Match the extent tree code to btrfs-progs for multi-device merging
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
5#include <linux/gfp.h>
6#include <linux/pagemap.h>
7#include <linux/page-flags.h>
8#include <linux/module.h>
9#include <linux/spinlock.h>
10#include <linux/blkdev.h>
11#include <linux/swap.h>
12#include <linux/version.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include "extent_io.h"
16#include "extent_map.h"
17
18/* temporary define until extent_map moves out of btrfs */
19struct kmem_cache *btrfs_cache_create(const char *name, size_t size,
20 unsigned long extra_flags,
21 void (*ctor)(void *, struct kmem_cache *,
22 unsigned long));
23
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
29
d1310b2e
CM
30#define BUFFER_LRU_MAX 64
31
32struct tree_entry {
33 u64 start;
34 u64 end;
d1310b2e
CM
35 struct rb_node rb_node;
36};
37
38struct extent_page_data {
39 struct bio *bio;
40 struct extent_io_tree *tree;
41 get_extent_t *get_extent;
42};
43
44int __init extent_io_init(void)
45{
46 extent_state_cache = btrfs_cache_create("extent_state",
47 sizeof(struct extent_state), 0,
48 NULL);
49 if (!extent_state_cache)
50 return -ENOMEM;
51
52 extent_buffer_cache = btrfs_cache_create("extent_buffers",
53 sizeof(struct extent_buffer), 0,
54 NULL);
55 if (!extent_buffer_cache)
56 goto free_state_cache;
57 return 0;
58
59free_state_cache:
60 kmem_cache_destroy(extent_state_cache);
61 return -ENOMEM;
62}
63
64void extent_io_exit(void)
65{
66 struct extent_state *state;
67
68 while (!list_empty(&states)) {
69 state = list_entry(states.next, struct extent_state, list);
70dec807 70 printk("state leak: start %Lu end %Lu state %lu in tree %p refs %d\n", state->start, state->end, state->state, state->tree, atomic_read(&state->refs));
d1310b2e
CM
71 list_del(&state->list);
72 kmem_cache_free(extent_state_cache, state);
73
74 }
75
76 if (extent_state_cache)
77 kmem_cache_destroy(extent_state_cache);
78 if (extent_buffer_cache)
79 kmem_cache_destroy(extent_buffer_cache);
80}
81
82void extent_io_tree_init(struct extent_io_tree *tree,
83 struct address_space *mapping, gfp_t mask)
84{
85 tree->state.rb_node = NULL;
86 tree->ops = NULL;
87 tree->dirty_bytes = 0;
70dec807 88 spin_lock_init(&tree->lock);
d1310b2e
CM
89 spin_lock_init(&tree->lru_lock);
90 tree->mapping = mapping;
91 INIT_LIST_HEAD(&tree->buffer_lru);
92 tree->lru_size = 0;
80ea96b1 93 tree->last = NULL;
d1310b2e
CM
94}
95EXPORT_SYMBOL(extent_io_tree_init);
96
97void extent_io_tree_empty_lru(struct extent_io_tree *tree)
98{
99 struct extent_buffer *eb;
100 while(!list_empty(&tree->buffer_lru)) {
101 eb = list_entry(tree->buffer_lru.next, struct extent_buffer,
102 lru);
103 list_del_init(&eb->lru);
104 free_extent_buffer(eb);
105 }
106}
107EXPORT_SYMBOL(extent_io_tree_empty_lru);
108
109struct extent_state *alloc_extent_state(gfp_t mask)
110{
111 struct extent_state *state;
d1310b2e
CM
112
113 state = kmem_cache_alloc(extent_state_cache, mask);
114 if (!state || IS_ERR(state))
115 return state;
116 state->state = 0;
d1310b2e 117 state->private = 0;
70dec807 118 state->tree = NULL;
d1310b2e
CM
119
120 atomic_set(&state->refs, 1);
121 init_waitqueue_head(&state->wq);
122 return state;
123}
124EXPORT_SYMBOL(alloc_extent_state);
125
126void free_extent_state(struct extent_state *state)
127{
d1310b2e
CM
128 if (!state)
129 return;
130 if (atomic_dec_and_test(&state->refs)) {
70dec807 131 WARN_ON(state->tree);
d1310b2e
CM
132 kmem_cache_free(extent_state_cache, state);
133 }
134}
135EXPORT_SYMBOL(free_extent_state);
136
137static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
138 struct rb_node *node)
139{
140 struct rb_node ** p = &root->rb_node;
141 struct rb_node * parent = NULL;
142 struct tree_entry *entry;
143
144 while(*p) {
145 parent = *p;
146 entry = rb_entry(parent, struct tree_entry, rb_node);
147
148 if (offset < entry->start)
149 p = &(*p)->rb_left;
150 else if (offset > entry->end)
151 p = &(*p)->rb_right;
152 else
153 return parent;
154 }
155
156 entry = rb_entry(node, struct tree_entry, rb_node);
d1310b2e
CM
157 rb_link_node(node, parent, p);
158 rb_insert_color(node, root);
159 return NULL;
160}
161
80ea96b1 162static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
163 struct rb_node **prev_ret,
164 struct rb_node **next_ret)
165{
80ea96b1 166 struct rb_root *root = &tree->state;
d1310b2e
CM
167 struct rb_node * n = root->rb_node;
168 struct rb_node *prev = NULL;
169 struct rb_node *orig_prev = NULL;
170 struct tree_entry *entry;
171 struct tree_entry *prev_entry = NULL;
172
80ea96b1
CM
173 if (tree->last) {
174 struct extent_state *state;
175 state = tree->last;
176 if (state->start <= offset && offset <= state->end)
177 return &tree->last->rb_node;
178 }
d1310b2e
CM
179 while(n) {
180 entry = rb_entry(n, struct tree_entry, rb_node);
181 prev = n;
182 prev_entry = entry;
183
184 if (offset < entry->start)
185 n = n->rb_left;
186 else if (offset > entry->end)
187 n = n->rb_right;
80ea96b1
CM
188 else {
189 tree->last = rb_entry(n, struct extent_state, rb_node);
d1310b2e 190 return n;
80ea96b1 191 }
d1310b2e
CM
192 }
193
194 if (prev_ret) {
195 orig_prev = prev;
196 while(prev && offset > prev_entry->end) {
197 prev = rb_next(prev);
198 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
199 }
200 *prev_ret = prev;
201 prev = orig_prev;
202 }
203
204 if (next_ret) {
205 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
206 while(prev && offset < prev_entry->start) {
207 prev = rb_prev(prev);
208 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
209 }
210 *next_ret = prev;
211 }
212 return NULL;
213}
214
80ea96b1
CM
215static inline struct rb_node *tree_search(struct extent_io_tree *tree,
216 u64 offset)
d1310b2e 217{
70dec807 218 struct rb_node *prev = NULL;
d1310b2e 219 struct rb_node *ret;
70dec807 220
80ea96b1
CM
221 ret = __etree_search(tree, offset, &prev, NULL);
222 if (!ret) {
223 if (prev) {
224 tree->last = rb_entry(prev, struct extent_state,
225 rb_node);
226 }
d1310b2e 227 return prev;
80ea96b1 228 }
d1310b2e
CM
229 return ret;
230}
231
232/*
233 * utility function to look for merge candidates inside a given range.
234 * Any extents with matching state are merged together into a single
235 * extent in the tree. Extents with EXTENT_IO in their state field
236 * are not merged because the end_io handlers need to be able to do
237 * operations on them without sleeping (or doing allocations/splits).
238 *
239 * This should be called with the tree lock held.
240 */
241static int merge_state(struct extent_io_tree *tree,
242 struct extent_state *state)
243{
244 struct extent_state *other;
245 struct rb_node *other_node;
246
247 if (state->state & EXTENT_IOBITS)
248 return 0;
249
250 other_node = rb_prev(&state->rb_node);
251 if (other_node) {
252 other = rb_entry(other_node, struct extent_state, rb_node);
253 if (other->end == state->start - 1 &&
254 other->state == state->state) {
255 state->start = other->start;
70dec807 256 other->tree = NULL;
80ea96b1 257 if (tree->last == other)
d7fc640e 258 tree->last = state;
d1310b2e
CM
259 rb_erase(&other->rb_node, &tree->state);
260 free_extent_state(other);
261 }
262 }
263 other_node = rb_next(&state->rb_node);
264 if (other_node) {
265 other = rb_entry(other_node, struct extent_state, rb_node);
266 if (other->start == state->end + 1 &&
267 other->state == state->state) {
268 other->start = state->start;
70dec807 269 state->tree = NULL;
80ea96b1 270 if (tree->last == state)
d7fc640e 271 tree->last = other;
d1310b2e
CM
272 rb_erase(&state->rb_node, &tree->state);
273 free_extent_state(state);
274 }
275 }
276 return 0;
277}
278
291d673e
CM
279static void set_state_cb(struct extent_io_tree *tree,
280 struct extent_state *state,
281 unsigned long bits)
282{
283 if (tree->ops && tree->ops->set_bit_hook) {
284 tree->ops->set_bit_hook(tree->mapping->host, state->start,
b0c68f8b 285 state->end, state->state, bits);
291d673e
CM
286 }
287}
288
289static void clear_state_cb(struct extent_io_tree *tree,
290 struct extent_state *state,
291 unsigned long bits)
292{
293 if (tree->ops && tree->ops->set_bit_hook) {
294 tree->ops->clear_bit_hook(tree->mapping->host, state->start,
b0c68f8b 295 state->end, state->state, bits);
291d673e
CM
296 }
297}
298
d1310b2e
CM
299/*
300 * insert an extent_state struct into the tree. 'bits' are set on the
301 * struct before it is inserted.
302 *
303 * This may return -EEXIST if the extent is already there, in which case the
304 * state struct is freed.
305 *
306 * The tree lock is not taken internally. This is a utility function and
307 * probably isn't what you want to call (see set/clear_extent_bit).
308 */
309static int insert_state(struct extent_io_tree *tree,
310 struct extent_state *state, u64 start, u64 end,
311 int bits)
312{
313 struct rb_node *node;
314
315 if (end < start) {
316 printk("end < start %Lu %Lu\n", end, start);
317 WARN_ON(1);
318 }
319 if (bits & EXTENT_DIRTY)
320 tree->dirty_bytes += end - start + 1;
b0c68f8b 321 set_state_cb(tree, state, bits);
d1310b2e
CM
322 state->state |= bits;
323 state->start = start;
324 state->end = end;
325 node = tree_insert(&tree->state, end, &state->rb_node);
326 if (node) {
327 struct extent_state *found;
328 found = rb_entry(node, struct extent_state, rb_node);
329 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, start, end);
330 free_extent_state(state);
331 return -EEXIST;
332 }
70dec807 333 state->tree = tree;
80ea96b1 334 tree->last = state;
d1310b2e
CM
335 merge_state(tree, state);
336 return 0;
337}
338
339/*
340 * split a given extent state struct in two, inserting the preallocated
341 * struct 'prealloc' as the newly created second half. 'split' indicates an
342 * offset inside 'orig' where it should be split.
343 *
344 * Before calling,
345 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
346 * are two extent state structs in the tree:
347 * prealloc: [orig->start, split - 1]
348 * orig: [ split, orig->end ]
349 *
350 * The tree locks are not taken by this function. They need to be held
351 * by the caller.
352 */
353static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
354 struct extent_state *prealloc, u64 split)
355{
356 struct rb_node *node;
357 prealloc->start = orig->start;
358 prealloc->end = split - 1;
359 prealloc->state = orig->state;
360 orig->start = split;
361
362 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
363 if (node) {
364 struct extent_state *found;
365 found = rb_entry(node, struct extent_state, rb_node);
366 printk("found node %Lu %Lu on insert of %Lu %Lu\n", found->start, found->end, prealloc->start, prealloc->end);
367 free_extent_state(prealloc);
368 return -EEXIST;
369 }
70dec807 370 prealloc->tree = tree;
d1310b2e
CM
371 return 0;
372}
373
374/*
375 * utility function to clear some bits in an extent state struct.
376 * it will optionally wake up any one waiting on this state (wake == 1), or
377 * forcibly remove the state from the tree (delete == 1).
378 *
379 * If no bits are set on the state struct after clearing things, the
380 * struct is freed and removed from the tree
381 */
382static int clear_state_bit(struct extent_io_tree *tree,
383 struct extent_state *state, int bits, int wake,
384 int delete)
385{
386 int ret = state->state & bits;
387
388 if ((bits & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
389 u64 range = state->end - state->start + 1;
390 WARN_ON(range > tree->dirty_bytes);
391 tree->dirty_bytes -= range;
392 }
291d673e 393 clear_state_cb(tree, state, bits);
b0c68f8b 394 state->state &= ~bits;
d1310b2e
CM
395 if (wake)
396 wake_up(&state->wq);
397 if (delete || state->state == 0) {
70dec807 398 if (state->tree) {
ae9d1285 399 clear_state_cb(tree, state, state->state);
d7fc640e
CM
400 if (tree->last == state) {
401 tree->last = extent_state_next(state);
402 }
d1310b2e 403 rb_erase(&state->rb_node, &tree->state);
70dec807 404 state->tree = NULL;
d1310b2e
CM
405 free_extent_state(state);
406 } else {
407 WARN_ON(1);
408 }
409 } else {
410 merge_state(tree, state);
411 }
412 return ret;
413}
414
415/*
416 * clear some bits on a range in the tree. This may require splitting
417 * or inserting elements in the tree, so the gfp mask is used to
418 * indicate which allocations or sleeping are allowed.
