Btrfs: implement repair function when direct read fails
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
27a3507d
FM
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1
DS
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
efe120a0 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
0b32f4bb 134static noinline void flush_write_bio(void *data);
c2d904e0
JM
135static inline struct btrfs_fs_info *
136tree_fs_info(struct extent_io_tree *tree)
137{
a5dee37d
JB
138 if (!tree->mapping)
139 return NULL;
c2d904e0
JM
140 return btrfs_sb(tree->mapping->host->i_sb);
141}
0b32f4bb 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b
CM
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
b208c2f7
DW
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7
DW
167free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
9be3395b
CM
171free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
d1310b2e
CM
175free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
9be3395b 177 extent_state_cache = NULL;
d1310b2e
CM
178 return -ENOMEM;
179}
180
181void extent_io_exit(void)
182{
6d49ba1b 183 btrfs_leak_debug_check();
8c0a8537
KS
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
d1310b2e
CM
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
d1310b2e
CM
196}
197
198void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 199 struct address_space *mapping)
d1310b2e 200{
6bef4d31 201 tree->state = RB_ROOT;
d1310b2e
CM
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
70dec807 204 spin_lock_init(&tree->lock);
d1310b2e 205 tree->mapping = mapping;
d1310b2e 206}
d1310b2e 207
b2950863 208static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
209{
210 struct extent_state *state;
d1310b2e
CM
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 213 if (!state)
d1310b2e
CM
214 return state;
215 state->state = 0;
d1310b2e 216 state->private = 0;
27a3507d 217 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 218 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
143bede5 221 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
222 return state;
223}
d1310b2e 224
4845e44f 225void free_extent_state(struct extent_state *state)
d1310b2e 226{
d1310b2e
CM
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
27a3507d 230 WARN_ON(extent_state_in_tree(state));
6d49ba1b 231 btrfs_leak_debug_del(&state->leak_list);
143bede5 232 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
233 kmem_cache_free(extent_state_cache, state);
234 }
235}
d1310b2e 236
f2071b21
FM
237static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
12cfbad9
FDBM
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
d1310b2e 243{
f2071b21 244 struct rb_node **p;
d397712b 245 struct rb_node *parent = NULL;
d1310b2e
CM
246 struct tree_entry *entry;
247
12cfbad9
FDBM
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
f2071b21 254 p = search_start ? &search_start : &root->rb_node;
d397712b 255 while (*p) {
d1310b2e
CM
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
12cfbad9 267do_insert:
d1310b2e
CM
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271}
272
80ea96b1 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
d1310b2e 278{
80ea96b1 279 struct rb_root *root = &tree->state;
12cfbad9 280 struct rb_node **n = &root->rb_node;
d1310b2e
CM
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
12cfbad9
FDBM
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
289 prev_entry = entry;
290
291 if (offset < entry->start)
12cfbad9 292 n = &(*n)->rb_left;
d1310b2e 293 else if (offset > entry->end)
12cfbad9 294 n = &(*n)->rb_right;
d397712b 295 else
12cfbad9 296 return *n;
d1310b2e
CM
297 }
298
12cfbad9
FDBM
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
d1310b2e
CM
304 if (prev_ret) {
305 orig_prev = prev;
d397712b 306 while (prev && offset > prev_entry->end) {
d1310b2e
CM
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 316 while (prev && offset < prev_entry->start) {
d1310b2e
CM
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323}
324
12cfbad9
FDBM
325static inline struct rb_node *
326tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
d1310b2e 330{
70dec807 331 struct rb_node *prev = NULL;
d1310b2e 332 struct rb_node *ret;
70dec807 333
12cfbad9 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 335 if (!ret)
d1310b2e
CM
336 return prev;
337 return ret;
338}
339
12cfbad9
FDBM
340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342{
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344}
345
9ed74f2d
JB
346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348{
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
41074888 399 struct extent_state *state, unsigned long *bits)
291d673e 400{
1bf85046
JM
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
41074888 406 struct extent_state *state, unsigned long *bits)
291d673e 407{
9ed74f2d
JB
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
41074888 413 struct extent_state *state, unsigned long *bits);
3150b699 414
d1310b2e
CM
415/*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
427 struct rb_node ***p,
428 struct rb_node **parent,
41074888 429 unsigned long *bits)
d1310b2e
CM
430{
431 struct rb_node *node;
432
31b1a2bd 433 if (end < start)
efe120a0 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 435 end, start);
d1310b2e
CM
436 state->start = start;
437 state->end = end;
9ed74f2d 438
3150b699
XG
439 set_state_bits(tree, state, bits);
440
f2071b21 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
446 "%llu %llu\n",
447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
41074888 514 unsigned long *bits, int wake)
d1310b2e 515{
cdc6a395 516 struct extent_state *next;
41074888 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 518
0ca1f7ce 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
291d673e 524 clear_state_cb(tree, state, bits);
32c00aff 525 state->state &= ~bits_to_clear;
d1310b2e
CM
526 if (wake)
527 wake_up(&state->wq);
0ca1f7ce 528 if (state->state == 0) {
cdc6a395 529 next = next_state(state);
27a3507d 530 if (extent_state_in_tree(state)) {
d1310b2e 531 rb_erase(&state->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
cdc6a395 539 next = next_state(state);
d1310b2e 540 }
cdc6a395 541 return next;
d1310b2e
CM
542}
543
8233767a
XG
544static struct extent_state *
545alloc_extent_state_atomic(struct extent_state *prealloc)
546{
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551}
552
48a3b636 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
554{
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558}
559
d1310b2e
CM
560/*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
6763af84 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
571 */
572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 573 unsigned long bits, int wake, int delete,
2c64c53d
CM
574 struct extent_state **cached_state,
575 gfp_t mask)
d1310b2e
CM
576{
577 struct extent_state *state;
2c64c53d 578 struct extent_state *cached;
d1310b2e
CM
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
5c939df5 581 u64 last_end;
d1310b2e 582 int err;
2ac55d41 583 int clear = 0;
d1310b2e 584
a5dee37d 585 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 586
7ee9e440
JB
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
0ca1f7ce
YZ
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
2ac55d41
JB
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
d1310b2e
CM
596again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
598 prealloc = alloc_extent_state(mask);
599 if (!prealloc)
600 return -ENOMEM;
601 }
602
cad321ad 603 spin_lock(&tree->lock);
2c64c53d
CM
604 if (cached_state) {
605 cached = *cached_state;
2ac55d41
JB
606
607 if (clear) {
608 *cached_state = NULL;
609 cached_state = NULL;
610 }
611
27a3507d
FM
612 if (cached && extent_state_in_tree(cached) &&
613 cached->start <= start && cached->end > start) {
2ac55d41
JB
614 if (clear)
615 atomic_dec(&cached->refs);
2c64c53d 616 state = cached;
42daec29 617 goto hit_next;
2c64c53d 618 }
2ac55d41
JB
619 if (clear)
620 free_extent_state(cached);
2c64c53d 621 }
d1310b2e
CM
622 /*
623 * this search will find the extents that end after
624 * our range starts
625 */
80ea96b1 626 node = tree_search(tree, start);
d1310b2e
CM
627 if (!node)
628 goto out;
629 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 630hit_next:
d1310b2e
CM
631 if (state->start > end)
632 goto out;
633 WARN_ON(state->end < start);
5c939df5 634 last_end = state->end;
d1310b2e 635
0449314a 636 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
637 if (!(state->state & bits)) {
638 state = next_state(state);
0449314a 639 goto next;
cdc6a395 640 }
0449314a 641
d1310b2e
CM
642 /*
643 * | ---- desired range ---- |
644 * | state | or
645 * | ------------- state -------------- |
646 *
647 * We need to split the extent we found, and may flip
648 * bits on second half.
649 *
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
653 *
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
656 */
657
658 if (state->start < start) {
8233767a
XG
659 prealloc = alloc_extent_state_atomic(prealloc);
660 BUG_ON(!prealloc);
d1310b2e 661 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
662 if (err)
663 extent_io_tree_panic(tree, err);
664
d1310b2e
CM
665 prealloc = NULL;
666 if (err)
667 goto out;
668 if (state->end <= end) {
d1ac6e41
LB
669 state = clear_state_bit(tree, state, &bits, wake);
670 goto next;
d1310b2e
CM
671 }
672 goto search_again;
673 }
674 /*
675 * | ---- desired range ---- |
676 * | state |
677 * We need to split the extent, and clear the bit
678 * on the first half
679 */
680 if (state->start <= end && state->end > end) {
8233767a
XG
681 prealloc = alloc_extent_state_atomic(prealloc);
682 BUG_ON(!prealloc);
d1310b2e 683 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
684 if (err)
685 extent_io_tree_panic(tree, err);
686
d1310b2e
CM
687 if (wake)
688 wake_up(&state->wq);
42daec29 689
6763af84 690 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 691
d1310b2e
CM
692 prealloc = NULL;
693 goto out;
694 }
42daec29 695
cdc6a395 696 state = clear_state_bit(tree, state, &bits, wake);
0449314a 697next:
5c939df5
YZ
698 if (last_end == (u64)-1)
699 goto out;
700 start = last_end + 1;
cdc6a395 701 if (start <= end && state && !need_resched())
692e5759 702 goto hit_next;
d1310b2e
CM
703 goto search_again;
704
705out:
cad321ad 706 spin_unlock(&tree->lock);
d1310b2e
CM
707 if (prealloc)
708 free_extent_state(prealloc);
709
6763af84 710 return 0;
d1310b2e
CM
711
712search_again:
713 if (start > end)
714 goto out;
cad321ad 715 spin_unlock(&tree->lock);
d1310b2e
CM
716 if (mask & __GFP_WAIT)
717 cond_resched();
718 goto again;
719}
d1310b2e 720
143bede5
JM
721static void wait_on_state(struct extent_io_tree *tree,
722 struct extent_state *state)
641f5219
CH
723 __releases(tree->lock)
724 __acquires(tree->lock)
d1310b2e
CM
725{
726 DEFINE_WAIT(wait);
727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 728 spin_unlock(&tree->lock);
d1310b2e 729 schedule();
cad321ad 730 spin_lock(&tree->lock);
d1310b2e 731 finish_wait(&state->wq, &wait);
d1310b2e
CM
732}
733
734/*
735 * waits for one or more bits to clear on a range in the state tree.
736 * The range [start, end] is inclusive.
737 * The tree lock is taken by this function
738 */
41074888
DS
739static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 unsigned long bits)
d1310b2e
CM
741{
742 struct extent_state *state;
743 struct rb_node *node;
744
a5dee37d 745 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 746
cad321ad 747 spin_lock(&tree->lock);
d1310b2e
CM
748again:
749 while (1) {
750 /*
751 * this search will find all the extents that end after
752 * our range starts
753 */
80ea96b1 754 node = tree_search(tree, start);
c50d3e71 755process_node:
d1310b2e
CM
756 if (!node)
757 break;
758
759 state = rb_entry(node, struct extent_state, rb_node);
760
761 if (state->start > end)
762 goto out;
763
764 if (state->state & bits) {
765 start = state->start;
766 atomic_inc(&state->refs);
767 wait_on_state(tree, state);
768 free_extent_state(state);
769 goto again;
770 }
771 start = state->end + 1;
772
773 if (start > end)
774 break;
775
c50d3e71
FM
776 if (!cond_resched_lock(&tree->lock)) {
777 node = rb_next(node);
778 goto process_node;
779 }
d1310b2e
CM
780 }
781out:
cad321ad 782 spin_unlock(&tree->lock);
d1310b2e 783}
d1310b2e 784
1bf85046 785static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 786 struct extent_state *state,
41074888 787 unsigned long *bits)
d1310b2e 788{
41074888 789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 790
1bf85046 791 set_state_cb(tree, state, bits);
0ca1f7ce 792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
793 u64 range = state->end - state->start + 1;
794 tree->dirty_bytes += range;
795 }
0ca1f7ce 796 state->state |= bits_to_set;
d1310b2e
CM
797}
798
2c64c53d
CM
799static void cache_state(struct extent_state *state,
800 struct extent_state **cached_ptr)
801{
802 if (cached_ptr && !(*cached_ptr)) {
803 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804 *cached_ptr = state;
805 atomic_inc(&state->refs);
806 }
807 }
808}
809
d1310b2e 810/*
1edbb734
CM
811 * set some bits on a range in the tree. This may require allocations or
812 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 813 *
1edbb734
CM
814 * If any of the exclusive bits are set, this will fail with -EEXIST if some
815 * part of the range already has the desired bits set. The start of the
816 * existing range is returned in failed_start in this case.
d1310b2e 817 *
1edbb734 818 * [start, end] is inclusive This takes the tree lock.
d1310b2e 819 */
1edbb734 820
3fbe5c02
JM
821static int __must_check
822__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
823 unsigned long bits, unsigned long exclusive_bits,
824 u64 *failed_start, struct extent_state **cached_state,
825 gfp_t mask)
d1310b2e
CM
826{
827 struct extent_state *state;
828 struct extent_state *prealloc = NULL;
829 struct rb_node *node;
12cfbad9
FDBM
830 struct rb_node **p;
831 struct rb_node *parent;
d1310b2e 832 int err = 0;
d1310b2e
CM
833 u64 last_start;
834 u64 last_end;
42daec29 835
a5dee37d 836 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 837
0ca1f7ce 838 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
839again:
840 if (!prealloc && (mask & __GFP_WAIT)) {
841 prealloc = alloc_extent_state(mask);
8233767a 842 BUG_ON(!prealloc);
d1310b2e
CM
843 }
844
cad321ad 845 spin_lock(&tree->lock);
9655d298
CM
846 if (cached_state && *cached_state) {
847 state = *cached_state;
df98b6e2 848 if (state->start <= start && state->end > start &&
27a3507d 849 extent_state_in_tree(state)) {
9655d298
CM
850 node = &state->rb_node;
851 goto hit_next;
852 }
853 }
d1310b2e
CM
854 /*
855 * this search will find all the extents that end after
856 * our range starts.
857 */
12cfbad9 858 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 859 if (!node) {
8233767a
XG
860 prealloc = alloc_extent_state_atomic(prealloc);
861 BUG_ON(!prealloc);
12cfbad9
FDBM
862 err = insert_state(tree, prealloc, start, end,
863 &p, &parent, &bits);
c2d904e0
JM
864 if (err)
865 extent_io_tree_panic(tree, err);
866
c42ac0bc 867 cache_state(prealloc, cached_state);
d1310b2e 868 prealloc = NULL;
d1310b2e
CM
869 goto out;
870 }
d1310b2e 871 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 872hit_next:
d1310b2e
CM
873 last_start = state->start;
874 last_end = state->end;
875
876 /*
877 * | ---- desired range ---- |
878 * | state |
879 *
880 * Just lock what we found and keep going
881 */
882 if (state->start == start && state->end <= end) {
1edbb734 883 if (state->state & exclusive_bits) {
d1310b2e
CM
884 *failed_start = state->start;
885 err = -EEXIST;
886 goto out;
887 }
42daec29 888
1bf85046 889 set_state_bits(tree, state, &bits);
2c64c53d 890 cache_state(state, cached_state);
d1310b2e 891 merge_state(tree, state);
5c939df5
YZ
892 if (last_end == (u64)-1)
893 goto out;
894 start = last_end + 1;
d1ac6e41
LB
895 state = next_state(state);
896 if (start < end && state && state->start == start &&
897 !need_resched())
898 goto hit_next;
d1310b2e
CM
899 goto search_again;
900 }
901
902 /*
903 * | ---- desired range ---- |
904 * | state |
905 * or
906 * | ------------- state -------------- |
907 *
908 * We need to split the extent we found, and may flip bits on
909 * second half.
910 *
911 * If the extent we found extends past our
912 * range, we just split and search again. It'll get split
913 * again the next time though.
914 *
915 * If the extent we found is inside our range, we set the
916 * desired bit on it.
917 */
918 if (state->start < start) {
1edbb734 919 if (state->state & exclusive_bits) {
d1310b2e
CM
920 *failed_start = start;
921 err = -EEXIST;
922 goto out;
923 }
8233767a
XG
924
925 prealloc = alloc_extent_state_atomic(prealloc);
926 BUG_ON(!prealloc);
d1310b2e 927 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
928 if (err)
929 extent_io_tree_panic(tree, err);
930
d1310b2e
CM
931 prealloc = NULL;
932 if (err)
933 goto out;
934 if (state->end <= end) {
1bf85046 935 set_state_bits(tree, state, &bits);
2c64c53d 936 cache_state(state, cached_state);
d1310b2e 937 merge_state(tree, state);
5c939df5
YZ
938 if (last_end == (u64)-1)
939 goto out;
940 start = last_end + 1;
d1ac6e41
LB
941 state = next_state(state);
942 if (start < end && state && state->start == start &&
943 !need_resched())
944 goto hit_next;
d1310b2e
CM
945 }
946 goto search_again;
947 }
948 /*
949 * | ---- desired range ---- |
950 * | state | or | state |
951 *
952 * There's a hole, we need to insert something in it and
953 * ignore the extent we found.
954 */
955 if (state->start > start) {
956 u64 this_end;
957 if (end < last_start)
958 this_end = end;
959 else
d397712b 960 this_end = last_start - 1;
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
c7f895a2
XG
964
965 /*
966 * Avoid to free 'prealloc' if it can be merged with
967 * the later extent.
968 */
d1310b2e 969 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 970 NULL, NULL, &bits);
c2d904e0
JM
971 if (err)
972 extent_io_tree_panic(tree, err);
973
9ed74f2d
JB
974 cache_state(prealloc, cached_state);
975 prealloc = NULL;
d1310b2e
CM
976 start = this_end + 1;
977 goto search_again;
978 }
979 /*
980 * | ---- desired range ---- |
981 * | state |
982 * We need to split the extent, and set the bit
983 * on the first half
984 */
985 if (state->start <= end && state->end > end) {
1edbb734 986 if (state->state & exclusive_bits) {
d1310b2e
CM
987 *failed_start = start;
988 err = -EEXIST;
989 goto out;
990 }
8233767a
XG
991
992 prealloc = alloc_extent_state_atomic(prealloc);
993 BUG_ON(!prealloc);
d1310b2e 994 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
995 if (err)
996 extent_io_tree_panic(tree, err);
d1310b2e 997
1bf85046 998 set_state_bits(tree, prealloc, &bits);
2c64c53d 999 cache_state(prealloc, cached_state);
d1310b2e
CM
1000 merge_state(tree, prealloc);
1001 prealloc = NULL;
1002 goto out;
1003 }
1004
1005 goto search_again;
1006
1007out:
cad321ad 1008 spin_unlock(&tree->lock);
d1310b2e
CM
1009 if (prealloc)
1010 free_extent_state(prealloc);
1011
1012 return err;
1013
1014search_again:
1015 if (start > end)
1016 goto out;
cad321ad 1017 spin_unlock(&tree->lock);
d1310b2e
CM
1018 if (mask & __GFP_WAIT)
1019 cond_resched();
1020 goto again;
1021}
d1310b2e 1022
41074888
DS
1023int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024 unsigned long bits, u64 * failed_start,
1025 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1026{
1027 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028 cached_state, mask);
1029}
1030
1031
462d6fac 1032/**
10983f2e
LB
1033 * convert_extent_bit - convert all bits in a given range from one bit to
1034 * another
462d6fac
JB
1035 * @tree: the io tree to search
1036 * @start: the start offset in bytes
1037 * @end: the end offset in bytes (inclusive)
1038 * @bits: the bits to set in this range
1039 * @clear_bits: the bits to clear in this range
e6138876 1040 * @cached_state: state that we're going to cache
462d6fac
JB
1041 * @mask: the allocation mask
1042 *
1043 * This will go through and set bits for the given range. If any states exist
1044 * already in this range they are set with the given bit and cleared of the
1045 * clear_bits. This is only meant to be used by things that are mergeable, ie
1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1047 * boundary bits like LOCK.
