Btrfs: free reserved space on error in a few places
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
fe09e16c 23#include "backref.h"
d1310b2e 24
d1310b2e
CM
25static struct kmem_cache *extent_state_cache;
26static struct kmem_cache *extent_buffer_cache;
9be3395b 27static struct bio_set *btrfs_bioset;
d1310b2e 28
6d49ba1b 29#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
30static LIST_HEAD(buffers);
31static LIST_HEAD(states);
4bef0848 32
d397712b 33static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
34
35static inline
36void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
37{
38 unsigned long flags;
39
40 spin_lock_irqsave(&leak_lock, flags);
41 list_add(new, head);
42 spin_unlock_irqrestore(&leak_lock, flags);
43}
44
45static inline
46void btrfs_leak_debug_del(struct list_head *entry)
47{
48 unsigned long flags;
49
50 spin_lock_irqsave(&leak_lock, flags);
51 list_del(entry);
52 spin_unlock_irqrestore(&leak_lock, flags);
53}
54
55static inline
56void btrfs_leak_debug_check(void)
57{
58 struct extent_state *state;
59 struct extent_buffer *eb;
60
61 while (!list_empty(&states)) {
62 state = list_entry(states.next, struct extent_state, leak_list);
63 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
64 "state %lu in tree %p refs %d\n",
c1c9ff7c
GU
65 state->start, state->end, state->state, state->tree,
66 atomic_read(&state->refs));
6d49ba1b
ES
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
c1c9ff7c
GU
74 "refs %d\n",
75 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79}
8d599ae1
DS
80
81#define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 struct inode *inode, u64 start, u64 end)
85{
86 u64 isize = i_size_read(inode);
87
88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 91 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
92 }
93}
6d49ba1b
ES
94#else
95#define btrfs_leak_debug_add(new, head) do {} while (0)
96#define btrfs_leak_debug_del(entry) do {} while (0)
97#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 98#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 99#endif
d1310b2e 100
d1310b2e
CM
101#define BUFFER_LRU_MAX 64
102
103struct tree_entry {
104 u64 start;
105 u64 end;
d1310b2e
CM
106 struct rb_node rb_node;
107};
108
109struct extent_page_data {
110 struct bio *bio;
111 struct extent_io_tree *tree;
112 get_extent_t *get_extent;
de0022b9 113 unsigned long bio_flags;
771ed689
CM
114
115 /* tells writepage not to lock the state bits for this range
116 * it still does the unlocking
117 */
ffbd517d
CM
118 unsigned int extent_locked:1;
119
120 /* tells the submit_bio code to use a WRITE_SYNC */
121 unsigned int sync_io:1;
d1310b2e
CM
122};
123
0b32f4bb 124static noinline void flush_write_bio(void *data);
c2d904e0
JM
125static inline struct btrfs_fs_info *
126tree_fs_info(struct extent_io_tree *tree)
127{
128 return btrfs_sb(tree->mapping->host->i_sb);
129}
0b32f4bb 130
d1310b2e
CM
131int __init extent_io_init(void)
132{
837e1972 133 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
134 sizeof(struct extent_state), 0,
135 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
136 if (!extent_state_cache)
137 return -ENOMEM;
138
837e1972 139 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
140 sizeof(struct extent_buffer), 0,
141 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
142 if (!extent_buffer_cache)
143 goto free_state_cache;
9be3395b
CM
144
145 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
146 offsetof(struct btrfs_io_bio, bio));
147 if (!btrfs_bioset)
148 goto free_buffer_cache;
b208c2f7
DW
149
150 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
151 goto free_bioset;
152
d1310b2e
CM
153 return 0;
154
b208c2f7
DW
155free_bioset:
156 bioset_free(btrfs_bioset);
157 btrfs_bioset = NULL;
158
9be3395b
CM
159free_buffer_cache:
160 kmem_cache_destroy(extent_buffer_cache);
161 extent_buffer_cache = NULL;
162
d1310b2e
CM
163free_state_cache:
164 kmem_cache_destroy(extent_state_cache);
9be3395b 165 extent_state_cache = NULL;
d1310b2e
CM
166 return -ENOMEM;
167}
168
169void extent_io_exit(void)
170{
6d49ba1b 171 btrfs_leak_debug_check();
8c0a8537
KS
172
173 /*
174 * Make sure all delayed rcu free are flushed before we
175 * destroy caches.
176 */
177 rcu_barrier();
d1310b2e
CM
178 if (extent_state_cache)
179 kmem_cache_destroy(extent_state_cache);
180 if (extent_buffer_cache)
181 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
182 if (btrfs_bioset)
183 bioset_free(btrfs_bioset);
d1310b2e
CM
184}
185
186void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 187 struct address_space *mapping)
d1310b2e 188{
6bef4d31 189 tree->state = RB_ROOT;
19fe0a8b 190 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
191 tree->ops = NULL;
192 tree->dirty_bytes = 0;
70dec807 193 spin_lock_init(&tree->lock);
6af118ce 194 spin_lock_init(&tree->buffer_lock);
d1310b2e 195 tree->mapping = mapping;
d1310b2e 196}
d1310b2e 197
b2950863 198static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
199{
200 struct extent_state *state;
d1310b2e
CM
201
202 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 203 if (!state)
d1310b2e
CM
204 return state;
205 state->state = 0;
d1310b2e 206 state->private = 0;
70dec807 207 state->tree = NULL;
6d49ba1b 208 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
209 atomic_set(&state->refs, 1);
210 init_waitqueue_head(&state->wq);
143bede5 211 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
212 return state;
213}
d1310b2e 214
4845e44f 215void free_extent_state(struct extent_state *state)
d1310b2e 216{
d1310b2e
CM
217 if (!state)
218 return;
219 if (atomic_dec_and_test(&state->refs)) {
70dec807 220 WARN_ON(state->tree);
6d49ba1b 221 btrfs_leak_debug_del(&state->leak_list);
143bede5 222 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
223 kmem_cache_free(extent_state_cache, state);
224 }
225}
d1310b2e
CM
226
227static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
228 struct rb_node *node)
229{
d397712b
CM
230 struct rb_node **p = &root->rb_node;
231 struct rb_node *parent = NULL;
d1310b2e
CM
232 struct tree_entry *entry;
233
d397712b 234 while (*p) {
d1310b2e
CM
235 parent = *p;
236 entry = rb_entry(parent, struct tree_entry, rb_node);
237
238 if (offset < entry->start)
239 p = &(*p)->rb_left;
240 else if (offset > entry->end)
241 p = &(*p)->rb_right;
242 else
243 return parent;
244 }
245
d1310b2e
CM
246 rb_link_node(node, parent, p);
247 rb_insert_color(node, root);
248 return NULL;
249}
250
80ea96b1 251static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
252 struct rb_node **prev_ret,
253 struct rb_node **next_ret)
254{
80ea96b1 255 struct rb_root *root = &tree->state;
d397712b 256 struct rb_node *n = root->rb_node;
d1310b2e
CM
257 struct rb_node *prev = NULL;
258 struct rb_node *orig_prev = NULL;
259 struct tree_entry *entry;
260 struct tree_entry *prev_entry = NULL;
261
d397712b 262 while (n) {
d1310b2e
CM
263 entry = rb_entry(n, struct tree_entry, rb_node);
264 prev = n;
265 prev_entry = entry;
266
267 if (offset < entry->start)
268 n = n->rb_left;
269 else if (offset > entry->end)
270 n = n->rb_right;
d397712b 271 else
d1310b2e
CM
272 return n;
273 }
274
275 if (prev_ret) {
276 orig_prev = prev;
d397712b 277 while (prev && offset > prev_entry->end) {
d1310b2e
CM
278 prev = rb_next(prev);
279 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
280 }
281 *prev_ret = prev;
282 prev = orig_prev;
283 }
284
285 if (next_ret) {
286 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 287 while (prev && offset < prev_entry->start) {
d1310b2e
CM
288 prev = rb_prev(prev);
289 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
290 }
291 *next_ret = prev;
292 }
293 return NULL;
294}
295
80ea96b1
CM
296static inline struct rb_node *tree_search(struct extent_io_tree *tree,
297 u64 offset)
d1310b2e 298{
70dec807 299 struct rb_node *prev = NULL;
d1310b2e 300 struct rb_node *ret;
70dec807 301
80ea96b1 302 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 303 if (!ret)
d1310b2e
CM
304 return prev;
305 return ret;
306}
307
9ed74f2d
JB
308static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
309 struct extent_state *other)
310{
311 if (tree->ops && tree->ops->merge_extent_hook)
312 tree->ops->merge_extent_hook(tree->mapping->host, new,
313 other);
314}
315
d1310b2e
CM
316/*
317 * utility function to look for merge candidates inside a given range.
318 * Any extents with matching state are merged together into a single
319 * extent in the tree. Extents with EXTENT_IO in their state field
320 * are not merged because the end_io handlers need to be able to do
321 * operations on them without sleeping (or doing allocations/splits).
322 *
323 * This should be called with the tree lock held.
324 */
1bf85046
JM
325static void merge_state(struct extent_io_tree *tree,
326 struct extent_state *state)
d1310b2e
CM
327{
328 struct extent_state *other;
329 struct rb_node *other_node;
330
5b21f2ed 331 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 332 return;
d1310b2e
CM
333
334 other_node = rb_prev(&state->rb_node);
335 if (other_node) {
336 other = rb_entry(other_node, struct extent_state, rb_node);
337 if (other->end == state->start - 1 &&
338 other->state == state->state) {
9ed74f2d 339 merge_cb(tree, state, other);
d1310b2e 340 state->start = other->start;
70dec807 341 other->tree = NULL;
d1310b2e
CM
342 rb_erase(&other->rb_node, &tree->state);
343 free_extent_state(other);
344 }
345 }
346 other_node = rb_next(&state->rb_node);
347 if (other_node) {
348 other = rb_entry(other_node, struct extent_state, rb_node);
349 if (other->start == state->end + 1 &&
350 other->state == state->state) {
9ed74f2d 351 merge_cb(tree, state, other);
df98b6e2
JB
352 state->end = other->end;
353 other->tree = NULL;
354 rb_erase(&other->rb_node, &tree->state);
355 free_extent_state(other);
d1310b2e
CM
356 }
357 }
d1310b2e
CM
358}
359
1bf85046 360static void set_state_cb(struct extent_io_tree *tree,
41074888 361 struct extent_state *state, unsigned long *bits)
291d673e 362{
1bf85046
JM
363 if (tree->ops && tree->ops->set_bit_hook)
364 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
365}
366
367static void clear_state_cb(struct extent_io_tree *tree,
41074888 368 struct extent_state *state, unsigned long *bits)
291d673e 369{
9ed74f2d
JB
370 if (tree->ops && tree->ops->clear_bit_hook)
371 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
372}
373
3150b699 374static void set_state_bits(struct extent_io_tree *tree,
41074888 375 struct extent_state *state, unsigned long *bits);
3150b699 376
d1310b2e
CM
377/*
378 * insert an extent_state struct into the tree. 'bits' are set on the
379 * struct before it is inserted.
380 *
381 * This may return -EEXIST if the extent is already there, in which case the
382 * state struct is freed.
383 *
384 * The tree lock is not taken internally. This is a utility function and
385 * probably isn't what you want to call (see set/clear_extent_bit).
386 */
387static int insert_state(struct extent_io_tree *tree,
388 struct extent_state *state, u64 start, u64 end,
41074888 389 unsigned long *bits)
d1310b2e
CM
390{
391 struct rb_node *node;
392
31b1a2bd
JL
393 if (end < start)
394 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
c1c9ff7c 395 end, start);
d1310b2e
CM
396 state->start = start;
397 state->end = end;
9ed74f2d 398
3150b699
XG
399 set_state_bits(tree, state, bits);
400
d1310b2e
CM
401 node = tree_insert(&tree->state, end, &state->rb_node);
402 if (node) {
403 struct extent_state *found;
404 found = rb_entry(node, struct extent_state, rb_node);
d397712b 405 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
c1c9ff7c
GU
406 "%llu %llu\n",
407 found->start, found->end, start, end);
d1310b2e
CM
408 return -EEXIST;
409 }
70dec807 410 state->tree = tree;
d1310b2e
CM
411 merge_state(tree, state);
412 return 0;
413}
414
1bf85046 415static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
416 u64 split)
417{
418 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 419 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
420}
421
d1310b2e
CM
422/*
423 * split a given extent state struct in two, inserting the preallocated
424 * struct 'prealloc' as the newly created second half. 'split' indicates an
425 * offset inside 'orig' where it should be split.
426 *
427 * Before calling,
428 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
429 * are two extent state structs in the tree:
430 * prealloc: [orig->start, split - 1]
431 * orig: [ split, orig->end ]
432 *
433 * The tree locks are not taken by this function. They need to be held
434 * by the caller.
435 */
436static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
437 struct extent_state *prealloc, u64 split)
438{
439 struct rb_node *node;
9ed74f2d
JB
440
441 split_cb(tree, orig, split);
442
d1310b2e
CM
443 prealloc->start = orig->start;
444 prealloc->end = split - 1;
445 prealloc->state = orig->state;
446 orig->start = split;
447
448 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
449 if (node) {
d1310b2e
CM
450 free_extent_state(prealloc);
451 return -EEXIST;
452 }
70dec807 453 prealloc->tree = tree;
d1310b2e
CM
454 return 0;
455}
456
cdc6a395
LZ
457static struct extent_state *next_state(struct extent_state *state)
458{
459 struct rb_node *next = rb_next(&state->rb_node);
460 if (next)
461 return rb_entry(next, struct extent_state, rb_node);
462 else
463 return NULL;
464}
465
d1310b2e
CM
466/*
467 * utility function to clear some bits in an extent state struct.
1b303fc0 468 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
469 *
470 * If no bits are set on the state struct after clearing things, the
471 * struct is freed and removed from the tree
472 */
cdc6a395
LZ
473static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
474 struct extent_state *state,
41074888 475 unsigned long *bits, int wake)
d1310b2e 476{
cdc6a395 477 struct extent_state *next;
41074888 478 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 479
0ca1f7ce 480 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
481 u64 range = state->end - state->start + 1;
482 WARN_ON(range > tree->dirty_bytes);
483 tree->dirty_bytes -= range;
484 }
291d673e 485 clear_state_cb(tree, state, bits);
32c00aff 486 state->state &= ~bits_to_clear;
d1310b2e
CM
487 if (wake)
488 wake_up(&state->wq);
0ca1f7ce 489 if (state->state == 0) {
cdc6a395 490 next = next_state(state);
70dec807 491 if (state->tree) {
d1310b2e 492 rb_erase(&state->rb_node, &tree->state);
70dec807 493 state->tree = NULL;
d1310b2e
CM
494 free_extent_state(state);
495 } else {
496 WARN_ON(1);
497 }
498 } else {
499 merge_state(tree, state);
cdc6a395 500 next = next_state(state);
d1310b2e 501 }
cdc6a395 502 return next;
d1310b2e
CM
503}
504
8233767a
XG
505static struct extent_state *
506alloc_extent_state_atomic(struct extent_state *prealloc)
507{
508 if (!prealloc)
509 prealloc = alloc_extent_state(GFP_ATOMIC);
510
511 return prealloc;
512}
513
48a3b636 514static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
515{
516 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
517 "Extent tree was modified by another "
518 "thread while locked.");
519}
520
d1310b2e
CM
521/*
522 * clear some bits on a range in the tree. This may require splitting
523 * or inserting elements in the tree, so the gfp mask is used to
524 * indicate which allocations or sleeping are allowed.
525 *
526 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
527 * the given range from the tree regardless of state (ie for truncate).
528 *
529 * the range [start, end] is inclusive.
530 *
6763af84 531 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
532 */
533int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 534 unsigned long bits, int wake, int delete,
2c64c53d
CM
535 struct extent_state **cached_state,
536 gfp_t mask)
d1310b2e
CM
537{
538 struct extent_state *state;
2c64c53d 539 struct extent_state *cached;
d1310b2e
CM
540 struct extent_state *prealloc = NULL;
541 struct rb_node *node;
5c939df5 542 u64 last_end;
d1310b2e 543 int err;
2ac55d41 544 int clear = 0;
d1310b2e 545
8d599ae1
DS
546 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
547
7ee9e440
JB
548 if (bits & EXTENT_DELALLOC)
549 bits |= EXTENT_NORESERVE;
550
0ca1f7ce
YZ
551 if (delete)
552 bits |= ~EXTENT_CTLBITS;
553 bits |= EXTENT_FIRST_DELALLOC;
554
2ac55d41
JB
555 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
556 clear = 1;
d1310b2e
CM
557again:
558 if (!prealloc && (mask & __GFP_WAIT)) {
559 prealloc = alloc_extent_state(mask);
560 if (!prealloc)
561 return -ENOMEM;
562 }
563
cad321ad 564 spin_lock(&tree->lock);
2c64c53d
CM
565 if (cached_state) {
566 cached = *cached_state;
2ac55d41
JB
567
568 if (clear) {
569 *cached_state = NULL;
570 cached_state = NULL;
571 }
572
df98b6e2
JB
573 if (cached && cached->tree && cached->start <= start &&
574 cached->end > start) {
2ac55d41
JB
575 if (clear)
576 atomic_dec(&cached->refs);
2c64c53d 577 state = cached;
42daec29 578 goto hit_next;
2c64c53d 579 }
2ac55d41
JB
580 if (clear)
581 free_extent_state(cached);
2c64c53d 582 }
d1310b2e
CM
583 /*
584 * this search will find the extents that end after
585 * our range starts
586 */
80ea96b1 587 node = tree_search(tree, start);
d1310b2e
CM
588 if (!node)
589 goto out;
590 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 591hit_next:
d1310b2e
CM
592 if (state->start > end)
593 goto out;
594 WARN_ON(state->end < start);
5c939df5 595 last_end = state->end;
d1310b2e 596
0449314a 597 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
598 if (!(state->state & bits)) {
599 state = next_state(state);
0449314a 600 goto next;
cdc6a395 601 }
0449314a 602
d1310b2e
CM
603 /*
604 * | ---- desired range ---- |
605 * | state | or
606 * | ------------- state -------------- |
607 *
608 * We need to split the extent we found, and may flip
609 * bits on second half.
610 *
611 * If the extent we found extends past our range, we
612 * just split and search again. It'll get split again
613 * the next time though.
614 *
615 * If the extent we found is inside our range, we clear
616 * the desired bit on it.
617 */
618
619 if (state->start < start) {
8233767a
XG
620 prealloc = alloc_extent_state_atomic(prealloc);
621 BUG_ON(!prealloc);
d1310b2e 622 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
623 if (err)
624 extent_io_tree_panic(tree, err);
625
d1310b2e
CM
626 prealloc = NULL;
627 if (err)
628 goto out;
629 if (state->end <= end) {
d1ac6e41
LB
630 state = clear_state_bit(tree, state, &bits, wake);
631 goto next;
d1310b2e
CM
632 }
633 goto search_again;
634 }
635 /*
636 * | ---- desired range ---- |
637 * | state |
638 * We need to split the extent, and clear the bit
639 * on the first half
640 */
641 if (state->start <= end && state->end > end) {
8233767a
XG
642 prealloc = alloc_extent_state_atomic(prealloc);
643 BUG_ON(!prealloc);
d1310b2e 644 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
645 if (err)
646 extent_io_tree_panic(tree, err);
647
d1310b2e
CM
648 if (wake)
649 wake_up(&state->wq);
42daec29 650
6763af84 651 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 652
d1310b2e
CM
653 prealloc = NULL;
654 goto out;
655 }
42daec29 656
cdc6a395 657 state = clear_state_bit(tree, state, &bits, wake);
0449314a 658next:
5c939df5
YZ
659 if (last_end == (u64)-1)
660 goto out;
661 start = last_end + 1;
cdc6a395 662 if (start <= end && state && !need_resched())
692e5759 663 goto hit_next;
d1310b2e
CM
664 goto search_again;
665
666out:
cad321ad 667 spin_unlock(&tree->lock);
d1310b2e
CM
668 if (prealloc)
669 free_extent_state(prealloc);
670
6763af84 671 return 0;
d1310b2e
CM
672
673search_again:
674 if (start > end)
675 goto out;
cad321ad 676 spin_unlock(&tree->lock);
d1310b2e
CM
677 if (mask & __GFP_WAIT)
678 cond_resched();
679 goto again;
680}
d1310b2e 681
143bede5
JM
682static void wait_on_state(struct extent_io_tree *tree,
683 struct extent_state *state)
641f5219
CH
684 __releases(tree->lock)
685 __acquires(tree->lock)
d1310b2e
CM
686{
687 DEFINE_WAIT(wait);
688 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 689 spin_unlock(&tree->lock);
d1310b2e 690 schedule();
cad321ad 691 spin_lock(&tree->lock);
d1310b2e 692 finish_wait(&state->wq, &wait);
d1310b2e
CM
693}
694
695/*
696 * waits for one or more bits to clear on a range in the state tree.
