Btrfs: remove path arg from btrfs_truncate_free_space_cache
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
c1c9ff7c
GU
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
6d49ba1b
ES
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
c1c9ff7c
GU
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78}
8d599ae1
DS
79
80#define btrfs_debug_check_extent_io_range(inode, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
83 struct inode *inode, u64 start, u64 end)
84{
85 u64 isize = i_size_read(inode);
86
87 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
88 printk_ratelimited(KERN_DEBUG
89 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 90 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
91 }
92}
6d49ba1b
ES
93#else
94#define btrfs_leak_debug_add(new, head) do {} while (0)
95#define btrfs_leak_debug_del(entry) do {} while (0)
96#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 97#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 98#endif
d1310b2e 99
d1310b2e
CM
100#define BUFFER_LRU_MAX 64
101
102struct tree_entry {
103 u64 start;
104 u64 end;
d1310b2e
CM
105 struct rb_node rb_node;
106};
107
108struct extent_page_data {
109 struct bio *bio;
110 struct extent_io_tree *tree;
111 get_extent_t *get_extent;
de0022b9 112 unsigned long bio_flags;
771ed689
CM
113
114 /* tells writepage not to lock the state bits for this range
115 * it still does the unlocking
116 */
ffbd517d
CM
117 unsigned int extent_locked:1;
118
119 /* tells the submit_bio code to use a WRITE_SYNC */
120 unsigned int sync_io:1;
d1310b2e
CM
121};
122
0b32f4bb 123static noinline void flush_write_bio(void *data);
c2d904e0
JM
124static inline struct btrfs_fs_info *
125tree_fs_info(struct extent_io_tree *tree)
126{
127 return btrfs_sb(tree->mapping->host->i_sb);
128}
0b32f4bb 129
d1310b2e
CM
130int __init extent_io_init(void)
131{
837e1972 132 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
133 sizeof(struct extent_state), 0,
134 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
135 if (!extent_state_cache)
136 return -ENOMEM;
137
837e1972 138 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
139 sizeof(struct extent_buffer), 0,
140 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
141 if (!extent_buffer_cache)
142 goto free_state_cache;
9be3395b
CM
143
144 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
145 offsetof(struct btrfs_io_bio, bio));
146 if (!btrfs_bioset)
147 goto free_buffer_cache;
b208c2f7
DW
148
149 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
150 goto free_bioset;
151
d1310b2e
CM
152 return 0;
153
b208c2f7
DW
154free_bioset:
155 bioset_free(btrfs_bioset);
156 btrfs_bioset = NULL;
157
9be3395b
CM
158free_buffer_cache:
159 kmem_cache_destroy(extent_buffer_cache);
160 extent_buffer_cache = NULL;
161
d1310b2e
CM
162free_state_cache:
163 kmem_cache_destroy(extent_state_cache);
9be3395b 164 extent_state_cache = NULL;
d1310b2e
CM
165 return -ENOMEM;
166}
167
168void extent_io_exit(void)
169{
6d49ba1b 170 btrfs_leak_debug_check();
8c0a8537
KS
171
172 /*
173 * Make sure all delayed rcu free are flushed before we
174 * destroy caches.
175 */
176 rcu_barrier();
d1310b2e
CM
177 if (extent_state_cache)
178 kmem_cache_destroy(extent_state_cache);
179 if (extent_buffer_cache)
180 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
181 if (btrfs_bioset)
182 bioset_free(btrfs_bioset);
d1310b2e
CM
183}
184
185void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 186 struct address_space *mapping)
d1310b2e 187{
6bef4d31 188 tree->state = RB_ROOT;
19fe0a8b 189 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
190 tree->ops = NULL;
191 tree->dirty_bytes = 0;
70dec807 192 spin_lock_init(&tree->lock);
6af118ce 193 spin_lock_init(&tree->buffer_lock);
d1310b2e 194 tree->mapping = mapping;
d1310b2e 195}
d1310b2e 196
b2950863 197static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
198{
199 struct extent_state *state;
d1310b2e
CM
200
201 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 202 if (!state)
d1310b2e
CM
203 return state;
204 state->state = 0;
d1310b2e 205 state->private = 0;
70dec807 206 state->tree = NULL;
6d49ba1b 207 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
208 atomic_set(&state->refs, 1);
209 init_waitqueue_head(&state->wq);
143bede5 210 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
211 return state;
212}
d1310b2e 213
4845e44f 214void free_extent_state(struct extent_state *state)
d1310b2e 215{
d1310b2e
CM
216 if (!state)
217 return;
218 if (atomic_dec_and_test(&state->refs)) {
70dec807 219 WARN_ON(state->tree);
6d49ba1b 220 btrfs_leak_debug_del(&state->leak_list);
143bede5 221 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
222 kmem_cache_free(extent_state_cache, state);
223 }
224}
d1310b2e
CM
225
226static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
227 struct rb_node *node)
228{
d397712b
CM
229 struct rb_node **p = &root->rb_node;
230 struct rb_node *parent = NULL;
d1310b2e
CM
231 struct tree_entry *entry;
232
d397712b 233 while (*p) {
d1310b2e
CM
234 parent = *p;
235 entry = rb_entry(parent, struct tree_entry, rb_node);
236
237 if (offset < entry->start)
238 p = &(*p)->rb_left;
239 else if (offset > entry->end)
240 p = &(*p)->rb_right;
241 else
242 return parent;
243 }
244
d1310b2e
CM
245 rb_link_node(node, parent, p);
246 rb_insert_color(node, root);
247 return NULL;
248}
249
80ea96b1 250static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
251 struct rb_node **prev_ret,
252 struct rb_node **next_ret)
253{
80ea96b1 254 struct rb_root *root = &tree->state;
d397712b 255 struct rb_node *n = root->rb_node;
d1310b2e
CM
256 struct rb_node *prev = NULL;
257 struct rb_node *orig_prev = NULL;
258 struct tree_entry *entry;
259 struct tree_entry *prev_entry = NULL;
260
d397712b 261 while (n) {
d1310b2e
CM
262 entry = rb_entry(n, struct tree_entry, rb_node);
263 prev = n;
264 prev_entry = entry;
265
266 if (offset < entry->start)
267 n = n->rb_left;
268 else if (offset > entry->end)
269 n = n->rb_right;
d397712b 270 else
d1310b2e
CM
271 return n;
272 }
273
274 if (prev_ret) {
275 orig_prev = prev;
d397712b 276 while (prev && offset > prev_entry->end) {
d1310b2e
CM
277 prev = rb_next(prev);
278 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
279 }
280 *prev_ret = prev;
281 prev = orig_prev;
282 }
283
284 if (next_ret) {
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 286 while (prev && offset < prev_entry->start) {
d1310b2e
CM
287 prev = rb_prev(prev);
288 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
289 }
290 *next_ret = prev;
291 }
292 return NULL;
293}
294
80ea96b1
CM
295static inline struct rb_node *tree_search(struct extent_io_tree *tree,
296 u64 offset)
d1310b2e 297{
70dec807 298 struct rb_node *prev = NULL;
d1310b2e 299 struct rb_node *ret;
70dec807 300
80ea96b1 301 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 302 if (!ret)
d1310b2e
CM
303 return prev;
304 return ret;
305}
306
9ed74f2d
JB
307static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
308 struct extent_state *other)
309{
310 if (tree->ops && tree->ops->merge_extent_hook)
311 tree->ops->merge_extent_hook(tree->mapping->host, new,
312 other);
313}
314
d1310b2e
CM
315/*
316 * utility function to look for merge candidates inside a given range.
317 * Any extents with matching state are merged together into a single
318 * extent in the tree. Extents with EXTENT_IO in their state field
319 * are not merged because the end_io handlers need to be able to do
320 * operations on them without sleeping (or doing allocations/splits).
321 *
322 * This should be called with the tree lock held.
323 */
1bf85046
JM
324static void merge_state(struct extent_io_tree *tree,
325 struct extent_state *state)
d1310b2e
CM
326{
327 struct extent_state *other;
328 struct rb_node *other_node;
329
5b21f2ed 330 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 331 return;
d1310b2e
CM
332
333 other_node = rb_prev(&state->rb_node);
334 if (other_node) {
335 other = rb_entry(other_node, struct extent_state, rb_node);
336 if (other->end == state->start - 1 &&
337 other->state == state->state) {
9ed74f2d 338 merge_cb(tree, state, other);
d1310b2e 339 state->start = other->start;
70dec807 340 other->tree = NULL;
d1310b2e
CM
341 rb_erase(&other->rb_node, &tree->state);
342 free_extent_state(other);
343 }
344 }
345 other_node = rb_next(&state->rb_node);
346 if (other_node) {
347 other = rb_entry(other_node, struct extent_state, rb_node);
348 if (other->start == state->end + 1 &&
349 other->state == state->state) {
9ed74f2d 350 merge_cb(tree, state, other);
df98b6e2
JB
351 state->end = other->end;
352 other->tree = NULL;
353 rb_erase(&other->rb_node, &tree->state);
354 free_extent_state(other);
d1310b2e
CM
355 }
356 }
d1310b2e
CM
357}
358
1bf85046 359static void set_state_cb(struct extent_io_tree *tree,
41074888 360 struct extent_state *state, unsigned long *bits)
291d673e 361{
1bf85046
JM
362 if (tree->ops && tree->ops->set_bit_hook)
363 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
364}
365
366static void clear_state_cb(struct extent_io_tree *tree,
41074888 367 struct extent_state *state, unsigned long *bits)
291d673e 368{
9ed74f2d
JB
369 if (tree->ops && tree->ops->clear_bit_hook)
370 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
371}
372
3150b699 373static void set_state_bits(struct extent_io_tree *tree,
41074888 374 struct extent_state *state, unsigned long *bits);
3150b699 375
d1310b2e
CM
376/*
377 * insert an extent_state struct into the tree. 'bits' are set on the
378 * struct before it is inserted.
379 *
380 * This may return -EEXIST if the extent is already there, in which case the
381 * state struct is freed.
382 *
383 * The tree lock is not taken internally. This is a utility function and
384 * probably isn't what you want to call (see set/clear_extent_bit).
385 */
386static int insert_state(struct extent_io_tree *tree,
387 struct extent_state *state, u64 start, u64 end,
41074888 388 unsigned long *bits)
d1310b2e
CM
389{
390 struct rb_node *node;
391
31b1a2bd
JL
392 if (end < start)
393 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
c1c9ff7c 394 end, start);
d1310b2e
CM
395 state->start = start;
396 state->end = end;
9ed74f2d 397
3150b699
XG
398 set_state_bits(tree, state, bits);
399
d1310b2e
CM
400 node = tree_insert(&tree->state, end, &state->rb_node);
401 if (node) {
402 struct extent_state *found;
403 found = rb_entry(node, struct extent_state, rb_node);
d397712b 404 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
c1c9ff7c
GU
405 "%llu %llu\n",
406 found->start, found->end, start, end);
d1310b2e
CM
407 return -EEXIST;
408 }
70dec807 409 state->tree = tree;
d1310b2e
CM
410 merge_state(tree, state);
411 return 0;
412}
413
1bf85046 414static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
415 u64 split)
416{
417 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 418 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
419}
420
d1310b2e
CM
421/*
422 * split a given extent state struct in two, inserting the preallocated
423 * struct 'prealloc' as the newly created second half. 'split' indicates an
424 * offset inside 'orig' where it should be split.
425 *
426 * Before calling,
427 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
428 * are two extent state structs in the tree:
429 * prealloc: [orig->start, split - 1]
430 * orig: [ split, orig->end ]
431 *
432 * The tree locks are not taken by this function. They need to be held
433 * by the caller.
434 */
435static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
436 struct extent_state *prealloc, u64 split)
437{
438 struct rb_node *node;
9ed74f2d
JB
439
440 split_cb(tree, orig, split);
441
d1310b2e
CM
442 prealloc->start = orig->start;
443 prealloc->end = split - 1;
444 prealloc->state = orig->state;
445 orig->start = split;
446
447 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
448 if (node) {
d1310b2e
CM
449 free_extent_state(prealloc);
450 return -EEXIST;
451 }
70dec807 452 prealloc->tree = tree;
d1310b2e
CM
453 return 0;
454}
455
cdc6a395
LZ
456static struct extent_state *next_state(struct extent_state *state)
457{
458 struct rb_node *next = rb_next(&state->rb_node);
459 if (next)
460 return rb_entry(next, struct extent_state, rb_node);
461 else
462 return NULL;
463}
464
d1310b2e
CM
465/*
466 * utility function to clear some bits in an extent state struct.
1b303fc0 467 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
468 *
469 * If no bits are set on the state struct after clearing things, the
470 * struct is freed and removed from the tree
471 */
cdc6a395
LZ
472static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
473 struct extent_state *state,
41074888 474 unsigned long *bits, int wake)
d1310b2e 475{
cdc6a395 476 struct extent_state *next;
41074888 477 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 478
0ca1f7ce 479 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
480 u64 range = state->end - state->start + 1;
481 WARN_ON(range > tree->dirty_bytes);
482 tree->dirty_bytes -= range;
483 }
291d673e 484 clear_state_cb(tree, state, bits);
32c00aff 485 state->state &= ~bits_to_clear;
d1310b2e
CM
486 if (wake)
487 wake_up(&state->wq);
0ca1f7ce 488 if (state->state == 0) {
cdc6a395 489 next = next_state(state);
70dec807 490 if (state->tree) {
d1310b2e 491 rb_erase(&state->rb_node, &tree->state);
70dec807 492 state->tree = NULL;
d1310b2e
CM
493 free_extent_state(state);
494 } else {
495 WARN_ON(1);
496 }
497 } else {
498 merge_state(tree, state);
cdc6a395 499 next = next_state(state);
d1310b2e 500 }
cdc6a395 501 return next;
d1310b2e
CM
502}
503
8233767a
XG
504static struct extent_state *
505alloc_extent_state_atomic(struct extent_state *prealloc)
506{
507 if (!prealloc)
508 prealloc = alloc_extent_state(GFP_ATOMIC);
509
510 return prealloc;
511}
512
48a3b636 513static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
514{
515 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
516 "Extent tree was modified by another "
517 "thread while locked.");
518}
519
d1310b2e
CM
520/*
521 * clear some bits on a range in the tree. This may require splitting
522 * or inserting elements in the tree, so the gfp mask is used to
523 * indicate which allocations or sleeping are allowed.
524 *
525 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
526 * the given range from the tree regardless of state (ie for truncate).
527 *
528 * the range [start, end] is inclusive.
529 *
6763af84 530 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
531 */
532int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 533 unsigned long bits, int wake, int delete,
2c64c53d
CM
534 struct extent_state **cached_state,
535 gfp_t mask)
d1310b2e
CM
536{
537 struct extent_state *state;
2c64c53d 538 struct extent_state *cached;
d1310b2e
CM
539 struct extent_state *prealloc = NULL;
540 struct rb_node *node;
5c939df5 541 u64 last_end;
d1310b2e 542 int err;
2ac55d41 543 int clear = 0;
d1310b2e 544
8d599ae1
DS
545 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
546
7ee9e440
JB
547 if (bits & EXTENT_DELALLOC)
548 bits |= EXTENT_NORESERVE;
549
0ca1f7ce
YZ
550 if (delete)
551 bits |= ~EXTENT_CTLBITS;
552 bits |= EXTENT_FIRST_DELALLOC;
553
2ac55d41
JB
554 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
555 clear = 1;
d1310b2e
CM
556again:
557 if (!prealloc && (mask & __GFP_WAIT)) {
558 prealloc = alloc_extent_state(mask);
559 if (!prealloc)
560 return -ENOMEM;
561 }
562
cad321ad 563 spin_lock(&tree->lock);
2c64c53d
CM
564 if (cached_state) {
565 cached = *cached_state;
2ac55d41
JB
566
567 if (clear) {
568 *cached_state = NULL;
569 cached_state = NULL;
570 }
571
df98b6e2
JB
572 if (cached && cached->tree && cached->start <= start &&
573 cached->end > start) {
2ac55d41
JB
574 if (clear)
575 atomic_dec(&cached->refs);
2c64c53d 576 state = cached;
42daec29 577 goto hit_next;
2c64c53d 578 }
2ac55d41
JB
579 if (clear)
580 free_extent_state(cached);
2c64c53d 581 }
d1310b2e
CM
582 /*
583 * this search will find the extents that end after
584 * our range starts
585 */
80ea96b1 586 node = tree_search(tree, start);
d1310b2e
CM
587 if (!node)
588 goto out;
589 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 590hit_next:
d1310b2e
CM
591 if (state->start > end)
592 goto out;
593 WARN_ON(state->end < start);
5c939df5 594 last_end = state->end;
d1310b2e 595
0449314a 596 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
597 if (!(state->state & bits)) {
598 state = next_state(state);
0449314a 599 goto next;
cdc6a395 600 }
0449314a 601
d1310b2e
CM
602 /*
603 * | ---- desired range ---- |
604 * | state | or
605 * | ------------- state -------------- |
606 *
607 * We need to split the extent we found, and may flip
608 * bits on second half.
609 *
610 * If the extent we found extends past our range, we
611 * just split and search again. It'll get split again
612 * the next time though.
613 *
614 * If the extent we found is inside our range, we clear
615 * the desired bit on it.
616 */
617
618 if (state->start < start) {
8233767a
XG
619 prealloc = alloc_extent_state_atomic(prealloc);
620 BUG_ON(!prealloc);
d1310b2e 621 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
622 if (err)
623 extent_io_tree_panic(tree, err);
624
d1310b2e
CM
625 prealloc = NULL;
626 if (err)
627 goto out;
628 if (state->end <= end) {
d1ac6e41
LB
629 state = clear_state_bit(tree, state, &bits, wake);
630 goto next;
d1310b2e
CM
631 }
632 goto search_again;
633 }
634 /*
635 * | ---- desired range ---- |
636 * | state |
637 * We need to split the extent, and clear the bit
638 * on the first half
639 */
640 if (state->start <= end && state->end > end) {
8233767a
XG
641 prealloc = alloc_extent_state_atomic(prealloc);
642 BUG_ON(!prealloc);
d1310b2e 643 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
644 if (err)
645 extent_io_tree_panic(tree, err);
646
d1310b2e
CM
647 if (wake)
648 wake_up(&state->wq);
42daec29 649
6763af84 650 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 651
d1310b2e
CM
652 prealloc = NULL;
653 goto out;
654 }
42daec29 655
cdc6a395 656 state = clear_state_bit(tree, state, &bits, wake);
0449314a 657next:
5c939df5
YZ
658 if (last_end == (u64)-1)
659 goto out;
660 start = last_end + 1;
cdc6a395 661 if (start <= end && state && !need_resched())
692e5759 662 goto hit_next;
d1310b2e
CM
663 goto search_again;
664
665out:
cad321ad 666 spin_unlock(&tree->lock);
d1310b2e
CM
667 if (prealloc)
668 free_extent_state(prealloc);
669
6763af84 670 return 0;
d1310b2e
CM
671
672search_again:
673 if (start > end)
674 goto out;
cad321ad 675 spin_unlock(&tree->lock);
d1310b2e
CM
676 if (mask & __GFP_WAIT)
677 cond_resched();
678 goto again;
679}
d1310b2e 680
143bede5
JM
681static void wait_on_state(struct extent_io_tree *tree,
682 struct extent_state *state)
641f5219
CH
683 __releases(tree->lock)
684 __acquires(tree->lock)
d1310b2e
CM
685{
686 DEFINE_WAIT(wait);
687 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 688 spin_unlock(&tree->lock);
d1310b2e 689 schedule();
cad321ad 690 spin_lock(&tree->lock);
d1310b2e 691 finish_wait(&state->wq, &wait);
d1310b2e
CM
692}
693
694/*
695 * waits for one or more bits to clear on a range in the state tree.
696 * The range [start, end] is inclusive.
