btrfs: reada_extent doesn't need kref for refcount
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
7#include <linux/module.h>
8#include <linux/spinlock.h>
9#include <linux/blkdev.h>
10#include <linux/swap.h>
d1310b2e
CM
11#include <linux/writeback.h>
12#include <linux/pagevec.h>
268bb0ce 13#include <linux/prefetch.h>
90a887c9 14#include <linux/cleancache.h>
d1310b2e
CM
15#include "extent_io.h"
16#include "extent_map.h"
2db04966 17#include "compat.h"
902b22f3
DW
18#include "ctree.h"
19#include "btrfs_inode.h"
4a54c8c1 20#include "volumes.h"
21adbd5c 21#include "check-integrity.h"
0b32f4bb 22#include "locking.h"
606686ee 23#include "rcu-string.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
27
28static LIST_HEAD(buffers);
29static LIST_HEAD(states);
4bef0848 30
b47eda86 31#define LEAK_DEBUG 0
3935127c 32#if LEAK_DEBUG
d397712b 33static DEFINE_SPINLOCK(leak_lock);
4bef0848 34#endif
d1310b2e 35
d1310b2e
CM
36#define BUFFER_LRU_MAX 64
37
38struct tree_entry {
39 u64 start;
40 u64 end;
d1310b2e
CM
41 struct rb_node rb_node;
42};
43
44struct extent_page_data {
45 struct bio *bio;
46 struct extent_io_tree *tree;
47 get_extent_t *get_extent;
771ed689
CM
48
49 /* tells writepage not to lock the state bits for this range
50 * it still does the unlocking
51 */
ffbd517d
CM
52 unsigned int extent_locked:1;
53
54 /* tells the submit_bio code to use a WRITE_SYNC */
55 unsigned int sync_io:1;
d1310b2e
CM
56};
57
0b32f4bb 58static noinline void flush_write_bio(void *data);
c2d904e0
JM
59static inline struct btrfs_fs_info *
60tree_fs_info(struct extent_io_tree *tree)
61{
62 return btrfs_sb(tree->mapping->host->i_sb);
63}
0b32f4bb 64
d1310b2e
CM
65int __init extent_io_init(void)
66{
9601e3f6
CH
67 extent_state_cache = kmem_cache_create("extent_state",
68 sizeof(struct extent_state), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
70 if (!extent_state_cache)
71 return -ENOMEM;
72
9601e3f6
CH
73 extent_buffer_cache = kmem_cache_create("extent_buffers",
74 sizeof(struct extent_buffer), 0,
75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
76 if (!extent_buffer_cache)
77 goto free_state_cache;
78 return 0;
79
80free_state_cache:
81 kmem_cache_destroy(extent_state_cache);
82 return -ENOMEM;
83}
84
85void extent_io_exit(void)
86{
87 struct extent_state *state;
2d2ae547 88 struct extent_buffer *eb;
d1310b2e
CM
89
90 while (!list_empty(&states)) {
2d2ae547 91 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
92 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 "state %lu in tree %p refs %d\n",
94 (unsigned long long)state->start,
95 (unsigned long long)state->end,
96 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 97 list_del(&state->leak_list);
d1310b2e
CM
98 kmem_cache_free(extent_state_cache, state);
99
100 }
101
2d2ae547
CM
102 while (!list_empty(&buffers)) {
103 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 "refs %d\n", (unsigned long long)eb->start,
106 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
107 list_del(&eb->leak_list);
108 kmem_cache_free(extent_buffer_cache, eb);
109 }
d1310b2e
CM
110 if (extent_state_cache)
111 kmem_cache_destroy(extent_state_cache);
112 if (extent_buffer_cache)
113 kmem_cache_destroy(extent_buffer_cache);
114}
115
116void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 117 struct address_space *mapping)
d1310b2e 118{
6bef4d31 119 tree->state = RB_ROOT;
19fe0a8b 120 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
121 tree->ops = NULL;
122 tree->dirty_bytes = 0;
70dec807 123 spin_lock_init(&tree->lock);
6af118ce 124 spin_lock_init(&tree->buffer_lock);
d1310b2e 125 tree->mapping = mapping;
d1310b2e 126}
d1310b2e 127
b2950863 128static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
129{
130 struct extent_state *state;
3935127c 131#if LEAK_DEBUG
2d2ae547 132 unsigned long flags;
4bef0848 133#endif
d1310b2e
CM
134
135 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 136 if (!state)
d1310b2e
CM
137 return state;
138 state->state = 0;
d1310b2e 139 state->private = 0;
70dec807 140 state->tree = NULL;
3935127c 141#if LEAK_DEBUG
2d2ae547
CM
142 spin_lock_irqsave(&leak_lock, flags);
143 list_add(&state->leak_list, &states);
144 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 145#endif
d1310b2e
CM
146 atomic_set(&state->refs, 1);
147 init_waitqueue_head(&state->wq);
143bede5 148 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
149 return state;
150}
d1310b2e 151
4845e44f 152void free_extent_state(struct extent_state *state)
d1310b2e 153{
d1310b2e
CM
154 if (!state)
155 return;
156 if (atomic_dec_and_test(&state->refs)) {
3935127c 157#if LEAK_DEBUG
2d2ae547 158 unsigned long flags;
4bef0848 159#endif
70dec807 160 WARN_ON(state->tree);
3935127c 161#if LEAK_DEBUG
2d2ae547
CM
162 spin_lock_irqsave(&leak_lock, flags);
163 list_del(&state->leak_list);
164 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 165#endif
143bede5 166 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
167 kmem_cache_free(extent_state_cache, state);
168 }
169}
d1310b2e
CM
170
171static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
172 struct rb_node *node)
173{
d397712b
CM
174 struct rb_node **p = &root->rb_node;
175 struct rb_node *parent = NULL;
d1310b2e
CM
176 struct tree_entry *entry;
177
d397712b 178 while (*p) {
d1310b2e
CM
179 parent = *p;
180 entry = rb_entry(parent, struct tree_entry, rb_node);
181
182 if (offset < entry->start)
183 p = &(*p)->rb_left;
184 else if (offset > entry->end)
185 p = &(*p)->rb_right;
186 else
187 return parent;
188 }
189
d1310b2e
CM
190 rb_link_node(node, parent, p);
191 rb_insert_color(node, root);
192 return NULL;
193}
194
80ea96b1 195static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
196 struct rb_node **prev_ret,
197 struct rb_node **next_ret)
198{
80ea96b1 199 struct rb_root *root = &tree->state;
d397712b 200 struct rb_node *n = root->rb_node;
d1310b2e
CM
201 struct rb_node *prev = NULL;
202 struct rb_node *orig_prev = NULL;
203 struct tree_entry *entry;
204 struct tree_entry *prev_entry = NULL;
205
d397712b 206 while (n) {
d1310b2e
CM
207 entry = rb_entry(n, struct tree_entry, rb_node);
208 prev = n;
209 prev_entry = entry;
210
211 if (offset < entry->start)
212 n = n->rb_left;
213 else if (offset > entry->end)
214 n = n->rb_right;
d397712b 215 else
d1310b2e
CM
216 return n;
217 }
218
219 if (prev_ret) {
220 orig_prev = prev;
d397712b 221 while (prev && offset > prev_entry->end) {
d1310b2e
CM
222 prev = rb_next(prev);
223 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
224 }
225 *prev_ret = prev;
226 prev = orig_prev;
227 }
228
229 if (next_ret) {
230 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 231 while (prev && offset < prev_entry->start) {
d1310b2e
CM
232 prev = rb_prev(prev);
233 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
234 }
235 *next_ret = prev;
236 }
237 return NULL;
238}
239
80ea96b1
CM
240static inline struct rb_node *tree_search(struct extent_io_tree *tree,
241 u64 offset)
d1310b2e 242{
70dec807 243 struct rb_node *prev = NULL;
d1310b2e 244 struct rb_node *ret;
70dec807 245
80ea96b1 246 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 247 if (!ret)
d1310b2e
CM
248 return prev;
249 return ret;
250}
251
9ed74f2d
JB
252static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
253 struct extent_state *other)
254{
255 if (tree->ops && tree->ops->merge_extent_hook)
256 tree->ops->merge_extent_hook(tree->mapping->host, new,
257 other);
258}
259
d1310b2e
CM
260/*
261 * utility function to look for merge candidates inside a given range.
262 * Any extents with matching state are merged together into a single
263 * extent in the tree. Extents with EXTENT_IO in their state field
264 * are not merged because the end_io handlers need to be able to do
265 * operations on them without sleeping (or doing allocations/splits).
266 *
267 * This should be called with the tree lock held.
268 */
1bf85046
JM
269static void merge_state(struct extent_io_tree *tree,
270 struct extent_state *state)
d1310b2e
CM
271{
272 struct extent_state *other;
273 struct rb_node *other_node;
274
5b21f2ed 275 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 276 return;
d1310b2e
CM
277
278 other_node = rb_prev(&state->rb_node);
279 if (other_node) {
280 other = rb_entry(other_node, struct extent_state, rb_node);
281 if (other->end == state->start - 1 &&
282 other->state == state->state) {
9ed74f2d 283 merge_cb(tree, state, other);
d1310b2e 284 state->start = other->start;
70dec807 285 other->tree = NULL;
d1310b2e
CM
286 rb_erase(&other->rb_node, &tree->state);
287 free_extent_state(other);
288 }
289 }
290 other_node = rb_next(&state->rb_node);
291 if (other_node) {
292 other = rb_entry(other_node, struct extent_state, rb_node);
293 if (other->start == state->end + 1 &&
294 other->state == state->state) {
9ed74f2d 295 merge_cb(tree, state, other);
df98b6e2
JB
296 state->end = other->end;
297 other->tree = NULL;
298 rb_erase(&other->rb_node, &tree->state);
299 free_extent_state(other);
d1310b2e
CM
300 }
301 }
d1310b2e
CM
302}
303
1bf85046 304static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 305 struct extent_state *state, int *bits)
291d673e 306{
1bf85046
JM
307 if (tree->ops && tree->ops->set_bit_hook)
308 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
309}
310
311static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 312 struct extent_state *state, int *bits)
291d673e 313{
9ed74f2d
JB
314 if (tree->ops && tree->ops->clear_bit_hook)
315 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
316}
317
3150b699
XG
318static void set_state_bits(struct extent_io_tree *tree,
319 struct extent_state *state, int *bits);
320
d1310b2e
CM
321/*
322 * insert an extent_state struct into the tree. 'bits' are set on the
323 * struct before it is inserted.
324 *
325 * This may return -EEXIST if the extent is already there, in which case the
326 * state struct is freed.
327 *
328 * The tree lock is not taken internally. This is a utility function and
329 * probably isn't what you want to call (see set/clear_extent_bit).
330 */
331static int insert_state(struct extent_io_tree *tree,
332 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 333 int *bits)
d1310b2e
CM
334{
335 struct rb_node *node;
336
337 if (end < start) {
d397712b
CM
338 printk(KERN_ERR "btrfs end < start %llu %llu\n",
339 (unsigned long long)end,
340 (unsigned long long)start);
d1310b2e
CM
341 WARN_ON(1);
342 }
d1310b2e
CM
343 state->start = start;
344 state->end = end;
9ed74f2d 345
3150b699
XG
346 set_state_bits(tree, state, bits);
347
d1310b2e
CM
348 node = tree_insert(&tree->state, end, &state->rb_node);
349 if (node) {
350 struct extent_state *found;
351 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
352 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
353 "%llu %llu\n", (unsigned long long)found->start,
354 (unsigned long long)found->end,
355 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
356 return -EEXIST;
357 }
70dec807 358 state->tree = tree;
d1310b2e
CM
359 merge_state(tree, state);
360 return 0;
361}
362
1bf85046 363static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
364 u64 split)
365{
366 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 367 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
368}
369
d1310b2e
CM
370/*
371 * split a given extent state struct in two, inserting the preallocated
372 * struct 'prealloc' as the newly created second half. 'split' indicates an
373 * offset inside 'orig' where it should be split.
374 *
375 * Before calling,
376 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
377 * are two extent state structs in the tree:
378 * prealloc: [orig->start, split - 1]
379 * orig: [ split, orig->end ]
380 *
381 * The tree locks are not taken by this function. They need to be held
382 * by the caller.
383 */
384static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
385 struct extent_state *prealloc, u64 split)
386{
387 struct rb_node *node;
9ed74f2d
JB
388
389 split_cb(tree, orig, split);
390
d1310b2e
CM
391 prealloc->start = orig->start;
392 prealloc->end = split - 1;
393 prealloc->state = orig->state;
394 orig->start = split;
395
396 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
397 if (node) {
d1310b2e
CM
398 free_extent_state(prealloc);
399 return -EEXIST;
400 }
70dec807 401 prealloc->tree = tree;
d1310b2e
CM
402 return 0;
403}
404
cdc6a395
LZ
405static struct extent_state *next_state(struct extent_state *state)
406{
407 struct rb_node *next = rb_next(&state->rb_node);
408 if (next)
409 return rb_entry(next, struct extent_state, rb_node);
410 else
411 return NULL;
412}
413
d1310b2e
CM
414/*
415 * utility function to clear some bits in an extent state struct.
1b303fc0 416 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
417 *
418 * If no bits are set on the state struct after clearing things, the
419 * struct is freed and removed from the tree
420 */
cdc6a395
LZ
421static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
422 struct extent_state *state,
423 int *bits, int wake)
d1310b2e 424{
cdc6a395 425 struct extent_state *next;
0ca1f7ce 426 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 427
0ca1f7ce 428 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
429 u64 range = state->end - state->start + 1;
430 WARN_ON(range > tree->dirty_bytes);
431 tree->dirty_bytes -= range;
432 }
291d673e 433 clear_state_cb(tree, state, bits);
32c00aff 434 state->state &= ~bits_to_clear;
d1310b2e
CM
435 if (wake)
436 wake_up(&state->wq);
0ca1f7ce 437 if (state->state == 0) {
cdc6a395 438 next = next_state(state);
70dec807 439 if (state->tree) {
d1310b2e 440 rb_erase(&state->rb_node, &tree->state);
70dec807 441 state->tree = NULL;
d1310b2e
CM
442 free_extent_state(state);
443 } else {
444 WARN_ON(1);
445 }
446 } else {
447 merge_state(tree, state);
cdc6a395 448 next = next_state(state);
d1310b2e 449 }
cdc6a395 450 return next;
d1310b2e
CM
451}
452
8233767a
XG
453static struct extent_state *
454alloc_extent_state_atomic(struct extent_state *prealloc)
455{
456 if (!prealloc)
457 prealloc = alloc_extent_state(GFP_ATOMIC);
458
459 return prealloc;
460}
461
c2d904e0
JM
462void extent_io_tree_panic(struct extent_io_tree *tree, int err)
463{
464 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
465 "Extent tree was modified by another "
466 "thread while locked.");
467}
468
d1310b2e
CM
469/*
470 * clear some bits on a range in the tree. This may require splitting
471 * or inserting elements in the tree, so the gfp mask is used to
472 * indicate which allocations or sleeping are allowed.
473 *
474 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
475 * the given range from the tree regardless of state (ie for truncate).
476 *
477 * the range [start, end] is inclusive.
478 *
6763af84 479 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
480 */
481int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
482 int bits, int wake, int delete,
483 struct extent_state **cached_state,
484 gfp_t mask)
d1310b2e
CM
485{
486 struct extent_state *state;
2c64c53d 487 struct extent_state *cached;
d1310b2e
CM
488 struct extent_state *prealloc = NULL;
489 struct rb_node *node;
5c939df5 490 u64 last_end;
d1310b2e 491 int err;
2ac55d41 492 int clear = 0;
d1310b2e 493
0ca1f7ce
YZ
494 if (delete)
495 bits |= ~EXTENT_CTLBITS;
496 bits |= EXTENT_FIRST_DELALLOC;
497
2ac55d41
JB
498 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
499 clear = 1;
d1310b2e
CM
500again:
501 if (!prealloc && (mask & __GFP_WAIT)) {
502 prealloc = alloc_extent_state(mask);
503 if (!prealloc)
504 return -ENOMEM;
505 }
506
cad321ad 507 spin_lock(&tree->lock);
2c64c53d
CM
508 if (cached_state) {
509 cached = *cached_state;
2ac55d41
JB
510
511 if (clear) {
512 *cached_state = NULL;
513 cached_state = NULL;
514 }
515
df98b6e2
JB
516 if (cached && cached->tree && cached->start <= start &&
517 cached->end > start) {
2ac55d41
JB
518 if (clear)
519 atomic_dec(&cached->refs);
2c64c53d 520 state = cached;
42daec29 521 goto hit_next;
2c64c53d 522 }
2ac55d41
JB
523 if (clear)
524 free_extent_state(cached);
2c64c53d 525 }
d1310b2e
CM
526 /*
527 * this search will find the extents that end after
528 * our range starts
529 */
80ea96b1 530 node = tree_search(tree, start);
d1310b2e
CM
531 if (!node)
532 goto out;
533 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 534hit_next:
d1310b2e
CM
535 if (state->start > end)
536 goto out;
537 WARN_ON(state->end < start);
5c939df5 538 last_end = state->end;
d1310b2e 539
0449314a 540 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
541 if (!(state->state & bits)) {
542 state = next_state(state);
0449314a 543 goto next;
cdc6a395 544 }
0449314a 545
d1310b2e
CM
546 /*
547 * | ---- desired range ---- |
548 * | state | or
549 * | ------------- state -------------- |
550 *
551 * We need to split the extent we found, and may flip
552 * bits on second half.
553 *
554 * If the extent we found extends past our range, we
555 * just split and search again. It'll get split again
556 * the next time though.
557 *
558 * If the extent we found is inside our range, we clear
559 * the desired bit on it.
560 */
561
562 if (state->start < start) {
8233767a
XG
563 prealloc = alloc_extent_state_atomic(prealloc);
564 BUG_ON(!prealloc);
d1310b2e 565 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
566 if (err)
567 extent_io_tree_panic(tree, err);
568
d1310b2e
CM
569 prealloc = NULL;
570 if (err)
571 goto out;
572 if (state->end <= end) {
d1ac6e41
LB
573 state = clear_state_bit(tree, state, &bits, wake);
574 goto next;
d1310b2e
CM
575 }
576 goto search_again;
577 }
578 /*
579 * | ---- desired range ---- |
580 * | state |
581 * We need to split the extent, and clear the bit
582 * on the first half
583 */
584 if (state->start <= end && state->end > end) {
8233767a
XG
585 prealloc = alloc_extent_state_atomic(prealloc);
586 BUG_ON(!prealloc);
d1310b2e 587 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
588 if (err)
589 extent_io_tree_panic(tree, err);
590
d1310b2e
CM
591 if (wake)
592 wake_up(&state->wq);
42daec29 593
6763af84 594 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 595
d1310b2e
CM
596 prealloc = NULL;
597 goto out;
598 }
42daec29 599
cdc6a395 600 state = clear_state_bit(tree, state, &bits, wake);
0449314a 601next:
5c939df5
YZ
602 if (last_end == (u64)-1)
603 goto out;
604 start = last_end + 1;
cdc6a395 605 if (start <= end && state && !need_resched())
692e5759 606 goto hit_next;
d1310b2e
CM
607 goto search_again;
608
609out:
cad321ad 610 spin_unlock(&tree->lock);
d1310b2e
CM
611 if (prealloc)
612 free_extent_state(prealloc);
613
6763af84 614 return 0;
d1310b2e
CM
615
616search_again:
617 if (start > end)
618 goto out;
cad321ad 619 spin_unlock(&tree->lock);
d1310b2e
CM
620 if (mask & __GFP_WAIT)
621 cond_resched();
622 goto again;
623}
d1310b2e 624
143bede5
JM
625static void wait_on_state(struct extent_io_tree *tree,
626 struct extent_state *state)
641f5219
CH
627 __releases(tree->lock)
628 __acquires(tree->lock)
d1310b2e
CM
629{
630 DEFINE_WAIT(wait);
631 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 632 spin_unlock(&tree->lock);
d1310b2e 633 schedule();
cad321ad 634 spin_lock(&tree->lock);
d1310b2e 635 finish_wait(&state->wq, &wait);
d1310b2e
CM
636}
637
638/*
639 * waits for one or more bits to clear on a range in the state tree.
