Btrfs: check for an extent_op on the locked ref
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
efe120a0 62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
6d49ba1b 63 "state %lu in tree %p refs %d\n",
c1c9ff7c
GU
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
6d49ba1b
ES
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78}
8d599ae1 79
a5dee37d
JB
80#define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 83 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 84{
a5dee37d
JB
85 struct inode *inode;
86 u64 isize;
8d599ae1 87
a5dee37d
JB
88 if (!tree->mapping)
89 return;
90
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
8d599ae1
DS
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
efe120a0 95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 96 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
97 }
98}
6d49ba1b
ES
99#else
100#define btrfs_leak_debug_add(new, head) do {} while (0)
101#define btrfs_leak_debug_del(entry) do {} while (0)
102#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 103#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 104#endif
d1310b2e 105
d1310b2e
CM
106#define BUFFER_LRU_MAX 64
107
108struct tree_entry {
109 u64 start;
110 u64 end;
d1310b2e
CM
111 struct rb_node rb_node;
112};
113
114struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
de0022b9 118 unsigned long bio_flags;
771ed689
CM
119
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
122 */
ffbd517d
CM
123 unsigned int extent_locked:1;
124
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
d1310b2e
CM
127};
128
0b32f4bb 129static noinline void flush_write_bio(void *data);
c2d904e0
JM
130static inline struct btrfs_fs_info *
131tree_fs_info(struct extent_io_tree *tree)
132{
a5dee37d
JB
133 if (!tree->mapping)
134 return NULL;
c2d904e0
JM
135 return btrfs_sb(tree->mapping->host->i_sb);
136}
0b32f4bb 137
d1310b2e
CM
138int __init extent_io_init(void)
139{
837e1972 140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
143 if (!extent_state_cache)
144 return -ENOMEM;
145
837e1972 146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
149 if (!extent_buffer_cache)
150 goto free_state_cache;
9be3395b
CM
151
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
b208c2f7
DW
156
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
159
d1310b2e
CM
160 return 0;
161
b208c2f7
DW
162free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
165
9be3395b
CM
166free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
169
d1310b2e
CM
170free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
9be3395b 172 extent_state_cache = NULL;
d1310b2e
CM
173 return -ENOMEM;
174}
175
176void extent_io_exit(void)
177{
6d49ba1b 178 btrfs_leak_debug_check();
8c0a8537
KS
179
180 /*
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
183 */
184 rcu_barrier();
d1310b2e
CM
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
d1310b2e
CM
191}
192
193void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 194 struct address_space *mapping)
d1310b2e 195{
6bef4d31 196 tree->state = RB_ROOT;
d1310b2e
CM
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
70dec807 199 spin_lock_init(&tree->lock);
d1310b2e 200 tree->mapping = mapping;
d1310b2e 201}
d1310b2e 202
b2950863 203static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
204{
205 struct extent_state *state;
d1310b2e
CM
206
207 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 208 if (!state)
d1310b2e
CM
209 return state;
210 state->state = 0;
d1310b2e 211 state->private = 0;
70dec807 212 state->tree = NULL;
6d49ba1b 213 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
143bede5 216 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
217 return state;
218}
d1310b2e 219
4845e44f 220void free_extent_state(struct extent_state *state)
d1310b2e 221{
d1310b2e
CM
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
70dec807 225 WARN_ON(state->tree);
6d49ba1b 226 btrfs_leak_debug_del(&state->leak_list);
143bede5 227 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
228 kmem_cache_free(extent_state_cache, state);
229 }
230}
d1310b2e 231
f2071b21
FM
232static struct rb_node *tree_insert(struct rb_root *root,
233 struct rb_node *search_start,
234 u64 offset,
12cfbad9
FDBM
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
d1310b2e 238{
f2071b21 239 struct rb_node **p;
d397712b 240 struct rb_node *parent = NULL;
d1310b2e
CM
241 struct tree_entry *entry;
242
12cfbad9
FDBM
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
247 }
248
f2071b21 249 p = search_start ? &search_start : &root->rb_node;
d397712b 250 while (*p) {
d1310b2e
CM
251 parent = *p;
252 entry = rb_entry(parent, struct tree_entry, rb_node);
253
254 if (offset < entry->start)
255 p = &(*p)->rb_left;
256 else if (offset > entry->end)
257 p = &(*p)->rb_right;
258 else
259 return parent;
260 }
261
12cfbad9 262do_insert:
d1310b2e
CM
263 rb_link_node(node, parent, p);
264 rb_insert_color(node, root);
265 return NULL;
266}
267
80ea96b1 268static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
269 struct rb_node **prev_ret,
270 struct rb_node **next_ret,
271 struct rb_node ***p_ret,
272 struct rb_node **parent_ret)
d1310b2e 273{
80ea96b1 274 struct rb_root *root = &tree->state;
12cfbad9 275 struct rb_node **n = &root->rb_node;
d1310b2e
CM
276 struct rb_node *prev = NULL;
277 struct rb_node *orig_prev = NULL;
278 struct tree_entry *entry;
279 struct tree_entry *prev_entry = NULL;
280
12cfbad9
FDBM
281 while (*n) {
282 prev = *n;
283 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
284 prev_entry = entry;
285
286 if (offset < entry->start)
12cfbad9 287 n = &(*n)->rb_left;
d1310b2e 288 else if (offset > entry->end)
12cfbad9 289 n = &(*n)->rb_right;
d397712b 290 else
12cfbad9 291 return *n;
d1310b2e
CM
292 }
293
12cfbad9
FDBM
294 if (p_ret)
295 *p_ret = n;
296 if (parent_ret)
297 *parent_ret = prev;
298
d1310b2e
CM
299 if (prev_ret) {
300 orig_prev = prev;
d397712b 301 while (prev && offset > prev_entry->end) {
d1310b2e
CM
302 prev = rb_next(prev);
303 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
304 }
305 *prev_ret = prev;
306 prev = orig_prev;
307 }
308
309 if (next_ret) {
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 311 while (prev && offset < prev_entry->start) {
d1310b2e
CM
312 prev = rb_prev(prev);
313 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
314 }
315 *next_ret = prev;
316 }
317 return NULL;
318}
319
12cfbad9
FDBM
320static inline struct rb_node *
321tree_search_for_insert(struct extent_io_tree *tree,
322 u64 offset,
323 struct rb_node ***p_ret,
324 struct rb_node **parent_ret)
d1310b2e 325{
70dec807 326 struct rb_node *prev = NULL;
d1310b2e 327 struct rb_node *ret;
70dec807 328
12cfbad9 329 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 330 if (!ret)
d1310b2e
CM
331 return prev;
332 return ret;
333}
334
12cfbad9
FDBM
335static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336 u64 offset)
337{
338 return tree_search_for_insert(tree, offset, NULL, NULL);
339}
340
9ed74f2d
JB
341static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342 struct extent_state *other)
343{
344 if (tree->ops && tree->ops->merge_extent_hook)
345 tree->ops->merge_extent_hook(tree->mapping->host, new,
346 other);
347}
348
d1310b2e
CM
349/*
350 * utility function to look for merge candidates inside a given range.
351 * Any extents with matching state are merged together into a single
352 * extent in the tree. Extents with EXTENT_IO in their state field
353 * are not merged because the end_io handlers need to be able to do
354 * operations on them without sleeping (or doing allocations/splits).
355 *
356 * This should be called with the tree lock held.
357 */
1bf85046
JM
358static void merge_state(struct extent_io_tree *tree,
359 struct extent_state *state)
d1310b2e
CM
360{
361 struct extent_state *other;
362 struct rb_node *other_node;
363
5b21f2ed 364 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 365 return;
d1310b2e
CM
366
367 other_node = rb_prev(&state->rb_node);
368 if (other_node) {
369 other = rb_entry(other_node, struct extent_state, rb_node);
370 if (other->end == state->start - 1 &&
371 other->state == state->state) {
9ed74f2d 372 merge_cb(tree, state, other);
d1310b2e 373 state->start = other->start;
70dec807 374 other->tree = NULL;
d1310b2e
CM
375 rb_erase(&other->rb_node, &tree->state);
376 free_extent_state(other);
377 }
378 }
379 other_node = rb_next(&state->rb_node);
380 if (other_node) {
381 other = rb_entry(other_node, struct extent_state, rb_node);
382 if (other->start == state->end + 1 &&
383 other->state == state->state) {
9ed74f2d 384 merge_cb(tree, state, other);
df98b6e2
JB
385 state->end = other->end;
386 other->tree = NULL;
387 rb_erase(&other->rb_node, &tree->state);
388 free_extent_state(other);
d1310b2e
CM
389 }
390 }
d1310b2e
CM
391}
392
1bf85046 393static void set_state_cb(struct extent_io_tree *tree,
41074888 394 struct extent_state *state, unsigned long *bits)
291d673e 395{
1bf85046
JM
396 if (tree->ops && tree->ops->set_bit_hook)
397 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
398}
399
400static void clear_state_cb(struct extent_io_tree *tree,
41074888 401 struct extent_state *state, unsigned long *bits)
291d673e 402{
9ed74f2d
JB
403 if (tree->ops && tree->ops->clear_bit_hook)
404 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
405}
406
3150b699 407static void set_state_bits(struct extent_io_tree *tree,
41074888 408 struct extent_state *state, unsigned long *bits);
3150b699 409
d1310b2e
CM
410/*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
422 struct rb_node ***p,
423 struct rb_node **parent,
41074888 424 unsigned long *bits)
d1310b2e
CM
425{
426 struct rb_node *node;
427
31b1a2bd 428 if (end < start)
efe120a0 429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 430 end, start);
d1310b2e
CM
431 state->start = start;
432 state->end = end;
9ed74f2d 433
3150b699
XG
434 set_state_bits(tree, state, bits);
435
f2071b21 436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 440 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
441 "%llu %llu\n",
442 found->start, found->end, start, end);
d1310b2e
CM
443 return -EEXIST;
444 }
70dec807 445 state->tree = tree;
d1310b2e
CM
446 merge_state(tree, state);
447 return 0;
448}
449
1bf85046 450static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
451 u64 split)
452{
453 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 454 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
455}
456
d1310b2e
CM
457/*
458 * split a given extent state struct in two, inserting the preallocated
459 * struct 'prealloc' as the newly created second half. 'split' indicates an
460 * offset inside 'orig' where it should be split.
461 *
462 * Before calling,
463 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
464 * are two extent state structs in the tree:
465 * prealloc: [orig->start, split - 1]
466 * orig: [ split, orig->end ]
467 *
468 * The tree locks are not taken by this function. They need to be held
469 * by the caller.
470 */
471static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472 struct extent_state *prealloc, u64 split)
473{
474 struct rb_node *node;
9ed74f2d
JB
475
476 split_cb(tree, orig, split);
477
d1310b2e
CM
478 prealloc->start = orig->start;
479 prealloc->end = split - 1;
480 prealloc->state = orig->state;
481 orig->start = split;
482
f2071b21
FM
483 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484 &prealloc->rb_node, NULL, NULL);
d1310b2e 485 if (node) {
d1310b2e
CM
486 free_extent_state(prealloc);
487 return -EEXIST;
488 }
70dec807 489 prealloc->tree = tree;
d1310b2e
CM
490 return 0;
491}
492
cdc6a395
LZ
493static struct extent_state *next_state(struct extent_state *state)
494{
495 struct rb_node *next = rb_next(&state->rb_node);
496 if (next)
497 return rb_entry(next, struct extent_state, rb_node);
498 else
499 return NULL;
500}
501
d1310b2e
CM
502/*
503 * utility function to clear some bits in an extent state struct.
1b303fc0 504 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
505 *
506 * If no bits are set on the state struct after clearing things, the
507 * struct is freed and removed from the tree
508 */
cdc6a395
LZ
509static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510 struct extent_state *state,
41074888 511 unsigned long *bits, int wake)
d1310b2e 512{
cdc6a395 513 struct extent_state *next;
41074888 514 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 515
0ca1f7ce 516 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
517 u64 range = state->end - state->start + 1;
518 WARN_ON(range > tree->dirty_bytes);
519 tree->dirty_bytes -= range;
520 }
291d673e 521 clear_state_cb(tree, state, bits);
32c00aff 522 state->state &= ~bits_to_clear;
d1310b2e
CM
523 if (wake)
524 wake_up(&state->wq);
0ca1f7ce 525 if (state->state == 0) {
cdc6a395 526 next = next_state(state);
70dec807 527 if (state->tree) {
d1310b2e 528 rb_erase(&state->rb_node, &tree->state);
70dec807 529 state->tree = NULL;
d1310b2e
CM
530 free_extent_state(state);
531 } else {
532 WARN_ON(1);
533 }
534 } else {
535 merge_state(tree, state);
cdc6a395 536 next = next_state(state);
d1310b2e 537 }
cdc6a395 538 return next;
d1310b2e
CM
539}
540
8233767a
XG
541static struct extent_state *
542alloc_extent_state_atomic(struct extent_state *prealloc)
543{
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546
547 return prealloc;
548}
549
48a3b636 550static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
551{
552 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553 "Extent tree was modified by another "
554 "thread while locked.");
555}
556
d1310b2e
CM
557/*
558 * clear some bits on a range in the tree. This may require splitting
559 * or inserting elements in the tree, so the gfp mask is used to
560 * indicate which allocations or sleeping are allowed.
561 *
562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563 * the given range from the tree regardless of state (ie for truncate).
564 *
565 * the range [start, end] is inclusive.
566 *
6763af84 567 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
568 */
569int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 570 unsigned long bits, int wake, int delete,
2c64c53d
CM
571 struct extent_state **cached_state,
572 gfp_t mask)
d1310b2e
CM
573{
574 struct extent_state *state;
2c64c53d 575 struct extent_state *cached;
d1310b2e
CM
576 struct extent_state *prealloc = NULL;
577 struct rb_node *node;
5c939df5 578 u64 last_end;
d1310b2e 579 int err;
2ac55d41 580 int clear = 0;
d1310b2e 581
a5dee37d 582 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 583
7ee9e440
JB
584 if (bits & EXTENT_DELALLOC)
585 bits |= EXTENT_NORESERVE;
586
0ca1f7ce
YZ
587 if (delete)
588 bits |= ~EXTENT_CTLBITS;
589 bits |= EXTENT_FIRST_DELALLOC;
590
2ac55d41
JB
591 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592 clear = 1;
d1310b2e
CM
593again:
594 if (!prealloc && (mask & __GFP_WAIT)) {
595 prealloc = alloc_extent_state(mask);
596 if (!prealloc)
597 return -ENOMEM;
598 }
599
cad321ad 600 spin_lock(&tree->lock);
2c64c53d
CM
601 if (cached_state) {
602 cached = *cached_state;
2ac55d41
JB
603
604 if (clear) {
605 *cached_state = NULL;
606 cached_state = NULL;
607 }
608
df98b6e2
JB
609 if (cached && cached->tree && cached->start <= start &&
610 cached->end > start) {
2ac55d41
JB
611 if (clear)
612 atomic_dec(&cached->refs);
2c64c53d 613 state = cached;
42daec29 614 goto hit_next;
2c64c53d 615 }
2ac55d41
JB
616 if (clear)
617 free_extent_state(cached);
2c64c53d 618 }
d1310b2e
CM
619 /*
620 * this search will find the extents that end after
621 * our range starts
622 */
80ea96b1 623 node = tree_search(tree, start);
d1310b2e
CM
624 if (!node)
625 goto out;
626 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 627hit_next:
d1310b2e
CM
628 if (state->start > end)
629 goto out;
630 WARN_ON(state->end < start);
5c939df5 631 last_end = state->end;
d1310b2e 632
0449314a 633 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
634 if (!(state->state & bits)) {
635 state = next_state(state);
0449314a 636 goto next;
cdc6a395 637 }
0449314a 638
d1310b2e
CM
639 /*
640 * | ---- desired range ---- |
641 * | state | or
642 * | ------------- state -------------- |
643 *
644 * We need to split the extent we found, and may flip
645 * bits on second half.
