btrfs: set proper message level for skinny metadata
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
27a3507d
FM
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1
DS
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
efe120a0 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
0b32f4bb 134static noinline void flush_write_bio(void *data);
c2d904e0
JM
135static inline struct btrfs_fs_info *
136tree_fs_info(struct extent_io_tree *tree)
137{
a5dee37d
JB
138 if (!tree->mapping)
139 return NULL;
c2d904e0
JM
140 return btrfs_sb(tree->mapping->host->i_sb);
141}
0b32f4bb 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b
CM
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
b208c2f7
DW
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7
DW
167free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
9be3395b
CM
171free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
d1310b2e
CM
175free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
9be3395b 177 extent_state_cache = NULL;
d1310b2e
CM
178 return -ENOMEM;
179}
180
181void extent_io_exit(void)
182{
6d49ba1b 183 btrfs_leak_debug_check();
8c0a8537
KS
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
d1310b2e
CM
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
d1310b2e
CM
196}
197
198void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 199 struct address_space *mapping)
d1310b2e 200{
6bef4d31 201 tree->state = RB_ROOT;
d1310b2e
CM
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
70dec807 204 spin_lock_init(&tree->lock);
d1310b2e 205 tree->mapping = mapping;
d1310b2e 206}
d1310b2e 207
b2950863 208static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
209{
210 struct extent_state *state;
d1310b2e
CM
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 213 if (!state)
d1310b2e
CM
214 return state;
215 state->state = 0;
d1310b2e 216 state->private = 0;
27a3507d 217 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 218 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
143bede5 221 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
222 return state;
223}
d1310b2e 224
4845e44f 225void free_extent_state(struct extent_state *state)
d1310b2e 226{
d1310b2e
CM
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
27a3507d 230 WARN_ON(extent_state_in_tree(state));
6d49ba1b 231 btrfs_leak_debug_del(&state->leak_list);
143bede5 232 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
233 kmem_cache_free(extent_state_cache, state);
234 }
235}
d1310b2e 236
f2071b21
FM
237static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
12cfbad9
FDBM
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
d1310b2e 243{
f2071b21 244 struct rb_node **p;
d397712b 245 struct rb_node *parent = NULL;
d1310b2e
CM
246 struct tree_entry *entry;
247
12cfbad9
FDBM
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
f2071b21 254 p = search_start ? &search_start : &root->rb_node;
d397712b 255 while (*p) {
d1310b2e
CM
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
12cfbad9 267do_insert:
d1310b2e
CM
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271}
272
80ea96b1 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
d1310b2e 278{
80ea96b1 279 struct rb_root *root = &tree->state;
12cfbad9 280 struct rb_node **n = &root->rb_node;
d1310b2e
CM
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
12cfbad9
FDBM
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
289 prev_entry = entry;
290
291 if (offset < entry->start)
12cfbad9 292 n = &(*n)->rb_left;
d1310b2e 293 else if (offset > entry->end)
12cfbad9 294 n = &(*n)->rb_right;
d397712b 295 else
12cfbad9 296 return *n;
d1310b2e
CM
297 }
298
12cfbad9
FDBM
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
d1310b2e
CM
304 if (prev_ret) {
305 orig_prev = prev;
d397712b 306 while (prev && offset > prev_entry->end) {
d1310b2e
CM
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 316 while (prev && offset < prev_entry->start) {
d1310b2e
CM
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323}
324
12cfbad9
FDBM
325static inline struct rb_node *
326tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
d1310b2e 330{
70dec807 331 struct rb_node *prev = NULL;
d1310b2e 332 struct rb_node *ret;
70dec807 333
12cfbad9 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 335 if (!ret)
d1310b2e
CM
336 return prev;
337 return ret;
338}
339
12cfbad9
FDBM
340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342{
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344}
345
9ed74f2d
JB
346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348{
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
41074888 399 struct extent_state *state, unsigned long *bits)
291d673e 400{
1bf85046
JM
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
41074888 406 struct extent_state *state, unsigned long *bits)
291d673e 407{
9ed74f2d
JB
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
41074888 413 struct extent_state *state, unsigned long *bits);
3150b699 414
d1310b2e
CM
415/*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
427 struct rb_node ***p,
428 struct rb_node **parent,
41074888 429 unsigned long *bits)
d1310b2e
CM
430{
431 struct rb_node *node;
432
31b1a2bd 433 if (end < start)
efe120a0 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 435 end, start);
d1310b2e
CM
436 state->start = start;
437 state->end = end;
9ed74f2d 438
3150b699
XG
439 set_state_bits(tree, state, bits);
440
f2071b21 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
446 "%llu %llu\n",
447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
41074888 514 unsigned long *bits, int wake)
d1310b2e 515{
cdc6a395 516 struct extent_state *next;
41074888 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 518
0ca1f7ce 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
291d673e 524 clear_state_cb(tree, state, bits);
32c00aff 525 state->state &= ~bits_to_clear;
d1310b2e
CM
526 if (wake)
527 wake_up(&state->wq);
0ca1f7ce 528 if (state->state == 0) {
cdc6a395 529 next = next_state(state);
27a3507d 530 if (extent_state_in_tree(state)) {
d1310b2e 531 rb_erase(&state->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
cdc6a395 539 next = next_state(state);
d1310b2e 540 }
cdc6a395 541 return next;
d1310b2e
CM
542}
543
8233767a
XG
544static struct extent_state *
545alloc_extent_state_atomic(struct extent_state *prealloc)
546{
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551}
552
48a3b636 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
554{
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558}
559
d1310b2e
CM
560/*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
6763af84 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
571 */
572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 573 unsigned long bits, int wake, int delete,
2c64c53d
CM
574 struct extent_state **cached_state,
575 gfp_t mask)
d1310b2e
CM
576{
577 struct extent_state *state;
2c64c53d 578 struct extent_state *cached;
d1310b2e
CM
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
5c939df5 581 u64 last_end;
d1310b2e 582 int err;
2ac55d41 583 int clear = 0;
d1310b2e 584
a5dee37d 585 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 586
7ee9e440
JB
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
0ca1f7ce
YZ
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
2ac55d41
JB
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
d1310b2e
CM
596again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
c7bc6319
FM
598 /*
599 * Don't care for allocation failure here because we might end
600 * up not needing the pre-allocated extent state at all, which
601 * is the case if we only have in the tree extent states that
602 * cover our input range and don't cover too any other range.
603 * If we end up needing a new extent state we allocate it later.
604 */
d1310b2e 605 prealloc = alloc_extent_state(mask);
d1310b2e
CM
606 }
607
cad321ad 608 spin_lock(&tree->lock);
2c64c53d
CM
609 if (cached_state) {
610 cached = *cached_state;
2ac55d41
JB
611
612 if (clear) {
613 *cached_state = NULL;
614 cached_state = NULL;
615 }
616
27a3507d
FM
617 if (cached && extent_state_in_tree(cached) &&
618 cached->start <= start && cached->end > start) {
2ac55d41
JB
619 if (clear)
620 atomic_dec(&cached->refs);
2c64c53d 621 state = cached;
42daec29 622 goto hit_next;
2c64c53d 623 }
2ac55d41
JB
624 if (clear)
625 free_extent_state(cached);
2c64c53d 626 }
d1310b2e
CM
627 /*
628 * this search will find the extents that end after
629 * our range starts
630 */
80ea96b1 631 node = tree_search(tree, start);
d1310b2e
CM
632 if (!node)
633 goto out;
634 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 635hit_next:
d1310b2e
CM
636 if (state->start > end)
637 goto out;
638 WARN_ON(state->end < start);
5c939df5 639 last_end = state->end;
d1310b2e 640
0449314a 641 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
642 if (!(state->state & bits)) {
643 state = next_state(state);
0449314a 644 goto next;
cdc6a395 645 }
0449314a 646
d1310b2e
CM
647 /*
648 * | ---- desired range ---- |
649 * | state | or
650 * | ------------- state -------------- |
651 *
652 * We need to split the extent we found, and may flip
653 * bits on second half.
654 *
655 * If the extent we found extends past our range, we
656 * just split and search again. It'll get split again
657 * the next time though.
658 *
659 * If the extent we found is inside our range, we clear
660 * the desired bit on it.
661 */
662
663 if (state->start < start) {
8233767a
XG
664 prealloc = alloc_extent_state_atomic(prealloc);
665 BUG_ON(!prealloc);
d1310b2e 666 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
667 if (err)
668 extent_io_tree_panic(tree, err);
669
d1310b2e
CM
670 prealloc = NULL;
671 if (err)
672 goto out;
673 if (state->end <= end) {
d1ac6e41
LB
674 state = clear_state_bit(tree, state, &bits, wake);
675 goto next;
d1310b2e
CM
676 }
677 goto search_again;
678 }
679 /*
680 * | ---- desired range ---- |
681 * | state |
682 * We need to split the extent, and clear the bit
683 * on the first half
684 */
685 if (state->start <= end && state->end > end) {
8233767a
XG
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
d1310b2e 688 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
689 if (err)
690 extent_io_tree_panic(tree, err);
691
d1310b2e
CM
692 if (wake)
693 wake_up(&state->wq);
42daec29 694
6763af84 695 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 696
d1310b2e
CM
697 prealloc = NULL;
698 goto out;
699 }
42daec29 700
cdc6a395 701 state = clear_state_bit(tree, state, &bits, wake);
0449314a 702next:
5c939df5
YZ
703 if (last_end == (u64)-1)
704 goto out;
705 start = last_end + 1;
cdc6a395 706 if (start <= end && state && !need_resched())
692e5759 707 goto hit_next;
d1310b2e
CM
708 goto search_again;
709
710out:
cad321ad 711 spin_unlock(&tree->lock);
d1310b2e
CM
712 if (prealloc)
713 free_extent_state(prealloc);
714
6763af84 715 return 0;
d1310b2e
CM
716
717search_again:
718 if (start > end)
719 goto out;
cad321ad 720 spin_unlock(&tree->lock);
d1310b2e
CM
721 if (mask & __GFP_WAIT)
722 cond_resched();
723 goto again;
724}
d1310b2e 725
143bede5
JM
726static void wait_on_state(struct extent_io_tree *tree,
727 struct extent_state *state)
641f5219
CH
728 __releases(tree->lock)
729 __acquires(tree->lock)
d1310b2e
CM
730{
731 DEFINE_WAIT(wait);
732 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 733 spin_unlock(&tree->lock);
d1310b2e 734 schedule();
cad321ad 735 spin_lock(&tree->lock);
d1310b2e 736 finish_wait(&state->wq, &wait);
d1310b2e
CM
737}
738
739/*
740 * waits for one or more bits to clear on a range in the state tree.
741 * The range [start, end] is inclusive.
742 * The tree lock is taken by this function
743 */
41074888
DS
744static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
745 unsigned long bits)
d1310b2e
CM
746{
747 struct extent_state *state;
748 struct rb_node *node;
749
a5dee37d 750 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 751
cad321ad 752 spin_lock(&tree->lock);
d1310b2e
CM
753again:
754 while (1) {
755 /*
756 * this search will find all the extents that end after
757 * our range starts
758 */
80ea96b1 759 node = tree_search(tree, start);
c50d3e71 760process_node:
d1310b2e
CM
761 if (!node)
762 break;
763
764 state = rb_entry(node, struct extent_state, rb_node);
765
766 if (state->start > end)
767 goto out;
768
769 if (state->state & bits) {
770 start = state->start;
771 atomic_inc(&state->refs);
772 wait_on_state(tree, state);
773 free_extent_state(state);
774 goto again;
775 }
776 start = state->end + 1;
777
778 if (start > end)
779 break;
780
c50d3e71
FM
781 if (!cond_resched_lock(&tree->lock)) {
782 node = rb_next(node);
783 goto process_node;
784 }
d1310b2e
CM
785 }
786out:
cad321ad 787 spin_unlock(&tree->lock);
d1310b2e 788}
d1310b2e 789
1bf85046 790static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 791 struct extent_state *state,
41074888 792 unsigned long *bits)
d1310b2e 793{
41074888 794 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 795
1bf85046 796 set_state_cb(tree, state, bits);
0ca1f7ce 797 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
798 u64 range = state->end - state->start + 1;
799 tree->dirty_bytes += range;
800 }
0ca1f7ce 801 state->state |= bits_to_set;
d1310b2e
CM
802}
803
e38e2ed7
FM
804static void cache_state_if_flags(struct extent_state *state,
805 struct extent_state **cached_ptr,
806 const u64 flags)
2c64c53d
CM
807{
808 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 809 if (!flags || (state->state & flags)) {
2c64c53d
CM
810 *cached_ptr = state;
811 atomic_inc(&state->refs);
812 }
813 }
814}
815
e38e2ed7
FM
816static void cache_state(struct extent_state *state,
817 struct extent_state **cached_ptr)
818{
819 return cache_state_if_flags(state, cached_ptr,
820 EXTENT_IOBITS | EXTENT_BOUNDARY);
821}
822
d1310b2e 823/*
1edbb734
CM
824 * set some bits on a range in the tree. This may require allocations or
825 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 826 *
1edbb734
CM
827 * If any of the exclusive bits are set, this will fail with -EEXIST if some
828 * part of the range already has the desired bits set. The start of the
829 * existing range is returned in failed_start in this case.
d1310b2e 830 *
1edbb734 831 * [start, end] is inclusive This takes the tree lock.
d1310b2e 832 */
1edbb734 833
3fbe5c02
JM
834static int __must_check
835__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
836 unsigned long bits, unsigned long exclusive_bits,
837 u64 *failed_start, struct extent_state **cached_state,
838 gfp_t mask)
d1310b2e
CM
839{
840 struct extent_state *state;
841 struct extent_state *prealloc = NULL;
842 struct rb_node *node;
12cfbad9
FDBM
843 struct rb_node **p;
844 struct rb_node *parent;
d1310b2e 845 int err = 0;
d1310b2e
CM
846 u64 last_start;
847 u64 last_end;
42daec29 848
a5dee37d 849 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 850
0ca1f7ce 851 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
852again:
853 if (!prealloc && (mask & __GFP_WAIT)) {
854 prealloc = alloc_extent_state(mask);
8233767a 855 BUG_ON(!prealloc);
d1310b2e
CM
856 }
857
cad321ad 858 spin_lock(&tree->lock);
9655d298
CM
859 if (cached_state && *cached_state) {
860 state = *cached_state;
df98b6e2 861 if (state->start <= start && state->end > start &&
27a3507d 862 extent_state_in_tree(state)) {
9655d298
CM
863 node = &state->rb_node;
864 goto hit_next;
865 }
866 }
d1310b2e
CM
867 /*
868 * this search will find all the extents that end after
869 * our range starts.
870 */
12cfbad9 871 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 872 if (!node) {
8233767a
XG
873 prealloc = alloc_extent_state_atomic(prealloc);
874 BUG_ON(!prealloc);
12cfbad9
FDBM
875 err = insert_state(tree, prealloc, start, end,
876 &p, &parent, &bits);
c2d904e0
JM
877 if (err)
878 extent_io_tree_panic(tree, err);
879
c42ac0bc 880 cache_state(prealloc, cached_state);
d1310b2e 881 prealloc = NULL;
d1310b2e
CM
882 goto out;
883 }
d1310b2e 884 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 885hit_next:
d1310b2e
CM
886 last_start = state->start;
887 last_end = state->end;
888
889 /*
890 * | ---- desired range ---- |
891 * | state |
892 *
893 * Just lock what we found and keep going
894 */
895 if (state->start == start && state->end <= end) {
1edbb734 896 if (state->state & exclusive_bits) {
d1310b2e
CM
897 *failed_start = state->start;
898 err = -EEXIST;
899 goto out;
900 }
42daec29 901
1bf85046 902 set_state_bits(tree, state, &bits);
2c64c53d 903 cache_state(state, cached_state);
d1310b2e 904 merge_state(tree, state);
5c939df5
YZ
905 if (last_end == (u64)-1)
906 goto out;
907 start = last_end + 1;
d1ac6e41
LB
908 state = next_state(state);
909 if (start < end && state && state->start == start &&
910 !need_resched())
911 goto hit_next;
d1310b2e
CM
912 goto search_again;
913 }
914
915 /*
916 * | ---- desired range ---- |
917 * | state |
918 * or
919 * | ------------- state -------------- |
920 *
921 * We need to split the extent we found, and may flip bits on
922 * second half.
923 *
924 * If the extent we found extends past our
925 * range, we just split and search again. It'll get split
926 * again the next time though.
927 *
928 * If the extent we found is inside our range, we set the
929 * desired bit on it.
930 */
931 if (state->start < start) {
1edbb734 932 if (state->state & exclusive_bits) {
d1310b2e
CM
933 *failed_start = start;
934 err = -EEXIST;
935 goto out;
936 }
8233767a
XG
937
938 prealloc = alloc_extent_state_atomic(prealloc);
939 BUG_ON(!prealloc);
d1310b2e 940 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
941 if (err)
942 extent_io_tree_panic(tree, err);
943
d1310b2e
CM
944 prealloc = NULL;
945 if (err)
946 goto out;
947 if (state->end <= end) {
1bf85046 948 set_state_bits(tree, state, &bits);
2c64c53d 949 cache_state(state, cached_state);
d1310b2e 950 merge_state(tree, state);
5c939df5
YZ
951 if (last_end == (u64)-1)
952 goto out;
953 start = last_end + 1;
d1ac6e41
LB
954 state = next_state(state);
955 if (start < end && state && state->start == start &&
956 !need_resched())
957 goto hit_next;
d1310b2e
CM
958 }
959 goto search_again;
960 }
961 /*
962 * | ---- desired range ---- |
963 * | state | or | state |
964 *
965 * There's a hole, we need to insert something in it and
966 * ignore the extent we found.
967 */
968 if (state->start > start) {
969 u64 this_end;
970 if (end < last_start)
971 this_end = end;
972 else
d397712b 973 this_end = last_start - 1;
8233767a
XG
974
975 prealloc = alloc_extent_state_atomic(prealloc);
976 BUG_ON(!prealloc);
c7f895a2
XG
977
978 /*
979 * Avoid to free 'prealloc' if it can be merged with
980 * the later extent.
981 */
d1310b2e 982 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 983 NULL, NULL, &bits);
c2d904e0
JM
984 if (err)
985 extent_io_tree_panic(tree, err);
986
9ed74f2d
JB
987 cache_state(prealloc, cached_state);
988 prealloc = NULL;
d1310b2e
CM
989 start = this_end + 1;
990 goto search_again;
991 }
992 /*
993 * | ---- desired range ---- |
994 * | state |
995 * We need to split the extent, and set the bit
996 * on the first half
997 */
998 if (state->start <= end && state->end > end) {
1edbb734 999 if (state->state & exclusive_bits) {
d1310b2e
CM
1000 *failed_start = start;
1001 err = -EEXIST;
1002 goto out;
1003 }
8233767a
XG
1004
1005 prealloc = alloc_extent_state_atomic(prealloc);
1006 BUG_ON(!prealloc);
d1310b2e 1007 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
d1310b2e 1010
1bf85046 1011 set_state_bits(tree, prealloc, &bits);
2c64c53d 1012 cache_state(prealloc, cached_state);
d1310b2e
CM
1013 merge_state(tree, prealloc);
1014 prealloc = NULL;
1015 goto out;
1016 }
1017
1018 goto search_again;
1019
1020out:
cad321ad 1021 spin_unlock(&tree->lock);
d1310b2e
CM
1022 if (prealloc)
1023 free_extent_state(prealloc);
1024
1025 return err;
1026
1027search_again:
1028 if (start > end)
1029 goto out;
cad321ad 1030 spin_unlock(&tree->lock);
d1310b2e
CM
1031 if (mask & __GFP_WAIT)
1032 cond_resched();
1033 goto again;
1034}
d1310b2e 1035
41074888
DS
1036int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1037 unsigned long bits, u64 * failed_start,
1038 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1039{
1040 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1041 cached_state, mask);
1042}
1043
1044
462d6fac 1045/**
10983f2e
LB
1046 * convert_extent_bit - convert all bits in a given range from one bit to
1047 * another
462d6fac
JB
1048 * @tree: the io tree to search
1049 * @start: the start offset in bytes
1050 * @end: the end offset in bytes (inclusive)
1051 * @bits: the bits to set in this range
1052 * @clear_bits: the bits to clear in this range
e6138876 1053 * @cached_state: state that we're going to cache
462d6fac
JB
1054 * @mask: the allocation mask
1055 *
1056 * This will go through and set bits for the given range. If any states exist
1057 * already in this range they are set with the given bit and cleared of the
1058 * clear_bits. This is only meant to be used by things that are mergeable, ie
1059 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1060 * boundary bits like LOCK.