697 * The range [start, end] is inclusive.
698 * The tree lock is taken by this function
699 */
41074888
DS
700static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
701 unsigned long bits)
d1310b2e
CM
702{
703 struct extent_state *state;
704 struct rb_node *node;
705
8d599ae1
DS
706 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
707
cad321ad 708 spin_lock(&tree->lock);
d1310b2e
CM
709again:
710 while (1) {
711 /*
712 * this search will find all the extents that end after
713 * our range starts
714 */
80ea96b1 715 node = tree_search(tree, start);
d1310b2e
CM
716 if (!node)
717 break;
718
719 state = rb_entry(node, struct extent_state, rb_node);
720
721 if (state->start > end)
722 goto out;
723
724 if (state->state & bits) {
725 start = state->start;
726 atomic_inc(&state->refs);
727 wait_on_state(tree, state);
728 free_extent_state(state);
729 goto again;
730 }
731 start = state->end + 1;
732
733 if (start > end)
734 break;
735
ded91f08 736 cond_resched_lock(&tree->lock);
d1310b2e
CM
737 }
738out:
cad321ad 739 spin_unlock(&tree->lock);
d1310b2e 740}
d1310b2e 741
1bf85046 742static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 743 struct extent_state *state,
41074888 744 unsigned long *bits)
d1310b2e 745{
41074888 746 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 747
1bf85046 748 set_state_cb(tree, state, bits);
0ca1f7ce 749 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
750 u64 range = state->end - state->start + 1;
751 tree->dirty_bytes += range;
752 }
0ca1f7ce 753 state->state |= bits_to_set;
d1310b2e
CM
754}
755
2c64c53d
CM
756static void cache_state(struct extent_state *state,
757 struct extent_state **cached_ptr)
758{
759 if (cached_ptr && !(*cached_ptr)) {
760 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
761 *cached_ptr = state;
762 atomic_inc(&state->refs);
763 }
764 }
765}
766
d1310b2e 767/*
1edbb734
CM
768 * set some bits on a range in the tree. This may require allocations or
769 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 770 *
1edbb734
CM
771 * If any of the exclusive bits are set, this will fail with -EEXIST if some
772 * part of the range already has the desired bits set. The start of the
773 * existing range is returned in failed_start in this case.
d1310b2e 774 *
1edbb734 775 * [start, end] is inclusive This takes the tree lock.
d1310b2e 776 */
1edbb734 777
3fbe5c02
JM
778static int __must_check
779__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
780 unsigned long bits, unsigned long exclusive_bits,
781 u64 *failed_start, struct extent_state **cached_state,
782 gfp_t mask)
d1310b2e
CM
783{
784 struct extent_state *state;
785 struct extent_state *prealloc = NULL;
786 struct rb_node *node;
d1310b2e 787 int err = 0;
d1310b2e
CM
788 u64 last_start;
789 u64 last_end;
42daec29 790
8d599ae1
DS
791 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
792
0ca1f7ce 793 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
794again:
795 if (!prealloc && (mask & __GFP_WAIT)) {
796 prealloc = alloc_extent_state(mask);
8233767a 797 BUG_ON(!prealloc);
d1310b2e
CM
798 }
799
cad321ad 800 spin_lock(&tree->lock);
9655d298
CM
801 if (cached_state && *cached_state) {
802 state = *cached_state;
df98b6e2
JB
803 if (state->start <= start && state->end > start &&
804 state->tree) {
9655d298
CM
805 node = &state->rb_node;
806 goto hit_next;
807 }
808 }
d1310b2e
CM
809 /*
810 * this search will find all the extents that end after
811 * our range starts.
812 */
80ea96b1 813 node = tree_search(tree, start);
d1310b2e 814 if (!node) {
8233767a
XG
815 prealloc = alloc_extent_state_atomic(prealloc);
816 BUG_ON(!prealloc);
0ca1f7ce 817 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
818 if (err)
819 extent_io_tree_panic(tree, err);
820
d1310b2e 821 prealloc = NULL;
d1310b2e
CM
822 goto out;
823 }
d1310b2e 824 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 825hit_next:
d1310b2e
CM
826 last_start = state->start;
827 last_end = state->end;
828
829 /*
830 * | ---- desired range ---- |
831 * | state |
832 *
833 * Just lock what we found and keep going
834 */
835 if (state->start == start && state->end <= end) {
1edbb734 836 if (state->state & exclusive_bits) {
d1310b2e
CM
837 *failed_start = state->start;
838 err = -EEXIST;
839 goto out;
840 }
42daec29 841
1bf85046 842 set_state_bits(tree, state, &bits);
2c64c53d 843 cache_state(state, cached_state);
d1310b2e 844 merge_state(tree, state);
5c939df5
YZ
845 if (last_end == (u64)-1)
846 goto out;
847 start = last_end + 1;
d1ac6e41
LB
848 state = next_state(state);
849 if (start < end && state && state->start == start &&
850 !need_resched())
851 goto hit_next;
d1310b2e
CM
852 goto search_again;
853 }
854
855 /*
856 * | ---- desired range ---- |
857 * | state |
858 * or
859 * | ------------- state -------------- |
860 *
861 * We need to split the extent we found, and may flip bits on
862 * second half.
863 *
864 * If the extent we found extends past our
865 * range, we just split and search again. It'll get split
866 * again the next time though.
867 *
868 * If the extent we found is inside our range, we set the
869 * desired bit on it.
870 */
871 if (state->start < start) {
1edbb734 872 if (state->state & exclusive_bits) {
d1310b2e
CM
873 *failed_start = start;
874 err = -EEXIST;
875 goto out;
876 }
8233767a
XG
877
878 prealloc = alloc_extent_state_atomic(prealloc);
879 BUG_ON(!prealloc);
d1310b2e 880 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
881 if (err)
882 extent_io_tree_panic(tree, err);
883
d1310b2e
CM
884 prealloc = NULL;
885 if (err)
886 goto out;
887 if (state->end <= end) {
1bf85046 888 set_state_bits(tree, state, &bits);
2c64c53d 889 cache_state(state, cached_state);
d1310b2e 890 merge_state(tree, state);
5c939df5
YZ
891 if (last_end == (u64)-1)
892 goto out;
893 start = last_end + 1;
d1ac6e41
LB
894 state = next_state(state);
895 if (start < end && state && state->start == start &&
896 !need_resched())
897 goto hit_next;
d1310b2e
CM
898 }
899 goto search_again;
900 }
901 /*
902 * | ---- desired range ---- |
903 * | state | or | state |
904 *
905 * There's a hole, we need to insert something in it and
906 * ignore the extent we found.
907 */
908 if (state->start > start) {
909 u64 this_end;
910 if (end < last_start)
911 this_end = end;
912 else
d397712b 913 this_end = last_start - 1;
8233767a
XG
914
915 prealloc = alloc_extent_state_atomic(prealloc);
916 BUG_ON(!prealloc);
c7f895a2
XG
917
918 /*
919 * Avoid to free 'prealloc' if it can be merged with
920 * the later extent.
921 */
d1310b2e 922 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 923 &bits);
c2d904e0
JM
924 if (err)
925 extent_io_tree_panic(tree, err);
926
9ed74f2d
JB
927 cache_state(prealloc, cached_state);
928 prealloc = NULL;
d1310b2e
CM
929 start = this_end + 1;
930 goto search_again;
931 }
932 /*
933 * | ---- desired range ---- |
934 * | state |
935 * We need to split the extent, and set the bit
936 * on the first half
937 */
938 if (state->start <= end && state->end > end) {
1edbb734 939 if (state->state & exclusive_bits) {
d1310b2e
CM
940 *failed_start = start;
941 err = -EEXIST;
942 goto out;
943 }
8233767a
XG
944
945 prealloc = alloc_extent_state_atomic(prealloc);
946 BUG_ON(!prealloc);
d1310b2e 947 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
948 if (err)
949 extent_io_tree_panic(tree, err);
d1310b2e 950
1bf85046 951 set_state_bits(tree, prealloc, &bits);
2c64c53d 952 cache_state(prealloc, cached_state);
d1310b2e
CM
953 merge_state(tree, prealloc);
954 prealloc = NULL;
955 goto out;
956 }
957
958 goto search_again;
959
960out:
cad321ad 961 spin_unlock(&tree->lock);
d1310b2e
CM
962 if (prealloc)
963 free_extent_state(prealloc);
964
965 return err;
966
967search_again:
968 if (start > end)
969 goto out;
cad321ad 970 spin_unlock(&tree->lock);
d1310b2e
CM
971 if (mask & __GFP_WAIT)
972 cond_resched();
973 goto again;
974}
d1310b2e 975
41074888
DS
976int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
977 unsigned long bits, u64 * failed_start,
978 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
979{
980 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
981 cached_state, mask);
982}
983
984
462d6fac 985/**
10983f2e
LB
986 * convert_extent_bit - convert all bits in a given range from one bit to
987 * another
462d6fac
JB
988 * @tree: the io tree to search
989 * @start: the start offset in bytes
990 * @end: the end offset in bytes (inclusive)
991 * @bits: the bits to set in this range
992 * @clear_bits: the bits to clear in this range
e6138876 993 * @cached_state: state that we're going to cache
462d6fac
JB
994 * @mask: the allocation mask
995 *
996 * This will go through and set bits for the given range. If any states exist
997 * already in this range they are set with the given bit and cleared of the
998 * clear_bits. This is only meant to be used by things that are mergeable, ie
999 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1000 * boundary bits like LOCK.
1001 */
1002int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1003 unsigned long bits, unsigned long clear_bits,
e6138876 1004 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1005{
1006 struct extent_state *state;
1007 struct extent_state *prealloc = NULL;
1008 struct rb_node *node;
1009 int err = 0;
1010 u64 last_start;
1011 u64 last_end;
1012
8d599ae1
DS
1013 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1014
462d6fac
JB
1015again:
1016 if (!prealloc && (mask & __GFP_WAIT)) {
1017 prealloc = alloc_extent_state(mask);
1018 if (!prealloc)
1019 return -ENOMEM;
1020 }
1021
1022 spin_lock(&tree->lock);
e6138876
JB
1023 if (cached_state && *cached_state) {
1024 state = *cached_state;
1025 if (state->start <= start && state->end > start &&
1026 state->tree) {
1027 node = &state->rb_node;
1028 goto hit_next;
1029 }
1030 }
1031
462d6fac
JB
1032 /*
1033 * this search will find all the extents that end after
1034 * our range starts.
1035 */
1036 node = tree_search(tree, start);
1037 if (!node) {
1038 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1039 if (!prealloc) {
1040 err = -ENOMEM;
1041 goto out;
1042 }
462d6fac
JB
1043 err = insert_state(tree, prealloc, start, end, &bits);
1044 prealloc = NULL;
c2d904e0
JM
1045 if (err)
1046 extent_io_tree_panic(tree, err);
462d6fac
JB
1047 goto out;
1048 }
1049 state = rb_entry(node, struct extent_state, rb_node);
1050hit_next:
1051 last_start = state->start;
1052 last_end = state->end;
1053
1054 /*
1055 * | ---- desired range ---- |
1056 * | state |
1057 *
1058 * Just lock what we found and keep going
1059 */
1060 if (state->start == start && state->end <= end) {
462d6fac 1061 set_state_bits(tree, state, &bits);
e6138876 1062 cache_state(state, cached_state);
d1ac6e41 1063 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1064 if (last_end == (u64)-1)
1065 goto out;
462d6fac 1066 start = last_end + 1;
d1ac6e41
LB
1067 if (start < end && state && state->start == start &&
1068 !need_resched())
1069 goto hit_next;
462d6fac
JB
1070 goto search_again;
1071 }
1072
1073 /*
1074 * | ---- desired range ---- |
1075 * | state |
1076 * or
1077 * | ------------- state -------------- |
1078 *
1079 * We need to split the extent we found, and may flip bits on
1080 * second half.
1081 *
1082 * If the extent we found extends past our
1083 * range, we just split and search again. It'll get split
1084 * again the next time though.
1085 *
1086 * If the extent we found is inside our range, we set the
1087 * desired bit on it.
1088 */
1089 if (state->start < start) {
1090 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1091 if (!prealloc) {
1092 err = -ENOMEM;
1093 goto out;
1094 }
462d6fac 1095 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1096 if (err)
1097 extent_io_tree_panic(tree, err);
462d6fac
JB
1098 prealloc = NULL;
1099 if (err)
1100 goto out;
1101 if (state->end <= end) {
1102 set_state_bits(tree, state, &bits);
e6138876 1103 cache_state(state, cached_state);
d1ac6e41 1104 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1105 if (last_end == (u64)-1)
1106 goto out;
1107 start = last_end + 1;
d1ac6e41
LB
1108 if (start < end && state && state->start == start &&
1109 !need_resched())
1110 goto hit_next;
462d6fac
JB
1111 }
1112 goto search_again;
1113 }
1114 /*
1115 * | ---- desired range ---- |
1116 * | state | or | state |
1117 *
1118 * There's a hole, we need to insert something in it and
1119 * ignore the extent we found.
1120 */
1121 if (state->start > start) {
1122 u64 this_end;
1123 if (end < last_start)
1124 this_end = end;
1125 else
1126 this_end = last_start - 1;
1127
1128 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1129 if (!prealloc) {
1130 err = -ENOMEM;
1131 goto out;
1132 }
462d6fac
JB
1133
1134 /*
1135 * Avoid to free 'prealloc' if it can be merged with
1136 * the later extent.
1137 */
1138 err = insert_state(tree, prealloc, start, this_end,
1139 &bits);
c2d904e0
JM
1140 if (err)
1141 extent_io_tree_panic(tree, err);
e6138876 1142 cache_state(prealloc, cached_state);
462d6fac
JB
1143 prealloc = NULL;
1144 start = this_end + 1;
1145 goto search_again;
1146 }
1147 /*
1148 * | ---- desired range ---- |
1149 * | state |
1150 * We need to split the extent, and set the bit
1151 * on the first half
1152 */
1153 if (state->start <= end && state->end > end) {
1154 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1155 if (!prealloc) {
1156 err = -ENOMEM;
1157 goto out;
1158 }
462d6fac
JB
1159
1160 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1161 if (err)
1162 extent_io_tree_panic(tree, err);
462d6fac
JB
1163
1164 set_state_bits(tree, prealloc, &bits);
e6138876 1165 cache_state(prealloc, cached_state);
462d6fac 1166 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1167 prealloc = NULL;
1168 goto out;
1169 }
1170
1171 goto search_again;
1172
1173out:
1174 spin_unlock(&tree->lock);
1175 if (prealloc)
1176 free_extent_state(prealloc);
1177
1178 return err;
1179
1180search_again:
1181 if (start > end)
1182 goto out;
1183 spin_unlock(&tree->lock);
1184 if (mask & __GFP_WAIT)
1185 cond_resched();
1186 goto again;
1187}
1188
d1310b2e
CM
1189/* wrappers around set/clear extent bit */
1190int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1191 gfp_t mask)
1192{
3fbe5c02 1193 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1194 NULL, mask);
d1310b2e 1195}
d1310b2e
CM
1196
1197int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1198 unsigned long bits, gfp_t mask)
d1310b2e 1199{
3fbe5c02 1200 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1201 NULL, mask);
d1310b2e 1202}
d1310b2e
CM
1203
1204int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1205 unsigned long bits, gfp_t mask)
d1310b2e 1206{
2c64c53d 1207 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1208}
d1310b2e
CM
1209
1210int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1211 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1212{
1213 return set_extent_bit(tree, start, end,
fee187d9 1214 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1215 NULL, cached_state, mask);
d1310b2e 1216}
d1310b2e 1217
9e8a4a8b
LB
1218int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1219 struct extent_state **cached_state, gfp_t mask)
1220{
1221 return set_extent_bit(tree, start, end,
1222 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1223 NULL, cached_state, mask);
1224}
1225
d1310b2e
CM
1226int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1227 gfp_t mask)
1228{
1229 return clear_extent_bit(tree, start, end,
32c00aff 1230 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1231 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1232}
d1310b2e
CM
1233
1234int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1235 gfp_t mask)
1236{
3fbe5c02 1237 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1238 NULL, mask);
d1310b2e 1239}
d1310b2e 1240
d1310b2e 1241int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1242 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1243{
6b67a320 1244 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1245 cached_state, mask);
d1310b2e 1246}
d1310b2e 1247
5fd02043
JB
1248int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1249 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1250{
2c64c53d 1251 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1252 cached_state, mask);
d1310b2e 1253}
d1310b2e 1254
d352ac68
CM
1255/*
1256 * either insert or lock state struct between start and end use mask to tell
1257 * us if waiting is desired.
1258 */
1edbb734 1259int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1260 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1261{
1262 int err;
1263 u64 failed_start;
1264 while (1) {
3fbe5c02
JM
1265 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1266 EXTENT_LOCKED, &failed_start,
1267 cached_state, GFP_NOFS);
d0082371 1268 if (err == -EEXIST) {
d1310b2e
CM
1269 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1270 start = failed_start;
d0082371 1271 } else
d1310b2e 1272 break;
d1310b2e
CM
1273 WARN_ON(start > end);
1274 }
1275 return err;
1276}
d1310b2e 1277
d0082371 1278int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1279{
d0082371 1280 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1281}
1282
d0082371 1283int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1284{
1285 int err;
1286 u64 failed_start;
1287
3fbe5c02
JM
1288 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1289 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1290 if (err == -EEXIST) {
1291 if (failed_start > start)
1292 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1293 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1294 return 0;
6643558d 1295 }
25179201
JB
1296 return 1;
1297}
25179201 1298
2c64c53d
CM
1299int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1300 struct extent_state **cached, gfp_t mask)
1301{
1302 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1303 mask);
1304}
1305
d0082371 1306int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1307{
2c64c53d 1308 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1309 GFP_NOFS);
d1310b2e 1310}
d1310b2e 1311
4adaa611
CM
1312int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1313{
1314 unsigned long index = start >> PAGE_CACHE_SHIFT;
1315 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1316 struct page *page;
1317
1318 while (index <= end_index) {
1319 page = find_get_page(inode->i_mapping, index);
1320 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1321 clear_page_dirty_for_io(page);
1322 page_cache_release(page);
1323 index++;
1324 }
1325 return 0;
1326}
1327
1328int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1329{
1330 unsigned long index = start >> PAGE_CACHE_SHIFT;
1331 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1332 struct page *page;
1333
1334 while (index <= end_index) {
1335 page = find_get_page(inode->i_mapping, index);
1336 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1337 account_page_redirty(page);
1338 __set_page_dirty_nobuffers(page);
1339 page_cache_release(page);
1340 index++;
1341 }
1342 return 0;
1343}
1344
d1310b2e
CM
1345/*
1346 * helper function to set both pages and extents in the tree writeback
1347 */
b2950863 1348static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1349{
1350 unsigned long index = start >> PAGE_CACHE_SHIFT;
1351 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1352 struct page *page;
1353
1354 while (index <= end_index) {
1355 page = find_get_page(tree->mapping, index);
79787eaa 1356 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1357 set_page_writeback(page);
1358 page_cache_release(page);
1359 index++;
1360 }
d1310b2e
CM
1361 return 0;
1362}
d1310b2e 1363
d352ac68
CM
1364/* find the first state struct with 'bits' set after 'start', and
1365 * return it. tree->lock must be held. NULL will returned if
1366 * nothing was found after 'start'
1367 */
48a3b636
ES
1368static struct extent_state *
1369find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1370 u64 start, unsigned long bits)
d7fc640e
CM
1371{
1372 struct rb_node *node;
1373 struct extent_state *state;
1374
1375 /*
1376 * this search will find all the extents that end after
1377 * our range starts.
1378 */
1379 node = tree_search(tree, start);
d397712b 1380 if (!node)
d7fc640e 1381 goto out;
d7fc640e 1382
d397712b 1383 while (1) {
d7fc640e 1384 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1385 if (state->end >= start && (state->state & bits))
d7fc640e 1386 return state;
d397712b 1387
d7fc640e
CM
1388 node = rb_next(node);
1389 if (!node)
1390 break;
1391 }
1392out:
1393 return NULL;
1394}
d7fc640e 1395
69261c4b
XG
1396/*
1397 * find the first offset in the io tree with 'bits' set. zero is
1398 * returned if we find something, and *start_ret and *end_ret are
1399 * set to reflect the state struct that was found.