1048 */
1049int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1050 unsigned long bits, unsigned long clear_bits,
e6138876 1051 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1052{
1053 struct extent_state *state;
1054 struct extent_state *prealloc = NULL;
1055 struct rb_node *node;
12cfbad9
FDBM
1056 struct rb_node **p;
1057 struct rb_node *parent;
462d6fac
JB
1058 int err = 0;
1059 u64 last_start;
1060 u64 last_end;
1061
a5dee37d 1062 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1063
462d6fac
JB
1064again:
1065 if (!prealloc && (mask & __GFP_WAIT)) {
1066 prealloc = alloc_extent_state(mask);
1067 if (!prealloc)
1068 return -ENOMEM;
1069 }
1070
1071 spin_lock(&tree->lock);
e6138876
JB
1072 if (cached_state && *cached_state) {
1073 state = *cached_state;
1074 if (state->start <= start && state->end > start &&
27a3507d 1075 extent_state_in_tree(state)) {
e6138876
JB
1076 node = &state->rb_node;
1077 goto hit_next;
1078 }
1079 }
1080
462d6fac
JB
1081 /*
1082 * this search will find all the extents that end after
1083 * our range starts.
1084 */
12cfbad9 1085 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1086 if (!node) {
1087 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1088 if (!prealloc) {
1089 err = -ENOMEM;
1090 goto out;
1091 }
12cfbad9
FDBM
1092 err = insert_state(tree, prealloc, start, end,
1093 &p, &parent, &bits);
c2d904e0
JM
1094 if (err)
1095 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1096 cache_state(prealloc, cached_state);
1097 prealloc = NULL;
462d6fac
JB
1098 goto out;
1099 }
1100 state = rb_entry(node, struct extent_state, rb_node);
1101hit_next:
1102 last_start = state->start;
1103 last_end = state->end;
1104
1105 /*
1106 * | ---- desired range ---- |
1107 * | state |
1108 *
1109 * Just lock what we found and keep going
1110 */
1111 if (state->start == start && state->end <= end) {
462d6fac 1112 set_state_bits(tree, state, &bits);
e6138876 1113 cache_state(state, cached_state);
d1ac6e41 1114 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1115 if (last_end == (u64)-1)
1116 goto out;
462d6fac 1117 start = last_end + 1;
d1ac6e41
LB
1118 if (start < end && state && state->start == start &&
1119 !need_resched())
1120 goto hit_next;
462d6fac
JB
1121 goto search_again;
1122 }
1123
1124 /*
1125 * | ---- desired range ---- |
1126 * | state |
1127 * or
1128 * | ------------- state -------------- |
1129 *
1130 * We need to split the extent we found, and may flip bits on
1131 * second half.
1132 *
1133 * If the extent we found extends past our
1134 * range, we just split and search again. It'll get split
1135 * again the next time though.
1136 *
1137 * If the extent we found is inside our range, we set the
1138 * desired bit on it.
1139 */
1140 if (state->start < start) {
1141 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1142 if (!prealloc) {
1143 err = -ENOMEM;
1144 goto out;
1145 }
462d6fac 1146 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
462d6fac
JB
1149 prealloc = NULL;
1150 if (err)
1151 goto out;
1152 if (state->end <= end) {
1153 set_state_bits(tree, state, &bits);
e6138876 1154 cache_state(state, cached_state);
d1ac6e41 1155 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 }
1163 goto search_again;
1164 }
1165 /*
1166 * | ---- desired range ---- |
1167 * | state | or | state |
1168 *
1169 * There's a hole, we need to insert something in it and
1170 * ignore the extent we found.
1171 */
1172 if (state->start > start) {
1173 u64 this_end;
1174 if (end < last_start)
1175 this_end = end;
1176 else
1177 this_end = last_start - 1;
1178
1179 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1180 if (!prealloc) {
1181 err = -ENOMEM;
1182 goto out;
1183 }
462d6fac
JB
1184
1185 /*
1186 * Avoid to free 'prealloc' if it can be merged with
1187 * the later extent.
1188 */
1189 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1190 NULL, NULL, &bits);
c2d904e0
JM
1191 if (err)
1192 extent_io_tree_panic(tree, err);
e6138876 1193 cache_state(prealloc, cached_state);
462d6fac
JB
1194 prealloc = NULL;
1195 start = this_end + 1;
1196 goto search_again;
1197 }
1198 /*
1199 * | ---- desired range ---- |
1200 * | state |
1201 * We need to split the extent, and set the bit
1202 * on the first half
1203 */
1204 if (state->start <= end && state->end > end) {
1205 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1206 if (!prealloc) {
1207 err = -ENOMEM;
1208 goto out;
1209 }
462d6fac
JB
1210
1211 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1212 if (err)
1213 extent_io_tree_panic(tree, err);
462d6fac
JB
1214
1215 set_state_bits(tree, prealloc, &bits);
e6138876 1216 cache_state(prealloc, cached_state);
462d6fac 1217 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1218 prealloc = NULL;
1219 goto out;
1220 }
1221
1222 goto search_again;
1223
1224out:
1225 spin_unlock(&tree->lock);
1226 if (prealloc)
1227 free_extent_state(prealloc);
1228
1229 return err;
1230
1231search_again:
1232 if (start > end)
1233 goto out;
1234 spin_unlock(&tree->lock);
1235 if (mask & __GFP_WAIT)
1236 cond_resched();
1237 goto again;
1238}
1239
d1310b2e
CM
1240/* wrappers around set/clear extent bit */
1241int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243{
3fbe5c02 1244 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1245 NULL, mask);
d1310b2e 1246}
d1310b2e
CM
1247
1248int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1249 unsigned long bits, gfp_t mask)
d1310b2e 1250{
3fbe5c02 1251 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1252 NULL, mask);
d1310b2e 1253}
d1310b2e
CM
1254
1255int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1256 unsigned long bits, gfp_t mask)
d1310b2e 1257{
2c64c53d 1258 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1259}
d1310b2e
CM
1260
1261int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1262 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1263{
1264 return set_extent_bit(tree, start, end,
fee187d9 1265 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1266 NULL, cached_state, mask);
d1310b2e 1267}
d1310b2e 1268
9e8a4a8b
LB
1269int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270 struct extent_state **cached_state, gfp_t mask)
1271{
1272 return set_extent_bit(tree, start, end,
1273 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274 NULL, cached_state, mask);
1275}
1276
d1310b2e
CM
1277int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278 gfp_t mask)
1279{
1280 return clear_extent_bit(tree, start, end,
32c00aff 1281 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1282 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1283}
d1310b2e
CM
1284
1285int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286 gfp_t mask)
1287{
3fbe5c02 1288 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1289 NULL, mask);
d1310b2e 1290}
d1310b2e 1291
d1310b2e 1292int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1293 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1294{
6b67a320 1295 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1296 cached_state, mask);
d1310b2e 1297}
d1310b2e 1298
5fd02043
JB
1299int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1301{
2c64c53d 1302 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1303 cached_state, mask);
d1310b2e 1304}
d1310b2e 1305
d352ac68
CM
1306/*
1307 * either insert or lock state struct between start and end use mask to tell
1308 * us if waiting is desired.
1309 */
1edbb734 1310int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1311 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1312{
1313 int err;
1314 u64 failed_start;
1315 while (1) {
3fbe5c02
JM
1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317 EXTENT_LOCKED, &failed_start,
1318 cached_state, GFP_NOFS);
d0082371 1319 if (err == -EEXIST) {
d1310b2e
CM
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
d0082371 1322 } else
d1310b2e 1323 break;
d1310b2e
CM
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327}
d1310b2e 1328
d0082371 1329int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1330{
d0082371 1331 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1332}
1333
d0082371 1334int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1335{
1336 int err;
1337 u64 failed_start;
1338
3fbe5c02
JM
1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1341 if (err == -EEXIST) {
1342 if (failed_start > start)
1343 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1344 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1345 return 0;
6643558d 1346 }
25179201
JB
1347 return 1;
1348}
25179201 1349
2c64c53d
CM
1350int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351 struct extent_state **cached, gfp_t mask)
1352{
1353 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354 mask);
1355}
1356
d0082371 1357int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1358{
2c64c53d 1359 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1360 GFP_NOFS);
d1310b2e 1361}
d1310b2e 1362
4adaa611
CM
1363int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365 unsigned long index = start >> PAGE_CACHE_SHIFT;
1366 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 page_cache_release(page);
1374 index++;
1375 }
1376 return 0;
1377}
1378
1379int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380{
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 account_page_redirty(page);
1389 __set_page_dirty_nobuffers(page);
1390 page_cache_release(page);
1391 index++;
1392 }
1393 return 0;
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
b2950863 1399static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1400{
1401 unsigned long index = start >> PAGE_CACHE_SHIFT;
1402 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1408 set_page_writeback(page);
1409 page_cache_release(page);
1410 index++;
1411 }
d1310b2e
CM
1412 return 0;
1413}
d1310b2e 1414
d352ac68
CM
1415/* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
48a3b636
ES
1419static struct extent_state *
1420find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1421 u64 start, unsigned long bits)
d7fc640e
CM
1422{
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
d397712b 1431 if (!node)
d7fc640e 1432 goto out;
d7fc640e 1433
d397712b 1434 while (1) {
d7fc640e 1435 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1436 if (state->end >= start && (state->state & bits))
d7fc640e 1437 return state;
d397712b 1438
d7fc640e
CM
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443out:
1444 return NULL;
1445}
d7fc640e 1446
69261c4b
XG
1447/*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
477d7eaf 1452 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1453 */
1454int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1455 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1456 struct extent_state **cached_state)
69261c4b
XG
1457{
1458 struct extent_state *state;
e6138876 1459 struct rb_node *n;
69261c4b
XG
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
e6138876
JB
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
27a3507d 1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
69261c4b 1482 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1483got_it:
69261c4b 1484 if (state) {
e6138876 1485 cache_state(state, cached_state);
69261c4b
XG
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
e6138876 1490out:
69261c4b
XG
1491 spin_unlock(&tree->lock);
1492 return ret;
1493}
1494
d352ac68
CM
1495/*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
c8b97818 1501static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
d1310b2e
CM
1504{
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
cad321ad 1511 spin_lock(&tree->lock);
c8b97818 1512
d1310b2e
CM
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
80ea96b1 1517 node = tree_search(tree, cur_start);
2b114d1d 1518 if (!node) {
3b951516
CM
1519 if (!found)
1520 *end = (u64)-1;
d1310b2e
CM
1521 goto out;
1522 }
1523
d397712b 1524 while (1) {
d1310b2e 1525 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
c2a128d2 1535 if (!found) {
d1310b2e 1536 *start = state->start;
c2a128d2
JB
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
d1310b2e
CM
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
d1310b2e 1544 total_bytes += state->end - state->start + 1;
7bf811a5 1545 if (total_bytes >= max_bytes)
573aecaf 1546 break;
573aecaf 1547 if (!node)
d1310b2e
CM
1548 break;
1549 }
1550out:
cad321ad 1551 spin_unlock(&tree->lock);
d1310b2e
CM
1552 return found;
1553}
1554
143bede5
JM
1555static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
c8b97818
CM
1558{
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
143bede5 1567 return;
c8b97818 1568
d397712b 1569 while (nr_pages > 0) {
c8b97818 1570 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
c8b97818
CM
1582}
1583
1584static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588{
1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
d397712b 1604 while (nrpages > 0) {
c8b97818 1605 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
771ed689 1618 if (pages[i] != locked_page) {
c8b97818 1619 lock_page(pages[i]);
f2b1c41c
CM
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 page_cache_release(pages[i]);
1625 goto done;
1626 }
1627 }
c8b97818 1628 page_cache_release(pages[i]);
771ed689 1629 pages_locked++;
c8b97818 1630 }
c8b97818
CM
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_CACHE_SHIFT);
1642 }
1643 return ret;
1644}
1645
1646/*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
294e30fe
JB
1652STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
c8b97818
CM
1656{
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
9655d298 1660 struct extent_state *cached_state = NULL;
c8b97818
CM
1661 int ret;
1662 int loops = 0;
1663
1664again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1669 max_bytes, &cached_state);
70b99e69 1670 if (!found || delalloc_end <= *start) {
c8b97818
CM
1671 *start = delalloc_start;
1672 *end = delalloc_end;
c2a128d2 1673 free_extent_state(cached_state);
385fe0be 1674 return 0;
c8b97818
CM
1675 }
1676
70b99e69
CM
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
d397712b 1682 if (delalloc_start < *start)
70b99e69 1683 delalloc_start = *start;
70b99e69 1684
c8b97818
CM
1685 /*
1686 * make sure to limit the number of pages we try to lock down
c8b97818 1687 */
7bf811a5
JB
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1690
c8b97818
CM
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
9655d298 1698 free_extent_state(cached_state);
7d788742 1699 cached_state = NULL;
c8b97818 1700 if (!loops) {
7bf811a5 1701 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
79787eaa 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1710
1711 /* step three, lock the state bits for the whole range */
d0082371 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1716 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1717 if (!ret) {
9655d298
CM
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
c8b97818
CM
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
9655d298 1725 free_extent_state(cached_state);
c8b97818
CM
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728out_failed:
1729 return found;
1730}
1731
c2790a2e
JB
1732int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 struct page *locked_page,
1734 unsigned long clear_bits,
1735 unsigned long page_ops)
c8b97818 1736{
c2790a2e 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
771ed689 1744
2c64c53d 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1746 if (page_ops == 0)
771ed689 1747 return 0;
c8b97818 1748
d397712b 1749 while (nr_pages > 0) {
c8b97818 1750 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1753 for (i = 0; i < ret; i++) {
8b62b72b 1754
c2790a2e 1755 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1756 SetPagePrivate2(pages[i]);
1757
c8b97818
CM
1758 if (pages[i] == locked_page) {
1759 page_cache_release(pages[i]);
1760 continue;
1761 }
c2790a2e 1762 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1763 clear_page_dirty_for_io(pages[i]);
c2790a2e 1764 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1765 set_page_writeback(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1767 end_page_writeback(pages[i]);
c2790a2e 1768 if (page_ops & PAGE_UNLOCK)
771ed689 1769 unlock_page(pages[i]);
c8b97818
CM
1770 page_cache_release(pages[i]);
1771 }
1772 nr_pages -= ret;
1773 index += ret;
1774 cond_resched();
1775 }
1776 return 0;
1777}
c8b97818 1778
d352ac68
CM
1779/*
1780 * count the number of bytes in the tree that have a given bit(s)
1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1782 * cached. The total number found is returned.
1783 */
d1310b2e
CM
1784u64 count_range_bits(struct extent_io_tree *tree,
1785 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1786 unsigned long bits, int contig)
d1310b2e
CM
1787{
1788 struct rb_node *node;
1789 struct extent_state *state;
1790 u64 cur_start = *start;
1791 u64 total_bytes = 0;
ec29ed5b 1792 u64 last = 0;
d1310b2e
CM
1793 int found = 0;
1794
fae7f21c 1795 if (WARN_ON(search_end <= cur_start))
d1310b2e 1796 return 0;
d1310b2e 1797
cad321ad 1798 spin_lock(&tree->lock);
d1310b2e
CM
1799 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 total_bytes = tree->dirty_bytes;
1801 goto out;
1802 }
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
80ea96b1 1807 node = tree_search(tree, cur_start);
d397712b 1808 if (!node)
d1310b2e 1809 goto out;
d1310b2e 1810
d397712b 1811 while (1) {
d1310b2e
CM
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start > search_end)
1814 break;
ec29ed5b
CM
1815 if (contig && found && state->start > last + 1)
1816 break;
1817 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1818 total_bytes += min(search_end, state->end) + 1 -
1819 max(cur_start, state->start);
1820 if (total_bytes >= max_bytes)
1821 break;
1822 if (!found) {
af60bed2 1823 *start = max(cur_start, state->start);
d1310b2e
CM
1824 found = 1;
1825 }
ec29ed5b
CM
1826 last = state->end;
1827 } else if (contig && found) {
1828 break;
d1310b2e
CM
1829 }
1830 node = rb_next(node);
1831 if (!node)
1832 break;
1833 }
1834out:
cad321ad 1835 spin_unlock(&tree->lock);
d1310b2e
CM
1836 return total_bytes;
1837}
b2950863 1838
d352ac68
CM
1839/*
1840 * set the private field for a given byte offset in the tree. If there isn't
1841 * an extent_state there already, this does nothing.
1842 */
171170c1 1843static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1844{
1845 struct rb_node *node;
1846 struct extent_state *state;
1847 int ret = 0;
1848
cad321ad 1849 spin_lock(&tree->lock);
d1310b2e
CM
1850 /*
1851 * this search will find all the extents that end after
1852 * our range starts.
1853 */
80ea96b1 1854 node = tree_search(tree, start);
2b114d1d 1855 if (!node) {
d1310b2e
CM
1856 ret = -ENOENT;
1857 goto out;
1858 }
1859 state = rb_entry(node, struct extent_state, rb_node);
1860 if (state->start != start) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state->private = private;
1865out:
cad321ad 1866 spin_unlock(&tree->lock);
d1310b2e
CM
1867 return ret;
1868}
1869
1870int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871{
1872 struct rb_node *node;
1873 struct extent_state *state;
1874 int ret = 0;
1875
cad321ad 1876 spin_lock(&tree->lock);
d1310b2e
CM
1877 /*
1878 * this search will find all the extents that end after
1879 * our range starts.
1880 */
80ea96b1 1881 node = tree_search(tree, start);
2b114d1d 1882 if (!node) {
d1310b2e
CM
1883 ret = -ENOENT;
1884 goto out;
1885 }
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 if (state->start != start) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 *private = state->private;
1892out:
cad321ad 1893 spin_unlock(&tree->lock);
d1310b2e
CM
1894 return ret;
1895}
1896
1897/*
1898 * searches a range in the state tree for a given mask.
70dec807 1899 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1900 * has the bits set. Otherwise, 1 is returned if any bit in the
1901 * range is found set.
