btrfs: cleanup, remove stray return statements
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
d1310b2e
CM
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
d1310b2e
CM
215}
216
217void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 218 struct address_space *mapping)
d1310b2e 219{
6bef4d31 220 tree->state = RB_ROOT;
d1310b2e
CM
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
70dec807 223 spin_lock_init(&tree->lock);
d1310b2e 224 tree->mapping = mapping;
d1310b2e 225}
d1310b2e 226
b2950863 227static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
228{
229 struct extent_state *state;
d1310b2e
CM
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 232 if (!state)
d1310b2e
CM
233 return state;
234 state->state = 0;
d1310b2e 235 state->private = 0;
27a3507d 236 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 237 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
143bede5 240 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
241 return state;
242}
d1310b2e 243
4845e44f 244void free_extent_state(struct extent_state *state)
d1310b2e 245{
d1310b2e
CM
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
27a3507d 249 WARN_ON(extent_state_in_tree(state));
6d49ba1b 250 btrfs_leak_debug_del(&state->leak_list);
143bede5 251 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
252 kmem_cache_free(extent_state_cache, state);
253 }
254}
d1310b2e 255
f2071b21
FM
256static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
12cfbad9
FDBM
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
d1310b2e 262{
f2071b21 263 struct rb_node **p;
d397712b 264 struct rb_node *parent = NULL;
d1310b2e
CM
265 struct tree_entry *entry;
266
12cfbad9
FDBM
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
f2071b21 273 p = search_start ? &search_start : &root->rb_node;
d397712b 274 while (*p) {
d1310b2e
CM
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
12cfbad9 286do_insert:
d1310b2e
CM
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290}
291
80ea96b1 292static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
d1310b2e 297{
80ea96b1 298 struct rb_root *root = &tree->state;
12cfbad9 299 struct rb_node **n = &root->rb_node;
d1310b2e
CM
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
12cfbad9
FDBM
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
308 prev_entry = entry;
309
310 if (offset < entry->start)
12cfbad9 311 n = &(*n)->rb_left;
d1310b2e 312 else if (offset > entry->end)
12cfbad9 313 n = &(*n)->rb_right;
d397712b 314 else
12cfbad9 315 return *n;
d1310b2e
CM
316 }
317
12cfbad9
FDBM
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
d1310b2e
CM
323 if (prev_ret) {
324 orig_prev = prev;
d397712b 325 while (prev && offset > prev_entry->end) {
d1310b2e
CM
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 335 while (prev && offset < prev_entry->start) {
d1310b2e
CM
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342}
343
12cfbad9
FDBM
344static inline struct rb_node *
345tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
d1310b2e 349{
70dec807 350 struct rb_node *prev = NULL;
d1310b2e 351 struct rb_node *ret;
70dec807 352
12cfbad9 353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 354 if (!ret)
d1310b2e
CM
355 return prev;
356 return ret;
357}
358
12cfbad9
FDBM
359static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361{
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363}
364
9ed74f2d
JB
365static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367{
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371}
372
d1310b2e
CM
373/*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
1bf85046
JM
382static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
d1310b2e
CM
384{
385 struct extent_state *other;
386 struct rb_node *other_node;
387
5b21f2ed 388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 389 return;
d1310b2e
CM
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
9ed74f2d 396 merge_cb(tree, state, other);
d1310b2e 397 state->start = other->start;
d1310b2e 398 rb_erase(&other->rb_node, &tree->state);
27a3507d 399 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
9ed74f2d 408 merge_cb(tree, state, other);
df98b6e2 409 state->end = other->end;
df98b6e2 410 rb_erase(&other->rb_node, &tree->state);
27a3507d 411 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 412 free_extent_state(other);
d1310b2e
CM
413 }
414 }
d1310b2e
CM
415}
416
1bf85046 417static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 418 struct extent_state *state, unsigned *bits)
291d673e 419{
1bf85046
JM
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
422}
423
424static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 425 struct extent_state *state, unsigned *bits)
291d673e 426{
9ed74f2d
JB
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
429}
430
3150b699 431static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
3150b699 434
d1310b2e
CM
435/*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
447 struct rb_node ***p,
448 struct rb_node **parent,
d38ed27f 449 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
450{
451 struct rb_node *node;
452
31b1a2bd 453 if (end < start)
efe120a0 454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 455 end, start);
d1310b2e
CM
456 state->start = start;
457 state->end = end;
9ed74f2d 458
d38ed27f 459 set_state_bits(tree, state, bits, changeset);
3150b699 460
f2071b21 461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
466 "%llu %llu\n",
467 found->start, found->end, start, end);
d1310b2e
CM
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472}
473
1bf85046 474static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
475 u64 split)
476{
477 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
479}
480
d1310b2e
CM
481/*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497{
498 struct rb_node *node;
9ed74f2d
JB
499
500 split_cb(tree, orig, split);
501
d1310b2e
CM
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
f2071b21
FM
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
d1310b2e 509 if (node) {
d1310b2e
CM
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514}
515
cdc6a395
LZ
516static struct extent_state *next_state(struct extent_state *state)
517{
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523}
524
d1310b2e
CM
525/*
526 * utility function to clear some bits in an extent state struct.
1b303fc0 527 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
cdc6a395
LZ
532static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
fefdc557
QW
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
d1310b2e 536{
cdc6a395 537 struct extent_state *next;
9ee49a04 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 539
0ca1f7ce 540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
291d673e 545 clear_state_cb(tree, state, bits);
fefdc557 546 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 547 state->state &= ~bits_to_clear;
d1310b2e
CM
548 if (wake)
549 wake_up(&state->wq);
0ca1f7ce 550 if (state->state == 0) {
cdc6a395 551 next = next_state(state);
27a3507d 552 if (extent_state_in_tree(state)) {
d1310b2e 553 rb_erase(&state->rb_node, &tree->state);
27a3507d 554 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
cdc6a395 561 next = next_state(state);
d1310b2e 562 }
cdc6a395 563 return next;
d1310b2e
CM
564}
565
8233767a
XG
566static struct extent_state *
567alloc_extent_state_atomic(struct extent_state *prealloc)
568{
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573}
574
48a3b636 575static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
576{
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580}
581
d1310b2e
CM
582/*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
6763af84 592 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 593 */
fefdc557
QW
594static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
598{
599 struct extent_state *state;
2c64c53d 600 struct extent_state *cached;
d1310b2e
CM
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
5c939df5 603 u64 last_end;
d1310b2e 604 int err;
2ac55d41 605 int clear = 0;
d1310b2e 606
a5dee37d 607 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 608
7ee9e440
JB
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
0ca1f7ce
YZ
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
2ac55d41
JB
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
d1310b2e 618again:
d0164adc 619 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
d1310b2e 627 prealloc = alloc_extent_state(mask);
d1310b2e
CM
628 }
629
cad321ad 630 spin_lock(&tree->lock);
2c64c53d
CM
631 if (cached_state) {
632 cached = *cached_state;
2ac55d41
JB
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
27a3507d
FM
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
2ac55d41
JB
641 if (clear)
642 atomic_dec(&cached->refs);
2c64c53d 643 state = cached;
42daec29 644 goto hit_next;
2c64c53d 645 }
2ac55d41
JB
646 if (clear)
647 free_extent_state(cached);
2c64c53d 648 }
d1310b2e
CM
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
80ea96b1 653 node = tree_search(tree, start);
d1310b2e
CM
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 657hit_next:
d1310b2e
CM
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
5c939df5 661 last_end = state->end;
d1310b2e 662
0449314a 663 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
664 if (!(state->state & bits)) {
665 state = next_state(state);
0449314a 666 goto next;
cdc6a395 667 }
0449314a 668
d1310b2e
CM
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
8233767a
XG
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
d1310b2e 688 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
689 if (err)
690 extent_io_tree_panic(tree, err);
691
d1310b2e
CM
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
fefdc557
QW
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
d1ac6e41 698 goto next;
d1310b2e
CM
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
8233767a
XG
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
d1310b2e 711 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
712 if (err)
713 extent_io_tree_panic(tree, err);
714
d1310b2e
CM
715 if (wake)
716 wake_up(&state->wq);
42daec29 717
fefdc557 718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 719
d1310b2e
CM
720 prealloc = NULL;
721 goto out;
722 }
42daec29 723
fefdc557 724 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 725next:
5c939df5
YZ
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
cdc6a395 729 if (start <= end && state && !need_resched())
692e5759 730 goto hit_next;
d1310b2e
CM
731 goto search_again;
732
733out:
cad321ad 734 spin_unlock(&tree->lock);
d1310b2e
CM
735 if (prealloc)
736 free_extent_state(prealloc);
737
6763af84 738 return 0;
d1310b2e
CM
739
740search_again:
741 if (start > end)
742 goto out;
cad321ad 743 spin_unlock(&tree->lock);
d0164adc 744 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
745 cond_resched();
746 goto again;
747}
d1310b2e 748
143bede5
JM
749static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
641f5219
CH
751 __releases(tree->lock)
752 __acquires(tree->lock)
d1310b2e
CM
753{
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 756 spin_unlock(&tree->lock);
d1310b2e 757 schedule();
cad321ad 758 spin_lock(&tree->lock);
d1310b2e 759 finish_wait(&state->wq, &wait);
d1310b2e
CM
760}
761
762/*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
41074888
DS
767static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
d1310b2e
CM
769{
770 struct extent_state *state;
771 struct rb_node *node;
772
a5dee37d 773 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 774
cad321ad 775 spin_lock(&tree->lock);
d1310b2e
CM
776again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
80ea96b1 782 node = tree_search(tree, start);
c50d3e71 783process_node:
d1310b2e
CM
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
c50d3e71
FM
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
d1310b2e
CM
808 }
809out:
cad321ad 810 spin_unlock(&tree->lock);
d1310b2e 811}
d1310b2e 812
1bf85046 813static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 814 struct extent_state *state,
d38ed27f 815 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 816{
9ee49a04 817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 818
1bf85046 819 set_state_cb(tree, state, bits);
0ca1f7ce 820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
d38ed27f 824 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 825 state->state |= bits_to_set;
d1310b2e
CM
826}
827
e38e2ed7
FM
828static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
9ee49a04 830 unsigned flags)
2c64c53d
CM
831{
832 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 833 if (!flags || (state->state & flags)) {
2c64c53d
CM
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838}
839
e38e2ed7
FM
840static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842{
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845}
846
d1310b2e 847/*
1edbb734
CM
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 850 *
1edbb734
CM
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
d1310b2e 854 *
1edbb734 855 * [start, end] is inclusive This takes the tree lock.
d1310b2e 856 */
1edbb734 857
3fbe5c02
JM
858static int __must_check
859__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 860 unsigned bits, unsigned exclusive_bits,
41074888 861 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 862 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
863{
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
12cfbad9
FDBM
867 struct rb_node **p;
868 struct rb_node *parent;
d1310b2e 869 int err = 0;
d1310b2e
CM
870 u64 last_start;
871 u64 last_end;
42daec29 872
a5dee37d 873 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 874
0ca1f7ce 875 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 876again:
d0164adc 877 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 878 prealloc = alloc_extent_state(mask);
8233767a 879 BUG_ON(!prealloc);
d1310b2e
CM
880 }
881
cad321ad 882 spin_lock(&tree->lock);
9655d298
CM
883 if (cached_state && *cached_state) {
884 state = *cached_state;
df98b6e2 885 if (state->start <= start && state->end > start &&
27a3507d 886 extent_state_in_tree(state)) {
9655d298
CM
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
d1310b2e
CM
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
12cfbad9 895 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 896 if (!node) {
8233767a
XG
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
12cfbad9 899 err = insert_state(tree, prealloc, start, end,
d38ed27f 900 &p, &parent, &bits, changeset);
c2d904e0
JM
901 if (err)
902 extent_io_tree_panic(tree, err);
903
c42ac0bc 904 cache_state(prealloc, cached_state);
d1310b2e 905 prealloc = NULL;
d1310b2e
CM
906 goto out;
907 }
d1310b2e 908 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 909hit_next:
d1310b2e
CM
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
1edbb734 920 if (state->state & exclusive_bits) {
d1310b2e
CM
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
42daec29 925
d38ed27f 926 set_state_bits(tree, state, &bits, changeset);
2c64c53d 927 cache_state(state, cached_state);
d1310b2e 928 merge_state(tree, state);
5c939df5
YZ
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
d1ac6e41
LB
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
d1310b2e
CM
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
1edbb734 956 if (state->state & exclusive_bits) {
d1310b2e
CM
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
d1310b2e 964 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
965 if (err)
966 extent_io_tree_panic(tree, err);
967
d1310b2e
CM
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
d38ed27f 972 set_state_bits(tree, state, &bits, changeset);
2c64c53d 973 cache_state(state, cached_state);
d1310b2e 974 merge_state(tree, state);
5c939df5
YZ
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
d1ac6e41
LB
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
d1310b2e
CM
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
d397712b 997 this_end = last_start - 1;
8233767a
XG
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
c7f895a2
XG
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
d1310b2e 1006 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1007 NULL, NULL, &bits, changeset);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
9ed74f2d
JB
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
d1310b2e
CM
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1edbb734 1023 if (state->state & exclusive_bits) {
d1310b2e
CM
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
8233767a
XG
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
d1310b2e 1031 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1032 if (err)
1033 extent_io_tree_panic(tree, err);
d1310b2e 1034
d38ed27f 1035 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1036 cache_state(prealloc, cached_state);
d1310b2e
CM
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044out:
cad321ad 1045 spin_unlock(&tree->lock);
d1310b2e
CM
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051search_again:
1052 if (start > end)
1053 goto out;
cad321ad 1054 spin_unlock(&tree->lock);
d0164adc 1055 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1056 cond_resched();
1057 goto again;
1058}
d1310b2e 1059
41074888 1060int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1061 unsigned bits, u64 * failed_start,
41074888 1062 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1063{
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1065 cached_state, mask, NULL);
3fbe5c02
JM
1066}
1067
1068
462d6fac 1069/**
10983f2e
LB
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
462d6fac
JB
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
e6138876 1077 * @cached_state: state that we're going to cache
462d6fac
JB
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1087 unsigned bits, unsigned clear_bits,
e6138876 1088 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
12cfbad9
FDBM
1093 struct rb_node **p;
1094 struct rb_node *parent;
462d6fac
JB
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
c8fd3de7 1098 bool first_iteration = true;
462d6fac 1099
a5dee37d 1100 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1101
462d6fac 1102again:
d0164adc 1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
462d6fac 1111 prealloc = alloc_extent_state(mask);
c8fd3de7 1112 if (!prealloc && !first_iteration)
462d6fac
JB
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
e6138876
JB
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
27a3507d 1120 extent_state_in_tree(state)) {
e6138876
JB
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
462d6fac
JB
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
12cfbad9 1130 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
12cfbad9 1137 err = insert_state(tree, prealloc, start, end,
d38ed27f 1138 &p, &parent, &bits, NULL);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
462d6fac
JB
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
d38ed27f 1157 set_state_bits(tree, state, &bits, NULL);
e6138876 1158 cache_state(state, cached_state);
fefdc557 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1160 if (last_end == (u64)-1)
1161 goto out;
462d6fac 1162 start = last_end + 1;
d1ac6e41
LB
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
462d6fac
JB
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
462d6fac 1191 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1192 if (err)
1193 extent_io_tree_panic(tree, err);
462d6fac
JB
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
d38ed27f 1198 set_state_bits(tree, state, &bits, NULL);
e6138876 1199 cache_state(state, cached_state);
fefdc557
QW
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
462d6fac
JB
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
d1ac6e41
LB
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
462d6fac
JB
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
462d6fac
JB
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1236 NULL, NULL, &bits, NULL);
c2d904e0
JM
1237 if (err)
1238 extent_io_tree_panic(tree, err);
e6138876 1239 cache_state(prealloc, cached_state);
462d6fac
JB
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
462d6fac
JB
1256
1257 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1258 if (err)
1259 extent_io_tree_panic(tree, err);
462d6fac 1260
d38ed27f 1261 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1262 cache_state(prealloc, cached_state);
fefdc557 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
d0164adc 1281 if (gfpflags_allow_blocking(mask))
462d6fac 1282 cond_resched();
c8fd3de7 1283 first_iteration = false;
462d6fac
JB
1284 goto again;
1285}
1286
d1310b2e
CM
1287/* wrappers around set/clear extent bit */
1288int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1289 gfp_t mask)
1290{
3fbe5c02 1291 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1292 NULL, mask);
d1310b2e 1293}
d1310b2e
CM
1294
1295int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1296 unsigned bits, gfp_t mask)
d1310b2e 1297{
3fbe5c02 1298 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1299 NULL, mask);
d1310b2e 1300}
d1310b2e 1301
d38ed27f
QW
1302int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1303 unsigned bits, gfp_t mask,
1304 struct extent_changeset *changeset)
1305{
1306 /*
1307 * We don't support EXTENT_LOCKED yet, as current changeset will
1308 * record any bits changed, so for EXTENT_LOCKED case, it will
1309 * either fail with -EEXIST or changeset will record the whole
1310 * range.
1311 */
1312 BUG_ON(bits & EXTENT_LOCKED);
1313
1314 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1315 changeset);
1316}
1317
fefdc557
QW
1318int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1319 unsigned bits, int wake, int delete,
1320 struct extent_state **cached, gfp_t mask)
1321{
1322 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1323 cached, mask, NULL);
1324}
1325
d1310b2e 1326int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1327 unsigned bits, gfp_t mask)
d1310b2e 1328{
0f31871f
FM
1329 int wake = 0;
1330
1331 if (bits & EXTENT_LOCKED)
1332 wake = 1;
1333
1334 return clear_extent_bit(tree, start, end, bits, wake, 0, NULL, mask);
d1310b2e 1335}
d1310b2e 1336
fefdc557
QW
1337int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1338 unsigned bits, gfp_t mask,
1339 struct extent_changeset *changeset)
1340{
1341 /*
1342 * Don't support EXTENT_LOCKED case, same reason as
1343 * set_record_extent_bits().
1344 */
1345 BUG_ON(bits & EXTENT_LOCKED);
1346
1347 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1348 changeset);
1349}
1350
d1310b2e 1351int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1352 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1353{
1354 return set_extent_bit(tree, start, end,
fee187d9 1355 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1356 NULL, cached_state, mask);
d1310b2e 1357}
d1310b2e 1358
9e8a4a8b
LB
1359int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1360 struct extent_state **cached_state, gfp_t mask)
1361{
1362 return set_extent_bit(tree, start, end,
1363 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1364 NULL, cached_state, mask);
1365}
1366
d1310b2e
CM
1367int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1368 gfp_t mask)
1369{
1370 return clear_extent_bit(tree, start, end,
32c00aff 1371 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1372 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1373}
d1310b2e
CM
1374
1375int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1376 gfp_t mask)
1377{
3fbe5c02 1378 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1379 NULL, mask);
d1310b2e 1380}
d1310b2e 1381
d1310b2e 1382int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1383 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1384{
6b67a320 1385 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1386 cached_state, mask);
d1310b2e 1387}
d1310b2e 1388
5fd02043
JB
1389int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1390 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1391{
2c64c53d 1392 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1393 cached_state, mask);
d1310b2e 1394}
d1310b2e 1395
d352ac68
CM
1396/*
1397 * either insert or lock state struct between start and end use mask to tell
1398 * us if waiting is desired.