419 *
420 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
421 * the given range from the tree regardless of state (ie for truncate).
422 *
423 * the range [start, end] is inclusive.
424 *
425 * This takes the tree lock, and returns < 0 on error, > 0 if any of the
426 * bits were already set, or zero if none of the bits were already set.
427 */
428int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
429 int bits, int wake, int delete, gfp_t mask)
430{
431 struct extent_state *state;
432 struct extent_state *prealloc = NULL;
433 struct rb_node *node;
434 unsigned long flags;
435 int err;
436 int set = 0;
437
438again:
439 if (!prealloc && (mask & __GFP_WAIT)) {
440 prealloc = alloc_extent_state(mask);
441 if (!prealloc)
442 return -ENOMEM;
443 }
444
70dec807 445 spin_lock_irqsave(&tree->lock, flags);
d1310b2e
CM
446 /*
447 * this search will find the extents that end after
448 * our range starts
449 */
80ea96b1 450 node = tree_search(tree, start);
d1310b2e
CM
451 if (!node)
452 goto out;
453 state = rb_entry(node, struct extent_state, rb_node);
454 if (state->start > end)
455 goto out;
456 WARN_ON(state->end < start);
457
458 /*
459 * | ---- desired range ---- |
460 * | state | or
461 * | ------------- state -------------- |
462 *
463 * We need to split the extent we found, and may flip
464 * bits on second half.
465 *
466 * If the extent we found extends past our range, we
467 * just split and search again. It'll get split again
468 * the next time though.
469 *
470 * If the extent we found is inside our range, we clear
471 * the desired bit on it.
472 */
473
474 if (state->start < start) {
70dec807
CM
475 if (!prealloc)
476 prealloc = alloc_extent_state(GFP_ATOMIC);
d1310b2e
CM
477 err = split_state(tree, state, prealloc, start);
478 BUG_ON(err == -EEXIST);
479 prealloc = NULL;
480 if (err)
481 goto out;
482 if (state->end <= end) {
483 start = state->end + 1;
484 set |= clear_state_bit(tree, state, bits,
485 wake, delete);
486 } else {
487 start = state->start;
488 }
489 goto search_again;
490 }
491 /*
492 * | ---- desired range ---- |
493 * | state |
494 * We need to split the extent, and clear the bit
495 * on the first half
496 */
497 if (state->start <= end && state->end > end) {
70dec807
CM
498 if (!prealloc)
499 prealloc = alloc_extent_state(GFP_ATOMIC);
d1310b2e
CM
500 err = split_state(tree, state, prealloc, end + 1);
501 BUG_ON(err == -EEXIST);
502
503 if (wake)
504 wake_up(&state->wq);
505 set |= clear_state_bit(tree, prealloc, bits,
506 wake, delete);
507 prealloc = NULL;
508 goto out;
509 }
510
511 start = state->end + 1;
512 set |= clear_state_bit(tree, state, bits, wake, delete);
513 goto search_again;
514
515out:
70dec807 516 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
517 if (prealloc)
518 free_extent_state(prealloc);
519
520 return set;
521
522search_again:
523 if (start > end)
524 goto out;
70dec807 525 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
526 if (mask & __GFP_WAIT)
527 cond_resched();
528 goto again;
529}
530EXPORT_SYMBOL(clear_extent_bit);
531
532static int wait_on_state(struct extent_io_tree *tree,
533 struct extent_state *state)
534{
535 DEFINE_WAIT(wait);
536 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
70dec807 537 spin_unlock_irq(&tree->lock);
d1310b2e 538 schedule();
70dec807 539 spin_lock_irq(&tree->lock);
d1310b2e
CM
540 finish_wait(&state->wq, &wait);
541 return 0;
542}
543
544/*
545 * waits for one or more bits to clear on a range in the state tree.
546 * The range [start, end] is inclusive.
547 * The tree lock is taken by this function
548 */
549int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
550{
551 struct extent_state *state;
552 struct rb_node *node;
553
70dec807 554 spin_lock_irq(&tree->lock);
d1310b2e
CM
555again:
556 while (1) {
557 /*
558 * this search will find all the extents that end after
559 * our range starts
560 */
80ea96b1 561 node = tree_search(tree, start);
d1310b2e
CM
562 if (!node)
563 break;
564
565 state = rb_entry(node, struct extent_state, rb_node);
566
567 if (state->start > end)
568 goto out;
569
570 if (state->state & bits) {
571 start = state->start;
572 atomic_inc(&state->refs);
573 wait_on_state(tree, state);
574 free_extent_state(state);
575 goto again;
576 }
577 start = state->end + 1;
578
579 if (start > end)
580 break;
581
582 if (need_resched()) {
70dec807 583 spin_unlock_irq(&tree->lock);
d1310b2e 584 cond_resched();
70dec807 585 spin_lock_irq(&tree->lock);
d1310b2e
CM
586 }
587 }
588out:
70dec807 589 spin_unlock_irq(&tree->lock);
d1310b2e
CM
590 return 0;
591}
592EXPORT_SYMBOL(wait_extent_bit);
593
594static void set_state_bits(struct extent_io_tree *tree,
595 struct extent_state *state,
596 int bits)
597{
598 if ((bits & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
599 u64 range = state->end - state->start + 1;
600 tree->dirty_bytes += range;
601 }
291d673e 602 set_state_cb(tree, state, bits);
b0c68f8b 603 state->state |= bits;
d1310b2e
CM
604}
605
606/*
607 * set some bits on a range in the tree. This may require allocations
608 * or sleeping, so the gfp mask is used to indicate what is allowed.
609 *
610 * If 'exclusive' == 1, this will fail with -EEXIST if some part of the
611 * range already has the desired bits set. The start of the existing
612 * range is returned in failed_start in this case.
613 *
614 * [start, end] is inclusive
615 * This takes the tree lock.
616 */
617int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
618 int exclusive, u64 *failed_start, gfp_t mask)
619{
620 struct extent_state *state;
621 struct extent_state *prealloc = NULL;
622 struct rb_node *node;
623 unsigned long flags;
624 int err = 0;
625 int set;
626 u64 last_start;
627 u64 last_end;
628again:
629 if (!prealloc && (mask & __GFP_WAIT)) {
630 prealloc = alloc_extent_state(mask);
631 if (!prealloc)
632 return -ENOMEM;
633 }
634
70dec807 635 spin_lock_irqsave(&tree->lock, flags);
d1310b2e
CM
636 /*
637 * this search will find all the extents that end after
638 * our range starts.
639 */
80ea96b1 640 node = tree_search(tree, start);
d1310b2e
CM
641 if (!node) {
642 err = insert_state(tree, prealloc, start, end, bits);
643 prealloc = NULL;
644 BUG_ON(err == -EEXIST);
645 goto out;
646 }
647
648 state = rb_entry(node, struct extent_state, rb_node);
649 last_start = state->start;
650 last_end = state->end;
651
652 /*
653 * | ---- desired range ---- |
654 * | state |
655 *
656 * Just lock what we found and keep going
657 */
658 if (state->start == start && state->end <= end) {
659 set = state->state & bits;
660 if (set && exclusive) {
661 *failed_start = state->start;
662 err = -EEXIST;
663 goto out;
664 }
665 set_state_bits(tree, state, bits);
666 start = state->end + 1;
667 merge_state(tree, state);
668 goto search_again;
669 }
670
671 /*
672 * | ---- desired range ---- |
673 * | state |
674 * or
675 * | ------------- state -------------- |
676 *
677 * We need to split the extent we found, and may flip bits on
678 * second half.
679 *
680 * If the extent we found extends past our
681 * range, we just split and search again. It'll get split
682 * again the next time though.
683 *
684 * If the extent we found is inside our range, we set the
685 * desired bit on it.
686 */
687 if (state->start < start) {
688 set = state->state & bits;
689 if (exclusive && set) {
690 *failed_start = start;
691 err = -EEXIST;
692 goto out;
693 }
694 err = split_state(tree, state, prealloc, start);
695 BUG_ON(err == -EEXIST);
696 prealloc = NULL;
697 if (err)
698 goto out;
699 if (state->end <= end) {
700 set_state_bits(tree, state, bits);
701 start = state->end + 1;
702 merge_state(tree, state);
703 } else {
704 start = state->start;
705 }
706 goto search_again;
707 }
708 /*
709 * | ---- desired range ---- |
710 * | state | or | state |
711 *
712 * There's a hole, we need to insert something in it and
713 * ignore the extent we found.
714 */
715 if (state->start > start) {
716 u64 this_end;
717 if (end < last_start)
718 this_end = end;
719 else
720 this_end = last_start -1;
721 err = insert_state(tree, prealloc, start, this_end,
722 bits);
723 prealloc = NULL;
724 BUG_ON(err == -EEXIST);
725 if (err)
726 goto out;
727 start = this_end + 1;
728 goto search_again;
729 }
730 /*
731 * | ---- desired range ---- |
732 * | state |
733 * We need to split the extent, and set the bit
734 * on the first half
735 */
736 if (state->start <= end && state->end > end) {
737 set = state->state & bits;
738 if (exclusive && set) {
739 *failed_start = start;
740 err = -EEXIST;
741 goto out;
742 }
743 err = split_state(tree, state, prealloc, end + 1);
744 BUG_ON(err == -EEXIST);
745
746 set_state_bits(tree, prealloc, bits);
747 merge_state(tree, prealloc);
748 prealloc = NULL;
749 goto out;
750 }
751
752 goto search_again;
753
754out:
70dec807 755 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
756 if (prealloc)
757 free_extent_state(prealloc);
758
759 return err;
760
761search_again:
762 if (start > end)
763 goto out;
70dec807 764 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
765 if (mask & __GFP_WAIT)
766 cond_resched();
767 goto again;
768}
769EXPORT_SYMBOL(set_extent_bit);
770
771/* wrappers around set/clear extent bit */
772int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
773 gfp_t mask)
774{
775 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL,
776 mask);
777}
778EXPORT_SYMBOL(set_extent_dirty);
779
780int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
781 int bits, gfp_t mask)
782{
783 return set_extent_bit(tree, start, end, bits, 0, NULL,
784 mask);
785}
786EXPORT_SYMBOL(set_extent_bits);
787
788int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
789 int bits, gfp_t mask)
790{
791 return clear_extent_bit(tree, start, end, bits, 0, 0, mask);
792}
793EXPORT_SYMBOL(clear_extent_bits);
794
795int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
796 gfp_t mask)
797{
798 return set_extent_bit(tree, start, end,
799 EXTENT_DELALLOC | EXTENT_DIRTY, 0, NULL,
800 mask);
801}
802EXPORT_SYMBOL(set_extent_delalloc);
803
804int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
805 gfp_t mask)
806{
807 return clear_extent_bit(tree, start, end,
808 EXTENT_DIRTY | EXTENT_DELALLOC, 0, 0, mask);
809}
810EXPORT_SYMBOL(clear_extent_dirty);
811
812int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
813 gfp_t mask)
814{
815 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL,
816 mask);
817}
818EXPORT_SYMBOL(set_extent_new);
819
820int clear_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
821 gfp_t mask)
822{
823 return clear_extent_bit(tree, start, end, EXTENT_NEW, 0, 0, mask);
824}
825EXPORT_SYMBOL(clear_extent_new);
826
827int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
828 gfp_t mask)
829{
830 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, NULL,
831 mask);
832}
833EXPORT_SYMBOL(set_extent_uptodate);
834
835int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
836 gfp_t mask)
837{
838 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, mask);
839}
840EXPORT_SYMBOL(clear_extent_uptodate);
841
842int set_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
843 gfp_t mask)
844{
845 return set_extent_bit(tree, start, end, EXTENT_WRITEBACK,
846 0, NULL, mask);
847}
848EXPORT_SYMBOL(set_extent_writeback);
849
850int clear_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end,
851 gfp_t mask)
852{
853 return clear_extent_bit(tree, start, end, EXTENT_WRITEBACK, 1, 0, mask);
854}
855EXPORT_SYMBOL(clear_extent_writeback);
856
857int wait_on_extent_writeback(struct extent_io_tree *tree, u64 start, u64 end)
858{
859 return wait_extent_bit(tree, start, end, EXTENT_WRITEBACK);
860}
861EXPORT_SYMBOL(wait_on_extent_writeback);
862
d1310b2e
CM
863int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask)
864{
865 int err;
866 u64 failed_start;
867 while (1) {
868 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, 1,
869 &failed_start, mask);
870 if (err == -EEXIST && (mask & __GFP_WAIT)) {
871 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
872 start = failed_start;
873 } else {
874 break;
875 }
876 WARN_ON(start > end);
877 }
878 return err;
879}
880EXPORT_SYMBOL(lock_extent);
881
882int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end,
883 gfp_t mask)
884{
885 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, mask);
886}
887EXPORT_SYMBOL(unlock_extent);
888
889/*
890 * helper function to set pages and extents in the tree dirty
891 */
892int set_range_dirty(struct extent_io_tree *tree, u64 start, u64 end)
893{
894 unsigned long index = start >> PAGE_CACHE_SHIFT;
895 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
896 struct page *page;
897
898 while (index <= end_index) {
899 page = find_get_page(tree->mapping, index);
900 BUG_ON(!page);
901 __set_page_dirty_nobuffers(page);
902 page_cache_release(page);
903 index++;
904 }
905 set_extent_dirty(tree, start, end, GFP_NOFS);
906 return 0;
907}
908EXPORT_SYMBOL(set_range_dirty);
909
910/*
911 * helper function to set both pages and extents in the tree writeback
912 */
913int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
914{
915 unsigned long index = start >> PAGE_CACHE_SHIFT;
916 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
917 struct page *page;
918
919 while (index <= end_index) {
920 page = find_get_page(tree->mapping, index);
921 BUG_ON(!page);
922 set_page_writeback(page);
923 page_cache_release(page);
924 index++;
925 }
926 set_extent_writeback(tree, start, end, GFP_NOFS);
927 return 0;
928}
929EXPORT_SYMBOL(set_range_writeback);
930
931int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
932 u64 *start_ret, u64 *end_ret, int bits)
933{
934 struct rb_node *node;
935 struct extent_state *state;
936 int ret = 1;
937
70dec807 938 spin_lock_irq(&tree->lock);
d1310b2e
CM
939 /*
940 * this search will find all the extents that end after
941 * our range starts.
