags = 0;
975f84fe
JB
4118 u32 found_type;
4119 u64 last;
ec29ed5b 4120 u64 last_for_get_extent = 0;
1506fcc8 4121 u64 disko = 0;
ec29ed5b 4122 u64 isize = i_size_read(inode);
975f84fe 4123 struct btrfs_key found_key;
1506fcc8 4124 struct extent_map *em = NULL;
2ac55d41 4125 struct extent_state *cached_state = NULL;
975f84fe 4126 struct btrfs_path *path;
1506fcc8 4127 int end = 0;
ec29ed5b
CM
4128 u64 em_start = 0;
4129 u64 em_len = 0;
4130 u64 em_end = 0;
1506fcc8
YS
4131
4132 if (len == 0)
4133 return -EINVAL;
4134
975f84fe
JB
4135 path = btrfs_alloc_path();
4136 if (!path)
4137 return -ENOMEM;
4138 path->leave_spinning = 1;
4139
4d479cf0
JB
4140 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4141 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4142
ec29ed5b
CM
4143 /*
4144 * lookup the last file extent. We're not using i_size here
4145 * because there might be preallocation past i_size
4146 */
975f84fe 4147 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4148 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4149 if (ret < 0) {
4150 btrfs_free_path(path);
4151 return ret;
4152 }
4153 WARN_ON(!ret);
4154 path->slots[0]--;
975f84fe
JB
4155 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4156 found_type = btrfs_key_type(&found_key);
4157
ec29ed5b 4158 /* No extents, but there might be delalloc bits */
33345d01 4159 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4160 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4161 /* have to trust i_size as the end */
4162 last = (u64)-1;
4163 last_for_get_extent = isize;
4164 } else {
4165 /*
4166 * remember the start of the last extent. There are a
4167 * bunch of different factors that go into the length of the
4168 * extent, so its much less complex to remember where it started
4169 */
4170 last = found_key.offset;
4171 last_for_get_extent = last + 1;
975f84fe 4172 }
fe09e16c 4173 btrfs_release_path(path);
975f84fe 4174
ec29ed5b
CM
4175 /*
4176 * we might have some extents allocated but more delalloc past those
4177 * extents. so, we trust isize unless the start of the last extent is
4178 * beyond isize
4179 */
4180 if (last < isize) {
4181 last = (u64)-1;
4182 last_for_get_extent = isize;
4183 }
4184
a52f4cd2 4185 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4186 &cached_state);
ec29ed5b 4187
4d479cf0 4188 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4189 get_extent);
1506fcc8
YS
4190 if (!em)
4191 goto out;
4192 if (IS_ERR(em)) {
4193 ret = PTR_ERR(em);
4194 goto out;
4195 }
975f84fe 4196
1506fcc8 4197 while (!end) {
b76bb701 4198 u64 offset_in_extent = 0;
ea8efc74
CM
4199
4200 /* break if the extent we found is outside the range */
4201 if (em->start >= max || extent_map_end(em) < off)
4202 break;
4203
4204 /*
4205 * get_extent may return an extent that starts before our
4206 * requested range. We have to make sure the ranges
4207 * we return to fiemap always move forward and don't
4208 * overlap, so adjust the offsets here
4209 */
4210 em_start = max(em->start, off);
1506fcc8 4211
ea8efc74
CM
4212 /*
4213 * record the offset from the start of the extent
b76bb701
JB
4214 * for adjusting the disk offset below. Only do this if the
4215 * extent isn't compressed since our in ram offset may be past
4216 * what we have actually allocated on disk.
ea8efc74 4217 */
b76bb701
JB
4218 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4219 offset_in_extent = em_start - em->start;
ec29ed5b 4220 em_end = extent_map_end(em);
ea8efc74 4221 em_len = em_end - em_start;
1506fcc8
YS
4222 disko = 0;
4223 flags = 0;
4224
ea8efc74
CM
4225 /*
4226 * bump off for our next call to get_extent
4227 */
4228 off = extent_map_end(em);
4229 if (off >= max)
4230 end = 1;
4231
93dbfad7 4232 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4233 end = 1;
4234 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4235 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4236 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4237 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4238 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4239 flags |= (FIEMAP_EXTENT_DELALLOC |
4240 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4241 } else {
fe09e16c
LB
4242 unsigned long ref_cnt = 0;
4243
ea8efc74 4244 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4245
4246 /*
4247 * As btrfs supports shared space, this information
4248 * can be exported to userspace tools via
4249 * flag FIEMAP_EXTENT_SHARED.