1399 */
1edbb734 1400int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1401 unsigned bits, struct extent_state **cached_state)
d1310b2e
CM
1402{
1403 int err;
1404 u64 failed_start;
9ee49a04 1405
d1310b2e 1406 while (1) {
3fbe5c02
JM
1407 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1408 EXTENT_LOCKED, &failed_start,
d38ed27f 1409 cached_state, GFP_NOFS, NULL);
d0082371 1410 if (err == -EEXIST) {
d1310b2e
CM
1411 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1412 start = failed_start;
d0082371 1413 } else
d1310b2e 1414 break;
d1310b2e
CM
1415 WARN_ON(start > end);
1416 }
1417 return err;
1418}
d1310b2e 1419
d0082371 1420int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1421{
d0082371 1422 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1423}
1424
d0082371 1425int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1426{
1427 int err;
1428 u64 failed_start;
1429
3fbe5c02 1430 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1431 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1432 if (err == -EEXIST) {
1433 if (failed_start > start)
1434 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1435 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1436 return 0;
6643558d 1437 }
25179201
JB
1438 return 1;
1439}
25179201 1440
2c64c53d
CM
1441int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1442 struct extent_state **cached, gfp_t mask)
1443{
1444 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1445 mask);
1446}
1447
d0082371 1448int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1449{
2c64c53d 1450 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1451 GFP_NOFS);
d1310b2e 1452}
d1310b2e 1453
4adaa611
CM
1454int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1455{
1456 unsigned long index = start >> PAGE_CACHE_SHIFT;
1457 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1458 struct page *page;
1459
1460 while (index <= end_index) {
1461 page = find_get_page(inode->i_mapping, index);
1462 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1463 clear_page_dirty_for_io(page);
1464 page_cache_release(page);
1465 index++;
1466 }
1467 return 0;
1468}
1469
1470int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1471{
1472 unsigned long index = start >> PAGE_CACHE_SHIFT;
1473 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1474 struct page *page;
1475
1476 while (index <= end_index) {
1477 page = find_get_page(inode->i_mapping, index);
1478 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1479 __set_page_dirty_nobuffers(page);
8d38633c 1480 account_page_redirty(page);
4adaa611
CM
1481 page_cache_release(page);
1482 index++;
1483 }
1484 return 0;
1485}
1486
d1310b2e
CM
1487/*
1488 * helper function to set both pages and extents in the tree writeback
1489 */
b2950863 1490static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1491{
1492 unsigned long index = start >> PAGE_CACHE_SHIFT;
1493 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1494 struct page *page;
1495
1496 while (index <= end_index) {
1497 page = find_get_page(tree->mapping, index);
79787eaa 1498 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1499 set_page_writeback(page);
1500 page_cache_release(page);
1501 index++;
1502 }
d1310b2e
CM
1503 return 0;
1504}
d1310b2e 1505
d352ac68
CM
1506/* find the first state struct with 'bits' set after 'start', and
1507 * return it. tree->lock must be held. NULL will returned if
1508 * nothing was found after 'start'
1509 */
48a3b636
ES
1510static struct extent_state *
1511find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1512 u64 start, unsigned bits)
d7fc640e
CM
1513{
1514 struct rb_node *node;
1515 struct extent_state *state;
1516
1517 /*
1518 * this search will find all the extents that end after
1519 * our range starts.
1520 */
1521 node = tree_search(tree, start);
d397712b 1522 if (!node)
d7fc640e 1523 goto out;
d7fc640e 1524
d397712b 1525 while (1) {
d7fc640e 1526 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1527 if (state->end >= start && (state->state & bits))
d7fc640e 1528 return state;
d397712b 1529
d7fc640e
CM
1530 node = rb_next(node);
1531 if (!node)
1532 break;
1533 }
1534out:
1535 return NULL;
1536}
d7fc640e 1537
69261c4b
XG
1538/*
1539 * find the first offset in the io tree with 'bits' set. zero is
1540 * returned if we find something, and *start_ret and *end_ret are
1541 * set to reflect the state struct that was found.
1542 *
477d7eaf 1543 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1544 */
1545int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1546 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1547 struct extent_state **cached_state)
69261c4b
XG
1548{
1549 struct extent_state *state;
e6138876 1550 struct rb_node *n;
69261c4b
XG
1551 int ret = 1;
1552
1553 spin_lock(&tree->lock);
e6138876
JB
1554 if (cached_state && *cached_state) {
1555 state = *cached_state;
27a3507d 1556 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1557 n = rb_next(&state->rb_node);
1558 while (n) {
1559 state = rb_entry(n, struct extent_state,
1560 rb_node);
1561 if (state->state & bits)
1562 goto got_it;
1563 n = rb_next(n);
1564 }
1565 free_extent_state(*cached_state);
1566 *cached_state = NULL;
1567 goto out;
1568 }
1569 free_extent_state(*cached_state);
1570 *cached_state = NULL;
1571 }
1572
69261c4b 1573 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1574got_it:
69261c4b 1575 if (state) {
e38e2ed7 1576 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1577 *start_ret = state->start;
1578 *end_ret = state->end;
1579 ret = 0;
1580 }
e6138876 1581out:
69261c4b
XG
1582 spin_unlock(&tree->lock);
1583 return ret;
1584}
1585
d352ac68
CM
1586/*
1587 * find a contiguous range of bytes in the file marked as delalloc, not
1588 * more than 'max_bytes'. start and end are used to return the range,
1589 *
1590 * 1 is returned if we find something, 0 if nothing was in the tree
1591 */
c8b97818 1592static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1593 u64 *start, u64 *end, u64 max_bytes,
1594 struct extent_state **cached_state)
d1310b2e
CM
1595{
1596 struct rb_node *node;
1597 struct extent_state *state;
1598 u64 cur_start = *start;
1599 u64 found = 0;
1600 u64 total_bytes = 0;
1601
cad321ad 1602 spin_lock(&tree->lock);
c8b97818 1603
d1310b2e
CM
1604 /*
1605 * this search will find all the extents that end after
1606 * our range starts.
1607 */
80ea96b1 1608 node = tree_search(tree, cur_start);
2b114d1d 1609 if (!node) {
3b951516
CM
1610 if (!found)
1611 *end = (u64)-1;
d1310b2e
CM
1612 goto out;
1613 }
1614
d397712b 1615 while (1) {
d1310b2e 1616 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1617 if (found && (state->start != cur_start ||
1618 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1619 goto out;
1620 }
1621 if (!(state->state & EXTENT_DELALLOC)) {
1622 if (!found)
1623 *end = state->end;
1624 goto out;
1625 }
c2a128d2 1626 if (!found) {
d1310b2e 1627 *start = state->start;
c2a128d2
JB
1628 *cached_state = state;
1629 atomic_inc(&state->refs);
1630 }
d1310b2e
CM
1631 found++;
1632 *end = state->end;
1633 cur_start = state->end + 1;
1634 node = rb_next(node);
d1310b2e 1635 total_bytes += state->end - state->start + 1;
7bf811a5 1636 if (total_bytes >= max_bytes)
573aecaf 1637 break;
573aecaf 1638 if (!node)
d1310b2e
CM
1639 break;
1640 }
1641out:
cad321ad 1642 spin_unlock(&tree->lock);
d1310b2e
CM
1643 return found;
1644}
1645
143bede5
JM
1646static noinline void __unlock_for_delalloc(struct inode *inode,
1647 struct page *locked_page,
1648 u64 start, u64 end)
c8b97818
CM
1649{
1650 int ret;
1651 struct page *pages[16];
1652 unsigned long index = start >> PAGE_CACHE_SHIFT;
1653 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1654 unsigned long nr_pages = end_index - index + 1;
1655 int i;
1656
1657 if (index == locked_page->index && end_index == index)
143bede5 1658 return;
c8b97818 1659
d397712b 1660 while (nr_pages > 0) {
c8b97818 1661 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1662 min_t(unsigned long, nr_pages,
1663 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1664 for (i = 0; i < ret; i++) {
1665 if (pages[i] != locked_page)
1666 unlock_page(pages[i]);
1667 page_cache_release(pages[i]);
1668 }
1669 nr_pages -= ret;
1670 index += ret;
1671 cond_resched();
1672 }
c8b97818
CM
1673}
1674
1675static noinline int lock_delalloc_pages(struct inode *inode,
1676 struct page *locked_page,
1677 u64 delalloc_start,
1678 u64 delalloc_end)
1679{
1680 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1681 unsigned long start_index = index;
1682 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1683 unsigned long pages_locked = 0;
1684 struct page *pages[16];
1685 unsigned long nrpages;
1686 int ret;
1687 int i;
1688
1689 /* the caller is responsible for locking the start index */
1690 if (index == locked_page->index && index == end_index)
1691 return 0;
1692
1693 /* skip the page at the start index */
1694 nrpages = end_index - index + 1;
d397712b 1695 while (nrpages > 0) {
c8b97818 1696 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1697 min_t(unsigned long,
1698 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1699 if (ret == 0) {
1700 ret = -EAGAIN;
1701 goto done;
1702 }
1703 /* now we have an array of pages, lock them all */
1704 for (i = 0; i < ret; i++) {
1705 /*
1706 * the caller is taking responsibility for
1707 * locked_page
1708 */
771ed689 1709 if (pages[i] != locked_page) {
c8b97818 1710 lock_page(pages[i]);
f2b1c41c
CM
1711 if (!PageDirty(pages[i]) ||
1712 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1713 ret = -EAGAIN;
1714 unlock_page(pages[i]);
1715 page_cache_release(pages[i]);
1716 goto done;
1717 }
1718 }
c8b97818 1719 page_cache_release(pages[i]);
771ed689 1720 pages_locked++;
c8b97818 1721 }
c8b97818
CM
1722 nrpages -= ret;
1723 index += ret;
1724 cond_resched();
1725 }
1726 ret = 0;
1727done:
1728 if (ret && pages_locked) {
1729 __unlock_for_delalloc(inode, locked_page,
1730 delalloc_start,
1731 ((u64)(start_index + pages_locked - 1)) <<
1732 PAGE_CACHE_SHIFT);
1733 }
1734 return ret;
1735}
1736
1737/*
1738 * find a contiguous range of bytes in the file marked as delalloc, not
1739 * more than 'max_bytes'. start and end are used to return the range,
1740 *
1741 * 1 is returned if we find something, 0 if nothing was in the tree
1742 */
294e30fe
JB
1743STATIC u64 find_lock_delalloc_range(struct inode *inode,
1744 struct extent_io_tree *tree,
1745 struct page *locked_page, u64 *start,
1746 u64 *end, u64 max_bytes)
c8b97818
CM
1747{
1748 u64 delalloc_start;
1749 u64 delalloc_end;
1750 u64 found;
9655d298 1751 struct extent_state *cached_state = NULL;
c8b97818
CM
1752 int ret;
1753 int loops = 0;
1754
1755again:
1756 /* step one, find a bunch of delalloc bytes starting at start */
1757 delalloc_start = *start;
1758 delalloc_end = 0;
1759 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1760 max_bytes, &cached_state);
70b99e69 1761 if (!found || delalloc_end <= *start) {
c8b97818
CM
1762 *start = delalloc_start;
1763 *end = delalloc_end;
c2a128d2 1764 free_extent_state(cached_state);
385fe0be 1765 return 0;
c8b97818
CM
1766 }
1767
70b99e69
CM
1768 /*
1769 * start comes from the offset of locked_page. We have to lock
1770 * pages in order, so we can't process delalloc bytes before
1771 * locked_page
1772 */
d397712b 1773 if (delalloc_start < *start)
70b99e69 1774 delalloc_start = *start;
70b99e69 1775
c8b97818
CM
1776 /*
1777 * make sure to limit the number of pages we try to lock down
c8b97818 1778 */
7bf811a5
JB
1779 if (delalloc_end + 1 - delalloc_start > max_bytes)
1780 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1781
c8b97818
CM
1782 /* step two, lock all the pages after the page that has start */
1783 ret = lock_delalloc_pages(inode, locked_page,
1784 delalloc_start, delalloc_end);
1785 if (ret == -EAGAIN) {
1786 /* some of the pages are gone, lets avoid looping by
1787 * shortening the size of the delalloc range we're searching
1788 */
9655d298 1789 free_extent_state(cached_state);
7d788742 1790 cached_state = NULL;
c8b97818 1791 if (!loops) {
7bf811a5 1792 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1793 loops = 1;
1794 goto again;
1795 } else {
1796 found = 0;
1797 goto out_failed;
1798 }
1799 }
79787eaa 1800 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1801
1802 /* step three, lock the state bits for the whole range */
d0082371 1803 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1804
1805 /* then test to make sure it is all still delalloc */
1806 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1807 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1808 if (!ret) {
9655d298
CM
1809 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1810 &cached_state, GFP_NOFS);
c8b97818
CM
1811 __unlock_for_delalloc(inode, locked_page,
1812 delalloc_start, delalloc_end);
1813 cond_resched();
1814 goto again;
1815 }
9655d298 1816 free_extent_state(cached_state);
c8b97818
CM
1817 *start = delalloc_start;
1818 *end = delalloc_end;
1819out_failed:
1820 return found;
1821}
1822
c2790a2e
JB
1823int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1824 struct page *locked_page,
9ee49a04 1825 unsigned clear_bits,
c2790a2e 1826 unsigned long page_ops)
c8b97818 1827{
c2790a2e 1828 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1829 int ret;
1830 struct page *pages[16];
1831 unsigned long index = start >> PAGE_CACHE_SHIFT;
1832 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1833 unsigned long nr_pages = end_index - index + 1;
1834 int i;
771ed689 1835
2c64c53d 1836 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1837 if (page_ops == 0)
771ed689 1838 return 0;
c8b97818 1839
704de49d
FM
1840 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1841 mapping_set_error(inode->i_mapping, -EIO);
1842
d397712b 1843 while (nr_pages > 0) {
c8b97818 1844 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1845 min_t(unsigned long,
1846 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1847 for (i = 0; i < ret; i++) {
8b62b72b 1848
c2790a2e 1849 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1850 SetPagePrivate2(pages[i]);
1851
c8b97818
CM
1852 if (pages[i] == locked_page) {
1853 page_cache_release(pages[i]);
1854 continue;
1855 }
c2790a2e 1856 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1857 clear_page_dirty_for_io(pages[i]);
c2790a2e 1858 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1859 set_page_writeback(pages[i]);
704de49d
FM
1860 if (page_ops & PAGE_SET_ERROR)
1861 SetPageError(pages[i]);
c2790a2e 1862 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1863 end_page_writeback(pages[i]);
c2790a2e 1864 if (page_ops & PAGE_UNLOCK)
771ed689 1865 unlock_page(pages[i]);
c8b97818
CM
1866 page_cache_release(pages[i]);
1867 }
1868 nr_pages -= ret;
1869 index += ret;
1870 cond_resched();
1871 }
1872 return 0;
1873}
c8b97818 1874
d352ac68
CM
1875/*
1876 * count the number of bytes in the tree that have a given bit(s)
1877 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1878 * cached. The total number found is returned.
1879 */
d1310b2e
CM
1880u64 count_range_bits(struct extent_io_tree *tree,
1881 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1882 unsigned bits, int contig)
d1310b2e
CM
1883{
1884 struct rb_node *node;
1885 struct extent_state *state;
1886 u64 cur_start = *start;
1887 u64 total_bytes = 0;
ec29ed5b 1888 u64 last = 0;
d1310b2e
CM
1889 int found = 0;
1890
fae7f21c 1891 if (WARN_ON(search_end <= cur_start))
d1310b2e 1892 return 0;
d1310b2e 1893
cad321ad 1894 spin_lock(&tree->lock);
d1310b2e
CM
1895 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1896 total_bytes = tree->dirty_bytes;
1897 goto out;
1898 }
1899 /*
1900 * this search will find all the extents that end after
1901 * our range starts.
1902 */
80ea96b1 1903 node = tree_search(tree, cur_start);
d397712b 1904 if (!node)
d1310b2e 1905 goto out;
d1310b2e 1906
d397712b 1907 while (1) {
d1310b2e
CM
1908 state = rb_entry(node, struct extent_state, rb_node);
1909 if (state->start > search_end)
1910 break;
ec29ed5b
CM
1911 if (contig && found && state->start > last + 1)
1912 break;
1913 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1914 total_bytes += min(search_end, state->end) + 1 -
1915 max(cur_start, state->start);
1916 if (total_bytes >= max_bytes)
1917 break;
1918 if (!found) {
af60bed2 1919 *start = max(cur_start, state->start);
d1310b2e
CM
1920 found = 1;
1921 }
ec29ed5b
CM
1922 last = state->end;
1923 } else if (contig && found) {
1924 break;
d1310b2e
CM
1925 }
1926 node = rb_next(node);
1927 if (!node)
1928 break;
1929 }
1930out:
cad321ad 1931 spin_unlock(&tree->lock);
d1310b2e
CM
1932 return total_bytes;
1933}
b2950863 1934
d352ac68
CM
1935/*
1936 * set the private field for a given byte offset in the tree. If there isn't
1937 * an extent_state there already, this does nothing.
1938 */
171170c1 1939static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1940{
1941 struct rb_node *node;
1942 struct extent_state *state;
1943 int ret = 0;
1944
cad321ad 1945 spin_lock(&tree->lock);
d1310b2e
CM
1946 /*
1947 * this search will find all the extents that end after
1948 * our range starts.
1949 */
80ea96b1 1950 node = tree_search(tree, start);
2b114d1d 1951 if (!node) {
d1310b2e
CM
1952 ret = -ENOENT;
1953 goto out;
1954 }
1955 state = rb_entry(node, struct extent_state, rb_node);
1956 if (state->start != start) {
1957 ret = -ENOENT;
1958 goto out;
1959 }
1960 state->private = private;
1961out:
cad321ad 1962 spin_unlock(&tree->lock);
d1310b2e
CM
1963 return ret;
1964}
1965
1966int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1967{
1968 struct rb_node *node;
1969 struct extent_state *state;
1970 int ret = 0;
1971
cad321ad 1972 spin_lock(&tree->lock);
d1310b2e
CM
1973 /*
1974 * this search will find all the extents that end after
1975 * our range starts.
1976 */
80ea96b1 1977 node = tree_search(tree, start);
2b114d1d 1978 if (!node) {
d1310b2e
CM
1979 ret = -ENOENT;
1980 goto out;
1981 }
1982 state = rb_entry(node, struct extent_state, rb_node);
1983 if (state->start != start) {
1984 ret = -ENOENT;
1985 goto out;
1986 }
1987 *private = state->private;
1988out:
cad321ad 1989 spin_unlock(&tree->lock);
d1310b2e
CM
1990 return ret;
1991}
1992
1993/*
1994 * searches a range in the state tree for a given mask.
70dec807 1995 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1996 * has the bits set. Otherwise, 1 is returned if any bit in the
1997 * range is found set.
1998 */
1999int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 2000 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
2001{
2002 struct extent_state *state = NULL;
2003 struct rb_node *node;
2004 int bitset = 0;
d1310b2e 2005
cad321ad 2006 spin_lock(&tree->lock);
27a3507d 2007 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 2008 cached->end > start)
9655d298
CM
2009 node = &cached->rb_node;
2010 else
2011 node = tree_search(tree, start);
d1310b2e
CM
2012 while (node && start <= end) {
2013 state = rb_entry(node, struct extent_state, rb_node);
2014
2015 if (filled && state->start > start) {
2016 bitset = 0;
2017 break;
2018 }
2019
2020 if (state->start > end)
2021 break;
2022
2023 if (state->state & bits) {
2024 bitset = 1;
2025 if (!filled)
2026 break;
2027 } else if (filled) {
2028 bitset = 0;
2029 break;
2030 }
46562cec
CM
2031
2032 if (state->end == (u64)-1)
2033 break;
2034
d1310b2e
CM
2035 start = state->end + 1;
2036 if (start > end)
2037 break;
2038 node = rb_next(node);
2039 if (!node) {
2040 if (filled)
2041 bitset = 0;
2042 break;
2043 }
2044 }
cad321ad 2045 spin_unlock(&tree->lock);
d1310b2e
CM
2046 return bitset;
2047}
d1310b2e
CM
2048
2049/*
2050 * helper function to set a given page up to date if all the
2051 * extents in the tree for that page are up to date
2052 */
143bede5 2053static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 2054{
4eee4fa4 2055 u64 start = page_offset(page);
d1310b2e 2056 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 2057 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 2058 SetPageUptodate(page);
d1310b2e
CM
2059}
2060
8b110e39 2061int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
2062{
2063 int ret;
2064 int err = 0;
2065 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2066
2067 set_state_private(failure_tree, rec->start, 0);
2068 ret = clear_extent_bits(failure_tree, rec->start,
2069 rec->start + rec->len - 1,
2070 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2071 if (ret)
2072 err = ret;
2073
53b381b3
DW
2074 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2075 rec->start + rec->len - 1,
2076 EXTENT_DAMAGED, GFP_NOFS);
2077 if (ret && !err)
2078 err = ret;
4a54c8c1
JS
2079
2080 kfree(rec);
2081 return err;
2082}
2083
4a54c8c1
JS
2084/*
2085 * this bypasses the standard btrfs submit functions deliberately, as
2086 * the standard behavior is to write all copies in a raid setup. here we only
2087 * want to write the one bad copy. so we do the mapping for ourselves and issue
2088 * submit_bio directly.