942 */
80ea96b1 943 node = tree_search(tree, start);
d1310b2e
CM
944 if (!node || IS_ERR(node)) {
945 goto out;
946 }
947
948 while(1) {
949 state = rb_entry(node, struct extent_state, rb_node);
950 if (state->end >= start && (state->state & bits)) {
951 *start_ret = state->start;
952 *end_ret = state->end;
953 ret = 0;
954 break;
955 }
956 node = rb_next(node);
957 if (!node)
958 break;
959 }
960out:
70dec807 961 spin_unlock_irq(&tree->lock);
d1310b2e
CM
962 return ret;
963}
964EXPORT_SYMBOL(find_first_extent_bit);
965
d7fc640e
CM
966struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
967 u64 start, int bits)
968{
969 struct rb_node *node;
970 struct extent_state *state;
971
972 /*
973 * this search will find all the extents that end after
974 * our range starts.
975 */
976 node = tree_search(tree, start);
977 if (!node || IS_ERR(node)) {
978 goto out;
979 }
980
981 while(1) {
982 state = rb_entry(node, struct extent_state, rb_node);
983 if (state->end >= start && (state->state & bits)) {
984 return state;
985 }
986 node = rb_next(node);
987 if (!node)
988 break;
989 }
990out:
991 return NULL;
992}
993EXPORT_SYMBOL(find_first_extent_bit_state);
994
d1310b2e
CM
995u64 find_lock_delalloc_range(struct extent_io_tree *tree,
996 u64 *start, u64 *end, u64 max_bytes)
997{
998 struct rb_node *node;
999 struct extent_state *state;
1000 u64 cur_start = *start;
1001 u64 found = 0;
1002 u64 total_bytes = 0;
1003
70dec807 1004 spin_lock_irq(&tree->lock);
d1310b2e
CM
1005 /*
1006 * this search will find all the extents that end after
1007 * our range starts.
1008 */
1009search_again:
80ea96b1 1010 node = tree_search(tree, cur_start);
d1310b2e
CM
1011 if (!node || IS_ERR(node)) {
1012 *end = (u64)-1;
1013 goto out;
1014 }
1015
1016 while(1) {
1017 state = rb_entry(node, struct extent_state, rb_node);
1018 if (found && state->start != cur_start) {
1019 goto out;
1020 }
1021 if (!(state->state & EXTENT_DELALLOC)) {
1022 if (!found)
1023 *end = state->end;
1024 goto out;
1025 }
1026 if (!found) {
1027 struct extent_state *prev_state;
1028 struct rb_node *prev_node = node;
1029 while(1) {
1030 prev_node = rb_prev(prev_node);
1031 if (!prev_node)
1032 break;
1033 prev_state = rb_entry(prev_node,
1034 struct extent_state,
1035 rb_node);
1036 if (!(prev_state->state & EXTENT_DELALLOC))
1037 break;
1038 state = prev_state;
1039 node = prev_node;
1040 }
1041 }
1042 if (state->state & EXTENT_LOCKED) {
1043 DEFINE_WAIT(wait);
1044 atomic_inc(&state->refs);
1045 prepare_to_wait(&state->wq, &wait,
1046 TASK_UNINTERRUPTIBLE);
70dec807 1047 spin_unlock_irq(&tree->lock);
d1310b2e 1048 schedule();
70dec807 1049 spin_lock_irq(&tree->lock);
d1310b2e
CM
1050 finish_wait(&state->wq, &wait);
1051 free_extent_state(state);
1052 goto search_again;
1053 }
291d673e 1054 set_state_cb(tree, state, EXTENT_LOCKED);
b0c68f8b 1055 state->state |= EXTENT_LOCKED;
d1310b2e
CM
1056 if (!found)
1057 *start = state->start;
1058 found++;
1059 *end = state->end;
1060 cur_start = state->end + 1;
1061 node = rb_next(node);
1062 if (!node)
1063 break;
1064 total_bytes += state->end - state->start + 1;
1065 if (total_bytes >= max_bytes)
1066 break;
1067 }
1068out:
70dec807 1069 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1070 return found;
1071}
1072
1073u64 count_range_bits(struct extent_io_tree *tree,
1074 u64 *start, u64 search_end, u64 max_bytes,
1075 unsigned long bits)
1076{
1077 struct rb_node *node;
1078 struct extent_state *state;
1079 u64 cur_start = *start;
1080 u64 total_bytes = 0;
1081 int found = 0;
1082
1083 if (search_end <= cur_start) {
1084 printk("search_end %Lu start %Lu\n", search_end, cur_start);
1085 WARN_ON(1);
1086 return 0;
1087 }
1088
70dec807 1089 spin_lock_irq(&tree->lock);
d1310b2e
CM
1090 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1091 total_bytes = tree->dirty_bytes;
1092 goto out;
1093 }
1094 /*
1095 * this search will find all the extents that end after
1096 * our range starts.
1097 */
80ea96b1 1098 node = tree_search(tree, cur_start);
d1310b2e
CM
1099 if (!node || IS_ERR(node)) {
1100 goto out;
1101 }
1102
1103 while(1) {
1104 state = rb_entry(node, struct extent_state, rb_node);
1105 if (state->start > search_end)
1106 break;
1107 if (state->end >= cur_start && (state->state & bits)) {
1108 total_bytes += min(search_end, state->end) + 1 -
1109 max(cur_start, state->start);
1110 if (total_bytes >= max_bytes)
1111 break;
1112 if (!found) {
1113 *start = state->start;
1114 found = 1;
1115 }
1116 }
1117 node = rb_next(node);
1118 if (!node)
1119 break;
1120 }
1121out:
70dec807 1122 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1123 return total_bytes;
1124}
1125/*
1126 * helper function to lock both pages and extents in the tree.
1127 * pages must be locked first.
1128 */
1129int lock_range(struct extent_io_tree *tree, u64 start, u64 end)
1130{
1131 unsigned long index = start >> PAGE_CACHE_SHIFT;
1132 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1133 struct page *page;
1134 int err;
1135
1136 while (index <= end_index) {
1137 page = grab_cache_page(tree->mapping, index);
1138 if (!page) {
1139 err = -ENOMEM;
1140 goto failed;
1141 }
1142 if (IS_ERR(page)) {
1143 err = PTR_ERR(page);
1144 goto failed;
1145 }
1146 index++;
1147 }
1148 lock_extent(tree, start, end, GFP_NOFS);
1149 return 0;
1150
1151failed:
1152 /*
1153 * we failed above in getting the page at 'index', so we undo here
1154 * up to but not including the page at 'index'
1155 */
1156 end_index = index;
1157 index = start >> PAGE_CACHE_SHIFT;
1158 while (index < end_index) {
1159 page = find_get_page(tree->mapping, index);
1160 unlock_page(page);
1161 page_cache_release(page);
1162 index++;
1163 }
1164 return err;
1165}
1166EXPORT_SYMBOL(lock_range);
1167
1168/*
1169 * helper function to unlock both pages and extents in the tree.
1170 */
1171int unlock_range(struct extent_io_tree *tree, u64 start, u64 end)
1172{
1173 unsigned long index = start >> PAGE_CACHE_SHIFT;
1174 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1175 struct page *page;
1176
1177 while (index <= end_index) {
1178 page = find_get_page(tree->mapping, index);
1179 unlock_page(page);
1180 page_cache_release(page);
1181 index++;
1182 }
1183 unlock_extent(tree, start, end, GFP_NOFS);
1184 return 0;
1185}
1186EXPORT_SYMBOL(unlock_range);
1187
1188int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1189{
1190 struct rb_node *node;
1191 struct extent_state *state;
1192 int ret = 0;
1193
70dec807 1194 spin_lock_irq(&tree->lock);
d1310b2e
CM
1195 /*
1196 * this search will find all the extents that end after
1197 * our range starts.
1198 */
80ea96b1 1199 node = tree_search(tree, start);
d1310b2e
CM
1200 if (!node || IS_ERR(node)) {
1201 ret = -ENOENT;
1202 goto out;
1203 }
1204 state = rb_entry(node, struct extent_state, rb_node);
1205 if (state->start != start) {
1206 ret = -ENOENT;
1207 goto out;
1208 }
1209 state->private = private;
1210out:
70dec807 1211 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1212 return ret;
1213}
1214
1215int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1216{
1217 struct rb_node *node;
1218 struct extent_state *state;
1219 int ret = 0;
1220
70dec807 1221 spin_lock_irq(&tree->lock);
d1310b2e
CM
1222 /*
1223 * this search will find all the extents that end after
1224 * our range starts.
1225 */
80ea96b1 1226 node = tree_search(tree, start);
d1310b2e
CM
1227 if (!node || IS_ERR(node)) {
1228 ret = -ENOENT;
1229 goto out;
1230 }
1231 state = rb_entry(node, struct extent_state, rb_node);
1232 if (state->start != start) {
1233 ret = -ENOENT;
1234 goto out;
1235 }
1236 *private = state->private;
1237out:
70dec807 1238 spin_unlock_irq(&tree->lock);
d1310b2e
CM
1239 return ret;
1240}
1241
1242/*
1243 * searches a range in the state tree for a given mask.
70dec807 1244 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1245 * has the bits set. Otherwise, 1 is returned if any bit in the
1246 * range is found set.
1247 */
1248int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1249 int bits, int filled)
1250{
1251 struct extent_state *state = NULL;
1252 struct rb_node *node;
1253 int bitset = 0;
1254 unsigned long flags;
1255
70dec807 1256 spin_lock_irqsave(&tree->lock, flags);
80ea96b1 1257 node = tree_search(tree, start);
d1310b2e
CM
1258 while (node && start <= end) {
1259 state = rb_entry(node, struct extent_state, rb_node);
1260
1261 if (filled && state->start > start) {
1262 bitset = 0;
1263 break;
1264 }
1265
1266 if (state->start > end)
1267 break;
1268
1269 if (state->state & bits) {
1270 bitset = 1;
1271 if (!filled)
1272 break;
1273 } else if (filled) {
1274 bitset = 0;
1275 break;
1276 }
1277 start = state->end + 1;
1278 if (start > end)
1279 break;
1280 node = rb_next(node);
1281 if (!node) {
1282 if (filled)
1283 bitset = 0;
1284 break;
1285 }
1286 }
70dec807 1287 spin_unlock_irqrestore(&tree->lock, flags);
d1310b2e
CM
1288 return bitset;
1289}
1290EXPORT_SYMBOL(test_range_bit);
1291
1292/*
1293 * helper function to set a given page up to date if all the
1294 * extents in the tree for that page are up to date
1295 */
1296static int check_page_uptodate(struct extent_io_tree *tree,
1297 struct page *page)
1298{
1299 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1300 u64 end = start + PAGE_CACHE_SIZE - 1;
1301 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1))
1302 SetPageUptodate(page);
1303 return 0;
1304}
1305
1306/*
1307 * helper function to unlock a page if all the extents in the tree
1308 * for that page are unlocked
1309 */
1310static int check_page_locked(struct extent_io_tree *tree,
1311 struct page *page)
1312{
1313 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1314 u64 end = start + PAGE_CACHE_SIZE - 1;
1315 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0))
1316 unlock_page(page);
1317 return 0;
1318}
1319
1320/*
1321 * helper function to end page writeback if all the extents
1322 * in the tree for that page are done with writeback
1323 */
1324static int check_page_writeback(struct extent_io_tree *tree,
1325 struct page *page)
1326{
1327 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1328 u64 end = start + PAGE_CACHE_SIZE - 1;
1329 if (!test_range_bit(tree, start, end, EXTENT_WRITEBACK, 0))
1330 end_page_writeback(page);
1331 return 0;
1332}
1333
1334/* lots and lots of room for performance fixes in the end_bio funcs */
1335
1336/*
1337 * after a writepage IO is done, we need to:
1338 * clear the uptodate bits on error
1339 * clear the writeback bits in the extent tree for this IO
1340 * end_page_writeback if the page has no more pending IO
1341 *
1342 * Scheduling is not allowed, so the extent state tree is expected
1343 * to have one and only one object corresponding to this IO.