697 * The tree lock is taken by this function
698 */
41074888
DS
699static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
700 unsigned long bits)
d1310b2e
CM
701{
702 struct extent_state *state;
703 struct rb_node *node;
704
8d599ae1
DS
705 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
706
cad321ad 707 spin_lock(&tree->lock);
d1310b2e
CM
708again:
709 while (1) {
710 /*
711 * this search will find all the extents that end after
712 * our range starts
713 */
80ea96b1 714 node = tree_search(tree, start);
d1310b2e
CM
715 if (!node)
716 break;
717
718 state = rb_entry(node, struct extent_state, rb_node);
719
720 if (state->start > end)
721 goto out;
722
723 if (state->state & bits) {
724 start = state->start;
725 atomic_inc(&state->refs);
726 wait_on_state(tree, state);
727 free_extent_state(state);
728 goto again;
729 }
730 start = state->end + 1;
731
732 if (start > end)
733 break;
734
ded91f08 735 cond_resched_lock(&tree->lock);
d1310b2e
CM
736 }
737out:
cad321ad 738 spin_unlock(&tree->lock);
d1310b2e 739}
d1310b2e 740
1bf85046 741static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 742 struct extent_state *state,
41074888 743 unsigned long *bits)
d1310b2e 744{
41074888 745 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 746
1bf85046 747 set_state_cb(tree, state, bits);
0ca1f7ce 748 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
749 u64 range = state->end - state->start + 1;
750 tree->dirty_bytes += range;
751 }
0ca1f7ce 752 state->state |= bits_to_set;
d1310b2e
CM
753}
754
2c64c53d
CM
755static void cache_state(struct extent_state *state,
756 struct extent_state **cached_ptr)
757{
758 if (cached_ptr && !(*cached_ptr)) {
759 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
760 *cached_ptr = state;
761 atomic_inc(&state->refs);
762 }
763 }
764}
765
d1310b2e 766/*
1edbb734
CM
767 * set some bits on a range in the tree. This may require allocations or
768 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 769 *
1edbb734
CM
770 * If any of the exclusive bits are set, this will fail with -EEXIST if some
771 * part of the range already has the desired bits set. The start of the
772 * existing range is returned in failed_start in this case.
d1310b2e 773 *
1edbb734 774 * [start, end] is inclusive This takes the tree lock.
d1310b2e 775 */
1edbb734 776
3fbe5c02
JM
777static int __must_check
778__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
779 unsigned long bits, unsigned long exclusive_bits,
780 u64 *failed_start, struct extent_state **cached_state,
781 gfp_t mask)
d1310b2e
CM
782{
783 struct extent_state *state;
784 struct extent_state *prealloc = NULL;
785 struct rb_node *node;
d1310b2e 786 int err = 0;
d1310b2e
CM
787 u64 last_start;
788 u64 last_end;
42daec29 789
8d599ae1
DS
790 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
791
0ca1f7ce 792 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
793again:
794 if (!prealloc && (mask & __GFP_WAIT)) {
795 prealloc = alloc_extent_state(mask);
8233767a 796 BUG_ON(!prealloc);
d1310b2e
CM
797 }
798
cad321ad 799 spin_lock(&tree->lock);
9655d298
CM
800 if (cached_state && *cached_state) {
801 state = *cached_state;
df98b6e2
JB
802 if (state->start <= start && state->end > start &&
803 state->tree) {
9655d298
CM
804 node = &state->rb_node;
805 goto hit_next;
806 }
807 }
d1310b2e
CM
808 /*
809 * this search will find all the extents that end after
810 * our range starts.
811 */
80ea96b1 812 node = tree_search(tree, start);
d1310b2e 813 if (!node) {
8233767a
XG
814 prealloc = alloc_extent_state_atomic(prealloc);
815 BUG_ON(!prealloc);
0ca1f7ce 816 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
817 if (err)
818 extent_io_tree_panic(tree, err);
819
d1310b2e 820 prealloc = NULL;
d1310b2e
CM
821 goto out;
822 }
d1310b2e 823 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 824hit_next:
d1310b2e
CM
825 last_start = state->start;
826 last_end = state->end;
827
828 /*
829 * | ---- desired range ---- |
830 * | state |
831 *
832 * Just lock what we found and keep going
833 */
834 if (state->start == start && state->end <= end) {
1edbb734 835 if (state->state & exclusive_bits) {
d1310b2e
CM
836 *failed_start = state->start;
837 err = -EEXIST;
838 goto out;
839 }
42daec29 840
1bf85046 841 set_state_bits(tree, state, &bits);
2c64c53d 842 cache_state(state, cached_state);
d1310b2e 843 merge_state(tree, state);
5c939df5
YZ
844 if (last_end == (u64)-1)
845 goto out;
846 start = last_end + 1;
d1ac6e41
LB
847 state = next_state(state);
848 if (start < end && state && state->start == start &&
849 !need_resched())
850 goto hit_next;
d1310b2e
CM
851 goto search_again;
852 }
853
854 /*
855 * | ---- desired range ---- |
856 * | state |
857 * or
858 * | ------------- state -------------- |
859 *
860 * We need to split the extent we found, and may flip bits on
861 * second half.
862 *
863 * If the extent we found extends past our
864 * range, we just split and search again. It'll get split
865 * again the next time though.
866 *
867 * If the extent we found is inside our range, we set the
868 * desired bit on it.
869 */
870 if (state->start < start) {
1edbb734 871 if (state->state & exclusive_bits) {
d1310b2e
CM
872 *failed_start = start;
873 err = -EEXIST;
874 goto out;
875 }
8233767a
XG
876
877 prealloc = alloc_extent_state_atomic(prealloc);
878 BUG_ON(!prealloc);
d1310b2e 879 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
880 if (err)
881 extent_io_tree_panic(tree, err);
882
d1310b2e
CM
883 prealloc = NULL;
884 if (err)
885 goto out;
886 if (state->end <= end) {
1bf85046 887 set_state_bits(tree, state, &bits);
2c64c53d 888 cache_state(state, cached_state);
d1310b2e 889 merge_state(tree, state);
5c939df5
YZ
890 if (last_end == (u64)-1)
891 goto out;
892 start = last_end + 1;
d1ac6e41
LB
893 state = next_state(state);
894 if (start < end && state && state->start == start &&
895 !need_resched())
896 goto hit_next;
d1310b2e
CM
897 }
898 goto search_again;
899 }
900 /*
901 * | ---- desired range ---- |
902 * | state | or | state |
903 *
904 * There's a hole, we need to insert something in it and
905 * ignore the extent we found.
906 */
907 if (state->start > start) {
908 u64 this_end;
909 if (end < last_start)
910 this_end = end;
911 else
d397712b 912 this_end = last_start - 1;
8233767a
XG
913
914 prealloc = alloc_extent_state_atomic(prealloc);
915 BUG_ON(!prealloc);
c7f895a2
XG
916
917 /*
918 * Avoid to free 'prealloc' if it can be merged with
919 * the later extent.
920 */
d1310b2e 921 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 922 &bits);
c2d904e0
JM
923 if (err)
924 extent_io_tree_panic(tree, err);
925
9ed74f2d
JB
926 cache_state(prealloc, cached_state);
927 prealloc = NULL;
d1310b2e
CM
928 start = this_end + 1;
929 goto search_again;
930 }
931 /*
932 * | ---- desired range ---- |
933 * | state |
934 * We need to split the extent, and set the bit
935 * on the first half
936 */
937 if (state->start <= end && state->end > end) {
1edbb734 938 if (state->state & exclusive_bits) {
d1310b2e
CM
939 *failed_start = start;
940 err = -EEXIST;
941 goto out;
942 }
8233767a
XG
943
944 prealloc = alloc_extent_state_atomic(prealloc);
945 BUG_ON(!prealloc);
d1310b2e 946 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
947 if (err)
948 extent_io_tree_panic(tree, err);
d1310b2e 949
1bf85046 950 set_state_bits(tree, prealloc, &bits);
2c64c53d 951 cache_state(prealloc, cached_state);
d1310b2e
CM
952 merge_state(tree, prealloc);
953 prealloc = NULL;
954 goto out;
955 }
956
957 goto search_again;
958
959out:
cad321ad 960 spin_unlock(&tree->lock);
d1310b2e
CM
961 if (prealloc)
962 free_extent_state(prealloc);
963
964 return err;
965
966search_again:
967 if (start > end)
968 goto out;
cad321ad 969 spin_unlock(&tree->lock);
d1310b2e
CM
970 if (mask & __GFP_WAIT)
971 cond_resched();
972 goto again;
973}
d1310b2e 974
41074888
DS
975int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
976 unsigned long bits, u64 * failed_start,
977 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
978{
979 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
980 cached_state, mask);
981}
982
983
462d6fac 984/**
10983f2e
LB
985 * convert_extent_bit - convert all bits in a given range from one bit to
986 * another
462d6fac
JB
987 * @tree: the io tree to search
988 * @start: the start offset in bytes
989 * @end: the end offset in bytes (inclusive)
990 * @bits: the bits to set in this range
991 * @clear_bits: the bits to clear in this range
e6138876 992 * @cached_state: state that we're going to cache
462d6fac
JB
993 * @mask: the allocation mask
994 *
995 * This will go through and set bits for the given range. If any states exist
996 * already in this range they are set with the given bit and cleared of the
997 * clear_bits. This is only meant to be used by things that are mergeable, ie
998 * converting from say DELALLOC to DIRTY. This is not meant to be used with
999 * boundary bits like LOCK.
1000 */
1001int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1002 unsigned long bits, unsigned long clear_bits,
e6138876 1003 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1004{
1005 struct extent_state *state;
1006 struct extent_state *prealloc = NULL;
1007 struct rb_node *node;
1008 int err = 0;
1009 u64 last_start;
1010 u64 last_end;
1011
8d599ae1
DS
1012 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1013
462d6fac
JB
1014again:
1015 if (!prealloc && (mask & __GFP_WAIT)) {
1016 prealloc = alloc_extent_state(mask);
1017 if (!prealloc)
1018 return -ENOMEM;
1019 }
1020
1021 spin_lock(&tree->lock);
e6138876
JB
1022 if (cached_state && *cached_state) {
1023 state = *cached_state;
1024 if (state->start <= start && state->end > start &&
1025 state->tree) {
1026 node = &state->rb_node;
1027 goto hit_next;
1028 }
1029 }
1030
462d6fac
JB
1031 /*
1032 * this search will find all the extents that end after
1033 * our range starts.
1034 */
1035 node = tree_search(tree, start);
1036 if (!node) {
1037 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1038 if (!prealloc) {
1039 err = -ENOMEM;
1040 goto out;
1041 }
462d6fac
JB
1042 err = insert_state(tree, prealloc, start, end, &bits);
1043 prealloc = NULL;
c2d904e0
JM
1044 if (err)
1045 extent_io_tree_panic(tree, err);
462d6fac
JB
1046 goto out;
1047 }
1048 state = rb_entry(node, struct extent_state, rb_node);
1049hit_next:
1050 last_start = state->start;
1051 last_end = state->end;
1052
1053 /*
1054 * | ---- desired range ---- |
1055 * | state |
1056 *
1057 * Just lock what we found and keep going
1058 */
1059 if (state->start == start && state->end <= end) {
462d6fac 1060 set_state_bits(tree, state, &bits);
e6138876 1061 cache_state(state, cached_state);
d1ac6e41 1062 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1063 if (last_end == (u64)-1)
1064 goto out;
462d6fac 1065 start = last_end + 1;
d1ac6e41
LB
1066 if (start < end && state && state->start == start &&
1067 !need_resched())
1068 goto hit_next;
462d6fac
JB
1069 goto search_again;
1070 }
1071
1072 /*
1073 * | ---- desired range ---- |
1074 * | state |
1075 * or
1076 * | ------------- state -------------- |
1077 *
1078 * We need to split the extent we found, and may flip bits on
1079 * second half.
1080 *
1081 * If the extent we found extends past our
1082 * range, we just split and search again. It'll get split
1083 * again the next time though.
1084 *
1085 * If the extent we found is inside our range, we set the
1086 * desired bit on it.
1087 */
1088 if (state->start < start) {
1089 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1090 if (!prealloc) {
1091 err = -ENOMEM;
1092 goto out;
1093 }
462d6fac 1094 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1095 if (err)
1096 extent_io_tree_panic(tree, err);
462d6fac
JB
1097 prealloc = NULL;
1098 if (err)
1099 goto out;
1100 if (state->end <= end) {
1101 set_state_bits(tree, state, &bits);
e6138876 1102 cache_state(state, cached_state);
d1ac6e41 1103 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1104 if (last_end == (u64)-1)
1105 goto out;
1106 start = last_end + 1;
d1ac6e41
LB
1107 if (start < end && state && state->start == start &&
1108 !need_resched())
1109 goto hit_next;
462d6fac
JB
1110 }
1111 goto search_again;
1112 }
1113 /*
1114 * | ---- desired range ---- |
1115 * | state | or | state |
1116 *
1117 * There's a hole, we need to insert something in it and
1118 * ignore the extent we found.
1119 */
1120 if (state->start > start) {
1121 u64 this_end;
1122 if (end < last_start)
1123 this_end = end;
1124 else
1125 this_end = last_start - 1;
1126
1127 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1128 if (!prealloc) {
1129 err = -ENOMEM;
1130 goto out;
1131 }
462d6fac
JB
1132
1133 /*
1134 * Avoid to free 'prealloc' if it can be merged with
1135 * the later extent.
1136 */
1137 err = insert_state(tree, prealloc, start, this_end,
1138 &bits);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
e6138876 1141 cache_state(prealloc, cached_state);
462d6fac
JB
1142 prealloc = NULL;
1143 start = this_end + 1;
1144 goto search_again;
1145 }
1146 /*
1147 * | ---- desired range ---- |
1148 * | state |
1149 * We need to split the extent, and set the bit
1150 * on the first half
1151 */
1152 if (state->start <= end && state->end > end) {
1153 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1154 if (!prealloc) {
1155 err = -ENOMEM;
1156 goto out;
1157 }
462d6fac
JB
1158
1159 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1160 if (err)
1161 extent_io_tree_panic(tree, err);
462d6fac
JB
1162
1163 set_state_bits(tree, prealloc, &bits);
e6138876 1164 cache_state(prealloc, cached_state);
462d6fac 1165 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1166 prealloc = NULL;
1167 goto out;
1168 }
1169
1170 goto search_again;
1171
1172out:
1173 spin_unlock(&tree->lock);
1174 if (prealloc)
1175 free_extent_state(prealloc);
1176
1177 return err;
1178
1179search_again:
1180 if (start > end)
1181 goto out;
1182 spin_unlock(&tree->lock);
1183 if (mask & __GFP_WAIT)
1184 cond_resched();
1185 goto again;
1186}
1187
d1310b2e
CM
1188/* wrappers around set/clear extent bit */
1189int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1190 gfp_t mask)
1191{
3fbe5c02 1192 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1193 NULL, mask);
d1310b2e 1194}
d1310b2e
CM
1195
1196int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1197 unsigned long bits, gfp_t mask)
d1310b2e 1198{
3fbe5c02 1199 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1200 NULL, mask);
d1310b2e 1201}
d1310b2e
CM
1202
1203int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1204 unsigned long bits, gfp_t mask)
d1310b2e 1205{
2c64c53d 1206 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1207}
d1310b2e
CM
1208
1209int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1210 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1211{
1212 return set_extent_bit(tree, start, end,
fee187d9 1213 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1214 NULL, cached_state, mask);
d1310b2e 1215}
d1310b2e 1216
9e8a4a8b
LB
1217int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1218 struct extent_state **cached_state, gfp_t mask)
1219{
1220 return set_extent_bit(tree, start, end,
1221 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1222 NULL, cached_state, mask);
1223}
1224
d1310b2e
CM
1225int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1226 gfp_t mask)
1227{
1228 return clear_extent_bit(tree, start, end,
32c00aff 1229 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1230 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1231}
d1310b2e
CM
1232
1233int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1235{
3fbe5c02 1236 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1237 NULL, mask);
d1310b2e 1238}
d1310b2e 1239
d1310b2e 1240int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1241 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1242{
6b67a320 1243 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1244 cached_state, mask);
d1310b2e 1245}
d1310b2e 1246
5fd02043
JB
1247int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1248 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1249{
2c64c53d 1250 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1251 cached_state, mask);
d1310b2e 1252}
d1310b2e 1253
d352ac68
CM
1254/*
1255 * either insert or lock state struct between start and end use mask to tell
1256 * us if waiting is desired.
1257 */
1edbb734 1258int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1259 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1260{
1261 int err;
1262 u64 failed_start;
1263 while (1) {
3fbe5c02
JM
1264 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1265 EXTENT_LOCKED, &failed_start,
1266 cached_state, GFP_NOFS);
d0082371 1267 if (err == -EEXIST) {
d1310b2e
CM
1268 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1269 start = failed_start;
d0082371 1270 } else
d1310b2e 1271 break;
d1310b2e
CM
1272 WARN_ON(start > end);
1273 }
1274 return err;
1275}
d1310b2e 1276
d0082371 1277int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1278{
d0082371 1279 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1280}
1281
d0082371 1282int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1283{
1284 int err;
1285 u64 failed_start;
1286
3fbe5c02
JM
1287 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1288 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1289 if (err == -EEXIST) {
1290 if (failed_start > start)
1291 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1292 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1293 return 0;
6643558d 1294 }
25179201
JB
1295 return 1;
1296}
25179201 1297
2c64c53d
CM
1298int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1299 struct extent_state **cached, gfp_t mask)
1300{
1301 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1302 mask);
1303}
1304
d0082371 1305int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1306{
2c64c53d 1307 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1308 GFP_NOFS);
d1310b2e 1309}
d1310b2e 1310
4adaa611
CM
1311int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1312{
1313 unsigned long index = start >> PAGE_CACHE_SHIFT;
1314 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1315 struct page *page;
1316
1317 while (index <= end_index) {
1318 page = find_get_page(inode->i_mapping, index);
1319 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1320 clear_page_dirty_for_io(page);
1321 page_cache_release(page);
1322 index++;
1323 }
1324 return 0;
1325}
1326
1327int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1328{
1329 unsigned long index = start >> PAGE_CACHE_SHIFT;
1330 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1331 struct page *page;
1332
1333 while (index <= end_index) {
1334 page = find_get_page(inode->i_mapping, index);
1335 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1336 account_page_redirty(page);
1337 __set_page_dirty_nobuffers(page);
1338 page_cache_release(page);
1339 index++;
1340 }
1341 return 0;
1342}
1343
d1310b2e
CM
1344/*
1345 * helper function to set both pages and extents in the tree writeback
1346 */
b2950863 1347static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1348{
1349 unsigned long index = start >> PAGE_CACHE_SHIFT;
1350 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1351 struct page *page;
1352
1353 while (index <= end_index) {
1354 page = find_get_page(tree->mapping, index);
79787eaa 1355 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1356 set_page_writeback(page);
1357 page_cache_release(page);
1358 index++;
1359 }
d1310b2e
CM
1360 return 0;
1361}
d1310b2e 1362
d352ac68
CM
1363/* find the first state struct with 'bits' set after 'start', and
1364 * return it. tree->lock must be held. NULL will returned if
1365 * nothing was found after 'start'
1366 */
48a3b636
ES
1367static struct extent_state *
1368find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1369 u64 start, unsigned long bits)
d7fc640e
CM
1370{
1371 struct rb_node *node;
1372 struct extent_state *state;
1373
1374 /*
1375 * this search will find all the extents that end after
1376 * our range starts.
1377 */
1378 node = tree_search(tree, start);
d397712b 1379 if (!node)
d7fc640e 1380 goto out;
d7fc640e 1381
d397712b 1382 while (1) {
d7fc640e 1383 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1384 if (state->end >= start && (state->state & bits))
d7fc640e 1385 return state;
d397712b 1386
d7fc640e
CM
1387 node = rb_next(node);
1388 if (!node)
1389 break;
1390 }
1391out:
1392 return NULL;
1393}
d7fc640e 1394
69261c4b
XG
1395/*
1396 * find the first offset in the io tree with 'bits' set. zero is
1397 * returned if we find something, and *start_ret and *end_ret are
1398 * set to reflect the state struct that was found.