640 * The range [start, end] is inclusive.
641 * The tree lock is taken by this function
642 */
143bede5 643void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
644{
645 struct extent_state *state;
646 struct rb_node *node;
647
cad321ad 648 spin_lock(&tree->lock);
d1310b2e
CM
649again:
650 while (1) {
651 /*
652 * this search will find all the extents that end after
653 * our range starts
654 */
80ea96b1 655 node = tree_search(tree, start);
d1310b2e
CM
656 if (!node)
657 break;
658
659 state = rb_entry(node, struct extent_state, rb_node);
660
661 if (state->start > end)
662 goto out;
663
664 if (state->state & bits) {
665 start = state->start;
666 atomic_inc(&state->refs);
667 wait_on_state(tree, state);
668 free_extent_state(state);
669 goto again;
670 }
671 start = state->end + 1;
672
673 if (start > end)
674 break;
675
ded91f08 676 cond_resched_lock(&tree->lock);
d1310b2e
CM
677 }
678out:
cad321ad 679 spin_unlock(&tree->lock);
d1310b2e 680}
d1310b2e 681
1bf85046 682static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 683 struct extent_state *state,
0ca1f7ce 684 int *bits)
d1310b2e 685{
0ca1f7ce 686 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 687
1bf85046 688 set_state_cb(tree, state, bits);
0ca1f7ce 689 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
690 u64 range = state->end - state->start + 1;
691 tree->dirty_bytes += range;
692 }
0ca1f7ce 693 state->state |= bits_to_set;
d1310b2e
CM
694}
695
2c64c53d
CM
696static void cache_state(struct extent_state *state,
697 struct extent_state **cached_ptr)
698{
699 if (cached_ptr && !(*cached_ptr)) {
700 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
701 *cached_ptr = state;
702 atomic_inc(&state->refs);
703 }
704 }
705}
706
507903b8
AJ
707static void uncache_state(struct extent_state **cached_ptr)
708{
709 if (cached_ptr && (*cached_ptr)) {
710 struct extent_state *state = *cached_ptr;
109b36a2
CM
711 *cached_ptr = NULL;
712 free_extent_state(state);
507903b8
AJ
713 }
714}
715
d1310b2e 716/*
1edbb734
CM
717 * set some bits on a range in the tree. This may require allocations or
718 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 719 *
1edbb734
CM
720 * If any of the exclusive bits are set, this will fail with -EEXIST if some
721 * part of the range already has the desired bits set. The start of the
722 * existing range is returned in failed_start in this case.
d1310b2e 723 *
1edbb734 724 * [start, end] is inclusive This takes the tree lock.
d1310b2e 725 */
1edbb734 726
3fbe5c02
JM
727static int __must_check
728__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
729 int bits, int exclusive_bits, u64 *failed_start,
730 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
731{
732 struct extent_state *state;
733 struct extent_state *prealloc = NULL;
734 struct rb_node *node;
d1310b2e 735 int err = 0;
d1310b2e
CM
736 u64 last_start;
737 u64 last_end;
42daec29 738
0ca1f7ce 739 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
740again:
741 if (!prealloc && (mask & __GFP_WAIT)) {
742 prealloc = alloc_extent_state(mask);
8233767a 743 BUG_ON(!prealloc);
d1310b2e
CM
744 }
745
cad321ad 746 spin_lock(&tree->lock);
9655d298
CM
747 if (cached_state && *cached_state) {
748 state = *cached_state;
df98b6e2
JB
749 if (state->start <= start && state->end > start &&
750 state->tree) {
9655d298
CM
751 node = &state->rb_node;
752 goto hit_next;
753 }
754 }
d1310b2e
CM
755 /*
756 * this search will find all the extents that end after
757 * our range starts.
758 */
80ea96b1 759 node = tree_search(tree, start);
d1310b2e 760 if (!node) {
8233767a
XG
761 prealloc = alloc_extent_state_atomic(prealloc);
762 BUG_ON(!prealloc);
0ca1f7ce 763 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
764 if (err)
765 extent_io_tree_panic(tree, err);
766
d1310b2e 767 prealloc = NULL;
d1310b2e
CM
768 goto out;
769 }
d1310b2e 770 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 771hit_next:
d1310b2e
CM
772 last_start = state->start;
773 last_end = state->end;
774
775 /*
776 * | ---- desired range ---- |
777 * | state |
778 *
779 * Just lock what we found and keep going
780 */
781 if (state->start == start && state->end <= end) {
1edbb734 782 if (state->state & exclusive_bits) {
d1310b2e
CM
783 *failed_start = state->start;
784 err = -EEXIST;
785 goto out;
786 }
42daec29 787
1bf85046 788 set_state_bits(tree, state, &bits);
2c64c53d 789 cache_state(state, cached_state);
d1310b2e 790 merge_state(tree, state);
5c939df5
YZ
791 if (last_end == (u64)-1)
792 goto out;
793 start = last_end + 1;
d1ac6e41
LB
794 state = next_state(state);
795 if (start < end && state && state->start == start &&
796 !need_resched())
797 goto hit_next;
d1310b2e
CM
798 goto search_again;
799 }
800
801 /*
802 * | ---- desired range ---- |
803 * | state |
804 * or
805 * | ------------- state -------------- |
806 *
807 * We need to split the extent we found, and may flip bits on
808 * second half.
809 *
810 * If the extent we found extends past our
811 * range, we just split and search again. It'll get split
812 * again the next time though.
813 *
814 * If the extent we found is inside our range, we set the
815 * desired bit on it.
816 */
817 if (state->start < start) {
1edbb734 818 if (state->state & exclusive_bits) {
d1310b2e
CM
819 *failed_start = start;
820 err = -EEXIST;
821 goto out;
822 }
8233767a
XG
823
824 prealloc = alloc_extent_state_atomic(prealloc);
825 BUG_ON(!prealloc);
d1310b2e 826 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
827 if (err)
828 extent_io_tree_panic(tree, err);
829
d1310b2e
CM
830 prealloc = NULL;
831 if (err)
832 goto out;
833 if (state->end <= end) {
1bf85046 834 set_state_bits(tree, state, &bits);
2c64c53d 835 cache_state(state, cached_state);
d1310b2e 836 merge_state(tree, state);
5c939df5
YZ
837 if (last_end == (u64)-1)
838 goto out;
839 start = last_end + 1;
d1ac6e41
LB
840 state = next_state(state);
841 if (start < end && state && state->start == start &&
842 !need_resched())
843 goto hit_next;
d1310b2e
CM
844 }
845 goto search_again;
846 }
847 /*
848 * | ---- desired range ---- |
849 * | state | or | state |
850 *
851 * There's a hole, we need to insert something in it and
852 * ignore the extent we found.
853 */
854 if (state->start > start) {
855 u64 this_end;
856 if (end < last_start)
857 this_end = end;
858 else
d397712b 859 this_end = last_start - 1;
8233767a
XG
860
861 prealloc = alloc_extent_state_atomic(prealloc);
862 BUG_ON(!prealloc);
c7f895a2
XG
863
864 /*
865 * Avoid to free 'prealloc' if it can be merged with
866 * the later extent.
867 */
d1310b2e 868 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 869 &bits);
c2d904e0
JM
870 if (err)
871 extent_io_tree_panic(tree, err);
872
9ed74f2d
JB
873 cache_state(prealloc, cached_state);
874 prealloc = NULL;
d1310b2e
CM
875 start = this_end + 1;
876 goto search_again;
877 }
878 /*
879 * | ---- desired range ---- |
880 * | state |
881 * We need to split the extent, and set the bit
882 * on the first half
883 */
884 if (state->start <= end && state->end > end) {
1edbb734 885 if (state->state & exclusive_bits) {
d1310b2e
CM
886 *failed_start = start;
887 err = -EEXIST;
888 goto out;
889 }
8233767a
XG
890
891 prealloc = alloc_extent_state_atomic(prealloc);
892 BUG_ON(!prealloc);
d1310b2e 893 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
894 if (err)
895 extent_io_tree_panic(tree, err);
d1310b2e 896
1bf85046 897 set_state_bits(tree, prealloc, &bits);
2c64c53d 898 cache_state(prealloc, cached_state);
d1310b2e
CM
899 merge_state(tree, prealloc);
900 prealloc = NULL;
901 goto out;
902 }
903
904 goto search_again;
905
906out:
cad321ad 907 spin_unlock(&tree->lock);
d1310b2e
CM
908 if (prealloc)
909 free_extent_state(prealloc);
910
911 return err;
912
913search_again:
914 if (start > end)
915 goto out;
cad321ad 916 spin_unlock(&tree->lock);
d1310b2e
CM
917 if (mask & __GFP_WAIT)
918 cond_resched();
919 goto again;
920}
d1310b2e 921
3fbe5c02
JM
922int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
923 u64 *failed_start, struct extent_state **cached_state,
924 gfp_t mask)
925{
926 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
927 cached_state, mask);
928}
929
930
462d6fac 931/**
10983f2e
LB
932 * convert_extent_bit - convert all bits in a given range from one bit to
933 * another
462d6fac
JB
934 * @tree: the io tree to search
935 * @start: the start offset in bytes
936 * @end: the end offset in bytes (inclusive)
937 * @bits: the bits to set in this range
938 * @clear_bits: the bits to clear in this range
939 * @mask: the allocation mask
940 *
941 * This will go through and set bits for the given range. If any states exist
942 * already in this range they are set with the given bit and cleared of the
943 * clear_bits. This is only meant to be used by things that are mergeable, ie
944 * converting from say DELALLOC to DIRTY. This is not meant to be used with
945 * boundary bits like LOCK.
946 */
947int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
948 int bits, int clear_bits, gfp_t mask)
949{
950 struct extent_state *state;
951 struct extent_state *prealloc = NULL;
952 struct rb_node *node;
953 int err = 0;
954 u64 last_start;
955 u64 last_end;
956
957again:
958 if (!prealloc && (mask & __GFP_WAIT)) {
959 prealloc = alloc_extent_state(mask);
960 if (!prealloc)
961 return -ENOMEM;
962 }
963
964 spin_lock(&tree->lock);
965 /*
966 * this search will find all the extents that end after
967 * our range starts.
968 */
969 node = tree_search(tree, start);
970 if (!node) {
971 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
972 if (!prealloc) {
973 err = -ENOMEM;
974 goto out;
975 }
462d6fac
JB
976 err = insert_state(tree, prealloc, start, end, &bits);
977 prealloc = NULL;
c2d904e0
JM
978 if (err)
979 extent_io_tree_panic(tree, err);
462d6fac
JB
980 goto out;
981 }
982 state = rb_entry(node, struct extent_state, rb_node);
983hit_next:
984 last_start = state->start;
985 last_end = state->end;
986
987 /*
988 * | ---- desired range ---- |
989 * | state |
990 *
991 * Just lock what we found and keep going
992 */
993 if (state->start == start && state->end <= end) {
462d6fac 994 set_state_bits(tree, state, &bits);
d1ac6e41 995 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
996 if (last_end == (u64)-1)
997 goto out;
462d6fac 998 start = last_end + 1;
d1ac6e41
LB
999 if (start < end && state && state->start == start &&
1000 !need_resched())
1001 goto hit_next;
462d6fac
JB
1002 goto search_again;
1003 }
1004
1005 /*
1006 * | ---- desired range ---- |
1007 * | state |
1008 * or
1009 * | ------------- state -------------- |
1010 *
1011 * We need to split the extent we found, and may flip bits on
1012 * second half.
1013 *
1014 * If the extent we found extends past our
1015 * range, we just split and search again. It'll get split
1016 * again the next time though.
1017 *
1018 * If the extent we found is inside our range, we set the
1019 * desired bit on it.
1020 */
1021 if (state->start < start) {
1022 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1023 if (!prealloc) {
1024 err = -ENOMEM;
1025 goto out;
1026 }
462d6fac 1027 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1028 if (err)
1029 extent_io_tree_panic(tree, err);
462d6fac
JB
1030 prealloc = NULL;
1031 if (err)
1032 goto out;
1033 if (state->end <= end) {
1034 set_state_bits(tree, state, &bits);
d1ac6e41 1035 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1036 if (last_end == (u64)-1)
1037 goto out;
1038 start = last_end + 1;
d1ac6e41
LB
1039 if (start < end && state && state->start == start &&
1040 !need_resched())
1041 goto hit_next;
462d6fac
JB
1042 }
1043 goto search_again;
1044 }
1045 /*
1046 * | ---- desired range ---- |
1047 * | state | or | state |
1048 *
1049 * There's a hole, we need to insert something in it and
1050 * ignore the extent we found.
1051 */
1052 if (state->start > start) {
1053 u64 this_end;
1054 if (end < last_start)
1055 this_end = end;
1056 else
1057 this_end = last_start - 1;
1058
1059 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1060 if (!prealloc) {
1061 err = -ENOMEM;
1062 goto out;
1063 }
462d6fac
JB
1064
1065 /*
1066 * Avoid to free 'prealloc' if it can be merged with
1067 * the later extent.
1068 */
1069 err = insert_state(tree, prealloc, start, this_end,
1070 &bits);
c2d904e0
JM
1071 if (err)
1072 extent_io_tree_panic(tree, err);
462d6fac
JB
1073 prealloc = NULL;
1074 start = this_end + 1;
1075 goto search_again;
1076 }
1077 /*
1078 * | ---- desired range ---- |
1079 * | state |
1080 * We need to split the extent, and set the bit
1081 * on the first half
1082 */
1083 if (state->start <= end && state->end > end) {
1084 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1085 if (!prealloc) {
1086 err = -ENOMEM;
1087 goto out;
1088 }
462d6fac
JB
1089
1090 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1091 if (err)
1092 extent_io_tree_panic(tree, err);
462d6fac
JB
1093
1094 set_state_bits(tree, prealloc, &bits);
1095 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1096 prealloc = NULL;
1097 goto out;
1098 }
1099
1100 goto search_again;
1101
1102out:
1103 spin_unlock(&tree->lock);
1104 if (prealloc)
1105 free_extent_state(prealloc);
1106
1107 return err;
1108
1109search_again:
1110 if (start > end)
1111 goto out;
1112 spin_unlock(&tree->lock);
1113 if (mask & __GFP_WAIT)
1114 cond_resched();
1115 goto again;
1116}
1117
d1310b2e
CM
1118/* wrappers around set/clear extent bit */
1119int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1120 gfp_t mask)
1121{
3fbe5c02 1122 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1123 NULL, mask);
d1310b2e 1124}
d1310b2e
CM
1125
1126int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1127 int bits, gfp_t mask)
1128{
3fbe5c02 1129 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1130 NULL, mask);
d1310b2e 1131}
d1310b2e
CM
1132
1133int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1134 int bits, gfp_t mask)
1135{
2c64c53d 1136 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1137}
d1310b2e
CM
1138
1139int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1140 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1141{
1142 return set_extent_bit(tree, start, end,
fee187d9 1143 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1144 NULL, cached_state, mask);
d1310b2e 1145}
d1310b2e
CM
1146
1147int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1148 gfp_t mask)
1149{
1150 return clear_extent_bit(tree, start, end,
32c00aff 1151 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1152 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1153}
d1310b2e
CM
1154
1155int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1156 gfp_t mask)
1157{
3fbe5c02 1158 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1159 NULL, mask);
d1310b2e 1160}
d1310b2e 1161
d1310b2e 1162int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1163 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1164{
507903b8 1165 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0,
3fbe5c02 1166 cached_state, mask);
d1310b2e 1167}
d1310b2e 1168
5fd02043
JB
1169int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1170 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1171{
2c64c53d 1172 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1173 cached_state, mask);
d1310b2e 1174}
d1310b2e 1175
d352ac68
CM
1176/*
1177 * either insert or lock state struct between start and end use mask to tell
1178 * us if waiting is desired.
1179 */
1edbb734 1180int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1181 int bits, struct extent_state **cached_state)
d1310b2e
CM
1182{
1183 int err;
1184 u64 failed_start;
1185 while (1) {
3fbe5c02
JM
1186 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1187 EXTENT_LOCKED, &failed_start,
1188 cached_state, GFP_NOFS);
d0082371 1189 if (err == -EEXIST) {
d1310b2e
CM
1190 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1191 start = failed_start;
d0082371 1192 } else
d1310b2e 1193 break;
d1310b2e
CM
1194 WARN_ON(start > end);
1195 }
1196 return err;
1197}
d1310b2e 1198
d0082371 1199int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1200{
d0082371 1201 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1202}
1203
d0082371 1204int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1205{
1206 int err;
1207 u64 failed_start;
1208
3fbe5c02
JM
1209 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1210 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1211 if (err == -EEXIST) {
1212 if (failed_start > start)
1213 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1214 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1215 return 0;
6643558d 1216 }
25179201
JB
1217 return 1;
1218}
25179201 1219
2c64c53d
CM
1220int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1221 struct extent_state **cached, gfp_t mask)
1222{
1223 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1224 mask);
1225}
1226
d0082371 1227int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1228{
2c64c53d 1229 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1230 GFP_NOFS);
d1310b2e 1231}
d1310b2e 1232
d1310b2e
CM
1233/*
1234 * helper function to set both pages and extents in the tree writeback
1235 */
b2950863 1236static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1237{
1238 unsigned long index = start >> PAGE_CACHE_SHIFT;
1239 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1240 struct page *page;
1241
1242 while (index <= end_index) {
1243 page = find_get_page(tree->mapping, index);
79787eaa 1244 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1245 set_page_writeback(page);
1246 page_cache_release(page);
1247 index++;
1248 }
d1310b2e
CM
1249 return 0;
1250}
d1310b2e 1251
d352ac68
CM
1252/* find the first state struct with 'bits' set after 'start', and
1253 * return it. tree->lock must be held. NULL will returned if
1254 * nothing was found after 'start'
1255 */
d7fc640e
CM
1256struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1257 u64 start, int bits)
1258{
1259 struct rb_node *node;
1260 struct extent_state *state;
1261
1262 /*
1263 * this search will find all the extents that end after
1264 * our range starts.
1265 */
1266 node = tree_search(tree, start);
d397712b 1267 if (!node)
d7fc640e 1268 goto out;
d7fc640e 1269
d397712b 1270 while (1) {
d7fc640e 1271 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1272 if (state->end >= start && (state->state & bits))
d7fc640e 1273 return state;
d397712b 1274
d7fc640e
CM
1275 node = rb_next(node);
1276 if (!node)
1277 break;
1278 }
1279out:
1280 return NULL;
1281}
d7fc640e 1282
69261c4b
XG
1283/*
1284 * find the first offset in the io tree with 'bits' set. zero is
1285 * returned if we find something, and *start_ret and *end_ret are
1286 * set to reflect the state struct that was found.
1287 *
477d7eaf 1288 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1289 */
1290int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1291 u64 *start_ret, u64 *end_ret, int bits)
1292{
1293 struct extent_state *state;
1294 int ret = 1;
1295
1296 spin_lock(&tree->lock);
1297 state = find_first_extent_bit_state(tree, start, bits);
1298 if (state) {
1299 *start_ret = state->start;
1300 *end_ret = state->end;
1301 ret = 0;
1302 }
1303 spin_unlock(&tree->lock);
1304 return ret;
1305}
1306
d352ac68
CM
1307/*
1308 * find a contiguous range of bytes in the file marked as delalloc, not
1309 * more than 'max_bytes'. start and end are used to return the range,
1310 *
1311 * 1 is returned if we find something, 0 if nothing was in the tree
1312 */
c8b97818 1313static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1314 u64 *start, u64 *end, u64 max_bytes,
1315 struct extent_state **cached_state)
d1310b2e
CM
1316{
1317 struct rb_node *node;
1318 struct extent_state *state;
1319 u64 cur_start = *start;
1320 u64 found = 0;
1321 u64 total_bytes = 0;
1322
cad321ad 1323 spin_lock(&tree->lock);
c8b97818 1324
d1310b2e
CM
1325 /*
1326 * this search will find all the extents that end after
1327 * our range starts.
