Btrfs: fix tree mod logging
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
c1c9ff7c
GU
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
6d49ba1b
ES
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
72 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
c1c9ff7c
GU
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78}
8d599ae1 79
a5dee37d
JB
80#define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 83 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 84{
a5dee37d
JB
85 struct inode *inode;
86 u64 isize;
8d599ae1 87
a5dee37d
JB
88 if (!tree->mapping)
89 return;
90
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
8d599ae1
DS
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
95 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 96 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
97 }
98}
6d49ba1b
ES
99#else
100#define btrfs_leak_debug_add(new, head) do {} while (0)
101#define btrfs_leak_debug_del(entry) do {} while (0)
102#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 103#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 104#endif
d1310b2e 105
d1310b2e
CM
106#define BUFFER_LRU_MAX 64
107
108struct tree_entry {
109 u64 start;
110 u64 end;
d1310b2e
CM
111 struct rb_node rb_node;
112};
113
114struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
de0022b9 118 unsigned long bio_flags;
771ed689
CM
119
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
122 */
ffbd517d
CM
123 unsigned int extent_locked:1;
124
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
d1310b2e
CM
127};
128
0b32f4bb 129static noinline void flush_write_bio(void *data);
c2d904e0
JM
130static inline struct btrfs_fs_info *
131tree_fs_info(struct extent_io_tree *tree)
132{
a5dee37d
JB
133 if (!tree->mapping)
134 return NULL;
c2d904e0
JM
135 return btrfs_sb(tree->mapping->host->i_sb);
136}
0b32f4bb 137
d1310b2e
CM
138int __init extent_io_init(void)
139{
837e1972 140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
143 if (!extent_state_cache)
144 return -ENOMEM;
145
837e1972 146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
149 if (!extent_buffer_cache)
150 goto free_state_cache;
9be3395b
CM
151
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
b208c2f7
DW
156
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
159
d1310b2e
CM
160 return 0;
161
b208c2f7
DW
162free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
165
9be3395b
CM
166free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
169
d1310b2e
CM
170free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
9be3395b 172 extent_state_cache = NULL;
d1310b2e
CM
173 return -ENOMEM;
174}
175
176void extent_io_exit(void)
177{
6d49ba1b 178 btrfs_leak_debug_check();
8c0a8537
KS
179
180 /*
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
183 */
184 rcu_barrier();
d1310b2e
CM
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
d1310b2e
CM
191}
192
193void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 194 struct address_space *mapping)
d1310b2e 195{
6bef4d31 196 tree->state = RB_ROOT;
d1310b2e
CM
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
70dec807 199 spin_lock_init(&tree->lock);
d1310b2e 200 tree->mapping = mapping;
d1310b2e 201}
d1310b2e 202
b2950863 203static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
204{
205 struct extent_state *state;
d1310b2e
CM
206
207 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 208 if (!state)
d1310b2e
CM
209 return state;
210 state->state = 0;
d1310b2e 211 state->private = 0;
70dec807 212 state->tree = NULL;
6d49ba1b 213 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
143bede5 216 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
217 return state;
218}
d1310b2e 219
4845e44f 220void free_extent_state(struct extent_state *state)
d1310b2e 221{
d1310b2e
CM
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
70dec807 225 WARN_ON(state->tree);
6d49ba1b 226 btrfs_leak_debug_del(&state->leak_list);
143bede5 227 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
228 kmem_cache_free(extent_state_cache, state);
229 }
230}
d1310b2e
CM
231
232static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
12cfbad9
FDBM
233 struct rb_node *node,
234 struct rb_node ***p_in,
235 struct rb_node **parent_in)
d1310b2e 236{
d397712b
CM
237 struct rb_node **p = &root->rb_node;
238 struct rb_node *parent = NULL;
d1310b2e
CM
239 struct tree_entry *entry;
240
12cfbad9
FDBM
241 if (p_in && parent_in) {
242 p = *p_in;
243 parent = *parent_in;
244 goto do_insert;
245 }
246
d397712b 247 while (*p) {
d1310b2e
CM
248 parent = *p;
249 entry = rb_entry(parent, struct tree_entry, rb_node);
250
251 if (offset < entry->start)
252 p = &(*p)->rb_left;
253 else if (offset > entry->end)
254 p = &(*p)->rb_right;
255 else
256 return parent;
257 }
258
12cfbad9 259do_insert:
d1310b2e
CM
260 rb_link_node(node, parent, p);
261 rb_insert_color(node, root);
262 return NULL;
263}
264
80ea96b1 265static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
266 struct rb_node **prev_ret,
267 struct rb_node **next_ret,
268 struct rb_node ***p_ret,
269 struct rb_node **parent_ret)
d1310b2e 270{
80ea96b1 271 struct rb_root *root = &tree->state;
12cfbad9 272 struct rb_node **n = &root->rb_node;
d1310b2e
CM
273 struct rb_node *prev = NULL;
274 struct rb_node *orig_prev = NULL;
275 struct tree_entry *entry;
276 struct tree_entry *prev_entry = NULL;
277
12cfbad9
FDBM
278 while (*n) {
279 prev = *n;
280 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
281 prev_entry = entry;
282
283 if (offset < entry->start)
12cfbad9 284 n = &(*n)->rb_left;
d1310b2e 285 else if (offset > entry->end)
12cfbad9 286 n = &(*n)->rb_right;
d397712b 287 else
12cfbad9 288 return *n;
d1310b2e
CM
289 }
290
12cfbad9
FDBM
291 if (p_ret)
292 *p_ret = n;
293 if (parent_ret)
294 *parent_ret = prev;
295
d1310b2e
CM
296 if (prev_ret) {
297 orig_prev = prev;
d397712b 298 while (prev && offset > prev_entry->end) {
d1310b2e
CM
299 prev = rb_next(prev);
300 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
301 }
302 *prev_ret = prev;
303 prev = orig_prev;
304 }
305
306 if (next_ret) {
307 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 308 while (prev && offset < prev_entry->start) {
d1310b2e
CM
309 prev = rb_prev(prev);
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
311 }
312 *next_ret = prev;
313 }
314 return NULL;
315}
316
12cfbad9
FDBM
317static inline struct rb_node *
318tree_search_for_insert(struct extent_io_tree *tree,
319 u64 offset,
320 struct rb_node ***p_ret,
321 struct rb_node **parent_ret)
d1310b2e 322{
70dec807 323 struct rb_node *prev = NULL;
d1310b2e 324 struct rb_node *ret;
70dec807 325
12cfbad9 326 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 327 if (!ret)
d1310b2e
CM
328 return prev;
329 return ret;
330}
331
12cfbad9
FDBM
332static inline struct rb_node *tree_search(struct extent_io_tree *tree,
333 u64 offset)
334{
335 return tree_search_for_insert(tree, offset, NULL, NULL);
336}
337
9ed74f2d
JB
338static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
339 struct extent_state *other)
340{
341 if (tree->ops && tree->ops->merge_extent_hook)
342 tree->ops->merge_extent_hook(tree->mapping->host, new,
343 other);
344}
345
d1310b2e
CM
346/*
347 * utility function to look for merge candidates inside a given range.
348 * Any extents with matching state are merged together into a single
349 * extent in the tree. Extents with EXTENT_IO in their state field
350 * are not merged because the end_io handlers need to be able to do
351 * operations on them without sleeping (or doing allocations/splits).
352 *
353 * This should be called with the tree lock held.
354 */
1bf85046
JM
355static void merge_state(struct extent_io_tree *tree,
356 struct extent_state *state)
d1310b2e
CM
357{
358 struct extent_state *other;
359 struct rb_node *other_node;
360
5b21f2ed 361 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 362 return;
d1310b2e
CM
363
364 other_node = rb_prev(&state->rb_node);
365 if (other_node) {
366 other = rb_entry(other_node, struct extent_state, rb_node);
367 if (other->end == state->start - 1 &&
368 other->state == state->state) {
9ed74f2d 369 merge_cb(tree, state, other);
d1310b2e 370 state->start = other->start;
70dec807 371 other->tree = NULL;
d1310b2e
CM
372 rb_erase(&other->rb_node, &tree->state);
373 free_extent_state(other);
374 }
375 }
376 other_node = rb_next(&state->rb_node);
377 if (other_node) {
378 other = rb_entry(other_node, struct extent_state, rb_node);
379 if (other->start == state->end + 1 &&
380 other->state == state->state) {
9ed74f2d 381 merge_cb(tree, state, other);
df98b6e2
JB
382 state->end = other->end;
383 other->tree = NULL;
384 rb_erase(&other->rb_node, &tree->state);
385 free_extent_state(other);
d1310b2e
CM
386 }
387 }
d1310b2e
CM
388}
389
1bf85046 390static void set_state_cb(struct extent_io_tree *tree,
41074888 391 struct extent_state *state, unsigned long *bits)
291d673e 392{
1bf85046
JM
393 if (tree->ops && tree->ops->set_bit_hook)
394 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
395}
396
397static void clear_state_cb(struct extent_io_tree *tree,
41074888 398 struct extent_state *state, unsigned long *bits)
291d673e 399{
9ed74f2d
JB
400 if (tree->ops && tree->ops->clear_bit_hook)
401 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
402}
403
3150b699 404static void set_state_bits(struct extent_io_tree *tree,
41074888 405 struct extent_state *state, unsigned long *bits);
3150b699 406
d1310b2e
CM
407/*
408 * insert an extent_state struct into the tree. 'bits' are set on the
409 * struct before it is inserted.
410 *
411 * This may return -EEXIST if the extent is already there, in which case the
412 * state struct is freed.
413 *
414 * The tree lock is not taken internally. This is a utility function and
415 * probably isn't what you want to call (see set/clear_extent_bit).
416 */
417static int insert_state(struct extent_io_tree *tree,
418 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
419 struct rb_node ***p,
420 struct rb_node **parent,
41074888 421 unsigned long *bits)
d1310b2e
CM
422{
423 struct rb_node *node;
424
31b1a2bd
JL
425 if (end < start)
426 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
c1c9ff7c 427 end, start);
d1310b2e
CM
428 state->start = start;
429 state->end = end;
9ed74f2d 430
3150b699
XG
431 set_state_bits(tree, state, bits);
432
12cfbad9 433 node = tree_insert(&tree->state, end, &state->rb_node, p, parent);
d1310b2e
CM
434 if (node) {
435 struct extent_state *found;
436 found = rb_entry(node, struct extent_state, rb_node);
d397712b 437 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
c1c9ff7c
GU
438 "%llu %llu\n",
439 found->start, found->end, start, end);
d1310b2e
CM
440 return -EEXIST;
441 }
70dec807 442 state->tree = tree;
d1310b2e
CM
443 merge_state(tree, state);
444 return 0;
445}
446
1bf85046 447static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
448 u64 split)
449{
450 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 451 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
452}
453
d1310b2e
CM
454/*
455 * split a given extent state struct in two, inserting the preallocated
456 * struct 'prealloc' as the newly created second half. 'split' indicates an
457 * offset inside 'orig' where it should be split.
458 *
459 * Before calling,
460 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
461 * are two extent state structs in the tree:
462 * prealloc: [orig->start, split - 1]
463 * orig: [ split, orig->end ]
464 *
465 * The tree locks are not taken by this function. They need to be held
466 * by the caller.
467 */
468static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
469 struct extent_state *prealloc, u64 split)
470{
471 struct rb_node *node;
9ed74f2d
JB
472
473 split_cb(tree, orig, split);
474
d1310b2e
CM
475 prealloc->start = orig->start;
476 prealloc->end = split - 1;
477 prealloc->state = orig->state;
478 orig->start = split;
479
12cfbad9
FDBM
480 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node,
481 NULL, NULL);
d1310b2e 482 if (node) {
d1310b2e
CM
483 free_extent_state(prealloc);
484 return -EEXIST;
485 }
70dec807 486 prealloc->tree = tree;
d1310b2e
CM
487 return 0;
488}
489
cdc6a395
LZ
490static struct extent_state *next_state(struct extent_state *state)
491{
492 struct rb_node *next = rb_next(&state->rb_node);
493 if (next)
494 return rb_entry(next, struct extent_state, rb_node);
495 else
496 return NULL;
497}
498
d1310b2e
CM
499/*
500 * utility function to clear some bits in an extent state struct.
1b303fc0 501 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
502 *
503 * If no bits are set on the state struct after clearing things, the
504 * struct is freed and removed from the tree
505 */
cdc6a395
LZ
506static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
507 struct extent_state *state,
41074888 508 unsigned long *bits, int wake)
d1310b2e 509{
cdc6a395 510 struct extent_state *next;
41074888 511 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 512
0ca1f7ce 513 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
514 u64 range = state->end - state->start + 1;
515 WARN_ON(range > tree->dirty_bytes);
516 tree->dirty_bytes -= range;
517 }
291d673e 518 clear_state_cb(tree, state, bits);
32c00aff 519 state->state &= ~bits_to_clear;
d1310b2e
CM
520 if (wake)
521 wake_up(&state->wq);
0ca1f7ce 522 if (state->state == 0) {
cdc6a395 523 next = next_state(state);
70dec807 524 if (state->tree) {
d1310b2e 525 rb_erase(&state->rb_node, &tree->state);
70dec807 526 state->tree = NULL;
d1310b2e
CM
527 free_extent_state(state);
528 } else {
529 WARN_ON(1);
530 }
531 } else {
532 merge_state(tree, state);
cdc6a395 533 next = next_state(state);
d1310b2e 534 }
cdc6a395 535 return next;
d1310b2e
CM
536}
537
8233767a
XG
538static struct extent_state *
539alloc_extent_state_atomic(struct extent_state *prealloc)
540{
541 if (!prealloc)
542 prealloc = alloc_extent_state(GFP_ATOMIC);
543
544 return prealloc;
545}
546
48a3b636 547static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
548{
549 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
550 "Extent tree was modified by another "
551 "thread while locked.");
552}
553
d1310b2e
CM
554/*
555 * clear some bits on a range in the tree. This may require splitting
556 * or inserting elements in the tree, so the gfp mask is used to
557 * indicate which allocations or sleeping are allowed.
558 *
559 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
560 * the given range from the tree regardless of state (ie for truncate).
561 *
562 * the range [start, end] is inclusive.
563 *
6763af84 564 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
565 */
566int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 567 unsigned long bits, int wake, int delete,
2c64c53d
CM
568 struct extent_state **cached_state,
569 gfp_t mask)
d1310b2e
CM
570{
571 struct extent_state *state;
2c64c53d 572 struct extent_state *cached;
d1310b2e
CM
573 struct extent_state *prealloc = NULL;
574 struct rb_node *node;
5c939df5 575 u64 last_end;
d1310b2e 576 int err;
2ac55d41 577 int clear = 0;
d1310b2e 578
a5dee37d 579 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 580
7ee9e440
JB
581 if (bits & EXTENT_DELALLOC)
582 bits |= EXTENT_NORESERVE;
583
0ca1f7ce
YZ
584 if (delete)
585 bits |= ~EXTENT_CTLBITS;
586 bits |= EXTENT_FIRST_DELALLOC;
587
2ac55d41
JB
588 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
589 clear = 1;
d1310b2e
CM
590again:
591 if (!prealloc && (mask & __GFP_WAIT)) {
592 prealloc = alloc_extent_state(mask);
593 if (!prealloc)
594 return -ENOMEM;
595 }
596
cad321ad 597 spin_lock(&tree->lock);
2c64c53d
CM
598 if (cached_state) {
599 cached = *cached_state;
2ac55d41
JB
600
601 if (clear) {
602 *cached_state = NULL;
603 cached_state = NULL;
604 }
605
df98b6e2
JB
606 if (cached && cached->tree && cached->start <= start &&
607 cached->end > start) {
2ac55d41
JB
608 if (clear)
609 atomic_dec(&cached->refs);
2c64c53d 610 state = cached;
42daec29 611 goto hit_next;
2c64c53d 612 }
2ac55d41
JB
613 if (clear)
614 free_extent_state(cached);
2c64c53d 615 }
d1310b2e
CM
616 /*
617 * this search will find the extents that end after
618 * our range starts
619 */
80ea96b1 620 node = tree_search(tree, start);
d1310b2e
CM
621 if (!node)
622 goto out;
623 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 624hit_next:
d1310b2e
CM
625 if (state->start > end)
626 goto out;
627 WARN_ON(state->end < start);
5c939df5 628 last_end = state->end;
d1310b2e 629
0449314a 630 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
631 if (!(state->state & bits)) {
632 state = next_state(state);
0449314a 633 goto next;
cdc6a395 634 }
0449314a 635
d1310b2e
CM
636 /*
637 * | ---- desired range ---- |
638 * | state | or
639 * | ------------- state -------------- |
640 *
641 * We need to split the extent we found, and may flip
642 * bits on second half.
643 *
644 * If the extent we found extends past our range, we
645 * just split and search again. It'll get split again
646 * the next time though.
647 *
648 * If the extent we found is inside our range, we clear
649 * the desired bit on it.
650 */
651
652 if (state->start < start) {
8233767a
XG
653 prealloc = alloc_extent_state_atomic(prealloc);
654 BUG_ON(!prealloc);
d1310b2e 655 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
656 if (err)
657 extent_io_tree_panic(tree, err);
658
d1310b2e
CM
659 prealloc = NULL;
660 if (err)
661 goto out;
662 if (state->end <= end) {
d1ac6e41
LB
663 state = clear_state_bit(tree, state, &bits, wake);
664 goto next;
d1310b2e
CM
665 }
666 goto search_again;
667 }
668 /*
669 * | ---- desired range ---- |
670 * | state |
671 * We need to split the extent, and clear the bit
672 * on the first half
673 */
674 if (state->start <= end && state->end > end) {
8233767a
XG
675 prealloc = alloc_extent_state_atomic(prealloc);
676 BUG_ON(!prealloc);
d1310b2e 677 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
678 if (err)
679 extent_io_tree_panic(tree, err);
680
d1310b2e
CM
681 if (wake)
682 wake_up(&state->wq);
42daec29 683
6763af84 684 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 685
d1310b2e
CM
686 prealloc = NULL;
687 goto out;
688 }
42daec29 689
cdc6a395 690 state = clear_state_bit(tree, state, &bits, wake);
0449314a 691next:
5c939df5
YZ
692 if (last_end == (u64)-1)
693 goto out;
694 start = last_end + 1;
cdc6a395 695 if (start <= end && state && !need_resched())
692e5759 696 goto hit_next;
d1310b2e
CM
697 goto search_again;
698
699out:
cad321ad 700 spin_unlock(&tree->lock);
d1310b2e
CM
701 if (prealloc)
702 free_extent_state(prealloc);
703
6763af84 704 return 0;
d1310b2e
CM
705
706search_again:
707 if (start > end)
708 goto out;
cad321ad 709 spin_unlock(&tree->lock);
d1310b2e
CM
710 if (mask & __GFP_WAIT)
711 cond_resched();
712 goto again;
713}
d1310b2e 714
143bede5
JM
715static void wait_on_state(struct extent_io_tree *tree,
716 struct extent_state *state)
641f5219
CH
717 __releases(tree->lock)
718 __acquires(tree->lock)
d1310b2e
CM
719{
720 DEFINE_WAIT(wait);
721 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 722 spin_unlock(&tree->lock);
d1310b2e 723 schedule();
cad321ad 724 spin_lock(&tree->lock);
d1310b2e 725 finish_wait(&state->wq, &wait);
d1310b2e
CM
726}
727
728/*
729 * waits for one or more bits to clear on a range in the state tree.
730 * The range [start, end] is inclusive.