1344 */
1345#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1346static void end_bio_extent_writepage(struct bio *bio, int err)
1347#else
1348static int end_bio_extent_writepage(struct bio *bio,
1349 unsigned int bytes_done, int err)
1350#endif
1351{
1352 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1353 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1354 struct extent_state *state = bio->bi_private;
1355 struct extent_io_tree *tree = state->tree;
1356 struct rb_node *node;
d1310b2e
CM
1357 u64 start;
1358 u64 end;
70dec807 1359 u64 cur;
d1310b2e 1360 int whole_page;
70dec807 1361 unsigned long flags;
d1310b2e
CM
1362
1363#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1364 if (bio->bi_size)
1365 return 1;
1366#endif
d1310b2e
CM
1367 do {
1368 struct page *page = bvec->bv_page;
1369 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1370 bvec->bv_offset;
1371 end = start + bvec->bv_len - 1;
1372
1373 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1374 whole_page = 1;
1375 else
1376 whole_page = 0;
1377
1378 if (--bvec >= bio->bi_io_vec)
1379 prefetchw(&bvec->bv_page->flags);
1380
1381 if (!uptodate) {
1382 clear_extent_uptodate(tree, start, end, GFP_ATOMIC);
1383 ClearPageUptodate(page);
1384 SetPageError(page);
1385 }
70dec807
CM
1386
1387 if (tree->ops && tree->ops->writepage_end_io_hook) {
1388 tree->ops->writepage_end_io_hook(page, start, end,
1389 state);
1390 }
1391
1392 /*
1393 * bios can get merged in funny ways, and so we need to
1394 * be careful with the state variable. We know the
1395 * state won't be merged with others because it has
1396 * WRITEBACK set, but we can't be sure each biovec is
1397 * sequential in the file. So, if our cached state
1398 * doesn't match the expected end, search the tree
1399 * for the correct one.
1400 */
1401
1402 spin_lock_irqsave(&tree->lock, flags);
1403 if (!state || state->end != end) {
1404 state = NULL;
80ea96b1 1405 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1406 if (node) {
1407 state = rb_entry(node, struct extent_state,
1408 rb_node);
1409 if (state->end != end ||
1410 !(state->state & EXTENT_WRITEBACK))
1411 state = NULL;
1412 }
1413 if (!state) {
1414 spin_unlock_irqrestore(&tree->lock, flags);
1415 clear_extent_writeback(tree, start,
1416 end, GFP_ATOMIC);
1417 goto next_io;
1418 }
1419 }
1420 cur = end;
1421 while(1) {
1422 struct extent_state *clear = state;
1423 cur = state->start;
1424 node = rb_prev(&state->rb_node);
1425 if (node) {
1426 state = rb_entry(node,
1427 struct extent_state,
1428 rb_node);
1429 } else {
1430 state = NULL;
1431 }
1432
1433 clear_state_bit(tree, clear, EXTENT_WRITEBACK,
1434 1, 0);
1435 if (cur == start)
1436 break;
1437 if (cur < start) {
1438 WARN_ON(1);
1439 break;
1440 }
1441 if (!node)
1442 break;
1443 }
1444 /* before releasing the lock, make sure the next state
1445 * variable has the expected bits set and corresponds
1446 * to the correct offsets in the file
1447 */
1448 if (state && (state->end + 1 != start ||
c2e639f0 1449 !(state->state & EXTENT_WRITEBACK))) {
70dec807
CM
1450 state = NULL;
1451 }
1452 spin_unlock_irqrestore(&tree->lock, flags);
1453next_io:
d1310b2e
CM
1454
1455 if (whole_page)
1456 end_page_writeback(page);
1457 else
1458 check_page_writeback(tree, page);
d1310b2e 1459 } while (bvec >= bio->bi_io_vec);
d1310b2e
CM
1460 bio_put(bio);
1461#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1462 return 0;
1463#endif
1464}
1465
1466/*
1467 * after a readpage IO is done, we need to:
1468 * clear the uptodate bits on error
1469 * set the uptodate bits if things worked
1470 * set the page up to date if all extents in the tree are uptodate
1471 * clear the lock bit in the extent tree
1472 * unlock the page if there are no other extents locked for it
1473 *
1474 * Scheduling is not allowed, so the extent state tree is expected
1475 * to have one and only one object corresponding to this IO.
1476 */
1477#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1478static void end_bio_extent_readpage(struct bio *bio, int err)
1479#else
1480static int end_bio_extent_readpage(struct bio *bio,
1481 unsigned int bytes_done, int err)
1482#endif
1483{
1484 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1485 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1486 struct extent_state *state = bio->bi_private;
1487 struct extent_io_tree *tree = state->tree;
1488 struct rb_node *node;
d1310b2e
CM
1489 u64 start;
1490 u64 end;
70dec807
CM
1491 u64 cur;
1492 unsigned long flags;
d1310b2e
CM
1493 int whole_page;
1494 int ret;
1495
1496#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1497 if (bio->bi_size)
1498 return 1;
1499#endif
1500
1501 do {
1502 struct page *page = bvec->bv_page;
1503 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1504 bvec->bv_offset;
1505 end = start + bvec->bv_len - 1;
1506
1507 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
1508 whole_page = 1;
1509 else
1510 whole_page = 0;
1511
1512 if (--bvec >= bio->bi_io_vec)
1513 prefetchw(&bvec->bv_page->flags);
1514
1515 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807
CM
1516 ret = tree->ops->readpage_end_io_hook(page, start, end,
1517 state);
d1310b2e
CM
1518 if (ret)
1519 uptodate = 0;
1520 }
d1310b2e 1521
70dec807
CM
1522 spin_lock_irqsave(&tree->lock, flags);
1523 if (!state || state->end != end) {
1524 state = NULL;
80ea96b1 1525 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1526 if (node) {
1527 state = rb_entry(node, struct extent_state,
1528 rb_node);
1529 if (state->end != end ||
1530 !(state->state & EXTENT_LOCKED))
1531 state = NULL;
1532 }
1533 if (!state) {
1534 spin_unlock_irqrestore(&tree->lock, flags);
1535 set_extent_uptodate(tree, start, end,
1536 GFP_ATOMIC);
1537 unlock_extent(tree, start, end, GFP_ATOMIC);
1538 goto next_io;
1539 }
1540 }
d1310b2e 1541
70dec807
CM
1542 cur = end;
1543 while(1) {
1544 struct extent_state *clear = state;
1545 cur = state->start;
1546 node = rb_prev(&state->rb_node);
1547 if (node) {
1548 state = rb_entry(node,
1549 struct extent_state,
1550 rb_node);
1551 } else {
1552 state = NULL;
1553 }
291d673e 1554 set_state_cb(tree, clear, EXTENT_UPTODATE);
b0c68f8b 1555 clear->state |= EXTENT_UPTODATE;
70dec807
CM
1556 clear_state_bit(tree, clear, EXTENT_LOCKED,
1557 1, 0);
1558 if (cur == start)
1559 break;
1560 if (cur < start) {
1561 WARN_ON(1);
1562 break;
1563 }
1564 if (!node)
1565 break;
1566 }
1567 /* before releasing the lock, make sure the next state
1568 * variable has the expected bits set and corresponds
1569 * to the correct offsets in the file
1570 */
1571 if (state && (state->end + 1 != start ||
c2e639f0 1572 !(state->state & EXTENT_LOCKED))) {
70dec807
CM
1573 state = NULL;
1574 }
1575 spin_unlock_irqrestore(&tree->lock, flags);
1576next_io:
1577 if (whole_page) {
1578 if (uptodate) {
1579 SetPageUptodate(page);
1580 } else {
1581 ClearPageUptodate(page);
1582 SetPageError(page);
1583 }
d1310b2e 1584 unlock_page(page);
70dec807
CM
1585 } else {
1586 if (uptodate) {
1587 check_page_uptodate(tree, page);
1588 } else {
1589 ClearPageUptodate(page);
1590 SetPageError(page);
1591 }
d1310b2e 1592 check_page_locked(tree, page);
70dec807 1593 }
d1310b2e
CM
1594 } while (bvec >= bio->bi_io_vec);
1595
1596 bio_put(bio);
1597#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1598 return 0;
1599#endif
1600}
1601
1602/*
1603 * IO done from prepare_write is pretty simple, we just unlock
1604 * the structs in the extent tree when done, and set the uptodate bits
1605 * as appropriate.
1606 */
1607#if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
1608static void end_bio_extent_preparewrite(struct bio *bio, int err)
1609#else
1610static int end_bio_extent_preparewrite(struct bio *bio,
1611 unsigned int bytes_done, int err)
1612#endif
1613{
1614 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1615 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
70dec807
CM
1616 struct extent_state *state = bio->bi_private;
1617 struct extent_io_tree *tree = state->tree;
d1310b2e
CM
1618 u64 start;
1619 u64 end;
1620
1621#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1622 if (bio->bi_size)
1623 return 1;
1624#endif
1625
1626 do {
1627 struct page *page = bvec->bv_page;
1628 start = ((u64)page->index << PAGE_CACHE_SHIFT) +
1629 bvec->bv_offset;
1630 end = start + bvec->bv_len - 1;
1631
1632 if (--bvec >= bio->bi_io_vec)
1633 prefetchw(&bvec->bv_page->flags);
1634
1635 if (uptodate) {
1636 set_extent_uptodate(tree, start, end, GFP_ATOMIC);
1637 } else {
1638 ClearPageUptodate(page);
1639 SetPageError(page);
1640 }
1641
1642 unlock_extent(tree, start, end, GFP_ATOMIC);
1643
1644 } while (bvec >= bio->bi_io_vec);
1645
1646 bio_put(bio);
1647#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1648 return 0;
1649#endif
1650}
1651
1652static struct bio *
1653extent_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
1654 gfp_t gfp_flags)
1655{
1656 struct bio *bio;
1657
1658 bio = bio_alloc(gfp_flags, nr_vecs);
1659
1660 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
1661 while (!bio && (nr_vecs /= 2))
1662 bio = bio_alloc(gfp_flags, nr_vecs);
1663 }
1664
1665 if (bio) {
1666 bio->bi_bdev = bdev;
1667 bio->bi_sector = first_sector;
1668 }
1669 return bio;
1670}
1671
1672static int submit_one_bio(int rw, struct bio *bio)
1673{
1674 u64 maxsector;
1675 int ret = 0;
70dec807
CM
1676 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
1677 struct page *page = bvec->bv_page;
1678 struct extent_io_tree *tree = bio->bi_private;
1679 struct rb_node *node;
1680 struct extent_state *state;
1681 u64 start;
1682 u64 end;
1683
1684 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset;
1685 end = start + bvec->bv_len - 1;
1686
1687 spin_lock_irq(&tree->lock);
80ea96b1 1688 node = __etree_search(tree, start, NULL, NULL);
70dec807
CM
1689 BUG_ON(!node);
1690 state = rb_entry(node, struct extent_state, rb_node);
1691 while(state->end < end) {
1692 node = rb_next(node);
1693 state = rb_entry(node, struct extent_state, rb_node);
1694 }
1695 BUG_ON(state->end != end);
1696 spin_unlock_irq(&tree->lock);
1697
1698 bio->bi_private = state;
d1310b2e
CM
1699
1700 bio_get(bio);
1701
1702 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1703 if (maxsector < bio->bi_sector) {
1704 printk("sector too large max %Lu got %llu\n", maxsector,
1705 (unsigned long long)bio->bi_sector);
1706 WARN_ON(1);
1707 }
065631f6
CM
1708 if (tree->ops && tree->ops->submit_bio_hook)
1709 tree->ops->submit_bio_hook(rw, bio);
d1310b2e
CM
1710
1711 submit_bio(rw, bio);
1712 if (bio_flagged(bio, BIO_EOPNOTSUPP))
1713 ret = -EOPNOTSUPP;
1714 bio_put(bio);
1715 return ret;
1716}
1717
1718static int submit_extent_page(int rw, struct extent_io_tree *tree,
1719 struct page *page, sector_t sector,
1720 size_t size, unsigned long offset,
1721 struct block_device *bdev,
1722 struct bio **bio_ret,
1723 unsigned long max_pages,
1724 bio_end_io_t end_io_func)
1725{
1726 int ret = 0;
1727 struct bio *bio;
1728 int nr;
1729
1730 if (bio_ret && *bio_ret) {
1731 bio = *bio_ret;
