Btrfs: batch the extent state operation when reading pages
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79}
8d599ae1
DS
80
81#define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 struct inode *inode, u64 start, u64 end)
85{
86 u64 isize = i_size_read(inode);
87
88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 caller,
92 (unsigned long long)btrfs_ino(inode),
93 (unsigned long long)isize,
94 (unsigned long long)start,
95 (unsigned long long)end);
96 }
97}
6d49ba1b
ES
98#else
99#define btrfs_leak_debug_add(new, head) do {} while (0)
100#define btrfs_leak_debug_del(entry) do {} while (0)
101#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 102#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 103#endif
d1310b2e 104
d1310b2e
CM
105#define BUFFER_LRU_MAX 64
106
107struct tree_entry {
108 u64 start;
109 u64 end;
d1310b2e
CM
110 struct rb_node rb_node;
111};
112
113struct extent_page_data {
114 struct bio *bio;
115 struct extent_io_tree *tree;
116 get_extent_t *get_extent;
de0022b9 117 unsigned long bio_flags;
771ed689
CM
118
119 /* tells writepage not to lock the state bits for this range
120 * it still does the unlocking
121 */
ffbd517d
CM
122 unsigned int extent_locked:1;
123
124 /* tells the submit_bio code to use a WRITE_SYNC */
125 unsigned int sync_io:1;
d1310b2e
CM
126};
127
0b32f4bb 128static noinline void flush_write_bio(void *data);
c2d904e0
JM
129static inline struct btrfs_fs_info *
130tree_fs_info(struct extent_io_tree *tree)
131{
132 return btrfs_sb(tree->mapping->host->i_sb);
133}
0b32f4bb 134
d1310b2e
CM
135int __init extent_io_init(void)
136{
837e1972 137 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
138 sizeof(struct extent_state), 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
140 if (!extent_state_cache)
141 return -ENOMEM;
142
837e1972 143 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
144 sizeof(struct extent_buffer), 0,
145 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
146 if (!extent_buffer_cache)
147 goto free_state_cache;
9be3395b
CM
148
149 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 offsetof(struct btrfs_io_bio, bio));
151 if (!btrfs_bioset)
152 goto free_buffer_cache;
d1310b2e
CM
153 return 0;
154
9be3395b
CM
155free_buffer_cache:
156 kmem_cache_destroy(extent_buffer_cache);
157 extent_buffer_cache = NULL;
158
d1310b2e
CM
159free_state_cache:
160 kmem_cache_destroy(extent_state_cache);
9be3395b 161 extent_state_cache = NULL;
d1310b2e
CM
162 return -ENOMEM;
163}
164
165void extent_io_exit(void)
166{
6d49ba1b 167 btrfs_leak_debug_check();
8c0a8537
KS
168
169 /*
170 * Make sure all delayed rcu free are flushed before we
171 * destroy caches.
172 */
173 rcu_barrier();
d1310b2e
CM
174 if (extent_state_cache)
175 kmem_cache_destroy(extent_state_cache);
176 if (extent_buffer_cache)
177 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
178 if (btrfs_bioset)
179 bioset_free(btrfs_bioset);
d1310b2e
CM
180}
181
182void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 183 struct address_space *mapping)
d1310b2e 184{
6bef4d31 185 tree->state = RB_ROOT;
19fe0a8b 186 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
187 tree->ops = NULL;
188 tree->dirty_bytes = 0;
70dec807 189 spin_lock_init(&tree->lock);
6af118ce 190 spin_lock_init(&tree->buffer_lock);
d1310b2e 191 tree->mapping = mapping;
d1310b2e 192}
d1310b2e 193
b2950863 194static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
195{
196 struct extent_state *state;
d1310b2e
CM
197
198 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 199 if (!state)
d1310b2e
CM
200 return state;
201 state->state = 0;
d1310b2e 202 state->private = 0;
70dec807 203 state->tree = NULL;
6d49ba1b 204 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
205 atomic_set(&state->refs, 1);
206 init_waitqueue_head(&state->wq);
143bede5 207 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
208 return state;
209}
d1310b2e 210
4845e44f 211void free_extent_state(struct extent_state *state)
d1310b2e 212{
d1310b2e
CM
213 if (!state)
214 return;
215 if (atomic_dec_and_test(&state->refs)) {
70dec807 216 WARN_ON(state->tree);
6d49ba1b 217 btrfs_leak_debug_del(&state->leak_list);
143bede5 218 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
219 kmem_cache_free(extent_state_cache, state);
220 }
221}
d1310b2e
CM
222
223static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 struct rb_node *node)
225{
d397712b
CM
226 struct rb_node **p = &root->rb_node;
227 struct rb_node *parent = NULL;
d1310b2e
CM
228 struct tree_entry *entry;
229
d397712b 230 while (*p) {
d1310b2e
CM
231 parent = *p;
232 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234 if (offset < entry->start)
235 p = &(*p)->rb_left;
236 else if (offset > entry->end)
237 p = &(*p)->rb_right;
238 else
239 return parent;
240 }
241
d1310b2e
CM
242 rb_link_node(node, parent, p);
243 rb_insert_color(node, root);
244 return NULL;
245}
246
80ea96b1 247static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
248 struct rb_node **prev_ret,
249 struct rb_node **next_ret)
250{
80ea96b1 251 struct rb_root *root = &tree->state;
d397712b 252 struct rb_node *n = root->rb_node;
d1310b2e
CM
253 struct rb_node *prev = NULL;
254 struct rb_node *orig_prev = NULL;
255 struct tree_entry *entry;
256 struct tree_entry *prev_entry = NULL;
257
d397712b 258 while (n) {
d1310b2e
CM
259 entry = rb_entry(n, struct tree_entry, rb_node);
260 prev = n;
261 prev_entry = entry;
262
263 if (offset < entry->start)
264 n = n->rb_left;
265 else if (offset > entry->end)
266 n = n->rb_right;
d397712b 267 else
d1310b2e
CM
268 return n;
269 }
270
271 if (prev_ret) {
272 orig_prev = prev;
d397712b 273 while (prev && offset > prev_entry->end) {
d1310b2e
CM
274 prev = rb_next(prev);
275 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 }
277 *prev_ret = prev;
278 prev = orig_prev;
279 }
280
281 if (next_ret) {
282 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 283 while (prev && offset < prev_entry->start) {
d1310b2e
CM
284 prev = rb_prev(prev);
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 }
287 *next_ret = prev;
288 }
289 return NULL;
290}
291
80ea96b1
CM
292static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 u64 offset)
d1310b2e 294{
70dec807 295 struct rb_node *prev = NULL;
d1310b2e 296 struct rb_node *ret;
70dec807 297
80ea96b1 298 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 299 if (!ret)
d1310b2e
CM
300 return prev;
301 return ret;
302}
303
9ed74f2d
JB
304static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 struct extent_state *other)
306{
307 if (tree->ops && tree->ops->merge_extent_hook)
308 tree->ops->merge_extent_hook(tree->mapping->host, new,
309 other);
310}
311
d1310b2e
CM
312/*
313 * utility function to look for merge candidates inside a given range.
314 * Any extents with matching state are merged together into a single
315 * extent in the tree. Extents with EXTENT_IO in their state field
316 * are not merged because the end_io handlers need to be able to do
317 * operations on them without sleeping (or doing allocations/splits).
318 *
319 * This should be called with the tree lock held.
320 */
1bf85046
JM
321static void merge_state(struct extent_io_tree *tree,
322 struct extent_state *state)
d1310b2e
CM
323{
324 struct extent_state *other;
325 struct rb_node *other_node;
326
5b21f2ed 327 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 328 return;
d1310b2e
CM
329
330 other_node = rb_prev(&state->rb_node);
331 if (other_node) {
332 other = rb_entry(other_node, struct extent_state, rb_node);
333 if (other->end == state->start - 1 &&
334 other->state == state->state) {
9ed74f2d 335 merge_cb(tree, state, other);
d1310b2e 336 state->start = other->start;
70dec807 337 other->tree = NULL;
d1310b2e
CM
338 rb_erase(&other->rb_node, &tree->state);
339 free_extent_state(other);
340 }
341 }
342 other_node = rb_next(&state->rb_node);
343 if (other_node) {
344 other = rb_entry(other_node, struct extent_state, rb_node);
345 if (other->start == state->end + 1 &&
346 other->state == state->state) {
9ed74f2d 347 merge_cb(tree, state, other);
df98b6e2
JB
348 state->end = other->end;
349 other->tree = NULL;
350 rb_erase(&other->rb_node, &tree->state);
351 free_extent_state(other);
d1310b2e
CM
352 }
353 }
d1310b2e
CM
354}
355
1bf85046 356static void set_state_cb(struct extent_io_tree *tree,
41074888 357 struct extent_state *state, unsigned long *bits)
291d673e 358{
1bf85046
JM
359 if (tree->ops && tree->ops->set_bit_hook)
360 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
361}
362
363static void clear_state_cb(struct extent_io_tree *tree,
41074888 364 struct extent_state *state, unsigned long *bits)
291d673e 365{
9ed74f2d
JB
366 if (tree->ops && tree->ops->clear_bit_hook)
367 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
368}
369
3150b699 370static void set_state_bits(struct extent_io_tree *tree,
41074888 371 struct extent_state *state, unsigned long *bits);
3150b699 372
d1310b2e
CM
373/*
374 * insert an extent_state struct into the tree. 'bits' are set on the
375 * struct before it is inserted.
376 *
377 * This may return -EEXIST if the extent is already there, in which case the
378 * state struct is freed.
379 *
380 * The tree lock is not taken internally. This is a utility function and
381 * probably isn't what you want to call (see set/clear_extent_bit).
382 */
383static int insert_state(struct extent_io_tree *tree,
384 struct extent_state *state, u64 start, u64 end,
41074888 385 unsigned long *bits)
d1310b2e
CM
386{
387 struct rb_node *node;
388
31b1a2bd
JL
389 if (end < start)
390 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
d397712b
CM
391 (unsigned long long)end,
392 (unsigned long long)start);
d1310b2e
CM
393 state->start = start;
394 state->end = end;
9ed74f2d 395
3150b699
XG
396 set_state_bits(tree, state, bits);
397
d1310b2e
CM
398 node = tree_insert(&tree->state, end, &state->rb_node);
399 if (node) {
400 struct extent_state *found;
401 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
402 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 "%llu %llu\n", (unsigned long long)found->start,
404 (unsigned long long)found->end,
405 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
406 return -EEXIST;
407 }
70dec807 408 state->tree = tree;
d1310b2e
CM
409 merge_state(tree, state);
410 return 0;
411}
412
1bf85046 413static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
414 u64 split)
415{
416 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 417 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
418}
419
d1310b2e
CM
420/*
421 * split a given extent state struct in two, inserting the preallocated
422 * struct 'prealloc' as the newly created second half. 'split' indicates an
423 * offset inside 'orig' where it should be split.
424 *
425 * Before calling,
426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
427 * are two extent state structs in the tree:
428 * prealloc: [orig->start, split - 1]
429 * orig: [ split, orig->end ]
430 *
431 * The tree locks are not taken by this function. They need to be held
432 * by the caller.
433 */
434static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 struct extent_state *prealloc, u64 split)
436{
437 struct rb_node *node;
9ed74f2d
JB
438
439 split_cb(tree, orig, split);
440
d1310b2e
CM
441 prealloc->start = orig->start;
442 prealloc->end = split - 1;
443 prealloc->state = orig->state;
444 orig->start = split;
445
446 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 if (node) {
d1310b2e
CM
448 free_extent_state(prealloc);
449 return -EEXIST;
450 }
70dec807 451 prealloc->tree = tree;
d1310b2e
CM
452 return 0;
453}
454
cdc6a395
LZ
455static struct extent_state *next_state(struct extent_state *state)
456{
457 struct rb_node *next = rb_next(&state->rb_node);
458 if (next)
459 return rb_entry(next, struct extent_state, rb_node);
460 else
461 return NULL;
462}
463
d1310b2e
CM
464/*
465 * utility function to clear some bits in an extent state struct.
1b303fc0 466 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
467 *
468 * If no bits are set on the state struct after clearing things, the
469 * struct is freed and removed from the tree
470 */
cdc6a395
LZ
471static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 struct extent_state *state,
41074888 473 unsigned long *bits, int wake)
d1310b2e 474{
cdc6a395 475 struct extent_state *next;
41074888 476 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 477
0ca1f7ce 478 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
479 u64 range = state->end - state->start + 1;
480 WARN_ON(range > tree->dirty_bytes);
481 tree->dirty_bytes -= range;
482 }
291d673e 483 clear_state_cb(tree, state, bits);
32c00aff 484 state->state &= ~bits_to_clear;
d1310b2e
CM
485 if (wake)
486 wake_up(&state->wq);
0ca1f7ce 487 if (state->state == 0) {
cdc6a395 488 next = next_state(state);
70dec807 489 if (state->tree) {
d1310b2e 490 rb_erase(&state->rb_node, &tree->state);
70dec807 491 state->tree = NULL;
d1310b2e
CM
492 free_extent_state(state);
493 } else {
494 WARN_ON(1);
495 }
496 } else {
497 merge_state(tree, state);
cdc6a395 498 next = next_state(state);
d1310b2e 499 }
cdc6a395 500 return next;
d1310b2e
CM
501}
502
8233767a
XG
503static struct extent_state *
504alloc_extent_state_atomic(struct extent_state *prealloc)
505{
506 if (!prealloc)
507 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509 return prealloc;
510}
511
48a3b636 512static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
513{
514 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 "Extent tree was modified by another "
516 "thread while locked.");
517}
518
d1310b2e
CM
519/*
520 * clear some bits on a range in the tree. This may require splitting
521 * or inserting elements in the tree, so the gfp mask is used to
522 * indicate which allocations or sleeping are allowed.
523 *
524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525 * the given range from the tree regardless of state (ie for truncate).
526 *
527 * the range [start, end] is inclusive.
528 *
6763af84 529 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
530 */
531int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 532 unsigned long bits, int wake, int delete,
2c64c53d
CM
533 struct extent_state **cached_state,
534 gfp_t mask)
d1310b2e
CM
535{
536 struct extent_state *state;
2c64c53d 537 struct extent_state *cached;
d1310b2e
CM
538 struct extent_state *prealloc = NULL;
539 struct rb_node *node;
5c939df5 540 u64 last_end;
d1310b2e 541 int err;
2ac55d41 542 int clear = 0;
d1310b2e 543
8d599ae1
DS
544 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
7ee9e440
JB
546 if (bits & EXTENT_DELALLOC)
547 bits |= EXTENT_NORESERVE;
548
0ca1f7ce
YZ
549 if (delete)
550 bits |= ~EXTENT_CTLBITS;
551 bits |= EXTENT_FIRST_DELALLOC;
552
2ac55d41
JB
553 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 clear = 1;
d1310b2e
CM
555again:
556 if (!prealloc && (mask & __GFP_WAIT)) {
557 prealloc = alloc_extent_state(mask);
558 if (!prealloc)
559 return -ENOMEM;
560 }
561
cad321ad 562 spin_lock(&tree->lock);
2c64c53d
CM
563 if (cached_state) {
564 cached = *cached_state;
2ac55d41
JB
565
566 if (clear) {
567 *cached_state = NULL;
568 cached_state = NULL;
569 }
570
df98b6e2
JB
571 if (cached && cached->tree && cached->start <= start &&
572 cached->end > start) {
2ac55d41
JB
573 if (clear)
574 atomic_dec(&cached->refs);
2c64c53d 575 state = cached;
42daec29 576 goto hit_next;
2c64c53d 577 }
2ac55d41
JB
578 if (clear)
579 free_extent_state(cached);
2c64c53d 580 }
d1310b2e
CM
581 /*
582 * this search will find the extents that end after
583 * our range starts
584 */
80ea96b1 585 node = tree_search(tree, start);
d1310b2e
CM
586 if (!node)
587 goto out;
588 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 589hit_next:
d1310b2e
CM
590 if (state->start > end)
591 goto out;
592 WARN_ON(state->end < start);
5c939df5 593 last_end = state->end;
d1310b2e 594
0449314a 595 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
596 if (!(state->state & bits)) {
597 state = next_state(state);
0449314a 598 goto next;
cdc6a395 599 }
0449314a 600
d1310b2e
CM
601 /*
602 * | ---- desired range ---- |
603 * | state | or
604 * | ------------- state -------------- |
605 *
606 * We need to split the extent we found, and may flip
607 * bits on second half.
608 *
609 * If the extent we found extends past our range, we
610 * just split and search again. It'll get split again
611 * the next time though.
612 *
613 * If the extent we found is inside our range, we clear
614 * the desired bit on it.
615 */
616
617 if (state->start < start) {
8233767a
XG
618 prealloc = alloc_extent_state_atomic(prealloc);
619 BUG_ON(!prealloc);
d1310b2e 620 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
621 if (err)
622 extent_io_tree_panic(tree, err);
623
d1310b2e
CM
624 prealloc = NULL;
625 if (err)
626 goto out;
627 if (state->end <= end) {
d1ac6e41
LB
628 state = clear_state_bit(tree, state, &bits, wake);
629 goto next;
d1310b2e
CM
630 }
631 goto search_again;
632 }
633 /*
634 * | ---- desired range ---- |
635 * | state |
636 * We need to split the extent, and clear the bit
637 * on the first half
638 */
639 if (state->start <= end && state->end > end) {
8233767a
XG
640 prealloc = alloc_extent_state_atomic(prealloc);
641 BUG_ON(!prealloc);
d1310b2e 642 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
643 if (err)
644 extent_io_tree_panic(tree, err);
645
d1310b2e
CM
646 if (wake)
647 wake_up(&state->wq);
42daec29 648
6763af84 649 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 650
d1310b2e
CM
651 prealloc = NULL;
652 goto out;
653 }
42daec29 654
cdc6a395 655 state = clear_state_bit(tree, state, &bits, wake);
0449314a 656next:
5c939df5
YZ
657 if (last_end == (u64)-1)
658 goto out;
659 start = last_end + 1;
cdc6a395 660 if (start <= end && state && !need_resched())
692e5759 661 goto hit_next;
d1310b2e
CM
662 goto search_again;
663
664out:
cad321ad 665 spin_unlock(&tree->lock);
d1310b2e
CM
666 if (prealloc)
667 free_extent_state(prealloc);
668
6763af84 669 return 0;
d1310b2e
CM
670
671search_again:
672 if (start > end)
673 goto out;
cad321ad 674 spin_unlock(&tree->lock);
d1310b2e
CM
675 if (mask & __GFP_WAIT)
676 cond_resched();
677 goto again;
678}
d1310b2e 679
143bede5
JM
680static void wait_on_state(struct extent_io_tree *tree,
681 struct extent_state *state)
641f5219
CH
682 __releases(tree->lock)
683 __acquires(tree->lock)
d1310b2e
CM
684{
685 DEFINE_WAIT(wait);
686 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 687 spin_unlock(&tree->lock);
d1310b2e 688 schedule();
cad321ad 689 spin_lock(&tree->lock);
d1310b2e 690 finish_wait(&state->wq, &wait);
d1310b2e
CM
691}
692
693/*
694 * waits for one or more bits to clear on a range in the state tree.
695 * The range [start, end] is inclusive.