1399 *
477d7eaf 1400 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1401 */
1402int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1403 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1404 struct extent_state **cached_state)
69261c4b
XG
1405{
1406 struct extent_state *state;
e6138876 1407 struct rb_node *n;
69261c4b
XG
1408 int ret = 1;
1409
1410 spin_lock(&tree->lock);
e6138876
JB
1411 if (cached_state && *cached_state) {
1412 state = *cached_state;
1413 if (state->end == start - 1 && state->tree) {
1414 n = rb_next(&state->rb_node);
1415 while (n) {
1416 state = rb_entry(n, struct extent_state,
1417 rb_node);
1418 if (state->state & bits)
1419 goto got_it;
1420 n = rb_next(n);
1421 }
1422 free_extent_state(*cached_state);
1423 *cached_state = NULL;
1424 goto out;
1425 }
1426 free_extent_state(*cached_state);
1427 *cached_state = NULL;
1428 }
1429
69261c4b 1430 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1431got_it:
69261c4b 1432 if (state) {
e6138876 1433 cache_state(state, cached_state);
69261c4b
XG
1434 *start_ret = state->start;
1435 *end_ret = state->end;
1436 ret = 0;
1437 }
e6138876 1438out:
69261c4b
XG
1439 spin_unlock(&tree->lock);
1440 return ret;
1441}
1442
d352ac68
CM
1443/*
1444 * find a contiguous range of bytes in the file marked as delalloc, not
1445 * more than 'max_bytes'. start and end are used to return the range,
1446 *
1447 * 1 is returned if we find something, 0 if nothing was in the tree
1448 */
c8b97818 1449static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1450 u64 *start, u64 *end, u64 max_bytes,
1451 struct extent_state **cached_state)
d1310b2e
CM
1452{
1453 struct rb_node *node;
1454 struct extent_state *state;
1455 u64 cur_start = *start;
1456 u64 found = 0;
1457 u64 total_bytes = 0;
1458
cad321ad 1459 spin_lock(&tree->lock);
c8b97818 1460
d1310b2e
CM
1461 /*
1462 * this search will find all the extents that end after
1463 * our range starts.
1464 */
80ea96b1 1465 node = tree_search(tree, cur_start);
2b114d1d 1466 if (!node) {
3b951516
CM
1467 if (!found)
1468 *end = (u64)-1;
d1310b2e
CM
1469 goto out;
1470 }
1471
d397712b 1472 while (1) {
d1310b2e 1473 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1474 if (found && (state->start != cur_start ||
1475 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1476 goto out;
1477 }
1478 if (!(state->state & EXTENT_DELALLOC)) {
1479 if (!found)
1480 *end = state->end;
1481 goto out;
1482 }
c2a128d2 1483 if (!found) {
d1310b2e 1484 *start = state->start;
c2a128d2
JB
1485 *cached_state = state;
1486 atomic_inc(&state->refs);
1487 }
d1310b2e
CM
1488 found++;
1489 *end = state->end;
1490 cur_start = state->end + 1;
1491 node = rb_next(node);
d1310b2e 1492 total_bytes += state->end - state->start + 1;
7bf811a5 1493 if (total_bytes >= max_bytes)
573aecaf 1494 break;
573aecaf 1495 if (!node)
d1310b2e
CM
1496 break;
1497 }
1498out:
cad321ad 1499 spin_unlock(&tree->lock);
d1310b2e
CM
1500 return found;
1501}
1502
143bede5
JM
1503static noinline void __unlock_for_delalloc(struct inode *inode,
1504 struct page *locked_page,
1505 u64 start, u64 end)
c8b97818
CM
1506{
1507 int ret;
1508 struct page *pages[16];
1509 unsigned long index = start >> PAGE_CACHE_SHIFT;
1510 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1511 unsigned long nr_pages = end_index - index + 1;
1512 int i;
1513
1514 if (index == locked_page->index && end_index == index)
143bede5 1515 return;
c8b97818 1516
d397712b 1517 while (nr_pages > 0) {
c8b97818 1518 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1519 min_t(unsigned long, nr_pages,
1520 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1521 for (i = 0; i < ret; i++) {
1522 if (pages[i] != locked_page)
1523 unlock_page(pages[i]);
1524 page_cache_release(pages[i]);
1525 }
1526 nr_pages -= ret;
1527 index += ret;
1528 cond_resched();
1529 }
c8b97818
CM
1530}
1531
1532static noinline int lock_delalloc_pages(struct inode *inode,
1533 struct page *locked_page,
1534 u64 delalloc_start,
1535 u64 delalloc_end)
1536{
1537 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1538 unsigned long start_index = index;
1539 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1540 unsigned long pages_locked = 0;
1541 struct page *pages[16];
1542 unsigned long nrpages;
1543 int ret;
1544 int i;
1545
1546 /* the caller is responsible for locking the start index */
1547 if (index == locked_page->index && index == end_index)
1548 return 0;
1549
1550 /* skip the page at the start index */
1551 nrpages = end_index - index + 1;
d397712b 1552 while (nrpages > 0) {
c8b97818 1553 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1554 min_t(unsigned long,
1555 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1556 if (ret == 0) {
1557 ret = -EAGAIN;
1558 goto done;
1559 }
1560 /* now we have an array of pages, lock them all */
1561 for (i = 0; i < ret; i++) {
1562 /*
1563 * the caller is taking responsibility for
1564 * locked_page
1565 */
771ed689 1566 if (pages[i] != locked_page) {
c8b97818 1567 lock_page(pages[i]);
f2b1c41c
CM
1568 if (!PageDirty(pages[i]) ||
1569 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1570 ret = -EAGAIN;
1571 unlock_page(pages[i]);
1572 page_cache_release(pages[i]);
1573 goto done;
1574 }
1575 }
c8b97818 1576 page_cache_release(pages[i]);
771ed689 1577 pages_locked++;
c8b97818 1578 }
c8b97818
CM
1579 nrpages -= ret;
1580 index += ret;
1581 cond_resched();
1582 }
1583 ret = 0;
1584done:
1585 if (ret && pages_locked) {
1586 __unlock_for_delalloc(inode, locked_page,
1587 delalloc_start,
1588 ((u64)(start_index + pages_locked - 1)) <<
1589 PAGE_CACHE_SHIFT);
1590 }
1591 return ret;
1592}
1593
1594/*
1595 * find a contiguous range of bytes in the file marked as delalloc, not
1596 * more than 'max_bytes'. start and end are used to return the range,
1597 *
1598 * 1 is returned if we find something, 0 if nothing was in the tree
1599 */
1600static noinline u64 find_lock_delalloc_range(struct inode *inode,
1601 struct extent_io_tree *tree,
1602 struct page *locked_page,
1603 u64 *start, u64 *end,
1604 u64 max_bytes)
1605{
1606 u64 delalloc_start;
1607 u64 delalloc_end;
1608 u64 found;
9655d298 1609 struct extent_state *cached_state = NULL;
c8b97818
CM
1610 int ret;
1611 int loops = 0;
1612
1613again:
1614 /* step one, find a bunch of delalloc bytes starting at start */
1615 delalloc_start = *start;
1616 delalloc_end = 0;
1617 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1618 max_bytes, &cached_state);
70b99e69 1619 if (!found || delalloc_end <= *start) {
c8b97818
CM
1620 *start = delalloc_start;
1621 *end = delalloc_end;
c2a128d2 1622 free_extent_state(cached_state);
385fe0be 1623 return 0;
c8b97818
CM
1624 }
1625
70b99e69
CM
1626 /*
1627 * start comes from the offset of locked_page. We have to lock
1628 * pages in order, so we can't process delalloc bytes before
1629 * locked_page
1630 */
d397712b 1631 if (delalloc_start < *start)
70b99e69 1632 delalloc_start = *start;
70b99e69 1633
c8b97818
CM
1634 /*
1635 * make sure to limit the number of pages we try to lock down
c8b97818 1636 */
7bf811a5
JB
1637 if (delalloc_end + 1 - delalloc_start > max_bytes)
1638 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1639
c8b97818
CM
1640 /* step two, lock all the pages after the page that has start */
1641 ret = lock_delalloc_pages(inode, locked_page,
1642 delalloc_start, delalloc_end);
1643 if (ret == -EAGAIN) {
1644 /* some of the pages are gone, lets avoid looping by
1645 * shortening the size of the delalloc range we're searching
1646 */
9655d298 1647 free_extent_state(cached_state);
c8b97818 1648 if (!loops) {
7bf811a5 1649 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1650 loops = 1;
1651 goto again;
1652 } else {
1653 found = 0;
1654 goto out_failed;
1655 }
1656 }
79787eaa 1657 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1658
1659 /* step three, lock the state bits for the whole range */
d0082371 1660 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1661
1662 /* then test to make sure it is all still delalloc */
1663 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1664 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1665 if (!ret) {
9655d298
CM
1666 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1667 &cached_state, GFP_NOFS);
c8b97818
CM
1668 __unlock_for_delalloc(inode, locked_page,
1669 delalloc_start, delalloc_end);
1670 cond_resched();
1671 goto again;
1672 }
9655d298 1673 free_extent_state(cached_state);
c8b97818
CM
1674 *start = delalloc_start;
1675 *end = delalloc_end;
1676out_failed:
1677 return found;
1678}
1679
c2790a2e
JB
1680int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1681 struct page *locked_page,
1682 unsigned long clear_bits,
1683 unsigned long page_ops)
c8b97818 1684{
c2790a2e 1685 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1686 int ret;
1687 struct page *pages[16];
1688 unsigned long index = start >> PAGE_CACHE_SHIFT;
1689 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1690 unsigned long nr_pages = end_index - index + 1;
1691 int i;
771ed689 1692
2c64c53d 1693 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1694 if (page_ops == 0)
771ed689 1695 return 0;
c8b97818 1696
d397712b 1697 while (nr_pages > 0) {
c8b97818 1698 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1699 min_t(unsigned long,
1700 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1701 for (i = 0; i < ret; i++) {
8b62b72b 1702
c2790a2e 1703 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1704 SetPagePrivate2(pages[i]);
1705
c8b97818
CM
1706 if (pages[i] == locked_page) {
1707 page_cache_release(pages[i]);
1708 continue;
1709 }
c2790a2e 1710 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1711 clear_page_dirty_for_io(pages[i]);
c2790a2e 1712 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1713 set_page_writeback(pages[i]);
c2790a2e 1714 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1715 end_page_writeback(pages[i]);
c2790a2e 1716 if (page_ops & PAGE_UNLOCK)
771ed689 1717 unlock_page(pages[i]);
c8b97818
CM
1718 page_cache_release(pages[i]);
1719 }
1720 nr_pages -= ret;
1721 index += ret;
1722 cond_resched();
1723 }
1724 return 0;
1725}
c8b97818 1726
d352ac68
CM
1727/*
1728 * count the number of bytes in the tree that have a given bit(s)
1729 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1730 * cached. The total number found is returned.
1731 */
d1310b2e
CM
1732u64 count_range_bits(struct extent_io_tree *tree,
1733 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1734 unsigned long bits, int contig)
d1310b2e
CM
1735{
1736 struct rb_node *node;
1737 struct extent_state *state;
1738 u64 cur_start = *start;
1739 u64 total_bytes = 0;
ec29ed5b 1740 u64 last = 0;
d1310b2e
CM
1741 int found = 0;
1742
1743 if (search_end <= cur_start) {
d1310b2e
CM
1744 WARN_ON(1);
1745 return 0;
1746 }
1747
cad321ad 1748 spin_lock(&tree->lock);
d1310b2e
CM
1749 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1750 total_bytes = tree->dirty_bytes;
1751 goto out;
1752 }
1753 /*
1754 * this search will find all the extents that end after
1755 * our range starts.
1756 */
80ea96b1 1757 node = tree_search(tree, cur_start);
d397712b 1758 if (!node)
d1310b2e 1759 goto out;
d1310b2e 1760
d397712b 1761 while (1) {
d1310b2e
CM
1762 state = rb_entry(node, struct extent_state, rb_node);
1763 if (state->start > search_end)
1764 break;
ec29ed5b
CM
1765 if (contig && found && state->start > last + 1)
1766 break;
1767 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1768 total_bytes += min(search_end, state->end) + 1 -
1769 max(cur_start, state->start);
1770 if (total_bytes >= max_bytes)
1771 break;
1772 if (!found) {
af60bed2 1773 *start = max(cur_start, state->start);
d1310b2e
CM
1774 found = 1;
1775 }
ec29ed5b
CM
1776 last = state->end;
1777 } else if (contig && found) {
1778 break;
d1310b2e
CM
1779 }
1780 node = rb_next(node);
1781 if (!node)
1782 break;
1783 }
1784out:
cad321ad 1785 spin_unlock(&tree->lock);
d1310b2e
CM
1786 return total_bytes;
1787}
b2950863 1788
d352ac68
CM
1789/*
1790 * set the private field for a given byte offset in the tree. If there isn't
1791 * an extent_state there already, this does nothing.
1792 */
171170c1 1793static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1794{
1795 struct rb_node *node;
1796 struct extent_state *state;
1797 int ret = 0;
1798
cad321ad 1799 spin_lock(&tree->lock);
d1310b2e
CM
1800 /*
1801 * this search will find all the extents that end after
1802 * our range starts.
1803 */
80ea96b1 1804 node = tree_search(tree, start);
2b114d1d 1805 if (!node) {
d1310b2e
CM
1806 ret = -ENOENT;
1807 goto out;
1808 }
1809 state = rb_entry(node, struct extent_state, rb_node);
1810 if (state->start != start) {
1811 ret = -ENOENT;
1812 goto out;
1813 }
1814 state->private = private;
1815out:
cad321ad 1816 spin_unlock(&tree->lock);
d1310b2e
CM
1817 return ret;
1818}
1819
1820int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1821{
1822 struct rb_node *node;
1823 struct extent_state *state;
1824 int ret = 0;
1825
cad321ad 1826 spin_lock(&tree->lock);
d1310b2e
CM
1827 /*
1828 * this search will find all the extents that end after
1829 * our range starts.
1830 */
80ea96b1 1831 node = tree_search(tree, start);
2b114d1d 1832 if (!node) {
d1310b2e
CM
1833 ret = -ENOENT;
1834 goto out;
1835 }
1836 state = rb_entry(node, struct extent_state, rb_node);
1837 if (state->start != start) {
1838 ret = -ENOENT;
1839 goto out;
1840 }
1841 *private = state->private;
1842out:
cad321ad 1843 spin_unlock(&tree->lock);
d1310b2e
CM
1844 return ret;
1845}
1846
1847/*
1848 * searches a range in the state tree for a given mask.
70dec807 1849 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1850 * has the bits set. Otherwise, 1 is returned if any bit in the
1851 * range is found set.
1852 */
1853int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1854 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1855{
1856 struct extent_state *state = NULL;
1857 struct rb_node *node;
1858 int bitset = 0;
d1310b2e 1859
cad321ad 1860 spin_lock(&tree->lock);
df98b6e2
JB
1861 if (cached && cached->tree && cached->start <= start &&
1862 cached->end > start)
9655d298
CM
1863 node = &cached->rb_node;
1864 else
1865 node = tree_search(tree, start);
d1310b2e
CM
1866 while (node && start <= end) {
1867 state = rb_entry(node, struct extent_state, rb_node);
1868
1869 if (filled && state->start > start) {
1870 bitset = 0;
1871 break;
1872 }
1873
1874 if (state->start > end)
1875 break;
1876
1877 if (state->state & bits) {
1878 bitset = 1;
1879 if (!filled)
1880 break;
1881 } else if (filled) {
1882 bitset = 0;
1883 break;
1884 }
46562cec
CM
1885
1886 if (state->end == (u64)-1)
1887 break;
1888
d1310b2e
CM
1889 start = state->end + 1;
1890 if (start > end)
1891 break;
1892 node = rb_next(node);
1893 if (!node) {
1894 if (filled)
1895 bitset = 0;
1896 break;
1897 }
1898 }
cad321ad 1899 spin_unlock(&tree->lock);
d1310b2e
CM
1900 return bitset;
1901}
d1310b2e
CM
1902
1903/*
1904 * helper function to set a given page up to date if all the
1905 * extents in the tree for that page are up to date
1906 */
143bede5 1907static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1908{
4eee4fa4 1909 u64 start = page_offset(page);
d1310b2e 1910 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1911 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1912 SetPageUptodate(page);
d1310b2e
CM
1913}
1914
4a54c8c1
JS
1915/*
1916 * When IO fails, either with EIO or csum verification fails, we
1917 * try other mirrors that might have a good copy of the data. This
1918 * io_failure_record is used to record state as we go through all the
1919 * mirrors. If another mirror has good data, the page is set up to date
1920 * and things continue. If a good mirror can't be found, the original
1921 * bio end_io callback is called to indicate things have failed.
1922 */
1923struct io_failure_record {
1924 struct page *page;
1925 u64 start;
1926 u64 len;
1927 u64 logical;
1928 unsigned long bio_flags;
1929 int this_mirror;
1930 int failed_mirror;
1931 int in_validation;
1932};
1933
1934static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1935 int did_repair)
1936{
1937 int ret;
1938 int err = 0;
1939 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1940
1941 set_state_private(failure_tree, rec->start, 0);
1942 ret = clear_extent_bits(failure_tree, rec->start,
1943 rec->start + rec->len - 1,
1944 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1945 if (ret)
1946 err = ret;
1947
53b381b3
DW
1948 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1949 rec->start + rec->len - 1,
1950 EXTENT_DAMAGED, GFP_NOFS);
1951 if (ret && !err)
1952 err = ret;
4a54c8c1
JS
1953
1954 kfree(rec);
1955 return err;
1956}
1957
1958static void repair_io_failure_callback(struct bio *bio, int err)
1959{
1960 complete(bio->bi_private);
1961}
1962
1963/*
1964 * this bypasses the standard btrfs submit functions deliberately, as
1965 * the standard behavior is to write all copies in a raid setup. here we only
1966 * want to write the one bad copy. so we do the mapping for ourselves and issue
1967 * submit_bio directly.
3ec706c8 1968 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1969 * actually prevents the read that triggered the error from finishing.
1970 * currently, there can be no more than two copies of every data bit. thus,
1971 * exactly one rewrite is required.