731 * The tree lock is taken by this function
732 */
41074888
DS
733static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
734 unsigned long bits)
d1310b2e
CM
735{
736 struct extent_state *state;
737 struct rb_node *node;
738
a5dee37d 739 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 740
cad321ad 741 spin_lock(&tree->lock);
d1310b2e
CM
742again:
743 while (1) {
744 /*
745 * this search will find all the extents that end after
746 * our range starts
747 */
80ea96b1 748 node = tree_search(tree, start);
d1310b2e
CM
749 if (!node)
750 break;
751
752 state = rb_entry(node, struct extent_state, rb_node);
753
754 if (state->start > end)
755 goto out;
756
757 if (state->state & bits) {
758 start = state->start;
759 atomic_inc(&state->refs);
760 wait_on_state(tree, state);
761 free_extent_state(state);
762 goto again;
763 }
764 start = state->end + 1;
765
766 if (start > end)
767 break;
768
ded91f08 769 cond_resched_lock(&tree->lock);
d1310b2e
CM
770 }
771out:
cad321ad 772 spin_unlock(&tree->lock);
d1310b2e 773}
d1310b2e 774
1bf85046 775static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 776 struct extent_state *state,
41074888 777 unsigned long *bits)
d1310b2e 778{
41074888 779 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 780
1bf85046 781 set_state_cb(tree, state, bits);
0ca1f7ce 782 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
783 u64 range = state->end - state->start + 1;
784 tree->dirty_bytes += range;
785 }
0ca1f7ce 786 state->state |= bits_to_set;
d1310b2e
CM
787}
788
2c64c53d
CM
789static void cache_state(struct extent_state *state,
790 struct extent_state **cached_ptr)
791{
792 if (cached_ptr && !(*cached_ptr)) {
793 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
794 *cached_ptr = state;
795 atomic_inc(&state->refs);
796 }
797 }
798}
799
d1310b2e 800/*
1edbb734
CM
801 * set some bits on a range in the tree. This may require allocations or
802 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 803 *
1edbb734
CM
804 * If any of the exclusive bits are set, this will fail with -EEXIST if some
805 * part of the range already has the desired bits set. The start of the
806 * existing range is returned in failed_start in this case.
d1310b2e 807 *
1edbb734 808 * [start, end] is inclusive This takes the tree lock.
d1310b2e 809 */
1edbb734 810
3fbe5c02
JM
811static int __must_check
812__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
813 unsigned long bits, unsigned long exclusive_bits,
814 u64 *failed_start, struct extent_state **cached_state,
815 gfp_t mask)
d1310b2e
CM
816{
817 struct extent_state *state;
818 struct extent_state *prealloc = NULL;
819 struct rb_node *node;
12cfbad9
FDBM
820 struct rb_node **p;
821 struct rb_node *parent;
d1310b2e 822 int err = 0;
d1310b2e
CM
823 u64 last_start;
824 u64 last_end;
42daec29 825
a5dee37d 826 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 827
0ca1f7ce 828 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
829again:
830 if (!prealloc && (mask & __GFP_WAIT)) {
831 prealloc = alloc_extent_state(mask);
8233767a 832 BUG_ON(!prealloc);
d1310b2e
CM
833 }
834
cad321ad 835 spin_lock(&tree->lock);
9655d298
CM
836 if (cached_state && *cached_state) {
837 state = *cached_state;
df98b6e2
JB
838 if (state->start <= start && state->end > start &&
839 state->tree) {
9655d298
CM
840 node = &state->rb_node;
841 goto hit_next;
842 }
843 }
d1310b2e
CM
844 /*
845 * this search will find all the extents that end after
846 * our range starts.
847 */
12cfbad9 848 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 849 if (!node) {
8233767a
XG
850 prealloc = alloc_extent_state_atomic(prealloc);
851 BUG_ON(!prealloc);
12cfbad9
FDBM
852 err = insert_state(tree, prealloc, start, end,
853 &p, &parent, &bits);
c2d904e0
JM
854 if (err)
855 extent_io_tree_panic(tree, err);
856
c42ac0bc 857 cache_state(prealloc, cached_state);
d1310b2e 858 prealloc = NULL;
d1310b2e
CM
859 goto out;
860 }
d1310b2e 861 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 862hit_next:
d1310b2e
CM
863 last_start = state->start;
864 last_end = state->end;
865
866 /*
867 * | ---- desired range ---- |
868 * | state |
869 *
870 * Just lock what we found and keep going
871 */
872 if (state->start == start && state->end <= end) {
1edbb734 873 if (state->state & exclusive_bits) {
d1310b2e
CM
874 *failed_start = state->start;
875 err = -EEXIST;
876 goto out;
877 }
42daec29 878
1bf85046 879 set_state_bits(tree, state, &bits);
2c64c53d 880 cache_state(state, cached_state);
d1310b2e 881 merge_state(tree, state);
5c939df5
YZ
882 if (last_end == (u64)-1)
883 goto out;
884 start = last_end + 1;
d1ac6e41
LB
885 state = next_state(state);
886 if (start < end && state && state->start == start &&
887 !need_resched())
888 goto hit_next;
d1310b2e
CM
889 goto search_again;
890 }
891
892 /*
893 * | ---- desired range ---- |
894 * | state |
895 * or
896 * | ------------- state -------------- |
897 *
898 * We need to split the extent we found, and may flip bits on
899 * second half.
900 *
901 * If the extent we found extends past our
902 * range, we just split and search again. It'll get split
903 * again the next time though.
904 *
905 * If the extent we found is inside our range, we set the
906 * desired bit on it.
907 */
908 if (state->start < start) {
1edbb734 909 if (state->state & exclusive_bits) {
d1310b2e
CM
910 *failed_start = start;
911 err = -EEXIST;
912 goto out;
913 }
8233767a
XG
914
915 prealloc = alloc_extent_state_atomic(prealloc);
916 BUG_ON(!prealloc);
d1310b2e 917 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
918 if (err)
919 extent_io_tree_panic(tree, err);
920
d1310b2e
CM
921 prealloc = NULL;
922 if (err)
923 goto out;
924 if (state->end <= end) {
1bf85046 925 set_state_bits(tree, state, &bits);
2c64c53d 926 cache_state(state, cached_state);
d1310b2e 927 merge_state(tree, state);
5c939df5
YZ
928 if (last_end == (u64)-1)
929 goto out;
930 start = last_end + 1;
d1ac6e41
LB
931 state = next_state(state);
932 if (start < end && state && state->start == start &&
933 !need_resched())
934 goto hit_next;
d1310b2e
CM
935 }
936 goto search_again;
937 }
938 /*
939 * | ---- desired range ---- |
940 * | state | or | state |
941 *
942 * There's a hole, we need to insert something in it and
943 * ignore the extent we found.
944 */
945 if (state->start > start) {
946 u64 this_end;
947 if (end < last_start)
948 this_end = end;
949 else
d397712b 950 this_end = last_start - 1;
8233767a
XG
951
952 prealloc = alloc_extent_state_atomic(prealloc);
953 BUG_ON(!prealloc);
c7f895a2
XG
954
955 /*
956 * Avoid to free 'prealloc' if it can be merged with
957 * the later extent.
958 */
d1310b2e 959 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 960 NULL, NULL, &bits);
c2d904e0
JM
961 if (err)
962 extent_io_tree_panic(tree, err);
963
9ed74f2d
JB
964 cache_state(prealloc, cached_state);
965 prealloc = NULL;
d1310b2e
CM
966 start = this_end + 1;
967 goto search_again;
968 }
969 /*
970 * | ---- desired range ---- |
971 * | state |
972 * We need to split the extent, and set the bit
973 * on the first half
974 */
975 if (state->start <= end && state->end > end) {
1edbb734 976 if (state->state & exclusive_bits) {
d1310b2e
CM
977 *failed_start = start;
978 err = -EEXIST;
979 goto out;
980 }
8233767a
XG
981
982 prealloc = alloc_extent_state_atomic(prealloc);
983 BUG_ON(!prealloc);
d1310b2e 984 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
985 if (err)
986 extent_io_tree_panic(tree, err);
d1310b2e 987
1bf85046 988 set_state_bits(tree, prealloc, &bits);
2c64c53d 989 cache_state(prealloc, cached_state);
d1310b2e
CM
990 merge_state(tree, prealloc);
991 prealloc = NULL;
992 goto out;
993 }
994
995 goto search_again;
996
997out:
cad321ad 998 spin_unlock(&tree->lock);
d1310b2e
CM
999 if (prealloc)
1000 free_extent_state(prealloc);
1001
1002 return err;
1003
1004search_again:
1005 if (start > end)
1006 goto out;
cad321ad 1007 spin_unlock(&tree->lock);
d1310b2e
CM
1008 if (mask & __GFP_WAIT)
1009 cond_resched();
1010 goto again;
1011}
d1310b2e 1012
41074888
DS
1013int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1014 unsigned long bits, u64 * failed_start,
1015 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1016{
1017 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1018 cached_state, mask);
1019}
1020
1021
462d6fac 1022/**
10983f2e
LB
1023 * convert_extent_bit - convert all bits in a given range from one bit to
1024 * another
462d6fac
JB
1025 * @tree: the io tree to search
1026 * @start: the start offset in bytes
1027 * @end: the end offset in bytes (inclusive)
1028 * @bits: the bits to set in this range
1029 * @clear_bits: the bits to clear in this range
e6138876 1030 * @cached_state: state that we're going to cache
462d6fac
JB
1031 * @mask: the allocation mask
1032 *
1033 * This will go through and set bits for the given range. If any states exist
1034 * already in this range they are set with the given bit and cleared of the
1035 * clear_bits. This is only meant to be used by things that are mergeable, ie
1036 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1037 * boundary bits like LOCK.
1038 */
1039int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1040 unsigned long bits, unsigned long clear_bits,
e6138876 1041 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1042{
1043 struct extent_state *state;
1044 struct extent_state *prealloc = NULL;
1045 struct rb_node *node;
12cfbad9
FDBM
1046 struct rb_node **p;
1047 struct rb_node *parent;
462d6fac
JB
1048 int err = 0;
1049 u64 last_start;
1050 u64 last_end;
1051
a5dee37d 1052 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1053
462d6fac
JB
1054again:
1055 if (!prealloc && (mask & __GFP_WAIT)) {
1056 prealloc = alloc_extent_state(mask);
1057 if (!prealloc)
1058 return -ENOMEM;
1059 }
1060
1061 spin_lock(&tree->lock);
e6138876
JB
1062 if (cached_state && *cached_state) {
1063 state = *cached_state;
1064 if (state->start <= start && state->end > start &&
1065 state->tree) {
1066 node = &state->rb_node;
1067 goto hit_next;
1068 }
1069 }
1070
462d6fac
JB
1071 /*
1072 * this search will find all the extents that end after
1073 * our range starts.
1074 */
12cfbad9 1075 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1076 if (!node) {
1077 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1078 if (!prealloc) {
1079 err = -ENOMEM;
1080 goto out;
1081 }
12cfbad9
FDBM
1082 err = insert_state(tree, prealloc, start, end,
1083 &p, &parent, &bits);
c2d904e0
JM
1084 if (err)
1085 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1086 cache_state(prealloc, cached_state);
1087 prealloc = NULL;
462d6fac
JB
1088 goto out;
1089 }
1090 state = rb_entry(node, struct extent_state, rb_node);
1091hit_next:
1092 last_start = state->start;
1093 last_end = state->end;
1094
1095 /*
1096 * | ---- desired range ---- |
1097 * | state |
1098 *
1099 * Just lock what we found and keep going
1100 */
1101 if (state->start == start && state->end <= end) {
462d6fac 1102 set_state_bits(tree, state, &bits);
e6138876 1103 cache_state(state, cached_state);
d1ac6e41 1104 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1105 if (last_end == (u64)-1)
1106 goto out;
462d6fac 1107 start = last_end + 1;
d1ac6e41
LB
1108 if (start < end && state && state->start == start &&
1109 !need_resched())
1110 goto hit_next;
462d6fac
JB
1111 goto search_again;
1112 }
1113
1114 /*
1115 * | ---- desired range ---- |
1116 * | state |
1117 * or
1118 * | ------------- state -------------- |
1119 *
1120 * We need to split the extent we found, and may flip bits on
1121 * second half.
1122 *
1123 * If the extent we found extends past our
1124 * range, we just split and search again. It'll get split
1125 * again the next time though.
1126 *
1127 * If the extent we found is inside our range, we set the
1128 * desired bit on it.
1129 */
1130 if (state->start < start) {
1131 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1132 if (!prealloc) {
1133 err = -ENOMEM;
1134 goto out;
1135 }
462d6fac 1136 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1137 if (err)
1138 extent_io_tree_panic(tree, err);
462d6fac
JB
1139 prealloc = NULL;
1140 if (err)
1141 goto out;
1142 if (state->end <= end) {
1143 set_state_bits(tree, state, &bits);
e6138876 1144 cache_state(state, cached_state);
d1ac6e41 1145 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1146 if (last_end == (u64)-1)
1147 goto out;
1148 start = last_end + 1;
d1ac6e41
LB
1149 if (start < end && state && state->start == start &&
1150 !need_resched())
1151 goto hit_next;
462d6fac
JB
1152 }
1153 goto search_again;
1154 }
1155 /*
1156 * | ---- desired range ---- |
1157 * | state | or | state |
1158 *
1159 * There's a hole, we need to insert something in it and
1160 * ignore the extent we found.
1161 */
1162 if (state->start > start) {
1163 u64 this_end;
1164 if (end < last_start)
1165 this_end = end;
1166 else
1167 this_end = last_start - 1;
1168
1169 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1170 if (!prealloc) {
1171 err = -ENOMEM;
1172 goto out;
1173 }
462d6fac
JB
1174
1175 /*
1176 * Avoid to free 'prealloc' if it can be merged with
1177 * the later extent.
1178 */
1179 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1180 NULL, NULL, &bits);
c2d904e0
JM
1181 if (err)
1182 extent_io_tree_panic(tree, err);
e6138876 1183 cache_state(prealloc, cached_state);
462d6fac
JB
1184 prealloc = NULL;
1185 start = this_end + 1;
1186 goto search_again;
1187 }
1188 /*
1189 * | ---- desired range ---- |
1190 * | state |
1191 * We need to split the extent, and set the bit
1192 * on the first half
1193 */
1194 if (state->start <= end && state->end > end) {
1195 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1196 if (!prealloc) {
1197 err = -ENOMEM;
1198 goto out;
1199 }
462d6fac
JB
1200
1201 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1202 if (err)
1203 extent_io_tree_panic(tree, err);
462d6fac
JB
1204
1205 set_state_bits(tree, prealloc, &bits);
e6138876 1206 cache_state(prealloc, cached_state);
462d6fac 1207 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1208 prealloc = NULL;
1209 goto out;
1210 }
1211
1212 goto search_again;
1213
1214out:
1215 spin_unlock(&tree->lock);
1216 if (prealloc)
1217 free_extent_state(prealloc);
1218
1219 return err;
1220
1221search_again:
1222 if (start > end)
1223 goto out;
1224 spin_unlock(&tree->lock);
1225 if (mask & __GFP_WAIT)
1226 cond_resched();
1227 goto again;
1228}
1229
d1310b2e
CM
1230/* wrappers around set/clear extent bit */
1231int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1232 gfp_t mask)
1233{
3fbe5c02 1234 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1235 NULL, mask);
d1310b2e 1236}
d1310b2e
CM
1237
1238int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1239 unsigned long bits, gfp_t mask)
d1310b2e 1240{
3fbe5c02 1241 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1242 NULL, mask);
d1310b2e 1243}
d1310b2e
CM
1244
1245int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1246 unsigned long bits, gfp_t mask)
d1310b2e 1247{
2c64c53d 1248 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1249}
d1310b2e
CM
1250
1251int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1252 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1253{
1254 return set_extent_bit(tree, start, end,
fee187d9 1255 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1256 NULL, cached_state, mask);
d1310b2e 1257}
d1310b2e 1258
9e8a4a8b
LB
1259int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1260 struct extent_state **cached_state, gfp_t mask)
1261{
1262 return set_extent_bit(tree, start, end,
1263 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1264 NULL, cached_state, mask);
1265}
1266
d1310b2e
CM
1267int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1268 gfp_t mask)
1269{
1270 return clear_extent_bit(tree, start, end,
32c00aff 1271 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1272 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1273}
d1310b2e
CM
1274
1275int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1276 gfp_t mask)
1277{
3fbe5c02 1278 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1279 NULL, mask);
d1310b2e 1280}
d1310b2e 1281
d1310b2e 1282int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1283 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1284{
6b67a320 1285 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1286 cached_state, mask);
d1310b2e 1287}
d1310b2e 1288
5fd02043
JB
1289int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1290 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1291{
2c64c53d 1292 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1293 cached_state, mask);
d1310b2e 1294}
d1310b2e 1295
d352ac68
CM
1296/*
1297 * either insert or lock state struct between start and end use mask to tell
1298 * us if waiting is desired.
1299 */
1edbb734 1300int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1301 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1302{
1303 int err;
1304 u64 failed_start;
1305 while (1) {
3fbe5c02
JM
1306 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1307 EXTENT_LOCKED, &failed_start,
1308 cached_state, GFP_NOFS);
d0082371 1309 if (err == -EEXIST) {
d1310b2e
CM
1310 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1311 start = failed_start;
d0082371 1312 } else
d1310b2e 1313 break;
d1310b2e
CM
1314 WARN_ON(start > end);
1315 }
1316 return err;
1317}
d1310b2e 1318
d0082371 1319int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1320{
d0082371 1321 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1322}
1323
d0082371 1324int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1325{
1326 int err;
1327 u64 failed_start;
1328
3fbe5c02
JM
1329 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1330 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1331 if (err == -EEXIST) {
1332 if (failed_start > start)
1333 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1334 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1335 return 0;
6643558d 1336 }
25179201
JB
1337 return 1;
1338}
25179201 1339
2c64c53d
CM
1340int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1341 struct extent_state **cached, gfp_t mask)
1342{
1343 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1344 mask);
1345}
1346
d0082371 1347int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1348{
2c64c53d 1349 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1350 GFP_NOFS);
d1310b2e 1351}
d1310b2e 1352
4adaa611
CM
1353int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1354{
1355 unsigned long index = start >> PAGE_CACHE_SHIFT;
1356 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1357 struct page *page;
1358
1359 while (index <= end_index) {
1360 page = find_get_page(inode->i_mapping, index);
1361 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1362 clear_page_dirty_for_io(page);
1363 page_cache_release(page);
1364 index++;
1365 }
1366 return 0;
1367}
1368
1369int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1370{
1371 unsigned long index = start >> PAGE_CACHE_SHIFT;
1372 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1373 struct page *page;
1374
1375 while (index <= end_index) {
1376 page = find_get_page(inode->i_mapping, index);
1377 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1378 account_page_redirty(page);
1379 __set_page_dirty_nobuffers(page);
1380 page_cache_release(page);
1381 index++;
1382 }
1383 return 0;
1384}
1385
d1310b2e
CM
1386/*
1387 * helper function to set both pages and extents in the tree writeback
1388 */
b2950863 1389static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1390{
1391 unsigned long index = start >> PAGE_CACHE_SHIFT;
1392 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1393 struct page *page;
1394
1395 while (index <= end_index) {
1396 page = find_get_page(tree->mapping, index);
79787eaa 1397 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1398 set_page_writeback(page);
1399 page_cache_release(page);
1400 index++;
1401 }
d1310b2e
CM
1402 return 0;
1403}
d1310b2e 1404
d352ac68
CM
1405/* find the first state struct with 'bits' set after 'start', and
1406 * return it. tree->lock must be held. NULL will returned if
1407 * nothing was found after 'start'
1408 */
48a3b636
ES
1409static struct extent_state *
1410find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1411 u64 start, unsigned long bits)
d7fc640e
CM
1412{
1413 struct rb_node *node;
1414 struct extent_state *state;
1415
1416 /*
1417 * this search will find all the extents that end after
1418 * our range starts.
1419 */
1420 node = tree_search(tree, start);
d397712b 1421 if (!node)
d7fc640e 1422 goto out;
d7fc640e 1423
d397712b 1424 while (1) {
d7fc640e 1425 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1426 if (state->end >= start && (state->state & bits))
d7fc640e 1427 return state;
d397712b 1428
d7fc640e
CM
1429 node = rb_next(node);
1430 if (!node)
1431 break;
1432 }
1433out:
1434 return NULL;
1435}
d7fc640e 1436
69261c4b
XG
1437/*
1438 * find the first offset in the io tree with 'bits' set. zero is
1439 * returned if we find something, and *start_ret and *end_ret are
1440 * set to reflect the state struct that was found.