696 * The tree lock is taken by this function
697 */
41074888
DS
698static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 unsigned long bits)
d1310b2e
CM
700{
701 struct extent_state *state;
702 struct rb_node *node;
703
8d599ae1
DS
704 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
cad321ad 706 spin_lock(&tree->lock);
d1310b2e
CM
707again:
708 while (1) {
709 /*
710 * this search will find all the extents that end after
711 * our range starts
712 */
80ea96b1 713 node = tree_search(tree, start);
d1310b2e
CM
714 if (!node)
715 break;
716
717 state = rb_entry(node, struct extent_state, rb_node);
718
719 if (state->start > end)
720 goto out;
721
722 if (state->state & bits) {
723 start = state->start;
724 atomic_inc(&state->refs);
725 wait_on_state(tree, state);
726 free_extent_state(state);
727 goto again;
728 }
729 start = state->end + 1;
730
731 if (start > end)
732 break;
733
ded91f08 734 cond_resched_lock(&tree->lock);
d1310b2e
CM
735 }
736out:
cad321ad 737 spin_unlock(&tree->lock);
d1310b2e 738}
d1310b2e 739
1bf85046 740static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 741 struct extent_state *state,
41074888 742 unsigned long *bits)
d1310b2e 743{
41074888 744 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 745
1bf85046 746 set_state_cb(tree, state, bits);
0ca1f7ce 747 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
748 u64 range = state->end - state->start + 1;
749 tree->dirty_bytes += range;
750 }
0ca1f7ce 751 state->state |= bits_to_set;
d1310b2e
CM
752}
753
2c64c53d
CM
754static void cache_state(struct extent_state *state,
755 struct extent_state **cached_ptr)
756{
757 if (cached_ptr && !(*cached_ptr)) {
758 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 *cached_ptr = state;
760 atomic_inc(&state->refs);
761 }
762 }
763}
764
d1310b2e 765/*
1edbb734
CM
766 * set some bits on a range in the tree. This may require allocations or
767 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 768 *
1edbb734
CM
769 * If any of the exclusive bits are set, this will fail with -EEXIST if some
770 * part of the range already has the desired bits set. The start of the
771 * existing range is returned in failed_start in this case.
d1310b2e 772 *
1edbb734 773 * [start, end] is inclusive This takes the tree lock.
d1310b2e 774 */
1edbb734 775
3fbe5c02
JM
776static int __must_check
777__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
778 unsigned long bits, unsigned long exclusive_bits,
779 u64 *failed_start, struct extent_state **cached_state,
780 gfp_t mask)
d1310b2e
CM
781{
782 struct extent_state *state;
783 struct extent_state *prealloc = NULL;
784 struct rb_node *node;
d1310b2e 785 int err = 0;
d1310b2e
CM
786 u64 last_start;
787 u64 last_end;
42daec29 788
8d599ae1
DS
789 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
790
0ca1f7ce 791 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
792again:
793 if (!prealloc && (mask & __GFP_WAIT)) {
794 prealloc = alloc_extent_state(mask);
8233767a 795 BUG_ON(!prealloc);
d1310b2e
CM
796 }
797
cad321ad 798 spin_lock(&tree->lock);
9655d298
CM
799 if (cached_state && *cached_state) {
800 state = *cached_state;
df98b6e2
JB
801 if (state->start <= start && state->end > start &&
802 state->tree) {
9655d298
CM
803 node = &state->rb_node;
804 goto hit_next;
805 }
806 }
d1310b2e
CM
807 /*
808 * this search will find all the extents that end after
809 * our range starts.
810 */
80ea96b1 811 node = tree_search(tree, start);
d1310b2e 812 if (!node) {
8233767a
XG
813 prealloc = alloc_extent_state_atomic(prealloc);
814 BUG_ON(!prealloc);
0ca1f7ce 815 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
816 if (err)
817 extent_io_tree_panic(tree, err);
818
d1310b2e 819 prealloc = NULL;
d1310b2e
CM
820 goto out;
821 }
d1310b2e 822 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 823hit_next:
d1310b2e
CM
824 last_start = state->start;
825 last_end = state->end;
826
827 /*
828 * | ---- desired range ---- |
829 * | state |
830 *
831 * Just lock what we found and keep going
832 */
833 if (state->start == start && state->end <= end) {
1edbb734 834 if (state->state & exclusive_bits) {
d1310b2e
CM
835 *failed_start = state->start;
836 err = -EEXIST;
837 goto out;
838 }
42daec29 839
1bf85046 840 set_state_bits(tree, state, &bits);
2c64c53d 841 cache_state(state, cached_state);
d1310b2e 842 merge_state(tree, state);
5c939df5
YZ
843 if (last_end == (u64)-1)
844 goto out;
845 start = last_end + 1;
d1ac6e41
LB
846 state = next_state(state);
847 if (start < end && state && state->start == start &&
848 !need_resched())
849 goto hit_next;
d1310b2e
CM
850 goto search_again;
851 }
852
853 /*
854 * | ---- desired range ---- |
855 * | state |
856 * or
857 * | ------------- state -------------- |
858 *
859 * We need to split the extent we found, and may flip bits on
860 * second half.
861 *
862 * If the extent we found extends past our
863 * range, we just split and search again. It'll get split
864 * again the next time though.
865 *
866 * If the extent we found is inside our range, we set the
867 * desired bit on it.
868 */
869 if (state->start < start) {
1edbb734 870 if (state->state & exclusive_bits) {
d1310b2e
CM
871 *failed_start = start;
872 err = -EEXIST;
873 goto out;
874 }
8233767a
XG
875
876 prealloc = alloc_extent_state_atomic(prealloc);
877 BUG_ON(!prealloc);
d1310b2e 878 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
879 if (err)
880 extent_io_tree_panic(tree, err);
881
d1310b2e
CM
882 prealloc = NULL;
883 if (err)
884 goto out;
885 if (state->end <= end) {
1bf85046 886 set_state_bits(tree, state, &bits);
2c64c53d 887 cache_state(state, cached_state);
d1310b2e 888 merge_state(tree, state);
5c939df5
YZ
889 if (last_end == (u64)-1)
890 goto out;
891 start = last_end + 1;
d1ac6e41
LB
892 state = next_state(state);
893 if (start < end && state && state->start == start &&
894 !need_resched())
895 goto hit_next;
d1310b2e
CM
896 }
897 goto search_again;
898 }
899 /*
900 * | ---- desired range ---- |
901 * | state | or | state |
902 *
903 * There's a hole, we need to insert something in it and
904 * ignore the extent we found.
905 */
906 if (state->start > start) {
907 u64 this_end;
908 if (end < last_start)
909 this_end = end;
910 else
d397712b 911 this_end = last_start - 1;
8233767a
XG
912
913 prealloc = alloc_extent_state_atomic(prealloc);
914 BUG_ON(!prealloc);
c7f895a2
XG
915
916 /*
917 * Avoid to free 'prealloc' if it can be merged with
918 * the later extent.
919 */
d1310b2e 920 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 921 &bits);
c2d904e0
JM
922 if (err)
923 extent_io_tree_panic(tree, err);
924
9ed74f2d
JB
925 cache_state(prealloc, cached_state);
926 prealloc = NULL;
d1310b2e
CM
927 start = this_end + 1;
928 goto search_again;
929 }
930 /*
931 * | ---- desired range ---- |
932 * | state |
933 * We need to split the extent, and set the bit
934 * on the first half
935 */
936 if (state->start <= end && state->end > end) {
1edbb734 937 if (state->state & exclusive_bits) {
d1310b2e
CM
938 *failed_start = start;
939 err = -EEXIST;
940 goto out;
941 }
8233767a
XG
942
943 prealloc = alloc_extent_state_atomic(prealloc);
944 BUG_ON(!prealloc);
d1310b2e 945 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
946 if (err)
947 extent_io_tree_panic(tree, err);
d1310b2e 948
1bf85046 949 set_state_bits(tree, prealloc, &bits);
2c64c53d 950 cache_state(prealloc, cached_state);
d1310b2e
CM
951 merge_state(tree, prealloc);
952 prealloc = NULL;
953 goto out;
954 }
955
956 goto search_again;
957
958out:
cad321ad 959 spin_unlock(&tree->lock);
d1310b2e
CM
960 if (prealloc)
961 free_extent_state(prealloc);
962
963 return err;
964
965search_again:
966 if (start > end)
967 goto out;
cad321ad 968 spin_unlock(&tree->lock);
d1310b2e
CM
969 if (mask & __GFP_WAIT)
970 cond_resched();
971 goto again;
972}
d1310b2e 973
41074888
DS
974int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
975 unsigned long bits, u64 * failed_start,
976 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
977{
978 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
979 cached_state, mask);
980}
981
982
462d6fac 983/**
10983f2e
LB
984 * convert_extent_bit - convert all bits in a given range from one bit to
985 * another
462d6fac
JB
986 * @tree: the io tree to search
987 * @start: the start offset in bytes
988 * @end: the end offset in bytes (inclusive)
989 * @bits: the bits to set in this range
990 * @clear_bits: the bits to clear in this range
e6138876 991 * @cached_state: state that we're going to cache
462d6fac
JB
992 * @mask: the allocation mask
993 *
994 * This will go through and set bits for the given range. If any states exist
995 * already in this range they are set with the given bit and cleared of the
996 * clear_bits. This is only meant to be used by things that are mergeable, ie
997 * converting from say DELALLOC to DIRTY. This is not meant to be used with
998 * boundary bits like LOCK.
999 */
1000int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1001 unsigned long bits, unsigned long clear_bits,
e6138876 1002 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1003{
1004 struct extent_state *state;
1005 struct extent_state *prealloc = NULL;
1006 struct rb_node *node;
1007 int err = 0;
1008 u64 last_start;
1009 u64 last_end;
1010
8d599ae1
DS
1011 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1012
462d6fac
JB
1013again:
1014 if (!prealloc && (mask & __GFP_WAIT)) {
1015 prealloc = alloc_extent_state(mask);
1016 if (!prealloc)
1017 return -ENOMEM;
1018 }
1019
1020 spin_lock(&tree->lock);
e6138876
JB
1021 if (cached_state && *cached_state) {
1022 state = *cached_state;
1023 if (state->start <= start && state->end > start &&
1024 state->tree) {
1025 node = &state->rb_node;
1026 goto hit_next;
1027 }
1028 }
1029
462d6fac
JB
1030 /*
1031 * this search will find all the extents that end after
1032 * our range starts.
1033 */
1034 node = tree_search(tree, start);
1035 if (!node) {
1036 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1037 if (!prealloc) {
1038 err = -ENOMEM;
1039 goto out;
1040 }
462d6fac
JB
1041 err = insert_state(tree, prealloc, start, end, &bits);
1042 prealloc = NULL;
c2d904e0
JM
1043 if (err)
1044 extent_io_tree_panic(tree, err);
462d6fac
JB
1045 goto out;
1046 }
1047 state = rb_entry(node, struct extent_state, rb_node);
1048hit_next:
1049 last_start = state->start;
1050 last_end = state->end;
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 *
1056 * Just lock what we found and keep going
1057 */
1058 if (state->start == start && state->end <= end) {
462d6fac 1059 set_state_bits(tree, state, &bits);
e6138876 1060 cache_state(state, cached_state);
d1ac6e41 1061 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1062 if (last_end == (u64)-1)
1063 goto out;
462d6fac 1064 start = last_end + 1;
d1ac6e41
LB
1065 if (start < end && state && state->start == start &&
1066 !need_resched())
1067 goto hit_next;
462d6fac
JB
1068 goto search_again;
1069 }
1070
1071 /*
1072 * | ---- desired range ---- |
1073 * | state |
1074 * or
1075 * | ------------- state -------------- |
1076 *
1077 * We need to split the extent we found, and may flip bits on
1078 * second half.
1079 *
1080 * If the extent we found extends past our
1081 * range, we just split and search again. It'll get split
1082 * again the next time though.
1083 *
1084 * If the extent we found is inside our range, we set the
1085 * desired bit on it.
1086 */
1087 if (state->start < start) {
1088 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1089 if (!prealloc) {
1090 err = -ENOMEM;
1091 goto out;
1092 }
462d6fac 1093 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1094 if (err)
1095 extent_io_tree_panic(tree, err);
462d6fac
JB
1096 prealloc = NULL;
1097 if (err)
1098 goto out;
1099 if (state->end <= end) {
1100 set_state_bits(tree, state, &bits);
e6138876 1101 cache_state(state, cached_state);
d1ac6e41 1102 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1103 if (last_end == (u64)-1)
1104 goto out;
1105 start = last_end + 1;
d1ac6e41
LB
1106 if (start < end && state && state->start == start &&
1107 !need_resched())
1108 goto hit_next;
462d6fac
JB
1109 }
1110 goto search_again;
1111 }
1112 /*
1113 * | ---- desired range ---- |
1114 * | state | or | state |
1115 *
1116 * There's a hole, we need to insert something in it and
1117 * ignore the extent we found.
1118 */
1119 if (state->start > start) {
1120 u64 this_end;
1121 if (end < last_start)
1122 this_end = end;
1123 else
1124 this_end = last_start - 1;
1125
1126 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1127 if (!prealloc) {
1128 err = -ENOMEM;
1129 goto out;
1130 }
462d6fac
JB
1131
1132 /*
1133 * Avoid to free 'prealloc' if it can be merged with
1134 * the later extent.
1135 */
1136 err = insert_state(tree, prealloc, start, this_end,
1137 &bits);
c2d904e0
JM
1138 if (err)
1139 extent_io_tree_panic(tree, err);
e6138876 1140 cache_state(prealloc, cached_state);
462d6fac
JB
1141 prealloc = NULL;
1142 start = this_end + 1;
1143 goto search_again;
1144 }
1145 /*
1146 * | ---- desired range ---- |
1147 * | state |
1148 * We need to split the extent, and set the bit
1149 * on the first half
1150 */
1151 if (state->start <= end && state->end > end) {
1152 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1153 if (!prealloc) {
1154 err = -ENOMEM;
1155 goto out;
1156 }
462d6fac
JB
1157
1158 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1159 if (err)
1160 extent_io_tree_panic(tree, err);
462d6fac
JB
1161
1162 set_state_bits(tree, prealloc, &bits);
e6138876 1163 cache_state(prealloc, cached_state);
462d6fac 1164 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1165 prealloc = NULL;
1166 goto out;
1167 }
1168
1169 goto search_again;
1170
1171out:
1172 spin_unlock(&tree->lock);
1173 if (prealloc)
1174 free_extent_state(prealloc);
1175
1176 return err;
1177
1178search_again:
1179 if (start > end)
1180 goto out;
1181 spin_unlock(&tree->lock);
1182 if (mask & __GFP_WAIT)
1183 cond_resched();
1184 goto again;
1185}
1186
d1310b2e
CM
1187/* wrappers around set/clear extent bit */
1188int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1189 gfp_t mask)
1190{
3fbe5c02 1191 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1192 NULL, mask);
d1310b2e 1193}
d1310b2e
CM
1194
1195int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1196 unsigned long bits, gfp_t mask)
d1310b2e 1197{
3fbe5c02 1198 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1199 NULL, mask);
d1310b2e 1200}
d1310b2e
CM
1201
1202int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1203 unsigned long bits, gfp_t mask)
d1310b2e 1204{
2c64c53d 1205 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1206}
d1310b2e
CM
1207
1208int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1209 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1210{
1211 return set_extent_bit(tree, start, end,
fee187d9 1212 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1213 NULL, cached_state, mask);
d1310b2e 1214}
d1310b2e 1215
9e8a4a8b
LB
1216int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1217 struct extent_state **cached_state, gfp_t mask)
1218{
1219 return set_extent_bit(tree, start, end,
1220 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1221 NULL, cached_state, mask);
1222}
1223
d1310b2e
CM
1224int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1225 gfp_t mask)
1226{
1227 return clear_extent_bit(tree, start, end,
32c00aff 1228 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1229 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1230}
d1310b2e
CM
1231
1232int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1233 gfp_t mask)
1234{
3fbe5c02 1235 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1236 NULL, mask);
d1310b2e 1237}
d1310b2e 1238
d1310b2e 1239int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1240 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1241{
6b67a320 1242 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1243 cached_state, mask);
d1310b2e 1244}
d1310b2e 1245
5fd02043
JB
1246int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1247 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1248{
2c64c53d 1249 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1250 cached_state, mask);
d1310b2e 1251}
d1310b2e 1252
d352ac68
CM
1253/*
1254 * either insert or lock state struct between start and end use mask to tell
1255 * us if waiting is desired.
1256 */
1edbb734 1257int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1258 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1259{
1260 int err;
1261 u64 failed_start;
1262 while (1) {
3fbe5c02
JM
1263 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1264 EXTENT_LOCKED, &failed_start,
1265 cached_state, GFP_NOFS);
d0082371 1266 if (err == -EEXIST) {
d1310b2e
CM
1267 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1268 start = failed_start;
d0082371 1269 } else
d1310b2e 1270 break;
d1310b2e
CM
1271 WARN_ON(start > end);
1272 }
1273 return err;
1274}
d1310b2e 1275
d0082371 1276int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1277{
d0082371 1278 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1279}
1280
d0082371 1281int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1282{
1283 int err;
1284 u64 failed_start;
1285
3fbe5c02
JM
1286 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1287 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1288 if (err == -EEXIST) {
1289 if (failed_start > start)
1290 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1291 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1292 return 0;
6643558d 1293 }
25179201
JB
1294 return 1;
1295}
25179201 1296
2c64c53d
CM
1297int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1301 mask);
1302}
1303
d0082371 1304int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1305{
2c64c53d 1306 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1307 GFP_NOFS);
d1310b2e 1308}
d1310b2e 1309
4adaa611
CM
1310int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1311{
1312 unsigned long index = start >> PAGE_CACHE_SHIFT;
1313 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1314 struct page *page;
1315
1316 while (index <= end_index) {
1317 page = find_get_page(inode->i_mapping, index);
1318 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1319 clear_page_dirty_for_io(page);
1320 page_cache_release(page);
1321 index++;
1322 }
1323 return 0;
1324}
1325
1326int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1327{
1328 unsigned long index = start >> PAGE_CACHE_SHIFT;
1329 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1330 struct page *page;
1331
1332 while (index <= end_index) {
1333 page = find_get_page(inode->i_mapping, index);
1334 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1335 account_page_redirty(page);
1336 __set_page_dirty_nobuffers(page);
1337 page_cache_release(page);
1338 index++;
1339 }
1340 return 0;
1341}
1342
d1310b2e
CM
1343/*
1344 * helper function to set both pages and extents in the tree writeback
1345 */
b2950863 1346static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1347{
1348 unsigned long index = start >> PAGE_CACHE_SHIFT;
1349 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1350 struct page *page;
1351
1352 while (index <= end_index) {
1353 page = find_get_page(tree->mapping, index);
79787eaa 1354 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1355 set_page_writeback(page);
1356 page_cache_release(page);
1357 index++;
1358 }
d1310b2e
CM
1359 return 0;
1360}
d1310b2e 1361
d352ac68
CM
1362/* find the first state struct with 'bits' set after 'start', and
1363 * return it. tree->lock must be held. NULL will returned if
1364 * nothing was found after 'start'
1365 */
48a3b636
ES
1366static struct extent_state *
1367find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1368 u64 start, unsigned long bits)
d7fc640e
CM
1369{
1370 struct rb_node *node;
1371 struct extent_state *state;
1372
1373 /*
1374 * this search will find all the extents that end after
1375 * our range starts.
1376 */
1377 node = tree_search(tree, start);
d397712b 1378 if (!node)
d7fc640e 1379 goto out;
d7fc640e 1380
d397712b 1381 while (1) {
d7fc640e 1382 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1383 if (state->end >= start && (state->state & bits))
d7fc640e 1384 return state;
d397712b 1385
d7fc640e
CM
1386 node = rb_next(node);
1387 if (!node)
1388 break;
1389 }
1390out:
1391 return NULL;
1392}
d7fc640e 1393
69261c4b
XG
1394/*
1395 * find the first offset in the io tree with 'bits' set. zero is
1396 * returned if we find something, and *start_ret and *end_ret are
1397 * set to reflect the state struct that was found.
1398 *
477d7eaf 1399 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1400 */
1401int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1402 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1403 struct extent_state **cached_state)
69261c4b
XG
1404{
1405 struct extent_state *state;
e6138876 1406 struct rb_node *n;
69261c4b
XG
1407 int ret = 1;
1408
1409 spin_lock(&tree->lock);
e6138876
JB
1410 if (cached_state && *cached_state) {
1411 state = *cached_state;
1412 if (state->end == start - 1 && state->tree) {
1413 n = rb_next(&state->rb_node);
1414 while (n) {
1415 state = rb_entry(n, struct extent_state,
1416 rb_node);
1417 if (state->state & bits)
1418 goto got_it;
1419 n = rb_next(n);
1420 }
1421 free_extent_state(*cached_state);
1422 *cached_state = NULL;
1423 goto out;
1424 }
1425 free_extent_state(*cached_state);
1426 *cached_state = NULL;
1427 }
1428
69261c4b 1429 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1430got_it:
69261c4b 1431 if (state) {
e6138876 1432 cache_state(state, cached_state);
69261c4b
XG
1433 *start_ret = state->start;
1434 *end_ret = state->end;
1435 ret = 0;
1436 }
e6138876 1437out:
69261c4b
XG
1438 spin_unlock(&tree->lock);
1439 return ret;
1440}
1441
d352ac68
CM
1442/*
1443 * find a contiguous range of bytes in the file marked as delalloc, not
1444 * more than 'max_bytes'. start and end are used to return the range,
1445 *
1446 * 1 is returned if we find something, 0 if nothing was in the tree
1447 */
c8b97818 1448static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1449 u64 *start, u64 *end, u64 max_bytes,
1450 struct extent_state **cached_state)
d1310b2e
CM
1451{
1452 struct rb_node *node;
1453 struct extent_state *state;
1454 u64 cur_start = *start;
1455 u64 found = 0;
1456 u64 total_bytes = 0;
1457
cad321ad 1458 spin_lock(&tree->lock);
c8b97818 1459
d1310b2e
CM
1460 /*
1461 * this search will find all the extents that end after
1462 * our range starts.