1732 if (bio->bi_sector + (bio->bi_size >> 9) != sector ||
1733 bio_add_page(bio, page, size, offset) < size) {
1734 ret = submit_one_bio(rw, bio);
1735 bio = NULL;
1736 } else {
1737 return 0;
1738 }
1739 }
961d0232 1740 nr = bio_get_nr_vecs(bdev);
d1310b2e
CM
1741 bio = extent_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
1742 if (!bio) {
1743 printk("failed to allocate bio nr %d\n", nr);
1744 }
70dec807
CM
1745
1746
d1310b2e
CM
1747 bio_add_page(bio, page, size, offset);
1748 bio->bi_end_io = end_io_func;
1749 bio->bi_private = tree;
70dec807 1750
d1310b2e
CM
1751 if (bio_ret) {
1752 *bio_ret = bio;
1753 } else {
1754 ret = submit_one_bio(rw, bio);
1755 }
1756
1757 return ret;
1758}
1759
1760void set_page_extent_mapped(struct page *page)
1761{
1762 if (!PagePrivate(page)) {
1763 SetPagePrivate(page);
1764 WARN_ON(!page->mapping->a_ops->invalidatepage);
1765 set_page_private(page, EXTENT_PAGE_PRIVATE);
1766 page_cache_get(page);
1767 }
1768}
1769
1770void set_page_extent_head(struct page *page, unsigned long len)
1771{
1772 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2);
1773}
1774
1775/*
1776 * basic readpage implementation. Locked extent state structs are inserted
1777 * into the tree that are removed when the IO is done (by the end_io
1778 * handlers)
1779 */
1780static int __extent_read_full_page(struct extent_io_tree *tree,
1781 struct page *page,
1782 get_extent_t *get_extent,
1783 struct bio **bio)
1784{
1785 struct inode *inode = page->mapping->host;
1786 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1787 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1788 u64 end;
1789 u64 cur = start;
1790 u64 extent_offset;
1791 u64 last_byte = i_size_read(inode);
1792 u64 block_start;
1793 u64 cur_end;
1794 sector_t sector;
1795 struct extent_map *em;
1796 struct block_device *bdev;
1797 int ret;
1798 int nr = 0;
1799 size_t page_offset = 0;
1800 size_t iosize;
1801 size_t blocksize = inode->i_sb->s_blocksize;
1802
1803 set_page_extent_mapped(page);
1804
1805 end = page_end;
1806 lock_extent(tree, start, end, GFP_NOFS);
1807
1808 while (cur <= end) {
1809 if (cur >= last_byte) {
1810 char *userpage;
1811 iosize = PAGE_CACHE_SIZE - page_offset;
1812 userpage = kmap_atomic(page, KM_USER0);
1813 memset(userpage + page_offset, 0, iosize);
1814 flush_dcache_page(page);
1815 kunmap_atomic(userpage, KM_USER0);
1816 set_extent_uptodate(tree, cur, cur + iosize - 1,
1817 GFP_NOFS);
1818 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1819 break;
1820 }
1821 em = get_extent(inode, page, page_offset, cur,
1822 end - cur + 1, 0);
1823 if (IS_ERR(em) || !em) {
1824 SetPageError(page);
1825 unlock_extent(tree, cur, end, GFP_NOFS);
1826 break;
1827 }
1828
1829 extent_offset = cur - em->start;
1830 BUG_ON(extent_map_end(em) <= cur);
1831 BUG_ON(end < cur);
1832
1833 iosize = min(extent_map_end(em) - cur, end - cur + 1);
1834 cur_end = min(extent_map_end(em) - 1, end);
1835 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
1836 sector = (em->block_start + extent_offset) >> 9;
1837 bdev = em->bdev;
1838 block_start = em->block_start;
1839 free_extent_map(em);
1840 em = NULL;
1841
1842 /* we've found a hole, just zero and go on */
1843 if (block_start == EXTENT_MAP_HOLE) {
1844 char *userpage;
1845 userpage = kmap_atomic(page, KM_USER0);
1846 memset(userpage + page_offset, 0, iosize);
1847 flush_dcache_page(page);
1848 kunmap_atomic(userpage, KM_USER0);
1849
1850 set_extent_uptodate(tree, cur, cur + iosize - 1,
1851 GFP_NOFS);
1852 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1853 cur = cur + iosize;
1854 page_offset += iosize;
1855 continue;
1856 }
1857 /* the get_extent function already copied into the page */
1858 if (test_range_bit(tree, cur, cur_end, EXTENT_UPTODATE, 1)) {
1859 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1860 cur = cur + iosize;
1861 page_offset += iosize;
1862 continue;
1863 }
70dec807
CM
1864 /* we have an inline extent but it didn't get marked up
1865 * to date. Error out
1866 */
1867 if (block_start == EXTENT_MAP_INLINE) {
1868 SetPageError(page);
1869 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS);
1870 cur = cur + iosize;
1871 page_offset += iosize;
1872 continue;
1873 }
d1310b2e
CM
1874
1875 ret = 0;
1876 if (tree->ops && tree->ops->readpage_io_hook) {
1877 ret = tree->ops->readpage_io_hook(page, cur,
1878 cur + iosize - 1);
1879 }
1880 if (!ret) {
1881 unsigned long nr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
1882 nr -= page->index;
1883 ret = submit_extent_page(READ, tree, page,
1884 sector, iosize, page_offset,
1885 bdev, bio, nr,
1886 end_bio_extent_readpage);
1887 }
1888 if (ret)
1889 SetPageError(page);
1890 cur = cur + iosize;
1891 page_offset += iosize;
1892 nr++;
1893 }
1894 if (!nr) {
1895 if (!PageError(page))
1896 SetPageUptodate(page);
1897 unlock_page(page);
1898 }
1899 return 0;
1900}
1901
1902int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
1903 get_extent_t *get_extent)
1904{
1905 struct bio *bio = NULL;
1906 int ret;
1907
1908 ret = __extent_read_full_page(tree, page, get_extent, &bio);
1909 if (bio)
1910 submit_one_bio(READ, bio);
1911 return ret;
1912}
1913EXPORT_SYMBOL(extent_read_full_page);
1914
1915/*
1916 * the writepage semantics are similar to regular writepage. extent
1917 * records are inserted to lock ranges in the tree, and as dirty areas
1918 * are found, they are marked writeback. Then the lock bits are removed
1919 * and the end_io handler clears the writeback ranges
1920 */
1921static int __extent_writepage(struct page *page, struct writeback_control *wbc,
1922 void *data)
1923{
1924 struct inode *inode = page->mapping->host;
1925 struct extent_page_data *epd = data;
1926 struct extent_io_tree *tree = epd->tree;
1927 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
1928 u64 delalloc_start;
1929 u64 page_end = start + PAGE_CACHE_SIZE - 1;
1930 u64 end;
1931 u64 cur = start;
1932 u64 extent_offset;
1933 u64 last_byte = i_size_read(inode);
1934 u64 block_start;
1935 u64 iosize;
1936 sector_t sector;
1937 struct extent_map *em;
1938 struct block_device *bdev;
1939 int ret;
1940 int nr = 0;
1941 size_t page_offset = 0;
1942 size_t blocksize;
1943 loff_t i_size = i_size_read(inode);
1944 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
1945 u64 nr_delalloc;
1946 u64 delalloc_end;
1947
1948 WARN_ON(!PageLocked(page));
1949 if (page->index > end_index) {
1950 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1951 unlock_page(page);
1952 return 0;
1953 }
1954
1955 if (page->index == end_index) {
1956 char *userpage;
1957
1958 size_t offset = i_size & (PAGE_CACHE_SIZE - 1);
1959
1960 userpage = kmap_atomic(page, KM_USER0);
1961 memset(userpage + offset, 0, PAGE_CACHE_SIZE - offset);
1962 flush_dcache_page(page);
1963 kunmap_atomic(userpage, KM_USER0);
1964 }
1965
1966 set_page_extent_mapped(page);
1967
1968 delalloc_start = start;
1969 delalloc_end = 0;
1970 while(delalloc_end < page_end) {
1971 nr_delalloc = find_lock_delalloc_range(tree, &delalloc_start,
1972 &delalloc_end,
1973 128 * 1024 * 1024);
1974 if (nr_delalloc == 0) {
1975 delalloc_start = delalloc_end + 1;
1976 continue;
1977 }
1978 tree->ops->fill_delalloc(inode, delalloc_start,
1979 delalloc_end);
1980 clear_extent_bit(tree, delalloc_start,
1981 delalloc_end,
1982 EXTENT_LOCKED | EXTENT_DELALLOC,
1983 1, 0, GFP_NOFS);
1984 delalloc_start = delalloc_end + 1;
1985 }
1986 lock_extent(tree, start, page_end, GFP_NOFS);
1987
1988 end = page_end;
1989 if (test_range_bit(tree, start, page_end, EXTENT_DELALLOC, 0)) {
1990 printk("found delalloc bits after lock_extent\n");
1991 }
1992
1993 if (last_byte <= start) {
1994 clear_extent_dirty(tree, start, page_end, GFP_NOFS);
1995 goto done;
1996 }
1997
1998 set_extent_uptodate(tree, start, page_end, GFP_NOFS);
1999 blocksize = inode->i_sb->s_blocksize;
2000
2001 while (cur <= end) {
2002 if (cur >= last_byte) {
2003 clear_extent_dirty(tree, cur, page_end, GFP_NOFS);
2004 break;
2005 }
2006 em = epd->get_extent(inode, page, page_offset, cur,
2007 end - cur + 1, 1);
2008 if (IS_ERR(em) || !em) {
2009 SetPageError(page);
2010 break;
2011 }
2012
2013 extent_offset = cur - em->start;
2014 BUG_ON(extent_map_end(em) <= cur);
2015 BUG_ON(end < cur);
2016 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2017 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1);
2018 sector = (em->block_start + extent_offset) >> 9;
2019 bdev = em->bdev;
2020 block_start = em->block_start;
2021 free_extent_map(em);
2022 em = NULL;
2023
2024 if (block_start == EXTENT_MAP_HOLE ||
2025 block_start == EXTENT_MAP_INLINE) {
2026 clear_extent_dirty(tree, cur,
2027 cur + iosize - 1, GFP_NOFS);
2028 cur = cur + iosize;
2029 page_offset += iosize;
2030 continue;
2031 }
2032
2033 /* leave this out until we have a page_mkwrite call */
2034 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
2035 EXTENT_DIRTY, 0)) {
2036 cur = cur + iosize;
2037 page_offset += iosize;
2038 continue;
2039 }
2040 clear_extent_dirty(tree, cur, cur + iosize - 1, GFP_NOFS);
2041 if (tree->ops && tree->ops->writepage_io_hook) {
2042 ret = tree->ops->writepage_io_hook(page, cur,
2043 cur + iosize - 1);
2044 } else {
2045 ret = 0;
2046 }
2047 if (ret)
2048 SetPageError(page);
2049 else {
2050 unsigned long max_nr = end_index + 1;
2051 set_range_writeback(tree, cur, cur + iosize - 1);
2052 if (!PageWriteback(page)) {
2053 printk("warning page %lu not writeback, "
2054 "cur %llu end %llu\n", page->index,
2055 (unsigned long long)cur,
2056 (unsigned long long)end);
2057 }
2058
2059 ret = submit_extent_page(WRITE, tree, page, sector,
2060 iosize, page_offset, bdev,
2061 &epd->bio, max_nr,
2062 end_bio_extent_writepage);
2063 if (ret)
2064 SetPageError(page);
2065 }
2066 cur = cur + iosize;
2067 page_offset += iosize;
2068 nr++;
2069 }
2070done:
2071 if (nr == 0) {
2072 /* make sure the mapping tag for page dirty gets cleared */
2073 set_page_writeback(page);
2074 end_page_writeback(page);
2075 }
2076 unlock_extent(tree, start, page_end, GFP_NOFS);
2077 unlock_page(page);
2078 return 0;
2079}
2080
2081#if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
2082
2083/* Taken directly from 2.6.23 for 2.6.18 back port */
2084typedef int (*writepage_t)(struct page *page, struct writeback_control *wbc,
2085 void *data);
2086
2087/**
2088 * write_cache_pages - walk the list of dirty pages of the given address space
2089 * and write all of them.
2090 * @mapping: address space structure to write
2091 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2092 * @writepage: function called for each page
2093 * @data: data passed to writepage function
2094 *
2095 * If a page is already under I/O, write_cache_pages() skips it, even
2096 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2097 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2098 * and msync() need to guarantee that all the data which was dirty at the time
2099 * the call was made get new I/O started against them. If wbc->sync_mode is
2100 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2101 * existing IO to complete.