1061 */
1062int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1063 unsigned long bits, unsigned long clear_bits,
e6138876 1064 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1065{
1066 struct extent_state *state;
1067 struct extent_state *prealloc = NULL;
1068 struct rb_node *node;
12cfbad9
FDBM
1069 struct rb_node **p;
1070 struct rb_node *parent;
462d6fac
JB
1071 int err = 0;
1072 u64 last_start;
1073 u64 last_end;
c8fd3de7 1074 bool first_iteration = true;
462d6fac 1075
a5dee37d 1076 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1077
462d6fac
JB
1078again:
1079 if (!prealloc && (mask & __GFP_WAIT)) {
c8fd3de7
FM
1080 /*
1081 * Best effort, don't worry if extent state allocation fails
1082 * here for the first iteration. We might have a cached state
1083 * that matches exactly the target range, in which case no
1084 * extent state allocations are needed. We'll only know this
1085 * after locking the tree.
1086 */
462d6fac 1087 prealloc = alloc_extent_state(mask);
c8fd3de7 1088 if (!prealloc && !first_iteration)
462d6fac
JB
1089 return -ENOMEM;
1090 }
1091
1092 spin_lock(&tree->lock);
e6138876
JB
1093 if (cached_state && *cached_state) {
1094 state = *cached_state;
1095 if (state->start <= start && state->end > start &&
27a3507d 1096 extent_state_in_tree(state)) {
e6138876
JB
1097 node = &state->rb_node;
1098 goto hit_next;
1099 }
1100 }
1101
462d6fac
JB
1102 /*
1103 * this search will find all the extents that end after
1104 * our range starts.
1105 */
12cfbad9 1106 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1107 if (!node) {
1108 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1109 if (!prealloc) {
1110 err = -ENOMEM;
1111 goto out;
1112 }
12cfbad9
FDBM
1113 err = insert_state(tree, prealloc, start, end,
1114 &p, &parent, &bits);
c2d904e0
JM
1115 if (err)
1116 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1117 cache_state(prealloc, cached_state);
1118 prealloc = NULL;
462d6fac
JB
1119 goto out;
1120 }
1121 state = rb_entry(node, struct extent_state, rb_node);
1122hit_next:
1123 last_start = state->start;
1124 last_end = state->end;
1125
1126 /*
1127 * | ---- desired range ---- |
1128 * | state |
1129 *
1130 * Just lock what we found and keep going
1131 */
1132 if (state->start == start && state->end <= end) {
462d6fac 1133 set_state_bits(tree, state, &bits);
e6138876 1134 cache_state(state, cached_state);
d1ac6e41 1135 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1136 if (last_end == (u64)-1)
1137 goto out;
462d6fac 1138 start = last_end + 1;
d1ac6e41
LB
1139 if (start < end && state && state->start == start &&
1140 !need_resched())
1141 goto hit_next;
462d6fac
JB
1142 goto search_again;
1143 }
1144
1145 /*
1146 * | ---- desired range ---- |
1147 * | state |
1148 * or
1149 * | ------------- state -------------- |
1150 *
1151 * We need to split the extent we found, and may flip bits on
1152 * second half.
1153 *
1154 * If the extent we found extends past our
1155 * range, we just split and search again. It'll get split
1156 * again the next time though.
1157 *
1158 * If the extent we found is inside our range, we set the
1159 * desired bit on it.
1160 */
1161 if (state->start < start) {
1162 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1163 if (!prealloc) {
1164 err = -ENOMEM;
1165 goto out;
1166 }
462d6fac 1167 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1168 if (err)
1169 extent_io_tree_panic(tree, err);
462d6fac
JB
1170 prealloc = NULL;
1171 if (err)
1172 goto out;
1173 if (state->end <= end) {
1174 set_state_bits(tree, state, &bits);
e6138876 1175 cache_state(state, cached_state);
d1ac6e41 1176 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1177 if (last_end == (u64)-1)
1178 goto out;
1179 start = last_end + 1;
d1ac6e41
LB
1180 if (start < end && state && state->start == start &&
1181 !need_resched())
1182 goto hit_next;
462d6fac
JB
1183 }
1184 goto search_again;
1185 }
1186 /*
1187 * | ---- desired range ---- |
1188 * | state | or | state |
1189 *
1190 * There's a hole, we need to insert something in it and
1191 * ignore the extent we found.
1192 */
1193 if (state->start > start) {
1194 u64 this_end;
1195 if (end < last_start)
1196 this_end = end;
1197 else
1198 this_end = last_start - 1;
1199
1200 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1201 if (!prealloc) {
1202 err = -ENOMEM;
1203 goto out;
1204 }
462d6fac
JB
1205
1206 /*
1207 * Avoid to free 'prealloc' if it can be merged with
1208 * the later extent.
1209 */
1210 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1211 NULL, NULL, &bits);
c2d904e0
JM
1212 if (err)
1213 extent_io_tree_panic(tree, err);
e6138876 1214 cache_state(prealloc, cached_state);
462d6fac
JB
1215 prealloc = NULL;
1216 start = this_end + 1;
1217 goto search_again;
1218 }
1219 /*
1220 * | ---- desired range ---- |
1221 * | state |
1222 * We need to split the extent, and set the bit
1223 * on the first half
1224 */
1225 if (state->start <= end && state->end > end) {
1226 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1227 if (!prealloc) {
1228 err = -ENOMEM;
1229 goto out;
1230 }
462d6fac
JB
1231
1232 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1233 if (err)
1234 extent_io_tree_panic(tree, err);
462d6fac
JB
1235
1236 set_state_bits(tree, prealloc, &bits);
e6138876 1237 cache_state(prealloc, cached_state);
462d6fac 1238 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1239 prealloc = NULL;
1240 goto out;
1241 }
1242
1243 goto search_again;
1244
1245out:
1246 spin_unlock(&tree->lock);
1247 if (prealloc)
1248 free_extent_state(prealloc);
1249
1250 return err;
1251
1252search_again:
1253 if (start > end)
1254 goto out;
1255 spin_unlock(&tree->lock);
1256 if (mask & __GFP_WAIT)
1257 cond_resched();
c8fd3de7 1258 first_iteration = false;
462d6fac
JB
1259 goto again;
1260}
1261
d1310b2e
CM
1262/* wrappers around set/clear extent bit */
1263int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1264 gfp_t mask)
1265{
3fbe5c02 1266 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1267 NULL, mask);
d1310b2e 1268}
d1310b2e
CM
1269
1270int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1271 unsigned long bits, gfp_t mask)
d1310b2e 1272{
3fbe5c02 1273 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1274 NULL, mask);
d1310b2e 1275}
d1310b2e
CM
1276
1277int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1278 unsigned long bits, gfp_t mask)
d1310b2e 1279{
2c64c53d 1280 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1281}
d1310b2e
CM
1282
1283int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1284 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1285{
1286 return set_extent_bit(tree, start, end,
fee187d9 1287 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1288 NULL, cached_state, mask);
d1310b2e 1289}
d1310b2e 1290
9e8a4a8b
LB
1291int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1292 struct extent_state **cached_state, gfp_t mask)
1293{
1294 return set_extent_bit(tree, start, end,
1295 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1296 NULL, cached_state, mask);
1297}
1298
d1310b2e
CM
1299int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1300 gfp_t mask)
1301{
1302 return clear_extent_bit(tree, start, end,
32c00aff 1303 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1304 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1305}
d1310b2e
CM
1306
1307int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1308 gfp_t mask)
1309{
3fbe5c02 1310 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1311 NULL, mask);
d1310b2e 1312}
d1310b2e 1313
d1310b2e 1314int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1315 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1316{
6b67a320 1317 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1318 cached_state, mask);
d1310b2e 1319}
d1310b2e 1320
5fd02043
JB
1321int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1322 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1323{
2c64c53d 1324 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1325 cached_state, mask);
d1310b2e 1326}
d1310b2e 1327
d352ac68
CM
1328/*
1329 * either insert or lock state struct between start and end use mask to tell
1330 * us if waiting is desired.
1331 */
1edbb734 1332int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1333 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1334{
1335 int err;
1336 u64 failed_start;
1337 while (1) {
3fbe5c02
JM
1338 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1339 EXTENT_LOCKED, &failed_start,
1340 cached_state, GFP_NOFS);
d0082371 1341 if (err == -EEXIST) {
d1310b2e
CM
1342 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1343 start = failed_start;
d0082371 1344 } else
d1310b2e 1345 break;
d1310b2e
CM
1346 WARN_ON(start > end);
1347 }
1348 return err;
1349}
d1310b2e 1350
d0082371 1351int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1352{
d0082371 1353 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1354}
1355
d0082371 1356int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1357{
1358 int err;
1359 u64 failed_start;
1360
3fbe5c02
JM
1361 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1362 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1363 if (err == -EEXIST) {
1364 if (failed_start > start)
1365 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1366 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1367 return 0;
6643558d 1368 }
25179201
JB
1369 return 1;
1370}
25179201 1371
2c64c53d
CM
1372int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1373 struct extent_state **cached, gfp_t mask)
1374{
1375 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1376 mask);
1377}
1378
d0082371 1379int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1380{
2c64c53d 1381 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1382 GFP_NOFS);
d1310b2e 1383}
d1310b2e 1384
4adaa611
CM
1385int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1386{
1387 unsigned long index = start >> PAGE_CACHE_SHIFT;
1388 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1389 struct page *page;
1390
1391 while (index <= end_index) {
1392 page = find_get_page(inode->i_mapping, index);
1393 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1394 clear_page_dirty_for_io(page);
1395 page_cache_release(page);
1396 index++;
1397 }
1398 return 0;
1399}
1400
1401int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1402{
1403 unsigned long index = start >> PAGE_CACHE_SHIFT;
1404 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1405 struct page *page;
1406
1407 while (index <= end_index) {
1408 page = find_get_page(inode->i_mapping, index);
1409 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1410 account_page_redirty(page);
1411 __set_page_dirty_nobuffers(page);
1412 page_cache_release(page);
1413 index++;
1414 }
1415 return 0;
1416}
1417
d1310b2e
CM
1418/*
1419 * helper function to set both pages and extents in the tree writeback
1420 */
b2950863 1421static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1422{
1423 unsigned long index = start >> PAGE_CACHE_SHIFT;
1424 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1425 struct page *page;
1426
1427 while (index <= end_index) {
1428 page = find_get_page(tree->mapping, index);
79787eaa 1429 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1430 set_page_writeback(page);
1431 page_cache_release(page);
1432 index++;
1433 }
d1310b2e
CM
1434 return 0;
1435}
d1310b2e 1436
d352ac68
CM
1437/* find the first state struct with 'bits' set after 'start', and
1438 * return it. tree->lock must be held. NULL will returned if
1439 * nothing was found after 'start'
1440 */
48a3b636
ES
1441static struct extent_state *
1442find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1443 u64 start, unsigned long bits)
d7fc640e
CM
1444{
1445 struct rb_node *node;
1446 struct extent_state *state;
1447
1448 /*
1449 * this search will find all the extents that end after
1450 * our range starts.
1451 */
1452 node = tree_search(tree, start);
d397712b 1453 if (!node)
d7fc640e 1454 goto out;
d7fc640e 1455
d397712b 1456 while (1) {
d7fc640e 1457 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1458 if (state->end >= start && (state->state & bits))
d7fc640e 1459 return state;
d397712b 1460
d7fc640e
CM
1461 node = rb_next(node);
1462 if (!node)
1463 break;
1464 }
1465out:
1466 return NULL;
1467}
d7fc640e 1468
69261c4b
XG
1469/*
1470 * find the first offset in the io tree with 'bits' set. zero is
1471 * returned if we find something, and *start_ret and *end_ret are
1472 * set to reflect the state struct that was found.
1473 *
477d7eaf 1474 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1475 */
1476int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1477 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1478 struct extent_state **cached_state)
69261c4b
XG
1479{
1480 struct extent_state *state;
e6138876 1481 struct rb_node *n;
69261c4b
XG
1482 int ret = 1;
1483
1484 spin_lock(&tree->lock);
e6138876
JB
1485 if (cached_state && *cached_state) {
1486 state = *cached_state;
27a3507d 1487 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1488 n = rb_next(&state->rb_node);
1489 while (n) {
1490 state = rb_entry(n, struct extent_state,
1491 rb_node);
1492 if (state->state & bits)
1493 goto got_it;
1494 n = rb_next(n);
1495 }
1496 free_extent_state(*cached_state);
1497 *cached_state = NULL;
1498 goto out;
1499 }
1500 free_extent_state(*cached_state);
1501 *cached_state = NULL;
1502 }
1503
69261c4b 1504 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1505got_it:
69261c4b 1506 if (state) {
e38e2ed7 1507 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1508 *start_ret = state->start;
1509 *end_ret = state->end;
1510 ret = 0;
1511 }
e6138876 1512out:
69261c4b
XG
1513 spin_unlock(&tree->lock);
1514 return ret;
1515}
1516
d352ac68
CM
1517/*
1518 * find a contiguous range of bytes in the file marked as delalloc, not
1519 * more than 'max_bytes'. start and end are used to return the range,
1520 *
1521 * 1 is returned if we find something, 0 if nothing was in the tree
1522 */
c8b97818 1523static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1524 u64 *start, u64 *end, u64 max_bytes,
1525 struct extent_state **cached_state)
d1310b2e
CM
1526{
1527 struct rb_node *node;
1528 struct extent_state *state;
1529 u64 cur_start = *start;
1530 u64 found = 0;
1531 u64 total_bytes = 0;
1532
cad321ad 1533 spin_lock(&tree->lock);
c8b97818 1534
d1310b2e
CM
1535 /*
1536 * this search will find all the extents that end after
1537 * our range starts.
1538 */
80ea96b1 1539 node = tree_search(tree, cur_start);
2b114d1d 1540 if (!node) {
3b951516
CM
1541 if (!found)
1542 *end = (u64)-1;
d1310b2e
CM
1543 goto out;
1544 }
1545
d397712b 1546 while (1) {
d1310b2e 1547 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1548 if (found && (state->start != cur_start ||
1549 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1550 goto out;
1551 }
1552 if (!(state->state & EXTENT_DELALLOC)) {
1553 if (!found)
1554 *end = state->end;
1555 goto out;
1556 }
c2a128d2 1557 if (!found) {
d1310b2e 1558 *start = state->start;
c2a128d2
JB
1559 *cached_state = state;
1560 atomic_inc(&state->refs);
1561 }
d1310b2e
CM
1562 found++;
1563 *end = state->end;
1564 cur_start = state->end + 1;
1565 node = rb_next(node);
d1310b2e 1566 total_bytes += state->end - state->start + 1;
7bf811a5 1567 if (total_bytes >= max_bytes)
573aecaf 1568 break;
573aecaf 1569 if (!node)
d1310b2e
CM
1570 break;
1571 }
1572out:
cad321ad 1573 spin_unlock(&tree->lock);
d1310b2e
CM
1574 return found;
1575}
1576
143bede5
JM
1577static noinline void __unlock_for_delalloc(struct inode *inode,
1578 struct page *locked_page,
1579 u64 start, u64 end)
c8b97818
CM
1580{
1581 int ret;
1582 struct page *pages[16];
1583 unsigned long index = start >> PAGE_CACHE_SHIFT;
1584 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1585 unsigned long nr_pages = end_index - index + 1;
1586 int i;
1587
1588 if (index == locked_page->index && end_index == index)
143bede5 1589 return;
c8b97818 1590
d397712b 1591 while (nr_pages > 0) {
c8b97818 1592 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1593 min_t(unsigned long, nr_pages,
1594 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1595 for (i = 0; i < ret; i++) {
1596 if (pages[i] != locked_page)
1597 unlock_page(pages[i]);
1598 page_cache_release(pages[i]);
1599 }
1600 nr_pages -= ret;
1601 index += ret;
1602 cond_resched();
1603 }
c8b97818
CM
1604}
1605
1606static noinline int lock_delalloc_pages(struct inode *inode,
1607 struct page *locked_page,
1608 u64 delalloc_start,
1609 u64 delalloc_end)
1610{
1611 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1612 unsigned long start_index = index;
1613 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1614 unsigned long pages_locked = 0;
1615 struct page *pages[16];
1616 unsigned long nrpages;
1617 int ret;
1618 int i;
1619
1620 /* the caller is responsible for locking the start index */
1621 if (index == locked_page->index && index == end_index)
1622 return 0;
1623
1624 /* skip the page at the start index */
1625 nrpages = end_index - index + 1;
d397712b 1626 while (nrpages > 0) {
c8b97818 1627 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1628 min_t(unsigned long,
1629 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1630 if (ret == 0) {
1631 ret = -EAGAIN;
1632 goto done;
1633 }
1634 /* now we have an array of pages, lock them all */
1635 for (i = 0; i < ret; i++) {
1636 /*
1637 * the caller is taking responsibility for
1638 * locked_page
1639 */
771ed689 1640 if (pages[i] != locked_page) {
c8b97818 1641 lock_page(pages[i]);
f2b1c41c
CM
1642 if (!PageDirty(pages[i]) ||
1643 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1644 ret = -EAGAIN;
1645 unlock_page(pages[i]);
1646 page_cache_release(pages[i]);
1647 goto done;
1648 }
1649 }
c8b97818 1650 page_cache_release(pages[i]);
771ed689 1651 pages_locked++;
c8b97818 1652 }
c8b97818
CM
1653 nrpages -= ret;
1654 index += ret;
1655 cond_resched();
1656 }
1657 ret = 0;
1658done:
1659 if (ret && pages_locked) {
1660 __unlock_for_delalloc(inode, locked_page,
1661 delalloc_start,
1662 ((u64)(start_index + pages_locked - 1)) <<
1663 PAGE_CACHE_SHIFT);
1664 }
1665 return ret;
1666}
1667
1668/*
1669 * find a contiguous range of bytes in the file marked as delalloc, not
1670 * more than 'max_bytes'. start and end are used to return the range,
1671 *
1672 * 1 is returned if we find something, 0 if nothing was in the tree
1673 */
294e30fe
JB
1674STATIC u64 find_lock_delalloc_range(struct inode *inode,
1675 struct extent_io_tree *tree,
1676 struct page *locked_page, u64 *start,
1677 u64 *end, u64 max_bytes)
c8b97818
CM
1678{
1679 u64 delalloc_start;
1680 u64 delalloc_end;
1681 u64 found;
9655d298 1682 struct extent_state *cached_state = NULL;
c8b97818
CM
1683 int ret;
1684 int loops = 0;
1685
1686again:
1687 /* step one, find a bunch of delalloc bytes starting at start */
1688 delalloc_start = *start;
1689 delalloc_end = 0;
1690 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1691 max_bytes, &cached_state);
70b99e69 1692 if (!found || delalloc_end <= *start) {
c8b97818
CM
1693 *start = delalloc_start;
1694 *end = delalloc_end;
c2a128d2 1695 free_extent_state(cached_state);
385fe0be 1696 return 0;
c8b97818
CM
1697 }
1698
70b99e69
CM
1699 /*
1700 * start comes from the offset of locked_page. We have to lock
1701 * pages in order, so we can't process delalloc bytes before
1702 * locked_page
1703 */
d397712b 1704 if (delalloc_start < *start)
70b99e69 1705 delalloc_start = *start;
70b99e69 1706
c8b97818
CM
1707 /*
1708 * make sure to limit the number of pages we try to lock down
c8b97818 1709 */
7bf811a5
JB
1710 if (delalloc_end + 1 - delalloc_start > max_bytes)
1711 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1712
c8b97818
CM
1713 /* step two, lock all the pages after the page that has start */
1714 ret = lock_delalloc_pages(inode, locked_page,
1715 delalloc_start, delalloc_end);
1716 if (ret == -EAGAIN) {
1717 /* some of the pages are gone, lets avoid looping by
1718 * shortening the size of the delalloc range we're searching
1719 */
9655d298 1720 free_extent_state(cached_state);
7d788742 1721 cached_state = NULL;
c8b97818 1722 if (!loops) {
7bf811a5 1723 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1724 loops = 1;
1725 goto again;
1726 } else {
1727 found = 0;
1728 goto out_failed;
1729 }
1730 }
79787eaa 1731 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1732
1733 /* step three, lock the state bits for the whole range */
d0082371 1734 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1735
1736 /* then test to make sure it is all still delalloc */
1737 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1738 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1739 if (!ret) {
9655d298
CM
1740 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1741 &cached_state, GFP_NOFS);
c8b97818
CM
1742 __unlock_for_delalloc(inode, locked_page,
1743 delalloc_start, delalloc_end);
1744 cond_resched();
1745 goto again;
1746 }
9655d298 1747 free_extent_state(cached_state);
c8b97818
CM
1748 *start = delalloc_start;
1749 *end = delalloc_end;
1750out_failed:
1751 return found;
1752}
1753
c2790a2e
JB
1754int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1755 struct page *locked_page,
1756 unsigned long clear_bits,
1757 unsigned long page_ops)
c8b97818 1758{
c2790a2e 1759 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1760 int ret;
1761 struct page *pages[16];
1762 unsigned long index = start >> PAGE_CACHE_SHIFT;
1763 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1764 unsigned long nr_pages = end_index - index + 1;
1765 int i;
771ed689 1766
2c64c53d 1767 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1768 if (page_ops == 0)
771ed689 1769 return 0;
c8b97818 1770
704de49d
FM
1771 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1772 mapping_set_error(inode->i_mapping, -EIO);
1773
d397712b 1774 while (nr_pages > 0) {
c8b97818 1775 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1776 min_t(unsigned long,
1777 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1778 for (i = 0; i < ret; i++) {
8b62b72b 1779
c2790a2e 1780 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1781 SetPagePrivate2(pages[i]);
1782
c8b97818
CM
1783 if (pages[i] == locked_page) {
1784 page_cache_release(pages[i]);
1785 continue;
1786 }
c2790a2e 1787 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1788 clear_page_dirty_for_io(pages[i]);
c2790a2e 1789 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1790 set_page_writeback(pages[i]);
704de49d
FM
1791 if (page_ops & PAGE_SET_ERROR)
1792 SetPageError(pages[i]);
c2790a2e 1793 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1794 end_page_writeback(pages[i]);
c2790a2e 1795 if (page_ops & PAGE_UNLOCK)
771ed689 1796 unlock_page(pages[i]);
c8b97818
CM
1797 page_cache_release(pages[i]);
1798 }
1799 nr_pages -= ret;
1800 index += ret;
1801 cond_resched();
1802 }
1803 return 0;
1804}
c8b97818 1805
d352ac68
CM
1806/*
1807 * count the number of bytes in the tree that have a given bit(s)
1808 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1809 * cached. The total number found is returned.