1328 */
80ea96b1 1329 node = tree_search(tree, cur_start);
2b114d1d 1330 if (!node) {
3b951516
CM
1331 if (!found)
1332 *end = (u64)-1;
d1310b2e
CM
1333 goto out;
1334 }
1335
d397712b 1336 while (1) {
d1310b2e 1337 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1338 if (found && (state->start != cur_start ||
1339 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1340 goto out;
1341 }
1342 if (!(state->state & EXTENT_DELALLOC)) {
1343 if (!found)
1344 *end = state->end;
1345 goto out;
1346 }
c2a128d2 1347 if (!found) {
d1310b2e 1348 *start = state->start;
c2a128d2
JB
1349 *cached_state = state;
1350 atomic_inc(&state->refs);
1351 }
d1310b2e
CM
1352 found++;
1353 *end = state->end;
1354 cur_start = state->end + 1;
1355 node = rb_next(node);
1356 if (!node)
1357 break;
1358 total_bytes += state->end - state->start + 1;
1359 if (total_bytes >= max_bytes)
1360 break;
1361 }
1362out:
cad321ad 1363 spin_unlock(&tree->lock);
d1310b2e
CM
1364 return found;
1365}
1366
143bede5
JM
1367static noinline void __unlock_for_delalloc(struct inode *inode,
1368 struct page *locked_page,
1369 u64 start, u64 end)
c8b97818
CM
1370{
1371 int ret;
1372 struct page *pages[16];
1373 unsigned long index = start >> PAGE_CACHE_SHIFT;
1374 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1375 unsigned long nr_pages = end_index - index + 1;
1376 int i;
1377
1378 if (index == locked_page->index && end_index == index)
143bede5 1379 return;
c8b97818 1380
d397712b 1381 while (nr_pages > 0) {
c8b97818 1382 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1383 min_t(unsigned long, nr_pages,
1384 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1385 for (i = 0; i < ret; i++) {
1386 if (pages[i] != locked_page)
1387 unlock_page(pages[i]);
1388 page_cache_release(pages[i]);
1389 }
1390 nr_pages -= ret;
1391 index += ret;
1392 cond_resched();
1393 }
c8b97818
CM
1394}
1395
1396static noinline int lock_delalloc_pages(struct inode *inode,
1397 struct page *locked_page,
1398 u64 delalloc_start,
1399 u64 delalloc_end)
1400{
1401 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1402 unsigned long start_index = index;
1403 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1404 unsigned long pages_locked = 0;
1405 struct page *pages[16];
1406 unsigned long nrpages;
1407 int ret;
1408 int i;
1409
1410 /* the caller is responsible for locking the start index */
1411 if (index == locked_page->index && index == end_index)
1412 return 0;
1413
1414 /* skip the page at the start index */
1415 nrpages = end_index - index + 1;
d397712b 1416 while (nrpages > 0) {
c8b97818 1417 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1418 min_t(unsigned long,
1419 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1420 if (ret == 0) {
1421 ret = -EAGAIN;
1422 goto done;
1423 }
1424 /* now we have an array of pages, lock them all */
1425 for (i = 0; i < ret; i++) {
1426 /*
1427 * the caller is taking responsibility for
1428 * locked_page
1429 */
771ed689 1430 if (pages[i] != locked_page) {
c8b97818 1431 lock_page(pages[i]);
f2b1c41c
CM
1432 if (!PageDirty(pages[i]) ||
1433 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1434 ret = -EAGAIN;
1435 unlock_page(pages[i]);
1436 page_cache_release(pages[i]);
1437 goto done;
1438 }
1439 }
c8b97818 1440 page_cache_release(pages[i]);
771ed689 1441 pages_locked++;
c8b97818 1442 }
c8b97818
CM
1443 nrpages -= ret;
1444 index += ret;
1445 cond_resched();
1446 }
1447 ret = 0;
1448done:
1449 if (ret && pages_locked) {
1450 __unlock_for_delalloc(inode, locked_page,
1451 delalloc_start,
1452 ((u64)(start_index + pages_locked - 1)) <<
1453 PAGE_CACHE_SHIFT);
1454 }
1455 return ret;
1456}
1457
1458/*
1459 * find a contiguous range of bytes in the file marked as delalloc, not
1460 * more than 'max_bytes'. start and end are used to return the range,
1461 *
1462 * 1 is returned if we find something, 0 if nothing was in the tree
1463 */
1464static noinline u64 find_lock_delalloc_range(struct inode *inode,
1465 struct extent_io_tree *tree,
1466 struct page *locked_page,
1467 u64 *start, u64 *end,
1468 u64 max_bytes)
1469{
1470 u64 delalloc_start;
1471 u64 delalloc_end;
1472 u64 found;
9655d298 1473 struct extent_state *cached_state = NULL;
c8b97818
CM
1474 int ret;
1475 int loops = 0;
1476
1477again:
1478 /* step one, find a bunch of delalloc bytes starting at start */
1479 delalloc_start = *start;
1480 delalloc_end = 0;
1481 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1482 max_bytes, &cached_state);
70b99e69 1483 if (!found || delalloc_end <= *start) {
c8b97818
CM
1484 *start = delalloc_start;
1485 *end = delalloc_end;
c2a128d2 1486 free_extent_state(cached_state);
c8b97818
CM
1487 return found;
1488 }
1489
70b99e69
CM
1490 /*
1491 * start comes from the offset of locked_page. We have to lock
1492 * pages in order, so we can't process delalloc bytes before
1493 * locked_page
1494 */
d397712b 1495 if (delalloc_start < *start)
70b99e69 1496 delalloc_start = *start;
70b99e69 1497
c8b97818
CM
1498 /*
1499 * make sure to limit the number of pages we try to lock down
1500 * if we're looping.
1501 */
d397712b 1502 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1503 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1504
c8b97818
CM
1505 /* step two, lock all the pages after the page that has start */
1506 ret = lock_delalloc_pages(inode, locked_page,
1507 delalloc_start, delalloc_end);
1508 if (ret == -EAGAIN) {
1509 /* some of the pages are gone, lets avoid looping by
1510 * shortening the size of the delalloc range we're searching
1511 */
9655d298 1512 free_extent_state(cached_state);
c8b97818
CM
1513 if (!loops) {
1514 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1515 max_bytes = PAGE_CACHE_SIZE - offset;
1516 loops = 1;
1517 goto again;
1518 } else {
1519 found = 0;
1520 goto out_failed;
1521 }
1522 }
79787eaa 1523 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1524
1525 /* step three, lock the state bits for the whole range */
d0082371 1526 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1527
1528 /* then test to make sure it is all still delalloc */
1529 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1530 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1531 if (!ret) {
9655d298
CM
1532 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1533 &cached_state, GFP_NOFS);
c8b97818
CM
1534 __unlock_for_delalloc(inode, locked_page,
1535 delalloc_start, delalloc_end);
1536 cond_resched();
1537 goto again;
1538 }
9655d298 1539 free_extent_state(cached_state);
c8b97818
CM
1540 *start = delalloc_start;
1541 *end = delalloc_end;
1542out_failed:
1543 return found;
1544}
1545
1546int extent_clear_unlock_delalloc(struct inode *inode,
1547 struct extent_io_tree *tree,
1548 u64 start, u64 end, struct page *locked_page,
a791e35e 1549 unsigned long op)
c8b97818
CM
1550{
1551 int ret;
1552 struct page *pages[16];
1553 unsigned long index = start >> PAGE_CACHE_SHIFT;
1554 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1555 unsigned long nr_pages = end_index - index + 1;
1556 int i;
771ed689 1557 int clear_bits = 0;
c8b97818 1558
a791e35e 1559 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1560 clear_bits |= EXTENT_LOCKED;
a791e35e 1561 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1562 clear_bits |= EXTENT_DIRTY;
1563
a791e35e 1564 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1565 clear_bits |= EXTENT_DELALLOC;
1566
2c64c53d 1567 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1568 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1569 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1570 EXTENT_SET_PRIVATE2)))
771ed689 1571 return 0;
c8b97818 1572
d397712b 1573 while (nr_pages > 0) {
c8b97818 1574 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1575 min_t(unsigned long,
1576 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1577 for (i = 0; i < ret; i++) {
8b62b72b 1578
a791e35e 1579 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1580 SetPagePrivate2(pages[i]);
1581
c8b97818
CM
1582 if (pages[i] == locked_page) {
1583 page_cache_release(pages[i]);
1584 continue;
1585 }
a791e35e 1586 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1587 clear_page_dirty_for_io(pages[i]);
a791e35e 1588 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1589 set_page_writeback(pages[i]);
a791e35e 1590 if (op & EXTENT_END_WRITEBACK)
c8b97818 1591 end_page_writeback(pages[i]);
a791e35e 1592 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1593 unlock_page(pages[i]);
c8b97818
CM
1594 page_cache_release(pages[i]);
1595 }
1596 nr_pages -= ret;
1597 index += ret;
1598 cond_resched();
1599 }
1600 return 0;
1601}
c8b97818 1602
d352ac68
CM
1603/*
1604 * count the number of bytes in the tree that have a given bit(s)
1605 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1606 * cached. The total number found is returned.
1607 */
d1310b2e
CM
1608u64 count_range_bits(struct extent_io_tree *tree,
1609 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1610 unsigned long bits, int contig)
d1310b2e
CM
1611{
1612 struct rb_node *node;
1613 struct extent_state *state;
1614 u64 cur_start = *start;
1615 u64 total_bytes = 0;
ec29ed5b 1616 u64 last = 0;
d1310b2e
CM
1617 int found = 0;
1618
1619 if (search_end <= cur_start) {
d1310b2e
CM
1620 WARN_ON(1);
1621 return 0;
1622 }
1623
cad321ad 1624 spin_lock(&tree->lock);
d1310b2e
CM
1625 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1626 total_bytes = tree->dirty_bytes;
1627 goto out;
1628 }
1629 /*
1630 * this search will find all the extents that end after
1631 * our range starts.
1632 */
80ea96b1 1633 node = tree_search(tree, cur_start);
d397712b 1634 if (!node)
d1310b2e 1635 goto out;
d1310b2e 1636
d397712b 1637 while (1) {
d1310b2e
CM
1638 state = rb_entry(node, struct extent_state, rb_node);
1639 if (state->start > search_end)
1640 break;
ec29ed5b
CM
1641 if (contig && found && state->start > last + 1)
1642 break;
1643 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1644 total_bytes += min(search_end, state->end) + 1 -
1645 max(cur_start, state->start);
1646 if (total_bytes >= max_bytes)
1647 break;
1648 if (!found) {
af60bed2 1649 *start = max(cur_start, state->start);
d1310b2e
CM
1650 found = 1;
1651 }
ec29ed5b
CM
1652 last = state->end;
1653 } else if (contig && found) {
1654 break;
d1310b2e
CM
1655 }
1656 node = rb_next(node);
1657 if (!node)
1658 break;
1659 }
1660out:
cad321ad 1661 spin_unlock(&tree->lock);
d1310b2e
CM
1662 return total_bytes;
1663}
b2950863 1664
d352ac68
CM
1665/*
1666 * set the private field for a given byte offset in the tree. If there isn't
1667 * an extent_state there already, this does nothing.
1668 */
d1310b2e
CM
1669int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1670{
1671 struct rb_node *node;
1672 struct extent_state *state;
1673 int ret = 0;
1674
cad321ad 1675 spin_lock(&tree->lock);
d1310b2e
CM
1676 /*
1677 * this search will find all the extents that end after
1678 * our range starts.
1679 */
80ea96b1 1680 node = tree_search(tree, start);
2b114d1d 1681 if (!node) {
d1310b2e
CM
1682 ret = -ENOENT;
1683 goto out;
1684 }
1685 state = rb_entry(node, struct extent_state, rb_node);
1686 if (state->start != start) {
1687 ret = -ENOENT;
1688 goto out;
1689 }
1690 state->private = private;
1691out:
cad321ad 1692 spin_unlock(&tree->lock);
d1310b2e
CM
1693 return ret;
1694}
1695
1696int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1697{
1698 struct rb_node *node;
1699 struct extent_state *state;
1700 int ret = 0;
1701
cad321ad 1702 spin_lock(&tree->lock);
d1310b2e
CM
1703 /*
1704 * this search will find all the extents that end after
1705 * our range starts.
1706 */
80ea96b1 1707 node = tree_search(tree, start);
2b114d1d 1708 if (!node) {
d1310b2e
CM
1709 ret = -ENOENT;
1710 goto out;
1711 }
1712 state = rb_entry(node, struct extent_state, rb_node);
1713 if (state->start != start) {
1714 ret = -ENOENT;
1715 goto out;
1716 }
1717 *private = state->private;
1718out:
cad321ad 1719 spin_unlock(&tree->lock);
d1310b2e
CM
1720 return ret;
1721}
1722
1723/*
1724 * searches a range in the state tree for a given mask.
70dec807 1725 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1726 * has the bits set. Otherwise, 1 is returned if any bit in the
1727 * range is found set.
1728 */
1729int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1730 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1731{
1732 struct extent_state *state = NULL;
1733 struct rb_node *node;
1734 int bitset = 0;
d1310b2e 1735
cad321ad 1736 spin_lock(&tree->lock);
df98b6e2
JB
1737 if (cached && cached->tree && cached->start <= start &&
1738 cached->end > start)
9655d298
CM
1739 node = &cached->rb_node;
1740 else
1741 node = tree_search(tree, start);
d1310b2e
CM
1742 while (node && start <= end) {
1743 state = rb_entry(node, struct extent_state, rb_node);
1744
1745 if (filled && state->start > start) {
1746 bitset = 0;
1747 break;
1748 }
1749
1750 if (state->start > end)
1751 break;
1752
1753 if (state->state & bits) {
1754 bitset = 1;
1755 if (!filled)
1756 break;
1757 } else if (filled) {
1758 bitset = 0;
1759 break;
1760 }
46562cec
CM
1761
1762 if (state->end == (u64)-1)
1763 break;
1764
d1310b2e
CM
1765 start = state->end + 1;
1766 if (start > end)
1767 break;
1768 node = rb_next(node);
1769 if (!node) {
1770 if (filled)
1771 bitset = 0;
1772 break;
1773 }
1774 }
cad321ad 1775 spin_unlock(&tree->lock);
d1310b2e
CM
1776 return bitset;
1777}
d1310b2e
CM
1778
1779/*
1780 * helper function to set a given page up to date if all the
1781 * extents in the tree for that page are up to date
1782 */
143bede5 1783static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1784{
1785 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1786 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1787 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1788 SetPageUptodate(page);
d1310b2e
CM
1789}
1790
1791/*
1792 * helper function to unlock a page if all the extents in the tree
1793 * for that page are unlocked
1794 */
143bede5 1795static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e
CM
1796{
1797 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1798 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1799 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1800 unlock_page(page);
d1310b2e
CM
1801}
1802
1803/*
1804 * helper function to end page writeback if all the extents
1805 * in the tree for that page are done with writeback
1806 */
143bede5
JM
1807static void check_page_writeback(struct extent_io_tree *tree,
1808 struct page *page)
d1310b2e 1809{
1edbb734 1810 end_page_writeback(page);
d1310b2e
CM
1811}
1812
4a54c8c1
JS
1813/*
1814 * When IO fails, either with EIO or csum verification fails, we
1815 * try other mirrors that might have a good copy of the data. This
1816 * io_failure_record is used to record state as we go through all the
1817 * mirrors. If another mirror has good data, the page is set up to date
1818 * and things continue. If a good mirror can't be found, the original
1819 * bio end_io callback is called to indicate things have failed.
1820 */
1821struct io_failure_record {
1822 struct page *page;
1823 u64 start;
1824 u64 len;
1825 u64 logical;
1826 unsigned long bio_flags;
1827 int this_mirror;
1828 int failed_mirror;
1829 int in_validation;
1830};
1831
1832static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1833 int did_repair)
1834{
1835 int ret;
1836 int err = 0;
1837 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1838
1839 set_state_private(failure_tree, rec->start, 0);
1840 ret = clear_extent_bits(failure_tree, rec->start,
1841 rec->start + rec->len - 1,
1842 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1843 if (ret)
1844 err = ret;
1845
1846 if (did_repair) {
1847 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1848 rec->start + rec->len - 1,
1849 EXTENT_DAMAGED, GFP_NOFS);
1850 if (ret && !err)
1851 err = ret;
1852 }
1853
1854 kfree(rec);
1855 return err;
1856}
1857
1858static void repair_io_failure_callback(struct bio *bio, int err)
1859{
1860 complete(bio->bi_private);
1861}
1862
1863/*
1864 * this bypasses the standard btrfs submit functions deliberately, as
1865 * the standard behavior is to write all copies in a raid setup. here we only
1866 * want to write the one bad copy. so we do the mapping for ourselves and issue
1867 * submit_bio directly.
1868 * to avoid any synchonization issues, wait for the data after writing, which
1869 * actually prevents the read that triggered the error from finishing.
1870 * currently, there can be no more than two copies of every data bit. thus,
1871 * exactly one rewrite is required.