1902 */
1903int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1904 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1905{
1906 struct extent_state *state = NULL;
1907 struct rb_node *node;
1908 int bitset = 0;
d1310b2e 1909
cad321ad 1910 spin_lock(&tree->lock);
27a3507d 1911 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1912 cached->end > start)
9655d298
CM
1913 node = &cached->rb_node;
1914 else
1915 node = tree_search(tree, start);
d1310b2e
CM
1916 while (node && start <= end) {
1917 state = rb_entry(node, struct extent_state, rb_node);
1918
1919 if (filled && state->start > start) {
1920 bitset = 0;
1921 break;
1922 }
1923
1924 if (state->start > end)
1925 break;
1926
1927 if (state->state & bits) {
1928 bitset = 1;
1929 if (!filled)
1930 break;
1931 } else if (filled) {
1932 bitset = 0;
1933 break;
1934 }
46562cec
CM
1935
1936 if (state->end == (u64)-1)
1937 break;
1938
d1310b2e
CM
1939 start = state->end + 1;
1940 if (start > end)
1941 break;
1942 node = rb_next(node);
1943 if (!node) {
1944 if (filled)
1945 bitset = 0;
1946 break;
1947 }
1948 }
cad321ad 1949 spin_unlock(&tree->lock);
d1310b2e
CM
1950 return bitset;
1951}
d1310b2e
CM
1952
1953/*
1954 * helper function to set a given page up to date if all the
1955 * extents in the tree for that page are up to date
1956 */
143bede5 1957static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1958{
4eee4fa4 1959 u64 start = page_offset(page);
d1310b2e 1960 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1961 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1962 SetPageUptodate(page);
d1310b2e
CM
1963}
1964
8b110e39 1965int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1966{
1967 int ret;
1968 int err = 0;
1969 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1970
1971 set_state_private(failure_tree, rec->start, 0);
1972 ret = clear_extent_bits(failure_tree, rec->start,
1973 rec->start + rec->len - 1,
1974 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1975 if (ret)
1976 err = ret;
1977
53b381b3
DW
1978 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1979 rec->start + rec->len - 1,
1980 EXTENT_DAMAGED, GFP_NOFS);
1981 if (ret && !err)
1982 err = ret;
4a54c8c1
JS
1983
1984 kfree(rec);
1985 return err;
1986}
1987
4a54c8c1
JS
1988/*
1989 * this bypasses the standard btrfs submit functions deliberately, as
1990 * the standard behavior is to write all copies in a raid setup. here we only
1991 * want to write the one bad copy. so we do the mapping for ourselves and issue
1992 * submit_bio directly.
3ec706c8 1993 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1994 * actually prevents the read that triggered the error from finishing.
1995 * currently, there can be no more than two copies of every data bit. thus,
1996 * exactly one rewrite is required.
1997 */
1203b681
MX
1998int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
1999 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2000{
1203b681 2001 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2002 struct bio *bio;
2003 struct btrfs_device *dev;
4a54c8c1
JS
2004 u64 map_length = 0;
2005 u64 sector;
2006 struct btrfs_bio *bbio = NULL;
53b381b3 2007 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2008 int ret;
2009
908960c6 2010 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2011 BUG_ON(!mirror_num);
2012
53b381b3
DW
2013 /* we can't repair anything in raid56 yet */
2014 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2015 return 0;
2016
9be3395b 2017 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2018 if (!bio)
2019 return -EIO;
4f024f37 2020 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2021 map_length = length;
2022
3ec706c8 2023 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2024 &map_length, &bbio, mirror_num);
2025 if (ret) {
2026 bio_put(bio);
2027 return -EIO;
2028 }
2029 BUG_ON(mirror_num != bbio->mirror_num);
2030 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2031 bio->bi_iter.bi_sector = sector;
4a54c8c1
JS
2032 dev = bbio->stripes[mirror_num-1].dev;
2033 kfree(bbio);
2034 if (!dev || !dev->bdev || !dev->writeable) {
2035 bio_put(bio);
2036 return -EIO;
2037 }
2038 bio->bi_bdev = dev->bdev;
ffdd2018 2039 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2040
33879d45 2041 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2042 /* try to remap that extent elsewhere? */
2043 bio_put(bio);
442a4f63 2044 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2045 return -EIO;
2046 }
2047
efe120a0 2048 printk_ratelimited_in_rcu(KERN_INFO
1203b681
MX
2049 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2050 btrfs_ino(inode), start,
2051 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2052 bio_put(bio);
2053 return 0;
2054}
2055
ea466794
JB
2056int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2057 int mirror_num)
2058{
ea466794
JB
2059 u64 start = eb->start;
2060 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2061 int ret = 0;
ea466794 2062
908960c6
ID
2063 if (root->fs_info->sb->s_flags & MS_RDONLY)
2064 return -EROFS;
2065
ea466794
JB
2066 for (i = 0; i < num_pages; i++) {
2067 struct page *p = extent_buffer_page(eb, i);
1203b681
MX
2068
2069 ret = repair_io_failure(root->fs_info->btree_inode, start,
2070 PAGE_CACHE_SIZE, start, p,
2071 start - page_offset(p), mirror_num);
ea466794
JB
2072 if (ret)
2073 break;
2074 start += PAGE_CACHE_SIZE;
2075 }
2076
2077 return ret;
2078}
2079
4a54c8c1
JS
2080/*
2081 * each time an IO finishes, we do a fast check in the IO failure tree
2082 * to see if we need to process or clean up an io_failure_record
2083 */
8b110e39
MX
2084int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2085 unsigned int pg_offset)
4a54c8c1
JS
2086{
2087 u64 private;
2088 u64 private_failure;
2089 struct io_failure_record *failrec;
908960c6 2090 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2091 struct extent_state *state;
2092 int num_copies;
4a54c8c1 2093 int ret;
4a54c8c1
JS
2094
2095 private = 0;
2096 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2097 (u64)-1, 1, EXTENT_DIRTY, 0);
2098 if (!ret)
2099 return 0;
2100
2101 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2102 &private_failure);
2103 if (ret)
2104 return 0;
2105
2106 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2107 BUG_ON(!failrec->this_mirror);
2108
2109 if (failrec->in_validation) {
2110 /* there was no real error, just free the record */
2111 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2112 failrec->start);
4a54c8c1
JS
2113 goto out;
2114 }
908960c6
ID
2115 if (fs_info->sb->s_flags & MS_RDONLY)
2116 goto out;
4a54c8c1
JS
2117
2118 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2119 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2120 failrec->start,
2121 EXTENT_LOCKED);
2122 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2123
883d0de4
MX
2124 if (state && state->start <= failrec->start &&
2125 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2126 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2127 failrec->len);
4a54c8c1 2128 if (num_copies > 1) {
1203b681 2129 repair_io_failure(inode, start, failrec->len,
454ff3de 2130 failrec->logical, page,
1203b681 2131 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2132 }
2133 }
2134
2135out:
454ff3de 2136 free_io_failure(inode, failrec);
4a54c8c1 2137
454ff3de 2138 return 0;
4a54c8c1
JS
2139}
2140
2fe6303e
MX
2141int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2142 struct io_failure_record **failrec_ret)
4a54c8c1 2143{
2fe6303e 2144 struct io_failure_record *failrec;
4a54c8c1
JS
2145 u64 private;
2146 struct extent_map *em;
4a54c8c1
JS
2147 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2148 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2149 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2150 int ret;
4a54c8c1
JS
2151 u64 logical;
2152
4a54c8c1
JS
2153 ret = get_state_private(failure_tree, start, &private);
2154 if (ret) {
2155 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2156 if (!failrec)
2157 return -ENOMEM;
2fe6303e 2158
4a54c8c1
JS
2159 failrec->start = start;
2160 failrec->len = end - start + 1;
2161 failrec->this_mirror = 0;
2162 failrec->bio_flags = 0;
2163 failrec->in_validation = 0;
2164
2165 read_lock(&em_tree->lock);
2166 em = lookup_extent_mapping(em_tree, start, failrec->len);
2167 if (!em) {
2168 read_unlock(&em_tree->lock);
2169 kfree(failrec);
2170 return -EIO;
2171 }
2172
68ba990f 2173 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2174 free_extent_map(em);
2175 em = NULL;
2176 }
2177 read_unlock(&em_tree->lock);
7a2d6a64 2178 if (!em) {
4a54c8c1
JS
2179 kfree(failrec);
2180 return -EIO;
2181 }
2fe6303e 2182
4a54c8c1
JS
2183 logical = start - em->start;
2184 logical = em->block_start + logical;
2185 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2186 logical = em->block_start;
2187 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2188 extent_set_compress_type(&failrec->bio_flags,
2189 em->compress_type);
2190 }
2fe6303e
MX
2191
2192 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2193 logical, start, failrec->len);
2194
4a54c8c1
JS
2195 failrec->logical = logical;
2196 free_extent_map(em);
2197
2198 /* set the bits in the private failure tree */
2199 ret = set_extent_bits(failure_tree, start, end,
2200 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2201 if (ret >= 0)
2202 ret = set_state_private(failure_tree, start,
2203 (u64)(unsigned long)failrec);
2204 /* set the bits in the inode's tree */
2205 if (ret >= 0)
2206 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2207 GFP_NOFS);
2208 if (ret < 0) {
2209 kfree(failrec);
2210 return ret;
2211 }
2212 } else {
2213 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2214 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2215 failrec->logical, failrec->start, failrec->len,
2216 failrec->in_validation);
2217 /*
2218 * when data can be on disk more than twice, add to failrec here
2219 * (e.g. with a list for failed_mirror) to make
2220 * clean_io_failure() clean all those errors at once.
2221 */
2222 }
2fe6303e
MX
2223
2224 *failrec_ret = failrec;
2225
2226 return 0;
2227}
2228
2229int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2230 struct io_failure_record *failrec, int failed_mirror)
2231{
2232 int num_copies;
2233
5d964051
SB
2234 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2235 failrec->logical, failrec->len);
4a54c8c1
JS
2236 if (num_copies == 1) {
2237 /*
2238 * we only have a single copy of the data, so don't bother with
2239 * all the retry and error correction code that follows. no
2240 * matter what the error is, it is very likely to persist.
2241 */
2fe6303e 2242 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2243 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2244 return 0;
4a54c8c1
JS
2245 }
2246
4a54c8c1
JS
2247 /*
2248 * there are two premises:
2249 * a) deliver good data to the caller
2250 * b) correct the bad sectors on disk
2251 */
2252 if (failed_bio->bi_vcnt > 1) {
2253 /*
2254 * to fulfill b), we need to know the exact failing sectors, as
2255 * we don't want to rewrite any more than the failed ones. thus,
2256 * we need separate read requests for the failed bio
2257 *
2258 * if the following BUG_ON triggers, our validation request got
2259 * merged. we need separate requests for our algorithm to work.
2260 */
2261 BUG_ON(failrec->in_validation);
2262 failrec->in_validation = 1;
2263 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2264 } else {
2265 /*
2266 * we're ready to fulfill a) and b) alongside. get a good copy
2267 * of the failed sector and if we succeed, we have setup
2268 * everything for repair_io_failure to do the rest for us.
2269 */
2270 if (failrec->in_validation) {
2271 BUG_ON(failrec->this_mirror != failed_mirror);
2272 failrec->in_validation = 0;
2273 failrec->this_mirror = 0;
2274 }
2275 failrec->failed_mirror = failed_mirror;
2276 failrec->this_mirror++;
2277 if (failrec->this_mirror == failed_mirror)
2278 failrec->this_mirror++;
4a54c8c1
JS
2279 }
2280
facc8a22 2281 if (failrec->this_mirror > num_copies) {
2fe6303e 2282 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2283 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2284 return 0;
4a54c8c1
JS
2285 }
2286
2fe6303e
MX
2287 return 1;
2288}
2289
2290
2291struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2292 struct io_failure_record *failrec,
2293 struct page *page, int pg_offset, int icsum,
8b110e39 2294 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2295{
2296 struct bio *bio;
2297 struct btrfs_io_bio *btrfs_failed_bio;
2298 struct btrfs_io_bio *btrfs_bio;
2299
9be3395b 2300 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2301 if (!bio)
2302 return NULL;
2303
2304 bio->bi_end_io = endio_func;
4f024f37 2305 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2306 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2307 bio->bi_iter.bi_size = 0;
8b110e39 2308 bio->bi_private = data;
4a54c8c1 2309
facc8a22
MX
2310 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2311 if (btrfs_failed_bio->csum) {
2312 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2313 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2314
2315 btrfs_bio = btrfs_io_bio(bio);
2316 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2317 icsum *= csum_size;
2318 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2319 csum_size);
2320 }
2321
2fe6303e
MX
2322 bio_add_page(bio, page, failrec->len, pg_offset);
2323
2324 return bio;
2325}
2326
2327/*
2328 * this is a generic handler for readpage errors (default
2329 * readpage_io_failed_hook). if other copies exist, read those and write back
2330 * good data to the failed position. does not investigate in remapping the
2331 * failed extent elsewhere, hoping the device will be smart enough to do this as
2332 * needed
2333 */
2334
2335static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2336 struct page *page, u64 start, u64 end,
2337 int failed_mirror)
2338{
2339 struct io_failure_record *failrec;
2340 struct inode *inode = page->mapping->host;
2341 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2342 struct bio *bio;
2343 int read_mode;
2344 int ret;
2345
2346 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2347
2348 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2349 if (ret)
2350 return ret;
2351
2352 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2353 if (!ret) {
2354 free_io_failure(inode, failrec);
2355 return -EIO;
2356 }
2357
2358 if (failed_bio->bi_vcnt > 1)
2359 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2360 else
2361 read_mode = READ_SYNC;
2362
2363 phy_offset >>= inode->i_sb->s_blocksize_bits;
2364 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2365 start - page_offset(page),
8b110e39
MX
2366 (int)phy_offset, failed_bio->bi_end_io,
2367 NULL);
2fe6303e
MX
2368 if (!bio) {
2369 free_io_failure(inode, failrec);
2370 return -EIO;
2371 }
4a54c8c1 2372
2fe6303e
MX
2373 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2374 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2375
013bd4c3
TI
2376 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2377 failrec->this_mirror,
2378 failrec->bio_flags, 0);
6c387ab2 2379 if (ret) {
454ff3de 2380 free_io_failure(inode, failrec);
6c387ab2
MX
2381 bio_put(bio);
2382 }
2383
013bd4c3 2384 return ret;
4a54c8c1
JS
2385}
2386
d1310b2e
CM
2387/* lots and lots of room for performance fixes in the end_bio funcs */
2388
87826df0
JM
2389int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2390{
2391 int uptodate = (err == 0);
2392 struct extent_io_tree *tree;
3e2426bd 2393 int ret = 0;
87826df0
JM
2394
2395 tree = &BTRFS_I(page->mapping->host)->io_tree;
2396
2397 if (tree->ops && tree->ops->writepage_end_io_hook) {
2398 ret = tree->ops->writepage_end_io_hook(page, start,
2399 end, NULL, uptodate);
2400 if (ret)
2401 uptodate = 0;
2402 }
2403
87826df0 2404 if (!uptodate) {
87826df0
JM
2405 ClearPageUptodate(page);
2406 SetPageError(page);
5dca6eea
LB
2407 ret = ret < 0 ? ret : -EIO;
2408 mapping_set_error(page->mapping, ret);
87826df0
JM
2409 }
2410 return 0;
2411}
2412
d1310b2e
CM
2413/*
2414 * after a writepage IO is done, we need to:
2415 * clear the uptodate bits on error
2416 * clear the writeback bits in the extent tree for this IO
2417 * end_page_writeback if the page has no more pending IO
2418 *
2419 * Scheduling is not allowed, so the extent state tree is expected
2420 * to have one and only one object corresponding to this IO.
2421 */
d1310b2e 2422static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2423{
2c30c71b 2424 struct bio_vec *bvec;
d1310b2e
CM
2425 u64 start;
2426 u64 end;
2c30c71b 2427 int i;
d1310b2e 2428
2c30c71b 2429 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2430 struct page *page = bvec->bv_page;
902b22f3 2431
17a5adcc
AO
2432 /* We always issue full-page reads, but if some block
2433 * in a page fails to read, blk_update_request() will
2434 * advance bv_offset and adjust bv_len to compensate.
2435 * Print a warning for nonzero offsets, and an error
2436 * if they don't add up to a full page. */
efe120a0
FH
2437 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2438 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2439 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2440 "partial page write in btrfs with offset %u and length %u",
2441 bvec->bv_offset, bvec->bv_len);
2442 else
2443 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2444 "incomplete page write in btrfs with offset %u and "
2445 "length %u",
2446 bvec->bv_offset, bvec->bv_len);
2447 }
d1310b2e 2448
17a5adcc
AO
2449 start = page_offset(page);
2450 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2451
87826df0
JM
2452 if (end_extent_writepage(page, err, start, end))
2453 continue;
70dec807 2454
17a5adcc 2455 end_page_writeback(page);
2c30c71b 2456 }
2b1f55b0 2457
d1310b2e 2458 bio_put(bio);
d1310b2e
CM
2459}
2460
883d0de4
MX
2461static void
2462endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2463 int uptodate)
2464{
2465 struct extent_state *cached = NULL;
2466 u64 end = start + len - 1;
2467
2468 if (uptodate && tree->track_uptodate)
2469 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2470 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2471}
2472
d1310b2e
CM
2473/*
2474 * after a readpage IO is done, we need to:
2475 * clear the uptodate bits on error
2476 * set the uptodate bits if things worked
2477 * set the page up to date if all extents in the tree are uptodate
2478 * clear the lock bit in the extent tree
2479 * unlock the page if there are no other extents locked for it
2480 *
2481 * Scheduling is not allowed, so the extent state tree is expected
2482 * to have one and only one object corresponding to this IO.
2483 */
d1310b2e 2484static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2485{
2c30c71b 2486 struct bio_vec *bvec;
d1310b2e 2487 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2488 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2489 struct extent_io_tree *tree;
facc8a22 2490 u64 offset = 0;
d1310b2e
CM
2491 u64 start;
2492 u64 end;
facc8a22 2493 u64 len;
883d0de4
MX
2494 u64 extent_start = 0;
2495 u64 extent_len = 0;
5cf1ab56 2496 int mirror;
d1310b2e 2497 int ret;
2c30c71b 2498 int i;
d1310b2e 2499
d20f7043
CM
2500 if (err)
2501 uptodate = 0;
2502
2c30c71b 2503 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2504 struct page *page = bvec->bv_page;
a71754fc 2505 struct inode *inode = page->mapping->host;
507903b8 2506
be3940c0 2507 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
c1dc0896 2508 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2509 io_bio->mirror_num);
a71754fc 2510 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2511
17a5adcc
AO
2512 /* We always issue full-page reads, but if some block
2513 * in a page fails to read, blk_update_request() will
2514 * advance bv_offset and adjust bv_len to compensate.