4250 */
4251 ret = iterate_inodes_from_logical(
4252 em->block_start,
4253 BTRFS_I(inode)->root->fs_info,
4254 path, count_ext_ref, &ref_cnt);
4255 if (ret < 0 && ret != -ENOENT)
4256 goto out_free;
4257
4258 if (ref_cnt > 1)
4259 flags |= FIEMAP_EXTENT_SHARED;
1506fcc8
YS
4260 }
4261 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4262 flags |= FIEMAP_EXTENT_ENCODED;
4263
1506fcc8
YS
4264 free_extent_map(em);
4265 em = NULL;
ec29ed5b
CM
4266 if ((em_start >= last) || em_len == (u64)-1 ||
4267 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4268 flags |= FIEMAP_EXTENT_LAST;
4269 end = 1;
4270 }
4271
ec29ed5b
CM
4272 /* now scan forward to see if this is really the last extent. */
4273 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4274 get_extent);
4275 if (IS_ERR(em)) {
4276 ret = PTR_ERR(em);
4277 goto out;
4278 }
4279 if (!em) {
975f84fe
JB
4280 flags |= FIEMAP_EXTENT_LAST;
4281 end = 1;
4282 }
ec29ed5b
CM
4283 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4284 em_len, flags);
4285 if (ret)
4286 goto out_free;
1506fcc8
YS
4287 }
4288out_free:
4289 free_extent_map(em);
4290out:
fe09e16c 4291 btrfs_free_path(path);
a52f4cd2 4292 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4293 &cached_state, GFP_NOFS);
1506fcc8
YS
4294 return ret;
4295}
4296
727011e0
CM
4297static void __free_extent_buffer(struct extent_buffer *eb)
4298{
6d49ba1b 4299 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4300 kmem_cache_free(extent_buffer_cache, eb);
4301}
4302
db7f3436
JB
4303static int extent_buffer_under_io(struct extent_buffer *eb)
4304{
4305 return (atomic_read(&eb->io_pages) ||
4306 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4307 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4308}
4309
4310/*
4311 * Helper for releasing extent buffer page.
4312 */
4313static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4314 unsigned long start_idx)
4315{
4316 unsigned long index;
4317 unsigned long num_pages;
4318 struct page *page;
4319 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4320
4321 BUG_ON(extent_buffer_under_io(eb));
4322
4323 num_pages = num_extent_pages(eb->start, eb->len);
4324 index = start_idx + num_pages;
4325 if (start_idx >= index)
4326 return;
4327
4328 do {
4329 index--;
4330 page = extent_buffer_page(eb, index);
4331 if (page && mapped) {
4332 spin_lock(&page->mapping->private_lock);
4333 /*
4334 * We do this since we'll remove the pages after we've
4335 * removed the eb from the radix tree, so we could race
4336 * and have this page now attached to the new eb. So
4337 * only clear page_private if it's still connected to
4338 * this eb.
4339 */
4340 if (PagePrivate(page) &&
4341 page->private == (unsigned long)eb) {
4342 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4343 BUG_ON(PageDirty(page));
4344 BUG_ON(PageWriteback(page));
4345 /*
4346 * We need to make sure we haven't be attached
4347 * to a new eb.
4348 */
4349 ClearPagePrivate(page);
4350 set_page_private(page, 0);
4351 /* One for the page private */
4352 page_cache_release(page);
4353 }
4354 spin_unlock(&page->mapping->private_lock);
4355
4356 }
4357 if (page) {
4358 /* One for when we alloced the page */
4359 page_cache_release(page);
4360 }
4361 } while (index != start_idx);
4362}
4363
4364/*
4365 * Helper for releasing the extent buffer.