1400 *
477d7eaf 1401 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1402 */
1403int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1404 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1405 struct extent_state **cached_state)
69261c4b
XG
1406{
1407 struct extent_state *state;
e6138876 1408 struct rb_node *n;
69261c4b
XG
1409 int ret = 1;
1410
1411 spin_lock(&tree->lock);
e6138876
JB
1412 if (cached_state && *cached_state) {
1413 state = *cached_state;
1414 if (state->end == start - 1 && state->tree) {
1415 n = rb_next(&state->rb_node);
1416 while (n) {
1417 state = rb_entry(n, struct extent_state,
1418 rb_node);
1419 if (state->state & bits)
1420 goto got_it;
1421 n = rb_next(n);
1422 }
1423 free_extent_state(*cached_state);
1424 *cached_state = NULL;
1425 goto out;
1426 }
1427 free_extent_state(*cached_state);
1428 *cached_state = NULL;
1429 }
1430
69261c4b 1431 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1432got_it:
69261c4b 1433 if (state) {
e6138876 1434 cache_state(state, cached_state);
69261c4b
XG
1435 *start_ret = state->start;
1436 *end_ret = state->end;
1437 ret = 0;
1438 }
e6138876 1439out:
69261c4b
XG
1440 spin_unlock(&tree->lock);
1441 return ret;
1442}
1443
d352ac68
CM
1444/*
1445 * find a contiguous range of bytes in the file marked as delalloc, not
1446 * more than 'max_bytes'. start and end are used to return the range,
1447 *
1448 * 1 is returned if we find something, 0 if nothing was in the tree
1449 */
c8b97818 1450static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1451 u64 *start, u64 *end, u64 max_bytes,
1452 struct extent_state **cached_state)
d1310b2e
CM
1453{
1454 struct rb_node *node;
1455 struct extent_state *state;
1456 u64 cur_start = *start;
1457 u64 found = 0;
1458 u64 total_bytes = 0;
1459
cad321ad 1460 spin_lock(&tree->lock);
c8b97818 1461
d1310b2e
CM
1462 /*
1463 * this search will find all the extents that end after
1464 * our range starts.
1465 */
80ea96b1 1466 node = tree_search(tree, cur_start);
2b114d1d 1467 if (!node) {
3b951516
CM
1468 if (!found)
1469 *end = (u64)-1;
d1310b2e
CM
1470 goto out;
1471 }
1472
d397712b 1473 while (1) {
d1310b2e 1474 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1475 if (found && (state->start != cur_start ||
1476 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1477 goto out;
1478 }
1479 if (!(state->state & EXTENT_DELALLOC)) {
1480 if (!found)
1481 *end = state->end;
1482 goto out;
1483 }
c2a128d2 1484 if (!found) {
d1310b2e 1485 *start = state->start;
c2a128d2
JB
1486 *cached_state = state;
1487 atomic_inc(&state->refs);
1488 }
d1310b2e
CM
1489 found++;
1490 *end = state->end;
1491 cur_start = state->end + 1;
1492 node = rb_next(node);
d1310b2e 1493 total_bytes += state->end - state->start + 1;
7bf811a5 1494 if (total_bytes >= max_bytes)
573aecaf 1495 break;
573aecaf 1496 if (!node)
d1310b2e
CM
1497 break;
1498 }
1499out:
cad321ad 1500 spin_unlock(&tree->lock);
d1310b2e
CM
1501 return found;
1502}
1503
143bede5
JM
1504static noinline void __unlock_for_delalloc(struct inode *inode,
1505 struct page *locked_page,
1506 u64 start, u64 end)
c8b97818
CM
1507{
1508 int ret;
1509 struct page *pages[16];
1510 unsigned long index = start >> PAGE_CACHE_SHIFT;
1511 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1512 unsigned long nr_pages = end_index - index + 1;
1513 int i;
1514
1515 if (index == locked_page->index && end_index == index)
143bede5 1516 return;
c8b97818 1517
d397712b 1518 while (nr_pages > 0) {
c8b97818 1519 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1520 min_t(unsigned long, nr_pages,
1521 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1522 for (i = 0; i < ret; i++) {
1523 if (pages[i] != locked_page)
1524 unlock_page(pages[i]);
1525 page_cache_release(pages[i]);
1526 }
1527 nr_pages -= ret;
1528 index += ret;
1529 cond_resched();
1530 }
c8b97818
CM
1531}
1532
1533static noinline int lock_delalloc_pages(struct inode *inode,
1534 struct page *locked_page,
1535 u64 delalloc_start,
1536 u64 delalloc_end)
1537{
1538 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1539 unsigned long start_index = index;
1540 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1541 unsigned long pages_locked = 0;
1542 struct page *pages[16];
1543 unsigned long nrpages;
1544 int ret;
1545 int i;
1546
1547 /* the caller is responsible for locking the start index */
1548 if (index == locked_page->index && index == end_index)
1549 return 0;
1550
1551 /* skip the page at the start index */
1552 nrpages = end_index - index + 1;
d397712b 1553 while (nrpages > 0) {
c8b97818 1554 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1555 min_t(unsigned long,
1556 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1557 if (ret == 0) {
1558 ret = -EAGAIN;
1559 goto done;
1560 }
1561 /* now we have an array of pages, lock them all */
1562 for (i = 0; i < ret; i++) {
1563 /*
1564 * the caller is taking responsibility for
1565 * locked_page
1566 */
771ed689 1567 if (pages[i] != locked_page) {
c8b97818 1568 lock_page(pages[i]);
f2b1c41c
CM
1569 if (!PageDirty(pages[i]) ||
1570 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1571 ret = -EAGAIN;
1572 unlock_page(pages[i]);
1573 page_cache_release(pages[i]);
1574 goto done;
1575 }
1576 }
c8b97818 1577 page_cache_release(pages[i]);
771ed689 1578 pages_locked++;
c8b97818 1579 }
c8b97818
CM
1580 nrpages -= ret;
1581 index += ret;
1582 cond_resched();
1583 }
1584 ret = 0;
1585done:
1586 if (ret && pages_locked) {
1587 __unlock_for_delalloc(inode, locked_page,
1588 delalloc_start,
1589 ((u64)(start_index + pages_locked - 1)) <<
1590 PAGE_CACHE_SHIFT);
1591 }
1592 return ret;
1593}
1594
1595/*
1596 * find a contiguous range of bytes in the file marked as delalloc, not
1597 * more than 'max_bytes'. start and end are used to return the range,
1598 *
1599 * 1 is returned if we find something, 0 if nothing was in the tree
1600 */
1601static noinline u64 find_lock_delalloc_range(struct inode *inode,
1602 struct extent_io_tree *tree,
1603 struct page *locked_page,
1604 u64 *start, u64 *end,
1605 u64 max_bytes)
1606{
1607 u64 delalloc_start;
1608 u64 delalloc_end;
1609 u64 found;
9655d298 1610 struct extent_state *cached_state = NULL;
c8b97818
CM
1611 int ret;
1612 int loops = 0;
1613
1614again:
1615 /* step one, find a bunch of delalloc bytes starting at start */
1616 delalloc_start = *start;
1617 delalloc_end = 0;
1618 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1619 max_bytes, &cached_state);
70b99e69 1620 if (!found || delalloc_end <= *start) {
c8b97818
CM
1621 *start = delalloc_start;
1622 *end = delalloc_end;
c2a128d2 1623 free_extent_state(cached_state);
385fe0be 1624 return 0;
c8b97818
CM
1625 }
1626
70b99e69
CM
1627 /*
1628 * start comes from the offset of locked_page. We have to lock
1629 * pages in order, so we can't process delalloc bytes before
1630 * locked_page
1631 */
d397712b 1632 if (delalloc_start < *start)
70b99e69 1633 delalloc_start = *start;
70b99e69 1634
c8b97818
CM
1635 /*
1636 * make sure to limit the number of pages we try to lock down
c8b97818 1637 */
7bf811a5
JB
1638 if (delalloc_end + 1 - delalloc_start > max_bytes)
1639 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1640
c8b97818
CM
1641 /* step two, lock all the pages after the page that has start */
1642 ret = lock_delalloc_pages(inode, locked_page,
1643 delalloc_start, delalloc_end);
1644 if (ret == -EAGAIN) {
1645 /* some of the pages are gone, lets avoid looping by
1646 * shortening the size of the delalloc range we're searching
1647 */
9655d298 1648 free_extent_state(cached_state);
c8b97818 1649 if (!loops) {
7bf811a5 1650 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1651 loops = 1;
1652 goto again;
1653 } else {
1654 found = 0;
1655 goto out_failed;
1656 }
1657 }
79787eaa 1658 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1659
1660 /* step three, lock the state bits for the whole range */
d0082371 1661 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1662
1663 /* then test to make sure it is all still delalloc */
1664 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1665 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1666 if (!ret) {
9655d298
CM
1667 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668 &cached_state, GFP_NOFS);
c8b97818
CM
1669 __unlock_for_delalloc(inode, locked_page,
1670 delalloc_start, delalloc_end);
1671 cond_resched();
1672 goto again;
1673 }
9655d298 1674 free_extent_state(cached_state);
c8b97818
CM
1675 *start = delalloc_start;
1676 *end = delalloc_end;
1677out_failed:
1678 return found;
1679}
1680
c2790a2e
JB
1681int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1682 struct page *locked_page,
1683 unsigned long clear_bits,
1684 unsigned long page_ops)
c8b97818 1685{
c2790a2e 1686 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1687 int ret;
1688 struct page *pages[16];
1689 unsigned long index = start >> PAGE_CACHE_SHIFT;
1690 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1691 unsigned long nr_pages = end_index - index + 1;
1692 int i;
771ed689 1693
2c64c53d 1694 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1695 if (page_ops == 0)
771ed689 1696 return 0;
c8b97818 1697
d397712b 1698 while (nr_pages > 0) {
c8b97818 1699 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1700 min_t(unsigned long,
1701 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1702 for (i = 0; i < ret; i++) {
8b62b72b 1703
c2790a2e 1704 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1705 SetPagePrivate2(pages[i]);
1706
c8b97818
CM
1707 if (pages[i] == locked_page) {
1708 page_cache_release(pages[i]);
1709 continue;
1710 }
c2790a2e 1711 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1712 clear_page_dirty_for_io(pages[i]);
c2790a2e 1713 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1714 set_page_writeback(pages[i]);
c2790a2e 1715 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1716 end_page_writeback(pages[i]);
c2790a2e 1717 if (page_ops & PAGE_UNLOCK)
771ed689 1718 unlock_page(pages[i]);
c8b97818
CM
1719 page_cache_release(pages[i]);
1720 }
1721 nr_pages -= ret;
1722 index += ret;
1723 cond_resched();
1724 }
1725 return 0;
1726}
c8b97818 1727
d352ac68
CM
1728/*
1729 * count the number of bytes in the tree that have a given bit(s)
1730 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1731 * cached. The total number found is returned.
1732 */
d1310b2e
CM
1733u64 count_range_bits(struct extent_io_tree *tree,
1734 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1735 unsigned long bits, int contig)
d1310b2e
CM
1736{
1737 struct rb_node *node;
1738 struct extent_state *state;
1739 u64 cur_start = *start;
1740 u64 total_bytes = 0;
ec29ed5b 1741 u64 last = 0;
d1310b2e
CM
1742 int found = 0;
1743
1744 if (search_end <= cur_start) {
d1310b2e
CM
1745 WARN_ON(1);
1746 return 0;
1747 }
1748
cad321ad 1749 spin_lock(&tree->lock);
d1310b2e
CM
1750 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1751 total_bytes = tree->dirty_bytes;
1752 goto out;
1753 }
1754 /*
1755 * this search will find all the extents that end after
1756 * our range starts.
1757 */
80ea96b1 1758 node = tree_search(tree, cur_start);
d397712b 1759 if (!node)
d1310b2e 1760 goto out;
d1310b2e 1761
d397712b 1762 while (1) {
d1310b2e
CM
1763 state = rb_entry(node, struct extent_state, rb_node);
1764 if (state->start > search_end)
1765 break;
ec29ed5b
CM
1766 if (contig && found && state->start > last + 1)
1767 break;
1768 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1769 total_bytes += min(search_end, state->end) + 1 -
1770 max(cur_start, state->start);
1771 if (total_bytes >= max_bytes)
1772 break;
1773 if (!found) {
af60bed2 1774 *start = max(cur_start, state->start);
d1310b2e
CM
1775 found = 1;
1776 }
ec29ed5b
CM
1777 last = state->end;
1778 } else if (contig && found) {
1779 break;
d1310b2e
CM
1780 }
1781 node = rb_next(node);
1782 if (!node)
1783 break;
1784 }
1785out:
cad321ad 1786 spin_unlock(&tree->lock);
d1310b2e
CM
1787 return total_bytes;
1788}
b2950863 1789
d352ac68
CM
1790/*
1791 * set the private field for a given byte offset in the tree. If there isn't
1792 * an extent_state there already, this does nothing.
1793 */
171170c1 1794static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1795{
1796 struct rb_node *node;
1797 struct extent_state *state;
1798 int ret = 0;
1799
cad321ad 1800 spin_lock(&tree->lock);
d1310b2e
CM
1801 /*
1802 * this search will find all the extents that end after
1803 * our range starts.
1804 */
80ea96b1 1805 node = tree_search(tree, start);
2b114d1d 1806 if (!node) {
d1310b2e
CM
1807 ret = -ENOENT;
1808 goto out;
1809 }
1810 state = rb_entry(node, struct extent_state, rb_node);
1811 if (state->start != start) {
1812 ret = -ENOENT;
1813 goto out;
1814 }
1815 state->private = private;
1816out:
cad321ad 1817 spin_unlock(&tree->lock);
d1310b2e
CM
1818 return ret;
1819}
1820
1821int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1822{
1823 struct rb_node *node;
1824 struct extent_state *state;
1825 int ret = 0;
1826
cad321ad 1827 spin_lock(&tree->lock);
d1310b2e
CM
1828 /*
1829 * this search will find all the extents that end after
1830 * our range starts.
1831 */
80ea96b1 1832 node = tree_search(tree, start);
2b114d1d 1833 if (!node) {
d1310b2e
CM
1834 ret = -ENOENT;
1835 goto out;
1836 }
1837 state = rb_entry(node, struct extent_state, rb_node);
1838 if (state->start != start) {
1839 ret = -ENOENT;
1840 goto out;
1841 }
1842 *private = state->private;
1843out:
cad321ad 1844 spin_unlock(&tree->lock);
d1310b2e
CM
1845 return ret;
1846}
1847
1848/*
1849 * searches a range in the state tree for a given mask.
70dec807 1850 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1851 * has the bits set. Otherwise, 1 is returned if any bit in the
1852 * range is found set.
1853 */
1854int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1855 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1856{
1857 struct extent_state *state = NULL;
1858 struct rb_node *node;
1859 int bitset = 0;
d1310b2e 1860
cad321ad 1861 spin_lock(&tree->lock);
df98b6e2
JB
1862 if (cached && cached->tree && cached->start <= start &&
1863 cached->end > start)
9655d298
CM
1864 node = &cached->rb_node;
1865 else
1866 node = tree_search(tree, start);
d1310b2e
CM
1867 while (node && start <= end) {
1868 state = rb_entry(node, struct extent_state, rb_node);
1869
1870 if (filled && state->start > start) {
1871 bitset = 0;
1872 break;
1873 }
1874
1875 if (state->start > end)
1876 break;
1877
1878 if (state->state & bits) {
1879 bitset = 1;
1880 if (!filled)
1881 break;
1882 } else if (filled) {
1883 bitset = 0;
1884 break;
1885 }
46562cec
CM
1886
1887 if (state->end == (u64)-1)
1888 break;
1889
d1310b2e
CM
1890 start = state->end + 1;
1891 if (start > end)
1892 break;
1893 node = rb_next(node);
1894 if (!node) {
1895 if (filled)
1896 bitset = 0;
1897 break;
1898 }
1899 }
cad321ad 1900 spin_unlock(&tree->lock);
d1310b2e
CM
1901 return bitset;
1902}
d1310b2e
CM
1903
1904/*
1905 * helper function to set a given page up to date if all the
1906 * extents in the tree for that page are up to date
1907 */
143bede5 1908static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1909{
4eee4fa4 1910 u64 start = page_offset(page);
d1310b2e 1911 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1912 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1913 SetPageUptodate(page);
d1310b2e
CM
1914}
1915
4a54c8c1
JS
1916/*
1917 * When IO fails, either with EIO or csum verification fails, we
1918 * try other mirrors that might have a good copy of the data. This
1919 * io_failure_record is used to record state as we go through all the
1920 * mirrors. If another mirror has good data, the page is set up to date
1921 * and things continue. If a good mirror can't be found, the original
1922 * bio end_io callback is called to indicate things have failed.
1923 */
1924struct io_failure_record {
1925 struct page *page;
1926 u64 start;
1927 u64 len;
1928 u64 logical;
1929 unsigned long bio_flags;
1930 int this_mirror;
1931 int failed_mirror;
1932 int in_validation;
1933};
1934
1935static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1936 int did_repair)
1937{
1938 int ret;
1939 int err = 0;
1940 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1941
1942 set_state_private(failure_tree, rec->start, 0);
1943 ret = clear_extent_bits(failure_tree, rec->start,
1944 rec->start + rec->len - 1,
1945 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1946 if (ret)
1947 err = ret;
1948
53b381b3
DW
1949 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1950 rec->start + rec->len - 1,
1951 EXTENT_DAMAGED, GFP_NOFS);
1952 if (ret && !err)
1953 err = ret;
4a54c8c1
JS
1954
1955 kfree(rec);
1956 return err;
1957}
1958
1959static void repair_io_failure_callback(struct bio *bio, int err)
1960{
1961 complete(bio->bi_private);
1962}
1963
1964/*
1965 * this bypasses the standard btrfs submit functions deliberately, as
1966 * the standard behavior is to write all copies in a raid setup. here we only
1967 * want to write the one bad copy. so we do the mapping for ourselves and issue
1968 * submit_bio directly.
3ec706c8 1969 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1970 * actually prevents the read that triggered the error from finishing.
1971 * currently, there can be no more than two copies of every data bit. thus,
1972 * exactly one rewrite is required.