2102 */
2103static int write_cache_pages(struct address_space *mapping,
2104 struct writeback_control *wbc, writepage_t writepage,
2105 void *data)
2106{
2107 struct backing_dev_info *bdi = mapping->backing_dev_info;
2108 int ret = 0;
2109 int done = 0;
2110 struct pagevec pvec;
2111 int nr_pages;
2112 pgoff_t index;
2113 pgoff_t end; /* Inclusive */
2114 int scanned = 0;
2115 int range_whole = 0;
2116
2117 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2118 wbc->encountered_congestion = 1;
2119 return 0;
2120 }
2121
2122 pagevec_init(&pvec, 0);
2123 if (wbc->range_cyclic) {
2124 index = mapping->writeback_index; /* Start from prev offset */
2125 end = -1;
2126 } else {
2127 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2128 end = wbc->range_end >> PAGE_CACHE_SHIFT;
2129 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2130 range_whole = 1;
2131 scanned = 1;
2132 }
2133retry:
2134 while (!done && (index <= end) &&
2135 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
2136 PAGECACHE_TAG_DIRTY,
2137 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
2138 unsigned i;
2139
2140 scanned = 1;
2141 for (i = 0; i < nr_pages; i++) {
2142 struct page *page = pvec.pages[i];
2143
2144 /*
2145 * At this point we hold neither mapping->tree_lock nor
2146 * lock on the page itself: the page may be truncated or
2147 * invalidated (changing page->mapping to NULL), or even
2148 * swizzled back from swapper_space to tmpfs file
2149 * mapping
2150 */
2151 lock_page(page);
2152
2153 if (unlikely(page->mapping != mapping)) {
2154 unlock_page(page);
2155 continue;
2156 }
2157
2158 if (!wbc->range_cyclic && page->index > end) {
2159 done = 1;
2160 unlock_page(page);
2161 continue;
2162 }
2163
2164 if (wbc->sync_mode != WB_SYNC_NONE)
2165 wait_on_page_writeback(page);
2166
2167 if (PageWriteback(page) ||
2168 !clear_page_dirty_for_io(page)) {
2169 unlock_page(page);
2170 continue;
2171 }
2172
2173 ret = (*writepage)(page, wbc, data);
2174
2175 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
2176 unlock_page(page);
2177 ret = 0;
2178 }
2179 if (ret || (--(wbc->nr_to_write) <= 0))
2180 done = 1;
2181 if (wbc->nonblocking && bdi_write_congested(bdi)) {
2182 wbc->encountered_congestion = 1;
2183 done = 1;
2184 }
2185 }
2186 pagevec_release(&pvec);
2187 cond_resched();
2188 }
2189 if (!scanned && !done) {
2190 /*
2191 * We hit the last page and there is more work to be done: wrap
2192 * back to the start of the file
2193 */
2194 scanned = 1;
2195 index = 0;
2196 goto retry;
2197 }
2198 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2199 mapping->writeback_index = index;
2200 return ret;
2201}
2202#endif
2203
2204int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
2205 get_extent_t *get_extent,
2206 struct writeback_control *wbc)
2207{
2208 int ret;
2209 struct address_space *mapping = page->mapping;
2210 struct extent_page_data epd = {
2211 .bio = NULL,
2212 .tree = tree,
2213 .get_extent = get_extent,
2214 };
2215 struct writeback_control wbc_writepages = {
2216 .bdi = wbc->bdi,
2217 .sync_mode = WB_SYNC_NONE,
2218 .older_than_this = NULL,
2219 .nr_to_write = 64,
2220 .range_start = page_offset(page) + PAGE_CACHE_SIZE,
2221 .range_end = (loff_t)-1,
2222 };
2223
2224
2225 ret = __extent_writepage(page, wbc, &epd);
2226
2227 write_cache_pages(mapping, &wbc_writepages, __extent_writepage, &epd);
2228 if (epd.bio) {
2229 submit_one_bio(WRITE, epd.bio);
2230 }
2231 return ret;
2232}
2233EXPORT_SYMBOL(extent_write_full_page);
2234
2235
2236int extent_writepages(struct extent_io_tree *tree,
2237 struct address_space *mapping,
2238 get_extent_t *get_extent,
2239 struct writeback_control *wbc)
2240{
2241 int ret = 0;
2242 struct extent_page_data epd = {
2243 .bio = NULL,
2244 .tree = tree,
2245 .get_extent = get_extent,
2246 };
2247
2248 ret = write_cache_pages(mapping, wbc, __extent_writepage, &epd);
2249 if (epd.bio) {
2250 submit_one_bio(WRITE, epd.bio);
2251 }
2252 return ret;
2253}
2254EXPORT_SYMBOL(extent_writepages);
2255
2256int extent_readpages(struct extent_io_tree *tree,
2257 struct address_space *mapping,
2258 struct list_head *pages, unsigned nr_pages,
2259 get_extent_t get_extent)
2260{
2261 struct bio *bio = NULL;
2262 unsigned page_idx;
2263 struct pagevec pvec;
2264
2265 pagevec_init(&pvec, 0);
2266 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
2267 struct page *page = list_entry(pages->prev, struct page, lru);
2268
2269 prefetchw(&page->flags);
2270 list_del(&page->lru);
2271 /*
2272 * what we want to do here is call add_to_page_cache_lru,
2273 * but that isn't exported, so we reproduce it here
2274 */
2275 if (!add_to_page_cache(page, mapping,
2276 page->index, GFP_KERNEL)) {
2277
2278 /* open coding of lru_cache_add, also not exported */
2279 page_cache_get(page);
2280 if (!pagevec_add(&pvec, page))
2281 __pagevec_lru_add(&pvec);
2282 __extent_read_full_page(tree, page, get_extent, &bio);
2283 }
2284 page_cache_release(page);
2285 }
2286 if (pagevec_count(&pvec))
2287 __pagevec_lru_add(&pvec);
2288 BUG_ON(!list_empty(pages));
2289 if (bio)
2290 submit_one_bio(READ, bio);
2291 return 0;
2292}
2293EXPORT_SYMBOL(extent_readpages);
2294
2295/*
2296 * basic invalidatepage code, this waits on any locked or writeback
2297 * ranges corresponding to the page, and then deletes any extent state
2298 * records from the tree
2299 */
2300int extent_invalidatepage(struct extent_io_tree *tree,
2301 struct page *page, unsigned long offset)
2302{
2303 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT);
2304 u64 end = start + PAGE_CACHE_SIZE - 1;
2305 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
2306
2307 start += (offset + blocksize -1) & ~(blocksize - 1);
2308 if (start > end)
2309 return 0;
2310
2311 lock_extent(tree, start, end, GFP_NOFS);
2312 wait_on_extent_writeback(tree, start, end);
2313 clear_extent_bit(tree, start, end,
2314 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC,
2315 1, 1, GFP_NOFS);
2316 return 0;
2317}
2318EXPORT_SYMBOL(extent_invalidatepage);
2319
2320/*
2321 * simple commit_write call, set_range_dirty is used to mark both
2322 * the pages and the extent records as dirty
2323 */
2324int extent_commit_write(struct extent_io_tree *tree,
2325 struct inode *inode, struct page *page,
2326 unsigned from, unsigned to)
2327{
2328 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2329
2330 set_page_extent_mapped(page);
2331 set_page_dirty(page);
2332
2333 if (pos > inode->i_size) {
2334 i_size_write(inode, pos);
2335 mark_inode_dirty(inode);
2336 }
2337 return 0;
2338}
2339EXPORT_SYMBOL(extent_commit_write);
2340
2341int extent_prepare_write(struct extent_io_tree *tree,
2342 struct inode *inode, struct page *page,
2343 unsigned from, unsigned to, get_extent_t *get_extent)
2344{
2345 u64 page_start = (u64)page->index << PAGE_CACHE_SHIFT;
2346 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
2347 u64 block_start;
2348 u64 orig_block_start;
2349 u64 block_end;
2350 u64 cur_end;
2351 struct extent_map *em;
2352 unsigned blocksize = 1 << inode->i_blkbits;
2353 size_t page_offset = 0;
2354 size_t block_off_start;
2355 size_t block_off_end;
2356 int err = 0;
2357 int iocount = 0;
2358 int ret = 0;
2359 int isnew;
2360
2361 set_page_extent_mapped(page);
2362
2363 block_start = (page_start + from) & ~((u64)blocksize - 1);
2364 block_end = (page_start + to - 1) | (blocksize - 1);
2365 orig_block_start = block_start;
2366
2367 lock_extent(tree, page_start, page_end, GFP_NOFS);
2368 while(block_start <= block_end) {
2369 em = get_extent(inode, page, page_offset, block_start,
2370 block_end - block_start + 1, 1);
2371 if (IS_ERR(em) || !em) {
2372 goto err;
2373 }
2374 cur_end = min(block_end, extent_map_end(em) - 1);
2375 block_off_start = block_start & (PAGE_CACHE_SIZE - 1);
2376 block_off_end = block_off_start + blocksize;
2377 isnew = clear_extent_new(tree, block_start, cur_end, GFP_NOFS);
2378
2379 if (!PageUptodate(page) && isnew &&
2380 (block_off_end > to || block_off_start < from)) {
2381 void *kaddr;
2382
2383 kaddr = kmap_atomic(page, KM_USER0);
2384 if (block_off_end > to)
2385 memset(kaddr + to, 0, block_off_end - to);
2386 if (block_off_start < from)
2387 memset(kaddr + block_off_start, 0,
2388 from - block_off_start);
2389 flush_dcache_page(page);
2390 kunmap_atomic(kaddr, KM_USER0);
2391 }
2392 if ((em->block_start != EXTENT_MAP_HOLE &&
2393 em->block_start != EXTENT_MAP_INLINE) &&
2394 !isnew && !PageUptodate(page) &&
2395 (block_off_end > to || block_off_start < from) &&
2396 !test_range_bit(tree, block_start, cur_end,
2397 EXTENT_UPTODATE, 1)) {
2398 u64 sector;
2399 u64 extent_offset = block_start - em->start;
2400 size_t iosize;
2401 sector = (em->block_start + extent_offset) >> 9;
2402 iosize = (cur_end - block_start + blocksize) &
2403 ~((u64)blocksize - 1);
2404 /*
2405 * we've already got the extent locked, but we
2406 * need to split the state such that our end_bio
2407 * handler can clear the lock.
2408 */
2409 set_extent_bit(tree, block_start,
2410 block_start + iosize - 1,
2411 EXTENT_LOCKED, 0, NULL, GFP_NOFS);
2412 ret = submit_extent_page(READ, tree, page,
2413 sector, iosize, page_offset, em->bdev,
2414 NULL, 1,
2415 end_bio_extent_preparewrite);
2416 iocount++;
2417 block_start = block_start + iosize;
2418 } else {
2419 set_extent_uptodate(tree, block_start, cur_end,
2420 GFP_NOFS);
2421 unlock_extent(tree, block_start, cur_end, GFP_NOFS);
2422 block_start = cur_end + 1;
2423 }
2424 page_offset = block_start & (PAGE_CACHE_SIZE - 1);
2425 free_extent_map(em);
2426 }
2427 if (iocount) {
2428 wait_extent_bit(tree, orig_block_start,
2429 block_end, EXTENT_LOCKED);
2430 }
2431 check_page_uptodate(tree, page);
2432err:
2433 /* FIXME, zero out newly allocated blocks on error */
2434 return err;
2435}
2436EXPORT_SYMBOL(extent_prepare_write);
2437
2438/*
2439 * a helper for releasepage. As long as there are no locked extents
2440 * in the range corresponding to the page, both state records and extent
2441 * map records are removed
2442 */
2443int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
2444 struct extent_io_tree *tree, struct page *page,
2445 gfp_t mask)
d1310b2e
CM
2446{
2447 struct extent_map *em;
2448 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
2449 u64 end = start + PAGE_CACHE_SIZE - 1;
2450 u64 orig_start = start;
2451 int ret = 1;
70dec807
CM
2452 if ((mask & __GFP_WAIT) &&
2453 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 2454 u64 len;
70dec807 2455 while (start <= end) {
39b5637f 2456 len = end - start + 1;