4366 */
4367static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4368{
4369 btrfs_release_extent_buffer_page(eb, 0);
4370 __free_extent_buffer(eb);
4371}
4372
d1310b2e
CM
4373static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4374 u64 start,
4375 unsigned long len,
4376 gfp_t mask)
4377{
4378 struct extent_buffer *eb = NULL;
4379
d1310b2e 4380 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4381 if (eb == NULL)
4382 return NULL;
d1310b2e
CM
4383 eb->start = start;
4384 eb->len = len;
4f2de97a 4385 eb->tree = tree;
815a51c7 4386 eb->bflags = 0;
bd681513
CM
4387 rwlock_init(&eb->lock);
4388 atomic_set(&eb->write_locks, 0);
4389 atomic_set(&eb->read_locks, 0);
4390 atomic_set(&eb->blocking_readers, 0);
4391 atomic_set(&eb->blocking_writers, 0);
4392 atomic_set(&eb->spinning_readers, 0);
4393 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4394 eb->lock_nested = 0;
bd681513
CM
4395 init_waitqueue_head(&eb->write_lock_wq);
4396 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4397
6d49ba1b
ES
4398 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4399
3083ee2e 4400 spin_lock_init(&eb->refs_lock);
d1310b2e 4401 atomic_set(&eb->refs, 1);
0b32f4bb 4402 atomic_set(&eb->io_pages, 0);
727011e0 4403
b8dae313
DS
4404 /*
4405 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4406 */
4407 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4408 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4409 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4410
4411 return eb;
4412}
4413
815a51c7
JS
4414struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4415{
4416 unsigned long i;
4417 struct page *p;
4418 struct extent_buffer *new;
4419 unsigned long num_pages = num_extent_pages(src->start, src->len);
4420
9ec72677 4421 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4422 if (new == NULL)
4423 return NULL;
4424
4425 for (i = 0; i < num_pages; i++) {
9ec72677 4426 p = alloc_page(GFP_NOFS);
db7f3436
JB
4427 if (!p) {
4428 btrfs_release_extent_buffer(new);
4429 return NULL;
4430 }
815a51c7
JS
4431 attach_extent_buffer_page(new, p);
4432 WARN_ON(PageDirty(p));
4433 SetPageUptodate(p);
4434 new->pages[i] = p;
4435 }
4436
4437 copy_extent_buffer(new, src, 0, 0, src->len);
4438 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4439 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4440
4441 return new;
4442}
4443
4444struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4445{
4446 struct extent_buffer *eb;
4447 unsigned long num_pages = num_extent_pages(0, len);
4448 unsigned long i;
4449
9ec72677 4450 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4451 if (!eb)
4452 return NULL;
4453
4454 for (i = 0; i < num_pages; i++) {
9ec72677 4455 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4456 if (!eb->pages[i])
4457 goto err;
4458 }
4459 set_extent_buffer_uptodate(eb);
4460 btrfs_set_header_nritems(eb, 0);
4461 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4462
4463 return eb;
4464err:
84167d19
SB
4465 for (; i > 0; i--)
4466 __free_page(eb->pages[i - 1]);
815a51c7
JS
4467 __free_extent_buffer(eb);
4468 return NULL;
4469}
4470
0b32f4bb
JB
4471static void check_buffer_tree_ref(struct extent_buffer *eb)
4472{
242e18c7 4473 int refs;
0b32f4bb
JB
4474 /* the ref bit is tricky. We have to make sure it is set
4475 * if we have the buffer dirty. Otherwise the
4476 * code to free a buffer can end up dropping a dirty
4477 * page
4478 *
4479 * Once the ref bit is set, it won't go away while the
4480 * buffer is dirty or in writeback, and it also won't
4481 * go away while we have the reference count on the
4482 * eb bumped.
4483 *
4484 * We can't just set the ref bit without bumping the
4485 * ref on the eb because free_extent_buffer might
4486 * see the ref bit and try to clear it. If this happens
4487 * free_extent_buffer might end up dropping our original
4488 * ref by mistake and freeing the page before we are able
4489 * to add one more ref.
4490 *
4491 * So bump the ref count first, then set the bit. If someone
4492 * beat us to it, drop the ref we added.
4493 */
242e18c7
CM
4494 refs = atomic_read(&eb->refs);
4495 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4496 return;
4497
594831c4
JB
4498 spin_lock(&eb->refs_lock);
4499 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4500 atomic_inc(&eb->refs);
594831c4 4501 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4502}
4503
5df4235e
JB
4504static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4505{
4506 unsigned long num_pages, i;
4507
0b32f4bb
JB
4508 check_buffer_tree_ref(eb);
4509
5df4235e
JB
4510 num_pages = num_extent_pages(eb->start, eb->len);
4511 for (i = 0; i < num_pages; i++) {
4512 struct page *p = extent_buffer_page(eb, i);
4513 mark_page_accessed(p);
4514 }
4515}
4516
452c75c3
CS
4517struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4518 u64 start)
4519{
4520 struct extent_buffer *eb;
4521
4522 rcu_read_lock();
4523 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4524 if (eb && atomic_inc_not_zero(&eb->refs)) {
4525 rcu_read_unlock();
4526 mark_extent_buffer_accessed(eb);
4527 return eb;
4528 }
4529 rcu_read_unlock();
4530
4531 return NULL;
4532}
4533
d1310b2e 4534struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4535 u64 start, unsigned long len)
d1310b2e
CM
4536{
4537 unsigned long num_pages = num_extent_pages(start, len);
4538 unsigned long i;
4539 unsigned long index = start >> PAGE_CACHE_SHIFT;
4540 struct extent_buffer *eb;
6af118ce 4541 struct extent_buffer *exists = NULL;
d1310b2e
CM
4542 struct page *p;
4543 struct address_space *mapping = tree->mapping;
4544 int uptodate = 1;
19fe0a8b 4545 int ret;
d1310b2e 4546
452c75c3
CS
4547
4548 eb = find_extent_buffer(tree, start);
4549 if (eb)
6af118ce 4550 return eb;
6af118ce 4551
ba144192 4552 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4553 if (!eb)
d1310b2e
CM
4554 return NULL;
4555
727011e0 4556 for (i = 0; i < num_pages; i++, index++) {
a6591715 4557 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4558 if (!p)
6af118ce 4559 goto free_eb;
4f2de97a
JB
4560
4561 spin_lock(&mapping->private_lock);
4562 if (PagePrivate(p)) {
4563 /*
4564 * We could have already allocated an eb for this page
4565 * and attached one so lets see if we can get a ref on
4566 * the existing eb, and if we can we know it's good and
4567 * we can just return that one, else we know we can just
4568 * overwrite page->private.