1973 */
3ec706c8 1974int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
1975 u64 length, u64 logical, struct page *page,
1976 int mirror_num)
1977{
1978 struct bio *bio;
1979 struct btrfs_device *dev;
1980 DECLARE_COMPLETION_ONSTACK(compl);
1981 u64 map_length = 0;
1982 u64 sector;
1983 struct btrfs_bio *bbio = NULL;
53b381b3 1984 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
1985 int ret;
1986
1987 BUG_ON(!mirror_num);
1988
53b381b3
DW
1989 /* we can't repair anything in raid56 yet */
1990 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1991 return 0;
1992
9be3395b 1993 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
1994 if (!bio)
1995 return -EIO;
1996 bio->bi_private = &compl;
1997 bio->bi_end_io = repair_io_failure_callback;
1998 bio->bi_size = 0;
1999 map_length = length;
2000
3ec706c8 2001 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2002 &map_length, &bbio, mirror_num);
2003 if (ret) {
2004 bio_put(bio);
2005 return -EIO;
2006 }
2007 BUG_ON(mirror_num != bbio->mirror_num);
2008 sector = bbio->stripes[mirror_num-1].physical >> 9;
2009 bio->bi_sector = sector;
2010 dev = bbio->stripes[mirror_num-1].dev;
2011 kfree(bbio);
2012 if (!dev || !dev->bdev || !dev->writeable) {
2013 bio_put(bio);
2014 return -EIO;
2015 }
2016 bio->bi_bdev = dev->bdev;
4eee4fa4 2017 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2018 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2019 wait_for_completion(&compl);
2020
2021 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2022 /* try to remap that extent elsewhere? */
2023 bio_put(bio);
442a4f63 2024 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2025 return -EIO;
2026 }
2027
d5b025d5 2028 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2029 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2030 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2031
2032 bio_put(bio);
2033 return 0;
2034}
2035
ea466794
JB
2036int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2037 int mirror_num)
2038{
ea466794
JB
2039 u64 start = eb->start;
2040 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2041 int ret = 0;
ea466794
JB
2042
2043 for (i = 0; i < num_pages; i++) {
2044 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2045 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2046 start, p, mirror_num);
2047 if (ret)
2048 break;
2049 start += PAGE_CACHE_SIZE;
2050 }
2051
2052 return ret;
2053}
2054
4a54c8c1
JS
2055/*
2056 * each time an IO finishes, we do a fast check in the IO failure tree
2057 * to see if we need to process or clean up an io_failure_record
2058 */
2059static int clean_io_failure(u64 start, struct page *page)
2060{
2061 u64 private;
2062 u64 private_failure;
2063 struct io_failure_record *failrec;
3ec706c8 2064 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2065 struct extent_state *state;
2066 int num_copies;
2067 int did_repair = 0;
2068 int ret;
2069 struct inode *inode = page->mapping->host;
2070
2071 private = 0;
2072 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2073 (u64)-1, 1, EXTENT_DIRTY, 0);
2074 if (!ret)
2075 return 0;
2076
2077 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2078 &private_failure);
2079 if (ret)
2080 return 0;
2081
2082 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2083 BUG_ON(!failrec->this_mirror);
2084
2085 if (failrec->in_validation) {
2086 /* there was no real error, just free the record */
2087 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2088 failrec->start);
2089 did_repair = 1;
2090 goto out;
2091 }
2092
2093 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2094 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2095 failrec->start,
2096 EXTENT_LOCKED);
2097 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2098
883d0de4
MX
2099 if (state && state->start <= failrec->start &&
2100 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2101 fs_info = BTRFS_I(inode)->root->fs_info;
2102 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 failrec->len);
4a54c8c1 2104 if (num_copies > 1) {
3ec706c8 2105 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2106 failrec->logical, page,
2107 failrec->failed_mirror);
2108 did_repair = !ret;
2109 }
53b381b3 2110 ret = 0;
4a54c8c1
JS
2111 }
2112
2113out:
2114 if (!ret)
2115 ret = free_io_failure(inode, failrec, did_repair);
2116
2117 return ret;
2118}
2119
2120/*
2121 * this is a generic handler for readpage errors (default
2122 * readpage_io_failed_hook). if other copies exist, read those and write back
2123 * good data to the failed position. does not investigate in remapping the
2124 * failed extent elsewhere, hoping the device will be smart enough to do this as
2125 * needed
2126 */
2127
facc8a22
MX
2128static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2129 struct page *page, u64 start, u64 end,
2130 int failed_mirror)
4a54c8c1
JS
2131{
2132 struct io_failure_record *failrec = NULL;
2133 u64 private;
2134 struct extent_map *em;
2135 struct inode *inode = page->mapping->host;
2136 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2137 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2138 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2139 struct bio *bio;
facc8a22
MX
2140 struct btrfs_io_bio *btrfs_failed_bio;
2141 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2142 int num_copies;
2143 int ret;
2144 int read_mode;
2145 u64 logical;
2146
2147 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2148
2149 ret = get_state_private(failure_tree, start, &private);
2150 if (ret) {
2151 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2152 if (!failrec)
2153 return -ENOMEM;
2154 failrec->start = start;
2155 failrec->len = end - start + 1;
2156 failrec->this_mirror = 0;
2157 failrec->bio_flags = 0;
2158 failrec->in_validation = 0;
2159
2160 read_lock(&em_tree->lock);
2161 em = lookup_extent_mapping(em_tree, start, failrec->len);
2162 if (!em) {
2163 read_unlock(&em_tree->lock);
2164 kfree(failrec);
2165 return -EIO;
2166 }
2167
2168 if (em->start > start || em->start + em->len < start) {
2169 free_extent_map(em);
2170 em = NULL;
2171 }
2172 read_unlock(&em_tree->lock);
2173
7a2d6a64 2174 if (!em) {
4a54c8c1
JS
2175 kfree(failrec);
2176 return -EIO;
2177 }
2178 logical = start - em->start;
2179 logical = em->block_start + logical;
2180 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2181 logical = em->block_start;
2182 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2183 extent_set_compress_type(&failrec->bio_flags,
2184 em->compress_type);
2185 }
2186 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2187 "len=%llu\n", logical, start, failrec->len);
2188 failrec->logical = logical;
2189 free_extent_map(em);
2190
2191 /* set the bits in the private failure tree */
2192 ret = set_extent_bits(failure_tree, start, end,
2193 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2194 if (ret >= 0)
2195 ret = set_state_private(failure_tree, start,
2196 (u64)(unsigned long)failrec);
2197 /* set the bits in the inode's tree */
2198 if (ret >= 0)
2199 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2200 GFP_NOFS);
2201 if (ret < 0) {
2202 kfree(failrec);
2203 return ret;
2204 }
2205 } else {
2206 failrec = (struct io_failure_record *)(unsigned long)private;
2207 pr_debug("bio_readpage_error: (found) logical=%llu, "
2208 "start=%llu, len=%llu, validation=%d\n",
2209 failrec->logical, failrec->start, failrec->len,
2210 failrec->in_validation);
2211 /*
2212 * when data can be on disk more than twice, add to failrec here
2213 * (e.g. with a list for failed_mirror) to make
2214 * clean_io_failure() clean all those errors at once.
2215 */
2216 }
5d964051
SB
2217 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2218 failrec->logical, failrec->len);
4a54c8c1
JS
2219 if (num_copies == 1) {
2220 /*
2221 * we only have a single copy of the data, so don't bother with
2222 * all the retry and error correction code that follows. no
2223 * matter what the error is, it is very likely to persist.
2224 */
09a7f7a2
MX
2225 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2226 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2227 free_io_failure(inode, failrec, 0);
2228 return -EIO;
2229 }
2230
4a54c8c1
JS
2231 /*
2232 * there are two premises:
2233 * a) deliver good data to the caller
2234 * b) correct the bad sectors on disk
2235 */
2236 if (failed_bio->bi_vcnt > 1) {
2237 /*
2238 * to fulfill b), we need to know the exact failing sectors, as
2239 * we don't want to rewrite any more than the failed ones. thus,
2240 * we need separate read requests for the failed bio
2241 *
2242 * if the following BUG_ON triggers, our validation request got
2243 * merged. we need separate requests for our algorithm to work.
2244 */
2245 BUG_ON(failrec->in_validation);
2246 failrec->in_validation = 1;
2247 failrec->this_mirror = failed_mirror;
2248 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2249 } else {
2250 /*
2251 * we're ready to fulfill a) and b) alongside. get a good copy
2252 * of the failed sector and if we succeed, we have setup
2253 * everything for repair_io_failure to do the rest for us.
2254 */
2255 if (failrec->in_validation) {
2256 BUG_ON(failrec->this_mirror != failed_mirror);
2257 failrec->in_validation = 0;
2258 failrec->this_mirror = 0;
2259 }
2260 failrec->failed_mirror = failed_mirror;
2261 failrec->this_mirror++;
2262 if (failrec->this_mirror == failed_mirror)
2263 failrec->this_mirror++;
2264 read_mode = READ_SYNC;
2265 }
2266
facc8a22
MX
2267 if (failrec->this_mirror > num_copies) {
2268 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2269 num_copies, failrec->this_mirror, failed_mirror);
2270 free_io_failure(inode, failrec, 0);
2271 return -EIO;
2272 }
2273
9be3395b 2274 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2275 if (!bio) {
2276 free_io_failure(inode, failrec, 0);
2277 return -EIO;
2278 }
4a54c8c1
JS
2279 bio->bi_end_io = failed_bio->bi_end_io;
2280 bio->bi_sector = failrec->logical >> 9;
2281 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2282 bio->bi_size = 0;
2283
facc8a22
MX
2284 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2285 if (btrfs_failed_bio->csum) {
2286 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2288
2289 btrfs_bio = btrfs_io_bio(bio);
2290 btrfs_bio->csum = btrfs_bio->csum_inline;
2291 phy_offset >>= inode->i_sb->s_blocksize_bits;
2292 phy_offset *= csum_size;
2293 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2294 csum_size);
2295 }
2296
4a54c8c1
JS
2297 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2298
2299 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2300 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2301 failrec->this_mirror, num_copies, failrec->in_validation);
2302
013bd4c3
TI
2303 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2304 failrec->this_mirror,
2305 failrec->bio_flags, 0);
2306 return ret;
4a54c8c1
JS
2307}
2308
d1310b2e
CM
2309/* lots and lots of room for performance fixes in the end_bio funcs */
2310
87826df0
JM
2311int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2312{
2313 int uptodate = (err == 0);
2314 struct extent_io_tree *tree;
2315 int ret;
2316
2317 tree = &BTRFS_I(page->mapping->host)->io_tree;
2318
2319 if (tree->ops && tree->ops->writepage_end_io_hook) {
2320 ret = tree->ops->writepage_end_io_hook(page, start,
2321 end, NULL, uptodate);
2322 if (ret)
2323 uptodate = 0;
2324 }
2325
87826df0 2326 if (!uptodate) {
87826df0
JM
2327 ClearPageUptodate(page);
2328 SetPageError(page);
2329 }
2330 return 0;
2331}
2332
d1310b2e
CM
2333/*
2334 * after a writepage IO is done, we need to:
2335 * clear the uptodate bits on error
2336 * clear the writeback bits in the extent tree for this IO
2337 * end_page_writeback if the page has no more pending IO
2338 *
2339 * Scheduling is not allowed, so the extent state tree is expected
2340 * to have one and only one object corresponding to this IO.
2341 */
d1310b2e 2342static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2343{
d1310b2e 2344 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2345 struct extent_io_tree *tree;
d1310b2e
CM
2346 u64 start;
2347 u64 end;
d1310b2e 2348
d1310b2e
CM
2349 do {
2350 struct page *page = bvec->bv_page;
902b22f3
DW
2351 tree = &BTRFS_I(page->mapping->host)->io_tree;
2352
17a5adcc
AO
2353 /* We always issue full-page reads, but if some block
2354 * in a page fails to read, blk_update_request() will
2355 * advance bv_offset and adjust bv_len to compensate.
2356 * Print a warning for nonzero offsets, and an error
2357 * if they don't add up to a full page. */
2358 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2359 printk("%s page write in btrfs with offset %u and length %u\n",
2360 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2361 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2362 bvec->bv_offset, bvec->bv_len);
d1310b2e 2363
17a5adcc
AO
2364 start = page_offset(page);
2365 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2366
2367 if (--bvec >= bio->bi_io_vec)
2368 prefetchw(&bvec->bv_page->flags);
1259ab75 2369
87826df0
JM
2370 if (end_extent_writepage(page, err, start, end))
2371 continue;
70dec807 2372
17a5adcc 2373 end_page_writeback(page);
d1310b2e 2374 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2375
d1310b2e 2376 bio_put(bio);
d1310b2e
CM
2377}
2378
883d0de4
MX
2379static void
2380endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2381 int uptodate)
2382{
2383 struct extent_state *cached = NULL;
2384 u64 end = start + len - 1;
2385
2386 if (uptodate && tree->track_uptodate)
2387 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2388 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2389}
2390
d1310b2e
CM
2391/*
2392 * after a readpage IO is done, we need to:
2393 * clear the uptodate bits on error
2394 * set the uptodate bits if things worked
2395 * set the page up to date if all extents in the tree are uptodate
2396 * clear the lock bit in the extent tree
2397 * unlock the page if there are no other extents locked for it
2398 *
2399 * Scheduling is not allowed, so the extent state tree is expected
2400 * to have one and only one object corresponding to this IO.
2401 */
d1310b2e 2402static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2403{
2404 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2405 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2406 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2407 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2408 struct extent_io_tree *tree;
facc8a22 2409 u64 offset = 0;
d1310b2e
CM
2410 u64 start;
2411 u64 end;
facc8a22 2412 u64 len;
883d0de4
MX
2413 u64 extent_start = 0;
2414 u64 extent_len = 0;
5cf1ab56 2415 int mirror;
d1310b2e
CM
2416 int ret;
2417
d20f7043
CM
2418 if (err)
2419 uptodate = 0;
2420
d1310b2e
CM
2421 do {
2422 struct page *page = bvec->bv_page;
a71754fc 2423 struct inode *inode = page->mapping->host;
507903b8 2424
be3940c0 2425 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2426 "mirror=%lu\n", (u64)bio->bi_sector, err,
2427 io_bio->mirror_num);
a71754fc 2428 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2429
17a5adcc
AO
2430 /* We always issue full-page reads, but if some block
2431 * in a page fails to read, blk_update_request() will
2432 * advance bv_offset and adjust bv_len to compensate.
2433 * Print a warning for nonzero offsets, and an error
2434 * if they don't add up to a full page. */
2435 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2436 printk("%s page read in btrfs with offset %u and length %u\n",
2437 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2438 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2439 bvec->bv_offset, bvec->bv_len);
d1310b2e 2440
17a5adcc
AO
2441 start = page_offset(page);
2442 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2443 len = bvec->bv_len;
d1310b2e 2444
4125bf76 2445 if (++bvec <= bvec_end)
d1310b2e
CM
2446 prefetchw(&bvec->bv_page->flags);
2447
9be3395b 2448 mirror = io_bio->mirror_num;
f2a09da9
MX
2449 if (likely(uptodate && tree->ops &&
2450 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2451 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2452 page, start, end,
2453 mirror);
5ee0844d 2454 if (ret)
d1310b2e 2455 uptodate = 0;
5ee0844d 2456 else
4a54c8c1 2457 clean_io_failure(start, page);
d1310b2e 2458 }
ea466794 2459
f2a09da9
MX
2460 if (likely(uptodate))
2461 goto readpage_ok;
2462
2463 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2464 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2465 if (!ret && !err &&
2466 test_bit(BIO_UPTODATE, &bio->bi_flags))
2467 uptodate = 1;
f2a09da9 2468 } else {
f4a8e656
JS
2469 /*
2470 * The generic bio_readpage_error handles errors the
2471 * following way: If possible, new read requests are
2472 * created and submitted and will end up in
2473 * end_bio_extent_readpage as well (if we're lucky, not
2474 * in the !uptodate case). In that case it returns 0 and
2475 * we just go on with the next page in our bio. If it
2476 * can't handle the error it will return -EIO and we
2477 * remain responsible for that page.
2478 */
facc8a22
MX
2479 ret = bio_readpage_error(bio, offset, page, start, end,
2480 mirror);
7e38326f 2481 if (ret == 0) {
3b951516
CM
2482 uptodate =
2483 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2484 if (err)
2485 uptodate = 0;
7e38326f
CM
2486 continue;
2487 }
2488 }
f2a09da9 2489readpage_ok:
883d0de4 2490 if (likely(uptodate)) {
a71754fc
JB
2491 loff_t i_size = i_size_read(inode);
2492 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2493 unsigned offset;
2494
2495 /* Zero out the end if this page straddles i_size */
2496 offset = i_size & (PAGE_CACHE_SIZE-1);
2497 if (page->index == end_index && offset)
2498 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2499 SetPageUptodate(page);
70dec807 2500 } else {
17a5adcc
AO
2501 ClearPageUptodate(page);
2502 SetPageError(page);
70dec807 2503 }
17a5adcc 2504 unlock_page(page);
facc8a22 2505 offset += len;
883d0de4
MX
2506
2507 if (unlikely(!uptodate)) {
2508 if (extent_len) {
2509 endio_readpage_release_extent(tree,
2510 extent_start,
2511 extent_len, 1);
2512 extent_start = 0;
2513 extent_len = 0;
2514 }
2515 endio_readpage_release_extent(tree, start,
2516 end - start + 1, 0);
2517 } else if (!extent_len) {
2518 extent_start = start;
2519 extent_len = end + 1 - start;
2520 } else if (extent_start + extent_len == start) {
2521 extent_len += end + 1 - start;
2522 } else {
2523 endio_readpage_release_extent(tree, extent_start,
2524 extent_len, uptodate);
2525 extent_start = start;
2526 extent_len = end + 1 - start;
2527 }
4125bf76 2528 } while (bvec <= bvec_end);
d1310b2e 2529
883d0de4
MX
2530 if (extent_len)
2531 endio_readpage_release_extent(tree, extent_start, extent_len,
2532 uptodate);
facc8a22
MX
2533 if (io_bio->end_io)
2534 io_bio->end_io(io_bio, err);
d1310b2e 2535 bio_put(bio);
d1310b2e
CM
2536}
2537
9be3395b
CM
2538/*
2539 * this allocates from the btrfs_bioset. We're returning a bio right now
2540 * but you can call btrfs_io_bio for the appropriate container_of magic
2541 */
88f794ed
MX
2542struct bio *
2543btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2544 gfp_t gfp_flags)
d1310b2e 2545{
facc8a22 2546 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2547 struct bio *bio;
2548
9be3395b 2549 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2550
2551 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2552 while (!bio && (nr_vecs /= 2)) {
2553 bio = bio_alloc_bioset(gfp_flags,
2554 nr_vecs, btrfs_bioset);
2555 }
d1310b2e
CM
2556 }
2557
2558 if (bio) {
e1c4b745 2559 bio->bi_size = 0;
d1310b2e
CM
2560 bio->bi_bdev = bdev;
2561 bio->bi_sector = first_sector;
facc8a22
MX
2562 btrfs_bio = btrfs_io_bio(bio);
2563 btrfs_bio->csum = NULL;
2564 btrfs_bio->csum_allocated = NULL;
2565 btrfs_bio->end_io = NULL;
d1310b2e
CM
2566 }
2567 return bio;
2568}
2569
9be3395b
CM
2570struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2571{
2572 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2573}
2574
2575
2576/* this also allocates from the btrfs_bioset */
2577struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2578{
facc8a22
MX
2579 struct btrfs_io_bio *btrfs_bio;
2580 struct bio *bio;
2581
2582 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2583 if (bio) {
2584 btrfs_bio = btrfs_io_bio(bio);
2585 btrfs_bio->csum = NULL;
2586 btrfs_bio->csum_allocated = NULL;
2587 btrfs_bio->end_io = NULL;
2588 }
2589 return bio;
9be3395b
CM
2590}
2591
2592
355808c2
JM
2593static int __must_check submit_one_bio(int rw, struct bio *bio,
2594 int mirror_num, unsigned long bio_flags)
d1310b2e 2595{
d1310b2e 2596 int ret = 0;
70dec807
CM
2597 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2598 struct page *page = bvec->bv_page;
2599 struct extent_io_tree *tree = bio->bi_private;
70dec807 2600 u64 start;
70dec807 2601
4eee4fa4 2602 start = page_offset(page) + bvec->bv_offset;
70dec807 2603
902b22f3 2604 bio->bi_private = NULL;
d1310b2e
CM
2605
2606 bio_get(bio);
2607
065631f6 2608 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2609 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2610 mirror_num, bio_flags, start);
0b86a832 2611 else
21adbd5c 2612 btrfsic_submit_bio(rw, bio);
4a54c8c1 2613
d1310b2e
CM
2614 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2615 ret = -EOPNOTSUPP;
2616 bio_put(bio);
2617 return ret;
2618}
2619
64a16701 2620static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2621 unsigned long offset, size_t size, struct bio *bio,
2622 unsigned long bio_flags)
2623{
2624 int ret = 0;
2625 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2626 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2627 bio_flags);
2628 BUG_ON(ret < 0);
2629 return ret;
2630
2631}
2632
d1310b2e
CM
2633static int submit_extent_page(int rw, struct extent_io_tree *tree,
2634 struct page *page, sector_t sector,
2635 size_t size, unsigned long offset,
2636 struct block_device *bdev,
2637 struct bio **bio_ret,
2638 unsigned long max_pages,
f188591e 2639 bio_end_io_t end_io_func,
c8b97818
CM
2640 int mirror_num,
2641 unsigned long prev_bio_flags,
2642 unsigned long bio_flags)
d1310b2e
CM
2643{
2644 int ret = 0;
2645 struct bio *bio;
2646 int nr;
c8b97818
CM
2647 int contig = 0;
2648 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2649 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2650 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2651
2652 if (bio_ret && *bio_ret) {
2653 bio = *bio_ret;
c8b97818
CM
2654 if (old_compressed)
2655 contig = bio->bi_sector == sector;