70dec807 2457 spin_lock(&map->lock);
39b5637f 2458 em = lookup_extent_mapping(map, start, len);
70dec807
CM
2459 if (!em || IS_ERR(em)) {
2460 spin_unlock(&map->lock);
2461 break;
2462 }
2463 if (em->start != start) {
2464 spin_unlock(&map->lock);
2465 free_extent_map(em);
2466 break;
2467 }
2468 if (!test_range_bit(tree, em->start,
2469 extent_map_end(em) - 1,
2470 EXTENT_LOCKED, 0)) {
2471 remove_extent_mapping(map, em);
2472 /* once for the rb tree */
2473 free_extent_map(em);
2474 }
2475 start = extent_map_end(em);
d1310b2e 2476 spin_unlock(&map->lock);
70dec807
CM
2477
2478 /* once for us */
d1310b2e
CM
2479 free_extent_map(em);
2480 }
d1310b2e 2481 }
70dec807 2482 if (test_range_bit(tree, orig_start, end, EXTENT_IOBITS, 0))
d1310b2e 2483 ret = 0;
70dec807
CM
2484 else {
2485 if ((mask & GFP_NOFS) == GFP_NOFS)
2486 mask = GFP_NOFS;
d1310b2e 2487 clear_extent_bit(tree, orig_start, end, EXTENT_UPTODATE,
70dec807
CM
2488 1, 1, mask);
2489 }
d1310b2e
CM
2490 return ret;
2491}
2492EXPORT_SYMBOL(try_release_extent_mapping);
2493
2494sector_t extent_bmap(struct address_space *mapping, sector_t iblock,
2495 get_extent_t *get_extent)
2496{
2497 struct inode *inode = mapping->host;
2498 u64 start = iblock << inode->i_blkbits;
2499 sector_t sector = 0;
2500 struct extent_map *em;
2501
2502 em = get_extent(inode, NULL, 0, start, (1 << inode->i_blkbits), 0);
2503 if (!em || IS_ERR(em))
2504 return 0;
2505
2506 if (em->block_start == EXTENT_MAP_INLINE ||
2507 em->block_start == EXTENT_MAP_HOLE)
2508 goto out;
2509
2510 sector = (em->block_start + start - em->start) >> inode->i_blkbits;
d1310b2e
CM
2511out:
2512 free_extent_map(em);
2513 return sector;
2514}
2515
2516static int add_lru(struct extent_io_tree *tree, struct extent_buffer *eb)
2517{
2518 if (list_empty(&eb->lru)) {
2519 extent_buffer_get(eb);
2520 list_add(&eb->lru, &tree->buffer_lru);
2521 tree->lru_size++;
2522 if (tree->lru_size >= BUFFER_LRU_MAX) {
2523 struct extent_buffer *rm;
2524 rm = list_entry(tree->buffer_lru.prev,
2525 struct extent_buffer, lru);
2526 tree->lru_size--;
2527 list_del_init(&rm->lru);
2528 free_extent_buffer(rm);
2529 }
2530 } else
2531 list_move(&eb->lru, &tree->buffer_lru);
2532 return 0;
2533}
2534static struct extent_buffer *find_lru(struct extent_io_tree *tree,
2535 u64 start, unsigned long len)
2536{
2537 struct list_head *lru = &tree->buffer_lru;
2538 struct list_head *cur = lru->next;
2539 struct extent_buffer *eb;
2540
2541 if (list_empty(lru))
2542 return NULL;
2543
2544 do {
2545 eb = list_entry(cur, struct extent_buffer, lru);
2546 if (eb->start == start && eb->len == len) {
2547 extent_buffer_get(eb);
2548 return eb;
2549 }
2550 cur = cur->next;
2551 } while (cur != lru);
2552 return NULL;
2553}
2554
2555static inline unsigned long num_extent_pages(u64 start, u64 len)
2556{
2557 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) -
2558 (start >> PAGE_CACHE_SHIFT);
2559}
2560
2561static inline struct page *extent_buffer_page(struct extent_buffer *eb,
2562 unsigned long i)
2563{
2564 struct page *p;
2565 struct address_space *mapping;
2566
2567 if (i == 0)
2568 return eb->first_page;
2569 i += eb->start >> PAGE_CACHE_SHIFT;
2570 mapping = eb->first_page->mapping;
2571 read_lock_irq(&mapping->tree_lock);
2572 p = radix_tree_lookup(&mapping->page_tree, i);
2573 read_unlock_irq(&mapping->tree_lock);
2574 return p;
2575}
2576
2577static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
2578 u64 start,
2579 unsigned long len,
2580 gfp_t mask)
2581{
2582 struct extent_buffer *eb = NULL;
2583
2584 spin_lock(&tree->lru_lock);
2585 eb = find_lru(tree, start, len);
2586 spin_unlock(&tree->lru_lock);
2587 if (eb) {
2588 return eb;
2589 }
2590
2591 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
2592 INIT_LIST_HEAD(&eb->lru);
2593 eb->start = start;
2594 eb->len = len;
2595 atomic_set(&eb->refs, 1);
2596
2597 return eb;
2598}
2599
2600static void __free_extent_buffer(struct extent_buffer *eb)
2601{
2602 kmem_cache_free(extent_buffer_cache, eb);
2603}
2604
2605struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
2606 u64 start, unsigned long len,
2607 struct page *page0,
2608 gfp_t mask)
2609{
2610 unsigned long num_pages = num_extent_pages(start, len);
2611 unsigned long i;
2612 unsigned long index = start >> PAGE_CACHE_SHIFT;
2613 struct extent_buffer *eb;
2614 struct page *p;
2615 struct address_space *mapping = tree->mapping;
2616 int uptodate = 1;
2617
2618 eb = __alloc_extent_buffer(tree, start, len, mask);
2619 if (!eb || IS_ERR(eb))
2620 return NULL;
2621
2622 if (eb->flags & EXTENT_BUFFER_FILLED)
2623 goto lru_add;
2624
2625 if (page0) {
2626 eb->first_page = page0;
2627 i = 1;
2628 index++;
2629 page_cache_get(page0);
2630 mark_page_accessed(page0);
2631 set_page_extent_mapped(page0);
2632 WARN_ON(!PageUptodate(page0));
2633 set_page_extent_head(page0, len);
2634 } else {
2635 i = 0;
2636 }
2637 for (; i < num_pages; i++, index++) {
2638 p = find_or_create_page(mapping, index, mask | __GFP_HIGHMEM);
2639 if (!p) {
2640 WARN_ON(1);
2641 goto fail;
2642 }
2643 set_page_extent_mapped(p);
2644 mark_page_accessed(p);
2645 if (i == 0) {
2646 eb->first_page = p;
2647 set_page_extent_head(p, len);
2648 } else {
2649 set_page_private(p, EXTENT_PAGE_PRIVATE);
2650 }
2651 if (!PageUptodate(p))
2652 uptodate = 0;
2653 unlock_page(p);
2654 }
2655 if (uptodate)
2656 eb->flags |= EXTENT_UPTODATE;
2657 eb->flags |= EXTENT_BUFFER_FILLED;
2658
2659lru_add:
2660 spin_lock(&tree->lru_lock);
2661 add_lru(tree, eb);
2662 spin_unlock(&tree->lru_lock);
2663 return eb;
2664
2665fail:
2666 spin_lock(&tree->lru_lock);
2667 list_del_init(&eb->lru);
2668 spin_unlock(&tree->lru_lock);
2669 if (!atomic_dec_and_test(&eb->refs))
2670 return NULL;
2671 for (index = 1; index < i; index++) {
2672 page_cache_release(extent_buffer_page(eb, index));
2673 }
2674 if (i > 0)
2675 page_cache_release(extent_buffer_page(eb, 0));
2676 __free_extent_buffer(eb);
2677 return NULL;
2678}
2679EXPORT_SYMBOL(alloc_extent_buffer);
2680
2681struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
2682 u64 start, unsigned long len,
2683 gfp_t mask)
2684{
2685 unsigned long num_pages = num_extent_pages(start, len);
2686 unsigned long i;
2687 unsigned long index = start >> PAGE_CACHE_SHIFT;
2688 struct extent_buffer *eb;
2689 struct page *p;
2690 struct address_space *mapping = tree->mapping;
2691 int uptodate = 1;
2692
2693 eb = __alloc_extent_buffer(tree, start, len, mask);
2694 if (!eb || IS_ERR(eb))
2695 return NULL;
2696
2697 if (eb->flags & EXTENT_BUFFER_FILLED)
2698 goto lru_add;
2699
2700 for (i = 0; i < num_pages; i++, index++) {
2701 p = find_lock_page(mapping, index);
2702 if (!p) {
2703 goto fail;
2704 }
2705 set_page_extent_mapped(p);
2706 mark_page_accessed(p);
2707
2708 if (i == 0) {
2709 eb->first_page = p;
2710 set_page_extent_head(p, len);
2711 } else {
2712 set_page_private(p, EXTENT_PAGE_PRIVATE);
2713 }
2714
2715 if (!PageUptodate(p))
2716 uptodate = 0;
2717 unlock_page(p);
2718 }
2719 if (uptodate)
2720 eb->flags |= EXTENT_UPTODATE;
2721 eb->flags |= EXTENT_BUFFER_FILLED;
2722
2723lru_add:
2724 spin_lock(&tree->lru_lock);
2725 add_lru(tree, eb);
2726 spin_unlock(&tree->lru_lock);
2727 return eb;
2728fail:
2729 spin_lock(&tree->lru_lock);
2730 list_del_init(&eb->lru);
2731 spin_unlock(&tree->lru_lock);
2732 if (!atomic_dec_and_test(&eb->refs))
2733 return NULL;
2734 for (index = 1; index < i; index++) {
2735 page_cache_release(extent_buffer_page(eb, index));
2736 }
2737 if (i > 0)
2738 page_cache_release(extent_buffer_page(eb, 0));
2739 __free_extent_buffer(eb);
2740 return NULL;
2741}
2742EXPORT_SYMBOL(find_extent_buffer);
2743
2744void free_extent_buffer(struct extent_buffer *eb)
2745{
2746 unsigned long i;
2747 unsigned long num_pages;
2748
2749 if (!eb)
2750 return;
2751
2752 if (!atomic_dec_and_test(&eb->refs))
2753 return;
2754
2755 WARN_ON(!list_empty(&eb->lru));
2756 num_pages = num_extent_pages(eb->start, eb->len);
2757
2758 for (i = 1; i < num_pages; i++) {
2759 page_cache_release(extent_buffer_page(eb, i));
2760 }
2761 page_cache_release(extent_buffer_page(eb, 0));
2762 __free_extent_buffer(eb);
2763}
2764EXPORT_SYMBOL(free_extent_buffer);
2765
2766int clear_extent_buffer_dirty(struct extent_io_tree *tree,
2767 struct extent_buffer *eb)
2768{
2769 int set;
2770 unsigned long i;
2771 unsigned long num_pages;
2772 struct page *page;
2773
2774 u64 start = eb->start;
2775 u64 end = start + eb->len - 1;
2776
2777 set = clear_extent_dirty(tree, start, end, GFP_NOFS);
2778 num_pages = num_extent_pages(eb->start, eb->len);
2779
2780 for (i = 0; i < num_pages; i++) {
2781 page = extent_buffer_page(eb, i);
2782 lock_page(page);
2783 if (i == 0)
2784 set_page_extent_head(page, eb->len);
2785 else
2786 set_page_private(page, EXTENT_PAGE_PRIVATE);
2787
2788 /*
2789 * if we're on the last page or the first page and the
2790 * block isn't aligned on a page boundary, do extra checks
2791 * to make sure we don't clean page that is partially dirty
2792 */
2793 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2794 ((i == num_pages - 1) &&
2795 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2796 start = (u64)page->index << PAGE_CACHE_SHIFT;
2797 end = start + PAGE_CACHE_SIZE - 1;
2798 if (test_range_bit(tree, start, end,
2799 EXTENT_DIRTY, 0)) {
2800 unlock_page(page);
2801 continue;
2802 }
2803 }
2804 clear_page_dirty_for_io(page);
70dec807 2805 read_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
2806 if (!PageDirty(page)) {
2807 radix_tree_tag_clear(&page->mapping->page_tree,
2808 page_index(page),
2809 PAGECACHE_TAG_DIRTY);
2810 }
70dec807 2811 read_unlock_irq(&page->mapping->tree_lock);
d1310b2e
CM
2812 unlock_page(page);
2813 }
2814 return 0;
2815}
2816EXPORT_SYMBOL(clear_extent_buffer_dirty);
2817
2818int wait_on_extent_buffer_writeback(struct extent_io_tree *tree,
2819 struct extent_buffer *eb)
2820{
2821 return wait_on_extent_writeback(tree, eb->start,
2822 eb->start + eb->len - 1);
2823}
2824EXPORT_SYMBOL(wait_on_extent_buffer_writeback);
2825
2826int set_extent_buffer_dirty(struct extent_io_tree *tree,
2827 struct extent_buffer *eb)
2828{
2829 unsigned long i;
2830 unsigned long num_pages;
2831
2832 num_pages = num_extent_pages(eb->start, eb->len);
2833 for (i = 0; i < num_pages; i++) {
2834 struct page *page = extent_buffer_page(eb, i);
2835 /* writepage may need to do something special for the
2836 * first page, we have to make sure page->private is
2837 * properly set. releasepage may drop page->private
2838 * on us if the page isn't already dirty.