1872 */
1873int repair_io_failure(struct btrfs_mapping_tree *map_tree, u64 start,
1874 u64 length, u64 logical, struct page *page,
1875 int mirror_num)
1876{
1877 struct bio *bio;
1878 struct btrfs_device *dev;
1879 DECLARE_COMPLETION_ONSTACK(compl);
1880 u64 map_length = 0;
1881 u64 sector;
1882 struct btrfs_bio *bbio = NULL;
1883 int ret;
1884
1885 BUG_ON(!mirror_num);
1886
1887 bio = bio_alloc(GFP_NOFS, 1);
1888 if (!bio)
1889 return -EIO;
1890 bio->bi_private = &compl;
1891 bio->bi_end_io = repair_io_failure_callback;
1892 bio->bi_size = 0;
1893 map_length = length;
1894
1895 ret = btrfs_map_block(map_tree, WRITE, logical,
1896 &map_length, &bbio, mirror_num);
1897 if (ret) {
1898 bio_put(bio);
1899 return -EIO;
1900 }
1901 BUG_ON(mirror_num != bbio->mirror_num);
1902 sector = bbio->stripes[mirror_num-1].physical >> 9;
1903 bio->bi_sector = sector;
1904 dev = bbio->stripes[mirror_num-1].dev;
1905 kfree(bbio);
1906 if (!dev || !dev->bdev || !dev->writeable) {
1907 bio_put(bio);
1908 return -EIO;
1909 }
1910 bio->bi_bdev = dev->bdev;
1911 bio_add_page(bio, page, length, start-page_offset(page));
21adbd5c 1912 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
1913 wait_for_completion(&compl);
1914
1915 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
1916 /* try to remap that extent elsewhere? */
1917 bio_put(bio);
442a4f63 1918 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
1919 return -EIO;
1920 }
1921
d5b025d5 1922 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
1923 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
1924 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
1925
1926 bio_put(bio);
1927 return 0;
1928}
1929
ea466794
JB
1930int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
1931 int mirror_num)
1932{
1933 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
1934 u64 start = eb->start;
1935 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 1936 int ret = 0;
ea466794
JB
1937
1938 for (i = 0; i < num_pages; i++) {
1939 struct page *p = extent_buffer_page(eb, i);
1940 ret = repair_io_failure(map_tree, start, PAGE_CACHE_SIZE,
1941 start, p, mirror_num);
1942 if (ret)
1943 break;
1944 start += PAGE_CACHE_SIZE;
1945 }
1946
1947 return ret;
1948}
1949
4a54c8c1
JS
1950/*
1951 * each time an IO finishes, we do a fast check in the IO failure tree
1952 * to see if we need to process or clean up an io_failure_record
1953 */
1954static int clean_io_failure(u64 start, struct page *page)
1955{
1956 u64 private;
1957 u64 private_failure;
1958 struct io_failure_record *failrec;
1959 struct btrfs_mapping_tree *map_tree;
1960 struct extent_state *state;
1961 int num_copies;
1962 int did_repair = 0;
1963 int ret;
1964 struct inode *inode = page->mapping->host;
1965
1966 private = 0;
1967 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1968 (u64)-1, 1, EXTENT_DIRTY, 0);
1969 if (!ret)
1970 return 0;
1971
1972 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
1973 &private_failure);
1974 if (ret)
1975 return 0;
1976
1977 failrec = (struct io_failure_record *)(unsigned long) private_failure;
1978 BUG_ON(!failrec->this_mirror);
1979
1980 if (failrec->in_validation) {
1981 /* there was no real error, just free the record */
1982 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
1983 failrec->start);
1984 did_repair = 1;
1985 goto out;
1986 }
1987
1988 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1989 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1990 failrec->start,
1991 EXTENT_LOCKED);
1992 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1993
1994 if (state && state->start == failrec->start) {
1995 map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree;
1996 num_copies = btrfs_num_copies(map_tree, failrec->logical,
1997 failrec->len);
1998 if (num_copies > 1) {
1999 ret = repair_io_failure(map_tree, start, failrec->len,
2000 failrec->logical, page,
2001 failrec->failed_mirror);
2002 did_repair = !ret;
2003 }
2004 }
2005
2006out:
2007 if (!ret)
2008 ret = free_io_failure(inode, failrec, did_repair);
2009
2010 return ret;
2011}
2012
2013/*
2014 * this is a generic handler for readpage errors (default
2015 * readpage_io_failed_hook). if other copies exist, read those and write back
2016 * good data to the failed position. does not investigate in remapping the
2017 * failed extent elsewhere, hoping the device will be smart enough to do this as
2018 * needed
2019 */
2020
2021static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2022 u64 start, u64 end, int failed_mirror,
2023 struct extent_state *state)
2024{
2025 struct io_failure_record *failrec = NULL;
2026 u64 private;
2027 struct extent_map *em;
2028 struct inode *inode = page->mapping->host;
2029 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2030 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2031 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2032 struct bio *bio;
2033 int num_copies;
2034 int ret;
2035 int read_mode;
2036 u64 logical;
2037
2038 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2039
2040 ret = get_state_private(failure_tree, start, &private);
2041 if (ret) {
2042 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2043 if (!failrec)
2044 return -ENOMEM;
2045 failrec->start = start;
2046 failrec->len = end - start + 1;
2047 failrec->this_mirror = 0;
2048 failrec->bio_flags = 0;
2049 failrec->in_validation = 0;
2050
2051 read_lock(&em_tree->lock);
2052 em = lookup_extent_mapping(em_tree, start, failrec->len);
2053 if (!em) {
2054 read_unlock(&em_tree->lock);
2055 kfree(failrec);
2056 return -EIO;
2057 }
2058
2059 if (em->start > start || em->start + em->len < start) {
2060 free_extent_map(em);
2061 em = NULL;
2062 }
2063 read_unlock(&em_tree->lock);
2064
2065 if (!em || IS_ERR(em)) {
2066 kfree(failrec);
2067 return -EIO;
2068 }
2069 logical = start - em->start;
2070 logical = em->block_start + logical;
2071 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2072 logical = em->block_start;
2073 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2074 extent_set_compress_type(&failrec->bio_flags,
2075 em->compress_type);
2076 }
2077 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2078 "len=%llu\n", logical, start, failrec->len);
2079 failrec->logical = logical;
2080 free_extent_map(em);
2081
2082 /* set the bits in the private failure tree */
2083 ret = set_extent_bits(failure_tree, start, end,
2084 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2085 if (ret >= 0)
2086 ret = set_state_private(failure_tree, start,
2087 (u64)(unsigned long)failrec);
2088 /* set the bits in the inode's tree */
2089 if (ret >= 0)
2090 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2091 GFP_NOFS);
2092 if (ret < 0) {
2093 kfree(failrec);
2094 return ret;
2095 }
2096 } else {
2097 failrec = (struct io_failure_record *)(unsigned long)private;
2098 pr_debug("bio_readpage_error: (found) logical=%llu, "
2099 "start=%llu, len=%llu, validation=%d\n",
2100 failrec->logical, failrec->start, failrec->len,
2101 failrec->in_validation);
2102 /*
2103 * when data can be on disk more than twice, add to failrec here
2104 * (e.g. with a list for failed_mirror) to make
2105 * clean_io_failure() clean all those errors at once.
2106 */
2107 }
2108 num_copies = btrfs_num_copies(
2109 &BTRFS_I(inode)->root->fs_info->mapping_tree,
2110 failrec->logical, failrec->len);
2111 if (num_copies == 1) {
2112 /*
2113 * we only have a single copy of the data, so don't bother with
2114 * all the retry and error correction code that follows. no
2115 * matter what the error is, it is very likely to persist.
2116 */
2117 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2118 "state=%p, num_copies=%d, next_mirror %d, "
2119 "failed_mirror %d\n", state, num_copies,
2120 failrec->this_mirror, failed_mirror);
2121 free_io_failure(inode, failrec, 0);
2122 return -EIO;
2123 }
2124
2125 if (!state) {
2126 spin_lock(&tree->lock);
2127 state = find_first_extent_bit_state(tree, failrec->start,
2128 EXTENT_LOCKED);
2129 if (state && state->start != failrec->start)
2130 state = NULL;
2131 spin_unlock(&tree->lock);
2132 }
2133
2134 /*
2135 * there are two premises:
2136 * a) deliver good data to the caller
2137 * b) correct the bad sectors on disk
2138 */
2139 if (failed_bio->bi_vcnt > 1) {
2140 /*
2141 * to fulfill b), we need to know the exact failing sectors, as
2142 * we don't want to rewrite any more than the failed ones. thus,
2143 * we need separate read requests for the failed bio
2144 *
2145 * if the following BUG_ON triggers, our validation request got
2146 * merged. we need separate requests for our algorithm to work.
2147 */
2148 BUG_ON(failrec->in_validation);
2149 failrec->in_validation = 1;
2150 failrec->this_mirror = failed_mirror;
2151 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2152 } else {
2153 /*
2154 * we're ready to fulfill a) and b) alongside. get a good copy
2155 * of the failed sector and if we succeed, we have setup
2156 * everything for repair_io_failure to do the rest for us.
2157 */
2158 if (failrec->in_validation) {
2159 BUG_ON(failrec->this_mirror != failed_mirror);
2160 failrec->in_validation = 0;
2161 failrec->this_mirror = 0;
2162 }
2163 failrec->failed_mirror = failed_mirror;
2164 failrec->this_mirror++;
2165 if (failrec->this_mirror == failed_mirror)
2166 failrec->this_mirror++;
2167 read_mode = READ_SYNC;
2168 }
2169
2170 if (!state || failrec->this_mirror > num_copies) {
2171 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2172 "next_mirror %d, failed_mirror %d\n", state,
2173 num_copies, failrec->this_mirror, failed_mirror);
2174 free_io_failure(inode, failrec, 0);
2175 return -EIO;
2176 }
2177
2178 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2179 if (!bio) {
2180 free_io_failure(inode, failrec, 0);
2181 return -EIO;
2182 }
4a54c8c1
JS
2183 bio->bi_private = state;
2184 bio->bi_end_io = failed_bio->bi_end_io;
2185 bio->bi_sector = failrec->logical >> 9;
2186 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2187 bio->bi_size = 0;
2188
2189 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2190
2191 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2192 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2193 failrec->this_mirror, num_copies, failrec->in_validation);
2194
013bd4c3
TI
2195 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2196 failrec->this_mirror,
2197 failrec->bio_flags, 0);
2198 return ret;
4a54c8c1
JS
2199}
2200
d1310b2e
CM
2201/* lots and lots of room for performance fixes in the end_bio funcs */
2202
87826df0
JM
2203int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2204{
2205 int uptodate = (err == 0);
2206 struct extent_io_tree *tree;
2207 int ret;
2208
2209 tree = &BTRFS_I(page->mapping->host)->io_tree;
2210
2211 if (tree->ops && tree->ops->writepage_end_io_hook) {
2212 ret = tree->ops->writepage_end_io_hook(page, start,
2213 end, NULL, uptodate);
2214 if (ret)
2215 uptodate = 0;
2216 }
2217
87826df0 2218 if (!uptodate) {
87826df0
JM
2219 ClearPageUptodate(page);
2220 SetPageError(page);
2221 }
2222 return 0;
2223}
2224
d1310b2e
CM
2225/*
2226 * after a writepage IO is done, we need to:
2227 * clear the uptodate bits on error
2228 * clear the writeback bits in the extent tree for this IO
2229 * end_page_writeback if the page has no more pending IO
2230 *
2231 * Scheduling is not allowed, so the extent state tree is expected
2232 * to have one and only one object corresponding to this IO.
2233 */
d1310b2e 2234static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2235{
d1310b2e 2236 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2237 struct extent_io_tree *tree;
d1310b2e
CM
2238 u64 start;
2239 u64 end;
2240 int whole_page;
2241
d1310b2e
CM
2242 do {
2243 struct page *page = bvec->bv_page;
902b22f3
DW
2244 tree = &BTRFS_I(page->mapping->host)->io_tree;
2245
d1310b2e
CM
2246 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2247 bvec->bv_offset;
2248 end = start + bvec->bv_len - 1;
2249
2250 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2251 whole_page = 1;
2252 else
2253 whole_page = 0;
2254
2255 if (--bvec >= bio->bi_io_vec)
2256 prefetchw(&bvec->bv_page->flags);
1259ab75 2257
87826df0
JM
2258 if (end_extent_writepage(page, err, start, end))
2259 continue;
70dec807 2260
d1310b2e
CM
2261 if (whole_page)
2262 end_page_writeback(page);
2263 else
2264 check_page_writeback(tree, page);
d1310b2e 2265 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2266
d1310b2e 2267 bio_put(bio);
d1310b2e
CM
2268}
2269
2270/*
2271 * after a readpage IO is done, we need to:
2272 * clear the uptodate bits on error
2273 * set the uptodate bits if things worked
2274 * set the page up to date if all extents in the tree are uptodate
2275 * clear the lock bit in the extent tree
2276 * unlock the page if there are no other extents locked for it
2277 *
2278 * Scheduling is not allowed, so the extent state tree is expected
2279 * to have one and only one object corresponding to this IO.
2280 */
d1310b2e 2281static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2282{
2283 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2284 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2285 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2286 struct extent_io_tree *tree;
d1310b2e
CM
2287 u64 start;
2288 u64 end;
2289 int whole_page;
5cf1ab56 2290 int mirror;
d1310b2e
CM
2291 int ret;
2292
d20f7043
CM
2293 if (err)
2294 uptodate = 0;
2295
d1310b2e
CM
2296 do {
2297 struct page *page = bvec->bv_page;
507903b8
AJ
2298 struct extent_state *cached = NULL;
2299 struct extent_state *state;
2300
4a54c8c1
JS
2301 pr_debug("end_bio_extent_readpage: bi_vcnt=%d, idx=%d, err=%d, "
2302 "mirror=%ld\n", bio->bi_vcnt, bio->bi_idx, err,
2303 (long int)bio->bi_bdev);
902b22f3
DW
2304 tree = &BTRFS_I(page->mapping->host)->io_tree;
2305
d1310b2e
CM
2306 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
2307 bvec->bv_offset;
2308 end = start + bvec->bv_len - 1;
2309
2310 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2311 whole_page = 1;
2312 else
2313 whole_page = 0;
2314
4125bf76 2315 if (++bvec <= bvec_end)
d1310b2e
CM
2316 prefetchw(&bvec->bv_page->flags);
2317
507903b8 2318 spin_lock(&tree->lock);
0d399205 2319 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2320 if (state && state->start == start) {
507903b8
AJ
2321 /*
2322 * take a reference on the state, unlock will drop
2323 * the ref
2324 */
2325 cache_state(state, &cached);
2326 }
2327 spin_unlock(&tree->lock);
2328
5cf1ab56 2329 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2330 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2331 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2332 state, mirror);
5ee0844d 2333 if (ret)
d1310b2e 2334 uptodate = 0;
5ee0844d 2335 else
4a54c8c1 2336 clean_io_failure(start, page);
d1310b2e 2337 }
ea466794 2338
ea466794 2339 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2340 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2341 if (!ret && !err &&
2342 test_bit(BIO_UPTODATE, &bio->bi_flags))
2343 uptodate = 1;
2344 } else if (!uptodate) {
f4a8e656
JS
2345 /*
2346 * The generic bio_readpage_error handles errors the
2347 * following way: If possible, new read requests are
2348 * created and submitted and will end up in
2349 * end_bio_extent_readpage as well (if we're lucky, not
2350 * in the !uptodate case). In that case it returns 0 and
2351 * we just go on with the next page in our bio. If it
2352 * can't handle the error it will return -EIO and we
2353 * remain responsible for that page.
2354 */
5cf1ab56 2355 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2356 if (ret == 0) {
3b951516
CM
2357 uptodate =
2358 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2359 if (err)
2360 uptodate = 0;
507903b8 2361 uncache_state(&cached);
7e38326f
CM
2362 continue;
2363 }
2364 }
d1310b2e 2365
0b32f4bb 2366 if (uptodate && tree->track_uptodate) {
507903b8 2367 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2368 GFP_ATOMIC);
771ed689 2369 }
507903b8 2370 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2371
70dec807
CM
2372 if (whole_page) {
2373 if (uptodate) {
2374 SetPageUptodate(page);
2375 } else {
2376 ClearPageUptodate(page);
2377 SetPageError(page);
2378 }
d1310b2e 2379 unlock_page(page);
70dec807
CM
2380 } else {
2381 if (uptodate) {
2382 check_page_uptodate(tree, page);
2383 } else {
2384 ClearPageUptodate(page);
2385 SetPageError(page);
2386 }
d1310b2e 2387 check_page_locked(tree, page);
70dec807 2388 }
4125bf76 2389 } while (bvec <= bvec_end);
d1310b2e
CM
2390
2391 bio_put(bio);
d1310b2e
CM
2392}
2393
88f794ed
MX
2394struct bio *
2395btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2396 gfp_t gfp_flags)
d1310b2e
CM
2397{
2398 struct bio *bio;
2399
2400 bio = bio_alloc(gfp_flags, nr_vecs);
2401
2402 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2403 while (!bio && (nr_vecs /= 2))
2404 bio = bio_alloc(gfp_flags, nr_vecs);
2405 }
2406
2407 if (bio) {
e1c4b745 2408 bio->bi_size = 0;
d1310b2e
CM
2409 bio->bi_bdev = bdev;
2410 bio->bi_sector = first_sector;
2411 }
2412 return bio;
2413}
2414
79787eaa
JM
2415/*
2416 * Since writes are async, they will only return -ENOMEM.
2417 * Reads can return the full range of I/O error conditions.