2656 else
f73a1c7d 2657 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2658
2659 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2660 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2661 bio_add_page(bio, page, page_size, offset) < page_size) {
2662 ret = submit_one_bio(rw, bio, mirror_num,
2663 prev_bio_flags);
79787eaa
JM
2664 if (ret < 0)
2665 return ret;
d1310b2e
CM
2666 bio = NULL;
2667 } else {
2668 return 0;
2669 }
2670 }
c8b97818
CM
2671 if (this_compressed)
2672 nr = BIO_MAX_PAGES;
2673 else
2674 nr = bio_get_nr_vecs(bdev);
2675
88f794ed 2676 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2677 if (!bio)
2678 return -ENOMEM;
70dec807 2679
c8b97818 2680 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2681 bio->bi_end_io = end_io_func;
2682 bio->bi_private = tree;
70dec807 2683
d397712b 2684 if (bio_ret)
d1310b2e 2685 *bio_ret = bio;
d397712b 2686 else
c8b97818 2687 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2688
2689 return ret;
2690}
2691
48a3b636
ES
2692static void attach_extent_buffer_page(struct extent_buffer *eb,
2693 struct page *page)
d1310b2e
CM
2694{
2695 if (!PagePrivate(page)) {
2696 SetPagePrivate(page);
d1310b2e 2697 page_cache_get(page);
4f2de97a
JB
2698 set_page_private(page, (unsigned long)eb);
2699 } else {
2700 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2701 }
2702}
2703
4f2de97a 2704void set_page_extent_mapped(struct page *page)
d1310b2e 2705{
4f2de97a
JB
2706 if (!PagePrivate(page)) {
2707 SetPagePrivate(page);
2708 page_cache_get(page);
2709 set_page_private(page, EXTENT_PAGE_PRIVATE);
2710 }
d1310b2e
CM
2711}
2712
125bac01
MX
2713static struct extent_map *
2714__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2715 u64 start, u64 len, get_extent_t *get_extent,
2716 struct extent_map **em_cached)
2717{
2718 struct extent_map *em;
2719
2720 if (em_cached && *em_cached) {
2721 em = *em_cached;
2722 if (em->in_tree && start >= em->start &&
2723 start < extent_map_end(em)) {
2724 atomic_inc(&em->refs);
2725 return em;
2726 }
2727
2728 free_extent_map(em);
2729 *em_cached = NULL;
2730 }
2731
2732 em = get_extent(inode, page, pg_offset, start, len, 0);
2733 if (em_cached && !IS_ERR_OR_NULL(em)) {
2734 BUG_ON(*em_cached);
2735 atomic_inc(&em->refs);
2736 *em_cached = em;
2737 }
2738 return em;
2739}
d1310b2e
CM
2740/*
2741 * basic readpage implementation. Locked extent state structs are inserted
2742 * into the tree that are removed when the IO is done (by the end_io
2743 * handlers)
79787eaa 2744 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2745 */
9974090b
MX
2746static int __do_readpage(struct extent_io_tree *tree,
2747 struct page *page,
2748 get_extent_t *get_extent,
125bac01 2749 struct extent_map **em_cached,
9974090b
MX
2750 struct bio **bio, int mirror_num,
2751 unsigned long *bio_flags, int rw)
d1310b2e
CM
2752{
2753 struct inode *inode = page->mapping->host;
4eee4fa4 2754 u64 start = page_offset(page);
d1310b2e
CM
2755 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756 u64 end;
2757 u64 cur = start;
2758 u64 extent_offset;
2759 u64 last_byte = i_size_read(inode);
2760 u64 block_start;
2761 u64 cur_end;
2762 sector_t sector;
2763 struct extent_map *em;
2764 struct block_device *bdev;
2765 int ret;
2766 int nr = 0;
4b384318 2767 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2768 size_t pg_offset = 0;
d1310b2e 2769 size_t iosize;
c8b97818 2770 size_t disk_io_size;
d1310b2e 2771 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2772 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2773
2774 set_page_extent_mapped(page);
2775
9974090b 2776 end = page_end;
90a887c9
DM
2777 if (!PageUptodate(page)) {
2778 if (cleancache_get_page(page) == 0) {
2779 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2780 unlock_extent(tree, start, end);
90a887c9
DM
2781 goto out;
2782 }
2783 }
2784
c8b97818
CM
2785 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2786 char *userpage;
2787 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2788
2789 if (zero_offset) {
2790 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2791 userpage = kmap_atomic(page);
c8b97818
CM
2792 memset(userpage + zero_offset, 0, iosize);
2793 flush_dcache_page(page);
7ac687d9 2794 kunmap_atomic(userpage);
c8b97818
CM
2795 }
2796 }
d1310b2e 2797 while (cur <= end) {
c8f2f24b
JB
2798 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2799
d1310b2e
CM
2800 if (cur >= last_byte) {
2801 char *userpage;
507903b8
AJ
2802 struct extent_state *cached = NULL;
2803
306e16ce 2804 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2805 userpage = kmap_atomic(page);
306e16ce 2806 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2807 flush_dcache_page(page);
7ac687d9 2808 kunmap_atomic(userpage);
d1310b2e 2809 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2810 &cached, GFP_NOFS);
4b384318
MF
2811 if (!parent_locked)
2812 unlock_extent_cached(tree, cur,
2813 cur + iosize - 1,
2814 &cached, GFP_NOFS);
d1310b2e
CM
2815 break;
2816 }
125bac01
MX
2817 em = __get_extent_map(inode, page, pg_offset, cur,
2818 end - cur + 1, get_extent, em_cached);
c704005d 2819 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2820 SetPageError(page);
4b384318
MF
2821 if (!parent_locked)
2822 unlock_extent(tree, cur, end);
d1310b2e
CM
2823 break;
2824 }
d1310b2e
CM
2825 extent_offset = cur - em->start;
2826 BUG_ON(extent_map_end(em) <= cur);
2827 BUG_ON(end < cur);
2828
261507a0 2829 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2830 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2831 extent_set_compress_type(&this_bio_flag,
2832 em->compress_type);
2833 }
c8b97818 2834
d1310b2e
CM
2835 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2836 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2837 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2838 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2839 disk_io_size = em->block_len;
2840 sector = em->block_start >> 9;
2841 } else {
2842 sector = (em->block_start + extent_offset) >> 9;
2843 disk_io_size = iosize;
2844 }
d1310b2e
CM
2845 bdev = em->bdev;
2846 block_start = em->block_start;
d899e052
YZ
2847 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2848 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2849 free_extent_map(em);
2850 em = NULL;
2851
2852 /* we've found a hole, just zero and go on */
2853 if (block_start == EXTENT_MAP_HOLE) {
2854 char *userpage;
507903b8
AJ
2855 struct extent_state *cached = NULL;
2856
7ac687d9 2857 userpage = kmap_atomic(page);
306e16ce 2858 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2859 flush_dcache_page(page);
7ac687d9 2860 kunmap_atomic(userpage);
d1310b2e
CM
2861
2862 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2863 &cached, GFP_NOFS);
2864 unlock_extent_cached(tree, cur, cur + iosize - 1,
2865 &cached, GFP_NOFS);
d1310b2e 2866 cur = cur + iosize;
306e16ce 2867 pg_offset += iosize;
d1310b2e
CM
2868 continue;
2869 }
2870 /* the get_extent function already copied into the page */
9655d298
CM
2871 if (test_range_bit(tree, cur, cur_end,
2872 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2873 check_page_uptodate(tree, page);
4b384318
MF
2874 if (!parent_locked)
2875 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2876 cur = cur + iosize;
306e16ce 2877 pg_offset += iosize;
d1310b2e
CM
2878 continue;
2879 }
70dec807
CM
2880 /* we have an inline extent but it didn't get marked up
2881 * to date. Error out
2882 */
2883 if (block_start == EXTENT_MAP_INLINE) {
2884 SetPageError(page);
4b384318
MF
2885 if (!parent_locked)
2886 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2887 cur = cur + iosize;
306e16ce 2888 pg_offset += iosize;
70dec807
CM
2889 continue;
2890 }
d1310b2e 2891
c8f2f24b 2892 pnr -= page->index;
d4c7ca86 2893 ret = submit_extent_page(rw, tree, page,
306e16ce 2894 sector, disk_io_size, pg_offset,
89642229 2895 bdev, bio, pnr,
c8b97818
CM
2896 end_bio_extent_readpage, mirror_num,
2897 *bio_flags,
2898 this_bio_flag);
c8f2f24b
JB
2899 if (!ret) {
2900 nr++;
2901 *bio_flags = this_bio_flag;
2902 } else {
d1310b2e 2903 SetPageError(page);
4b384318
MF
2904 if (!parent_locked)
2905 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2906 }
d1310b2e 2907 cur = cur + iosize;
306e16ce 2908 pg_offset += iosize;
d1310b2e 2909 }
90a887c9 2910out:
d1310b2e
CM
2911 if (!nr) {
2912 if (!PageError(page))
2913 SetPageUptodate(page);
2914 unlock_page(page);
2915 }
2916 return 0;
2917}
2918
9974090b
MX
2919static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2920 struct page *pages[], int nr_pages,
2921 u64 start, u64 end,
2922 get_extent_t *get_extent,
125bac01 2923 struct extent_map **em_cached,
9974090b
MX
2924 struct bio **bio, int mirror_num,
2925 unsigned long *bio_flags, int rw)
2926{
2927 struct inode *inode;
2928 struct btrfs_ordered_extent *ordered;
2929 int index;
2930
2931 inode = pages[0]->mapping->host;
2932 while (1) {
2933 lock_extent(tree, start, end);
2934 ordered = btrfs_lookup_ordered_range(inode, start,
2935 end - start + 1);
2936 if (!ordered)
2937 break;
2938 unlock_extent(tree, start, end);
2939 btrfs_start_ordered_extent(inode, ordered, 1);
2940 btrfs_put_ordered_extent(ordered);
2941 }
2942
2943 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2944 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2945 mirror_num, bio_flags, rw);
9974090b
MX
2946 page_cache_release(pages[index]);
2947 }
2948}
2949
2950static void __extent_readpages(struct extent_io_tree *tree,
2951 struct page *pages[],
2952 int nr_pages, get_extent_t *get_extent,
125bac01 2953 struct extent_map **em_cached,
9974090b
MX
2954 struct bio **bio, int mirror_num,
2955 unsigned long *bio_flags, int rw)
2956{
35a3621b 2957 u64 start = 0;
9974090b
MX
2958 u64 end = 0;
2959 u64 page_start;
2960 int index;
35a3621b 2961 int first_index = 0;
9974090b
MX
2962
2963 for (index = 0; index < nr_pages; index++) {
2964 page_start = page_offset(pages[index]);
2965 if (!end) {
2966 start = page_start;
2967 end = start + PAGE_CACHE_SIZE - 1;
2968 first_index = index;
2969 } else if (end + 1 == page_start) {
2970 end += PAGE_CACHE_SIZE;
2971 } else {
2972 __do_contiguous_readpages(tree, &pages[first_index],
2973 index - first_index, start,
125bac01
MX
2974 end, get_extent, em_cached,
2975 bio, mirror_num, bio_flags,
2976 rw);
9974090b
MX
2977 start = page_start;
2978 end = start + PAGE_CACHE_SIZE - 1;
2979 first_index = index;
2980 }
2981 }
2982
2983 if (end)
2984 __do_contiguous_readpages(tree, &pages[first_index],
2985 index - first_index, start,
125bac01 2986 end, get_extent, em_cached, bio,
9974090b
MX
2987 mirror_num, bio_flags, rw);
2988}
2989
2990static int __extent_read_full_page(struct extent_io_tree *tree,
2991 struct page *page,
2992 get_extent_t *get_extent,
2993 struct bio **bio, int mirror_num,
2994 unsigned long *bio_flags, int rw)
2995{
2996 struct inode *inode = page->mapping->host;
2997 struct btrfs_ordered_extent *ordered;
2998 u64 start = page_offset(page);
2999 u64 end = start + PAGE_CACHE_SIZE - 1;
3000 int ret;
3001
3002 while (1) {
3003 lock_extent(tree, start, end);
3004 ordered = btrfs_lookup_ordered_extent(inode, start);
3005 if (!ordered)
3006 break;
3007 unlock_extent(tree, start, end);
3008 btrfs_start_ordered_extent(inode, ordered, 1);
3009 btrfs_put_ordered_extent(ordered);
3010 }
3011
125bac01
MX
3012 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3013 bio_flags, rw);
9974090b
MX
3014 return ret;
3015}
3016
d1310b2e 3017int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3018 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3019{
3020 struct bio *bio = NULL;
c8b97818 3021 unsigned long bio_flags = 0;
d1310b2e
CM
3022 int ret;
3023
8ddc7d9c 3024 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3025 &bio_flags, READ);
d1310b2e 3026 if (bio)
8ddc7d9c 3027 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3028 return ret;
3029}
d1310b2e 3030
4b384318
MF
3031int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3032 get_extent_t *get_extent, int mirror_num)
3033{
3034 struct bio *bio = NULL;
3035 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3036 int ret;
3037
3038 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3039 &bio_flags, READ);
3040 if (bio)
3041 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3042 return ret;
3043}
3044
11c8349b
CM
3045static noinline void update_nr_written(struct page *page,
3046 struct writeback_control *wbc,
3047 unsigned long nr_written)
3048{
3049 wbc->nr_to_write -= nr_written;
3050 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3051 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3052 page->mapping->writeback_index = page->index + nr_written;
3053}
3054
d1310b2e
CM
3055/*
3056 * the writepage semantics are similar to regular writepage. extent
3057 * records are inserted to lock ranges in the tree, and as dirty areas
3058 * are found, they are marked writeback. Then the lock bits are removed
3059 * and the end_io handler clears the writeback ranges
3060 */
3061static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3062 void *data)
3063{
3064 struct inode *inode = page->mapping->host;
3065 struct extent_page_data *epd = data;
3066 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3067 u64 start = page_offset(page);
d1310b2e
CM
3068 u64 delalloc_start;
3069 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3070 u64 end;
3071 u64 cur = start;
3072 u64 extent_offset;
3073 u64 last_byte = i_size_read(inode);
3074 u64 block_start;
3075 u64 iosize;
3076 sector_t sector;
2c64c53d 3077 struct extent_state *cached_state = NULL;
d1310b2e
CM
3078 struct extent_map *em;
3079 struct block_device *bdev;
3080 int ret;
3081 int nr = 0;
7f3c74fb 3082 size_t pg_offset = 0;
d1310b2e
CM
3083 size_t blocksize;
3084 loff_t i_size = i_size_read(inode);
3085 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3086 u64 nr_delalloc;
3087 u64 delalloc_end;
c8b97818
CM
3088 int page_started;
3089 int compressed;
ffbd517d 3090 int write_flags;
771ed689 3091 unsigned long nr_written = 0;
9e487107 3092 bool fill_delalloc = true;
d1310b2e 3093
ffbd517d 3094 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3095 write_flags = WRITE_SYNC;
ffbd517d
CM
3096 else
3097 write_flags = WRITE;
3098
1abe9b8a 3099 trace___extent_writepage(page, inode, wbc);
3100
d1310b2e 3101 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3102
3103 ClearPageError(page);
3104
7f3c74fb 3105 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3106 if (page->index > end_index ||
7f3c74fb 3107 (page->index == end_index && !pg_offset)) {
d47992f8 3108 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3109 unlock_page(page);
3110 return 0;
3111 }
3112
3113 if (page->index == end_index) {
3114 char *userpage;
3115
7ac687d9 3116 userpage = kmap_atomic(page);
7f3c74fb
CM
3117 memset(userpage + pg_offset, 0,
3118 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3119 kunmap_atomic(userpage);
211c17f5 3120 flush_dcache_page(page);
d1310b2e 3121 }
7f3c74fb 3122 pg_offset = 0;
d1310b2e
CM
3123
3124 set_page_extent_mapped(page);
3125
9e487107
JB
3126 if (!tree->ops || !tree->ops->fill_delalloc)
3127 fill_delalloc = false;
3128
d1310b2e
CM
3129 delalloc_start = start;
3130 delalloc_end = 0;
c8b97818 3131 page_started = 0;
9e487107 3132 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3133 u64 delalloc_to_write = 0;
11c8349b
CM
3134 /*
3135 * make sure the wbc mapping index is at least updated
3136 * to this page.
3137 */
3138 update_nr_written(page, wbc, 0);
3139
d397712b 3140 while (delalloc_end < page_end) {
771ed689 3141 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3142 page,
3143 &delalloc_start,
d1310b2e
CM
3144 &delalloc_end,
3145 128 * 1024 * 1024);
771ed689
CM
3146 if (nr_delalloc == 0) {
3147 delalloc_start = delalloc_end + 1;
3148 continue;
3149 }
013bd4c3
TI
3150 ret = tree->ops->fill_delalloc(inode, page,
3151 delalloc_start,
3152 delalloc_end,
3153 &page_started,
3154 &nr_written);
79787eaa
JM
3155 /* File system has been set read-only */
3156 if (ret) {
3157 SetPageError(page);
3158 goto done;
3159 }
f85d7d6c
CM
3160 /*
3161 * delalloc_end is already one less than the total
3162 * length, so we don't subtract one from
3163 * PAGE_CACHE_SIZE
3164 */
3165 delalloc_to_write += (delalloc_end - delalloc_start +
3166 PAGE_CACHE_SIZE) >>
3167 PAGE_CACHE_SHIFT;
d1310b2e 3168 delalloc_start = delalloc_end + 1;
d1310b2e 3169 }
f85d7d6c
CM
3170 if (wbc->nr_to_write < delalloc_to_write) {
3171 int thresh = 8192;
3172
3173 if (delalloc_to_write < thresh * 2)
3174 thresh = delalloc_to_write;
3175 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3176 thresh);
3177 }
c8b97818 3178
771ed689
CM
3179 /* did the fill delalloc function already unlock and start
3180 * the IO?
3181 */
3182 if (page_started) {
3183 ret = 0;
11c8349b
CM
3184 /*
3185 * we've unlocked the page, so we can't update
3186 * the mapping's writeback index, just update
3187 * nr_to_write.
3188 */
3189 wbc->nr_to_write -= nr_written;
3190 goto done_unlocked;
771ed689 3191 }
c8b97818 3192 }
247e743c 3193 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3194 ret = tree->ops->writepage_start_hook(page, start,
3195 page_end);
87826df0
JM
3196 if (ret) {
3197 /* Fixup worker will requeue */
3198 if (ret == -EBUSY)
3199 wbc->pages_skipped++;
3200 else
3201 redirty_page_for_writepage(wbc, page);
11c8349b 3202 update_nr_written(page, wbc, nr_written);
247e743c 3203 unlock_page(page);
771ed689 3204 ret = 0;
11c8349b 3205 goto done_unlocked;
247e743c
CM
3206 }
3207 }
3208
11c8349b
CM
3209 /*
3210 * we don't want to touch the inode after unlocking the page,
3211 * so we update the mapping writeback index now
3212 */
3213 update_nr_written(page, wbc, nr_written + 1);
771ed689 3214
d1310b2e 3215 end = page_end;
d1310b2e 3216 if (last_byte <= start) {
e6dcd2dc
CM
3217 if (tree->ops && tree->ops->writepage_end_io_hook)
3218 tree->ops->writepage_end_io_hook(page, start,
3219 page_end, NULL, 1);
d1310b2e
CM
3220 goto done;
3221 }
3222
d1310b2e
CM
3223 blocksize = inode->i_sb->s_blocksize;
3224
3225 while (cur <= end) {
3226 if (cur >= last_byte) {
e6dcd2dc
CM
3227 if (tree->ops && tree->ops->writepage_end_io_hook)
3228 tree->ops->writepage_end_io_hook(page, cur,
3229 page_end, NULL, 1);
d1310b2e
CM
3230 break;
3231 }
7f3c74fb 3232 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3233 end - cur + 1, 1);
c704005d 3234 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3235 SetPageError(page);
3236 break;
3237 }
3238
3239 extent_offset = cur - em->start;
3240 BUG_ON(extent_map_end(em) <= cur);
3241 BUG_ON(end < cur);
3242 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3243 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3244 sector = (em->block_start + extent_offset) >> 9;
3245 bdev = em->bdev;
3246 block_start = em->block_start;
c8b97818 3247 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3248 free_extent_map(em);
3249 em = NULL;
3250
c8b97818
CM
3251 /*
3252 * compressed and inline extents are written through other
3253 * paths in the FS
3254 */
3255 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3256 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3257 /*
3258 * end_io notification does not happen here for
3259 * compressed extents
3260 */
3261 if (!compressed && tree->ops &&
3262 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3263 tree->ops->writepage_end_io_hook(page, cur,
3264 cur + iosize - 1,
3265 NULL, 1);
c8b97818
CM
3266 else if (compressed) {
3267 /* we don't want to end_page_writeback on
3268 * a compressed extent. this happens
3269 * elsewhere
3270 */
3271 nr++;
3272 }
3273
3274 cur += iosize;
7f3c74fb 3275 pg_offset += iosize;
d1310b2e
CM
3276 continue;
3277 }
d1310b2e
CM
3278 /* leave this out until we have a page_mkwrite call */
3279 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3280 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3281 cur = cur + iosize;
7f3c74fb 3282 pg_offset += iosize;
d1310b2e
CM
3283 continue;
3284 }
c8b97818 3285
d1310b2e
CM
3286 if (tree->ops && tree->ops->writepage_io_hook) {
3287 ret = tree->ops->writepage_io_hook(page, cur,
3288 cur + iosize - 1);
3289 } else {
3290 ret = 0;
3291 }
1259ab75 3292 if (ret) {
d1310b2e 3293 SetPageError(page);
1259ab75 3294 } else {
d1310b2e 3295 unsigned long max_nr = end_index + 1;
7f3c74fb 3296
d1310b2e
CM
3297 set_range_writeback(tree, cur, cur + iosize - 1);
3298 if (!PageWriteback(page)) {
d397712b
CM
3299 printk(KERN_ERR "btrfs warning page %lu not "
3300 "writeback, cur %llu end %llu\n",
c1c9ff7c 3301 page->index, cur, end);
d1310b2e
CM
3302 }
3303
ffbd517d
CM
3304 ret = submit_extent_page(write_flags, tree, page,
3305 sector, iosize, pg_offset,
3306 bdev, &epd->bio, max_nr,
c8b97818
CM
3307 end_bio_extent_writepage,
3308 0, 0, 0);
d1310b2e
CM
3309 if (ret)
3310 SetPageError(page);
3311 }
3312 cur = cur + iosize;
7f3c74fb 3313 pg_offset += iosize;
d1310b2e
CM
3314 nr++;
3315 }
3316done:
3317 if (nr == 0) {
3318 /* make sure the mapping tag for page dirty gets cleared */
3319 set_page_writeback(page);
3320 end_page_writeback(page);
3321 }
d1310b2e 3322 unlock_page(page);
771ed689 3323
11c8349b
CM
3324done_unlocked:
3325
2c64c53d
CM
3326 /* drop our reference on any cached states */
3327 free_extent_state(cached_state);
d1310b2e
CM
3328 return 0;
3329}
3330
0b32f4bb
JB
3331static int eb_wait(void *word)
3332{
3333 io_schedule();
3334 return 0;
3335}
3336
fd8b2b61 3337void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3338{
3339 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3340 TASK_UNINTERRUPTIBLE);
3341}
3342
3343static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3344 struct btrfs_fs_info *fs_info,
3345 struct extent_page_data *epd)
3346{
3347 unsigned long i, num_pages;
3348 int flush = 0;
3349 int ret = 0;
3350
3351 if (!btrfs_try_tree_write_lock(eb)) {
3352 flush = 1;
3353 flush_write_bio(epd);
3354 btrfs_tree_lock(eb);
3355 }
3356
3357 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3358 btrfs_tree_unlock(eb);
3359 if (!epd->sync_io)
3360 return 0;
3361 if (!flush) {
3362 flush_write_bio(epd);
3363 flush = 1;
3364 }
a098d8e8
CM
3365 while (1) {
3366 wait_on_extent_buffer_writeback(eb);
3367 btrfs_tree_lock(eb);
3368 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3369 break;
0b32f4bb 3370 btrfs_tree_unlock(eb);
0b32f4bb
JB
3371 }
3372 }
3373
51561ffe
JB
3374 /*
3375 * We need to do this to prevent races in people who check if the eb is
3376 * under IO since we can end up having no IO bits set for a short period
3377 * of time.