1463 */
80ea96b1 1464 node = tree_search(tree, cur_start);
2b114d1d 1465 if (!node) {
3b951516
CM
1466 if (!found)
1467 *end = (u64)-1;
d1310b2e
CM
1468 goto out;
1469 }
1470
d397712b 1471 while (1) {
d1310b2e 1472 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1473 if (found && (state->start != cur_start ||
1474 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1475 goto out;
1476 }
1477 if (!(state->state & EXTENT_DELALLOC)) {
1478 if (!found)
1479 *end = state->end;
1480 goto out;
1481 }
c2a128d2 1482 if (!found) {
d1310b2e 1483 *start = state->start;
c2a128d2
JB
1484 *cached_state = state;
1485 atomic_inc(&state->refs);
1486 }
d1310b2e
CM
1487 found++;
1488 *end = state->end;
1489 cur_start = state->end + 1;
1490 node = rb_next(node);
1491 if (!node)
1492 break;
1493 total_bytes += state->end - state->start + 1;
1494 if (total_bytes >= max_bytes)
1495 break;
1496 }
1497out:
cad321ad 1498 spin_unlock(&tree->lock);
d1310b2e
CM
1499 return found;
1500}
1501
143bede5
JM
1502static noinline void __unlock_for_delalloc(struct inode *inode,
1503 struct page *locked_page,
1504 u64 start, u64 end)
c8b97818
CM
1505{
1506 int ret;
1507 struct page *pages[16];
1508 unsigned long index = start >> PAGE_CACHE_SHIFT;
1509 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1510 unsigned long nr_pages = end_index - index + 1;
1511 int i;
1512
1513 if (index == locked_page->index && end_index == index)
143bede5 1514 return;
c8b97818 1515
d397712b 1516 while (nr_pages > 0) {
c8b97818 1517 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1518 min_t(unsigned long, nr_pages,
1519 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1520 for (i = 0; i < ret; i++) {
1521 if (pages[i] != locked_page)
1522 unlock_page(pages[i]);
1523 page_cache_release(pages[i]);
1524 }
1525 nr_pages -= ret;
1526 index += ret;
1527 cond_resched();
1528 }
c8b97818
CM
1529}
1530
1531static noinline int lock_delalloc_pages(struct inode *inode,
1532 struct page *locked_page,
1533 u64 delalloc_start,
1534 u64 delalloc_end)
1535{
1536 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1537 unsigned long start_index = index;
1538 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1539 unsigned long pages_locked = 0;
1540 struct page *pages[16];
1541 unsigned long nrpages;
1542 int ret;
1543 int i;
1544
1545 /* the caller is responsible for locking the start index */
1546 if (index == locked_page->index && index == end_index)
1547 return 0;
1548
1549 /* skip the page at the start index */
1550 nrpages = end_index - index + 1;
d397712b 1551 while (nrpages > 0) {
c8b97818 1552 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1553 min_t(unsigned long,
1554 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1555 if (ret == 0) {
1556 ret = -EAGAIN;
1557 goto done;
1558 }
1559 /* now we have an array of pages, lock them all */
1560 for (i = 0; i < ret; i++) {
1561 /*
1562 * the caller is taking responsibility for
1563 * locked_page
1564 */
771ed689 1565 if (pages[i] != locked_page) {
c8b97818 1566 lock_page(pages[i]);
f2b1c41c
CM
1567 if (!PageDirty(pages[i]) ||
1568 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1569 ret = -EAGAIN;
1570 unlock_page(pages[i]);
1571 page_cache_release(pages[i]);
1572 goto done;
1573 }
1574 }
c8b97818 1575 page_cache_release(pages[i]);
771ed689 1576 pages_locked++;
c8b97818 1577 }
c8b97818
CM
1578 nrpages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 ret = 0;
1583done:
1584 if (ret && pages_locked) {
1585 __unlock_for_delalloc(inode, locked_page,
1586 delalloc_start,
1587 ((u64)(start_index + pages_locked - 1)) <<
1588 PAGE_CACHE_SHIFT);
1589 }
1590 return ret;
1591}
1592
1593/*
1594 * find a contiguous range of bytes in the file marked as delalloc, not
1595 * more than 'max_bytes'. start and end are used to return the range,
1596 *
1597 * 1 is returned if we find something, 0 if nothing was in the tree
1598 */
1599static noinline u64 find_lock_delalloc_range(struct inode *inode,
1600 struct extent_io_tree *tree,
1601 struct page *locked_page,
1602 u64 *start, u64 *end,
1603 u64 max_bytes)
1604{
1605 u64 delalloc_start;
1606 u64 delalloc_end;
1607 u64 found;
9655d298 1608 struct extent_state *cached_state = NULL;
c8b97818
CM
1609 int ret;
1610 int loops = 0;
1611
1612again:
1613 /* step one, find a bunch of delalloc bytes starting at start */
1614 delalloc_start = *start;
1615 delalloc_end = 0;
1616 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1617 max_bytes, &cached_state);
70b99e69 1618 if (!found || delalloc_end <= *start) {
c8b97818
CM
1619 *start = delalloc_start;
1620 *end = delalloc_end;
c2a128d2 1621 free_extent_state(cached_state);
c8b97818
CM
1622 return found;
1623 }
1624
70b99e69
CM
1625 /*
1626 * start comes from the offset of locked_page. We have to lock
1627 * pages in order, so we can't process delalloc bytes before
1628 * locked_page
1629 */
d397712b 1630 if (delalloc_start < *start)
70b99e69 1631 delalloc_start = *start;
70b99e69 1632
c8b97818
CM
1633 /*
1634 * make sure to limit the number of pages we try to lock down
1635 * if we're looping.
1636 */
d397712b 1637 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1638 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1639
c8b97818
CM
1640 /* step two, lock all the pages after the page that has start */
1641 ret = lock_delalloc_pages(inode, locked_page,
1642 delalloc_start, delalloc_end);
1643 if (ret == -EAGAIN) {
1644 /* some of the pages are gone, lets avoid looping by
1645 * shortening the size of the delalloc range we're searching
1646 */
9655d298 1647 free_extent_state(cached_state);
c8b97818
CM
1648 if (!loops) {
1649 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1650 max_bytes = PAGE_CACHE_SIZE - offset;
1651 loops = 1;
1652 goto again;
1653 } else {
1654 found = 0;
1655 goto out_failed;
1656 }
1657 }
79787eaa 1658 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1659
1660 /* step three, lock the state bits for the whole range */
d0082371 1661 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1662
1663 /* then test to make sure it is all still delalloc */
1664 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1665 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1666 if (!ret) {
9655d298
CM
1667 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668 &cached_state, GFP_NOFS);
c8b97818
CM
1669 __unlock_for_delalloc(inode, locked_page,
1670 delalloc_start, delalloc_end);
1671 cond_resched();
1672 goto again;
1673 }
9655d298 1674 free_extent_state(cached_state);
c8b97818
CM
1675 *start = delalloc_start;
1676 *end = delalloc_end;
1677out_failed:
1678 return found;
1679}
1680
1681int extent_clear_unlock_delalloc(struct inode *inode,
1682 struct extent_io_tree *tree,
1683 u64 start, u64 end, struct page *locked_page,
a791e35e 1684 unsigned long op)
c8b97818
CM
1685{
1686 int ret;
1687 struct page *pages[16];
1688 unsigned long index = start >> PAGE_CACHE_SHIFT;
1689 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1690 unsigned long nr_pages = end_index - index + 1;
1691 int i;
41074888 1692 unsigned long clear_bits = 0;
c8b97818 1693
a791e35e 1694 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1695 clear_bits |= EXTENT_LOCKED;
a791e35e 1696 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1697 clear_bits |= EXTENT_DIRTY;
1698
a791e35e 1699 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1700 clear_bits |= EXTENT_DELALLOC;
1701
2c64c53d 1702 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1703 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1704 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1705 EXTENT_SET_PRIVATE2)))
771ed689 1706 return 0;
c8b97818 1707
d397712b 1708 while (nr_pages > 0) {
c8b97818 1709 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1710 min_t(unsigned long,
1711 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1712 for (i = 0; i < ret; i++) {
8b62b72b 1713
a791e35e 1714 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1715 SetPagePrivate2(pages[i]);
1716
c8b97818
CM
1717 if (pages[i] == locked_page) {
1718 page_cache_release(pages[i]);
1719 continue;
1720 }
a791e35e 1721 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1722 clear_page_dirty_for_io(pages[i]);
a791e35e 1723 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1724 set_page_writeback(pages[i]);
a791e35e 1725 if (op & EXTENT_END_WRITEBACK)
c8b97818 1726 end_page_writeback(pages[i]);
a791e35e 1727 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1728 unlock_page(pages[i]);
c8b97818
CM
1729 page_cache_release(pages[i]);
1730 }
1731 nr_pages -= ret;
1732 index += ret;
1733 cond_resched();
1734 }
1735 return 0;
1736}
c8b97818 1737
d352ac68
CM
1738/*
1739 * count the number of bytes in the tree that have a given bit(s)
1740 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1741 * cached. The total number found is returned.
1742 */
d1310b2e
CM
1743u64 count_range_bits(struct extent_io_tree *tree,
1744 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1745 unsigned long bits, int contig)
d1310b2e
CM
1746{
1747 struct rb_node *node;
1748 struct extent_state *state;
1749 u64 cur_start = *start;
1750 u64 total_bytes = 0;
ec29ed5b 1751 u64 last = 0;
d1310b2e
CM
1752 int found = 0;
1753
1754 if (search_end <= cur_start) {
d1310b2e
CM
1755 WARN_ON(1);
1756 return 0;
1757 }
1758
cad321ad 1759 spin_lock(&tree->lock);
d1310b2e
CM
1760 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1761 total_bytes = tree->dirty_bytes;
1762 goto out;
1763 }
1764 /*
1765 * this search will find all the extents that end after
1766 * our range starts.
1767 */
80ea96b1 1768 node = tree_search(tree, cur_start);
d397712b 1769 if (!node)
d1310b2e 1770 goto out;
d1310b2e 1771
d397712b 1772 while (1) {
d1310b2e
CM
1773 state = rb_entry(node, struct extent_state, rb_node);
1774 if (state->start > search_end)
1775 break;
ec29ed5b
CM
1776 if (contig && found && state->start > last + 1)
1777 break;
1778 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1779 total_bytes += min(search_end, state->end) + 1 -
1780 max(cur_start, state->start);
1781 if (total_bytes >= max_bytes)
1782 break;
1783 if (!found) {
af60bed2 1784 *start = max(cur_start, state->start);
d1310b2e
CM
1785 found = 1;
1786 }
ec29ed5b
CM
1787 last = state->end;
1788 } else if (contig && found) {
1789 break;
d1310b2e
CM
1790 }
1791 node = rb_next(node);
1792 if (!node)
1793 break;
1794 }
1795out:
cad321ad 1796 spin_unlock(&tree->lock);
d1310b2e
CM
1797 return total_bytes;
1798}
b2950863 1799
d352ac68
CM
1800/*
1801 * set the private field for a given byte offset in the tree. If there isn't
1802 * an extent_state there already, this does nothing.
1803 */
d1310b2e
CM
1804int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1805{
1806 struct rb_node *node;
1807 struct extent_state *state;
1808 int ret = 0;
1809
cad321ad 1810 spin_lock(&tree->lock);
d1310b2e
CM
1811 /*
1812 * this search will find all the extents that end after
1813 * our range starts.
1814 */
80ea96b1 1815 node = tree_search(tree, start);
2b114d1d 1816 if (!node) {
d1310b2e
CM
1817 ret = -ENOENT;
1818 goto out;
1819 }
1820 state = rb_entry(node, struct extent_state, rb_node);
1821 if (state->start != start) {
1822 ret = -ENOENT;
1823 goto out;
1824 }
1825 state->private = private;
1826out:
cad321ad 1827 spin_unlock(&tree->lock);
d1310b2e
CM
1828 return ret;
1829}
1830
1831int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1832{
1833 struct rb_node *node;
1834 struct extent_state *state;
1835 int ret = 0;
1836
cad321ad 1837 spin_lock(&tree->lock);
d1310b2e
CM
1838 /*
1839 * this search will find all the extents that end after
1840 * our range starts.
1841 */
80ea96b1 1842 node = tree_search(tree, start);
2b114d1d 1843 if (!node) {
d1310b2e
CM
1844 ret = -ENOENT;
1845 goto out;
1846 }
1847 state = rb_entry(node, struct extent_state, rb_node);
1848 if (state->start != start) {
1849 ret = -ENOENT;
1850 goto out;
1851 }
1852 *private = state->private;
1853out:
cad321ad 1854 spin_unlock(&tree->lock);
d1310b2e
CM
1855 return ret;
1856}
1857
1858/*
1859 * searches a range in the state tree for a given mask.
70dec807 1860 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1861 * has the bits set. Otherwise, 1 is returned if any bit in the
1862 * range is found set.
1863 */
1864int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1865 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1866{
1867 struct extent_state *state = NULL;
1868 struct rb_node *node;
1869 int bitset = 0;
d1310b2e 1870
cad321ad 1871 spin_lock(&tree->lock);
df98b6e2
JB
1872 if (cached && cached->tree && cached->start <= start &&
1873 cached->end > start)
9655d298
CM
1874 node = &cached->rb_node;
1875 else
1876 node = tree_search(tree, start);
d1310b2e
CM
1877 while (node && start <= end) {
1878 state = rb_entry(node, struct extent_state, rb_node);
1879
1880 if (filled && state->start > start) {
1881 bitset = 0;
1882 break;
1883 }
1884
1885 if (state->start > end)
1886 break;
1887
1888 if (state->state & bits) {
1889 bitset = 1;
1890 if (!filled)
1891 break;
1892 } else if (filled) {
1893 bitset = 0;
1894 break;
1895 }
46562cec
CM
1896
1897 if (state->end == (u64)-1)
1898 break;
1899
d1310b2e
CM
1900 start = state->end + 1;
1901 if (start > end)
1902 break;
1903 node = rb_next(node);
1904 if (!node) {
1905 if (filled)
1906 bitset = 0;
1907 break;
1908 }
1909 }
cad321ad 1910 spin_unlock(&tree->lock);
d1310b2e
CM
1911 return bitset;
1912}
d1310b2e
CM
1913
1914/*
1915 * helper function to set a given page up to date if all the
1916 * extents in the tree for that page are up to date
1917 */
143bede5 1918static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1919{
4eee4fa4 1920 u64 start = page_offset(page);
d1310b2e 1921 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1922 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1923 SetPageUptodate(page);
d1310b2e
CM
1924}
1925
4a54c8c1
JS
1926/*
1927 * When IO fails, either with EIO or csum verification fails, we
1928 * try other mirrors that might have a good copy of the data. This
1929 * io_failure_record is used to record state as we go through all the
1930 * mirrors. If another mirror has good data, the page is set up to date
1931 * and things continue. If a good mirror can't be found, the original
1932 * bio end_io callback is called to indicate things have failed.
1933 */
1934struct io_failure_record {
1935 struct page *page;
1936 u64 start;
1937 u64 len;
1938 u64 logical;
1939 unsigned long bio_flags;
1940 int this_mirror;
1941 int failed_mirror;
1942 int in_validation;
1943};
1944
1945static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1946 int did_repair)
1947{
1948 int ret;
1949 int err = 0;
1950 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1951
1952 set_state_private(failure_tree, rec->start, 0);
1953 ret = clear_extent_bits(failure_tree, rec->start,
1954 rec->start + rec->len - 1,
1955 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1956 if (ret)
1957 err = ret;
1958
53b381b3
DW
1959 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1960 rec->start + rec->len - 1,
1961 EXTENT_DAMAGED, GFP_NOFS);
1962 if (ret && !err)
1963 err = ret;
4a54c8c1
JS
1964
1965 kfree(rec);
1966 return err;
1967}
1968
1969static void repair_io_failure_callback(struct bio *bio, int err)
1970{
1971 complete(bio->bi_private);
1972}
1973
1974/*
1975 * this bypasses the standard btrfs submit functions deliberately, as
1976 * the standard behavior is to write all copies in a raid setup. here we only
1977 * want to write the one bad copy. so we do the mapping for ourselves and issue
1978 * submit_bio directly.
3ec706c8 1979 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1980 * actually prevents the read that triggered the error from finishing.
1981 * currently, there can be no more than two copies of every data bit. thus,
1982 * exactly one rewrite is required.