2418 */
355808c2
JM
2419static int __must_check submit_one_bio(int rw, struct bio *bio,
2420 int mirror_num, unsigned long bio_flags)
d1310b2e 2421{
d1310b2e 2422 int ret = 0;
70dec807
CM
2423 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2424 struct page *page = bvec->bv_page;
2425 struct extent_io_tree *tree = bio->bi_private;
70dec807 2426 u64 start;
70dec807
CM
2427
2428 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
70dec807 2429
902b22f3 2430 bio->bi_private = NULL;
d1310b2e
CM
2431
2432 bio_get(bio);
2433
065631f6 2434 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2435 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2436 mirror_num, bio_flags, start);
0b86a832 2437 else
21adbd5c 2438 btrfsic_submit_bio(rw, bio);
4a54c8c1 2439
d1310b2e
CM
2440 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2441 ret = -EOPNOTSUPP;
2442 bio_put(bio);
2443 return ret;
2444}
2445
3444a972
JM
2446static int merge_bio(struct extent_io_tree *tree, struct page *page,
2447 unsigned long offset, size_t size, struct bio *bio,
2448 unsigned long bio_flags)
2449{
2450 int ret = 0;
2451 if (tree->ops && tree->ops->merge_bio_hook)
2452 ret = tree->ops->merge_bio_hook(page, offset, size, bio,
2453 bio_flags);
2454 BUG_ON(ret < 0);
2455 return ret;
2456
2457}
2458
d1310b2e
CM
2459static int submit_extent_page(int rw, struct extent_io_tree *tree,
2460 struct page *page, sector_t sector,
2461 size_t size, unsigned long offset,
2462 struct block_device *bdev,
2463 struct bio **bio_ret,
2464 unsigned long max_pages,
f188591e 2465 bio_end_io_t end_io_func,
c8b97818
CM
2466 int mirror_num,
2467 unsigned long prev_bio_flags,
2468 unsigned long bio_flags)
d1310b2e
CM
2469{
2470 int ret = 0;
2471 struct bio *bio;
2472 int nr;
c8b97818
CM
2473 int contig = 0;
2474 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2475 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2476 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2477
2478 if (bio_ret && *bio_ret) {
2479 bio = *bio_ret;
c8b97818
CM
2480 if (old_compressed)
2481 contig = bio->bi_sector == sector;
2482 else
2483 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2484 sector;
2485
2486 if (prev_bio_flags != bio_flags || !contig ||
3444a972 2487 merge_bio(tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2488 bio_add_page(bio, page, page_size, offset) < page_size) {
2489 ret = submit_one_bio(rw, bio, mirror_num,
2490 prev_bio_flags);
79787eaa
JM
2491 if (ret < 0)
2492 return ret;
d1310b2e
CM
2493 bio = NULL;
2494 } else {
2495 return 0;
2496 }
2497 }
c8b97818
CM
2498 if (this_compressed)
2499 nr = BIO_MAX_PAGES;
2500 else
2501 nr = bio_get_nr_vecs(bdev);
2502
88f794ed 2503 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2504 if (!bio)
2505 return -ENOMEM;
70dec807 2506
c8b97818 2507 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2508 bio->bi_end_io = end_io_func;
2509 bio->bi_private = tree;
70dec807 2510
d397712b 2511 if (bio_ret)
d1310b2e 2512 *bio_ret = bio;
d397712b 2513 else
c8b97818 2514 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2515
2516 return ret;
2517}
2518
4f2de97a 2519void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2520{
2521 if (!PagePrivate(page)) {
2522 SetPagePrivate(page);
d1310b2e 2523 page_cache_get(page);
4f2de97a
JB
2524 set_page_private(page, (unsigned long)eb);
2525 } else {
2526 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2527 }
2528}
2529
4f2de97a 2530void set_page_extent_mapped(struct page *page)
d1310b2e 2531{
4f2de97a
JB
2532 if (!PagePrivate(page)) {
2533 SetPagePrivate(page);
2534 page_cache_get(page);
2535 set_page_private(page, EXTENT_PAGE_PRIVATE);
2536 }
d1310b2e
CM
2537}
2538
2539/*
2540 * basic readpage implementation. Locked extent state structs are inserted
2541 * into the tree that are removed when the IO is done (by the end_io
2542 * handlers)
79787eaa 2543 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2544 */
2545static int __extent_read_full_page(struct extent_io_tree *tree,
2546 struct page *page,
2547 get_extent_t *get_extent,
c8b97818
CM
2548 struct bio **bio, int mirror_num,
2549 unsigned long *bio_flags)
d1310b2e
CM
2550{
2551 struct inode *inode = page->mapping->host;
2552 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2553 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2554 u64 end;
2555 u64 cur = start;
2556 u64 extent_offset;
2557 u64 last_byte = i_size_read(inode);
2558 u64 block_start;
2559 u64 cur_end;
2560 sector_t sector;
2561 struct extent_map *em;
2562 struct block_device *bdev;
11c65dcc 2563 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2564 int ret;
2565 int nr = 0;
306e16ce 2566 size_t pg_offset = 0;
d1310b2e 2567 size_t iosize;
c8b97818 2568 size_t disk_io_size;
d1310b2e 2569 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2570 unsigned long this_bio_flag = 0;
d1310b2e
CM
2571
2572 set_page_extent_mapped(page);
2573
90a887c9
DM
2574 if (!PageUptodate(page)) {
2575 if (cleancache_get_page(page) == 0) {
2576 BUG_ON(blocksize != PAGE_SIZE);
2577 goto out;
2578 }
2579 }
2580
d1310b2e 2581 end = page_end;
11c65dcc 2582 while (1) {
d0082371 2583 lock_extent(tree, start, end);
11c65dcc
JB
2584 ordered = btrfs_lookup_ordered_extent(inode, start);
2585 if (!ordered)
2586 break;
d0082371 2587 unlock_extent(tree, start, end);
11c65dcc
JB
2588 btrfs_start_ordered_extent(inode, ordered, 1);
2589 btrfs_put_ordered_extent(ordered);
2590 }
d1310b2e 2591
c8b97818
CM
2592 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2593 char *userpage;
2594 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2595
2596 if (zero_offset) {
2597 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2598 userpage = kmap_atomic(page);
c8b97818
CM
2599 memset(userpage + zero_offset, 0, iosize);
2600 flush_dcache_page(page);
7ac687d9 2601 kunmap_atomic(userpage);
c8b97818
CM
2602 }
2603 }
d1310b2e
CM
2604 while (cur <= end) {
2605 if (cur >= last_byte) {
2606 char *userpage;
507903b8
AJ
2607 struct extent_state *cached = NULL;
2608
306e16ce 2609 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2610 userpage = kmap_atomic(page);
306e16ce 2611 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2612 flush_dcache_page(page);
7ac687d9 2613 kunmap_atomic(userpage);
d1310b2e 2614 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2615 &cached, GFP_NOFS);
2616 unlock_extent_cached(tree, cur, cur + iosize - 1,
2617 &cached, GFP_NOFS);
d1310b2e
CM
2618 break;
2619 }
306e16ce 2620 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2621 end - cur + 1, 0);
c704005d 2622 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2623 SetPageError(page);
d0082371 2624 unlock_extent(tree, cur, end);
d1310b2e
CM
2625 break;
2626 }
d1310b2e
CM
2627 extent_offset = cur - em->start;
2628 BUG_ON(extent_map_end(em) <= cur);
2629 BUG_ON(end < cur);
2630
261507a0 2631 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2632 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2633 extent_set_compress_type(&this_bio_flag,
2634 em->compress_type);
2635 }
c8b97818 2636
d1310b2e
CM
2637 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2638 cur_end = min(extent_map_end(em) - 1, end);
2639 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
c8b97818
CM
2640 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2641 disk_io_size = em->block_len;
2642 sector = em->block_start >> 9;
2643 } else {
2644 sector = (em->block_start + extent_offset) >> 9;
2645 disk_io_size = iosize;
2646 }
d1310b2e
CM
2647 bdev = em->bdev;
2648 block_start = em->block_start;
d899e052
YZ
2649 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2650 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2651 free_extent_map(em);
2652 em = NULL;
2653
2654 /* we've found a hole, just zero and go on */
2655 if (block_start == EXTENT_MAP_HOLE) {
2656 char *userpage;
507903b8
AJ
2657 struct extent_state *cached = NULL;
2658
7ac687d9 2659 userpage = kmap_atomic(page);
306e16ce 2660 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2661 flush_dcache_page(page);
7ac687d9 2662 kunmap_atomic(userpage);
d1310b2e
CM
2663
2664 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2665 &cached, GFP_NOFS);
2666 unlock_extent_cached(tree, cur, cur + iosize - 1,
2667 &cached, GFP_NOFS);
d1310b2e 2668 cur = cur + iosize;
306e16ce 2669 pg_offset += iosize;
d1310b2e
CM
2670 continue;
2671 }
2672 /* the get_extent function already copied into the page */
9655d298
CM
2673 if (test_range_bit(tree, cur, cur_end,
2674 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2675 check_page_uptodate(tree, page);
d0082371 2676 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2677 cur = cur + iosize;
306e16ce 2678 pg_offset += iosize;
d1310b2e
CM
2679 continue;
2680 }
70dec807
CM
2681 /* we have an inline extent but it didn't get marked up
2682 * to date. Error out
2683 */
2684 if (block_start == EXTENT_MAP_INLINE) {
2685 SetPageError(page);
d0082371 2686 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2687 cur = cur + iosize;
306e16ce 2688 pg_offset += iosize;
70dec807
CM
2689 continue;
2690 }
d1310b2e
CM
2691
2692 ret = 0;
2693 if (tree->ops && tree->ops->readpage_io_hook) {
2694 ret = tree->ops->readpage_io_hook(page, cur,
2695 cur + iosize - 1);
2696 }
2697 if (!ret) {
89642229
CM
2698 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2699 pnr -= page->index;
d1310b2e 2700 ret = submit_extent_page(READ, tree, page,
306e16ce 2701 sector, disk_io_size, pg_offset,
89642229 2702 bdev, bio, pnr,
c8b97818
CM
2703 end_bio_extent_readpage, mirror_num,
2704 *bio_flags,
2705 this_bio_flag);
79787eaa 2706 BUG_ON(ret == -ENOMEM);
89642229 2707 nr++;
c8b97818 2708 *bio_flags = this_bio_flag;
d1310b2e
CM
2709 }
2710 if (ret)
2711 SetPageError(page);
2712 cur = cur + iosize;
306e16ce 2713 pg_offset += iosize;
d1310b2e 2714 }
90a887c9 2715out:
d1310b2e
CM
2716 if (!nr) {
2717 if (!PageError(page))
2718 SetPageUptodate(page);
2719 unlock_page(page);
2720 }
2721 return 0;
2722}
2723
2724int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2725 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2726{
2727 struct bio *bio = NULL;
c8b97818 2728 unsigned long bio_flags = 0;
d1310b2e
CM
2729 int ret;
2730
8ddc7d9c 2731 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2732 &bio_flags);
d1310b2e 2733 if (bio)
8ddc7d9c 2734 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2735 return ret;
2736}
d1310b2e 2737
11c8349b
CM
2738static noinline void update_nr_written(struct page *page,
2739 struct writeback_control *wbc,
2740 unsigned long nr_written)
2741{
2742 wbc->nr_to_write -= nr_written;
2743 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2744 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2745 page->mapping->writeback_index = page->index + nr_written;
2746}
2747
d1310b2e
CM
2748/*
2749 * the writepage semantics are similar to regular writepage. extent
2750 * records are inserted to lock ranges in the tree, and as dirty areas
2751 * are found, they are marked writeback. Then the lock bits are removed
2752 * and the end_io handler clears the writeback ranges
2753 */
2754static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2755 void *data)
2756{
2757 struct inode *inode = page->mapping->host;
2758 struct extent_page_data *epd = data;
2759 struct extent_io_tree *tree = epd->tree;
2760 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2761 u64 delalloc_start;
2762 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2763 u64 end;
2764 u64 cur = start;
2765 u64 extent_offset;
2766 u64 last_byte = i_size_read(inode);
2767 u64 block_start;
2768 u64 iosize;
2769 sector_t sector;
2c64c53d 2770 struct extent_state *cached_state = NULL;
d1310b2e
CM
2771 struct extent_map *em;
2772 struct block_device *bdev;
2773 int ret;
2774 int nr = 0;
7f3c74fb 2775 size_t pg_offset = 0;
d1310b2e
CM
2776 size_t blocksize;
2777 loff_t i_size = i_size_read(inode);
2778 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2779 u64 nr_delalloc;
2780 u64 delalloc_end;
c8b97818
CM
2781 int page_started;
2782 int compressed;
ffbd517d 2783 int write_flags;
771ed689 2784 unsigned long nr_written = 0;
9e487107 2785 bool fill_delalloc = true;
d1310b2e 2786
ffbd517d 2787 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2788 write_flags = WRITE_SYNC;
ffbd517d
CM
2789 else
2790 write_flags = WRITE;
2791
1abe9b8a 2792 trace___extent_writepage(page, inode, wbc);
2793
d1310b2e 2794 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2795
2796 ClearPageError(page);
2797
7f3c74fb 2798 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2799 if (page->index > end_index ||
7f3c74fb 2800 (page->index == end_index && !pg_offset)) {
39be25cd 2801 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2802 unlock_page(page);
2803 return 0;
2804 }
2805
2806 if (page->index == end_index) {
2807 char *userpage;
2808
7ac687d9 2809 userpage = kmap_atomic(page);
7f3c74fb
CM
2810 memset(userpage + pg_offset, 0,
2811 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2812 kunmap_atomic(userpage);
211c17f5 2813 flush_dcache_page(page);
d1310b2e 2814 }
7f3c74fb 2815 pg_offset = 0;
d1310b2e
CM
2816
2817 set_page_extent_mapped(page);
2818
9e487107
JB
2819 if (!tree->ops || !tree->ops->fill_delalloc)
2820 fill_delalloc = false;
2821
d1310b2e
CM
2822 delalloc_start = start;
2823 delalloc_end = 0;
c8b97818 2824 page_started = 0;
9e487107 2825 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2826 u64 delalloc_to_write = 0;
11c8349b
CM
2827 /*
2828 * make sure the wbc mapping index is at least updated
2829 * to this page.
2830 */
2831 update_nr_written(page, wbc, 0);
2832
d397712b 2833 while (delalloc_end < page_end) {
771ed689 2834 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2835 page,
2836 &delalloc_start,
d1310b2e
CM
2837 &delalloc_end,
2838 128 * 1024 * 1024);
771ed689
CM
2839 if (nr_delalloc == 0) {
2840 delalloc_start = delalloc_end + 1;
2841 continue;
2842 }
013bd4c3
TI
2843 ret = tree->ops->fill_delalloc(inode, page,
2844 delalloc_start,
2845 delalloc_end,
2846 &page_started,
2847 &nr_written);
79787eaa
JM
2848 /* File system has been set read-only */
2849 if (ret) {
2850 SetPageError(page);
2851 goto done;
2852 }
f85d7d6c
CM
2853 /*
2854 * delalloc_end is already one less than the total
2855 * length, so we don't subtract one from
2856 * PAGE_CACHE_SIZE
2857 */
2858 delalloc_to_write += (delalloc_end - delalloc_start +
2859 PAGE_CACHE_SIZE) >>
2860 PAGE_CACHE_SHIFT;
d1310b2e 2861 delalloc_start = delalloc_end + 1;
d1310b2e 2862 }
f85d7d6c
CM
2863 if (wbc->nr_to_write < delalloc_to_write) {
2864 int thresh = 8192;
2865
2866 if (delalloc_to_write < thresh * 2)
2867 thresh = delalloc_to_write;
2868 wbc->nr_to_write = min_t(u64, delalloc_to_write,
2869 thresh);
2870 }
c8b97818 2871
771ed689
CM
2872 /* did the fill delalloc function already unlock and start
2873 * the IO?
2874 */
2875 if (page_started) {
2876 ret = 0;
11c8349b
CM
2877 /*
2878 * we've unlocked the page, so we can't update
2879 * the mapping's writeback index, just update
2880 * nr_to_write.
2881 */
2882 wbc->nr_to_write -= nr_written;
2883 goto done_unlocked;
771ed689 2884 }
c8b97818 2885 }
247e743c 2886 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
2887 ret = tree->ops->writepage_start_hook(page, start,
2888 page_end);
87826df0
JM
2889 if (ret) {
2890 /* Fixup worker will requeue */
2891 if (ret == -EBUSY)
2892 wbc->pages_skipped++;
2893 else
2894 redirty_page_for_writepage(wbc, page);
11c8349b 2895 update_nr_written(page, wbc, nr_written);
247e743c 2896 unlock_page(page);
771ed689 2897 ret = 0;
11c8349b 2898 goto done_unlocked;
247e743c
CM
2899 }
2900 }
2901
11c8349b
CM
2902 /*
2903 * we don't want to touch the inode after unlocking the page,
2904 * so we update the mapping writeback index now
2905 */
2906 update_nr_written(page, wbc, nr_written + 1);
771ed689 2907
d1310b2e 2908 end = page_end;
d1310b2e 2909 if (last_byte <= start) {
e6dcd2dc
CM
2910 if (tree->ops && tree->ops->writepage_end_io_hook)
2911 tree->ops->writepage_end_io_hook(page, start,
2912 page_end, NULL, 1);
d1310b2e
CM
2913 goto done;
2914 }
2915
d1310b2e
CM
2916 blocksize = inode->i_sb->s_blocksize;
2917
2918 while (cur <= end) {
2919 if (cur >= last_byte) {
e6dcd2dc
CM
2920 if (tree->ops && tree->ops->writepage_end_io_hook)
2921 tree->ops->writepage_end_io_hook(page, cur,
2922 page_end, NULL, 1);
d1310b2e
CM
2923 break;
2924 }
7f3c74fb 2925 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 2926 end - cur + 1, 1);
c704005d 2927 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
2928 SetPageError(page);
2929 break;
2930 }
2931
2932 extent_offset = cur - em->start;
2933 BUG_ON(extent_map_end(em) <= cur);
2934 BUG_ON(end < cur);
2935 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2936 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2937 sector = (em->block_start + extent_offset) >> 9;
2938 bdev = em->bdev;
2939 block_start = em->block_start;
c8b97818 2940 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
2941 free_extent_map(em);
2942 em = NULL;
2943
c8b97818
CM
2944 /*
2945 * compressed and inline extents are written through other
2946 * paths in the FS
2947 */
2948 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 2949 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
2950 /*
2951 * end_io notification does not happen here for
2952 * compressed extents
2953 */
2954 if (!compressed && tree->ops &&
2955 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
2956 tree->ops->writepage_end_io_hook(page, cur,
2957 cur + iosize - 1,
2958 NULL, 1);
c8b97818
CM
2959 else if (compressed) {
2960 /* we don't want to end_page_writeback on
2961 * a compressed extent. this happens
2962 * elsewhere
2963 */
2964 nr++;
2965 }
2966
2967 cur += iosize;
7f3c74fb 2968 pg_offset += iosize;
d1310b2e
CM
2969 continue;
2970 }
d1310b2e
CM
2971 /* leave this out until we have a page_mkwrite call */
2972 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 2973 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 2974 cur = cur + iosize;
7f3c74fb 2975 pg_offset += iosize;
d1310b2e
CM
2976 continue;
2977 }
c8b97818 2978
d1310b2e
CM
2979 if (tree->ops && tree->ops->writepage_io_hook) {
2980 ret = tree->ops->writepage_io_hook(page, cur,
2981 cur + iosize - 1);
2982 } else {
2983 ret = 0;
2984 }
1259ab75 2985 if (ret) {
d1310b2e 2986 SetPageError(page);
1259ab75 2987 } else {
d1310b2e 2988 unsigned long max_nr = end_index + 1;
7f3c74fb 2989
d1310b2e
CM
2990 set_range_writeback(tree, cur, cur + iosize - 1);
2991 if (!PageWriteback(page)) {
d397712b
CM
2992 printk(KERN_ERR "btrfs warning page %lu not "
2993 "writeback, cur %llu end %llu\n",
2994 page->index, (unsigned long long)cur,
d1310b2e
CM
2995 (unsigned long long)end);
2996 }
2997
ffbd517d
CM
2998 ret = submit_extent_page(write_flags, tree, page,
2999 sector, iosize, pg_offset,
3000 bdev, &epd->bio, max_nr,
c8b97818
CM
3001 end_bio_extent_writepage,
3002 0, 0, 0);
d1310b2e
CM
3003 if (ret)
3004 SetPageError(page);
3005 }
3006 cur = cur + iosize;
7f3c74fb 3007 pg_offset += iosize;
d1310b2e
CM
3008 nr++;
3009 }
3010done:
3011 if (nr == 0) {
3012 /* make sure the mapping tag for page dirty gets cleared */
3013 set_page_writeback(page);
3014 end_page_writeback(page);
3015 }
d1310b2e 3016 unlock_page(page);
771ed689 3017
11c8349b
CM
3018done_unlocked:
3019
2c64c53d
CM
3020 /* drop our reference on any cached states */
3021 free_extent_state(cached_state);
d1310b2e
CM
3022 return 0;
3023}
3024
0b32f4bb
JB
3025static int eb_wait(void *word)
3026{
3027 io_schedule();
3028 return 0;
3029}
3030
3031static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3032{
3033 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3034 TASK_UNINTERRUPTIBLE);
3035}
3036
3037static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3038 struct btrfs_fs_info *fs_info,
3039 struct extent_page_data *epd)
3040{
3041 unsigned long i, num_pages;
3042 int flush = 0;
3043 int ret = 0;
3044
3045 if (!btrfs_try_tree_write_lock(eb)) {
3046 flush = 1;
3047 flush_write_bio(epd);
3048 btrfs_tree_lock(eb);
3049 }
3050
3051 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3052 btrfs_tree_unlock(eb);
3053 if (!epd->sync_io)
3054 return 0;
3055 if (!flush) {
3056 flush_write_bio(epd);
3057 flush = 1;
3058 }
a098d8e8
CM
3059 while (1) {
3060 wait_on_extent_buffer_writeback(eb);
3061 btrfs_tree_lock(eb);
3062 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3063 break;
0b32f4bb 3064 btrfs_tree_unlock(eb);
0b32f4bb
JB
3065 }
3066 }
3067
51561ffe
JB
3068 /*
3069 * We need to do this to prevent races in people who check if the eb is
3070 * under IO since we can end up having no IO bits set for a short period
3071 * of time.