1441 *
477d7eaf 1442 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1443 */
1444int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1445 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1446 struct extent_state **cached_state)
69261c4b
XG
1447{
1448 struct extent_state *state;
e6138876 1449 struct rb_node *n;
69261c4b
XG
1450 int ret = 1;
1451
1452 spin_lock(&tree->lock);
e6138876
JB
1453 if (cached_state && *cached_state) {
1454 state = *cached_state;
1455 if (state->end == start - 1 && state->tree) {
1456 n = rb_next(&state->rb_node);
1457 while (n) {
1458 state = rb_entry(n, struct extent_state,
1459 rb_node);
1460 if (state->state & bits)
1461 goto got_it;
1462 n = rb_next(n);
1463 }
1464 free_extent_state(*cached_state);
1465 *cached_state = NULL;
1466 goto out;
1467 }
1468 free_extent_state(*cached_state);
1469 *cached_state = NULL;
1470 }
1471
69261c4b 1472 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1473got_it:
69261c4b 1474 if (state) {
e6138876 1475 cache_state(state, cached_state);
69261c4b
XG
1476 *start_ret = state->start;
1477 *end_ret = state->end;
1478 ret = 0;
1479 }
e6138876 1480out:
69261c4b
XG
1481 spin_unlock(&tree->lock);
1482 return ret;
1483}
1484
d352ac68
CM
1485/*
1486 * find a contiguous range of bytes in the file marked as delalloc, not
1487 * more than 'max_bytes'. start and end are used to return the range,
1488 *
1489 * 1 is returned if we find something, 0 if nothing was in the tree
1490 */
c8b97818 1491static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1492 u64 *start, u64 *end, u64 max_bytes,
1493 struct extent_state **cached_state)
d1310b2e
CM
1494{
1495 struct rb_node *node;
1496 struct extent_state *state;
1497 u64 cur_start = *start;
1498 u64 found = 0;
1499 u64 total_bytes = 0;
1500
cad321ad 1501 spin_lock(&tree->lock);
c8b97818 1502
d1310b2e
CM
1503 /*
1504 * this search will find all the extents that end after
1505 * our range starts.
1506 */
80ea96b1 1507 node = tree_search(tree, cur_start);
2b114d1d 1508 if (!node) {
3b951516
CM
1509 if (!found)
1510 *end = (u64)-1;
d1310b2e
CM
1511 goto out;
1512 }
1513
d397712b 1514 while (1) {
d1310b2e 1515 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1516 if (found && (state->start != cur_start ||
1517 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1518 goto out;
1519 }
1520 if (!(state->state & EXTENT_DELALLOC)) {
1521 if (!found)
1522 *end = state->end;
1523 goto out;
1524 }
c2a128d2 1525 if (!found) {
d1310b2e 1526 *start = state->start;
c2a128d2
JB
1527 *cached_state = state;
1528 atomic_inc(&state->refs);
1529 }
d1310b2e
CM
1530 found++;
1531 *end = state->end;
1532 cur_start = state->end + 1;
1533 node = rb_next(node);
d1310b2e 1534 total_bytes += state->end - state->start + 1;
7bf811a5 1535 if (total_bytes >= max_bytes)
573aecaf 1536 break;
573aecaf 1537 if (!node)
d1310b2e
CM
1538 break;
1539 }
1540out:
cad321ad 1541 spin_unlock(&tree->lock);
d1310b2e
CM
1542 return found;
1543}
1544
143bede5
JM
1545static noinline void __unlock_for_delalloc(struct inode *inode,
1546 struct page *locked_page,
1547 u64 start, u64 end)
c8b97818
CM
1548{
1549 int ret;
1550 struct page *pages[16];
1551 unsigned long index = start >> PAGE_CACHE_SHIFT;
1552 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1553 unsigned long nr_pages = end_index - index + 1;
1554 int i;
1555
1556 if (index == locked_page->index && end_index == index)
143bede5 1557 return;
c8b97818 1558
d397712b 1559 while (nr_pages > 0) {
c8b97818 1560 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1561 min_t(unsigned long, nr_pages,
1562 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1563 for (i = 0; i < ret; i++) {
1564 if (pages[i] != locked_page)
1565 unlock_page(pages[i]);
1566 page_cache_release(pages[i]);
1567 }
1568 nr_pages -= ret;
1569 index += ret;
1570 cond_resched();
1571 }
c8b97818
CM
1572}
1573
1574static noinline int lock_delalloc_pages(struct inode *inode,
1575 struct page *locked_page,
1576 u64 delalloc_start,
1577 u64 delalloc_end)
1578{
1579 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1580 unsigned long start_index = index;
1581 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1582 unsigned long pages_locked = 0;
1583 struct page *pages[16];
1584 unsigned long nrpages;
1585 int ret;
1586 int i;
1587
1588 /* the caller is responsible for locking the start index */
1589 if (index == locked_page->index && index == end_index)
1590 return 0;
1591
1592 /* skip the page at the start index */
1593 nrpages = end_index - index + 1;
d397712b 1594 while (nrpages > 0) {
c8b97818 1595 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1596 min_t(unsigned long,
1597 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1598 if (ret == 0) {
1599 ret = -EAGAIN;
1600 goto done;
1601 }
1602 /* now we have an array of pages, lock them all */
1603 for (i = 0; i < ret; i++) {
1604 /*
1605 * the caller is taking responsibility for
1606 * locked_page
1607 */
771ed689 1608 if (pages[i] != locked_page) {
c8b97818 1609 lock_page(pages[i]);
f2b1c41c
CM
1610 if (!PageDirty(pages[i]) ||
1611 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1612 ret = -EAGAIN;
1613 unlock_page(pages[i]);
1614 page_cache_release(pages[i]);
1615 goto done;
1616 }
1617 }
c8b97818 1618 page_cache_release(pages[i]);
771ed689 1619 pages_locked++;
c8b97818 1620 }
c8b97818
CM
1621 nrpages -= ret;
1622 index += ret;
1623 cond_resched();
1624 }
1625 ret = 0;
1626done:
1627 if (ret && pages_locked) {
1628 __unlock_for_delalloc(inode, locked_page,
1629 delalloc_start,
1630 ((u64)(start_index + pages_locked - 1)) <<
1631 PAGE_CACHE_SHIFT);
1632 }
1633 return ret;
1634}
1635
1636/*
1637 * find a contiguous range of bytes in the file marked as delalloc, not
1638 * more than 'max_bytes'. start and end are used to return the range,
1639 *
1640 * 1 is returned if we find something, 0 if nothing was in the tree
1641 */
294e30fe
JB
1642STATIC u64 find_lock_delalloc_range(struct inode *inode,
1643 struct extent_io_tree *tree,
1644 struct page *locked_page, u64 *start,
1645 u64 *end, u64 max_bytes)
c8b97818
CM
1646{
1647 u64 delalloc_start;
1648 u64 delalloc_end;
1649 u64 found;
9655d298 1650 struct extent_state *cached_state = NULL;
c8b97818
CM
1651 int ret;
1652 int loops = 0;
1653
1654again:
1655 /* step one, find a bunch of delalloc bytes starting at start */
1656 delalloc_start = *start;
1657 delalloc_end = 0;
1658 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1659 max_bytes, &cached_state);
70b99e69 1660 if (!found || delalloc_end <= *start) {
c8b97818
CM
1661 *start = delalloc_start;
1662 *end = delalloc_end;
c2a128d2 1663 free_extent_state(cached_state);
385fe0be 1664 return 0;
c8b97818
CM
1665 }
1666
70b99e69
CM
1667 /*
1668 * start comes from the offset of locked_page. We have to lock
1669 * pages in order, so we can't process delalloc bytes before
1670 * locked_page
1671 */
d397712b 1672 if (delalloc_start < *start)
70b99e69 1673 delalloc_start = *start;
70b99e69 1674
c8b97818
CM
1675 /*
1676 * make sure to limit the number of pages we try to lock down
c8b97818 1677 */
7bf811a5
JB
1678 if (delalloc_end + 1 - delalloc_start > max_bytes)
1679 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1680
c8b97818
CM
1681 /* step two, lock all the pages after the page that has start */
1682 ret = lock_delalloc_pages(inode, locked_page,
1683 delalloc_start, delalloc_end);
1684 if (ret == -EAGAIN) {
1685 /* some of the pages are gone, lets avoid looping by
1686 * shortening the size of the delalloc range we're searching
1687 */
9655d298 1688 free_extent_state(cached_state);
c8b97818 1689 if (!loops) {
7bf811a5 1690 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1691 loops = 1;
1692 goto again;
1693 } else {
1694 found = 0;
1695 goto out_failed;
1696 }
1697 }
79787eaa 1698 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1699
1700 /* step three, lock the state bits for the whole range */
d0082371 1701 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1702
1703 /* then test to make sure it is all still delalloc */
1704 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1705 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1706 if (!ret) {
9655d298
CM
1707 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1708 &cached_state, GFP_NOFS);
c8b97818
CM
1709 __unlock_for_delalloc(inode, locked_page,
1710 delalloc_start, delalloc_end);
1711 cond_resched();
1712 goto again;
1713 }
9655d298 1714 free_extent_state(cached_state);
c8b97818
CM
1715 *start = delalloc_start;
1716 *end = delalloc_end;
1717out_failed:
1718 return found;
1719}
1720
c2790a2e
JB
1721int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1722 struct page *locked_page,
1723 unsigned long clear_bits,
1724 unsigned long page_ops)
c8b97818 1725{
c2790a2e 1726 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1727 int ret;
1728 struct page *pages[16];
1729 unsigned long index = start >> PAGE_CACHE_SHIFT;
1730 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1731 unsigned long nr_pages = end_index - index + 1;
1732 int i;
771ed689 1733
2c64c53d 1734 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1735 if (page_ops == 0)
771ed689 1736 return 0;
c8b97818 1737
d397712b 1738 while (nr_pages > 0) {
c8b97818 1739 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1740 min_t(unsigned long,
1741 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1742 for (i = 0; i < ret; i++) {
8b62b72b 1743
c2790a2e 1744 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1745 SetPagePrivate2(pages[i]);
1746
c8b97818
CM
1747 if (pages[i] == locked_page) {
1748 page_cache_release(pages[i]);
1749 continue;
1750 }
c2790a2e 1751 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1752 clear_page_dirty_for_io(pages[i]);
c2790a2e 1753 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1754 set_page_writeback(pages[i]);
c2790a2e 1755 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1756 end_page_writeback(pages[i]);
c2790a2e 1757 if (page_ops & PAGE_UNLOCK)
771ed689 1758 unlock_page(pages[i]);
c8b97818
CM
1759 page_cache_release(pages[i]);
1760 }
1761 nr_pages -= ret;
1762 index += ret;
1763 cond_resched();
1764 }
1765 return 0;
1766}
c8b97818 1767
d352ac68
CM
1768/*
1769 * count the number of bytes in the tree that have a given bit(s)
1770 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1771 * cached. The total number found is returned.
1772 */
d1310b2e
CM
1773u64 count_range_bits(struct extent_io_tree *tree,
1774 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1775 unsigned long bits, int contig)
d1310b2e
CM
1776{
1777 struct rb_node *node;
1778 struct extent_state *state;
1779 u64 cur_start = *start;
1780 u64 total_bytes = 0;
ec29ed5b 1781 u64 last = 0;
d1310b2e
CM
1782 int found = 0;
1783
fae7f21c 1784 if (WARN_ON(search_end <= cur_start))
d1310b2e 1785 return 0;
d1310b2e 1786
cad321ad 1787 spin_lock(&tree->lock);
d1310b2e
CM
1788 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1789 total_bytes = tree->dirty_bytes;
1790 goto out;
1791 }
1792 /*
1793 * this search will find all the extents that end after
1794 * our range starts.
1795 */
80ea96b1 1796 node = tree_search(tree, cur_start);
d397712b 1797 if (!node)
d1310b2e 1798 goto out;
d1310b2e 1799
d397712b 1800 while (1) {
d1310b2e
CM
1801 state = rb_entry(node, struct extent_state, rb_node);
1802 if (state->start > search_end)
1803 break;
ec29ed5b
CM
1804 if (contig && found && state->start > last + 1)
1805 break;
1806 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1807 total_bytes += min(search_end, state->end) + 1 -
1808 max(cur_start, state->start);
1809 if (total_bytes >= max_bytes)
1810 break;
1811 if (!found) {
af60bed2 1812 *start = max(cur_start, state->start);
d1310b2e
CM
1813 found = 1;
1814 }
ec29ed5b
CM
1815 last = state->end;
1816 } else if (contig && found) {
1817 break;
d1310b2e
CM
1818 }
1819 node = rb_next(node);
1820 if (!node)
1821 break;
1822 }
1823out:
cad321ad 1824 spin_unlock(&tree->lock);
d1310b2e
CM
1825 return total_bytes;
1826}
b2950863 1827
d352ac68
CM
1828/*
1829 * set the private field for a given byte offset in the tree. If there isn't
1830 * an extent_state there already, this does nothing.
1831 */
171170c1 1832static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1833{
1834 struct rb_node *node;
1835 struct extent_state *state;
1836 int ret = 0;
1837
cad321ad 1838 spin_lock(&tree->lock);
d1310b2e
CM
1839 /*
1840 * this search will find all the extents that end after
1841 * our range starts.
1842 */
80ea96b1 1843 node = tree_search(tree, start);
2b114d1d 1844 if (!node) {
d1310b2e
CM
1845 ret = -ENOENT;
1846 goto out;
1847 }
1848 state = rb_entry(node, struct extent_state, rb_node);
1849 if (state->start != start) {
1850 ret = -ENOENT;
1851 goto out;
1852 }
1853 state->private = private;
1854out:
cad321ad 1855 spin_unlock(&tree->lock);
d1310b2e
CM
1856 return ret;
1857}
1858
1859int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1860{
1861 struct rb_node *node;
1862 struct extent_state *state;
1863 int ret = 0;
1864
cad321ad 1865 spin_lock(&tree->lock);
d1310b2e
CM
1866 /*
1867 * this search will find all the extents that end after
1868 * our range starts.
1869 */
80ea96b1 1870 node = tree_search(tree, start);
2b114d1d 1871 if (!node) {
d1310b2e
CM
1872 ret = -ENOENT;
1873 goto out;
1874 }
1875 state = rb_entry(node, struct extent_state, rb_node);
1876 if (state->start != start) {
1877 ret = -ENOENT;
1878 goto out;
1879 }
1880 *private = state->private;
1881out:
cad321ad 1882 spin_unlock(&tree->lock);
d1310b2e
CM
1883 return ret;
1884}
1885
1886/*
1887 * searches a range in the state tree for a given mask.
70dec807 1888 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1889 * has the bits set. Otherwise, 1 is returned if any bit in the
1890 * range is found set.
1891 */
1892int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1893 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1894{
1895 struct extent_state *state = NULL;
1896 struct rb_node *node;
1897 int bitset = 0;
d1310b2e 1898
cad321ad 1899 spin_lock(&tree->lock);
df98b6e2
JB
1900 if (cached && cached->tree && cached->start <= start &&
1901 cached->end > start)
9655d298
CM
1902 node = &cached->rb_node;
1903 else
1904 node = tree_search(tree, start);
d1310b2e
CM
1905 while (node && start <= end) {
1906 state = rb_entry(node, struct extent_state, rb_node);
1907
1908 if (filled && state->start > start) {
1909 bitset = 0;
1910 break;
1911 }
1912
1913 if (state->start > end)
1914 break;
1915
1916 if (state->state & bits) {
1917 bitset = 1;
1918 if (!filled)
1919 break;
1920 } else if (filled) {
1921 bitset = 0;
1922 break;
1923 }
46562cec
CM
1924
1925 if (state->end == (u64)-1)
1926 break;
1927
d1310b2e
CM
1928 start = state->end + 1;
1929 if (start > end)
1930 break;
1931 node = rb_next(node);
1932 if (!node) {
1933 if (filled)
1934 bitset = 0;
1935 break;
1936 }
1937 }
cad321ad 1938 spin_unlock(&tree->lock);
d1310b2e
CM
1939 return bitset;
1940}
d1310b2e
CM
1941
1942/*
1943 * helper function to set a given page up to date if all the
1944 * extents in the tree for that page are up to date
1945 */
143bede5 1946static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1947{
4eee4fa4 1948 u64 start = page_offset(page);
d1310b2e 1949 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1950 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1951 SetPageUptodate(page);
d1310b2e
CM
1952}
1953
4a54c8c1
JS
1954/*
1955 * When IO fails, either with EIO or csum verification fails, we
1956 * try other mirrors that might have a good copy of the data. This
1957 * io_failure_record is used to record state as we go through all the
1958 * mirrors. If another mirror has good data, the page is set up to date
1959 * and things continue. If a good mirror can't be found, the original
1960 * bio end_io callback is called to indicate things have failed.
1961 */
1962struct io_failure_record {
1963 struct page *page;
1964 u64 start;
1965 u64 len;
1966 u64 logical;
1967 unsigned long bio_flags;
1968 int this_mirror;
1969 int failed_mirror;
1970 int in_validation;
1971};
1972
1973static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1974 int did_repair)
1975{
1976 int ret;
1977 int err = 0;
1978 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1979
1980 set_state_private(failure_tree, rec->start, 0);
1981 ret = clear_extent_bits(failure_tree, rec->start,
1982 rec->start + rec->len - 1,
1983 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1984 if (ret)
1985 err = ret;
1986
53b381b3
DW
1987 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1988 rec->start + rec->len - 1,
1989 EXTENT_DAMAGED, GFP_NOFS);
1990 if (ret && !err)
1991 err = ret;
4a54c8c1
JS
1992
1993 kfree(rec);
1994 return err;
1995}
1996
4a54c8c1
JS
1997/*
1998 * this bypasses the standard btrfs submit functions deliberately, as
1999 * the standard behavior is to write all copies in a raid setup. here we only
2000 * want to write the one bad copy. so we do the mapping for ourselves and issue
2001 * submit_bio directly.
3ec706c8 2002 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2003 * actually prevents the read that triggered the error from finishing.
2004 * currently, there can be no more than two copies of every data bit. thus,
2005 * exactly one rewrite is required.