2515 * Print a warning for nonzero offsets, and an error
2516 * if they don't add up to a full page. */
efe120a0
FH
2517 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2518 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2519 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2520 "partial page read in btrfs with offset %u and length %u",
2521 bvec->bv_offset, bvec->bv_len);
2522 else
2523 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2524 "incomplete page read in btrfs with offset %u and "
2525 "length %u",
2526 bvec->bv_offset, bvec->bv_len);
2527 }
d1310b2e 2528
17a5adcc
AO
2529 start = page_offset(page);
2530 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2531 len = bvec->bv_len;
d1310b2e 2532
9be3395b 2533 mirror = io_bio->mirror_num;
f2a09da9
MX
2534 if (likely(uptodate && tree->ops &&
2535 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2536 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2537 page, start, end,
2538 mirror);
5ee0844d 2539 if (ret)
d1310b2e 2540 uptodate = 0;
5ee0844d 2541 else
1203b681 2542 clean_io_failure(inode, start, page, 0);
d1310b2e 2543 }
ea466794 2544
f2a09da9
MX
2545 if (likely(uptodate))
2546 goto readpage_ok;
2547
2548 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2549 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2550 if (!ret && !err &&
2551 test_bit(BIO_UPTODATE, &bio->bi_flags))
2552 uptodate = 1;
f2a09da9 2553 } else {
f4a8e656
JS
2554 /*
2555 * The generic bio_readpage_error handles errors the
2556 * following way: If possible, new read requests are
2557 * created and submitted and will end up in
2558 * end_bio_extent_readpage as well (if we're lucky, not
2559 * in the !uptodate case). In that case it returns 0 and
2560 * we just go on with the next page in our bio. If it
2561 * can't handle the error it will return -EIO and we
2562 * remain responsible for that page.
2563 */
facc8a22
MX
2564 ret = bio_readpage_error(bio, offset, page, start, end,
2565 mirror);
7e38326f 2566 if (ret == 0) {
3b951516
CM
2567 uptodate =
2568 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2569 if (err)
2570 uptodate = 0;
38c1c2e4 2571 offset += len;
7e38326f
CM
2572 continue;
2573 }
2574 }
f2a09da9 2575readpage_ok:
883d0de4 2576 if (likely(uptodate)) {
a71754fc
JB
2577 loff_t i_size = i_size_read(inode);
2578 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2579 unsigned off;
a71754fc
JB
2580
2581 /* Zero out the end if this page straddles i_size */
a583c026
LB
2582 off = i_size & (PAGE_CACHE_SIZE-1);
2583 if (page->index == end_index && off)
2584 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2585 SetPageUptodate(page);
70dec807 2586 } else {
17a5adcc
AO
2587 ClearPageUptodate(page);
2588 SetPageError(page);
70dec807 2589 }
17a5adcc 2590 unlock_page(page);
facc8a22 2591 offset += len;
883d0de4
MX
2592
2593 if (unlikely(!uptodate)) {
2594 if (extent_len) {
2595 endio_readpage_release_extent(tree,
2596 extent_start,
2597 extent_len, 1);
2598 extent_start = 0;
2599 extent_len = 0;
2600 }
2601 endio_readpage_release_extent(tree, start,
2602 end - start + 1, 0);
2603 } else if (!extent_len) {
2604 extent_start = start;
2605 extent_len = end + 1 - start;
2606 } else if (extent_start + extent_len == start) {
2607 extent_len += end + 1 - start;
2608 } else {
2609 endio_readpage_release_extent(tree, extent_start,
2610 extent_len, uptodate);
2611 extent_start = start;
2612 extent_len = end + 1 - start;
2613 }
2c30c71b 2614 }
d1310b2e 2615
883d0de4
MX
2616 if (extent_len)
2617 endio_readpage_release_extent(tree, extent_start, extent_len,
2618 uptodate);
facc8a22
MX
2619 if (io_bio->end_io)
2620 io_bio->end_io(io_bio, err);
d1310b2e 2621 bio_put(bio);
d1310b2e
CM
2622}
2623
9be3395b
CM
2624/*
2625 * this allocates from the btrfs_bioset. We're returning a bio right now
2626 * but you can call btrfs_io_bio for the appropriate container_of magic
2627 */
88f794ed
MX
2628struct bio *
2629btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2630 gfp_t gfp_flags)
d1310b2e 2631{
facc8a22 2632 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2633 struct bio *bio;
2634
9be3395b 2635 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2636
2637 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2638 while (!bio && (nr_vecs /= 2)) {
2639 bio = bio_alloc_bioset(gfp_flags,
2640 nr_vecs, btrfs_bioset);
2641 }
d1310b2e
CM
2642 }
2643
2644 if (bio) {
2645 bio->bi_bdev = bdev;
4f024f37 2646 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2647 btrfs_bio = btrfs_io_bio(bio);
2648 btrfs_bio->csum = NULL;
2649 btrfs_bio->csum_allocated = NULL;
2650 btrfs_bio->end_io = NULL;
d1310b2e
CM
2651 }
2652 return bio;
2653}
2654
9be3395b
CM
2655struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2656{
23ea8e5a
MX
2657 struct btrfs_io_bio *btrfs_bio;
2658 struct bio *new;
9be3395b 2659
23ea8e5a
MX
2660 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2661 if (new) {
2662 btrfs_bio = btrfs_io_bio(new);
2663 btrfs_bio->csum = NULL;
2664 btrfs_bio->csum_allocated = NULL;
2665 btrfs_bio->end_io = NULL;
2666 }
2667 return new;
2668}
9be3395b
CM
2669
2670/* this also allocates from the btrfs_bioset */
2671struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2672{
facc8a22
MX
2673 struct btrfs_io_bio *btrfs_bio;
2674 struct bio *bio;
2675
2676 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2677 if (bio) {
2678 btrfs_bio = btrfs_io_bio(bio);
2679 btrfs_bio->csum = NULL;
2680 btrfs_bio->csum_allocated = NULL;
2681 btrfs_bio->end_io = NULL;
2682 }
2683 return bio;
9be3395b
CM
2684}
2685
2686
355808c2
JM
2687static int __must_check submit_one_bio(int rw, struct bio *bio,
2688 int mirror_num, unsigned long bio_flags)
d1310b2e 2689{
d1310b2e 2690 int ret = 0;
70dec807
CM
2691 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2692 struct page *page = bvec->bv_page;
2693 struct extent_io_tree *tree = bio->bi_private;
70dec807 2694 u64 start;
70dec807 2695
4eee4fa4 2696 start = page_offset(page) + bvec->bv_offset;
70dec807 2697
902b22f3 2698 bio->bi_private = NULL;
d1310b2e
CM
2699
2700 bio_get(bio);
2701
065631f6 2702 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2703 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2704 mirror_num, bio_flags, start);
0b86a832 2705 else
21adbd5c 2706 btrfsic_submit_bio(rw, bio);
4a54c8c1 2707
d1310b2e
CM
2708 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2709 ret = -EOPNOTSUPP;
2710 bio_put(bio);
2711 return ret;
2712}
2713
64a16701 2714static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2715 unsigned long offset, size_t size, struct bio *bio,
2716 unsigned long bio_flags)
2717{
2718 int ret = 0;
2719 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2720 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2721 bio_flags);
2722 BUG_ON(ret < 0);
2723 return ret;
2724
2725}
2726
d1310b2e
CM
2727static int submit_extent_page(int rw, struct extent_io_tree *tree,
2728 struct page *page, sector_t sector,
2729 size_t size, unsigned long offset,
2730 struct block_device *bdev,
2731 struct bio **bio_ret,
2732 unsigned long max_pages,
f188591e 2733 bio_end_io_t end_io_func,
c8b97818
CM
2734 int mirror_num,
2735 unsigned long prev_bio_flags,
2736 unsigned long bio_flags)
d1310b2e
CM
2737{
2738 int ret = 0;
2739 struct bio *bio;
2740 int nr;
c8b97818
CM
2741 int contig = 0;
2742 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2743 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2744 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2745
2746 if (bio_ret && *bio_ret) {
2747 bio = *bio_ret;
c8b97818 2748 if (old_compressed)
4f024f37 2749 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2750 else
f73a1c7d 2751 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2752
2753 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2754 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2755 bio_add_page(bio, page, page_size, offset) < page_size) {
2756 ret = submit_one_bio(rw, bio, mirror_num,
2757 prev_bio_flags);
79787eaa
JM
2758 if (ret < 0)
2759 return ret;
d1310b2e
CM
2760 bio = NULL;
2761 } else {
2762 return 0;
2763 }
2764 }
c8b97818
CM
2765 if (this_compressed)
2766 nr = BIO_MAX_PAGES;
2767 else
2768 nr = bio_get_nr_vecs(bdev);
2769
88f794ed 2770 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2771 if (!bio)
2772 return -ENOMEM;
70dec807 2773
c8b97818 2774 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2775 bio->bi_end_io = end_io_func;
2776 bio->bi_private = tree;
70dec807 2777
d397712b 2778 if (bio_ret)
d1310b2e 2779 *bio_ret = bio;
d397712b 2780 else
c8b97818 2781 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2782
2783 return ret;
2784}
2785
48a3b636
ES
2786static void attach_extent_buffer_page(struct extent_buffer *eb,
2787 struct page *page)
d1310b2e
CM
2788{
2789 if (!PagePrivate(page)) {
2790 SetPagePrivate(page);
d1310b2e 2791 page_cache_get(page);
4f2de97a
JB
2792 set_page_private(page, (unsigned long)eb);
2793 } else {
2794 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2795 }
2796}
2797
4f2de97a 2798void set_page_extent_mapped(struct page *page)
d1310b2e 2799{
4f2de97a
JB
2800 if (!PagePrivate(page)) {
2801 SetPagePrivate(page);
2802 page_cache_get(page);
2803 set_page_private(page, EXTENT_PAGE_PRIVATE);
2804 }
d1310b2e
CM
2805}
2806
125bac01
MX
2807static struct extent_map *
2808__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2809 u64 start, u64 len, get_extent_t *get_extent,
2810 struct extent_map **em_cached)
2811{
2812 struct extent_map *em;
2813
2814 if (em_cached && *em_cached) {
2815 em = *em_cached;
cbc0e928 2816 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2817 start < extent_map_end(em)) {
2818 atomic_inc(&em->refs);
2819 return em;
2820 }
2821
2822 free_extent_map(em);
2823 *em_cached = NULL;
2824 }
2825
2826 em = get_extent(inode, page, pg_offset, start, len, 0);
2827 if (em_cached && !IS_ERR_OR_NULL(em)) {
2828 BUG_ON(*em_cached);
2829 atomic_inc(&em->refs);
2830 *em_cached = em;
2831 }
2832 return em;
2833}
d1310b2e
CM
2834/*
2835 * basic readpage implementation. Locked extent state structs are inserted
2836 * into the tree that are removed when the IO is done (by the end_io
2837 * handlers)
79787eaa 2838 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2839 */
9974090b
MX
2840static int __do_readpage(struct extent_io_tree *tree,
2841 struct page *page,
2842 get_extent_t *get_extent,
125bac01 2843 struct extent_map **em_cached,
9974090b
MX
2844 struct bio **bio, int mirror_num,
2845 unsigned long *bio_flags, int rw)
d1310b2e
CM
2846{
2847 struct inode *inode = page->mapping->host;
4eee4fa4 2848 u64 start = page_offset(page);
d1310b2e
CM
2849 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2850 u64 end;
2851 u64 cur = start;
2852 u64 extent_offset;
2853 u64 last_byte = i_size_read(inode);
2854 u64 block_start;
2855 u64 cur_end;
2856 sector_t sector;
2857 struct extent_map *em;
2858 struct block_device *bdev;
2859 int ret;
2860 int nr = 0;
4b384318 2861 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2862 size_t pg_offset = 0;
d1310b2e 2863 size_t iosize;
c8b97818 2864 size_t disk_io_size;
d1310b2e 2865 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2866 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2867
2868 set_page_extent_mapped(page);
2869
9974090b 2870 end = page_end;
90a887c9
DM
2871 if (!PageUptodate(page)) {
2872 if (cleancache_get_page(page) == 0) {
2873 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2874 unlock_extent(tree, start, end);
90a887c9
DM
2875 goto out;
2876 }
2877 }
2878
c8b97818
CM
2879 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2880 char *userpage;
2881 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2882
2883 if (zero_offset) {
2884 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2885 userpage = kmap_atomic(page);
c8b97818
CM
2886 memset(userpage + zero_offset, 0, iosize);
2887 flush_dcache_page(page);
7ac687d9 2888 kunmap_atomic(userpage);
c8b97818
CM
2889 }
2890 }
d1310b2e 2891 while (cur <= end) {
c8f2f24b
JB
2892 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2893
d1310b2e
CM
2894 if (cur >= last_byte) {
2895 char *userpage;
507903b8
AJ
2896 struct extent_state *cached = NULL;
2897
306e16ce 2898 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2899 userpage = kmap_atomic(page);
306e16ce 2900 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2901 flush_dcache_page(page);
7ac687d9 2902 kunmap_atomic(userpage);
d1310b2e 2903 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2904 &cached, GFP_NOFS);
4b384318
MF
2905 if (!parent_locked)
2906 unlock_extent_cached(tree, cur,
2907 cur + iosize - 1,
2908 &cached, GFP_NOFS);
d1310b2e
CM
2909 break;
2910 }
125bac01
MX
2911 em = __get_extent_map(inode, page, pg_offset, cur,
2912 end - cur + 1, get_extent, em_cached);
c704005d 2913 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2914 SetPageError(page);
4b384318
MF
2915 if (!parent_locked)
2916 unlock_extent(tree, cur, end);
d1310b2e
CM
2917 break;
2918 }
d1310b2e
CM
2919 extent_offset = cur - em->start;
2920 BUG_ON(extent_map_end(em) <= cur);
2921 BUG_ON(end < cur);
2922
261507a0 2923 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2924 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2925 extent_set_compress_type(&this_bio_flag,
2926 em->compress_type);
2927 }
c8b97818 2928
d1310b2e
CM
2929 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2930 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2931 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2932 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2933 disk_io_size = em->block_len;
2934 sector = em->block_start >> 9;
2935 } else {
2936 sector = (em->block_start + extent_offset) >> 9;
2937 disk_io_size = iosize;
2938 }
d1310b2e
CM
2939 bdev = em->bdev;
2940 block_start = em->block_start;
d899e052
YZ
2941 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2942 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2943 free_extent_map(em);
2944 em = NULL;
2945
2946 /* we've found a hole, just zero and go on */
2947 if (block_start == EXTENT_MAP_HOLE) {
2948 char *userpage;
507903b8
AJ
2949 struct extent_state *cached = NULL;
2950
7ac687d9 2951 userpage = kmap_atomic(page);
306e16ce 2952 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2953 flush_dcache_page(page);
7ac687d9 2954 kunmap_atomic(userpage);
d1310b2e
CM
2955
2956 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2957 &cached, GFP_NOFS);
2958 unlock_extent_cached(tree, cur, cur + iosize - 1,
2959 &cached, GFP_NOFS);
d1310b2e 2960 cur = cur + iosize;
306e16ce 2961 pg_offset += iosize;
d1310b2e
CM
2962 continue;
2963 }
2964 /* the get_extent function already copied into the page */
9655d298
CM
2965 if (test_range_bit(tree, cur, cur_end,
2966 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2967 check_page_uptodate(tree, page);
4b384318
MF
2968 if (!parent_locked)
2969 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2970 cur = cur + iosize;
306e16ce 2971 pg_offset += iosize;
d1310b2e
CM
2972 continue;
2973 }
70dec807
CM
2974 /* we have an inline extent but it didn't get marked up
2975 * to date. Error out
2976 */
2977 if (block_start == EXTENT_MAP_INLINE) {
2978 SetPageError(page);
4b384318
MF
2979 if (!parent_locked)
2980 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2981 cur = cur + iosize;
306e16ce 2982 pg_offset += iosize;
70dec807
CM
2983 continue;
2984 }
d1310b2e 2985
c8f2f24b 2986 pnr -= page->index;
d4c7ca86 2987 ret = submit_extent_page(rw, tree, page,
306e16ce 2988 sector, disk_io_size, pg_offset,
89642229 2989 bdev, bio, pnr,
c8b97818
CM
2990 end_bio_extent_readpage, mirror_num,
2991 *bio_flags,
2992 this_bio_flag);
c8f2f24b
JB
2993 if (!ret) {
2994 nr++;
2995 *bio_flags = this_bio_flag;
2996 } else {
d1310b2e 2997 SetPageError(page);
4b384318
MF
2998 if (!parent_locked)
2999 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3000 }
d1310b2e 3001 cur = cur + iosize;
306e16ce 3002 pg_offset += iosize;
d1310b2e 3003 }
90a887c9 3004out:
d1310b2e
CM
3005 if (!nr) {
3006 if (!PageError(page))
3007 SetPageUptodate(page);
3008 unlock_page(page);
3009 }
3010 return 0;
3011}
3012
9974090b
MX
3013static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3014 struct page *pages[], int nr_pages,
3015 u64 start, u64 end,
3016 get_extent_t *get_extent,
125bac01 3017 struct extent_map **em_cached,
9974090b
MX
3018 struct bio **bio, int mirror_num,
3019 unsigned long *bio_flags, int rw)
3020{
3021 struct inode *inode;
3022 struct btrfs_ordered_extent *ordered;
3023 int index;
3024
3025 inode = pages[0]->mapping->host;
3026 while (1) {
3027 lock_extent(tree, start, end);
3028 ordered = btrfs_lookup_ordered_range(inode, start,
3029 end - start + 1);
3030 if (!ordered)
3031 break;
3032 unlock_extent(tree, start, end);
3033 btrfs_start_ordered_extent(inode, ordered, 1);
3034 btrfs_put_ordered_extent(ordered);
3035 }
3036
3037 for (index = 0; index < nr_pages; index++) {
125bac01
MX
3038 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3039 mirror_num, bio_flags, rw);
9974090b
MX
3040 page_cache_release(pages[index]);
3041 }
3042}
3043
3044static void __extent_readpages(struct extent_io_tree *tree,
3045 struct page *pages[],
3046 int nr_pages, get_extent_t *get_extent,
125bac01 3047 struct extent_map **em_cached,
9974090b
MX
3048 struct bio **bio, int mirror_num,
3049 unsigned long *bio_flags, int rw)
3050{
35a3621b 3051 u64 start = 0;
9974090b
MX
3052 u64 end = 0;
3053 u64 page_start;
3054 int index;
35a3621b 3055 int first_index = 0;
9974090b
MX
3056
3057 for (index = 0; index < nr_pages; index++) {
3058 page_start = page_offset(pages[index]);
3059 if (!end) {
3060 start = page_start;
3061 end = start + PAGE_CACHE_SIZE - 1;
3062 first_index = index;
3063 } else if (end + 1 == page_start) {
3064 end += PAGE_CACHE_SIZE;
3065 } else {
3066 __do_contiguous_readpages(tree, &pages[first_index],
3067 index - first_index, start,
125bac01
MX
3068 end, get_extent, em_cached,
3069 bio, mirror_num, bio_flags,
3070 rw);
9974090b
MX
3071 start = page_start;
3072 end = start + PAGE_CACHE_SIZE - 1;
3073 first_index = index;
3074 }
3075 }
3076
3077 if (end)
3078 __do_contiguous_readpages(tree, &pages[first_index],
3079 index - first_index, start,
125bac01 3080 end, get_extent, em_cached, bio,
9974090b
MX
3081 mirror_num, bio_flags, rw);
3082}
3083
3084static int __extent_read_full_page(struct extent_io_tree *tree,
3085 struct page *page,
3086 get_extent_t *get_extent,
3087 struct bio **bio, int mirror_num,
3088 unsigned long *bio_flags, int rw)
3089{
3090 struct inode *inode = page->mapping->host;
3091 struct btrfs_ordered_extent *ordered;
3092 u64 start = page_offset(page);
3093 u64 end = start + PAGE_CACHE_SIZE - 1;
3094 int ret;
3095
3096 while (1) {
3097 lock_extent(tree, start, end);
3098 ordered = btrfs_lookup_ordered_extent(inode, start);
3099 if (!ordered)
3100 break;
3101 unlock_extent(tree, start, end);
3102 btrfs_start_ordered_extent(inode, ordered, 1);
3103 btrfs_put_ordered_extent(ordered);
3104 }
3105
125bac01
MX
3106 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3107 bio_flags, rw);
9974090b
MX
3108 return ret;
3109}
3110
d1310b2e 3111int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3112 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3113{
3114 struct bio *bio = NULL;
c8b97818 3115 unsigned long bio_flags = 0;
d1310b2e
CM
3116 int ret;
3117
8ddc7d9c 3118 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3119 &bio_flags, READ);
d1310b2e 3120 if (bio)
8ddc7d9c 3121 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3122 return ret;
3123}
d1310b2e 3124
4b384318
MF
3125int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3126 get_extent_t *get_extent, int mirror_num)
3127{
3128 struct bio *bio = NULL;
3129 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3130 int ret;
3131
3132 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3133 &bio_flags, READ);
3134 if (bio)
3135 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3136 return ret;
3137}
3138
11c8349b
CM
3139static noinline void update_nr_written(struct page *page,
3140 struct writeback_control *wbc,
3141 unsigned long nr_written)
3142{
3143 wbc->nr_to_write -= nr_written;
3144 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3145 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3146 page->mapping->writeback_index = page->index + nr_written;
3147}
3148
d1310b2e 3149/*
40f76580
CM
3150 * helper for __extent_writepage, doing all of the delayed allocation setup.