3ec706c8 2089 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2090 * actually prevents the read that triggered the error from finishing.
2091 * currently, there can be no more than two copies of every data bit. thus,
2092 * exactly one rewrite is required.
2093 */
1203b681
MX
2094int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2095 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2096{
1203b681 2097 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2098 struct bio *bio;
2099 struct btrfs_device *dev;
4a54c8c1
JS
2100 u64 map_length = 0;
2101 u64 sector;
2102 struct btrfs_bio *bbio = NULL;
53b381b3 2103 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2104 int ret;
2105
908960c6 2106 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2107 BUG_ON(!mirror_num);
2108
53b381b3
DW
2109 /* we can't repair anything in raid56 yet */
2110 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2111 return 0;
2112
9be3395b 2113 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2114 if (!bio)
2115 return -EIO;
4f024f37 2116 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2117 map_length = length;
2118
3ec706c8 2119 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2120 &map_length, &bbio, mirror_num);
2121 if (ret) {
2122 bio_put(bio);
2123 return -EIO;
2124 }
2125 BUG_ON(mirror_num != bbio->mirror_num);
2126 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2127 bio->bi_iter.bi_sector = sector;
4a54c8c1 2128 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2129 btrfs_put_bbio(bbio);
4a54c8c1
JS
2130 if (!dev || !dev->bdev || !dev->writeable) {
2131 bio_put(bio);
2132 return -EIO;
2133 }
2134 bio->bi_bdev = dev->bdev;
ffdd2018 2135 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2136
33879d45 2137 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2138 /* try to remap that extent elsewhere? */
2139 bio_put(bio);
442a4f63 2140 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2141 return -EIO;
2142 }
2143
b14af3b4
DS
2144 btrfs_info_rl_in_rcu(fs_info,
2145 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2146 btrfs_ino(inode), start,
2147 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2148 bio_put(bio);
2149 return 0;
2150}
2151
ea466794
JB
2152int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2153 int mirror_num)
2154{
ea466794
JB
2155 u64 start = eb->start;
2156 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2157 int ret = 0;
ea466794 2158
908960c6
ID
2159 if (root->fs_info->sb->s_flags & MS_RDONLY)
2160 return -EROFS;
2161
ea466794 2162 for (i = 0; i < num_pages; i++) {
fb85fc9a 2163 struct page *p = eb->pages[i];
1203b681
MX
2164
2165 ret = repair_io_failure(root->fs_info->btree_inode, start,
2166 PAGE_CACHE_SIZE, start, p,
2167 start - page_offset(p), mirror_num);
ea466794
JB
2168 if (ret)
2169 break;
2170 start += PAGE_CACHE_SIZE;
2171 }
2172
2173 return ret;
2174}
2175
4a54c8c1
JS
2176/*
2177 * each time an IO finishes, we do a fast check in the IO failure tree
2178 * to see if we need to process or clean up an io_failure_record
2179 */
8b110e39
MX
2180int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2181 unsigned int pg_offset)
4a54c8c1
JS
2182{
2183 u64 private;
2184 u64 private_failure;
2185 struct io_failure_record *failrec;
908960c6 2186 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2187 struct extent_state *state;
2188 int num_copies;
4a54c8c1 2189 int ret;
4a54c8c1
JS
2190
2191 private = 0;
2192 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2193 (u64)-1, 1, EXTENT_DIRTY, 0);
2194 if (!ret)
2195 return 0;
2196
2197 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2198 &private_failure);
2199 if (ret)
2200 return 0;
2201
2202 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2203 BUG_ON(!failrec->this_mirror);
2204
2205 if (failrec->in_validation) {
2206 /* there was no real error, just free the record */
2207 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2208 failrec->start);
4a54c8c1
JS
2209 goto out;
2210 }
908960c6
ID
2211 if (fs_info->sb->s_flags & MS_RDONLY)
2212 goto out;
4a54c8c1
JS
2213
2214 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2215 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2216 failrec->start,
2217 EXTENT_LOCKED);
2218 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2219
883d0de4
MX
2220 if (state && state->start <= failrec->start &&
2221 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2222 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2223 failrec->len);
4a54c8c1 2224 if (num_copies > 1) {
1203b681 2225 repair_io_failure(inode, start, failrec->len,
454ff3de 2226 failrec->logical, page,
1203b681 2227 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2228 }
2229 }
2230
2231out:
454ff3de 2232 free_io_failure(inode, failrec);
4a54c8c1 2233
454ff3de 2234 return 0;
4a54c8c1
JS
2235}
2236
f612496b
MX
2237/*
2238 * Can be called when
2239 * - hold extent lock
2240 * - under ordered extent
2241 * - the inode is freeing
2242 */
2243void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2244{
2245 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2246 struct io_failure_record *failrec;
2247 struct extent_state *state, *next;
2248
2249 if (RB_EMPTY_ROOT(&failure_tree->state))
2250 return;
2251
2252 spin_lock(&failure_tree->lock);
2253 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2254 while (state) {
2255 if (state->start > end)
2256 break;
2257
2258 ASSERT(state->end <= end);
2259
2260 next = next_state(state);
2261
6e1103a6 2262 failrec = (struct io_failure_record *)(unsigned long)state->private;
f612496b
MX
2263 free_extent_state(state);
2264 kfree(failrec);
2265
2266 state = next;
2267 }
2268 spin_unlock(&failure_tree->lock);
2269}
2270
2fe6303e
MX
2271int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2272 struct io_failure_record **failrec_ret)
4a54c8c1 2273{
2fe6303e 2274 struct io_failure_record *failrec;
4a54c8c1
JS
2275 u64 private;
2276 struct extent_map *em;
4a54c8c1
JS
2277 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2278 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2279 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2280 int ret;
4a54c8c1
JS
2281 u64 logical;
2282
4a54c8c1
JS
2283 ret = get_state_private(failure_tree, start, &private);
2284 if (ret) {
2285 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2286 if (!failrec)
2287 return -ENOMEM;
2fe6303e 2288
4a54c8c1
JS
2289 failrec->start = start;
2290 failrec->len = end - start + 1;
2291 failrec->this_mirror = 0;
2292 failrec->bio_flags = 0;
2293 failrec->in_validation = 0;
2294
2295 read_lock(&em_tree->lock);
2296 em = lookup_extent_mapping(em_tree, start, failrec->len);
2297 if (!em) {
2298 read_unlock(&em_tree->lock);
2299 kfree(failrec);
2300 return -EIO;
2301 }
2302
68ba990f 2303 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2304 free_extent_map(em);
2305 em = NULL;
2306 }
2307 read_unlock(&em_tree->lock);
7a2d6a64 2308 if (!em) {
4a54c8c1
JS
2309 kfree(failrec);
2310 return -EIO;
2311 }
2fe6303e 2312
4a54c8c1
JS
2313 logical = start - em->start;
2314 logical = em->block_start + logical;
2315 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2316 logical = em->block_start;
2317 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2318 extent_set_compress_type(&failrec->bio_flags,
2319 em->compress_type);
2320 }
2fe6303e
MX
2321
2322 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2323 logical, start, failrec->len);
2324
4a54c8c1
JS
2325 failrec->logical = logical;
2326 free_extent_map(em);
2327
2328 /* set the bits in the private failure tree */
2329 ret = set_extent_bits(failure_tree, start, end,
2330 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2331 if (ret >= 0)
2332 ret = set_state_private(failure_tree, start,
2333 (u64)(unsigned long)failrec);
2334 /* set the bits in the inode's tree */
2335 if (ret >= 0)
2336 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2337 GFP_NOFS);
2338 if (ret < 0) {
2339 kfree(failrec);
2340 return ret;
2341 }
2342 } else {
2343 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2344 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2345 failrec->logical, failrec->start, failrec->len,
2346 failrec->in_validation);
2347 /*
2348 * when data can be on disk more than twice, add to failrec here
2349 * (e.g. with a list for failed_mirror) to make
2350 * clean_io_failure() clean all those errors at once.
2351 */
2352 }
2fe6303e
MX
2353
2354 *failrec_ret = failrec;
2355
2356 return 0;
2357}
2358
2359int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2360 struct io_failure_record *failrec, int failed_mirror)
2361{
2362 int num_copies;
2363
5d964051
SB
2364 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2365 failrec->logical, failrec->len);
4a54c8c1
JS
2366 if (num_copies == 1) {
2367 /*
2368 * we only have a single copy of the data, so don't bother with
2369 * all the retry and error correction code that follows. no
2370 * matter what the error is, it is very likely to persist.
2371 */
2fe6303e 2372 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2373 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2374 return 0;
4a54c8c1
JS
2375 }
2376
4a54c8c1
JS
2377 /*
2378 * there are two premises:
2379 * a) deliver good data to the caller
2380 * b) correct the bad sectors on disk
2381 */
2382 if (failed_bio->bi_vcnt > 1) {
2383 /*
2384 * to fulfill b), we need to know the exact failing sectors, as
2385 * we don't want to rewrite any more than the failed ones. thus,
2386 * we need separate read requests for the failed bio
2387 *
2388 * if the following BUG_ON triggers, our validation request got
2389 * merged. we need separate requests for our algorithm to work.
2390 */
2391 BUG_ON(failrec->in_validation);
2392 failrec->in_validation = 1;
2393 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2394 } else {
2395 /*
2396 * we're ready to fulfill a) and b) alongside. get a good copy
2397 * of the failed sector and if we succeed, we have setup
2398 * everything for repair_io_failure to do the rest for us.
2399 */
2400 if (failrec->in_validation) {
2401 BUG_ON(failrec->this_mirror != failed_mirror);
2402 failrec->in_validation = 0;
2403 failrec->this_mirror = 0;
2404 }
2405 failrec->failed_mirror = failed_mirror;
2406 failrec->this_mirror++;
2407 if (failrec->this_mirror == failed_mirror)
2408 failrec->this_mirror++;
4a54c8c1
JS
2409 }
2410
facc8a22 2411 if (failrec->this_mirror > num_copies) {
2fe6303e 2412 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2413 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2414 return 0;
4a54c8c1
JS
2415 }
2416
2fe6303e
MX
2417 return 1;
2418}
2419
2420
2421struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2422 struct io_failure_record *failrec,
2423 struct page *page, int pg_offset, int icsum,
8b110e39 2424 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2425{
2426 struct bio *bio;
2427 struct btrfs_io_bio *btrfs_failed_bio;
2428 struct btrfs_io_bio *btrfs_bio;
2429
9be3395b 2430 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2431 if (!bio)
2432 return NULL;
2433
2434 bio->bi_end_io = endio_func;
4f024f37 2435 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2436 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2437 bio->bi_iter.bi_size = 0;
8b110e39 2438 bio->bi_private = data;
4a54c8c1 2439
facc8a22
MX
2440 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2441 if (btrfs_failed_bio->csum) {
2442 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2443 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2444
2445 btrfs_bio = btrfs_io_bio(bio);
2446 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2447 icsum *= csum_size;
2448 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2449 csum_size);
2450 }
2451
2fe6303e
MX
2452 bio_add_page(bio, page, failrec->len, pg_offset);
2453
2454 return bio;
2455}
2456
2457/*
2458 * this is a generic handler for readpage errors (default
2459 * readpage_io_failed_hook). if other copies exist, read those and write back
2460 * good data to the failed position. does not investigate in remapping the
2461 * failed extent elsewhere, hoping the device will be smart enough to do this as
2462 * needed
2463 */
2464
2465static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2466 struct page *page, u64 start, u64 end,
2467 int failed_mirror)
2468{
2469 struct io_failure_record *failrec;
2470 struct inode *inode = page->mapping->host;
2471 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2472 struct bio *bio;
2473 int read_mode;
2474 int ret;
2475
2476 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2477
2478 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2479 if (ret)
2480 return ret;
2481
2482 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2483 if (!ret) {
2484 free_io_failure(inode, failrec);
2485 return -EIO;
2486 }
2487
2488 if (failed_bio->bi_vcnt > 1)
2489 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2490 else
2491 read_mode = READ_SYNC;
2492
2493 phy_offset >>= inode->i_sb->s_blocksize_bits;
2494 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2495 start - page_offset(page),
8b110e39
MX
2496 (int)phy_offset, failed_bio->bi_end_io,
2497 NULL);
2fe6303e
MX
2498 if (!bio) {
2499 free_io_failure(inode, failrec);
2500 return -EIO;
2501 }
4a54c8c1 2502
2fe6303e
MX
2503 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2504 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2505
013bd4c3
TI
2506 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2507 failrec->this_mirror,
2508 failrec->bio_flags, 0);
6c387ab2 2509 if (ret) {
454ff3de 2510 free_io_failure(inode, failrec);
6c387ab2
MX
2511 bio_put(bio);
2512 }
2513
013bd4c3 2514 return ret;
4a54c8c1
JS
2515}
2516
d1310b2e
CM
2517/* lots and lots of room for performance fixes in the end_bio funcs */
2518
87826df0
JM
2519int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2520{
2521 int uptodate = (err == 0);
2522 struct extent_io_tree *tree;
3e2426bd 2523 int ret = 0;
87826df0
JM
2524
2525 tree = &BTRFS_I(page->mapping->host)->io_tree;
2526
2527 if (tree->ops && tree->ops->writepage_end_io_hook) {
2528 ret = tree->ops->writepage_end_io_hook(page, start,
2529 end, NULL, uptodate);
2530 if (ret)
2531 uptodate = 0;
2532 }
2533
87826df0 2534 if (!uptodate) {
87826df0
JM
2535 ClearPageUptodate(page);
2536 SetPageError(page);
5dca6eea
LB
2537 ret = ret < 0 ? ret : -EIO;
2538 mapping_set_error(page->mapping, ret);
87826df0
JM
2539 }
2540 return 0;
2541}
2542
d1310b2e
CM
2543/*
2544 * after a writepage IO is done, we need to:
2545 * clear the uptodate bits on error
2546 * clear the writeback bits in the extent tree for this IO
2547 * end_page_writeback if the page has no more pending IO
2548 *
2549 * Scheduling is not allowed, so the extent state tree is expected
2550 * to have one and only one object corresponding to this IO.
2551 */
4246a0b6 2552static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2553{
2c30c71b 2554 struct bio_vec *bvec;
d1310b2e
CM
2555 u64 start;
2556 u64 end;
2c30c71b 2557 int i;
d1310b2e 2558
2c30c71b 2559 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2560 struct page *page = bvec->bv_page;
902b22f3 2561
17a5adcc
AO
2562 /* We always issue full-page reads, but if some block
2563 * in a page fails to read, blk_update_request() will
2564 * advance bv_offset and adjust bv_len to compensate.
2565 * Print a warning for nonzero offsets, and an error
2566 * if they don't add up to a full page. */
efe120a0
FH
2567 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2568 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2569 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2570 "partial page write in btrfs with offset %u and length %u",
2571 bvec->bv_offset, bvec->bv_len);
2572 else
2573 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2574 "incomplete page write in btrfs with offset %u and "
2575 "length %u",
2576 bvec->bv_offset, bvec->bv_len);
2577 }
d1310b2e 2578
17a5adcc
AO
2579 start = page_offset(page);
2580 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2581
4246a0b6 2582 if (end_extent_writepage(page, bio->bi_error, start, end))
87826df0 2583 continue;
70dec807 2584
17a5adcc 2585 end_page_writeback(page);
2c30c71b 2586 }
2b1f55b0 2587
d1310b2e 2588 bio_put(bio);
d1310b2e
CM
2589}
2590
883d0de4
MX
2591static void
2592endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2593 int uptodate)
2594{
2595 struct extent_state *cached = NULL;
2596 u64 end = start + len - 1;
2597
2598 if (uptodate && tree->track_uptodate)
2599 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2600 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2601}
2602
d1310b2e
CM
2603/*
2604 * after a readpage IO is done, we need to:
2605 * clear the uptodate bits on error
2606 * set the uptodate bits if things worked
2607 * set the page up to date if all extents in the tree are uptodate
2608 * clear the lock bit in the extent tree
2609 * unlock the page if there are no other extents locked for it
2610 *
2611 * Scheduling is not allowed, so the extent state tree is expected
2612 * to have one and only one object corresponding to this IO.
2613 */
4246a0b6 2614static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2615{
2c30c71b 2616 struct bio_vec *bvec;
4246a0b6 2617 int uptodate = !bio->bi_error;
facc8a22 2618 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2619 struct extent_io_tree *tree;
facc8a22 2620 u64 offset = 0;
d1310b2e
CM
2621 u64 start;
2622 u64 end;
facc8a22 2623 u64 len;
883d0de4
MX
2624 u64 extent_start = 0;
2625 u64 extent_len = 0;
5cf1ab56 2626 int mirror;
d1310b2e 2627 int ret;
2c30c71b 2628 int i;
d1310b2e 2629
2c30c71b 2630 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2631 struct page *page = bvec->bv_page;
a71754fc 2632 struct inode *inode = page->mapping->host;
507903b8 2633
be3940c0 2634 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2635 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2636 bio->bi_error, io_bio->mirror_num);
a71754fc 2637 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2638
17a5adcc
AO
2639 /* We always issue full-page reads, but if some block
2640 * in a page fails to read, blk_update_request() will
2641 * advance bv_offset and adjust bv_len to compensate.
2642 * Print a warning for nonzero offsets, and an error
2643 * if they don't add up to a full page. */
efe120a0
FH
2644 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2645 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2646 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2647 "partial page read in btrfs with offset %u and length %u",
2648 bvec->bv_offset, bvec->bv_len);
2649 else
2650 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2651 "incomplete page read in btrfs with offset %u and "
2652 "length %u",
2653 bvec->bv_offset, bvec->bv_len);
2654 }
d1310b2e 2655
17a5adcc
AO
2656 start = page_offset(page);
2657 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2658 len = bvec->bv_len;
d1310b2e 2659
9be3395b 2660 mirror = io_bio->mirror_num;
f2a09da9
MX
2661 if (likely(uptodate && tree->ops &&
2662 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2663 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2664 page, start, end,
2665 mirror);
5ee0844d 2666 if (ret)
d1310b2e 2667 uptodate = 0;
5ee0844d 2668 else
1203b681 2669 clean_io_failure(inode, start, page, 0);
d1310b2e 2670 }
ea466794 2671
f2a09da9
MX
2672 if (likely(uptodate))
2673 goto readpage_ok;
2674
2675 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2676 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2677 if (!ret && !bio->bi_error)
ea466794 2678 uptodate = 1;
f2a09da9 2679 } else {
f4a8e656
JS
2680 /*
2681 * The generic bio_readpage_error handles errors the
2682 * following way: If possible, new read requests are
2683 * created and submitted and will end up in
2684 * end_bio_extent_readpage as well (if we're lucky, not
2685 * in the !uptodate case). In that case it returns 0 and
2686 * we just go on with the next page in our bio. If it
2687 * can't handle the error it will return -EIO and we
2688 * remain responsible for that page.