1810 */
d1310b2e
CM
1811u64 count_range_bits(struct extent_io_tree *tree,
1812 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1813 unsigned long bits, int contig)
d1310b2e
CM
1814{
1815 struct rb_node *node;
1816 struct extent_state *state;
1817 u64 cur_start = *start;
1818 u64 total_bytes = 0;
ec29ed5b 1819 u64 last = 0;
d1310b2e
CM
1820 int found = 0;
1821
fae7f21c 1822 if (WARN_ON(search_end <= cur_start))
d1310b2e 1823 return 0;
d1310b2e 1824
cad321ad 1825 spin_lock(&tree->lock);
d1310b2e
CM
1826 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1827 total_bytes = tree->dirty_bytes;
1828 goto out;
1829 }
1830 /*
1831 * this search will find all the extents that end after
1832 * our range starts.
1833 */
80ea96b1 1834 node = tree_search(tree, cur_start);
d397712b 1835 if (!node)
d1310b2e 1836 goto out;
d1310b2e 1837
d397712b 1838 while (1) {
d1310b2e
CM
1839 state = rb_entry(node, struct extent_state, rb_node);
1840 if (state->start > search_end)
1841 break;
ec29ed5b
CM
1842 if (contig && found && state->start > last + 1)
1843 break;
1844 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1845 total_bytes += min(search_end, state->end) + 1 -
1846 max(cur_start, state->start);
1847 if (total_bytes >= max_bytes)
1848 break;
1849 if (!found) {
af60bed2 1850 *start = max(cur_start, state->start);
d1310b2e
CM
1851 found = 1;
1852 }
ec29ed5b
CM
1853 last = state->end;
1854 } else if (contig && found) {
1855 break;
d1310b2e
CM
1856 }
1857 node = rb_next(node);
1858 if (!node)
1859 break;
1860 }
1861out:
cad321ad 1862 spin_unlock(&tree->lock);
d1310b2e
CM
1863 return total_bytes;
1864}
b2950863 1865
d352ac68
CM
1866/*
1867 * set the private field for a given byte offset in the tree. If there isn't
1868 * an extent_state there already, this does nothing.
1869 */
171170c1 1870static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1871{
1872 struct rb_node *node;
1873 struct extent_state *state;
1874 int ret = 0;
1875
cad321ad 1876 spin_lock(&tree->lock);
d1310b2e
CM
1877 /*
1878 * this search will find all the extents that end after
1879 * our range starts.
1880 */
80ea96b1 1881 node = tree_search(tree, start);
2b114d1d 1882 if (!node) {
d1310b2e
CM
1883 ret = -ENOENT;
1884 goto out;
1885 }
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 if (state->start != start) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 state->private = private;
1892out:
cad321ad 1893 spin_unlock(&tree->lock);
d1310b2e
CM
1894 return ret;
1895}
1896
1897int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1898{
1899 struct rb_node *node;
1900 struct extent_state *state;
1901 int ret = 0;
1902
cad321ad 1903 spin_lock(&tree->lock);
d1310b2e
CM
1904 /*
1905 * this search will find all the extents that end after
1906 * our range starts.
1907 */
80ea96b1 1908 node = tree_search(tree, start);
2b114d1d 1909 if (!node) {
d1310b2e
CM
1910 ret = -ENOENT;
1911 goto out;
1912 }
1913 state = rb_entry(node, struct extent_state, rb_node);
1914 if (state->start != start) {
1915 ret = -ENOENT;
1916 goto out;
1917 }
1918 *private = state->private;
1919out:
cad321ad 1920 spin_unlock(&tree->lock);
d1310b2e
CM
1921 return ret;
1922}
1923
1924/*
1925 * searches a range in the state tree for a given mask.
70dec807 1926 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1927 * has the bits set. Otherwise, 1 is returned if any bit in the
1928 * range is found set.
1929 */
1930int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1931 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1932{
1933 struct extent_state *state = NULL;
1934 struct rb_node *node;
1935 int bitset = 0;
d1310b2e 1936
cad321ad 1937 spin_lock(&tree->lock);
27a3507d 1938 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1939 cached->end > start)
9655d298
CM
1940 node = &cached->rb_node;
1941 else
1942 node = tree_search(tree, start);
d1310b2e
CM
1943 while (node && start <= end) {
1944 state = rb_entry(node, struct extent_state, rb_node);
1945
1946 if (filled && state->start > start) {
1947 bitset = 0;
1948 break;
1949 }
1950
1951 if (state->start > end)
1952 break;
1953
1954 if (state->state & bits) {
1955 bitset = 1;
1956 if (!filled)
1957 break;
1958 } else if (filled) {
1959 bitset = 0;
1960 break;
1961 }
46562cec
CM
1962
1963 if (state->end == (u64)-1)
1964 break;
1965
d1310b2e
CM
1966 start = state->end + 1;
1967 if (start > end)
1968 break;
1969 node = rb_next(node);
1970 if (!node) {
1971 if (filled)
1972 bitset = 0;
1973 break;
1974 }
1975 }
cad321ad 1976 spin_unlock(&tree->lock);
d1310b2e
CM
1977 return bitset;
1978}
d1310b2e
CM
1979
1980/*
1981 * helper function to set a given page up to date if all the
1982 * extents in the tree for that page are up to date
1983 */
143bede5 1984static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1985{
4eee4fa4 1986 u64 start = page_offset(page);
d1310b2e 1987 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1988 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1989 SetPageUptodate(page);
d1310b2e
CM
1990}
1991
8b110e39 1992int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1993{
1994 int ret;
1995 int err = 0;
1996 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1997
1998 set_state_private(failure_tree, rec->start, 0);
1999 ret = clear_extent_bits(failure_tree, rec->start,
2000 rec->start + rec->len - 1,
2001 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2002 if (ret)
2003 err = ret;
2004
53b381b3
DW
2005 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2006 rec->start + rec->len - 1,
2007 EXTENT_DAMAGED, GFP_NOFS);
2008 if (ret && !err)
2009 err = ret;
4a54c8c1
JS
2010
2011 kfree(rec);
2012 return err;
2013}
2014
4a54c8c1
JS
2015/*
2016 * this bypasses the standard btrfs submit functions deliberately, as
2017 * the standard behavior is to write all copies in a raid setup. here we only
2018 * want to write the one bad copy. so we do the mapping for ourselves and issue
2019 * submit_bio directly.
3ec706c8 2020 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2021 * actually prevents the read that triggered the error from finishing.
2022 * currently, there can be no more than two copies of every data bit. thus,
2023 * exactly one rewrite is required.
2024 */
1203b681
MX
2025int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2026 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2027{
1203b681 2028 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2029 struct bio *bio;
2030 struct btrfs_device *dev;
4a54c8c1
JS
2031 u64 map_length = 0;
2032 u64 sector;
2033 struct btrfs_bio *bbio = NULL;
53b381b3 2034 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2035 int ret;
2036
908960c6 2037 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2038 BUG_ON(!mirror_num);
2039
53b381b3
DW
2040 /* we can't repair anything in raid56 yet */
2041 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2042 return 0;
2043
9be3395b 2044 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2045 if (!bio)
2046 return -EIO;
4f024f37 2047 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2048 map_length = length;
2049
3ec706c8 2050 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2051 &map_length, &bbio, mirror_num);
2052 if (ret) {
2053 bio_put(bio);
2054 return -EIO;
2055 }
2056 BUG_ON(mirror_num != bbio->mirror_num);
2057 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2058 bio->bi_iter.bi_sector = sector;
4a54c8c1
JS
2059 dev = bbio->stripes[mirror_num-1].dev;
2060 kfree(bbio);
2061 if (!dev || !dev->bdev || !dev->writeable) {
2062 bio_put(bio);
2063 return -EIO;
2064 }
2065 bio->bi_bdev = dev->bdev;
ffdd2018 2066 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2067
33879d45 2068 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2069 /* try to remap that extent elsewhere? */
2070 bio_put(bio);
442a4f63 2071 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2072 return -EIO;
2073 }
2074
efe120a0 2075 printk_ratelimited_in_rcu(KERN_INFO
1203b681
MX
2076 "BTRFS: read error corrected: ino %llu off %llu (dev %s sector %llu)\n",
2077 btrfs_ino(inode), start,
2078 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2079 bio_put(bio);
2080 return 0;
2081}
2082
ea466794
JB
2083int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2084 int mirror_num)
2085{
ea466794
JB
2086 u64 start = eb->start;
2087 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2088 int ret = 0;
ea466794 2089
908960c6
ID
2090 if (root->fs_info->sb->s_flags & MS_RDONLY)
2091 return -EROFS;
2092
ea466794 2093 for (i = 0; i < num_pages; i++) {
fb85fc9a 2094 struct page *p = eb->pages[i];
1203b681
MX
2095
2096 ret = repair_io_failure(root->fs_info->btree_inode, start,
2097 PAGE_CACHE_SIZE, start, p,
2098 start - page_offset(p), mirror_num);
ea466794
JB
2099 if (ret)
2100 break;
2101 start += PAGE_CACHE_SIZE;
2102 }
2103
2104 return ret;
2105}
2106
4a54c8c1
JS
2107/*
2108 * each time an IO finishes, we do a fast check in the IO failure tree
2109 * to see if we need to process or clean up an io_failure_record
2110 */
8b110e39
MX
2111int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2112 unsigned int pg_offset)
4a54c8c1
JS
2113{
2114 u64 private;
2115 u64 private_failure;
2116 struct io_failure_record *failrec;
908960c6 2117 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2118 struct extent_state *state;
2119 int num_copies;
4a54c8c1 2120 int ret;
4a54c8c1
JS
2121
2122 private = 0;
2123 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2124 (u64)-1, 1, EXTENT_DIRTY, 0);
2125 if (!ret)
2126 return 0;
2127
2128 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2129 &private_failure);
2130 if (ret)
2131 return 0;
2132
2133 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2134 BUG_ON(!failrec->this_mirror);
2135
2136 if (failrec->in_validation) {
2137 /* there was no real error, just free the record */
2138 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2139 failrec->start);
4a54c8c1
JS
2140 goto out;
2141 }
908960c6
ID
2142 if (fs_info->sb->s_flags & MS_RDONLY)
2143 goto out;
4a54c8c1
JS
2144
2145 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2146 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2147 failrec->start,
2148 EXTENT_LOCKED);
2149 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2150
883d0de4
MX
2151 if (state && state->start <= failrec->start &&
2152 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2153 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2154 failrec->len);
4a54c8c1 2155 if (num_copies > 1) {
1203b681 2156 repair_io_failure(inode, start, failrec->len,
454ff3de 2157 failrec->logical, page,
1203b681 2158 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2159 }
2160 }
2161
2162out:
454ff3de 2163 free_io_failure(inode, failrec);
4a54c8c1 2164
454ff3de 2165 return 0;
4a54c8c1
JS
2166}
2167
f612496b
MX
2168/*
2169 * Can be called when
2170 * - hold extent lock
2171 * - under ordered extent
2172 * - the inode is freeing
2173 */
2174void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2175{
2176 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2177 struct io_failure_record *failrec;
2178 struct extent_state *state, *next;
2179
2180 if (RB_EMPTY_ROOT(&failure_tree->state))
2181 return;
2182
2183 spin_lock(&failure_tree->lock);
2184 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2185 while (state) {
2186 if (state->start > end)
2187 break;
2188
2189 ASSERT(state->end <= end);
2190
2191 next = next_state(state);
2192
2193 failrec = (struct io_failure_record *)state->private;
2194 free_extent_state(state);
2195 kfree(failrec);
2196
2197 state = next;
2198 }
2199 spin_unlock(&failure_tree->lock);
2200}
2201
2fe6303e
MX
2202int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2203 struct io_failure_record **failrec_ret)
4a54c8c1 2204{
2fe6303e 2205 struct io_failure_record *failrec;
4a54c8c1
JS
2206 u64 private;
2207 struct extent_map *em;
4a54c8c1
JS
2208 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2209 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2210 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2211 int ret;
4a54c8c1
JS
2212 u64 logical;
2213
4a54c8c1
JS
2214 ret = get_state_private(failure_tree, start, &private);
2215 if (ret) {
2216 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2217 if (!failrec)
2218 return -ENOMEM;
2fe6303e 2219
4a54c8c1
JS
2220 failrec->start = start;
2221 failrec->len = end - start + 1;
2222 failrec->this_mirror = 0;
2223 failrec->bio_flags = 0;
2224 failrec->in_validation = 0;
2225
2226 read_lock(&em_tree->lock);
2227 em = lookup_extent_mapping(em_tree, start, failrec->len);
2228 if (!em) {
2229 read_unlock(&em_tree->lock);
2230 kfree(failrec);
2231 return -EIO;
2232 }
2233
68ba990f 2234 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2235 free_extent_map(em);
2236 em = NULL;
2237 }
2238 read_unlock(&em_tree->lock);
7a2d6a64 2239 if (!em) {
4a54c8c1
JS
2240 kfree(failrec);
2241 return -EIO;
2242 }
2fe6303e 2243
4a54c8c1
JS
2244 logical = start - em->start;
2245 logical = em->block_start + logical;
2246 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2247 logical = em->block_start;
2248 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2249 extent_set_compress_type(&failrec->bio_flags,
2250 em->compress_type);
2251 }
2fe6303e
MX
2252
2253 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2254 logical, start, failrec->len);
2255
4a54c8c1
JS
2256 failrec->logical = logical;
2257 free_extent_map(em);
2258
2259 /* set the bits in the private failure tree */
2260 ret = set_extent_bits(failure_tree, start, end,
2261 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2262 if (ret >= 0)
2263 ret = set_state_private(failure_tree, start,
2264 (u64)(unsigned long)failrec);
2265 /* set the bits in the inode's tree */
2266 if (ret >= 0)
2267 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2268 GFP_NOFS);
2269 if (ret < 0) {
2270 kfree(failrec);
2271 return ret;
2272 }
2273 } else {
2274 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2275 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2276 failrec->logical, failrec->start, failrec->len,
2277 failrec->in_validation);
2278 /*
2279 * when data can be on disk more than twice, add to failrec here
2280 * (e.g. with a list for failed_mirror) to make
2281 * clean_io_failure() clean all those errors at once.
2282 */
2283 }
2fe6303e
MX
2284
2285 *failrec_ret = failrec;
2286
2287 return 0;
2288}
2289
2290int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2291 struct io_failure_record *failrec, int failed_mirror)
2292{
2293 int num_copies;
2294
5d964051
SB
2295 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2296 failrec->logical, failrec->len);
4a54c8c1
JS
2297 if (num_copies == 1) {
2298 /*
2299 * we only have a single copy of the data, so don't bother with
2300 * all the retry and error correction code that follows. no
2301 * matter what the error is, it is very likely to persist.
2302 */
2fe6303e 2303 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2304 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2305 return 0;
4a54c8c1
JS
2306 }
2307
4a54c8c1
JS
2308 /*
2309 * there are two premises:
2310 * a) deliver good data to the caller
2311 * b) correct the bad sectors on disk
2312 */
2313 if (failed_bio->bi_vcnt > 1) {
2314 /*
2315 * to fulfill b), we need to know the exact failing sectors, as
2316 * we don't want to rewrite any more than the failed ones. thus,
2317 * we need separate read requests for the failed bio
2318 *
2319 * if the following BUG_ON triggers, our validation request got
2320 * merged. we need separate requests for our algorithm to work.
2321 */
2322 BUG_ON(failrec->in_validation);
2323 failrec->in_validation = 1;
2324 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2325 } else {
2326 /*
2327 * we're ready to fulfill a) and b) alongside. get a good copy
2328 * of the failed sector and if we succeed, we have setup
2329 * everything for repair_io_failure to do the rest for us.
2330 */
2331 if (failrec->in_validation) {
2332 BUG_ON(failrec->this_mirror != failed_mirror);
2333 failrec->in_validation = 0;
2334 failrec->this_mirror = 0;
2335 }
2336 failrec->failed_mirror = failed_mirror;
2337 failrec->this_mirror++;
2338 if (failrec->this_mirror == failed_mirror)
2339 failrec->this_mirror++;
4a54c8c1
JS
2340 }
2341
facc8a22 2342 if (failrec->this_mirror > num_copies) {
2fe6303e 2343 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2344 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2345 return 0;
4a54c8c1
JS
2346 }
2347
2fe6303e
MX
2348 return 1;
2349}
2350
2351
2352struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2353 struct io_failure_record *failrec,
2354 struct page *page, int pg_offset, int icsum,
8b110e39 2355 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2356{
2357 struct bio *bio;
2358 struct btrfs_io_bio *btrfs_failed_bio;
2359 struct btrfs_io_bio *btrfs_bio;
2360
9be3395b 2361 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2362 if (!bio)
2363 return NULL;
2364
2365 bio->bi_end_io = endio_func;
4f024f37 2366 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2367 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2368 bio->bi_iter.bi_size = 0;
8b110e39 2369 bio->bi_private = data;
4a54c8c1 2370
facc8a22
MX
2371 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2372 if (btrfs_failed_bio->csum) {
2373 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2374 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2375
2376 btrfs_bio = btrfs_io_bio(bio);
2377 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2378 icsum *= csum_size;
2379 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2380 csum_size);
2381 }
2382
2fe6303e
MX
2383 bio_add_page(bio, page, failrec->len, pg_offset);
2384
2385 return bio;
2386}
2387
2388/*
2389 * this is a generic handler for readpage errors (default
2390 * readpage_io_failed_hook). if other copies exist, read those and write back
2391 * good data to the failed position. does not investigate in remapping the
2392 * failed extent elsewhere, hoping the device will be smart enough to do this as
2393 * needed
2394 */
2395
2396static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2397 struct page *page, u64 start, u64 end,
2398 int failed_mirror)
2399{
2400 struct io_failure_record *failrec;
2401 struct inode *inode = page->mapping->host;
2402 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2403 struct bio *bio;
2404 int read_mode;
2405 int ret;
2406
2407 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2408
2409 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2410 if (ret)
2411 return ret;
2412
2413 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2414 if (!ret) {
2415 free_io_failure(inode, failrec);
2416 return -EIO;
2417 }
2418
2419 if (failed_bio->bi_vcnt > 1)
2420 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2421 else
2422 read_mode = READ_SYNC;
2423
2424 phy_offset >>= inode->i_sb->s_blocksize_bits;
2425 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2426 start - page_offset(page),
8b110e39
MX
2427 (int)phy_offset, failed_bio->bi_end_io,
2428 NULL);
2fe6303e
MX
2429 if (!bio) {
2430 free_io_failure(inode, failrec);
2431 return -EIO;
2432 }
4a54c8c1 2433
2fe6303e
MX
2434 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2435 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2436
013bd4c3
TI
2437 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2438 failrec->this_mirror,
2439 failrec->bio_flags, 0);
6c387ab2 2440 if (ret) {
454ff3de 2441 free_io_failure(inode, failrec);
6c387ab2
MX
2442 bio_put(bio);
2443 }
2444
013bd4c3 2445 return ret;
4a54c8c1
JS
2446}
2447
d1310b2e
CM
2448/* lots and lots of room for performance fixes in the end_bio funcs */
2449
87826df0
JM
2450int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2451{
2452 int uptodate = (err == 0);
2453 struct extent_io_tree *tree;
3e2426bd 2454 int ret = 0;
87826df0
JM
2455
2456 tree = &BTRFS_I(page->mapping->host)->io_tree;
2457
2458 if (tree->ops && tree->ops->writepage_end_io_hook) {
2459 ret = tree->ops->writepage_end_io_hook(page, start,
2460 end, NULL, uptodate);
2461 if (ret)
2462 uptodate = 0;
2463 }
2464
87826df0 2465 if (!uptodate) {
87826df0
JM
2466 ClearPageUptodate(page);
2467 SetPageError(page);
5dca6eea
LB
2468 ret = ret < 0 ? ret : -EIO;
2469 mapping_set_error(page->mapping, ret);
87826df0
JM
2470 }
2471 return 0;
2472}
2473
d1310b2e
CM
2474/*
2475 * after a writepage IO is done, we need to:
2476 * clear the uptodate bits on error
2477 * clear the writeback bits in the extent tree for this IO
2478 * end_page_writeback if the page has no more pending IO
2479 *
2480 * Scheduling is not allowed, so the extent state tree is expected
2481 * to have one and only one object corresponding to this IO.