3072 */
3073 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3074 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3075 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3076 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3077 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3078 spin_lock(&fs_info->delalloc_lock);
3079 if (fs_info->dirty_metadata_bytes >= eb->len)
3080 fs_info->dirty_metadata_bytes -= eb->len;
3081 else
3082 WARN_ON(1);
3083 spin_unlock(&fs_info->delalloc_lock);
3084 ret = 1;
51561ffe
JB
3085 } else {
3086 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3087 }
3088
3089 btrfs_tree_unlock(eb);
3090
3091 if (!ret)
3092 return ret;
3093
3094 num_pages = num_extent_pages(eb->start, eb->len);
3095 for (i = 0; i < num_pages; i++) {
3096 struct page *p = extent_buffer_page(eb, i);
3097
3098 if (!trylock_page(p)) {
3099 if (!flush) {
3100 flush_write_bio(epd);
3101 flush = 1;
3102 }
3103 lock_page(p);
3104 }
3105 }
3106
3107 return ret;
3108}
3109
3110static void end_extent_buffer_writeback(struct extent_buffer *eb)
3111{
3112 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3113 smp_mb__after_clear_bit();
3114 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3115}
3116
3117static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3118{
3119 int uptodate = err == 0;
3120 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3121 struct extent_buffer *eb;
3122 int done;
3123
3124 do {
3125 struct page *page = bvec->bv_page;
3126
3127 bvec--;
3128 eb = (struct extent_buffer *)page->private;
3129 BUG_ON(!eb);
3130 done = atomic_dec_and_test(&eb->io_pages);
3131
3132 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3133 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3134 ClearPageUptodate(page);
3135 SetPageError(page);
3136 }
3137
3138 end_page_writeback(page);
3139
3140 if (!done)
3141 continue;
3142
3143 end_extent_buffer_writeback(eb);
3144 } while (bvec >= bio->bi_io_vec);
3145
3146 bio_put(bio);
3147
3148}
3149
3150static int write_one_eb(struct extent_buffer *eb,
3151 struct btrfs_fs_info *fs_info,
3152 struct writeback_control *wbc,
3153 struct extent_page_data *epd)
3154{
3155 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3156 u64 offset = eb->start;
3157 unsigned long i, num_pages;
3158 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
d7dbe9e7 3159 int ret = 0;
0b32f4bb
JB
3160
3161 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3162 num_pages = num_extent_pages(eb->start, eb->len);
3163 atomic_set(&eb->io_pages, num_pages);
3164 for (i = 0; i < num_pages; i++) {
3165 struct page *p = extent_buffer_page(eb, i);
3166
3167 clear_page_dirty_for_io(p);
3168 set_page_writeback(p);
3169 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3170 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3171 -1, end_bio_extent_buffer_writepage,
3172 0, 0, 0);
3173 if (ret) {
3174 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3175 SetPageError(p);
3176 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3177 end_extent_buffer_writeback(eb);
3178 ret = -EIO;
3179 break;
3180 }
3181 offset += PAGE_CACHE_SIZE;
3182 update_nr_written(p, wbc, 1);
3183 unlock_page(p);
3184 }
3185
3186 if (unlikely(ret)) {
3187 for (; i < num_pages; i++) {
3188 struct page *p = extent_buffer_page(eb, i);
3189 unlock_page(p);
3190 }
3191 }
3192
3193 return ret;
3194}
3195
3196int btree_write_cache_pages(struct address_space *mapping,
3197 struct writeback_control *wbc)
3198{
3199 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3200 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3201 struct extent_buffer *eb, *prev_eb = NULL;
3202 struct extent_page_data epd = {
3203 .bio = NULL,
3204 .tree = tree,
3205 .extent_locked = 0,
3206 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3207 };
3208 int ret = 0;
3209 int done = 0;
3210 int nr_to_write_done = 0;
3211 struct pagevec pvec;
3212 int nr_pages;
3213 pgoff_t index;
3214 pgoff_t end; /* Inclusive */
3215 int scanned = 0;
3216 int tag;
3217
3218 pagevec_init(&pvec, 0);
3219 if (wbc->range_cyclic) {
3220 index = mapping->writeback_index; /* Start from prev offset */
3221 end = -1;
3222 } else {
3223 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3224 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3225 scanned = 1;
3226 }
3227 if (wbc->sync_mode == WB_SYNC_ALL)
3228 tag = PAGECACHE_TAG_TOWRITE;
3229 else
3230 tag = PAGECACHE_TAG_DIRTY;
3231retry:
3232 if (wbc->sync_mode == WB_SYNC_ALL)
3233 tag_pages_for_writeback(mapping, index, end);
3234 while (!done && !nr_to_write_done && (index <= end) &&
3235 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3236 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3237 unsigned i;
3238
3239 scanned = 1;
3240 for (i = 0; i < nr_pages; i++) {
3241 struct page *page = pvec.pages[i];
3242
3243 if (!PagePrivate(page))
3244 continue;
3245
3246 if (!wbc->range_cyclic && page->index > end) {
3247 done = 1;
3248 break;
3249 }
3250
3251 eb = (struct extent_buffer *)page->private;
3252 if (!eb) {
3253 WARN_ON(1);
3254 continue;
3255 }
3256
3257 if (eb == prev_eb)
3258 continue;
3259
3260 if (!atomic_inc_not_zero(&eb->refs)) {
3261 WARN_ON(1);
3262 continue;
3263 }
3264
3265 prev_eb = eb;
3266 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3267 if (!ret) {
3268 free_extent_buffer(eb);
3269 continue;
3270 }
3271
3272 ret = write_one_eb(eb, fs_info, wbc, &epd);
3273 if (ret) {
3274 done = 1;
3275 free_extent_buffer(eb);
3276 break;
3277 }
3278 free_extent_buffer(eb);
3279
3280 /*
3281 * the filesystem may choose to bump up nr_to_write.
3282 * We have to make sure to honor the new nr_to_write
3283 * at any time
3284 */
3285 nr_to_write_done = wbc->nr_to_write <= 0;
3286 }
3287 pagevec_release(&pvec);
3288 cond_resched();
3289 }
3290 if (!scanned && !done) {
3291 /*
3292 * We hit the last page and there is more work to be done: wrap
3293 * back to the start of the file
3294 */
3295 scanned = 1;
3296 index = 0;
3297 goto retry;
3298 }
3299 flush_write_bio(&epd);
3300 return ret;
3301}
3302
d1310b2e 3303/**
4bef0848 3304 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3305 * @mapping: address space structure to write
3306 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3307 * @writepage: function called for each page
3308 * @data: data passed to writepage function
3309 *
3310 * If a page is already under I/O, write_cache_pages() skips it, even
3311 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3312 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3313 * and msync() need to guarantee that all the data which was dirty at the time
3314 * the call was made get new I/O started against them. If wbc->sync_mode is
3315 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3316 * existing IO to complete.
3317 */
b2950863 3318static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3319 struct address_space *mapping,
3320 struct writeback_control *wbc,
d2c3f4f6
CM
3321 writepage_t writepage, void *data,
3322 void (*flush_fn)(void *))
d1310b2e 3323{
7fd1a3f7 3324 struct inode *inode = mapping->host;
d1310b2e
CM
3325 int ret = 0;
3326 int done = 0;
f85d7d6c 3327 int nr_to_write_done = 0;
d1310b2e
CM
3328 struct pagevec pvec;
3329 int nr_pages;
3330 pgoff_t index;
3331 pgoff_t end; /* Inclusive */
3332 int scanned = 0;
f7aaa06b 3333 int tag;
d1310b2e 3334
7fd1a3f7
JB
3335 /*
3336 * We have to hold onto the inode so that ordered extents can do their
3337 * work when the IO finishes. The alternative to this is failing to add
3338 * an ordered extent if the igrab() fails there and that is a huge pain
3339 * to deal with, so instead just hold onto the inode throughout the
3340 * writepages operation. If it fails here we are freeing up the inode
3341 * anyway and we'd rather not waste our time writing out stuff that is
3342 * going to be truncated anyway.
3343 */
3344 if (!igrab(inode))
3345 return 0;
3346
d1310b2e
CM
3347 pagevec_init(&pvec, 0);
3348 if (wbc->range_cyclic) {
3349 index = mapping->writeback_index; /* Start from prev offset */
3350 end = -1;
3351 } else {
3352 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3353 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3354 scanned = 1;
3355 }
f7aaa06b
JB
3356 if (wbc->sync_mode == WB_SYNC_ALL)
3357 tag = PAGECACHE_TAG_TOWRITE;
3358 else
3359 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3360retry:
f7aaa06b
JB
3361 if (wbc->sync_mode == WB_SYNC_ALL)
3362 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3363 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3364 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3365 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3366 unsigned i;
3367
3368 scanned = 1;
3369 for (i = 0; i < nr_pages; i++) {
3370 struct page *page = pvec.pages[i];
3371
3372 /*
3373 * At this point we hold neither mapping->tree_lock nor
3374 * lock on the page itself: the page may be truncated or
3375 * invalidated (changing page->mapping to NULL), or even
3376 * swizzled back from swapper_space to tmpfs file
3377 * mapping
3378 */
01d658f2
CM
3379 if (tree->ops &&
3380 tree->ops->write_cache_pages_lock_hook) {
3381 tree->ops->write_cache_pages_lock_hook(page,
3382 data, flush_fn);
3383 } else {
3384 if (!trylock_page(page)) {
3385 flush_fn(data);
3386 lock_page(page);
3387 }
3388 }
d1310b2e
CM
3389
3390 if (unlikely(page->mapping != mapping)) {
3391 unlock_page(page);
3392 continue;
3393 }
3394
3395 if (!wbc->range_cyclic && page->index > end) {
3396 done = 1;
3397 unlock_page(page);
3398 continue;
3399 }
3400
d2c3f4f6 3401 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3402 if (PageWriteback(page))
3403 flush_fn(data);
d1310b2e 3404 wait_on_page_writeback(page);
d2c3f4f6 3405 }
d1310b2e
CM
3406
3407 if (PageWriteback(page) ||
3408 !clear_page_dirty_for_io(page)) {
3409 unlock_page(page);
3410 continue;
3411 }
3412
3413 ret = (*writepage)(page, wbc, data);
3414
3415 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3416 unlock_page(page);
3417 ret = 0;
3418 }
f85d7d6c 3419 if (ret)
d1310b2e 3420 done = 1;
f85d7d6c
CM
3421
3422 /*
3423 * the filesystem may choose to bump up nr_to_write.
3424 * We have to make sure to honor the new nr_to_write
3425 * at any time
3426 */
3427 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3428 }
3429 pagevec_release(&pvec);
3430 cond_resched();
3431 }
3432 if (!scanned && !done) {
3433 /*
3434 * We hit the last page and there is more work to be done: wrap
3435 * back to the start of the file
3436 */
3437 scanned = 1;
3438 index = 0;
3439 goto retry;
3440 }
7fd1a3f7 3441 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3442 return ret;
3443}
d1310b2e 3444
ffbd517d 3445static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3446{
d2c3f4f6 3447 if (epd->bio) {
355808c2
JM
3448 int rw = WRITE;
3449 int ret;
3450
ffbd517d 3451 if (epd->sync_io)
355808c2
JM
3452 rw = WRITE_SYNC;
3453
3454 ret = submit_one_bio(rw, epd->bio, 0, 0);
79787eaa 3455 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3456 epd->bio = NULL;
3457 }
3458}
3459
ffbd517d
CM
3460static noinline void flush_write_bio(void *data)
3461{
3462 struct extent_page_data *epd = data;
3463 flush_epd_write_bio(epd);
3464}
3465
d1310b2e
CM
3466int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3467 get_extent_t *get_extent,
3468 struct writeback_control *wbc)
3469{
3470 int ret;
d1310b2e
CM
3471 struct extent_page_data epd = {
3472 .bio = NULL,
3473 .tree = tree,
3474 .get_extent = get_extent,
771ed689 3475 .extent_locked = 0,
ffbd517d 3476 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e 3477 };
d1310b2e 3478
d1310b2e
CM
3479 ret = __extent_writepage(page, wbc, &epd);
3480
ffbd517d 3481 flush_epd_write_bio(&epd);
d1310b2e
CM
3482 return ret;
3483}
d1310b2e 3484
771ed689
CM
3485int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3486 u64 start, u64 end, get_extent_t *get_extent,
3487 int mode)
3488{
3489 int ret = 0;
3490 struct address_space *mapping = inode->i_mapping;
3491 struct page *page;
3492 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3493 PAGE_CACHE_SHIFT;
3494
3495 struct extent_page_data epd = {
3496 .bio = NULL,
3497 .tree = tree,
3498 .get_extent = get_extent,
3499 .extent_locked = 1,
ffbd517d 3500 .sync_io = mode == WB_SYNC_ALL,
771ed689
CM
3501 };
3502 struct writeback_control wbc_writepages = {
771ed689 3503 .sync_mode = mode,
771ed689
CM
3504 .nr_to_write = nr_pages * 2,
3505 .range_start = start,
3506 .range_end = end + 1,
3507 };
3508
d397712b 3509 while (start <= end) {
771ed689
CM
3510 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3511 if (clear_page_dirty_for_io(page))
3512 ret = __extent_writepage(page, &wbc_writepages, &epd);
3513 else {
3514 if (tree->ops && tree->ops->writepage_end_io_hook)
3515 tree->ops->writepage_end_io_hook(page, start,
3516 start + PAGE_CACHE_SIZE - 1,
3517 NULL, 1);
3518 unlock_page(page);
3519 }
3520 page_cache_release(page);
3521 start += PAGE_CACHE_SIZE;
3522 }
3523
ffbd517d 3524 flush_epd_write_bio(&epd);
771ed689
CM
3525 return ret;
3526}
d1310b2e
CM
3527
3528int extent_writepages(struct extent_io_tree *tree,
3529 struct address_space *mapping,
3530 get_extent_t *get_extent,
3531 struct writeback_control *wbc)
3532{
3533 int ret = 0;
3534 struct extent_page_data epd = {
3535 .bio = NULL,
3536 .tree = tree,
3537 .get_extent = get_extent,
771ed689 3538 .extent_locked = 0,
ffbd517d 3539 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
d1310b2e
CM
3540 };
3541
4bef0848 3542 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3543 __extent_writepage, &epd,
3544 flush_write_bio);
ffbd517d 3545 flush_epd_write_bio(&epd);
d1310b2e
CM
3546 return ret;
3547}
d1310b2e
CM
3548
3549int extent_readpages(struct extent_io_tree *tree,
3550 struct address_space *mapping,
3551 struct list_head *pages, unsigned nr_pages,
3552 get_extent_t get_extent)
3553{
3554 struct bio *bio = NULL;
3555 unsigned page_idx;
c8b97818 3556 unsigned long bio_flags = 0;
67c9684f
LB
3557 struct page *pagepool[16];
3558 struct page *page;
3559 int i = 0;
3560 int nr = 0;
d1310b2e 3561
d1310b2e 3562 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3563 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3564
3565 prefetchw(&page->flags);
3566 list_del(&page->lru);
67c9684f 3567 if (add_to_page_cache_lru(page, mapping,
43e817a1 3568 page->index, GFP_NOFS)) {
67c9684f
LB
3569 page_cache_release(page);
3570 continue;
d1310b2e 3571 }
67c9684f
LB
3572
3573 pagepool[nr++] = page;
3574 if (nr < ARRAY_SIZE(pagepool))
3575 continue;
3576 for (i = 0; i < nr; i++) {
3577 __extent_read_full_page(tree, pagepool[i], get_extent,
3578 &bio, 0, &bio_flags);
3579 page_cache_release(pagepool[i]);
3580 }
3581 nr = 0;
d1310b2e 3582 }
67c9684f
LB
3583 for (i = 0; i < nr; i++) {
3584 __extent_read_full_page(tree, pagepool[i], get_extent,
3585 &bio, 0, &bio_flags);
3586 page_cache_release(pagepool[i]);
d1310b2e 3587 }
67c9684f 3588
d1310b2e
CM
3589 BUG_ON(!list_empty(pages));
3590 if (bio)
79787eaa 3591 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3592 return 0;
3593}
d1310b2e
CM
3594
3595/*
3596 * basic invalidatepage code, this waits on any locked or writeback
3597 * ranges corresponding to the page, and then deletes any extent state
3598 * records from the tree
3599 */
3600int extent_invalidatepage(struct extent_io_tree *tree,
3601 struct page *page, unsigned long offset)
3602{
2ac55d41 3603 struct extent_state *cached_state = NULL;
d1310b2e
CM
3604 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
3605 u64 end = start + PAGE_CACHE_SIZE - 1;
3606 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3607
d397712b 3608 start += (offset + blocksize - 1) & ~(blocksize - 1);
d1310b2e
CM
3609 if (start > end)
3610 return 0;
3611
d0082371 3612 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3613 wait_on_page_writeback(page);
d1310b2e 3614 clear_extent_bit(tree, start, end,
32c00aff
JB
3615 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3616 EXTENT_DO_ACCOUNTING,
2ac55d41 3617 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3618 return 0;
3619}
d1310b2e 3620
7b13b7b1
CM
3621/*
3622 * a helper for releasepage, this tests for areas of the page that
3623 * are locked or under IO and drops the related state bits if it is safe
3624 * to drop the page.
3625 */
3626int try_release_extent_state(struct extent_map_tree *map,
3627 struct extent_io_tree *tree, struct page *page,
3628 gfp_t mask)
3629{
3630 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3631 u64 end = start + PAGE_CACHE_SIZE - 1;
3632 int ret = 1;
3633
211f90e6 3634 if (test_range_bit(tree, start, end,
8b62b72b 3635 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3636 ret = 0;
3637 else {
3638 if ((mask & GFP_NOFS) == GFP_NOFS)
3639 mask = GFP_NOFS;
11ef160f
CM
3640 /*
3641 * at this point we can safely clear everything except the
3642 * locked bit and the nodatasum bit
3643 */
e3f24cc5 3644 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3645 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3646 0, 0, NULL, mask);
e3f24cc5
CM
3647
3648 /* if clear_extent_bit failed for enomem reasons,
3649 * we can't allow the release to continue.
3650 */
3651 if (ret < 0)
3652 ret = 0;
3653 else
3654 ret = 1;
7b13b7b1
CM
3655 }
3656 return ret;
3657}
7b13b7b1 3658
d1310b2e
CM
3659/*
3660 * a helper for releasepage. As long as there are no locked extents
3661 * in the range corresponding to the page, both state records and extent
3662 * map records are removed
3663 */
3664int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3665 struct extent_io_tree *tree, struct page *page,
3666 gfp_t mask)
d1310b2e
CM
3667{
3668 struct extent_map *em;
3669 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
3670 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3671
70dec807
CM
3672 if ((mask & __GFP_WAIT) &&
3673 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3674 u64 len;
70dec807 3675 while (start <= end) {
39b5637f 3676 len = end - start + 1;
890871be 3677 write_lock(&map->lock);
39b5637f 3678 em = lookup_extent_mapping(map, start, len);
285190d9 3679 if (!em) {
890871be 3680 write_unlock(&map->lock);
70dec807
CM
3681 break;
3682 }
7f3c74fb
CM
3683 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3684 em->start != start) {
890871be 3685 write_unlock(&map->lock);
70dec807
CM
3686 free_extent_map(em);
3687 break;
3688 }
3689 if (!test_range_bit(tree, em->start,
3690 extent_map_end(em) - 1,
8b62b72b 3691 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3692 0, NULL)) {
70dec807
CM
3693 remove_extent_mapping(map, em);
3694 /* once for the rb tree */
3695 free_extent_map(em);
3696 }
3697 start = extent_map_end(em);
890871be 3698 write_unlock(&map->lock);
70dec807
CM
3699
3700 /* once for us */
d1310b2e
CM
3701 free_extent_map(em);
3702 }
d1310b2e 3703 }
7b13b7b1 3704 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3705}
d1310b2e 3706
ec29ed5b
CM
3707/*
3708 * helper function for fiemap, which doesn't want to see any holes.