2006 */
3ec706c8 2007int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2008 u64 length, u64 logical, struct page *page,
2009 int mirror_num)
2010{
2011 struct bio *bio;
2012 struct btrfs_device *dev;
4a54c8c1
JS
2013 u64 map_length = 0;
2014 u64 sector;
2015 struct btrfs_bio *bbio = NULL;
53b381b3 2016 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2017 int ret;
2018
908960c6 2019 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2020 BUG_ON(!mirror_num);
2021
53b381b3
DW
2022 /* we can't repair anything in raid56 yet */
2023 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2024 return 0;
2025
9be3395b 2026 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2027 if (!bio)
2028 return -EIO;
4a54c8c1
JS
2029 bio->bi_size = 0;
2030 map_length = length;
2031
3ec706c8 2032 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2033 &map_length, &bbio, mirror_num);
2034 if (ret) {
2035 bio_put(bio);
2036 return -EIO;
2037 }
2038 BUG_ON(mirror_num != bbio->mirror_num);
2039 sector = bbio->stripes[mirror_num-1].physical >> 9;
2040 bio->bi_sector = sector;
2041 dev = bbio->stripes[mirror_num-1].dev;
2042 kfree(bbio);
2043 if (!dev || !dev->bdev || !dev->writeable) {
2044 bio_put(bio);
2045 return -EIO;
2046 }
2047 bio->bi_bdev = dev->bdev;
4eee4fa4 2048 bio_add_page(bio, page, length, start - page_offset(page));
4a54c8c1 2049
c170bbb4 2050 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2051 /* try to remap that extent elsewhere? */
2052 bio_put(bio);
442a4f63 2053 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2054 return -EIO;
2055 }
2056
d5b025d5 2057 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2058 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2059 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2060
2061 bio_put(bio);
2062 return 0;
2063}
2064
ea466794
JB
2065int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2066 int mirror_num)
2067{
ea466794
JB
2068 u64 start = eb->start;
2069 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2070 int ret = 0;
ea466794 2071
908960c6
ID
2072 if (root->fs_info->sb->s_flags & MS_RDONLY)
2073 return -EROFS;
2074
ea466794
JB
2075 for (i = 0; i < num_pages; i++) {
2076 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2077 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2078 start, p, mirror_num);
2079 if (ret)
2080 break;
2081 start += PAGE_CACHE_SIZE;
2082 }
2083
2084 return ret;
2085}
2086
4a54c8c1
JS
2087/*
2088 * each time an IO finishes, we do a fast check in the IO failure tree
2089 * to see if we need to process or clean up an io_failure_record
2090 */
2091static int clean_io_failure(u64 start, struct page *page)
2092{
2093 u64 private;
2094 u64 private_failure;
2095 struct io_failure_record *failrec;
908960c6
ID
2096 struct inode *inode = page->mapping->host;
2097 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2098 struct extent_state *state;
2099 int num_copies;
2100 int did_repair = 0;
2101 int ret;
4a54c8c1
JS
2102
2103 private = 0;
2104 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2105 (u64)-1, 1, EXTENT_DIRTY, 0);
2106 if (!ret)
2107 return 0;
2108
2109 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2110 &private_failure);
2111 if (ret)
2112 return 0;
2113
2114 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2115 BUG_ON(!failrec->this_mirror);
2116
2117 if (failrec->in_validation) {
2118 /* there was no real error, just free the record */
2119 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2120 failrec->start);
2121 did_repair = 1;
2122 goto out;
2123 }
908960c6
ID
2124 if (fs_info->sb->s_flags & MS_RDONLY)
2125 goto out;
4a54c8c1
JS
2126
2127 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2128 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2129 failrec->start,
2130 EXTENT_LOCKED);
2131 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2132
883d0de4
MX
2133 if (state && state->start <= failrec->start &&
2134 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2135 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2136 failrec->len);
4a54c8c1 2137 if (num_copies > 1) {
3ec706c8 2138 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2139 failrec->logical, page,
2140 failrec->failed_mirror);
2141 did_repair = !ret;
2142 }
53b381b3 2143 ret = 0;
4a54c8c1
JS
2144 }
2145
2146out:
2147 if (!ret)
2148 ret = free_io_failure(inode, failrec, did_repair);
2149
2150 return ret;
2151}
2152
2153/*
2154 * this is a generic handler for readpage errors (default
2155 * readpage_io_failed_hook). if other copies exist, read those and write back
2156 * good data to the failed position. does not investigate in remapping the
2157 * failed extent elsewhere, hoping the device will be smart enough to do this as
2158 * needed
2159 */
2160
facc8a22
MX
2161static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2162 struct page *page, u64 start, u64 end,
2163 int failed_mirror)
4a54c8c1
JS
2164{
2165 struct io_failure_record *failrec = NULL;
2166 u64 private;
2167 struct extent_map *em;
2168 struct inode *inode = page->mapping->host;
2169 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2170 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2171 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2172 struct bio *bio;
facc8a22
MX
2173 struct btrfs_io_bio *btrfs_failed_bio;
2174 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2175 int num_copies;
2176 int ret;
2177 int read_mode;
2178 u64 logical;
2179
2180 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2181
2182 ret = get_state_private(failure_tree, start, &private);
2183 if (ret) {
2184 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2185 if (!failrec)
2186 return -ENOMEM;
2187 failrec->start = start;
2188 failrec->len = end - start + 1;
2189 failrec->this_mirror = 0;
2190 failrec->bio_flags = 0;
2191 failrec->in_validation = 0;
2192
2193 read_lock(&em_tree->lock);
2194 em = lookup_extent_mapping(em_tree, start, failrec->len);
2195 if (!em) {
2196 read_unlock(&em_tree->lock);
2197 kfree(failrec);
2198 return -EIO;
2199 }
2200
68ba990f 2201 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2202 free_extent_map(em);
2203 em = NULL;
2204 }
2205 read_unlock(&em_tree->lock);
2206
7a2d6a64 2207 if (!em) {
4a54c8c1
JS
2208 kfree(failrec);
2209 return -EIO;
2210 }
2211 logical = start - em->start;
2212 logical = em->block_start + logical;
2213 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2214 logical = em->block_start;
2215 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2216 extent_set_compress_type(&failrec->bio_flags,
2217 em->compress_type);
2218 }
2219 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2220 "len=%llu\n", logical, start, failrec->len);
2221 failrec->logical = logical;
2222 free_extent_map(em);
2223
2224 /* set the bits in the private failure tree */
2225 ret = set_extent_bits(failure_tree, start, end,
2226 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2227 if (ret >= 0)
2228 ret = set_state_private(failure_tree, start,
2229 (u64)(unsigned long)failrec);
2230 /* set the bits in the inode's tree */
2231 if (ret >= 0)
2232 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2233 GFP_NOFS);
2234 if (ret < 0) {
2235 kfree(failrec);
2236 return ret;
2237 }
2238 } else {
2239 failrec = (struct io_failure_record *)(unsigned long)private;
2240 pr_debug("bio_readpage_error: (found) logical=%llu, "
2241 "start=%llu, len=%llu, validation=%d\n",
2242 failrec->logical, failrec->start, failrec->len,
2243 failrec->in_validation);
2244 /*
2245 * when data can be on disk more than twice, add to failrec here
2246 * (e.g. with a list for failed_mirror) to make
2247 * clean_io_failure() clean all those errors at once.
2248 */
2249 }
5d964051
SB
2250 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2251 failrec->logical, failrec->len);
4a54c8c1
JS
2252 if (num_copies == 1) {
2253 /*
2254 * we only have a single copy of the data, so don't bother with
2255 * all the retry and error correction code that follows. no
2256 * matter what the error is, it is very likely to persist.
2257 */
09a7f7a2
MX
2258 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2259 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2260 free_io_failure(inode, failrec, 0);
2261 return -EIO;
2262 }
2263
4a54c8c1
JS
2264 /*
2265 * there are two premises:
2266 * a) deliver good data to the caller
2267 * b) correct the bad sectors on disk
2268 */
2269 if (failed_bio->bi_vcnt > 1) {
2270 /*
2271 * to fulfill b), we need to know the exact failing sectors, as
2272 * we don't want to rewrite any more than the failed ones. thus,
2273 * we need separate read requests for the failed bio
2274 *
2275 * if the following BUG_ON triggers, our validation request got
2276 * merged. we need separate requests for our algorithm to work.
2277 */
2278 BUG_ON(failrec->in_validation);
2279 failrec->in_validation = 1;
2280 failrec->this_mirror = failed_mirror;
2281 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2282 } else {
2283 /*
2284 * we're ready to fulfill a) and b) alongside. get a good copy
2285 * of the failed sector and if we succeed, we have setup
2286 * everything for repair_io_failure to do the rest for us.
2287 */
2288 if (failrec->in_validation) {
2289 BUG_ON(failrec->this_mirror != failed_mirror);
2290 failrec->in_validation = 0;
2291 failrec->this_mirror = 0;
2292 }
2293 failrec->failed_mirror = failed_mirror;
2294 failrec->this_mirror++;
2295 if (failrec->this_mirror == failed_mirror)
2296 failrec->this_mirror++;
2297 read_mode = READ_SYNC;
2298 }
2299
facc8a22
MX
2300 if (failrec->this_mirror > num_copies) {
2301 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2302 num_copies, failrec->this_mirror, failed_mirror);
2303 free_io_failure(inode, failrec, 0);
2304 return -EIO;
2305 }
2306
9be3395b 2307 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2308 if (!bio) {
2309 free_io_failure(inode, failrec, 0);
2310 return -EIO;
2311 }
4a54c8c1
JS
2312 bio->bi_end_io = failed_bio->bi_end_io;
2313 bio->bi_sector = failrec->logical >> 9;
2314 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2315 bio->bi_size = 0;
2316
facc8a22
MX
2317 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2318 if (btrfs_failed_bio->csum) {
2319 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2320 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2321
2322 btrfs_bio = btrfs_io_bio(bio);
2323 btrfs_bio->csum = btrfs_bio->csum_inline;
2324 phy_offset >>= inode->i_sb->s_blocksize_bits;
2325 phy_offset *= csum_size;
2326 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2327 csum_size);
2328 }
2329
4a54c8c1
JS
2330 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2331
2332 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2333 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2334 failrec->this_mirror, num_copies, failrec->in_validation);
2335
013bd4c3
TI
2336 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2337 failrec->this_mirror,
2338 failrec->bio_flags, 0);
2339 return ret;
4a54c8c1
JS
2340}
2341
d1310b2e
CM
2342/* lots and lots of room for performance fixes in the end_bio funcs */
2343
87826df0
JM
2344int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2345{
2346 int uptodate = (err == 0);
2347 struct extent_io_tree *tree;
2348 int ret;
2349
2350 tree = &BTRFS_I(page->mapping->host)->io_tree;
2351
2352 if (tree->ops && tree->ops->writepage_end_io_hook) {
2353 ret = tree->ops->writepage_end_io_hook(page, start,
2354 end, NULL, uptodate);
2355 if (ret)
2356 uptodate = 0;
2357 }
2358
87826df0 2359 if (!uptodate) {
87826df0
JM
2360 ClearPageUptodate(page);
2361 SetPageError(page);
2362 }
2363 return 0;
2364}
2365
d1310b2e
CM
2366/*
2367 * after a writepage IO is done, we need to:
2368 * clear the uptodate bits on error
2369 * clear the writeback bits in the extent tree for this IO
2370 * end_page_writeback if the page has no more pending IO
2371 *
2372 * Scheduling is not allowed, so the extent state tree is expected
2373 * to have one and only one object corresponding to this IO.
2374 */
d1310b2e 2375static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2376{
d1310b2e 2377 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
d1310b2e
CM
2378 u64 start;
2379 u64 end;
d1310b2e 2380
d1310b2e
CM
2381 do {
2382 struct page *page = bvec->bv_page;
902b22f3 2383
17a5adcc
AO
2384 /* We always issue full-page reads, but if some block
2385 * in a page fails to read, blk_update_request() will
2386 * advance bv_offset and adjust bv_len to compensate.
2387 * Print a warning for nonzero offsets, and an error
2388 * if they don't add up to a full page. */
2389 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2390 printk("%s page write in btrfs with offset %u and length %u\n",
2391 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2392 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2393 bvec->bv_offset, bvec->bv_len);
d1310b2e 2394
17a5adcc
AO
2395 start = page_offset(page);
2396 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2397
2398 if (--bvec >= bio->bi_io_vec)
2399 prefetchw(&bvec->bv_page->flags);
1259ab75 2400
87826df0
JM
2401 if (end_extent_writepage(page, err, start, end))
2402 continue;
70dec807 2403
17a5adcc 2404 end_page_writeback(page);
d1310b2e 2405 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2406
d1310b2e 2407 bio_put(bio);
d1310b2e
CM
2408}
2409
883d0de4
MX
2410static void
2411endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2412 int uptodate)
2413{
2414 struct extent_state *cached = NULL;
2415 u64 end = start + len - 1;
2416
2417 if (uptodate && tree->track_uptodate)
2418 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2419 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2420}
2421
d1310b2e
CM
2422/*
2423 * after a readpage IO is done, we need to:
2424 * clear the uptodate bits on error
2425 * set the uptodate bits if things worked
2426 * set the page up to date if all extents in the tree are uptodate
2427 * clear the lock bit in the extent tree
2428 * unlock the page if there are no other extents locked for it
2429 *
2430 * Scheduling is not allowed, so the extent state tree is expected
2431 * to have one and only one object corresponding to this IO.
2432 */
d1310b2e 2433static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2434{
2435 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2436 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2437 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2438 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2439 struct extent_io_tree *tree;
facc8a22 2440 u64 offset = 0;
d1310b2e
CM
2441 u64 start;
2442 u64 end;
facc8a22 2443 u64 len;
883d0de4
MX
2444 u64 extent_start = 0;
2445 u64 extent_len = 0;
5cf1ab56 2446 int mirror;
d1310b2e
CM
2447 int ret;
2448
d20f7043
CM
2449 if (err)
2450 uptodate = 0;
2451
d1310b2e
CM
2452 do {
2453 struct page *page = bvec->bv_page;
a71754fc 2454 struct inode *inode = page->mapping->host;
507903b8 2455
be3940c0 2456 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2457 "mirror=%lu\n", (u64)bio->bi_sector, err,
2458 io_bio->mirror_num);
a71754fc 2459 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2460
17a5adcc
AO
2461 /* We always issue full-page reads, but if some block
2462 * in a page fails to read, blk_update_request() will
2463 * advance bv_offset and adjust bv_len to compensate.
2464 * Print a warning for nonzero offsets, and an error
2465 * if they don't add up to a full page. */
2466 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2467 printk("%s page read in btrfs with offset %u and length %u\n",
2468 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2469 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2470 bvec->bv_offset, bvec->bv_len);
d1310b2e 2471
17a5adcc
AO
2472 start = page_offset(page);
2473 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2474 len = bvec->bv_len;
d1310b2e 2475
4125bf76 2476 if (++bvec <= bvec_end)
d1310b2e
CM
2477 prefetchw(&bvec->bv_page->flags);
2478
9be3395b 2479 mirror = io_bio->mirror_num;
f2a09da9
MX
2480 if (likely(uptodate && tree->ops &&
2481 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2482 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2483 page, start, end,
2484 mirror);
5ee0844d 2485 if (ret)
d1310b2e 2486 uptodate = 0;
5ee0844d 2487 else
4a54c8c1 2488 clean_io_failure(start, page);
d1310b2e 2489 }
ea466794 2490
f2a09da9
MX
2491 if (likely(uptodate))
2492 goto readpage_ok;
2493
2494 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2495 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2496 if (!ret && !err &&
2497 test_bit(BIO_UPTODATE, &bio->bi_flags))
2498 uptodate = 1;
f2a09da9 2499 } else {
f4a8e656
JS
2500 /*
2501 * The generic bio_readpage_error handles errors the
2502 * following way: If possible, new read requests are
2503 * created and submitted and will end up in
2504 * end_bio_extent_readpage as well (if we're lucky, not
2505 * in the !uptodate case). In that case it returns 0 and
2506 * we just go on with the next page in our bio. If it
2507 * can't handle the error it will return -EIO and we
2508 * remain responsible for that page.
2509 */
facc8a22
MX
2510 ret = bio_readpage_error(bio, offset, page, start, end,
2511 mirror);
7e38326f 2512 if (ret == 0) {
3b951516
CM
2513 uptodate =
2514 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2515 if (err)
2516 uptodate = 0;
7e38326f
CM
2517 continue;
2518 }
2519 }
f2a09da9 2520readpage_ok:
883d0de4 2521 if (likely(uptodate)) {
a71754fc
JB
2522 loff_t i_size = i_size_read(inode);
2523 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2524 unsigned offset;
2525
2526 /* Zero out the end if this page straddles i_size */
2527 offset = i_size & (PAGE_CACHE_SIZE-1);
2528 if (page->index == end_index && offset)
2529 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2530 SetPageUptodate(page);
70dec807 2531 } else {
17a5adcc
AO
2532 ClearPageUptodate(page);
2533 SetPageError(page);
70dec807 2534 }
17a5adcc 2535 unlock_page(page);
facc8a22 2536 offset += len;
883d0de4
MX
2537
2538 if (unlikely(!uptodate)) {
2539 if (extent_len) {
2540 endio_readpage_release_extent(tree,
2541 extent_start,
2542 extent_len, 1);
2543 extent_start = 0;
2544 extent_len = 0;
2545 }
2546 endio_readpage_release_extent(tree, start,
2547 end - start + 1, 0);
2548 } else if (!extent_len) {
2549 extent_start = start;
2550 extent_len = end + 1 - start;
2551 } else if (extent_start + extent_len == start) {
2552 extent_len += end + 1 - start;
2553 } else {
2554 endio_readpage_release_extent(tree, extent_start,
2555 extent_len, uptodate);
2556 extent_start = start;
2557 extent_len = end + 1 - start;
2558 }
4125bf76 2559 } while (bvec <= bvec_end);
d1310b2e 2560
883d0de4
MX
2561 if (extent_len)
2562 endio_readpage_release_extent(tree, extent_start, extent_len,
2563 uptodate);
facc8a22
MX
2564 if (io_bio->end_io)
2565 io_bio->end_io(io_bio, err);
d1310b2e 2566 bio_put(bio);
d1310b2e
CM
2567}
2568
9be3395b
CM
2569/*
2570 * this allocates from the btrfs_bioset. We're returning a bio right now
2571 * but you can call btrfs_io_bio for the appropriate container_of magic
2572 */
88f794ed
MX
2573struct bio *
2574btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2575 gfp_t gfp_flags)
d1310b2e 2576{
facc8a22 2577 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2578 struct bio *bio;
2579
9be3395b 2580 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2581
2582 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2583 while (!bio && (nr_vecs /= 2)) {
2584 bio = bio_alloc_bioset(gfp_flags,
2585 nr_vecs, btrfs_bioset);
2586 }
d1310b2e
CM
2587 }
2588
2589 if (bio) {
e1c4b745 2590 bio->bi_size = 0;
d1310b2e
CM
2591 bio->bi_bdev = bdev;
2592 bio->bi_sector = first_sector;
facc8a22
MX
2593 btrfs_bio = btrfs_io_bio(bio);
2594 btrfs_bio->csum = NULL;
2595 btrfs_bio->csum_allocated = NULL;
2596 btrfs_bio->end_io = NULL;
d1310b2e
CM
2597 }
2598 return bio;
2599}
2600
9be3395b
CM
2601struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2602{
2603 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2604}
2605
2606
2607/* this also allocates from the btrfs_bioset */
2608struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2609{
facc8a22
MX
2610 struct btrfs_io_bio *btrfs_bio;
2611 struct bio *bio;
2612
2613 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2614 if (bio) {
2615 btrfs_bio = btrfs_io_bio(bio);
2616 btrfs_bio->csum = NULL;
2617 btrfs_bio->csum_allocated = NULL;
2618 btrfs_bio->end_io = NULL;
2619 }
2620 return bio;
9be3395b
CM
2621}
2622
2623
355808c2
JM
2624static int __must_check submit_one_bio(int rw, struct bio *bio,
2625 int mirror_num, unsigned long bio_flags)
d1310b2e 2626{
d1310b2e 2627 int ret = 0;
70dec807
CM
2628 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2629 struct page *page = bvec->bv_page;
2630 struct extent_io_tree *tree = bio->bi_private;
70dec807 2631 u64 start;
70dec807 2632
4eee4fa4 2633 start = page_offset(page) + bvec->bv_offset;
70dec807 2634
902b22f3 2635 bio->bi_private = NULL;
d1310b2e
CM
2636
2637 bio_get(bio);
2638
065631f6 2639 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2640 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2641 mirror_num, bio_flags, start);
0b86a832 2642 else
21adbd5c 2643 btrfsic_submit_bio(rw, bio);
4a54c8c1 2644
d1310b2e
CM
2645 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2646 ret = -EOPNOTSUPP;
2647 bio_put(bio);
2648 return ret;
2649}
2650
64a16701 2651static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2652 unsigned long offset, size_t size, struct bio *bio,
2653 unsigned long bio_flags)
2654{
2655 int ret = 0;
2656 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2657 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2658 bio_flags);
2659 BUG_ON(ret < 0);
2660 return ret;
2661
2662}
2663
d1310b2e
CM
2664static int submit_extent_page(int rw, struct extent_io_tree *tree,
2665 struct page *page, sector_t sector,
2666 size_t size, unsigned long offset,
2667 struct block_device *bdev,
2668 struct bio **bio_ret,
2669 unsigned long max_pages,
f188591e 2670 bio_end_io_t end_io_func,
c8b97818
CM
2671 int mirror_num,
2672 unsigned long prev_bio_flags,
2673 unsigned long bio_flags)
d1310b2e
CM
2674{
2675 int ret = 0;
2676 struct bio *bio;
2677 int nr;
c8b97818
CM
2678 int contig = 0;
2679 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2680 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2681 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2682
2683 if (bio_ret && *bio_ret) {
2684 bio = *bio_ret;
c8b97818
CM
2685 if (old_compressed)