3151 *
3152 * This returns 1 if our fill_delalloc function did all the work required
3153 * to write the page (copy into inline extent). In this case the IO has
3154 * been started and the page is already unlocked.
3155 *
3156 * This returns 0 if all went well (page still locked)
3157 * This returns < 0 if there were errors (page still locked)
d1310b2e 3158 */
40f76580
CM
3159static noinline_for_stack int writepage_delalloc(struct inode *inode,
3160 struct page *page, struct writeback_control *wbc,
3161 struct extent_page_data *epd,
3162 u64 delalloc_start,
3163 unsigned long *nr_written)
3164{
3165 struct extent_io_tree *tree = epd->tree;
3166 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3167 u64 nr_delalloc;
3168 u64 delalloc_to_write = 0;
3169 u64 delalloc_end = 0;
3170 int ret;
3171 int page_started = 0;
3172
3173 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3174 return 0;
3175
3176 while (delalloc_end < page_end) {
3177 nr_delalloc = find_lock_delalloc_range(inode, tree,
3178 page,
3179 &delalloc_start,
3180 &delalloc_end,
3181 128 * 1024 * 1024);
3182 if (nr_delalloc == 0) {
3183 delalloc_start = delalloc_end + 1;
3184 continue;
3185 }
3186 ret = tree->ops->fill_delalloc(inode, page,
3187 delalloc_start,
3188 delalloc_end,
3189 &page_started,
3190 nr_written);
3191 /* File system has been set read-only */
3192 if (ret) {
3193 SetPageError(page);
3194 /* fill_delalloc should be return < 0 for error
3195 * but just in case, we use > 0 here meaning the
3196 * IO is started, so we don't want to return > 0
3197 * unless things are going well.
3198 */
3199 ret = ret < 0 ? ret : -EIO;
3200 goto done;
3201 }
3202 /*
3203 * delalloc_end is already one less than the total
3204 * length, so we don't subtract one from
3205 * PAGE_CACHE_SIZE
3206 */
3207 delalloc_to_write += (delalloc_end - delalloc_start +
3208 PAGE_CACHE_SIZE) >>
3209 PAGE_CACHE_SHIFT;
3210 delalloc_start = delalloc_end + 1;
3211 }
3212 if (wbc->nr_to_write < delalloc_to_write) {
3213 int thresh = 8192;
3214
3215 if (delalloc_to_write < thresh * 2)
3216 thresh = delalloc_to_write;
3217 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3218 thresh);
3219 }
3220
3221 /* did the fill delalloc function already unlock and start
3222 * the IO?
3223 */
3224 if (page_started) {
3225 /*
3226 * we've unlocked the page, so we can't update
3227 * the mapping's writeback index, just update
3228 * nr_to_write.
3229 */
3230 wbc->nr_to_write -= *nr_written;
3231 return 1;
3232 }
3233
3234 ret = 0;
3235
3236done:
3237 return ret;
3238}
3239
3240/*
3241 * helper for __extent_writepage. This calls the writepage start hooks,
3242 * and does the loop to map the page into extents and bios.
3243 *
3244 * We return 1 if the IO is started and the page is unlocked,
3245 * 0 if all went well (page still locked)
3246 * < 0 if there were errors (page still locked)
3247 */
3248static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3249 struct page *page,
3250 struct writeback_control *wbc,
3251 struct extent_page_data *epd,
3252 loff_t i_size,
3253 unsigned long nr_written,
3254 int write_flags, int *nr_ret)
d1310b2e 3255{
d1310b2e 3256 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3257 u64 start = page_offset(page);
d1310b2e
CM
3258 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3259 u64 end;
3260 u64 cur = start;
3261 u64 extent_offset;
d1310b2e
CM
3262 u64 block_start;
3263 u64 iosize;
3264 sector_t sector;
2c64c53d 3265 struct extent_state *cached_state = NULL;
d1310b2e
CM
3266 struct extent_map *em;
3267 struct block_device *bdev;
7f3c74fb 3268 size_t pg_offset = 0;
d1310b2e 3269 size_t blocksize;
40f76580
CM
3270 int ret = 0;
3271 int nr = 0;
3272 bool compressed;
c8b97818 3273
247e743c 3274 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3275 ret = tree->ops->writepage_start_hook(page, start,
3276 page_end);
87826df0
JM
3277 if (ret) {
3278 /* Fixup worker will requeue */
3279 if (ret == -EBUSY)
3280 wbc->pages_skipped++;
3281 else
3282 redirty_page_for_writepage(wbc, page);
40f76580 3283
11c8349b 3284 update_nr_written(page, wbc, nr_written);
247e743c 3285 unlock_page(page);
40f76580 3286 ret = 1;
11c8349b 3287 goto done_unlocked;
247e743c
CM
3288 }
3289 }
3290
11c8349b
CM
3291 /*
3292 * we don't want to touch the inode after unlocking the page,
3293 * so we update the mapping writeback index now
3294 */
3295 update_nr_written(page, wbc, nr_written + 1);
771ed689 3296
d1310b2e 3297 end = page_end;
40f76580 3298 if (i_size <= start) {
e6dcd2dc
CM
3299 if (tree->ops && tree->ops->writepage_end_io_hook)
3300 tree->ops->writepage_end_io_hook(page, start,
3301 page_end, NULL, 1);
d1310b2e
CM
3302 goto done;
3303 }
3304
d1310b2e
CM
3305 blocksize = inode->i_sb->s_blocksize;
3306
3307 while (cur <= end) {
40f76580
CM
3308 u64 em_end;
3309 if (cur >= i_size) {
e6dcd2dc
CM
3310 if (tree->ops && tree->ops->writepage_end_io_hook)
3311 tree->ops->writepage_end_io_hook(page, cur,
3312 page_end, NULL, 1);
d1310b2e
CM
3313 break;
3314 }
7f3c74fb 3315 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3316 end - cur + 1, 1);
c704005d 3317 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3318 SetPageError(page);
61391d56 3319 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3320 break;
3321 }
3322
3323 extent_offset = cur - em->start;
40f76580
CM
3324 em_end = extent_map_end(em);
3325 BUG_ON(em_end <= cur);
d1310b2e 3326 BUG_ON(end < cur);
40f76580 3327 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3328 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3329 sector = (em->block_start + extent_offset) >> 9;
3330 bdev = em->bdev;
3331 block_start = em->block_start;
c8b97818 3332 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3333 free_extent_map(em);
3334 em = NULL;
3335
c8b97818
CM
3336 /*
3337 * compressed and inline extents are written through other
3338 * paths in the FS
3339 */
3340 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3341 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3342 /*
3343 * end_io notification does not happen here for
3344 * compressed extents
3345 */
3346 if (!compressed && tree->ops &&
3347 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3348 tree->ops->writepage_end_io_hook(page, cur,
3349 cur + iosize - 1,
3350 NULL, 1);
c8b97818
CM
3351 else if (compressed) {
3352 /* we don't want to end_page_writeback on
3353 * a compressed extent. this happens
3354 * elsewhere
3355 */
3356 nr++;
3357 }
3358
3359 cur += iosize;
7f3c74fb 3360 pg_offset += iosize;
d1310b2e
CM
3361 continue;
3362 }
c8b97818 3363
d1310b2e
CM
3364 if (tree->ops && tree->ops->writepage_io_hook) {
3365 ret = tree->ops->writepage_io_hook(page, cur,
3366 cur + iosize - 1);
3367 } else {
3368 ret = 0;
3369 }
1259ab75 3370 if (ret) {
d1310b2e 3371 SetPageError(page);
1259ab75 3372 } else {
40f76580 3373 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3374
d1310b2e
CM
3375 set_range_writeback(tree, cur, cur + iosize - 1);
3376 if (!PageWriteback(page)) {
efe120a0
FH
3377 btrfs_err(BTRFS_I(inode)->root->fs_info,
3378 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3379 page->index, cur, end);
d1310b2e
CM
3380 }
3381
ffbd517d
CM
3382 ret = submit_extent_page(write_flags, tree, page,
3383 sector, iosize, pg_offset,
3384 bdev, &epd->bio, max_nr,
c8b97818
CM
3385 end_bio_extent_writepage,
3386 0, 0, 0);
d1310b2e
CM
3387 if (ret)
3388 SetPageError(page);
3389 }
3390 cur = cur + iosize;
7f3c74fb 3391 pg_offset += iosize;
d1310b2e
CM
3392 nr++;
3393 }
40f76580
CM
3394done:
3395 *nr_ret = nr;
3396
3397done_unlocked:
3398
3399 /* drop our reference on any cached states */
3400 free_extent_state(cached_state);
3401 return ret;
3402}
3403
3404/*
3405 * the writepage semantics are similar to regular writepage. extent
3406 * records are inserted to lock ranges in the tree, and as dirty areas
3407 * are found, they are marked writeback. Then the lock bits are removed
3408 * and the end_io handler clears the writeback ranges
3409 */
3410static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3411 void *data)
3412{
3413 struct inode *inode = page->mapping->host;
3414 struct extent_page_data *epd = data;
3415 u64 start = page_offset(page);
3416 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3417 int ret;
3418 int nr = 0;
3419 size_t pg_offset = 0;
3420 loff_t i_size = i_size_read(inode);
3421 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3422 int write_flags;
3423 unsigned long nr_written = 0;
3424
3425 if (wbc->sync_mode == WB_SYNC_ALL)
3426 write_flags = WRITE_SYNC;
3427 else
3428 write_flags = WRITE;
3429
3430 trace___extent_writepage(page, inode, wbc);
3431
3432 WARN_ON(!PageLocked(page));
3433
3434 ClearPageError(page);
3435
3436 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3437 if (page->index > end_index ||
3438 (page->index == end_index && !pg_offset)) {
3439 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3440 unlock_page(page);
3441 return 0;
3442 }
3443
3444 if (page->index == end_index) {
3445 char *userpage;
3446
3447 userpage = kmap_atomic(page);
3448 memset(userpage + pg_offset, 0,
3449 PAGE_CACHE_SIZE - pg_offset);
3450 kunmap_atomic(userpage);
3451 flush_dcache_page(page);
3452 }
3453
3454 pg_offset = 0;
3455
3456 set_page_extent_mapped(page);
3457
3458 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3459 if (ret == 1)
3460 goto done_unlocked;
3461 if (ret)
3462 goto done;
3463
3464 ret = __extent_writepage_io(inode, page, wbc, epd,
3465 i_size, nr_written, write_flags, &nr);
3466 if (ret == 1)
3467 goto done_unlocked;
3468
d1310b2e
CM
3469done:
3470 if (nr == 0) {
3471 /* make sure the mapping tag for page dirty gets cleared */
3472 set_page_writeback(page);
3473 end_page_writeback(page);
3474 }
61391d56
FM
3475 if (PageError(page)) {
3476 ret = ret < 0 ? ret : -EIO;
3477 end_extent_writepage(page, ret, start, page_end);
3478 }
d1310b2e 3479 unlock_page(page);
40f76580 3480 return ret;
771ed689 3481
11c8349b 3482done_unlocked:
d1310b2e
CM
3483 return 0;
3484}
3485
fd8b2b61 3486void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3487{
74316201
N
3488 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3489 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3490}
3491
0e378df1
CM
3492static noinline_for_stack int
3493lock_extent_buffer_for_io(struct extent_buffer *eb,
3494 struct btrfs_fs_info *fs_info,
3495 struct extent_page_data *epd)
0b32f4bb
JB
3496{
3497 unsigned long i, num_pages;
3498 int flush = 0;
3499 int ret = 0;
3500
3501 if (!btrfs_try_tree_write_lock(eb)) {
3502 flush = 1;
3503 flush_write_bio(epd);
3504 btrfs_tree_lock(eb);
3505 }
3506
3507 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3508 btrfs_tree_unlock(eb);
3509 if (!epd->sync_io)
3510 return 0;
3511 if (!flush) {
3512 flush_write_bio(epd);
3513 flush = 1;
3514 }
a098d8e8
CM
3515 while (1) {
3516 wait_on_extent_buffer_writeback(eb);
3517 btrfs_tree_lock(eb);
3518 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3519 break;
0b32f4bb 3520 btrfs_tree_unlock(eb);
0b32f4bb
JB
3521 }
3522 }
3523
51561ffe
JB
3524 /*
3525 * We need to do this to prevent races in people who check if the eb is
3526 * under IO since we can end up having no IO bits set for a short period
3527 * of time.
3528 */
3529 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3530 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3531 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3532 spin_unlock(&eb->refs_lock);
0b32f4bb 3533 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3534 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3535 -eb->len,
3536 fs_info->dirty_metadata_batch);
0b32f4bb 3537 ret = 1;
51561ffe
JB
3538 } else {
3539 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3540 }
3541
3542 btrfs_tree_unlock(eb);
3543
3544 if (!ret)
3545 return ret;
3546
3547 num_pages = num_extent_pages(eb->start, eb->len);
3548 for (i = 0; i < num_pages; i++) {
3549 struct page *p = extent_buffer_page(eb, i);
3550
3551 if (!trylock_page(p)) {
3552 if (!flush) {
3553 flush_write_bio(epd);
3554 flush = 1;
3555 }
3556 lock_page(p);
3557 }
3558 }
3559
3560 return ret;
3561}
3562
3563static void end_extent_buffer_writeback(struct extent_buffer *eb)
3564{
3565 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3566 smp_mb__after_atomic();
0b32f4bb
JB
3567 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3568}
3569
3570static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3571{
2c30c71b 3572 struct bio_vec *bvec;
0b32f4bb 3573 struct extent_buffer *eb;
2c30c71b 3574 int i, done;
0b32f4bb 3575
2c30c71b 3576 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3577 struct page *page = bvec->bv_page;
3578
0b32f4bb
JB
3579 eb = (struct extent_buffer *)page->private;
3580 BUG_ON(!eb);
3581 done = atomic_dec_and_test(&eb->io_pages);
3582
2c30c71b 3583 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
0b32f4bb
JB
3584 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3585 ClearPageUptodate(page);
3586 SetPageError(page);
3587 }
3588
3589 end_page_writeback(page);
3590
3591 if (!done)
3592 continue;
3593
3594 end_extent_buffer_writeback(eb);
2c30c71b 3595 }
0b32f4bb
JB
3596
3597 bio_put(bio);
0b32f4bb
JB
3598}
3599
0e378df1 3600static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3601 struct btrfs_fs_info *fs_info,
3602 struct writeback_control *wbc,
3603 struct extent_page_data *epd)
3604{
3605 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3606 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3607 u64 offset = eb->start;
3608 unsigned long i, num_pages;
de0022b9 3609 unsigned long bio_flags = 0;
d4c7ca86 3610 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3611 int ret = 0;
0b32f4bb
JB
3612
3613 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3614 num_pages = num_extent_pages(eb->start, eb->len);
3615 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3616 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3617 bio_flags = EXTENT_BIO_TREE_LOG;
3618
0b32f4bb
JB
3619 for (i = 0; i < num_pages; i++) {
3620 struct page *p = extent_buffer_page(eb, i);
3621
3622 clear_page_dirty_for_io(p);
3623 set_page_writeback(p);
f28491e0 3624 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3625 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3626 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3627 0, epd->bio_flags, bio_flags);
3628 epd->bio_flags = bio_flags;
0b32f4bb
JB
3629 if (ret) {
3630 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3631 SetPageError(p);
3632 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3633 end_extent_buffer_writeback(eb);
3634 ret = -EIO;
3635 break;
3636 }
3637 offset += PAGE_CACHE_SIZE;
3638 update_nr_written(p, wbc, 1);
3639 unlock_page(p);
3640 }
3641
3642 if (unlikely(ret)) {
3643 for (; i < num_pages; i++) {
3644 struct page *p = extent_buffer_page(eb, i);
3645 unlock_page(p);
3646 }
3647 }
3648
3649 return ret;
3650}
3651
3652int btree_write_cache_pages(struct address_space *mapping,
3653 struct writeback_control *wbc)
3654{
3655 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3656 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3657 struct extent_buffer *eb, *prev_eb = NULL;
3658 struct extent_page_data epd = {
3659 .bio = NULL,
3660 .tree = tree,
3661 .extent_locked = 0,
3662 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3663 .bio_flags = 0,
0b32f4bb
JB
3664 };
3665 int ret = 0;
3666 int done = 0;
3667 int nr_to_write_done = 0;
3668 struct pagevec pvec;
3669 int nr_pages;
3670 pgoff_t index;
3671 pgoff_t end; /* Inclusive */
3672 int scanned = 0;
3673 int tag;
3674
3675 pagevec_init(&pvec, 0);
3676 if (wbc->range_cyclic) {
3677 index = mapping->writeback_index; /* Start from prev offset */
3678 end = -1;
3679 } else {
3680 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3681 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3682 scanned = 1;
3683 }
3684 if (wbc->sync_mode == WB_SYNC_ALL)
3685 tag = PAGECACHE_TAG_TOWRITE;
3686 else
3687 tag = PAGECACHE_TAG_DIRTY;
3688retry:
3689 if (wbc->sync_mode == WB_SYNC_ALL)
3690 tag_pages_for_writeback(mapping, index, end);
3691 while (!done && !nr_to_write_done && (index <= end) &&
3692 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3693 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3694 unsigned i;
3695
3696 scanned = 1;
3697 for (i = 0; i < nr_pages; i++) {
3698 struct page *page = pvec.pages[i];
3699
3700 if (!PagePrivate(page))
3701 continue;
3702
3703 if (!wbc->range_cyclic && page->index > end) {
3704 done = 1;
3705 break;
3706 }
3707
b5bae261
JB
3708 spin_lock(&mapping->private_lock);
3709 if (!PagePrivate(page)) {
3710 spin_unlock(&mapping->private_lock);
3711 continue;
3712 }
3713
0b32f4bb 3714 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3715
3716 /*
3717 * Shouldn't happen and normally this would be a BUG_ON
3718 * but no sense in crashing the users box for something
3719 * we can survive anyway.