3709 * This maps until we find something past 'last'
3710 */
3711static struct extent_map *get_extent_skip_holes(struct inode *inode,
3712 u64 offset,
3713 u64 last,
3714 get_extent_t *get_extent)
3715{
3716 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3717 struct extent_map *em;
3718 u64 len;
3719
3720 if (offset >= last)
3721 return NULL;
3722
3723 while(1) {
3724 len = last - offset;
3725 if (len == 0)
3726 break;
3727 len = (len + sectorsize - 1) & ~(sectorsize - 1);
3728 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3729 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3730 return em;
3731
3732 /* if this isn't a hole return it */
3733 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3734 em->block_start != EXTENT_MAP_HOLE) {
3735 return em;
3736 }
3737
3738 /* this is a hole, advance to the next extent */
3739 offset = extent_map_end(em);
3740 free_extent_map(em);
3741 if (offset >= last)
3742 break;
3743 }
3744 return NULL;
3745}
3746
1506fcc8
YS
3747int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3748 __u64 start, __u64 len, get_extent_t *get_extent)
3749{
975f84fe 3750 int ret = 0;
1506fcc8
YS
3751 u64 off = start;
3752 u64 max = start + len;
3753 u32 flags = 0;
975f84fe
JB
3754 u32 found_type;
3755 u64 last;
ec29ed5b 3756 u64 last_for_get_extent = 0;
1506fcc8 3757 u64 disko = 0;
ec29ed5b 3758 u64 isize = i_size_read(inode);
975f84fe 3759 struct btrfs_key found_key;
1506fcc8 3760 struct extent_map *em = NULL;
2ac55d41 3761 struct extent_state *cached_state = NULL;
975f84fe
JB
3762 struct btrfs_path *path;
3763 struct btrfs_file_extent_item *item;
1506fcc8 3764 int end = 0;
ec29ed5b
CM
3765 u64 em_start = 0;
3766 u64 em_len = 0;
3767 u64 em_end = 0;
1506fcc8 3768 unsigned long emflags;
1506fcc8
YS
3769
3770 if (len == 0)
3771 return -EINVAL;
3772
975f84fe
JB
3773 path = btrfs_alloc_path();
3774 if (!path)
3775 return -ENOMEM;
3776 path->leave_spinning = 1;
3777
4d479cf0
JB
3778 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3779 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3780
ec29ed5b
CM
3781 /*
3782 * lookup the last file extent. We're not using i_size here
3783 * because there might be preallocation past i_size
3784 */
975f84fe 3785 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3786 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3787 if (ret < 0) {
3788 btrfs_free_path(path);
3789 return ret;
3790 }
3791 WARN_ON(!ret);
3792 path->slots[0]--;
3793 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3794 struct btrfs_file_extent_item);
3795 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3796 found_type = btrfs_key_type(&found_key);
3797
ec29ed5b 3798 /* No extents, but there might be delalloc bits */
33345d01 3799 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3800 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3801 /* have to trust i_size as the end */
3802 last = (u64)-1;
3803 last_for_get_extent = isize;
3804 } else {
3805 /*
3806 * remember the start of the last extent. There are a
3807 * bunch of different factors that go into the length of the
3808 * extent, so its much less complex to remember where it started
3809 */
3810 last = found_key.offset;
3811 last_for_get_extent = last + 1;
975f84fe 3812 }
975f84fe
JB
3813 btrfs_free_path(path);
3814
ec29ed5b
CM
3815 /*
3816 * we might have some extents allocated but more delalloc past those
3817 * extents. so, we trust isize unless the start of the last extent is
3818 * beyond isize
3819 */
3820 if (last < isize) {
3821 last = (u64)-1;
3822 last_for_get_extent = isize;
3823 }
3824
2ac55d41 3825 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3826 &cached_state);
ec29ed5b 3827
4d479cf0 3828 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3829 get_extent);
1506fcc8
YS
3830 if (!em)
3831 goto out;
3832 if (IS_ERR(em)) {
3833 ret = PTR_ERR(em);
3834 goto out;
3835 }
975f84fe 3836
1506fcc8 3837 while (!end) {
ea8efc74
CM
3838 u64 offset_in_extent;
3839
3840 /* break if the extent we found is outside the range */
3841 if (em->start >= max || extent_map_end(em) < off)
3842 break;
3843
3844 /*
3845 * get_extent may return an extent that starts before our
3846 * requested range. We have to make sure the ranges
3847 * we return to fiemap always move forward and don't
3848 * overlap, so adjust the offsets here
3849 */
3850 em_start = max(em->start, off);
1506fcc8 3851
ea8efc74
CM
3852 /*
3853 * record the offset from the start of the extent
3854 * for adjusting the disk offset below
3855 */
3856 offset_in_extent = em_start - em->start;
ec29ed5b 3857 em_end = extent_map_end(em);
ea8efc74 3858 em_len = em_end - em_start;
ec29ed5b 3859 emflags = em->flags;
1506fcc8
YS
3860 disko = 0;
3861 flags = 0;
3862
ea8efc74
CM
3863 /*
3864 * bump off for our next call to get_extent
3865 */
3866 off = extent_map_end(em);
3867 if (off >= max)
3868 end = 1;
3869
93dbfad7 3870 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
3871 end = 1;
3872 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 3873 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
3874 flags |= (FIEMAP_EXTENT_DATA_INLINE |
3875 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 3876 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
3877 flags |= (FIEMAP_EXTENT_DELALLOC |
3878 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 3879 } else {
ea8efc74 3880 disko = em->block_start + offset_in_extent;
1506fcc8
YS
3881 }
3882 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
3883 flags |= FIEMAP_EXTENT_ENCODED;
3884
1506fcc8
YS
3885 free_extent_map(em);
3886 em = NULL;
ec29ed5b
CM
3887 if ((em_start >= last) || em_len == (u64)-1 ||
3888 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
3889 flags |= FIEMAP_EXTENT_LAST;
3890 end = 1;
3891 }
3892
ec29ed5b
CM
3893 /* now scan forward to see if this is really the last extent. */
3894 em = get_extent_skip_holes(inode, off, last_for_get_extent,
3895 get_extent);
3896 if (IS_ERR(em)) {
3897 ret = PTR_ERR(em);
3898 goto out;
3899 }
3900 if (!em) {
975f84fe
JB
3901 flags |= FIEMAP_EXTENT_LAST;
3902 end = 1;
3903 }
ec29ed5b
CM
3904 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
3905 em_len, flags);
3906 if (ret)
3907 goto out_free;
1506fcc8
YS
3908 }
3909out_free:
3910 free_extent_map(em);
3911out:
2ac55d41
JB
3912 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
3913 &cached_state, GFP_NOFS);
1506fcc8
YS
3914 return ret;
3915}
3916
4a54c8c1 3917inline struct page *extent_buffer_page(struct extent_buffer *eb,
d1310b2e
CM
3918 unsigned long i)
3919{
727011e0 3920 return eb->pages[i];
d1310b2e
CM
3921}
3922
4a54c8c1 3923inline unsigned long num_extent_pages(u64 start, u64 len)
728131d8 3924{
6af118ce
CM
3925 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
3926 (start >> PAGE_CACHE_SHIFT);
728131d8
CM
3927}
3928
727011e0
CM
3929static void __free_extent_buffer(struct extent_buffer *eb)
3930{
3931#if LEAK_DEBUG
3932 unsigned long flags;
3933 spin_lock_irqsave(&leak_lock, flags);
3934 list_del(&eb->leak_list);
3935 spin_unlock_irqrestore(&leak_lock, flags);
3936#endif
3937 if (eb->pages && eb->pages != eb->inline_pages)
3938 kfree(eb->pages);
3939 kmem_cache_free(extent_buffer_cache, eb);
3940}
3941
d1310b2e
CM
3942static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
3943 u64 start,
3944 unsigned long len,
3945 gfp_t mask)
3946{
3947 struct extent_buffer *eb = NULL;
3935127c 3948#if LEAK_DEBUG
2d2ae547 3949 unsigned long flags;
4bef0848 3950#endif
d1310b2e 3951
d1310b2e 3952 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
3953 if (eb == NULL)
3954 return NULL;
d1310b2e
CM
3955 eb->start = start;
3956 eb->len = len;
4f2de97a 3957 eb->tree = tree;
815a51c7 3958 eb->bflags = 0;
bd681513
CM
3959 rwlock_init(&eb->lock);
3960 atomic_set(&eb->write_locks, 0);
3961 atomic_set(&eb->read_locks, 0);
3962 atomic_set(&eb->blocking_readers, 0);
3963 atomic_set(&eb->blocking_writers, 0);
3964 atomic_set(&eb->spinning_readers, 0);
3965 atomic_set(&eb->spinning_writers, 0);
5b25f70f 3966 eb->lock_nested = 0;
bd681513
CM
3967 init_waitqueue_head(&eb->write_lock_wq);
3968 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 3969
3935127c 3970#if LEAK_DEBUG
2d2ae547
CM
3971 spin_lock_irqsave(&leak_lock, flags);
3972 list_add(&eb->leak_list, &buffers);
3973 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 3974#endif
3083ee2e 3975 spin_lock_init(&eb->refs_lock);
d1310b2e 3976 atomic_set(&eb->refs, 1);
0b32f4bb 3977 atomic_set(&eb->io_pages, 0);
727011e0
CM
3978
3979 if (len > MAX_INLINE_EXTENT_BUFFER_SIZE) {
3980 struct page **pages;
3981 int num_pages = (len + PAGE_CACHE_SIZE - 1) >>
3982 PAGE_CACHE_SHIFT;
3983 pages = kzalloc(num_pages, mask);
3984 if (!pages) {
3985 __free_extent_buffer(eb);
3986 return NULL;
3987 }
3988 eb->pages = pages;
3989 } else {
3990 eb->pages = eb->inline_pages;
3991 }
d1310b2e
CM
3992
3993 return eb;
3994}
3995
815a51c7
JS
3996struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
3997{
3998 unsigned long i;
3999 struct page *p;
4000 struct extent_buffer *new;
4001 unsigned long num_pages = num_extent_pages(src->start, src->len);
4002
4003 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4004 if (new == NULL)
4005 return NULL;
4006
4007 for (i = 0; i < num_pages; i++) {
4008 p = alloc_page(GFP_ATOMIC);
4009 BUG_ON(!p);
4010 attach_extent_buffer_page(new, p);
4011 WARN_ON(PageDirty(p));
4012 SetPageUptodate(p);
4013 new->pages[i] = p;
4014 }
4015
4016 copy_extent_buffer(new, src, 0, 0, src->len);
4017 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4018 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4019
4020 return new;
4021}
4022
4023struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4024{
4025 struct extent_buffer *eb;
4026 unsigned long num_pages = num_extent_pages(0, len);
4027 unsigned long i;
4028
4029 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4030 if (!eb)
4031 return NULL;
4032
4033 for (i = 0; i < num_pages; i++) {
4034 eb->pages[i] = alloc_page(GFP_ATOMIC);
4035 if (!eb->pages[i])
4036 goto err;
4037 }
4038 set_extent_buffer_uptodate(eb);
4039 btrfs_set_header_nritems(eb, 0);
4040 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4041
4042 return eb;
4043err:
4044 for (i--; i > 0; i--)
4045 __free_page(eb->pages[i]);
4046 __free_extent_buffer(eb);
4047 return NULL;
4048}
4049
0b32f4bb 4050static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4051{
0b32f4bb
JB
4052 return (atomic_read(&eb->io_pages) ||
4053 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4054 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4055}
4056
897ca6e9
MX
4057/*
4058 * Helper for releasing extent buffer page.
4059 */
4060static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4061 unsigned long start_idx)
4062{
4063 unsigned long index;
39bab87b 4064 unsigned long num_pages;
897ca6e9 4065 struct page *page;
815a51c7 4066 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4067
0b32f4bb 4068 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4069
39bab87b
WSH
4070 num_pages = num_extent_pages(eb->start, eb->len);
4071 index = start_idx + num_pages;
897ca6e9
MX
4072 if (start_idx >= index)
4073 return;
4074
4075 do {
4076 index--;
4077 page = extent_buffer_page(eb, index);
815a51c7 4078 if (page && mapped) {
4f2de97a
JB
4079 spin_lock(&page->mapping->private_lock);
4080 /*
4081 * We do this since we'll remove the pages after we've
4082 * removed the eb from the radix tree, so we could race
4083 * and have this page now attached to the new eb. So
4084 * only clear page_private if it's still connected to
4085 * this eb.
4086 */
4087 if (PagePrivate(page) &&
4088 page->private == (unsigned long)eb) {
0b32f4bb 4089 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4090 BUG_ON(PageDirty(page));
4091 BUG_ON(PageWriteback(page));
4f2de97a
JB
4092 /*
4093 * We need to make sure we haven't be attached
4094 * to a new eb.
4095 */
4096 ClearPagePrivate(page);
4097 set_page_private(page, 0);
4098 /* One for the page private */
4099 page_cache_release(page);
4100 }
4101 spin_unlock(&page->mapping->private_lock);
4102
815a51c7
JS
4103 }
4104 if (page) {
4f2de97a 4105 /* One for when we alloced the page */
897ca6e9 4106 page_cache_release(page);
4f2de97a 4107 }
897ca6e9
MX
4108 } while (index != start_idx);
4109}
4110
4111/*
4112 * Helper for releasing the extent buffer.
4113 */
4114static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4115{
4116 btrfs_release_extent_buffer_page(eb, 0);
4117 __free_extent_buffer(eb);
4118}
4119
0b32f4bb
JB
4120static void check_buffer_tree_ref(struct extent_buffer *eb)
4121{
4122 /* the ref bit is tricky. We have to make sure it is set
4123 * if we have the buffer dirty. Otherwise the
4124 * code to free a buffer can end up dropping a dirty
4125 * page
4126 *
4127 * Once the ref bit is set, it won't go away while the
4128 * buffer is dirty or in writeback, and it also won't
4129 * go away while we have the reference count on the
4130 * eb bumped.
4131 *
4132 * We can't just set the ref bit without bumping the
4133 * ref on the eb because free_extent_buffer might
4134 * see the ref bit and try to clear it. If this happens
4135 * free_extent_buffer might end up dropping our original
4136 * ref by mistake and freeing the page before we are able
4137 * to add one more ref.
4138 *
4139 * So bump the ref count first, then set the bit. If someone
4140 * beat us to it, drop the ref we added.
4141 */
594831c4
JB
4142 spin_lock(&eb->refs_lock);
4143 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4144 atomic_inc(&eb->refs);
594831c4 4145 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4146}
4147
5df4235e
JB
4148static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4149{
4150 unsigned long num_pages, i;
4151
0b32f4bb
JB
4152 check_buffer_tree_ref(eb);
4153
5df4235e
JB
4154 num_pages = num_extent_pages(eb->start, eb->len);
4155 for (i = 0; i < num_pages; i++) {
4156 struct page *p = extent_buffer_page(eb, i);
4157 mark_page_accessed(p);
4158 }
4159}
4160
d1310b2e 4161struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4162 u64 start, unsigned long len)
d1310b2e
CM
4163{
4164 unsigned long num_pages = num_extent_pages(start, len);
4165 unsigned long i;
4166 unsigned long index = start >> PAGE_CACHE_SHIFT;
4167 struct extent_buffer *eb;
6af118ce 4168 struct extent_buffer *exists = NULL;
d1310b2e
CM
4169 struct page *p;
4170 struct address_space *mapping = tree->mapping;
4171 int uptodate = 1;
19fe0a8b 4172 int ret;
d1310b2e 4173
19fe0a8b
MX
4174 rcu_read_lock();
4175 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4176 if (eb && atomic_inc_not_zero(&eb->refs)) {
4177 rcu_read_unlock();
5df4235e 4178 mark_extent_buffer_accessed(eb);
6af118ce
CM
4179 return eb;
4180 }
19fe0a8b 4181 rcu_read_unlock();
6af118ce 4182
ba144192 4183 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4184 if (!eb)
d1310b2e
CM
4185 return NULL;
4186
727011e0 4187 for (i = 0; i < num_pages; i++, index++) {
a6591715 4188 p = find_or_create_page(mapping, index, GFP_NOFS);
d1310b2e
CM
4189 if (!p) {
4190 WARN_ON(1);
6af118ce 4191 goto free_eb;
d1310b2e 4192 }
4f2de97a
JB
4193
4194 spin_lock(&mapping->private_lock);
4195 if (PagePrivate(p)) {
4196 /*
4197 * We could have already allocated an eb for this page
4198 * and attached one so lets see if we can get a ref on
4199 * the existing eb, and if we can we know it's good and
4200 * we can just return that one, else we know we can just
4201 * overwrite page->private.
4202 */
4203 exists = (struct extent_buffer *)p->private;
4204 if (atomic_inc_not_zero(&exists->refs)) {
4205 spin_unlock(&mapping->private_lock);
4206 unlock_page(p);
17de39ac 4207 page_cache_release(p);
5df4235e 4208 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4209 goto free_eb;
4210 }
4211
0b32f4bb 4212 /*
4f2de97a
JB
4213 * Do this so attach doesn't complain and we need to
4214 * drop the ref the old guy had.
4215 */
4216 ClearPagePrivate(p);
0b32f4bb 4217 WARN_ON(PageDirty(p));
4f2de97a 4218 page_cache_release(p);
d1310b2e 4219 }
4f2de97a
JB
4220 attach_extent_buffer_page(eb, p);
4221 spin_unlock(&mapping->private_lock);
0b32f4bb 4222 WARN_ON(PageDirty(p));
d1310b2e 4223 mark_page_accessed(p);
727011e0 4224 eb->pages[i] = p;
d1310b2e
CM
4225 if (!PageUptodate(p))
4226 uptodate = 0;
eb14ab8e
CM
4227
4228 /*
4229 * see below about how we avoid a nasty race with release page
4230 * and why we unlock later
4231 */
d1310b2e
CM
4232 }
4233 if (uptodate)
b4ce94de 4234 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4235again:
19fe0a8b
MX
4236 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4237 if (ret)
4238 goto free_eb;
4239
6af118ce 4240 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4241 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4242 if (ret == -EEXIST) {
4243 exists = radix_tree_lookup(&tree->buffer,
4244 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4245 if (!atomic_inc_not_zero(&exists->refs)) {
4246 spin_unlock(&tree->buffer_lock);
4247 radix_tree_preload_end();
115391d2
JB
4248 exists = NULL;
4249 goto again;
4250 }
6af118ce 4251 spin_unlock(&tree->buffer_lock);
19fe0a8b 4252 radix_tree_preload_end();
5df4235e 4253 mark_extent_buffer_accessed(exists);
6af118ce
CM
4254 goto free_eb;
4255 }
6af118ce 4256 /* add one reference for the tree */
0b32f4bb 4257 check_buffer_tree_ref(eb);
f044ba78 4258 spin_unlock(&tree->buffer_lock);
19fe0a8b 4259 radix_tree_preload_end();
eb14ab8e
CM
4260
4261 /*
4262 * there is a race where release page may have
4263 * tried to find this extent buffer in the radix
4264 * but failed. It will tell the VM it is safe to
4265 * reclaim the, and it will clear the page private bit.
4266 * We must make sure to set the page private bit properly
4267 * after the extent buffer is in the radix tree so
4268 * it doesn't get lost
4269 */
727011e0
CM
4270 SetPageChecked(eb->pages[0]);
4271 for (i = 1; i < num_pages; i++) {
4272 p = extent_buffer_page(eb, i);
727011e0
CM
4273 ClearPageChecked(p);
4274 unlock_page(p);
4275 }
4276 unlock_page(eb->pages[0]);
d1310b2e
CM
4277 return eb;
4278
6af118ce 4279free_eb:
727011e0
CM
4280 for (i = 0; i < num_pages; i++) {
4281 if (eb->pages[i])
4282 unlock_page(eb->pages[i]);
4283 }
eb14ab8e 4284
17de39ac 4285 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4286 btrfs_release_extent_buffer(eb);
6af118ce 4287 return exists;
d1310b2e 4288}
d1310b2e
CM
4289
4290struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4291 u64 start, unsigned long len)
d1310b2e 4292{
d1310b2e 4293 struct extent_buffer *eb;
d1310b2e 4294
19fe0a8b
MX
4295 rcu_read_lock();
4296 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4297 if (eb && atomic_inc_not_zero(&eb->refs)) {
4298 rcu_read_unlock();
5df4235e 4299 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4300 return eb;
4301 }
4302 rcu_read_unlock();
0f9dd46c 4303
19fe0a8b 4304 return NULL;
d1310b2e 4305}
d1310b2e 4306
3083ee2e
JB
4307static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4308{
4309 struct extent_buffer *eb =
4310 container_of(head, struct extent_buffer, rcu_head);
4311
4312 __free_extent_buffer(eb);
4313}
4314
3083ee2e 4315/* Expects to have eb->eb_lock already held */
e64860aa 4316static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
3083ee2e
JB
4317{
4318 WARN_ON(atomic_read(&eb->refs) == 0);
4319 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4320 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4321 spin_unlock(&eb->refs_lock);
4322 } else {
4323 struct extent_io_tree *tree = eb->tree;
3083ee2e 4324
815a51c7 4325 spin_unlock(&eb->refs_lock);
3083ee2e 4326
815a51c7
JS
4327 spin_lock(&tree->buffer_lock);
4328 radix_tree_delete(&tree->buffer,
4329 eb->start >> PAGE_CACHE_SHIFT);
4330 spin_unlock(&tree->buffer_lock);
4331 }
3083ee2e
JB
4332
4333 /* Should be safe to release our pages at this point */
4334 btrfs_release_extent_buffer_page(eb, 0);
4335
4336 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4337 return 1;
3083ee2e
JB
4338 }
4339 spin_unlock(&eb->refs_lock);
e64860aa
JB
4340
4341 return 0;
3083ee2e
JB
4342}
4343
d1310b2e
CM
4344void free_extent_buffer(struct extent_buffer *eb)
4345{
d1310b2e
CM
4346 if (!eb)
4347 return;
4348
3083ee2e 4349 spin_lock(&eb->refs_lock);
815a51c7
JS
4350 if (atomic_read(&eb->refs) == 2 &&
4351 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4352 atomic_dec(&eb->refs);
4353
3083ee2e
JB
4354 if (atomic_read(&eb->refs) == 2 &&
4355 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4356 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4357 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4358 atomic_dec(&eb->refs);
4359
4360 /*
4361 * I know this is terrible, but it's temporary until we stop tracking
4362 * the uptodate bits and such for the extent buffers.