3378 */
3379 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3380 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3381 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3382 spin_unlock(&eb->refs_lock);
0b32f4bb 3383 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3384 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3385 -eb->len,
3386 fs_info->dirty_metadata_batch);
0b32f4bb 3387 ret = 1;
51561ffe
JB
3388 } else {
3389 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3390 }
3391
3392 btrfs_tree_unlock(eb);
3393
3394 if (!ret)
3395 return ret;
3396
3397 num_pages = num_extent_pages(eb->start, eb->len);
3398 for (i = 0; i < num_pages; i++) {
3399 struct page *p = extent_buffer_page(eb, i);
3400
3401 if (!trylock_page(p)) {
3402 if (!flush) {
3403 flush_write_bio(epd);
3404 flush = 1;
3405 }
3406 lock_page(p);
3407 }
3408 }
3409
3410 return ret;
3411}
3412
3413static void end_extent_buffer_writeback(struct extent_buffer *eb)
3414{
3415 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3416 smp_mb__after_clear_bit();
3417 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3418}
3419
3420static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3421{
3422 int uptodate = err == 0;
3423 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3424 struct extent_buffer *eb;
3425 int done;
3426
3427 do {
3428 struct page *page = bvec->bv_page;
3429
3430 bvec--;
3431 eb = (struct extent_buffer *)page->private;
3432 BUG_ON(!eb);
3433 done = atomic_dec_and_test(&eb->io_pages);
3434
3435 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3436 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3437 ClearPageUptodate(page);
3438 SetPageError(page);
3439 }
3440
3441 end_page_writeback(page);
3442
3443 if (!done)
3444 continue;
3445
3446 end_extent_buffer_writeback(eb);
3447 } while (bvec >= bio->bi_io_vec);
3448
3449 bio_put(bio);
3450
3451}
3452
3453static int write_one_eb(struct extent_buffer *eb,
3454 struct btrfs_fs_info *fs_info,
3455 struct writeback_control *wbc,
3456 struct extent_page_data *epd)
3457{
3458 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3459 u64 offset = eb->start;
3460 unsigned long i, num_pages;
de0022b9 3461 unsigned long bio_flags = 0;
d4c7ca86 3462 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3463 int ret = 0;
0b32f4bb
JB
3464
3465 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3466 num_pages = num_extent_pages(eb->start, eb->len);
3467 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3468 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3469 bio_flags = EXTENT_BIO_TREE_LOG;
3470
0b32f4bb
JB
3471 for (i = 0; i < num_pages; i++) {
3472 struct page *p = extent_buffer_page(eb, i);
3473
3474 clear_page_dirty_for_io(p);
3475 set_page_writeback(p);
3476 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3477 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3478 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3479 0, epd->bio_flags, bio_flags);
3480 epd->bio_flags = bio_flags;
0b32f4bb
JB
3481 if (ret) {
3482 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3483 SetPageError(p);
3484 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3485 end_extent_buffer_writeback(eb);
3486 ret = -EIO;
3487 break;
3488 }
3489 offset += PAGE_CACHE_SIZE;
3490 update_nr_written(p, wbc, 1);
3491 unlock_page(p);
3492 }
3493
3494 if (unlikely(ret)) {
3495 for (; i < num_pages; i++) {
3496 struct page *p = extent_buffer_page(eb, i);
3497 unlock_page(p);
3498 }
3499 }
3500
3501 return ret;
3502}
3503
3504int btree_write_cache_pages(struct address_space *mapping,
3505 struct writeback_control *wbc)
3506{
3507 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3508 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3509 struct extent_buffer *eb, *prev_eb = NULL;
3510 struct extent_page_data epd = {
3511 .bio = NULL,
3512 .tree = tree,
3513 .extent_locked = 0,
3514 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3515 .bio_flags = 0,
0b32f4bb
JB
3516 };
3517 int ret = 0;
3518 int done = 0;
3519 int nr_to_write_done = 0;
3520 struct pagevec pvec;
3521 int nr_pages;
3522 pgoff_t index;
3523 pgoff_t end; /* Inclusive */
3524 int scanned = 0;
3525 int tag;
3526
3527 pagevec_init(&pvec, 0);
3528 if (wbc->range_cyclic) {
3529 index = mapping->writeback_index; /* Start from prev offset */
3530 end = -1;
3531 } else {
3532 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3533 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3534 scanned = 1;
3535 }
3536 if (wbc->sync_mode == WB_SYNC_ALL)
3537 tag = PAGECACHE_TAG_TOWRITE;
3538 else
3539 tag = PAGECACHE_TAG_DIRTY;
3540retry:
3541 if (wbc->sync_mode == WB_SYNC_ALL)
3542 tag_pages_for_writeback(mapping, index, end);
3543 while (!done && !nr_to_write_done && (index <= end) &&
3544 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3545 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3546 unsigned i;
3547
3548 scanned = 1;
3549 for (i = 0; i < nr_pages; i++) {
3550 struct page *page = pvec.pages[i];
3551
3552 if (!PagePrivate(page))
3553 continue;
3554
3555 if (!wbc->range_cyclic && page->index > end) {
3556 done = 1;
3557 break;
3558 }
3559
b5bae261
JB
3560 spin_lock(&mapping->private_lock);
3561 if (!PagePrivate(page)) {
3562 spin_unlock(&mapping->private_lock);
3563 continue;
3564 }
3565
0b32f4bb 3566 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3567
3568 /*
3569 * Shouldn't happen and normally this would be a BUG_ON
3570 * but no sense in crashing the users box for something
3571 * we can survive anyway.
3572 */
0b32f4bb 3573 if (!eb) {
b5bae261 3574 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3575 WARN_ON(1);
3576 continue;
3577 }
3578
b5bae261
JB
3579 if (eb == prev_eb) {
3580 spin_unlock(&mapping->private_lock);
0b32f4bb 3581 continue;
b5bae261 3582 }
0b32f4bb 3583
b5bae261
JB
3584 ret = atomic_inc_not_zero(&eb->refs);
3585 spin_unlock(&mapping->private_lock);
3586 if (!ret)
0b32f4bb 3587 continue;
0b32f4bb
JB
3588
3589 prev_eb = eb;
3590 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3591 if (!ret) {
3592 free_extent_buffer(eb);
3593 continue;
3594 }
3595
3596 ret = write_one_eb(eb, fs_info, wbc, &epd);
3597 if (ret) {
3598 done = 1;
3599 free_extent_buffer(eb);
3600 break;
3601 }
3602 free_extent_buffer(eb);
3603
3604 /*
3605 * the filesystem may choose to bump up nr_to_write.
3606 * We have to make sure to honor the new nr_to_write
3607 * at any time
3608 */
3609 nr_to_write_done = wbc->nr_to_write <= 0;
3610 }
3611 pagevec_release(&pvec);
3612 cond_resched();
3613 }
3614 if (!scanned && !done) {
3615 /*
3616 * We hit the last page and there is more work to be done: wrap
3617 * back to the start of the file
3618 */
3619 scanned = 1;
3620 index = 0;
3621 goto retry;
3622 }
3623 flush_write_bio(&epd);
3624 return ret;
3625}
3626
d1310b2e 3627/**
4bef0848 3628 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3629 * @mapping: address space structure to write
3630 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3631 * @writepage: function called for each page
3632 * @data: data passed to writepage function
3633 *
3634 * If a page is already under I/O, write_cache_pages() skips it, even
3635 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3636 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3637 * and msync() need to guarantee that all the data which was dirty at the time
3638 * the call was made get new I/O started against them. If wbc->sync_mode is
3639 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3640 * existing IO to complete.
3641 */
b2950863 3642static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3643 struct address_space *mapping,
3644 struct writeback_control *wbc,
d2c3f4f6
CM
3645 writepage_t writepage, void *data,
3646 void (*flush_fn)(void *))
d1310b2e 3647{
7fd1a3f7 3648 struct inode *inode = mapping->host;
d1310b2e
CM
3649 int ret = 0;
3650 int done = 0;
f85d7d6c 3651 int nr_to_write_done = 0;
d1310b2e
CM
3652 struct pagevec pvec;
3653 int nr_pages;
3654 pgoff_t index;
3655 pgoff_t end; /* Inclusive */
3656 int scanned = 0;
f7aaa06b 3657 int tag;
d1310b2e 3658
7fd1a3f7
JB
3659 /*
3660 * We have to hold onto the inode so that ordered extents can do their
3661 * work when the IO finishes. The alternative to this is failing to add
3662 * an ordered extent if the igrab() fails there and that is a huge pain
3663 * to deal with, so instead just hold onto the inode throughout the
3664 * writepages operation. If it fails here we are freeing up the inode
3665 * anyway and we'd rather not waste our time writing out stuff that is
3666 * going to be truncated anyway.
3667 */
3668 if (!igrab(inode))
3669 return 0;
3670
d1310b2e
CM
3671 pagevec_init(&pvec, 0);
3672 if (wbc->range_cyclic) {
3673 index = mapping->writeback_index; /* Start from prev offset */
3674 end = -1;
3675 } else {
3676 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3677 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3678 scanned = 1;
3679 }
f7aaa06b
JB
3680 if (wbc->sync_mode == WB_SYNC_ALL)
3681 tag = PAGECACHE_TAG_TOWRITE;
3682 else
3683 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3684retry:
f7aaa06b
JB
3685 if (wbc->sync_mode == WB_SYNC_ALL)
3686 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3687 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3688 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3689 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3690 unsigned i;
3691
3692 scanned = 1;
3693 for (i = 0; i < nr_pages; i++) {
3694 struct page *page = pvec.pages[i];
3695
3696 /*
3697 * At this point we hold neither mapping->tree_lock nor
3698 * lock on the page itself: the page may be truncated or
3699 * invalidated (changing page->mapping to NULL), or even
3700 * swizzled back from swapper_space to tmpfs file
3701 * mapping
3702 */
c8f2f24b
JB
3703 if (!trylock_page(page)) {
3704 flush_fn(data);
3705 lock_page(page);
01d658f2 3706 }
d1310b2e
CM
3707
3708 if (unlikely(page->mapping != mapping)) {
3709 unlock_page(page);
3710 continue;
3711 }
3712
3713 if (!wbc->range_cyclic && page->index > end) {
3714 done = 1;
3715 unlock_page(page);
3716 continue;
3717 }
3718
d2c3f4f6 3719 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3720 if (PageWriteback(page))
3721 flush_fn(data);
d1310b2e 3722 wait_on_page_writeback(page);
d2c3f4f6 3723 }
d1310b2e
CM
3724
3725 if (PageWriteback(page) ||
3726 !clear_page_dirty_for_io(page)) {
3727 unlock_page(page);
3728 continue;
3729 }
3730
3731 ret = (*writepage)(page, wbc, data);
3732
3733 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3734 unlock_page(page);
3735 ret = 0;
3736 }
f85d7d6c 3737 if (ret)
d1310b2e 3738 done = 1;
f85d7d6c
CM
3739
3740 /*
3741 * the filesystem may choose to bump up nr_to_write.
3742 * We have to make sure to honor the new nr_to_write
3743 * at any time
3744 */
3745 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3746 }
3747 pagevec_release(&pvec);
3748 cond_resched();
3749 }
3750 if (!scanned && !done) {
3751 /*
3752 * We hit the last page and there is more work to be done: wrap
3753 * back to the start of the file
3754 */
3755 scanned = 1;
3756 index = 0;
3757 goto retry;
3758 }
7fd1a3f7 3759 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3760 return ret;
3761}
d1310b2e 3762
ffbd517d 3763static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3764{
d2c3f4f6 3765 if (epd->bio) {
355808c2
JM
3766 int rw = WRITE;
3767 int ret;
3768
ffbd517d 3769 if (epd->sync_io)
355808c2
JM
3770 rw = WRITE_SYNC;
3771
de0022b9 3772 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3773 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3774 epd->bio = NULL;
3775 }
3776}
3777
ffbd517d
CM
3778static noinline void flush_write_bio(void *data)
3779{
3780 struct extent_page_data *epd = data;
3781 flush_epd_write_bio(epd);
3782}
3783
d1310b2e
CM
3784int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3785 get_extent_t *get_extent,
3786 struct writeback_control *wbc)
3787{
3788 int ret;
d1310b2e
CM
3789 struct extent_page_data epd = {
3790 .bio = NULL,
3791 .tree = tree,
3792 .get_extent = get_extent,
771ed689 3793 .extent_locked = 0,
ffbd517d 3794 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3795 .bio_flags = 0,
d1310b2e 3796 };
d1310b2e 3797
d1310b2e
CM
3798 ret = __extent_writepage(page, wbc, &epd);
3799
ffbd517d 3800 flush_epd_write_bio(&epd);
d1310b2e
CM
3801 return ret;
3802}
d1310b2e 3803
771ed689
CM
3804int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3805 u64 start, u64 end, get_extent_t *get_extent,
3806 int mode)
3807{
3808 int ret = 0;
3809 struct address_space *mapping = inode->i_mapping;
3810 struct page *page;
3811 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3812 PAGE_CACHE_SHIFT;
3813
3814 struct extent_page_data epd = {
3815 .bio = NULL,
3816 .tree = tree,
3817 .get_extent = get_extent,
3818 .extent_locked = 1,
ffbd517d 3819 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3820 .bio_flags = 0,
771ed689
CM
3821 };
3822 struct writeback_control wbc_writepages = {
771ed689 3823 .sync_mode = mode,
771ed689
CM
3824 .nr_to_write = nr_pages * 2,
3825 .range_start = start,
3826 .range_end = end + 1,
3827 };
3828
d397712b 3829 while (start <= end) {
771ed689
CM
3830 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3831 if (clear_page_dirty_for_io(page))
3832 ret = __extent_writepage(page, &wbc_writepages, &epd);
3833 else {
3834 if (tree->ops && tree->ops->writepage_end_io_hook)
3835 tree->ops->writepage_end_io_hook(page, start,
3836 start + PAGE_CACHE_SIZE - 1,
3837 NULL, 1);
3838 unlock_page(page);
3839 }
3840 page_cache_release(page);
3841 start += PAGE_CACHE_SIZE;
3842 }
3843
ffbd517d 3844 flush_epd_write_bio(&epd);
771ed689
CM
3845 return ret;
3846}
d1310b2e
CM
3847
3848int extent_writepages(struct extent_io_tree *tree,
3849 struct address_space *mapping,
3850 get_extent_t *get_extent,
3851 struct writeback_control *wbc)
3852{
3853 int ret = 0;
3854 struct extent_page_data epd = {
3855 .bio = NULL,
3856 .tree = tree,
3857 .get_extent = get_extent,
771ed689 3858 .extent_locked = 0,
ffbd517d 3859 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3860 .bio_flags = 0,
d1310b2e
CM
3861 };
3862
4bef0848 3863 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3864 __extent_writepage, &epd,
3865 flush_write_bio);
ffbd517d 3866 flush_epd_write_bio(&epd);
d1310b2e
CM
3867 return ret;
3868}
d1310b2e
CM
3869
3870int extent_readpages(struct extent_io_tree *tree,
3871 struct address_space *mapping,
3872 struct list_head *pages, unsigned nr_pages,
3873 get_extent_t get_extent)
3874{
3875 struct bio *bio = NULL;
3876 unsigned page_idx;
c8b97818 3877 unsigned long bio_flags = 0;
67c9684f
LB
3878 struct page *pagepool[16];
3879 struct page *page;
125bac01 3880 struct extent_map *em_cached = NULL;
67c9684f 3881 int nr = 0;
d1310b2e 3882
d1310b2e 3883 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3884 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3885
3886 prefetchw(&page->flags);
3887 list_del(&page->lru);
67c9684f 3888 if (add_to_page_cache_lru(page, mapping,
43e817a1 3889 page->index, GFP_NOFS)) {
67c9684f
LB
3890 page_cache_release(page);
3891 continue;
d1310b2e 3892 }
67c9684f
LB
3893
3894 pagepool[nr++] = page;
3895 if (nr < ARRAY_SIZE(pagepool))
3896 continue;
125bac01 3897 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3898 &bio, 0, &bio_flags, READ);
67c9684f 3899 nr = 0;
d1310b2e 3900 }
9974090b 3901 if (nr)
125bac01 3902 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3903 &bio, 0, &bio_flags, READ);
67c9684f 3904
125bac01
MX
3905 if (em_cached)
3906 free_extent_map(em_cached);
3907
d1310b2e
CM
3908 BUG_ON(!list_empty(pages));
3909 if (bio)
79787eaa 3910 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3911 return 0;
3912}
d1310b2e
CM
3913
3914/*
3915 * basic invalidatepage code, this waits on any locked or writeback
3916 * ranges corresponding to the page, and then deletes any extent state
3917 * records from the tree
3918 */
3919int extent_invalidatepage(struct extent_io_tree *tree,
3920 struct page *page, unsigned long offset)
3921{
2ac55d41 3922 struct extent_state *cached_state = NULL;
4eee4fa4 3923 u64 start = page_offset(page);
d1310b2e
CM
3924 u64 end = start + PAGE_CACHE_SIZE - 1;
3925 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3926
fda2832f 3927 start += ALIGN(offset, blocksize);
d1310b2e
CM
3928 if (start > end)
3929 return 0;
3930
d0082371 3931 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3932 wait_on_page_writeback(page);
d1310b2e 3933 clear_extent_bit(tree, start, end,
32c00aff
JB
3934 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3935 EXTENT_DO_ACCOUNTING,
2ac55d41 3936 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3937 return 0;
3938}
d1310b2e 3939
7b13b7b1
CM
3940/*
3941 * a helper for releasepage, this tests for areas of the page that
3942 * are locked or under IO and drops the related state bits if it is safe
3943 * to drop the page.
3944 */
48a3b636
ES
3945static int try_release_extent_state(struct extent_map_tree *map,
3946 struct extent_io_tree *tree,
3947 struct page *page, gfp_t mask)
7b13b7b1 3948{
4eee4fa4 3949 u64 start = page_offset(page);
7b13b7b1
CM
3950 u64 end = start + PAGE_CACHE_SIZE - 1;
3951 int ret = 1;
3952
211f90e6 3953 if (test_range_bit(tree, start, end,
8b62b72b 3954 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3955 ret = 0;
3956 else {
3957 if ((mask & GFP_NOFS) == GFP_NOFS)
3958 mask = GFP_NOFS;
11ef160f
CM
3959 /*
3960 * at this point we can safely clear everything except the
3961 * locked bit and the nodatasum bit
3962 */
e3f24cc5 3963 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3964 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3965 0, 0, NULL, mask);
e3f24cc5
CM
3966
3967 /* if clear_extent_bit failed for enomem reasons,
3968 * we can't allow the release to continue.