1983 */
3ec706c8 1984int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
1985 u64 length, u64 logical, struct page *page,
1986 int mirror_num)
1987{
1988 struct bio *bio;
1989 struct btrfs_device *dev;
1990 DECLARE_COMPLETION_ONSTACK(compl);
1991 u64 map_length = 0;
1992 u64 sector;
1993 struct btrfs_bio *bbio = NULL;
53b381b3 1994 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
1995 int ret;
1996
1997 BUG_ON(!mirror_num);
1998
53b381b3
DW
1999 /* we can't repair anything in raid56 yet */
2000 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2001 return 0;
2002
9be3395b 2003 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2004 if (!bio)
2005 return -EIO;
2006 bio->bi_private = &compl;
2007 bio->bi_end_io = repair_io_failure_callback;
2008 bio->bi_size = 0;
2009 map_length = length;
2010
3ec706c8 2011 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2012 &map_length, &bbio, mirror_num);
2013 if (ret) {
2014 bio_put(bio);
2015 return -EIO;
2016 }
2017 BUG_ON(mirror_num != bbio->mirror_num);
2018 sector = bbio->stripes[mirror_num-1].physical >> 9;
2019 bio->bi_sector = sector;
2020 dev = bbio->stripes[mirror_num-1].dev;
2021 kfree(bbio);
2022 if (!dev || !dev->bdev || !dev->writeable) {
2023 bio_put(bio);
2024 return -EIO;
2025 }
2026 bio->bi_bdev = dev->bdev;
4eee4fa4 2027 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2028 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2029 wait_for_completion(&compl);
2030
2031 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2032 /* try to remap that extent elsewhere? */
2033 bio_put(bio);
442a4f63 2034 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2035 return -EIO;
2036 }
2037
d5b025d5 2038 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2039 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2040 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2041
2042 bio_put(bio);
2043 return 0;
2044}
2045
ea466794
JB
2046int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2047 int mirror_num)
2048{
ea466794
JB
2049 u64 start = eb->start;
2050 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2051 int ret = 0;
ea466794
JB
2052
2053 for (i = 0; i < num_pages; i++) {
2054 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2055 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2056 start, p, mirror_num);
2057 if (ret)
2058 break;
2059 start += PAGE_CACHE_SIZE;
2060 }
2061
2062 return ret;
2063}
2064
4a54c8c1
JS
2065/*
2066 * each time an IO finishes, we do a fast check in the IO failure tree
2067 * to see if we need to process or clean up an io_failure_record
2068 */
2069static int clean_io_failure(u64 start, struct page *page)
2070{
2071 u64 private;
2072 u64 private_failure;
2073 struct io_failure_record *failrec;
3ec706c8 2074 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2075 struct extent_state *state;
2076 int num_copies;
2077 int did_repair = 0;
2078 int ret;
2079 struct inode *inode = page->mapping->host;
2080
2081 private = 0;
2082 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2083 (u64)-1, 1, EXTENT_DIRTY, 0);
2084 if (!ret)
2085 return 0;
2086
2087 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2088 &private_failure);
2089 if (ret)
2090 return 0;
2091
2092 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2093 BUG_ON(!failrec->this_mirror);
2094
2095 if (failrec->in_validation) {
2096 /* there was no real error, just free the record */
2097 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2098 failrec->start);
2099 did_repair = 1;
2100 goto out;
2101 }
2102
2103 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2104 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2105 failrec->start,
2106 EXTENT_LOCKED);
2107 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2108
883d0de4
MX
2109 if (state && state->start <= failrec->start &&
2110 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2111 fs_info = BTRFS_I(inode)->root->fs_info;
2112 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2113 failrec->len);
4a54c8c1 2114 if (num_copies > 1) {
3ec706c8 2115 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2116 failrec->logical, page,
2117 failrec->failed_mirror);
2118 did_repair = !ret;
2119 }
53b381b3 2120 ret = 0;
4a54c8c1
JS
2121 }
2122
2123out:
2124 if (!ret)
2125 ret = free_io_failure(inode, failrec, did_repair);
2126
2127 return ret;
2128}
2129
2130/*
2131 * this is a generic handler for readpage errors (default
2132 * readpage_io_failed_hook). if other copies exist, read those and write back
2133 * good data to the failed position. does not investigate in remapping the
2134 * failed extent elsewhere, hoping the device will be smart enough to do this as
2135 * needed
2136 */
2137
facc8a22
MX
2138static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2139 struct page *page, u64 start, u64 end,
2140 int failed_mirror)
4a54c8c1
JS
2141{
2142 struct io_failure_record *failrec = NULL;
2143 u64 private;
2144 struct extent_map *em;
2145 struct inode *inode = page->mapping->host;
2146 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2147 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2148 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2149 struct bio *bio;
facc8a22
MX
2150 struct btrfs_io_bio *btrfs_failed_bio;
2151 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2152 int num_copies;
2153 int ret;
2154 int read_mode;
2155 u64 logical;
2156
2157 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2158
2159 ret = get_state_private(failure_tree, start, &private);
2160 if (ret) {
2161 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2162 if (!failrec)
2163 return -ENOMEM;
2164 failrec->start = start;
2165 failrec->len = end - start + 1;
2166 failrec->this_mirror = 0;
2167 failrec->bio_flags = 0;
2168 failrec->in_validation = 0;
2169
2170 read_lock(&em_tree->lock);
2171 em = lookup_extent_mapping(em_tree, start, failrec->len);
2172 if (!em) {
2173 read_unlock(&em_tree->lock);
2174 kfree(failrec);
2175 return -EIO;
2176 }
2177
2178 if (em->start > start || em->start + em->len < start) {
2179 free_extent_map(em);
2180 em = NULL;
2181 }
2182 read_unlock(&em_tree->lock);
2183
7a2d6a64 2184 if (!em) {
4a54c8c1
JS
2185 kfree(failrec);
2186 return -EIO;
2187 }
2188 logical = start - em->start;
2189 logical = em->block_start + logical;
2190 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2191 logical = em->block_start;
2192 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2193 extent_set_compress_type(&failrec->bio_flags,
2194 em->compress_type);
2195 }
2196 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2197 "len=%llu\n", logical, start, failrec->len);
2198 failrec->logical = logical;
2199 free_extent_map(em);
2200
2201 /* set the bits in the private failure tree */
2202 ret = set_extent_bits(failure_tree, start, end,
2203 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2204 if (ret >= 0)
2205 ret = set_state_private(failure_tree, start,
2206 (u64)(unsigned long)failrec);
2207 /* set the bits in the inode's tree */
2208 if (ret >= 0)
2209 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2210 GFP_NOFS);
2211 if (ret < 0) {
2212 kfree(failrec);
2213 return ret;
2214 }
2215 } else {
2216 failrec = (struct io_failure_record *)(unsigned long)private;
2217 pr_debug("bio_readpage_error: (found) logical=%llu, "
2218 "start=%llu, len=%llu, validation=%d\n",
2219 failrec->logical, failrec->start, failrec->len,
2220 failrec->in_validation);
2221 /*
2222 * when data can be on disk more than twice, add to failrec here
2223 * (e.g. with a list for failed_mirror) to make
2224 * clean_io_failure() clean all those errors at once.
2225 */
2226 }
5d964051
SB
2227 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2228 failrec->logical, failrec->len);
4a54c8c1
JS
2229 if (num_copies == 1) {
2230 /*
2231 * we only have a single copy of the data, so don't bother with
2232 * all the retry and error correction code that follows. no
2233 * matter what the error is, it is very likely to persist.
2234 */
09a7f7a2
MX
2235 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2236 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2237 free_io_failure(inode, failrec, 0);
2238 return -EIO;
2239 }
2240
4a54c8c1
JS
2241 /*
2242 * there are two premises:
2243 * a) deliver good data to the caller
2244 * b) correct the bad sectors on disk
2245 */
2246 if (failed_bio->bi_vcnt > 1) {
2247 /*
2248 * to fulfill b), we need to know the exact failing sectors, as
2249 * we don't want to rewrite any more than the failed ones. thus,
2250 * we need separate read requests for the failed bio
2251 *
2252 * if the following BUG_ON triggers, our validation request got
2253 * merged. we need separate requests for our algorithm to work.
2254 */
2255 BUG_ON(failrec->in_validation);
2256 failrec->in_validation = 1;
2257 failrec->this_mirror = failed_mirror;
2258 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2259 } else {
2260 /*
2261 * we're ready to fulfill a) and b) alongside. get a good copy
2262 * of the failed sector and if we succeed, we have setup
2263 * everything for repair_io_failure to do the rest for us.
2264 */
2265 if (failrec->in_validation) {
2266 BUG_ON(failrec->this_mirror != failed_mirror);
2267 failrec->in_validation = 0;
2268 failrec->this_mirror = 0;
2269 }
2270 failrec->failed_mirror = failed_mirror;
2271 failrec->this_mirror++;
2272 if (failrec->this_mirror == failed_mirror)
2273 failrec->this_mirror++;
2274 read_mode = READ_SYNC;
2275 }
2276
facc8a22
MX
2277 if (failrec->this_mirror > num_copies) {
2278 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2279 num_copies, failrec->this_mirror, failed_mirror);
2280 free_io_failure(inode, failrec, 0);
2281 return -EIO;
2282 }
2283
9be3395b 2284 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2285 if (!bio) {
2286 free_io_failure(inode, failrec, 0);
2287 return -EIO;
2288 }
4a54c8c1
JS
2289 bio->bi_end_io = failed_bio->bi_end_io;
2290 bio->bi_sector = failrec->logical >> 9;
2291 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2292 bio->bi_size = 0;
2293
facc8a22
MX
2294 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2295 if (btrfs_failed_bio->csum) {
2296 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2297 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2298
2299 btrfs_bio = btrfs_io_bio(bio);
2300 btrfs_bio->csum = btrfs_bio->csum_inline;
2301 phy_offset >>= inode->i_sb->s_blocksize_bits;
2302 phy_offset *= csum_size;
2303 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2304 csum_size);
2305 }
2306
4a54c8c1
JS
2307 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2308
2309 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2310 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2311 failrec->this_mirror, num_copies, failrec->in_validation);
2312
013bd4c3
TI
2313 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2314 failrec->this_mirror,
2315 failrec->bio_flags, 0);
2316 return ret;
4a54c8c1
JS
2317}
2318
d1310b2e
CM
2319/* lots and lots of room for performance fixes in the end_bio funcs */
2320
87826df0
JM
2321int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2322{
2323 int uptodate = (err == 0);
2324 struct extent_io_tree *tree;
2325 int ret;
2326
2327 tree = &BTRFS_I(page->mapping->host)->io_tree;
2328
2329 if (tree->ops && tree->ops->writepage_end_io_hook) {
2330 ret = tree->ops->writepage_end_io_hook(page, start,
2331 end, NULL, uptodate);
2332 if (ret)
2333 uptodate = 0;
2334 }
2335
87826df0 2336 if (!uptodate) {
87826df0
JM
2337 ClearPageUptodate(page);
2338 SetPageError(page);
2339 }
2340 return 0;
2341}
2342
d1310b2e
CM
2343/*
2344 * after a writepage IO is done, we need to:
2345 * clear the uptodate bits on error
2346 * clear the writeback bits in the extent tree for this IO
2347 * end_page_writeback if the page has no more pending IO
2348 *
2349 * Scheduling is not allowed, so the extent state tree is expected
2350 * to have one and only one object corresponding to this IO.
2351 */
d1310b2e 2352static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2353{
d1310b2e 2354 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2355 struct extent_io_tree *tree;
d1310b2e
CM
2356 u64 start;
2357 u64 end;
d1310b2e 2358
d1310b2e
CM
2359 do {
2360 struct page *page = bvec->bv_page;
902b22f3
DW
2361 tree = &BTRFS_I(page->mapping->host)->io_tree;
2362
17a5adcc
AO
2363 /* We always issue full-page reads, but if some block
2364 * in a page fails to read, blk_update_request() will
2365 * advance bv_offset and adjust bv_len to compensate.
2366 * Print a warning for nonzero offsets, and an error
2367 * if they don't add up to a full page. */
2368 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2369 printk("%s page write in btrfs with offset %u and length %u\n",
2370 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2371 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2372 bvec->bv_offset, bvec->bv_len);
d1310b2e 2373
17a5adcc
AO
2374 start = page_offset(page);
2375 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2376
2377 if (--bvec >= bio->bi_io_vec)
2378 prefetchw(&bvec->bv_page->flags);
1259ab75 2379
87826df0
JM
2380 if (end_extent_writepage(page, err, start, end))
2381 continue;
70dec807 2382
17a5adcc 2383 end_page_writeback(page);
d1310b2e 2384 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2385
d1310b2e 2386 bio_put(bio);
d1310b2e
CM
2387}
2388
883d0de4
MX
2389static void
2390endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2391 int uptodate)
2392{
2393 struct extent_state *cached = NULL;
2394 u64 end = start + len - 1;
2395
2396 if (uptodate && tree->track_uptodate)
2397 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2398 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2399}
2400
d1310b2e
CM
2401/*
2402 * after a readpage IO is done, we need to:
2403 * clear the uptodate bits on error
2404 * set the uptodate bits if things worked
2405 * set the page up to date if all extents in the tree are uptodate
2406 * clear the lock bit in the extent tree
2407 * unlock the page if there are no other extents locked for it
2408 *
2409 * Scheduling is not allowed, so the extent state tree is expected
2410 * to have one and only one object corresponding to this IO.
2411 */
d1310b2e 2412static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2413{
2414 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2415 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2416 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2417 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2418 struct extent_io_tree *tree;
facc8a22 2419 u64 offset = 0;
d1310b2e
CM
2420 u64 start;
2421 u64 end;
facc8a22 2422 u64 len;
883d0de4
MX
2423 u64 extent_start = 0;
2424 u64 extent_len = 0;
5cf1ab56 2425 int mirror;
d1310b2e
CM
2426 int ret;
2427
d20f7043
CM
2428 if (err)
2429 uptodate = 0;
2430
d1310b2e
CM
2431 do {
2432 struct page *page = bvec->bv_page;
a71754fc 2433 struct inode *inode = page->mapping->host;
507903b8 2434
be3940c0 2435 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2436 "mirror=%lu\n", (u64)bio->bi_sector, err,
2437 io_bio->mirror_num);
a71754fc 2438 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2439
17a5adcc
AO
2440 /* We always issue full-page reads, but if some block
2441 * in a page fails to read, blk_update_request() will
2442 * advance bv_offset and adjust bv_len to compensate.
2443 * Print a warning for nonzero offsets, and an error
2444 * if they don't add up to a full page. */
2445 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2446 printk("%s page read in btrfs with offset %u and length %u\n",
2447 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2448 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2449 bvec->bv_offset, bvec->bv_len);
d1310b2e 2450
17a5adcc
AO
2451 start = page_offset(page);
2452 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2453 len = bvec->bv_len;
d1310b2e 2454
4125bf76 2455 if (++bvec <= bvec_end)
d1310b2e
CM
2456 prefetchw(&bvec->bv_page->flags);
2457
9be3395b 2458 mirror = io_bio->mirror_num;
f2a09da9
MX
2459 if (likely(uptodate && tree->ops &&
2460 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2461 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2462 page, start, end,
2463 mirror);
5ee0844d 2464 if (ret)
d1310b2e 2465 uptodate = 0;
5ee0844d 2466 else
4a54c8c1 2467 clean_io_failure(start, page);
d1310b2e 2468 }
ea466794 2469
f2a09da9
MX
2470 if (likely(uptodate))
2471 goto readpage_ok;
2472
2473 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2474 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2475 if (!ret && !err &&
2476 test_bit(BIO_UPTODATE, &bio->bi_flags))
2477 uptodate = 1;
f2a09da9 2478 } else {
f4a8e656
JS
2479 /*
2480 * The generic bio_readpage_error handles errors the
2481 * following way: If possible, new read requests are
2482 * created and submitted and will end up in
2483 * end_bio_extent_readpage as well (if we're lucky, not
2484 * in the !uptodate case). In that case it returns 0 and
2485 * we just go on with the next page in our bio. If it
2486 * can't handle the error it will return -EIO and we
2487 * remain responsible for that page.
2488 */
facc8a22
MX
2489 ret = bio_readpage_error(bio, offset, page, start, end,
2490 mirror);
7e38326f 2491 if (ret == 0) {
3b951516
CM
2492 uptodate =
2493 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2494 if (err)
2495 uptodate = 0;
7e38326f
CM
2496 continue;
2497 }
2498 }
f2a09da9 2499readpage_ok:
883d0de4 2500 if (likely(uptodate)) {
a71754fc
JB
2501 loff_t i_size = i_size_read(inode);
2502 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2503 unsigned offset;
2504
2505 /* Zero out the end if this page straddles i_size */
2506 offset = i_size & (PAGE_CACHE_SIZE-1);
2507 if (page->index == end_index && offset)
2508 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2509 SetPageUptodate(page);
70dec807 2510 } else {
17a5adcc
AO
2511 ClearPageUptodate(page);
2512 SetPageError(page);
70dec807 2513 }
17a5adcc 2514 unlock_page(page);
facc8a22 2515 offset += len;
883d0de4
MX
2516
2517 if (unlikely(!uptodate)) {
2518 if (extent_len) {
2519 endio_readpage_release_extent(tree,
2520 extent_start,
2521 extent_len, 1);
2522 extent_start = 0;
2523 extent_len = 0;
2524 }
2525 endio_readpage_release_extent(tree, start,
2526 end - start + 1, 0);
2527 } else if (!extent_len) {
2528 extent_start = start;
2529 extent_len = end + 1 - start;
2530 } else if (extent_start + extent_len == start) {
2531 extent_len += end + 1 - start;
2532 } else {
2533 endio_readpage_release_extent(tree, extent_start,
2534 extent_len, uptodate);
2535 extent_start = start;
2536 extent_len = end + 1 - start;
2537 }
4125bf76 2538 } while (bvec <= bvec_end);
d1310b2e 2539
883d0de4
MX
2540 if (extent_len)
2541 endio_readpage_release_extent(tree, extent_start, extent_len,
2542 uptodate);
facc8a22
MX
2543 if (io_bio->end_io)
2544 io_bio->end_io(io_bio, err);
d1310b2e 2545 bio_put(bio);
d1310b2e
CM
2546}
2547
9be3395b
CM
2548/*
2549 * this allocates from the btrfs_bioset. We're returning a bio right now
2550 * but you can call btrfs_io_bio for the appropriate container_of magic
2551 */
88f794ed
MX
2552struct bio *
2553btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2554 gfp_t gfp_flags)
d1310b2e 2555{
facc8a22 2556 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2557 struct bio *bio;
2558
9be3395b 2559 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2560
2561 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2562 while (!bio && (nr_vecs /= 2)) {
2563 bio = bio_alloc_bioset(gfp_flags,
2564 nr_vecs, btrfs_bioset);
2565 }
d1310b2e
CM
2566 }
2567
2568 if (bio) {
e1c4b745 2569 bio->bi_size = 0;
d1310b2e
CM
2570 bio->bi_bdev = bdev;
2571 bio->bi_sector = first_sector;
facc8a22
MX
2572 btrfs_bio = btrfs_io_bio(bio);
2573 btrfs_bio->csum = NULL;
2574 btrfs_bio->csum_allocated = NULL;
2575 btrfs_bio->end_io = NULL;
d1310b2e
CM
2576 }
2577 return bio;
2578}
2579
9be3395b
CM
2580struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2581{
2582 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2583}
2584
2585
2586/* this also allocates from the btrfs_bioset */
2587struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2588{
facc8a22
MX
2589 struct btrfs_io_bio *btrfs_bio;
2590 struct bio *bio;
2591
2592 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2593 if (bio) {
2594 btrfs_bio = btrfs_io_bio(bio);
2595 btrfs_bio->csum = NULL;
2596 btrfs_bio->csum_allocated = NULL;
2597 btrfs_bio->end_io = NULL;
2598 }
2599 return bio;
9be3395b
CM
2600}
2601
2602
355808c2
JM
2603static int __must_check submit_one_bio(int rw, struct bio *bio,
2604 int mirror_num, unsigned long bio_flags)
d1310b2e 2605{
d1310b2e 2606 int ret = 0;
70dec807
CM
2607 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2608 struct page *page = bvec->bv_page;
2609 struct extent_io_tree *tree = bio->bi_private;
70dec807 2610 u64 start;
70dec807 2611
4eee4fa4 2612 start = page_offset(page) + bvec->bv_offset;
70dec807 2613
902b22f3 2614 bio->bi_private = NULL;
d1310b2e
CM
2615
2616 bio_get(bio);
2617
065631f6 2618 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2619 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2620 mirror_num, bio_flags, start);
0b86a832 2621 else
21adbd5c 2622 btrfsic_submit_bio(rw, bio);
4a54c8c1 2623
d1310b2e
CM
2624 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2625 ret = -EOPNOTSUPP;
2626 bio_put(bio);
2627 return ret;
2628}
2629
64a16701 2630static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2631 unsigned long offset, size_t size, struct bio *bio,
2632 unsigned long bio_flags)
2633{
2634 int ret = 0;
2635 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2636 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2637 bio_flags);