2689 */
facc8a22
MX
2690 ret = bio_readpage_error(bio, offset, page, start, end,
2691 mirror);
7e38326f 2692 if (ret == 0) {
4246a0b6 2693 uptodate = !bio->bi_error;
38c1c2e4 2694 offset += len;
7e38326f
CM
2695 continue;
2696 }
2697 }
f2a09da9 2698readpage_ok:
883d0de4 2699 if (likely(uptodate)) {
a71754fc
JB
2700 loff_t i_size = i_size_read(inode);
2701 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2702 unsigned off;
a71754fc
JB
2703
2704 /* Zero out the end if this page straddles i_size */
a583c026
LB
2705 off = i_size & (PAGE_CACHE_SIZE-1);
2706 if (page->index == end_index && off)
2707 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2708 SetPageUptodate(page);
70dec807 2709 } else {
17a5adcc
AO
2710 ClearPageUptodate(page);
2711 SetPageError(page);
70dec807 2712 }
17a5adcc 2713 unlock_page(page);
facc8a22 2714 offset += len;
883d0de4
MX
2715
2716 if (unlikely(!uptodate)) {
2717 if (extent_len) {
2718 endio_readpage_release_extent(tree,
2719 extent_start,
2720 extent_len, 1);
2721 extent_start = 0;
2722 extent_len = 0;
2723 }
2724 endio_readpage_release_extent(tree, start,
2725 end - start + 1, 0);
2726 } else if (!extent_len) {
2727 extent_start = start;
2728 extent_len = end + 1 - start;
2729 } else if (extent_start + extent_len == start) {
2730 extent_len += end + 1 - start;
2731 } else {
2732 endio_readpage_release_extent(tree, extent_start,
2733 extent_len, uptodate);
2734 extent_start = start;
2735 extent_len = end + 1 - start;
2736 }
2c30c71b 2737 }
d1310b2e 2738
883d0de4
MX
2739 if (extent_len)
2740 endio_readpage_release_extent(tree, extent_start, extent_len,
2741 uptodate);
facc8a22 2742 if (io_bio->end_io)
4246a0b6 2743 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2744 bio_put(bio);
d1310b2e
CM
2745}
2746
9be3395b
CM
2747/*
2748 * this allocates from the btrfs_bioset. We're returning a bio right now
2749 * but you can call btrfs_io_bio for the appropriate container_of magic
2750 */
88f794ed
MX
2751struct bio *
2752btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2753 gfp_t gfp_flags)
d1310b2e 2754{
facc8a22 2755 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2756 struct bio *bio;
2757
9be3395b 2758 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2759
2760 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2761 while (!bio && (nr_vecs /= 2)) {
2762 bio = bio_alloc_bioset(gfp_flags,
2763 nr_vecs, btrfs_bioset);
2764 }
d1310b2e
CM
2765 }
2766
2767 if (bio) {
2768 bio->bi_bdev = bdev;
4f024f37 2769 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2770 btrfs_bio = btrfs_io_bio(bio);
2771 btrfs_bio->csum = NULL;
2772 btrfs_bio->csum_allocated = NULL;
2773 btrfs_bio->end_io = NULL;
d1310b2e
CM
2774 }
2775 return bio;
2776}
2777
9be3395b
CM
2778struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2779{
23ea8e5a
MX
2780 struct btrfs_io_bio *btrfs_bio;
2781 struct bio *new;
9be3395b 2782
23ea8e5a
MX
2783 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2784 if (new) {
2785 btrfs_bio = btrfs_io_bio(new);
2786 btrfs_bio->csum = NULL;
2787 btrfs_bio->csum_allocated = NULL;
2788 btrfs_bio->end_io = NULL;
3a9508b0
CM
2789
2790#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2791 /* FIXME, put this into bio_clone_bioset */
2792 if (bio->bi_css)
2793 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2794#endif
23ea8e5a
MX
2795 }
2796 return new;
2797}
9be3395b
CM
2798
2799/* this also allocates from the btrfs_bioset */
2800struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2801{
facc8a22
MX
2802 struct btrfs_io_bio *btrfs_bio;
2803 struct bio *bio;
2804
2805 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2806 if (bio) {
2807 btrfs_bio = btrfs_io_bio(bio);
2808 btrfs_bio->csum = NULL;
2809 btrfs_bio->csum_allocated = NULL;
2810 btrfs_bio->end_io = NULL;
2811 }
2812 return bio;
9be3395b
CM
2813}
2814
2815
355808c2
JM
2816static int __must_check submit_one_bio(int rw, struct bio *bio,
2817 int mirror_num, unsigned long bio_flags)
d1310b2e 2818{
d1310b2e 2819 int ret = 0;
70dec807
CM
2820 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2821 struct page *page = bvec->bv_page;
2822 struct extent_io_tree *tree = bio->bi_private;
70dec807 2823 u64 start;
70dec807 2824
4eee4fa4 2825 start = page_offset(page) + bvec->bv_offset;
70dec807 2826
902b22f3 2827 bio->bi_private = NULL;
d1310b2e
CM
2828
2829 bio_get(bio);
2830
065631f6 2831 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2832 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2833 mirror_num, bio_flags, start);
0b86a832 2834 else
21adbd5c 2835 btrfsic_submit_bio(rw, bio);
4a54c8c1 2836
d1310b2e
CM
2837 bio_put(bio);
2838 return ret;
2839}
2840
64a16701 2841static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2842 unsigned long offset, size_t size, struct bio *bio,
2843 unsigned long bio_flags)
2844{
2845 int ret = 0;
2846 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2847 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2848 bio_flags);
2849 BUG_ON(ret < 0);
2850 return ret;
2851
2852}
2853
d1310b2e 2854static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2855 struct writeback_control *wbc,
d1310b2e
CM
2856 struct page *page, sector_t sector,
2857 size_t size, unsigned long offset,
2858 struct block_device *bdev,
2859 struct bio **bio_ret,
2860 unsigned long max_pages,
f188591e 2861 bio_end_io_t end_io_func,
c8b97818
CM
2862 int mirror_num,
2863 unsigned long prev_bio_flags,
005efedf
FM
2864 unsigned long bio_flags,
2865 bool force_bio_submit)
d1310b2e
CM
2866{
2867 int ret = 0;
2868 struct bio *bio;
c8b97818 2869 int contig = 0;
c8b97818 2870 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2871 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2872
2873 if (bio_ret && *bio_ret) {
2874 bio = *bio_ret;
c8b97818 2875 if (old_compressed)
4f024f37 2876 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2877 else
f73a1c7d 2878 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2879
2880 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2881 force_bio_submit ||
64a16701 2882 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2883 bio_add_page(bio, page, page_size, offset) < page_size) {
2884 ret = submit_one_bio(rw, bio, mirror_num,
2885 prev_bio_flags);
289454ad
NA
2886 if (ret < 0) {
2887 *bio_ret = NULL;
79787eaa 2888 return ret;
289454ad 2889 }
d1310b2e
CM
2890 bio = NULL;
2891 } else {
da2f0f74
CM
2892 if (wbc)
2893 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2894 return 0;
2895 }
2896 }
c8b97818 2897
b54ffb73
KO
2898 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2899 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2900 if (!bio)
2901 return -ENOMEM;
70dec807 2902
c8b97818 2903 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2904 bio->bi_end_io = end_io_func;
2905 bio->bi_private = tree;
da2f0f74
CM
2906 if (wbc) {
2907 wbc_init_bio(wbc, bio);
2908 wbc_account_io(wbc, page, page_size);
2909 }
70dec807 2910
d397712b 2911 if (bio_ret)
d1310b2e 2912 *bio_ret = bio;
d397712b 2913 else
c8b97818 2914 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2915
2916 return ret;
2917}
2918
48a3b636
ES
2919static void attach_extent_buffer_page(struct extent_buffer *eb,
2920 struct page *page)
d1310b2e
CM
2921{
2922 if (!PagePrivate(page)) {
2923 SetPagePrivate(page);
d1310b2e 2924 page_cache_get(page);
4f2de97a
JB
2925 set_page_private(page, (unsigned long)eb);
2926 } else {
2927 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2928 }
2929}
2930
4f2de97a 2931void set_page_extent_mapped(struct page *page)
d1310b2e 2932{
4f2de97a
JB
2933 if (!PagePrivate(page)) {
2934 SetPagePrivate(page);
2935 page_cache_get(page);
2936 set_page_private(page, EXTENT_PAGE_PRIVATE);
2937 }
d1310b2e
CM
2938}
2939
125bac01
MX
2940static struct extent_map *
2941__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2942 u64 start, u64 len, get_extent_t *get_extent,
2943 struct extent_map **em_cached)
2944{
2945 struct extent_map *em;
2946
2947 if (em_cached && *em_cached) {
2948 em = *em_cached;
cbc0e928 2949 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2950 start < extent_map_end(em)) {
2951 atomic_inc(&em->refs);
2952 return em;
2953 }
2954
2955 free_extent_map(em);
2956 *em_cached = NULL;
2957 }
2958
2959 em = get_extent(inode, page, pg_offset, start, len, 0);
2960 if (em_cached && !IS_ERR_OR_NULL(em)) {
2961 BUG_ON(*em_cached);
2962 atomic_inc(&em->refs);
2963 *em_cached = em;
2964 }
2965 return em;
2966}
d1310b2e
CM
2967/*
2968 * basic readpage implementation. Locked extent state structs are inserted
2969 * into the tree that are removed when the IO is done (by the end_io
2970 * handlers)
79787eaa 2971 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2972 */
9974090b
MX
2973static int __do_readpage(struct extent_io_tree *tree,
2974 struct page *page,
2975 get_extent_t *get_extent,
125bac01 2976 struct extent_map **em_cached,
9974090b 2977 struct bio **bio, int mirror_num,
005efedf
FM
2978 unsigned long *bio_flags, int rw,
2979 u64 *prev_em_start)
d1310b2e
CM
2980{
2981 struct inode *inode = page->mapping->host;
4eee4fa4 2982 u64 start = page_offset(page);
d1310b2e
CM
2983 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2984 u64 end;
2985 u64 cur = start;
2986 u64 extent_offset;
2987 u64 last_byte = i_size_read(inode);
2988 u64 block_start;
2989 u64 cur_end;
2990 sector_t sector;
2991 struct extent_map *em;
2992 struct block_device *bdev;
2993 int ret;
2994 int nr = 0;
4b384318 2995 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2996 size_t pg_offset = 0;
d1310b2e 2997 size_t iosize;
c8b97818 2998 size_t disk_io_size;
d1310b2e 2999 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 3000 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
3001
3002 set_page_extent_mapped(page);
3003
9974090b 3004 end = page_end;
90a887c9
DM
3005 if (!PageUptodate(page)) {
3006 if (cleancache_get_page(page) == 0) {
3007 BUG_ON(blocksize != PAGE_SIZE);
9974090b 3008 unlock_extent(tree, start, end);
90a887c9
DM
3009 goto out;
3010 }
3011 }
3012
c8b97818
CM
3013 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
3014 char *userpage;
3015 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
3016
3017 if (zero_offset) {
3018 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 3019 userpage = kmap_atomic(page);
c8b97818
CM
3020 memset(userpage + zero_offset, 0, iosize);
3021 flush_dcache_page(page);
7ac687d9 3022 kunmap_atomic(userpage);
c8b97818
CM
3023 }
3024 }
d1310b2e 3025 while (cur <= end) {
c8f2f24b 3026 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
005efedf 3027 bool force_bio_submit = false;
c8f2f24b 3028
d1310b2e
CM
3029 if (cur >= last_byte) {
3030 char *userpage;
507903b8
AJ
3031 struct extent_state *cached = NULL;
3032
306e16ce 3033 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 3034 userpage = kmap_atomic(page);
306e16ce 3035 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3036 flush_dcache_page(page);
7ac687d9 3037 kunmap_atomic(userpage);
d1310b2e 3038 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3039 &cached, GFP_NOFS);
4b384318
MF
3040 if (!parent_locked)
3041 unlock_extent_cached(tree, cur,
3042 cur + iosize - 1,
3043 &cached, GFP_NOFS);
d1310b2e
CM
3044 break;
3045 }
125bac01
MX
3046 em = __get_extent_map(inode, page, pg_offset, cur,
3047 end - cur + 1, get_extent, em_cached);
c704005d 3048 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3049 SetPageError(page);
4b384318
MF
3050 if (!parent_locked)
3051 unlock_extent(tree, cur, end);
d1310b2e
CM
3052 break;
3053 }
d1310b2e
CM
3054 extent_offset = cur - em->start;
3055 BUG_ON(extent_map_end(em) <= cur);
3056 BUG_ON(end < cur);
3057
261507a0 3058 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 3059 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
3060 extent_set_compress_type(&this_bio_flag,
3061 em->compress_type);
3062 }
c8b97818 3063
d1310b2e
CM
3064 iosize = min(extent_map_end(em) - cur, end - cur + 1);
3065 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 3066 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
3067 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
3068 disk_io_size = em->block_len;
3069 sector = em->block_start >> 9;
3070 } else {
3071 sector = (em->block_start + extent_offset) >> 9;
3072 disk_io_size = iosize;
3073 }
d1310b2e
CM
3074 bdev = em->bdev;
3075 block_start = em->block_start;
d899e052
YZ
3076 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3077 block_start = EXTENT_MAP_HOLE;
005efedf
FM
3078
3079 /*
3080 * If we have a file range that points to a compressed extent
3081 * and it's followed by a consecutive file range that points to
3082 * to the same compressed extent (possibly with a different
3083 * offset and/or length, so it either points to the whole extent
3084 * or only part of it), we must make sure we do not submit a
3085 * single bio to populate the pages for the 2 ranges because
3086 * this makes the compressed extent read zero out the pages
3087 * belonging to the 2nd range. Imagine the following scenario:
3088 *
3089 * File layout
3090 * [0 - 8K] [8K - 24K]
3091 * | |
3092 * | |
3093 * points to extent X, points to extent X,
3094 * offset 4K, length of 8K offset 0, length 16K
3095 *
3096 * [extent X, compressed length = 4K uncompressed length = 16K]
3097 *
3098 * If the bio to read the compressed extent covers both ranges,
3099 * it will decompress extent X into the pages belonging to the
3100 * first range and then it will stop, zeroing out the remaining
3101 * pages that belong to the other range that points to extent X.
3102 * So here we make sure we submit 2 bios, one for the first
3103 * range and another one for the third range. Both will target
3104 * the same physical extent from disk, but we can't currently
3105 * make the compressed bio endio callback populate the pages
3106 * for both ranges because each compressed bio is tightly
3107 * coupled with a single extent map, and each range can have
3108 * an extent map with a different offset value relative to the
3109 * uncompressed data of our extent and different lengths. This
3110 * is a corner case so we prioritize correctness over
3111 * non-optimal behavior (submitting 2 bios for the same extent).
3112 */
3113 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3114 prev_em_start && *prev_em_start != (u64)-1 &&
3115 *prev_em_start != em->orig_start)
3116 force_bio_submit = true;
3117
3118 if (prev_em_start)
3119 *prev_em_start = em->orig_start;
3120
d1310b2e
CM
3121 free_extent_map(em);
3122 em = NULL;
3123
3124 /* we've found a hole, just zero and go on */
3125 if (block_start == EXTENT_MAP_HOLE) {
3126 char *userpage;
507903b8
AJ
3127 struct extent_state *cached = NULL;
3128
7ac687d9 3129 userpage = kmap_atomic(page);
306e16ce 3130 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3131 flush_dcache_page(page);
7ac687d9 3132 kunmap_atomic(userpage);
d1310b2e
CM
3133
3134 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3135 &cached, GFP_NOFS);
5e6ecb36
FM
3136 if (parent_locked)
3137 free_extent_state(cached);
3138 else
3139 unlock_extent_cached(tree, cur,
3140 cur + iosize - 1,
3141 &cached, GFP_NOFS);
d1310b2e 3142 cur = cur + iosize;
306e16ce 3143 pg_offset += iosize;
d1310b2e
CM
3144 continue;
3145 }
3146 /* the get_extent function already copied into the page */
9655d298
CM
3147 if (test_range_bit(tree, cur, cur_end,
3148 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3149 check_page_uptodate(tree, page);
4b384318
MF
3150 if (!parent_locked)
3151 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3152 cur = cur + iosize;
306e16ce 3153 pg_offset += iosize;
d1310b2e
CM
3154 continue;
3155 }
70dec807
CM
3156 /* we have an inline extent but it didn't get marked up
3157 * to date. Error out
3158 */
3159 if (block_start == EXTENT_MAP_INLINE) {
3160 SetPageError(page);
4b384318
MF
3161 if (!parent_locked)
3162 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3163 cur = cur + iosize;
306e16ce 3164 pg_offset += iosize;
70dec807
CM
3165 continue;
3166 }
d1310b2e 3167
c8f2f24b 3168 pnr -= page->index;
da2f0f74 3169 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3170 sector, disk_io_size, pg_offset,
89642229 3171 bdev, bio, pnr,
c8b97818
CM
3172 end_bio_extent_readpage, mirror_num,
3173 *bio_flags,
005efedf
FM
3174 this_bio_flag,
3175 force_bio_submit);
c8f2f24b
JB
3176 if (!ret) {
3177 nr++;
3178 *bio_flags = this_bio_flag;
3179 } else {
d1310b2e 3180 SetPageError(page);
4b384318
MF
3181 if (!parent_locked)
3182 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3183 }
d1310b2e 3184 cur = cur + iosize;
306e16ce 3185 pg_offset += iosize;
d1310b2e 3186 }
90a887c9 3187out:
d1310b2e
CM
3188 if (!nr) {
3189 if (!PageError(page))
3190 SetPageUptodate(page);
3191 unlock_page(page);
3192 }
3193 return 0;
3194}
3195
9974090b
MX
3196static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3197 struct page *pages[], int nr_pages,
3198 u64 start, u64 end,
3199 get_extent_t *get_extent,
125bac01 3200 struct extent_map **em_cached,
9974090b 3201 struct bio **bio, int mirror_num,
808f80b4
FM
3202 unsigned long *bio_flags, int rw,
3203 u64 *prev_em_start)
9974090b
MX
3204{
3205 struct inode *inode;
3206 struct btrfs_ordered_extent *ordered;
3207 int index;
3208
3209 inode = pages[0]->mapping->host;
3210 while (1) {
3211 lock_extent(tree, start, end);
3212 ordered = btrfs_lookup_ordered_range(inode, start,
3213 end - start + 1);
3214 if (!ordered)
3215 break;
3216 unlock_extent(tree, start, end);
3217 btrfs_start_ordered_extent(inode, ordered, 1);
3218 btrfs_put_ordered_extent(ordered);
3219 }
3220
3221 for (index = 0; index < nr_pages; index++) {
125bac01 3222 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3223 mirror_num, bio_flags, rw, prev_em_start);
9974090b
MX
3224 page_cache_release(pages[index]);
3225 }
3226}
3227
3228static void __extent_readpages(struct extent_io_tree *tree,
3229 struct page *pages[],
3230 int nr_pages, get_extent_t *get_extent,
125bac01 3231 struct extent_map **em_cached,
9974090b 3232 struct bio **bio, int mirror_num,
808f80b4
FM
3233 unsigned long *bio_flags, int rw,
3234 u64 *prev_em_start)
9974090b 3235{
35a3621b 3236 u64 start = 0;
9974090b
MX
3237 u64 end = 0;
3238 u64 page_start;
3239 int index;
35a3621b 3240 int first_index = 0;
9974090b
MX
3241
3242 for (index = 0; index < nr_pages; index++) {
3243 page_start = page_offset(pages[index]);
3244 if (!end) {
3245 start = page_start;
3246 end = start + PAGE_CACHE_SIZE - 1;
3247 first_index = index;
3248 } else if (end + 1 == page_start) {
3249 end += PAGE_CACHE_SIZE;
3250 } else {
3251 __do_contiguous_readpages(tree, &pages[first_index],
3252 index - first_index, start,
125bac01
MX
3253 end, get_extent, em_cached,
3254 bio, mirror_num, bio_flags,
808f80b4 3255 rw, prev_em_start);
9974090b
MX
3256 start = page_start;
3257 end = start + PAGE_CACHE_SIZE - 1;
3258 first_index = index;
3259 }
3260 }
3261
3262 if (end)
3263 __do_contiguous_readpages(tree, &pages[first_index],
3264 index - first_index, start,
125bac01 3265 end, get_extent, em_cached, bio,
808f80b4
FM
3266 mirror_num, bio_flags, rw,
3267 prev_em_start);
9974090b
MX
3268}
3269
3270static int __extent_read_full_page(struct extent_io_tree *tree,
3271 struct page *page,
3272 get_extent_t *get_extent,
3273 struct bio **bio, int mirror_num,
3274 unsigned long *bio_flags, int rw)
3275{
3276 struct inode *inode = page->mapping->host;
3277 struct btrfs_ordered_extent *ordered;
3278 u64 start = page_offset(page);
3279 u64 end = start + PAGE_CACHE_SIZE - 1;
3280 int ret;
3281
3282 while (1) {
3283 lock_extent(tree, start, end);
3284 ordered = btrfs_lookup_ordered_extent(inode, start);
3285 if (!ordered)
3286 break;
3287 unlock_extent(tree, start, end);
3288 btrfs_start_ordered_extent(inode, ordered, 1);
3289 btrfs_put_ordered_extent(ordered);
3290 }
3291
125bac01 3292 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3293 bio_flags, rw, NULL);
9974090b
MX
3294 return ret;
3295}
3296
d1310b2e 3297int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3298 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3299{
3300 struct bio *bio = NULL;
c8b97818 3301 unsigned long bio_flags = 0;
d1310b2e
CM
3302 int ret;
3303
8ddc7d9c 3304 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3305 &bio_flags, READ);
d1310b2e 3306 if (bio)
8ddc7d9c 3307 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3308 return ret;
3309}
d1310b2e 3310
4b384318
MF
3311int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3312 get_extent_t *get_extent, int mirror_num)
3313{
3314 struct bio *bio = NULL;
3315 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3316 int ret;
3317
3318 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
005efedf 3319 &bio_flags, READ, NULL);
4b384318
MF
3320 if (bio)
3321 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3322 return ret;
3323}
3324
11c8349b
CM
3325static noinline void update_nr_written(struct page *page,
3326 struct writeback_control *wbc,
3327 unsigned long nr_written)
3328{
3329 wbc->nr_to_write -= nr_written;
3330 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3331 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3332 page->mapping->writeback_index = page->index + nr_written;
3333}
3334
d1310b2e 3335/*
40f76580
CM
3336 * helper for __extent_writepage, doing all of the delayed allocation setup.