646 *
647 * If the extent we found extends past our range, we
648 * just split and search again. It'll get split again
649 * the next time though.
650 *
651 * If the extent we found is inside our range, we clear
652 * the desired bit on it.
653 */
654
655 if (state->start < start) {
8233767a
XG
656 prealloc = alloc_extent_state_atomic(prealloc);
657 BUG_ON(!prealloc);
d1310b2e 658 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
659 if (err)
660 extent_io_tree_panic(tree, err);
661
d1310b2e
CM
662 prealloc = NULL;
663 if (err)
664 goto out;
665 if (state->end <= end) {
d1ac6e41
LB
666 state = clear_state_bit(tree, state, &bits, wake);
667 goto next;
d1310b2e
CM
668 }
669 goto search_again;
670 }
671 /*
672 * | ---- desired range ---- |
673 * | state |
674 * We need to split the extent, and clear the bit
675 * on the first half
676 */
677 if (state->start <= end && state->end > end) {
8233767a
XG
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
d1310b2e 680 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
681 if (err)
682 extent_io_tree_panic(tree, err);
683
d1310b2e
CM
684 if (wake)
685 wake_up(&state->wq);
42daec29 686
6763af84 687 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 688
d1310b2e
CM
689 prealloc = NULL;
690 goto out;
691 }
42daec29 692
cdc6a395 693 state = clear_state_bit(tree, state, &bits, wake);
0449314a 694next:
5c939df5
YZ
695 if (last_end == (u64)-1)
696 goto out;
697 start = last_end + 1;
cdc6a395 698 if (start <= end && state && !need_resched())
692e5759 699 goto hit_next;
d1310b2e
CM
700 goto search_again;
701
702out:
cad321ad 703 spin_unlock(&tree->lock);
d1310b2e
CM
704 if (prealloc)
705 free_extent_state(prealloc);
706
6763af84 707 return 0;
d1310b2e
CM
708
709search_again:
710 if (start > end)
711 goto out;
cad321ad 712 spin_unlock(&tree->lock);
d1310b2e
CM
713 if (mask & __GFP_WAIT)
714 cond_resched();
715 goto again;
716}
d1310b2e 717
143bede5
JM
718static void wait_on_state(struct extent_io_tree *tree,
719 struct extent_state *state)
641f5219
CH
720 __releases(tree->lock)
721 __acquires(tree->lock)
d1310b2e
CM
722{
723 DEFINE_WAIT(wait);
724 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 725 spin_unlock(&tree->lock);
d1310b2e 726 schedule();
cad321ad 727 spin_lock(&tree->lock);
d1310b2e 728 finish_wait(&state->wq, &wait);
d1310b2e
CM
729}
730
731/*
732 * waits for one or more bits to clear on a range in the state tree.
733 * The range [start, end] is inclusive.
734 * The tree lock is taken by this function
735 */
41074888
DS
736static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 unsigned long bits)
d1310b2e
CM
738{
739 struct extent_state *state;
740 struct rb_node *node;
741
a5dee37d 742 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 743
cad321ad 744 spin_lock(&tree->lock);
d1310b2e
CM
745again:
746 while (1) {
747 /*
748 * this search will find all the extents that end after
749 * our range starts
750 */
80ea96b1 751 node = tree_search(tree, start);
d1310b2e
CM
752 if (!node)
753 break;
754
755 state = rb_entry(node, struct extent_state, rb_node);
756
757 if (state->start > end)
758 goto out;
759
760 if (state->state & bits) {
761 start = state->start;
762 atomic_inc(&state->refs);
763 wait_on_state(tree, state);
764 free_extent_state(state);
765 goto again;
766 }
767 start = state->end + 1;
768
769 if (start > end)
770 break;
771
ded91f08 772 cond_resched_lock(&tree->lock);
d1310b2e
CM
773 }
774out:
cad321ad 775 spin_unlock(&tree->lock);
d1310b2e 776}
d1310b2e 777
1bf85046 778static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 779 struct extent_state *state,
41074888 780 unsigned long *bits)
d1310b2e 781{
41074888 782 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 783
1bf85046 784 set_state_cb(tree, state, bits);
0ca1f7ce 785 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
786 u64 range = state->end - state->start + 1;
787 tree->dirty_bytes += range;
788 }
0ca1f7ce 789 state->state |= bits_to_set;
d1310b2e
CM
790}
791
2c64c53d
CM
792static void cache_state(struct extent_state *state,
793 struct extent_state **cached_ptr)
794{
795 if (cached_ptr && !(*cached_ptr)) {
796 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
797 *cached_ptr = state;
798 atomic_inc(&state->refs);
799 }
800 }
801}
802
d1310b2e 803/*
1edbb734
CM
804 * set some bits on a range in the tree. This may require allocations or
805 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 806 *
1edbb734
CM
807 * If any of the exclusive bits are set, this will fail with -EEXIST if some
808 * part of the range already has the desired bits set. The start of the
809 * existing range is returned in failed_start in this case.
d1310b2e 810 *
1edbb734 811 * [start, end] is inclusive This takes the tree lock.
d1310b2e 812 */
1edbb734 813
3fbe5c02
JM
814static int __must_check
815__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
816 unsigned long bits, unsigned long exclusive_bits,
817 u64 *failed_start, struct extent_state **cached_state,
818 gfp_t mask)
d1310b2e
CM
819{
820 struct extent_state *state;
821 struct extent_state *prealloc = NULL;
822 struct rb_node *node;
12cfbad9
FDBM
823 struct rb_node **p;
824 struct rb_node *parent;
d1310b2e 825 int err = 0;
d1310b2e
CM
826 u64 last_start;
827 u64 last_end;
42daec29 828
a5dee37d 829 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 830
0ca1f7ce 831 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
832again:
833 if (!prealloc && (mask & __GFP_WAIT)) {
834 prealloc = alloc_extent_state(mask);
8233767a 835 BUG_ON(!prealloc);
d1310b2e
CM
836 }
837
cad321ad 838 spin_lock(&tree->lock);
9655d298
CM
839 if (cached_state && *cached_state) {
840 state = *cached_state;
df98b6e2
JB
841 if (state->start <= start && state->end > start &&
842 state->tree) {
9655d298
CM
843 node = &state->rb_node;
844 goto hit_next;
845 }
846 }
d1310b2e
CM
847 /*
848 * this search will find all the extents that end after
849 * our range starts.
850 */
12cfbad9 851 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 852 if (!node) {
8233767a
XG
853 prealloc = alloc_extent_state_atomic(prealloc);
854 BUG_ON(!prealloc);
12cfbad9
FDBM
855 err = insert_state(tree, prealloc, start, end,
856 &p, &parent, &bits);
c2d904e0
JM
857 if (err)
858 extent_io_tree_panic(tree, err);
859
c42ac0bc 860 cache_state(prealloc, cached_state);
d1310b2e 861 prealloc = NULL;
d1310b2e
CM
862 goto out;
863 }
d1310b2e 864 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 865hit_next:
d1310b2e
CM
866 last_start = state->start;
867 last_end = state->end;
868
869 /*
870 * | ---- desired range ---- |
871 * | state |
872 *
873 * Just lock what we found and keep going
874 */
875 if (state->start == start && state->end <= end) {
1edbb734 876 if (state->state & exclusive_bits) {
d1310b2e
CM
877 *failed_start = state->start;
878 err = -EEXIST;
879 goto out;
880 }
42daec29 881
1bf85046 882 set_state_bits(tree, state, &bits);
2c64c53d 883 cache_state(state, cached_state);
d1310b2e 884 merge_state(tree, state);
5c939df5
YZ
885 if (last_end == (u64)-1)
886 goto out;
887 start = last_end + 1;
d1ac6e41
LB
888 state = next_state(state);
889 if (start < end && state && state->start == start &&
890 !need_resched())
891 goto hit_next;
d1310b2e
CM
892 goto search_again;
893 }
894
895 /*
896 * | ---- desired range ---- |
897 * | state |
898 * or
899 * | ------------- state -------------- |
900 *
901 * We need to split the extent we found, and may flip bits on
902 * second half.
903 *
904 * If the extent we found extends past our
905 * range, we just split and search again. It'll get split
906 * again the next time though.
907 *
908 * If the extent we found is inside our range, we set the
909 * desired bit on it.
910 */
911 if (state->start < start) {
1edbb734 912 if (state->state & exclusive_bits) {
d1310b2e
CM
913 *failed_start = start;
914 err = -EEXIST;
915 goto out;
916 }
8233767a
XG
917
918 prealloc = alloc_extent_state_atomic(prealloc);
919 BUG_ON(!prealloc);
d1310b2e 920 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
921 if (err)
922 extent_io_tree_panic(tree, err);
923
d1310b2e
CM
924 prealloc = NULL;
925 if (err)
926 goto out;
927 if (state->end <= end) {
1bf85046 928 set_state_bits(tree, state, &bits);
2c64c53d 929 cache_state(state, cached_state);
d1310b2e 930 merge_state(tree, state);
5c939df5
YZ
931 if (last_end == (u64)-1)
932 goto out;
933 start = last_end + 1;
d1ac6e41
LB
934 state = next_state(state);
935 if (start < end && state && state->start == start &&
936 !need_resched())
937 goto hit_next;
d1310b2e
CM
938 }
939 goto search_again;
940 }
941 /*
942 * | ---- desired range ---- |
943 * | state | or | state |
944 *
945 * There's a hole, we need to insert something in it and
946 * ignore the extent we found.
947 */
948 if (state->start > start) {
949 u64 this_end;
950 if (end < last_start)
951 this_end = end;
952 else
d397712b 953 this_end = last_start - 1;
8233767a
XG
954
955 prealloc = alloc_extent_state_atomic(prealloc);
956 BUG_ON(!prealloc);
c7f895a2
XG
957
958 /*
959 * Avoid to free 'prealloc' if it can be merged with
960 * the later extent.
961 */
d1310b2e 962 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 963 NULL, NULL, &bits);
c2d904e0
JM
964 if (err)
965 extent_io_tree_panic(tree, err);
966
9ed74f2d
JB
967 cache_state(prealloc, cached_state);
968 prealloc = NULL;
d1310b2e
CM
969 start = this_end + 1;
970 goto search_again;
971 }
972 /*
973 * | ---- desired range ---- |
974 * | state |
975 * We need to split the extent, and set the bit
976 * on the first half
977 */
978 if (state->start <= end && state->end > end) {
1edbb734 979 if (state->state & exclusive_bits) {
d1310b2e
CM
980 *failed_start = start;
981 err = -EEXIST;
982 goto out;
983 }
8233767a
XG
984
985 prealloc = alloc_extent_state_atomic(prealloc);
986 BUG_ON(!prealloc);
d1310b2e 987 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
988 if (err)
989 extent_io_tree_panic(tree, err);
d1310b2e 990
1bf85046 991 set_state_bits(tree, prealloc, &bits);
2c64c53d 992 cache_state(prealloc, cached_state);
d1310b2e
CM
993 merge_state(tree, prealloc);
994 prealloc = NULL;
995 goto out;
996 }
997
998 goto search_again;
999
1000out:
cad321ad 1001 spin_unlock(&tree->lock);
d1310b2e
CM
1002 if (prealloc)
1003 free_extent_state(prealloc);
1004
1005 return err;
1006
1007search_again:
1008 if (start > end)
1009 goto out;
cad321ad 1010 spin_unlock(&tree->lock);
d1310b2e
CM
1011 if (mask & __GFP_WAIT)
1012 cond_resched();
1013 goto again;
1014}
d1310b2e 1015
41074888
DS
1016int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1017 unsigned long bits, u64 * failed_start,
1018 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1019{
1020 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1021 cached_state, mask);
1022}
1023
1024
462d6fac 1025/**
10983f2e
LB
1026 * convert_extent_bit - convert all bits in a given range from one bit to
1027 * another
462d6fac
JB
1028 * @tree: the io tree to search
1029 * @start: the start offset in bytes
1030 * @end: the end offset in bytes (inclusive)
1031 * @bits: the bits to set in this range
1032 * @clear_bits: the bits to clear in this range
e6138876 1033 * @cached_state: state that we're going to cache
462d6fac
JB
1034 * @mask: the allocation mask
1035 *
1036 * This will go through and set bits for the given range. If any states exist
1037 * already in this range they are set with the given bit and cleared of the
1038 * clear_bits. This is only meant to be used by things that are mergeable, ie
1039 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1040 * boundary bits like LOCK.
1041 */
1042int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1043 unsigned long bits, unsigned long clear_bits,
e6138876 1044 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1045{
1046 struct extent_state *state;
1047 struct extent_state *prealloc = NULL;
1048 struct rb_node *node;
12cfbad9
FDBM
1049 struct rb_node **p;
1050 struct rb_node *parent;
462d6fac
JB
1051 int err = 0;
1052 u64 last_start;
1053 u64 last_end;
1054
a5dee37d 1055 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1056
462d6fac
JB
1057again:
1058 if (!prealloc && (mask & __GFP_WAIT)) {
1059 prealloc = alloc_extent_state(mask);
1060 if (!prealloc)
1061 return -ENOMEM;
1062 }
1063
1064 spin_lock(&tree->lock);
e6138876
JB
1065 if (cached_state && *cached_state) {
1066 state = *cached_state;
1067 if (state->start <= start && state->end > start &&
1068 state->tree) {
1069 node = &state->rb_node;
1070 goto hit_next;
1071 }
1072 }
1073
462d6fac
JB
1074 /*
1075 * this search will find all the extents that end after
1076 * our range starts.
1077 */
12cfbad9 1078 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1079 if (!node) {
1080 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1081 if (!prealloc) {
1082 err = -ENOMEM;
1083 goto out;
1084 }
12cfbad9
FDBM
1085 err = insert_state(tree, prealloc, start, end,
1086 &p, &parent, &bits);
c2d904e0
JM
1087 if (err)
1088 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1089 cache_state(prealloc, cached_state);
1090 prealloc = NULL;
462d6fac
JB
1091 goto out;
1092 }
1093 state = rb_entry(node, struct extent_state, rb_node);
1094hit_next:
1095 last_start = state->start;
1096 last_end = state->end;
1097
1098 /*
1099 * | ---- desired range ---- |
1100 * | state |
1101 *
1102 * Just lock what we found and keep going
1103 */
1104 if (state->start == start && state->end <= end) {
462d6fac 1105 set_state_bits(tree, state, &bits);
e6138876 1106 cache_state(state, cached_state);
d1ac6e41 1107 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1108 if (last_end == (u64)-1)
1109 goto out;
462d6fac 1110 start = last_end + 1;
d1ac6e41
LB
1111 if (start < end && state && state->start == start &&
1112 !need_resched())
1113 goto hit_next;
462d6fac
JB
1114 goto search_again;
1115 }
1116
1117 /*
1118 * | ---- desired range ---- |
1119 * | state |
1120 * or
1121 * | ------------- state -------------- |
1122 *
1123 * We need to split the extent we found, and may flip bits on
1124 * second half.
1125 *
1126 * If the extent we found extends past our
1127 * range, we just split and search again. It'll get split
1128 * again the next time though.
1129 *
1130 * If the extent we found is inside our range, we set the
1131 * desired bit on it.
1132 */
1133 if (state->start < start) {
1134 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1135 if (!prealloc) {
1136 err = -ENOMEM;
1137 goto out;
1138 }
462d6fac 1139 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1140 if (err)
1141 extent_io_tree_panic(tree, err);
462d6fac
JB
1142 prealloc = NULL;
1143 if (err)
1144 goto out;
1145 if (state->end <= end) {
1146 set_state_bits(tree, state, &bits);
e6138876 1147 cache_state(state, cached_state);
d1ac6e41 1148 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1149 if (last_end == (u64)-1)
1150 goto out;
1151 start = last_end + 1;
d1ac6e41
LB
1152 if (start < end && state && state->start == start &&
1153 !need_resched())
1154 goto hit_next;
462d6fac
JB
1155 }
1156 goto search_again;
1157 }
1158 /*
1159 * | ---- desired range ---- |
1160 * | state | or | state |
1161 *
1162 * There's a hole, we need to insert something in it and
1163 * ignore the extent we found.