1972 */
3ec706c8 1973int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
1974 u64 length, u64 logical, struct page *page,
1975 int mirror_num)
1976{
1977 struct bio *bio;
1978 struct btrfs_device *dev;
1979 DECLARE_COMPLETION_ONSTACK(compl);
1980 u64 map_length = 0;
1981 u64 sector;
1982 struct btrfs_bio *bbio = NULL;
53b381b3 1983 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
1984 int ret;
1985
1986 BUG_ON(!mirror_num);
1987
53b381b3
DW
1988 /* we can't repair anything in raid56 yet */
1989 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1990 return 0;
1991
9be3395b 1992 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
1993 if (!bio)
1994 return -EIO;
1995 bio->bi_private = &compl;
1996 bio->bi_end_io = repair_io_failure_callback;
1997 bio->bi_size = 0;
1998 map_length = length;
1999
3ec706c8 2000 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2001 &map_length, &bbio, mirror_num);
2002 if (ret) {
2003 bio_put(bio);
2004 return -EIO;
2005 }
2006 BUG_ON(mirror_num != bbio->mirror_num);
2007 sector = bbio->stripes[mirror_num-1].physical >> 9;
2008 bio->bi_sector = sector;
2009 dev = bbio->stripes[mirror_num-1].dev;
2010 kfree(bbio);
2011 if (!dev || !dev->bdev || !dev->writeable) {
2012 bio_put(bio);
2013 return -EIO;
2014 }
2015 bio->bi_bdev = dev->bdev;
4eee4fa4 2016 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2017 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2018 wait_for_completion(&compl);
2019
2020 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2021 /* try to remap that extent elsewhere? */
2022 bio_put(bio);
442a4f63 2023 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2024 return -EIO;
2025 }
2026
d5b025d5 2027 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2028 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2029 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2030
2031 bio_put(bio);
2032 return 0;
2033}
2034
ea466794
JB
2035int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2036 int mirror_num)
2037{
ea466794
JB
2038 u64 start = eb->start;
2039 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2040 int ret = 0;
ea466794
JB
2041
2042 for (i = 0; i < num_pages; i++) {
2043 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2044 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2045 start, p, mirror_num);
2046 if (ret)
2047 break;
2048 start += PAGE_CACHE_SIZE;
2049 }
2050
2051 return ret;
2052}
2053
4a54c8c1
JS
2054/*
2055 * each time an IO finishes, we do a fast check in the IO failure tree
2056 * to see if we need to process or clean up an io_failure_record
2057 */
2058static int clean_io_failure(u64 start, struct page *page)
2059{
2060 u64 private;
2061 u64 private_failure;
2062 struct io_failure_record *failrec;
3ec706c8 2063 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2064 struct extent_state *state;
2065 int num_copies;
2066 int did_repair = 0;
2067 int ret;
2068 struct inode *inode = page->mapping->host;
2069
2070 private = 0;
2071 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2072 (u64)-1, 1, EXTENT_DIRTY, 0);
2073 if (!ret)
2074 return 0;
2075
2076 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2077 &private_failure);
2078 if (ret)
2079 return 0;
2080
2081 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2082 BUG_ON(!failrec->this_mirror);
2083
2084 if (failrec->in_validation) {
2085 /* there was no real error, just free the record */
2086 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2087 failrec->start);
2088 did_repair = 1;
2089 goto out;
2090 }
2091
2092 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2093 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2094 failrec->start,
2095 EXTENT_LOCKED);
2096 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2097
883d0de4
MX
2098 if (state && state->start <= failrec->start &&
2099 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2100 fs_info = BTRFS_I(inode)->root->fs_info;
2101 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2102 failrec->len);
4a54c8c1 2103 if (num_copies > 1) {
3ec706c8 2104 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2105 failrec->logical, page,
2106 failrec->failed_mirror);
2107 did_repair = !ret;
2108 }
53b381b3 2109 ret = 0;
4a54c8c1
JS
2110 }
2111
2112out:
2113 if (!ret)
2114 ret = free_io_failure(inode, failrec, did_repair);
2115
2116 return ret;
2117}
2118
2119/*
2120 * this is a generic handler for readpage errors (default
2121 * readpage_io_failed_hook). if other copies exist, read those and write back
2122 * good data to the failed position. does not investigate in remapping the
2123 * failed extent elsewhere, hoping the device will be smart enough to do this as
2124 * needed
2125 */
2126
facc8a22
MX
2127static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2128 struct page *page, u64 start, u64 end,
2129 int failed_mirror)
4a54c8c1
JS
2130{
2131 struct io_failure_record *failrec = NULL;
2132 u64 private;
2133 struct extent_map *em;
2134 struct inode *inode = page->mapping->host;
2135 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2136 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2137 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2138 struct bio *bio;
facc8a22
MX
2139 struct btrfs_io_bio *btrfs_failed_bio;
2140 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2141 int num_copies;
2142 int ret;
2143 int read_mode;
2144 u64 logical;
2145
2146 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2147
2148 ret = get_state_private(failure_tree, start, &private);
2149 if (ret) {
2150 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2151 if (!failrec)
2152 return -ENOMEM;
2153 failrec->start = start;
2154 failrec->len = end - start + 1;
2155 failrec->this_mirror = 0;
2156 failrec->bio_flags = 0;
2157 failrec->in_validation = 0;
2158
2159 read_lock(&em_tree->lock);
2160 em = lookup_extent_mapping(em_tree, start, failrec->len);
2161 if (!em) {
2162 read_unlock(&em_tree->lock);
2163 kfree(failrec);
2164 return -EIO;
2165 }
2166
2167 if (em->start > start || em->start + em->len < start) {
2168 free_extent_map(em);
2169 em = NULL;
2170 }
2171 read_unlock(&em_tree->lock);
2172
7a2d6a64 2173 if (!em) {
4a54c8c1
JS
2174 kfree(failrec);
2175 return -EIO;
2176 }
2177 logical = start - em->start;
2178 logical = em->block_start + logical;
2179 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2180 logical = em->block_start;
2181 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2182 extent_set_compress_type(&failrec->bio_flags,
2183 em->compress_type);
2184 }
2185 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2186 "len=%llu\n", logical, start, failrec->len);
2187 failrec->logical = logical;
2188 free_extent_map(em);
2189
2190 /* set the bits in the private failure tree */
2191 ret = set_extent_bits(failure_tree, start, end,
2192 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2193 if (ret >= 0)
2194 ret = set_state_private(failure_tree, start,
2195 (u64)(unsigned long)failrec);
2196 /* set the bits in the inode's tree */
2197 if (ret >= 0)
2198 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2199 GFP_NOFS);
2200 if (ret < 0) {
2201 kfree(failrec);
2202 return ret;
2203 }
2204 } else {
2205 failrec = (struct io_failure_record *)(unsigned long)private;
2206 pr_debug("bio_readpage_error: (found) logical=%llu, "
2207 "start=%llu, len=%llu, validation=%d\n",
2208 failrec->logical, failrec->start, failrec->len,
2209 failrec->in_validation);
2210 /*
2211 * when data can be on disk more than twice, add to failrec here
2212 * (e.g. with a list for failed_mirror) to make
2213 * clean_io_failure() clean all those errors at once.
2214 */
2215 }
5d964051
SB
2216 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2217 failrec->logical, failrec->len);
4a54c8c1
JS
2218 if (num_copies == 1) {
2219 /*
2220 * we only have a single copy of the data, so don't bother with
2221 * all the retry and error correction code that follows. no
2222 * matter what the error is, it is very likely to persist.
2223 */
09a7f7a2
MX
2224 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2225 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2226 free_io_failure(inode, failrec, 0);
2227 return -EIO;
2228 }
2229
4a54c8c1
JS
2230 /*
2231 * there are two premises:
2232 * a) deliver good data to the caller
2233 * b) correct the bad sectors on disk
2234 */
2235 if (failed_bio->bi_vcnt > 1) {
2236 /*
2237 * to fulfill b), we need to know the exact failing sectors, as
2238 * we don't want to rewrite any more than the failed ones. thus,
2239 * we need separate read requests for the failed bio
2240 *
2241 * if the following BUG_ON triggers, our validation request got
2242 * merged. we need separate requests for our algorithm to work.
2243 */
2244 BUG_ON(failrec->in_validation);
2245 failrec->in_validation = 1;
2246 failrec->this_mirror = failed_mirror;
2247 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2248 } else {
2249 /*
2250 * we're ready to fulfill a) and b) alongside. get a good copy
2251 * of the failed sector and if we succeed, we have setup
2252 * everything for repair_io_failure to do the rest for us.
2253 */
2254 if (failrec->in_validation) {
2255 BUG_ON(failrec->this_mirror != failed_mirror);
2256 failrec->in_validation = 0;
2257 failrec->this_mirror = 0;
2258 }
2259 failrec->failed_mirror = failed_mirror;
2260 failrec->this_mirror++;
2261 if (failrec->this_mirror == failed_mirror)
2262 failrec->this_mirror++;
2263 read_mode = READ_SYNC;
2264 }
2265
facc8a22
MX
2266 if (failrec->this_mirror > num_copies) {
2267 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2268 num_copies, failrec->this_mirror, failed_mirror);
2269 free_io_failure(inode, failrec, 0);
2270 return -EIO;
2271 }
2272
9be3395b 2273 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2274 if (!bio) {
2275 free_io_failure(inode, failrec, 0);
2276 return -EIO;
2277 }
4a54c8c1
JS
2278 bio->bi_end_io = failed_bio->bi_end_io;
2279 bio->bi_sector = failrec->logical >> 9;
2280 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2281 bio->bi_size = 0;
2282
facc8a22
MX
2283 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2284 if (btrfs_failed_bio->csum) {
2285 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2286 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2287
2288 btrfs_bio = btrfs_io_bio(bio);
2289 btrfs_bio->csum = btrfs_bio->csum_inline;
2290 phy_offset >>= inode->i_sb->s_blocksize_bits;
2291 phy_offset *= csum_size;
2292 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2293 csum_size);
2294 }
2295
4a54c8c1
JS
2296 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2297
2298 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2299 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2300 failrec->this_mirror, num_copies, failrec->in_validation);
2301
013bd4c3
TI
2302 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2303 failrec->this_mirror,
2304 failrec->bio_flags, 0);
2305 return ret;
4a54c8c1
JS
2306}
2307
d1310b2e
CM
2308/* lots and lots of room for performance fixes in the end_bio funcs */
2309
87826df0
JM
2310int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2311{
2312 int uptodate = (err == 0);
2313 struct extent_io_tree *tree;
2314 int ret;
2315
2316 tree = &BTRFS_I(page->mapping->host)->io_tree;
2317
2318 if (tree->ops && tree->ops->writepage_end_io_hook) {
2319 ret = tree->ops->writepage_end_io_hook(page, start,
2320 end, NULL, uptodate);
2321 if (ret)
2322 uptodate = 0;
2323 }
2324
87826df0 2325 if (!uptodate) {
87826df0
JM
2326 ClearPageUptodate(page);
2327 SetPageError(page);
2328 }
2329 return 0;
2330}
2331
d1310b2e
CM
2332/*
2333 * after a writepage IO is done, we need to:
2334 * clear the uptodate bits on error
2335 * clear the writeback bits in the extent tree for this IO
2336 * end_page_writeback if the page has no more pending IO
2337 *
2338 * Scheduling is not allowed, so the extent state tree is expected
2339 * to have one and only one object corresponding to this IO.
2340 */
d1310b2e 2341static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2342{
d1310b2e 2343 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2344 struct extent_io_tree *tree;
d1310b2e
CM
2345 u64 start;
2346 u64 end;
d1310b2e 2347
d1310b2e
CM
2348 do {
2349 struct page *page = bvec->bv_page;
902b22f3
DW
2350 tree = &BTRFS_I(page->mapping->host)->io_tree;
2351
17a5adcc
AO
2352 /* We always issue full-page reads, but if some block
2353 * in a page fails to read, blk_update_request() will
2354 * advance bv_offset and adjust bv_len to compensate.
2355 * Print a warning for nonzero offsets, and an error
2356 * if they don't add up to a full page. */
2357 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2358 printk("%s page write in btrfs with offset %u and length %u\n",
2359 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2360 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2361 bvec->bv_offset, bvec->bv_len);
d1310b2e 2362
17a5adcc
AO
2363 start = page_offset(page);
2364 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2365
2366 if (--bvec >= bio->bi_io_vec)
2367 prefetchw(&bvec->bv_page->flags);
1259ab75 2368
87826df0
JM
2369 if (end_extent_writepage(page, err, start, end))
2370 continue;
70dec807 2371
17a5adcc 2372 end_page_writeback(page);
d1310b2e 2373 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2374
d1310b2e 2375 bio_put(bio);
d1310b2e
CM
2376}
2377
883d0de4
MX
2378static void
2379endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2380 int uptodate)
2381{
2382 struct extent_state *cached = NULL;
2383 u64 end = start + len - 1;
2384
2385 if (uptodate && tree->track_uptodate)
2386 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2387 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2388}
2389
d1310b2e
CM
2390/*
2391 * after a readpage IO is done, we need to:
2392 * clear the uptodate bits on error
2393 * set the uptodate bits if things worked
2394 * set the page up to date if all extents in the tree are uptodate
2395 * clear the lock bit in the extent tree
2396 * unlock the page if there are no other extents locked for it
2397 *
2398 * Scheduling is not allowed, so the extent state tree is expected
2399 * to have one and only one object corresponding to this IO.
2400 */
d1310b2e 2401static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2402{
2403 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2404 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2405 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2406 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2407 struct extent_io_tree *tree;
facc8a22 2408 u64 offset = 0;
d1310b2e
CM
2409 u64 start;
2410 u64 end;
facc8a22 2411 u64 len;
883d0de4
MX
2412 u64 extent_start = 0;
2413 u64 extent_len = 0;
5cf1ab56 2414 int mirror;
d1310b2e
CM
2415 int ret;
2416
d20f7043
CM
2417 if (err)
2418 uptodate = 0;
2419
d1310b2e
CM
2420 do {
2421 struct page *page = bvec->bv_page;
a71754fc 2422 struct inode *inode = page->mapping->host;
507903b8 2423
be3940c0 2424 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2425 "mirror=%lu\n", (u64)bio->bi_sector, err,
2426 io_bio->mirror_num);
a71754fc 2427 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2428
17a5adcc
AO
2429 /* We always issue full-page reads, but if some block
2430 * in a page fails to read, blk_update_request() will
2431 * advance bv_offset and adjust bv_len to compensate.
2432 * Print a warning for nonzero offsets, and an error
2433 * if they don't add up to a full page. */
2434 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2435 printk("%s page read in btrfs with offset %u and length %u\n",
2436 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2437 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2438 bvec->bv_offset, bvec->bv_len);
d1310b2e 2439
17a5adcc
AO
2440 start = page_offset(page);
2441 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2442 len = bvec->bv_len;
d1310b2e 2443
4125bf76 2444 if (++bvec <= bvec_end)
d1310b2e
CM
2445 prefetchw(&bvec->bv_page->flags);
2446
9be3395b 2447 mirror = io_bio->mirror_num;
f2a09da9
MX
2448 if (likely(uptodate && tree->ops &&
2449 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2450 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2451 page, start, end,
2452 mirror);
5ee0844d 2453 if (ret)
d1310b2e 2454 uptodate = 0;
5ee0844d 2455 else
4a54c8c1 2456 clean_io_failure(start, page);
d1310b2e 2457 }
ea466794 2458
f2a09da9
MX
2459 if (likely(uptodate))
2460 goto readpage_ok;
2461
2462 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2463 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2464 if (!ret && !err &&
2465 test_bit(BIO_UPTODATE, &bio->bi_flags))
2466 uptodate = 1;
f2a09da9 2467 } else {
f4a8e656
JS
2468 /*
2469 * The generic bio_readpage_error handles errors the
2470 * following way: If possible, new read requests are
2471 * created and submitted and will end up in
2472 * end_bio_extent_readpage as well (if we're lucky, not
2473 * in the !uptodate case). In that case it returns 0 and
2474 * we just go on with the next page in our bio. If it
2475 * can't handle the error it will return -EIO and we
2476 * remain responsible for that page.
2477 */
facc8a22
MX
2478 ret = bio_readpage_error(bio, offset, page, start, end,
2479 mirror);
7e38326f 2480 if (ret == 0) {
3b951516
CM
2481 uptodate =
2482 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2483 if (err)
2484 uptodate = 0;
7e38326f
CM
2485 continue;
2486 }
2487 }
f2a09da9 2488readpage_ok:
883d0de4 2489 if (likely(uptodate)) {
a71754fc
JB
2490 loff_t i_size = i_size_read(inode);
2491 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2492 unsigned offset;
2493
2494 /* Zero out the end if this page straddles i_size */
2495 offset = i_size & (PAGE_CACHE_SIZE-1);
2496 if (page->index == end_index && offset)
2497 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2498 SetPageUptodate(page);
70dec807 2499 } else {
17a5adcc
AO
2500 ClearPageUptodate(page);
2501 SetPageError(page);
70dec807 2502 }
17a5adcc 2503 unlock_page(page);
facc8a22 2504 offset += len;
883d0de4
MX
2505
2506 if (unlikely(!uptodate)) {
2507 if (extent_len) {
2508 endio_readpage_release_extent(tree,
2509 extent_start,
2510 extent_len, 1);
2511 extent_start = 0;
2512 extent_len = 0;
2513 }
2514 endio_readpage_release_extent(tree, start,
2515 end - start + 1, 0);
2516 } else if (!extent_len) {
2517 extent_start = start;
2518 extent_len = end + 1 - start;
2519 } else if (extent_start + extent_len == start) {
2520 extent_len += end + 1 - start;
2521 } else {
2522 endio_readpage_release_extent(tree, extent_start,
2523 extent_len, uptodate);
2524 extent_start = start;
2525 extent_len = end + 1 - start;
2526 }
4125bf76 2527 } while (bvec <= bvec_end);
d1310b2e 2528
883d0de4
MX
2529 if (extent_len)
2530 endio_readpage_release_extent(tree, extent_start, extent_len,
2531 uptodate);
facc8a22
MX
2532 if (io_bio->end_io)
2533 io_bio->end_io(io_bio, err);
d1310b2e 2534 bio_put(bio);
d1310b2e
CM
2535}
2536
9be3395b
CM
2537/*
2538 * this allocates from the btrfs_bioset. We're returning a bio right now
2539 * but you can call btrfs_io_bio for the appropriate container_of magic
2540 */
88f794ed
MX
2541struct bio *
2542btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2543 gfp_t gfp_flags)
d1310b2e 2544{
facc8a22 2545 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2546 struct bio *bio;
2547
9be3395b 2548 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2549
2550 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2551 while (!bio && (nr_vecs /= 2)) {
2552 bio = bio_alloc_bioset(gfp_flags,
2553 nr_vecs, btrfs_bioset);
2554 }
d1310b2e
CM
2555 }
2556
2557 if (bio) {
e1c4b745 2558 bio->bi_size = 0;
d1310b2e
CM
2559 bio->bi_bdev = bdev;
2560 bio->bi_sector = first_sector;
facc8a22
MX
2561 btrfs_bio = btrfs_io_bio(bio);
2562 btrfs_bio->csum = NULL;
2563 btrfs_bio->csum_allocated = NULL;
2564 btrfs_bio->end_io = NULL;
d1310b2e
CM
2565 }
2566 return bio;
2567}
2568
9be3395b
CM
2569struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570{
2571 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572}
2573
2574
2575/* this also allocates from the btrfs_bioset */
2576struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577{
facc8a22
MX
2578 struct btrfs_io_bio *btrfs_bio;
2579 struct bio *bio;
2580
2581 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2582 if (bio) {
2583 btrfs_bio = btrfs_io_bio(bio);
2584 btrfs_bio->csum = NULL;
2585 btrfs_bio->csum_allocated = NULL;
2586 btrfs_bio->end_io = NULL;
2587 }
2588 return bio;
9be3395b
CM
2589}
2590
2591
355808c2
JM
2592static int __must_check submit_one_bio(int rw, struct bio *bio,
2593 int mirror_num, unsigned long bio_flags)
d1310b2e 2594{
d1310b2e 2595 int ret = 0;
70dec807
CM
2596 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2597 struct page *page = bvec->bv_page;
2598 struct extent_io_tree *tree = bio->bi_private;
70dec807 2599 u64 start;
70dec807 2600
4eee4fa4 2601 start = page_offset(page) + bvec->bv_offset;
70dec807 2602
902b22f3 2603 bio->bi_private = NULL;
d1310b2e
CM
2604
2605 bio_get(bio);
2606
065631f6 2607 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2608 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2609 mirror_num, bio_flags, start);
0b86a832 2610 else
21adbd5c 2611 btrfsic_submit_bio(rw, bio);
4a54c8c1 2612
d1310b2e
CM
2613 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2614 ret = -EOPNOTSUPP;
2615 bio_put(bio);
2616 return ret;
2617}
2618
64a16701 2619static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2620 unsigned long offset, size_t size, struct bio *bio,
2621 unsigned long bio_flags)
2622{
2623 int ret = 0;
2624 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2625 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2626 bio_flags);
2627 BUG_ON(ret < 0);
2628 return ret;
2629
2630}
2631
d1310b2e
CM
2632static int submit_extent_page(int rw, struct extent_io_tree *tree,
2633 struct page *page, sector_t sector,
2634 size_t size, unsigned long offset,
2635 struct block_device *bdev,
2636 struct bio **bio_ret,
2637 unsigned long max_pages,
f188591e 2638 bio_end_io_t end_io_func,
c8b97818
CM
2639 int mirror_num,
2640 unsigned long prev_bio_flags,
2641 unsigned long bio_flags)
d1310b2e
CM
2642{
2643 int ret = 0;
2644 struct bio *bio;
2645 int nr;
c8b97818
CM
2646 int contig = 0;
2647 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2648 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2649 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2650
2651 if (bio_ret && *bio_ret) {
2652 bio = *bio_ret;
c8b97818
CM
2653 if (old_compressed)