4363 */
4364 release_extent_buffer(eb, GFP_ATOMIC);
4365}
4366
4367void free_extent_buffer_stale(struct extent_buffer *eb)
4368{
4369 if (!eb)
d1310b2e
CM
4370 return;
4371
3083ee2e
JB
4372 spin_lock(&eb->refs_lock);
4373 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4374
0b32f4bb 4375 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4376 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4377 atomic_dec(&eb->refs);
4378 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4379}
d1310b2e 4380
1d4284bd 4381void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4382{
d1310b2e
CM
4383 unsigned long i;
4384 unsigned long num_pages;
4385 struct page *page;
4386
d1310b2e
CM
4387 num_pages = num_extent_pages(eb->start, eb->len);
4388
4389 for (i = 0; i < num_pages; i++) {
4390 page = extent_buffer_page(eb, i);
b9473439 4391 if (!PageDirty(page))
d2c3f4f6
CM
4392 continue;
4393
a61e6f29 4394 lock_page(page);
eb14ab8e
CM
4395 WARN_ON(!PagePrivate(page));
4396
d1310b2e 4397 clear_page_dirty_for_io(page);
0ee0fda0 4398 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4399 if (!PageDirty(page)) {
4400 radix_tree_tag_clear(&page->mapping->page_tree,
4401 page_index(page),
4402 PAGECACHE_TAG_DIRTY);
4403 }
0ee0fda0 4404 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4405 ClearPageError(page);
a61e6f29 4406 unlock_page(page);
d1310b2e 4407 }
0b32f4bb 4408 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4409}
d1310b2e 4410
0b32f4bb 4411int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4412{
4413 unsigned long i;
4414 unsigned long num_pages;
b9473439 4415 int was_dirty = 0;
d1310b2e 4416
0b32f4bb
JB
4417 check_buffer_tree_ref(eb);
4418
b9473439 4419 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4420
d1310b2e 4421 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4422 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4423 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4424
b9473439 4425 for (i = 0; i < num_pages; i++)
0b32f4bb 4426 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4427 return was_dirty;
d1310b2e 4428}
d1310b2e 4429
0b32f4bb 4430static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4431{
4432 if (len < PAGE_CACHE_SIZE)
4433 return 1;
4434 if (start & (PAGE_CACHE_SIZE - 1))
4435 return 1;
4436 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4437 return 1;
4438 return 0;
4439}
4440
0b32f4bb 4441int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4442{
4443 unsigned long i;
4444 struct page *page;
4445 unsigned long num_pages;
4446
b4ce94de 4447 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4448 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4449 for (i = 0; i < num_pages; i++) {
4450 page = extent_buffer_page(eb, i);
33958dc6
CM
4451 if (page)
4452 ClearPageUptodate(page);
1259ab75
CM
4453 }
4454 return 0;
4455}
4456
0b32f4bb 4457int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4458{
4459 unsigned long i;
4460 struct page *page;
4461 unsigned long num_pages;
4462
0b32f4bb 4463 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4464 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4465 for (i = 0; i < num_pages; i++) {
4466 page = extent_buffer_page(eb, i);
d1310b2e
CM
4467 SetPageUptodate(page);
4468 }
4469 return 0;
4470}
d1310b2e 4471
ce9adaa5
CM
4472int extent_range_uptodate(struct extent_io_tree *tree,
4473 u64 start, u64 end)
4474{
4475 struct page *page;
4476 int ret;
4477 int pg_uptodate = 1;
4478 int uptodate;
4479 unsigned long index;
4480
0b32f4bb 4481 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4482 ret = test_range_bit(tree, start, end,
4483 EXTENT_UPTODATE, 1, NULL);
4484 if (ret)
4485 return 1;
4486 }
d397712b 4487 while (start <= end) {
ce9adaa5
CM
4488 index = start >> PAGE_CACHE_SHIFT;
4489 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4490 if (!page)
4491 return 1;
ce9adaa5
CM
4492 uptodate = PageUptodate(page);
4493 page_cache_release(page);
4494 if (!uptodate) {
4495 pg_uptodate = 0;
4496 break;
4497 }
4498 start += PAGE_CACHE_SIZE;
4499 }
4500 return pg_uptodate;
4501}
4502
0b32f4bb 4503int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4504{
0b32f4bb 4505 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4506}
d1310b2e
CM
4507
4508int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4509 struct extent_buffer *eb, u64 start, int wait,
f188591e 4510 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4511{
4512 unsigned long i;
4513 unsigned long start_i;
4514 struct page *page;
4515 int err;
4516 int ret = 0;
ce9adaa5
CM
4517 int locked_pages = 0;
4518 int all_uptodate = 1;
d1310b2e 4519 unsigned long num_pages;
727011e0 4520 unsigned long num_reads = 0;
a86c12c7 4521 struct bio *bio = NULL;
c8b97818 4522 unsigned long bio_flags = 0;
a86c12c7 4523
b4ce94de 4524 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4525 return 0;
4526
d1310b2e
CM
4527 if (start) {
4528 WARN_ON(start < eb->start);
4529 start_i = (start >> PAGE_CACHE_SHIFT) -
4530 (eb->start >> PAGE_CACHE_SHIFT);
4531 } else {
4532 start_i = 0;
4533 }
4534
4535 num_pages = num_extent_pages(eb->start, eb->len);
4536 for (i = start_i; i < num_pages; i++) {
4537 page = extent_buffer_page(eb, i);
bb82ab88 4538 if (wait == WAIT_NONE) {
2db04966 4539 if (!trylock_page(page))
ce9adaa5 4540 goto unlock_exit;
d1310b2e
CM
4541 } else {
4542 lock_page(page);
4543 }
ce9adaa5 4544 locked_pages++;
727011e0
CM
4545 if (!PageUptodate(page)) {
4546 num_reads++;
ce9adaa5 4547 all_uptodate = 0;
727011e0 4548 }
ce9adaa5
CM
4549 }
4550 if (all_uptodate) {
4551 if (start_i == 0)
b4ce94de 4552 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4553 goto unlock_exit;
4554 }
4555
ea466794 4556 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4557 eb->read_mirror = 0;
0b32f4bb 4558 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4559 for (i = start_i; i < num_pages; i++) {
4560 page = extent_buffer_page(eb, i);
ce9adaa5 4561 if (!PageUptodate(page)) {
f188591e 4562 ClearPageError(page);
a86c12c7 4563 err = __extent_read_full_page(tree, page,
f188591e 4564 get_extent, &bio,
c8b97818 4565 mirror_num, &bio_flags);
d397712b 4566 if (err)
d1310b2e 4567 ret = err;
d1310b2e
CM
4568 } else {
4569 unlock_page(page);
4570 }
4571 }
4572
355808c2
JM
4573 if (bio) {
4574 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4575 if (err)
4576 return err;
355808c2 4577 }
a86c12c7 4578
bb82ab88 4579 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4580 return ret;
d397712b 4581
d1310b2e
CM
4582 for (i = start_i; i < num_pages; i++) {
4583 page = extent_buffer_page(eb, i);
4584 wait_on_page_locked(page);
d397712b 4585 if (!PageUptodate(page))
d1310b2e 4586 ret = -EIO;
d1310b2e 4587 }
d397712b 4588
d1310b2e 4589 return ret;
ce9adaa5
CM
4590
4591unlock_exit:
4592 i = start_i;
d397712b 4593 while (locked_pages > 0) {
ce9adaa5
CM
4594 page = extent_buffer_page(eb, i);
4595 i++;
4596 unlock_page(page);
4597 locked_pages--;
4598 }
4599 return ret;
d1310b2e 4600}
d1310b2e
CM
4601
4602void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4603 unsigned long start,
4604 unsigned long len)
4605{
4606 size_t cur;
4607 size_t offset;
4608 struct page *page;
4609 char *kaddr;
4610 char *dst = (char *)dstv;
4611 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4612 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4613
4614 WARN_ON(start > eb->len);
4615 WARN_ON(start + len > eb->start + eb->len);
4616
4617 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4618
d397712b 4619 while (len > 0) {
d1310b2e 4620 page = extent_buffer_page(eb, i);
d1310b2e
CM
4621
4622 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4623 kaddr = page_address(page);
d1310b2e 4624 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4625
4626 dst += cur;
4627 len -= cur;
4628 offset = 0;
4629 i++;
4630 }
4631}
d1310b2e
CM
4632
4633int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4634 unsigned long min_len, char **map,
d1310b2e 4635 unsigned long *map_start,
a6591715 4636 unsigned long *map_len)
d1310b2e
CM
4637{
4638 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4639 char *kaddr;
4640 struct page *p;
4641 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4642 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4643 unsigned long end_i = (start_offset + start + min_len - 1) >>
4644 PAGE_CACHE_SHIFT;
4645
4646 if (i != end_i)
4647 return -EINVAL;
4648
4649 if (i == 0) {
4650 offset = start_offset;
4651 *map_start = 0;
4652 } else {
4653 offset = 0;
4654 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4655 }
d397712b 4656
d1310b2e 4657 if (start + min_len > eb->len) {
d397712b
CM
4658 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4659 "wanted %lu %lu\n", (unsigned long long)eb->start,
4660 eb->len, start, min_len);
d1310b2e 4661 WARN_ON(1);
85026533 4662 return -EINVAL;
d1310b2e
CM
4663 }
4664
4665 p = extent_buffer_page(eb, i);
a6591715 4666 kaddr = page_address(p);
d1310b2e
CM
4667 *map = kaddr + offset;
4668 *map_len = PAGE_CACHE_SIZE - offset;
4669 return 0;
4670}
d1310b2e 4671
d1310b2e
CM
4672int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4673 unsigned long start,
4674 unsigned long len)
4675{
4676 size_t cur;
4677 size_t offset;
4678 struct page *page;
4679 char *kaddr;
4680 char *ptr = (char *)ptrv;
4681 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4682 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4683 int ret = 0;
4684
4685 WARN_ON(start > eb->len);
4686 WARN_ON(start + len > eb->start + eb->len);
4687
4688 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4689
d397712b 4690 while (len > 0) {
d1310b2e 4691 page = extent_buffer_page(eb, i);
d1310b2e
CM
4692
4693 cur = min(len, (PAGE_CACHE_SIZE - offset));
4694
a6591715 4695 kaddr = page_address(page);
d1310b2e 4696 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4697 if (ret)
4698 break;
4699
4700 ptr += cur;
4701 len -= cur;
4702 offset = 0;
4703 i++;
4704 }
4705 return ret;
4706}
d1310b2e
CM
4707
4708void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4709 unsigned long start, unsigned long len)
4710{
4711 size_t cur;
4712 size_t offset;
4713 struct page *page;
4714 char *kaddr;
4715 char *src = (char *)srcv;
4716 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4717 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4718
4719 WARN_ON(start > eb->len);
4720 WARN_ON(start + len > eb->start + eb->len);
4721
4722 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4723
d397712b 4724 while (len > 0) {
d1310b2e
CM
4725 page = extent_buffer_page(eb, i);
4726 WARN_ON(!PageUptodate(page));
4727
4728 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4729 kaddr = page_address(page);
d1310b2e 4730 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4731
4732 src += cur;
4733 len -= cur;
4734 offset = 0;
4735 i++;
4736 }
4737}
d1310b2e
CM
4738
4739void memset_extent_buffer(struct extent_buffer *eb, char c,
4740 unsigned long start, unsigned long len)
4741{
4742 size_t cur;
4743 size_t offset;
4744 struct page *page;
4745 char *kaddr;
4746 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4747 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4748
4749 WARN_ON(start > eb->len);
4750 WARN_ON(start + len > eb->start + eb->len);
4751
4752 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4753
d397712b 4754 while (len > 0) {
d1310b2e
CM
4755 page = extent_buffer_page(eb, i);
4756 WARN_ON(!PageUptodate(page));
4757
4758 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4759 kaddr = page_address(page);
d1310b2e 4760 memset(kaddr + offset, c, cur);
d1310b2e
CM
4761
4762 len -= cur;
4763 offset = 0;
4764 i++;
4765 }
4766}
d1310b2e
CM
4767
4768void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4769 unsigned long dst_offset, unsigned long src_offset,
4770 unsigned long len)
4771{
4772 u64 dst_len = dst->len;
4773 size_t cur;
4774 size_t offset;
4775 struct page *page;
4776 char *kaddr;
4777 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4778 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4779
4780 WARN_ON(src->len != dst_len);
4781
4782 offset = (start_offset + dst_offset) &
4783 ((unsigned long)PAGE_CACHE_SIZE - 1);
4784
d397712b 4785 while (len > 0) {
d1310b2e
CM
4786 page = extent_buffer_page(dst, i);
4787 WARN_ON(!PageUptodate(page));
4788
4789 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4790
a6591715 4791 kaddr = page_address(page);
d1310b2e 4792 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4793
4794 src_offset += cur;
4795 len -= cur;
4796 offset = 0;
4797 i++;
4798 }
4799}
d1310b2e
CM
4800
4801static void move_pages(struct page *dst_page, struct page *src_page,
4802 unsigned long dst_off, unsigned long src_off,
4803 unsigned long len)
4804{
a6591715 4805 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4806 if (dst_page == src_page) {
4807 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4808 } else {
a6591715 4809 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4810 char *p = dst_kaddr + dst_off + len;
4811 char *s = src_kaddr + src_off + len;
4812
4813 while (len--)
4814 *--p = *--s;
d1310b2e 4815 }
d1310b2e
CM
4816}
4817
3387206f
ST
4818static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4819{
4820 unsigned long distance = (src > dst) ? src - dst : dst - src;
4821 return distance < len;
4822}
4823
d1310b2e
CM
4824static void copy_pages(struct page *dst_page, struct page *src_page,
4825 unsigned long dst_off, unsigned long src_off,
4826 unsigned long len)
4827{
a6591715 4828 char *dst_kaddr = page_address(dst_page);
d1310b2e 4829 char *src_kaddr;
727011e0 4830 int must_memmove = 0;
d1310b2e 4831
3387206f 4832 if (dst_page != src_page) {
a6591715 4833 src_kaddr = page_address(src_page);
3387206f 4834 } else {
d1310b2e 4835 src_kaddr = dst_kaddr;
727011e0
CM
4836 if (areas_overlap(src_off, dst_off, len))
4837 must_memmove = 1;
3387206f 4838 }
d1310b2e 4839
727011e0
CM
4840 if (must_memmove)
4841 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4842 else
4843 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4844}
4845
4846void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4847 unsigned long src_offset, unsigned long len)
4848{
4849 size_t cur;
4850 size_t dst_off_in_page;
4851 size_t src_off_in_page;
4852 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4853 unsigned long dst_i;
4854 unsigned long src_i;
4855
4856 if (src_offset + len > dst->len) {
d397712b
CM
4857 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4858 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4859 BUG_ON(1);
4860 }
4861 if (dst_offset + len > dst->len) {
d397712b
CM
4862 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4863 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4864 BUG_ON(1);
4865 }
4866
d397712b 4867 while (len > 0) {
d1310b2e
CM
4868 dst_off_in_page = (start_offset + dst_offset) &
4869 ((unsigned long)PAGE_CACHE_SIZE - 1);
4870 src_off_in_page = (start_offset + src_offset) &
4871 ((unsigned long)PAGE_CACHE_SIZE - 1);
4872
4873 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4874 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4875
4876 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4877 src_off_in_page));
4878 cur = min_t(unsigned long, cur,
4879 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4880
4881 copy_pages(extent_buffer_page(dst, dst_i),
4882 extent_buffer_page(dst, src_i),
4883 dst_off_in_page, src_off_in_page, cur);
4884
4885 src_offset += cur;
4886 dst_offset += cur;
4887 len -= cur;
4888 }
4889}
d1310b2e
CM
4890
4891void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4892 unsigned long src_offset, unsigned long len)
4893{
4894 size_t cur;
4895 size_t dst_off_in_page;
4896 size_t src_off_in_page;
4897 unsigned long dst_end = dst_offset + len - 1;
4898 unsigned long src_end = src_offset + len - 1;
4899 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4900 unsigned long dst_i;
4901 unsigned long src_i;
4902
4903 if (src_offset + len > dst->len) {
d397712b
CM
4904 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4905 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4906 BUG_ON(1);
4907 }
4908 if (dst_offset + len > dst->len) {
d397712b
CM
4909 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4910 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4911 BUG_ON(1);
4912 }
727011e0 4913 if (dst_offset < src_offset) {
d1310b2e
CM
4914 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
4915 return;
4916 }
d397712b 4917 while (len > 0) {
d1310b2e
CM
4918 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
4919 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
4920
4921 dst_off_in_page = (start_offset + dst_end) &
4922 ((unsigned long)PAGE_CACHE_SIZE - 1);
4923 src_off_in_page = (start_offset + src_end) &
4924 ((unsigned long)PAGE_CACHE_SIZE - 1);
4925
4926 cur = min_t(unsigned long, len, src_off_in_page + 1);
4927 cur = min(cur, dst_off_in_page + 1);
4928 move_pages(extent_buffer_page(dst, dst_i),
4929 extent_buffer_page(dst, src_i),
4930 dst_off_in_page - cur + 1,
4931 src_off_in_page - cur + 1, cur);
4932
4933 dst_end -= cur;
4934 src_end -= cur;
4935 len -= cur;
4936 }
4937}
6af118ce 4938
3083ee2e 4939int try_release_extent_buffer(struct page *page, gfp_t mask)
19fe0a8b 4940{
6af118ce 4941 struct extent_buffer *eb;
6af118ce 4942
3083ee2e
JB
4943 /*
4944 * We need to make sure noboody is attaching this page to an eb right
4945 * now.
4946 */
4947 spin_lock(&page->mapping->private_lock);
4948 if (!PagePrivate(page)) {
4949 spin_unlock(&page->mapping->private_lock);
4f2de97a 4950 return 1;
45f49bce 4951 }
6af118ce 4952
3083ee2e
JB
4953 eb = (struct extent_buffer *)page->private;
4954 BUG_ON(!eb);
19fe0a8b
MX
4955
4956 /*
3083ee2e
JB
4957 * This is a little awful but should be ok, we need to make sure that
4958 * the eb doesn't disappear out from under us while we're looking at
4959 * this page.
19fe0a8b 4960 */
3083ee2e 4961 spin_lock(&eb->refs_lock);
0b32f4bb 4962 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
4963 spin_unlock(&eb->refs_lock);
4964 spin_unlock(&page->mapping->private_lock);
4965 return 0;
b9473439 4966 }
3083ee2e 4967 spin_unlock(&page->mapping->private_lock);
897ca6e9 4968
3083ee2e
JB
4969 if ((mask & GFP_NOFS) == GFP_NOFS)
4970 mask = GFP_NOFS;
19fe0a8b 4971
19fe0a8b 4972 /*
3083ee2e
JB
4973 * If tree ref isn't set then we know the ref on this eb is a real ref,
4974 * so just return, this page will likely be freed soon anyway.
19fe0a8b 4975 */
3083ee2e
JB
4976 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
4977 spin_unlock(&eb->refs_lock);
4978 return 0;
b9473439 4979 }
19fe0a8b 4980
e64860aa 4981 return release_extent_buffer(eb, mask);
6af118ce 4982}