2638 BUG_ON(ret < 0);
2639 return ret;
2640
2641}
2642
d1310b2e
CM
2643static int submit_extent_page(int rw, struct extent_io_tree *tree,
2644 struct page *page, sector_t sector,
2645 size_t size, unsigned long offset,
2646 struct block_device *bdev,
2647 struct bio **bio_ret,
2648 unsigned long max_pages,
f188591e 2649 bio_end_io_t end_io_func,
c8b97818
CM
2650 int mirror_num,
2651 unsigned long prev_bio_flags,
2652 unsigned long bio_flags)
d1310b2e
CM
2653{
2654 int ret = 0;
2655 struct bio *bio;
2656 int nr;
c8b97818
CM
2657 int contig = 0;
2658 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2659 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2660 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2661
2662 if (bio_ret && *bio_ret) {
2663 bio = *bio_ret;
c8b97818
CM
2664 if (old_compressed)
2665 contig = bio->bi_sector == sector;
2666 else
f73a1c7d 2667 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2668
2669 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2670 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2671 bio_add_page(bio, page, page_size, offset) < page_size) {
2672 ret = submit_one_bio(rw, bio, mirror_num,
2673 prev_bio_flags);
79787eaa
JM
2674 if (ret < 0)
2675 return ret;
d1310b2e
CM
2676 bio = NULL;
2677 } else {
2678 return 0;
2679 }
2680 }
c8b97818
CM
2681 if (this_compressed)
2682 nr = BIO_MAX_PAGES;
2683 else
2684 nr = bio_get_nr_vecs(bdev);
2685
88f794ed 2686 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2687 if (!bio)
2688 return -ENOMEM;
70dec807 2689
c8b97818 2690 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2691 bio->bi_end_io = end_io_func;
2692 bio->bi_private = tree;
70dec807 2693
d397712b 2694 if (bio_ret)
d1310b2e 2695 *bio_ret = bio;
d397712b 2696 else
c8b97818 2697 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2698
2699 return ret;
2700}
2701
48a3b636
ES
2702static void attach_extent_buffer_page(struct extent_buffer *eb,
2703 struct page *page)
d1310b2e
CM
2704{
2705 if (!PagePrivate(page)) {
2706 SetPagePrivate(page);
d1310b2e 2707 page_cache_get(page);
4f2de97a
JB
2708 set_page_private(page, (unsigned long)eb);
2709 } else {
2710 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2711 }
2712}
2713
4f2de97a 2714void set_page_extent_mapped(struct page *page)
d1310b2e 2715{
4f2de97a
JB
2716 if (!PagePrivate(page)) {
2717 SetPagePrivate(page);
2718 page_cache_get(page);
2719 set_page_private(page, EXTENT_PAGE_PRIVATE);
2720 }
d1310b2e
CM
2721}
2722
2723/*
2724 * basic readpage implementation. Locked extent state structs are inserted
2725 * into the tree that are removed when the IO is done (by the end_io
2726 * handlers)
79787eaa 2727 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2728 */
9974090b
MX
2729static int __do_readpage(struct extent_io_tree *tree,
2730 struct page *page,
2731 get_extent_t *get_extent,
2732 struct bio **bio, int mirror_num,
2733 unsigned long *bio_flags, int rw)
d1310b2e
CM
2734{
2735 struct inode *inode = page->mapping->host;
4eee4fa4 2736 u64 start = page_offset(page);
d1310b2e
CM
2737 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2738 u64 end;
2739 u64 cur = start;
2740 u64 extent_offset;
2741 u64 last_byte = i_size_read(inode);
2742 u64 block_start;
2743 u64 cur_end;
2744 sector_t sector;
2745 struct extent_map *em;
2746 struct block_device *bdev;
2747 int ret;
2748 int nr = 0;
306e16ce 2749 size_t pg_offset = 0;
d1310b2e 2750 size_t iosize;
c8b97818 2751 size_t disk_io_size;
d1310b2e 2752 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2753 unsigned long this_bio_flag = 0;
d1310b2e
CM
2754
2755 set_page_extent_mapped(page);
2756
9974090b 2757 end = page_end;
90a887c9
DM
2758 if (!PageUptodate(page)) {
2759 if (cleancache_get_page(page) == 0) {
2760 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2761 unlock_extent(tree, start, end);
90a887c9
DM
2762 goto out;
2763 }
2764 }
2765
c8b97818
CM
2766 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2767 char *userpage;
2768 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2769
2770 if (zero_offset) {
2771 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2772 userpage = kmap_atomic(page);
c8b97818
CM
2773 memset(userpage + zero_offset, 0, iosize);
2774 flush_dcache_page(page);
7ac687d9 2775 kunmap_atomic(userpage);
c8b97818
CM
2776 }
2777 }
d1310b2e 2778 while (cur <= end) {
c8f2f24b
JB
2779 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2780
d1310b2e
CM
2781 if (cur >= last_byte) {
2782 char *userpage;
507903b8
AJ
2783 struct extent_state *cached = NULL;
2784
306e16ce 2785 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2786 userpage = kmap_atomic(page);
306e16ce 2787 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2788 flush_dcache_page(page);
7ac687d9 2789 kunmap_atomic(userpage);
d1310b2e 2790 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2791 &cached, GFP_NOFS);
2792 unlock_extent_cached(tree, cur, cur + iosize - 1,
2793 &cached, GFP_NOFS);
d1310b2e
CM
2794 break;
2795 }
306e16ce 2796 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2797 end - cur + 1, 0);
c704005d 2798 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2799 SetPageError(page);
d0082371 2800 unlock_extent(tree, cur, end);
d1310b2e
CM
2801 break;
2802 }
d1310b2e
CM
2803 extent_offset = cur - em->start;
2804 BUG_ON(extent_map_end(em) <= cur);
2805 BUG_ON(end < cur);
2806
261507a0 2807 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2808 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2809 extent_set_compress_type(&this_bio_flag,
2810 em->compress_type);
2811 }
c8b97818 2812
d1310b2e
CM
2813 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2814 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2815 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2816 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2817 disk_io_size = em->block_len;
2818 sector = em->block_start >> 9;
2819 } else {
2820 sector = (em->block_start + extent_offset) >> 9;
2821 disk_io_size = iosize;
2822 }
d1310b2e
CM
2823 bdev = em->bdev;
2824 block_start = em->block_start;
d899e052
YZ
2825 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2826 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2827 free_extent_map(em);
2828 em = NULL;
2829
2830 /* we've found a hole, just zero and go on */
2831 if (block_start == EXTENT_MAP_HOLE) {
2832 char *userpage;
507903b8
AJ
2833 struct extent_state *cached = NULL;
2834
7ac687d9 2835 userpage = kmap_atomic(page);
306e16ce 2836 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2837 flush_dcache_page(page);
7ac687d9 2838 kunmap_atomic(userpage);
d1310b2e
CM
2839
2840 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2841 &cached, GFP_NOFS);
2842 unlock_extent_cached(tree, cur, cur + iosize - 1,
2843 &cached, GFP_NOFS);
d1310b2e 2844 cur = cur + iosize;
306e16ce 2845 pg_offset += iosize;
d1310b2e
CM
2846 continue;
2847 }
2848 /* the get_extent function already copied into the page */
9655d298
CM
2849 if (test_range_bit(tree, cur, cur_end,
2850 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2851 check_page_uptodate(tree, page);
d0082371 2852 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2853 cur = cur + iosize;
306e16ce 2854 pg_offset += iosize;
d1310b2e
CM
2855 continue;
2856 }
70dec807
CM
2857 /* we have an inline extent but it didn't get marked up
2858 * to date. Error out
2859 */
2860 if (block_start == EXTENT_MAP_INLINE) {
2861 SetPageError(page);
d0082371 2862 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2863 cur = cur + iosize;
306e16ce 2864 pg_offset += iosize;
70dec807
CM
2865 continue;
2866 }
d1310b2e 2867
c8f2f24b 2868 pnr -= page->index;
d4c7ca86 2869 ret = submit_extent_page(rw, tree, page,
306e16ce 2870 sector, disk_io_size, pg_offset,
89642229 2871 bdev, bio, pnr,
c8b97818
CM
2872 end_bio_extent_readpage, mirror_num,
2873 *bio_flags,
2874 this_bio_flag);
c8f2f24b
JB
2875 if (!ret) {
2876 nr++;
2877 *bio_flags = this_bio_flag;
2878 } else {
d1310b2e 2879 SetPageError(page);
edd33c99
JB
2880 unlock_extent(tree, cur, cur + iosize - 1);
2881 }
d1310b2e 2882 cur = cur + iosize;
306e16ce 2883 pg_offset += iosize;
d1310b2e 2884 }
90a887c9 2885out:
d1310b2e
CM
2886 if (!nr) {
2887 if (!PageError(page))
2888 SetPageUptodate(page);
2889 unlock_page(page);
2890 }
2891 return 0;
2892}
2893
9974090b
MX
2894static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2895 struct page *pages[], int nr_pages,
2896 u64 start, u64 end,
2897 get_extent_t *get_extent,
2898 struct bio **bio, int mirror_num,
2899 unsigned long *bio_flags, int rw)
2900{
2901 struct inode *inode;
2902 struct btrfs_ordered_extent *ordered;
2903 int index;
2904
2905 inode = pages[0]->mapping->host;
2906 while (1) {
2907 lock_extent(tree, start, end);
2908 ordered = btrfs_lookup_ordered_range(inode, start,
2909 end - start + 1);
2910 if (!ordered)
2911 break;
2912 unlock_extent(tree, start, end);
2913 btrfs_start_ordered_extent(inode, ordered, 1);
2914 btrfs_put_ordered_extent(ordered);
2915 }
2916
2917 for (index = 0; index < nr_pages; index++) {
2918 __do_readpage(tree, pages[index], get_extent, bio, mirror_num,
2919 bio_flags, rw);
2920 page_cache_release(pages[index]);
2921 }
2922}
2923
2924static void __extent_readpages(struct extent_io_tree *tree,
2925 struct page *pages[],
2926 int nr_pages, get_extent_t *get_extent,
2927 struct bio **bio, int mirror_num,
2928 unsigned long *bio_flags, int rw)
2929{
2930 u64 start;
2931 u64 end = 0;
2932 u64 page_start;
2933 int index;
2934 int first_index;
2935
2936 for (index = 0; index < nr_pages; index++) {
2937 page_start = page_offset(pages[index]);
2938 if (!end) {
2939 start = page_start;
2940 end = start + PAGE_CACHE_SIZE - 1;
2941 first_index = index;
2942 } else if (end + 1 == page_start) {
2943 end += PAGE_CACHE_SIZE;
2944 } else {
2945 __do_contiguous_readpages(tree, &pages[first_index],
2946 index - first_index, start,
2947 end, get_extent, bio,
2948 mirror_num, bio_flags, rw);
2949 start = page_start;
2950 end = start + PAGE_CACHE_SIZE - 1;
2951 first_index = index;
2952 }
2953 }
2954
2955 if (end)
2956 __do_contiguous_readpages(tree, &pages[first_index],
2957 index - first_index, start,
2958 end, get_extent, bio,
2959 mirror_num, bio_flags, rw);
2960}
2961
2962static int __extent_read_full_page(struct extent_io_tree *tree,
2963 struct page *page,
2964 get_extent_t *get_extent,
2965 struct bio **bio, int mirror_num,
2966 unsigned long *bio_flags, int rw)
2967{
2968 struct inode *inode = page->mapping->host;
2969 struct btrfs_ordered_extent *ordered;
2970 u64 start = page_offset(page);
2971 u64 end = start + PAGE_CACHE_SIZE - 1;
2972 int ret;
2973
2974 while (1) {
2975 lock_extent(tree, start, end);
2976 ordered = btrfs_lookup_ordered_extent(inode, start);
2977 if (!ordered)
2978 break;
2979 unlock_extent(tree, start, end);
2980 btrfs_start_ordered_extent(inode, ordered, 1);
2981 btrfs_put_ordered_extent(ordered);
2982 }
2983
2984 ret = __do_readpage(tree, page, get_extent, bio, mirror_num, bio_flags,
2985 rw);
2986 return ret;
2987}
2988
d1310b2e 2989int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2990 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2991{
2992 struct bio *bio = NULL;
c8b97818 2993 unsigned long bio_flags = 0;
d1310b2e
CM
2994 int ret;
2995
8ddc7d9c 2996 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 2997 &bio_flags, READ);
d1310b2e 2998 if (bio)
8ddc7d9c 2999 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3000 return ret;
3001}
d1310b2e 3002
11c8349b
CM
3003static noinline void update_nr_written(struct page *page,
3004 struct writeback_control *wbc,
3005 unsigned long nr_written)
3006{
3007 wbc->nr_to_write -= nr_written;
3008 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3009 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3010 page->mapping->writeback_index = page->index + nr_written;
3011}
3012
d1310b2e
CM
3013/*
3014 * the writepage semantics are similar to regular writepage. extent
3015 * records are inserted to lock ranges in the tree, and as dirty areas
3016 * are found, they are marked writeback. Then the lock bits are removed
3017 * and the end_io handler clears the writeback ranges
3018 */
3019static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3020 void *data)
3021{
3022 struct inode *inode = page->mapping->host;
3023 struct extent_page_data *epd = data;
3024 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3025 u64 start = page_offset(page);
d1310b2e
CM
3026 u64 delalloc_start;
3027 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3028 u64 end;
3029 u64 cur = start;
3030 u64 extent_offset;
3031 u64 last_byte = i_size_read(inode);
3032 u64 block_start;
3033 u64 iosize;
3034 sector_t sector;
2c64c53d 3035 struct extent_state *cached_state = NULL;
d1310b2e
CM
3036 struct extent_map *em;
3037 struct block_device *bdev;
3038 int ret;
3039 int nr = 0;
7f3c74fb 3040 size_t pg_offset = 0;
d1310b2e
CM
3041 size_t blocksize;
3042 loff_t i_size = i_size_read(inode);
3043 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3044 u64 nr_delalloc;
3045 u64 delalloc_end;
c8b97818
CM
3046 int page_started;
3047 int compressed;
ffbd517d 3048 int write_flags;
771ed689 3049 unsigned long nr_written = 0;
9e487107 3050 bool fill_delalloc = true;
d1310b2e 3051
ffbd517d 3052 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3053 write_flags = WRITE_SYNC;
ffbd517d
CM
3054 else
3055 write_flags = WRITE;
3056
1abe9b8a 3057 trace___extent_writepage(page, inode, wbc);
3058
d1310b2e 3059 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3060
3061 ClearPageError(page);
3062
7f3c74fb 3063 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3064 if (page->index > end_index ||
7f3c74fb 3065 (page->index == end_index && !pg_offset)) {
d47992f8 3066 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3067 unlock_page(page);
3068 return 0;
3069 }
3070
3071 if (page->index == end_index) {
3072 char *userpage;
3073
7ac687d9 3074 userpage = kmap_atomic(page);
7f3c74fb
CM
3075 memset(userpage + pg_offset, 0,
3076 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3077 kunmap_atomic(userpage);
211c17f5 3078 flush_dcache_page(page);
d1310b2e 3079 }
7f3c74fb 3080 pg_offset = 0;
d1310b2e
CM
3081
3082 set_page_extent_mapped(page);
3083
9e487107
JB
3084 if (!tree->ops || !tree->ops->fill_delalloc)
3085 fill_delalloc = false;
3086
d1310b2e
CM
3087 delalloc_start = start;
3088 delalloc_end = 0;
c8b97818 3089 page_started = 0;
9e487107 3090 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3091 u64 delalloc_to_write = 0;
11c8349b
CM
3092 /*
3093 * make sure the wbc mapping index is at least updated
3094 * to this page.
3095 */
3096 update_nr_written(page, wbc, 0);
3097
d397712b 3098 while (delalloc_end < page_end) {
771ed689 3099 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3100 page,
3101 &delalloc_start,
d1310b2e
CM
3102 &delalloc_end,
3103 128 * 1024 * 1024);
771ed689
CM
3104 if (nr_delalloc == 0) {
3105 delalloc_start = delalloc_end + 1;
3106 continue;
3107 }
013bd4c3
TI
3108 ret = tree->ops->fill_delalloc(inode, page,
3109 delalloc_start,
3110 delalloc_end,
3111 &page_started,
3112 &nr_written);
79787eaa
JM
3113 /* File system has been set read-only */
3114 if (ret) {
3115 SetPageError(page);
3116 goto done;
3117 }
f85d7d6c
CM
3118 /*
3119 * delalloc_end is already one less than the total
3120 * length, so we don't subtract one from
3121 * PAGE_CACHE_SIZE
3122 */
3123 delalloc_to_write += (delalloc_end - delalloc_start +
3124 PAGE_CACHE_SIZE) >>
3125 PAGE_CACHE_SHIFT;
d1310b2e 3126 delalloc_start = delalloc_end + 1;
d1310b2e 3127 }
f85d7d6c
CM
3128 if (wbc->nr_to_write < delalloc_to_write) {
3129 int thresh = 8192;
3130
3131 if (delalloc_to_write < thresh * 2)
3132 thresh = delalloc_to_write;
3133 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3134 thresh);
3135 }
c8b97818 3136
771ed689
CM
3137 /* did the fill delalloc function already unlock and start
3138 * the IO?
3139 */
3140 if (page_started) {
3141 ret = 0;
11c8349b
CM
3142 /*
3143 * we've unlocked the page, so we can't update
3144 * the mapping's writeback index, just update
3145 * nr_to_write.
3146 */
3147 wbc->nr_to_write -= nr_written;
3148 goto done_unlocked;
771ed689 3149 }
c8b97818 3150 }
247e743c 3151 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3152 ret = tree->ops->writepage_start_hook(page, start,
3153 page_end);
87826df0
JM
3154 if (ret) {
3155 /* Fixup worker will requeue */
3156 if (ret == -EBUSY)
3157 wbc->pages_skipped++;
3158 else
3159 redirty_page_for_writepage(wbc, page);
11c8349b 3160 update_nr_written(page, wbc, nr_written);
247e743c 3161 unlock_page(page);
771ed689 3162 ret = 0;
11c8349b 3163 goto done_unlocked;
247e743c
CM
3164 }
3165 }
3166
11c8349b
CM
3167 /*
3168 * we don't want to touch the inode after unlocking the page,
3169 * so we update the mapping writeback index now
3170 */
3171 update_nr_written(page, wbc, nr_written + 1);
771ed689 3172
d1310b2e 3173 end = page_end;
d1310b2e 3174 if (last_byte <= start) {
e6dcd2dc
CM
3175 if (tree->ops && tree->ops->writepage_end_io_hook)
3176 tree->ops->writepage_end_io_hook(page, start,
3177 page_end, NULL, 1);
d1310b2e
CM
3178 goto done;
3179 }
3180
d1310b2e
CM
3181 blocksize = inode->i_sb->s_blocksize;
3182
3183 while (cur <= end) {
3184 if (cur >= last_byte) {
e6dcd2dc
CM
3185 if (tree->ops && tree->ops->writepage_end_io_hook)
3186 tree->ops->writepage_end_io_hook(page, cur,
3187 page_end, NULL, 1);
d1310b2e
CM
3188 break;
3189 }
7f3c74fb 3190 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3191 end - cur + 1, 1);
c704005d 3192 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3193 SetPageError(page);
3194 break;
3195 }
3196
3197 extent_offset = cur - em->start;
3198 BUG_ON(extent_map_end(em) <= cur);
3199 BUG_ON(end < cur);
3200 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3201 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3202 sector = (em->block_start + extent_offset) >> 9;
3203 bdev = em->bdev;
3204 block_start = em->block_start;
c8b97818 3205 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3206 free_extent_map(em);
3207 em = NULL;
3208
c8b97818
CM
3209 /*
3210 * compressed and inline extents are written through other
3211 * paths in the FS
3212 */
3213 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3214 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3215 /*
3216 * end_io notification does not happen here for
3217 * compressed extents
3218 */
3219 if (!compressed && tree->ops &&
3220 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3221 tree->ops->writepage_end_io_hook(page, cur,
3222 cur + iosize - 1,
3223 NULL, 1);
c8b97818
CM
3224 else if (compressed) {
3225 /* we don't want to end_page_writeback on
3226 * a compressed extent. this happens
3227 * elsewhere
3228 */
3229 nr++;
3230 }
3231
3232 cur += iosize;
7f3c74fb 3233 pg_offset += iosize;
d1310b2e
CM
3234 continue;
3235 }
d1310b2e
CM
3236 /* leave this out until we have a page_mkwrite call */
3237 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3238 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3239 cur = cur + iosize;
7f3c74fb 3240 pg_offset += iosize;
d1310b2e
CM
3241 continue;
3242 }
c8b97818 3243
d1310b2e
CM
3244 if (tree->ops && tree->ops->writepage_io_hook) {
3245 ret = tree->ops->writepage_io_hook(page, cur,
3246 cur + iosize - 1);
3247 } else {
3248 ret = 0;
3249 }
1259ab75 3250 if (ret) {
d1310b2e 3251 SetPageError(page);
1259ab75 3252 } else {
d1310b2e 3253 unsigned long max_nr = end_index + 1;
7f3c74fb 3254
d1310b2e
CM
3255 set_range_writeback(tree, cur, cur + iosize - 1);
3256 if (!PageWriteback(page)) {
d397712b
CM
3257 printk(KERN_ERR "btrfs warning page %lu not "
3258 "writeback, cur %llu end %llu\n",
3259 page->index, (unsigned long long)cur,
d1310b2e
CM
3260 (unsigned long long)end);
3261 }
3262
ffbd517d
CM
3263 ret = submit_extent_page(write_flags, tree, page,
3264 sector, iosize, pg_offset,
3265 bdev, &epd->bio, max_nr,
c8b97818
CM
3266 end_bio_extent_writepage,
3267 0, 0, 0);
d1310b2e
CM
3268 if (ret)
3269 SetPageError(page);
3270 }
3271 cur = cur + iosize;
7f3c74fb 3272 pg_offset += iosize;
d1310b2e
CM
3273 nr++;
3274 }
3275done:
3276 if (nr == 0) {
3277 /* make sure the mapping tag for page dirty gets cleared */
3278 set_page_writeback(page);
3279 end_page_writeback(page);
3280 }
d1310b2e 3281 unlock_page(page);
771ed689 3282
11c8349b
CM
3283done_unlocked:
3284
2c64c53d
CM
3285 /* drop our reference on any cached states */
3286 free_extent_state(cached_state);
d1310b2e
CM
3287 return 0;
3288}
3289
0b32f4bb
JB
3290static int eb_wait(void *word)
3291{
3292 io_schedule();
3293 return 0;
3294}
3295
fd8b2b61 3296void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3297{
3298 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3299 TASK_UNINTERRUPTIBLE);
3300}
3301
3302static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3303 struct btrfs_fs_info *fs_info,
3304 struct extent_page_data *epd)
3305{
3306 unsigned long i, num_pages;
3307 int flush = 0;
3308 int ret = 0;
3309
3310 if (!btrfs_try_tree_write_lock(eb)) {
3311 flush = 1;
3312 flush_write_bio(epd);
3313 btrfs_tree_lock(eb);
3314 }
3315
3316 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3317 btrfs_tree_unlock(eb);
3318 if (!epd->sync_io)
3319 return 0;
3320 if (!flush) {
3321 flush_write_bio(epd);
3322 flush = 1;
3323 }
a098d8e8
CM
3324 while (1) {
3325 wait_on_extent_buffer_writeback(eb);
3326 btrfs_tree_lock(eb);
3327 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3328 break;
0b32f4bb 3329 btrfs_tree_unlock(eb);
0b32f4bb
JB
3330 }
3331 }
3332
51561ffe
JB
3333 /*
3334 * We need to do this to prevent races in people who check if the eb is
3335 * under IO since we can end up having no IO bits set for a short period
3336 * of time.