3337 *
3338 * This returns 1 if our fill_delalloc function did all the work required
3339 * to write the page (copy into inline extent). In this case the IO has
3340 * been started and the page is already unlocked.
3341 *
3342 * This returns 0 if all went well (page still locked)
3343 * This returns < 0 if there were errors (page still locked)
d1310b2e 3344 */
40f76580
CM
3345static noinline_for_stack int writepage_delalloc(struct inode *inode,
3346 struct page *page, struct writeback_control *wbc,
3347 struct extent_page_data *epd,
3348 u64 delalloc_start,
3349 unsigned long *nr_written)
3350{
3351 struct extent_io_tree *tree = epd->tree;
3352 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3353 u64 nr_delalloc;
3354 u64 delalloc_to_write = 0;
3355 u64 delalloc_end = 0;
3356 int ret;
3357 int page_started = 0;
3358
3359 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3360 return 0;
3361
3362 while (delalloc_end < page_end) {
3363 nr_delalloc = find_lock_delalloc_range(inode, tree,
3364 page,
3365 &delalloc_start,
3366 &delalloc_end,
dcab6a3b 3367 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3368 if (nr_delalloc == 0) {
3369 delalloc_start = delalloc_end + 1;
3370 continue;
3371 }
3372 ret = tree->ops->fill_delalloc(inode, page,
3373 delalloc_start,
3374 delalloc_end,
3375 &page_started,
3376 nr_written);
3377 /* File system has been set read-only */
3378 if (ret) {
3379 SetPageError(page);
3380 /* fill_delalloc should be return < 0 for error
3381 * but just in case, we use > 0 here meaning the
3382 * IO is started, so we don't want to return > 0
3383 * unless things are going well.
3384 */
3385 ret = ret < 0 ? ret : -EIO;
3386 goto done;
3387 }
3388 /*
3389 * delalloc_end is already one less than the total
3390 * length, so we don't subtract one from
3391 * PAGE_CACHE_SIZE
3392 */
3393 delalloc_to_write += (delalloc_end - delalloc_start +
3394 PAGE_CACHE_SIZE) >>
3395 PAGE_CACHE_SHIFT;
3396 delalloc_start = delalloc_end + 1;
3397 }
3398 if (wbc->nr_to_write < delalloc_to_write) {
3399 int thresh = 8192;
3400
3401 if (delalloc_to_write < thresh * 2)
3402 thresh = delalloc_to_write;
3403 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3404 thresh);
3405 }
3406
3407 /* did the fill delalloc function already unlock and start
3408 * the IO?
3409 */
3410 if (page_started) {
3411 /*
3412 * we've unlocked the page, so we can't update
3413 * the mapping's writeback index, just update
3414 * nr_to_write.
3415 */
3416 wbc->nr_to_write -= *nr_written;
3417 return 1;
3418 }
3419
3420 ret = 0;
3421
3422done:
3423 return ret;
3424}
3425
3426/*
3427 * helper for __extent_writepage. This calls the writepage start hooks,
3428 * and does the loop to map the page into extents and bios.
3429 *
3430 * We return 1 if the IO is started and the page is unlocked,
3431 * 0 if all went well (page still locked)
3432 * < 0 if there were errors (page still locked)
3433 */
3434static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3435 struct page *page,
3436 struct writeback_control *wbc,
3437 struct extent_page_data *epd,
3438 loff_t i_size,
3439 unsigned long nr_written,
3440 int write_flags, int *nr_ret)
d1310b2e 3441{
d1310b2e 3442 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3443 u64 start = page_offset(page);
d1310b2e
CM
3444 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3445 u64 end;
3446 u64 cur = start;
3447 u64 extent_offset;
d1310b2e
CM
3448 u64 block_start;
3449 u64 iosize;
3450 sector_t sector;
2c64c53d 3451 struct extent_state *cached_state = NULL;
d1310b2e
CM
3452 struct extent_map *em;
3453 struct block_device *bdev;
7f3c74fb 3454 size_t pg_offset = 0;
d1310b2e 3455 size_t blocksize;
40f76580
CM
3456 int ret = 0;
3457 int nr = 0;
3458 bool compressed;
c8b97818 3459
247e743c 3460 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3461 ret = tree->ops->writepage_start_hook(page, start,
3462 page_end);
87826df0
JM
3463 if (ret) {
3464 /* Fixup worker will requeue */
3465 if (ret == -EBUSY)
3466 wbc->pages_skipped++;
3467 else
3468 redirty_page_for_writepage(wbc, page);
40f76580 3469
11c8349b 3470 update_nr_written(page, wbc, nr_written);
247e743c 3471 unlock_page(page);
40f76580 3472 ret = 1;
11c8349b 3473 goto done_unlocked;
247e743c
CM
3474 }
3475 }
3476
11c8349b
CM
3477 /*
3478 * we don't want to touch the inode after unlocking the page,
3479 * so we update the mapping writeback index now
3480 */
3481 update_nr_written(page, wbc, nr_written + 1);
771ed689 3482
d1310b2e 3483 end = page_end;
40f76580 3484 if (i_size <= start) {
e6dcd2dc
CM
3485 if (tree->ops && tree->ops->writepage_end_io_hook)
3486 tree->ops->writepage_end_io_hook(page, start,
3487 page_end, NULL, 1);
d1310b2e
CM
3488 goto done;
3489 }
3490
d1310b2e
CM
3491 blocksize = inode->i_sb->s_blocksize;
3492
3493 while (cur <= end) {
40f76580
CM
3494 u64 em_end;
3495 if (cur >= i_size) {
e6dcd2dc
CM
3496 if (tree->ops && tree->ops->writepage_end_io_hook)
3497 tree->ops->writepage_end_io_hook(page, cur,
3498 page_end, NULL, 1);
d1310b2e
CM
3499 break;
3500 }
7f3c74fb 3501 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3502 end - cur + 1, 1);
c704005d 3503 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3504 SetPageError(page);
61391d56 3505 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3506 break;
3507 }
3508
3509 extent_offset = cur - em->start;
40f76580
CM
3510 em_end = extent_map_end(em);
3511 BUG_ON(em_end <= cur);
d1310b2e 3512 BUG_ON(end < cur);
40f76580 3513 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3514 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3515 sector = (em->block_start + extent_offset) >> 9;
3516 bdev = em->bdev;
3517 block_start = em->block_start;
c8b97818 3518 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3519 free_extent_map(em);
3520 em = NULL;
3521
c8b97818
CM
3522 /*
3523 * compressed and inline extents are written through other
3524 * paths in the FS
3525 */
3526 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3527 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3528 /*
3529 * end_io notification does not happen here for
3530 * compressed extents
3531 */
3532 if (!compressed && tree->ops &&
3533 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3534 tree->ops->writepage_end_io_hook(page, cur,
3535 cur + iosize - 1,
3536 NULL, 1);
c8b97818
CM
3537 else if (compressed) {
3538 /* we don't want to end_page_writeback on
3539 * a compressed extent. this happens
3540 * elsewhere
3541 */
3542 nr++;
3543 }
3544
3545 cur += iosize;
7f3c74fb 3546 pg_offset += iosize;
d1310b2e
CM
3547 continue;
3548 }
c8b97818 3549
d1310b2e
CM
3550 if (tree->ops && tree->ops->writepage_io_hook) {
3551 ret = tree->ops->writepage_io_hook(page, cur,
3552 cur + iosize - 1);
3553 } else {
3554 ret = 0;
3555 }
1259ab75 3556 if (ret) {
d1310b2e 3557 SetPageError(page);
1259ab75 3558 } else {
40f76580 3559 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3560
d1310b2e
CM
3561 set_range_writeback(tree, cur, cur + iosize - 1);
3562 if (!PageWriteback(page)) {
efe120a0
FH
3563 btrfs_err(BTRFS_I(inode)->root->fs_info,
3564 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3565 page->index, cur, end);
d1310b2e
CM
3566 }
3567
da2f0f74 3568 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3569 sector, iosize, pg_offset,
3570 bdev, &epd->bio, max_nr,
c8b97818 3571 end_bio_extent_writepage,
005efedf 3572 0, 0, 0, false);
d1310b2e
CM
3573 if (ret)
3574 SetPageError(page);
3575 }
3576 cur = cur + iosize;
7f3c74fb 3577 pg_offset += iosize;
d1310b2e
CM
3578 nr++;
3579 }
40f76580
CM
3580done:
3581 *nr_ret = nr;
3582
3583done_unlocked:
3584
3585 /* drop our reference on any cached states */
3586 free_extent_state(cached_state);
3587 return ret;
3588}
3589
3590/*
3591 * the writepage semantics are similar to regular writepage. extent
3592 * records are inserted to lock ranges in the tree, and as dirty areas
3593 * are found, they are marked writeback. Then the lock bits are removed
3594 * and the end_io handler clears the writeback ranges
3595 */
3596static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3597 void *data)
3598{
3599 struct inode *inode = page->mapping->host;
3600 struct extent_page_data *epd = data;
3601 u64 start = page_offset(page);
3602 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3603 int ret;
3604 int nr = 0;
3605 size_t pg_offset = 0;
3606 loff_t i_size = i_size_read(inode);
3607 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3608 int write_flags;
3609 unsigned long nr_written = 0;
3610
3611 if (wbc->sync_mode == WB_SYNC_ALL)
3612 write_flags = WRITE_SYNC;
3613 else
3614 write_flags = WRITE;
3615
3616 trace___extent_writepage(page, inode, wbc);
3617
3618 WARN_ON(!PageLocked(page));
3619
3620 ClearPageError(page);
3621
3622 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3623 if (page->index > end_index ||
3624 (page->index == end_index && !pg_offset)) {
3625 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3626 unlock_page(page);
3627 return 0;
3628 }
3629
3630 if (page->index == end_index) {
3631 char *userpage;
3632
3633 userpage = kmap_atomic(page);
3634 memset(userpage + pg_offset, 0,
3635 PAGE_CACHE_SIZE - pg_offset);
3636 kunmap_atomic(userpage);
3637 flush_dcache_page(page);
3638 }
3639
3640 pg_offset = 0;
3641
3642 set_page_extent_mapped(page);
3643
3644 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3645 if (ret == 1)
3646 goto done_unlocked;
3647 if (ret)
3648 goto done;
3649
3650 ret = __extent_writepage_io(inode, page, wbc, epd,
3651 i_size, nr_written, write_flags, &nr);
3652 if (ret == 1)
3653 goto done_unlocked;
3654
d1310b2e
CM
3655done:
3656 if (nr == 0) {
3657 /* make sure the mapping tag for page dirty gets cleared */
3658 set_page_writeback(page);
3659 end_page_writeback(page);
3660 }
61391d56
FM
3661 if (PageError(page)) {
3662 ret = ret < 0 ? ret : -EIO;
3663 end_extent_writepage(page, ret, start, page_end);
3664 }
d1310b2e 3665 unlock_page(page);
40f76580 3666 return ret;
771ed689 3667
11c8349b 3668done_unlocked:
d1310b2e
CM
3669 return 0;
3670}
3671
fd8b2b61 3672void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3673{
74316201
N
3674 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3675 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3676}
3677
0e378df1
CM
3678static noinline_for_stack int
3679lock_extent_buffer_for_io(struct extent_buffer *eb,
3680 struct btrfs_fs_info *fs_info,
3681 struct extent_page_data *epd)
0b32f4bb
JB
3682{
3683 unsigned long i, num_pages;
3684 int flush = 0;
3685 int ret = 0;
3686
3687 if (!btrfs_try_tree_write_lock(eb)) {
3688 flush = 1;
3689 flush_write_bio(epd);
3690 btrfs_tree_lock(eb);
3691 }
3692
3693 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3694 btrfs_tree_unlock(eb);
3695 if (!epd->sync_io)
3696 return 0;
3697 if (!flush) {
3698 flush_write_bio(epd);
3699 flush = 1;
3700 }
a098d8e8
CM
3701 while (1) {
3702 wait_on_extent_buffer_writeback(eb);
3703 btrfs_tree_lock(eb);
3704 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3705 break;
0b32f4bb 3706 btrfs_tree_unlock(eb);
0b32f4bb
JB
3707 }
3708 }
3709
51561ffe
JB
3710 /*
3711 * We need to do this to prevent races in people who check if the eb is
3712 * under IO since we can end up having no IO bits set for a short period
3713 * of time.
3714 */
3715 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3716 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3717 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3718 spin_unlock(&eb->refs_lock);
0b32f4bb 3719 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3720 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3721 -eb->len,
3722 fs_info->dirty_metadata_batch);
0b32f4bb 3723 ret = 1;
51561ffe
JB
3724 } else {
3725 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3726 }
3727
3728 btrfs_tree_unlock(eb);
3729
3730 if (!ret)
3731 return ret;
3732
3733 num_pages = num_extent_pages(eb->start, eb->len);
3734 for (i = 0; i < num_pages; i++) {
fb85fc9a 3735 struct page *p = eb->pages[i];
0b32f4bb
JB
3736
3737 if (!trylock_page(p)) {
3738 if (!flush) {
3739 flush_write_bio(epd);
3740 flush = 1;
3741 }
3742 lock_page(p);
3743 }
3744 }
3745
3746 return ret;
3747}
3748
3749static void end_extent_buffer_writeback(struct extent_buffer *eb)
3750{
3751 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3752 smp_mb__after_atomic();
0b32f4bb
JB
3753 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3754}
3755
656f30db
FM
3756static void set_btree_ioerr(struct page *page)
3757{
3758 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3759 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3760
3761 SetPageError(page);
3762 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3763 return;
3764
3765 /*
3766 * If writeback for a btree extent that doesn't belong to a log tree
3767 * failed, increment the counter transaction->eb_write_errors.
3768 * We do this because while the transaction is running and before it's
3769 * committing (when we call filemap_fdata[write|wait]_range against
3770 * the btree inode), we might have
3771 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3772 * returns an error or an error happens during writeback, when we're
3773 * committing the transaction we wouldn't know about it, since the pages
3774 * can be no longer dirty nor marked anymore for writeback (if a
3775 * subsequent modification to the extent buffer didn't happen before the
3776 * transaction commit), which makes filemap_fdata[write|wait]_range not
3777 * able to find the pages tagged with SetPageError at transaction
3778 * commit time. So if this happens we must abort the transaction,
3779 * otherwise we commit a super block with btree roots that point to
3780 * btree nodes/leafs whose content on disk is invalid - either garbage
3781 * or the content of some node/leaf from a past generation that got
3782 * cowed or deleted and is no longer valid.
3783 *
3784 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3785 * not be enough - we need to distinguish between log tree extents vs
3786 * non-log tree extents, and the next filemap_fdatawait_range() call
3787 * will catch and clear such errors in the mapping - and that call might
3788 * be from a log sync and not from a transaction commit. Also, checking
3789 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3790 * not done and would not be reliable - the eb might have been released
3791 * from memory and reading it back again means that flag would not be
3792 * set (since it's a runtime flag, not persisted on disk).
3793 *
3794 * Using the flags below in the btree inode also makes us achieve the
3795 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3796 * writeback for all dirty pages and before filemap_fdatawait_range()
3797 * is called, the writeback for all dirty pages had already finished
3798 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3799 * filemap_fdatawait_range() would return success, as it could not know
3800 * that writeback errors happened (the pages were no longer tagged for
3801 * writeback).