2686 contig = bio->bi_sector == sector;
2687 else
f73a1c7d 2688 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2689
2690 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2691 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2692 bio_add_page(bio, page, page_size, offset) < page_size) {
2693 ret = submit_one_bio(rw, bio, mirror_num,
2694 prev_bio_flags);
79787eaa
JM
2695 if (ret < 0)
2696 return ret;
d1310b2e
CM
2697 bio = NULL;
2698 } else {
2699 return 0;
2700 }
2701 }
c8b97818
CM
2702 if (this_compressed)
2703 nr = BIO_MAX_PAGES;
2704 else
2705 nr = bio_get_nr_vecs(bdev);
2706
88f794ed 2707 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2708 if (!bio)
2709 return -ENOMEM;
70dec807 2710
c8b97818 2711 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2712 bio->bi_end_io = end_io_func;
2713 bio->bi_private = tree;
70dec807 2714
d397712b 2715 if (bio_ret)
d1310b2e 2716 *bio_ret = bio;
d397712b 2717 else
c8b97818 2718 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2719
2720 return ret;
2721}
2722
48a3b636
ES
2723static void attach_extent_buffer_page(struct extent_buffer *eb,
2724 struct page *page)
d1310b2e
CM
2725{
2726 if (!PagePrivate(page)) {
2727 SetPagePrivate(page);
d1310b2e 2728 page_cache_get(page);
4f2de97a
JB
2729 set_page_private(page, (unsigned long)eb);
2730 } else {
2731 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2732 }
2733}
2734
4f2de97a 2735void set_page_extent_mapped(struct page *page)
d1310b2e 2736{
4f2de97a
JB
2737 if (!PagePrivate(page)) {
2738 SetPagePrivate(page);
2739 page_cache_get(page);
2740 set_page_private(page, EXTENT_PAGE_PRIVATE);
2741 }
d1310b2e
CM
2742}
2743
125bac01
MX
2744static struct extent_map *
2745__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2746 u64 start, u64 len, get_extent_t *get_extent,
2747 struct extent_map **em_cached)
2748{
2749 struct extent_map *em;
2750
2751 if (em_cached && *em_cached) {
2752 em = *em_cached;
2753 if (em->in_tree && start >= em->start &&
2754 start < extent_map_end(em)) {
2755 atomic_inc(&em->refs);
2756 return em;
2757 }
2758
2759 free_extent_map(em);
2760 *em_cached = NULL;
2761 }
2762
2763 em = get_extent(inode, page, pg_offset, start, len, 0);
2764 if (em_cached && !IS_ERR_OR_NULL(em)) {
2765 BUG_ON(*em_cached);
2766 atomic_inc(&em->refs);
2767 *em_cached = em;
2768 }
2769 return em;
2770}
d1310b2e
CM
2771/*
2772 * basic readpage implementation. Locked extent state structs are inserted
2773 * into the tree that are removed when the IO is done (by the end_io
2774 * handlers)
79787eaa 2775 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2776 */
9974090b
MX
2777static int __do_readpage(struct extent_io_tree *tree,
2778 struct page *page,
2779 get_extent_t *get_extent,
125bac01 2780 struct extent_map **em_cached,
9974090b
MX
2781 struct bio **bio, int mirror_num,
2782 unsigned long *bio_flags, int rw)
d1310b2e
CM
2783{
2784 struct inode *inode = page->mapping->host;
4eee4fa4 2785 u64 start = page_offset(page);
d1310b2e
CM
2786 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2787 u64 end;
2788 u64 cur = start;
2789 u64 extent_offset;
2790 u64 last_byte = i_size_read(inode);
2791 u64 block_start;
2792 u64 cur_end;
2793 sector_t sector;
2794 struct extent_map *em;
2795 struct block_device *bdev;
2796 int ret;
2797 int nr = 0;
4b384318 2798 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2799 size_t pg_offset = 0;
d1310b2e 2800 size_t iosize;
c8b97818 2801 size_t disk_io_size;
d1310b2e 2802 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2803 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2804
2805 set_page_extent_mapped(page);
2806
9974090b 2807 end = page_end;
90a887c9
DM
2808 if (!PageUptodate(page)) {
2809 if (cleancache_get_page(page) == 0) {
2810 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2811 unlock_extent(tree, start, end);
90a887c9
DM
2812 goto out;
2813 }
2814 }
2815
c8b97818
CM
2816 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2817 char *userpage;
2818 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2819
2820 if (zero_offset) {
2821 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2822 userpage = kmap_atomic(page);
c8b97818
CM
2823 memset(userpage + zero_offset, 0, iosize);
2824 flush_dcache_page(page);
7ac687d9 2825 kunmap_atomic(userpage);
c8b97818
CM
2826 }
2827 }
d1310b2e 2828 while (cur <= end) {
c8f2f24b
JB
2829 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2830
d1310b2e
CM
2831 if (cur >= last_byte) {
2832 char *userpage;
507903b8
AJ
2833 struct extent_state *cached = NULL;
2834
306e16ce 2835 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2836 userpage = kmap_atomic(page);
306e16ce 2837 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2838 flush_dcache_page(page);
7ac687d9 2839 kunmap_atomic(userpage);
d1310b2e 2840 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2841 &cached, GFP_NOFS);
4b384318
MF
2842 if (!parent_locked)
2843 unlock_extent_cached(tree, cur,
2844 cur + iosize - 1,
2845 &cached, GFP_NOFS);
d1310b2e
CM
2846 break;
2847 }
125bac01
MX
2848 em = __get_extent_map(inode, page, pg_offset, cur,
2849 end - cur + 1, get_extent, em_cached);
c704005d 2850 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2851 SetPageError(page);
4b384318
MF
2852 if (!parent_locked)
2853 unlock_extent(tree, cur, end);
d1310b2e
CM
2854 break;
2855 }
d1310b2e
CM
2856 extent_offset = cur - em->start;
2857 BUG_ON(extent_map_end(em) <= cur);
2858 BUG_ON(end < cur);
2859
261507a0 2860 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2861 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2862 extent_set_compress_type(&this_bio_flag,
2863 em->compress_type);
2864 }
c8b97818 2865
d1310b2e
CM
2866 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2867 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2868 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2869 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2870 disk_io_size = em->block_len;
2871 sector = em->block_start >> 9;
2872 } else {
2873 sector = (em->block_start + extent_offset) >> 9;
2874 disk_io_size = iosize;
2875 }
d1310b2e
CM
2876 bdev = em->bdev;
2877 block_start = em->block_start;
d899e052
YZ
2878 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2879 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2880 free_extent_map(em);
2881 em = NULL;
2882
2883 /* we've found a hole, just zero and go on */
2884 if (block_start == EXTENT_MAP_HOLE) {
2885 char *userpage;
507903b8
AJ
2886 struct extent_state *cached = NULL;
2887
7ac687d9 2888 userpage = kmap_atomic(page);
306e16ce 2889 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2890 flush_dcache_page(page);
7ac687d9 2891 kunmap_atomic(userpage);
d1310b2e
CM
2892
2893 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2894 &cached, GFP_NOFS);
2895 unlock_extent_cached(tree, cur, cur + iosize - 1,
2896 &cached, GFP_NOFS);
d1310b2e 2897 cur = cur + iosize;
306e16ce 2898 pg_offset += iosize;
d1310b2e
CM
2899 continue;
2900 }
2901 /* the get_extent function already copied into the page */
9655d298
CM
2902 if (test_range_bit(tree, cur, cur_end,
2903 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2904 check_page_uptodate(tree, page);
4b384318
MF
2905 if (!parent_locked)
2906 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2907 cur = cur + iosize;
306e16ce 2908 pg_offset += iosize;
d1310b2e
CM
2909 continue;
2910 }
70dec807
CM
2911 /* we have an inline extent but it didn't get marked up
2912 * to date. Error out
2913 */
2914 if (block_start == EXTENT_MAP_INLINE) {
2915 SetPageError(page);
4b384318
MF
2916 if (!parent_locked)
2917 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2918 cur = cur + iosize;
306e16ce 2919 pg_offset += iosize;
70dec807
CM
2920 continue;
2921 }
d1310b2e 2922
c8f2f24b 2923 pnr -= page->index;
d4c7ca86 2924 ret = submit_extent_page(rw, tree, page,
306e16ce 2925 sector, disk_io_size, pg_offset,
89642229 2926 bdev, bio, pnr,
c8b97818
CM
2927 end_bio_extent_readpage, mirror_num,
2928 *bio_flags,
2929 this_bio_flag);
c8f2f24b
JB
2930 if (!ret) {
2931 nr++;
2932 *bio_flags = this_bio_flag;
2933 } else {
d1310b2e 2934 SetPageError(page);
4b384318
MF
2935 if (!parent_locked)
2936 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2937 }
d1310b2e 2938 cur = cur + iosize;
306e16ce 2939 pg_offset += iosize;
d1310b2e 2940 }
90a887c9 2941out:
d1310b2e
CM
2942 if (!nr) {
2943 if (!PageError(page))
2944 SetPageUptodate(page);
2945 unlock_page(page);
2946 }
2947 return 0;
2948}
2949
9974090b
MX
2950static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2951 struct page *pages[], int nr_pages,
2952 u64 start, u64 end,
2953 get_extent_t *get_extent,
125bac01 2954 struct extent_map **em_cached,
9974090b
MX
2955 struct bio **bio, int mirror_num,
2956 unsigned long *bio_flags, int rw)
2957{
2958 struct inode *inode;
2959 struct btrfs_ordered_extent *ordered;
2960 int index;
2961
2962 inode = pages[0]->mapping->host;
2963 while (1) {
2964 lock_extent(tree, start, end);
2965 ordered = btrfs_lookup_ordered_range(inode, start,
2966 end - start + 1);
2967 if (!ordered)
2968 break;
2969 unlock_extent(tree, start, end);
2970 btrfs_start_ordered_extent(inode, ordered, 1);
2971 btrfs_put_ordered_extent(ordered);
2972 }
2973
2974 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2975 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2976 mirror_num, bio_flags, rw);
9974090b
MX
2977 page_cache_release(pages[index]);
2978 }
2979}
2980
2981static void __extent_readpages(struct extent_io_tree *tree,
2982 struct page *pages[],
2983 int nr_pages, get_extent_t *get_extent,
125bac01 2984 struct extent_map **em_cached,
9974090b
MX
2985 struct bio **bio, int mirror_num,
2986 unsigned long *bio_flags, int rw)
2987{
35a3621b 2988 u64 start = 0;
9974090b
MX
2989 u64 end = 0;
2990 u64 page_start;
2991 int index;
35a3621b 2992 int first_index = 0;
9974090b
MX
2993
2994 for (index = 0; index < nr_pages; index++) {
2995 page_start = page_offset(pages[index]);
2996 if (!end) {
2997 start = page_start;
2998 end = start + PAGE_CACHE_SIZE - 1;
2999 first_index = index;
3000 } else if (end + 1 == page_start) {
3001 end += PAGE_CACHE_SIZE;
3002 } else {
3003 __do_contiguous_readpages(tree, &pages[first_index],
3004 index - first_index, start,
125bac01
MX
3005 end, get_extent, em_cached,
3006 bio, mirror_num, bio_flags,
3007 rw);
9974090b
MX
3008 start = page_start;
3009 end = start + PAGE_CACHE_SIZE - 1;
3010 first_index = index;
3011 }
3012 }
3013
3014 if (end)
3015 __do_contiguous_readpages(tree, &pages[first_index],
3016 index - first_index, start,
125bac01 3017 end, get_extent, em_cached, bio,
9974090b
MX
3018 mirror_num, bio_flags, rw);
3019}
3020
3021static int __extent_read_full_page(struct extent_io_tree *tree,
3022 struct page *page,
3023 get_extent_t *get_extent,
3024 struct bio **bio, int mirror_num,
3025 unsigned long *bio_flags, int rw)
3026{
3027 struct inode *inode = page->mapping->host;
3028 struct btrfs_ordered_extent *ordered;
3029 u64 start = page_offset(page);
3030 u64 end = start + PAGE_CACHE_SIZE - 1;
3031 int ret;
3032
3033 while (1) {
3034 lock_extent(tree, start, end);
3035 ordered = btrfs_lookup_ordered_extent(inode, start);
3036 if (!ordered)
3037 break;
3038 unlock_extent(tree, start, end);
3039 btrfs_start_ordered_extent(inode, ordered, 1);
3040 btrfs_put_ordered_extent(ordered);
3041 }
3042
125bac01
MX
3043 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3044 bio_flags, rw);
9974090b
MX
3045 return ret;
3046}
3047
d1310b2e 3048int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3049 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3050{
3051 struct bio *bio = NULL;
c8b97818 3052 unsigned long bio_flags = 0;
d1310b2e
CM
3053 int ret;
3054
8ddc7d9c 3055 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3056 &bio_flags, READ);
d1310b2e 3057 if (bio)
8ddc7d9c 3058 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3059 return ret;
3060}
d1310b2e 3061
4b384318
MF
3062int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3063 get_extent_t *get_extent, int mirror_num)
3064{
3065 struct bio *bio = NULL;
3066 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3067 int ret;
3068
3069 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3070 &bio_flags, READ);
3071 if (bio)
3072 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3073 return ret;
3074}
3075
11c8349b
CM
3076static noinline void update_nr_written(struct page *page,
3077 struct writeback_control *wbc,
3078 unsigned long nr_written)
3079{
3080 wbc->nr_to_write -= nr_written;
3081 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3082 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3083 page->mapping->writeback_index = page->index + nr_written;
3084}
3085
d1310b2e
CM
3086/*
3087 * the writepage semantics are similar to regular writepage. extent
3088 * records are inserted to lock ranges in the tree, and as dirty areas
3089 * are found, they are marked writeback. Then the lock bits are removed
3090 * and the end_io handler clears the writeback ranges
3091 */
3092static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3093 void *data)
3094{
3095 struct inode *inode = page->mapping->host;
3096 struct extent_page_data *epd = data;
3097 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3098 u64 start = page_offset(page);
d1310b2e
CM
3099 u64 delalloc_start;
3100 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3101 u64 end;
3102 u64 cur = start;
3103 u64 extent_offset;
3104 u64 last_byte = i_size_read(inode);
3105 u64 block_start;
3106 u64 iosize;
3107 sector_t sector;
2c64c53d 3108 struct extent_state *cached_state = NULL;
d1310b2e
CM
3109 struct extent_map *em;
3110 struct block_device *bdev;
3111 int ret;
3112 int nr = 0;
7f3c74fb 3113 size_t pg_offset = 0;
d1310b2e
CM
3114 size_t blocksize;
3115 loff_t i_size = i_size_read(inode);
3116 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3117 u64 nr_delalloc;
3118 u64 delalloc_end;
c8b97818
CM
3119 int page_started;
3120 int compressed;
ffbd517d 3121 int write_flags;
771ed689 3122 unsigned long nr_written = 0;
9e487107 3123 bool fill_delalloc = true;
d1310b2e 3124
ffbd517d 3125 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3126 write_flags = WRITE_SYNC;
ffbd517d
CM
3127 else
3128 write_flags = WRITE;
3129
1abe9b8a 3130 trace___extent_writepage(page, inode, wbc);
3131
d1310b2e 3132 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3133
3134 ClearPageError(page);
3135
7f3c74fb 3136 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3137 if (page->index > end_index ||
7f3c74fb 3138 (page->index == end_index && !pg_offset)) {
d47992f8 3139 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3140 unlock_page(page);
3141 return 0;
3142 }
3143
3144 if (page->index == end_index) {
3145 char *userpage;
3146
7ac687d9 3147 userpage = kmap_atomic(page);
7f3c74fb
CM
3148 memset(userpage + pg_offset, 0,
3149 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3150 kunmap_atomic(userpage);
211c17f5 3151 flush_dcache_page(page);
d1310b2e 3152 }
7f3c74fb 3153 pg_offset = 0;
d1310b2e
CM
3154
3155 set_page_extent_mapped(page);
3156
9e487107
JB
3157 if (!tree->ops || !tree->ops->fill_delalloc)
3158 fill_delalloc = false;
3159
d1310b2e
CM
3160 delalloc_start = start;
3161 delalloc_end = 0;
c8b97818 3162 page_started = 0;
9e487107 3163 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3164 u64 delalloc_to_write = 0;
11c8349b
CM
3165 /*
3166 * make sure the wbc mapping index is at least updated
3167 * to this page.
3168 */
3169 update_nr_written(page, wbc, 0);
3170
d397712b 3171 while (delalloc_end < page_end) {
771ed689 3172 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3173 page,
3174 &delalloc_start,
d1310b2e
CM
3175 &delalloc_end,
3176 128 * 1024 * 1024);
771ed689
CM
3177 if (nr_delalloc == 0) {
3178 delalloc_start = delalloc_end + 1;
3179 continue;
3180 }
013bd4c3
TI
3181 ret = tree->ops->fill_delalloc(inode, page,
3182 delalloc_start,
3183 delalloc_end,
3184 &page_started,
3185 &nr_written);
79787eaa
JM
3186 /* File system has been set read-only */
3187 if (ret) {
3188 SetPageError(page);
3189 goto done;
3190 }
f85d7d6c
CM
3191 /*
3192 * delalloc_end is already one less than the total
3193 * length, so we don't subtract one from
3194 * PAGE_CACHE_SIZE
3195 */
3196 delalloc_to_write += (delalloc_end - delalloc_start +
3197 PAGE_CACHE_SIZE) >>
3198 PAGE_CACHE_SHIFT;
d1310b2e 3199 delalloc_start = delalloc_end + 1;
d1310b2e 3200 }
f85d7d6c
CM
3201 if (wbc->nr_to_write < delalloc_to_write) {
3202 int thresh = 8192;
3203
3204 if (delalloc_to_write < thresh * 2)
3205 thresh = delalloc_to_write;
3206 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3207 thresh);
3208 }
c8b97818 3209
771ed689
CM
3210 /* did the fill delalloc function already unlock and start
3211 * the IO?
3212 */
3213 if (page_started) {
3214 ret = 0;
11c8349b
CM
3215 /*
3216 * we've unlocked the page, so we can't update
3217 * the mapping's writeback index, just update
3218 * nr_to_write.
3219 */
3220 wbc->nr_to_write -= nr_written;
3221 goto done_unlocked;
771ed689 3222 }
c8b97818 3223 }
247e743c 3224 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3225 ret = tree->ops->writepage_start_hook(page, start,
3226 page_end);
87826df0
JM
3227 if (ret) {
3228 /* Fixup worker will requeue */
3229 if (ret == -EBUSY)
3230 wbc->pages_skipped++;
3231 else
3232 redirty_page_for_writepage(wbc, page);
11c8349b 3233 update_nr_written(page, wbc, nr_written);
247e743c 3234 unlock_page(page);
771ed689 3235 ret = 0;
11c8349b 3236 goto done_unlocked;
247e743c
CM
3237 }
3238 }
3239
11c8349b
CM
3240 /*
3241 * we don't want to touch the inode after unlocking the page,
3242 * so we update the mapping writeback index now
3243 */
3244 update_nr_written(page, wbc, nr_written + 1);
771ed689 3245
d1310b2e 3246 end = page_end;
d1310b2e 3247 if (last_byte <= start) {
e6dcd2dc
CM
3248 if (tree->ops && tree->ops->writepage_end_io_hook)
3249 tree->ops->writepage_end_io_hook(page, start,
3250 page_end, NULL, 1);
d1310b2e
CM
3251 goto done;
3252 }
3253
d1310b2e
CM
3254 blocksize = inode->i_sb->s_blocksize;
3255
3256 while (cur <= end) {
3257 if (cur >= last_byte) {
e6dcd2dc
CM
3258 if (tree->ops && tree->ops->writepage_end_io_hook)
3259 tree->ops->writepage_end_io_hook(page, cur,
3260 page_end, NULL, 1);
d1310b2e
CM
3261 break;
3262 }
7f3c74fb 3263 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3264 end - cur + 1, 1);
c704005d 3265 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3266 SetPageError(page);
3267 break;
3268 }
3269
3270 extent_offset = cur - em->start;
3271 BUG_ON(extent_map_end(em) <= cur);
3272 BUG_ON(end < cur);
3273 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3274 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3275 sector = (em->block_start + extent_offset) >> 9;
3276 bdev = em->bdev;
3277 block_start = em->block_start;
c8b97818 3278 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3279 free_extent_map(em);
3280 em = NULL;
3281
c8b97818
CM
3282 /*
3283 * compressed and inline extents are written through other
3284 * paths in the FS
3285 */
3286 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3287 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3288 /*
3289 * end_io notification does not happen here for
3290 * compressed extents
3291 */
3292 if (!compressed && tree->ops &&
3293 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3294 tree->ops->writepage_end_io_hook(page, cur,
3295 cur + iosize - 1,
3296 NULL, 1);
c8b97818
CM
3297 else if (compressed) {
3298 /* we don't want to end_page_writeback on
3299 * a compressed extent. this happens
3300 * elsewhere
3301 */
3302 nr++;
3303 }
3304
3305 cur += iosize;
7f3c74fb 3306 pg_offset += iosize;
d1310b2e
CM
3307 continue;
3308 }
d1310b2e
CM
3309 /* leave this out until we have a page_mkwrite call */
3310 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3311 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3312 cur = cur + iosize;
7f3c74fb 3313 pg_offset += iosize;
d1310b2e
CM
3314 continue;
3315 }
c8b97818 3316
d1310b2e
CM
3317 if (tree->ops && tree->ops->writepage_io_hook) {
3318 ret = tree->ops->writepage_io_hook(page, cur,
3319 cur + iosize - 1);
3320 } else {
3321 ret = 0;
3322 }
1259ab75 3323 if (ret) {
d1310b2e 3324 SetPageError(page);
1259ab75 3325 } else {
d1310b2e 3326 unsigned long max_nr = end_index + 1;
7f3c74fb 3327
d1310b2e
CM
3328 set_range_writeback(tree, cur, cur + iosize - 1);
3329 if (!PageWriteback(page)) {
d397712b
CM
3330 printk(KERN_ERR "btrfs warning page %lu not "
3331 "writeback, cur %llu end %llu\n",
c1c9ff7c 3332 page->index, cur, end);
d1310b2e
CM
3333 }
3334
ffbd517d
CM
3335 ret = submit_extent_page(write_flags, tree, page,
3336 sector, iosize, pg_offset,
3337 bdev, &epd->bio, max_nr,
c8b97818
CM
3338 end_bio_extent_writepage,
3339 0, 0, 0);
d1310b2e
CM
3340 if (ret)
3341 SetPageError(page);
3342 }
3343 cur = cur + iosize;
7f3c74fb 3344 pg_offset += iosize;
d1310b2e
CM
3345 nr++;
3346 }
3347done:
3348 if (nr == 0) {
3349 /* make sure the mapping tag for page dirty gets cleared */
3350 set_page_writeback(page);
3351 end_page_writeback(page);
3352 }
d1310b2e 3353 unlock_page(page);
771ed689 3354
11c8349b
CM
3355done_unlocked:
3356
2c64c53d
CM
3357 /* drop our reference on any cached states */
3358 free_extent_state(cached_state);
d1310b2e
CM
3359 return 0;
3360}
3361
0b32f4bb
JB
3362static int eb_wait(void *word)
3363{
3364 io_schedule();
3365 return 0;
3366}
3367
fd8b2b61 3368void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3369{
3370 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3371 TASK_UNINTERRUPTIBLE);
3372}
3373
3374static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3375 struct btrfs_fs_info *fs_info,
3376 struct extent_page_data *epd)
3377{
3378 unsigned long i, num_pages;
3379 int flush = 0;
3380 int ret = 0;
3381
3382 if (!btrfs_try_tree_write_lock(eb)) {
3383 flush = 1;
3384 flush_write_bio(epd);
3385 btrfs_tree_lock(eb);
3386 }
3387
3388 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3389 btrfs_tree_unlock(eb);
3390 if (!epd->sync_io)
3391 return 0;
3392 if (!flush) {
3393 flush_write_bio(epd);
3394 flush = 1;
3395 }
a098d8e8
CM
3396 while (1) {
3397 wait_on_extent_buffer_writeback(eb);
3398 btrfs_tree_lock(eb);
3399 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3400 break;
0b32f4bb 3401 btrfs_tree_unlock(eb);
0b32f4bb
JB
3402 }
3403 }
3404
51561ffe
JB
3405 /*
3406 * We need to do this to prevent races in people who check if the eb is
3407 * under IO since we can end up having no IO bits set for a short period
3408 * of time.