3337 */
3338 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3339 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3340 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3341 spin_unlock(&eb->refs_lock);
0b32f4bb 3342 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3343 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3344 -eb->len,
3345 fs_info->dirty_metadata_batch);
0b32f4bb 3346 ret = 1;
51561ffe
JB
3347 } else {
3348 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3349 }
3350
3351 btrfs_tree_unlock(eb);
3352
3353 if (!ret)
3354 return ret;
3355
3356 num_pages = num_extent_pages(eb->start, eb->len);
3357 for (i = 0; i < num_pages; i++) {
3358 struct page *p = extent_buffer_page(eb, i);
3359
3360 if (!trylock_page(p)) {
3361 if (!flush) {
3362 flush_write_bio(epd);
3363 flush = 1;
3364 }
3365 lock_page(p);
3366 }
3367 }
3368
3369 return ret;
3370}
3371
3372static void end_extent_buffer_writeback(struct extent_buffer *eb)
3373{
3374 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3375 smp_mb__after_clear_bit();
3376 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3377}
3378
3379static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3380{
3381 int uptodate = err == 0;
3382 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3383 struct extent_buffer *eb;
3384 int done;
3385
3386 do {
3387 struct page *page = bvec->bv_page;
3388
3389 bvec--;
3390 eb = (struct extent_buffer *)page->private;
3391 BUG_ON(!eb);
3392 done = atomic_dec_and_test(&eb->io_pages);
3393
3394 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3395 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3396 ClearPageUptodate(page);
3397 SetPageError(page);
3398 }
3399
3400 end_page_writeback(page);
3401
3402 if (!done)
3403 continue;
3404
3405 end_extent_buffer_writeback(eb);
3406 } while (bvec >= bio->bi_io_vec);
3407
3408 bio_put(bio);
3409
3410}
3411
3412static int write_one_eb(struct extent_buffer *eb,
3413 struct btrfs_fs_info *fs_info,
3414 struct writeback_control *wbc,
3415 struct extent_page_data *epd)
3416{
3417 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3418 u64 offset = eb->start;
3419 unsigned long i, num_pages;
de0022b9 3420 unsigned long bio_flags = 0;
d4c7ca86 3421 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3422 int ret = 0;
0b32f4bb
JB
3423
3424 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3425 num_pages = num_extent_pages(eb->start, eb->len);
3426 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3427 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3428 bio_flags = EXTENT_BIO_TREE_LOG;
3429
0b32f4bb
JB
3430 for (i = 0; i < num_pages; i++) {
3431 struct page *p = extent_buffer_page(eb, i);
3432
3433 clear_page_dirty_for_io(p);
3434 set_page_writeback(p);
3435 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3436 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3437 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3438 0, epd->bio_flags, bio_flags);
3439 epd->bio_flags = bio_flags;
0b32f4bb
JB
3440 if (ret) {
3441 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3442 SetPageError(p);
3443 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3444 end_extent_buffer_writeback(eb);
3445 ret = -EIO;
3446 break;
3447 }
3448 offset += PAGE_CACHE_SIZE;
3449 update_nr_written(p, wbc, 1);
3450 unlock_page(p);
3451 }
3452
3453 if (unlikely(ret)) {
3454 for (; i < num_pages; i++) {
3455 struct page *p = extent_buffer_page(eb, i);
3456 unlock_page(p);
3457 }
3458 }
3459
3460 return ret;
3461}
3462
3463int btree_write_cache_pages(struct address_space *mapping,
3464 struct writeback_control *wbc)
3465{
3466 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3467 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3468 struct extent_buffer *eb, *prev_eb = NULL;
3469 struct extent_page_data epd = {
3470 .bio = NULL,
3471 .tree = tree,
3472 .extent_locked = 0,
3473 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3474 .bio_flags = 0,
0b32f4bb
JB
3475 };
3476 int ret = 0;
3477 int done = 0;
3478 int nr_to_write_done = 0;
3479 struct pagevec pvec;
3480 int nr_pages;
3481 pgoff_t index;
3482 pgoff_t end; /* Inclusive */
3483 int scanned = 0;
3484 int tag;
3485
3486 pagevec_init(&pvec, 0);
3487 if (wbc->range_cyclic) {
3488 index = mapping->writeback_index; /* Start from prev offset */
3489 end = -1;
3490 } else {
3491 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3492 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3493 scanned = 1;
3494 }
3495 if (wbc->sync_mode == WB_SYNC_ALL)
3496 tag = PAGECACHE_TAG_TOWRITE;
3497 else
3498 tag = PAGECACHE_TAG_DIRTY;
3499retry:
3500 if (wbc->sync_mode == WB_SYNC_ALL)
3501 tag_pages_for_writeback(mapping, index, end);
3502 while (!done && !nr_to_write_done && (index <= end) &&
3503 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3504 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3505 unsigned i;
3506
3507 scanned = 1;
3508 for (i = 0; i < nr_pages; i++) {
3509 struct page *page = pvec.pages[i];
3510
3511 if (!PagePrivate(page))
3512 continue;
3513
3514 if (!wbc->range_cyclic && page->index > end) {
3515 done = 1;
3516 break;
3517 }
3518
b5bae261
JB
3519 spin_lock(&mapping->private_lock);
3520 if (!PagePrivate(page)) {
3521 spin_unlock(&mapping->private_lock);
3522 continue;
3523 }
3524
0b32f4bb 3525 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3526
3527 /*
3528 * Shouldn't happen and normally this would be a BUG_ON
3529 * but no sense in crashing the users box for something
3530 * we can survive anyway.
3531 */
0b32f4bb 3532 if (!eb) {
b5bae261 3533 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3534 WARN_ON(1);
3535 continue;
3536 }
3537
b5bae261
JB
3538 if (eb == prev_eb) {
3539 spin_unlock(&mapping->private_lock);
0b32f4bb 3540 continue;
b5bae261 3541 }
0b32f4bb 3542
b5bae261
JB
3543 ret = atomic_inc_not_zero(&eb->refs);
3544 spin_unlock(&mapping->private_lock);
3545 if (!ret)
0b32f4bb 3546 continue;
0b32f4bb
JB
3547
3548 prev_eb = eb;
3549 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3550 if (!ret) {
3551 free_extent_buffer(eb);
3552 continue;
3553 }
3554
3555 ret = write_one_eb(eb, fs_info, wbc, &epd);
3556 if (ret) {
3557 done = 1;
3558 free_extent_buffer(eb);
3559 break;
3560 }
3561 free_extent_buffer(eb);
3562
3563 /*
3564 * the filesystem may choose to bump up nr_to_write.
3565 * We have to make sure to honor the new nr_to_write
3566 * at any time
3567 */
3568 nr_to_write_done = wbc->nr_to_write <= 0;
3569 }
3570 pagevec_release(&pvec);
3571 cond_resched();
3572 }
3573 if (!scanned && !done) {
3574 /*
3575 * We hit the last page and there is more work to be done: wrap
3576 * back to the start of the file
3577 */
3578 scanned = 1;
3579 index = 0;
3580 goto retry;
3581 }
3582 flush_write_bio(&epd);
3583 return ret;
3584}
3585
d1310b2e 3586/**
4bef0848 3587 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3588 * @mapping: address space structure to write
3589 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3590 * @writepage: function called for each page
3591 * @data: data passed to writepage function
3592 *
3593 * If a page is already under I/O, write_cache_pages() skips it, even
3594 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3595 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3596 * and msync() need to guarantee that all the data which was dirty at the time
3597 * the call was made get new I/O started against them. If wbc->sync_mode is
3598 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3599 * existing IO to complete.
3600 */
b2950863 3601static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3602 struct address_space *mapping,
3603 struct writeback_control *wbc,
d2c3f4f6
CM
3604 writepage_t writepage, void *data,
3605 void (*flush_fn)(void *))
d1310b2e 3606{
7fd1a3f7 3607 struct inode *inode = mapping->host;
d1310b2e
CM
3608 int ret = 0;
3609 int done = 0;
f85d7d6c 3610 int nr_to_write_done = 0;
d1310b2e
CM
3611 struct pagevec pvec;
3612 int nr_pages;
3613 pgoff_t index;
3614 pgoff_t end; /* Inclusive */
3615 int scanned = 0;
f7aaa06b 3616 int tag;
d1310b2e 3617
7fd1a3f7
JB
3618 /*
3619 * We have to hold onto the inode so that ordered extents can do their
3620 * work when the IO finishes. The alternative to this is failing to add
3621 * an ordered extent if the igrab() fails there and that is a huge pain
3622 * to deal with, so instead just hold onto the inode throughout the
3623 * writepages operation. If it fails here we are freeing up the inode
3624 * anyway and we'd rather not waste our time writing out stuff that is
3625 * going to be truncated anyway.
3626 */
3627 if (!igrab(inode))
3628 return 0;
3629
d1310b2e
CM
3630 pagevec_init(&pvec, 0);
3631 if (wbc->range_cyclic) {
3632 index = mapping->writeback_index; /* Start from prev offset */
3633 end = -1;
3634 } else {
3635 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3636 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3637 scanned = 1;
3638 }
f7aaa06b
JB
3639 if (wbc->sync_mode == WB_SYNC_ALL)
3640 tag = PAGECACHE_TAG_TOWRITE;
3641 else
3642 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3643retry:
f7aaa06b
JB
3644 if (wbc->sync_mode == WB_SYNC_ALL)
3645 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3646 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3647 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3648 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3649 unsigned i;
3650
3651 scanned = 1;
3652 for (i = 0; i < nr_pages; i++) {
3653 struct page *page = pvec.pages[i];
3654
3655 /*
3656 * At this point we hold neither mapping->tree_lock nor
3657 * lock on the page itself: the page may be truncated or
3658 * invalidated (changing page->mapping to NULL), or even
3659 * swizzled back from swapper_space to tmpfs file
3660 * mapping
3661 */
c8f2f24b
JB
3662 if (!trylock_page(page)) {
3663 flush_fn(data);
3664 lock_page(page);
01d658f2 3665 }
d1310b2e
CM
3666
3667 if (unlikely(page->mapping != mapping)) {
3668 unlock_page(page);
3669 continue;
3670 }
3671
3672 if (!wbc->range_cyclic && page->index > end) {
3673 done = 1;
3674 unlock_page(page);
3675 continue;
3676 }
3677
d2c3f4f6 3678 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3679 if (PageWriteback(page))
3680 flush_fn(data);
d1310b2e 3681 wait_on_page_writeback(page);
d2c3f4f6 3682 }
d1310b2e
CM
3683
3684 if (PageWriteback(page) ||
3685 !clear_page_dirty_for_io(page)) {
3686 unlock_page(page);
3687 continue;
3688 }
3689
3690 ret = (*writepage)(page, wbc, data);
3691
3692 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3693 unlock_page(page);
3694 ret = 0;
3695 }
f85d7d6c 3696 if (ret)
d1310b2e 3697 done = 1;
f85d7d6c
CM
3698
3699 /*
3700 * the filesystem may choose to bump up nr_to_write.
3701 * We have to make sure to honor the new nr_to_write
3702 * at any time
3703 */
3704 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3705 }
3706 pagevec_release(&pvec);
3707 cond_resched();
3708 }
3709 if (!scanned && !done) {
3710 /*
3711 * We hit the last page and there is more work to be done: wrap
3712 * back to the start of the file
3713 */
3714 scanned = 1;
3715 index = 0;
3716 goto retry;
3717 }
7fd1a3f7 3718 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3719 return ret;
3720}
d1310b2e 3721
ffbd517d 3722static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3723{
d2c3f4f6 3724 if (epd->bio) {
355808c2
JM
3725 int rw = WRITE;
3726 int ret;
3727
ffbd517d 3728 if (epd->sync_io)
355808c2
JM
3729 rw = WRITE_SYNC;
3730
de0022b9 3731 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3732 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3733 epd->bio = NULL;
3734 }
3735}
3736
ffbd517d
CM
3737static noinline void flush_write_bio(void *data)
3738{
3739 struct extent_page_data *epd = data;
3740 flush_epd_write_bio(epd);
3741}
3742
d1310b2e
CM
3743int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3744 get_extent_t *get_extent,
3745 struct writeback_control *wbc)
3746{
3747 int ret;
d1310b2e
CM
3748 struct extent_page_data epd = {
3749 .bio = NULL,
3750 .tree = tree,
3751 .get_extent = get_extent,
771ed689 3752 .extent_locked = 0,
ffbd517d 3753 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3754 .bio_flags = 0,
d1310b2e 3755 };
d1310b2e 3756
d1310b2e
CM
3757 ret = __extent_writepage(page, wbc, &epd);
3758
ffbd517d 3759 flush_epd_write_bio(&epd);
d1310b2e
CM
3760 return ret;
3761}
d1310b2e 3762
771ed689
CM
3763int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3764 u64 start, u64 end, get_extent_t *get_extent,
3765 int mode)
3766{
3767 int ret = 0;
3768 struct address_space *mapping = inode->i_mapping;
3769 struct page *page;
3770 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3771 PAGE_CACHE_SHIFT;
3772
3773 struct extent_page_data epd = {
3774 .bio = NULL,
3775 .tree = tree,
3776 .get_extent = get_extent,
3777 .extent_locked = 1,
ffbd517d 3778 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3779 .bio_flags = 0,
771ed689
CM
3780 };
3781 struct writeback_control wbc_writepages = {
771ed689 3782 .sync_mode = mode,
771ed689
CM
3783 .nr_to_write = nr_pages * 2,
3784 .range_start = start,
3785 .range_end = end + 1,
3786 };
3787
d397712b 3788 while (start <= end) {
771ed689
CM
3789 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3790 if (clear_page_dirty_for_io(page))
3791 ret = __extent_writepage(page, &wbc_writepages, &epd);
3792 else {
3793 if (tree->ops && tree->ops->writepage_end_io_hook)
3794 tree->ops->writepage_end_io_hook(page, start,
3795 start + PAGE_CACHE_SIZE - 1,
3796 NULL, 1);
3797 unlock_page(page);
3798 }
3799 page_cache_release(page);
3800 start += PAGE_CACHE_SIZE;
3801 }
3802
ffbd517d 3803 flush_epd_write_bio(&epd);
771ed689
CM
3804 return ret;
3805}
d1310b2e
CM
3806
3807int extent_writepages(struct extent_io_tree *tree,
3808 struct address_space *mapping,
3809 get_extent_t *get_extent,
3810 struct writeback_control *wbc)
3811{
3812 int ret = 0;
3813 struct extent_page_data epd = {
3814 .bio = NULL,
3815 .tree = tree,
3816 .get_extent = get_extent,
771ed689 3817 .extent_locked = 0,
ffbd517d 3818 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3819 .bio_flags = 0,
d1310b2e
CM
3820 };
3821
4bef0848 3822 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3823 __extent_writepage, &epd,
3824 flush_write_bio);
ffbd517d 3825 flush_epd_write_bio(&epd);
d1310b2e
CM
3826 return ret;
3827}
d1310b2e
CM
3828
3829int extent_readpages(struct extent_io_tree *tree,
3830 struct address_space *mapping,
3831 struct list_head *pages, unsigned nr_pages,
3832 get_extent_t get_extent)
3833{
3834 struct bio *bio = NULL;
3835 unsigned page_idx;
c8b97818 3836 unsigned long bio_flags = 0;
67c9684f
LB
3837 struct page *pagepool[16];
3838 struct page *page;
67c9684f 3839 int nr = 0;
d1310b2e 3840
d1310b2e 3841 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3842 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3843
3844 prefetchw(&page->flags);
3845 list_del(&page->lru);
67c9684f 3846 if (add_to_page_cache_lru(page, mapping,
43e817a1 3847 page->index, GFP_NOFS)) {
67c9684f
LB
3848 page_cache_release(page);
3849 continue;
d1310b2e 3850 }
67c9684f
LB
3851
3852 pagepool[nr++] = page;
3853 if (nr < ARRAY_SIZE(pagepool))
3854 continue;
9974090b
MX
3855 __extent_readpages(tree, pagepool, nr, get_extent,
3856 &bio, 0, &bio_flags, READ);
67c9684f 3857 nr = 0;
d1310b2e 3858 }
9974090b
MX
3859 if (nr)
3860 __extent_readpages(tree, pagepool, nr, get_extent,
3861 &bio, 0, &bio_flags, READ);
67c9684f 3862
d1310b2e
CM
3863 BUG_ON(!list_empty(pages));
3864 if (bio)
79787eaa 3865 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3866 return 0;
3867}
d1310b2e
CM
3868
3869/*
3870 * basic invalidatepage code, this waits on any locked or writeback
3871 * ranges corresponding to the page, and then deletes any extent state
3872 * records from the tree
3873 */
3874int extent_invalidatepage(struct extent_io_tree *tree,
3875 struct page *page, unsigned long offset)
3876{
2ac55d41 3877 struct extent_state *cached_state = NULL;
4eee4fa4 3878 u64 start = page_offset(page);
d1310b2e
CM
3879 u64 end = start + PAGE_CACHE_SIZE - 1;
3880 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3881
fda2832f 3882 start += ALIGN(offset, blocksize);
d1310b2e
CM
3883 if (start > end)
3884 return 0;
3885
d0082371 3886 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3887 wait_on_page_writeback(page);
d1310b2e 3888 clear_extent_bit(tree, start, end,
32c00aff
JB
3889 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3890 EXTENT_DO_ACCOUNTING,
2ac55d41 3891 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3892 return 0;
3893}
d1310b2e 3894
7b13b7b1
CM
3895/*
3896 * a helper for releasepage, this tests for areas of the page that
3897 * are locked or under IO and drops the related state bits if it is safe
3898 * to drop the page.
3899 */
48a3b636
ES
3900static int try_release_extent_state(struct extent_map_tree *map,
3901 struct extent_io_tree *tree,
3902 struct page *page, gfp_t mask)
7b13b7b1 3903{
4eee4fa4 3904 u64 start = page_offset(page);
7b13b7b1
CM
3905 u64 end = start + PAGE_CACHE_SIZE - 1;
3906 int ret = 1;
3907
211f90e6 3908 if (test_range_bit(tree, start, end,
8b62b72b 3909 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3910 ret = 0;
3911 else {
3912 if ((mask & GFP_NOFS) == GFP_NOFS)
3913 mask = GFP_NOFS;
11ef160f
CM
3914 /*
3915 * at this point we can safely clear everything except the
3916 * locked bit and the nodatasum bit
3917 */
e3f24cc5 3918 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3919 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3920 0, 0, NULL, mask);
e3f24cc5
CM
3921
3922 /* if clear_extent_bit failed for enomem reasons,
3923 * we can't allow the release to continue.