1164 */
1165 if (state->start > start) {
1166 u64 this_end;
1167 if (end < last_start)
1168 this_end = end;
1169 else
1170 this_end = last_start - 1;
1171
1172 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1173 if (!prealloc) {
1174 err = -ENOMEM;
1175 goto out;
1176 }
462d6fac
JB
1177
1178 /*
1179 * Avoid to free 'prealloc' if it can be merged with
1180 * the later extent.
1181 */
1182 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1183 NULL, NULL, &bits);
c2d904e0
JM
1184 if (err)
1185 extent_io_tree_panic(tree, err);
e6138876 1186 cache_state(prealloc, cached_state);
462d6fac
JB
1187 prealloc = NULL;
1188 start = this_end + 1;
1189 goto search_again;
1190 }
1191 /*
1192 * | ---- desired range ---- |
1193 * | state |
1194 * We need to split the extent, and set the bit
1195 * on the first half
1196 */
1197 if (state->start <= end && state->end > end) {
1198 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1199 if (!prealloc) {
1200 err = -ENOMEM;
1201 goto out;
1202 }
462d6fac
JB
1203
1204 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1205 if (err)
1206 extent_io_tree_panic(tree, err);
462d6fac
JB
1207
1208 set_state_bits(tree, prealloc, &bits);
e6138876 1209 cache_state(prealloc, cached_state);
462d6fac 1210 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1211 prealloc = NULL;
1212 goto out;
1213 }
1214
1215 goto search_again;
1216
1217out:
1218 spin_unlock(&tree->lock);
1219 if (prealloc)
1220 free_extent_state(prealloc);
1221
1222 return err;
1223
1224search_again:
1225 if (start > end)
1226 goto out;
1227 spin_unlock(&tree->lock);
1228 if (mask & __GFP_WAIT)
1229 cond_resched();
1230 goto again;
1231}
1232
d1310b2e
CM
1233/* wrappers around set/clear extent bit */
1234int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1235 gfp_t mask)
1236{
3fbe5c02 1237 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1238 NULL, mask);
d1310b2e 1239}
d1310b2e
CM
1240
1241int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1242 unsigned long bits, gfp_t mask)
d1310b2e 1243{
3fbe5c02 1244 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1245 NULL, mask);
d1310b2e 1246}
d1310b2e
CM
1247
1248int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1249 unsigned long bits, gfp_t mask)
d1310b2e 1250{
2c64c53d 1251 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1252}
d1310b2e
CM
1253
1254int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1255 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1256{
1257 return set_extent_bit(tree, start, end,
fee187d9 1258 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1259 NULL, cached_state, mask);
d1310b2e 1260}
d1310b2e 1261
9e8a4a8b
LB
1262int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1263 struct extent_state **cached_state, gfp_t mask)
1264{
1265 return set_extent_bit(tree, start, end,
1266 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1267 NULL, cached_state, mask);
1268}
1269
d1310b2e
CM
1270int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1271 gfp_t mask)
1272{
1273 return clear_extent_bit(tree, start, end,
32c00aff 1274 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1275 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1276}
d1310b2e
CM
1277
1278int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1279 gfp_t mask)
1280{
3fbe5c02 1281 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1282 NULL, mask);
d1310b2e 1283}
d1310b2e 1284
d1310b2e 1285int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1286 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1287{
6b67a320 1288 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1289 cached_state, mask);
d1310b2e 1290}
d1310b2e 1291
5fd02043
JB
1292int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1293 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1294{
2c64c53d 1295 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1296 cached_state, mask);
d1310b2e 1297}
d1310b2e 1298
d352ac68
CM
1299/*
1300 * either insert or lock state struct between start and end use mask to tell
1301 * us if waiting is desired.
1302 */
1edbb734 1303int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1304 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1305{
1306 int err;
1307 u64 failed_start;
1308 while (1) {
3fbe5c02
JM
1309 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1310 EXTENT_LOCKED, &failed_start,
1311 cached_state, GFP_NOFS);
d0082371 1312 if (err == -EEXIST) {
d1310b2e
CM
1313 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1314 start = failed_start;
d0082371 1315 } else
d1310b2e 1316 break;
d1310b2e
CM
1317 WARN_ON(start > end);
1318 }
1319 return err;
1320}
d1310b2e 1321
d0082371 1322int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1323{
d0082371 1324 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1325}
1326
d0082371 1327int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1328{
1329 int err;
1330 u64 failed_start;
1331
3fbe5c02
JM
1332 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1333 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1334 if (err == -EEXIST) {
1335 if (failed_start > start)
1336 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1337 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1338 return 0;
6643558d 1339 }
25179201
JB
1340 return 1;
1341}
25179201 1342
2c64c53d
CM
1343int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1344 struct extent_state **cached, gfp_t mask)
1345{
1346 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1347 mask);
1348}
1349
d0082371 1350int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1351{
2c64c53d 1352 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1353 GFP_NOFS);
d1310b2e 1354}
d1310b2e 1355
4adaa611
CM
1356int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1357{
1358 unsigned long index = start >> PAGE_CACHE_SHIFT;
1359 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1360 struct page *page;
1361
1362 while (index <= end_index) {
1363 page = find_get_page(inode->i_mapping, index);
1364 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1365 clear_page_dirty_for_io(page);
1366 page_cache_release(page);
1367 index++;
1368 }
1369 return 0;
1370}
1371
1372int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1373{
1374 unsigned long index = start >> PAGE_CACHE_SHIFT;
1375 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1376 struct page *page;
1377
1378 while (index <= end_index) {
1379 page = find_get_page(inode->i_mapping, index);
1380 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1381 account_page_redirty(page);
1382 __set_page_dirty_nobuffers(page);
1383 page_cache_release(page);
1384 index++;
1385 }
1386 return 0;
1387}
1388
d1310b2e
CM
1389/*
1390 * helper function to set both pages and extents in the tree writeback
1391 */
b2950863 1392static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1393{
1394 unsigned long index = start >> PAGE_CACHE_SHIFT;
1395 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1396 struct page *page;
1397
1398 while (index <= end_index) {
1399 page = find_get_page(tree->mapping, index);
79787eaa 1400 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1401 set_page_writeback(page);
1402 page_cache_release(page);
1403 index++;
1404 }
d1310b2e
CM
1405 return 0;
1406}
d1310b2e 1407
d352ac68
CM
1408/* find the first state struct with 'bits' set after 'start', and
1409 * return it. tree->lock must be held. NULL will returned if
1410 * nothing was found after 'start'
1411 */
48a3b636
ES
1412static struct extent_state *
1413find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1414 u64 start, unsigned long bits)
d7fc640e
CM
1415{
1416 struct rb_node *node;
1417 struct extent_state *state;
1418
1419 /*
1420 * this search will find all the extents that end after
1421 * our range starts.
1422 */
1423 node = tree_search(tree, start);
d397712b 1424 if (!node)
d7fc640e 1425 goto out;
d7fc640e 1426
d397712b 1427 while (1) {
d7fc640e 1428 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1429 if (state->end >= start && (state->state & bits))
d7fc640e 1430 return state;
d397712b 1431
d7fc640e
CM
1432 node = rb_next(node);
1433 if (!node)
1434 break;
1435 }
1436out:
1437 return NULL;
1438}
d7fc640e 1439
69261c4b
XG
1440/*
1441 * find the first offset in the io tree with 'bits' set. zero is
1442 * returned if we find something, and *start_ret and *end_ret are
1443 * set to reflect the state struct that was found.
1444 *
477d7eaf 1445 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1446 */
1447int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1448 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1449 struct extent_state **cached_state)
69261c4b
XG
1450{
1451 struct extent_state *state;
e6138876 1452 struct rb_node *n;
69261c4b
XG
1453 int ret = 1;
1454
1455 spin_lock(&tree->lock);
e6138876
JB
1456 if (cached_state && *cached_state) {
1457 state = *cached_state;
1458 if (state->end == start - 1 && state->tree) {
1459 n = rb_next(&state->rb_node);
1460 while (n) {
1461 state = rb_entry(n, struct extent_state,
1462 rb_node);
1463 if (state->state & bits)
1464 goto got_it;
1465 n = rb_next(n);
1466 }
1467 free_extent_state(*cached_state);
1468 *cached_state = NULL;
1469 goto out;
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 }
1474
69261c4b 1475 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1476got_it:
69261c4b 1477 if (state) {
e6138876 1478 cache_state(state, cached_state);
69261c4b
XG
1479 *start_ret = state->start;
1480 *end_ret = state->end;
1481 ret = 0;
1482 }
e6138876 1483out:
69261c4b
XG
1484 spin_unlock(&tree->lock);
1485 return ret;
1486}
1487
d352ac68
CM
1488/*
1489 * find a contiguous range of bytes in the file marked as delalloc, not
1490 * more than 'max_bytes'. start and end are used to return the range,
1491 *
1492 * 1 is returned if we find something, 0 if nothing was in the tree
1493 */
c8b97818 1494static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1495 u64 *start, u64 *end, u64 max_bytes,
1496 struct extent_state **cached_state)
d1310b2e
CM
1497{
1498 struct rb_node *node;
1499 struct extent_state *state;
1500 u64 cur_start = *start;
1501 u64 found = 0;
1502 u64 total_bytes = 0;
1503
cad321ad 1504 spin_lock(&tree->lock);
c8b97818 1505
d1310b2e
CM
1506 /*
1507 * this search will find all the extents that end after
1508 * our range starts.
1509 */
80ea96b1 1510 node = tree_search(tree, cur_start);
2b114d1d 1511 if (!node) {
3b951516
CM
1512 if (!found)
1513 *end = (u64)-1;
d1310b2e
CM
1514 goto out;
1515 }
1516
d397712b 1517 while (1) {
d1310b2e 1518 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1519 if (found && (state->start != cur_start ||
1520 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1521 goto out;
1522 }
1523 if (!(state->state & EXTENT_DELALLOC)) {
1524 if (!found)
1525 *end = state->end;
1526 goto out;
1527 }
c2a128d2 1528 if (!found) {
d1310b2e 1529 *start = state->start;
c2a128d2
JB
1530 *cached_state = state;
1531 atomic_inc(&state->refs);
1532 }
d1310b2e
CM
1533 found++;
1534 *end = state->end;
1535 cur_start = state->end + 1;
1536 node = rb_next(node);
d1310b2e 1537 total_bytes += state->end - state->start + 1;
7bf811a5 1538 if (total_bytes >= max_bytes)
573aecaf 1539 break;
573aecaf 1540 if (!node)
d1310b2e
CM
1541 break;
1542 }
1543out:
cad321ad 1544 spin_unlock(&tree->lock);
d1310b2e
CM
1545 return found;
1546}
1547
143bede5
JM
1548static noinline void __unlock_for_delalloc(struct inode *inode,
1549 struct page *locked_page,
1550 u64 start, u64 end)
c8b97818
CM
1551{
1552 int ret;
1553 struct page *pages[16];
1554 unsigned long index = start >> PAGE_CACHE_SHIFT;
1555 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1556 unsigned long nr_pages = end_index - index + 1;
1557 int i;
1558
1559 if (index == locked_page->index && end_index == index)
143bede5 1560 return;
c8b97818 1561
d397712b 1562 while (nr_pages > 0) {
c8b97818 1563 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1564 min_t(unsigned long, nr_pages,
1565 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1566 for (i = 0; i < ret; i++) {
1567 if (pages[i] != locked_page)
1568 unlock_page(pages[i]);
1569 page_cache_release(pages[i]);
1570 }
1571 nr_pages -= ret;
1572 index += ret;
1573 cond_resched();
1574 }
c8b97818
CM
1575}
1576
1577static noinline int lock_delalloc_pages(struct inode *inode,
1578 struct page *locked_page,
1579 u64 delalloc_start,
1580 u64 delalloc_end)
1581{
1582 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1583 unsigned long start_index = index;
1584 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1585 unsigned long pages_locked = 0;
1586 struct page *pages[16];
1587 unsigned long nrpages;
1588 int ret;
1589 int i;
1590
1591 /* the caller is responsible for locking the start index */
1592 if (index == locked_page->index && index == end_index)
1593 return 0;
1594
1595 /* skip the page at the start index */
1596 nrpages = end_index - index + 1;
d397712b 1597 while (nrpages > 0) {
c8b97818 1598 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1599 min_t(unsigned long,
1600 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1601 if (ret == 0) {
1602 ret = -EAGAIN;
1603 goto done;
1604 }
1605 /* now we have an array of pages, lock them all */
1606 for (i = 0; i < ret; i++) {
1607 /*
1608 * the caller is taking responsibility for
1609 * locked_page
1610 */
771ed689 1611 if (pages[i] != locked_page) {
c8b97818 1612 lock_page(pages[i]);
f2b1c41c
CM
1613 if (!PageDirty(pages[i]) ||
1614 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1615 ret = -EAGAIN;
1616 unlock_page(pages[i]);
1617 page_cache_release(pages[i]);
1618 goto done;
1619 }
1620 }
c8b97818 1621 page_cache_release(pages[i]);
771ed689 1622 pages_locked++;
c8b97818 1623 }
c8b97818
CM
1624 nrpages -= ret;
1625 index += ret;
1626 cond_resched();
1627 }
1628 ret = 0;
1629done:
1630 if (ret && pages_locked) {
1631 __unlock_for_delalloc(inode, locked_page,
1632 delalloc_start,
1633 ((u64)(start_index + pages_locked - 1)) <<
1634 PAGE_CACHE_SHIFT);
1635 }
1636 return ret;
1637}
1638
1639/*
1640 * find a contiguous range of bytes in the file marked as delalloc, not
1641 * more than 'max_bytes'. start and end are used to return the range,
1642 *
1643 * 1 is returned if we find something, 0 if nothing was in the tree
1644 */
294e30fe
JB
1645STATIC u64 find_lock_delalloc_range(struct inode *inode,
1646 struct extent_io_tree *tree,
1647 struct page *locked_page, u64 *start,
1648 u64 *end, u64 max_bytes)
c8b97818
CM
1649{
1650 u64 delalloc_start;
1651 u64 delalloc_end;
1652 u64 found;
9655d298 1653 struct extent_state *cached_state = NULL;
c8b97818
CM
1654 int ret;
1655 int loops = 0;
1656
1657again:
1658 /* step one, find a bunch of delalloc bytes starting at start */
1659 delalloc_start = *start;
1660 delalloc_end = 0;
1661 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1662 max_bytes, &cached_state);
70b99e69 1663 if (!found || delalloc_end <= *start) {
c8b97818
CM
1664 *start = delalloc_start;
1665 *end = delalloc_end;
c2a128d2 1666 free_extent_state(cached_state);
385fe0be 1667 return 0;
c8b97818
CM
1668 }
1669
70b99e69
CM
1670 /*
1671 * start comes from the offset of locked_page. We have to lock
1672 * pages in order, so we can't process delalloc bytes before
1673 * locked_page
1674 */
d397712b 1675 if (delalloc_start < *start)
70b99e69 1676 delalloc_start = *start;
70b99e69 1677
c8b97818
CM
1678 /*
1679 * make sure to limit the number of pages we try to lock down
c8b97818 1680 */
7bf811a5
JB
1681 if (delalloc_end + 1 - delalloc_start > max_bytes)
1682 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1683
c8b97818
CM
1684 /* step two, lock all the pages after the page that has start */
1685 ret = lock_delalloc_pages(inode, locked_page,
1686 delalloc_start, delalloc_end);
1687 if (ret == -EAGAIN) {
1688 /* some of the pages are gone, lets avoid looping by
1689 * shortening the size of the delalloc range we're searching
1690 */
9655d298 1691 free_extent_state(cached_state);
c8b97818 1692 if (!loops) {
7bf811a5 1693 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1694 loops = 1;
1695 goto again;
1696 } else {
1697 found = 0;
1698 goto out_failed;
1699 }
1700 }
79787eaa 1701 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1702
1703 /* step three, lock the state bits for the whole range */
d0082371 1704 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1705
1706 /* then test to make sure it is all still delalloc */
1707 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1708 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1709 if (!ret) {
9655d298
CM
1710 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1711 &cached_state, GFP_NOFS);
c8b97818
CM
1712 __unlock_for_delalloc(inode, locked_page,
1713 delalloc_start, delalloc_end);
1714 cond_resched();
1715 goto again;
1716 }
9655d298 1717 free_extent_state(cached_state);
c8b97818
CM
1718 *start = delalloc_start;
1719 *end = delalloc_end;
1720out_failed:
1721 return found;
1722}
1723
c2790a2e
JB
1724int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1725 struct page *locked_page,
1726 unsigned long clear_bits,
1727 unsigned long page_ops)
c8b97818 1728{
c2790a2e 1729 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1730 int ret;
1731 struct page *pages[16];
1732 unsigned long index = start >> PAGE_CACHE_SHIFT;
1733 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1734 unsigned long nr_pages = end_index - index + 1;
1735 int i;
771ed689 1736
2c64c53d 1737 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1738 if (page_ops == 0)
771ed689 1739 return 0;
c8b97818 1740
d397712b 1741 while (nr_pages > 0) {
c8b97818 1742 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1743 min_t(unsigned long,
1744 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1745 for (i = 0; i < ret; i++) {
8b62b72b 1746
c2790a2e 1747 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1748 SetPagePrivate2(pages[i]);
1749
c8b97818
CM
1750 if (pages[i] == locked_page) {
1751 page_cache_release(pages[i]);
1752 continue;
1753 }
c2790a2e 1754 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1755 clear_page_dirty_for_io(pages[i]);
c2790a2e 1756 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1757 set_page_writeback(pages[i]);
c2790a2e 1758 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1759 end_page_writeback(pages[i]);
c2790a2e 1760 if (page_ops & PAGE_UNLOCK)
771ed689 1761 unlock_page(pages[i]);
c8b97818
CM
1762 page_cache_release(pages[i]);
1763 }
1764 nr_pages -= ret;
1765 index += ret;
1766 cond_resched();
1767 }
1768 return 0;
1769}
c8b97818 1770
d352ac68
CM
1771/*
1772 * count the number of bytes in the tree that have a given bit(s)
1773 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1774 * cached. The total number found is returned.