4569 */
4570 exists = (struct extent_buffer *)p->private;
4571 if (atomic_inc_not_zero(&exists->refs)) {
4572 spin_unlock(&mapping->private_lock);
4573 unlock_page(p);
17de39ac 4574 page_cache_release(p);
5df4235e 4575 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4576 goto free_eb;
4577 }
4578
0b32f4bb 4579 /*
4f2de97a
JB
4580 * Do this so attach doesn't complain and we need to
4581 * drop the ref the old guy had.
4582 */
4583 ClearPagePrivate(p);
0b32f4bb 4584 WARN_ON(PageDirty(p));
4f2de97a 4585 page_cache_release(p);
d1310b2e 4586 }
4f2de97a
JB
4587 attach_extent_buffer_page(eb, p);
4588 spin_unlock(&mapping->private_lock);
0b32f4bb 4589 WARN_ON(PageDirty(p));
d1310b2e 4590 mark_page_accessed(p);
727011e0 4591 eb->pages[i] = p;
d1310b2e
CM
4592 if (!PageUptodate(p))
4593 uptodate = 0;
eb14ab8e
CM
4594
4595 /*
4596 * see below about how we avoid a nasty race with release page
4597 * and why we unlock later
4598 */
d1310b2e
CM
4599 }
4600 if (uptodate)
b4ce94de 4601 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4602again:
19fe0a8b
MX
4603 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4604 if (ret)
4605 goto free_eb;
4606
6af118ce 4607 spin_lock(&tree->buffer_lock);
19fe0a8b 4608 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
452c75c3
CS
4609 spin_unlock(&tree->buffer_lock);
4610 radix_tree_preload_end();
19fe0a8b 4611 if (ret == -EEXIST) {
452c75c3
CS
4612 exists = find_extent_buffer(tree, start);
4613 if (exists)
4614 goto free_eb;
4615 else
115391d2 4616 goto again;
6af118ce 4617 }
6af118ce 4618 /* add one reference for the tree */
0b32f4bb 4619 check_buffer_tree_ref(eb);
eb14ab8e
CM
4620
4621 /*
4622 * there is a race where release page may have
4623 * tried to find this extent buffer in the radix
4624 * but failed. It will tell the VM it is safe to
4625 * reclaim the, and it will clear the page private bit.
4626 * We must make sure to set the page private bit properly
4627 * after the extent buffer is in the radix tree so
4628 * it doesn't get lost
4629 */
727011e0
CM
4630 SetPageChecked(eb->pages[0]);
4631 for (i = 1; i < num_pages; i++) {
4632 p = extent_buffer_page(eb, i);
727011e0
CM
4633 ClearPageChecked(p);
4634 unlock_page(p);
4635 }
4636 unlock_page(eb->pages[0]);
d1310b2e
CM
4637 return eb;
4638
6af118ce 4639free_eb:
727011e0
CM
4640 for (i = 0; i < num_pages; i++) {
4641 if (eb->pages[i])
4642 unlock_page(eb->pages[i]);
4643 }
eb14ab8e 4644
17de39ac 4645 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4646 btrfs_release_extent_buffer(eb);
6af118ce 4647 return exists;
d1310b2e 4648}
d1310b2e 4649
3083ee2e
JB
4650static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4651{
4652 struct extent_buffer *eb =
4653 container_of(head, struct extent_buffer, rcu_head);
4654
4655 __free_extent_buffer(eb);
4656}
4657
3083ee2e 4658/* Expects to have eb->eb_lock already held */
f7a52a40 4659static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4660{
4661 WARN_ON(atomic_read(&eb->refs) == 0);
4662 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4663 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4664 spin_unlock(&eb->refs_lock);
4665 } else {
4666 struct extent_io_tree *tree = eb->tree;
3083ee2e 4667
815a51c7 4668 spin_unlock(&eb->refs_lock);
3083ee2e 4669
815a51c7
JS
4670 spin_lock(&tree->buffer_lock);
4671 radix_tree_delete(&tree->buffer,
4672 eb->start >> PAGE_CACHE_SHIFT);
4673 spin_unlock(&tree->buffer_lock);
4674 }
3083ee2e
JB
4675
4676 /* Should be safe to release our pages at this point */
4677 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4678 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4679 return 1;
3083ee2e
JB
4680 }
4681 spin_unlock(&eb->refs_lock);
e64860aa
JB
4682
4683 return 0;
3083ee2e
JB
4684}
4685
d1310b2e
CM
4686void free_extent_buffer(struct extent_buffer *eb)
4687{
242e18c7
CM
4688 int refs;
4689 int old;
d1310b2e
CM
4690 if (!eb)
4691 return;
4692
242e18c7
CM
4693 while (1) {
4694 refs = atomic_read(&eb->refs);
4695 if (refs <= 3)
4696 break;
4697 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4698 if (old == refs)
4699 return;
4700 }
4701
3083ee2e 4702 spin_lock(&eb->refs_lock);
815a51c7
JS
4703 if (atomic_read(&eb->refs) == 2 &&
4704 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4705 atomic_dec(&eb->refs);
4706
3083ee2e
JB
4707 if (atomic_read(&eb->refs) == 2 &&
4708 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4709 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4710 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4711 atomic_dec(&eb->refs);
4712
4713 /*
4714 * I know this is terrible, but it's temporary until we stop tracking
4715 * the uptodate bits and such for the extent buffers.