3802 */
3803 switch (eb->log_index) {
3804 case -1:
3805 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3806 break;
3807 case 0:
3808 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3809 break;
3810 case 1:
3811 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3812 break;
3813 default:
3814 BUG(); /* unexpected, logic error */
3815 }
3816}
3817
4246a0b6 3818static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3819{
2c30c71b 3820 struct bio_vec *bvec;
0b32f4bb 3821 struct extent_buffer *eb;
2c30c71b 3822 int i, done;
0b32f4bb 3823
2c30c71b 3824 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3825 struct page *page = bvec->bv_page;
3826
0b32f4bb
JB
3827 eb = (struct extent_buffer *)page->private;
3828 BUG_ON(!eb);
3829 done = atomic_dec_and_test(&eb->io_pages);
3830
4246a0b6
CH
3831 if (bio->bi_error ||
3832 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3833 ClearPageUptodate(page);
656f30db 3834 set_btree_ioerr(page);
0b32f4bb
JB
3835 }
3836
3837 end_page_writeback(page);
3838
3839 if (!done)
3840 continue;
3841
3842 end_extent_buffer_writeback(eb);
2c30c71b 3843 }
0b32f4bb
JB
3844
3845 bio_put(bio);
0b32f4bb
JB
3846}
3847
0e378df1 3848static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3849 struct btrfs_fs_info *fs_info,
3850 struct writeback_control *wbc,
3851 struct extent_page_data *epd)
3852{
3853 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3854 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3855 u64 offset = eb->start;
3856 unsigned long i, num_pages;
de0022b9 3857 unsigned long bio_flags = 0;
d4c7ca86 3858 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3859 int ret = 0;
0b32f4bb 3860
656f30db 3861 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3862 num_pages = num_extent_pages(eb->start, eb->len);
3863 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3864 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3865 bio_flags = EXTENT_BIO_TREE_LOG;
3866
0b32f4bb 3867 for (i = 0; i < num_pages; i++) {
fb85fc9a 3868 struct page *p = eb->pages[i];
0b32f4bb
JB
3869
3870 clear_page_dirty_for_io(p);
3871 set_page_writeback(p);
da2f0f74 3872 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
0b32f4bb
JB
3873 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3874 -1, end_bio_extent_buffer_writepage,
005efedf 3875 0, epd->bio_flags, bio_flags, false);
de0022b9 3876 epd->bio_flags = bio_flags;
0b32f4bb 3877 if (ret) {
656f30db 3878 set_btree_ioerr(p);
55e3bd2e 3879 end_page_writeback(p);
0b32f4bb
JB
3880 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3881 end_extent_buffer_writeback(eb);
3882 ret = -EIO;
3883 break;
3884 }
3885 offset += PAGE_CACHE_SIZE;
3886 update_nr_written(p, wbc, 1);
3887 unlock_page(p);
3888 }
3889
3890 if (unlikely(ret)) {
3891 for (; i < num_pages; i++) {
bbf65cf0 3892 struct page *p = eb->pages[i];
81465028 3893 clear_page_dirty_for_io(p);
0b32f4bb
JB
3894 unlock_page(p);
3895 }
3896 }
3897
3898 return ret;
3899}
3900
3901int btree_write_cache_pages(struct address_space *mapping,
3902 struct writeback_control *wbc)
3903{
3904 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3905 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3906 struct extent_buffer *eb, *prev_eb = NULL;
3907 struct extent_page_data epd = {
3908 .bio = NULL,
3909 .tree = tree,
3910 .extent_locked = 0,
3911 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3912 .bio_flags = 0,
0b32f4bb
JB
3913 };
3914 int ret = 0;
3915 int done = 0;
3916 int nr_to_write_done = 0;
3917 struct pagevec pvec;
3918 int nr_pages;
3919 pgoff_t index;
3920 pgoff_t end; /* Inclusive */
3921 int scanned = 0;
3922 int tag;
3923
3924 pagevec_init(&pvec, 0);
3925 if (wbc->range_cyclic) {
3926 index = mapping->writeback_index; /* Start from prev offset */
3927 end = -1;
3928 } else {
3929 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3930 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3931 scanned = 1;
3932 }
3933 if (wbc->sync_mode == WB_SYNC_ALL)
3934 tag = PAGECACHE_TAG_TOWRITE;
3935 else
3936 tag = PAGECACHE_TAG_DIRTY;
3937retry:
3938 if (wbc->sync_mode == WB_SYNC_ALL)
3939 tag_pages_for_writeback(mapping, index, end);
3940 while (!done && !nr_to_write_done && (index <= end) &&
3941 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3942 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3943 unsigned i;
3944
3945 scanned = 1;
3946 for (i = 0; i < nr_pages; i++) {
3947 struct page *page = pvec.pages[i];
3948
3949 if (!PagePrivate(page))
3950 continue;
3951
3952 if (!wbc->range_cyclic && page->index > end) {
3953 done = 1;
3954 break;
3955 }
3956
b5bae261
JB
3957 spin_lock(&mapping->private_lock);
3958 if (!PagePrivate(page)) {
3959 spin_unlock(&mapping->private_lock);
3960 continue;
3961 }
3962
0b32f4bb 3963 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3964
3965 /*
3966 * Shouldn't happen and normally this would be a BUG_ON
3967 * but no sense in crashing the users box for something
3968 * we can survive anyway.
3969 */
fae7f21c 3970 if (WARN_ON(!eb)) {
b5bae261 3971 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3972 continue;
3973 }
3974
b5bae261
JB
3975 if (eb == prev_eb) {
3976 spin_unlock(&mapping->private_lock);
0b32f4bb 3977 continue;
b5bae261 3978 }
0b32f4bb 3979
b5bae261
JB
3980 ret = atomic_inc_not_zero(&eb->refs);
3981 spin_unlock(&mapping->private_lock);
3982 if (!ret)
0b32f4bb 3983 continue;
0b32f4bb
JB
3984
3985 prev_eb = eb;
3986 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3987 if (!ret) {
3988 free_extent_buffer(eb);
3989 continue;
3990 }
3991
3992 ret = write_one_eb(eb, fs_info, wbc, &epd);
3993 if (ret) {
3994 done = 1;
3995 free_extent_buffer(eb);
3996 break;
3997 }
3998 free_extent_buffer(eb);
3999
4000 /*
4001 * the filesystem may choose to bump up nr_to_write.
4002 * We have to make sure to honor the new nr_to_write
4003 * at any time
4004 */
4005 nr_to_write_done = wbc->nr_to_write <= 0;
4006 }
4007 pagevec_release(&pvec);
4008 cond_resched();
4009 }
4010 if (!scanned && !done) {
4011 /*
4012 * We hit the last page and there is more work to be done: wrap
4013 * back to the start of the file
4014 */
4015 scanned = 1;
4016 index = 0;
4017 goto retry;
4018 }
4019 flush_write_bio(&epd);
4020 return ret;
4021}
4022
d1310b2e 4023/**
4bef0848 4024 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
4025 * @mapping: address space structure to write
4026 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
4027 * @writepage: function called for each page
4028 * @data: data passed to writepage function
4029 *
4030 * If a page is already under I/O, write_cache_pages() skips it, even
4031 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
4032 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
4033 * and msync() need to guarantee that all the data which was dirty at the time
4034 * the call was made get new I/O started against them. If wbc->sync_mode is
4035 * WB_SYNC_ALL then we were called for data integrity and we must wait for
4036 * existing IO to complete.
4037 */
b2950863 4038static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
4039 struct address_space *mapping,
4040 struct writeback_control *wbc,
d2c3f4f6
CM
4041 writepage_t writepage, void *data,
4042 void (*flush_fn)(void *))
d1310b2e 4043{
7fd1a3f7 4044 struct inode *inode = mapping->host;
d1310b2e
CM
4045 int ret = 0;
4046 int done = 0;
61391d56 4047 int err = 0;
f85d7d6c 4048 int nr_to_write_done = 0;
d1310b2e
CM
4049 struct pagevec pvec;
4050 int nr_pages;
4051 pgoff_t index;
4052 pgoff_t end; /* Inclusive */
4053 int scanned = 0;
f7aaa06b 4054 int tag;
d1310b2e 4055
7fd1a3f7
JB
4056 /*
4057 * We have to hold onto the inode so that ordered extents can do their
4058 * work when the IO finishes. The alternative to this is failing to add
4059 * an ordered extent if the igrab() fails there and that is a huge pain
4060 * to deal with, so instead just hold onto the inode throughout the
4061 * writepages operation. If it fails here we are freeing up the inode
4062 * anyway and we'd rather not waste our time writing out stuff that is
4063 * going to be truncated anyway.
4064 */
4065 if (!igrab(inode))
4066 return 0;
4067
d1310b2e
CM
4068 pagevec_init(&pvec, 0);
4069 if (wbc->range_cyclic) {
4070 index = mapping->writeback_index; /* Start from prev offset */
4071 end = -1;
4072 } else {
4073 index = wbc->range_start >> PAGE_CACHE_SHIFT;
4074 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4075 scanned = 1;
4076 }
f7aaa06b
JB
4077 if (wbc->sync_mode == WB_SYNC_ALL)
4078 tag = PAGECACHE_TAG_TOWRITE;
4079 else
4080 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 4081retry:
f7aaa06b
JB
4082 if (wbc->sync_mode == WB_SYNC_ALL)
4083 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 4084 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
4085 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
4086 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
4087 unsigned i;
4088
4089 scanned = 1;
4090 for (i = 0; i < nr_pages; i++) {
4091 struct page *page = pvec.pages[i];
4092
4093 /*
4094 * At this point we hold neither mapping->tree_lock nor
4095 * lock on the page itself: the page may be truncated or
4096 * invalidated (changing page->mapping to NULL), or even
4097 * swizzled back from swapper_space to tmpfs file
4098 * mapping
4099 */
c8f2f24b
JB
4100 if (!trylock_page(page)) {
4101 flush_fn(data);
4102 lock_page(page);
01d658f2 4103 }
d1310b2e
CM
4104
4105 if (unlikely(page->mapping != mapping)) {
4106 unlock_page(page);
4107 continue;
4108 }
4109
4110 if (!wbc->range_cyclic && page->index > end) {
4111 done = 1;
4112 unlock_page(page);
4113 continue;
4114 }
4115
d2c3f4f6 4116 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4117 if (PageWriteback(page))
4118 flush_fn(data);
d1310b2e 4119 wait_on_page_writeback(page);
d2c3f4f6 4120 }
d1310b2e
CM
4121
4122 if (PageWriteback(page) ||
4123 !clear_page_dirty_for_io(page)) {
4124 unlock_page(page);
4125 continue;
4126 }
4127
4128 ret = (*writepage)(page, wbc, data);
4129
4130 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4131 unlock_page(page);
4132 ret = 0;
4133 }
61391d56
FM
4134 if (!err && ret < 0)
4135 err = ret;
f85d7d6c
CM
4136
4137 /*
4138 * the filesystem may choose to bump up nr_to_write.
4139 * We have to make sure to honor the new nr_to_write
4140 * at any time
4141 */
4142 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4143 }
4144 pagevec_release(&pvec);
4145 cond_resched();
4146 }
61391d56 4147 if (!scanned && !done && !err) {
d1310b2e
CM
4148 /*
4149 * We hit the last page and there is more work to be done: wrap
4150 * back to the start of the file
4151 */
4152 scanned = 1;
4153 index = 0;
4154 goto retry;
4155 }
7fd1a3f7 4156 btrfs_add_delayed_iput(inode);
61391d56 4157 return err;
d1310b2e 4158}
d1310b2e 4159
ffbd517d 4160static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4161{
d2c3f4f6 4162 if (epd->bio) {
355808c2
JM
4163 int rw = WRITE;
4164 int ret;
4165
ffbd517d 4166 if (epd->sync_io)
355808c2
JM
4167 rw = WRITE_SYNC;
4168
de0022b9 4169 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4170 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4171 epd->bio = NULL;
4172 }
4173}
4174
ffbd517d
CM
4175static noinline void flush_write_bio(void *data)
4176{
4177 struct extent_page_data *epd = data;
4178 flush_epd_write_bio(epd);
4179}
4180
d1310b2e
CM
4181int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4182 get_extent_t *get_extent,
4183 struct writeback_control *wbc)
4184{
4185 int ret;
d1310b2e
CM
4186 struct extent_page_data epd = {
4187 .bio = NULL,
4188 .tree = tree,
4189 .get_extent = get_extent,
771ed689 4190 .extent_locked = 0,
ffbd517d 4191 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4192 .bio_flags = 0,
d1310b2e 4193 };
d1310b2e 4194
d1310b2e
CM
4195 ret = __extent_writepage(page, wbc, &epd);
4196
ffbd517d 4197 flush_epd_write_bio(&epd);
d1310b2e
CM
4198 return ret;
4199}
d1310b2e 4200
771ed689
CM
4201int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4202 u64 start, u64 end, get_extent_t *get_extent,
4203 int mode)
4204{
4205 int ret = 0;
4206 struct address_space *mapping = inode->i_mapping;
4207 struct page *page;
4208 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4209 PAGE_CACHE_SHIFT;
4210
4211 struct extent_page_data epd = {
4212 .bio = NULL,
4213 .tree = tree,
4214 .get_extent = get_extent,
4215 .extent_locked = 1,
ffbd517d 4216 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4217 .bio_flags = 0,
771ed689
CM
4218 };
4219 struct writeback_control wbc_writepages = {
771ed689 4220 .sync_mode = mode,
771ed689
CM
4221 .nr_to_write = nr_pages * 2,
4222 .range_start = start,
4223 .range_end = end + 1,
4224 };
4225
d397712b 4226 while (start <= end) {
771ed689
CM
4227 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4228 if (clear_page_dirty_for_io(page))
4229 ret = __extent_writepage(page, &wbc_writepages, &epd);
4230 else {
4231 if (tree->ops && tree->ops->writepage_end_io_hook)
4232 tree->ops->writepage_end_io_hook(page, start,
4233 start + PAGE_CACHE_SIZE - 1,
4234 NULL, 1);
4235 unlock_page(page);
4236 }
4237 page_cache_release(page);
4238 start += PAGE_CACHE_SIZE;
4239 }
4240
ffbd517d 4241 flush_epd_write_bio(&epd);
771ed689
CM
4242 return ret;
4243}
d1310b2e
CM
4244
4245int extent_writepages(struct extent_io_tree *tree,
4246 struct address_space *mapping,
4247 get_extent_t *get_extent,
4248 struct writeback_control *wbc)
4249{
4250 int ret = 0;
4251 struct extent_page_data epd = {
4252 .bio = NULL,
4253 .tree = tree,
4254 .get_extent = get_extent,
771ed689 4255 .extent_locked = 0,
ffbd517d 4256 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4257 .bio_flags = 0,
d1310b2e
CM
4258 };
4259
4bef0848 4260 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4261 __extent_writepage, &epd,
4262 flush_write_bio);
ffbd517d 4263 flush_epd_write_bio(&epd);
d1310b2e
CM
4264 return ret;
4265}
d1310b2e
CM
4266
4267int extent_readpages(struct extent_io_tree *tree,
4268 struct address_space *mapping,
4269 struct list_head *pages, unsigned nr_pages,
4270 get_extent_t get_extent)
4271{
4272 struct bio *bio = NULL;
4273 unsigned page_idx;
c8b97818 4274 unsigned long bio_flags = 0;
67c9684f
LB
4275 struct page *pagepool[16];
4276 struct page *page;
125bac01 4277 struct extent_map *em_cached = NULL;
67c9684f 4278 int nr = 0;
808f80b4 4279 u64 prev_em_start = (u64)-1;
d1310b2e 4280
d1310b2e 4281 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4282 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4283
4284 prefetchw(&page->flags);
4285 list_del(&page->lru);
67c9684f 4286 if (add_to_page_cache_lru(page, mapping,
43e817a1 4287 page->index, GFP_NOFS)) {
67c9684f
LB
4288 page_cache_release(page);
4289 continue;
d1310b2e 4290 }
67c9684f
LB
4291
4292 pagepool[nr++] = page;
4293 if (nr < ARRAY_SIZE(pagepool))
4294 continue;
125bac01 4295 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4296 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4297 nr = 0;
d1310b2e 4298 }
9974090b 4299 if (nr)
125bac01 4300 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4301 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4302
125bac01
MX
4303 if (em_cached)
4304 free_extent_map(em_cached);
4305
d1310b2e
CM
4306 BUG_ON(!list_empty(pages));
4307 if (bio)
79787eaa 4308 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4309 return 0;
4310}
d1310b2e
CM
4311
4312/*
4313 * basic invalidatepage code, this waits on any locked or writeback
4314 * ranges corresponding to the page, and then deletes any extent state
4315 * records from the tree
4316 */
4317int extent_invalidatepage(struct extent_io_tree *tree,
4318 struct page *page, unsigned long offset)
4319{
2ac55d41 4320 struct extent_state *cached_state = NULL;
4eee4fa4 4321 u64 start = page_offset(page);
d1310b2e
CM
4322 u64 end = start + PAGE_CACHE_SIZE - 1;
4323 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4324
fda2832f 4325 start += ALIGN(offset, blocksize);
d1310b2e
CM
4326 if (start > end)
4327 return 0;
4328
d0082371 4329 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4330 wait_on_page_writeback(page);
d1310b2e 4331 clear_extent_bit(tree, start, end,
32c00aff
JB
4332 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4333 EXTENT_DO_ACCOUNTING,
2ac55d41 4334 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4335 return 0;
4336}
d1310b2e 4337
7b13b7b1
CM
4338/*
4339 * a helper for releasepage, this tests for areas of the page that
4340 * are locked or under IO and drops the related state bits if it is safe
4341 * to drop the page.
4342 */
48a3b636
ES
4343static int try_release_extent_state(struct extent_map_tree *map,
4344 struct extent_io_tree *tree,
4345 struct page *page, gfp_t mask)
7b13b7b1 4346{
4eee4fa4 4347 u64 start = page_offset(page);
7b13b7b1
CM
4348 u64 end = start + PAGE_CACHE_SIZE - 1;
4349 int ret = 1;
4350
211f90e6 4351 if (test_range_bit(tree, start, end,
8b62b72b 4352 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4353 ret = 0;
4354 else {
4355 if ((mask & GFP_NOFS) == GFP_NOFS)
4356 mask = GFP_NOFS;
11ef160f
CM
4357 /*
4358 * at this point we can safely clear everything except the
4359 * locked bit and the nodatasum bit
4360 */
e3f24cc5 4361 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4362 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4363 0, 0, NULL, mask);
e3f24cc5
CM
4364
4365 /* if clear_extent_bit failed for enomem reasons,
4366 * we can't allow the release to continue.
4367 */
4368 if (ret < 0)
4369 ret = 0;
4370 else
4371 ret = 1;
7b13b7b1
CM
4372 }
4373 return ret;
4374}
7b13b7b1 4375
d1310b2e
CM
4376/*
4377 * a helper for releasepage. As long as there are no locked extents
4378 * in the range corresponding to the page, both state records and extent
4379 * map records are removed
4380 */
4381int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4382 struct extent_io_tree *tree, struct page *page,
4383 gfp_t mask)
d1310b2e
CM
4384{
4385 struct extent_map *em;
4eee4fa4 4386 u64 start = page_offset(page);
d1310b2e 4387 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4388
d0164adc 4389 if (gfpflags_allow_blocking(mask) &&
70dec807 4390 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4391 u64 len;
70dec807 4392 while (start <= end) {
39b5637f 4393 len = end - start + 1;
890871be 4394 write_lock(&map->lock);
39b5637f 4395 em = lookup_extent_mapping(map, start, len);
285190d9 4396 if (!em) {
890871be 4397 write_unlock(&map->lock);
70dec807
CM
4398 break;
4399 }
7f3c74fb
CM
4400 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4401 em->start != start) {
890871be 4402 write_unlock(&map->lock);
70dec807
CM
4403 free_extent_map(em);
4404 break;
4405 }
4406 if (!test_range_bit(tree, em->start,
4407 extent_map_end(em) - 1,
8b62b72b 4408 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4409 0, NULL)) {
70dec807
CM
4410 remove_extent_mapping(map, em);
4411 /* once for the rb tree */
4412 free_extent_map(em);
4413 }
4414 start = extent_map_end(em);
890871be 4415 write_unlock(&map->lock);
70dec807
CM
4416
4417 /* once for us */
d1310b2e
CM
4418 free_extent_map(em);
4419 }
d1310b2e 4420 }
7b13b7b1 4421 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4422}
d1310b2e 4423
ec29ed5b
CM
4424/*
4425 * helper function for fiemap, which doesn't want to see any holes.