1775 */
d1310b2e
CM
1776u64 count_range_bits(struct extent_io_tree *tree,
1777 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1778 unsigned long bits, int contig)
d1310b2e
CM
1779{
1780 struct rb_node *node;
1781 struct extent_state *state;
1782 u64 cur_start = *start;
1783 u64 total_bytes = 0;
ec29ed5b 1784 u64 last = 0;
d1310b2e
CM
1785 int found = 0;
1786
fae7f21c 1787 if (WARN_ON(search_end <= cur_start))
d1310b2e 1788 return 0;
d1310b2e 1789
cad321ad 1790 spin_lock(&tree->lock);
d1310b2e
CM
1791 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1792 total_bytes = tree->dirty_bytes;
1793 goto out;
1794 }
1795 /*
1796 * this search will find all the extents that end after
1797 * our range starts.
1798 */
80ea96b1 1799 node = tree_search(tree, cur_start);
d397712b 1800 if (!node)
d1310b2e 1801 goto out;
d1310b2e 1802
d397712b 1803 while (1) {
d1310b2e
CM
1804 state = rb_entry(node, struct extent_state, rb_node);
1805 if (state->start > search_end)
1806 break;
ec29ed5b
CM
1807 if (contig && found && state->start > last + 1)
1808 break;
1809 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1810 total_bytes += min(search_end, state->end) + 1 -
1811 max(cur_start, state->start);
1812 if (total_bytes >= max_bytes)
1813 break;
1814 if (!found) {
af60bed2 1815 *start = max(cur_start, state->start);
d1310b2e
CM
1816 found = 1;
1817 }
ec29ed5b
CM
1818 last = state->end;
1819 } else if (contig && found) {
1820 break;
d1310b2e
CM
1821 }
1822 node = rb_next(node);
1823 if (!node)
1824 break;
1825 }
1826out:
cad321ad 1827 spin_unlock(&tree->lock);
d1310b2e
CM
1828 return total_bytes;
1829}
b2950863 1830
d352ac68
CM
1831/*
1832 * set the private field for a given byte offset in the tree. If there isn't
1833 * an extent_state there already, this does nothing.
1834 */
171170c1 1835static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1836{
1837 struct rb_node *node;
1838 struct extent_state *state;
1839 int ret = 0;
1840
cad321ad 1841 spin_lock(&tree->lock);
d1310b2e
CM
1842 /*
1843 * this search will find all the extents that end after
1844 * our range starts.
1845 */
80ea96b1 1846 node = tree_search(tree, start);
2b114d1d 1847 if (!node) {
d1310b2e
CM
1848 ret = -ENOENT;
1849 goto out;
1850 }
1851 state = rb_entry(node, struct extent_state, rb_node);
1852 if (state->start != start) {
1853 ret = -ENOENT;
1854 goto out;
1855 }
1856 state->private = private;
1857out:
cad321ad 1858 spin_unlock(&tree->lock);
d1310b2e
CM
1859 return ret;
1860}
1861
1862int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1863{
1864 struct rb_node *node;
1865 struct extent_state *state;
1866 int ret = 0;
1867
cad321ad 1868 spin_lock(&tree->lock);
d1310b2e
CM
1869 /*
1870 * this search will find all the extents that end after
1871 * our range starts.
1872 */
80ea96b1 1873 node = tree_search(tree, start);
2b114d1d 1874 if (!node) {
d1310b2e
CM
1875 ret = -ENOENT;
1876 goto out;
1877 }
1878 state = rb_entry(node, struct extent_state, rb_node);
1879 if (state->start != start) {
1880 ret = -ENOENT;
1881 goto out;
1882 }
1883 *private = state->private;
1884out:
cad321ad 1885 spin_unlock(&tree->lock);
d1310b2e
CM
1886 return ret;
1887}
1888
1889/*
1890 * searches a range in the state tree for a given mask.
70dec807 1891 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1892 * has the bits set. Otherwise, 1 is returned if any bit in the
1893 * range is found set.
1894 */
1895int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1896 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1897{
1898 struct extent_state *state = NULL;
1899 struct rb_node *node;
1900 int bitset = 0;
d1310b2e 1901
cad321ad 1902 spin_lock(&tree->lock);
df98b6e2
JB
1903 if (cached && cached->tree && cached->start <= start &&
1904 cached->end > start)
9655d298
CM
1905 node = &cached->rb_node;
1906 else
1907 node = tree_search(tree, start);
d1310b2e
CM
1908 while (node && start <= end) {
1909 state = rb_entry(node, struct extent_state, rb_node);
1910
1911 if (filled && state->start > start) {
1912 bitset = 0;
1913 break;
1914 }
1915
1916 if (state->start > end)
1917 break;
1918
1919 if (state->state & bits) {
1920 bitset = 1;
1921 if (!filled)
1922 break;
1923 } else if (filled) {
1924 bitset = 0;
1925 break;
1926 }
46562cec
CM
1927
1928 if (state->end == (u64)-1)
1929 break;
1930
d1310b2e
CM
1931 start = state->end + 1;
1932 if (start > end)
1933 break;
1934 node = rb_next(node);
1935 if (!node) {
1936 if (filled)
1937 bitset = 0;
1938 break;
1939 }
1940 }
cad321ad 1941 spin_unlock(&tree->lock);
d1310b2e
CM
1942 return bitset;
1943}
d1310b2e
CM
1944
1945/*
1946 * helper function to set a given page up to date if all the
1947 * extents in the tree for that page are up to date
1948 */
143bede5 1949static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1950{
4eee4fa4 1951 u64 start = page_offset(page);
d1310b2e 1952 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1953 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1954 SetPageUptodate(page);
d1310b2e
CM
1955}
1956
4a54c8c1
JS
1957/*
1958 * When IO fails, either with EIO or csum verification fails, we
1959 * try other mirrors that might have a good copy of the data. This
1960 * io_failure_record is used to record state as we go through all the
1961 * mirrors. If another mirror has good data, the page is set up to date
1962 * and things continue. If a good mirror can't be found, the original
1963 * bio end_io callback is called to indicate things have failed.
1964 */
1965struct io_failure_record {
1966 struct page *page;
1967 u64 start;
1968 u64 len;
1969 u64 logical;
1970 unsigned long bio_flags;
1971 int this_mirror;
1972 int failed_mirror;
1973 int in_validation;
1974};
1975
1976static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1977 int did_repair)
1978{
1979 int ret;
1980 int err = 0;
1981 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1982
1983 set_state_private(failure_tree, rec->start, 0);
1984 ret = clear_extent_bits(failure_tree, rec->start,
1985 rec->start + rec->len - 1,
1986 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1987 if (ret)
1988 err = ret;
1989
53b381b3
DW
1990 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1991 rec->start + rec->len - 1,
1992 EXTENT_DAMAGED, GFP_NOFS);
1993 if (ret && !err)
1994 err = ret;
4a54c8c1
JS
1995
1996 kfree(rec);
1997 return err;
1998}
1999
4a54c8c1
JS
2000/*
2001 * this bypasses the standard btrfs submit functions deliberately, as
2002 * the standard behavior is to write all copies in a raid setup. here we only
2003 * want to write the one bad copy. so we do the mapping for ourselves and issue
2004 * submit_bio directly.
3ec706c8 2005 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2006 * actually prevents the read that triggered the error from finishing.
2007 * currently, there can be no more than two copies of every data bit. thus,
2008 * exactly one rewrite is required.
2009 */
3ec706c8 2010int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2011 u64 length, u64 logical, struct page *page,
2012 int mirror_num)
2013{
2014 struct bio *bio;
2015 struct btrfs_device *dev;
4a54c8c1
JS
2016 u64 map_length = 0;
2017 u64 sector;
2018 struct btrfs_bio *bbio = NULL;
53b381b3 2019 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2020 int ret;
2021
908960c6 2022 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2023 BUG_ON(!mirror_num);
2024
53b381b3
DW
2025 /* we can't repair anything in raid56 yet */
2026 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2027 return 0;
2028
9be3395b 2029 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2030 if (!bio)
2031 return -EIO;
4a54c8c1
JS
2032 bio->bi_size = 0;
2033 map_length = length;
2034
3ec706c8 2035 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2036 &map_length, &bbio, mirror_num);
2037 if (ret) {
2038 bio_put(bio);
2039 return -EIO;
2040 }
2041 BUG_ON(mirror_num != bbio->mirror_num);
2042 sector = bbio->stripes[mirror_num-1].physical >> 9;
2043 bio->bi_sector = sector;
2044 dev = bbio->stripes[mirror_num-1].dev;
2045 kfree(bbio);
2046 if (!dev || !dev->bdev || !dev->writeable) {
2047 bio_put(bio);
2048 return -EIO;
2049 }
2050 bio->bi_bdev = dev->bdev;
4eee4fa4 2051 bio_add_page(bio, page, length, start - page_offset(page));
4a54c8c1 2052
c170bbb4 2053 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2054 /* try to remap that extent elsewhere? */
2055 bio_put(bio);
442a4f63 2056 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2057 return -EIO;
2058 }
2059
efe120a0
FH
2060 printk_ratelimited_in_rcu(KERN_INFO
2061 "BTRFS: read error corrected: ino %lu off %llu "
2062 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2063 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2064
2065 bio_put(bio);
2066 return 0;
2067}
2068
ea466794
JB
2069int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2070 int mirror_num)
2071{
ea466794
JB
2072 u64 start = eb->start;
2073 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2074 int ret = 0;
ea466794 2075
908960c6
ID
2076 if (root->fs_info->sb->s_flags & MS_RDONLY)
2077 return -EROFS;
2078
ea466794
JB
2079 for (i = 0; i < num_pages; i++) {
2080 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2081 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2082 start, p, mirror_num);
2083 if (ret)
2084 break;
2085 start += PAGE_CACHE_SIZE;
2086 }
2087
2088 return ret;
2089}
2090
4a54c8c1
JS
2091/*
2092 * each time an IO finishes, we do a fast check in the IO failure tree
2093 * to see if we need to process or clean up an io_failure_record
2094 */
2095static int clean_io_failure(u64 start, struct page *page)
2096{
2097 u64 private;
2098 u64 private_failure;
2099 struct io_failure_record *failrec;
908960c6
ID
2100 struct inode *inode = page->mapping->host;
2101 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2102 struct extent_state *state;
2103 int num_copies;
2104 int did_repair = 0;
2105 int ret;
4a54c8c1
JS
2106
2107 private = 0;
2108 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2109 (u64)-1, 1, EXTENT_DIRTY, 0);
2110 if (!ret)
2111 return 0;
2112
2113 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2114 &private_failure);
2115 if (ret)
2116 return 0;
2117
2118 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2119 BUG_ON(!failrec->this_mirror);
2120
2121 if (failrec->in_validation) {
2122 /* there was no real error, just free the record */
2123 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2124 failrec->start);
2125 did_repair = 1;
2126 goto out;
2127 }
908960c6
ID
2128 if (fs_info->sb->s_flags & MS_RDONLY)
2129 goto out;
4a54c8c1
JS
2130
2131 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2132 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2133 failrec->start,
2134 EXTENT_LOCKED);
2135 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2136
883d0de4
MX
2137 if (state && state->start <= failrec->start &&
2138 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2139 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2140 failrec->len);
4a54c8c1 2141 if (num_copies > 1) {
3ec706c8 2142 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2143 failrec->logical, page,
2144 failrec->failed_mirror);
2145 did_repair = !ret;
2146 }
53b381b3 2147 ret = 0;
4a54c8c1
JS
2148 }
2149
2150out:
2151 if (!ret)
2152 ret = free_io_failure(inode, failrec, did_repair);
2153
2154 return ret;
2155}
2156
2157/*
2158 * this is a generic handler for readpage errors (default
2159 * readpage_io_failed_hook). if other copies exist, read those and write back
2160 * good data to the failed position. does not investigate in remapping the
2161 * failed extent elsewhere, hoping the device will be smart enough to do this as
2162 * needed
2163 */
2164
facc8a22
MX
2165static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2166 struct page *page, u64 start, u64 end,
2167 int failed_mirror)
4a54c8c1
JS
2168{
2169 struct io_failure_record *failrec = NULL;
2170 u64 private;
2171 struct extent_map *em;
2172 struct inode *inode = page->mapping->host;
2173 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2174 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2175 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2176 struct bio *bio;
facc8a22
MX
2177 struct btrfs_io_bio *btrfs_failed_bio;
2178 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2179 int num_copies;
2180 int ret;
2181 int read_mode;
2182 u64 logical;
2183
2184 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2185
2186 ret = get_state_private(failure_tree, start, &private);
2187 if (ret) {
2188 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2189 if (!failrec)
2190 return -ENOMEM;
2191 failrec->start = start;
2192 failrec->len = end - start + 1;
2193 failrec->this_mirror = 0;
2194 failrec->bio_flags = 0;
2195 failrec->in_validation = 0;
2196
2197 read_lock(&em_tree->lock);
2198 em = lookup_extent_mapping(em_tree, start, failrec->len);
2199 if (!em) {
2200 read_unlock(&em_tree->lock);
2201 kfree(failrec);
2202 return -EIO;
2203 }
2204
68ba990f 2205 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2206 free_extent_map(em);
2207 em = NULL;
2208 }
2209 read_unlock(&em_tree->lock);
2210
7a2d6a64 2211 if (!em) {
4a54c8c1
JS
2212 kfree(failrec);
2213 return -EIO;
2214 }
2215 logical = start - em->start;
2216 logical = em->block_start + logical;
2217 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2218 logical = em->block_start;
2219 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2220 extent_set_compress_type(&failrec->bio_flags,
2221 em->compress_type);
2222 }
2223 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2224 "len=%llu\n", logical, start, failrec->len);
2225 failrec->logical = logical;
2226 free_extent_map(em);
2227
2228 /* set the bits in the private failure tree */
2229 ret = set_extent_bits(failure_tree, start, end,
2230 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2231 if (ret >= 0)
2232 ret = set_state_private(failure_tree, start,
2233 (u64)(unsigned long)failrec);
2234 /* set the bits in the inode's tree */
2235 if (ret >= 0)
2236 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2237 GFP_NOFS);
2238 if (ret < 0) {
2239 kfree(failrec);
2240 return ret;
2241 }
2242 } else {
2243 failrec = (struct io_failure_record *)(unsigned long)private;
2244 pr_debug("bio_readpage_error: (found) logical=%llu, "
2245 "start=%llu, len=%llu, validation=%d\n",
2246 failrec->logical, failrec->start, failrec->len,
2247 failrec->in_validation);
2248 /*
2249 * when data can be on disk more than twice, add to failrec here
2250 * (e.g. with a list for failed_mirror) to make
2251 * clean_io_failure() clean all those errors at once.