3924 */
3925 if (ret < 0)
3926 ret = 0;
3927 else
3928 ret = 1;
7b13b7b1
CM
3929 }
3930 return ret;
3931}
7b13b7b1 3932
d1310b2e
CM
3933/*
3934 * a helper for releasepage. As long as there are no locked extents
3935 * in the range corresponding to the page, both state records and extent
3936 * map records are removed
3937 */
3938int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3939 struct extent_io_tree *tree, struct page *page,
3940 gfp_t mask)
d1310b2e
CM
3941{
3942 struct extent_map *em;
4eee4fa4 3943 u64 start = page_offset(page);
d1310b2e 3944 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3945
70dec807
CM
3946 if ((mask & __GFP_WAIT) &&
3947 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3948 u64 len;
70dec807 3949 while (start <= end) {
39b5637f 3950 len = end - start + 1;
890871be 3951 write_lock(&map->lock);
39b5637f 3952 em = lookup_extent_mapping(map, start, len);
285190d9 3953 if (!em) {
890871be 3954 write_unlock(&map->lock);
70dec807
CM
3955 break;
3956 }
7f3c74fb
CM
3957 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3958 em->start != start) {
890871be 3959 write_unlock(&map->lock);
70dec807
CM
3960 free_extent_map(em);
3961 break;
3962 }
3963 if (!test_range_bit(tree, em->start,
3964 extent_map_end(em) - 1,
8b62b72b 3965 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3966 0, NULL)) {
70dec807
CM
3967 remove_extent_mapping(map, em);
3968 /* once for the rb tree */
3969 free_extent_map(em);
3970 }
3971 start = extent_map_end(em);
890871be 3972 write_unlock(&map->lock);
70dec807
CM
3973
3974 /* once for us */
d1310b2e
CM
3975 free_extent_map(em);
3976 }
d1310b2e 3977 }
7b13b7b1 3978 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3979}
d1310b2e 3980
ec29ed5b
CM
3981/*
3982 * helper function for fiemap, which doesn't want to see any holes.
3983 * This maps until we find something past 'last'
3984 */
3985static struct extent_map *get_extent_skip_holes(struct inode *inode,
3986 u64 offset,
3987 u64 last,
3988 get_extent_t *get_extent)
3989{
3990 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3991 struct extent_map *em;
3992 u64 len;
3993
3994 if (offset >= last)
3995 return NULL;
3996
3997 while(1) {
3998 len = last - offset;
3999 if (len == 0)
4000 break;
fda2832f 4001 len = ALIGN(len, sectorsize);
ec29ed5b 4002 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4003 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4004 return em;
4005
4006 /* if this isn't a hole return it */
4007 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4008 em->block_start != EXTENT_MAP_HOLE) {
4009 return em;
4010 }
4011
4012 /* this is a hole, advance to the next extent */
4013 offset = extent_map_end(em);
4014 free_extent_map(em);
4015 if (offset >= last)
4016 break;
4017 }
4018 return NULL;
4019}
4020
1506fcc8
YS
4021int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4022 __u64 start, __u64 len, get_extent_t *get_extent)
4023{
975f84fe 4024 int ret = 0;
1506fcc8
YS
4025 u64 off = start;
4026 u64 max = start + len;
4027 u32 flags = 0;
975f84fe
JB
4028 u32 found_type;
4029 u64 last;
ec29ed5b 4030 u64 last_for_get_extent = 0;
1506fcc8 4031 u64 disko = 0;
ec29ed5b 4032 u64 isize = i_size_read(inode);
975f84fe 4033 struct btrfs_key found_key;
1506fcc8 4034 struct extent_map *em = NULL;
2ac55d41 4035 struct extent_state *cached_state = NULL;
975f84fe
JB
4036 struct btrfs_path *path;
4037 struct btrfs_file_extent_item *item;
1506fcc8 4038 int end = 0;
ec29ed5b
CM
4039 u64 em_start = 0;
4040 u64 em_len = 0;
4041 u64 em_end = 0;
1506fcc8 4042 unsigned long emflags;
1506fcc8
YS
4043
4044 if (len == 0)
4045 return -EINVAL;
4046
975f84fe
JB
4047 path = btrfs_alloc_path();
4048 if (!path)
4049 return -ENOMEM;
4050 path->leave_spinning = 1;
4051
4d479cf0
JB
4052 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4053 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4054
ec29ed5b
CM
4055 /*
4056 * lookup the last file extent. We're not using i_size here
4057 * because there might be preallocation past i_size
4058 */
975f84fe 4059 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4060 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4061 if (ret < 0) {
4062 btrfs_free_path(path);
4063 return ret;
4064 }
4065 WARN_ON(!ret);
4066 path->slots[0]--;
4067 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4068 struct btrfs_file_extent_item);
4069 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4070 found_type = btrfs_key_type(&found_key);
4071
ec29ed5b 4072 /* No extents, but there might be delalloc bits */
33345d01 4073 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4074 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4075 /* have to trust i_size as the end */
4076 last = (u64)-1;
4077 last_for_get_extent = isize;
4078 } else {
4079 /*
4080 * remember the start of the last extent. There are a
4081 * bunch of different factors that go into the length of the
4082 * extent, so its much less complex to remember where it started
4083 */
4084 last = found_key.offset;
4085 last_for_get_extent = last + 1;
975f84fe 4086 }
975f84fe
JB
4087 btrfs_free_path(path);
4088
ec29ed5b
CM
4089 /*
4090 * we might have some extents allocated but more delalloc past those
4091 * extents. so, we trust isize unless the start of the last extent is
4092 * beyond isize
4093 */
4094 if (last < isize) {
4095 last = (u64)-1;
4096 last_for_get_extent = isize;
4097 }
4098
a52f4cd2 4099 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4100 &cached_state);
ec29ed5b 4101
4d479cf0 4102 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4103 get_extent);
1506fcc8
YS
4104 if (!em)
4105 goto out;
4106 if (IS_ERR(em)) {
4107 ret = PTR_ERR(em);
4108 goto out;
4109 }
975f84fe 4110
1506fcc8 4111 while (!end) {
b76bb701 4112 u64 offset_in_extent = 0;
ea8efc74
CM
4113
4114 /* break if the extent we found is outside the range */
4115 if (em->start >= max || extent_map_end(em) < off)
4116 break;
4117
4118 /*
4119 * get_extent may return an extent that starts before our
4120 * requested range. We have to make sure the ranges
4121 * we return to fiemap always move forward and don't
4122 * overlap, so adjust the offsets here
4123 */
4124 em_start = max(em->start, off);
1506fcc8 4125
ea8efc74
CM
4126 /*
4127 * record the offset from the start of the extent
b76bb701
JB
4128 * for adjusting the disk offset below. Only do this if the
4129 * extent isn't compressed since our in ram offset may be past
4130 * what we have actually allocated on disk.
ea8efc74 4131 */
b76bb701
JB
4132 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4133 offset_in_extent = em_start - em->start;
ec29ed5b 4134 em_end = extent_map_end(em);
ea8efc74 4135 em_len = em_end - em_start;
ec29ed5b 4136 emflags = em->flags;
1506fcc8
YS
4137 disko = 0;
4138 flags = 0;
4139
ea8efc74
CM
4140 /*
4141 * bump off for our next call to get_extent
4142 */
4143 off = extent_map_end(em);
4144 if (off >= max)
4145 end = 1;
4146
93dbfad7 4147 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4148 end = 1;
4149 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4150 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4151 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4152 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4153 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4154 flags |= (FIEMAP_EXTENT_DELALLOC |
4155 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4156 } else {
ea8efc74 4157 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4158 }
4159 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4160 flags |= FIEMAP_EXTENT_ENCODED;
4161
1506fcc8
YS
4162 free_extent_map(em);
4163 em = NULL;
ec29ed5b
CM
4164 if ((em_start >= last) || em_len == (u64)-1 ||
4165 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4166 flags |= FIEMAP_EXTENT_LAST;
4167 end = 1;
4168 }
4169
ec29ed5b
CM
4170 /* now scan forward to see if this is really the last extent. */
4171 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4172 get_extent);
4173 if (IS_ERR(em)) {
4174 ret = PTR_ERR(em);
4175 goto out;
4176 }
4177 if (!em) {
975f84fe
JB
4178 flags |= FIEMAP_EXTENT_LAST;
4179 end = 1;
4180 }
ec29ed5b
CM
4181 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4182 em_len, flags);
4183 if (ret)
4184 goto out_free;
1506fcc8
YS
4185 }
4186out_free:
4187 free_extent_map(em);
4188out:
a52f4cd2 4189 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4190 &cached_state, GFP_NOFS);
1506fcc8
YS
4191 return ret;
4192}
4193
727011e0
CM
4194static void __free_extent_buffer(struct extent_buffer *eb)
4195{
6d49ba1b 4196 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4197 kmem_cache_free(extent_buffer_cache, eb);
4198}
4199
d1310b2e
CM
4200static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4201 u64 start,
4202 unsigned long len,
4203 gfp_t mask)
4204{
4205 struct extent_buffer *eb = NULL;
4206
d1310b2e 4207 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4208 if (eb == NULL)
4209 return NULL;
d1310b2e
CM
4210 eb->start = start;
4211 eb->len = len;
4f2de97a 4212 eb->tree = tree;
815a51c7 4213 eb->bflags = 0;
bd681513
CM
4214 rwlock_init(&eb->lock);
4215 atomic_set(&eb->write_locks, 0);
4216 atomic_set(&eb->read_locks, 0);
4217 atomic_set(&eb->blocking_readers, 0);
4218 atomic_set(&eb->blocking_writers, 0);
4219 atomic_set(&eb->spinning_readers, 0);
4220 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4221 eb->lock_nested = 0;
bd681513
CM
4222 init_waitqueue_head(&eb->write_lock_wq);
4223 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4224
6d49ba1b
ES
4225 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4226
3083ee2e 4227 spin_lock_init(&eb->refs_lock);
d1310b2e 4228 atomic_set(&eb->refs, 1);
0b32f4bb 4229 atomic_set(&eb->io_pages, 0);
727011e0 4230
b8dae313
DS
4231 /*
4232 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4233 */
4234 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4235 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4236 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4237
4238 return eb;
4239}
4240
815a51c7
JS
4241struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4242{
4243 unsigned long i;
4244 struct page *p;
4245 struct extent_buffer *new;
4246 unsigned long num_pages = num_extent_pages(src->start, src->len);
4247
4248 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4249 if (new == NULL)
4250 return NULL;
4251
4252 for (i = 0; i < num_pages; i++) {
4253 p = alloc_page(GFP_ATOMIC);
4254 BUG_ON(!p);
4255 attach_extent_buffer_page(new, p);
4256 WARN_ON(PageDirty(p));
4257 SetPageUptodate(p);
4258 new->pages[i] = p;
4259 }
4260
4261 copy_extent_buffer(new, src, 0, 0, src->len);
4262 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4263 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4264
4265 return new;
4266}
4267
4268struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4269{
4270 struct extent_buffer *eb;
4271 unsigned long num_pages = num_extent_pages(0, len);
4272 unsigned long i;
4273
4274 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4275 if (!eb)
4276 return NULL;
4277
4278 for (i = 0; i < num_pages; i++) {
4279 eb->pages[i] = alloc_page(GFP_ATOMIC);
4280 if (!eb->pages[i])
4281 goto err;
4282 }
4283 set_extent_buffer_uptodate(eb);
4284 btrfs_set_header_nritems(eb, 0);
4285 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4286
4287 return eb;
4288err:
84167d19
SB
4289 for (; i > 0; i--)
4290 __free_page(eb->pages[i - 1]);
815a51c7
JS
4291 __free_extent_buffer(eb);
4292 return NULL;
4293}
4294
0b32f4bb 4295static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4296{
0b32f4bb
JB
4297 return (atomic_read(&eb->io_pages) ||
4298 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4299 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4300}
4301
897ca6e9
MX
4302/*
4303 * Helper for releasing extent buffer page.
4304 */
4305static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4306 unsigned long start_idx)
4307{
4308 unsigned long index;
39bab87b 4309 unsigned long num_pages;
897ca6e9 4310 struct page *page;
815a51c7 4311 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4312
0b32f4bb 4313 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4314
39bab87b
WSH
4315 num_pages = num_extent_pages(eb->start, eb->len);
4316 index = start_idx + num_pages;
897ca6e9
MX
4317 if (start_idx >= index)
4318 return;
4319
4320 do {
4321 index--;
4322 page = extent_buffer_page(eb, index);
815a51c7 4323 if (page && mapped) {
4f2de97a
JB
4324 spin_lock(&page->mapping->private_lock);
4325 /*
4326 * We do this since we'll remove the pages after we've
4327 * removed the eb from the radix tree, so we could race
4328 * and have this page now attached to the new eb. So
4329 * only clear page_private if it's still connected to
4330 * this eb.
4331 */
4332 if (PagePrivate(page) &&
4333 page->private == (unsigned long)eb) {
0b32f4bb 4334 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4335 BUG_ON(PageDirty(page));
4336 BUG_ON(PageWriteback(page));
4f2de97a
JB
4337 /*
4338 * We need to make sure we haven't be attached
4339 * to a new eb.
4340 */
4341 ClearPagePrivate(page);
4342 set_page_private(page, 0);
4343 /* One for the page private */
4344 page_cache_release(page);
4345 }
4346 spin_unlock(&page->mapping->private_lock);
4347
815a51c7
JS
4348 }
4349 if (page) {
4f2de97a 4350 /* One for when we alloced the page */
897ca6e9 4351 page_cache_release(page);
4f2de97a 4352 }
897ca6e9
MX
4353 } while (index != start_idx);
4354}
4355
4356/*
4357 * Helper for releasing the extent buffer.
4358 */
4359static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4360{
4361 btrfs_release_extent_buffer_page(eb, 0);
4362 __free_extent_buffer(eb);
4363}
4364
0b32f4bb
JB
4365static void check_buffer_tree_ref(struct extent_buffer *eb)
4366{
242e18c7 4367 int refs;
0b32f4bb
JB
4368 /* the ref bit is tricky. We have to make sure it is set
4369 * if we have the buffer dirty. Otherwise the
4370 * code to free a buffer can end up dropping a dirty
4371 * page
4372 *
4373 * Once the ref bit is set, it won't go away while the
4374 * buffer is dirty or in writeback, and it also won't
4375 * go away while we have the reference count on the
4376 * eb bumped.
4377 *
4378 * We can't just set the ref bit without bumping the
4379 * ref on the eb because free_extent_buffer might
4380 * see the ref bit and try to clear it. If this happens
4381 * free_extent_buffer might end up dropping our original
4382 * ref by mistake and freeing the page before we are able
4383 * to add one more ref.
4384 *
4385 * So bump the ref count first, then set the bit. If someone
4386 * beat us to it, drop the ref we added.
4387 */
242e18c7
CM
4388 refs = atomic_read(&eb->refs);
4389 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4390 return;
4391
594831c4
JB
4392 spin_lock(&eb->refs_lock);
4393 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4394 atomic_inc(&eb->refs);
594831c4 4395 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4396}
4397
5df4235e
JB
4398static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4399{
4400 unsigned long num_pages, i;
4401
0b32f4bb
JB
4402 check_buffer_tree_ref(eb);
4403
5df4235e
JB
4404 num_pages = num_extent_pages(eb->start, eb->len);
4405 for (i = 0; i < num_pages; i++) {
4406 struct page *p = extent_buffer_page(eb, i);
4407 mark_page_accessed(p);
4408 }
4409}
4410
d1310b2e 4411struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4412 u64 start, unsigned long len)
d1310b2e
CM
4413{
4414 unsigned long num_pages = num_extent_pages(start, len);
4415 unsigned long i;
4416 unsigned long index = start >> PAGE_CACHE_SHIFT;
4417 struct extent_buffer *eb;
6af118ce 4418 struct extent_buffer *exists = NULL;
d1310b2e
CM
4419 struct page *p;
4420 struct address_space *mapping = tree->mapping;
4421 int uptodate = 1;
19fe0a8b 4422 int ret;
d1310b2e 4423
19fe0a8b
MX
4424 rcu_read_lock();
4425 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4426 if (eb && atomic_inc_not_zero(&eb->refs)) {
4427 rcu_read_unlock();
5df4235e 4428 mark_extent_buffer_accessed(eb);
6af118ce
CM
4429 return eb;
4430 }
19fe0a8b 4431 rcu_read_unlock();
6af118ce 4432
ba144192 4433 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4434 if (!eb)
d1310b2e
CM
4435 return NULL;
4436
727011e0 4437 for (i = 0; i < num_pages; i++, index++) {
a6591715 4438 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4439 if (!p)
6af118ce 4440 goto free_eb;
4f2de97a
JB
4441
4442 spin_lock(&mapping->private_lock);
4443 if (PagePrivate(p)) {
4444 /*
4445 * We could have already allocated an eb for this page
4446 * and attached one so lets see if we can get a ref on
4447 * the existing eb, and if we can we know it's good and
4448 * we can just return that one, else we know we can just
4449 * overwrite page->private.
4450 */
4451 exists = (struct extent_buffer *)p->private;
4452 if (atomic_inc_not_zero(&exists->refs)) {
4453 spin_unlock(&mapping->private_lock);
4454 unlock_page(p);
17de39ac 4455 page_cache_release(p);
5df4235e 4456 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4457 goto free_eb;
4458 }
4459
0b32f4bb 4460 /*
4f2de97a
JB
4461 * Do this so attach doesn't complain and we need to
4462 * drop the ref the old guy had.
4463 */
4464 ClearPagePrivate(p);
0b32f4bb 4465 WARN_ON(PageDirty(p));
4f2de97a 4466 page_cache_release(p);
d1310b2e 4467 }
4f2de97a
JB
4468 attach_extent_buffer_page(eb, p);
4469 spin_unlock(&mapping->private_lock);
0b32f4bb 4470 WARN_ON(PageDirty(p));
d1310b2e 4471 mark_page_accessed(p);
727011e0 4472 eb->pages[i] = p;
d1310b2e
CM
4473 if (!PageUptodate(p))
4474 uptodate = 0;
eb14ab8e
CM
4475
4476 /*
4477 * see below about how we avoid a nasty race with release page
4478 * and why we unlock later
4479 */
d1310b2e
CM
4480 }
4481 if (uptodate)
b4ce94de 4482 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4483again:
19fe0a8b
MX
4484 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4485 if (ret)
4486 goto free_eb;
4487
6af118ce 4488 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4489 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4490 if (ret == -EEXIST) {
4491 exists = radix_tree_lookup(&tree->buffer,
4492 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4493 if (!atomic_inc_not_zero(&exists->refs)) {
4494 spin_unlock(&tree->buffer_lock);
4495 radix_tree_preload_end();
115391d2
JB
4496 exists = NULL;
4497 goto again;
4498 }
6af118ce 4499 spin_unlock(&tree->buffer_lock);
19fe0a8b 4500 radix_tree_preload_end();
5df4235e 4501 mark_extent_buffer_accessed(exists);
6af118ce
CM
4502 goto free_eb;
4503 }
6af118ce 4504 /* add one reference for the tree */
0b32f4bb 4505 check_buffer_tree_ref(eb);
f044ba78 4506 spin_unlock(&tree->buffer_lock);
19fe0a8b 4507 radix_tree_preload_end();
eb14ab8e
CM
4508
4509 /*
4510 * there is a race where release page may have
4511 * tried to find this extent buffer in the radix
4512 * but failed. It will tell the VM it is safe to
4513 * reclaim the, and it will clear the page private bit.