2654 contig = bio->bi_sector == sector;
2655 else
f73a1c7d 2656 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2657
2658 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2659 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2660 bio_add_page(bio, page, page_size, offset) < page_size) {
2661 ret = submit_one_bio(rw, bio, mirror_num,
2662 prev_bio_flags);
79787eaa
JM
2663 if (ret < 0)
2664 return ret;
d1310b2e
CM
2665 bio = NULL;
2666 } else {
2667 return 0;
2668 }
2669 }
c8b97818
CM
2670 if (this_compressed)
2671 nr = BIO_MAX_PAGES;
2672 else
2673 nr = bio_get_nr_vecs(bdev);
2674
88f794ed 2675 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2676 if (!bio)
2677 return -ENOMEM;
70dec807 2678
c8b97818 2679 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2680 bio->bi_end_io = end_io_func;
2681 bio->bi_private = tree;
70dec807 2682
d397712b 2683 if (bio_ret)
d1310b2e 2684 *bio_ret = bio;
d397712b 2685 else
c8b97818 2686 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2687
2688 return ret;
2689}
2690
48a3b636
ES
2691static void attach_extent_buffer_page(struct extent_buffer *eb,
2692 struct page *page)
d1310b2e
CM
2693{
2694 if (!PagePrivate(page)) {
2695 SetPagePrivate(page);
d1310b2e 2696 page_cache_get(page);
4f2de97a
JB
2697 set_page_private(page, (unsigned long)eb);
2698 } else {
2699 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2700 }
2701}
2702
4f2de97a 2703void set_page_extent_mapped(struct page *page)
d1310b2e 2704{
4f2de97a
JB
2705 if (!PagePrivate(page)) {
2706 SetPagePrivate(page);
2707 page_cache_get(page);
2708 set_page_private(page, EXTENT_PAGE_PRIVATE);
2709 }
d1310b2e
CM
2710}
2711
125bac01
MX
2712static struct extent_map *
2713__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2714 u64 start, u64 len, get_extent_t *get_extent,
2715 struct extent_map **em_cached)
2716{
2717 struct extent_map *em;
2718
2719 if (em_cached && *em_cached) {
2720 em = *em_cached;
2721 if (em->in_tree && start >= em->start &&
2722 start < extent_map_end(em)) {
2723 atomic_inc(&em->refs);
2724 return em;
2725 }
2726
2727 free_extent_map(em);
2728 *em_cached = NULL;
2729 }
2730
2731 em = get_extent(inode, page, pg_offset, start, len, 0);
2732 if (em_cached && !IS_ERR_OR_NULL(em)) {
2733 BUG_ON(*em_cached);
2734 atomic_inc(&em->refs);
2735 *em_cached = em;
2736 }
2737 return em;
2738}
d1310b2e
CM
2739/*
2740 * basic readpage implementation. Locked extent state structs are inserted
2741 * into the tree that are removed when the IO is done (by the end_io
2742 * handlers)
79787eaa 2743 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2744 */
9974090b
MX
2745static int __do_readpage(struct extent_io_tree *tree,
2746 struct page *page,
2747 get_extent_t *get_extent,
125bac01 2748 struct extent_map **em_cached,
9974090b
MX
2749 struct bio **bio, int mirror_num,
2750 unsigned long *bio_flags, int rw)
d1310b2e
CM
2751{
2752 struct inode *inode = page->mapping->host;
4eee4fa4 2753 u64 start = page_offset(page);
d1310b2e
CM
2754 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2755 u64 end;
2756 u64 cur = start;
2757 u64 extent_offset;
2758 u64 last_byte = i_size_read(inode);
2759 u64 block_start;
2760 u64 cur_end;
2761 sector_t sector;
2762 struct extent_map *em;
2763 struct block_device *bdev;
2764 int ret;
2765 int nr = 0;
4b384318 2766 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2767 size_t pg_offset = 0;
d1310b2e 2768 size_t iosize;
c8b97818 2769 size_t disk_io_size;
d1310b2e 2770 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2771 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2772
2773 set_page_extent_mapped(page);
2774
9974090b 2775 end = page_end;
90a887c9
DM
2776 if (!PageUptodate(page)) {
2777 if (cleancache_get_page(page) == 0) {
2778 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2779 unlock_extent(tree, start, end);
90a887c9
DM
2780 goto out;
2781 }
2782 }
2783
c8b97818
CM
2784 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2785 char *userpage;
2786 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2787
2788 if (zero_offset) {
2789 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2790 userpage = kmap_atomic(page);
c8b97818
CM
2791 memset(userpage + zero_offset, 0, iosize);
2792 flush_dcache_page(page);
7ac687d9 2793 kunmap_atomic(userpage);
c8b97818
CM
2794 }
2795 }
d1310b2e 2796 while (cur <= end) {
c8f2f24b
JB
2797 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2798
d1310b2e
CM
2799 if (cur >= last_byte) {
2800 char *userpage;
507903b8
AJ
2801 struct extent_state *cached = NULL;
2802
306e16ce 2803 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2804 userpage = kmap_atomic(page);
306e16ce 2805 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2806 flush_dcache_page(page);
7ac687d9 2807 kunmap_atomic(userpage);
d1310b2e 2808 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2809 &cached, GFP_NOFS);
4b384318
MF
2810 if (!parent_locked)
2811 unlock_extent_cached(tree, cur,
2812 cur + iosize - 1,
2813 &cached, GFP_NOFS);
d1310b2e
CM
2814 break;
2815 }
125bac01
MX
2816 em = __get_extent_map(inode, page, pg_offset, cur,
2817 end - cur + 1, get_extent, em_cached);
c704005d 2818 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2819 SetPageError(page);
4b384318
MF
2820 if (!parent_locked)
2821 unlock_extent(tree, cur, end);
d1310b2e
CM
2822 break;
2823 }
d1310b2e
CM
2824 extent_offset = cur - em->start;
2825 BUG_ON(extent_map_end(em) <= cur);
2826 BUG_ON(end < cur);
2827
261507a0 2828 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2829 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2830 extent_set_compress_type(&this_bio_flag,
2831 em->compress_type);
2832 }
c8b97818 2833
d1310b2e
CM
2834 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2835 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2836 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2837 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2838 disk_io_size = em->block_len;
2839 sector = em->block_start >> 9;
2840 } else {
2841 sector = (em->block_start + extent_offset) >> 9;
2842 disk_io_size = iosize;
2843 }
d1310b2e
CM
2844 bdev = em->bdev;
2845 block_start = em->block_start;
d899e052
YZ
2846 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2847 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2848 free_extent_map(em);
2849 em = NULL;
2850
2851 /* we've found a hole, just zero and go on */
2852 if (block_start == EXTENT_MAP_HOLE) {
2853 char *userpage;
507903b8
AJ
2854 struct extent_state *cached = NULL;
2855
7ac687d9 2856 userpage = kmap_atomic(page);
306e16ce 2857 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2858 flush_dcache_page(page);
7ac687d9 2859 kunmap_atomic(userpage);
d1310b2e
CM
2860
2861 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2862 &cached, GFP_NOFS);
2863 unlock_extent_cached(tree, cur, cur + iosize - 1,
2864 &cached, GFP_NOFS);
d1310b2e 2865 cur = cur + iosize;
306e16ce 2866 pg_offset += iosize;
d1310b2e
CM
2867 continue;
2868 }
2869 /* the get_extent function already copied into the page */
9655d298
CM
2870 if (test_range_bit(tree, cur, cur_end,
2871 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2872 check_page_uptodate(tree, page);
4b384318
MF
2873 if (!parent_locked)
2874 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2875 cur = cur + iosize;
306e16ce 2876 pg_offset += iosize;
d1310b2e
CM
2877 continue;
2878 }
70dec807
CM
2879 /* we have an inline extent but it didn't get marked up
2880 * to date. Error out
2881 */
2882 if (block_start == EXTENT_MAP_INLINE) {
2883 SetPageError(page);
4b384318
MF
2884 if (!parent_locked)
2885 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2886 cur = cur + iosize;
306e16ce 2887 pg_offset += iosize;
70dec807
CM
2888 continue;
2889 }
d1310b2e 2890
c8f2f24b 2891 pnr -= page->index;
d4c7ca86 2892 ret = submit_extent_page(rw, tree, page,
306e16ce 2893 sector, disk_io_size, pg_offset,
89642229 2894 bdev, bio, pnr,
c8b97818
CM
2895 end_bio_extent_readpage, mirror_num,
2896 *bio_flags,
2897 this_bio_flag);
c8f2f24b
JB
2898 if (!ret) {
2899 nr++;
2900 *bio_flags = this_bio_flag;
2901 } else {
d1310b2e 2902 SetPageError(page);
4b384318
MF
2903 if (!parent_locked)
2904 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2905 }
d1310b2e 2906 cur = cur + iosize;
306e16ce 2907 pg_offset += iosize;
d1310b2e 2908 }
90a887c9 2909out:
d1310b2e
CM
2910 if (!nr) {
2911 if (!PageError(page))
2912 SetPageUptodate(page);
2913 unlock_page(page);
2914 }
2915 return 0;
2916}
2917
9974090b
MX
2918static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2919 struct page *pages[], int nr_pages,
2920 u64 start, u64 end,
2921 get_extent_t *get_extent,
125bac01 2922 struct extent_map **em_cached,
9974090b
MX
2923 struct bio **bio, int mirror_num,
2924 unsigned long *bio_flags, int rw)
2925{
2926 struct inode *inode;
2927 struct btrfs_ordered_extent *ordered;
2928 int index;
2929
2930 inode = pages[0]->mapping->host;
2931 while (1) {
2932 lock_extent(tree, start, end);
2933 ordered = btrfs_lookup_ordered_range(inode, start,
2934 end - start + 1);
2935 if (!ordered)
2936 break;
2937 unlock_extent(tree, start, end);
2938 btrfs_start_ordered_extent(inode, ordered, 1);
2939 btrfs_put_ordered_extent(ordered);
2940 }
2941
2942 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2943 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2944 mirror_num, bio_flags, rw);
9974090b
MX
2945 page_cache_release(pages[index]);
2946 }
2947}
2948
2949static void __extent_readpages(struct extent_io_tree *tree,
2950 struct page *pages[],
2951 int nr_pages, get_extent_t *get_extent,
125bac01 2952 struct extent_map **em_cached,
9974090b
MX
2953 struct bio **bio, int mirror_num,
2954 unsigned long *bio_flags, int rw)
2955{
35a3621b 2956 u64 start = 0;
9974090b
MX
2957 u64 end = 0;
2958 u64 page_start;
2959 int index;
35a3621b 2960 int first_index = 0;
9974090b
MX
2961
2962 for (index = 0; index < nr_pages; index++) {
2963 page_start = page_offset(pages[index]);
2964 if (!end) {
2965 start = page_start;
2966 end = start + PAGE_CACHE_SIZE - 1;
2967 first_index = index;
2968 } else if (end + 1 == page_start) {
2969 end += PAGE_CACHE_SIZE;
2970 } else {
2971 __do_contiguous_readpages(tree, &pages[first_index],
2972 index - first_index, start,
125bac01
MX
2973 end, get_extent, em_cached,
2974 bio, mirror_num, bio_flags,
2975 rw);
9974090b
MX
2976 start = page_start;
2977 end = start + PAGE_CACHE_SIZE - 1;
2978 first_index = index;
2979 }
2980 }
2981
2982 if (end)
2983 __do_contiguous_readpages(tree, &pages[first_index],
2984 index - first_index, start,
125bac01 2985 end, get_extent, em_cached, bio,
9974090b
MX
2986 mirror_num, bio_flags, rw);
2987}
2988
2989static int __extent_read_full_page(struct extent_io_tree *tree,
2990 struct page *page,
2991 get_extent_t *get_extent,
2992 struct bio **bio, int mirror_num,
2993 unsigned long *bio_flags, int rw)
2994{
2995 struct inode *inode = page->mapping->host;
2996 struct btrfs_ordered_extent *ordered;
2997 u64 start = page_offset(page);
2998 u64 end = start + PAGE_CACHE_SIZE - 1;
2999 int ret;
3000
3001 while (1) {
3002 lock_extent(tree, start, end);
3003 ordered = btrfs_lookup_ordered_extent(inode, start);
3004 if (!ordered)
3005 break;
3006 unlock_extent(tree, start, end);
3007 btrfs_start_ordered_extent(inode, ordered, 1);
3008 btrfs_put_ordered_extent(ordered);
3009 }
3010
125bac01
MX
3011 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3012 bio_flags, rw);
9974090b
MX
3013 return ret;
3014}
3015
d1310b2e 3016int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3017 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3018{
3019 struct bio *bio = NULL;
c8b97818 3020 unsigned long bio_flags = 0;
d1310b2e
CM
3021 int ret;
3022
8ddc7d9c 3023 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3024 &bio_flags, READ);
d1310b2e 3025 if (bio)
8ddc7d9c 3026 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3027 return ret;
3028}
d1310b2e 3029
4b384318
MF
3030int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3031 get_extent_t *get_extent, int mirror_num)
3032{
3033 struct bio *bio = NULL;
3034 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3035 int ret;
3036
3037 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3038 &bio_flags, READ);
3039 if (bio)
3040 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3041 return ret;
3042}
3043
11c8349b
CM
3044static noinline void update_nr_written(struct page *page,
3045 struct writeback_control *wbc,
3046 unsigned long nr_written)
3047{
3048 wbc->nr_to_write -= nr_written;
3049 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3050 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3051 page->mapping->writeback_index = page->index + nr_written;
3052}
3053
d1310b2e
CM
3054/*
3055 * the writepage semantics are similar to regular writepage. extent
3056 * records are inserted to lock ranges in the tree, and as dirty areas
3057 * are found, they are marked writeback. Then the lock bits are removed
3058 * and the end_io handler clears the writeback ranges
3059 */
3060static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3061 void *data)
3062{
3063 struct inode *inode = page->mapping->host;
3064 struct extent_page_data *epd = data;
3065 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3066 u64 start = page_offset(page);
d1310b2e
CM
3067 u64 delalloc_start;
3068 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3069 u64 end;
3070 u64 cur = start;
3071 u64 extent_offset;
3072 u64 last_byte = i_size_read(inode);
3073 u64 block_start;
3074 u64 iosize;
3075 sector_t sector;
2c64c53d 3076 struct extent_state *cached_state = NULL;
d1310b2e
CM
3077 struct extent_map *em;
3078 struct block_device *bdev;
3079 int ret;
3080 int nr = 0;
7f3c74fb 3081 size_t pg_offset = 0;
d1310b2e
CM
3082 size_t blocksize;
3083 loff_t i_size = i_size_read(inode);
3084 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3085 u64 nr_delalloc;
3086 u64 delalloc_end;
c8b97818
CM
3087 int page_started;
3088 int compressed;
ffbd517d 3089 int write_flags;
771ed689 3090 unsigned long nr_written = 0;
9e487107 3091 bool fill_delalloc = true;
d1310b2e 3092
ffbd517d 3093 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3094 write_flags = WRITE_SYNC;
ffbd517d
CM
3095 else
3096 write_flags = WRITE;
3097
1abe9b8a 3098 trace___extent_writepage(page, inode, wbc);
3099
d1310b2e 3100 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3101
3102 ClearPageError(page);
3103
7f3c74fb 3104 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3105 if (page->index > end_index ||
7f3c74fb 3106 (page->index == end_index && !pg_offset)) {
d47992f8 3107 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3108 unlock_page(page);
3109 return 0;
3110 }
3111
3112 if (page->index == end_index) {
3113 char *userpage;
3114
7ac687d9 3115 userpage = kmap_atomic(page);
7f3c74fb
CM
3116 memset(userpage + pg_offset, 0,
3117 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3118 kunmap_atomic(userpage);
211c17f5 3119 flush_dcache_page(page);
d1310b2e 3120 }
7f3c74fb 3121 pg_offset = 0;
d1310b2e
CM
3122
3123 set_page_extent_mapped(page);
3124
9e487107
JB
3125 if (!tree->ops || !tree->ops->fill_delalloc)
3126 fill_delalloc = false;
3127
d1310b2e
CM
3128 delalloc_start = start;
3129 delalloc_end = 0;
c8b97818 3130 page_started = 0;
9e487107 3131 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3132 u64 delalloc_to_write = 0;
11c8349b
CM
3133 /*
3134 * make sure the wbc mapping index is at least updated
3135 * to this page.
3136 */
3137 update_nr_written(page, wbc, 0);
3138
d397712b 3139 while (delalloc_end < page_end) {
771ed689 3140 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3141 page,
3142 &delalloc_start,
d1310b2e
CM
3143 &delalloc_end,
3144 128 * 1024 * 1024);
771ed689
CM
3145 if (nr_delalloc == 0) {
3146 delalloc_start = delalloc_end + 1;
3147 continue;
3148 }
013bd4c3
TI
3149 ret = tree->ops->fill_delalloc(inode, page,
3150 delalloc_start,
3151 delalloc_end,
3152 &page_started,
3153 &nr_written);
79787eaa
JM
3154 /* File system has been set read-only */
3155 if (ret) {
3156 SetPageError(page);
3157 goto done;
3158 }
f85d7d6c
CM
3159 /*
3160 * delalloc_end is already one less than the total
3161 * length, so we don't subtract one from
3162 * PAGE_CACHE_SIZE
3163 */
3164 delalloc_to_write += (delalloc_end - delalloc_start +
3165 PAGE_CACHE_SIZE) >>
3166 PAGE_CACHE_SHIFT;
d1310b2e 3167 delalloc_start = delalloc_end + 1;
d1310b2e 3168 }
f85d7d6c
CM
3169 if (wbc->nr_to_write < delalloc_to_write) {
3170 int thresh = 8192;
3171
3172 if (delalloc_to_write < thresh * 2)
3173 thresh = delalloc_to_write;
3174 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3175 thresh);
3176 }
c8b97818 3177
771ed689
CM
3178 /* did the fill delalloc function already unlock and start
3179 * the IO?
3180 */
3181 if (page_started) {
3182 ret = 0;
11c8349b
CM
3183 /*
3184 * we've unlocked the page, so we can't update
3185 * the mapping's writeback index, just update
3186 * nr_to_write.
3187 */
3188 wbc->nr_to_write -= nr_written;
3189 goto done_unlocked;
771ed689 3190 }
c8b97818 3191 }
247e743c 3192 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3193 ret = tree->ops->writepage_start_hook(page, start,
3194 page_end);
87826df0
JM
3195 if (ret) {
3196 /* Fixup worker will requeue */
3197 if (ret == -EBUSY)
3198 wbc->pages_skipped++;
3199 else
3200 redirty_page_for_writepage(wbc, page);
11c8349b 3201 update_nr_written(page, wbc, nr_written);
247e743c 3202 unlock_page(page);
771ed689 3203 ret = 0;
11c8349b 3204 goto done_unlocked;
247e743c
CM
3205 }
3206 }
3207
11c8349b
CM
3208 /*
3209 * we don't want to touch the inode after unlocking the page,
3210 * so we update the mapping writeback index now
3211 */
3212 update_nr_written(page, wbc, nr_written + 1);
771ed689 3213
d1310b2e 3214 end = page_end;
d1310b2e 3215 if (last_byte <= start) {
e6dcd2dc
CM
3216 if (tree->ops && tree->ops->writepage_end_io_hook)
3217 tree->ops->writepage_end_io_hook(page, start,
3218 page_end, NULL, 1);
d1310b2e
CM
3219 goto done;
3220 }
3221
d1310b2e
CM
3222 blocksize = inode->i_sb->s_blocksize;
3223
3224 while (cur <= end) {
3225 if (cur >= last_byte) {
e6dcd2dc
CM
3226 if (tree->ops && tree->ops->writepage_end_io_hook)
3227 tree->ops->writepage_end_io_hook(page, cur,
3228 page_end, NULL, 1);
d1310b2e
CM
3229 break;
3230 }
7f3c74fb 3231 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3232 end - cur + 1, 1);
c704005d 3233 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3234 SetPageError(page);
3235 break;
3236 }
3237
3238 extent_offset = cur - em->start;
3239 BUG_ON(extent_map_end(em) <= cur);
3240 BUG_ON(end < cur);
3241 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3242 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3243 sector = (em->block_start + extent_offset) >> 9;
3244 bdev = em->bdev;
3245 block_start = em->block_start;
c8b97818 3246 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3247 free_extent_map(em);
3248 em = NULL;
3249
c8b97818
CM
3250 /*
3251 * compressed and inline extents are written through other
3252 * paths in the FS
3253 */
3254 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3255 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3256 /*
3257 * end_io notification does not happen here for
3258 * compressed extents
3259 */
3260 if (!compressed && tree->ops &&
3261 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3262 tree->ops->writepage_end_io_hook(page, cur,
3263 cur + iosize - 1,
3264 NULL, 1);
c8b97818
CM
3265 else if (compressed) {
3266 /* we don't want to end_page_writeback on
3267 * a compressed extent. this happens
3268 * elsewhere
3269 */
3270 nr++;
3271 }
3272
3273 cur += iosize;
7f3c74fb 3274 pg_offset += iosize;
d1310b2e
CM
3275 continue;
3276 }
d1310b2e
CM
3277 /* leave this out until we have a page_mkwrite call */
3278 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3279 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3280 cur = cur + iosize;
7f3c74fb 3281 pg_offset += iosize;
d1310b2e
CM
3282 continue;
3283 }
c8b97818 3284
d1310b2e
CM
3285 if (tree->ops && tree->ops->writepage_io_hook) {
3286 ret = tree->ops->writepage_io_hook(page, cur,
3287 cur + iosize - 1);
3288 } else {
3289 ret = 0;
3290 }
1259ab75 3291 if (ret) {
d1310b2e 3292 SetPageError(page);
1259ab75 3293 } else {
d1310b2e 3294 unsigned long max_nr = end_index + 1;
7f3c74fb 3295
d1310b2e
CM
3296 set_range_writeback(tree, cur, cur + iosize - 1);
3297 if (!PageWriteback(page)) {
d397712b
CM
3298 printk(KERN_ERR "btrfs warning page %lu not "
3299 "writeback, cur %llu end %llu\n",
c1c9ff7c 3300 page->index, cur, end);
d1310b2e
CM
3301 }
3302
ffbd517d
CM
3303 ret = submit_extent_page(write_flags, tree, page,
3304 sector, iosize, pg_offset,
3305 bdev, &epd->bio, max_nr,
c8b97818
CM
3306 end_bio_extent_writepage,
3307 0, 0, 0);
d1310b2e
CM
3308 if (ret)
3309 SetPageError(page);
3310 }
3311 cur = cur + iosize;
7f3c74fb 3312 pg_offset += iosize;
d1310b2e
CM
3313 nr++;
3314 }
3315done:
3316 if (nr == 0) {
3317 /* make sure the mapping tag for page dirty gets cleared */
3318 set_page_writeback(page);
3319 end_page_writeback(page);
3320 }
d1310b2e 3321 unlock_page(page);
771ed689 3322
11c8349b
CM
3323done_unlocked:
3324
2c64c53d
CM
3325 /* drop our reference on any cached states */
3326 free_extent_state(cached_state);
d1310b2e
CM
3327 return 0;
3328}
3329
0b32f4bb
JB
3330static int eb_wait(void *word)
3331{
3332 io_schedule();
3333 return 0;
3334}
3335
fd8b2b61 3336void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3337{
3338 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3339 TASK_UNINTERRUPTIBLE);
3340}
3341
3342static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3343 struct btrfs_fs_info *fs_info,
3344 struct extent_page_data *epd)
3345{
3346 unsigned long i, num_pages;
3347 int flush = 0;
3348 int ret = 0;
3349
3350 if (!btrfs_try_tree_write_lock(eb)) {
3351 flush = 1;
3352 flush_write_bio(epd);
3353 btrfs_tree_lock(eb);
3354 }
3355
3356 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3357 btrfs_tree_unlock(eb);
3358 if (!epd->sync_io)
3359 return 0;
3360 if (!flush) {
3361 flush_write_bio(epd);
3362 flush = 1;
3363 }
a098d8e8
CM
3364 while (1) {
3365 wait_on_extent_buffer_writeback(eb);
3366 btrfs_tree_lock(eb);
3367 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3368 break;
0b32f4bb 3369 btrfs_tree_unlock(eb);
0b32f4bb
JB
3370 }
3371 }
3372
51561ffe
JB
3373 /*
3374 * We need to do this to prevent races in people who check if the eb is
3375 * under IO since we can end up having no IO bits set for a short period
3376 * of time.