4426 * This maps until we find something past 'last'
4427 */
4428static struct extent_map *get_extent_skip_holes(struct inode *inode,
4429 u64 offset,
4430 u64 last,
4431 get_extent_t *get_extent)
4432{
4433 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4434 struct extent_map *em;
4435 u64 len;
4436
4437 if (offset >= last)
4438 return NULL;
4439
67871254 4440 while (1) {
ec29ed5b
CM
4441 len = last - offset;
4442 if (len == 0)
4443 break;
fda2832f 4444 len = ALIGN(len, sectorsize);
ec29ed5b 4445 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4446 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4447 return em;
4448
4449 /* if this isn't a hole return it */
4450 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4451 em->block_start != EXTENT_MAP_HOLE) {
4452 return em;
4453 }
4454
4455 /* this is a hole, advance to the next extent */
4456 offset = extent_map_end(em);
4457 free_extent_map(em);
4458 if (offset >= last)
4459 break;
4460 }
4461 return NULL;
4462}
4463
1506fcc8
YS
4464int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4465 __u64 start, __u64 len, get_extent_t *get_extent)
4466{
975f84fe 4467 int ret = 0;
1506fcc8
YS
4468 u64 off = start;
4469 u64 max = start + len;
4470 u32 flags = 0;
975f84fe
JB
4471 u32 found_type;
4472 u64 last;
ec29ed5b 4473 u64 last_for_get_extent = 0;
1506fcc8 4474 u64 disko = 0;
ec29ed5b 4475 u64 isize = i_size_read(inode);
975f84fe 4476 struct btrfs_key found_key;
1506fcc8 4477 struct extent_map *em = NULL;
2ac55d41 4478 struct extent_state *cached_state = NULL;
975f84fe 4479 struct btrfs_path *path;
dc046b10 4480 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4481 int end = 0;
ec29ed5b
CM
4482 u64 em_start = 0;
4483 u64 em_len = 0;
4484 u64 em_end = 0;
1506fcc8
YS
4485
4486 if (len == 0)
4487 return -EINVAL;
4488
975f84fe
JB
4489 path = btrfs_alloc_path();
4490 if (!path)
4491 return -ENOMEM;
4492 path->leave_spinning = 1;
4493
2c91943b
QW
4494 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4495 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4496
ec29ed5b
CM
4497 /*
4498 * lookup the last file extent. We're not using i_size here
4499 * because there might be preallocation past i_size
4500 */
dc046b10
JB
4501 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4502 0);
975f84fe
JB
4503 if (ret < 0) {
4504 btrfs_free_path(path);
4505 return ret;
4506 }
4507 WARN_ON(!ret);
4508 path->slots[0]--;
975f84fe 4509 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4510 found_type = found_key.type;
975f84fe 4511
ec29ed5b 4512 /* No extents, but there might be delalloc bits */
33345d01 4513 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4514 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4515 /* have to trust i_size as the end */
4516 last = (u64)-1;
4517 last_for_get_extent = isize;
4518 } else {
4519 /*
4520 * remember the start of the last extent. There are a
4521 * bunch of different factors that go into the length of the
4522 * extent, so its much less complex to remember where it started
4523 */
4524 last = found_key.offset;
4525 last_for_get_extent = last + 1;
975f84fe 4526 }
fe09e16c 4527 btrfs_release_path(path);
975f84fe 4528
ec29ed5b
CM
4529 /*
4530 * we might have some extents allocated but more delalloc past those
4531 * extents. so, we trust isize unless the start of the last extent is
4532 * beyond isize
4533 */
4534 if (last < isize) {
4535 last = (u64)-1;
4536 last_for_get_extent = isize;
4537 }
4538
a52f4cd2 4539 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4540 &cached_state);
ec29ed5b 4541
4d479cf0 4542 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4543 get_extent);
1506fcc8
YS
4544 if (!em)
4545 goto out;
4546 if (IS_ERR(em)) {
4547 ret = PTR_ERR(em);
4548 goto out;
4549 }
975f84fe 4550
1506fcc8 4551 while (!end) {
b76bb701 4552 u64 offset_in_extent = 0;
ea8efc74
CM
4553
4554 /* break if the extent we found is outside the range */
4555 if (em->start >= max || extent_map_end(em) < off)
4556 break;
4557
4558 /*
4559 * get_extent may return an extent that starts before our
4560 * requested range. We have to make sure the ranges
4561 * we return to fiemap always move forward and don't
4562 * overlap, so adjust the offsets here
4563 */
4564 em_start = max(em->start, off);
1506fcc8 4565
ea8efc74
CM
4566 /*
4567 * record the offset from the start of the extent
b76bb701
JB
4568 * for adjusting the disk offset below. Only do this if the
4569 * extent isn't compressed since our in ram offset may be past
4570 * what we have actually allocated on disk.
ea8efc74 4571 */
b76bb701
JB
4572 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4573 offset_in_extent = em_start - em->start;
ec29ed5b 4574 em_end = extent_map_end(em);
ea8efc74 4575 em_len = em_end - em_start;
1506fcc8
YS
4576 disko = 0;
4577 flags = 0;
4578
ea8efc74
CM
4579 /*
4580 * bump off for our next call to get_extent
4581 */
4582 off = extent_map_end(em);
4583 if (off >= max)
4584 end = 1;
4585
93dbfad7 4586 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4587 end = 1;
4588 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4589 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4590 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4591 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4592 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4593 flags |= (FIEMAP_EXTENT_DELALLOC |
4594 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4595 } else if (fieinfo->fi_extents_max) {
4596 u64 bytenr = em->block_start -
4597 (em->start - em->orig_start);
fe09e16c 4598
ea8efc74 4599 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4600
4601 /*
4602 * As btrfs supports shared space, this information
4603 * can be exported to userspace tools via
dc046b10
JB
4604 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4605 * then we're just getting a count and we can skip the
4606 * lookup stuff.
fe09e16c 4607 */
dc046b10
JB
4608 ret = btrfs_check_shared(NULL, root->fs_info,
4609 root->objectid,
4610 btrfs_ino(inode), bytenr);
4611 if (ret < 0)
fe09e16c 4612 goto out_free;
dc046b10 4613 if (ret)
fe09e16c 4614 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4615 ret = 0;
1506fcc8
YS
4616 }
4617 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4618 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4619 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4620 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4621
1506fcc8
YS
4622 free_extent_map(em);
4623 em = NULL;
ec29ed5b
CM
4624 if ((em_start >= last) || em_len == (u64)-1 ||
4625 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4626 flags |= FIEMAP_EXTENT_LAST;
4627 end = 1;
4628 }
4629
ec29ed5b
CM
4630 /* now scan forward to see if this is really the last extent. */
4631 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4632 get_extent);
4633 if (IS_ERR(em)) {
4634 ret = PTR_ERR(em);
4635 goto out;
4636 }
4637 if (!em) {
975f84fe
JB
4638 flags |= FIEMAP_EXTENT_LAST;
4639 end = 1;
4640 }
ec29ed5b
CM
4641 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4642 em_len, flags);
26e726af
CS
4643 if (ret) {
4644 if (ret == 1)
4645 ret = 0;
ec29ed5b 4646 goto out_free;
26e726af 4647 }
1506fcc8
YS
4648 }
4649out_free:
4650 free_extent_map(em);
4651out:
fe09e16c 4652 btrfs_free_path(path);
a52f4cd2 4653 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4654 &cached_state, GFP_NOFS);
1506fcc8
YS
4655 return ret;
4656}
4657
727011e0
CM
4658static void __free_extent_buffer(struct extent_buffer *eb)
4659{
6d49ba1b 4660 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4661 kmem_cache_free(extent_buffer_cache, eb);
4662}
4663
a26e8c9f 4664int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4665{
4666 return (atomic_read(&eb->io_pages) ||
4667 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4668 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4669}
4670
4671/*
4672 * Helper for releasing extent buffer page.
4673 */
a50924e3 4674static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4675{
4676 unsigned long index;
db7f3436
JB
4677 struct page *page;
4678 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4679
4680 BUG_ON(extent_buffer_under_io(eb));
4681
a50924e3
DS
4682 index = num_extent_pages(eb->start, eb->len);
4683 if (index == 0)
db7f3436
JB
4684 return;
4685
4686 do {
4687 index--;
fb85fc9a 4688 page = eb->pages[index];
5d2361db
FL
4689 if (!page)
4690 continue;
4691 if (mapped)
db7f3436 4692 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4693 /*
4694 * We do this since we'll remove the pages after we've
4695 * removed the eb from the radix tree, so we could race
4696 * and have this page now attached to the new eb. So
4697 * only clear page_private if it's still connected to
4698 * this eb.
4699 */
4700 if (PagePrivate(page) &&
4701 page->private == (unsigned long)eb) {
4702 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4703 BUG_ON(PageDirty(page));
4704 BUG_ON(PageWriteback(page));
db7f3436 4705 /*
5d2361db
FL
4706 * We need to make sure we haven't be attached
4707 * to a new eb.
db7f3436 4708 */
5d2361db
FL
4709 ClearPagePrivate(page);
4710 set_page_private(page, 0);
4711 /* One for the page private */
db7f3436
JB
4712 page_cache_release(page);
4713 }
5d2361db
FL
4714
4715 if (mapped)
4716 spin_unlock(&page->mapping->private_lock);
4717
4718 /* One for when we alloced the page */
4719 page_cache_release(page);
a50924e3 4720 } while (index != 0);
db7f3436
JB
4721}
4722
4723/*
4724 * Helper for releasing the extent buffer.
4725 */
4726static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4727{
a50924e3 4728 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4729 __free_extent_buffer(eb);
4730}
4731
f28491e0
JB
4732static struct extent_buffer *
4733__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4734 unsigned long len)
d1310b2e
CM
4735{
4736 struct extent_buffer *eb = NULL;
4737
d1b5c567 4738 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4739 eb->start = start;
4740 eb->len = len;
f28491e0 4741 eb->fs_info = fs_info;
815a51c7 4742 eb->bflags = 0;
bd681513
CM
4743 rwlock_init(&eb->lock);
4744 atomic_set(&eb->write_locks, 0);
4745 atomic_set(&eb->read_locks, 0);
4746 atomic_set(&eb->blocking_readers, 0);
4747 atomic_set(&eb->blocking_writers, 0);
4748 atomic_set(&eb->spinning_readers, 0);
4749 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4750 eb->lock_nested = 0;
bd681513
CM
4751 init_waitqueue_head(&eb->write_lock_wq);
4752 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4753
6d49ba1b
ES
4754 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4755
3083ee2e 4756 spin_lock_init(&eb->refs_lock);
d1310b2e 4757 atomic_set(&eb->refs, 1);
0b32f4bb 4758 atomic_set(&eb->io_pages, 0);
727011e0 4759
b8dae313
DS
4760 /*
4761 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4762 */
4763 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4764 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4765 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4766
4767 return eb;
4768}
4769
815a51c7
JS
4770struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4771{
4772 unsigned long i;
4773 struct page *p;
4774 struct extent_buffer *new;
4775 unsigned long num_pages = num_extent_pages(src->start, src->len);
4776
3f556f78 4777 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4778 if (new == NULL)
4779 return NULL;
4780
4781 for (i = 0; i < num_pages; i++) {
9ec72677 4782 p = alloc_page(GFP_NOFS);
db7f3436
JB
4783 if (!p) {
4784 btrfs_release_extent_buffer(new);
4785 return NULL;
4786 }
815a51c7
JS
4787 attach_extent_buffer_page(new, p);
4788 WARN_ON(PageDirty(p));
4789 SetPageUptodate(p);
4790 new->pages[i] = p;
4791 }
4792
4793 copy_extent_buffer(new, src, 0, 0, src->len);
4794 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4795 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4796
4797 return new;
4798}
4799
3f556f78
DS
4800struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4801 u64 start)
815a51c7
JS
4802{
4803 struct extent_buffer *eb;
3f556f78
DS
4804 unsigned long len;
4805 unsigned long num_pages;
815a51c7
JS
4806 unsigned long i;
4807
3f556f78
DS
4808 if (!fs_info) {
4809 /*
4810 * Called only from tests that don't always have a fs_info
4811 * available, but we know that nodesize is 4096
4812 */
4813 len = 4096;
4814 } else {
4815 len = fs_info->tree_root->nodesize;
4816 }
4817 num_pages = num_extent_pages(0, len);
4818
4819 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4820 if (!eb)
4821 return NULL;
4822
4823 for (i = 0; i < num_pages; i++) {
9ec72677 4824 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4825 if (!eb->pages[i])
4826 goto err;
4827 }
4828 set_extent_buffer_uptodate(eb);
4829 btrfs_set_header_nritems(eb, 0);
4830 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4831
4832 return eb;
4833err:
84167d19
SB
4834 for (; i > 0; i--)
4835 __free_page(eb->pages[i - 1]);
815a51c7
JS
4836 __free_extent_buffer(eb);
4837 return NULL;
4838}
4839
0b32f4bb
JB
4840static void check_buffer_tree_ref(struct extent_buffer *eb)
4841{
242e18c7 4842 int refs;
0b32f4bb
JB
4843 /* the ref bit is tricky. We have to make sure it is set
4844 * if we have the buffer dirty. Otherwise the
4845 * code to free a buffer can end up dropping a dirty
4846 * page
4847 *
4848 * Once the ref bit is set, it won't go away while the
4849 * buffer is dirty or in writeback, and it also won't
4850 * go away while we have the reference count on the
4851 * eb bumped.
4852 *
4853 * We can't just set the ref bit without bumping the
4854 * ref on the eb because free_extent_buffer might
4855 * see the ref bit and try to clear it. If this happens
4856 * free_extent_buffer might end up dropping our original
4857 * ref by mistake and freeing the page before we are able
4858 * to add one more ref.
4859 *
4860 * So bump the ref count first, then set the bit. If someone
4861 * beat us to it, drop the ref we added.
4862 */
242e18c7
CM
4863 refs = atomic_read(&eb->refs);
4864 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4865 return;
4866
594831c4
JB
4867 spin_lock(&eb->refs_lock);
4868 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4869 atomic_inc(&eb->refs);
594831c4 4870 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4871}
4872
2457aec6
MG
4873static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4874 struct page *accessed)
5df4235e
JB
4875{
4876 unsigned long num_pages, i;
4877
0b32f4bb
JB
4878 check_buffer_tree_ref(eb);
4879
5df4235e
JB
4880 num_pages = num_extent_pages(eb->start, eb->len);
4881 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4882 struct page *p = eb->pages[i];
4883
2457aec6
MG
4884 if (p != accessed)
4885 mark_page_accessed(p);
5df4235e
JB
4886 }
4887}
4888
f28491e0
JB
4889struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4890 u64 start)
452c75c3
CS
4891{
4892 struct extent_buffer *eb;
4893
4894 rcu_read_lock();
f28491e0
JB
4895 eb = radix_tree_lookup(&fs_info->buffer_radix,
4896 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4897 if (eb && atomic_inc_not_zero(&eb->refs)) {
4898 rcu_read_unlock();
062c19e9
FM
4899 /*
4900 * Lock our eb's refs_lock to avoid races with
4901 * free_extent_buffer. When we get our eb it might be flagged
4902 * with EXTENT_BUFFER_STALE and another task running
4903 * free_extent_buffer might have seen that flag set,
4904 * eb->refs == 2, that the buffer isn't under IO (dirty and
4905 * writeback flags not set) and it's still in the tree (flag
4906 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4907 * of decrementing the extent buffer's reference count twice.
4908 * So here we could race and increment the eb's reference count,
4909 * clear its stale flag, mark it as dirty and drop our reference
4910 * before the other task finishes executing free_extent_buffer,
4911 * which would later result in an attempt to free an extent
4912 * buffer that is dirty.
4913 */
4914 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4915 spin_lock(&eb->refs_lock);
4916 spin_unlock(&eb->refs_lock);
4917 }
2457aec6 4918 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4919 return eb;
4920 }
4921 rcu_read_unlock();
4922
4923 return NULL;
4924}
4925
faa2dbf0
JB
4926#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4927struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4928 u64 start)
faa2dbf0
JB
4929{
4930 struct extent_buffer *eb, *exists = NULL;
4931 int ret;
4932
4933 eb = find_extent_buffer(fs_info, start);
4934 if (eb)
4935 return eb;
3f556f78 4936 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4937 if (!eb)
4938 return NULL;
4939 eb->fs_info = fs_info;
4940again:
4941 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4942 if (ret)
4943 goto free_eb;
4944 spin_lock(&fs_info->buffer_lock);
4945 ret = radix_tree_insert(&fs_info->buffer_radix,
4946 start >> PAGE_CACHE_SHIFT, eb);
4947 spin_unlock(&fs_info->buffer_lock);
4948 radix_tree_preload_end();
4949 if (ret == -EEXIST) {
4950 exists = find_extent_buffer(fs_info, start);
4951 if (exists)
4952 goto free_eb;
4953 else
4954 goto again;
4955 }
4956 check_buffer_tree_ref(eb);
4957 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4958
4959 /*
4960 * We will free dummy extent buffer's if they come into
4961 * free_extent_buffer with a ref count of 2, but if we are using this we
4962 * want the buffers to stay in memory until we're done with them, so
4963 * bump the ref count again.
4964 */
4965 atomic_inc(&eb->refs);
4966 return eb;
4967free_eb:
4968 btrfs_release_extent_buffer(eb);
4969 return exists;
4970}
4971#endif
4972
f28491e0 4973struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4974 u64 start)
d1310b2e 4975{
ce3e6984 4976 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4977 unsigned long num_pages = num_extent_pages(start, len);
4978 unsigned long i;
4979 unsigned long index = start >> PAGE_CACHE_SHIFT;
4980 struct extent_buffer *eb;
6af118ce 4981 struct extent_buffer *exists = NULL;
d1310b2e 4982 struct page *p;
f28491e0 4983 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4984 int uptodate = 1;
19fe0a8b 4985 int ret;
d1310b2e 4986
f28491e0 4987 eb = find_extent_buffer(fs_info, start);
452c75c3 4988 if (eb)
6af118ce 4989 return eb;
6af118ce 4990
23d79d81 4991 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4992 if (!eb)
d1310b2e
CM
4993 return NULL;
4994
727011e0 4995 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4996 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4997 if (!p)
6af118ce 4998 goto free_eb;
4f2de97a
JB
4999
5000 spin_lock(&mapping->private_lock);
5001 if (PagePrivate(p)) {
5002 /*
5003 * We could have already allocated an eb for this page
5004 * and attached one so lets see if we can get a ref on
5005 * the existing eb, and if we can we know it's good and
5006 * we can just return that one, else we know we can just
5007 * overwrite page->private.
5008 */
5009 exists = (struct extent_buffer *)p->private;
5010 if (atomic_inc_not_zero(&exists->refs)) {
5011 spin_unlock(&mapping->private_lock);
5012 unlock_page(p);
17de39ac 5013 page_cache_release(p);
2457aec6 5014 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
5015 goto free_eb;
5016 }
5ca64f45 5017 exists = NULL;
4f2de97a 5018
0b32f4bb 5019 /*
4f2de97a
JB
5020 * Do this so attach doesn't complain and we need to
5021 * drop the ref the old guy had.
5022 */
5023 ClearPagePrivate(p);
0b32f4bb 5024 WARN_ON(PageDirty(p));
4f2de97a 5025 page_cache_release(p);
d1310b2e 5026 }
4f2de97a
JB
5027 attach_extent_buffer_page(eb, p);
5028 spin_unlock(&mapping->private_lock);
0b32f4bb 5029 WARN_ON(PageDirty(p));
727011e0 5030 eb->pages[i] = p;
d1310b2e
CM
5031 if (!PageUptodate(p))
5032 uptodate = 0;
eb14ab8e
CM
5033
5034 /*
5035 * see below about how we avoid a nasty race with release page
5036 * and why we unlock later
5037 */
d1310b2e
CM
5038 }
5039 if (uptodate)
b4ce94de 5040 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 5041again:
19fe0a8b
MX
5042 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
5043 if (ret)
5044 goto free_eb;
5045
f28491e0
JB
5046 spin_lock(&fs_info->buffer_lock);
5047 ret = radix_tree_insert(&fs_info->buffer_radix,
5048 start >> PAGE_CACHE_SHIFT, eb);
5049 spin_unlock(&fs_info->buffer_lock);
452c75c3 5050 radix_tree_preload_end();
19fe0a8b 5051 if (ret == -EEXIST) {
f28491e0 5052 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
5053 if (exists)
5054 goto free_eb;
5055 else
115391d2 5056 goto again;
6af118ce 5057 }
6af118ce 5058 /* add one reference for the tree */
0b32f4bb 5059 check_buffer_tree_ref(eb);
34b41ace 5060 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
5061
5062 /*
5063 * there is a race where release page may have
5064 * tried to find this extent buffer in the radix
5065 * but failed. It will tell the VM it is safe to
5066 * reclaim the, and it will clear the page private bit.