3720 */
fae7f21c 3721 if (WARN_ON(!eb)) {
b5bae261 3722 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3723 continue;
3724 }
3725
b5bae261
JB
3726 if (eb == prev_eb) {
3727 spin_unlock(&mapping->private_lock);
0b32f4bb 3728 continue;
b5bae261 3729 }
0b32f4bb 3730
b5bae261
JB
3731 ret = atomic_inc_not_zero(&eb->refs);
3732 spin_unlock(&mapping->private_lock);
3733 if (!ret)
0b32f4bb 3734 continue;
0b32f4bb
JB
3735
3736 prev_eb = eb;
3737 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3738 if (!ret) {
3739 free_extent_buffer(eb);
3740 continue;
3741 }
3742
3743 ret = write_one_eb(eb, fs_info, wbc, &epd);
3744 if (ret) {
3745 done = 1;
3746 free_extent_buffer(eb);
3747 break;
3748 }
3749 free_extent_buffer(eb);
3750
3751 /*
3752 * the filesystem may choose to bump up nr_to_write.
3753 * We have to make sure to honor the new nr_to_write
3754 * at any time
3755 */
3756 nr_to_write_done = wbc->nr_to_write <= 0;
3757 }
3758 pagevec_release(&pvec);
3759 cond_resched();
3760 }
3761 if (!scanned && !done) {
3762 /*
3763 * We hit the last page and there is more work to be done: wrap
3764 * back to the start of the file
3765 */
3766 scanned = 1;
3767 index = 0;
3768 goto retry;
3769 }
3770 flush_write_bio(&epd);
3771 return ret;
3772}
3773
d1310b2e 3774/**
4bef0848 3775 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3776 * @mapping: address space structure to write
3777 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3778 * @writepage: function called for each page
3779 * @data: data passed to writepage function
3780 *
3781 * If a page is already under I/O, write_cache_pages() skips it, even
3782 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3783 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3784 * and msync() need to guarantee that all the data which was dirty at the time
3785 * the call was made get new I/O started against them. If wbc->sync_mode is
3786 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3787 * existing IO to complete.
3788 */
b2950863 3789static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3790 struct address_space *mapping,
3791 struct writeback_control *wbc,
d2c3f4f6
CM
3792 writepage_t writepage, void *data,
3793 void (*flush_fn)(void *))
d1310b2e 3794{
7fd1a3f7 3795 struct inode *inode = mapping->host;
d1310b2e
CM
3796 int ret = 0;
3797 int done = 0;
61391d56 3798 int err = 0;
f85d7d6c 3799 int nr_to_write_done = 0;
d1310b2e
CM
3800 struct pagevec pvec;
3801 int nr_pages;
3802 pgoff_t index;
3803 pgoff_t end; /* Inclusive */
3804 int scanned = 0;
f7aaa06b 3805 int tag;
d1310b2e 3806
7fd1a3f7
JB
3807 /*
3808 * We have to hold onto the inode so that ordered extents can do their
3809 * work when the IO finishes. The alternative to this is failing to add
3810 * an ordered extent if the igrab() fails there and that is a huge pain
3811 * to deal with, so instead just hold onto the inode throughout the
3812 * writepages operation. If it fails here we are freeing up the inode
3813 * anyway and we'd rather not waste our time writing out stuff that is
3814 * going to be truncated anyway.
3815 */
3816 if (!igrab(inode))
3817 return 0;
3818
d1310b2e
CM
3819 pagevec_init(&pvec, 0);
3820 if (wbc->range_cyclic) {
3821 index = mapping->writeback_index; /* Start from prev offset */
3822 end = -1;
3823 } else {
3824 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3825 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3826 scanned = 1;
3827 }
f7aaa06b
JB
3828 if (wbc->sync_mode == WB_SYNC_ALL)
3829 tag = PAGECACHE_TAG_TOWRITE;
3830 else
3831 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3832retry:
f7aaa06b
JB
3833 if (wbc->sync_mode == WB_SYNC_ALL)
3834 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3835 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3836 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3837 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3838 unsigned i;
3839
3840 scanned = 1;
3841 for (i = 0; i < nr_pages; i++) {
3842 struct page *page = pvec.pages[i];
3843
3844 /*
3845 * At this point we hold neither mapping->tree_lock nor
3846 * lock on the page itself: the page may be truncated or
3847 * invalidated (changing page->mapping to NULL), or even
3848 * swizzled back from swapper_space to tmpfs file
3849 * mapping
3850 */
c8f2f24b
JB
3851 if (!trylock_page(page)) {
3852 flush_fn(data);
3853 lock_page(page);
01d658f2 3854 }
d1310b2e
CM
3855
3856 if (unlikely(page->mapping != mapping)) {
3857 unlock_page(page);
3858 continue;
3859 }
3860
3861 if (!wbc->range_cyclic && page->index > end) {
3862 done = 1;
3863 unlock_page(page);
3864 continue;
3865 }
3866
d2c3f4f6 3867 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3868 if (PageWriteback(page))
3869 flush_fn(data);
d1310b2e 3870 wait_on_page_writeback(page);
d2c3f4f6 3871 }
d1310b2e
CM
3872
3873 if (PageWriteback(page) ||
3874 !clear_page_dirty_for_io(page)) {
3875 unlock_page(page);
3876 continue;
3877 }
3878
3879 ret = (*writepage)(page, wbc, data);
3880
3881 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3882 unlock_page(page);
3883 ret = 0;
3884 }
61391d56
FM
3885 if (!err && ret < 0)
3886 err = ret;
f85d7d6c
CM
3887
3888 /*
3889 * the filesystem may choose to bump up nr_to_write.
3890 * We have to make sure to honor the new nr_to_write
3891 * at any time
3892 */
3893 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3894 }
3895 pagevec_release(&pvec);
3896 cond_resched();
3897 }
61391d56 3898 if (!scanned && !done && !err) {
d1310b2e
CM
3899 /*
3900 * We hit the last page and there is more work to be done: wrap
3901 * back to the start of the file
3902 */
3903 scanned = 1;
3904 index = 0;
3905 goto retry;
3906 }
7fd1a3f7 3907 btrfs_add_delayed_iput(inode);
61391d56 3908 return err;
d1310b2e 3909}
d1310b2e 3910
ffbd517d 3911static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3912{
d2c3f4f6 3913 if (epd->bio) {
355808c2
JM
3914 int rw = WRITE;
3915 int ret;
3916
ffbd517d 3917 if (epd->sync_io)
355808c2
JM
3918 rw = WRITE_SYNC;
3919
de0022b9 3920 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3921 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3922 epd->bio = NULL;
3923 }
3924}
3925
ffbd517d
CM
3926static noinline void flush_write_bio(void *data)
3927{
3928 struct extent_page_data *epd = data;
3929 flush_epd_write_bio(epd);
3930}
3931
d1310b2e
CM
3932int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3933 get_extent_t *get_extent,
3934 struct writeback_control *wbc)
3935{
3936 int ret;
d1310b2e
CM
3937 struct extent_page_data epd = {
3938 .bio = NULL,
3939 .tree = tree,
3940 .get_extent = get_extent,
771ed689 3941 .extent_locked = 0,
ffbd517d 3942 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3943 .bio_flags = 0,
d1310b2e 3944 };
d1310b2e 3945
d1310b2e
CM
3946 ret = __extent_writepage(page, wbc, &epd);
3947
ffbd517d 3948 flush_epd_write_bio(&epd);
d1310b2e
CM
3949 return ret;
3950}
d1310b2e 3951
771ed689
CM
3952int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3953 u64 start, u64 end, get_extent_t *get_extent,
3954 int mode)
3955{
3956 int ret = 0;
3957 struct address_space *mapping = inode->i_mapping;
3958 struct page *page;
3959 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3960 PAGE_CACHE_SHIFT;
3961
3962 struct extent_page_data epd = {
3963 .bio = NULL,
3964 .tree = tree,
3965 .get_extent = get_extent,
3966 .extent_locked = 1,
ffbd517d 3967 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3968 .bio_flags = 0,
771ed689
CM
3969 };
3970 struct writeback_control wbc_writepages = {
771ed689 3971 .sync_mode = mode,
771ed689
CM
3972 .nr_to_write = nr_pages * 2,
3973 .range_start = start,
3974 .range_end = end + 1,
3975 };
3976
d397712b 3977 while (start <= end) {
771ed689
CM
3978 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3979 if (clear_page_dirty_for_io(page))
3980 ret = __extent_writepage(page, &wbc_writepages, &epd);
3981 else {
3982 if (tree->ops && tree->ops->writepage_end_io_hook)
3983 tree->ops->writepage_end_io_hook(page, start,
3984 start + PAGE_CACHE_SIZE - 1,
3985 NULL, 1);
3986 unlock_page(page);
3987 }
3988 page_cache_release(page);
3989 start += PAGE_CACHE_SIZE;
3990 }
3991
ffbd517d 3992 flush_epd_write_bio(&epd);
771ed689
CM
3993 return ret;
3994}
d1310b2e
CM
3995
3996int extent_writepages(struct extent_io_tree *tree,
3997 struct address_space *mapping,
3998 get_extent_t *get_extent,
3999 struct writeback_control *wbc)
4000{
4001 int ret = 0;
4002 struct extent_page_data epd = {
4003 .bio = NULL,
4004 .tree = tree,
4005 .get_extent = get_extent,
771ed689 4006 .extent_locked = 0,
ffbd517d 4007 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4008 .bio_flags = 0,
d1310b2e
CM
4009 };
4010
4bef0848 4011 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4012 __extent_writepage, &epd,
4013 flush_write_bio);
ffbd517d 4014 flush_epd_write_bio(&epd);
d1310b2e
CM
4015 return ret;
4016}
d1310b2e
CM
4017
4018int extent_readpages(struct extent_io_tree *tree,
4019 struct address_space *mapping,
4020 struct list_head *pages, unsigned nr_pages,
4021 get_extent_t get_extent)
4022{
4023 struct bio *bio = NULL;
4024 unsigned page_idx;
c8b97818 4025 unsigned long bio_flags = 0;
67c9684f
LB
4026 struct page *pagepool[16];
4027 struct page *page;
125bac01 4028 struct extent_map *em_cached = NULL;
67c9684f 4029 int nr = 0;
d1310b2e 4030
d1310b2e 4031 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4032 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4033
4034 prefetchw(&page->flags);
4035 list_del(&page->lru);
67c9684f 4036 if (add_to_page_cache_lru(page, mapping,
43e817a1 4037 page->index, GFP_NOFS)) {
67c9684f
LB
4038 page_cache_release(page);
4039 continue;
d1310b2e 4040 }
67c9684f
LB
4041
4042 pagepool[nr++] = page;
4043 if (nr < ARRAY_SIZE(pagepool))
4044 continue;
125bac01 4045 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4046 &bio, 0, &bio_flags, READ);
67c9684f 4047 nr = 0;
d1310b2e 4048 }
9974090b 4049 if (nr)
125bac01 4050 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4051 &bio, 0, &bio_flags, READ);
67c9684f 4052
125bac01
MX
4053 if (em_cached)
4054 free_extent_map(em_cached);
4055
d1310b2e
CM
4056 BUG_ON(!list_empty(pages));
4057 if (bio)
79787eaa 4058 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4059 return 0;
4060}
d1310b2e
CM
4061
4062/*
4063 * basic invalidatepage code, this waits on any locked or writeback
4064 * ranges corresponding to the page, and then deletes any extent state
4065 * records from the tree
4066 */
4067int extent_invalidatepage(struct extent_io_tree *tree,
4068 struct page *page, unsigned long offset)
4069{
2ac55d41 4070 struct extent_state *cached_state = NULL;
4eee4fa4 4071 u64 start = page_offset(page);
d1310b2e
CM
4072 u64 end = start + PAGE_CACHE_SIZE - 1;
4073 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4074
fda2832f 4075 start += ALIGN(offset, blocksize);
d1310b2e
CM
4076 if (start > end)
4077 return 0;
4078
d0082371 4079 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4080 wait_on_page_writeback(page);
d1310b2e 4081 clear_extent_bit(tree, start, end,
32c00aff
JB
4082 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4083 EXTENT_DO_ACCOUNTING,
2ac55d41 4084 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4085 return 0;
4086}
d1310b2e 4087
7b13b7b1
CM
4088/*
4089 * a helper for releasepage, this tests for areas of the page that
4090 * are locked or under IO and drops the related state bits if it is safe
4091 * to drop the page.
4092 */
48a3b636
ES
4093static int try_release_extent_state(struct extent_map_tree *map,
4094 struct extent_io_tree *tree,
4095 struct page *page, gfp_t mask)
7b13b7b1 4096{
4eee4fa4 4097 u64 start = page_offset(page);
7b13b7b1
CM
4098 u64 end = start + PAGE_CACHE_SIZE - 1;
4099 int ret = 1;
4100
211f90e6 4101 if (test_range_bit(tree, start, end,
8b62b72b 4102 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4103 ret = 0;
4104 else {
4105 if ((mask & GFP_NOFS) == GFP_NOFS)
4106 mask = GFP_NOFS;
11ef160f
CM
4107 /*
4108 * at this point we can safely clear everything except the
4109 * locked bit and the nodatasum bit
4110 */
e3f24cc5 4111 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4112 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4113 0, 0, NULL, mask);
e3f24cc5
CM
4114
4115 /* if clear_extent_bit failed for enomem reasons,
4116 * we can't allow the release to continue.
4117 */
4118 if (ret < 0)
4119 ret = 0;
4120 else
4121 ret = 1;
7b13b7b1
CM
4122 }
4123 return ret;
4124}
7b13b7b1 4125
d1310b2e
CM
4126/*
4127 * a helper for releasepage. As long as there are no locked extents
4128 * in the range corresponding to the page, both state records and extent
4129 * map records are removed
4130 */
4131int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4132 struct extent_io_tree *tree, struct page *page,
4133 gfp_t mask)
d1310b2e
CM
4134{
4135 struct extent_map *em;
4eee4fa4 4136 u64 start = page_offset(page);
d1310b2e 4137 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4138
70dec807
CM
4139 if ((mask & __GFP_WAIT) &&
4140 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4141 u64 len;
70dec807 4142 while (start <= end) {
39b5637f 4143 len = end - start + 1;
890871be 4144 write_lock(&map->lock);
39b5637f 4145 em = lookup_extent_mapping(map, start, len);
285190d9 4146 if (!em) {
890871be 4147 write_unlock(&map->lock);
70dec807
CM
4148 break;
4149 }
7f3c74fb
CM
4150 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4151 em->start != start) {
890871be 4152 write_unlock(&map->lock);
70dec807
CM
4153 free_extent_map(em);
4154 break;
4155 }
4156 if (!test_range_bit(tree, em->start,
4157 extent_map_end(em) - 1,
8b62b72b 4158 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4159 0, NULL)) {
70dec807
CM
4160 remove_extent_mapping(map, em);
4161 /* once for the rb tree */
4162 free_extent_map(em);
4163 }
4164 start = extent_map_end(em);
890871be 4165 write_unlock(&map->lock);
70dec807
CM
4166
4167 /* once for us */
d1310b2e
CM
4168 free_extent_map(em);
4169 }
d1310b2e 4170 }
7b13b7b1 4171 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4172}
d1310b2e 4173
ec29ed5b
CM
4174/*
4175 * helper function for fiemap, which doesn't want to see any holes.