2482 */
d1310b2e 2483static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2484{
2c30c71b 2485 struct bio_vec *bvec;
d1310b2e
CM
2486 u64 start;
2487 u64 end;
2c30c71b 2488 int i;
d1310b2e 2489
2c30c71b 2490 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2491 struct page *page = bvec->bv_page;
902b22f3 2492
17a5adcc
AO
2493 /* We always issue full-page reads, but if some block
2494 * in a page fails to read, blk_update_request() will
2495 * advance bv_offset and adjust bv_len to compensate.
2496 * Print a warning for nonzero offsets, and an error
2497 * if they don't add up to a full page. */
efe120a0
FH
2498 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2499 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2500 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2501 "partial page write in btrfs with offset %u and length %u",
2502 bvec->bv_offset, bvec->bv_len);
2503 else
2504 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2505 "incomplete page write in btrfs with offset %u and "
2506 "length %u",
2507 bvec->bv_offset, bvec->bv_len);
2508 }
d1310b2e 2509
17a5adcc
AO
2510 start = page_offset(page);
2511 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2512
87826df0
JM
2513 if (end_extent_writepage(page, err, start, end))
2514 continue;
70dec807 2515
17a5adcc 2516 end_page_writeback(page);
2c30c71b 2517 }
2b1f55b0 2518
d1310b2e 2519 bio_put(bio);
d1310b2e
CM
2520}
2521
883d0de4
MX
2522static void
2523endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2524 int uptodate)
2525{
2526 struct extent_state *cached = NULL;
2527 u64 end = start + len - 1;
2528
2529 if (uptodate && tree->track_uptodate)
2530 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2531 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2532}
2533
d1310b2e
CM
2534/*
2535 * after a readpage IO is done, we need to:
2536 * clear the uptodate bits on error
2537 * set the uptodate bits if things worked
2538 * set the page up to date if all extents in the tree are uptodate
2539 * clear the lock bit in the extent tree
2540 * unlock the page if there are no other extents locked for it
2541 *
2542 * Scheduling is not allowed, so the extent state tree is expected
2543 * to have one and only one object corresponding to this IO.
2544 */
d1310b2e 2545static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2546{
2c30c71b 2547 struct bio_vec *bvec;
d1310b2e 2548 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2549 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2550 struct extent_io_tree *tree;
facc8a22 2551 u64 offset = 0;
d1310b2e
CM
2552 u64 start;
2553 u64 end;
facc8a22 2554 u64 len;
883d0de4
MX
2555 u64 extent_start = 0;
2556 u64 extent_len = 0;
5cf1ab56 2557 int mirror;
d1310b2e 2558 int ret;
2c30c71b 2559 int i;
d1310b2e 2560
d20f7043
CM
2561 if (err)
2562 uptodate = 0;
2563
2c30c71b 2564 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2565 struct page *page = bvec->bv_page;
a71754fc 2566 struct inode *inode = page->mapping->host;
507903b8 2567
be3940c0 2568 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
c1dc0896 2569 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2570 io_bio->mirror_num);
a71754fc 2571 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2572
17a5adcc
AO
2573 /* We always issue full-page reads, but if some block
2574 * in a page fails to read, blk_update_request() will
2575 * advance bv_offset and adjust bv_len to compensate.
2576 * Print a warning for nonzero offsets, and an error
2577 * if they don't add up to a full page. */
efe120a0
FH
2578 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2579 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2580 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2581 "partial page read in btrfs with offset %u and length %u",
2582 bvec->bv_offset, bvec->bv_len);
2583 else
2584 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2585 "incomplete page read in btrfs with offset %u and "
2586 "length %u",
2587 bvec->bv_offset, bvec->bv_len);
2588 }
d1310b2e 2589
17a5adcc
AO
2590 start = page_offset(page);
2591 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2592 len = bvec->bv_len;
d1310b2e 2593
9be3395b 2594 mirror = io_bio->mirror_num;
f2a09da9
MX
2595 if (likely(uptodate && tree->ops &&
2596 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2597 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2598 page, start, end,
2599 mirror);
5ee0844d 2600 if (ret)
d1310b2e 2601 uptodate = 0;
5ee0844d 2602 else
1203b681 2603 clean_io_failure(inode, start, page, 0);
d1310b2e 2604 }
ea466794 2605
f2a09da9
MX
2606 if (likely(uptodate))
2607 goto readpage_ok;
2608
2609 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2610 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2611 if (!ret && !err &&
2612 test_bit(BIO_UPTODATE, &bio->bi_flags))
2613 uptodate = 1;
f2a09da9 2614 } else {
f4a8e656
JS
2615 /*
2616 * The generic bio_readpage_error handles errors the
2617 * following way: If possible, new read requests are
2618 * created and submitted and will end up in
2619 * end_bio_extent_readpage as well (if we're lucky, not
2620 * in the !uptodate case). In that case it returns 0 and
2621 * we just go on with the next page in our bio. If it
2622 * can't handle the error it will return -EIO and we
2623 * remain responsible for that page.
2624 */
facc8a22
MX
2625 ret = bio_readpage_error(bio, offset, page, start, end,
2626 mirror);
7e38326f 2627 if (ret == 0) {
3b951516
CM
2628 uptodate =
2629 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2630 if (err)
2631 uptodate = 0;
38c1c2e4 2632 offset += len;
7e38326f
CM
2633 continue;
2634 }
2635 }
f2a09da9 2636readpage_ok:
883d0de4 2637 if (likely(uptodate)) {
a71754fc
JB
2638 loff_t i_size = i_size_read(inode);
2639 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2640 unsigned off;
a71754fc
JB
2641
2642 /* Zero out the end if this page straddles i_size */
a583c026
LB
2643 off = i_size & (PAGE_CACHE_SIZE-1);
2644 if (page->index == end_index && off)
2645 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2646 SetPageUptodate(page);
70dec807 2647 } else {
17a5adcc
AO
2648 ClearPageUptodate(page);
2649 SetPageError(page);
70dec807 2650 }
17a5adcc 2651 unlock_page(page);
facc8a22 2652 offset += len;
883d0de4
MX
2653
2654 if (unlikely(!uptodate)) {
2655 if (extent_len) {
2656 endio_readpage_release_extent(tree,
2657 extent_start,
2658 extent_len, 1);
2659 extent_start = 0;
2660 extent_len = 0;
2661 }
2662 endio_readpage_release_extent(tree, start,
2663 end - start + 1, 0);
2664 } else if (!extent_len) {
2665 extent_start = start;
2666 extent_len = end + 1 - start;
2667 } else if (extent_start + extent_len == start) {
2668 extent_len += end + 1 - start;
2669 } else {
2670 endio_readpage_release_extent(tree, extent_start,
2671 extent_len, uptodate);
2672 extent_start = start;
2673 extent_len = end + 1 - start;
2674 }
2c30c71b 2675 }
d1310b2e 2676
883d0de4
MX
2677 if (extent_len)
2678 endio_readpage_release_extent(tree, extent_start, extent_len,
2679 uptodate);
facc8a22
MX
2680 if (io_bio->end_io)
2681 io_bio->end_io(io_bio, err);
d1310b2e 2682 bio_put(bio);
d1310b2e
CM
2683}
2684
9be3395b
CM
2685/*
2686 * this allocates from the btrfs_bioset. We're returning a bio right now
2687 * but you can call btrfs_io_bio for the appropriate container_of magic
2688 */
88f794ed
MX
2689struct bio *
2690btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2691 gfp_t gfp_flags)
d1310b2e 2692{
facc8a22 2693 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2694 struct bio *bio;
2695
9be3395b 2696 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2697
2698 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2699 while (!bio && (nr_vecs /= 2)) {
2700 bio = bio_alloc_bioset(gfp_flags,
2701 nr_vecs, btrfs_bioset);
2702 }
d1310b2e
CM
2703 }
2704
2705 if (bio) {
2706 bio->bi_bdev = bdev;
4f024f37 2707 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2708 btrfs_bio = btrfs_io_bio(bio);
2709 btrfs_bio->csum = NULL;
2710 btrfs_bio->csum_allocated = NULL;
2711 btrfs_bio->end_io = NULL;
d1310b2e
CM
2712 }
2713 return bio;
2714}
2715
9be3395b
CM
2716struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2717{
23ea8e5a
MX
2718 struct btrfs_io_bio *btrfs_bio;
2719 struct bio *new;
9be3395b 2720
23ea8e5a
MX
2721 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2722 if (new) {
2723 btrfs_bio = btrfs_io_bio(new);
2724 btrfs_bio->csum = NULL;
2725 btrfs_bio->csum_allocated = NULL;
2726 btrfs_bio->end_io = NULL;
2727 }
2728 return new;
2729}
9be3395b
CM
2730
2731/* this also allocates from the btrfs_bioset */
2732struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2733{
facc8a22
MX
2734 struct btrfs_io_bio *btrfs_bio;
2735 struct bio *bio;
2736
2737 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2738 if (bio) {
2739 btrfs_bio = btrfs_io_bio(bio);
2740 btrfs_bio->csum = NULL;
2741 btrfs_bio->csum_allocated = NULL;
2742 btrfs_bio->end_io = NULL;
2743 }
2744 return bio;
9be3395b
CM
2745}
2746
2747
355808c2
JM
2748static int __must_check submit_one_bio(int rw, struct bio *bio,
2749 int mirror_num, unsigned long bio_flags)
d1310b2e 2750{
d1310b2e 2751 int ret = 0;
70dec807
CM
2752 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2753 struct page *page = bvec->bv_page;
2754 struct extent_io_tree *tree = bio->bi_private;
70dec807 2755 u64 start;
70dec807 2756
4eee4fa4 2757 start = page_offset(page) + bvec->bv_offset;
70dec807 2758
902b22f3 2759 bio->bi_private = NULL;
d1310b2e
CM
2760
2761 bio_get(bio);
2762
065631f6 2763 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2764 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2765 mirror_num, bio_flags, start);
0b86a832 2766 else
21adbd5c 2767 btrfsic_submit_bio(rw, bio);
4a54c8c1 2768
d1310b2e
CM
2769 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2770 ret = -EOPNOTSUPP;
2771 bio_put(bio);
2772 return ret;
2773}
2774
64a16701 2775static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2776 unsigned long offset, size_t size, struct bio *bio,
2777 unsigned long bio_flags)
2778{
2779 int ret = 0;
2780 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2781 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2782 bio_flags);
2783 BUG_ON(ret < 0);
2784 return ret;
2785
2786}
2787
d1310b2e
CM
2788static int submit_extent_page(int rw, struct extent_io_tree *tree,
2789 struct page *page, sector_t sector,
2790 size_t size, unsigned long offset,
2791 struct block_device *bdev,
2792 struct bio **bio_ret,
2793 unsigned long max_pages,
f188591e 2794 bio_end_io_t end_io_func,
c8b97818
CM
2795 int mirror_num,
2796 unsigned long prev_bio_flags,
2797 unsigned long bio_flags)
d1310b2e
CM
2798{
2799 int ret = 0;
2800 struct bio *bio;
2801 int nr;
c8b97818
CM
2802 int contig = 0;
2803 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2804 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2805 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2806
2807 if (bio_ret && *bio_ret) {
2808 bio = *bio_ret;
c8b97818 2809 if (old_compressed)
4f024f37 2810 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2811 else
f73a1c7d 2812 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2813
2814 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2815 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2816 bio_add_page(bio, page, page_size, offset) < page_size) {
2817 ret = submit_one_bio(rw, bio, mirror_num,
2818 prev_bio_flags);
79787eaa
JM
2819 if (ret < 0)
2820 return ret;
d1310b2e
CM
2821 bio = NULL;
2822 } else {
2823 return 0;
2824 }
2825 }
c8b97818
CM
2826 if (this_compressed)
2827 nr = BIO_MAX_PAGES;
2828 else
2829 nr = bio_get_nr_vecs(bdev);
2830
88f794ed 2831 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2832 if (!bio)
2833 return -ENOMEM;
70dec807 2834
c8b97818 2835 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2836 bio->bi_end_io = end_io_func;
2837 bio->bi_private = tree;
70dec807 2838
d397712b 2839 if (bio_ret)
d1310b2e 2840 *bio_ret = bio;
d397712b 2841 else
c8b97818 2842 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2843
2844 return ret;
2845}
2846
48a3b636
ES
2847static void attach_extent_buffer_page(struct extent_buffer *eb,
2848 struct page *page)
d1310b2e
CM
2849{
2850 if (!PagePrivate(page)) {
2851 SetPagePrivate(page);
d1310b2e 2852 page_cache_get(page);
4f2de97a
JB
2853 set_page_private(page, (unsigned long)eb);
2854 } else {
2855 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2856 }
2857}
2858
4f2de97a 2859void set_page_extent_mapped(struct page *page)
d1310b2e 2860{
4f2de97a
JB
2861 if (!PagePrivate(page)) {
2862 SetPagePrivate(page);
2863 page_cache_get(page);
2864 set_page_private(page, EXTENT_PAGE_PRIVATE);
2865 }
d1310b2e
CM
2866}
2867
125bac01
MX
2868static struct extent_map *
2869__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2870 u64 start, u64 len, get_extent_t *get_extent,
2871 struct extent_map **em_cached)
2872{
2873 struct extent_map *em;
2874
2875 if (em_cached && *em_cached) {
2876 em = *em_cached;
cbc0e928 2877 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2878 start < extent_map_end(em)) {
2879 atomic_inc(&em->refs);
2880 return em;
2881 }
2882
2883 free_extent_map(em);
2884 *em_cached = NULL;
2885 }
2886
2887 em = get_extent(inode, page, pg_offset, start, len, 0);
2888 if (em_cached && !IS_ERR_OR_NULL(em)) {
2889 BUG_ON(*em_cached);
2890 atomic_inc(&em->refs);
2891 *em_cached = em;
2892 }
2893 return em;
2894}
d1310b2e
CM
2895/*
2896 * basic readpage implementation. Locked extent state structs are inserted
2897 * into the tree that are removed when the IO is done (by the end_io
2898 * handlers)
79787eaa 2899 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2900 */
9974090b
MX
2901static int __do_readpage(struct extent_io_tree *tree,
2902 struct page *page,
2903 get_extent_t *get_extent,
125bac01 2904 struct extent_map **em_cached,
9974090b
MX
2905 struct bio **bio, int mirror_num,
2906 unsigned long *bio_flags, int rw)
d1310b2e
CM
2907{
2908 struct inode *inode = page->mapping->host;
4eee4fa4 2909 u64 start = page_offset(page);
d1310b2e
CM
2910 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2911 u64 end;
2912 u64 cur = start;
2913 u64 extent_offset;
2914 u64 last_byte = i_size_read(inode);
2915 u64 block_start;
2916 u64 cur_end;
2917 sector_t sector;
2918 struct extent_map *em;
2919 struct block_device *bdev;
2920 int ret;
2921 int nr = 0;
4b384318 2922 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2923 size_t pg_offset = 0;
d1310b2e 2924 size_t iosize;
c8b97818 2925 size_t disk_io_size;
d1310b2e 2926 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2927 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2928
2929 set_page_extent_mapped(page);
2930
9974090b 2931 end = page_end;
90a887c9
DM
2932 if (!PageUptodate(page)) {
2933 if (cleancache_get_page(page) == 0) {
2934 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2935 unlock_extent(tree, start, end);
90a887c9
DM
2936 goto out;
2937 }
2938 }
2939
c8b97818
CM
2940 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2941 char *userpage;
2942 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2943
2944 if (zero_offset) {
2945 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2946 userpage = kmap_atomic(page);
c8b97818
CM
2947 memset(userpage + zero_offset, 0, iosize);
2948 flush_dcache_page(page);
7ac687d9 2949 kunmap_atomic(userpage);
c8b97818
CM
2950 }
2951 }
d1310b2e 2952 while (cur <= end) {
c8f2f24b
JB
2953 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2954
d1310b2e
CM
2955 if (cur >= last_byte) {
2956 char *userpage;
507903b8
AJ
2957 struct extent_state *cached = NULL;
2958
306e16ce 2959 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2960 userpage = kmap_atomic(page);
306e16ce 2961 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2962 flush_dcache_page(page);
7ac687d9 2963 kunmap_atomic(userpage);
d1310b2e 2964 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2965 &cached, GFP_NOFS);
4b384318
MF
2966 if (!parent_locked)
2967 unlock_extent_cached(tree, cur,
2968 cur + iosize - 1,
2969 &cached, GFP_NOFS);
d1310b2e
CM
2970 break;
2971 }
125bac01
MX
2972 em = __get_extent_map(inode, page, pg_offset, cur,
2973 end - cur + 1, get_extent, em_cached);
c704005d 2974 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2975 SetPageError(page);
4b384318
MF
2976 if (!parent_locked)
2977 unlock_extent(tree, cur, end);
d1310b2e
CM
2978 break;
2979 }
d1310b2e
CM
2980 extent_offset = cur - em->start;
2981 BUG_ON(extent_map_end(em) <= cur);
2982 BUG_ON(end < cur);
2983
261507a0 2984 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2985 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2986 extent_set_compress_type(&this_bio_flag,
2987 em->compress_type);
2988 }
c8b97818 2989
d1310b2e
CM
2990 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2991 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2992 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2993 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2994 disk_io_size = em->block_len;
2995 sector = em->block_start >> 9;
2996 } else {
2997 sector = (em->block_start + extent_offset) >> 9;
2998 disk_io_size = iosize;
2999 }
d1310b2e
CM
3000 bdev = em->bdev;
3001 block_start = em->block_start;
d899e052
YZ
3002 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
3003 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
3004 free_extent_map(em);
3005 em = NULL;
3006
3007 /* we've found a hole, just zero and go on */
3008 if (block_start == EXTENT_MAP_HOLE) {
3009 char *userpage;
507903b8
AJ
3010 struct extent_state *cached = NULL;
3011
7ac687d9 3012 userpage = kmap_atomic(page);
306e16ce 3013 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3014 flush_dcache_page(page);
7ac687d9 3015 kunmap_atomic(userpage);
d1310b2e
CM
3016
3017 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
3018 &cached, GFP_NOFS);
3019 unlock_extent_cached(tree, cur, cur + iosize - 1,
3020 &cached, GFP_NOFS);
d1310b2e 3021 cur = cur + iosize;
306e16ce 3022 pg_offset += iosize;
d1310b2e
CM
3023 continue;
3024 }
3025 /* the get_extent function already copied into the page */
9655d298
CM
3026 if (test_range_bit(tree, cur, cur_end,
3027 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3028 check_page_uptodate(tree, page);
4b384318
MF
3029 if (!parent_locked)
3030 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3031 cur = cur + iosize;
306e16ce 3032 pg_offset += iosize;
d1310b2e
CM
3033 continue;
3034 }
70dec807
CM
3035 /* we have an inline extent but it didn't get marked up
3036 * to date. Error out
3037 */
3038 if (block_start == EXTENT_MAP_INLINE) {
3039 SetPageError(page);
4b384318
MF
3040 if (!parent_locked)
3041 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3042 cur = cur + iosize;
306e16ce 3043 pg_offset += iosize;
70dec807
CM
3044 continue;
3045 }
d1310b2e 3046
c8f2f24b 3047 pnr -= page->index;
d4c7ca86 3048 ret = submit_extent_page(rw, tree, page,
306e16ce 3049 sector, disk_io_size, pg_offset,
89642229 3050 bdev, bio, pnr,
c8b97818
CM
3051 end_bio_extent_readpage, mirror_num,
3052 *bio_flags,
3053 this_bio_flag);
c8f2f24b
JB
3054 if (!ret) {
3055 nr++;
3056 *bio_flags = this_bio_flag;
3057 } else {
d1310b2e 3058 SetPageError(page);
4b384318
MF
3059 if (!parent_locked)
3060 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3061 }
d1310b2e 3062 cur = cur + iosize;
306e16ce 3063 pg_offset += iosize;
d1310b2e 3064 }
90a887c9 3065out:
d1310b2e
CM
3066 if (!nr) {
3067 if (!PageError(page))
3068 SetPageUptodate(page);
3069 unlock_page(page);
3070 }
3071 return 0;
3072}
3073
9974090b
MX
3074static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3075 struct page *pages[], int nr_pages,
3076 u64 start, u64 end,
3077 get_extent_t *get_extent,
125bac01 3078 struct extent_map **em_cached,
9974090b
MX
3079 struct bio **bio, int mirror_num,
3080 unsigned long *bio_flags, int rw)
3081{
3082 struct inode *inode;
3083 struct btrfs_ordered_extent *ordered;
3084 int index;
3085
3086 inode = pages[0]->mapping->host;
3087 while (1) {
3088 lock_extent(tree, start, end);
3089 ordered = btrfs_lookup_ordered_range(inode, start,
3090 end - start + 1);
3091 if (!ordered)
3092 break;
3093 unlock_extent(tree, start, end);
3094 btrfs_start_ordered_extent(inode, ordered, 1);
3095 btrfs_put_ordered_extent(ordered);
3096 }
3097
3098 for (index = 0; index < nr_pages; index++) {
125bac01
MX
3099 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3100 mirror_num, bio_flags, rw);
9974090b
MX
3101 page_cache_release(pages[index]);
3102 }
3103}
3104
3105static void __extent_readpages(struct extent_io_tree *tree,
3106 struct page *pages[],
3107 int nr_pages, get_extent_t *get_extent,
125bac01 3108 struct extent_map **em_cached,
9974090b
MX
3109 struct bio **bio, int mirror_num,
3110 unsigned long *bio_flags, int rw)
3111{
35a3621b 3112 u64 start = 0;
9974090b
MX
3113 u64 end = 0;
3114 u64 page_start;
3115 int index;
35a3621b 3116 int first_index = 0;
9974090b
MX
3117
3118 for (index = 0; index < nr_pages; index++) {
3119 page_start = page_offset(pages[index]);
3120 if (!end) {
3121 start = page_start;
3122 end = start + PAGE_CACHE_SIZE - 1;
3123 first_index = index;
3124 } else if (end + 1 == page_start) {
3125 end += PAGE_CACHE_SIZE;
3126 } else {
3127 __do_contiguous_readpages(tree, &pages[first_index],
3128 index - first_index, start,
125bac01
MX
3129 end, get_extent, em_cached,
3130 bio, mirror_num, bio_flags,
3131 rw);
9974090b
MX
3132 start = page_start;
3133 end = start + PAGE_CACHE_SIZE - 1;
3134 first_index = index;
3135 }
3136 }
3137
3138 if (end)
3139 __do_contiguous_readpages(tree, &pages[first_index],
3140 index - first_index, start,
125bac01 3141 end, get_extent, em_cached, bio,
9974090b
MX
3142 mirror_num, bio_flags, rw);
3143}
3144
3145static int __extent_read_full_page(struct extent_io_tree *tree,
3146 struct page *page,
3147 get_extent_t *get_extent,
3148 struct bio **bio, int mirror_num,
3149 unsigned long *bio_flags, int rw)
3150{
3151 struct inode *inode = page->mapping->host;
3152 struct btrfs_ordered_extent *ordered;
3153 u64 start = page_offset(page);
3154 u64 end = start + PAGE_CACHE_SIZE - 1;
3155 int ret;
3156
3157 while (1) {
3158 lock_extent(tree, start, end);
3159 ordered = btrfs_lookup_ordered_extent(inode, start);
3160 if (!ordered)
3161 break;
3162 unlock_extent(tree, start, end);
3163 btrfs_start_ordered_extent(inode, ordered, 1);
3164 btrfs_put_ordered_extent(ordered);
3165 }
3166
125bac01
MX
3167 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3168 bio_flags, rw);
9974090b
MX
3169 return ret;
3170}
3171
d1310b2e 3172int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3173 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3174{
3175 struct bio *bio = NULL;
c8b97818 3176 unsigned long bio_flags = 0;
d1310b2e
CM
3177 int ret;
3178
8ddc7d9c 3179 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3180 &bio_flags, READ);
d1310b2e 3181 if (bio)
8ddc7d9c 3182 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3183 return ret;
3184}
d1310b2e 3185
4b384318
MF
3186int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3187 get_extent_t *get_extent, int mirror_num)
3188{
3189 struct bio *bio = NULL;
3190 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3191 int ret;
3192
3193 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3194 &bio_flags, READ);
3195 if (bio)
3196 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3197 return ret;
3198}
3199
11c8349b
CM
3200static noinline void update_nr_written(struct page *page,
3201 struct writeback_control *wbc,
3202 unsigned long nr_written)
3203{
3204 wbc->nr_to_write -= nr_written;
3205 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3206 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3207 page->mapping->writeback_index = page->index + nr_written;
3208}
3209
d1310b2e 3210/*
40f76580
CM
3211 * helper for __extent_writepage, doing all of the delayed allocation setup.