3377 */
3378 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3379 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3380 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3381 spin_unlock(&eb->refs_lock);
0b32f4bb 3382 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3383 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3384 -eb->len,
3385 fs_info->dirty_metadata_batch);
0b32f4bb 3386 ret = 1;
51561ffe
JB
3387 } else {
3388 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3389 }
3390
3391 btrfs_tree_unlock(eb);
3392
3393 if (!ret)
3394 return ret;
3395
3396 num_pages = num_extent_pages(eb->start, eb->len);
3397 for (i = 0; i < num_pages; i++) {
3398 struct page *p = extent_buffer_page(eb, i);
3399
3400 if (!trylock_page(p)) {
3401 if (!flush) {
3402 flush_write_bio(epd);
3403 flush = 1;
3404 }
3405 lock_page(p);
3406 }
3407 }
3408
3409 return ret;
3410}
3411
3412static void end_extent_buffer_writeback(struct extent_buffer *eb)
3413{
3414 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3415 smp_mb__after_clear_bit();
3416 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3417}
3418
3419static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3420{
3421 int uptodate = err == 0;
3422 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3423 struct extent_buffer *eb;
3424 int done;
3425
3426 do {
3427 struct page *page = bvec->bv_page;
3428
3429 bvec--;
3430 eb = (struct extent_buffer *)page->private;
3431 BUG_ON(!eb);
3432 done = atomic_dec_and_test(&eb->io_pages);
3433
3434 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3435 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3436 ClearPageUptodate(page);
3437 SetPageError(page);
3438 }
3439
3440 end_page_writeback(page);
3441
3442 if (!done)
3443 continue;
3444
3445 end_extent_buffer_writeback(eb);
3446 } while (bvec >= bio->bi_io_vec);
3447
3448 bio_put(bio);
3449
3450}
3451
3452static int write_one_eb(struct extent_buffer *eb,
3453 struct btrfs_fs_info *fs_info,
3454 struct writeback_control *wbc,
3455 struct extent_page_data *epd)
3456{
3457 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3458 u64 offset = eb->start;
3459 unsigned long i, num_pages;
de0022b9 3460 unsigned long bio_flags = 0;
d4c7ca86 3461 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3462 int ret = 0;
0b32f4bb
JB
3463
3464 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3465 num_pages = num_extent_pages(eb->start, eb->len);
3466 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3467 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3468 bio_flags = EXTENT_BIO_TREE_LOG;
3469
0b32f4bb
JB
3470 for (i = 0; i < num_pages; i++) {
3471 struct page *p = extent_buffer_page(eb, i);
3472
3473 clear_page_dirty_for_io(p);
3474 set_page_writeback(p);
3475 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3476 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3477 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3478 0, epd->bio_flags, bio_flags);
3479 epd->bio_flags = bio_flags;
0b32f4bb
JB
3480 if (ret) {
3481 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3482 SetPageError(p);
3483 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3484 end_extent_buffer_writeback(eb);
3485 ret = -EIO;
3486 break;
3487 }
3488 offset += PAGE_CACHE_SIZE;
3489 update_nr_written(p, wbc, 1);
3490 unlock_page(p);
3491 }
3492
3493 if (unlikely(ret)) {
3494 for (; i < num_pages; i++) {
3495 struct page *p = extent_buffer_page(eb, i);
3496 unlock_page(p);
3497 }
3498 }
3499
3500 return ret;
3501}
3502
3503int btree_write_cache_pages(struct address_space *mapping,
3504 struct writeback_control *wbc)
3505{
3506 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3507 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3508 struct extent_buffer *eb, *prev_eb = NULL;
3509 struct extent_page_data epd = {
3510 .bio = NULL,
3511 .tree = tree,
3512 .extent_locked = 0,
3513 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3514 .bio_flags = 0,
0b32f4bb
JB
3515 };
3516 int ret = 0;
3517 int done = 0;
3518 int nr_to_write_done = 0;
3519 struct pagevec pvec;
3520 int nr_pages;
3521 pgoff_t index;
3522 pgoff_t end; /* Inclusive */
3523 int scanned = 0;
3524 int tag;
3525
3526 pagevec_init(&pvec, 0);
3527 if (wbc->range_cyclic) {
3528 index = mapping->writeback_index; /* Start from prev offset */
3529 end = -1;
3530 } else {
3531 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3532 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3533 scanned = 1;
3534 }
3535 if (wbc->sync_mode == WB_SYNC_ALL)
3536 tag = PAGECACHE_TAG_TOWRITE;
3537 else
3538 tag = PAGECACHE_TAG_DIRTY;
3539retry:
3540 if (wbc->sync_mode == WB_SYNC_ALL)
3541 tag_pages_for_writeback(mapping, index, end);
3542 while (!done && !nr_to_write_done && (index <= end) &&
3543 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3544 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3545 unsigned i;
3546
3547 scanned = 1;
3548 for (i = 0; i < nr_pages; i++) {
3549 struct page *page = pvec.pages[i];
3550
3551 if (!PagePrivate(page))
3552 continue;
3553
3554 if (!wbc->range_cyclic && page->index > end) {
3555 done = 1;
3556 break;
3557 }
3558
b5bae261
JB
3559 spin_lock(&mapping->private_lock);
3560 if (!PagePrivate(page)) {
3561 spin_unlock(&mapping->private_lock);
3562 continue;
3563 }
3564
0b32f4bb 3565 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3566
3567 /*
3568 * Shouldn't happen and normally this would be a BUG_ON
3569 * but no sense in crashing the users box for something
3570 * we can survive anyway.
3571 */
0b32f4bb 3572 if (!eb) {
b5bae261 3573 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3574 WARN_ON(1);
3575 continue;
3576 }
3577
b5bae261
JB
3578 if (eb == prev_eb) {
3579 spin_unlock(&mapping->private_lock);
0b32f4bb 3580 continue;
b5bae261 3581 }
0b32f4bb 3582
b5bae261
JB
3583 ret = atomic_inc_not_zero(&eb->refs);
3584 spin_unlock(&mapping->private_lock);
3585 if (!ret)
0b32f4bb 3586 continue;
0b32f4bb
JB
3587
3588 prev_eb = eb;
3589 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3590 if (!ret) {
3591 free_extent_buffer(eb);
3592 continue;
3593 }
3594
3595 ret = write_one_eb(eb, fs_info, wbc, &epd);
3596 if (ret) {
3597 done = 1;
3598 free_extent_buffer(eb);
3599 break;
3600 }
3601 free_extent_buffer(eb);
3602
3603 /*
3604 * the filesystem may choose to bump up nr_to_write.
3605 * We have to make sure to honor the new nr_to_write
3606 * at any time
3607 */
3608 nr_to_write_done = wbc->nr_to_write <= 0;
3609 }
3610 pagevec_release(&pvec);
3611 cond_resched();
3612 }
3613 if (!scanned && !done) {
3614 /*
3615 * We hit the last page and there is more work to be done: wrap
3616 * back to the start of the file
3617 */
3618 scanned = 1;
3619 index = 0;
3620 goto retry;
3621 }
3622 flush_write_bio(&epd);
3623 return ret;
3624}
3625
d1310b2e 3626/**
4bef0848 3627 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3628 * @mapping: address space structure to write
3629 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3630 * @writepage: function called for each page
3631 * @data: data passed to writepage function
3632 *
3633 * If a page is already under I/O, write_cache_pages() skips it, even
3634 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3635 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3636 * and msync() need to guarantee that all the data which was dirty at the time
3637 * the call was made get new I/O started against them. If wbc->sync_mode is
3638 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3639 * existing IO to complete.
3640 */
b2950863 3641static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3642 struct address_space *mapping,
3643 struct writeback_control *wbc,
d2c3f4f6
CM
3644 writepage_t writepage, void *data,
3645 void (*flush_fn)(void *))
d1310b2e 3646{
7fd1a3f7 3647 struct inode *inode = mapping->host;
d1310b2e
CM
3648 int ret = 0;
3649 int done = 0;
f85d7d6c 3650 int nr_to_write_done = 0;
d1310b2e
CM
3651 struct pagevec pvec;
3652 int nr_pages;
3653 pgoff_t index;
3654 pgoff_t end; /* Inclusive */
3655 int scanned = 0;
f7aaa06b 3656 int tag;
d1310b2e 3657
7fd1a3f7
JB
3658 /*
3659 * We have to hold onto the inode so that ordered extents can do their
3660 * work when the IO finishes. The alternative to this is failing to add
3661 * an ordered extent if the igrab() fails there and that is a huge pain
3662 * to deal with, so instead just hold onto the inode throughout the
3663 * writepages operation. If it fails here we are freeing up the inode
3664 * anyway and we'd rather not waste our time writing out stuff that is
3665 * going to be truncated anyway.
3666 */
3667 if (!igrab(inode))
3668 return 0;
3669
d1310b2e
CM
3670 pagevec_init(&pvec, 0);
3671 if (wbc->range_cyclic) {
3672 index = mapping->writeback_index; /* Start from prev offset */
3673 end = -1;
3674 } else {
3675 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3676 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3677 scanned = 1;
3678 }
f7aaa06b
JB
3679 if (wbc->sync_mode == WB_SYNC_ALL)
3680 tag = PAGECACHE_TAG_TOWRITE;
3681 else
3682 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3683retry:
f7aaa06b
JB
3684 if (wbc->sync_mode == WB_SYNC_ALL)
3685 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3686 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3687 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3688 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3689 unsigned i;
3690
3691 scanned = 1;
3692 for (i = 0; i < nr_pages; i++) {
3693 struct page *page = pvec.pages[i];
3694
3695 /*
3696 * At this point we hold neither mapping->tree_lock nor
3697 * lock on the page itself: the page may be truncated or
3698 * invalidated (changing page->mapping to NULL), or even
3699 * swizzled back from swapper_space to tmpfs file
3700 * mapping
3701 */
c8f2f24b
JB
3702 if (!trylock_page(page)) {
3703 flush_fn(data);
3704 lock_page(page);
01d658f2 3705 }
d1310b2e
CM
3706
3707 if (unlikely(page->mapping != mapping)) {
3708 unlock_page(page);
3709 continue;
3710 }
3711
3712 if (!wbc->range_cyclic && page->index > end) {
3713 done = 1;
3714 unlock_page(page);
3715 continue;
3716 }
3717
d2c3f4f6 3718 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3719 if (PageWriteback(page))
3720 flush_fn(data);
d1310b2e 3721 wait_on_page_writeback(page);
d2c3f4f6 3722 }
d1310b2e
CM
3723
3724 if (PageWriteback(page) ||
3725 !clear_page_dirty_for_io(page)) {
3726 unlock_page(page);
3727 continue;
3728 }
3729
3730 ret = (*writepage)(page, wbc, data);
3731
3732 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3733 unlock_page(page);
3734 ret = 0;
3735 }
f85d7d6c 3736 if (ret)
d1310b2e 3737 done = 1;
f85d7d6c
CM
3738
3739 /*
3740 * the filesystem may choose to bump up nr_to_write.
3741 * We have to make sure to honor the new nr_to_write
3742 * at any time
3743 */
3744 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3745 }
3746 pagevec_release(&pvec);
3747 cond_resched();
3748 }
3749 if (!scanned && !done) {
3750 /*
3751 * We hit the last page and there is more work to be done: wrap
3752 * back to the start of the file
3753 */
3754 scanned = 1;
3755 index = 0;
3756 goto retry;
3757 }
7fd1a3f7 3758 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3759 return ret;
3760}
d1310b2e 3761
ffbd517d 3762static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3763{
d2c3f4f6 3764 if (epd->bio) {
355808c2
JM
3765 int rw = WRITE;
3766 int ret;
3767
ffbd517d 3768 if (epd->sync_io)
355808c2
JM
3769 rw = WRITE_SYNC;
3770
de0022b9 3771 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3772 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3773 epd->bio = NULL;
3774 }
3775}
3776
ffbd517d
CM
3777static noinline void flush_write_bio(void *data)
3778{
3779 struct extent_page_data *epd = data;
3780 flush_epd_write_bio(epd);
3781}
3782
d1310b2e
CM
3783int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3784 get_extent_t *get_extent,
3785 struct writeback_control *wbc)
3786{
3787 int ret;
d1310b2e
CM
3788 struct extent_page_data epd = {
3789 .bio = NULL,
3790 .tree = tree,
3791 .get_extent = get_extent,
771ed689 3792 .extent_locked = 0,
ffbd517d 3793 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3794 .bio_flags = 0,
d1310b2e 3795 };
d1310b2e 3796
d1310b2e
CM
3797 ret = __extent_writepage(page, wbc, &epd);
3798
ffbd517d 3799 flush_epd_write_bio(&epd);
d1310b2e
CM
3800 return ret;
3801}
d1310b2e 3802
771ed689
CM
3803int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3804 u64 start, u64 end, get_extent_t *get_extent,
3805 int mode)
3806{
3807 int ret = 0;
3808 struct address_space *mapping = inode->i_mapping;
3809 struct page *page;
3810 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3811 PAGE_CACHE_SHIFT;
3812
3813 struct extent_page_data epd = {
3814 .bio = NULL,
3815 .tree = tree,
3816 .get_extent = get_extent,
3817 .extent_locked = 1,
ffbd517d 3818 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3819 .bio_flags = 0,
771ed689
CM
3820 };
3821 struct writeback_control wbc_writepages = {
771ed689 3822 .sync_mode = mode,
771ed689
CM
3823 .nr_to_write = nr_pages * 2,
3824 .range_start = start,
3825 .range_end = end + 1,
3826 };
3827
d397712b 3828 while (start <= end) {
771ed689
CM
3829 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3830 if (clear_page_dirty_for_io(page))
3831 ret = __extent_writepage(page, &wbc_writepages, &epd);
3832 else {
3833 if (tree->ops && tree->ops->writepage_end_io_hook)
3834 tree->ops->writepage_end_io_hook(page, start,
3835 start + PAGE_CACHE_SIZE - 1,
3836 NULL, 1);
3837 unlock_page(page);
3838 }
3839 page_cache_release(page);
3840 start += PAGE_CACHE_SIZE;
3841 }
3842
ffbd517d 3843 flush_epd_write_bio(&epd);
771ed689
CM
3844 return ret;
3845}
d1310b2e
CM
3846
3847int extent_writepages(struct extent_io_tree *tree,
3848 struct address_space *mapping,
3849 get_extent_t *get_extent,
3850 struct writeback_control *wbc)
3851{
3852 int ret = 0;
3853 struct extent_page_data epd = {
3854 .bio = NULL,
3855 .tree = tree,
3856 .get_extent = get_extent,
771ed689 3857 .extent_locked = 0,
ffbd517d 3858 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3859 .bio_flags = 0,
d1310b2e
CM
3860 };
3861
4bef0848 3862 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3863 __extent_writepage, &epd,
3864 flush_write_bio);
ffbd517d 3865 flush_epd_write_bio(&epd);
d1310b2e
CM
3866 return ret;
3867}
d1310b2e
CM
3868
3869int extent_readpages(struct extent_io_tree *tree,
3870 struct address_space *mapping,
3871 struct list_head *pages, unsigned nr_pages,
3872 get_extent_t get_extent)
3873{
3874 struct bio *bio = NULL;
3875 unsigned page_idx;
c8b97818 3876 unsigned long bio_flags = 0;
67c9684f
LB
3877 struct page *pagepool[16];
3878 struct page *page;
125bac01 3879 struct extent_map *em_cached = NULL;
67c9684f 3880 int nr = 0;
d1310b2e 3881
d1310b2e 3882 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3883 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3884
3885 prefetchw(&page->flags);
3886 list_del(&page->lru);
67c9684f 3887 if (add_to_page_cache_lru(page, mapping,
43e817a1 3888 page->index, GFP_NOFS)) {
67c9684f
LB
3889 page_cache_release(page);
3890 continue;
d1310b2e 3891 }
67c9684f
LB
3892
3893 pagepool[nr++] = page;
3894 if (nr < ARRAY_SIZE(pagepool))
3895 continue;
125bac01 3896 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3897 &bio, 0, &bio_flags, READ);
67c9684f 3898 nr = 0;
d1310b2e 3899 }
9974090b 3900 if (nr)
125bac01 3901 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3902 &bio, 0, &bio_flags, READ);
67c9684f 3903
125bac01
MX
3904 if (em_cached)
3905 free_extent_map(em_cached);
3906
d1310b2e
CM
3907 BUG_ON(!list_empty(pages));
3908 if (bio)
79787eaa 3909 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3910 return 0;
3911}
d1310b2e
CM
3912
3913/*
3914 * basic invalidatepage code, this waits on any locked or writeback
3915 * ranges corresponding to the page, and then deletes any extent state
3916 * records from the tree
3917 */
3918int extent_invalidatepage(struct extent_io_tree *tree,
3919 struct page *page, unsigned long offset)
3920{
2ac55d41 3921 struct extent_state *cached_state = NULL;
4eee4fa4 3922 u64 start = page_offset(page);
d1310b2e
CM
3923 u64 end = start + PAGE_CACHE_SIZE - 1;
3924 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3925
fda2832f 3926 start += ALIGN(offset, blocksize);
d1310b2e
CM
3927 if (start > end)
3928 return 0;
3929
d0082371 3930 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3931 wait_on_page_writeback(page);
d1310b2e 3932 clear_extent_bit(tree, start, end,
32c00aff
JB
3933 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3934 EXTENT_DO_ACCOUNTING,
2ac55d41 3935 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3936 return 0;
3937}
d1310b2e 3938
7b13b7b1
CM
3939/*
3940 * a helper for releasepage, this tests for areas of the page that
3941 * are locked or under IO and drops the related state bits if it is safe
3942 * to drop the page.
3943 */
48a3b636
ES
3944static int try_release_extent_state(struct extent_map_tree *map,
3945 struct extent_io_tree *tree,
3946 struct page *page, gfp_t mask)
7b13b7b1 3947{
4eee4fa4 3948 u64 start = page_offset(page);
7b13b7b1
CM
3949 u64 end = start + PAGE_CACHE_SIZE - 1;
3950 int ret = 1;
3951
211f90e6 3952 if (test_range_bit(tree, start, end,
8b62b72b 3953 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3954 ret = 0;
3955 else {
3956 if ((mask & GFP_NOFS) == GFP_NOFS)
3957 mask = GFP_NOFS;
11ef160f
CM
3958 /*
3959 * at this point we can safely clear everything except the
3960 * locked bit and the nodatasum bit
3961 */
e3f24cc5 3962 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3963 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3964 0, 0, NULL, mask);
e3f24cc5
CM
3965
3966 /* if clear_extent_bit failed for enomem reasons,
3967 * we can't allow the release to continue.