4716 */
f7a52a40 4717 release_extent_buffer(eb);
3083ee2e
JB
4718}
4719
4720void free_extent_buffer_stale(struct extent_buffer *eb)
4721{
4722 if (!eb)
d1310b2e
CM
4723 return;
4724
3083ee2e
JB
4725 spin_lock(&eb->refs_lock);
4726 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4727
0b32f4bb 4728 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4729 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4730 atomic_dec(&eb->refs);
f7a52a40 4731 release_extent_buffer(eb);
d1310b2e 4732}
d1310b2e 4733
1d4284bd 4734void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4735{
d1310b2e
CM
4736 unsigned long i;
4737 unsigned long num_pages;
4738 struct page *page;
4739
d1310b2e
CM
4740 num_pages = num_extent_pages(eb->start, eb->len);
4741
4742 for (i = 0; i < num_pages; i++) {
4743 page = extent_buffer_page(eb, i);
b9473439 4744 if (!PageDirty(page))
d2c3f4f6
CM
4745 continue;
4746
a61e6f29 4747 lock_page(page);
eb14ab8e
CM
4748 WARN_ON(!PagePrivate(page));
4749
d1310b2e 4750 clear_page_dirty_for_io(page);
0ee0fda0 4751 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4752 if (!PageDirty(page)) {
4753 radix_tree_tag_clear(&page->mapping->page_tree,
4754 page_index(page),
4755 PAGECACHE_TAG_DIRTY);
4756 }
0ee0fda0 4757 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4758 ClearPageError(page);
a61e6f29 4759 unlock_page(page);
d1310b2e 4760 }
0b32f4bb 4761 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4762}
d1310b2e 4763
0b32f4bb 4764int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4765{
4766 unsigned long i;
4767 unsigned long num_pages;
b9473439 4768 int was_dirty = 0;
d1310b2e 4769
0b32f4bb
JB
4770 check_buffer_tree_ref(eb);
4771
b9473439 4772 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4773
d1310b2e 4774 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4775 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4776 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4777
b9473439 4778 for (i = 0; i < num_pages; i++)
0b32f4bb 4779 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4780 return was_dirty;
d1310b2e 4781}
d1310b2e 4782
0b32f4bb 4783int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4784{
4785 unsigned long i;
4786 struct page *page;
4787 unsigned long num_pages;
4788
b4ce94de 4789 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4790 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4791 for (i = 0; i < num_pages; i++) {
4792 page = extent_buffer_page(eb, i);
33958dc6
CM
4793 if (page)
4794 ClearPageUptodate(page);
1259ab75
CM
4795 }
4796 return 0;
4797}
4798
0b32f4bb 4799int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4800{
4801 unsigned long i;
4802 struct page *page;
4803 unsigned long num_pages;
4804
0b32f4bb 4805 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4806 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4807 for (i = 0; i < num_pages; i++) {
4808 page = extent_buffer_page(eb, i);
d1310b2e
CM
4809 SetPageUptodate(page);
4810 }
4811 return 0;
4812}
d1310b2e 4813
0b32f4bb 4814int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4815{
0b32f4bb 4816 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4817}
d1310b2e
CM
4818
4819int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4820 struct extent_buffer *eb, u64 start, int wait,
f188591e 4821 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4822{
4823 unsigned long i;
4824 unsigned long start_i;
4825 struct page *page;
4826 int err;
4827 int ret = 0;
ce9adaa5
CM
4828 int locked_pages = 0;
4829 int all_uptodate = 1;
d1310b2e 4830 unsigned long num_pages;
727011e0 4831 unsigned long num_reads = 0;
a86c12c7 4832 struct bio *bio = NULL;
c8b97818 4833 unsigned long bio_flags = 0;
a86c12c7 4834
b4ce94de 4835 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4836 return 0;
4837
d1310b2e
CM
4838 if (start) {
4839 WARN_ON(start < eb->start);
4840 start_i = (start >> PAGE_CACHE_SHIFT) -
4841 (eb->start >> PAGE_CACHE_SHIFT);
4842 } else {
4843 start_i = 0;
4844 }
4845
4846 num_pages = num_extent_pages(eb->start, eb->len);
4847 for (i = start_i; i < num_pages; i++) {
4848 page = extent_buffer_page(eb, i);
bb82ab88 4849 if (wait == WAIT_NONE) {
2db04966 4850 if (!trylock_page(page))
ce9adaa5 4851 goto unlock_exit;
d1310b2e
CM