3212 *
3213 * This returns 1 if our fill_delalloc function did all the work required
3214 * to write the page (copy into inline extent). In this case the IO has
3215 * been started and the page is already unlocked.
3216 *
3217 * This returns 0 if all went well (page still locked)
3218 * This returns < 0 if there were errors (page still locked)
d1310b2e 3219 */
40f76580
CM
3220static noinline_for_stack int writepage_delalloc(struct inode *inode,
3221 struct page *page, struct writeback_control *wbc,
3222 struct extent_page_data *epd,
3223 u64 delalloc_start,
3224 unsigned long *nr_written)
3225{
3226 struct extent_io_tree *tree = epd->tree;
3227 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3228 u64 nr_delalloc;
3229 u64 delalloc_to_write = 0;
3230 u64 delalloc_end = 0;
3231 int ret;
3232 int page_started = 0;
3233
3234 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3235 return 0;
3236
3237 while (delalloc_end < page_end) {
3238 nr_delalloc = find_lock_delalloc_range(inode, tree,
3239 page,
3240 &delalloc_start,
3241 &delalloc_end,
3242 128 * 1024 * 1024);
3243 if (nr_delalloc == 0) {
3244 delalloc_start = delalloc_end + 1;
3245 continue;
3246 }
3247 ret = tree->ops->fill_delalloc(inode, page,
3248 delalloc_start,
3249 delalloc_end,
3250 &page_started,
3251 nr_written);
3252 /* File system has been set read-only */
3253 if (ret) {
3254 SetPageError(page);
3255 /* fill_delalloc should be return < 0 for error
3256 * but just in case, we use > 0 here meaning the
3257 * IO is started, so we don't want to return > 0
3258 * unless things are going well.
3259 */
3260 ret = ret < 0 ? ret : -EIO;
3261 goto done;
3262 }
3263 /*
3264 * delalloc_end is already one less than the total
3265 * length, so we don't subtract one from
3266 * PAGE_CACHE_SIZE
3267 */
3268 delalloc_to_write += (delalloc_end - delalloc_start +
3269 PAGE_CACHE_SIZE) >>
3270 PAGE_CACHE_SHIFT;
3271 delalloc_start = delalloc_end + 1;
3272 }
3273 if (wbc->nr_to_write < delalloc_to_write) {
3274 int thresh = 8192;
3275
3276 if (delalloc_to_write < thresh * 2)
3277 thresh = delalloc_to_write;
3278 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3279 thresh);
3280 }
3281
3282 /* did the fill delalloc function already unlock and start
3283 * the IO?
3284 */
3285 if (page_started) {
3286 /*
3287 * we've unlocked the page, so we can't update
3288 * the mapping's writeback index, just update
3289 * nr_to_write.
3290 */
3291 wbc->nr_to_write -= *nr_written;
3292 return 1;
3293 }
3294
3295 ret = 0;
3296
3297done:
3298 return ret;
3299}
3300
3301/*
3302 * helper for __extent_writepage. This calls the writepage start hooks,
3303 * and does the loop to map the page into extents and bios.
3304 *
3305 * We return 1 if the IO is started and the page is unlocked,
3306 * 0 if all went well (page still locked)
3307 * < 0 if there were errors (page still locked)
3308 */
3309static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3310 struct page *page,
3311 struct writeback_control *wbc,
3312 struct extent_page_data *epd,
3313 loff_t i_size,
3314 unsigned long nr_written,
3315 int write_flags, int *nr_ret)
d1310b2e 3316{
d1310b2e 3317 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3318 u64 start = page_offset(page);
d1310b2e
CM
3319 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3320 u64 end;
3321 u64 cur = start;
3322 u64 extent_offset;
d1310b2e
CM
3323 u64 block_start;
3324 u64 iosize;
3325 sector_t sector;
2c64c53d 3326 struct extent_state *cached_state = NULL;
d1310b2e
CM
3327 struct extent_map *em;
3328 struct block_device *bdev;
7f3c74fb 3329 size_t pg_offset = 0;
d1310b2e 3330 size_t blocksize;
40f76580
CM
3331 int ret = 0;
3332 int nr = 0;
3333 bool compressed;
c8b97818 3334
247e743c 3335 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3336 ret = tree->ops->writepage_start_hook(page, start,
3337 page_end);
87826df0
JM
3338 if (ret) {
3339 /* Fixup worker will requeue */
3340 if (ret == -EBUSY)
3341 wbc->pages_skipped++;
3342 else
3343 redirty_page_for_writepage(wbc, page);
40f76580 3344
11c8349b 3345 update_nr_written(page, wbc, nr_written);
247e743c 3346 unlock_page(page);
40f76580 3347 ret = 1;
11c8349b 3348 goto done_unlocked;
247e743c
CM
3349 }
3350 }
3351
11c8349b
CM
3352 /*
3353 * we don't want to touch the inode after unlocking the page,
3354 * so we update the mapping writeback index now
3355 */
3356 update_nr_written(page, wbc, nr_written + 1);
771ed689 3357
d1310b2e 3358 end = page_end;
40f76580 3359 if (i_size <= start) {
e6dcd2dc
CM
3360 if (tree->ops && tree->ops->writepage_end_io_hook)
3361 tree->ops->writepage_end_io_hook(page, start,
3362 page_end, NULL, 1);
d1310b2e
CM
3363 goto done;
3364 }
3365
d1310b2e
CM
3366 blocksize = inode->i_sb->s_blocksize;
3367
3368 while (cur <= end) {
40f76580
CM
3369 u64 em_end;
3370 if (cur >= i_size) {
e6dcd2dc
CM
3371 if (tree->ops && tree->ops->writepage_end_io_hook)
3372 tree->ops->writepage_end_io_hook(page, cur,
3373 page_end, NULL, 1);
d1310b2e
CM
3374 break;
3375 }
7f3c74fb 3376 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3377 end - cur + 1, 1);
c704005d 3378 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3379 SetPageError(page);
61391d56 3380 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3381 break;
3382 }
3383
3384 extent_offset = cur - em->start;
40f76580
CM
3385 em_end = extent_map_end(em);
3386 BUG_ON(em_end <= cur);
d1310b2e 3387 BUG_ON(end < cur);
40f76580 3388 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3389 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3390 sector = (em->block_start + extent_offset) >> 9;
3391 bdev = em->bdev;
3392 block_start = em->block_start;
c8b97818 3393 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3394 free_extent_map(em);
3395 em = NULL;
3396
c8b97818
CM
3397 /*
3398 * compressed and inline extents are written through other
3399 * paths in the FS
3400 */
3401 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3402 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3403 /*
3404 * end_io notification does not happen here for
3405 * compressed extents
3406 */
3407 if (!compressed && tree->ops &&
3408 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3409 tree->ops->writepage_end_io_hook(page, cur,
3410 cur + iosize - 1,
3411 NULL, 1);
c8b97818
CM
3412 else if (compressed) {
3413 /* we don't want to end_page_writeback on
3414 * a compressed extent. this happens
3415 * elsewhere
3416 */
3417 nr++;
3418 }
3419
3420 cur += iosize;
7f3c74fb 3421 pg_offset += iosize;
d1310b2e
CM
3422 continue;
3423 }
c8b97818 3424
d1310b2e
CM
3425 if (tree->ops && tree->ops->writepage_io_hook) {
3426 ret = tree->ops->writepage_io_hook(page, cur,
3427 cur + iosize - 1);
3428 } else {
3429 ret = 0;
3430 }
1259ab75 3431 if (ret) {
d1310b2e 3432 SetPageError(page);
1259ab75 3433 } else {
40f76580 3434 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3435
d1310b2e
CM
3436 set_range_writeback(tree, cur, cur + iosize - 1);
3437 if (!PageWriteback(page)) {
efe120a0
FH
3438 btrfs_err(BTRFS_I(inode)->root->fs_info,
3439 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3440 page->index, cur, end);
d1310b2e
CM
3441 }
3442
ffbd517d
CM
3443 ret = submit_extent_page(write_flags, tree, page,
3444 sector, iosize, pg_offset,
3445 bdev, &epd->bio, max_nr,
c8b97818
CM
3446 end_bio_extent_writepage,
3447 0, 0, 0);
d1310b2e
CM
3448 if (ret)
3449 SetPageError(page);
3450 }
3451 cur = cur + iosize;
7f3c74fb 3452 pg_offset += iosize;
d1310b2e
CM
3453 nr++;
3454 }
40f76580
CM
3455done:
3456 *nr_ret = nr;
3457
3458done_unlocked:
3459
3460 /* drop our reference on any cached states */
3461 free_extent_state(cached_state);
3462 return ret;
3463}
3464
3465/*
3466 * the writepage semantics are similar to regular writepage. extent
3467 * records are inserted to lock ranges in the tree, and as dirty areas
3468 * are found, they are marked writeback. Then the lock bits are removed
3469 * and the end_io handler clears the writeback ranges
3470 */
3471static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3472 void *data)
3473{
3474 struct inode *inode = page->mapping->host;
3475 struct extent_page_data *epd = data;
3476 u64 start = page_offset(page);
3477 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3478 int ret;
3479 int nr = 0;
3480 size_t pg_offset = 0;
3481 loff_t i_size = i_size_read(inode);
3482 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3483 int write_flags;
3484 unsigned long nr_written = 0;
3485
3486 if (wbc->sync_mode == WB_SYNC_ALL)
3487 write_flags = WRITE_SYNC;
3488 else
3489 write_flags = WRITE;
3490
3491 trace___extent_writepage(page, inode, wbc);
3492
3493 WARN_ON(!PageLocked(page));
3494
3495 ClearPageError(page);
3496
3497 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3498 if (page->index > end_index ||
3499 (page->index == end_index && !pg_offset)) {
3500 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3501 unlock_page(page);
3502 return 0;
3503 }
3504
3505 if (page->index == end_index) {
3506 char *userpage;
3507
3508 userpage = kmap_atomic(page);
3509 memset(userpage + pg_offset, 0,
3510 PAGE_CACHE_SIZE - pg_offset);
3511 kunmap_atomic(userpage);
3512 flush_dcache_page(page);
3513 }
3514
3515 pg_offset = 0;
3516
3517 set_page_extent_mapped(page);
3518
3519 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3520 if (ret == 1)
3521 goto done_unlocked;
3522 if (ret)
3523 goto done;
3524
3525 ret = __extent_writepage_io(inode, page, wbc, epd,
3526 i_size, nr_written, write_flags, &nr);
3527 if (ret == 1)
3528 goto done_unlocked;
3529
d1310b2e
CM
3530done:
3531 if (nr == 0) {
3532 /* make sure the mapping tag for page dirty gets cleared */
3533 set_page_writeback(page);
3534 end_page_writeback(page);
3535 }
61391d56
FM
3536 if (PageError(page)) {
3537 ret = ret < 0 ? ret : -EIO;
3538 end_extent_writepage(page, ret, start, page_end);
3539 }
d1310b2e 3540 unlock_page(page);
40f76580 3541 return ret;
771ed689 3542
11c8349b 3543done_unlocked:
d1310b2e
CM
3544 return 0;
3545}
3546
fd8b2b61 3547void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3548{
74316201
N
3549 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3550 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3551}
3552
0e378df1
CM
3553static noinline_for_stack int
3554lock_extent_buffer_for_io(struct extent_buffer *eb,
3555 struct btrfs_fs_info *fs_info,
3556 struct extent_page_data *epd)
0b32f4bb
JB
3557{
3558 unsigned long i, num_pages;
3559 int flush = 0;
3560 int ret = 0;
3561
3562 if (!btrfs_try_tree_write_lock(eb)) {
3563 flush = 1;
3564 flush_write_bio(epd);
3565 btrfs_tree_lock(eb);
3566 }
3567
3568 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3569 btrfs_tree_unlock(eb);
3570 if (!epd->sync_io)
3571 return 0;
3572 if (!flush) {
3573 flush_write_bio(epd);
3574 flush = 1;
3575 }
a098d8e8
CM
3576 while (1) {
3577 wait_on_extent_buffer_writeback(eb);
3578 btrfs_tree_lock(eb);
3579 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3580 break;
0b32f4bb 3581 btrfs_tree_unlock(eb);
0b32f4bb
JB
3582 }
3583 }
3584
51561ffe
JB
3585 /*
3586 * We need to do this to prevent races in people who check if the eb is
3587 * under IO since we can end up having no IO bits set for a short period
3588 * of time.
3589 */
3590 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3591 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3592 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3593 spin_unlock(&eb->refs_lock);
0b32f4bb 3594 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3595 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3596 -eb->len,
3597 fs_info->dirty_metadata_batch);
0b32f4bb 3598 ret = 1;
51561ffe
JB
3599 } else {
3600 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3601 }
3602
3603 btrfs_tree_unlock(eb);
3604
3605 if (!ret)
3606 return ret;
3607
3608 num_pages = num_extent_pages(eb->start, eb->len);
3609 for (i = 0; i < num_pages; i++) {
fb85fc9a 3610 struct page *p = eb->pages[i];
0b32f4bb
JB
3611
3612 if (!trylock_page(p)) {
3613 if (!flush) {
3614 flush_write_bio(epd);
3615 flush = 1;
3616 }
3617 lock_page(p);
3618 }
3619 }
3620
3621 return ret;
3622}
3623
3624static void end_extent_buffer_writeback(struct extent_buffer *eb)
3625{
3626 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3627 smp_mb__after_atomic();
0b32f4bb
JB
3628 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3629}
3630
656f30db
FM
3631static void set_btree_ioerr(struct page *page)
3632{
3633 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3634 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3635
3636 SetPageError(page);
3637 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3638 return;
3639
3640 /*
3641 * If writeback for a btree extent that doesn't belong to a log tree
3642 * failed, increment the counter transaction->eb_write_errors.
3643 * We do this because while the transaction is running and before it's
3644 * committing (when we call filemap_fdata[write|wait]_range against
3645 * the btree inode), we might have
3646 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3647 * returns an error or an error happens during writeback, when we're
3648 * committing the transaction we wouldn't know about it, since the pages
3649 * can be no longer dirty nor marked anymore for writeback (if a
3650 * subsequent modification to the extent buffer didn't happen before the
3651 * transaction commit), which makes filemap_fdata[write|wait]_range not
3652 * able to find the pages tagged with SetPageError at transaction
3653 * commit time. So if this happens we must abort the transaction,
3654 * otherwise we commit a super block with btree roots that point to
3655 * btree nodes/leafs whose content on disk is invalid - either garbage
3656 * or the content of some node/leaf from a past generation that got
3657 * cowed or deleted and is no longer valid.