4176 * This maps until we find something past 'last'
4177 */
4178static struct extent_map *get_extent_skip_holes(struct inode *inode,
4179 u64 offset,
4180 u64 last,
4181 get_extent_t *get_extent)
4182{
4183 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4184 struct extent_map *em;
4185 u64 len;
4186
4187 if (offset >= last)
4188 return NULL;
4189
67871254 4190 while (1) {
ec29ed5b
CM
4191 len = last - offset;
4192 if (len == 0)
4193 break;
fda2832f 4194 len = ALIGN(len, sectorsize);
ec29ed5b 4195 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4196 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4197 return em;
4198
4199 /* if this isn't a hole return it */
4200 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4201 em->block_start != EXTENT_MAP_HOLE) {
4202 return em;
4203 }
4204
4205 /* this is a hole, advance to the next extent */
4206 offset = extent_map_end(em);
4207 free_extent_map(em);
4208 if (offset >= last)
4209 break;
4210 }
4211 return NULL;
4212}
4213
1506fcc8
YS
4214int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4215 __u64 start, __u64 len, get_extent_t *get_extent)
4216{
975f84fe 4217 int ret = 0;
1506fcc8
YS
4218 u64 off = start;
4219 u64 max = start + len;
4220 u32 flags = 0;
975f84fe
JB
4221 u32 found_type;
4222 u64 last;
ec29ed5b 4223 u64 last_for_get_extent = 0;
1506fcc8 4224 u64 disko = 0;
ec29ed5b 4225 u64 isize = i_size_read(inode);
975f84fe 4226 struct btrfs_key found_key;
1506fcc8 4227 struct extent_map *em = NULL;
2ac55d41 4228 struct extent_state *cached_state = NULL;
975f84fe 4229 struct btrfs_path *path;
dc046b10 4230 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4231 int end = 0;
ec29ed5b
CM
4232 u64 em_start = 0;
4233 u64 em_len = 0;
4234 u64 em_end = 0;
1506fcc8
YS
4235
4236 if (len == 0)
4237 return -EINVAL;
4238
975f84fe
JB
4239 path = btrfs_alloc_path();
4240 if (!path)
4241 return -ENOMEM;
4242 path->leave_spinning = 1;
4243
2c91943b
QW
4244 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4245 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4246
ec29ed5b
CM
4247 /*
4248 * lookup the last file extent. We're not using i_size here
4249 * because there might be preallocation past i_size
4250 */
dc046b10
JB
4251 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4252 0);
975f84fe
JB
4253 if (ret < 0) {
4254 btrfs_free_path(path);
4255 return ret;
4256 }
4257 WARN_ON(!ret);
4258 path->slots[0]--;
975f84fe 4259 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4260 found_type = found_key.type;
975f84fe 4261
ec29ed5b 4262 /* No extents, but there might be delalloc bits */
33345d01 4263 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4264 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4265 /* have to trust i_size as the end */
4266 last = (u64)-1;
4267 last_for_get_extent = isize;
4268 } else {
4269 /*
4270 * remember the start of the last extent. There are a
4271 * bunch of different factors that go into the length of the
4272 * extent, so its much less complex to remember where it started
4273 */
4274 last = found_key.offset;
4275 last_for_get_extent = last + 1;
975f84fe 4276 }
fe09e16c 4277 btrfs_release_path(path);
975f84fe 4278
ec29ed5b
CM
4279 /*
4280 * we might have some extents allocated but more delalloc past those
4281 * extents. so, we trust isize unless the start of the last extent is
4282 * beyond isize
4283 */
4284 if (last < isize) {
4285 last = (u64)-1;
4286 last_for_get_extent = isize;
4287 }
4288
a52f4cd2 4289 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4290 &cached_state);
ec29ed5b 4291
4d479cf0 4292 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4293 get_extent);
1506fcc8
YS
4294 if (!em)
4295 goto out;
4296 if (IS_ERR(em)) {
4297 ret = PTR_ERR(em);
4298 goto out;
4299 }
975f84fe 4300
1506fcc8 4301 while (!end) {
b76bb701 4302 u64 offset_in_extent = 0;
ea8efc74
CM
4303
4304 /* break if the extent we found is outside the range */
4305 if (em->start >= max || extent_map_end(em) < off)
4306 break;
4307
4308 /*
4309 * get_extent may return an extent that starts before our
4310 * requested range. We have to make sure the ranges
4311 * we return to fiemap always move forward and don't
4312 * overlap, so adjust the offsets here
4313 */
4314 em_start = max(em->start, off);
1506fcc8 4315
ea8efc74
CM
4316 /*
4317 * record the offset from the start of the extent
b76bb701
JB
4318 * for adjusting the disk offset below. Only do this if the
4319 * extent isn't compressed since our in ram offset may be past
4320 * what we have actually allocated on disk.
ea8efc74 4321 */
b76bb701
JB
4322 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4323 offset_in_extent = em_start - em->start;
ec29ed5b 4324 em_end = extent_map_end(em);
ea8efc74 4325 em_len = em_end - em_start;
1506fcc8
YS
4326 disko = 0;
4327 flags = 0;
4328
ea8efc74
CM
4329 /*
4330 * bump off for our next call to get_extent
4331 */
4332 off = extent_map_end(em);
4333 if (off >= max)
4334 end = 1;
4335
93dbfad7 4336 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4337 end = 1;
4338 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4339 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4340 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4341 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4342 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4343 flags |= (FIEMAP_EXTENT_DELALLOC |
4344 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4345 } else if (fieinfo->fi_extents_max) {
4346 u64 bytenr = em->block_start -
4347 (em->start - em->orig_start);
fe09e16c 4348
ea8efc74 4349 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4350
4351 /*
4352 * As btrfs supports shared space, this information
4353 * can be exported to userspace tools via
dc046b10
JB
4354 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4355 * then we're just getting a count and we can skip the
4356 * lookup stuff.
fe09e16c 4357 */
dc046b10
JB
4358 ret = btrfs_check_shared(NULL, root->fs_info,
4359 root->objectid,
4360 btrfs_ino(inode), bytenr);
4361 if (ret < 0)
fe09e16c 4362 goto out_free;
dc046b10 4363 if (ret)
fe09e16c 4364 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4365 ret = 0;
1506fcc8
YS
4366 }
4367 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4368 flags |= FIEMAP_EXTENT_ENCODED;
4369
1506fcc8
YS
4370 free_extent_map(em);
4371 em = NULL;
ec29ed5b
CM
4372 if ((em_start >= last) || em_len == (u64)-1 ||
4373 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4374 flags |= FIEMAP_EXTENT_LAST;
4375 end = 1;
4376 }
4377
ec29ed5b
CM
4378 /* now scan forward to see if this is really the last extent. */
4379 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4380 get_extent);
4381 if (IS_ERR(em)) {
4382 ret = PTR_ERR(em);
4383 goto out;
4384 }
4385 if (!em) {
975f84fe
JB
4386 flags |= FIEMAP_EXTENT_LAST;
4387 end = 1;
4388 }
ec29ed5b
CM
4389 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4390 em_len, flags);
4391 if (ret)
4392 goto out_free;
1506fcc8
YS
4393 }
4394out_free:
4395 free_extent_map(em);
4396out:
fe09e16c 4397 btrfs_free_path(path);
a52f4cd2 4398 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4399 &cached_state, GFP_NOFS);
1506fcc8
YS
4400 return ret;
4401}
4402
727011e0
CM
4403static void __free_extent_buffer(struct extent_buffer *eb)
4404{
6d49ba1b 4405 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4406 kmem_cache_free(extent_buffer_cache, eb);
4407}
4408
a26e8c9f 4409int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4410{
4411 return (atomic_read(&eb->io_pages) ||
4412 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4413 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4414}
4415
4416/*
4417 * Helper for releasing extent buffer page.
4418 */
4419static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4420 unsigned long start_idx)
4421{
4422 unsigned long index;
4423 unsigned long num_pages;
4424 struct page *page;
4425 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4426
4427 BUG_ON(extent_buffer_under_io(eb));
4428
4429 num_pages = num_extent_pages(eb->start, eb->len);
4430 index = start_idx + num_pages;
4431 if (start_idx >= index)
4432 return;
4433
4434 do {
4435 index--;
4436 page = extent_buffer_page(eb, index);
4437 if (page && mapped) {
4438 spin_lock(&page->mapping->private_lock);
4439 /*
4440 * We do this since we'll remove the pages after we've
4441 * removed the eb from the radix tree, so we could race
4442 * and have this page now attached to the new eb. So
4443 * only clear page_private if it's still connected to
4444 * this eb.
4445 */
4446 if (PagePrivate(page) &&
4447 page->private == (unsigned long)eb) {
4448 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4449 BUG_ON(PageDirty(page));
4450 BUG_ON(PageWriteback(page));
4451 /*
4452 * We need to make sure we haven't be attached
4453 * to a new eb.
4454 */
4455 ClearPagePrivate(page);
4456 set_page_private(page, 0);
4457 /* One for the page private */
4458 page_cache_release(page);
4459 }
4460 spin_unlock(&page->mapping->private_lock);
4461
4462 }
4463 if (page) {
4464 /* One for when we alloced the page */
4465 page_cache_release(page);
4466 }
4467 } while (index != start_idx);
4468}
4469
4470/*
4471 * Helper for releasing the extent buffer.
4472 */
4473static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4474{
4475 btrfs_release_extent_buffer_page(eb, 0);
4476 __free_extent_buffer(eb);
4477}
4478
f28491e0
JB
4479static struct extent_buffer *
4480__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4481 unsigned long len, gfp_t mask)
d1310b2e
CM
4482{
4483 struct extent_buffer *eb = NULL;
4484
d1310b2e 4485 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4486 if (eb == NULL)
4487 return NULL;
d1310b2e
CM
4488 eb->start = start;
4489 eb->len = len;
f28491e0 4490 eb->fs_info = fs_info;
815a51c7 4491 eb->bflags = 0;
bd681513
CM
4492 rwlock_init(&eb->lock);
4493 atomic_set(&eb->write_locks, 0);
4494 atomic_set(&eb->read_locks, 0);
4495 atomic_set(&eb->blocking_readers, 0);
4496 atomic_set(&eb->blocking_writers, 0);
4497 atomic_set(&eb->spinning_readers, 0);
4498 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4499 eb->lock_nested = 0;
bd681513
CM
4500 init_waitqueue_head(&eb->write_lock_wq);
4501 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4502
6d49ba1b
ES
4503 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4504
3083ee2e 4505 spin_lock_init(&eb->refs_lock);
d1310b2e 4506 atomic_set(&eb->refs, 1);
0b32f4bb 4507 atomic_set(&eb->io_pages, 0);
727011e0 4508
b8dae313
DS
4509 /*
4510 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4511 */
4512 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4513 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4514 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4515
4516 return eb;
4517}
4518
815a51c7
JS
4519struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4520{
4521 unsigned long i;
4522 struct page *p;
4523 struct extent_buffer *new;
4524 unsigned long num_pages = num_extent_pages(src->start, src->len);
4525
9ec72677 4526 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4527 if (new == NULL)
4528 return NULL;
4529
4530 for (i = 0; i < num_pages; i++) {
9ec72677 4531 p = alloc_page(GFP_NOFS);
db7f3436
JB
4532 if (!p) {
4533 btrfs_release_extent_buffer(new);
4534 return NULL;
4535 }
815a51c7
JS
4536 attach_extent_buffer_page(new, p);
4537 WARN_ON(PageDirty(p));
4538 SetPageUptodate(p);
4539 new->pages[i] = p;
4540 }
4541
4542 copy_extent_buffer(new, src, 0, 0, src->len);
4543 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4544 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4545
4546 return new;
4547}
4548
4549struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4550{
4551 struct extent_buffer *eb;
4552 unsigned long num_pages = num_extent_pages(0, len);
4553 unsigned long i;
4554
9ec72677 4555 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4556 if (!eb)
4557 return NULL;
4558
4559 for (i = 0; i < num_pages; i++) {
9ec72677 4560 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4561 if (!eb->pages[i])
4562 goto err;
4563 }
4564 set_extent_buffer_uptodate(eb);
4565 btrfs_set_header_nritems(eb, 0);
4566 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4567
4568 return eb;
4569err:
84167d19
SB
4570 for (; i > 0; i--)
4571 __free_page(eb->pages[i - 1]);
815a51c7
JS
4572 __free_extent_buffer(eb);
4573 return NULL;
4574}
4575
0b32f4bb
JB
4576static void check_buffer_tree_ref(struct extent_buffer *eb)
4577{
242e18c7 4578 int refs;
0b32f4bb
JB
4579 /* the ref bit is tricky. We have to make sure it is set
4580 * if we have the buffer dirty. Otherwise the
4581 * code to free a buffer can end up dropping a dirty
4582 * page
4583 *
4584 * Once the ref bit is set, it won't go away while the
4585 * buffer is dirty or in writeback, and it also won't
4586 * go away while we have the reference count on the
4587 * eb bumped.
4588 *
4589 * We can't just set the ref bit without bumping the
4590 * ref on the eb because free_extent_buffer might
4591 * see the ref bit and try to clear it. If this happens
4592 * free_extent_buffer might end up dropping our original
4593 * ref by mistake and freeing the page before we are able
4594 * to add one more ref.
4595 *
4596 * So bump the ref count first, then set the bit. If someone
4597 * beat us to it, drop the ref we added.
4598 */
242e18c7
CM
4599 refs = atomic_read(&eb->refs);
4600 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4601 return;
4602
594831c4
JB
4603 spin_lock(&eb->refs_lock);
4604 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4605 atomic_inc(&eb->refs);
594831c4 4606 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4607}
4608
2457aec6
MG
4609static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4610 struct page *accessed)
5df4235e
JB
4611{
4612 unsigned long num_pages, i;
4613
0b32f4bb
JB
4614 check_buffer_tree_ref(eb);
4615
5df4235e
JB
4616 num_pages = num_extent_pages(eb->start, eb->len);
4617 for (i = 0; i < num_pages; i++) {
4618 struct page *p = extent_buffer_page(eb, i);
2457aec6
MG
4619 if (p != accessed)
4620 mark_page_accessed(p);
5df4235e
JB
4621 }
4622}
4623
f28491e0
JB
4624struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4625 u64 start)
452c75c3
CS
4626{
4627 struct extent_buffer *eb;
4628
4629 rcu_read_lock();
f28491e0
JB
4630 eb = radix_tree_lookup(&fs_info->buffer_radix,
4631 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4632 if (eb && atomic_inc_not_zero(&eb->refs)) {
4633 rcu_read_unlock();
2457aec6 4634 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4635 return eb;
4636 }
4637 rcu_read_unlock();
4638
4639 return NULL;
4640}
4641
faa2dbf0
JB
4642#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4643struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4644 u64 start, unsigned long len)
4645{
4646 struct extent_buffer *eb, *exists = NULL;
4647 int ret;
4648
4649 eb = find_extent_buffer(fs_info, start);
4650 if (eb)
4651 return eb;
4652 eb = alloc_dummy_extent_buffer(start, len);
4653 if (!eb)
4654 return NULL;
4655 eb->fs_info = fs_info;
4656again:
4657 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4658 if (ret)
4659 goto free_eb;
4660 spin_lock(&fs_info->buffer_lock);
4661 ret = radix_tree_insert(&fs_info->buffer_radix,
4662 start >> PAGE_CACHE_SHIFT, eb);
4663 spin_unlock(&fs_info->buffer_lock);
4664 radix_tree_preload_end();
4665 if (ret == -EEXIST) {
4666 exists = find_extent_buffer(fs_info, start);
4667 if (exists)
4668 goto free_eb;
4669 else
4670 goto again;
4671 }
4672 check_buffer_tree_ref(eb);
4673 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4674
4675 /*
4676 * We will free dummy extent buffer's if they come into
4677 * free_extent_buffer with a ref count of 2, but if we are using this we
4678 * want the buffers to stay in memory until we're done with them, so
4679 * bump the ref count again.
4680 */
4681 atomic_inc(&eb->refs);
4682 return eb;
4683free_eb:
4684 btrfs_release_extent_buffer(eb);
4685 return exists;
4686}
4687#endif
4688
f28491e0 4689struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4690 u64 start, unsigned long len)
d1310b2e
CM
4691{
4692 unsigned long num_pages = num_extent_pages(start, len);
4693 unsigned long i;
4694 unsigned long index = start >> PAGE_CACHE_SHIFT;
4695 struct extent_buffer *eb;
6af118ce 4696 struct extent_buffer *exists = NULL;
d1310b2e 4697 struct page *p;
f28491e0 4698 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4699 int uptodate = 1;
19fe0a8b 4700 int ret;
d1310b2e 4701
f28491e0 4702 eb = find_extent_buffer(fs_info, start);
452c75c3 4703 if (eb)
6af118ce 4704 return eb;
6af118ce 4705
f28491e0 4706 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4707 if (!eb)
d1310b2e
CM
4708 return NULL;
4709
727011e0 4710 for (i = 0; i < num_pages; i++, index++) {
a6591715 4711 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4712 if (!p)
6af118ce 4713 goto free_eb;
4f2de97a
JB
4714
4715 spin_lock(&mapping->private_lock);
4716 if (PagePrivate(p)) {
4717 /*
4718 * We could have already allocated an eb for this page
4719 * and attached one so lets see if we can get a ref on
4720 * the existing eb, and if we can we know it's good and
4721 * we can just return that one, else we know we can just
4722 * overwrite page->private.
4723 */
4724 exists = (struct extent_buffer *)p->private;
4725 if (atomic_inc_not_zero(&exists->refs)) {
4726 spin_unlock(&mapping->private_lock);
4727 unlock_page(p);
17de39ac 4728 page_cache_release(p);
2457aec6 4729 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4730 goto free_eb;
4731 }
4732
0b32f4bb 4733 /*
4f2de97a
JB
4734 * Do this so attach doesn't complain and we need to
4735 * drop the ref the old guy had.
4736 */
4737 ClearPagePrivate(p);
0b32f4bb 4738 WARN_ON(PageDirty(p));
4f2de97a 4739 page_cache_release(p);
d1310b2e 4740 }
4f2de97a
JB
4741 attach_extent_buffer_page(eb, p);
4742 spin_unlock(&mapping->private_lock);
0b32f4bb 4743 WARN_ON(PageDirty(p));
727011e0 4744 eb->pages[i] = p;
d1310b2e
CM
4745 if (!PageUptodate(p))
4746 uptodate = 0;
eb14ab8e
CM
4747
4748 /*
4749 * see below about how we avoid a nasty race with release page
4750 * and why we unlock later
4751 */
d1310b2e
CM
4752 }
4753 if (uptodate)
b4ce94de 4754 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4755again:
19fe0a8b
MX
4756 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4757 if (ret)
4758 goto free_eb;
4759
f28491e0
JB
4760 spin_lock(&fs_info->buffer_lock);
4761 ret = radix_tree_insert(&fs_info->buffer_radix,
4762 start >> PAGE_CACHE_SHIFT, eb);
4763 spin_unlock(&fs_info->buffer_lock);
452c75c3 4764 radix_tree_preload_end();
19fe0a8b 4765 if (ret == -EEXIST) {
f28491e0 4766 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4767 if (exists)
4768 goto free_eb;
4769 else
115391d2 4770 goto again;
6af118ce 4771 }
6af118ce 4772 /* add one reference for the tree */
0b32f4bb 4773 check_buffer_tree_ref(eb);
34b41ace 4774 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4775
4776 /*
4777 * there is a race where release page may have
4778 * tried to find this extent buffer in the radix
4779 * but failed. It will tell the VM it is safe to
4780 * reclaim the, and it will clear the page private bit.
4781 * We must make sure to set the page private bit properly
4782 * after the extent buffer is in the radix tree so
4783 * it doesn't get lost
4784 */
727011e0
CM
4785 SetPageChecked(eb->pages[0]);
4786 for (i = 1; i < num_pages; i++) {
4787 p = extent_buffer_page(eb, i);
727011e0
CM
4788 ClearPageChecked(p);
4789 unlock_page(p);
4790 }
4791 unlock_page(eb->pages[0]);
d1310b2e
CM
4792 return eb;
4793
6af118ce 4794free_eb:
727011e0
CM
4795 for (i = 0; i < num_pages; i++) {
4796 if (eb->pages[i])
4797 unlock_page(eb->pages[i]);
4798 }
eb14ab8e 4799
17de39ac 4800 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4801 btrfs_release_extent_buffer(eb);
6af118ce 4802 return exists;
d1310b2e 4803}
d1310b2e 4804
3083ee2e
JB
4805static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4806{
4807 struct extent_buffer *eb =
4808 container_of(head, struct extent_buffer, rcu_head);
4809
4810 __free_extent_buffer(eb);
4811}
4812
3083ee2e 4813/* Expects to have eb->eb_lock already held */
f7a52a40 4814static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4815{
4816 WARN_ON(atomic_read(&eb->refs) == 0);
4817 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4818 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4819 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4820
815a51c7 4821 spin_unlock(&eb->refs_lock);
3083ee2e 4822
f28491e0
JB
4823 spin_lock(&fs_info->buffer_lock);
4824 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4825 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4826 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4827 } else {
4828 spin_unlock(&eb->refs_lock);
815a51c7 4829 }
3083ee2e
JB
4830
4831 /* Should be safe to release our pages at this point */
4832 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4833 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4834 return 1;
3083ee2e
JB
4835 }
4836 spin_unlock(&eb->refs_lock);
e64860aa
JB
4837
4838 return 0;
3083ee2e
JB
4839}
4840
d1310b2e
CM
4841void free_extent_buffer(struct extent_buffer *eb)
4842{
242e18c7
CM
4843 int refs;
4844 int old;
d1310b2e
CM
4845 if (!eb)
4846 return;
4847
242e18c7
CM
4848 while (1) {
4849 refs = atomic_read(&eb->refs);
4850 if (refs <= 3)
4851 break;
4852 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4853 if (old == refs)
4854 return;
4855 }
4856
3083ee2e 4857 spin_lock(&eb->refs_lock);
815a51c7
JS
4858 if (atomic_read(&eb->refs) == 2 &&
4859 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4860 atomic_dec(&eb->refs);
4861
3083ee2e
JB
4862 if (atomic_read(&eb->refs) == 2 &&
4863 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4864 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4865 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4866 atomic_dec(&eb->refs);
4867
4868 /*
4869 * I know this is terrible, but it's temporary until we stop tracking
4870 * the uptodate bits and such for the extent buffers.