5067 * We must make sure to set the page private bit properly
5068 * after the extent buffer is in the radix tree so
5069 * it doesn't get lost
5070 */
727011e0
CM
5071 SetPageChecked(eb->pages[0]);
5072 for (i = 1; i < num_pages; i++) {
fb85fc9a 5073 p = eb->pages[i];
727011e0
CM
5074 ClearPageChecked(p);
5075 unlock_page(p);
5076 }
5077 unlock_page(eb->pages[0]);
d1310b2e
CM
5078 return eb;
5079
6af118ce 5080free_eb:
5ca64f45 5081 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
5082 for (i = 0; i < num_pages; i++) {
5083 if (eb->pages[i])
5084 unlock_page(eb->pages[i]);
5085 }
eb14ab8e 5086
897ca6e9 5087 btrfs_release_extent_buffer(eb);
6af118ce 5088 return exists;
d1310b2e 5089}
d1310b2e 5090
3083ee2e
JB
5091static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5092{
5093 struct extent_buffer *eb =
5094 container_of(head, struct extent_buffer, rcu_head);
5095
5096 __free_extent_buffer(eb);
5097}
5098
3083ee2e 5099/* Expects to have eb->eb_lock already held */
f7a52a40 5100static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5101{
5102 WARN_ON(atomic_read(&eb->refs) == 0);
5103 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5104 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5105 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5106
815a51c7 5107 spin_unlock(&eb->refs_lock);
3083ee2e 5108
f28491e0
JB
5109 spin_lock(&fs_info->buffer_lock);
5110 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 5111 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 5112 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5113 } else {
5114 spin_unlock(&eb->refs_lock);
815a51c7 5115 }
3083ee2e
JB
5116
5117 /* Should be safe to release our pages at this point */
a50924e3 5118 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5119#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5120 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5121 __free_extent_buffer(eb);
5122 return 1;
5123 }
5124#endif
3083ee2e 5125 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5126 return 1;
3083ee2e
JB
5127 }
5128 spin_unlock(&eb->refs_lock);
e64860aa
JB
5129
5130 return 0;
3083ee2e
JB
5131}
5132
d1310b2e
CM
5133void free_extent_buffer(struct extent_buffer *eb)
5134{
242e18c7
CM
5135 int refs;
5136 int old;
d1310b2e
CM
5137 if (!eb)
5138 return;
5139
242e18c7
CM
5140 while (1) {
5141 refs = atomic_read(&eb->refs);
5142 if (refs <= 3)
5143 break;
5144 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5145 if (old == refs)
5146 return;
5147 }
5148
3083ee2e 5149 spin_lock(&eb->refs_lock);
815a51c7
JS
5150 if (atomic_read(&eb->refs) == 2 &&
5151 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5152 atomic_dec(&eb->refs);
5153
3083ee2e
JB
5154 if (atomic_read(&eb->refs) == 2 &&
5155 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5156 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5157 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5158 atomic_dec(&eb->refs);
5159
5160 /*
5161 * I know this is terrible, but it's temporary until we stop tracking
5162 * the uptodate bits and such for the extent buffers.
5163 */
f7a52a40 5164 release_extent_buffer(eb);
3083ee2e
JB
5165}
5166
5167void free_extent_buffer_stale(struct extent_buffer *eb)
5168{
5169 if (!eb)
d1310b2e
CM
5170 return;
5171
3083ee2e
JB
5172 spin_lock(&eb->refs_lock);
5173 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5174
0b32f4bb 5175 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5176 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5177 atomic_dec(&eb->refs);
f7a52a40 5178 release_extent_buffer(eb);
d1310b2e 5179}
d1310b2e 5180
1d4284bd 5181void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5182{
d1310b2e
CM
5183 unsigned long i;
5184 unsigned long num_pages;
5185 struct page *page;
5186
d1310b2e
CM
5187 num_pages = num_extent_pages(eb->start, eb->len);
5188
5189 for (i = 0; i < num_pages; i++) {
fb85fc9a 5190 page = eb->pages[i];
b9473439 5191 if (!PageDirty(page))
d2c3f4f6
CM
5192 continue;
5193
a61e6f29 5194 lock_page(page);
eb14ab8e
CM
5195 WARN_ON(!PagePrivate(page));
5196
d1310b2e 5197 clear_page_dirty_for_io(page);
0ee0fda0 5198 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5199 if (!PageDirty(page)) {
5200 radix_tree_tag_clear(&page->mapping->page_tree,
5201 page_index(page),
5202 PAGECACHE_TAG_DIRTY);
5203 }
0ee0fda0 5204 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5205 ClearPageError(page);
a61e6f29 5206 unlock_page(page);
d1310b2e 5207 }
0b32f4bb 5208 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5209}
d1310b2e 5210
0b32f4bb 5211int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5212{
5213 unsigned long i;
5214 unsigned long num_pages;
b9473439 5215 int was_dirty = 0;
d1310b2e 5216
0b32f4bb
JB
5217 check_buffer_tree_ref(eb);
5218
b9473439 5219 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5220
d1310b2e 5221 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5222 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5223 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5224
b9473439 5225 for (i = 0; i < num_pages; i++)
fb85fc9a 5226 set_page_dirty(eb->pages[i]);
b9473439 5227 return was_dirty;
d1310b2e 5228}
d1310b2e 5229
0b32f4bb 5230int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5231{
5232 unsigned long i;
5233 struct page *page;
5234 unsigned long num_pages;
5235
b4ce94de 5236 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5237 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5238 for (i = 0; i < num_pages; i++) {
fb85fc9a 5239 page = eb->pages[i];
33958dc6
CM
5240 if (page)
5241 ClearPageUptodate(page);
1259ab75
CM
5242 }
5243 return 0;
5244}
5245
0b32f4bb 5246int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5247{
5248 unsigned long i;
5249 struct page *page;
5250 unsigned long num_pages;
5251
0b32f4bb 5252 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5253 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5254 for (i = 0; i < num_pages; i++) {
fb85fc9a 5255 page = eb->pages[i];
d1310b2e
CM
5256 SetPageUptodate(page);
5257 }
5258 return 0;
5259}
d1310b2e 5260
0b32f4bb 5261int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5262{
0b32f4bb 5263 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5264}
d1310b2e
CM
5265
5266int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5267 struct extent_buffer *eb, u64 start, int wait,
f188591e 5268 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5269{
5270 unsigned long i;
5271 unsigned long start_i;
5272 struct page *page;
5273 int err;
5274 int ret = 0;
ce9adaa5
CM
5275 int locked_pages = 0;
5276 int all_uptodate = 1;
d1310b2e 5277 unsigned long num_pages;
727011e0 5278 unsigned long num_reads = 0;
a86c12c7 5279 struct bio *bio = NULL;
c8b97818 5280 unsigned long bio_flags = 0;
a86c12c7 5281
b4ce94de 5282 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5283 return 0;
5284
d1310b2e
CM
5285 if (start) {
5286 WARN_ON(start < eb->start);
5287 start_i = (start >> PAGE_CACHE_SHIFT) -
5288 (eb->start >> PAGE_CACHE_SHIFT);
5289 } else {
5290 start_i = 0;
5291 }
5292
5293 num_pages = num_extent_pages(eb->start, eb->len);
5294 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5295 page = eb->pages[i];
bb82ab88 5296 if (wait == WAIT_NONE) {
2db04966 5297 if (!trylock_page(page))
ce9adaa5 5298 goto unlock_exit;
d1310b2e
CM
5299 } else {
5300 lock_page(page);
5301 }
ce9adaa5 5302 locked_pages++;
727011e0
CM
5303 if (!PageUptodate(page)) {
5304 num_reads++;
ce9adaa5 5305 all_uptodate = 0;
727011e0 5306 }
ce9adaa5
CM
5307 }
5308 if (all_uptodate) {
5309 if (start_i == 0)
b4ce94de 5310 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5311 goto unlock_exit;
5312 }
5313
656f30db 5314 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5315 eb->read_mirror = 0;
0b32f4bb 5316 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5317 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5318 page = eb->pages[i];
ce9adaa5 5319 if (!PageUptodate(page)) {
f188591e 5320 ClearPageError(page);
a86c12c7 5321 err = __extent_read_full_page(tree, page,
f188591e 5322 get_extent, &bio,
d4c7ca86
JB
5323 mirror_num, &bio_flags,
5324 READ | REQ_META);
d397712b 5325 if (err)
d1310b2e 5326 ret = err;
d1310b2e
CM
5327 } else {
5328 unlock_page(page);
5329 }
5330 }
5331
355808c2 5332 if (bio) {
d4c7ca86
JB
5333 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5334 bio_flags);
79787eaa
JM
5335 if (err)
5336 return err;
355808c2 5337 }
a86c12c7 5338
bb82ab88 5339 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5340 return ret;
d397712b 5341
d1310b2e 5342 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5343 page = eb->pages[i];
d1310b2e 5344 wait_on_page_locked(page);
d397712b 5345 if (!PageUptodate(page))
d1310b2e 5346 ret = -EIO;
d1310b2e 5347 }
d397712b 5348
d1310b2e 5349 return ret;
ce9adaa5
CM
5350
5351unlock_exit:
5352 i = start_i;
d397712b 5353 while (locked_pages > 0) {
fb85fc9a 5354 page = eb->pages[i];
ce9adaa5
CM
5355 i++;
5356 unlock_page(page);
5357 locked_pages--;
5358 }
5359 return ret;
d1310b2e 5360}
d1310b2e
CM
5361
5362void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5363 unsigned long start,
5364 unsigned long len)
5365{
5366 size_t cur;
5367 size_t offset;
5368 struct page *page;
5369 char *kaddr;
5370 char *dst = (char *)dstv;
5371 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5372 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5373
5374 WARN_ON(start > eb->len);
5375 WARN_ON(start + len > eb->start + eb->len);
5376
778746b5 5377 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5378
d397712b 5379 while (len > 0) {
fb85fc9a 5380 page = eb->pages[i];
d1310b2e
CM
5381
5382 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5383 kaddr = page_address(page);
d1310b2e 5384 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5385
5386 dst += cur;
5387 len -= cur;
5388 offset = 0;
5389 i++;
5390 }
5391}
d1310b2e 5392
550ac1d8
GH
5393int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5394 unsigned long start,
5395 unsigned long len)
5396{
5397 size_t cur;
5398 size_t offset;
5399 struct page *page;
5400 char *kaddr;
5401 char __user *dst = (char __user *)dstv;
5402 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5403 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5404 int ret = 0;
5405
5406 WARN_ON(start > eb->len);
5407 WARN_ON(start + len > eb->start + eb->len);
5408
5409 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5410
5411 while (len > 0) {
fb85fc9a 5412 page = eb->pages[i];
550ac1d8
GH
5413
5414 cur = min(len, (PAGE_CACHE_SIZE - offset));
5415 kaddr = page_address(page);
5416 if (copy_to_user(dst, kaddr + offset, cur)) {
5417 ret = -EFAULT;
5418 break;
5419 }
5420
5421 dst += cur;
5422 len -= cur;
5423 offset = 0;
5424 i++;
5425 }
5426
5427 return ret;
5428}
5429
d1310b2e 5430int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5431 unsigned long min_len, char **map,
d1310b2e 5432 unsigned long *map_start,
a6591715 5433 unsigned long *map_len)
d1310b2e
CM
5434{
5435 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5436 char *kaddr;
5437 struct page *p;
5438 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5439 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5440 unsigned long end_i = (start_offset + start + min_len - 1) >>
5441 PAGE_CACHE_SHIFT;
5442
5443 if (i != end_i)
5444 return -EINVAL;
5445
5446 if (i == 0) {
5447 offset = start_offset;
5448 *map_start = 0;
5449 } else {
5450 offset = 0;
5451 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5452 }
d397712b 5453
d1310b2e 5454 if (start + min_len > eb->len) {
31b1a2bd 5455 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5456 "wanted %lu %lu\n",
5457 eb->start, eb->len, start, min_len);
85026533 5458 return -EINVAL;
d1310b2e
CM
5459 }
5460
fb85fc9a 5461 p = eb->pages[i];
a6591715 5462 kaddr = page_address(p);
d1310b2e
CM
5463 *map = kaddr + offset;
5464 *map_len = PAGE_CACHE_SIZE - offset;
5465 return 0;
5466}
d1310b2e 5467
d1310b2e
CM
5468int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5469 unsigned long start,
5470 unsigned long len)
5471{
5472 size_t cur;
5473 size_t offset;
5474 struct page *page;
5475 char *kaddr;
5476 char *ptr = (char *)ptrv;
5477 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5478 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5479 int ret = 0;
5480
5481 WARN_ON(start > eb->len);
5482 WARN_ON(start + len > eb->start + eb->len);
5483
778746b5 5484 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5485
d397712b 5486 while (len > 0) {
fb85fc9a 5487 page = eb->pages[i];
d1310b2e
CM
5488
5489 cur = min(len, (PAGE_CACHE_SIZE - offset));
5490
a6591715 5491 kaddr = page_address(page);
d1310b2e 5492 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5493 if (ret)
5494 break;
5495
5496 ptr += cur;
5497 len -= cur;
5498 offset = 0;
5499 i++;
5500 }
5501 return ret;
5502}
d1310b2e
CM
5503
5504void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5505 unsigned long start, unsigned long len)
5506{
5507 size_t cur;
5508 size_t offset;
5509 struct page *page;
5510 char *kaddr;
5511 char *src = (char *)srcv;
5512 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5513 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5514
5515 WARN_ON(start > eb->len);
5516 WARN_ON(start + len > eb->start + eb->len);
5517
778746b5 5518 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5519
d397712b 5520 while (len > 0) {
fb85fc9a 5521 page = eb->pages[i];
d1310b2e
CM
5522 WARN_ON(!PageUptodate(page));
5523
5524 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5525 kaddr = page_address(page);
d1310b2e 5526 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5527
5528 src += cur;
5529 len -= cur;
5530 offset = 0;
5531 i++;
5532 }
5533}
d1310b2e
CM
5534
5535void memset_extent_buffer(struct extent_buffer *eb, char c,
5536 unsigned long start, unsigned long len)
5537{
5538 size_t cur;
5539 size_t offset;
5540 struct page *page;
5541 char *kaddr;
5542 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5543 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5544
5545 WARN_ON(start > eb->len);
5546 WARN_ON(start + len > eb->start + eb->len);
5547
778746b5 5548 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5549
d397712b 5550 while (len > 0) {
fb85fc9a 5551 page = eb->pages[i];
d1310b2e
CM
5552 WARN_ON(!PageUptodate(page));
5553
5554 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5555 kaddr = page_address(page);
d1310b2e 5556 memset(kaddr + offset, c, cur);
d1310b2e
CM
5557
5558 len -= cur;
5559 offset = 0;
5560 i++;
5561 }
5562}
d1310b2e
CM
5563
5564void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5565 unsigned long dst_offset, unsigned long src_offset,
5566 unsigned long len)
5567{
5568 u64 dst_len = dst->len;
5569 size_t cur;
5570 size_t offset;
5571 struct page *page;
5572 char *kaddr;
5573 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5574 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5575
5576 WARN_ON(src->len != dst_len);
5577
5578 offset = (start_offset + dst_offset) &
778746b5 5579 (PAGE_CACHE_SIZE - 1);
d1310b2e 5580
d397712b 5581 while (len > 0) {
fb85fc9a 5582 page = dst->pages[i];
d1310b2e
CM
5583 WARN_ON(!PageUptodate(page));
5584
5585 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5586
a6591715 5587 kaddr = page_address(page);
d1310b2e 5588 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5589
5590 src_offset += cur;
5591 len -= cur;
5592 offset = 0;
5593 i++;
5594 }
5595}
d1310b2e 5596
3387206f
ST
5597static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5598{
5599 unsigned long distance = (src > dst) ? src - dst : dst - src;
5600 return distance < len;
5601}
5602
d1310b2e
CM
5603static void copy_pages(struct page *dst_page, struct page *src_page,
5604 unsigned long dst_off, unsigned long src_off,
5605 unsigned long len)
5606{
a6591715 5607 char *dst_kaddr = page_address(dst_page);
d1310b2e 5608 char *src_kaddr;
727011e0 5609 int must_memmove = 0;
d1310b2e 5610
3387206f 5611 if (dst_page != src_page) {
a6591715 5612 src_kaddr = page_address(src_page);
3387206f 5613 } else {
d1310b2e 5614 src_kaddr = dst_kaddr;
727011e0
CM
5615 if (areas_overlap(src_off, dst_off, len))
5616 must_memmove = 1;
3387206f 5617 }
d1310b2e 5618
727011e0
CM
5619 if (must_memmove)
5620 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5621 else
5622 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5623}
5624
5625void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5626 unsigned long src_offset, unsigned long len)
5627{
5628 size_t cur;
5629 size_t dst_off_in_page;
5630 size_t src_off_in_page;
5631 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5632 unsigned long dst_i;
5633 unsigned long src_i;
5634
5635 if (src_offset + len > dst->len) {
f14d104d
DS
5636 btrfs_err(dst->fs_info,
5637 "memmove bogus src_offset %lu move "
5638 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5639 BUG_ON(1);
5640 }
5641 if (dst_offset + len > dst->len) {
f14d104d
DS
5642 btrfs_err(dst->fs_info,
5643 "memmove bogus dst_offset %lu move "
5644 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5645 BUG_ON(1);
5646 }
5647
d397712b 5648 while (len > 0) {
d1310b2e 5649 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5650 (PAGE_CACHE_SIZE - 1);
d1310b2e 5651 src_off_in_page = (start_offset + src_offset) &
778746b5 5652 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5653
5654 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5655 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5656
5657 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5658 src_off_in_page));
5659 cur = min_t(unsigned long, cur,
5660 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5661
fb85fc9a 5662 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5663 dst_off_in_page, src_off_in_page, cur);
5664
5665 src_offset += cur;
5666 dst_offset += cur;
5667 len -= cur;
5668 }
5669}
d1310b2e
CM
5670
5671void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5672 unsigned long src_offset, unsigned long len)
5673{
5674 size_t cur;
5675 size_t dst_off_in_page;
5676 size_t src_off_in_page;
5677 unsigned long dst_end = dst_offset + len - 1;
5678 unsigned long src_end = src_offset + len - 1;
5679 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5680 unsigned long dst_i;
5681 unsigned long src_i;
5682
5683 if (src_offset + len > dst->len) {
f14d104d
DS
5684 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5685 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5686 BUG_ON(1);
5687 }
5688 if (dst_offset + len > dst->len) {
f14d104d
DS
5689 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5690 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5691 BUG_ON(1);
5692 }
727011e0 5693 if (dst_offset < src_offset) {
d1310b2e
CM
5694 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5695 return;
5696 }
d397712b 5697 while (len > 0) {
d1310b2e
CM
5698 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5699 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5700
5701 dst_off_in_page = (start_offset + dst_end) &
778746b5 5702 (PAGE_CACHE_SIZE - 1);
d1310b2e 5703 src_off_in_page = (start_offset + src_end) &
778746b5 5704 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5705
5706 cur = min_t(unsigned long, len, src_off_in_page + 1);
5707 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5708 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5709 dst_off_in_page - cur + 1,
5710 src_off_in_page - cur + 1, cur);
5711
5712 dst_end -= cur;
5713 src_end -= cur;
5714 len -= cur;
5715 }
5716}
6af118ce 5717
f7a52a40 5718int try_release_extent_buffer(struct page *page)
19fe0a8b 5719{
6af118ce 5720 struct extent_buffer *eb;
6af118ce 5721
3083ee2e
JB
5722 /*
5723 * We need to make sure noboody is attaching this page to an eb right
5724 * now.
5725 */
5726 spin_lock(&page->mapping->private_lock);
5727 if (!PagePrivate(page)) {
5728 spin_unlock(&page->mapping->private_lock);
4f2de97a 5729 return 1;
45f49bce 5730 }
6af118ce 5731
3083ee2e
JB
5732 eb = (struct extent_buffer *)page->private;
5733 BUG_ON(!eb);
19fe0a8b
MX
5734
5735 /*
3083ee2e
JB
5736 * This is a little awful but should be ok, we need to make sure that
5737 * the eb doesn't disappear out from under us while we're looking at
5738 * this page.
19fe0a8b 5739 */
3083ee2e 5740 spin_lock(&eb->refs_lock);
0b32f4bb 5741 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5742 spin_unlock(&eb->refs_lock);
5743 spin_unlock(&page->mapping->private_lock);
5744 return 0;
b9473439 5745 }
3083ee2e 5746 spin_unlock(&page->mapping->private_lock);
897ca6e9 5747
19fe0a8b 5748 /*
3083ee2e
JB
5749 * If tree ref isn't set then we know the ref on this eb is a real ref,
5750 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5751 */
3083ee2e
JB
5752 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5753 spin_unlock(&eb->refs_lock);
5754 return 0;
b9473439 5755 }
19fe0a8b 5756
f7a52a40 5757 return release_extent_buffer(eb);
6af118ce 5758}