3658 *
3659 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3660 * not be enough - we need to distinguish between log tree extents vs
3661 * non-log tree extents, and the next filemap_fdatawait_range() call
3662 * will catch and clear such errors in the mapping - and that call might
3663 * be from a log sync and not from a transaction commit. Also, checking
3664 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3665 * not done and would not be reliable - the eb might have been released
3666 * from memory and reading it back again means that flag would not be
3667 * set (since it's a runtime flag, not persisted on disk).
3668 *
3669 * Using the flags below in the btree inode also makes us achieve the
3670 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3671 * writeback for all dirty pages and before filemap_fdatawait_range()
3672 * is called, the writeback for all dirty pages had already finished
3673 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3674 * filemap_fdatawait_range() would return success, as it could not know
3675 * that writeback errors happened (the pages were no longer tagged for
3676 * writeback).
3677 */
3678 switch (eb->log_index) {
3679 case -1:
3680 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3681 break;
3682 case 0:
3683 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3684 break;
3685 case 1:
3686 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3687 break;
3688 default:
3689 BUG(); /* unexpected, logic error */
3690 }
3691}
3692
0b32f4bb
JB
3693static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3694{
2c30c71b 3695 struct bio_vec *bvec;
0b32f4bb 3696 struct extent_buffer *eb;
2c30c71b 3697 int i, done;
0b32f4bb 3698
2c30c71b 3699 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3700 struct page *page = bvec->bv_page;
3701
0b32f4bb
JB
3702 eb = (struct extent_buffer *)page->private;
3703 BUG_ON(!eb);
3704 done = atomic_dec_and_test(&eb->io_pages);
3705
656f30db 3706 if (err || test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3707 ClearPageUptodate(page);
656f30db 3708 set_btree_ioerr(page);
0b32f4bb
JB
3709 }
3710
3711 end_page_writeback(page);
3712
3713 if (!done)
3714 continue;
3715
3716 end_extent_buffer_writeback(eb);
2c30c71b 3717 }
0b32f4bb
JB
3718
3719 bio_put(bio);
0b32f4bb
JB
3720}
3721
0e378df1 3722static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3723 struct btrfs_fs_info *fs_info,
3724 struct writeback_control *wbc,
3725 struct extent_page_data *epd)
3726{
3727 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3728 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3729 u64 offset = eb->start;
3730 unsigned long i, num_pages;
de0022b9 3731 unsigned long bio_flags = 0;
d4c7ca86 3732 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3733 int ret = 0;
0b32f4bb 3734
656f30db 3735 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3736 num_pages = num_extent_pages(eb->start, eb->len);
3737 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3738 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3739 bio_flags = EXTENT_BIO_TREE_LOG;
3740
0b32f4bb 3741 for (i = 0; i < num_pages; i++) {
fb85fc9a 3742 struct page *p = eb->pages[i];
0b32f4bb
JB
3743
3744 clear_page_dirty_for_io(p);
3745 set_page_writeback(p);
f28491e0 3746 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3747 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3748 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3749 0, epd->bio_flags, bio_flags);
3750 epd->bio_flags = bio_flags;
0b32f4bb 3751 if (ret) {
656f30db 3752 set_btree_ioerr(p);
55e3bd2e 3753 end_page_writeback(p);
0b32f4bb
JB
3754 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3755 end_extent_buffer_writeback(eb);
3756 ret = -EIO;
3757 break;
3758 }
3759 offset += PAGE_CACHE_SIZE;
3760 update_nr_written(p, wbc, 1);
3761 unlock_page(p);
3762 }
3763
3764 if (unlikely(ret)) {
3765 for (; i < num_pages; i++) {
bbf65cf0 3766 struct page *p = eb->pages[i];
81465028 3767 clear_page_dirty_for_io(p);
0b32f4bb
JB
3768 unlock_page(p);
3769 }
3770 }
3771
3772 return ret;
3773}
3774
3775int btree_write_cache_pages(struct address_space *mapping,
3776 struct writeback_control *wbc)
3777{
3778 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3779 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3780 struct extent_buffer *eb, *prev_eb = NULL;
3781 struct extent_page_data epd = {
3782 .bio = NULL,
3783 .tree = tree,
3784 .extent_locked = 0,
3785 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3786 .bio_flags = 0,
0b32f4bb
JB
3787 };
3788 int ret = 0;
3789 int done = 0;
3790 int nr_to_write_done = 0;
3791 struct pagevec pvec;
3792 int nr_pages;
3793 pgoff_t index;
3794 pgoff_t end; /* Inclusive */
3795 int scanned = 0;
3796 int tag;
3797
3798 pagevec_init(&pvec, 0);
3799 if (wbc->range_cyclic) {
3800 index = mapping->writeback_index; /* Start from prev offset */
3801 end = -1;
3802 } else {
3803 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3804 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3805 scanned = 1;
3806 }
3807 if (wbc->sync_mode == WB_SYNC_ALL)
3808 tag = PAGECACHE_TAG_TOWRITE;
3809 else
3810 tag = PAGECACHE_TAG_DIRTY;
3811retry:
3812 if (wbc->sync_mode == WB_SYNC_ALL)
3813 tag_pages_for_writeback(mapping, index, end);
3814 while (!done && !nr_to_write_done && (index <= end) &&
3815 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3816 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3817 unsigned i;
3818
3819 scanned = 1;
3820 for (i = 0; i < nr_pages; i++) {
3821 struct page *page = pvec.pages[i];
3822
3823 if (!PagePrivate(page))
3824 continue;
3825
3826 if (!wbc->range_cyclic && page->index > end) {
3827 done = 1;
3828 break;
3829 }
3830
b5bae261
JB
3831 spin_lock(&mapping->private_lock);
3832 if (!PagePrivate(page)) {
3833 spin_unlock(&mapping->private_lock);
3834 continue;
3835 }
3836
0b32f4bb 3837 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3838
3839 /*
3840 * Shouldn't happen and normally this would be a BUG_ON
3841 * but no sense in crashing the users box for something
3842 * we can survive anyway.
3843 */
fae7f21c 3844 if (WARN_ON(!eb)) {
b5bae261 3845 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3846 continue;
3847 }
3848
b5bae261
JB
3849 if (eb == prev_eb) {
3850 spin_unlock(&mapping->private_lock);
0b32f4bb 3851 continue;
b5bae261 3852 }
0b32f4bb 3853
b5bae261
JB
3854 ret = atomic_inc_not_zero(&eb->refs);
3855 spin_unlock(&mapping->private_lock);
3856 if (!ret)
0b32f4bb 3857 continue;
0b32f4bb
JB
3858
3859 prev_eb = eb;
3860 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3861 if (!ret) {
3862 free_extent_buffer(eb);
3863 continue;
3864 }
3865
3866 ret = write_one_eb(eb, fs_info, wbc, &epd);
3867 if (ret) {
3868 done = 1;
3869 free_extent_buffer(eb);
3870 break;
3871 }
3872 free_extent_buffer(eb);
3873
3874 /*
3875 * the filesystem may choose to bump up nr_to_write.
3876 * We have to make sure to honor the new nr_to_write
3877 * at any time
3878 */
3879 nr_to_write_done = wbc->nr_to_write <= 0;
3880 }
3881 pagevec_release(&pvec);
3882 cond_resched();
3883 }
3884 if (!scanned && !done) {
3885 /*
3886 * We hit the last page and there is more work to be done: wrap
3887 * back to the start of the file
3888 */
3889 scanned = 1;
3890 index = 0;
3891 goto retry;
3892 }
3893 flush_write_bio(&epd);
3894 return ret;
3895}
3896
d1310b2e 3897/**
4bef0848 3898 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3899 * @mapping: address space structure to write
3900 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3901 * @writepage: function called for each page
3902 * @data: data passed to writepage function
3903 *
3904 * If a page is already under I/O, write_cache_pages() skips it, even
3905 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3906 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3907 * and msync() need to guarantee that all the data which was dirty at the time
3908 * the call was made get new I/O started against them. If wbc->sync_mode is
3909 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3910 * existing IO to complete.
3911 */
b2950863 3912static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3913 struct address_space *mapping,
3914 struct writeback_control *wbc,
d2c3f4f6
CM
3915 writepage_t writepage, void *data,
3916 void (*flush_fn)(void *))
d1310b2e 3917{
7fd1a3f7 3918 struct inode *inode = mapping->host;
d1310b2e
CM
3919 int ret = 0;
3920 int done = 0;
61391d56 3921 int err = 0;
f85d7d6c 3922 int nr_to_write_done = 0;
d1310b2e
CM
3923 struct pagevec pvec;
3924 int nr_pages;
3925 pgoff_t index;
3926 pgoff_t end; /* Inclusive */
3927 int scanned = 0;
f7aaa06b 3928 int tag;
d1310b2e 3929
7fd1a3f7
JB
3930 /*
3931 * We have to hold onto the inode so that ordered extents can do their
3932 * work when the IO finishes. The alternative to this is failing to add
3933 * an ordered extent if the igrab() fails there and that is a huge pain
3934 * to deal with, so instead just hold onto the inode throughout the
3935 * writepages operation. If it fails here we are freeing up the inode
3936 * anyway and we'd rather not waste our time writing out stuff that is
3937 * going to be truncated anyway.
3938 */
3939 if (!igrab(inode))
3940 return 0;
3941
d1310b2e
CM
3942 pagevec_init(&pvec, 0);
3943 if (wbc->range_cyclic) {
3944 index = mapping->writeback_index; /* Start from prev offset */
3945 end = -1;
3946 } else {
3947 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3948 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3949 scanned = 1;
3950 }
f7aaa06b
JB
3951 if (wbc->sync_mode == WB_SYNC_ALL)
3952 tag = PAGECACHE_TAG_TOWRITE;
3953 else
3954 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3955retry:
f7aaa06b
JB
3956 if (wbc->sync_mode == WB_SYNC_ALL)
3957 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3958 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3959 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3960 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3961 unsigned i;
3962
3963 scanned = 1;
3964 for (i = 0; i < nr_pages; i++) {
3965 struct page *page = pvec.pages[i];
3966
3967 /*
3968 * At this point we hold neither mapping->tree_lock nor
3969 * lock on the page itself: the page may be truncated or
3970 * invalidated (changing page->mapping to NULL), or even
3971 * swizzled back from swapper_space to tmpfs file
3972 * mapping
3973 */
c8f2f24b
JB
3974 if (!trylock_page(page)) {
3975 flush_fn(data);
3976 lock_page(page);
01d658f2 3977 }
d1310b2e
CM
3978
3979 if (unlikely(page->mapping != mapping)) {
3980 unlock_page(page);
3981 continue;
3982 }
3983
3984 if (!wbc->range_cyclic && page->index > end) {
3985 done = 1;
3986 unlock_page(page);
3987 continue;
3988 }
3989
d2c3f4f6 3990 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3991 if (PageWriteback(page))
3992 flush_fn(data);
d1310b2e 3993 wait_on_page_writeback(page);
d2c3f4f6 3994 }
d1310b2e
CM
3995
3996 if (PageWriteback(page) ||
3997 !clear_page_dirty_for_io(page)) {
3998 unlock_page(page);
3999 continue;
4000 }
4001
4002 ret = (*writepage)(page, wbc, data);
4003
4004 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4005 unlock_page(page);
4006 ret = 0;
4007 }
61391d56
FM
4008 if (!err && ret < 0)
4009 err = ret;
f85d7d6c
CM
4010
4011 /*
4012 * the filesystem may choose to bump up nr_to_write.
4013 * We have to make sure to honor the new nr_to_write
4014 * at any time
4015 */
4016 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4017 }
4018 pagevec_release(&pvec);
4019 cond_resched();
4020 }
61391d56 4021 if (!scanned && !done && !err) {
d1310b2e
CM
4022 /*
4023 * We hit the last page and there is more work to be done: wrap
4024 * back to the start of the file
4025 */
4026 scanned = 1;
4027 index = 0;
4028 goto retry;
4029 }
7fd1a3f7 4030 btrfs_add_delayed_iput(inode);
61391d56 4031 return err;
d1310b2e 4032}
d1310b2e 4033
ffbd517d 4034static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4035{
d2c3f4f6 4036 if (epd->bio) {
355808c2
JM
4037 int rw = WRITE;
4038 int ret;
4039
ffbd517d 4040 if (epd->sync_io)
355808c2
JM
4041 rw = WRITE_SYNC;
4042
de0022b9 4043 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4044 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4045 epd->bio = NULL;
4046 }
4047}
4048
ffbd517d
CM
4049static noinline void flush_write_bio(void *data)
4050{
4051 struct extent_page_data *epd = data;
4052 flush_epd_write_bio(epd);
4053}
4054
d1310b2e
CM
4055int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4056 get_extent_t *get_extent,
4057 struct writeback_control *wbc)
4058{
4059 int ret;
d1310b2e
CM
4060 struct extent_page_data epd = {
4061 .bio = NULL,
4062 .tree = tree,
4063 .get_extent = get_extent,
771ed689 4064 .extent_locked = 0,
ffbd517d 4065 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4066 .bio_flags = 0,
d1310b2e 4067 };
d1310b2e 4068
d1310b2e
CM
4069 ret = __extent_writepage(page, wbc, &epd);
4070
ffbd517d 4071 flush_epd_write_bio(&epd);
d1310b2e
CM
4072 return ret;
4073}
d1310b2e 4074
771ed689
CM
4075int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4076 u64 start, u64 end, get_extent_t *get_extent,
4077 int mode)
4078{
4079 int ret = 0;
4080 struct address_space *mapping = inode->i_mapping;
4081 struct page *page;
4082 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4083 PAGE_CACHE_SHIFT;
4084
4085 struct extent_page_data epd = {
4086 .bio = NULL,
4087 .tree = tree,
4088 .get_extent = get_extent,
4089 .extent_locked = 1,
ffbd517d 4090 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4091 .bio_flags = 0,
771ed689
CM
4092 };
4093 struct writeback_control wbc_writepages = {
771ed689 4094 .sync_mode = mode,
771ed689
CM
4095 .nr_to_write = nr_pages * 2,
4096 .range_start = start,
4097 .range_end = end + 1,
4098 };
4099
d397712b 4100 while (start <= end) {
771ed689
CM
4101 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4102 if (clear_page_dirty_for_io(page))
4103 ret = __extent_writepage(page, &wbc_writepages, &epd);
4104 else {
4105 if (tree->ops && tree->ops->writepage_end_io_hook)
4106 tree->ops->writepage_end_io_hook(page, start,
4107 start + PAGE_CACHE_SIZE - 1,
4108 NULL, 1);
4109 unlock_page(page);
4110 }
4111 page_cache_release(page);
4112 start += PAGE_CACHE_SIZE;
4113 }
4114
ffbd517d 4115 flush_epd_write_bio(&epd);
771ed689
CM
4116 return ret;
4117}
d1310b2e
CM
4118
4119int extent_writepages(struct extent_io_tree *tree,
4120 struct address_space *mapping,
4121 get_extent_t *get_extent,
4122 struct writeback_control *wbc)
4123{
4124 int ret = 0;
4125 struct extent_page_data epd = {
4126 .bio = NULL,
4127 .tree = tree,
4128 .get_extent = get_extent,
771ed689 4129 .extent_locked = 0,
ffbd517d 4130 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4131 .bio_flags = 0,
d1310b2e
CM
4132 };
4133
4bef0848 4134 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4135 __extent_writepage, &epd,
4136 flush_write_bio);
ffbd517d 4137 flush_epd_write_bio(&epd);
d1310b2e
CM
4138 return ret;
4139}
d1310b2e
CM
4140
4141int extent_readpages(struct extent_io_tree *tree,
4142 struct address_space *mapping,
4143 struct list_head *pages, unsigned nr_pages,
4144 get_extent_t get_extent)
4145{
4146 struct bio *bio = NULL;
4147 unsigned page_idx;
c8b97818 4148 unsigned long bio_flags = 0;
67c9684f
LB
4149 struct page *pagepool[16];
4150 struct page *page;
125bac01 4151 struct extent_map *em_cached = NULL;
67c9684f 4152 int nr = 0;
d1310b2e 4153
d1310b2e 4154 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4155 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4156
4157 prefetchw(&page->flags);
4158 list_del(&page->lru);
67c9684f 4159 if (add_to_page_cache_lru(page, mapping,
43e817a1 4160 page->index, GFP_NOFS)) {
67c9684f
LB
4161 page_cache_release(page);
4162 continue;
d1310b2e 4163 }
67c9684f
LB
4164
4165 pagepool[nr++] = page;
4166 if (nr < ARRAY_SIZE(pagepool))
4167 continue;
125bac01 4168 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4169 &bio, 0, &bio_flags, READ);
67c9684f 4170 nr = 0;
d1310b2e 4171 }
9974090b 4172 if (nr)
125bac01 4173 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4174 &bio, 0, &bio_flags, READ);
67c9684f 4175
125bac01
MX
4176 if (em_cached)
4177 free_extent_map(em_cached);
4178
d1310b2e
CM
4179 BUG_ON(!list_empty(pages));
4180 if (bio)
79787eaa 4181 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4182 return 0;
4183}
d1310b2e
CM
4184
4185/*
4186 * basic invalidatepage code, this waits on any locked or writeback
4187 * ranges corresponding to the page, and then deletes any extent state
4188 * records from the tree
4189 */
4190int extent_invalidatepage(struct extent_io_tree *tree,
4191 struct page *page, unsigned long offset)
4192{
2ac55d41 4193 struct extent_state *cached_state = NULL;
4eee4fa4 4194 u64 start = page_offset(page);
d1310b2e
CM
4195 u64 end = start + PAGE_CACHE_SIZE - 1;
4196 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4197
fda2832f 4198 start += ALIGN(offset, blocksize);
d1310b2e
CM
4199 if (start > end)
4200 return 0;
4201
d0082371 4202 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4203 wait_on_page_writeback(page);
d1310b2e 4204 clear_extent_bit(tree, start, end,
32c00aff
JB
4205 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4206 EXTENT_DO_ACCOUNTING,
2ac55d41 4207 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4208 return 0;
4209}
d1310b2e 4210
7b13b7b1
CM
4211/*
4212 * a helper for releasepage, this tests for areas of the page that
4213 * are locked or under IO and drops the related state bits if it is safe
4214 * to drop the page.
4215 */
48a3b636
ES
4216static int try_release_extent_state(struct extent_map_tree *map,
4217 struct extent_io_tree *tree,
4218 struct page *page, gfp_t mask)
7b13b7b1 4219{
4eee4fa4 4220 u64 start = page_offset(page);
7b13b7b1
CM
4221 u64 end = start + PAGE_CACHE_SIZE - 1;
4222 int ret = 1;
4223
211f90e6 4224 if (test_range_bit(tree, start, end,
8b62b72b 4225 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4226 ret = 0;
4227 else {
4228 if ((mask & GFP_NOFS) == GFP_NOFS)
4229 mask = GFP_NOFS;
11ef160f
CM
4230 /*
4231 * at this point we can safely clear everything except the
4232 * locked bit and the nodatasum bit
4233 */
e3f24cc5 4234 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4235 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4236 0, 0, NULL, mask);
e3f24cc5
CM
4237
4238 /* if clear_extent_bit failed for enomem reasons,
4239 * we can't allow the release to continue.
4240 */
4241 if (ret < 0)
4242 ret = 0;
4243 else
4244 ret = 1;
7b13b7b1
CM
4245 }
4246 return ret;
4247}
7b13b7b1 4248
d1310b2e
CM
4249/*
4250 * a helper for releasepage. As long as there are no locked extents
4251 * in the range corresponding to the page, both state records and extent
4252 * map records are removed
4253 */
4254int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4255 struct extent_io_tree *tree, struct page *page,
4256 gfp_t mask)
d1310b2e
CM
4257{
4258 struct extent_map *em;
4eee4fa4 4259 u64 start = page_offset(page);
d1310b2e 4260 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4261
70dec807
CM
4262 if ((mask & __GFP_WAIT) &&
4263 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4264 u64 len;
70dec807 4265 while (start <= end) {
39b5637f 4266 len = end - start + 1;
890871be 4267 write_lock(&map->lock);
39b5637f 4268 em = lookup_extent_mapping(map, start, len);
285190d9 4269 if (!em) {
890871be 4270 write_unlock(&map->lock);
70dec807
CM
4271 break;
4272 }
7f3c74fb
CM
4273 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4274 em->start != start) {
890871be 4275 write_unlock(&map->lock);
70dec807
CM
4276 free_extent_map(em);
4277 break;
4278 }
4279 if (!test_range_bit(tree, em->start,
4280 extent_map_end(em) - 1,
8b62b72b 4281 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4282 0, NULL)) {
70dec807
CM
4283 remove_extent_mapping(map, em);
4284 /* once for the rb tree */
4285 free_extent_map(em);
4286 }
4287 start = extent_map_end(em);
890871be 4288 write_unlock(&map->lock);
70dec807
CM
4289
4290 /* once for us */
d1310b2e
CM
4291 free_extent_map(em);
4292 }
d1310b2e 4293 }
7b13b7b1 4294 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4295}
d1310b2e 4296
ec29ed5b
CM
4297/*
4298 * helper function for fiemap, which doesn't want to see any holes.