4852 } else {
4853 lock_page(page);
4854 }
ce9adaa5 4855 locked_pages++;
727011e0
CM
4856 if (!PageUptodate(page)) {
4857 num_reads++;
ce9adaa5 4858 all_uptodate = 0;
727011e0 4859 }
ce9adaa5
CM
4860 }
4861 if (all_uptodate) {
4862 if (start_i == 0)
b4ce94de 4863 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4864 goto unlock_exit;
4865 }
4866
ea466794 4867 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4868 eb->read_mirror = 0;
0b32f4bb 4869 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4870 for (i = start_i; i < num_pages; i++) {
4871 page = extent_buffer_page(eb, i);
ce9adaa5 4872 if (!PageUptodate(page)) {
f188591e 4873 ClearPageError(page);
a86c12c7 4874 err = __extent_read_full_page(tree, page,
f188591e 4875 get_extent, &bio,
d4c7ca86
JB
4876 mirror_num, &bio_flags,
4877 READ | REQ_META);
d397712b 4878 if (err)
d1310b2e 4879 ret = err;
d1310b2e
CM
4880 } else {
4881 unlock_page(page);
4882 }
4883 }
4884
355808c2 4885 if (bio) {
d4c7ca86
JB
4886 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4887 bio_flags);
79787eaa
JM
4888 if (err)
4889 return err;
355808c2 4890 }
a86c12c7 4891
bb82ab88 4892 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4893 return ret;
d397712b 4894
d1310b2e
CM
4895 for (i = start_i; i < num_pages; i++) {
4896 page = extent_buffer_page(eb, i);
4897 wait_on_page_locked(page);
d397712b 4898 if (!PageUptodate(page))
d1310b2e 4899 ret = -EIO;
d1310b2e 4900 }
d397712b 4901
d1310b2e 4902 return ret;
ce9adaa5
CM
4903
4904unlock_exit:
4905 i = start_i;
d397712b 4906 while (locked_pages > 0) {
ce9adaa5
CM
4907 page = extent_buffer_page(eb, i);
4908 i++;
4909 unlock_page(page);
4910 locked_pages--;
4911 }
4912 return ret;
d1310b2e 4913}
d1310b2e
CM
4914
4915void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4916 unsigned long start,
4917 unsigned long len)
4918{
4919 size_t cur;
4920 size_t offset;
4921 struct page *page;
4922 char *kaddr;
4923 char *dst = (char *)dstv;
4924 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4925 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4926
4927 WARN_ON(start > eb->len);
4928 WARN_ON(start + len > eb->start + eb->len);
4929
778746b5 4930 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4931
d397712b 4932 while (len > 0) {
d1310b2e 4933 page = extent_buffer_page(eb, i);
d1310b2e
CM
4934
4935 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4936 kaddr = page_address(page);
d1310b2e 4937 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4938
4939 dst += cur;
4940 len -= cur;
4941 offset = 0;
4942 i++;
4943 }
4944}
d1310b2e
CM
4945
4946int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4947 unsigned long min_len, char **map,
d1310b2e 4948 unsigned long *map_start,
a6591715 4949 unsigned long *map_len)
d1310b2e
CM
4950{
4951 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4952 char *kaddr;
4953 struct page *p;
4954 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4955 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4956 unsigned long end_i = (start_offset + start + min_len - 1) >>
4957 PAGE_CACHE_SHIFT;
4958
4959 if (i != end_i)
4960 return -EINVAL;
4961
4962 if (i == 0) {
4963 offset = start_offset;
4964 *map_start = 0;
4965 } else {
4966 offset = 0;
4967 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4968 }
d397712b 4969
d1310b2e 4970 if (start + min_len > eb->len) {
31b1a2bd 4971 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
4972 "wanted %lu %lu\n",
4973 eb->start, eb->len, start, min_len);
85026533 4974 return -EINVAL;
d1310b2e
CM
4975 }
4976
4977 p = extent_buffer_page(eb, i);
a6591715 4978 kaddr = page_address(p);
d1310b2e
CM
4979 *map = kaddr + offset;
4980 *map_len = PAGE_CACHE_SIZE - offset;
4981 return 0;
4982}
d1310b2e 4983
d1310b2e
CM
4984int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4985 unsigned long start,
4986 unsigned long len)
4987{
4988 size_t cur;
4989 size_t offset;
4990 struct page *page;
4991 char *kaddr;
4992 char *ptr = (char *)ptrv;
4993 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4994 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4995 int ret = 0;
4996
4997 WARN_ON(start > eb->len);
4998 WARN_ON(start + len > eb->start + eb->len);
4999
778746b5 5000 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5001