3409 */
3410 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3411 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3412 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3413 spin_unlock(&eb->refs_lock);
0b32f4bb 3414 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3415 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3416 -eb->len,
3417 fs_info->dirty_metadata_batch);
0b32f4bb 3418 ret = 1;
51561ffe
JB
3419 } else {
3420 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3421 }
3422
3423 btrfs_tree_unlock(eb);
3424
3425 if (!ret)
3426 return ret;
3427
3428 num_pages = num_extent_pages(eb->start, eb->len);
3429 for (i = 0; i < num_pages; i++) {
3430 struct page *p = extent_buffer_page(eb, i);
3431
3432 if (!trylock_page(p)) {
3433 if (!flush) {
3434 flush_write_bio(epd);
3435 flush = 1;
3436 }
3437 lock_page(p);
3438 }
3439 }
3440
3441 return ret;
3442}
3443
3444static void end_extent_buffer_writeback(struct extent_buffer *eb)
3445{
3446 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3447 smp_mb__after_clear_bit();
3448 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3449}
3450
3451static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3452{
3453 int uptodate = err == 0;
3454 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3455 struct extent_buffer *eb;
3456 int done;
3457
3458 do {
3459 struct page *page = bvec->bv_page;
3460
3461 bvec--;
3462 eb = (struct extent_buffer *)page->private;
3463 BUG_ON(!eb);
3464 done = atomic_dec_and_test(&eb->io_pages);
3465
3466 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3467 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3468 ClearPageUptodate(page);
3469 SetPageError(page);
3470 }
3471
3472 end_page_writeback(page);
3473
3474 if (!done)
3475 continue;
3476
3477 end_extent_buffer_writeback(eb);
3478 } while (bvec >= bio->bi_io_vec);
3479
3480 bio_put(bio);
3481
3482}
3483
3484static int write_one_eb(struct extent_buffer *eb,
3485 struct btrfs_fs_info *fs_info,
3486 struct writeback_control *wbc,
3487 struct extent_page_data *epd)
3488{
3489 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3490 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3491 u64 offset = eb->start;
3492 unsigned long i, num_pages;
de0022b9 3493 unsigned long bio_flags = 0;
d4c7ca86 3494 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3495 int ret = 0;
0b32f4bb
JB
3496
3497 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3498 num_pages = num_extent_pages(eb->start, eb->len);
3499 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3500 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3501 bio_flags = EXTENT_BIO_TREE_LOG;
3502
0b32f4bb
JB
3503 for (i = 0; i < num_pages; i++) {
3504 struct page *p = extent_buffer_page(eb, i);
3505
3506 clear_page_dirty_for_io(p);
3507 set_page_writeback(p);
f28491e0 3508 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3509 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3510 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3511 0, epd->bio_flags, bio_flags);
3512 epd->bio_flags = bio_flags;
0b32f4bb
JB
3513 if (ret) {
3514 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3515 SetPageError(p);
3516 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3517 end_extent_buffer_writeback(eb);
3518 ret = -EIO;
3519 break;
3520 }
3521 offset += PAGE_CACHE_SIZE;
3522 update_nr_written(p, wbc, 1);
3523 unlock_page(p);
3524 }
3525
3526 if (unlikely(ret)) {
3527 for (; i < num_pages; i++) {
3528 struct page *p = extent_buffer_page(eb, i);
3529 unlock_page(p);
3530 }
3531 }
3532
3533 return ret;
3534}
3535
3536int btree_write_cache_pages(struct address_space *mapping,
3537 struct writeback_control *wbc)
3538{
3539 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3540 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3541 struct extent_buffer *eb, *prev_eb = NULL;
3542 struct extent_page_data epd = {
3543 .bio = NULL,
3544 .tree = tree,
3545 .extent_locked = 0,
3546 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3547 .bio_flags = 0,
0b32f4bb
JB
3548 };
3549 int ret = 0;
3550 int done = 0;
3551 int nr_to_write_done = 0;
3552 struct pagevec pvec;
3553 int nr_pages;
3554 pgoff_t index;
3555 pgoff_t end; /* Inclusive */
3556 int scanned = 0;
3557 int tag;
3558
3559 pagevec_init(&pvec, 0);
3560 if (wbc->range_cyclic) {
3561 index = mapping->writeback_index; /* Start from prev offset */
3562 end = -1;
3563 } else {
3564 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3565 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3566 scanned = 1;
3567 }
3568 if (wbc->sync_mode == WB_SYNC_ALL)
3569 tag = PAGECACHE_TAG_TOWRITE;
3570 else
3571 tag = PAGECACHE_TAG_DIRTY;
3572retry:
3573 if (wbc->sync_mode == WB_SYNC_ALL)
3574 tag_pages_for_writeback(mapping, index, end);
3575 while (!done && !nr_to_write_done && (index <= end) &&
3576 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3577 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3578 unsigned i;
3579
3580 scanned = 1;
3581 for (i = 0; i < nr_pages; i++) {
3582 struct page *page = pvec.pages[i];
3583
3584 if (!PagePrivate(page))
3585 continue;
3586
3587 if (!wbc->range_cyclic && page->index > end) {
3588 done = 1;
3589 break;
3590 }
3591
b5bae261
JB
3592 spin_lock(&mapping->private_lock);
3593 if (!PagePrivate(page)) {
3594 spin_unlock(&mapping->private_lock);
3595 continue;
3596 }
3597
0b32f4bb 3598 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3599
3600 /*
3601 * Shouldn't happen and normally this would be a BUG_ON
3602 * but no sense in crashing the users box for something
3603 * we can survive anyway.
3604 */
fae7f21c 3605 if (WARN_ON(!eb)) {
b5bae261 3606 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3607 continue;
3608 }
3609
b5bae261
JB
3610 if (eb == prev_eb) {
3611 spin_unlock(&mapping->private_lock);
0b32f4bb 3612 continue;
b5bae261 3613 }
0b32f4bb 3614
b5bae261
JB
3615 ret = atomic_inc_not_zero(&eb->refs);
3616 spin_unlock(&mapping->private_lock);
3617 if (!ret)
0b32f4bb 3618 continue;
0b32f4bb
JB
3619
3620 prev_eb = eb;
3621 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3622 if (!ret) {
3623 free_extent_buffer(eb);
3624 continue;
3625 }
3626
3627 ret = write_one_eb(eb, fs_info, wbc, &epd);
3628 if (ret) {
3629 done = 1;
3630 free_extent_buffer(eb);
3631 break;
3632 }
3633 free_extent_buffer(eb);
3634
3635 /*
3636 * the filesystem may choose to bump up nr_to_write.
3637 * We have to make sure to honor the new nr_to_write
3638 * at any time
3639 */
3640 nr_to_write_done = wbc->nr_to_write <= 0;
3641 }
3642 pagevec_release(&pvec);
3643 cond_resched();
3644 }
3645 if (!scanned && !done) {
3646 /*
3647 * We hit the last page and there is more work to be done: wrap
3648 * back to the start of the file
3649 */
3650 scanned = 1;
3651 index = 0;
3652 goto retry;
3653 }
3654 flush_write_bio(&epd);
3655 return ret;
3656}
3657
d1310b2e 3658/**
4bef0848 3659 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3660 * @mapping: address space structure to write
3661 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3662 * @writepage: function called for each page
3663 * @data: data passed to writepage function
3664 *
3665 * If a page is already under I/O, write_cache_pages() skips it, even
3666 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3667 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3668 * and msync() need to guarantee that all the data which was dirty at the time
3669 * the call was made get new I/O started against them. If wbc->sync_mode is
3670 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3671 * existing IO to complete.
3672 */
b2950863 3673static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3674 struct address_space *mapping,
3675 struct writeback_control *wbc,
d2c3f4f6
CM
3676 writepage_t writepage, void *data,
3677 void (*flush_fn)(void *))
d1310b2e 3678{
7fd1a3f7 3679 struct inode *inode = mapping->host;
d1310b2e
CM
3680 int ret = 0;
3681 int done = 0;
f85d7d6c 3682 int nr_to_write_done = 0;
d1310b2e
CM
3683 struct pagevec pvec;
3684 int nr_pages;
3685 pgoff_t index;
3686 pgoff_t end; /* Inclusive */
3687 int scanned = 0;
f7aaa06b 3688 int tag;
d1310b2e 3689
7fd1a3f7
JB
3690 /*
3691 * We have to hold onto the inode so that ordered extents can do their
3692 * work when the IO finishes. The alternative to this is failing to add
3693 * an ordered extent if the igrab() fails there and that is a huge pain
3694 * to deal with, so instead just hold onto the inode throughout the
3695 * writepages operation. If it fails here we are freeing up the inode
3696 * anyway and we'd rather not waste our time writing out stuff that is
3697 * going to be truncated anyway.
3698 */
3699 if (!igrab(inode))
3700 return 0;
3701
d1310b2e
CM
3702 pagevec_init(&pvec, 0);
3703 if (wbc->range_cyclic) {
3704 index = mapping->writeback_index; /* Start from prev offset */
3705 end = -1;
3706 } else {
3707 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3708 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3709 scanned = 1;
3710 }
f7aaa06b
JB
3711 if (wbc->sync_mode == WB_SYNC_ALL)
3712 tag = PAGECACHE_TAG_TOWRITE;
3713 else
3714 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3715retry:
f7aaa06b
JB
3716 if (wbc->sync_mode == WB_SYNC_ALL)
3717 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3718 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3719 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3720 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3721 unsigned i;
3722
3723 scanned = 1;
3724 for (i = 0; i < nr_pages; i++) {
3725 struct page *page = pvec.pages[i];
3726
3727 /*
3728 * At this point we hold neither mapping->tree_lock nor
3729 * lock on the page itself: the page may be truncated or
3730 * invalidated (changing page->mapping to NULL), or even
3731 * swizzled back from swapper_space to tmpfs file
3732 * mapping
3733 */
c8f2f24b
JB
3734 if (!trylock_page(page)) {
3735 flush_fn(data);
3736 lock_page(page);
01d658f2 3737 }
d1310b2e
CM
3738
3739 if (unlikely(page->mapping != mapping)) {
3740 unlock_page(page);
3741 continue;
3742 }
3743
3744 if (!wbc->range_cyclic && page->index > end) {
3745 done = 1;
3746 unlock_page(page);
3747 continue;
3748 }
3749
d2c3f4f6 3750 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3751 if (PageWriteback(page))
3752 flush_fn(data);
d1310b2e 3753 wait_on_page_writeback(page);
d2c3f4f6 3754 }
d1310b2e
CM
3755
3756 if (PageWriteback(page) ||
3757 !clear_page_dirty_for_io(page)) {
3758 unlock_page(page);
3759 continue;
3760 }
3761
3762 ret = (*writepage)(page, wbc, data);
3763
3764 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3765 unlock_page(page);
3766 ret = 0;
3767 }
f85d7d6c 3768 if (ret)
d1310b2e 3769 done = 1;
f85d7d6c
CM
3770
3771 /*
3772 * the filesystem may choose to bump up nr_to_write.
3773 * We have to make sure to honor the new nr_to_write
3774 * at any time
3775 */
3776 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3777 }
3778 pagevec_release(&pvec);
3779 cond_resched();
3780 }
3781 if (!scanned && !done) {
3782 /*
3783 * We hit the last page and there is more work to be done: wrap
3784 * back to the start of the file
3785 */
3786 scanned = 1;
3787 index = 0;
3788 goto retry;
3789 }
7fd1a3f7 3790 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3791 return ret;
3792}
d1310b2e 3793
ffbd517d 3794static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3795{
d2c3f4f6 3796 if (epd->bio) {
355808c2
JM
3797 int rw = WRITE;
3798 int ret;
3799
ffbd517d 3800 if (epd->sync_io)
355808c2
JM
3801 rw = WRITE_SYNC;
3802
de0022b9 3803 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3804 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3805 epd->bio = NULL;
3806 }
3807}
3808
ffbd517d
CM
3809static noinline void flush_write_bio(void *data)
3810{
3811 struct extent_page_data *epd = data;
3812 flush_epd_write_bio(epd);
3813}
3814
d1310b2e
CM
3815int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3816 get_extent_t *get_extent,
3817 struct writeback_control *wbc)
3818{
3819 int ret;
d1310b2e
CM
3820 struct extent_page_data epd = {
3821 .bio = NULL,
3822 .tree = tree,
3823 .get_extent = get_extent,
771ed689 3824 .extent_locked = 0,
ffbd517d 3825 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3826 .bio_flags = 0,
d1310b2e 3827 };
d1310b2e 3828
d1310b2e
CM
3829 ret = __extent_writepage(page, wbc, &epd);
3830
ffbd517d 3831 flush_epd_write_bio(&epd);
d1310b2e
CM
3832 return ret;
3833}
d1310b2e 3834
771ed689
CM
3835int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3836 u64 start, u64 end, get_extent_t *get_extent,
3837 int mode)
3838{
3839 int ret = 0;
3840 struct address_space *mapping = inode->i_mapping;
3841 struct page *page;
3842 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3843 PAGE_CACHE_SHIFT;
3844
3845 struct extent_page_data epd = {
3846 .bio = NULL,
3847 .tree = tree,
3848 .get_extent = get_extent,
3849 .extent_locked = 1,
ffbd517d 3850 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3851 .bio_flags = 0,
771ed689
CM
3852 };
3853 struct writeback_control wbc_writepages = {
771ed689 3854 .sync_mode = mode,
771ed689
CM
3855 .nr_to_write = nr_pages * 2,
3856 .range_start = start,
3857 .range_end = end + 1,
3858 };
3859
d397712b 3860 while (start <= end) {
771ed689
CM
3861 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3862 if (clear_page_dirty_for_io(page))
3863 ret = __extent_writepage(page, &wbc_writepages, &epd);
3864 else {
3865 if (tree->ops && tree->ops->writepage_end_io_hook)
3866 tree->ops->writepage_end_io_hook(page, start,
3867 start + PAGE_CACHE_SIZE - 1,
3868 NULL, 1);
3869 unlock_page(page);
3870 }
3871 page_cache_release(page);
3872 start += PAGE_CACHE_SIZE;
3873 }
3874
ffbd517d 3875 flush_epd_write_bio(&epd);
771ed689
CM
3876 return ret;
3877}
d1310b2e
CM
3878
3879int extent_writepages(struct extent_io_tree *tree,
3880 struct address_space *mapping,
3881 get_extent_t *get_extent,
3882 struct writeback_control *wbc)
3883{
3884 int ret = 0;
3885 struct extent_page_data epd = {
3886 .bio = NULL,
3887 .tree = tree,
3888 .get_extent = get_extent,
771ed689 3889 .extent_locked = 0,
ffbd517d 3890 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3891 .bio_flags = 0,
d1310b2e
CM
3892 };
3893
4bef0848 3894 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3895 __extent_writepage, &epd,
3896 flush_write_bio);
ffbd517d 3897 flush_epd_write_bio(&epd);
d1310b2e
CM
3898 return ret;
3899}
d1310b2e
CM
3900
3901int extent_readpages(struct extent_io_tree *tree,
3902 struct address_space *mapping,
3903 struct list_head *pages, unsigned nr_pages,
3904 get_extent_t get_extent)
3905{
3906 struct bio *bio = NULL;
3907 unsigned page_idx;
c8b97818 3908 unsigned long bio_flags = 0;
67c9684f
LB
3909 struct page *pagepool[16];
3910 struct page *page;
125bac01 3911 struct extent_map *em_cached = NULL;
67c9684f 3912 int nr = 0;
d1310b2e 3913
d1310b2e 3914 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3915 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3916
3917 prefetchw(&page->flags);
3918 list_del(&page->lru);
67c9684f 3919 if (add_to_page_cache_lru(page, mapping,
43e817a1 3920 page->index, GFP_NOFS)) {
67c9684f
LB
3921 page_cache_release(page);
3922 continue;
d1310b2e 3923 }
67c9684f
LB
3924
3925 pagepool[nr++] = page;
3926 if (nr < ARRAY_SIZE(pagepool))
3927 continue;
125bac01 3928 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3929 &bio, 0, &bio_flags, READ);
67c9684f 3930 nr = 0;
d1310b2e 3931 }
9974090b 3932 if (nr)
125bac01 3933 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3934 &bio, 0, &bio_flags, READ);
67c9684f 3935
125bac01
MX
3936 if (em_cached)
3937 free_extent_map(em_cached);
3938
d1310b2e
CM
3939 BUG_ON(!list_empty(pages));
3940 if (bio)
79787eaa 3941 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3942 return 0;
3943}
d1310b2e
CM
3944
3945/*
3946 * basic invalidatepage code, this waits on any locked or writeback
3947 * ranges corresponding to the page, and then deletes any extent state
3948 * records from the tree
3949 */
3950int extent_invalidatepage(struct extent_io_tree *tree,
3951 struct page *page, unsigned long offset)
3952{
2ac55d41 3953 struct extent_state *cached_state = NULL;
4eee4fa4 3954 u64 start = page_offset(page);
d1310b2e
CM
3955 u64 end = start + PAGE_CACHE_SIZE - 1;
3956 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3957
fda2832f 3958 start += ALIGN(offset, blocksize);
d1310b2e
CM
3959 if (start > end)
3960 return 0;
3961
d0082371 3962 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3963 wait_on_page_writeback(page);
d1310b2e 3964 clear_extent_bit(tree, start, end,
32c00aff
JB
3965 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3966 EXTENT_DO_ACCOUNTING,
2ac55d41 3967 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3968 return 0;
3969}
d1310b2e 3970
7b13b7b1
CM
3971/*
3972 * a helper for releasepage, this tests for areas of the page that
3973 * are locked or under IO and drops the related state bits if it is safe
3974 * to drop the page.