4299 * This maps until we find something past 'last'
4300 */
4301static struct extent_map *get_extent_skip_holes(struct inode *inode,
4302 u64 offset,
4303 u64 last,
4304 get_extent_t *get_extent)
4305{
4306 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4307 struct extent_map *em;
4308 u64 len;
4309
4310 if (offset >= last)
4311 return NULL;
4312
67871254 4313 while (1) {
ec29ed5b
CM
4314 len = last - offset;
4315 if (len == 0)
4316 break;
fda2832f 4317 len = ALIGN(len, sectorsize);
ec29ed5b 4318 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4319 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4320 return em;
4321
4322 /* if this isn't a hole return it */
4323 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4324 em->block_start != EXTENT_MAP_HOLE) {
4325 return em;
4326 }
4327
4328 /* this is a hole, advance to the next extent */
4329 offset = extent_map_end(em);
4330 free_extent_map(em);
4331 if (offset >= last)
4332 break;
4333 }
4334 return NULL;
4335}
4336
1506fcc8
YS
4337int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4338 __u64 start, __u64 len, get_extent_t *get_extent)
4339{
975f84fe 4340 int ret = 0;
1506fcc8
YS
4341 u64 off = start;
4342 u64 max = start + len;
4343 u32 flags = 0;
975f84fe
JB
4344 u32 found_type;
4345 u64 last;
ec29ed5b 4346 u64 last_for_get_extent = 0;
1506fcc8 4347 u64 disko = 0;
ec29ed5b 4348 u64 isize = i_size_read(inode);
975f84fe 4349 struct btrfs_key found_key;
1506fcc8 4350 struct extent_map *em = NULL;
2ac55d41 4351 struct extent_state *cached_state = NULL;
975f84fe 4352 struct btrfs_path *path;
dc046b10 4353 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4354 int end = 0;
ec29ed5b
CM
4355 u64 em_start = 0;
4356 u64 em_len = 0;
4357 u64 em_end = 0;
1506fcc8
YS
4358
4359 if (len == 0)
4360 return -EINVAL;
4361
975f84fe
JB
4362 path = btrfs_alloc_path();
4363 if (!path)
4364 return -ENOMEM;
4365 path->leave_spinning = 1;
4366
2c91943b
QW
4367 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4368 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4369
ec29ed5b
CM
4370 /*
4371 * lookup the last file extent. We're not using i_size here
4372 * because there might be preallocation past i_size
4373 */
dc046b10
JB
4374 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4375 0);
975f84fe
JB
4376 if (ret < 0) {
4377 btrfs_free_path(path);
4378 return ret;
4379 }
4380 WARN_ON(!ret);
4381 path->slots[0]--;
975f84fe 4382 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4383 found_type = found_key.type;
975f84fe 4384
ec29ed5b 4385 /* No extents, but there might be delalloc bits */
33345d01 4386 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4387 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4388 /* have to trust i_size as the end */
4389 last = (u64)-1;
4390 last_for_get_extent = isize;
4391 } else {
4392 /*
4393 * remember the start of the last extent. There are a
4394 * bunch of different factors that go into the length of the
4395 * extent, so its much less complex to remember where it started
4396 */
4397 last = found_key.offset;
4398 last_for_get_extent = last + 1;
975f84fe 4399 }
fe09e16c 4400 btrfs_release_path(path);
975f84fe 4401
ec29ed5b
CM
4402 /*
4403 * we might have some extents allocated but more delalloc past those
4404 * extents. so, we trust isize unless the start of the last extent is
4405 * beyond isize
4406 */
4407 if (last < isize) {
4408 last = (u64)-1;
4409 last_for_get_extent = isize;
4410 }
4411
a52f4cd2 4412 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4413 &cached_state);
ec29ed5b 4414
4d479cf0 4415 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4416 get_extent);
1506fcc8
YS
4417 if (!em)
4418 goto out;
4419 if (IS_ERR(em)) {
4420 ret = PTR_ERR(em);
4421 goto out;
4422 }
975f84fe 4423
1506fcc8 4424 while (!end) {
b76bb701 4425 u64 offset_in_extent = 0;
ea8efc74
CM
4426
4427 /* break if the extent we found is outside the range */
4428 if (em->start >= max || extent_map_end(em) < off)
4429 break;
4430
4431 /*
4432 * get_extent may return an extent that starts before our
4433 * requested range. We have to make sure the ranges
4434 * we return to fiemap always move forward and don't
4435 * overlap, so adjust the offsets here
4436 */
4437 em_start = max(em->start, off);
1506fcc8 4438
ea8efc74
CM
4439 /*
4440 * record the offset from the start of the extent
b76bb701
JB
4441 * for adjusting the disk offset below. Only do this if the
4442 * extent isn't compressed since our in ram offset may be past
4443 * what we have actually allocated on disk.
ea8efc74 4444 */
b76bb701
JB
4445 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4446 offset_in_extent = em_start - em->start;
ec29ed5b 4447 em_end = extent_map_end(em);
ea8efc74 4448 em_len = em_end - em_start;
1506fcc8
YS
4449 disko = 0;
4450 flags = 0;
4451
ea8efc74
CM
4452 /*
4453 * bump off for our next call to get_extent
4454 */
4455 off = extent_map_end(em);
4456 if (off >= max)
4457 end = 1;
4458
93dbfad7 4459 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4460 end = 1;
4461 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4462 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4463 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4464 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4465 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4466 flags |= (FIEMAP_EXTENT_DELALLOC |
4467 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4468 } else if (fieinfo->fi_extents_max) {
4469 u64 bytenr = em->block_start -
4470 (em->start - em->orig_start);
fe09e16c 4471
ea8efc74 4472 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4473
4474 /*
4475 * As btrfs supports shared space, this information
4476 * can be exported to userspace tools via
dc046b10
JB
4477 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4478 * then we're just getting a count and we can skip the
4479 * lookup stuff.
fe09e16c 4480 */
dc046b10
JB
4481 ret = btrfs_check_shared(NULL, root->fs_info,
4482 root->objectid,
4483 btrfs_ino(inode), bytenr);
4484 if (ret < 0)
fe09e16c 4485 goto out_free;
dc046b10 4486 if (ret)
fe09e16c 4487 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4488 ret = 0;
1506fcc8
YS
4489 }
4490 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4491 flags |= FIEMAP_EXTENT_ENCODED;
4492
1506fcc8
YS
4493 free_extent_map(em);
4494 em = NULL;
ec29ed5b
CM
4495 if ((em_start >= last) || em_len == (u64)-1 ||
4496 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4497 flags |= FIEMAP_EXTENT_LAST;
4498 end = 1;
4499 }
4500
ec29ed5b
CM
4501 /* now scan forward to see if this is really the last extent. */
4502 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4503 get_extent);
4504 if (IS_ERR(em)) {
4505 ret = PTR_ERR(em);
4506 goto out;
4507 }
4508 if (!em) {
975f84fe
JB
4509 flags |= FIEMAP_EXTENT_LAST;
4510 end = 1;
4511 }
ec29ed5b
CM
4512 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4513 em_len, flags);
4514 if (ret)
4515 goto out_free;
1506fcc8
YS
4516 }
4517out_free:
4518 free_extent_map(em);
4519out:
fe09e16c 4520 btrfs_free_path(path);
a52f4cd2 4521 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4522 &cached_state, GFP_NOFS);
1506fcc8
YS
4523 return ret;
4524}
4525
727011e0
CM
4526static void __free_extent_buffer(struct extent_buffer *eb)
4527{
6d49ba1b 4528 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4529 kmem_cache_free(extent_buffer_cache, eb);
4530}
4531
a26e8c9f 4532int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4533{
4534 return (atomic_read(&eb->io_pages) ||
4535 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4536 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4537}
4538
4539/*
4540 * Helper for releasing extent buffer page.
4541 */
a50924e3 4542static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4543{
4544 unsigned long index;
db7f3436
JB
4545 struct page *page;
4546 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4547
4548 BUG_ON(extent_buffer_under_io(eb));
4549
a50924e3
DS
4550 index = num_extent_pages(eb->start, eb->len);
4551 if (index == 0)
db7f3436
JB
4552 return;
4553
4554 do {
4555 index--;
fb85fc9a 4556 page = eb->pages[index];
db7f3436
JB
4557 if (page && mapped) {
4558 spin_lock(&page->mapping->private_lock);
4559 /*
4560 * We do this since we'll remove the pages after we've
4561 * removed the eb from the radix tree, so we could race
4562 * and have this page now attached to the new eb. So
4563 * only clear page_private if it's still connected to
4564 * this eb.
4565 */
4566 if (PagePrivate(page) &&
4567 page->private == (unsigned long)eb) {
4568 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4569 BUG_ON(PageDirty(page));
4570 BUG_ON(PageWriteback(page));
4571 /*
4572 * We need to make sure we haven't be attached
4573 * to a new eb.
4574 */
4575 ClearPagePrivate(page);
4576 set_page_private(page, 0);
4577 /* One for the page private */
4578 page_cache_release(page);
4579 }
4580 spin_unlock(&page->mapping->private_lock);
4581
4582 }
4583 if (page) {
4584 /* One for when we alloced the page */
4585 page_cache_release(page);
4586 }
a50924e3 4587 } while (index != 0);
db7f3436
JB
4588}
4589
4590/*
4591 * Helper for releasing the extent buffer.
4592 */
4593static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4594{
a50924e3 4595 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4596 __free_extent_buffer(eb);
4597}
4598
f28491e0
JB
4599static struct extent_buffer *
4600__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4601 unsigned long len)
d1310b2e
CM
4602{
4603 struct extent_buffer *eb = NULL;
4604
23d79d81 4605 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS);
91ca338d
TI
4606 if (eb == NULL)
4607 return NULL;
d1310b2e
CM
4608 eb->start = start;
4609 eb->len = len;
f28491e0 4610 eb->fs_info = fs_info;
815a51c7 4611 eb->bflags = 0;
bd681513
CM
4612 rwlock_init(&eb->lock);
4613 atomic_set(&eb->write_locks, 0);
4614 atomic_set(&eb->read_locks, 0);
4615 atomic_set(&eb->blocking_readers, 0);
4616 atomic_set(&eb->blocking_writers, 0);
4617 atomic_set(&eb->spinning_readers, 0);
4618 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4619 eb->lock_nested = 0;
bd681513
CM
4620 init_waitqueue_head(&eb->write_lock_wq);
4621 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4622
6d49ba1b
ES
4623 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4624
3083ee2e 4625 spin_lock_init(&eb->refs_lock);
d1310b2e 4626 atomic_set(&eb->refs, 1);
0b32f4bb 4627 atomic_set(&eb->io_pages, 0);
727011e0 4628
b8dae313
DS
4629 /*
4630 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4631 */
4632 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4633 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4634 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4635
4636 return eb;
4637}
4638
815a51c7
JS
4639struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4640{
4641 unsigned long i;
4642 struct page *p;
4643 struct extent_buffer *new;
4644 unsigned long num_pages = num_extent_pages(src->start, src->len);
4645
3f556f78 4646 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4647 if (new == NULL)
4648 return NULL;
4649
4650 for (i = 0; i < num_pages; i++) {
9ec72677 4651 p = alloc_page(GFP_NOFS);
db7f3436
JB
4652 if (!p) {
4653 btrfs_release_extent_buffer(new);
4654 return NULL;
4655 }
815a51c7
JS
4656 attach_extent_buffer_page(new, p);
4657 WARN_ON(PageDirty(p));
4658 SetPageUptodate(p);
4659 new->pages[i] = p;
4660 }
4661
4662 copy_extent_buffer(new, src, 0, 0, src->len);
4663 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4664 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4665
4666 return new;
4667}
4668
3f556f78
DS
4669struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4670 u64 start)
815a51c7
JS
4671{
4672 struct extent_buffer *eb;
3f556f78
DS
4673 unsigned long len;
4674 unsigned long num_pages;
815a51c7
JS
4675 unsigned long i;
4676
3f556f78
DS
4677 if (!fs_info) {
4678 /*
4679 * Called only from tests that don't always have a fs_info
4680 * available, but we know that nodesize is 4096
4681 */
4682 len = 4096;
4683 } else {
4684 len = fs_info->tree_root->nodesize;
4685 }
4686 num_pages = num_extent_pages(0, len);
4687
4688 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4689 if (!eb)
4690 return NULL;
4691
4692 for (i = 0; i < num_pages; i++) {
9ec72677 4693 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4694 if (!eb->pages[i])
4695 goto err;
4696 }
4697 set_extent_buffer_uptodate(eb);
4698 btrfs_set_header_nritems(eb, 0);
4699 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4700
4701 return eb;
4702err:
84167d19
SB
4703 for (; i > 0; i--)
4704 __free_page(eb->pages[i - 1]);
815a51c7
JS
4705 __free_extent_buffer(eb);
4706 return NULL;
4707}
4708
0b32f4bb
JB
4709static void check_buffer_tree_ref(struct extent_buffer *eb)
4710{
242e18c7 4711 int refs;
0b32f4bb
JB
4712 /* the ref bit is tricky. We have to make sure it is set
4713 * if we have the buffer dirty. Otherwise the
4714 * code to free a buffer can end up dropping a dirty
4715 * page
4716 *
4717 * Once the ref bit is set, it won't go away while the
4718 * buffer is dirty or in writeback, and it also won't
4719 * go away while we have the reference count on the
4720 * eb bumped.
4721 *
4722 * We can't just set the ref bit without bumping the
4723 * ref on the eb because free_extent_buffer might
4724 * see the ref bit and try to clear it. If this happens
4725 * free_extent_buffer might end up dropping our original
4726 * ref by mistake and freeing the page before we are able
4727 * to add one more ref.
4728 *
4729 * So bump the ref count first, then set the bit. If someone
4730 * beat us to it, drop the ref we added.
4731 */
242e18c7
CM
4732 refs = atomic_read(&eb->refs);
4733 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4734 return;
4735
594831c4
JB
4736 spin_lock(&eb->refs_lock);
4737 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4738 atomic_inc(&eb->refs);
594831c4 4739 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4740}
4741
2457aec6
MG
4742static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4743 struct page *accessed)
5df4235e
JB
4744{
4745 unsigned long num_pages, i;
4746
0b32f4bb
JB
4747 check_buffer_tree_ref(eb);
4748
5df4235e
JB
4749 num_pages = num_extent_pages(eb->start, eb->len);
4750 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4751 struct page *p = eb->pages[i];
4752
2457aec6
MG
4753 if (p != accessed)
4754 mark_page_accessed(p);
5df4235e
JB
4755 }
4756}
4757
f28491e0
JB
4758struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4759 u64 start)
452c75c3
CS
4760{
4761 struct extent_buffer *eb;
4762
4763 rcu_read_lock();
f28491e0
JB
4764 eb = radix_tree_lookup(&fs_info->buffer_radix,
4765 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4766 if (eb && atomic_inc_not_zero(&eb->refs)) {
4767 rcu_read_unlock();
2457aec6 4768 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4769 return eb;
4770 }
4771 rcu_read_unlock();
4772
4773 return NULL;
4774}
4775
faa2dbf0
JB
4776#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4777struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4778 u64 start)
faa2dbf0
JB
4779{
4780 struct extent_buffer *eb, *exists = NULL;
4781 int ret;
4782
4783 eb = find_extent_buffer(fs_info, start);
4784 if (eb)
4785 return eb;
3f556f78 4786 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4787 if (!eb)
4788 return NULL;
4789 eb->fs_info = fs_info;
4790again:
4791 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4792 if (ret)
4793 goto free_eb;
4794 spin_lock(&fs_info->buffer_lock);
4795 ret = radix_tree_insert(&fs_info->buffer_radix,
4796 start >> PAGE_CACHE_SHIFT, eb);
4797 spin_unlock(&fs_info->buffer_lock);
4798 radix_tree_preload_end();
4799 if (ret == -EEXIST) {
4800 exists = find_extent_buffer(fs_info, start);
4801 if (exists)
4802 goto free_eb;
4803 else
4804 goto again;
4805 }
4806 check_buffer_tree_ref(eb);
4807 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4808
4809 /*
4810 * We will free dummy extent buffer's if they come into
4811 * free_extent_buffer with a ref count of 2, but if we are using this we
4812 * want the buffers to stay in memory until we're done with them, so
4813 * bump the ref count again.
4814 */
4815 atomic_inc(&eb->refs);
4816 return eb;
4817free_eb:
4818 btrfs_release_extent_buffer(eb);
4819 return exists;
4820}
4821#endif
4822
f28491e0 4823struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4824 u64 start)
d1310b2e 4825{
ce3e6984 4826 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4827 unsigned long num_pages = num_extent_pages(start, len);
4828 unsigned long i;
4829 unsigned long index = start >> PAGE_CACHE_SHIFT;
4830 struct extent_buffer *eb;
6af118ce 4831 struct extent_buffer *exists = NULL;
d1310b2e 4832 struct page *p;
f28491e0 4833 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4834 int uptodate = 1;
19fe0a8b 4835 int ret;
d1310b2e 4836
f28491e0 4837 eb = find_extent_buffer(fs_info, start);
452c75c3 4838 if (eb)
6af118ce 4839 return eb;
6af118ce 4840
23d79d81 4841 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4842 if (!eb)
d1310b2e
CM
4843 return NULL;
4844
727011e0 4845 for (i = 0; i < num_pages; i++, index++) {
a6591715 4846 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4847 if (!p)
6af118ce 4848 goto free_eb;
4f2de97a
JB
4849
4850 spin_lock(&mapping->private_lock);
4851 if (PagePrivate(p)) {
4852 /*
4853 * We could have already allocated an eb for this page
4854 * and attached one so lets see if we can get a ref on
4855 * the existing eb, and if we can we know it's good and
4856 * we can just return that one, else we know we can just
4857 * overwrite page->private.
4858 */
4859 exists = (struct extent_buffer *)p->private;
4860 if (atomic_inc_not_zero(&exists->refs)) {
4861 spin_unlock(&mapping->private_lock);
4862 unlock_page(p);
17de39ac 4863 page_cache_release(p);
2457aec6 4864 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4865 goto free_eb;
4866 }
4867
0b32f4bb 4868 /*
4f2de97a
JB
4869 * Do this so attach doesn't complain and we need to
4870 * drop the ref the old guy had.
4871 */
4872 ClearPagePrivate(p);
0b32f4bb 4873 WARN_ON(PageDirty(p));
4f2de97a 4874 page_cache_release(p);
d1310b2e 4875 }
4f2de97a
JB
4876 attach_extent_buffer_page(eb, p);
4877 spin_unlock(&mapping->private_lock);
0b32f4bb 4878 WARN_ON(PageDirty(p));
727011e0 4879 eb->pages[i] = p;
d1310b2e
CM
4880 if (!PageUptodate(p))
4881 uptodate = 0;
eb14ab8e
CM
4882
4883 /*
4884 * see below about how we avoid a nasty race with release page
4885 * and why we unlock later
4886 */
d1310b2e
CM
4887 }
4888 if (uptodate)
b4ce94de 4889 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4890again:
19fe0a8b
MX
4891 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4892 if (ret)
4893 goto free_eb;
4894
f28491e0
JB
4895 spin_lock(&fs_info->buffer_lock);
4896 ret = radix_tree_insert(&fs_info->buffer_radix,
4897 start >> PAGE_CACHE_SHIFT, eb);
4898 spin_unlock(&fs_info->buffer_lock);
452c75c3 4899 radix_tree_preload_end();
19fe0a8b 4900 if (ret == -EEXIST) {
f28491e0 4901 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4902 if (exists)
4903 goto free_eb;
4904 else
115391d2 4905 goto again;
6af118ce 4906 }
6af118ce 4907 /* add one reference for the tree */
0b32f4bb 4908 check_buffer_tree_ref(eb);
34b41ace 4909 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4910
4911 /*
4912 * there is a race where release page may have
4913 * tried to find this extent buffer in the radix
4914 * but failed. It will tell the VM it is safe to
4915 * reclaim the, and it will clear the page private bit.