d397712b 5002 while (len > 0) {
d1310b2e 5003 page = extent_buffer_page(eb, i);
d1310b2e
CM
5004
5005 cur = min(len, (PAGE_CACHE_SIZE - offset));
5006
a6591715 5007 kaddr = page_address(page);
d1310b2e 5008 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5009 if (ret)
5010 break;
5011
5012 ptr += cur;
5013 len -= cur;
5014 offset = 0;
5015 i++;
5016 }
5017 return ret;
5018}
d1310b2e
CM
5019
5020void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5021 unsigned long start, unsigned long len)
5022{
5023 size_t cur;
5024 size_t offset;
5025 struct page *page;
5026 char *kaddr;
5027 char *src = (char *)srcv;
5028 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5029 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5030
5031 WARN_ON(start > eb->len);
5032 WARN_ON(start + len > eb->start + eb->len);
5033
778746b5 5034 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5035
d397712b 5036 while (len > 0) {
d1310b2e
CM
5037 page = extent_buffer_page(eb, i);
5038 WARN_ON(!PageUptodate(page));
5039
5040 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5041 kaddr = page_address(page);
d1310b2e 5042 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5043
5044 src += cur;
5045 len -= cur;
5046 offset = 0;
5047 i++;
5048 }
5049}
d1310b2e
CM
5050
5051void memset_extent_buffer(struct extent_buffer *eb, char c,
5052 unsigned long start, unsigned long len)
5053{
5054 size_t cur;
5055 size_t offset;
5056 struct page *page;
5057 char *kaddr;
5058 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5059 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5060
5061 WARN_ON(start > eb->len);
5062 WARN_ON(start + len > eb->start + eb->len);
5063
778746b5 5064 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5065
d397712b 5066 while (len > 0) {
d1310b2e
CM
5067 page = extent_buffer_page(eb, i);
5068 WARN_ON(!PageUptodate(page));
5069
5070 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5071 kaddr = page_address(page);
d1310b2e 5072 memset(kaddr + offset, c, cur);
d1310b2e
CM
5073
5074 len -= cur;
5075 offset = 0;
5076 i++;
5077 }
5078}
d1310b2e
CM
5079
5080void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5081 unsigned long dst_offset, unsigned long src_offset,
5082 unsigned long len)
5083{
5084 u64 dst_len = dst->len;
5085 size_t cur;
5086 size_t offset;
5087 struct page *page;
5088 char *kaddr;
5089 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5090 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5091
5092 WARN_ON(src->len != dst_len);
5093
5094 offset = (start_offset + dst_offset) &
778746b5 5095 (PAGE_CACHE_SIZE - 1);
d1310b2e 5096
d397712b 5097 while (len > 0) {
d1310b2e
CM
5098 page = extent_buffer_page(dst, i);
5099 WARN_ON(!PageUptodate(page));
5100
5101 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5102
a6591715 5103 kaddr = page_address(page);
d1310b2e 5104 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5105
5106 src_offset += cur;
5107 len -= cur;
5108 offset = 0;
5109 i++;
5110 }
5111}
d1310b2e 5112
3387206f
ST
5113static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5114{
5115 unsigned long distance = (src > dst) ? src - dst : dst - src;
5116 return distance < len;
5117}
5118
d1310b2e
CM
5119static void copy_pages(struct page *dst_page, struct page *src_page,
5120 unsigned long dst_off, unsigned long src_off,
5121 unsigned long len)
5122{
a6591715 5123 char *dst_kaddr = page_address(dst_page);
d1310b2e 5124 char *src_kaddr;
727011e0 5125 int must_memmove = 0;
d1310b2e 5126
3387206f 5127 if (dst_page != src_page) {
a6591715 5128 src_kaddr = page_address(src_page);
3387206f 5129 } else {
d1310b2e 5130 src_kaddr = dst_kaddr;
727011e0
CM
5131 if (areas_overlap(src_off, dst_off, len))
5132 must_memmove = 1;
3387206f 5133 }
d1310b2e 5134
727011e0
CM
5135 if (must_memmove)
5136 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5137 else
5138 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5139}
5140
5141void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5142 unsigned long src_offset, unsigned long len)
5143{
5144 size_t cur;
5145 size_t dst_off_in_page;
5146 size_t src_off_in_page;
5147 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5148 unsigned long dst_i;
5149 unsigned long src_i;
5150