3969 */
3970 if (ret < 0)
3971 ret = 0;
3972 else
3973 ret = 1;
7b13b7b1
CM
3974 }
3975 return ret;
3976}
7b13b7b1 3977
d1310b2e
CM
3978/*
3979 * a helper for releasepage. As long as there are no locked extents
3980 * in the range corresponding to the page, both state records and extent
3981 * map records are removed
3982 */
3983int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3984 struct extent_io_tree *tree, struct page *page,
3985 gfp_t mask)
d1310b2e
CM
3986{
3987 struct extent_map *em;
4eee4fa4 3988 u64 start = page_offset(page);
d1310b2e 3989 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3990
70dec807
CM
3991 if ((mask & __GFP_WAIT) &&
3992 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3993 u64 len;
70dec807 3994 while (start <= end) {
39b5637f 3995 len = end - start + 1;
890871be 3996 write_lock(&map->lock);
39b5637f 3997 em = lookup_extent_mapping(map, start, len);
285190d9 3998 if (!em) {
890871be 3999 write_unlock(&map->lock);
70dec807
CM
4000 break;
4001 }
7f3c74fb
CM
4002 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4003 em->start != start) {
890871be 4004 write_unlock(&map->lock);
70dec807
CM
4005 free_extent_map(em);
4006 break;
4007 }
4008 if (!test_range_bit(tree, em->start,
4009 extent_map_end(em) - 1,
8b62b72b 4010 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4011 0, NULL)) {
70dec807
CM
4012 remove_extent_mapping(map, em);
4013 /* once for the rb tree */
4014 free_extent_map(em);
4015 }
4016 start = extent_map_end(em);
890871be 4017 write_unlock(&map->lock);
70dec807
CM
4018
4019 /* once for us */
d1310b2e
CM
4020 free_extent_map(em);
4021 }
d1310b2e 4022 }
7b13b7b1 4023 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4024}
d1310b2e 4025
ec29ed5b
CM
4026/*
4027 * helper function for fiemap, which doesn't want to see any holes.
4028 * This maps until we find something past 'last'
4029 */
4030static struct extent_map *get_extent_skip_holes(struct inode *inode,
4031 u64 offset,
4032 u64 last,
4033 get_extent_t *get_extent)
4034{
4035 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4036 struct extent_map *em;
4037 u64 len;
4038
4039 if (offset >= last)
4040 return NULL;
4041
4042 while(1) {
4043 len = last - offset;
4044 if (len == 0)
4045 break;
fda2832f 4046 len = ALIGN(len, sectorsize);
ec29ed5b 4047 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4048 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4049 return em;
4050
4051 /* if this isn't a hole return it */
4052 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4053 em->block_start != EXTENT_MAP_HOLE) {
4054 return em;
4055 }
4056
4057 /* this is a hole, advance to the next extent */
4058 offset = extent_map_end(em);
4059 free_extent_map(em);
4060 if (offset >= last)
4061 break;
4062 }
4063 return NULL;
4064}
4065
fe09e16c
LB
4066static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4067{
4068 unsigned long cnt = *((unsigned long *)ctx);
4069
4070 cnt++;
4071 *((unsigned long *)ctx) = cnt;
4072
4073 /* Now we're sure that the extent is shared. */
4074 if (cnt > 1)
4075 return 1;
4076 return 0;
4077}
4078
1506fcc8
YS
4079int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4080 __u64 start, __u64 len, get_extent_t *get_extent)
4081{
975f84fe 4082 int ret = 0;
1506fcc8
YS
4083 u64 off = start;
4084 u64 max = start + len;
4085 u32 flags = 0;
975f84fe
JB
4086 u32 found_type;
4087 u64 last;
ec29ed5b 4088 u64 last_for_get_extent = 0;
1506fcc8 4089 u64 disko = 0;
ec29ed5b 4090 u64 isize = i_size_read(inode);
975f84fe 4091 struct btrfs_key found_key;
1506fcc8 4092 struct extent_map *em = NULL;
2ac55d41 4093 struct extent_state *cached_state = NULL;
975f84fe
JB
4094 struct btrfs_path *path;
4095 struct btrfs_file_extent_item *item;
1506fcc8 4096 int end = 0;
ec29ed5b
CM
4097 u64 em_start = 0;
4098 u64 em_len = 0;
4099 u64 em_end = 0;
1506fcc8 4100 unsigned long emflags;
1506fcc8
YS
4101
4102 if (len == 0)
4103 return -EINVAL;
4104
975f84fe
JB
4105 path = btrfs_alloc_path();
4106 if (!path)
4107 return -ENOMEM;
4108 path->leave_spinning = 1;
4109
4d479cf0
JB
4110 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4111 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4112
ec29ed5b
CM
4113 /*
4114 * lookup the last file extent. We're not using i_size here
4115 * because there might be preallocation past i_size
4116 */
975f84fe 4117 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4118 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4119 if (ret < 0) {
4120 btrfs_free_path(path);
4121 return ret;
4122 }
4123 WARN_ON(!ret);
4124 path->slots[0]--;
4125 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4126 struct btrfs_file_extent_item);
4127 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4128 found_type = btrfs_key_type(&found_key);
4129
ec29ed5b 4130 /* No extents, but there might be delalloc bits */
33345d01 4131 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4132 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4133 /* have to trust i_size as the end */
4134 last = (u64)-1;
4135 last_for_get_extent = isize;
4136 } else {
4137 /*
4138 * remember the start of the last extent. There are a
4139 * bunch of different factors that go into the length of the
4140 * extent, so its much less complex to remember where it started
4141 */
4142 last = found_key.offset;
4143 last_for_get_extent = last + 1;
975f84fe 4144 }
fe09e16c 4145 btrfs_release_path(path);
975f84fe 4146
ec29ed5b
CM
4147 /*
4148 * we might have some extents allocated but more delalloc past those
4149 * extents. so, we trust isize unless the start of the last extent is
4150 * beyond isize
4151 */
4152 if (last < isize) {
4153 last = (u64)-1;
4154 last_for_get_extent = isize;
4155 }
4156
a52f4cd2 4157 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4158 &cached_state);
ec29ed5b 4159
4d479cf0 4160 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4161 get_extent);
1506fcc8
YS
4162 if (!em)
4163 goto out;
4164 if (IS_ERR(em)) {
4165 ret = PTR_ERR(em);
4166 goto out;
4167 }
975f84fe 4168
1506fcc8 4169 while (!end) {
b76bb701 4170 u64 offset_in_extent = 0;
ea8efc74
CM
4171
4172 /* break if the extent we found is outside the range */
4173 if (em->start >= max || extent_map_end(em) < off)
4174 break;
4175
4176 /*
4177 * get_extent may return an extent that starts before our
4178 * requested range. We have to make sure the ranges
4179 * we return to fiemap always move forward and don't
4180 * overlap, so adjust the offsets here
4181 */
4182 em_start = max(em->start, off);
1506fcc8 4183
ea8efc74
CM
4184 /*
4185 * record the offset from the start of the extent
b76bb701
JB
4186 * for adjusting the disk offset below. Only do this if the
4187 * extent isn't compressed since our in ram offset may be past
4188 * what we have actually allocated on disk.
ea8efc74 4189 */
b76bb701
JB
4190 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4191 offset_in_extent = em_start - em->start;
ec29ed5b 4192 em_end = extent_map_end(em);
ea8efc74 4193 em_len = em_end - em_start;
ec29ed5b 4194 emflags = em->flags;
1506fcc8
YS
4195 disko = 0;
4196 flags = 0;
4197
ea8efc74
CM
4198 /*
4199 * bump off for our next call to get_extent
4200 */
4201 off = extent_map_end(em);
4202 if (off >= max)
4203 end = 1;
4204
93dbfad7 4205 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4206 end = 1;
4207 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4208 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4209 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4210 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4211 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4212 flags |= (FIEMAP_EXTENT_DELALLOC |
4213 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4214 } else {
fe09e16c
LB
4215 unsigned long ref_cnt = 0;
4216
ea8efc74 4217 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4218
4219 /*
4220 * As btrfs supports shared space, this information
4221 * can be exported to userspace tools via
4222 * flag FIEMAP_EXTENT_SHARED.
4223 */
4224 ret = iterate_inodes_from_logical(
4225 em->block_start,
4226 BTRFS_I(inode)->root->fs_info,
4227 path, count_ext_ref, &ref_cnt);
4228 if (ret < 0 && ret != -ENOENT)
4229 goto out_free;
4230
4231 if (ref_cnt > 1)
4232 flags |= FIEMAP_EXTENT_SHARED;
1506fcc8
YS
4233 }
4234 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4235 flags |= FIEMAP_EXTENT_ENCODED;
4236
1506fcc8
YS
4237 free_extent_map(em);
4238 em = NULL;
ec29ed5b
CM
4239 if ((em_start >= last) || em_len == (u64)-1 ||
4240 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4241 flags |= FIEMAP_EXTENT_LAST;
4242 end = 1;
4243 }
4244
ec29ed5b
CM
4245 /* now scan forward to see if this is really the last extent. */
4246 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4247 get_extent);
4248 if (IS_ERR(em)) {
4249 ret = PTR_ERR(em);
4250 goto out;
4251 }
4252 if (!em) {
975f84fe
JB
4253 flags |= FIEMAP_EXTENT_LAST;
4254 end = 1;
4255 }
ec29ed5b
CM
4256 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4257 em_len, flags);
4258 if (ret)
4259 goto out_free;
1506fcc8
YS
4260 }
4261out_free:
4262 free_extent_map(em);
4263out:
fe09e16c 4264 btrfs_free_path(path);
a52f4cd2 4265 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4266 &cached_state, GFP_NOFS);
1506fcc8
YS
4267 return ret;
4268}
4269
727011e0
CM
4270static void __free_extent_buffer(struct extent_buffer *eb)
4271{
6d49ba1b 4272 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4273 kmem_cache_free(extent_buffer_cache, eb);
4274}
4275
db7f3436
JB
4276static int extent_buffer_under_io(struct extent_buffer *eb)
4277{
4278 return (atomic_read(&eb->io_pages) ||
4279 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4280 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4281}
4282
4283/*
4284 * Helper for releasing extent buffer page.
4285 */
4286static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4287 unsigned long start_idx)
4288{
4289 unsigned long index;
4290 unsigned long num_pages;
4291 struct page *page;
4292 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4293
4294 BUG_ON(extent_buffer_under_io(eb));
4295
4296 num_pages = num_extent_pages(eb->start, eb->len);
4297 index = start_idx + num_pages;
4298 if (start_idx >= index)
4299 return;
4300
4301 do {
4302 index--;
4303 page = extent_buffer_page(eb, index);
4304 if (page && mapped) {
4305 spin_lock(&page->mapping->private_lock);
4306 /*
4307 * We do this since we'll remove the pages after we've
4308 * removed the eb from the radix tree, so we could race
4309 * and have this page now attached to the new eb. So
4310 * only clear page_private if it's still connected to
4311 * this eb.
4312 */
4313 if (PagePrivate(page) &&
4314 page->private == (unsigned long)eb) {
4315 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4316 BUG_ON(PageDirty(page));
4317 BUG_ON(PageWriteback(page));
4318 /*
4319 * We need to make sure we haven't be attached
4320 * to a new eb.
4321 */
4322 ClearPagePrivate(page);
4323 set_page_private(page, 0);
4324 /* One for the page private */
4325 page_cache_release(page);
4326 }
4327 spin_unlock(&page->mapping->private_lock);
4328
4329 }
4330 if (page) {
4331 /* One for when we alloced the page */
4332 page_cache_release(page);
4333 }
4334 } while (index != start_idx);
4335}
4336
4337/*
4338 * Helper for releasing the extent buffer.
4339 */
4340static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4341{
4342 btrfs_release_extent_buffer_page(eb, 0);
4343 __free_extent_buffer(eb);
4344}
4345
d1310b2e
CM
4346static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4347 u64 start,
4348 unsigned long len,
4349 gfp_t mask)
4350{
4351 struct extent_buffer *eb = NULL;
4352
d1310b2e 4353 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4354 if (eb == NULL)
4355 return NULL;
d1310b2e
CM
4356 eb->start = start;
4357 eb->len = len;
4f2de97a 4358 eb->tree = tree;
815a51c7 4359 eb->bflags = 0;
bd681513
CM
4360 rwlock_init(&eb->lock);
4361 atomic_set(&eb->write_locks, 0);
4362 atomic_set(&eb->read_locks, 0);
4363 atomic_set(&eb->blocking_readers, 0);
4364 atomic_set(&eb->blocking_writers, 0);
4365 atomic_set(&eb->spinning_readers, 0);
4366 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4367 eb->lock_nested = 0;
bd681513
CM
4368 init_waitqueue_head(&eb->write_lock_wq);
4369 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4370
6d49ba1b
ES
4371 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4372
3083ee2e 4373 spin_lock_init(&eb->refs_lock);
d1310b2e 4374 atomic_set(&eb->refs, 1);
0b32f4bb 4375 atomic_set(&eb->io_pages, 0);
727011e0 4376
b8dae313
DS
4377 /*
4378 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4379 */
4380 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4381 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4382 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4383
4384 return eb;
4385}
4386
815a51c7
JS
4387struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4388{
4389 unsigned long i;
4390 struct page *p;
4391 struct extent_buffer *new;
4392 unsigned long num_pages = num_extent_pages(src->start, src->len);
4393
9ec72677 4394 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4395 if (new == NULL)
4396 return NULL;
4397
4398 for (i = 0; i < num_pages; i++) {
9ec72677 4399 p = alloc_page(GFP_NOFS);
db7f3436
JB
4400 if (!p) {
4401 btrfs_release_extent_buffer(new);
4402 return NULL;
4403 }
815a51c7
JS
4404 attach_extent_buffer_page(new, p);
4405 WARN_ON(PageDirty(p));
4406 SetPageUptodate(p);
4407 new->pages[i] = p;
4408 }
4409
4410 copy_extent_buffer(new, src, 0, 0, src->len);
4411 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4412 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4413
4414 return new;
4415}
4416
4417struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4418{
4419 struct extent_buffer *eb;
4420 unsigned long num_pages = num_extent_pages(0, len);
4421 unsigned long i;
4422
9ec72677 4423 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4424 if (!eb)
4425 return NULL;
4426
4427 for (i = 0; i < num_pages; i++) {
9ec72677 4428 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4429 if (!eb->pages[i])
4430 goto err;
4431 }
4432 set_extent_buffer_uptodate(eb);
4433 btrfs_set_header_nritems(eb, 0);
4434 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4435
4436 return eb;
4437err:
84167d19
SB
4438 for (; i > 0; i--)
4439 __free_page(eb->pages[i - 1]);
815a51c7
JS
4440 __free_extent_buffer(eb);
4441 return NULL;
4442}
4443
0b32f4bb
JB
4444static void check_buffer_tree_ref(struct extent_buffer *eb)
4445{
242e18c7 4446 int refs;
0b32f4bb
JB
4447 /* the ref bit is tricky. We have to make sure it is set
4448 * if we have the buffer dirty. Otherwise the
4449 * code to free a buffer can end up dropping a dirty
4450 * page
4451 *
4452 * Once the ref bit is set, it won't go away while the
4453 * buffer is dirty or in writeback, and it also won't
4454 * go away while we have the reference count on the
4455 * eb bumped.
4456 *
4457 * We can't just set the ref bit without bumping the
4458 * ref on the eb because free_extent_buffer might
4459 * see the ref bit and try to clear it. If this happens
4460 * free_extent_buffer might end up dropping our original
4461 * ref by mistake and freeing the page before we are able
4462 * to add one more ref.
4463 *
4464 * So bump the ref count first, then set the bit. If someone
4465 * beat us to it, drop the ref we added.
4466 */
242e18c7
CM
4467 refs = atomic_read(&eb->refs);
4468 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4469 return;
4470
594831c4
JB
4471 spin_lock(&eb->refs_lock);
4472 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4473 atomic_inc(&eb->refs);
594831c4 4474 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4475}
4476
5df4235e
JB
4477static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4478{
4479 unsigned long num_pages, i;
4480
0b32f4bb
JB
4481 check_buffer_tree_ref(eb);
4482
5df4235e
JB
4483 num_pages = num_extent_pages(eb->start, eb->len);
4484 for (i = 0; i < num_pages; i++) {
4485 struct page *p = extent_buffer_page(eb, i);
4486 mark_page_accessed(p);
4487 }
4488}
4489
d1310b2e 4490struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4491 u64 start, unsigned long len)
d1310b2e
CM
4492{
4493 unsigned long num_pages = num_extent_pages(start, len);
4494 unsigned long i;
4495 unsigned long index = start >> PAGE_CACHE_SHIFT;
4496 struct extent_buffer *eb;
6af118ce 4497 struct extent_buffer *exists = NULL;
d1310b2e
CM
4498 struct page *p;
4499 struct address_space *mapping = tree->mapping;
4500 int uptodate = 1;
19fe0a8b 4501 int ret;
d1310b2e 4502
19fe0a8b
MX
4503 rcu_read_lock();
4504 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4505 if (eb && atomic_inc_not_zero(&eb->refs)) {
4506 rcu_read_unlock();
5df4235e 4507 mark_extent_buffer_accessed(eb);
6af118ce
CM
4508 return eb;
4509 }
19fe0a8b 4510 rcu_read_unlock();
6af118ce 4511
ba144192 4512 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4513 if (!eb)
d1310b2e
CM
4514 return NULL;
4515
727011e0 4516 for (i = 0; i < num_pages; i++, index++) {
a6591715 4517 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4518 if (!p)
6af118ce 4519 goto free_eb;
4f2de97a
JB
4520
4521 spin_lock(&mapping->private_lock);
4522 if (PagePrivate(p)) {
4523 /*
4524 * We could have already allocated an eb for this page
4525 * and attached one so lets see if we can get a ref on
4526 * the existing eb, and if we can we know it's good and
4527 * we can just return that one, else we know we can just
4528 * overwrite page->private.
4529 */
4530 exists = (struct extent_buffer *)p->private;
4531 if (atomic_inc_not_zero(&exists->refs)) {
4532 spin_unlock(&mapping->private_lock);
4533 unlock_page(p);
17de39ac 4534 page_cache_release(p);
5df4235e 4535 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4536 goto free_eb;
4537 }
4538
0b32f4bb 4539 /*
4f2de97a
JB
4540 * Do this so attach doesn't complain and we need to
4541 * drop the ref the old guy had.
4542 */
4543 ClearPagePrivate(p);
0b32f4bb 4544 WARN_ON(PageDirty(p));
4f2de97a 4545 page_cache_release(p);
d1310b2e 4546 }
4f2de97a
JB
4547 attach_extent_buffer_page(eb, p);
4548 spin_unlock(&mapping->private_lock);
0b32f4bb 4549 WARN_ON(PageDirty(p));
d1310b2e 4550 mark_page_accessed(p);
727011e0 4551 eb->pages[i] = p;
d1310b2e
CM
4552 if (!PageUptodate(p))
4553 uptodate = 0;
eb14ab8e
CM
4554
4555 /*
4556 * see below about how we avoid a nasty race with release page
4557 * and why we unlock later
4558 */
d1310b2e
CM
4559 }
4560 if (uptodate)
b4ce94de 4561 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4562again:
19fe0a8b
MX
4563 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4564 if (ret)
4565 goto free_eb;
4566
6af118ce 4567 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4568 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4569 if (ret == -EEXIST) {
4570 exists = radix_tree_lookup(&tree->buffer,
4571 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4572 if (!atomic_inc_not_zero(&exists->refs)) {
4573 spin_unlock(&tree->buffer_lock);
4574 radix_tree_preload_end();
115391d2
JB
4575 exists = NULL;
4576 goto again;
4577 }
6af118ce 4578 spin_unlock(&tree->buffer_lock);
19fe0a8b 4579 radix_tree_preload_end();
5df4235e 4580 mark_extent_buffer_accessed(exists);
6af118ce
CM
4581 goto free_eb;
4582 }
6af118ce 4583 /* add one reference for the tree */
0b32f4bb 4584 check_buffer_tree_ref(eb);
f044ba78 4585 spin_unlock(&tree->buffer_lock);
19fe0a8b 4586 radix_tree_preload_end();
eb14ab8e
CM
4587
4588 /*
4589 * there is a race where release page may have
4590 * tried to find this extent buffer in the radix
4591 * but failed. It will tell the VM it is safe to
4592 * reclaim the, and it will clear the page private bit.