2252 */
2253 }
5d964051
SB
2254 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2255 failrec->logical, failrec->len);
4a54c8c1
JS
2256 if (num_copies == 1) {
2257 /*
2258 * we only have a single copy of the data, so don't bother with
2259 * all the retry and error correction code that follows. no
2260 * matter what the error is, it is very likely to persist.
2261 */
09a7f7a2
MX
2262 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2263 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2264 free_io_failure(inode, failrec, 0);
2265 return -EIO;
2266 }
2267
4a54c8c1
JS
2268 /*
2269 * there are two premises:
2270 * a) deliver good data to the caller
2271 * b) correct the bad sectors on disk
2272 */
2273 if (failed_bio->bi_vcnt > 1) {
2274 /*
2275 * to fulfill b), we need to know the exact failing sectors, as
2276 * we don't want to rewrite any more than the failed ones. thus,
2277 * we need separate read requests for the failed bio
2278 *
2279 * if the following BUG_ON triggers, our validation request got
2280 * merged. we need separate requests for our algorithm to work.
2281 */
2282 BUG_ON(failrec->in_validation);
2283 failrec->in_validation = 1;
2284 failrec->this_mirror = failed_mirror;
2285 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2286 } else {
2287 /*
2288 * we're ready to fulfill a) and b) alongside. get a good copy
2289 * of the failed sector and if we succeed, we have setup
2290 * everything for repair_io_failure to do the rest for us.
2291 */
2292 if (failrec->in_validation) {
2293 BUG_ON(failrec->this_mirror != failed_mirror);
2294 failrec->in_validation = 0;
2295 failrec->this_mirror = 0;
2296 }
2297 failrec->failed_mirror = failed_mirror;
2298 failrec->this_mirror++;
2299 if (failrec->this_mirror == failed_mirror)
2300 failrec->this_mirror++;
2301 read_mode = READ_SYNC;
2302 }
2303
facc8a22
MX
2304 if (failrec->this_mirror > num_copies) {
2305 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2306 num_copies, failrec->this_mirror, failed_mirror);
2307 free_io_failure(inode, failrec, 0);
2308 return -EIO;
2309 }
2310
9be3395b 2311 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2312 if (!bio) {
2313 free_io_failure(inode, failrec, 0);
2314 return -EIO;
2315 }
4a54c8c1
JS
2316 bio->bi_end_io = failed_bio->bi_end_io;
2317 bio->bi_sector = failrec->logical >> 9;
2318 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2319 bio->bi_size = 0;
2320
facc8a22
MX
2321 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2322 if (btrfs_failed_bio->csum) {
2323 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2324 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2325
2326 btrfs_bio = btrfs_io_bio(bio);
2327 btrfs_bio->csum = btrfs_bio->csum_inline;
2328 phy_offset >>= inode->i_sb->s_blocksize_bits;
2329 phy_offset *= csum_size;
2330 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2331 csum_size);
2332 }
2333
4a54c8c1
JS
2334 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2335
2336 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2337 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2338 failrec->this_mirror, num_copies, failrec->in_validation);
2339
013bd4c3
TI
2340 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2341 failrec->this_mirror,
2342 failrec->bio_flags, 0);
2343 return ret;
4a54c8c1
JS
2344}
2345
d1310b2e
CM
2346/* lots and lots of room for performance fixes in the end_bio funcs */
2347
87826df0
JM
2348int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2349{
2350 int uptodate = (err == 0);
2351 struct extent_io_tree *tree;
2352 int ret;
2353
2354 tree = &BTRFS_I(page->mapping->host)->io_tree;
2355
2356 if (tree->ops && tree->ops->writepage_end_io_hook) {
2357 ret = tree->ops->writepage_end_io_hook(page, start,
2358 end, NULL, uptodate);
2359 if (ret)
2360 uptodate = 0;
2361 }
2362
87826df0 2363 if (!uptodate) {
87826df0
JM
2364 ClearPageUptodate(page);
2365 SetPageError(page);
2366 }
2367 return 0;
2368}
2369
d1310b2e
CM
2370/*
2371 * after a writepage IO is done, we need to:
2372 * clear the uptodate bits on error
2373 * clear the writeback bits in the extent tree for this IO
2374 * end_page_writeback if the page has no more pending IO
2375 *
2376 * Scheduling is not allowed, so the extent state tree is expected
2377 * to have one and only one object corresponding to this IO.
2378 */
d1310b2e 2379static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2380{
d1310b2e 2381 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
d1310b2e
CM
2382 u64 start;
2383 u64 end;
d1310b2e 2384
d1310b2e
CM
2385 do {
2386 struct page *page = bvec->bv_page;
902b22f3 2387
17a5adcc
AO
2388 /* We always issue full-page reads, but if some block
2389 * in a page fails to read, blk_update_request() will
2390 * advance bv_offset and adjust bv_len to compensate.
2391 * Print a warning for nonzero offsets, and an error
2392 * if they don't add up to a full page. */
efe120a0
FH
2393 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2394 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2395 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2396 "partial page write in btrfs with offset %u and length %u",
2397 bvec->bv_offset, bvec->bv_len);
2398 else
2399 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2400 "incomplete page write in btrfs with offset %u and "
2401 "length %u",
2402 bvec->bv_offset, bvec->bv_len);
2403 }
d1310b2e 2404
17a5adcc
AO
2405 start = page_offset(page);
2406 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2407
2408 if (--bvec >= bio->bi_io_vec)
2409 prefetchw(&bvec->bv_page->flags);
1259ab75 2410
87826df0
JM
2411 if (end_extent_writepage(page, err, start, end))
2412 continue;
70dec807 2413
17a5adcc 2414 end_page_writeback(page);
d1310b2e 2415 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2416
d1310b2e 2417 bio_put(bio);
d1310b2e
CM
2418}
2419
883d0de4
MX
2420static void
2421endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2422 int uptodate)
2423{
2424 struct extent_state *cached = NULL;
2425 u64 end = start + len - 1;
2426
2427 if (uptodate && tree->track_uptodate)
2428 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2429 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2430}
2431
d1310b2e
CM
2432/*
2433 * after a readpage IO is done, we need to:
2434 * clear the uptodate bits on error
2435 * set the uptodate bits if things worked
2436 * set the page up to date if all extents in the tree are uptodate
2437 * clear the lock bit in the extent tree
2438 * unlock the page if there are no other extents locked for it
2439 *
2440 * Scheduling is not allowed, so the extent state tree is expected
2441 * to have one and only one object corresponding to this IO.
2442 */
d1310b2e 2443static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2444{
2445 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2446 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2447 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2448 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2449 struct extent_io_tree *tree;
facc8a22 2450 u64 offset = 0;
d1310b2e
CM
2451 u64 start;
2452 u64 end;
facc8a22 2453 u64 len;
883d0de4
MX
2454 u64 extent_start = 0;
2455 u64 extent_len = 0;
5cf1ab56 2456 int mirror;
d1310b2e
CM
2457 int ret;
2458
d20f7043
CM
2459 if (err)
2460 uptodate = 0;
2461
d1310b2e
CM
2462 do {
2463 struct page *page = bvec->bv_page;
a71754fc 2464 struct inode *inode = page->mapping->host;
507903b8 2465
be3940c0 2466 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2467 "mirror=%lu\n", (u64)bio->bi_sector, err,
2468 io_bio->mirror_num);
a71754fc 2469 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2470
17a5adcc
AO
2471 /* We always issue full-page reads, but if some block
2472 * in a page fails to read, blk_update_request() will
2473 * advance bv_offset and adjust bv_len to compensate.
2474 * Print a warning for nonzero offsets, and an error
2475 * if they don't add up to a full page. */
efe120a0
FH
2476 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2477 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2478 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2479 "partial page read in btrfs with offset %u and length %u",
2480 bvec->bv_offset, bvec->bv_len);
2481 else
2482 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2483 "incomplete page read in btrfs with offset %u and "
2484 "length %u",
2485 bvec->bv_offset, bvec->bv_len);
2486 }
d1310b2e 2487
17a5adcc
AO
2488 start = page_offset(page);
2489 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2490 len = bvec->bv_len;
d1310b2e 2491
4125bf76 2492 if (++bvec <= bvec_end)
d1310b2e
CM
2493 prefetchw(&bvec->bv_page->flags);
2494
9be3395b 2495 mirror = io_bio->mirror_num;
f2a09da9
MX
2496 if (likely(uptodate && tree->ops &&
2497 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2498 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2499 page, start, end,
2500 mirror);
5ee0844d 2501 if (ret)
d1310b2e 2502 uptodate = 0;
5ee0844d 2503 else
4a54c8c1 2504 clean_io_failure(start, page);
d1310b2e 2505 }
ea466794 2506
f2a09da9
MX
2507 if (likely(uptodate))
2508 goto readpage_ok;
2509
2510 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2511 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2512 if (!ret && !err &&
2513 test_bit(BIO_UPTODATE, &bio->bi_flags))
2514 uptodate = 1;
f2a09da9 2515 } else {
f4a8e656
JS
2516 /*
2517 * The generic bio_readpage_error handles errors the
2518 * following way: If possible, new read requests are
2519 * created and submitted and will end up in
2520 * end_bio_extent_readpage as well (if we're lucky, not
2521 * in the !uptodate case). In that case it returns 0 and
2522 * we just go on with the next page in our bio. If it
2523 * can't handle the error it will return -EIO and we
2524 * remain responsible for that page.
2525 */
facc8a22
MX
2526 ret = bio_readpage_error(bio, offset, page, start, end,
2527 mirror);
7e38326f 2528 if (ret == 0) {
3b951516
CM
2529 uptodate =
2530 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2531 if (err)
2532 uptodate = 0;
7e38326f
CM
2533 continue;
2534 }
2535 }
f2a09da9 2536readpage_ok:
883d0de4 2537 if (likely(uptodate)) {
a71754fc
JB
2538 loff_t i_size = i_size_read(inode);
2539 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2540 unsigned offset;
2541
2542 /* Zero out the end if this page straddles i_size */
2543 offset = i_size & (PAGE_CACHE_SIZE-1);
2544 if (page->index == end_index && offset)
2545 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2546 SetPageUptodate(page);
70dec807 2547 } else {
17a5adcc
AO
2548 ClearPageUptodate(page);
2549 SetPageError(page);
70dec807 2550 }
17a5adcc 2551 unlock_page(page);
facc8a22 2552 offset += len;
883d0de4
MX
2553
2554 if (unlikely(!uptodate)) {
2555 if (extent_len) {
2556 endio_readpage_release_extent(tree,
2557 extent_start,
2558 extent_len, 1);
2559 extent_start = 0;
2560 extent_len = 0;
2561 }
2562 endio_readpage_release_extent(tree, start,
2563 end - start + 1, 0);
2564 } else if (!extent_len) {
2565 extent_start = start;
2566 extent_len = end + 1 - start;
2567 } else if (extent_start + extent_len == start) {
2568 extent_len += end + 1 - start;
2569 } else {
2570 endio_readpage_release_extent(tree, extent_start,
2571 extent_len, uptodate);
2572 extent_start = start;
2573 extent_len = end + 1 - start;
2574 }
4125bf76 2575 } while (bvec <= bvec_end);
d1310b2e 2576
883d0de4
MX
2577 if (extent_len)
2578 endio_readpage_release_extent(tree, extent_start, extent_len,
2579 uptodate);
facc8a22
MX
2580 if (io_bio->end_io)
2581 io_bio->end_io(io_bio, err);
d1310b2e 2582 bio_put(bio);
d1310b2e
CM
2583}
2584
9be3395b
CM
2585/*
2586 * this allocates from the btrfs_bioset. We're returning a bio right now
2587 * but you can call btrfs_io_bio for the appropriate container_of magic
2588 */
88f794ed
MX
2589struct bio *
2590btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2591 gfp_t gfp_flags)
d1310b2e 2592{
facc8a22 2593 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2594 struct bio *bio;
2595
9be3395b 2596 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2597
2598 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2599 while (!bio && (nr_vecs /= 2)) {
2600 bio = bio_alloc_bioset(gfp_flags,
2601 nr_vecs, btrfs_bioset);
2602 }
d1310b2e
CM
2603 }
2604
2605 if (bio) {
e1c4b745 2606 bio->bi_size = 0;
d1310b2e
CM
2607 bio->bi_bdev = bdev;
2608 bio->bi_sector = first_sector;
facc8a22
MX
2609 btrfs_bio = btrfs_io_bio(bio);
2610 btrfs_bio->csum = NULL;
2611 btrfs_bio->csum_allocated = NULL;
2612 btrfs_bio->end_io = NULL;
d1310b2e
CM
2613 }
2614 return bio;
2615}
2616
9be3395b
CM
2617struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2618{
2619 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2620}
2621
2622
2623/* this also allocates from the btrfs_bioset */
2624struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2625{
facc8a22
MX
2626 struct btrfs_io_bio *btrfs_bio;
2627 struct bio *bio;
2628
2629 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2630 if (bio) {
2631 btrfs_bio = btrfs_io_bio(bio);
2632 btrfs_bio->csum = NULL;
2633 btrfs_bio->csum_allocated = NULL;
2634 btrfs_bio->end_io = NULL;
2635 }
2636 return bio;
9be3395b
CM
2637}
2638
2639
355808c2
JM
2640static int __must_check submit_one_bio(int rw, struct bio *bio,
2641 int mirror_num, unsigned long bio_flags)
d1310b2e 2642{
d1310b2e 2643 int ret = 0;
70dec807
CM
2644 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2645 struct page *page = bvec->bv_page;
2646 struct extent_io_tree *tree = bio->bi_private;
70dec807 2647 u64 start;
70dec807 2648
4eee4fa4 2649 start = page_offset(page) + bvec->bv_offset;
70dec807 2650
902b22f3 2651 bio->bi_private = NULL;
d1310b2e
CM
2652
2653 bio_get(bio);
2654
065631f6 2655 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2656 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2657 mirror_num, bio_flags, start);
0b86a832 2658 else
21adbd5c 2659 btrfsic_submit_bio(rw, bio);
4a54c8c1 2660
d1310b2e
CM
2661 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2662 ret = -EOPNOTSUPP;
2663 bio_put(bio);
2664 return ret;
2665}
2666
64a16701 2667static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2668 unsigned long offset, size_t size, struct bio *bio,
2669 unsigned long bio_flags)
2670{
2671 int ret = 0;
2672 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2673 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2674 bio_flags);
2675 BUG_ON(ret < 0);
2676 return ret;
2677
2678}
2679
d1310b2e
CM
2680static int submit_extent_page(int rw, struct extent_io_tree *tree,
2681 struct page *page, sector_t sector,
2682 size_t size, unsigned long offset,
2683 struct block_device *bdev,
2684 struct bio **bio_ret,
2685 unsigned long max_pages,
f188591e 2686 bio_end_io_t end_io_func,
c8b97818
CM
2687 int mirror_num,
2688 unsigned long prev_bio_flags,
2689 unsigned long bio_flags)
d1310b2e
CM
2690{
2691 int ret = 0;
2692 struct bio *bio;
2693 int nr;
c8b97818
CM
2694 int contig = 0;
2695 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2696 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2697 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2698
2699 if (bio_ret && *bio_ret) {
2700 bio = *bio_ret;
c8b97818
CM
2701 if (old_compressed)
2702 contig = bio->bi_sector == sector;
2703 else
f73a1c7d 2704 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2705