3975 */
48a3b636
ES
3976static int try_release_extent_state(struct extent_map_tree *map,
3977 struct extent_io_tree *tree,
3978 struct page *page, gfp_t mask)
7b13b7b1 3979{
4eee4fa4 3980 u64 start = page_offset(page);
7b13b7b1
CM
3981 u64 end = start + PAGE_CACHE_SIZE - 1;
3982 int ret = 1;
3983
211f90e6 3984 if (test_range_bit(tree, start, end,
8b62b72b 3985 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3986 ret = 0;
3987 else {
3988 if ((mask & GFP_NOFS) == GFP_NOFS)
3989 mask = GFP_NOFS;
11ef160f
CM
3990 /*
3991 * at this point we can safely clear everything except the
3992 * locked bit and the nodatasum bit
3993 */
e3f24cc5 3994 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3995 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3996 0, 0, NULL, mask);
e3f24cc5
CM
3997
3998 /* if clear_extent_bit failed for enomem reasons,
3999 * we can't allow the release to continue.
4000 */
4001 if (ret < 0)
4002 ret = 0;
4003 else
4004 ret = 1;
7b13b7b1
CM
4005 }
4006 return ret;
4007}
7b13b7b1 4008
d1310b2e
CM
4009/*
4010 * a helper for releasepage. As long as there are no locked extents
4011 * in the range corresponding to the page, both state records and extent
4012 * map records are removed
4013 */
4014int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4015 struct extent_io_tree *tree, struct page *page,
4016 gfp_t mask)
d1310b2e
CM
4017{
4018 struct extent_map *em;
4eee4fa4 4019 u64 start = page_offset(page);
d1310b2e 4020 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4021
70dec807
CM
4022 if ((mask & __GFP_WAIT) &&
4023 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4024 u64 len;
70dec807 4025 while (start <= end) {
39b5637f 4026 len = end - start + 1;
890871be 4027 write_lock(&map->lock);
39b5637f 4028 em = lookup_extent_mapping(map, start, len);
285190d9 4029 if (!em) {
890871be 4030 write_unlock(&map->lock);
70dec807
CM
4031 break;
4032 }
7f3c74fb
CM
4033 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4034 em->start != start) {
890871be 4035 write_unlock(&map->lock);
70dec807
CM
4036 free_extent_map(em);
4037 break;
4038 }
4039 if (!test_range_bit(tree, em->start,
4040 extent_map_end(em) - 1,
8b62b72b 4041 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4042 0, NULL)) {
70dec807
CM
4043 remove_extent_mapping(map, em);
4044 /* once for the rb tree */
4045 free_extent_map(em);
4046 }
4047 start = extent_map_end(em);
890871be 4048 write_unlock(&map->lock);
70dec807
CM
4049
4050 /* once for us */
d1310b2e
CM
4051 free_extent_map(em);
4052 }
d1310b2e 4053 }
7b13b7b1 4054 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4055}
d1310b2e 4056
ec29ed5b
CM
4057/*
4058 * helper function for fiemap, which doesn't want to see any holes.
4059 * This maps until we find something past 'last'
4060 */
4061static struct extent_map *get_extent_skip_holes(struct inode *inode,
4062 u64 offset,
4063 u64 last,
4064 get_extent_t *get_extent)
4065{
4066 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4067 struct extent_map *em;
4068 u64 len;
4069
4070 if (offset >= last)
4071 return NULL;
4072
67871254 4073 while (1) {
ec29ed5b
CM
4074 len = last - offset;
4075 if (len == 0)
4076 break;
fda2832f 4077 len = ALIGN(len, sectorsize);
ec29ed5b 4078 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4079 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4080 return em;
4081
4082 /* if this isn't a hole return it */
4083 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4084 em->block_start != EXTENT_MAP_HOLE) {
4085 return em;
4086 }
4087
4088 /* this is a hole, advance to the next extent */
4089 offset = extent_map_end(em);
4090 free_extent_map(em);
4091 if (offset >= last)
4092 break;
4093 }
4094 return NULL;
4095}
4096
fe09e16c
LB
4097static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4098{
4099 unsigned long cnt = *((unsigned long *)ctx);
4100
4101 cnt++;
4102 *((unsigned long *)ctx) = cnt;
4103
4104 /* Now we're sure that the extent is shared. */
4105 if (cnt > 1)
4106 return 1;
4107 return 0;
4108}
4109
1506fcc8
YS
4110int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4111 __u64 start, __u64 len, get_extent_t *get_extent)
4112{
975f84fe 4113 int ret = 0;
1506fcc8
YS
4114 u64 off = start;
4115 u64 max = start + len;
4116 u32 flags = 0;
975f84fe
JB
4117 u32 found_type;
4118 u64 last;
ec29ed5b 4119 u64 last_for_get_extent = 0;
1506fcc8 4120 u64 disko = 0;
ec29ed5b 4121 u64 isize = i_size_read(inode);
975f84fe 4122 struct btrfs_key found_key;
1506fcc8 4123 struct extent_map *em = NULL;
2ac55d41 4124 struct extent_state *cached_state = NULL;
975f84fe 4125 struct btrfs_path *path;
1506fcc8 4126 int end = 0;
ec29ed5b
CM
4127 u64 em_start = 0;
4128 u64 em_len = 0;
4129 u64 em_end = 0;
1506fcc8
YS
4130
4131 if (len == 0)
4132 return -EINVAL;
4133
975f84fe
JB
4134 path = btrfs_alloc_path();
4135 if (!path)
4136 return -ENOMEM;
4137 path->leave_spinning = 1;
4138
4d479cf0
JB
4139 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4140 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4141
ec29ed5b
CM
4142 /*
4143 * lookup the last file extent. We're not using i_size here
4144 * because there might be preallocation past i_size
4145 */
975f84fe 4146 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4147 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4148 if (ret < 0) {
4149 btrfs_free_path(path);
4150 return ret;
4151 }
4152 WARN_ON(!ret);
4153 path->slots[0]--;
975f84fe
JB
4154 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4155 found_type = btrfs_key_type(&found_key);
4156
ec29ed5b 4157 /* No extents, but there might be delalloc bits */
33345d01 4158 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4159 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4160 /* have to trust i_size as the end */
4161 last = (u64)-1;
4162 last_for_get_extent = isize;
4163 } else {
4164 /*
4165 * remember the start of the last extent. There are a
4166 * bunch of different factors that go into the length of the
4167 * extent, so its much less complex to remember where it started
4168 */
4169 last = found_key.offset;
4170 last_for_get_extent = last + 1;
975f84fe 4171 }
fe09e16c 4172 btrfs_release_path(path);
975f84fe 4173
ec29ed5b
CM
4174 /*
4175 * we might have some extents allocated but more delalloc past those
4176 * extents. so, we trust isize unless the start of the last extent is
4177 * beyond isize
4178 */
4179 if (last < isize) {
4180 last = (u64)-1;
4181 last_for_get_extent = isize;
4182 }
4183
a52f4cd2 4184 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4185 &cached_state);
ec29ed5b 4186
4d479cf0 4187 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4188 get_extent);
1506fcc8
YS
4189 if (!em)
4190 goto out;
4191 if (IS_ERR(em)) {
4192 ret = PTR_ERR(em);
4193 goto out;
4194 }
975f84fe 4195
1506fcc8 4196 while (!end) {
b76bb701 4197 u64 offset_in_extent = 0;
ea8efc74
CM
4198
4199 /* break if the extent we found is outside the range */
4200 if (em->start >= max || extent_map_end(em) < off)
4201 break;
4202
4203 /*
4204 * get_extent may return an extent that starts before our
4205 * requested range. We have to make sure the ranges
4206 * we return to fiemap always move forward and don't
4207 * overlap, so adjust the offsets here
4208 */
4209 em_start = max(em->start, off);
1506fcc8 4210
ea8efc74
CM
4211 /*
4212 * record the offset from the start of the extent
b76bb701
JB
4213 * for adjusting the disk offset below. Only do this if the
4214 * extent isn't compressed since our in ram offset may be past
4215 * what we have actually allocated on disk.
ea8efc74 4216 */
b76bb701
JB
4217 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4218 offset_in_extent = em_start - em->start;
ec29ed5b 4219 em_end = extent_map_end(em);
ea8efc74 4220 em_len = em_end - em_start;
1506fcc8
YS
4221 disko = 0;
4222 flags = 0;
4223
ea8efc74
CM
4224 /*
4225 * bump off for our next call to get_extent
4226 */
4227 off = extent_map_end(em);
4228 if (off >= max)
4229 end = 1;
4230
93dbfad7 4231 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4232 end = 1;
4233 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4234 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4235 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4236 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4237 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4238 flags |= (FIEMAP_EXTENT_DELALLOC |
4239 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4240 } else {
fe09e16c
LB
4241 unsigned long ref_cnt = 0;
4242
ea8efc74 4243 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4244
4245 /*
4246 * As btrfs supports shared space, this information
4247 * can be exported to userspace tools via
4248 * flag FIEMAP_EXTENT_SHARED.
4249 */
4250 ret = iterate_inodes_from_logical(
4251 em->block_start,
4252 BTRFS_I(inode)->root->fs_info,
4253 path, count_ext_ref, &ref_cnt);
4254 if (ret < 0 && ret != -ENOENT)
4255 goto out_free;
4256
4257 if (ref_cnt > 1)
4258 flags |= FIEMAP_EXTENT_SHARED;
1506fcc8
YS
4259 }
4260 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4261 flags |= FIEMAP_EXTENT_ENCODED;
4262
1506fcc8
YS
4263 free_extent_map(em);
4264 em = NULL;
ec29ed5b
CM
4265 if ((em_start >= last) || em_len == (u64)-1 ||
4266 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4267 flags |= FIEMAP_EXTENT_LAST;
4268 end = 1;
4269 }
4270
ec29ed5b
CM
4271 /* now scan forward to see if this is really the last extent. */
4272 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4273 get_extent);
4274 if (IS_ERR(em)) {
4275 ret = PTR_ERR(em);
4276 goto out;
4277 }
4278 if (!em) {
975f84fe
JB
4279 flags |= FIEMAP_EXTENT_LAST;
4280 end = 1;
4281 }
ec29ed5b
CM
4282 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4283 em_len, flags);
4284 if (ret)
4285 goto out_free;
1506fcc8
YS
4286 }
4287out_free:
4288 free_extent_map(em);
4289out:
fe09e16c 4290 btrfs_free_path(path);
a52f4cd2 4291 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4292 &cached_state, GFP_NOFS);
1506fcc8
YS
4293 return ret;
4294}
4295
727011e0
CM
4296static void __free_extent_buffer(struct extent_buffer *eb)
4297{
6d49ba1b 4298 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4299 kmem_cache_free(extent_buffer_cache, eb);
4300}
4301
db7f3436
JB
4302static int extent_buffer_under_io(struct extent_buffer *eb)
4303{
4304 return (atomic_read(&eb->io_pages) ||
4305 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4306 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4307}
4308
4309/*
4310 * Helper for releasing extent buffer page.
4311 */
4312static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4313 unsigned long start_idx)
4314{
4315 unsigned long index;
4316 unsigned long num_pages;
4317 struct page *page;
4318 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4319
4320 BUG_ON(extent_buffer_under_io(eb));
4321
4322 num_pages = num_extent_pages(eb->start, eb->len);
4323 index = start_idx + num_pages;
4324 if (start_idx >= index)
4325 return;
4326
4327 do {
4328 index--;
4329 page = extent_buffer_page(eb, index);
4330 if (page && mapped) {
4331 spin_lock(&page->mapping->private_lock);
4332 /*
4333 * We do this since we'll remove the pages after we've
4334 * removed the eb from the radix tree, so we could race
4335 * and have this page now attached to the new eb. So
4336 * only clear page_private if it's still connected to
4337 * this eb.
4338 */
4339 if (PagePrivate(page) &&
4340 page->private == (unsigned long)eb) {
4341 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4342 BUG_ON(PageDirty(page));
4343 BUG_ON(PageWriteback(page));
4344 /*
4345 * We need to make sure we haven't be attached
4346 * to a new eb.
4347 */
4348 ClearPagePrivate(page);
4349 set_page_private(page, 0);
4350 /* One for the page private */
4351 page_cache_release(page);
4352 }
4353 spin_unlock(&page->mapping->private_lock);
4354
4355 }
4356 if (page) {
4357 /* One for when we alloced the page */
4358 page_cache_release(page);
4359 }
4360 } while (index != start_idx);
4361}
4362
4363/*
4364 * Helper for releasing the extent buffer.
4365 */
4366static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4367{
4368 btrfs_release_extent_buffer_page(eb, 0);
4369 __free_extent_buffer(eb);
4370}
4371
f28491e0
JB
4372static struct extent_buffer *
4373__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4374 unsigned long len, gfp_t mask)
d1310b2e
CM
4375{
4376 struct extent_buffer *eb = NULL;
4377
d1310b2e 4378 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4379 if (eb == NULL)
4380 return NULL;
d1310b2e
CM
4381 eb->start = start;
4382 eb->len = len;
f28491e0 4383 eb->fs_info = fs_info;
815a51c7 4384 eb->bflags = 0;
bd681513
CM
4385 rwlock_init(&eb->lock);
4386 atomic_set(&eb->write_locks, 0);
4387 atomic_set(&eb->read_locks, 0);
4388 atomic_set(&eb->blocking_readers, 0);
4389 atomic_set(&eb->blocking_writers, 0);
4390 atomic_set(&eb->spinning_readers, 0);
4391 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4392 eb->lock_nested = 0;
bd681513
CM
4393 init_waitqueue_head(&eb->write_lock_wq);
4394 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4395
6d49ba1b
ES
4396 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4397
3083ee2e 4398 spin_lock_init(&eb->refs_lock);
d1310b2e 4399 atomic_set(&eb->refs, 1);
0b32f4bb 4400 atomic_set(&eb->io_pages, 0);
727011e0 4401
b8dae313
DS
4402 /*
4403 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4404 */
4405 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4406 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4407 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4408
4409 return eb;
4410}
4411
815a51c7
JS
4412struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4413{
4414 unsigned long i;
4415 struct page *p;
4416 struct extent_buffer *new;
4417 unsigned long num_pages = num_extent_pages(src->start, src->len);
4418
9ec72677 4419 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4420 if (new == NULL)
4421 return NULL;
4422
4423 for (i = 0; i < num_pages; i++) {
9ec72677 4424 p = alloc_page(GFP_NOFS);
db7f3436
JB
4425 if (!p) {
4426 btrfs_release_extent_buffer(new);
4427 return NULL;
4428 }
815a51c7
JS
4429 attach_extent_buffer_page(new, p);
4430 WARN_ON(PageDirty(p));
4431 SetPageUptodate(p);
4432 new->pages[i] = p;
4433 }
4434
4435 copy_extent_buffer(new, src, 0, 0, src->len);
4436 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4437 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4438
4439 return new;
4440}
4441
4442struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4443{
4444 struct extent_buffer *eb;
4445 unsigned long num_pages = num_extent_pages(0, len);
4446 unsigned long i;
4447
9ec72677 4448 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4449 if (!eb)
4450 return NULL;
4451
4452 for (i = 0; i < num_pages; i++) {
9ec72677 4453 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4454 if (!eb->pages[i])
4455 goto err;
4456 }
4457 set_extent_buffer_uptodate(eb);
4458 btrfs_set_header_nritems(eb, 0);
4459 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4460
4461 return eb;
4462err:
84167d19
SB
4463 for (; i > 0; i--)
4464 __free_page(eb->pages[i - 1]);
815a51c7
JS
4465 __free_extent_buffer(eb);
4466 return NULL;
4467}
4468
0b32f4bb
JB
4469static void check_buffer_tree_ref(struct extent_buffer *eb)
4470{
242e18c7 4471 int refs;
0b32f4bb
JB
4472 /* the ref bit is tricky. We have to make sure it is set
4473 * if we have the buffer dirty. Otherwise the
4474 * code to free a buffer can end up dropping a dirty
4475 * page
4476 *
4477 * Once the ref bit is set, it won't go away while the
4478 * buffer is dirty or in writeback, and it also won't
4479 * go away while we have the reference count on the
4480 * eb bumped.
4481 *
4482 * We can't just set the ref bit without bumping the
4483 * ref on the eb because free_extent_buffer might
4484 * see the ref bit and try to clear it. If this happens
4485 * free_extent_buffer might end up dropping our original
4486 * ref by mistake and freeing the page before we are able
4487 * to add one more ref.
4488 *
4489 * So bump the ref count first, then set the bit. If someone
4490 * beat us to it, drop the ref we added.
4491 */
242e18c7
CM
4492 refs = atomic_read(&eb->refs);
4493 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4494 return;
4495
594831c4
JB
4496 spin_lock(&eb->refs_lock);
4497 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4498 atomic_inc(&eb->refs);
594831c4 4499 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4500}
4501
5df4235e
JB
4502static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4503{
4504 unsigned long num_pages, i;
4505
0b32f4bb
JB
4506 check_buffer_tree_ref(eb);
4507
5df4235e
JB
4508 num_pages = num_extent_pages(eb->start, eb->len);
4509 for (i = 0; i < num_pages; i++) {
4510 struct page *p = extent_buffer_page(eb, i);
4511 mark_page_accessed(p);
4512 }
4513}
4514
f28491e0
JB
4515struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4516 u64 start)
452c75c3
CS
4517{
4518 struct extent_buffer *eb;
4519
4520 rcu_read_lock();
f28491e0
JB
4521 eb = radix_tree_lookup(&fs_info->buffer_radix,
4522 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4523 if (eb && atomic_inc_not_zero(&eb->refs)) {
4524 rcu_read_unlock();
4525 mark_extent_buffer_accessed(eb);
4526 return eb;
4527 }
4528 rcu_read_unlock();
4529
4530 return NULL;
4531}
4532
f28491e0 4533struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4534 u64 start, unsigned long len)
d1310b2e
CM
4535{
4536 unsigned long num_pages = num_extent_pages(start, len);
4537 unsigned long i;
4538 unsigned long index = start >> PAGE_CACHE_SHIFT;
4539 struct extent_buffer *eb;
6af118ce 4540 struct extent_buffer *exists = NULL;
d1310b2e 4541 struct page *p;
f28491e0 4542 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4543 int uptodate = 1;
19fe0a8b 4544 int ret;
d1310b2e 4545
f28491e0 4546 eb = find_extent_buffer(fs_info, start);
452c75c3 4547 if (eb)
6af118ce 4548 return eb;
6af118ce 4549
f28491e0 4550 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4551 if (!eb)
d1310b2e
CM
4552 return NULL;
4553
727011e0 4554 for (i = 0; i < num_pages; i++, index++) {
a6591715 4555 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4556 if (!p)
6af118ce 4557 goto free_eb;
4f2de97a
JB
4558
4559 spin_lock(&mapping->private_lock);
4560 if (PagePrivate(p)) {
4561 /*
4562 * We could have already allocated an eb for this page
4563 * and attached one so lets see if we can get a ref on
4564 * the existing eb, and if we can we know it's good and
4565 * we can just return that one, else we know we can just
4566 * overwrite page->private.
4567 */
4568 exists = (struct extent_buffer *)p->private;
4569 if (atomic_inc_not_zero(&exists->refs)) {
4570 spin_unlock(&mapping->private_lock);
4571 unlock_page(p);
17de39ac 4572 page_cache_release(p);
5df4235e 4573 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4574 goto free_eb;
4575 }
4576
0b32f4bb 4577 /*
4f2de97a
JB
4578 * Do this so attach doesn't complain and we need to
4579 * drop the ref the old guy had.
4580 */
4581 ClearPagePrivate(p);
0b32f4bb 4582 WARN_ON(PageDirty(p));
4f2de97a 4583 page_cache_release(p);
d1310b2e 4584 }
4f2de97a
JB
4585 attach_extent_buffer_page(eb, p);
4586 spin_unlock(&mapping->private_lock);
0b32f4bb 4587 WARN_ON(PageDirty(p));
d1310b2e 4588 mark_page_accessed(p);
727011e0 4589 eb->pages[i] = p;
d1310b2e
CM
4590 if (!PageUptodate(p))
4591 uptodate = 0;
eb14ab8e
CM
4592
4593 /*
4594 * see below about how we avoid a nasty race with release page
4595 * and why we unlock later
4596 */
d1310b2e
CM
4597 }
4598 if (uptodate)
b4ce94de 4599 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4600again:
19fe0a8b
MX
4601 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4602 if (ret)
4603 goto free_eb;
4604
f28491e0
JB
4605 spin_lock(&fs_info->buffer_lock);
4606 ret = radix_tree_insert(&fs_info->buffer_radix,
4607 start >> PAGE_CACHE_SHIFT, eb);
4608 spin_unlock(&fs_info->buffer_lock);
452c75c3 4609 radix_tree_preload_end();
19fe0a8b 4610 if (ret == -EEXIST) {
f28491e0 4611 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4612 if (exists)
4613 goto free_eb;
4614 else
115391d2 4615 goto again;
6af118ce 4616 }
6af118ce 4617 /* add one reference for the tree */
0b32f4bb 4618 check_buffer_tree_ref(eb);
34b41ace 4619 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4620
4621 /*
4622 * there is a race where release page may have
4623 * tried to find this extent buffer in the radix
4624 * but failed. It will tell the VM it is safe to
4625 * reclaim the, and it will clear the page private bit.