3968 */
3969 if (ret < 0)
3970 ret = 0;
3971 else
3972 ret = 1;
7b13b7b1
CM
3973 }
3974 return ret;
3975}
7b13b7b1 3976
d1310b2e
CM
3977/*
3978 * a helper for releasepage. As long as there are no locked extents
3979 * in the range corresponding to the page, both state records and extent
3980 * map records are removed
3981 */
3982int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3983 struct extent_io_tree *tree, struct page *page,
3984 gfp_t mask)
d1310b2e
CM
3985{
3986 struct extent_map *em;
4eee4fa4 3987 u64 start = page_offset(page);
d1310b2e 3988 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3989
70dec807
CM
3990 if ((mask & __GFP_WAIT) &&
3991 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3992 u64 len;
70dec807 3993 while (start <= end) {
39b5637f 3994 len = end - start + 1;
890871be 3995 write_lock(&map->lock);
39b5637f 3996 em = lookup_extent_mapping(map, start, len);
285190d9 3997 if (!em) {
890871be 3998 write_unlock(&map->lock);
70dec807
CM
3999 break;
4000 }
7f3c74fb
CM
4001 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4002 em->start != start) {
890871be 4003 write_unlock(&map->lock);
70dec807
CM
4004 free_extent_map(em);
4005 break;
4006 }
4007 if (!test_range_bit(tree, em->start,
4008 extent_map_end(em) - 1,
8b62b72b 4009 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4010 0, NULL)) {
70dec807
CM
4011 remove_extent_mapping(map, em);
4012 /* once for the rb tree */
4013 free_extent_map(em);
4014 }
4015 start = extent_map_end(em);
890871be 4016 write_unlock(&map->lock);
70dec807
CM
4017
4018 /* once for us */
d1310b2e
CM
4019 free_extent_map(em);
4020 }
d1310b2e 4021 }
7b13b7b1 4022 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4023}
d1310b2e 4024
ec29ed5b
CM
4025/*
4026 * helper function for fiemap, which doesn't want to see any holes.
4027 * This maps until we find something past 'last'
4028 */
4029static struct extent_map *get_extent_skip_holes(struct inode *inode,
4030 u64 offset,
4031 u64 last,
4032 get_extent_t *get_extent)
4033{
4034 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4035 struct extent_map *em;
4036 u64 len;
4037
4038 if (offset >= last)
4039 return NULL;
4040
4041 while(1) {
4042 len = last - offset;
4043 if (len == 0)
4044 break;
fda2832f 4045 len = ALIGN(len, sectorsize);
ec29ed5b 4046 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4047 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4048 return em;
4049
4050 /* if this isn't a hole return it */
4051 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4052 em->block_start != EXTENT_MAP_HOLE) {
4053 return em;
4054 }
4055
4056 /* this is a hole, advance to the next extent */
4057 offset = extent_map_end(em);
4058 free_extent_map(em);
4059 if (offset >= last)
4060 break;
4061 }
4062 return NULL;
4063}
4064
1506fcc8
YS
4065int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4066 __u64 start, __u64 len, get_extent_t *get_extent)
4067{
975f84fe 4068 int ret = 0;
1506fcc8
YS
4069 u64 off = start;
4070 u64 max = start + len;
4071 u32 flags = 0;
975f84fe
JB
4072 u32 found_type;
4073 u64 last;
ec29ed5b 4074 u64 last_for_get_extent = 0;
1506fcc8 4075 u64 disko = 0;
ec29ed5b 4076 u64 isize = i_size_read(inode);
975f84fe 4077 struct btrfs_key found_key;
1506fcc8 4078 struct extent_map *em = NULL;
2ac55d41 4079 struct extent_state *cached_state = NULL;
975f84fe
JB
4080 struct btrfs_path *path;
4081 struct btrfs_file_extent_item *item;
1506fcc8 4082 int end = 0;
ec29ed5b
CM
4083 u64 em_start = 0;
4084 u64 em_len = 0;
4085 u64 em_end = 0;
1506fcc8 4086 unsigned long emflags;
1506fcc8
YS
4087
4088 if (len == 0)
4089 return -EINVAL;
4090
975f84fe
JB
4091 path = btrfs_alloc_path();
4092 if (!path)
4093 return -ENOMEM;
4094 path->leave_spinning = 1;
4095
4d479cf0
JB
4096 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4097 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4098
ec29ed5b
CM
4099 /*
4100 * lookup the last file extent. We're not using i_size here
4101 * because there might be preallocation past i_size
4102 */
975f84fe 4103 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4104 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4105 if (ret < 0) {
4106 btrfs_free_path(path);
4107 return ret;
4108 }
4109 WARN_ON(!ret);
4110 path->slots[0]--;
4111 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4112 struct btrfs_file_extent_item);
4113 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4114 found_type = btrfs_key_type(&found_key);
4115
ec29ed5b 4116 /* No extents, but there might be delalloc bits */
33345d01 4117 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4118 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4119 /* have to trust i_size as the end */
4120 last = (u64)-1;
4121 last_for_get_extent = isize;
4122 } else {
4123 /*
4124 * remember the start of the last extent. There are a
4125 * bunch of different factors that go into the length of the
4126 * extent, so its much less complex to remember where it started
4127 */
4128 last = found_key.offset;
4129 last_for_get_extent = last + 1;
975f84fe 4130 }
975f84fe
JB
4131 btrfs_free_path(path);
4132
ec29ed5b
CM
4133 /*
4134 * we might have some extents allocated but more delalloc past those
4135 * extents. so, we trust isize unless the start of the last extent is
4136 * beyond isize
4137 */
4138 if (last < isize) {
4139 last = (u64)-1;
4140 last_for_get_extent = isize;
4141 }
4142
a52f4cd2 4143 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4144 &cached_state);
ec29ed5b 4145
4d479cf0 4146 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4147 get_extent);
1506fcc8
YS
4148 if (!em)
4149 goto out;
4150 if (IS_ERR(em)) {
4151 ret = PTR_ERR(em);
4152 goto out;
4153 }
975f84fe 4154
1506fcc8 4155 while (!end) {
b76bb701 4156 u64 offset_in_extent = 0;
ea8efc74
CM
4157
4158 /* break if the extent we found is outside the range */
4159 if (em->start >= max || extent_map_end(em) < off)
4160 break;
4161
4162 /*
4163 * get_extent may return an extent that starts before our
4164 * requested range. We have to make sure the ranges
4165 * we return to fiemap always move forward and don't
4166 * overlap, so adjust the offsets here
4167 */
4168 em_start = max(em->start, off);
1506fcc8 4169
ea8efc74
CM
4170 /*
4171 * record the offset from the start of the extent
b76bb701
JB
4172 * for adjusting the disk offset below. Only do this if the
4173 * extent isn't compressed since our in ram offset may be past
4174 * what we have actually allocated on disk.
ea8efc74 4175 */
b76bb701
JB
4176 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4177 offset_in_extent = em_start - em->start;
ec29ed5b 4178 em_end = extent_map_end(em);
ea8efc74 4179 em_len = em_end - em_start;
ec29ed5b 4180 emflags = em->flags;
1506fcc8
YS
4181 disko = 0;
4182 flags = 0;
4183
ea8efc74
CM
4184 /*
4185 * bump off for our next call to get_extent
4186 */
4187 off = extent_map_end(em);
4188 if (off >= max)
4189 end = 1;
4190
93dbfad7 4191 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4192 end = 1;
4193 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4194 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4195 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4196 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4197 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4198 flags |= (FIEMAP_EXTENT_DELALLOC |
4199 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4200 } else {
ea8efc74 4201 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4202 }
4203 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4204 flags |= FIEMAP_EXTENT_ENCODED;
4205
1506fcc8
YS
4206 free_extent_map(em);
4207 em = NULL;
ec29ed5b
CM
4208 if ((em_start >= last) || em_len == (u64)-1 ||
4209 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4210 flags |= FIEMAP_EXTENT_LAST;
4211 end = 1;
4212 }
4213
ec29ed5b
CM
4214 /* now scan forward to see if this is really the last extent. */
4215 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4216 get_extent);
4217 if (IS_ERR(em)) {
4218 ret = PTR_ERR(em);
4219 goto out;
4220 }
4221 if (!em) {
975f84fe
JB
4222 flags |= FIEMAP_EXTENT_LAST;
4223 end = 1;
4224 }
ec29ed5b
CM
4225 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4226 em_len, flags);
4227 if (ret)
4228 goto out_free;
1506fcc8
YS
4229 }
4230out_free:
4231 free_extent_map(em);
4232out:
a52f4cd2 4233 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4234 &cached_state, GFP_NOFS);
1506fcc8
YS
4235 return ret;
4236}
4237
727011e0
CM
4238static void __free_extent_buffer(struct extent_buffer *eb)
4239{
6d49ba1b 4240 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4241 kmem_cache_free(extent_buffer_cache, eb);
4242}
4243
db7f3436
JB
4244static int extent_buffer_under_io(struct extent_buffer *eb)
4245{
4246 return (atomic_read(&eb->io_pages) ||
4247 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4248 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4249}
4250
4251/*
4252 * Helper for releasing extent buffer page.
4253 */
4254static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4255 unsigned long start_idx)
4256{
4257 unsigned long index;
4258 unsigned long num_pages;
4259 struct page *page;
4260 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4261
4262 BUG_ON(extent_buffer_under_io(eb));
4263
4264 num_pages = num_extent_pages(eb->start, eb->len);
4265 index = start_idx + num_pages;
4266 if (start_idx >= index)
4267 return;
4268
4269 do {
4270 index--;
4271 page = extent_buffer_page(eb, index);
4272 if (page && mapped) {
4273 spin_lock(&page->mapping->private_lock);
4274 /*
4275 * We do this since we'll remove the pages after we've
4276 * removed the eb from the radix tree, so we could race
4277 * and have this page now attached to the new eb. So
4278 * only clear page_private if it's still connected to
4279 * this eb.
4280 */
4281 if (PagePrivate(page) &&
4282 page->private == (unsigned long)eb) {
4283 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4284 BUG_ON(PageDirty(page));
4285 BUG_ON(PageWriteback(page));
4286 /*
4287 * We need to make sure we haven't be attached
4288 * to a new eb.
4289 */
4290 ClearPagePrivate(page);
4291 set_page_private(page, 0);
4292 /* One for the page private */
4293 page_cache_release(page);
4294 }
4295 spin_unlock(&page->mapping->private_lock);
4296
4297 }
4298 if (page) {
4299 /* One for when we alloced the page */
4300 page_cache_release(page);
4301 }
4302 } while (index != start_idx);
4303}
4304
4305/*
4306 * Helper for releasing the extent buffer.
4307 */
4308static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4309{
4310 btrfs_release_extent_buffer_page(eb, 0);
4311 __free_extent_buffer(eb);
4312}
4313
d1310b2e
CM
4314static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4315 u64 start,
4316 unsigned long len,
4317 gfp_t mask)
4318{
4319 struct extent_buffer *eb = NULL;
4320
d1310b2e 4321 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4322 if (eb == NULL)
4323 return NULL;
d1310b2e
CM
4324 eb->start = start;
4325 eb->len = len;
4f2de97a 4326 eb->tree = tree;
815a51c7 4327 eb->bflags = 0;
bd681513
CM
4328 rwlock_init(&eb->lock);
4329 atomic_set(&eb->write_locks, 0);
4330 atomic_set(&eb->read_locks, 0);
4331 atomic_set(&eb->blocking_readers, 0);
4332 atomic_set(&eb->blocking_writers, 0);
4333 atomic_set(&eb->spinning_readers, 0);
4334 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4335 eb->lock_nested = 0;
bd681513
CM
4336 init_waitqueue_head(&eb->write_lock_wq);
4337 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4338
6d49ba1b
ES
4339 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4340
3083ee2e 4341 spin_lock_init(&eb->refs_lock);
d1310b2e 4342 atomic_set(&eb->refs, 1);
0b32f4bb 4343 atomic_set(&eb->io_pages, 0);
727011e0 4344
b8dae313
DS
4345 /*
4346 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4347 */
4348 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4349 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4350 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4351
4352 return eb;
4353}
4354
815a51c7
JS
4355struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4356{
4357 unsigned long i;
4358 struct page *p;
4359 struct extent_buffer *new;
4360 unsigned long num_pages = num_extent_pages(src->start, src->len);
4361
9ec72677 4362 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4363 if (new == NULL)
4364 return NULL;
4365
4366 for (i = 0; i < num_pages; i++) {
9ec72677 4367 p = alloc_page(GFP_NOFS);
db7f3436
JB
4368 if (!p) {
4369 btrfs_release_extent_buffer(new);
4370 return NULL;
4371 }
815a51c7
JS
4372 attach_extent_buffer_page(new, p);
4373 WARN_ON(PageDirty(p));
4374 SetPageUptodate(p);
4375 new->pages[i] = p;
4376 }
4377
4378 copy_extent_buffer(new, src, 0, 0, src->len);
4379 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4380 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4381
4382 return new;
4383}
4384
4385struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4386{
4387 struct extent_buffer *eb;
4388 unsigned long num_pages = num_extent_pages(0, len);
4389 unsigned long i;
4390
9ec72677 4391 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4392 if (!eb)
4393 return NULL;
4394
4395 for (i = 0; i < num_pages; i++) {
9ec72677 4396 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4397 if (!eb->pages[i])
4398 goto err;
4399 }
4400 set_extent_buffer_uptodate(eb);
4401 btrfs_set_header_nritems(eb, 0);
4402 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4403
4404 return eb;
4405err:
84167d19
SB
4406 for (; i > 0; i--)
4407 __free_page(eb->pages[i - 1]);
815a51c7
JS
4408 __free_extent_buffer(eb);
4409 return NULL;
4410}
4411
0b32f4bb
JB
4412static void check_buffer_tree_ref(struct extent_buffer *eb)
4413{
242e18c7 4414 int refs;
0b32f4bb
JB
4415 /* the ref bit is tricky. We have to make sure it is set
4416 * if we have the buffer dirty. Otherwise the
4417 * code to free a buffer can end up dropping a dirty
4418 * page
4419 *
4420 * Once the ref bit is set, it won't go away while the
4421 * buffer is dirty or in writeback, and it also won't
4422 * go away while we have the reference count on the
4423 * eb bumped.
4424 *
4425 * We can't just set the ref bit without bumping the
4426 * ref on the eb because free_extent_buffer might
4427 * see the ref bit and try to clear it. If this happens
4428 * free_extent_buffer might end up dropping our original
4429 * ref by mistake and freeing the page before we are able
4430 * to add one more ref.
4431 *
4432 * So bump the ref count first, then set the bit. If someone
4433 * beat us to it, drop the ref we added.
4434 */
242e18c7
CM
4435 refs = atomic_read(&eb->refs);
4436 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4437 return;
4438
594831c4
JB
4439 spin_lock(&eb->refs_lock);
4440 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4441 atomic_inc(&eb->refs);
594831c4 4442 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4443}
4444
5df4235e
JB
4445static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4446{
4447 unsigned long num_pages, i;
4448
0b32f4bb
JB
4449 check_buffer_tree_ref(eb);
4450
5df4235e
JB
4451 num_pages = num_extent_pages(eb->start, eb->len);
4452 for (i = 0; i < num_pages; i++) {
4453 struct page *p = extent_buffer_page(eb, i);
4454 mark_page_accessed(p);
4455 }
4456}
4457
d1310b2e 4458struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4459 u64 start, unsigned long len)
d1310b2e
CM
4460{
4461 unsigned long num_pages = num_extent_pages(start, len);
4462 unsigned long i;
4463 unsigned long index = start >> PAGE_CACHE_SHIFT;
4464 struct extent_buffer *eb;
6af118ce 4465 struct extent_buffer *exists = NULL;
d1310b2e
CM
4466 struct page *p;
4467 struct address_space *mapping = tree->mapping;
4468 int uptodate = 1;
19fe0a8b 4469 int ret;
d1310b2e 4470
19fe0a8b
MX
4471 rcu_read_lock();
4472 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4473 if (eb && atomic_inc_not_zero(&eb->refs)) {
4474 rcu_read_unlock();
5df4235e 4475 mark_extent_buffer_accessed(eb);
6af118ce
CM
4476 return eb;
4477 }
19fe0a8b 4478 rcu_read_unlock();
6af118ce 4479
ba144192 4480 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4481 if (!eb)
d1310b2e
CM
4482 return NULL;
4483
727011e0 4484 for (i = 0; i < num_pages; i++, index++) {
a6591715 4485 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4486 if (!p)
6af118ce 4487 goto free_eb;
4f2de97a
JB
4488
4489 spin_lock(&mapping->private_lock);
4490 if (PagePrivate(p)) {
4491 /*
4492 * We could have already allocated an eb for this page
4493 * and attached one so lets see if we can get a ref on
4494 * the existing eb, and if we can we know it's good and
4495 * we can just return that one, else we know we can just
4496 * overwrite page->private.
4497 */
4498 exists = (struct extent_buffer *)p->private;
4499 if (atomic_inc_not_zero(&exists->refs)) {
4500 spin_unlock(&mapping->private_lock);
4501 unlock_page(p);
17de39ac 4502 page_cache_release(p);
5df4235e 4503 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4504 goto free_eb;
4505 }
4506
0b32f4bb 4507 /*
4f2de97a
JB
4508 * Do this so attach doesn't complain and we need to
4509 * drop the ref the old guy had.
4510 */
4511 ClearPagePrivate(p);
0b32f4bb 4512 WARN_ON(PageDirty(p));
4f2de97a 4513 page_cache_release(p);
d1310b2e 4514 }
4f2de97a
JB
4515 attach_extent_buffer_page(eb, p);
4516 spin_unlock(&mapping->private_lock);
0b32f4bb 4517 WARN_ON(PageDirty(p));
d1310b2e 4518 mark_page_accessed(p);
727011e0 4519 eb->pages[i] = p;
d1310b2e
CM
4520 if (!PageUptodate(p))
4521 uptodate = 0;
eb14ab8e
CM
4522
4523 /*
4524 * see below about how we avoid a nasty race with release page
4525 * and why we unlock later
4526 */
d1310b2e
CM
4527 }
4528 if (uptodate)
b4ce94de 4529 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4530again:
19fe0a8b
MX
4531 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4532 if (ret)
4533 goto free_eb;
4534
6af118ce 4535 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4536 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4537 if (ret == -EEXIST) {
4538 exists = radix_tree_lookup(&tree->buffer,
4539 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4540 if (!atomic_inc_not_zero(&exists->refs)) {
4541 spin_unlock(&tree->buffer_lock);
4542 radix_tree_preload_end();
115391d2
JB
4543 exists = NULL;
4544 goto again;
4545 }
6af118ce 4546 spin_unlock(&tree->buffer_lock);
19fe0a8b 4547 radix_tree_preload_end();
5df4235e 4548 mark_extent_buffer_accessed(exists);
6af118ce
CM
4549 goto free_eb;
4550 }
6af118ce 4551 /* add one reference for the tree */
0b32f4bb 4552 check_buffer_tree_ref(eb);
f044ba78 4553 spin_unlock(&tree->buffer_lock);
19fe0a8b 4554 radix_tree_preload_end();
eb14ab8e
CM
4555
4556 /*
4557 * there is a race where release page may have
4558 * tried to find this extent buffer in the radix
4559 * but failed. It will tell the VM it is safe to
4560 * reclaim the, and it will clear the page private bit.