4916 * We must make sure to set the page private bit properly
4917 * after the extent buffer is in the radix tree so
4918 * it doesn't get lost
4919 */
727011e0
CM
4920 SetPageChecked(eb->pages[0]);
4921 for (i = 1; i < num_pages; i++) {
fb85fc9a 4922 p = eb->pages[i];
727011e0
CM
4923 ClearPageChecked(p);
4924 unlock_page(p);
4925 }
4926 unlock_page(eb->pages[0]);
d1310b2e
CM
4927 return eb;
4928
6af118ce 4929free_eb:
727011e0
CM
4930 for (i = 0; i < num_pages; i++) {
4931 if (eb->pages[i])
4932 unlock_page(eb->pages[i]);
4933 }
eb14ab8e 4934
17de39ac 4935 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4936 btrfs_release_extent_buffer(eb);
6af118ce 4937 return exists;
d1310b2e 4938}
d1310b2e 4939
3083ee2e
JB
4940static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4941{
4942 struct extent_buffer *eb =
4943 container_of(head, struct extent_buffer, rcu_head);
4944
4945 __free_extent_buffer(eb);
4946}
4947
3083ee2e 4948/* Expects to have eb->eb_lock already held */
f7a52a40 4949static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4950{
4951 WARN_ON(atomic_read(&eb->refs) == 0);
4952 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4953 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4954 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4955
815a51c7 4956 spin_unlock(&eb->refs_lock);
3083ee2e 4957
f28491e0
JB
4958 spin_lock(&fs_info->buffer_lock);
4959 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4960 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4961 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4962 } else {
4963 spin_unlock(&eb->refs_lock);
815a51c7 4964 }
3083ee2e
JB
4965
4966 /* Should be safe to release our pages at this point */
a50924e3 4967 btrfs_release_extent_buffer_page(eb);
3083ee2e 4968 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4969 return 1;
3083ee2e
JB
4970 }
4971 spin_unlock(&eb->refs_lock);
e64860aa
JB
4972
4973 return 0;
3083ee2e
JB
4974}
4975
d1310b2e
CM
4976void free_extent_buffer(struct extent_buffer *eb)
4977{
242e18c7
CM
4978 int refs;
4979 int old;
d1310b2e
CM
4980 if (!eb)
4981 return;
4982
242e18c7
CM
4983 while (1) {
4984 refs = atomic_read(&eb->refs);
4985 if (refs <= 3)
4986 break;
4987 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4988 if (old == refs)
4989 return;
4990 }
4991
3083ee2e 4992 spin_lock(&eb->refs_lock);
815a51c7
JS
4993 if (atomic_read(&eb->refs) == 2 &&
4994 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4995 atomic_dec(&eb->refs);
4996
3083ee2e
JB
4997 if (atomic_read(&eb->refs) == 2 &&
4998 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4999 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5000 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5001 atomic_dec(&eb->refs);
5002
5003 /*
5004 * I know this is terrible, but it's temporary until we stop tracking
5005 * the uptodate bits and such for the extent buffers.
5006 */
f7a52a40 5007 release_extent_buffer(eb);
3083ee2e
JB
5008}
5009
5010void free_extent_buffer_stale(struct extent_buffer *eb)
5011{
5012 if (!eb)
d1310b2e
CM
5013 return;
5014
3083ee2e
JB
5015 spin_lock(&eb->refs_lock);
5016 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5017
0b32f4bb 5018 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5019 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5020 atomic_dec(&eb->refs);
f7a52a40 5021 release_extent_buffer(eb);
d1310b2e 5022}
d1310b2e 5023
1d4284bd 5024void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5025{
d1310b2e
CM
5026 unsigned long i;
5027 unsigned long num_pages;
5028 struct page *page;
5029
d1310b2e
CM
5030 num_pages = num_extent_pages(eb->start, eb->len);
5031
5032 for (i = 0; i < num_pages; i++) {
fb85fc9a 5033 page = eb->pages[i];
b9473439 5034 if (!PageDirty(page))
d2c3f4f6
CM
5035 continue;
5036
a61e6f29 5037 lock_page(page);
eb14ab8e
CM
5038 WARN_ON(!PagePrivate(page));
5039
d1310b2e 5040 clear_page_dirty_for_io(page);
0ee0fda0 5041 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5042 if (!PageDirty(page)) {
5043 radix_tree_tag_clear(&page->mapping->page_tree,
5044 page_index(page),
5045 PAGECACHE_TAG_DIRTY);
5046 }
0ee0fda0 5047 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5048 ClearPageError(page);
a61e6f29 5049 unlock_page(page);
d1310b2e 5050 }
0b32f4bb 5051 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5052}
d1310b2e 5053
0b32f4bb 5054int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5055{
5056 unsigned long i;
5057 unsigned long num_pages;
b9473439 5058 int was_dirty = 0;
d1310b2e 5059
0b32f4bb
JB
5060 check_buffer_tree_ref(eb);
5061
b9473439 5062 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5063
d1310b2e 5064 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5065 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5066 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5067
b9473439 5068 for (i = 0; i < num_pages; i++)
fb85fc9a 5069 set_page_dirty(eb->pages[i]);
b9473439 5070 return was_dirty;
d1310b2e 5071}
d1310b2e 5072
0b32f4bb 5073int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5074{
5075 unsigned long i;
5076 struct page *page;
5077 unsigned long num_pages;
5078
b4ce94de 5079 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5080 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5081 for (i = 0; i < num_pages; i++) {
fb85fc9a 5082 page = eb->pages[i];
33958dc6
CM
5083 if (page)
5084 ClearPageUptodate(page);
1259ab75
CM
5085 }
5086 return 0;
5087}
5088
0b32f4bb 5089int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5090{
5091 unsigned long i;
5092 struct page *page;
5093 unsigned long num_pages;
5094
0b32f4bb 5095 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5096 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5097 for (i = 0; i < num_pages; i++) {
fb85fc9a 5098 page = eb->pages[i];
d1310b2e
CM
5099 SetPageUptodate(page);
5100 }
5101 return 0;
5102}
d1310b2e 5103
0b32f4bb 5104int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5105{
0b32f4bb 5106 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5107}
d1310b2e
CM
5108
5109int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5110 struct extent_buffer *eb, u64 start, int wait,
f188591e 5111 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5112{
5113 unsigned long i;
5114 unsigned long start_i;
5115 struct page *page;
5116 int err;
5117 int ret = 0;
ce9adaa5
CM
5118 int locked_pages = 0;
5119 int all_uptodate = 1;
d1310b2e 5120 unsigned long num_pages;
727011e0 5121 unsigned long num_reads = 0;
a86c12c7 5122 struct bio *bio = NULL;
c8b97818 5123 unsigned long bio_flags = 0;
a86c12c7 5124
b4ce94de 5125 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5126 return 0;
5127
d1310b2e
CM
5128 if (start) {
5129 WARN_ON(start < eb->start);
5130 start_i = (start >> PAGE_CACHE_SHIFT) -
5131 (eb->start >> PAGE_CACHE_SHIFT);
5132 } else {
5133 start_i = 0;
5134 }
5135
5136 num_pages = num_extent_pages(eb->start, eb->len);
5137 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5138 page = eb->pages[i];
bb82ab88 5139 if (wait == WAIT_NONE) {
2db04966 5140 if (!trylock_page(page))
ce9adaa5 5141 goto unlock_exit;
d1310b2e
CM
5142 } else {
5143 lock_page(page);
5144 }
ce9adaa5 5145 locked_pages++;
727011e0
CM
5146 if (!PageUptodate(page)) {
5147 num_reads++;
ce9adaa5 5148 all_uptodate = 0;
727011e0 5149 }
ce9adaa5
CM
5150 }
5151 if (all_uptodate) {
5152 if (start_i == 0)
b4ce94de 5153 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5154 goto unlock_exit;
5155 }
5156
656f30db 5157 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5158 eb->read_mirror = 0;
0b32f4bb 5159 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5160 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5161 page = eb->pages[i];
ce9adaa5 5162 if (!PageUptodate(page)) {
f188591e 5163 ClearPageError(page);
a86c12c7 5164 err = __extent_read_full_page(tree, page,
f188591e 5165 get_extent, &bio,
d4c7ca86
JB
5166 mirror_num, &bio_flags,
5167 READ | REQ_META);
d397712b 5168 if (err)
d1310b2e 5169 ret = err;
d1310b2e
CM
5170 } else {
5171 unlock_page(page);
5172 }
5173 }
5174
355808c2 5175 if (bio) {
d4c7ca86
JB
5176 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5177 bio_flags);
79787eaa
JM
5178 if (err)
5179 return err;
355808c2 5180 }
a86c12c7 5181
bb82ab88 5182 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5183 return ret;
d397712b 5184
d1310b2e 5185 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5186 page = eb->pages[i];
d1310b2e 5187 wait_on_page_locked(page);
d397712b 5188 if (!PageUptodate(page))
d1310b2e 5189 ret = -EIO;
d1310b2e 5190 }
d397712b 5191
d1310b2e 5192 return ret;
ce9adaa5
CM
5193
5194unlock_exit:
5195 i = start_i;
d397712b 5196 while (locked_pages > 0) {
fb85fc9a 5197 page = eb->pages[i];
ce9adaa5
CM
5198 i++;
5199 unlock_page(page);
5200 locked_pages--;
5201 }
5202 return ret;
d1310b2e 5203}
d1310b2e
CM
5204
5205void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5206 unsigned long start,
5207 unsigned long len)
5208{
5209 size_t cur;
5210 size_t offset;
5211 struct page *page;
5212 char *kaddr;
5213 char *dst = (char *)dstv;
5214 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5215 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5216
5217 WARN_ON(start > eb->len);
5218 WARN_ON(start + len > eb->start + eb->len);
5219
778746b5 5220 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5221
d397712b 5222 while (len > 0) {
fb85fc9a 5223 page = eb->pages[i];
d1310b2e
CM
5224
5225 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5226 kaddr = page_address(page);
d1310b2e 5227 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5228
5229 dst += cur;
5230 len -= cur;
5231 offset = 0;
5232 i++;
5233 }
5234}
d1310b2e 5235
550ac1d8
GH
5236int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5237 unsigned long start,
5238 unsigned long len)
5239{
5240 size_t cur;
5241 size_t offset;
5242 struct page *page;
5243 char *kaddr;
5244 char __user *dst = (char __user *)dstv;
5245 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5246 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5247 int ret = 0;
5248
5249 WARN_ON(start > eb->len);
5250 WARN_ON(start + len > eb->start + eb->len);
5251
5252 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5253
5254 while (len > 0) {
fb85fc9a 5255 page = eb->pages[i];
550ac1d8
GH
5256
5257 cur = min(len, (PAGE_CACHE_SIZE - offset));
5258 kaddr = page_address(page);
5259 if (copy_to_user(dst, kaddr + offset, cur)) {
5260 ret = -EFAULT;
5261 break;
5262 }
5263
5264 dst += cur;
5265 len -= cur;
5266 offset = 0;
5267 i++;
5268 }
5269
5270 return ret;
5271}
5272
d1310b2e 5273int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5274 unsigned long min_len, char **map,
d1310b2e 5275 unsigned long *map_start,
a6591715 5276 unsigned long *map_len)
d1310b2e
CM
5277{
5278 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5279 char *kaddr;
5280 struct page *p;
5281 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5282 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5283 unsigned long end_i = (start_offset + start + min_len - 1) >>
5284 PAGE_CACHE_SHIFT;
5285
5286 if (i != end_i)
5287 return -EINVAL;
5288
5289 if (i == 0) {
5290 offset = start_offset;
5291 *map_start = 0;
5292 } else {
5293 offset = 0;
5294 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5295 }
d397712b 5296
d1310b2e 5297 if (start + min_len > eb->len) {
31b1a2bd 5298 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5299 "wanted %lu %lu\n",
5300 eb->start, eb->len, start, min_len);
85026533 5301 return -EINVAL;
d1310b2e
CM
5302 }
5303
fb85fc9a 5304 p = eb->pages[i];
a6591715 5305 kaddr = page_address(p);
d1310b2e
CM
5306 *map = kaddr + offset;
5307 *map_len = PAGE_CACHE_SIZE - offset;
5308 return 0;
5309}
d1310b2e 5310
d1310b2e
CM
5311int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5312 unsigned long start,
5313 unsigned long len)
5314{
5315 size_t cur;
5316 size_t offset;
5317 struct page *page;
5318 char *kaddr;
5319 char *ptr = (char *)ptrv;
5320 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5321 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5322 int ret = 0;
5323
5324 WARN_ON(start > eb->len);
5325 WARN_ON(start + len > eb->start + eb->len);
5326
778746b5 5327 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5328
d397712b 5329 while (len > 0) {
fb85fc9a 5330 page = eb->pages[i];
d1310b2e
CM
5331
5332 cur = min(len, (PAGE_CACHE_SIZE - offset));
5333
a6591715 5334 kaddr = page_address(page);
d1310b2e 5335 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5336 if (ret)
5337 break;
5338
5339 ptr += cur;
5340 len -= cur;
5341 offset = 0;
5342 i++;
5343 }
5344 return ret;
5345}
d1310b2e
CM
5346
5347void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5348 unsigned long start, unsigned long len)
5349{
5350 size_t cur;
5351 size_t offset;
5352 struct page *page;
5353 char *kaddr;
5354 char *src = (char *)srcv;
5355 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5356 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5357
5358 WARN_ON(start > eb->len);
5359 WARN_ON(start + len > eb->start + eb->len);
5360
778746b5 5361 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5362
d397712b 5363 while (len > 0) {
fb85fc9a 5364 page = eb->pages[i];
d1310b2e
CM
5365 WARN_ON(!PageUptodate(page));
5366
5367 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5368 kaddr = page_address(page);
d1310b2e 5369 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5370
5371 src += cur;
5372 len -= cur;
5373 offset = 0;
5374 i++;
5375 }
5376}
d1310b2e
CM
5377
5378void memset_extent_buffer(struct extent_buffer *eb, char c,
5379 unsigned long start, unsigned long len)
5380{
5381 size_t cur;
5382 size_t offset;
5383 struct page *page;
5384 char *kaddr;
5385 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5386 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5387
5388 WARN_ON(start > eb->len);
5389 WARN_ON(start + len > eb->start + eb->len);
5390
778746b5 5391 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5392
d397712b 5393 while (len > 0) {
fb85fc9a 5394 page = eb->pages[i];
d1310b2e
CM
5395 WARN_ON(!PageUptodate(page));
5396
5397 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5398 kaddr = page_address(page);
d1310b2e 5399 memset(kaddr + offset, c, cur);
d1310b2e
CM
5400
5401 len -= cur;
5402 offset = 0;
5403 i++;
5404 }
5405}
d1310b2e
CM
5406
5407void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5408 unsigned long dst_offset, unsigned long src_offset,
5409 unsigned long len)
5410{
5411 u64 dst_len = dst->len;
5412 size_t cur;
5413 size_t offset;
5414 struct page *page;
5415 char *kaddr;
5416 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5417 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5418
5419 WARN_ON(src->len != dst_len);
5420
5421 offset = (start_offset + dst_offset) &
778746b5 5422 (PAGE_CACHE_SIZE - 1);
d1310b2e 5423
d397712b 5424 while (len > 0) {
fb85fc9a 5425 page = dst->pages[i];
d1310b2e
CM
5426 WARN_ON(!PageUptodate(page));
5427
5428 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5429
a6591715 5430 kaddr = page_address(page);
d1310b2e 5431 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5432
5433 src_offset += cur;
5434 len -= cur;
5435 offset = 0;
5436 i++;
5437 }
5438}
d1310b2e 5439
3387206f
ST
5440static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5441{
5442 unsigned long distance = (src > dst) ? src - dst : dst - src;
5443 return distance < len;
5444}
5445
d1310b2e
CM
5446static void copy_pages(struct page *dst_page, struct page *src_page,
5447 unsigned long dst_off, unsigned long src_off,
5448 unsigned long len)
5449{
a6591715 5450 char *dst_kaddr = page_address(dst_page);
d1310b2e 5451 char *src_kaddr;
727011e0 5452 int must_memmove = 0;
d1310b2e 5453
3387206f 5454 if (dst_page != src_page) {
a6591715 5455 src_kaddr = page_address(src_page);
3387206f 5456 } else {
d1310b2e 5457 src_kaddr = dst_kaddr;
727011e0
CM
5458 if (areas_overlap(src_off, dst_off, len))
5459 must_memmove = 1;
3387206f 5460 }
d1310b2e 5461
727011e0
CM
5462 if (must_memmove)
5463 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5464 else
5465 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5466}
5467
5468void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5469 unsigned long src_offset, unsigned long len)
5470{
5471 size_t cur;
5472 size_t dst_off_in_page;
5473 size_t src_off_in_page;
5474 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5475 unsigned long dst_i;
5476 unsigned long src_i;
5477
5478 if (src_offset + len > dst->len) {
efe120a0 5479 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5480 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5481 BUG_ON(1);
5482 }
5483 if (dst_offset + len > dst->len) {
efe120a0 5484 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5485 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5486 BUG_ON(1);
5487 }
5488
d397712b 5489 while (len > 0) {
d1310b2e 5490 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5491 (PAGE_CACHE_SIZE - 1);
d1310b2e 5492 src_off_in_page = (start_offset + src_offset) &
778746b5 5493 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5494
5495 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5496 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5497
5498 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5499 src_off_in_page));
5500 cur = min_t(unsigned long, cur,
5501 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5502
fb85fc9a 5503 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5504 dst_off_in_page, src_off_in_page, cur);
5505
5506 src_offset += cur;
5507 dst_offset += cur;
5508 len -= cur;
5509 }
5510}
d1310b2e
CM
5511
5512void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5513 unsigned long src_offset, unsigned long len)
5514{
5515 size_t cur;
5516 size_t dst_off_in_page;
5517 size_t src_off_in_page;
5518 unsigned long dst_end = dst_offset + len - 1;
5519 unsigned long src_end = src_offset + len - 1;
5520 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5521 unsigned long dst_i;
5522 unsigned long src_i;
5523
5524 if (src_offset + len > dst->len) {
efe120a0 5525 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5526 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5527 BUG_ON(1);
5528 }
5529 if (dst_offset + len > dst->len) {
efe120a0 5530 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5531 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5532 BUG_ON(1);
5533 }
727011e0 5534 if (dst_offset < src_offset) {
d1310b2e
CM
5535 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5536 return;
5537 }
d397712b 5538 while (len > 0) {
d1310b2e
CM
5539 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5540 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5541
5542 dst_off_in_page = (start_offset + dst_end) &
778746b5 5543 (PAGE_CACHE_SIZE - 1);
d1310b2e 5544 src_off_in_page = (start_offset + src_end) &
778746b5 5545 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5546
5547 cur = min_t(unsigned long, len, src_off_in_page + 1);
5548 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5549 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5550 dst_off_in_page - cur + 1,
5551 src_off_in_page - cur + 1, cur);
5552
5553 dst_end -= cur;
5554 src_end -= cur;
5555 len -= cur;
5556 }
5557}
6af118ce 5558
f7a52a40 5559int try_release_extent_buffer(struct page *page)
19fe0a8b 5560{
6af118ce 5561 struct extent_buffer *eb;
6af118ce 5562
3083ee2e
JB
5563 /*
5564 * We need to make sure noboody is attaching this page to an eb right
5565 * now.
5566 */
5567 spin_lock(&page->mapping->private_lock);
5568 if (!PagePrivate(page)) {
5569 spin_unlock(&page->mapping->private_lock);
4f2de97a 5570 return 1;
45f49bce 5571 }
6af118ce 5572
3083ee2e
JB
5573 eb = (struct extent_buffer *)page->private;
5574 BUG_ON(!eb);
19fe0a8b
MX
5575
5576 /*
3083ee2e
JB
5577 * This is a little awful but should be ok, we need to make sure that
5578 * the eb doesn't disappear out from under us while we're looking at
5579 * this page.
19fe0a8b 5580 */
3083ee2e 5581 spin_lock(&eb->refs_lock);
0b32f4bb 5582 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5583 spin_unlock(&eb->refs_lock);
5584 spin_unlock(&page->mapping->private_lock);
5585 return 0;
b9473439 5586 }
3083ee2e 5587 spin_unlock(&page->mapping->private_lock);
897ca6e9 5588
19fe0a8b 5589 /*
3083ee2e
JB
5590 * If tree ref isn't set then we know the ref on this eb is a real ref,
5591 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5592 */
3083ee2e
JB
5593 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5594 spin_unlock(&eb->refs_lock);
5595 return 0;
b9473439 5596 }
19fe0a8b 5597
f7a52a40 5598 return release_extent_buffer(eb);
6af118ce 5599}