5151 if (src_offset + len > dst->len) {
d397712b
CM
5152 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5153 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5154 BUG_ON(1);
5155 }
5156 if (dst_offset + len > dst->len) {
d397712b
CM
5157 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5158 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5159 BUG_ON(1);
5160 }
5161
d397712b 5162 while (len > 0) {
d1310b2e 5163 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5164 (PAGE_CACHE_SIZE - 1);
d1310b2e 5165 src_off_in_page = (start_offset + src_offset) &
778746b5 5166 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5167
5168 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5169 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5170
5171 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5172 src_off_in_page));
5173 cur = min_t(unsigned long, cur,
5174 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5175
5176 copy_pages(extent_buffer_page(dst, dst_i),
5177 extent_buffer_page(dst, src_i),
5178 dst_off_in_page, src_off_in_page, cur);
5179
5180 src_offset += cur;
5181 dst_offset += cur;
5182 len -= cur;
5183 }
5184}
d1310b2e
CM
5185
5186void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5187 unsigned long src_offset, unsigned long len)
5188{
5189 size_t cur;
5190 size_t dst_off_in_page;
5191 size_t src_off_in_page;
5192 unsigned long dst_end = dst_offset + len - 1;
5193 unsigned long src_end = src_offset + len - 1;
5194 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5195 unsigned long dst_i;
5196 unsigned long src_i;
5197
5198 if (src_offset + len > dst->len) {
d397712b
CM
5199 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5200 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5201 BUG_ON(1);
5202 }
5203 if (dst_offset + len > dst->len) {
d397712b
CM
5204 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5205 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5206 BUG_ON(1);
5207 }
727011e0 5208 if (dst_offset < src_offset) {
d1310b2e
CM
5209 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5210 return;
5211 }
d397712b 5212 while (len > 0) {
d1310b2e
CM
5213 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5214 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5215
5216 dst_off_in_page = (start_offset + dst_end) &
778746b5 5217 (PAGE_CACHE_SIZE - 1);
d1310b2e 5218 src_off_in_page = (start_offset + src_end) &
778746b5 5219 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5220
5221 cur = min_t(unsigned long, len, src_off_in_page + 1);
5222 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5223 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5224 extent_buffer_page(dst, src_i),
5225 dst_off_in_page - cur + 1,
5226 src_off_in_page - cur + 1, cur);
5227
5228 dst_end -= cur;
5229 src_end -= cur;
5230 len -= cur;
5231 }
5232}
6af118ce 5233
f7a52a40 5234int try_release_extent_buffer(struct page *page)
19fe0a8b 5235{
6af118ce 5236 struct extent_buffer *eb;
6af118ce 5237
3083ee2e
JB
5238 /*
5239 * We need to make sure noboody is attaching this page to an eb right
5240 * now.
5241 */
5242 spin_lock(&page->mapping->private_lock);
5243 if (!PagePrivate(page)) {
5244 spin_unlock(&page->mapping->private_lock);
4f2de97a 5245 return 1;
45f49bce 5246 }
6af118ce 5247
3083ee2e
JB
5248 eb = (struct extent_buffer *)page->private;
5249 BUG_ON(!eb);
19fe0a8b
MX
5250
5251 /*
3083ee2e
JB
5252 * This is a little awful but should be ok, we need to make sure that
5253 * the eb doesn't disappear out from under us while we're looking at
5254 * this page.
19fe0a8b 5255 */
3083ee2e 5256 spin_lock(&eb->refs_lock);
0b32f4bb 5257 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5258 spin_unlock(&eb->refs_lock);
5259 spin_unlock(&page->mapping->private_lock);
5260 return 0;
b9473439 5261 }
3083ee2e 5262 spin_unlock(&page->mapping->private_lock);
897ca6e9 5263
19fe0a8b 5264 /*
3083ee2e
JB
5265 * If tree ref isn't set then we know the ref on this eb is a real ref,
5266 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5267 */
3083ee2e
JB
5268 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5269 spin_unlock(&eb->refs_lock);
5270 return 0;
b9473439 5271 }
19fe0a8b 5272
f7a52a40 5273 return release_extent_buffer(eb);
6af118ce 5274}