2706 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2707 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2708 bio_add_page(bio, page, page_size, offset) < page_size) {
2709 ret = submit_one_bio(rw, bio, mirror_num,
2710 prev_bio_flags);
79787eaa
JM
2711 if (ret < 0)
2712 return ret;
d1310b2e
CM
2713 bio = NULL;
2714 } else {
2715 return 0;
2716 }
2717 }
c8b97818
CM
2718 if (this_compressed)
2719 nr = BIO_MAX_PAGES;
2720 else
2721 nr = bio_get_nr_vecs(bdev);
2722
88f794ed 2723 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2724 if (!bio)
2725 return -ENOMEM;
70dec807 2726
c8b97818 2727 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2728 bio->bi_end_io = end_io_func;
2729 bio->bi_private = tree;
70dec807 2730
d397712b 2731 if (bio_ret)
d1310b2e 2732 *bio_ret = bio;
d397712b 2733 else
c8b97818 2734 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2735
2736 return ret;
2737}
2738
48a3b636
ES
2739static void attach_extent_buffer_page(struct extent_buffer *eb,
2740 struct page *page)
d1310b2e
CM
2741{
2742 if (!PagePrivate(page)) {
2743 SetPagePrivate(page);
d1310b2e 2744 page_cache_get(page);
4f2de97a
JB
2745 set_page_private(page, (unsigned long)eb);
2746 } else {
2747 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2748 }
2749}
2750
4f2de97a 2751void set_page_extent_mapped(struct page *page)
d1310b2e 2752{
4f2de97a
JB
2753 if (!PagePrivate(page)) {
2754 SetPagePrivate(page);
2755 page_cache_get(page);
2756 set_page_private(page, EXTENT_PAGE_PRIVATE);
2757 }
d1310b2e
CM
2758}
2759
125bac01
MX
2760static struct extent_map *
2761__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2762 u64 start, u64 len, get_extent_t *get_extent,
2763 struct extent_map **em_cached)
2764{
2765 struct extent_map *em;
2766
2767 if (em_cached && *em_cached) {
2768 em = *em_cached;
cbc0e928 2769 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2770 start < extent_map_end(em)) {
2771 atomic_inc(&em->refs);
2772 return em;
2773 }
2774
2775 free_extent_map(em);
2776 *em_cached = NULL;
2777 }
2778
2779 em = get_extent(inode, page, pg_offset, start, len, 0);
2780 if (em_cached && !IS_ERR_OR_NULL(em)) {
2781 BUG_ON(*em_cached);
2782 atomic_inc(&em->refs);
2783 *em_cached = em;
2784 }
2785 return em;
2786}
d1310b2e
CM
2787/*
2788 * basic readpage implementation. Locked extent state structs are inserted
2789 * into the tree that are removed when the IO is done (by the end_io
2790 * handlers)
79787eaa 2791 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2792 */
9974090b
MX
2793static int __do_readpage(struct extent_io_tree *tree,
2794 struct page *page,
2795 get_extent_t *get_extent,
125bac01 2796 struct extent_map **em_cached,
9974090b
MX
2797 struct bio **bio, int mirror_num,
2798 unsigned long *bio_flags, int rw)
d1310b2e
CM
2799{
2800 struct inode *inode = page->mapping->host;
4eee4fa4 2801 u64 start = page_offset(page);
d1310b2e
CM
2802 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2803 u64 end;
2804 u64 cur = start;
2805 u64 extent_offset;
2806 u64 last_byte = i_size_read(inode);
2807 u64 block_start;
2808 u64 cur_end;
2809 sector_t sector;
2810 struct extent_map *em;
2811 struct block_device *bdev;
2812 int ret;
2813 int nr = 0;
4b384318 2814 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2815 size_t pg_offset = 0;
d1310b2e 2816 size_t iosize;
c8b97818 2817 size_t disk_io_size;
d1310b2e 2818 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2819 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2820
2821 set_page_extent_mapped(page);
2822
9974090b 2823 end = page_end;
90a887c9
DM
2824 if (!PageUptodate(page)) {
2825 if (cleancache_get_page(page) == 0) {
2826 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2827 unlock_extent(tree, start, end);
90a887c9
DM
2828 goto out;
2829 }
2830 }
2831
c8b97818
CM
2832 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2833 char *userpage;
2834 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2835
2836 if (zero_offset) {
2837 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2838 userpage = kmap_atomic(page);
c8b97818
CM
2839 memset(userpage + zero_offset, 0, iosize);
2840 flush_dcache_page(page);
7ac687d9 2841 kunmap_atomic(userpage);
c8b97818
CM
2842 }
2843 }
d1310b2e 2844 while (cur <= end) {
c8f2f24b
JB
2845 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2846
d1310b2e
CM
2847 if (cur >= last_byte) {
2848 char *userpage;
507903b8
AJ
2849 struct extent_state *cached = NULL;
2850
306e16ce 2851 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2852 userpage = kmap_atomic(page);
306e16ce 2853 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2854 flush_dcache_page(page);
7ac687d9 2855 kunmap_atomic(userpage);
d1310b2e 2856 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2857 &cached, GFP_NOFS);
4b384318
MF
2858 if (!parent_locked)
2859 unlock_extent_cached(tree, cur,
2860 cur + iosize - 1,
2861 &cached, GFP_NOFS);
d1310b2e
CM
2862 break;
2863 }
125bac01
MX
2864 em = __get_extent_map(inode, page, pg_offset, cur,
2865 end - cur + 1, get_extent, em_cached);
c704005d 2866 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2867 SetPageError(page);
4b384318
MF
2868 if (!parent_locked)
2869 unlock_extent(tree, cur, end);
d1310b2e
CM
2870 break;
2871 }
d1310b2e
CM
2872 extent_offset = cur - em->start;
2873 BUG_ON(extent_map_end(em) <= cur);
2874 BUG_ON(end < cur);
2875
261507a0 2876 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2877 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2878 extent_set_compress_type(&this_bio_flag,
2879 em->compress_type);
2880 }
c8b97818 2881
d1310b2e
CM
2882 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2883 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2884 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2885 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2886 disk_io_size = em->block_len;
2887 sector = em->block_start >> 9;
2888 } else {
2889 sector = (em->block_start + extent_offset) >> 9;
2890 disk_io_size = iosize;
2891 }
d1310b2e
CM
2892 bdev = em->bdev;
2893 block_start = em->block_start;
d899e052
YZ
2894 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2895 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2896 free_extent_map(em);
2897 em = NULL;
2898
2899 /* we've found a hole, just zero and go on */
2900 if (block_start == EXTENT_MAP_HOLE) {
2901 char *userpage;
507903b8
AJ
2902 struct extent_state *cached = NULL;
2903
7ac687d9 2904 userpage = kmap_atomic(page);
306e16ce 2905 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2906 flush_dcache_page(page);
7ac687d9 2907 kunmap_atomic(userpage);
d1310b2e
CM
2908
2909 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2910 &cached, GFP_NOFS);
2911 unlock_extent_cached(tree, cur, cur + iosize - 1,
2912 &cached, GFP_NOFS);
d1310b2e 2913 cur = cur + iosize;
306e16ce 2914 pg_offset += iosize;
d1310b2e
CM
2915 continue;
2916 }
2917 /* the get_extent function already copied into the page */
9655d298
CM
2918 if (test_range_bit(tree, cur, cur_end,
2919 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2920 check_page_uptodate(tree, page);
4b384318
MF
2921 if (!parent_locked)
2922 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2923 cur = cur + iosize;
306e16ce 2924 pg_offset += iosize;
d1310b2e
CM
2925 continue;
2926 }
70dec807
CM
2927 /* we have an inline extent but it didn't get marked up
2928 * to date. Error out
2929 */
2930 if (block_start == EXTENT_MAP_INLINE) {
2931 SetPageError(page);
4b384318
MF
2932 if (!parent_locked)
2933 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2934 cur = cur + iosize;
306e16ce 2935 pg_offset += iosize;
70dec807
CM
2936 continue;
2937 }
d1310b2e 2938
c8f2f24b 2939 pnr -= page->index;
d4c7ca86 2940 ret = submit_extent_page(rw, tree, page,
306e16ce 2941 sector, disk_io_size, pg_offset,
89642229 2942 bdev, bio, pnr,
c8b97818
CM
2943 end_bio_extent_readpage, mirror_num,
2944 *bio_flags,
2945 this_bio_flag);
c8f2f24b
JB
2946 if (!ret) {
2947 nr++;
2948 *bio_flags = this_bio_flag;
2949 } else {
d1310b2e 2950 SetPageError(page);
4b384318
MF
2951 if (!parent_locked)
2952 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2953 }
d1310b2e 2954 cur = cur + iosize;
306e16ce 2955 pg_offset += iosize;
d1310b2e 2956 }
90a887c9 2957out:
d1310b2e
CM
2958 if (!nr) {
2959 if (!PageError(page))
2960 SetPageUptodate(page);
2961 unlock_page(page);
2962 }
2963 return 0;
2964}
2965
9974090b
MX
2966static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2967 struct page *pages[], int nr_pages,
2968 u64 start, u64 end,
2969 get_extent_t *get_extent,
125bac01 2970 struct extent_map **em_cached,
9974090b
MX
2971 struct bio **bio, int mirror_num,
2972 unsigned long *bio_flags, int rw)
2973{
2974 struct inode *inode;
2975 struct btrfs_ordered_extent *ordered;
2976 int index;
2977
2978 inode = pages[0]->mapping->host;
2979 while (1) {
2980 lock_extent(tree, start, end);
2981 ordered = btrfs_lookup_ordered_range(inode, start,
2982 end - start + 1);
2983 if (!ordered)
2984 break;
2985 unlock_extent(tree, start, end);
2986 btrfs_start_ordered_extent(inode, ordered, 1);
2987 btrfs_put_ordered_extent(ordered);
2988 }
2989
2990 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2991 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2992 mirror_num, bio_flags, rw);
9974090b
MX
2993 page_cache_release(pages[index]);
2994 }
2995}
2996
2997static void __extent_readpages(struct extent_io_tree *tree,
2998 struct page *pages[],
2999 int nr_pages, get_extent_t *get_extent,
125bac01 3000 struct extent_map **em_cached,
9974090b
MX
3001 struct bio **bio, int mirror_num,
3002 unsigned long *bio_flags, int rw)
3003{
35a3621b 3004 u64 start = 0;
9974090b
MX
3005 u64 end = 0;
3006 u64 page_start;
3007 int index;
35a3621b 3008 int first_index = 0;
9974090b
MX
3009
3010 for (index = 0; index < nr_pages; index++) {
3011 page_start = page_offset(pages[index]);
3012 if (!end) {
3013 start = page_start;
3014 end = start + PAGE_CACHE_SIZE - 1;
3015 first_index = index;
3016 } else if (end + 1 == page_start) {
3017 end += PAGE_CACHE_SIZE;
3018 } else {
3019 __do_contiguous_readpages(tree, &pages[first_index],
3020 index - first_index, start,
125bac01
MX
3021 end, get_extent, em_cached,
3022 bio, mirror_num, bio_flags,
3023 rw);
9974090b
MX
3024 start = page_start;
3025 end = start + PAGE_CACHE_SIZE - 1;
3026 first_index = index;
3027 }
3028 }
3029
3030 if (end)
3031 __do_contiguous_readpages(tree, &pages[first_index],
3032 index - first_index, start,
125bac01 3033 end, get_extent, em_cached, bio,
9974090b
MX
3034 mirror_num, bio_flags, rw);
3035}
3036
3037static int __extent_read_full_page(struct extent_io_tree *tree,
3038 struct page *page,
3039 get_extent_t *get_extent,
3040 struct bio **bio, int mirror_num,
3041 unsigned long *bio_flags, int rw)
3042{
3043 struct inode *inode = page->mapping->host;
3044 struct btrfs_ordered_extent *ordered;
3045 u64 start = page_offset(page);
3046 u64 end = start + PAGE_CACHE_SIZE - 1;
3047 int ret;
3048
3049 while (1) {
3050 lock_extent(tree, start, end);
3051 ordered = btrfs_lookup_ordered_extent(inode, start);
3052 if (!ordered)
3053 break;
3054 unlock_extent(tree, start, end);
3055 btrfs_start_ordered_extent(inode, ordered, 1);
3056 btrfs_put_ordered_extent(ordered);
3057 }
3058
125bac01
MX
3059 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3060 bio_flags, rw);
9974090b
MX
3061 return ret;
3062}
3063
d1310b2e 3064int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3065 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3066{
3067 struct bio *bio = NULL;
c8b97818 3068 unsigned long bio_flags = 0;
d1310b2e
CM
3069 int ret;
3070
8ddc7d9c 3071 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3072 &bio_flags, READ);
d1310b2e 3073 if (bio)
8ddc7d9c 3074 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3075 return ret;
3076}
d1310b2e 3077
4b384318
MF
3078int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3079 get_extent_t *get_extent, int mirror_num)
3080{
3081 struct bio *bio = NULL;
3082 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3083 int ret;
3084
3085 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3086 &bio_flags, READ);
3087 if (bio)
3088 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3089 return ret;
3090}
3091
11c8349b
CM
3092static noinline void update_nr_written(struct page *page,
3093 struct writeback_control *wbc,
3094 unsigned long nr_written)
3095{
3096 wbc->nr_to_write -= nr_written;
3097 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3098 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3099 page->mapping->writeback_index = page->index + nr_written;
3100}
3101
d1310b2e
CM
3102/*
3103 * the writepage semantics are similar to regular writepage. extent
3104 * records are inserted to lock ranges in the tree, and as dirty areas
3105 * are found, they are marked writeback. Then the lock bits are removed
3106 * and the end_io handler clears the writeback ranges
3107 */
3108static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3109 void *data)
3110{
3111 struct inode *inode = page->mapping->host;
3112 struct extent_page_data *epd = data;
3113 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3114 u64 start = page_offset(page);
d1310b2e
CM
3115 u64 delalloc_start;
3116 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3117 u64 end;
3118 u64 cur = start;
3119 u64 extent_offset;
3120 u64 last_byte = i_size_read(inode);
3121 u64 block_start;
3122 u64 iosize;
3123 sector_t sector;
2c64c53d 3124 struct extent_state *cached_state = NULL;
d1310b2e
CM
3125 struct extent_map *em;
3126 struct block_device *bdev;
3127 int ret;
3128 int nr = 0;
7f3c74fb 3129 size_t pg_offset = 0;
d1310b2e
CM
3130 size_t blocksize;
3131 loff_t i_size = i_size_read(inode);
3132 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3133 u64 nr_delalloc;
3134 u64 delalloc_end;
c8b97818
CM
3135 int page_started;
3136 int compressed;
ffbd517d 3137 int write_flags;
771ed689 3138 unsigned long nr_written = 0;
9e487107 3139 bool fill_delalloc = true;
d1310b2e 3140
ffbd517d 3141 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3142 write_flags = WRITE_SYNC;
ffbd517d
CM
3143 else
3144 write_flags = WRITE;
3145
1abe9b8a 3146 trace___extent_writepage(page, inode, wbc);
3147
d1310b2e 3148 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3149
3150 ClearPageError(page);
3151
7f3c74fb 3152 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3153 if (page->index > end_index ||
7f3c74fb 3154 (page->index == end_index && !pg_offset)) {
d47992f8 3155 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3156 unlock_page(page);
3157 return 0;
3158 }
3159
3160 if (page->index == end_index) {
3161 char *userpage;
3162
7ac687d9 3163 userpage = kmap_atomic(page);
7f3c74fb
CM
3164 memset(userpage + pg_offset, 0,
3165 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3166 kunmap_atomic(userpage);
211c17f5 3167 flush_dcache_page(page);
d1310b2e 3168 }
7f3c74fb 3169 pg_offset = 0;
d1310b2e
CM
3170
3171 set_page_extent_mapped(page);
3172
9e487107
JB
3173 if (!tree->ops || !tree->ops->fill_delalloc)
3174 fill_delalloc = false;
3175
d1310b2e
CM
3176 delalloc_start = start;
3177 delalloc_end = 0;
c8b97818 3178 page_started = 0;
9e487107 3179 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3180 u64 delalloc_to_write = 0;
11c8349b
CM
3181 /*
3182 * make sure the wbc mapping index is at least updated
3183 * to this page.