4626 * We must make sure to set the page private bit properly
4627 * after the extent buffer is in the radix tree so
4628 * it doesn't get lost
4629 */
727011e0
CM
4630 SetPageChecked(eb->pages[0]);
4631 for (i = 1; i < num_pages; i++) {
4632 p = extent_buffer_page(eb, i);
727011e0
CM
4633 ClearPageChecked(p);
4634 unlock_page(p);
4635 }
4636 unlock_page(eb->pages[0]);
d1310b2e
CM
4637 return eb;
4638
6af118ce 4639free_eb:
727011e0
CM
4640 for (i = 0; i < num_pages; i++) {
4641 if (eb->pages[i])
4642 unlock_page(eb->pages[i]);
4643 }
eb14ab8e 4644
17de39ac 4645 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4646 btrfs_release_extent_buffer(eb);
6af118ce 4647 return exists;
d1310b2e 4648}
d1310b2e 4649
3083ee2e
JB
4650static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4651{
4652 struct extent_buffer *eb =
4653 container_of(head, struct extent_buffer, rcu_head);
4654
4655 __free_extent_buffer(eb);
4656}
4657
3083ee2e 4658/* Expects to have eb->eb_lock already held */
f7a52a40 4659static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4660{
4661 WARN_ON(atomic_read(&eb->refs) == 0);
4662 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4663 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4664 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4665
815a51c7 4666 spin_unlock(&eb->refs_lock);
3083ee2e 4667
f28491e0
JB
4668 spin_lock(&fs_info->buffer_lock);
4669 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4670 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4671 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4672 } else {
4673 spin_unlock(&eb->refs_lock);
815a51c7 4674 }
3083ee2e
JB
4675
4676 /* Should be safe to release our pages at this point */
4677 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4678 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4679 return 1;
3083ee2e
JB
4680 }
4681 spin_unlock(&eb->refs_lock);
e64860aa
JB
4682
4683 return 0;
3083ee2e
JB
4684}
4685
d1310b2e
CM
4686void free_extent_buffer(struct extent_buffer *eb)
4687{
242e18c7
CM
4688 int refs;
4689 int old;
d1310b2e
CM
4690 if (!eb)
4691 return;
4692
242e18c7
CM
4693 while (1) {
4694 refs = atomic_read(&eb->refs);
4695 if (refs <= 3)
4696 break;
4697 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4698 if (old == refs)
4699 return;
4700 }
4701
3083ee2e 4702 spin_lock(&eb->refs_lock);
815a51c7
JS
4703 if (atomic_read(&eb->refs) == 2 &&
4704 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4705 atomic_dec(&eb->refs);
4706
3083ee2e
JB
4707 if (atomic_read(&eb->refs) == 2 &&
4708 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4709 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4710 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4711 atomic_dec(&eb->refs);
4712
4713 /*
4714 * I know this is terrible, but it's temporary until we stop tracking
4715 * the uptodate bits and such for the extent buffers.
4716 */
f7a52a40 4717 release_extent_buffer(eb);
3083ee2e
JB
4718}
4719
4720void free_extent_buffer_stale(struct extent_buffer *eb)
4721{
4722 if (!eb)
d1310b2e
CM
4723 return;
4724
3083ee2e
JB
4725 spin_lock(&eb->refs_lock);
4726 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4727
0b32f4bb 4728 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4729 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4730 atomic_dec(&eb->refs);
f7a52a40 4731 release_extent_buffer(eb);
d1310b2e 4732}
d1310b2e 4733
1d4284bd 4734void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4735{
d1310b2e
CM
4736 unsigned long i;
4737 unsigned long num_pages;
4738 struct page *page;
4739
d1310b2e
CM
4740 num_pages = num_extent_pages(eb->start, eb->len);
4741
4742 for (i = 0; i < num_pages; i++) {
4743 page = extent_buffer_page(eb, i);
b9473439 4744 if (!PageDirty(page))
d2c3f4f6
CM
4745 continue;
4746
a61e6f29 4747 lock_page(page);
eb14ab8e
CM
4748 WARN_ON(!PagePrivate(page));
4749
d1310b2e 4750 clear_page_dirty_for_io(page);
0ee0fda0 4751 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4752 if (!PageDirty(page)) {
4753 radix_tree_tag_clear(&page->mapping->page_tree,
4754 page_index(page),
4755 PAGECACHE_TAG_DIRTY);
4756 }
0ee0fda0 4757 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4758 ClearPageError(page);
a61e6f29 4759 unlock_page(page);
d1310b2e 4760 }
0b32f4bb 4761 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4762}
d1310b2e 4763
0b32f4bb 4764int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4765{
4766 unsigned long i;
4767 unsigned long num_pages;
b9473439 4768 int was_dirty = 0;
d1310b2e 4769
0b32f4bb
JB
4770 check_buffer_tree_ref(eb);
4771
b9473439 4772 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4773
d1310b2e 4774 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4775 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4776 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4777
b9473439 4778 for (i = 0; i < num_pages; i++)
0b32f4bb 4779 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4780 return was_dirty;
d1310b2e 4781}
d1310b2e 4782
0b32f4bb 4783int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4784{
4785 unsigned long i;
4786 struct page *page;
4787 unsigned long num_pages;
4788
b4ce94de 4789 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4790 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4791 for (i = 0; i < num_pages; i++) {
4792 page = extent_buffer_page(eb, i);
33958dc6
CM
4793 if (page)
4794 ClearPageUptodate(page);
1259ab75
CM
4795 }
4796 return 0;
4797}
4798
0b32f4bb 4799int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4800{
4801 unsigned long i;
4802 struct page *page;
4803 unsigned long num_pages;
4804
0b32f4bb 4805 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4806 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4807 for (i = 0; i < num_pages; i++) {
4808 page = extent_buffer_page(eb, i);
d1310b2e
CM
4809 SetPageUptodate(page);
4810 }
4811 return 0;
4812}
d1310b2e 4813
0b32f4bb 4814int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4815{
0b32f4bb 4816 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4817}
d1310b2e
CM
4818
4819int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4820 struct extent_buffer *eb, u64 start, int wait,
f188591e 4821 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4822{
4823 unsigned long i;
4824 unsigned long start_i;
4825 struct page *page;
4826 int err;
4827 int ret = 0;
ce9adaa5
CM
4828 int locked_pages = 0;
4829 int all_uptodate = 1;
d1310b2e 4830 unsigned long num_pages;
727011e0 4831 unsigned long num_reads = 0;
a86c12c7 4832 struct bio *bio = NULL;
c8b97818 4833 unsigned long bio_flags = 0;
a86c12c7 4834
b4ce94de 4835 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4836 return 0;
4837
d1310b2e
CM
4838 if (start) {
4839 WARN_ON(start < eb->start);
4840 start_i = (start >> PAGE_CACHE_SHIFT) -
4841 (eb->start >> PAGE_CACHE_SHIFT);
4842 } else {
4843 start_i = 0;
4844 }
4845
4846 num_pages = num_extent_pages(eb->start, eb->len);
4847 for (i = start_i; i < num_pages; i++) {
4848 page = extent_buffer_page(eb, i);
bb82ab88 4849 if (wait == WAIT_NONE) {
2db04966 4850 if (!trylock_page(page))
ce9adaa5 4851 goto unlock_exit;
d1310b2e
CM
4852 } else {
4853 lock_page(page);
4854 }
ce9adaa5 4855 locked_pages++;
727011e0
CM
4856 if (!PageUptodate(page)) {
4857 num_reads++;
ce9adaa5 4858 all_uptodate = 0;
727011e0 4859 }
ce9adaa5
CM
4860 }
4861 if (all_uptodate) {
4862 if (start_i == 0)
b4ce94de 4863 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4864 goto unlock_exit;
4865 }
4866
ea466794 4867 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4868 eb->read_mirror = 0;
0b32f4bb 4869 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4870 for (i = start_i; i < num_pages; i++) {
4871 page = extent_buffer_page(eb, i);
ce9adaa5 4872 if (!PageUptodate(page)) {
f188591e 4873 ClearPageError(page);
a86c12c7 4874 err = __extent_read_full_page(tree, page,
f188591e 4875 get_extent, &bio,
d4c7ca86
JB
4876 mirror_num, &bio_flags,
4877 READ | REQ_META);
d397712b 4878 if (err)
d1310b2e 4879 ret = err;
d1310b2e
CM
4880 } else {
4881 unlock_page(page);
4882 }
4883 }
4884
355808c2 4885 if (bio) {
d4c7ca86
JB
4886 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4887 bio_flags);
79787eaa
JM
4888 if (err)
4889 return err;
355808c2 4890 }
a86c12c7 4891
bb82ab88 4892 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4893 return ret;
d397712b 4894
d1310b2e
CM
4895 for (i = start_i; i < num_pages; i++) {
4896 page = extent_buffer_page(eb, i);
4897 wait_on_page_locked(page);
d397712b 4898 if (!PageUptodate(page))
d1310b2e 4899 ret = -EIO;
d1310b2e 4900 }
d397712b 4901
d1310b2e 4902 return ret;
ce9adaa5
CM
4903
4904unlock_exit:
4905 i = start_i;
d397712b 4906 while (locked_pages > 0) {
ce9adaa5
CM
4907 page = extent_buffer_page(eb, i);
4908 i++;
4909 unlock_page(page);
4910 locked_pages--;
4911 }
4912 return ret;
d1310b2e 4913}
d1310b2e
CM
4914
4915void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4916 unsigned long start,
4917 unsigned long len)
4918{
4919 size_t cur;
4920 size_t offset;
4921 struct page *page;
4922 char *kaddr;
4923 char *dst = (char *)dstv;
4924 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4925 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4926
4927 WARN_ON(start > eb->len);
4928 WARN_ON(start + len > eb->start + eb->len);
4929
778746b5 4930 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4931
d397712b 4932 while (len > 0) {
d1310b2e 4933 page = extent_buffer_page(eb, i);
d1310b2e
CM
4934
4935 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4936 kaddr = page_address(page);
d1310b2e 4937 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4938
4939 dst += cur;
4940 len -= cur;
4941 offset = 0;
4942 i++;
4943 }
4944}
d1310b2e
CM
4945
4946int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4947 unsigned long min_len, char **map,
d1310b2e 4948 unsigned long *map_start,
a6591715 4949 unsigned long *map_len)
d1310b2e
CM
4950{
4951 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4952 char *kaddr;
4953 struct page *p;
4954 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4955 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4956 unsigned long end_i = (start_offset + start + min_len - 1) >>
4957 PAGE_CACHE_SHIFT;
4958
4959 if (i != end_i)
4960 return -EINVAL;
4961
4962 if (i == 0) {
4963 offset = start_offset;
4964 *map_start = 0;
4965 } else {
4966 offset = 0;
4967 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4968 }
d397712b 4969
d1310b2e 4970 if (start + min_len > eb->len) {
31b1a2bd 4971 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
4972 "wanted %lu %lu\n",
4973 eb->start, eb->len, start, min_len);
85026533 4974 return -EINVAL;
d1310b2e
CM
4975 }
4976
4977 p = extent_buffer_page(eb, i);
a6591715 4978 kaddr = page_address(p);
d1310b2e
CM
4979 *map = kaddr + offset;
4980 *map_len = PAGE_CACHE_SIZE - offset;
4981 return 0;
4982}
d1310b2e 4983
d1310b2e
CM
4984int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4985 unsigned long start,
4986 unsigned long len)
4987{
4988 size_t cur;
4989 size_t offset;
4990 struct page *page;
4991 char *kaddr;
4992 char *ptr = (char *)ptrv;
4993 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4994 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4995 int ret = 0;
4996
4997 WARN_ON(start > eb->len);
4998 WARN_ON(start + len > eb->start + eb->len);
4999
778746b5 5000 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5001
d397712b 5002 while (len > 0) {
d1310b2e 5003 page = extent_buffer_page(eb, i);
d1310b2e
CM
5004
5005 cur = min(len, (PAGE_CACHE_SIZE - offset));
5006
a6591715 5007 kaddr = page_address(page);
d1310b2e 5008 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5009 if (ret)
5010 break;
5011
5012 ptr += cur;
5013 len -= cur;
5014 offset = 0;
5015 i++;
5016 }
5017 return ret;
5018}
d1310b2e
CM
5019
5020void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5021 unsigned long start, unsigned long len)
5022{
5023 size_t cur;
5024 size_t offset;
5025 struct page *page;
5026 char *kaddr;
5027 char *src = (char *)srcv;
5028 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5029 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5030
5031 WARN_ON(start > eb->len);
5032 WARN_ON(start + len > eb->start + eb->len);
5033
778746b5 5034 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5035
d397712b 5036 while (len > 0) {
d1310b2e
CM
5037 page = extent_buffer_page(eb, i);
5038 WARN_ON(!PageUptodate(page));
5039
5040 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5041 kaddr = page_address(page);
d1310b2e 5042 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5043
5044 src += cur;
5045 len -= cur;
5046 offset = 0;
5047 i++;
5048 }
5049}
d1310b2e
CM
5050
5051void memset_extent_buffer(struct extent_buffer *eb, char c,
5052 unsigned long start, unsigned long len)
5053{
5054 size_t cur;
5055 size_t offset;
5056 struct page *page;
5057 char *kaddr;
5058 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5059 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5060
5061 WARN_ON(start > eb->len);
5062 WARN_ON(start + len > eb->start + eb->len);
5063
778746b5 5064 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5065
d397712b 5066 while (len > 0) {
d1310b2e
CM
5067 page = extent_buffer_page(eb, i);
5068 WARN_ON(!PageUptodate(page));
5069
5070 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5071 kaddr = page_address(page);
d1310b2e 5072 memset(kaddr + offset, c, cur);
d1310b2e
CM
5073
5074 len -= cur;
5075 offset = 0;
5076 i++;
5077 }
5078}
d1310b2e
CM
5079
5080void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5081 unsigned long dst_offset, unsigned long src_offset,
5082 unsigned long len)
5083{
5084 u64 dst_len = dst->len;
5085 size_t cur;
5086 size_t offset;
5087 struct page *page;
5088 char *kaddr;
5089 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5090 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5091
5092 WARN_ON(src->len != dst_len);
5093
5094 offset = (start_offset + dst_offset) &
778746b5 5095 (PAGE_CACHE_SIZE - 1);
d1310b2e 5096
d397712b 5097 while (len > 0) {
d1310b2e
CM
5098 page = extent_buffer_page(dst, i);
5099 WARN_ON(!PageUptodate(page));
5100
5101 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5102
a6591715 5103 kaddr = page_address(page);
d1310b2e 5104 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5105
5106 src_offset += cur;
5107 len -= cur;
5108 offset = 0;
5109 i++;
5110 }
5111}
d1310b2e 5112
3387206f
ST
5113static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5114{
5115 unsigned long distance = (src > dst) ? src - dst : dst - src;
5116 return distance < len;
5117}
5118
d1310b2e
CM
5119static void copy_pages(struct page *dst_page, struct page *src_page,
5120 unsigned long dst_off, unsigned long src_off,
5121 unsigned long len)
5122{
a6591715 5123 char *dst_kaddr = page_address(dst_page);
d1310b2e 5124 char *src_kaddr;
727011e0 5125 int must_memmove = 0;
d1310b2e 5126
3387206f 5127 if (dst_page != src_page) {
a6591715 5128 src_kaddr = page_address(src_page);
3387206f 5129 } else {
d1310b2e 5130 src_kaddr = dst_kaddr;
727011e0
CM
5131 if (areas_overlap(src_off, dst_off, len))
5132 must_memmove = 1;
3387206f 5133 }
d1310b2e 5134
727011e0
CM
5135 if (must_memmove)
5136 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5137 else
5138 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5139}
5140
5141void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5142 unsigned long src_offset, unsigned long len)
5143{
5144 size_t cur;
5145 size_t dst_off_in_page;
5146 size_t src_off_in_page;
5147 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5148 unsigned long dst_i;
5149 unsigned long src_i;
5150
5151 if (src_offset + len > dst->len) {
d397712b
CM
5152 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5153 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5154 BUG_ON(1);
5155 }
5156 if (dst_offset + len > dst->len) {
d397712b
CM
5157 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5158 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5159 BUG_ON(1);
5160 }
5161
d397712b 5162 while (len > 0) {
d1310b2e 5163 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5164 (PAGE_CACHE_SIZE - 1);
d1310b2e 5165 src_off_in_page = (start_offset + src_offset) &
778746b5 5166 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5167
5168 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5169 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5170
5171 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5172 src_off_in_page));
5173 cur = min_t(unsigned long, cur,
5174 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5175
5176 copy_pages(extent_buffer_page(dst, dst_i),
5177 extent_buffer_page(dst, src_i),
5178 dst_off_in_page, src_off_in_page, cur);
5179
5180 src_offset += cur;
5181 dst_offset += cur;
5182 len -= cur;
5183 }
5184}
d1310b2e
CM
5185
5186void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5187 unsigned long src_offset, unsigned long len)
5188{
5189 size_t cur;
5190 size_t dst_off_in_page;
5191 size_t src_off_in_page;
5192 unsigned long dst_end = dst_offset + len - 1;
5193 unsigned long src_end = src_offset + len - 1;
5194 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5195 unsigned long dst_i;
5196 unsigned long src_i;
5197
5198 if (src_offset + len > dst->len) {
d397712b
CM
5199 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5200 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5201 BUG_ON(1);
5202 }
5203 if (dst_offset + len > dst->len) {
d397712b
CM
5204 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5205 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5206 BUG_ON(1);
5207 }
727011e0 5208 if (dst_offset < src_offset) {
d1310b2e
CM
5209 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5210 return;
5211 }
d397712b 5212 while (len > 0) {
d1310b2e
CM
5213 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5214 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5215
5216 dst_off_in_page = (start_offset + dst_end) &
778746b5 5217 (PAGE_CACHE_SIZE - 1);
d1310b2e 5218 src_off_in_page = (start_offset + src_end) &
778746b5 5219 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5220
5221 cur = min_t(unsigned long, len, src_off_in_page + 1);
5222 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5223 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5224 extent_buffer_page(dst, src_i),
5225 dst_off_in_page - cur + 1,
5226 src_off_in_page - cur + 1, cur);
5227
5228 dst_end -= cur;
5229 src_end -= cur;
5230 len -= cur;
5231 }
5232}
6af118ce 5233
f7a52a40 5234int try_release_extent_buffer(struct page *page)
19fe0a8b 5235{
6af118ce 5236 struct extent_buffer *eb;
6af118ce 5237
3083ee2e
JB
5238 /*
5239 * We need to make sure noboody is attaching this page to an eb right
5240 * now.
5241 */
5242 spin_lock(&page->mapping->private_lock);
5243 if (!PagePrivate(page)) {
5244 spin_unlock(&page->mapping->private_lock);
4f2de97a 5245 return 1;
45f49bce 5246 }
6af118ce 5247
3083ee2e
JB
5248 eb = (struct extent_buffer *)page->private;
5249 BUG_ON(!eb);
19fe0a8b
MX
5250
5251 /*
3083ee2e
JB
5252 * This is a little awful but should be ok, we need to make sure that
5253 * the eb doesn't disappear out from under us while we're looking at
5254 * this page.
19fe0a8b 5255 */
3083ee2e 5256 spin_lock(&eb->refs_lock);
0b32f4bb 5257 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5258 spin_unlock(&eb->refs_lock);
5259 spin_unlock(&page->mapping->private_lock);
5260 return 0;
b9473439 5261 }
3083ee2e 5262 spin_unlock(&page->mapping->private_lock);
897ca6e9 5263
19fe0a8b 5264 /*
3083ee2e
JB
5265 * If tree ref isn't set then we know the ref on this eb is a real ref,
5266 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5267 */
3083ee2e
JB
5268 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5269 spin_unlock(&eb->refs_lock);
5270 return 0;
b9473439 5271 }
19fe0a8b 5272
f7a52a40 5273 return release_extent_buffer(eb);
6af118ce 5274}