2839 */
2840 if (i == 0) {
2841 lock_page(page);
2842 set_page_extent_head(page, eb->len);
2843 } else if (PagePrivate(page) &&
2844 page->private != EXTENT_PAGE_PRIVATE) {
2845 lock_page(page);
2846 set_page_extent_mapped(page);
2847 unlock_page(page);
2848 }
2849 __set_page_dirty_nobuffers(extent_buffer_page(eb, i));
2850 if (i == 0)
2851 unlock_page(page);
2852 }
2853 return set_extent_dirty(tree, eb->start,
2854 eb->start + eb->len - 1, GFP_NOFS);
2855}
2856EXPORT_SYMBOL(set_extent_buffer_dirty);
2857
2858int set_extent_buffer_uptodate(struct extent_io_tree *tree,
2859 struct extent_buffer *eb)
2860{
2861 unsigned long i;
2862 struct page *page;
2863 unsigned long num_pages;
2864
2865 num_pages = num_extent_pages(eb->start, eb->len);
2866
2867 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1,
2868 GFP_NOFS);
2869 for (i = 0; i < num_pages; i++) {
2870 page = extent_buffer_page(eb, i);
2871 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) ||
2872 ((i == num_pages - 1) &&
2873 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) {
2874 check_page_uptodate(tree, page);
2875 continue;
2876 }
2877 SetPageUptodate(page);
2878 }
2879 return 0;
2880}
2881EXPORT_SYMBOL(set_extent_buffer_uptodate);
2882
2883int extent_buffer_uptodate(struct extent_io_tree *tree,
2884 struct extent_buffer *eb)
2885{
2886 if (eb->flags & EXTENT_UPTODATE)
2887 return 1;
2888 return test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2889 EXTENT_UPTODATE, 1);
2890}
2891EXPORT_SYMBOL(extent_buffer_uptodate);
2892
2893int read_extent_buffer_pages(struct extent_io_tree *tree,
2894 struct extent_buffer *eb,
a86c12c7
CM
2895 u64 start, int wait,
2896 get_extent_t *get_extent)
d1310b2e
CM
2897{
2898 unsigned long i;
2899 unsigned long start_i;
2900 struct page *page;
2901 int err;
2902 int ret = 0;
2903 unsigned long num_pages;
a86c12c7
CM
2904 struct bio *bio = NULL;
2905
d1310b2e
CM
2906
2907 if (eb->flags & EXTENT_UPTODATE)
2908 return 0;
2909
2910 if (0 && test_range_bit(tree, eb->start, eb->start + eb->len - 1,
2911 EXTENT_UPTODATE, 1)) {
2912 return 0;
2913 }
2914
2915 if (start) {
2916 WARN_ON(start < eb->start);
2917 start_i = (start >> PAGE_CACHE_SHIFT) -
2918 (eb->start >> PAGE_CACHE_SHIFT);
2919 } else {
2920 start_i = 0;
2921 }
2922
2923 num_pages = num_extent_pages(eb->start, eb->len);
2924 for (i = start_i; i < num_pages; i++) {
2925 page = extent_buffer_page(eb, i);
2926 if (PageUptodate(page)) {
2927 continue;
2928 }
2929 if (!wait) {
2930 if (TestSetPageLocked(page)) {
2931 continue;
2932 }
2933 } else {
2934 lock_page(page);
2935 }
2936 if (!PageUptodate(page)) {
a86c12c7
CM
2937 err = __extent_read_full_page(tree, page,
2938 get_extent, &bio);
d1310b2e
CM
2939 if (err) {
2940 ret = err;
2941 }
2942 } else {
2943 unlock_page(page);
2944 }
2945 }
2946
a86c12c7
CM
2947 if (bio)
2948 submit_one_bio(READ, bio);
2949
d1310b2e
CM
2950 if (ret || !wait) {
2951 return ret;
2952 }
d1310b2e
CM
2953 for (i = start_i; i < num_pages; i++) {
2954 page = extent_buffer_page(eb, i);
2955 wait_on_page_locked(page);
2956 if (!PageUptodate(page)) {
2957 ret = -EIO;
2958 }
2959 }
2960 if (!ret)
2961 eb->flags |= EXTENT_UPTODATE;
2962 return ret;
2963}
2964EXPORT_SYMBOL(read_extent_buffer_pages);
2965
2966void read_extent_buffer(struct extent_buffer *eb, void *dstv,
2967 unsigned long start,
2968 unsigned long len)
2969{
2970 size_t cur;
2971 size_t offset;
2972 struct page *page;
2973 char *kaddr;
2974 char *dst = (char *)dstv;
2975 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
2976 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
2977 unsigned long num_pages = num_extent_pages(eb->start, eb->len);
2978
2979 WARN_ON(start > eb->len);
2980 WARN_ON(start + len > eb->start + eb->len);
2981
2982 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
2983
2984 while(len > 0) {
2985 page = extent_buffer_page(eb, i);
2986 if (!PageUptodate(page)) {
2987 printk("page %lu not up to date i %lu, total %lu, len %lu\n", page->index, i, num_pages, eb->len);
2988 WARN_ON(1);
2989 }
2990 WARN_ON(!PageUptodate(page));
2991
2992 cur = min(len, (PAGE_CACHE_SIZE - offset));
2993 kaddr = kmap_atomic(page, KM_USER1);
2994 memcpy(dst, kaddr + offset, cur);
2995 kunmap_atomic(kaddr, KM_USER1);
2996
2997 dst += cur;
2998 len -= cur;
2999 offset = 0;
3000 i++;
3001 }
3002}
3003EXPORT_SYMBOL(read_extent_buffer);
3004
3005int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
3006 unsigned long min_len, char **token, char **map,
3007 unsigned long *map_start,
3008 unsigned long *map_len, int km)
3009{
3010 size_t offset = start & (PAGE_CACHE_SIZE - 1);
3011 char *kaddr;
3012 struct page *p;
3013 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3014 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3015 unsigned long end_i = (start_offset + start + min_len - 1) >>
3016 PAGE_CACHE_SHIFT;
3017
3018 if (i != end_i)
3019 return -EINVAL;
3020
3021 if (i == 0) {
3022 offset = start_offset;
3023 *map_start = 0;
3024 } else {
3025 offset = 0;
3026 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
3027 }
3028 if (start + min_len > eb->len) {
3029printk("bad mapping eb start %Lu len %lu, wanted %lu %lu\n", eb->start, eb->len, start, min_len);
3030 WARN_ON(1);
3031 }
3032
3033 p = extent_buffer_page(eb, i);
3034 WARN_ON(!PageUptodate(p));
3035 kaddr = kmap_atomic(p, km);
3036 *token = kaddr;
3037 *map = kaddr + offset;
3038 *map_len = PAGE_CACHE_SIZE - offset;
3039 return 0;
3040}
3041EXPORT_SYMBOL(map_private_extent_buffer);
3042
3043int map_extent_buffer(struct extent_buffer *eb, unsigned long start,
3044 unsigned long min_len,
3045 char **token, char **map,
3046 unsigned long *map_start,
3047 unsigned long *map_len, int km)
3048{
3049 int err;
3050 int save = 0;
3051 if (eb->map_token) {
3052 unmap_extent_buffer(eb, eb->map_token, km);
3053 eb->map_token = NULL;
3054 save = 1;
3055 }
3056 err = map_private_extent_buffer(eb, start, min_len, token, map,
3057 map_start, map_len, km);
3058 if (!err && save) {
3059 eb->map_token = *token;
3060 eb->kaddr = *map;
3061 eb->map_start = *map_start;
3062 eb->map_len = *map_len;
3063 }
3064 return err;
3065}
3066EXPORT_SYMBOL(map_extent_buffer);
3067
3068void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km)
3069{
3070 kunmap_atomic(token, km);
3071}
3072EXPORT_SYMBOL(unmap_extent_buffer);
3073
3074int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
3075 unsigned long start,
3076 unsigned long len)
3077{
3078 size_t cur;
3079 size_t offset;
3080 struct page *page;
3081 char *kaddr;
3082 char *ptr = (char *)ptrv;
3083 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3084 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3085 int ret = 0;
3086
3087 WARN_ON(start > eb->len);
3088 WARN_ON(start + len > eb->start + eb->len);
3089
3090 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3091
3092 while(len > 0) {
3093 page = extent_buffer_page(eb, i);
3094 WARN_ON(!PageUptodate(page));
3095
3096 cur = min(len, (PAGE_CACHE_SIZE - offset));
3097
3098 kaddr = kmap_atomic(page, KM_USER0);
3099 ret = memcmp(ptr, kaddr + offset, cur);
3100 kunmap_atomic(kaddr, KM_USER0);
3101 if (ret)
3102 break;
3103
3104 ptr += cur;
3105 len -= cur;
3106 offset = 0;
3107 i++;
3108 }
3109 return ret;
3110}
3111EXPORT_SYMBOL(memcmp_extent_buffer);
3112
3113void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
3114 unsigned long start, unsigned long len)
3115{
3116 size_t cur;
3117 size_t offset;
3118 struct page *page;
3119 char *kaddr;
3120 char *src = (char *)srcv;
3121 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3122 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3123
3124 WARN_ON(start > eb->len);
3125 WARN_ON(start + len > eb->start + eb->len);
3126
3127 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3128
3129 while(len > 0) {
3130 page = extent_buffer_page(eb, i);
3131 WARN_ON(!PageUptodate(page));
3132
3133 cur = min(len, PAGE_CACHE_SIZE - offset);
3134 kaddr = kmap_atomic(page, KM_USER1);
3135 memcpy(kaddr + offset, src, cur);
3136 kunmap_atomic(kaddr, KM_USER1);
3137
3138 src += cur;
3139 len -= cur;
3140 offset = 0;
3141 i++;
3142 }
3143}
3144EXPORT_SYMBOL(write_extent_buffer);
3145
3146void memset_extent_buffer(struct extent_buffer *eb, char c,
3147 unsigned long start, unsigned long len)
3148{
3149 size_t cur;
3150 size_t offset;
3151 struct page *page;
3152 char *kaddr;
3153 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
3154 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
3155
3156 WARN_ON(start > eb->len);
3157 WARN_ON(start + len > eb->start + eb->len);
3158
3159 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
3160
3161 while(len > 0) {
3162 page = extent_buffer_page(eb, i);
3163 WARN_ON(!PageUptodate(page));
3164
3165 cur = min(len, PAGE_CACHE_SIZE - offset);
3166 kaddr = kmap_atomic(page, KM_USER0);
3167 memset(kaddr + offset, c, cur);
3168 kunmap_atomic(kaddr, KM_USER0);
3169
3170 len -= cur;
3171 offset = 0;
3172 i++;
3173 }
3174}
3175EXPORT_SYMBOL(memset_extent_buffer);
3176
3177void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
3178 unsigned long dst_offset, unsigned long src_offset,
3179 unsigned long len)
3180{
3181 u64 dst_len = dst->len;
3182 size_t cur;
3183 size_t offset;
3184 struct page *page;
3185 char *kaddr;
3186 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3187 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3188
3189 WARN_ON(src->len != dst_len);
3190
3191 offset = (start_offset + dst_offset) &
3192 ((unsigned long)PAGE_CACHE_SIZE - 1);
3193
3194 while(len > 0) {
3195 page = extent_buffer_page(dst, i);
3196 WARN_ON(!PageUptodate(page));
3197
3198 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
3199
3200 kaddr = kmap_atomic(page, KM_USER0);
3201 read_extent_buffer(src, kaddr + offset, src_offset, cur);
3202 kunmap_atomic(kaddr, KM_USER0);
3203
3204 src_offset += cur;
3205 len -= cur;
3206 offset = 0;
3207 i++;
3208 }
3209}
3210EXPORT_SYMBOL(copy_extent_buffer);
3211
3212static void move_pages(struct page *dst_page, struct page *src_page,
3213 unsigned long dst_off, unsigned long src_off,
3214 unsigned long len)
3215{
3216 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3217 if (dst_page == src_page) {
3218 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
3219 } else {
3220 char *src_kaddr = kmap_atomic(src_page, KM_USER1);
3221 char *p = dst_kaddr + dst_off + len;
3222 char *s = src_kaddr + src_off + len;
3223
3224 while (len--)
3225 *--p = *--s;
3226
3227 kunmap_atomic(src_kaddr, KM_USER1);
3228 }
3229 kunmap_atomic(dst_kaddr, KM_USER0);
3230}
3231
3232static void copy_pages(struct page *dst_page, struct page *src_page,
3233 unsigned long dst_off, unsigned long src_off,
3234 unsigned long len)
3235{
3236 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0);
3237 char *src_kaddr;
3238
3239 if (dst_page != src_page)
3240 src_kaddr = kmap_atomic(src_page, KM_USER1);
3241 else
3242 src_kaddr = dst_kaddr;
3243
3244 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
3245 kunmap_atomic(dst_kaddr, KM_USER0);
3246 if (dst_page != src_page)
3247 kunmap_atomic(src_kaddr, KM_USER1);
3248}
3249
3250void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3251 unsigned long src_offset, unsigned long len)
3252{
3253 size_t cur;
3254 size_t dst_off_in_page;
3255 size_t src_off_in_page;
3256 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3257 unsigned long dst_i;
3258 unsigned long src_i;
3259
3260 if (src_offset + len > dst->len) {
3261 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3262 src_offset, len, dst->len);
3263 BUG_ON(1);
3264 }
3265 if (dst_offset + len > dst->len) {
3266 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3267 dst_offset, len, dst->len);
3268 BUG_ON(1);
3269 }
3270
3271 while(len > 0) {
3272 dst_off_in_page = (start_offset + dst_offset) &
3273 ((unsigned long)PAGE_CACHE_SIZE - 1);
3274 src_off_in_page = (start_offset + src_offset) &
3275 ((unsigned long)PAGE_CACHE_SIZE - 1);
3276
3277 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
3278 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
3279
3280 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
3281 src_off_in_page));
3282 cur = min_t(unsigned long, cur,
3283 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
3284
3285 copy_pages(extent_buffer_page(dst, dst_i),
3286 extent_buffer_page(dst, src_i),
3287 dst_off_in_page, src_off_in_page, cur);
3288
3289 src_offset += cur;
3290 dst_offset += cur;
3291 len -= cur;
3292 }
3293}
3294EXPORT_SYMBOL(memcpy_extent_buffer);
3295
3296void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
3297 unsigned long src_offset, unsigned long len)
3298{
3299 size_t cur;
3300 size_t dst_off_in_page;
3301 size_t src_off_in_page;
3302 unsigned long dst_end = dst_offset + len - 1;
3303 unsigned long src_end = src_offset + len - 1;
3304 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
3305 unsigned long dst_i;
3306 unsigned long src_i;
3307
3308 if (src_offset + len > dst->len) {
3309 printk("memmove bogus src_offset %lu move len %lu len %lu\n",
3310 src_offset, len, dst->len);
3311 BUG_ON(1);
3312 }
3313 if (dst_offset + len > dst->len) {
3314 printk("memmove bogus dst_offset %lu move len %lu len %lu\n",
3315 dst_offset, len, dst->len);
3316 BUG_ON(1);
3317 }
3318 if (dst_offset < src_offset) {
3319 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
3320 return;
3321 }
3322 while(len > 0) {
3323 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
3324 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
3325
3326 dst_off_in_page = (start_offset + dst_end) &
3327 ((unsigned long)PAGE_CACHE_SIZE - 1);
3328 src_off_in_page = (start_offset + src_end) &
3329 ((unsigned long)PAGE_CACHE_SIZE - 1);
3330
3331 cur = min_t(unsigned long, len, src_off_in_page + 1);
3332 cur = min(cur, dst_off_in_page + 1);
3333 move_pages(extent_buffer_page(dst, dst_i),
3334 extent_buffer_page(dst, src_i),
3335 dst_off_in_page - cur + 1,
3336 src_off_in_page - cur + 1, cur);
3337
3338 dst_end -= cur;
3339 src_end -= cur;
3340 len -= cur;
3341 }
3342}
3343EXPORT_SYMBOL(memmove_extent_buffer);