4871 */
f7a52a40 4872 release_extent_buffer(eb);
3083ee2e
JB
4873}
4874
4875void free_extent_buffer_stale(struct extent_buffer *eb)
4876{
4877 if (!eb)
d1310b2e
CM
4878 return;
4879
3083ee2e
JB
4880 spin_lock(&eb->refs_lock);
4881 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4882
0b32f4bb 4883 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4884 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4885 atomic_dec(&eb->refs);
f7a52a40 4886 release_extent_buffer(eb);
d1310b2e 4887}
d1310b2e 4888
1d4284bd 4889void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4890{
d1310b2e
CM
4891 unsigned long i;
4892 unsigned long num_pages;
4893 struct page *page;
4894
d1310b2e
CM
4895 num_pages = num_extent_pages(eb->start, eb->len);
4896
4897 for (i = 0; i < num_pages; i++) {
4898 page = extent_buffer_page(eb, i);
b9473439 4899 if (!PageDirty(page))
d2c3f4f6
CM
4900 continue;
4901
a61e6f29 4902 lock_page(page);
eb14ab8e
CM
4903 WARN_ON(!PagePrivate(page));
4904
d1310b2e 4905 clear_page_dirty_for_io(page);
0ee0fda0 4906 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4907 if (!PageDirty(page)) {
4908 radix_tree_tag_clear(&page->mapping->page_tree,
4909 page_index(page),
4910 PAGECACHE_TAG_DIRTY);
4911 }
0ee0fda0 4912 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4913 ClearPageError(page);
a61e6f29 4914 unlock_page(page);
d1310b2e 4915 }
0b32f4bb 4916 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4917}
d1310b2e 4918
0b32f4bb 4919int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4920{
4921 unsigned long i;
4922 unsigned long num_pages;
b9473439 4923 int was_dirty = 0;
d1310b2e 4924
0b32f4bb
JB
4925 check_buffer_tree_ref(eb);
4926
b9473439 4927 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4928
d1310b2e 4929 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4930 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4931 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4932
b9473439 4933 for (i = 0; i < num_pages; i++)
0b32f4bb 4934 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4935 return was_dirty;
d1310b2e 4936}
d1310b2e 4937
0b32f4bb 4938int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4939{
4940 unsigned long i;
4941 struct page *page;
4942 unsigned long num_pages;
4943
b4ce94de 4944 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4945 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4946 for (i = 0; i < num_pages; i++) {
4947 page = extent_buffer_page(eb, i);
33958dc6
CM
4948 if (page)
4949 ClearPageUptodate(page);
1259ab75
CM
4950 }
4951 return 0;
4952}
4953
0b32f4bb 4954int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4955{
4956 unsigned long i;
4957 struct page *page;
4958 unsigned long num_pages;
4959
0b32f4bb 4960 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4961 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4962 for (i = 0; i < num_pages; i++) {
4963 page = extent_buffer_page(eb, i);
d1310b2e
CM
4964 SetPageUptodate(page);
4965 }
4966 return 0;
4967}
d1310b2e 4968
0b32f4bb 4969int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4970{
0b32f4bb 4971 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4972}
d1310b2e
CM
4973
4974int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4975 struct extent_buffer *eb, u64 start, int wait,
f188591e 4976 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4977{
4978 unsigned long i;
4979 unsigned long start_i;
4980 struct page *page;
4981 int err;
4982 int ret = 0;
ce9adaa5
CM
4983 int locked_pages = 0;
4984 int all_uptodate = 1;
d1310b2e 4985 unsigned long num_pages;
727011e0 4986 unsigned long num_reads = 0;
a86c12c7 4987 struct bio *bio = NULL;
c8b97818 4988 unsigned long bio_flags = 0;
a86c12c7 4989
b4ce94de 4990 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4991 return 0;
4992
d1310b2e
CM
4993 if (start) {
4994 WARN_ON(start < eb->start);
4995 start_i = (start >> PAGE_CACHE_SHIFT) -
4996 (eb->start >> PAGE_CACHE_SHIFT);
4997 } else {
4998 start_i = 0;
4999 }
5000
5001 num_pages = num_extent_pages(eb->start, eb->len);
5002 for (i = start_i; i < num_pages; i++) {
5003 page = extent_buffer_page(eb, i);
bb82ab88 5004 if (wait == WAIT_NONE) {
2db04966 5005 if (!trylock_page(page))
ce9adaa5 5006 goto unlock_exit;
d1310b2e
CM
5007 } else {
5008 lock_page(page);
5009 }
ce9adaa5 5010 locked_pages++;
727011e0
CM
5011 if (!PageUptodate(page)) {
5012 num_reads++;
ce9adaa5 5013 all_uptodate = 0;
727011e0 5014 }
ce9adaa5
CM
5015 }
5016 if (all_uptodate) {
5017 if (start_i == 0)
b4ce94de 5018 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5019 goto unlock_exit;
5020 }
5021
ea466794 5022 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 5023 eb->read_mirror = 0;
0b32f4bb 5024 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
5025 for (i = start_i; i < num_pages; i++) {
5026 page = extent_buffer_page(eb, i);
ce9adaa5 5027 if (!PageUptodate(page)) {
f188591e 5028 ClearPageError(page);
a86c12c7 5029 err = __extent_read_full_page(tree, page,
f188591e 5030 get_extent, &bio,
d4c7ca86
JB
5031 mirror_num, &bio_flags,
5032 READ | REQ_META);
d397712b 5033 if (err)
d1310b2e 5034 ret = err;
d1310b2e
CM
5035 } else {
5036 unlock_page(page);
5037 }
5038 }
5039
355808c2 5040 if (bio) {
d4c7ca86
JB
5041 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5042 bio_flags);
79787eaa
JM
5043 if (err)
5044 return err;
355808c2 5045 }
a86c12c7 5046
bb82ab88 5047 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5048 return ret;
d397712b 5049
d1310b2e
CM
5050 for (i = start_i; i < num_pages; i++) {
5051 page = extent_buffer_page(eb, i);
5052 wait_on_page_locked(page);
d397712b 5053 if (!PageUptodate(page))
d1310b2e 5054 ret = -EIO;
d1310b2e 5055 }
d397712b 5056
d1310b2e 5057 return ret;
ce9adaa5
CM
5058
5059unlock_exit:
5060 i = start_i;
d397712b 5061 while (locked_pages > 0) {
ce9adaa5
CM
5062 page = extent_buffer_page(eb, i);
5063 i++;
5064 unlock_page(page);
5065 locked_pages--;
5066 }
5067 return ret;
d1310b2e 5068}
d1310b2e
CM
5069
5070void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5071 unsigned long start,
5072 unsigned long len)
5073{
5074 size_t cur;
5075 size_t offset;
5076 struct page *page;
5077 char *kaddr;
5078 char *dst = (char *)dstv;
5079 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5080 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5081
5082 WARN_ON(start > eb->len);
5083 WARN_ON(start + len > eb->start + eb->len);
5084
778746b5 5085 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5086
d397712b 5087 while (len > 0) {
d1310b2e 5088 page = extent_buffer_page(eb, i);
d1310b2e
CM
5089
5090 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5091 kaddr = page_address(page);
d1310b2e 5092 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5093
5094 dst += cur;
5095 len -= cur;
5096 offset = 0;
5097 i++;
5098 }
5099}
d1310b2e 5100
550ac1d8
GH
5101int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5102 unsigned long start,
5103 unsigned long len)
5104{
5105 size_t cur;
5106 size_t offset;
5107 struct page *page;
5108 char *kaddr;
5109 char __user *dst = (char __user *)dstv;
5110 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5111 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5112 int ret = 0;
5113
5114 WARN_ON(start > eb->len);
5115 WARN_ON(start + len > eb->start + eb->len);
5116
5117 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5118
5119 while (len > 0) {
5120 page = extent_buffer_page(eb, i);
5121
5122 cur = min(len, (PAGE_CACHE_SIZE - offset));
5123 kaddr = page_address(page);
5124 if (copy_to_user(dst, kaddr + offset, cur)) {
5125 ret = -EFAULT;
5126 break;
5127 }
5128
5129 dst += cur;
5130 len -= cur;
5131 offset = 0;
5132 i++;
5133 }
5134
5135 return ret;
5136}
5137
d1310b2e 5138int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5139 unsigned long min_len, char **map,
d1310b2e 5140 unsigned long *map_start,
a6591715 5141 unsigned long *map_len)
d1310b2e
CM
5142{
5143 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5144 char *kaddr;
5145 struct page *p;
5146 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5147 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5148 unsigned long end_i = (start_offset + start + min_len - 1) >>
5149 PAGE_CACHE_SHIFT;
5150
5151 if (i != end_i)
5152 return -EINVAL;
5153
5154 if (i == 0) {
5155 offset = start_offset;
5156 *map_start = 0;
5157 } else {
5158 offset = 0;
5159 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5160 }
d397712b 5161
d1310b2e 5162 if (start + min_len > eb->len) {
31b1a2bd 5163 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5164 "wanted %lu %lu\n",
5165 eb->start, eb->len, start, min_len);
85026533 5166 return -EINVAL;
d1310b2e
CM
5167 }
5168
5169 p = extent_buffer_page(eb, i);
a6591715 5170 kaddr = page_address(p);
d1310b2e
CM
5171 *map = kaddr + offset;
5172 *map_len = PAGE_CACHE_SIZE - offset;
5173 return 0;
5174}
d1310b2e 5175
d1310b2e
CM
5176int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5177 unsigned long start,
5178 unsigned long len)
5179{
5180 size_t cur;
5181 size_t offset;
5182 struct page *page;
5183 char *kaddr;
5184 char *ptr = (char *)ptrv;
5185 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5186 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5187 int ret = 0;
5188
5189 WARN_ON(start > eb->len);
5190 WARN_ON(start + len > eb->start + eb->len);
5191
778746b5 5192 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5193
d397712b 5194 while (len > 0) {
d1310b2e 5195 page = extent_buffer_page(eb, i);
d1310b2e
CM
5196
5197 cur = min(len, (PAGE_CACHE_SIZE - offset));
5198
a6591715 5199 kaddr = page_address(page);
d1310b2e 5200 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5201 if (ret)
5202 break;
5203
5204 ptr += cur;
5205 len -= cur;
5206 offset = 0;
5207 i++;
5208 }
5209 return ret;
5210}
d1310b2e
CM
5211
5212void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5213 unsigned long start, unsigned long len)
5214{
5215 size_t cur;
5216 size_t offset;
5217 struct page *page;
5218 char *kaddr;
5219 char *src = (char *)srcv;
5220 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5221 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5222
5223 WARN_ON(start > eb->len);
5224 WARN_ON(start + len > eb->start + eb->len);
5225
778746b5 5226 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5227
d397712b 5228 while (len > 0) {
d1310b2e
CM
5229 page = extent_buffer_page(eb, i);
5230 WARN_ON(!PageUptodate(page));
5231
5232 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5233 kaddr = page_address(page);
d1310b2e 5234 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5235
5236 src += cur;
5237 len -= cur;
5238 offset = 0;
5239 i++;
5240 }
5241}
d1310b2e
CM
5242
5243void memset_extent_buffer(struct extent_buffer *eb, char c,
5244 unsigned long start, unsigned long len)
5245{
5246 size_t cur;
5247 size_t offset;
5248 struct page *page;
5249 char *kaddr;
5250 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5251 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5252
5253 WARN_ON(start > eb->len);
5254 WARN_ON(start + len > eb->start + eb->len);
5255
778746b5 5256 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5257
d397712b 5258 while (len > 0) {
d1310b2e
CM
5259 page = extent_buffer_page(eb, i);
5260 WARN_ON(!PageUptodate(page));
5261
5262 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5263 kaddr = page_address(page);
d1310b2e 5264 memset(kaddr + offset, c, cur);
d1310b2e
CM
5265
5266 len -= cur;
5267 offset = 0;
5268 i++;
5269 }
5270}
d1310b2e
CM
5271
5272void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5273 unsigned long dst_offset, unsigned long src_offset,
5274 unsigned long len)
5275{
5276 u64 dst_len = dst->len;
5277 size_t cur;
5278 size_t offset;
5279 struct page *page;
5280 char *kaddr;
5281 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5282 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5283
5284 WARN_ON(src->len != dst_len);
5285
5286 offset = (start_offset + dst_offset) &
778746b5 5287 (PAGE_CACHE_SIZE - 1);
d1310b2e 5288
d397712b 5289 while (len > 0) {
d1310b2e
CM
5290 page = extent_buffer_page(dst, i);
5291 WARN_ON(!PageUptodate(page));
5292
5293 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5294
a6591715 5295 kaddr = page_address(page);
d1310b2e 5296 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5297
5298 src_offset += cur;
5299 len -= cur;
5300 offset = 0;
5301 i++;
5302 }
5303}
d1310b2e 5304
3387206f
ST
5305static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5306{
5307 unsigned long distance = (src > dst) ? src - dst : dst - src;
5308 return distance < len;
5309}
5310
d1310b2e
CM
5311static void copy_pages(struct page *dst_page, struct page *src_page,
5312 unsigned long dst_off, unsigned long src_off,
5313 unsigned long len)
5314{
a6591715 5315 char *dst_kaddr = page_address(dst_page);
d1310b2e 5316 char *src_kaddr;
727011e0 5317 int must_memmove = 0;
d1310b2e 5318
3387206f 5319 if (dst_page != src_page) {
a6591715 5320 src_kaddr = page_address(src_page);
3387206f 5321 } else {
d1310b2e 5322 src_kaddr = dst_kaddr;
727011e0
CM
5323 if (areas_overlap(src_off, dst_off, len))
5324 must_memmove = 1;
3387206f 5325 }
d1310b2e 5326
727011e0
CM
5327 if (must_memmove)
5328 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5329 else
5330 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5331}
5332
5333void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5334 unsigned long src_offset, unsigned long len)
5335{
5336 size_t cur;
5337 size_t dst_off_in_page;
5338 size_t src_off_in_page;
5339 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5340 unsigned long dst_i;
5341 unsigned long src_i;
5342
5343 if (src_offset + len > dst->len) {
efe120a0 5344 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5345 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5346 BUG_ON(1);
5347 }
5348 if (dst_offset + len > dst->len) {
efe120a0 5349 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5350 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5351 BUG_ON(1);
5352 }
5353
d397712b 5354 while (len > 0) {
d1310b2e 5355 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5356 (PAGE_CACHE_SIZE - 1);
d1310b2e 5357 src_off_in_page = (start_offset + src_offset) &
778746b5 5358 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5359
5360 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5361 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5362
5363 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5364 src_off_in_page));
5365 cur = min_t(unsigned long, cur,
5366 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5367
5368 copy_pages(extent_buffer_page(dst, dst_i),
5369 extent_buffer_page(dst, src_i),
5370 dst_off_in_page, src_off_in_page, cur);
5371
5372 src_offset += cur;
5373 dst_offset += cur;
5374 len -= cur;
5375 }
5376}
d1310b2e
CM
5377
5378void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5379 unsigned long src_offset, unsigned long len)
5380{
5381 size_t cur;
5382 size_t dst_off_in_page;
5383 size_t src_off_in_page;
5384 unsigned long dst_end = dst_offset + len - 1;
5385 unsigned long src_end = src_offset + len - 1;
5386 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5387 unsigned long dst_i;
5388 unsigned long src_i;
5389
5390 if (src_offset + len > dst->len) {
efe120a0 5391 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5392 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5393 BUG_ON(1);
5394 }
5395 if (dst_offset + len > dst->len) {
efe120a0 5396 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5397 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5398 BUG_ON(1);
5399 }
727011e0 5400 if (dst_offset < src_offset) {
d1310b2e
CM
5401 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5402 return;
5403 }
d397712b 5404 while (len > 0) {
d1310b2e
CM
5405 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5406 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5407
5408 dst_off_in_page = (start_offset + dst_end) &
778746b5 5409 (PAGE_CACHE_SIZE - 1);
d1310b2e 5410 src_off_in_page = (start_offset + src_end) &
778746b5 5411 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5412
5413 cur = min_t(unsigned long, len, src_off_in_page + 1);
5414 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5415 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5416 extent_buffer_page(dst, src_i),
5417 dst_off_in_page - cur + 1,
5418 src_off_in_page - cur + 1, cur);
5419
5420 dst_end -= cur;
5421 src_end -= cur;
5422 len -= cur;
5423 }
5424}
6af118ce 5425
f7a52a40 5426int try_release_extent_buffer(struct page *page)
19fe0a8b 5427{
6af118ce 5428 struct extent_buffer *eb;
6af118ce 5429
3083ee2e
JB
5430 /*
5431 * We need to make sure noboody is attaching this page to an eb right
5432 * now.
5433 */
5434 spin_lock(&page->mapping->private_lock);
5435 if (!PagePrivate(page)) {
5436 spin_unlock(&page->mapping->private_lock);
4f2de97a 5437 return 1;
45f49bce 5438 }
6af118ce 5439
3083ee2e
JB
5440 eb = (struct extent_buffer *)page->private;
5441 BUG_ON(!eb);
19fe0a8b
MX
5442
5443 /*
3083ee2e
JB
5444 * This is a little awful but should be ok, we need to make sure that
5445 * the eb doesn't disappear out from under us while we're looking at
5446 * this page.
19fe0a8b 5447 */
3083ee2e 5448 spin_lock(&eb->refs_lock);
0b32f4bb 5449 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5450 spin_unlock(&eb->refs_lock);
5451 spin_unlock(&page->mapping->private_lock);
5452 return 0;
b9473439 5453 }
3083ee2e 5454 spin_unlock(&page->mapping->private_lock);
897ca6e9 5455
19fe0a8b 5456 /*
3083ee2e
JB
5457 * If tree ref isn't set then we know the ref on this eb is a real ref,
5458 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5459 */
3083ee2e
JB
5460 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5461 spin_unlock(&eb->refs_lock);
5462 return 0;
b9473439 5463 }
19fe0a8b 5464
f7a52a40 5465 return release_extent_buffer(eb);
6af118ce 5466}