4593 * We must make sure to set the page private bit properly
4594 * after the extent buffer is in the radix tree so
4595 * it doesn't get lost
4596 */
727011e0
CM
4597 SetPageChecked(eb->pages[0]);
4598 for (i = 1; i < num_pages; i++) {
4599 p = extent_buffer_page(eb, i);
727011e0
CM
4600 ClearPageChecked(p);
4601 unlock_page(p);
4602 }
4603 unlock_page(eb->pages[0]);
d1310b2e
CM
4604 return eb;
4605
6af118ce 4606free_eb:
727011e0
CM
4607 for (i = 0; i < num_pages; i++) {
4608 if (eb->pages[i])
4609 unlock_page(eb->pages[i]);
4610 }
eb14ab8e 4611
17de39ac 4612 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4613 btrfs_release_extent_buffer(eb);
6af118ce 4614 return exists;
d1310b2e 4615}
d1310b2e
CM
4616
4617struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4618 u64 start, unsigned long len)
d1310b2e 4619{
d1310b2e 4620 struct extent_buffer *eb;
d1310b2e 4621
19fe0a8b
MX
4622 rcu_read_lock();
4623 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4624 if (eb && atomic_inc_not_zero(&eb->refs)) {
4625 rcu_read_unlock();
5df4235e 4626 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4627 return eb;
4628 }
4629 rcu_read_unlock();
0f9dd46c 4630
19fe0a8b 4631 return NULL;
d1310b2e 4632}
d1310b2e 4633
3083ee2e
JB
4634static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4635{
4636 struct extent_buffer *eb =
4637 container_of(head, struct extent_buffer, rcu_head);
4638
4639 __free_extent_buffer(eb);
4640}
4641
3083ee2e 4642/* Expects to have eb->eb_lock already held */
f7a52a40 4643static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4644{
4645 WARN_ON(atomic_read(&eb->refs) == 0);
4646 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4647 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4648 spin_unlock(&eb->refs_lock);
4649 } else {
4650 struct extent_io_tree *tree = eb->tree;
3083ee2e 4651
815a51c7 4652 spin_unlock(&eb->refs_lock);
3083ee2e 4653
815a51c7
JS
4654 spin_lock(&tree->buffer_lock);
4655 radix_tree_delete(&tree->buffer,
4656 eb->start >> PAGE_CACHE_SHIFT);
4657 spin_unlock(&tree->buffer_lock);
4658 }
3083ee2e
JB
4659
4660 /* Should be safe to release our pages at this point */
4661 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4662 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4663 return 1;
3083ee2e
JB
4664 }
4665 spin_unlock(&eb->refs_lock);
e64860aa
JB
4666
4667 return 0;
3083ee2e
JB
4668}
4669
d1310b2e
CM
4670void free_extent_buffer(struct extent_buffer *eb)
4671{
242e18c7
CM
4672 int refs;
4673 int old;
d1310b2e
CM
4674 if (!eb)
4675 return;
4676
242e18c7
CM
4677 while (1) {
4678 refs = atomic_read(&eb->refs);
4679 if (refs <= 3)
4680 break;
4681 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4682 if (old == refs)
4683 return;
4684 }
4685
3083ee2e 4686 spin_lock(&eb->refs_lock);
815a51c7
JS
4687 if (atomic_read(&eb->refs) == 2 &&
4688 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4689 atomic_dec(&eb->refs);
4690
3083ee2e
JB
4691 if (atomic_read(&eb->refs) == 2 &&
4692 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4693 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4694 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4695 atomic_dec(&eb->refs);
4696
4697 /*
4698 * I know this is terrible, but it's temporary until we stop tracking
4699 * the uptodate bits and such for the extent buffers.
4700 */
f7a52a40 4701 release_extent_buffer(eb);
3083ee2e
JB
4702}
4703
4704void free_extent_buffer_stale(struct extent_buffer *eb)
4705{
4706 if (!eb)
d1310b2e
CM
4707 return;
4708
3083ee2e
JB
4709 spin_lock(&eb->refs_lock);
4710 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4711
0b32f4bb 4712 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4713 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4714 atomic_dec(&eb->refs);
f7a52a40 4715 release_extent_buffer(eb);
d1310b2e 4716}
d1310b2e 4717
1d4284bd 4718void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4719{
d1310b2e
CM
4720 unsigned long i;
4721 unsigned long num_pages;
4722 struct page *page;
4723
d1310b2e
CM
4724 num_pages = num_extent_pages(eb->start, eb->len);
4725
4726 for (i = 0; i < num_pages; i++) {
4727 page = extent_buffer_page(eb, i);
b9473439 4728 if (!PageDirty(page))
d2c3f4f6
CM
4729 continue;
4730
a61e6f29 4731 lock_page(page);
eb14ab8e
CM
4732 WARN_ON(!PagePrivate(page));
4733
d1310b2e 4734 clear_page_dirty_for_io(page);
0ee0fda0 4735 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4736 if (!PageDirty(page)) {
4737 radix_tree_tag_clear(&page->mapping->page_tree,
4738 page_index(page),
4739 PAGECACHE_TAG_DIRTY);
4740 }
0ee0fda0 4741 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4742 ClearPageError(page);
a61e6f29 4743 unlock_page(page);
d1310b2e 4744 }
0b32f4bb 4745 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4746}
d1310b2e 4747
0b32f4bb 4748int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4749{
4750 unsigned long i;
4751 unsigned long num_pages;
b9473439 4752 int was_dirty = 0;
d1310b2e 4753
0b32f4bb
JB
4754 check_buffer_tree_ref(eb);
4755
b9473439 4756 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4757
d1310b2e 4758 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4759 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4760 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4761
b9473439 4762 for (i = 0; i < num_pages; i++)
0b32f4bb 4763 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4764 return was_dirty;
d1310b2e 4765}
d1310b2e 4766
0b32f4bb 4767int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4768{
4769 unsigned long i;
4770 struct page *page;
4771 unsigned long num_pages;
4772
b4ce94de 4773 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4774 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4775 for (i = 0; i < num_pages; i++) {
4776 page = extent_buffer_page(eb, i);
33958dc6
CM
4777 if (page)
4778 ClearPageUptodate(page);
1259ab75
CM
4779 }
4780 return 0;
4781}
4782
0b32f4bb 4783int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4784{
4785 unsigned long i;
4786 struct page *page;
4787 unsigned long num_pages;
4788
0b32f4bb 4789 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4790 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4791 for (i = 0; i < num_pages; i++) {
4792 page = extent_buffer_page(eb, i);
d1310b2e
CM
4793 SetPageUptodate(page);
4794 }
4795 return 0;
4796}
d1310b2e 4797
0b32f4bb 4798int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4799{
0b32f4bb 4800 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4801}
d1310b2e
CM
4802
4803int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4804 struct extent_buffer *eb, u64 start, int wait,
f188591e 4805 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4806{
4807 unsigned long i;
4808 unsigned long start_i;
4809 struct page *page;
4810 int err;
4811 int ret = 0;
ce9adaa5
CM
4812 int locked_pages = 0;
4813 int all_uptodate = 1;
d1310b2e 4814 unsigned long num_pages;
727011e0 4815 unsigned long num_reads = 0;
a86c12c7 4816 struct bio *bio = NULL;
c8b97818 4817 unsigned long bio_flags = 0;
a86c12c7 4818
b4ce94de 4819 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4820 return 0;
4821
d1310b2e
CM
4822 if (start) {
4823 WARN_ON(start < eb->start);
4824 start_i = (start >> PAGE_CACHE_SHIFT) -
4825 (eb->start >> PAGE_CACHE_SHIFT);
4826 } else {
4827 start_i = 0;
4828 }
4829
4830 num_pages = num_extent_pages(eb->start, eb->len);
4831 for (i = start_i; i < num_pages; i++) {
4832 page = extent_buffer_page(eb, i);
bb82ab88 4833 if (wait == WAIT_NONE) {
2db04966 4834 if (!trylock_page(page))
ce9adaa5 4835 goto unlock_exit;
d1310b2e
CM
4836 } else {
4837 lock_page(page);
4838 }
ce9adaa5 4839 locked_pages++;
727011e0
CM
4840 if (!PageUptodate(page)) {
4841 num_reads++;
ce9adaa5 4842 all_uptodate = 0;
727011e0 4843 }
ce9adaa5
CM
4844 }
4845 if (all_uptodate) {
4846 if (start_i == 0)
b4ce94de 4847 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4848 goto unlock_exit;
4849 }
4850
ea466794 4851 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4852 eb->read_mirror = 0;
0b32f4bb 4853 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4854 for (i = start_i; i < num_pages; i++) {
4855 page = extent_buffer_page(eb, i);
ce9adaa5 4856 if (!PageUptodate(page)) {
f188591e 4857 ClearPageError(page);
a86c12c7 4858 err = __extent_read_full_page(tree, page,
f188591e 4859 get_extent, &bio,
d4c7ca86
JB
4860 mirror_num, &bio_flags,
4861 READ | REQ_META);
d397712b 4862 if (err)
d1310b2e 4863 ret = err;
d1310b2e
CM
4864 } else {
4865 unlock_page(page);
4866 }
4867 }
4868
355808c2 4869 if (bio) {
d4c7ca86
JB
4870 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4871 bio_flags);
79787eaa
JM
4872 if (err)
4873 return err;
355808c2 4874 }
a86c12c7 4875
bb82ab88 4876 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4877 return ret;
d397712b 4878
d1310b2e
CM
4879 for (i = start_i; i < num_pages; i++) {
4880 page = extent_buffer_page(eb, i);
4881 wait_on_page_locked(page);
d397712b 4882 if (!PageUptodate(page))
d1310b2e 4883 ret = -EIO;
d1310b2e 4884 }
d397712b 4885
d1310b2e 4886 return ret;
ce9adaa5
CM
4887
4888unlock_exit:
4889 i = start_i;
d397712b 4890 while (locked_pages > 0) {
ce9adaa5
CM
4891 page = extent_buffer_page(eb, i);
4892 i++;
4893 unlock_page(page);
4894 locked_pages--;
4895 }
4896 return ret;
d1310b2e 4897}
d1310b2e
CM
4898
4899void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4900 unsigned long start,
4901 unsigned long len)
4902{
4903 size_t cur;
4904 size_t offset;
4905 struct page *page;
4906 char *kaddr;
4907 char *dst = (char *)dstv;
4908 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4909 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4910
4911 WARN_ON(start > eb->len);
4912 WARN_ON(start + len > eb->start + eb->len);
4913
778746b5 4914 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4915
d397712b 4916 while (len > 0) {
d1310b2e 4917 page = extent_buffer_page(eb, i);
d1310b2e
CM
4918
4919 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4920 kaddr = page_address(page);
d1310b2e 4921 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4922
4923 dst += cur;
4924 len -= cur;
4925 offset = 0;
4926 i++;
4927 }
4928}
d1310b2e
CM
4929
4930int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4931 unsigned long min_len, char **map,
d1310b2e 4932 unsigned long *map_start,
a6591715 4933 unsigned long *map_len)
d1310b2e
CM
4934{
4935 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4936 char *kaddr;
4937 struct page *p;
4938 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4939 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4940 unsigned long end_i = (start_offset + start + min_len - 1) >>
4941 PAGE_CACHE_SHIFT;
4942
4943 if (i != end_i)
4944 return -EINVAL;
4945
4946 if (i == 0) {
4947 offset = start_offset;
4948 *map_start = 0;
4949 } else {
4950 offset = 0;
4951 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4952 }
d397712b 4953
d1310b2e 4954 if (start + min_len > eb->len) {
31b1a2bd 4955 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
4956 "wanted %lu %lu\n",
4957 eb->start, eb->len, start, min_len);
85026533 4958 return -EINVAL;
d1310b2e
CM
4959 }
4960
4961 p = extent_buffer_page(eb, i);
a6591715 4962 kaddr = page_address(p);
d1310b2e
CM
4963 *map = kaddr + offset;
4964 *map_len = PAGE_CACHE_SIZE - offset;
4965 return 0;
4966}
d1310b2e 4967
d1310b2e
CM
4968int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4969 unsigned long start,
4970 unsigned long len)
4971{
4972 size_t cur;
4973 size_t offset;
4974 struct page *page;
4975 char *kaddr;
4976 char *ptr = (char *)ptrv;
4977 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4978 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4979 int ret = 0;
4980
4981 WARN_ON(start > eb->len);
4982 WARN_ON(start + len > eb->start + eb->len);
4983
778746b5 4984 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4985
d397712b 4986 while (len > 0) {
d1310b2e 4987 page = extent_buffer_page(eb, i);
d1310b2e
CM
4988
4989 cur = min(len, (PAGE_CACHE_SIZE - offset));
4990
a6591715 4991 kaddr = page_address(page);
d1310b2e 4992 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4993 if (ret)
4994 break;
4995
4996 ptr += cur;
4997 len -= cur;
4998 offset = 0;
4999 i++;
5000 }
5001 return ret;
5002}
d1310b2e
CM
5003
5004void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5005 unsigned long start, unsigned long len)
5006{
5007 size_t cur;
5008 size_t offset;
5009 struct page *page;
5010 char *kaddr;
5011 char *src = (char *)srcv;
5012 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5013 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5014
5015 WARN_ON(start > eb->len);
5016 WARN_ON(start + len > eb->start + eb->len);
5017
778746b5 5018 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5019
d397712b 5020 while (len > 0) {
d1310b2e
CM
5021 page = extent_buffer_page(eb, i);
5022 WARN_ON(!PageUptodate(page));
5023
5024 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5025 kaddr = page_address(page);
d1310b2e 5026 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5027
5028 src += cur;
5029 len -= cur;
5030 offset = 0;
5031 i++;
5032 }
5033}
d1310b2e
CM
5034
5035void memset_extent_buffer(struct extent_buffer *eb, char c,
5036 unsigned long start, unsigned long len)
5037{
5038 size_t cur;
5039 size_t offset;
5040 struct page *page;
5041 char *kaddr;
5042 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5043 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5044
5045 WARN_ON(start > eb->len);
5046 WARN_ON(start + len > eb->start + eb->len);
5047
778746b5 5048 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5049
d397712b 5050 while (len > 0) {
d1310b2e
CM
5051 page = extent_buffer_page(eb, i);
5052 WARN_ON(!PageUptodate(page));
5053
5054 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5055 kaddr = page_address(page);
d1310b2e 5056 memset(kaddr + offset, c, cur);
d1310b2e
CM
5057
5058 len -= cur;
5059 offset = 0;
5060 i++;
5061 }
5062}
d1310b2e
CM
5063
5064void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5065 unsigned long dst_offset, unsigned long src_offset,
5066 unsigned long len)
5067{
5068 u64 dst_len = dst->len;
5069 size_t cur;
5070 size_t offset;
5071 struct page *page;
5072 char *kaddr;
5073 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5074 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5075
5076 WARN_ON(src->len != dst_len);
5077
5078 offset = (start_offset + dst_offset) &
778746b5 5079 (PAGE_CACHE_SIZE - 1);
d1310b2e 5080
d397712b 5081 while (len > 0) {
d1310b2e
CM
5082 page = extent_buffer_page(dst, i);
5083 WARN_ON(!PageUptodate(page));
5084
5085 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5086
a6591715 5087 kaddr = page_address(page);
d1310b2e 5088 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5089
5090 src_offset += cur;
5091 len -= cur;
5092 offset = 0;
5093 i++;
5094 }
5095}
d1310b2e
CM
5096
5097static void move_pages(struct page *dst_page, struct page *src_page,
5098 unsigned long dst_off, unsigned long src_off,
5099 unsigned long len)
5100{
a6591715 5101 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
5102 if (dst_page == src_page) {
5103 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5104 } else {
a6591715 5105 char *src_kaddr = page_address(src_page);
d1310b2e
CM
5106 char *p = dst_kaddr + dst_off + len;
5107 char *s = src_kaddr + src_off + len;
5108
5109 while (len--)
5110 *--p = *--s;
d1310b2e 5111 }
d1310b2e
CM
5112}
5113
3387206f
ST
5114static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5115{
5116 unsigned long distance = (src > dst) ? src - dst : dst - src;
5117 return distance < len;
5118}
5119
d1310b2e
CM
5120static void copy_pages(struct page *dst_page, struct page *src_page,
5121 unsigned long dst_off, unsigned long src_off,
5122 unsigned long len)
5123{
a6591715 5124 char *dst_kaddr = page_address(dst_page);
d1310b2e 5125 char *src_kaddr;
727011e0 5126 int must_memmove = 0;
d1310b2e 5127
3387206f 5128 if (dst_page != src_page) {
a6591715 5129 src_kaddr = page_address(src_page);
3387206f 5130 } else {
d1310b2e 5131 src_kaddr = dst_kaddr;
727011e0
CM
5132 if (areas_overlap(src_off, dst_off, len))
5133 must_memmove = 1;
3387206f 5134 }
d1310b2e 5135
727011e0
CM
5136 if (must_memmove)
5137 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5138 else
5139 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5140}
5141
5142void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5143 unsigned long src_offset, unsigned long len)
5144{
5145 size_t cur;
5146 size_t dst_off_in_page;
5147 size_t src_off_in_page;
5148 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5149 unsigned long dst_i;
5150 unsigned long src_i;
5151
5152 if (src_offset + len > dst->len) {
d397712b
CM
5153 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5154 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5155 BUG_ON(1);
5156 }
5157 if (dst_offset + len > dst->len) {
d397712b
CM
5158 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5159 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5160 BUG_ON(1);
5161 }
5162
d397712b 5163 while (len > 0) {
d1310b2e 5164 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5165 (PAGE_CACHE_SIZE - 1);
d1310b2e 5166 src_off_in_page = (start_offset + src_offset) &
778746b5 5167 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5168
5169 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5170 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5171
5172 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5173 src_off_in_page));
5174 cur = min_t(unsigned long, cur,
5175 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5176
5177 copy_pages(extent_buffer_page(dst, dst_i),
5178 extent_buffer_page(dst, src_i),
5179 dst_off_in_page, src_off_in_page, cur);
5180
5181 src_offset += cur;
5182 dst_offset += cur;
5183 len -= cur;
5184 }
5185}
d1310b2e
CM
5186
5187void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5188 unsigned long src_offset, unsigned long len)
5189{
5190 size_t cur;
5191 size_t dst_off_in_page;
5192 size_t src_off_in_page;
5193 unsigned long dst_end = dst_offset + len - 1;
5194 unsigned long src_end = src_offset + len - 1;
5195 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5196 unsigned long dst_i;
5197 unsigned long src_i;
5198
5199 if (src_offset + len > dst->len) {
d397712b
CM
5200 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5201 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5202 BUG_ON(1);
5203 }
5204 if (dst_offset + len > dst->len) {
d397712b
CM
5205 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5206 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5207 BUG_ON(1);
5208 }
727011e0 5209 if (dst_offset < src_offset) {
d1310b2e
CM
5210 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5211 return;
5212 }
d397712b 5213 while (len > 0) {
d1310b2e
CM
5214 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5215 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5216
5217 dst_off_in_page = (start_offset + dst_end) &
778746b5 5218 (PAGE_CACHE_SIZE - 1);
d1310b2e 5219 src_off_in_page = (start_offset + src_end) &
778746b5 5220 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5221
5222 cur = min_t(unsigned long, len, src_off_in_page + 1);
5223 cur = min(cur, dst_off_in_page + 1);
5224 move_pages(extent_buffer_page(dst, dst_i),
5225 extent_buffer_page(dst, src_i),
5226 dst_off_in_page - cur + 1,
5227 src_off_in_page - cur + 1, cur);
5228
5229 dst_end -= cur;
5230 src_end -= cur;
5231 len -= cur;
5232 }
5233}
6af118ce 5234
f7a52a40 5235int try_release_extent_buffer(struct page *page)
19fe0a8b 5236{
6af118ce 5237 struct extent_buffer *eb;
6af118ce 5238
3083ee2e
JB
5239 /*
5240 * We need to make sure noboody is attaching this page to an eb right
5241 * now.
5242 */
5243 spin_lock(&page->mapping->private_lock);
5244 if (!PagePrivate(page)) {
5245 spin_unlock(&page->mapping->private_lock);
4f2de97a 5246 return 1;
45f49bce 5247 }
6af118ce 5248
3083ee2e
JB
5249 eb = (struct extent_buffer *)page->private;
5250 BUG_ON(!eb);
19fe0a8b
MX
5251
5252 /*
3083ee2e
JB
5253 * This is a little awful but should be ok, we need to make sure that
5254 * the eb doesn't disappear out from under us while we're looking at
5255 * this page.
19fe0a8b 5256 */
3083ee2e 5257 spin_lock(&eb->refs_lock);
0b32f4bb 5258 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5259 spin_unlock(&eb->refs_lock);
5260 spin_unlock(&page->mapping->private_lock);
5261 return 0;
b9473439 5262 }
3083ee2e 5263 spin_unlock(&page->mapping->private_lock);
897ca6e9 5264
19fe0a8b 5265 /*
3083ee2e
JB
5266 * If tree ref isn't set then we know the ref on this eb is a real ref,
5267 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5268 */
3083ee2e
JB
5269 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5270 spin_unlock(&eb->refs_lock);
5271 return 0;
b9473439 5272 }
19fe0a8b 5273
f7a52a40 5274 return release_extent_buffer(eb);
6af118ce 5275}