3184 */
3185 update_nr_written(page, wbc, 0);
3186
d397712b 3187 while (delalloc_end < page_end) {
771ed689 3188 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3189 page,
3190 &delalloc_start,
d1310b2e
CM
3191 &delalloc_end,
3192 128 * 1024 * 1024);
771ed689
CM
3193 if (nr_delalloc == 0) {
3194 delalloc_start = delalloc_end + 1;
3195 continue;
3196 }
013bd4c3
TI
3197 ret = tree->ops->fill_delalloc(inode, page,
3198 delalloc_start,
3199 delalloc_end,
3200 &page_started,
3201 &nr_written);
79787eaa
JM
3202 /* File system has been set read-only */
3203 if (ret) {
3204 SetPageError(page);
3205 goto done;
3206 }
f85d7d6c
CM
3207 /*
3208 * delalloc_end is already one less than the total
3209 * length, so we don't subtract one from
3210 * PAGE_CACHE_SIZE
3211 */
3212 delalloc_to_write += (delalloc_end - delalloc_start +
3213 PAGE_CACHE_SIZE) >>
3214 PAGE_CACHE_SHIFT;
d1310b2e 3215 delalloc_start = delalloc_end + 1;
d1310b2e 3216 }
f85d7d6c
CM
3217 if (wbc->nr_to_write < delalloc_to_write) {
3218 int thresh = 8192;
3219
3220 if (delalloc_to_write < thresh * 2)
3221 thresh = delalloc_to_write;
3222 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3223 thresh);
3224 }
c8b97818 3225
771ed689
CM
3226 /* did the fill delalloc function already unlock and start
3227 * the IO?
3228 */
3229 if (page_started) {
3230 ret = 0;
11c8349b
CM
3231 /*
3232 * we've unlocked the page, so we can't update
3233 * the mapping's writeback index, just update
3234 * nr_to_write.
3235 */
3236 wbc->nr_to_write -= nr_written;
3237 goto done_unlocked;
771ed689 3238 }
c8b97818 3239 }
247e743c 3240 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3241 ret = tree->ops->writepage_start_hook(page, start,
3242 page_end);
87826df0
JM
3243 if (ret) {
3244 /* Fixup worker will requeue */
3245 if (ret == -EBUSY)
3246 wbc->pages_skipped++;
3247 else
3248 redirty_page_for_writepage(wbc, page);
11c8349b 3249 update_nr_written(page, wbc, nr_written);
247e743c 3250 unlock_page(page);
771ed689 3251 ret = 0;
11c8349b 3252 goto done_unlocked;
247e743c
CM
3253 }
3254 }
3255
11c8349b
CM
3256 /*
3257 * we don't want to touch the inode after unlocking the page,
3258 * so we update the mapping writeback index now
3259 */
3260 update_nr_written(page, wbc, nr_written + 1);
771ed689 3261
d1310b2e 3262 end = page_end;
d1310b2e 3263 if (last_byte <= start) {
e6dcd2dc
CM
3264 if (tree->ops && tree->ops->writepage_end_io_hook)
3265 tree->ops->writepage_end_io_hook(page, start,
3266 page_end, NULL, 1);
d1310b2e
CM
3267 goto done;
3268 }
3269
d1310b2e
CM
3270 blocksize = inode->i_sb->s_blocksize;
3271
3272 while (cur <= end) {
3273 if (cur >= last_byte) {
e6dcd2dc
CM
3274 if (tree->ops && tree->ops->writepage_end_io_hook)
3275 tree->ops->writepage_end_io_hook(page, cur,
3276 page_end, NULL, 1);
d1310b2e
CM
3277 break;
3278 }
7f3c74fb 3279 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3280 end - cur + 1, 1);
c704005d 3281 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3282 SetPageError(page);
3283 break;
3284 }
3285
3286 extent_offset = cur - em->start;
3287 BUG_ON(extent_map_end(em) <= cur);
3288 BUG_ON(end < cur);
3289 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3290 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3291 sector = (em->block_start + extent_offset) >> 9;
3292 bdev = em->bdev;
3293 block_start = em->block_start;
c8b97818 3294 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3295 free_extent_map(em);
3296 em = NULL;
3297
c8b97818
CM
3298 /*
3299 * compressed and inline extents are written through other
3300 * paths in the FS
3301 */
3302 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3303 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3304 /*
3305 * end_io notification does not happen here for
3306 * compressed extents
3307 */
3308 if (!compressed && tree->ops &&
3309 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3310 tree->ops->writepage_end_io_hook(page, cur,
3311 cur + iosize - 1,
3312 NULL, 1);
c8b97818
CM
3313 else if (compressed) {
3314 /* we don't want to end_page_writeback on
3315 * a compressed extent. this happens
3316 * elsewhere
3317 */
3318 nr++;
3319 }
3320
3321 cur += iosize;
7f3c74fb 3322 pg_offset += iosize;
d1310b2e
CM
3323 continue;
3324 }
d1310b2e
CM
3325 /* leave this out until we have a page_mkwrite call */
3326 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3327 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3328 cur = cur + iosize;
7f3c74fb 3329 pg_offset += iosize;
d1310b2e
CM
3330 continue;
3331 }
c8b97818 3332
d1310b2e
CM
3333 if (tree->ops && tree->ops->writepage_io_hook) {
3334 ret = tree->ops->writepage_io_hook(page, cur,
3335 cur + iosize - 1);
3336 } else {
3337 ret = 0;
3338 }
1259ab75 3339 if (ret) {
d1310b2e 3340 SetPageError(page);
1259ab75 3341 } else {
d1310b2e 3342 unsigned long max_nr = end_index + 1;
7f3c74fb 3343
d1310b2e
CM
3344 set_range_writeback(tree, cur, cur + iosize - 1);
3345 if (!PageWriteback(page)) {
efe120a0
FH
3346 btrfs_err(BTRFS_I(inode)->root->fs_info,
3347 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3348 page->index, cur, end);
d1310b2e
CM
3349 }
3350
ffbd517d
CM
3351 ret = submit_extent_page(write_flags, tree, page,
3352 sector, iosize, pg_offset,
3353 bdev, &epd->bio, max_nr,
c8b97818
CM
3354 end_bio_extent_writepage,
3355 0, 0, 0);
d1310b2e
CM
3356 if (ret)
3357 SetPageError(page);
3358 }
3359 cur = cur + iosize;
7f3c74fb 3360 pg_offset += iosize;
d1310b2e
CM
3361 nr++;
3362 }
3363done:
3364 if (nr == 0) {
3365 /* make sure the mapping tag for page dirty gets cleared */
3366 set_page_writeback(page);
3367 end_page_writeback(page);
3368 }
d1310b2e 3369 unlock_page(page);
771ed689 3370
11c8349b
CM
3371done_unlocked:
3372
2c64c53d
CM
3373 /* drop our reference on any cached states */
3374 free_extent_state(cached_state);
d1310b2e
CM
3375 return 0;
3376}
3377
0b32f4bb
JB
3378static int eb_wait(void *word)
3379{
3380 io_schedule();
3381 return 0;
3382}
3383
fd8b2b61 3384void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3385{
3386 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3387 TASK_UNINTERRUPTIBLE);
3388}
3389
3390static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3391 struct btrfs_fs_info *fs_info,
3392 struct extent_page_data *epd)
3393{
3394 unsigned long i, num_pages;
3395 int flush = 0;
3396 int ret = 0;
3397
3398 if (!btrfs_try_tree_write_lock(eb)) {
3399 flush = 1;
3400 flush_write_bio(epd);
3401 btrfs_tree_lock(eb);
3402 }
3403
3404 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3405 btrfs_tree_unlock(eb);
3406 if (!epd->sync_io)
3407 return 0;
3408 if (!flush) {
3409 flush_write_bio(epd);
3410 flush = 1;
3411 }
a098d8e8
CM
3412 while (1) {
3413 wait_on_extent_buffer_writeback(eb);
3414 btrfs_tree_lock(eb);
3415 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3416 break;
0b32f4bb 3417 btrfs_tree_unlock(eb);
0b32f4bb
JB
3418 }
3419 }
3420
51561ffe
JB
3421 /*
3422 * We need to do this to prevent races in people who check if the eb is
3423 * under IO since we can end up having no IO bits set for a short period
3424 * of time.
3425 */
3426 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3427 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3428 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3429 spin_unlock(&eb->refs_lock);
0b32f4bb 3430 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3431 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3432 -eb->len,
3433 fs_info->dirty_metadata_batch);
0b32f4bb 3434 ret = 1;
51561ffe
JB
3435 } else {
3436 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3437 }
3438
3439 btrfs_tree_unlock(eb);
3440
3441 if (!ret)
3442 return ret;
3443
3444 num_pages = num_extent_pages(eb->start, eb->len);
3445 for (i = 0; i < num_pages; i++) {
3446 struct page *p = extent_buffer_page(eb, i);
3447
3448 if (!trylock_page(p)) {
3449 if (!flush) {
3450 flush_write_bio(epd);
3451 flush = 1;
3452 }
3453 lock_page(p);
3454 }
3455 }
3456
3457 return ret;
3458}
3459
3460static void end_extent_buffer_writeback(struct extent_buffer *eb)
3461{
3462 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3463 smp_mb__after_clear_bit();
3464 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3465}
3466
3467static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3468{
3469 int uptodate = err == 0;
3470 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3471 struct extent_buffer *eb;
3472 int done;
3473
3474 do {
3475 struct page *page = bvec->bv_page;
3476
3477 bvec--;
3478 eb = (struct extent_buffer *)page->private;
3479 BUG_ON(!eb);
3480 done = atomic_dec_and_test(&eb->io_pages);
3481
3482 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3483 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3484 ClearPageUptodate(page);
3485 SetPageError(page);
3486 }
3487
3488 end_page_writeback(page);
3489
3490 if (!done)
3491 continue;
3492
3493 end_extent_buffer_writeback(eb);
3494 } while (bvec >= bio->bi_io_vec);
3495
3496 bio_put(bio);
3497
3498}
3499
3500static int write_one_eb(struct extent_buffer *eb,
3501 struct btrfs_fs_info *fs_info,
3502 struct writeback_control *wbc,
3503 struct extent_page_data *epd)
3504{
3505 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3506 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3507 u64 offset = eb->start;
3508 unsigned long i, num_pages;
de0022b9 3509 unsigned long bio_flags = 0;
d4c7ca86 3510 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3511 int ret = 0;
0b32f4bb
JB
3512
3513 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3514 num_pages = num_extent_pages(eb->start, eb->len);
3515 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3516 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3517 bio_flags = EXTENT_BIO_TREE_LOG;
3518
0b32f4bb
JB
3519 for (i = 0; i < num_pages; i++) {
3520 struct page *p = extent_buffer_page(eb, i);
3521
3522 clear_page_dirty_for_io(p);
3523 set_page_writeback(p);
f28491e0 3524 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3525 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3526 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3527 0, epd->bio_flags, bio_flags);
3528 epd->bio_flags = bio_flags;
0b32f4bb
JB
3529 if (ret) {
3530 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3531 SetPageError(p);
3532 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3533 end_extent_buffer_writeback(eb);
3534 ret = -EIO;
3535 break;
3536 }
3537 offset += PAGE_CACHE_SIZE;
3538 update_nr_written(p, wbc, 1);
3539 unlock_page(p);
3540 }
3541
3542 if (unlikely(ret)) {
3543 for (; i < num_pages; i++) {
3544 struct page *p = extent_buffer_page(eb, i);
3545 unlock_page(p);
3546 }
3547 }
3548
3549 return ret;
3550}
3551
3552int btree_write_cache_pages(struct address_space *mapping,
3553 struct writeback_control *wbc)
3554{
3555 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3556 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3557 struct extent_buffer *eb, *prev_eb = NULL;
3558 struct extent_page_data epd = {
3559 .bio = NULL,
3560 .tree = tree,
3561 .extent_locked = 0,
3562 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3563 .bio_flags = 0,
0b32f4bb
JB
3564 };
3565 int ret = 0;
3566 int done = 0;
3567 int nr_to_write_done = 0;
3568 struct pagevec pvec;
3569 int nr_pages;
3570 pgoff_t index;
3571 pgoff_t end; /* Inclusive */
3572 int scanned = 0;
3573 int tag;
3574
3575 pagevec_init(&pvec, 0);
3576 if (wbc->range_cyclic) {
3577 index = mapping->writeback_index; /* Start from prev offset */
3578 end = -1;
3579 } else {
3580 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3581 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3582 scanned = 1;
3583 }
3584 if (wbc->sync_mode == WB_SYNC_ALL)
3585 tag = PAGECACHE_TAG_TOWRITE;
3586 else
3587 tag = PAGECACHE_TAG_DIRTY;
3588retry:
3589 if (wbc->sync_mode == WB_SYNC_ALL)
3590 tag_pages_for_writeback(mapping, index, end);
3591 while (!done && !nr_to_write_done && (index <= end) &&
3592 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3593 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3594 unsigned i;
3595
3596 scanned = 1;
3597 for (i = 0; i < nr_pages; i++) {
3598 struct page *page = pvec.pages[i];
3599
3600 if (!PagePrivate(page))
3601 continue;
3602
3603 if (!wbc->range_cyclic && page->index > end) {
3604 done = 1;
3605 break;
3606 }
3607
b5bae261
JB
3608 spin_lock(&mapping->private_lock);
3609 if (!PagePrivate(page)) {
3610 spin_unlock(&mapping->private_lock);
3611 continue;
3612 }
3613
0b32f4bb 3614 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3615
3616 /*
3617 * Shouldn't happen and normally this would be a BUG_ON
3618 * but no sense in crashing the users box for something
3619 * we can survive anyway.
3620 */
fae7f21c 3621 if (WARN_ON(!eb)) {
b5bae261 3622 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3623 continue;
3624 }
3625
b5bae261
JB
3626 if (eb == prev_eb) {
3627 spin_unlock(&mapping->private_lock);
0b32f4bb 3628 continue;
b5bae261 3629 }
0b32f4bb 3630
b5bae261
JB
3631 ret = atomic_inc_not_zero(&eb->refs);
3632 spin_unlock(&mapping->private_lock);
3633 if (!ret)
0b32f4bb 3634 continue;
0b32f4bb
JB
3635
3636 prev_eb = eb;
3637 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3638 if (!ret) {
3639 free_extent_buffer(eb);
3640 continue;
3641 }
3642
3643 ret = write_one_eb(eb, fs_info, wbc, &epd);
3644 if (ret) {
3645 done = 1;
3646 free_extent_buffer(eb);
3647 break;
3648 }
3649 free_extent_buffer(eb);
3650
3651 /*
3652 * the filesystem may choose to bump up nr_to_write.