4561 * We must make sure to set the page private bit properly
4562 * after the extent buffer is in the radix tree so
4563 * it doesn't get lost
4564 */
727011e0
CM
4565 SetPageChecked(eb->pages[0]);
4566 for (i = 1; i < num_pages; i++) {
4567 p = extent_buffer_page(eb, i);
727011e0
CM
4568 ClearPageChecked(p);
4569 unlock_page(p);
4570 }
4571 unlock_page(eb->pages[0]);
d1310b2e
CM
4572 return eb;
4573
6af118ce 4574free_eb:
727011e0
CM
4575 for (i = 0; i < num_pages; i++) {
4576 if (eb->pages[i])
4577 unlock_page(eb->pages[i]);
4578 }
eb14ab8e 4579
17de39ac 4580 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4581 btrfs_release_extent_buffer(eb);
6af118ce 4582 return exists;
d1310b2e 4583}
d1310b2e
CM
4584
4585struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4586 u64 start, unsigned long len)
d1310b2e 4587{
d1310b2e 4588 struct extent_buffer *eb;
d1310b2e 4589
19fe0a8b
MX
4590 rcu_read_lock();
4591 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4592 if (eb && atomic_inc_not_zero(&eb->refs)) {
4593 rcu_read_unlock();
5df4235e 4594 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4595 return eb;
4596 }
4597 rcu_read_unlock();
0f9dd46c 4598
19fe0a8b 4599 return NULL;
d1310b2e 4600}
d1310b2e 4601
3083ee2e
JB
4602static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4603{
4604 struct extent_buffer *eb =
4605 container_of(head, struct extent_buffer, rcu_head);
4606
4607 __free_extent_buffer(eb);
4608}
4609
3083ee2e 4610/* Expects to have eb->eb_lock already held */
f7a52a40 4611static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4612{
4613 WARN_ON(atomic_read(&eb->refs) == 0);
4614 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4615 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4616 spin_unlock(&eb->refs_lock);
4617 } else {
4618 struct extent_io_tree *tree = eb->tree;
3083ee2e 4619
815a51c7 4620 spin_unlock(&eb->refs_lock);
3083ee2e 4621
815a51c7
JS
4622 spin_lock(&tree->buffer_lock);
4623 radix_tree_delete(&tree->buffer,
4624 eb->start >> PAGE_CACHE_SHIFT);
4625 spin_unlock(&tree->buffer_lock);
4626 }
3083ee2e
JB
4627
4628 /* Should be safe to release our pages at this point */
4629 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4630 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4631 return 1;
3083ee2e
JB
4632 }
4633 spin_unlock(&eb->refs_lock);
e64860aa
JB
4634
4635 return 0;
3083ee2e
JB
4636}
4637
d1310b2e
CM
4638void free_extent_buffer(struct extent_buffer *eb)
4639{
242e18c7
CM
4640 int refs;
4641 int old;
d1310b2e
CM
4642 if (!eb)
4643 return;
4644
242e18c7
CM
4645 while (1) {
4646 refs = atomic_read(&eb->refs);
4647 if (refs <= 3)
4648 break;
4649 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4650 if (old == refs)
4651 return;
4652 }
4653
3083ee2e 4654 spin_lock(&eb->refs_lock);
815a51c7
JS
4655 if (atomic_read(&eb->refs) == 2 &&
4656 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4657 atomic_dec(&eb->refs);
4658
3083ee2e
JB
4659 if (atomic_read(&eb->refs) == 2 &&
4660 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4661 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4662 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4663 atomic_dec(&eb->refs);
4664
4665 /*
4666 * I know this is terrible, but it's temporary until we stop tracking
4667 * the uptodate bits and such for the extent buffers.
4668 */
f7a52a40 4669 release_extent_buffer(eb);
3083ee2e
JB
4670}
4671
4672void free_extent_buffer_stale(struct extent_buffer *eb)
4673{
4674 if (!eb)
d1310b2e
CM
4675 return;
4676
3083ee2e
JB
4677 spin_lock(&eb->refs_lock);
4678 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4679
0b32f4bb 4680 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4681 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4682 atomic_dec(&eb->refs);
f7a52a40 4683 release_extent_buffer(eb);
d1310b2e 4684}
d1310b2e 4685
1d4284bd 4686void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4687{
d1310b2e
CM
4688 unsigned long i;
4689 unsigned long num_pages;
4690 struct page *page;
4691
d1310b2e
CM
4692 num_pages = num_extent_pages(eb->start, eb->len);
4693
4694 for (i = 0; i < num_pages; i++) {
4695 page = extent_buffer_page(eb, i);
b9473439 4696 if (!PageDirty(page))
d2c3f4f6
CM
4697 continue;
4698
a61e6f29 4699 lock_page(page);
eb14ab8e
CM
4700 WARN_ON(!PagePrivate(page));
4701
d1310b2e 4702 clear_page_dirty_for_io(page);
0ee0fda0 4703 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4704 if (!PageDirty(page)) {
4705 radix_tree_tag_clear(&page->mapping->page_tree,
4706 page_index(page),
4707 PAGECACHE_TAG_DIRTY);
4708 }
0ee0fda0 4709 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4710 ClearPageError(page);
a61e6f29 4711 unlock_page(page);
d1310b2e 4712 }
0b32f4bb 4713 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4714}
d1310b2e 4715
0b32f4bb 4716int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4717{
4718 unsigned long i;
4719 unsigned long num_pages;
b9473439 4720 int was_dirty = 0;
d1310b2e 4721
0b32f4bb
JB
4722 check_buffer_tree_ref(eb);
4723
b9473439 4724 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4725
d1310b2e 4726 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4727 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4728 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4729
b9473439 4730 for (i = 0; i < num_pages; i++)
0b32f4bb 4731 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4732 return was_dirty;
d1310b2e 4733}
d1310b2e 4734
0b32f4bb 4735int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4736{
4737 unsigned long i;
4738 struct page *page;
4739 unsigned long num_pages;
4740
b4ce94de 4741 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4742 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4743 for (i = 0; i < num_pages; i++) {
4744 page = extent_buffer_page(eb, i);
33958dc6
CM
4745 if (page)
4746 ClearPageUptodate(page);
1259ab75
CM
4747 }
4748 return 0;
4749}
4750
0b32f4bb 4751int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4752{
4753 unsigned long i;
4754 struct page *page;
4755 unsigned long num_pages;
4756
0b32f4bb 4757 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4758 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4759 for (i = 0; i < num_pages; i++) {
4760 page = extent_buffer_page(eb, i);
d1310b2e
CM
4761 SetPageUptodate(page);
4762 }
4763 return 0;
4764}
d1310b2e 4765
0b32f4bb 4766int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4767{
0b32f4bb 4768 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4769}
d1310b2e
CM
4770
4771int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4772 struct extent_buffer *eb, u64 start, int wait,
f188591e 4773 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4774{
4775 unsigned long i;
4776 unsigned long start_i;
4777 struct page *page;
4778 int err;
4779 int ret = 0;
ce9adaa5
CM
4780 int locked_pages = 0;
4781 int all_uptodate = 1;
d1310b2e 4782 unsigned long num_pages;
727011e0 4783 unsigned long num_reads = 0;
a86c12c7 4784 struct bio *bio = NULL;
c8b97818 4785 unsigned long bio_flags = 0;
a86c12c7 4786
b4ce94de 4787 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4788 return 0;
4789
d1310b2e
CM
4790 if (start) {
4791 WARN_ON(start < eb->start);
4792 start_i = (start >> PAGE_CACHE_SHIFT) -
4793 (eb->start >> PAGE_CACHE_SHIFT);
4794 } else {
4795 start_i = 0;
4796 }
4797
4798 num_pages = num_extent_pages(eb->start, eb->len);
4799 for (i = start_i; i < num_pages; i++) {
4800 page = extent_buffer_page(eb, i);
bb82ab88 4801 if (wait == WAIT_NONE) {
2db04966 4802 if (!trylock_page(page))
ce9adaa5 4803 goto unlock_exit;
d1310b2e
CM
4804 } else {
4805 lock_page(page);
4806 }
ce9adaa5 4807 locked_pages++;
727011e0
CM
4808 if (!PageUptodate(page)) {
4809 num_reads++;
ce9adaa5 4810 all_uptodate = 0;
727011e0 4811 }
ce9adaa5
CM
4812 }
4813 if (all_uptodate) {
4814 if (start_i == 0)
b4ce94de 4815 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4816 goto unlock_exit;
4817 }
4818
ea466794 4819 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4820 eb->read_mirror = 0;
0b32f4bb 4821 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4822 for (i = start_i; i < num_pages; i++) {
4823 page = extent_buffer_page(eb, i);
ce9adaa5 4824 if (!PageUptodate(page)) {
f188591e 4825 ClearPageError(page);
a86c12c7 4826 err = __extent_read_full_page(tree, page,
f188591e 4827 get_extent, &bio,
d4c7ca86
JB
4828 mirror_num, &bio_flags,
4829 READ | REQ_META);
d397712b 4830 if (err)
d1310b2e 4831 ret = err;
d1310b2e
CM
4832 } else {
4833 unlock_page(page);
4834 }
4835 }
4836
355808c2 4837 if (bio) {
d4c7ca86
JB
4838 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4839 bio_flags);
79787eaa
JM
4840 if (err)
4841 return err;
355808c2 4842 }
a86c12c7 4843
bb82ab88 4844 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4845 return ret;
d397712b 4846
d1310b2e
CM
4847 for (i = start_i; i < num_pages; i++) {
4848 page = extent_buffer_page(eb, i);
4849 wait_on_page_locked(page);
d397712b 4850 if (!PageUptodate(page))
d1310b2e 4851 ret = -EIO;
d1310b2e 4852 }
d397712b 4853
d1310b2e 4854 return ret;
ce9adaa5
CM
4855
4856unlock_exit:
4857 i = start_i;
d397712b 4858 while (locked_pages > 0) {
ce9adaa5
CM
4859 page = extent_buffer_page(eb, i);
4860 i++;
4861 unlock_page(page);
4862 locked_pages--;
4863 }
4864 return ret;
d1310b2e 4865}
d1310b2e
CM
4866
4867void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4868 unsigned long start,
4869 unsigned long len)
4870{
4871 size_t cur;
4872 size_t offset;
4873 struct page *page;
4874 char *kaddr;
4875 char *dst = (char *)dstv;
4876 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4877 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4878
4879 WARN_ON(start > eb->len);
4880 WARN_ON(start + len > eb->start + eb->len);
4881
778746b5 4882 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4883
d397712b 4884 while (len > 0) {
d1310b2e 4885 page = extent_buffer_page(eb, i);
d1310b2e
CM
4886
4887 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4888 kaddr = page_address(page);
d1310b2e 4889 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4890
4891 dst += cur;
4892 len -= cur;
4893 offset = 0;
4894 i++;
4895 }
4896}
d1310b2e
CM
4897
4898int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4899 unsigned long min_len, char **map,
d1310b2e 4900 unsigned long *map_start,
a6591715 4901 unsigned long *map_len)
d1310b2e
CM
4902{
4903 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4904 char *kaddr;
4905 struct page *p;
4906 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4907 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4908 unsigned long end_i = (start_offset + start + min_len - 1) >>
4909 PAGE_CACHE_SHIFT;
4910
4911 if (i != end_i)
4912 return -EINVAL;
4913
4914 if (i == 0) {
4915 offset = start_offset;
4916 *map_start = 0;
4917 } else {
4918 offset = 0;
4919 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4920 }
d397712b 4921
d1310b2e 4922 if (start + min_len > eb->len) {
31b1a2bd 4923 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
4924 "wanted %lu %lu\n",
4925 eb->start, eb->len, start, min_len);
85026533 4926 return -EINVAL;
d1310b2e
CM
4927 }
4928
4929 p = extent_buffer_page(eb, i);
a6591715 4930 kaddr = page_address(p);
d1310b2e
CM
4931 *map = kaddr + offset;
4932 *map_len = PAGE_CACHE_SIZE - offset;
4933 return 0;
4934}
d1310b2e 4935
d1310b2e
CM
4936int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4937 unsigned long start,
4938 unsigned long len)
4939{
4940 size_t cur;
4941 size_t offset;
4942 struct page *page;
4943 char *kaddr;
4944 char *ptr = (char *)ptrv;
4945 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4946 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4947 int ret = 0;
4948
4949 WARN_ON(start > eb->len);
4950 WARN_ON(start + len > eb->start + eb->len);
4951
778746b5 4952 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4953
d397712b 4954 while (len > 0) {
d1310b2e 4955 page = extent_buffer_page(eb, i);
d1310b2e
CM
4956
4957 cur = min(len, (PAGE_CACHE_SIZE - offset));
4958
a6591715 4959 kaddr = page_address(page);
d1310b2e 4960 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4961 if (ret)
4962 break;
4963
4964 ptr += cur;
4965 len -= cur;
4966 offset = 0;
4967 i++;
4968 }
4969 return ret;
4970}
d1310b2e
CM
4971
4972void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4973 unsigned long start, unsigned long len)
4974{
4975 size_t cur;
4976 size_t offset;
4977 struct page *page;
4978 char *kaddr;
4979 char *src = (char *)srcv;
4980 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4981 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4982
4983 WARN_ON(start > eb->len);
4984 WARN_ON(start + len > eb->start + eb->len);
4985
778746b5 4986 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4987
d397712b 4988 while (len > 0) {
d1310b2e
CM
4989 page = extent_buffer_page(eb, i);
4990 WARN_ON(!PageUptodate(page));
4991
4992 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4993 kaddr = page_address(page);
d1310b2e 4994 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4995
4996 src += cur;
4997 len -= cur;
4998 offset = 0;
4999 i++;
5000 }
5001}
d1310b2e
CM
5002
5003void memset_extent_buffer(struct extent_buffer *eb, char c,
5004 unsigned long start, unsigned long len)
5005{
5006 size_t cur;
5007 size_t offset;
5008 struct page *page;
5009 char *kaddr;
5010 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5011 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5012
5013 WARN_ON(start > eb->len);
5014 WARN_ON(start + len > eb->start + eb->len);
5015
778746b5 5016 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5017
d397712b 5018 while (len > 0) {
d1310b2e
CM
5019 page = extent_buffer_page(eb, i);
5020 WARN_ON(!PageUptodate(page));
5021
5022 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5023 kaddr = page_address(page);
d1310b2e 5024 memset(kaddr + offset, c, cur);
d1310b2e
CM
5025
5026 len -= cur;
5027 offset = 0;
5028 i++;
5029 }
5030}
d1310b2e
CM
5031
5032void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5033 unsigned long dst_offset, unsigned long src_offset,
5034 unsigned long len)
5035{
5036 u64 dst_len = dst->len;
5037 size_t cur;
5038 size_t offset;
5039 struct page *page;
5040 char *kaddr;
5041 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5042 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5043
5044 WARN_ON(src->len != dst_len);
5045
5046 offset = (start_offset + dst_offset) &
778746b5 5047 (PAGE_CACHE_SIZE - 1);
d1310b2e 5048
d397712b 5049 while (len > 0) {
d1310b2e
CM
5050 page = extent_buffer_page(dst, i);
5051 WARN_ON(!PageUptodate(page));
5052
5053 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5054
a6591715 5055 kaddr = page_address(page);
d1310b2e 5056 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5057
5058 src_offset += cur;
5059 len -= cur;
5060 offset = 0;
5061 i++;
5062 }
5063}
d1310b2e
CM
5064
5065static void move_pages(struct page *dst_page, struct page *src_page,
5066 unsigned long dst_off, unsigned long src_off,
5067 unsigned long len)
5068{
a6591715 5069 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
5070 if (dst_page == src_page) {
5071 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5072 } else {
a6591715 5073 char *src_kaddr = page_address(src_page);
d1310b2e
CM
5074 char *p = dst_kaddr + dst_off + len;
5075 char *s = src_kaddr + src_off + len;
5076
5077 while (len--)
5078 *--p = *--s;
d1310b2e 5079 }
d1310b2e
CM
5080}
5081
3387206f
ST
5082static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5083{
5084 unsigned long distance = (src > dst) ? src - dst : dst - src;
5085 return distance < len;
5086}
5087
d1310b2e
CM
5088static void copy_pages(struct page *dst_page, struct page *src_page,
5089 unsigned long dst_off, unsigned long src_off,
5090 unsigned long len)
5091{
a6591715 5092 char *dst_kaddr = page_address(dst_page);
d1310b2e 5093 char *src_kaddr;
727011e0 5094 int must_memmove = 0;
d1310b2e 5095
3387206f 5096 if (dst_page != src_page) {
a6591715 5097 src_kaddr = page_address(src_page);
3387206f 5098 } else {
d1310b2e 5099 src_kaddr = dst_kaddr;
727011e0
CM
5100 if (areas_overlap(src_off, dst_off, len))
5101 must_memmove = 1;
3387206f 5102 }
d1310b2e 5103
727011e0
CM
5104 if (must_memmove)
5105 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5106 else
5107 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5108}
5109
5110void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5111 unsigned long src_offset, unsigned long len)
5112{
5113 size_t cur;
5114 size_t dst_off_in_page;
5115 size_t src_off_in_page;
5116 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5117 unsigned long dst_i;
5118 unsigned long src_i;
5119
5120 if (src_offset + len > dst->len) {
d397712b
CM
5121 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5122 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5123 BUG_ON(1);
5124 }
5125 if (dst_offset + len > dst->len) {
d397712b
CM
5126 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5127 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5128 BUG_ON(1);
5129 }
5130
d397712b 5131 while (len > 0) {
d1310b2e 5132 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5133 (PAGE_CACHE_SIZE - 1);
d1310b2e 5134 src_off_in_page = (start_offset + src_offset) &
778746b5 5135 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5136
5137 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5138 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5139
5140 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5141 src_off_in_page));
5142 cur = min_t(unsigned long, cur,
5143 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5144
5145 copy_pages(extent_buffer_page(dst, dst_i),
5146 extent_buffer_page(dst, src_i),
5147 dst_off_in_page, src_off_in_page, cur);
5148
5149 src_offset += cur;
5150 dst_offset += cur;
5151 len -= cur;
5152 }
5153}
d1310b2e
CM
5154
5155void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5156 unsigned long src_offset, unsigned long len)
5157{
5158 size_t cur;
5159 size_t dst_off_in_page;
5160 size_t src_off_in_page;
5161 unsigned long dst_end = dst_offset + len - 1;
5162 unsigned long src_end = src_offset + len - 1;
5163 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5164 unsigned long dst_i;
5165 unsigned long src_i;
5166
5167 if (src_offset + len > dst->len) {
d397712b
CM
5168 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5169 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5170 BUG_ON(1);
5171 }
5172 if (dst_offset + len > dst->len) {
d397712b
CM
5173 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5174 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5175 BUG_ON(1);
5176 }
727011e0 5177 if (dst_offset < src_offset) {
d1310b2e
CM
5178 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5179 return;
5180 }
d397712b 5181 while (len > 0) {
d1310b2e
CM
5182 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5183 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5184
5185 dst_off_in_page = (start_offset + dst_end) &
778746b5 5186 (PAGE_CACHE_SIZE - 1);
d1310b2e 5187 src_off_in_page = (start_offset + src_end) &
778746b5 5188 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5189
5190 cur = min_t(unsigned long, len, src_off_in_page + 1);
5191 cur = min(cur, dst_off_in_page + 1);
5192 move_pages(extent_buffer_page(dst, dst_i),
5193 extent_buffer_page(dst, src_i),
5194 dst_off_in_page - cur + 1,
5195 src_off_in_page - cur + 1, cur);
5196
5197 dst_end -= cur;
5198 src_end -= cur;
5199 len -= cur;
5200 }
5201}
6af118ce 5202
f7a52a40 5203int try_release_extent_buffer(struct page *page)
19fe0a8b 5204{
6af118ce 5205 struct extent_buffer *eb;
6af118ce 5206
3083ee2e
JB
5207 /*
5208 * We need to make sure noboody is attaching this page to an eb right
5209 * now.
5210 */
5211 spin_lock(&page->mapping->private_lock);
5212 if (!PagePrivate(page)) {
5213 spin_unlock(&page->mapping->private_lock);
4f2de97a 5214 return 1;
45f49bce 5215 }
6af118ce 5216
3083ee2e
JB
5217 eb = (struct extent_buffer *)page->private;
5218 BUG_ON(!eb);
19fe0a8b
MX
5219
5220 /*
3083ee2e
JB
5221 * This is a little awful but should be ok, we need to make sure that
5222 * the eb doesn't disappear out from under us while we're looking at
5223 * this page.
19fe0a8b 5224 */
3083ee2e 5225 spin_lock(&eb->refs_lock);
0b32f4bb 5226 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5227 spin_unlock(&eb->refs_lock);
5228 spin_unlock(&page->mapping->private_lock);
5229 return 0;
b9473439 5230 }
3083ee2e 5231 spin_unlock(&page->mapping->private_lock);
897ca6e9 5232
19fe0a8b 5233 /*
3083ee2e
JB
5234 * If tree ref isn't set then we know the ref on this eb is a real ref,
5235 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5236 */
3083ee2e
JB
5237 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5238 spin_unlock(&eb->refs_lock);
5239 return 0;
b9473439 5240 }
19fe0a8b 5241
f7a52a40 5242 return release_extent_buffer(eb);
6af118ce 5243}