4514 * We must make sure to set the page private bit properly
4515 * after the extent buffer is in the radix tree so
4516 * it doesn't get lost
4517 */
727011e0
CM
4518 SetPageChecked(eb->pages[0]);
4519 for (i = 1; i < num_pages; i++) {
4520 p = extent_buffer_page(eb, i);
727011e0
CM
4521 ClearPageChecked(p);
4522 unlock_page(p);
4523 }
4524 unlock_page(eb->pages[0]);
d1310b2e
CM
4525 return eb;
4526
6af118ce 4527free_eb:
727011e0
CM
4528 for (i = 0; i < num_pages; i++) {
4529 if (eb->pages[i])
4530 unlock_page(eb->pages[i]);
4531 }
eb14ab8e 4532
17de39ac 4533 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4534 btrfs_release_extent_buffer(eb);
6af118ce 4535 return exists;
d1310b2e 4536}
d1310b2e
CM
4537
4538struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4539 u64 start, unsigned long len)
d1310b2e 4540{
d1310b2e 4541 struct extent_buffer *eb;
d1310b2e 4542
19fe0a8b
MX
4543 rcu_read_lock();
4544 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4545 if (eb && atomic_inc_not_zero(&eb->refs)) {
4546 rcu_read_unlock();
5df4235e 4547 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4548 return eb;
4549 }
4550 rcu_read_unlock();
0f9dd46c 4551
19fe0a8b 4552 return NULL;
d1310b2e 4553}
d1310b2e 4554
3083ee2e
JB
4555static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4556{
4557 struct extent_buffer *eb =
4558 container_of(head, struct extent_buffer, rcu_head);
4559
4560 __free_extent_buffer(eb);
4561}
4562
3083ee2e 4563/* Expects to have eb->eb_lock already held */
f7a52a40 4564static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4565{
4566 WARN_ON(atomic_read(&eb->refs) == 0);
4567 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4568 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4569 spin_unlock(&eb->refs_lock);
4570 } else {
4571 struct extent_io_tree *tree = eb->tree;
3083ee2e 4572
815a51c7 4573 spin_unlock(&eb->refs_lock);
3083ee2e 4574
815a51c7
JS
4575 spin_lock(&tree->buffer_lock);
4576 radix_tree_delete(&tree->buffer,
4577 eb->start >> PAGE_CACHE_SHIFT);
4578 spin_unlock(&tree->buffer_lock);
4579 }
3083ee2e
JB
4580
4581 /* Should be safe to release our pages at this point */
4582 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4583 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4584 return 1;
3083ee2e
JB
4585 }
4586 spin_unlock(&eb->refs_lock);
e64860aa
JB
4587
4588 return 0;
3083ee2e
JB
4589}
4590
d1310b2e
CM
4591void free_extent_buffer(struct extent_buffer *eb)
4592{
242e18c7
CM
4593 int refs;
4594 int old;
d1310b2e
CM
4595 if (!eb)
4596 return;
4597
242e18c7
CM
4598 while (1) {
4599 refs = atomic_read(&eb->refs);
4600 if (refs <= 3)
4601 break;
4602 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4603 if (old == refs)
4604 return;
4605 }
4606
3083ee2e 4607 spin_lock(&eb->refs_lock);
815a51c7
JS
4608 if (atomic_read(&eb->refs) == 2 &&
4609 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4610 atomic_dec(&eb->refs);
4611
3083ee2e
JB
4612 if (atomic_read(&eb->refs) == 2 &&
4613 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4614 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4615 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4616 atomic_dec(&eb->refs);
4617
4618 /*
4619 * I know this is terrible, but it's temporary until we stop tracking
4620 * the uptodate bits and such for the extent buffers.
4621 */
f7a52a40 4622 release_extent_buffer(eb);
3083ee2e
JB
4623}
4624
4625void free_extent_buffer_stale(struct extent_buffer *eb)
4626{
4627 if (!eb)
d1310b2e
CM
4628 return;
4629
3083ee2e
JB
4630 spin_lock(&eb->refs_lock);
4631 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4632
0b32f4bb 4633 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4634 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4635 atomic_dec(&eb->refs);
f7a52a40 4636 release_extent_buffer(eb);
d1310b2e 4637}
d1310b2e 4638
1d4284bd 4639void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4640{
d1310b2e
CM
4641 unsigned long i;
4642 unsigned long num_pages;
4643 struct page *page;
4644
d1310b2e
CM
4645 num_pages = num_extent_pages(eb->start, eb->len);
4646
4647 for (i = 0; i < num_pages; i++) {
4648 page = extent_buffer_page(eb, i);
b9473439 4649 if (!PageDirty(page))
d2c3f4f6
CM
4650 continue;
4651
a61e6f29 4652 lock_page(page);
eb14ab8e
CM
4653 WARN_ON(!PagePrivate(page));
4654
d1310b2e 4655 clear_page_dirty_for_io(page);
0ee0fda0 4656 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4657 if (!PageDirty(page)) {
4658 radix_tree_tag_clear(&page->mapping->page_tree,
4659 page_index(page),
4660 PAGECACHE_TAG_DIRTY);
4661 }
0ee0fda0 4662 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4663 ClearPageError(page);
a61e6f29 4664 unlock_page(page);
d1310b2e 4665 }
0b32f4bb 4666 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4667}
d1310b2e 4668
0b32f4bb 4669int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4670{
4671 unsigned long i;
4672 unsigned long num_pages;
b9473439 4673 int was_dirty = 0;
d1310b2e 4674
0b32f4bb
JB
4675 check_buffer_tree_ref(eb);
4676
b9473439 4677 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4678
d1310b2e 4679 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4680 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4681 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4682
b9473439 4683 for (i = 0; i < num_pages; i++)
0b32f4bb 4684 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4685 return was_dirty;
d1310b2e 4686}
d1310b2e 4687
0b32f4bb 4688int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4689{
4690 unsigned long i;
4691 struct page *page;
4692 unsigned long num_pages;
4693
b4ce94de 4694 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4695 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4696 for (i = 0; i < num_pages; i++) {
4697 page = extent_buffer_page(eb, i);
33958dc6
CM
4698 if (page)
4699 ClearPageUptodate(page);
1259ab75
CM
4700 }
4701 return 0;
4702}
4703
0b32f4bb 4704int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4705{
4706 unsigned long i;
4707 struct page *page;
4708 unsigned long num_pages;
4709
0b32f4bb 4710 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4711 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4712 for (i = 0; i < num_pages; i++) {
4713 page = extent_buffer_page(eb, i);
d1310b2e
CM
4714 SetPageUptodate(page);
4715 }
4716 return 0;
4717}
d1310b2e 4718
0b32f4bb 4719int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4720{
0b32f4bb 4721 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4722}
d1310b2e
CM
4723
4724int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4725 struct extent_buffer *eb, u64 start, int wait,
f188591e 4726 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4727{
4728 unsigned long i;
4729 unsigned long start_i;
4730 struct page *page;
4731 int err;
4732 int ret = 0;
ce9adaa5
CM
4733 int locked_pages = 0;
4734 int all_uptodate = 1;
d1310b2e 4735 unsigned long num_pages;
727011e0 4736 unsigned long num_reads = 0;
a86c12c7 4737 struct bio *bio = NULL;
c8b97818 4738 unsigned long bio_flags = 0;
a86c12c7 4739
b4ce94de 4740 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4741 return 0;
4742
d1310b2e
CM
4743 if (start) {
4744 WARN_ON(start < eb->start);
4745 start_i = (start >> PAGE_CACHE_SHIFT) -
4746 (eb->start >> PAGE_CACHE_SHIFT);
4747 } else {
4748 start_i = 0;
4749 }
4750
4751 num_pages = num_extent_pages(eb->start, eb->len);
4752 for (i = start_i; i < num_pages; i++) {
4753 page = extent_buffer_page(eb, i);
bb82ab88 4754 if (wait == WAIT_NONE) {
2db04966 4755 if (!trylock_page(page))
ce9adaa5 4756 goto unlock_exit;
d1310b2e
CM
4757 } else {
4758 lock_page(page);
4759 }
ce9adaa5 4760 locked_pages++;
727011e0
CM
4761 if (!PageUptodate(page)) {
4762 num_reads++;
ce9adaa5 4763 all_uptodate = 0;
727011e0 4764 }
ce9adaa5
CM
4765 }
4766 if (all_uptodate) {
4767 if (start_i == 0)
b4ce94de 4768 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4769 goto unlock_exit;
4770 }
4771
ea466794 4772 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4773 eb->read_mirror = 0;
0b32f4bb 4774 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4775 for (i = start_i; i < num_pages; i++) {
4776 page = extent_buffer_page(eb, i);
ce9adaa5 4777 if (!PageUptodate(page)) {
f188591e 4778 ClearPageError(page);
a86c12c7 4779 err = __extent_read_full_page(tree, page,
f188591e 4780 get_extent, &bio,
d4c7ca86
JB
4781 mirror_num, &bio_flags,
4782 READ | REQ_META);
d397712b 4783 if (err)
d1310b2e 4784 ret = err;
d1310b2e
CM
4785 } else {
4786 unlock_page(page);
4787 }
4788 }
4789
355808c2 4790 if (bio) {
d4c7ca86
JB
4791 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4792 bio_flags);
79787eaa
JM
4793 if (err)
4794 return err;
355808c2 4795 }
a86c12c7 4796
bb82ab88 4797 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4798 return ret;
d397712b 4799
d1310b2e
CM
4800 for (i = start_i; i < num_pages; i++) {
4801 page = extent_buffer_page(eb, i);
4802 wait_on_page_locked(page);
d397712b 4803 if (!PageUptodate(page))
d1310b2e 4804 ret = -EIO;
d1310b2e 4805 }
d397712b 4806
d1310b2e 4807 return ret;
ce9adaa5
CM
4808
4809unlock_exit:
4810 i = start_i;
d397712b 4811 while (locked_pages > 0) {
ce9adaa5
CM
4812 page = extent_buffer_page(eb, i);
4813 i++;
4814 unlock_page(page);
4815 locked_pages--;
4816 }
4817 return ret;
d1310b2e 4818}
d1310b2e
CM
4819
4820void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4821 unsigned long start,
4822 unsigned long len)
4823{
4824 size_t cur;
4825 size_t offset;
4826 struct page *page;
4827 char *kaddr;
4828 char *dst = (char *)dstv;
4829 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4830 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4831
4832 WARN_ON(start > eb->len);
4833 WARN_ON(start + len > eb->start + eb->len);
4834
4835 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4836
d397712b 4837 while (len > 0) {
d1310b2e 4838 page = extent_buffer_page(eb, i);
d1310b2e
CM
4839
4840 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4841 kaddr = page_address(page);
d1310b2e 4842 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4843
4844 dst += cur;
4845 len -= cur;
4846 offset = 0;
4847 i++;
4848 }
4849}
d1310b2e
CM
4850
4851int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4852 unsigned long min_len, char **map,
d1310b2e 4853 unsigned long *map_start,
a6591715 4854 unsigned long *map_len)
d1310b2e
CM
4855{
4856 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4857 char *kaddr;
4858 struct page *p;
4859 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4860 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4861 unsigned long end_i = (start_offset + start + min_len - 1) >>
4862 PAGE_CACHE_SHIFT;
4863
4864 if (i != end_i)
4865 return -EINVAL;
4866
4867 if (i == 0) {
4868 offset = start_offset;
4869 *map_start = 0;
4870 } else {
4871 offset = 0;
4872 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4873 }
d397712b 4874
d1310b2e 4875 if (start + min_len > eb->len) {
31b1a2bd 4876 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
d397712b
CM
4877 "wanted %lu %lu\n", (unsigned long long)eb->start,
4878 eb->len, start, min_len);
85026533 4879 return -EINVAL;
d1310b2e
CM
4880 }
4881
4882 p = extent_buffer_page(eb, i);
a6591715 4883 kaddr = page_address(p);
d1310b2e
CM
4884 *map = kaddr + offset;
4885 *map_len = PAGE_CACHE_SIZE - offset;
4886 return 0;
4887}
d1310b2e 4888
d1310b2e
CM
4889int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4890 unsigned long start,
4891 unsigned long len)
4892{
4893 size_t cur;
4894 size_t offset;
4895 struct page *page;
4896 char *kaddr;
4897 char *ptr = (char *)ptrv;
4898 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4899 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4900 int ret = 0;
4901
4902 WARN_ON(start > eb->len);
4903 WARN_ON(start + len > eb->start + eb->len);
4904
4905 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4906
d397712b 4907 while (len > 0) {
d1310b2e 4908 page = extent_buffer_page(eb, i);
d1310b2e
CM
4909
4910 cur = min(len, (PAGE_CACHE_SIZE - offset));
4911
a6591715 4912 kaddr = page_address(page);
d1310b2e 4913 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4914 if (ret)
4915 break;
4916
4917 ptr += cur;
4918 len -= cur;
4919 offset = 0;
4920 i++;
4921 }
4922 return ret;
4923}
d1310b2e
CM
4924
4925void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4926 unsigned long start, unsigned long len)
4927{
4928 size_t cur;
4929 size_t offset;
4930 struct page *page;
4931 char *kaddr;
4932 char *src = (char *)srcv;
4933 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4934 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4935
4936 WARN_ON(start > eb->len);
4937 WARN_ON(start + len > eb->start + eb->len);
4938
4939 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4940
d397712b 4941 while (len > 0) {
d1310b2e
CM
4942 page = extent_buffer_page(eb, i);
4943 WARN_ON(!PageUptodate(page));
4944
4945 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4946 kaddr = page_address(page);
d1310b2e 4947 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4948
4949 src += cur;
4950 len -= cur;
4951 offset = 0;
4952 i++;
4953 }
4954}
d1310b2e
CM
4955
4956void memset_extent_buffer(struct extent_buffer *eb, char c,
4957 unsigned long start, unsigned long len)
4958{
4959 size_t cur;
4960 size_t offset;
4961 struct page *page;
4962 char *kaddr;
4963 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4964 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4965
4966 WARN_ON(start > eb->len);
4967 WARN_ON(start + len > eb->start + eb->len);
4968
4969 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4970
d397712b 4971 while (len > 0) {
d1310b2e
CM
4972 page = extent_buffer_page(eb, i);
4973 WARN_ON(!PageUptodate(page));
4974
4975 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4976 kaddr = page_address(page);
d1310b2e 4977 memset(kaddr + offset, c, cur);
d1310b2e
CM
4978
4979 len -= cur;
4980 offset = 0;
4981 i++;
4982 }
4983}
d1310b2e
CM
4984
4985void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4986 unsigned long dst_offset, unsigned long src_offset,
4987 unsigned long len)
4988{
4989 u64 dst_len = dst->len;
4990 size_t cur;
4991 size_t offset;
4992 struct page *page;
4993 char *kaddr;
4994 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4995 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4996
4997 WARN_ON(src->len != dst_len);
4998
4999 offset = (start_offset + dst_offset) &
5000 ((unsigned long)PAGE_CACHE_SIZE - 1);
5001
d397712b 5002 while (len > 0) {
d1310b2e
CM
5003 page = extent_buffer_page(dst, i);
5004 WARN_ON(!PageUptodate(page));
5005
5006 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5007
a6591715 5008 kaddr = page_address(page);
d1310b2e 5009 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5010
5011 src_offset += cur;
5012 len -= cur;
5013 offset = 0;
5014 i++;
5015 }
5016}
d1310b2e
CM
5017
5018static void move_pages(struct page *dst_page, struct page *src_page,
5019 unsigned long dst_off, unsigned long src_off,
5020 unsigned long len)
5021{
a6591715 5022 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
5023 if (dst_page == src_page) {
5024 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5025 } else {
a6591715 5026 char *src_kaddr = page_address(src_page);
d1310b2e
CM
5027 char *p = dst_kaddr + dst_off + len;
5028 char *s = src_kaddr + src_off + len;
5029
5030 while (len--)
5031 *--p = *--s;
d1310b2e 5032 }
d1310b2e
CM
5033}
5034
3387206f
ST
5035static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5036{
5037 unsigned long distance = (src > dst) ? src - dst : dst - src;
5038 return distance < len;
5039}
5040
d1310b2e
CM
5041static void copy_pages(struct page *dst_page, struct page *src_page,
5042 unsigned long dst_off, unsigned long src_off,
5043 unsigned long len)
5044{
a6591715 5045 char *dst_kaddr = page_address(dst_page);
d1310b2e 5046 char *src_kaddr;
727011e0 5047 int must_memmove = 0;
d1310b2e 5048
3387206f 5049 if (dst_page != src_page) {
a6591715 5050 src_kaddr = page_address(src_page);
3387206f 5051 } else {
d1310b2e 5052 src_kaddr = dst_kaddr;
727011e0
CM
5053 if (areas_overlap(src_off, dst_off, len))
5054 must_memmove = 1;
3387206f 5055 }
d1310b2e 5056
727011e0
CM
5057 if (must_memmove)
5058 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5059 else
5060 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5061}
5062
5063void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5064 unsigned long src_offset, unsigned long len)
5065{
5066 size_t cur;
5067 size_t dst_off_in_page;
5068 size_t src_off_in_page;
5069 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5070 unsigned long dst_i;
5071 unsigned long src_i;
5072
5073 if (src_offset + len > dst->len) {
d397712b
CM
5074 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5075 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5076 BUG_ON(1);
5077 }
5078 if (dst_offset + len > dst->len) {
d397712b
CM
5079 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5080 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5081 BUG_ON(1);
5082 }
5083
d397712b 5084 while (len > 0) {
d1310b2e
CM
5085 dst_off_in_page = (start_offset + dst_offset) &
5086 ((unsigned long)PAGE_CACHE_SIZE - 1);
5087 src_off_in_page = (start_offset + src_offset) &
5088 ((unsigned long)PAGE_CACHE_SIZE - 1);
5089
5090 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5091 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5092
5093 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5094 src_off_in_page));
5095 cur = min_t(unsigned long, cur,
5096 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5097
5098 copy_pages(extent_buffer_page(dst, dst_i),
5099 extent_buffer_page(dst, src_i),
5100 dst_off_in_page, src_off_in_page, cur);
5101
5102 src_offset += cur;
5103 dst_offset += cur;
5104 len -= cur;
5105 }
5106}
d1310b2e
CM
5107
5108void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5109 unsigned long src_offset, unsigned long len)
5110{
5111 size_t cur;
5112 size_t dst_off_in_page;
5113 size_t src_off_in_page;
5114 unsigned long dst_end = dst_offset + len - 1;
5115 unsigned long src_end = src_offset + len - 1;
5116 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5117 unsigned long dst_i;
5118 unsigned long src_i;
5119
5120 if (src_offset + len > dst->len) {
d397712b
CM
5121 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5122 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5123 BUG_ON(1);
5124 }
5125 if (dst_offset + len > dst->len) {
d397712b
CM
5126 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5127 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5128 BUG_ON(1);
5129 }
727011e0 5130 if (dst_offset < src_offset) {
d1310b2e
CM
5131 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5132 return;
5133 }
d397712b 5134 while (len > 0) {
d1310b2e
CM
5135 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5136 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5137
5138 dst_off_in_page = (start_offset + dst_end) &
5139 ((unsigned long)PAGE_CACHE_SIZE - 1);
5140 src_off_in_page = (start_offset + src_end) &
5141 ((unsigned long)PAGE_CACHE_SIZE - 1);
5142
5143 cur = min_t(unsigned long, len, src_off_in_page + 1);
5144 cur = min(cur, dst_off_in_page + 1);
5145 move_pages(extent_buffer_page(dst, dst_i),
5146 extent_buffer_page(dst, src_i),
5147 dst_off_in_page - cur + 1,
5148 src_off_in_page - cur + 1, cur);
5149
5150 dst_end -= cur;
5151 src_end -= cur;
5152 len -= cur;
5153 }
5154}
6af118ce 5155
f7a52a40 5156int try_release_extent_buffer(struct page *page)
19fe0a8b 5157{
6af118ce 5158 struct extent_buffer *eb;
6af118ce 5159
3083ee2e
JB
5160 /*
5161 * We need to make sure noboody is attaching this page to an eb right
5162 * now.
5163 */
5164 spin_lock(&page->mapping->private_lock);
5165 if (!PagePrivate(page)) {
5166 spin_unlock(&page->mapping->private_lock);
4f2de97a 5167 return 1;
45f49bce 5168 }
6af118ce 5169
3083ee2e
JB
5170 eb = (struct extent_buffer *)page->private;
5171 BUG_ON(!eb);
19fe0a8b
MX
5172
5173 /*
3083ee2e
JB
5174 * This is a little awful but should be ok, we need to make sure that
5175 * the eb doesn't disappear out from under us while we're looking at
5176 * this page.
19fe0a8b 5177 */
3083ee2e 5178 spin_lock(&eb->refs_lock);
0b32f4bb 5179 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5180 spin_unlock(&eb->refs_lock);
5181 spin_unlock(&page->mapping->private_lock);
5182 return 0;
b9473439 5183 }
3083ee2e 5184 spin_unlock(&page->mapping->private_lock);
897ca6e9 5185
19fe0a8b 5186 /*
3083ee2e
JB
5187 * If tree ref isn't set then we know the ref on this eb is a real ref,
5188 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5189 */
3083ee2e
JB
5190 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5191 spin_unlock(&eb->refs_lock);
5192 return 0;
b9473439 5193 }
19fe0a8b 5194
f7a52a40 5195 return release_extent_buffer(eb);
6af118ce 5196}