3653 * We have to make sure to honor the new nr_to_write
3654 * at any time
3655 */
3656 nr_to_write_done = wbc->nr_to_write <= 0;
3657 }
3658 pagevec_release(&pvec);
3659 cond_resched();
3660 }
3661 if (!scanned && !done) {
3662 /*
3663 * We hit the last page and there is more work to be done: wrap
3664 * back to the start of the file
3665 */
3666 scanned = 1;
3667 index = 0;
3668 goto retry;
3669 }
3670 flush_write_bio(&epd);
3671 return ret;
3672}
3673
d1310b2e 3674/**
4bef0848 3675 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3676 * @mapping: address space structure to write
3677 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3678 * @writepage: function called for each page
3679 * @data: data passed to writepage function
3680 *
3681 * If a page is already under I/O, write_cache_pages() skips it, even
3682 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3683 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3684 * and msync() need to guarantee that all the data which was dirty at the time
3685 * the call was made get new I/O started against them. If wbc->sync_mode is
3686 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3687 * existing IO to complete.
3688 */
b2950863 3689static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3690 struct address_space *mapping,
3691 struct writeback_control *wbc,
d2c3f4f6
CM
3692 writepage_t writepage, void *data,
3693 void (*flush_fn)(void *))
d1310b2e 3694{
7fd1a3f7 3695 struct inode *inode = mapping->host;
d1310b2e
CM
3696 int ret = 0;
3697 int done = 0;
f85d7d6c 3698 int nr_to_write_done = 0;
d1310b2e
CM
3699 struct pagevec pvec;
3700 int nr_pages;
3701 pgoff_t index;
3702 pgoff_t end; /* Inclusive */
3703 int scanned = 0;
f7aaa06b 3704 int tag;
d1310b2e 3705
7fd1a3f7
JB
3706 /*
3707 * We have to hold onto the inode so that ordered extents can do their
3708 * work when the IO finishes. The alternative to this is failing to add
3709 * an ordered extent if the igrab() fails there and that is a huge pain
3710 * to deal with, so instead just hold onto the inode throughout the
3711 * writepages operation. If it fails here we are freeing up the inode
3712 * anyway and we'd rather not waste our time writing out stuff that is
3713 * going to be truncated anyway.
3714 */
3715 if (!igrab(inode))
3716 return 0;
3717
d1310b2e
CM
3718 pagevec_init(&pvec, 0);
3719 if (wbc->range_cyclic) {
3720 index = mapping->writeback_index; /* Start from prev offset */
3721 end = -1;
3722 } else {
3723 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3724 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3725 scanned = 1;
3726 }
f7aaa06b
JB
3727 if (wbc->sync_mode == WB_SYNC_ALL)
3728 tag = PAGECACHE_TAG_TOWRITE;
3729 else
3730 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3731retry:
f7aaa06b
JB
3732 if (wbc->sync_mode == WB_SYNC_ALL)
3733 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3734 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3735 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3736 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3737 unsigned i;
3738
3739 scanned = 1;
3740 for (i = 0; i < nr_pages; i++) {
3741 struct page *page = pvec.pages[i];
3742
3743 /*
3744 * At this point we hold neither mapping->tree_lock nor
3745 * lock on the page itself: the page may be truncated or
3746 * invalidated (changing page->mapping to NULL), or even
3747 * swizzled back from swapper_space to tmpfs file
3748 * mapping
3749 */
c8f2f24b
JB
3750 if (!trylock_page(page)) {
3751 flush_fn(data);
3752 lock_page(page);
01d658f2 3753 }
d1310b2e
CM
3754
3755 if (unlikely(page->mapping != mapping)) {
3756 unlock_page(page);
3757 continue;
3758 }
3759
3760 if (!wbc->range_cyclic && page->index > end) {
3761 done = 1;
3762 unlock_page(page);
3763 continue;
3764 }
3765
d2c3f4f6 3766 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3767 if (PageWriteback(page))
3768 flush_fn(data);
d1310b2e 3769 wait_on_page_writeback(page);
d2c3f4f6 3770 }
d1310b2e
CM
3771
3772 if (PageWriteback(page) ||
3773 !clear_page_dirty_for_io(page)) {
3774 unlock_page(page);
3775 continue;
3776 }
3777
3778 ret = (*writepage)(page, wbc, data);
3779
3780 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3781 unlock_page(page);
3782 ret = 0;
3783 }
f85d7d6c 3784 if (ret)
d1310b2e 3785 done = 1;
f85d7d6c
CM
3786
3787 /*
3788 * the filesystem may choose to bump up nr_to_write.
3789 * We have to make sure to honor the new nr_to_write
3790 * at any time
3791 */
3792 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3793 }
3794 pagevec_release(&pvec);
3795 cond_resched();
3796 }
3797 if (!scanned && !done) {
3798 /*
3799 * We hit the last page and there is more work to be done: wrap
3800 * back to the start of the file
3801 */
3802 scanned = 1;
3803 index = 0;
3804 goto retry;
3805 }
7fd1a3f7 3806 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3807 return ret;
3808}
d1310b2e 3809
ffbd517d 3810static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3811{
d2c3f4f6 3812 if (epd->bio) {
355808c2
JM
3813 int rw = WRITE;
3814 int ret;
3815
ffbd517d 3816 if (epd->sync_io)
355808c2
JM
3817 rw = WRITE_SYNC;
3818
de0022b9 3819 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3820 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3821 epd->bio = NULL;
3822 }
3823}
3824
ffbd517d
CM
3825static noinline void flush_write_bio(void *data)
3826{
3827 struct extent_page_data *epd = data;
3828 flush_epd_write_bio(epd);
3829}
3830
d1310b2e
CM
3831int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3832 get_extent_t *get_extent,
3833 struct writeback_control *wbc)
3834{
3835 int ret;
d1310b2e
CM
3836 struct extent_page_data epd = {
3837 .bio = NULL,
3838 .tree = tree,
3839 .get_extent = get_extent,
771ed689 3840 .extent_locked = 0,
ffbd517d 3841 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3842 .bio_flags = 0,
d1310b2e 3843 };
d1310b2e 3844
d1310b2e
CM
3845 ret = __extent_writepage(page, wbc, &epd);
3846
ffbd517d 3847 flush_epd_write_bio(&epd);
d1310b2e
CM
3848 return ret;
3849}
d1310b2e 3850
771ed689
CM
3851int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3852 u64 start, u64 end, get_extent_t *get_extent,
3853 int mode)
3854{
3855 int ret = 0;
3856 struct address_space *mapping = inode->i_mapping;
3857 struct page *page;
3858 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3859 PAGE_CACHE_SHIFT;
3860
3861 struct extent_page_data epd = {
3862 .bio = NULL,
3863 .tree = tree,
3864 .get_extent = get_extent,
3865 .extent_locked = 1,
ffbd517d 3866 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3867 .bio_flags = 0,
771ed689
CM
3868 };
3869 struct writeback_control wbc_writepages = {
771ed689 3870 .sync_mode = mode,
771ed689
CM
3871 .nr_to_write = nr_pages * 2,
3872 .range_start = start,
3873 .range_end = end + 1,
3874 };
3875
d397712b 3876 while (start <= end) {
771ed689
CM
3877 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3878 if (clear_page_dirty_for_io(page))
3879 ret = __extent_writepage(page, &wbc_writepages, &epd);
3880 else {
3881 if (tree->ops && tree->ops->writepage_end_io_hook)
3882 tree->ops->writepage_end_io_hook(page, start,
3883 start + PAGE_CACHE_SIZE - 1,
3884 NULL, 1);
3885 unlock_page(page);
3886 }
3887 page_cache_release(page);
3888 start += PAGE_CACHE_SIZE;
3889 }
3890
ffbd517d 3891 flush_epd_write_bio(&epd);
771ed689
CM
3892 return ret;
3893}
d1310b2e
CM
3894
3895int extent_writepages(struct extent_io_tree *tree,
3896 struct address_space *mapping,
3897 get_extent_t *get_extent,
3898 struct writeback_control *wbc)
3899{
3900 int ret = 0;
3901 struct extent_page_data epd = {
3902 .bio = NULL,
3903 .tree = tree,
3904 .get_extent = get_extent,
771ed689 3905 .extent_locked = 0,
ffbd517d 3906 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3907 .bio_flags = 0,
d1310b2e
CM
3908 };
3909
4bef0848 3910 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3911 __extent_writepage, &epd,
3912 flush_write_bio);
ffbd517d 3913 flush_epd_write_bio(&epd);
d1310b2e
CM
3914 return ret;
3915}
d1310b2e
CM
3916
3917int extent_readpages(struct extent_io_tree *tree,
3918 struct address_space *mapping,
3919 struct list_head *pages, unsigned nr_pages,
3920 get_extent_t get_extent)
3921{
3922 struct bio *bio = NULL;
3923 unsigned page_idx;
c8b97818 3924 unsigned long bio_flags = 0;
67c9684f
LB
3925 struct page *pagepool[16];
3926 struct page *page;
125bac01 3927 struct extent_map *em_cached = NULL;
67c9684f 3928 int nr = 0;
d1310b2e 3929
d1310b2e 3930 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3931 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3932
3933 prefetchw(&page->flags);
3934 list_del(&page->lru);
67c9684f 3935 if (add_to_page_cache_lru(page, mapping,
43e817a1 3936 page->index, GFP_NOFS)) {
67c9684f
LB
3937 page_cache_release(page);
3938 continue;
d1310b2e 3939 }
67c9684f
LB
3940
3941 pagepool[nr++] = page;
3942 if (nr < ARRAY_SIZE(pagepool))
3943 continue;
125bac01 3944 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3945 &bio, 0, &bio_flags, READ);
67c9684f 3946 nr = 0;
d1310b2e 3947 }
9974090b 3948 if (nr)
125bac01 3949 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3950 &bio, 0, &bio_flags, READ);
67c9684f 3951
125bac01
MX
3952 if (em_cached)
3953 free_extent_map(em_cached);
3954
d1310b2e
CM
3955 BUG_ON(!list_empty(pages));
3956 if (bio)
79787eaa 3957 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3958 return 0;
3959}
d1310b2e
CM
3960
3961/*
3962 * basic invalidatepage code, this waits on any locked or writeback
3963 * ranges corresponding to the page, and then deletes any extent state
3964 * records from the tree
3965 */
3966int extent_invalidatepage(struct extent_io_tree *tree,
3967 struct page *page, unsigned long offset)
3968{
2ac55d41 3969 struct extent_state *cached_state = NULL;
4eee4fa4 3970 u64 start = page_offset(page);
d1310b2e
CM
3971 u64 end = start + PAGE_CACHE_SIZE - 1;
3972 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3973
fda2832f 3974 start += ALIGN(offset, blocksize);
d1310b2e
CM
3975 if (start > end)
3976 return 0;
3977
d0082371 3978 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3979 wait_on_page_writeback(page);
d1310b2e 3980 clear_extent_bit(tree, start, end,
32c00aff
JB
3981 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3982 EXTENT_DO_ACCOUNTING,
2ac55d41 3983 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3984 return 0;
3985}
d1310b2e 3986
7b13b7b1
CM
3987/*
3988 * a helper for releasepage, this tests for areas of the page that
3989 * are locked or under IO and drops the related state bits if it is safe
3990 * to drop the page.
3991 */
48a3b636
ES
3992static int try_release_extent_state(struct extent_map_tree *map,
3993 struct extent_io_tree *tree,
3994 struct page *page, gfp_t mask)
7b13b7b1 3995{
4eee4fa4 3996 u64 start = page_offset(page);
7b13b7b1
CM
3997 u64 end = start + PAGE_CACHE_SIZE - 1;
3998 int ret = 1;
3999
211f90e6 4000 if (test_range_bit(tree, start, end,
8b62b72b 4001 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4002 ret = 0;
4003 else {
4004 if ((mask & GFP_NOFS) == GFP_NOFS)
4005 mask = GFP_NOFS;
11ef160f
CM
4006 /*
4007 * at this point we can safely clear everything except the
4008 * locked bit and the nodatasum bit
4009 */
e3f24cc5 4010 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4011 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4012 0, 0, NULL, mask);
e3f24cc5
CM
4013
4014 /* if clear_extent_bit failed for enomem reasons,
4015 * we can't allow the release to continue.
4016 */
4017 if (ret < 0)
4018 ret = 0;
4019 else
4020 ret = 1;
7b13b7b1
CM
4021 }
4022 return ret;
4023}
7b13b7b1 4024
d1310b2e
CM
4025/*
4026 * a helper for releasepage. As long as there are no locked extents
4027 * in the range corresponding to the page, both state records and extent
4028 * map records are removed
4029 */
4030int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4031 struct extent_io_tree *tree, struct page *page,
4032 gfp_t mask)
d1310b2e
CM
4033{
4034 struct extent_map *em;
4eee4fa4 4035 u64 start = page_offset(page);
d1310b2e 4036 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4037
70dec807
CM
4038 if ((mask & __GFP_WAIT) &&
4039 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4040 u64 len;
70dec807 4041 while (start <= end) {
39b5637f 4042 len = end - start + 1;
890871be 4043 write_lock(&map->lock);
39b5637f 4044 em = lookup_extent_mapping(map, start, len);
285190d9 4045 if (!em) {
890871be 4046 write_unlock(&map->lock);
70dec807
CM
4047 break;
4048 }
7f3c74fb
CM
4049 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4050 em->start != start) {
890871be 4051 write_unlock(&map->lock);
70dec807
CM
4052 free_extent_map(em);
4053 break;
4054 }
4055 if (!test_range_bit(tree, em->start,
4056 extent_map_end(em) - 1,
8b62b72b 4057 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4058 0, NULL)) {
70dec807
CM
4059 remove_extent_mapping(map, em);
4060 /* once for the rb tree */
4061 free_extent_map(em);
4062 }
4063 start = extent_map_end(em);
890871be 4064 write_unlock(&map->lock);
70dec807
CM
4065
4066 /* once for us */
d1310b2e
CM
4067 free_extent_map(em);
4068 }
d1310b2e 4069 }
7b13b7b1 4070 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4071}
d1310b2e 4072
ec29ed5b
CM
4073/*
4074 * helper function for fiemap, which doesn't want to see any holes.
4075 * This maps until we find something past 'last'
4076 */
4077static struct extent_map *get_extent_skip_holes(struct inode *inode,
4078 u64 offset,
4079 u64 last,
4080 get_extent_t *get_extent)
4081{
4082 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4083 struct extent_map *em;
4084 u64 len;
4085
4086 if (offset >= last)
4087 return NULL;
4088
67871254 4089 while (1) {
ec29ed5b
CM
4090 len = last - offset;
4091 if (len == 0)
4092 break;
fda2832f 4093 len = ALIGN(len, sectorsize);
ec29ed5b 4094 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4095 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4096 return em;
4097
4098 /* if this isn't a hole return it */
4099 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4100 em->block_start != EXTENT_MAP_HOLE) {
4101 return em;
4102 }
4103
4104 /* this is a hole, advance to the next extent */
4105 offset = extent_map_end(em);
4106 free_extent_map(em);
4107 if (offset >= last)
4108 break;
4109 }
4110 return NULL;
4111}
4112
fe09e16c
LB
4113static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4114{
4115 unsigned long cnt = *((unsigned long *)ctx);
4116
4117 cnt++;
4118 *((unsigned long *)ctx) = cnt;
4119
4120 /* Now we're sure that the extent is shared. */
4121 if (cnt > 1)
4122 return 1;
4123 return 0;
4124}
4125
1506fcc8
YS
4126int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4127 __u64 start, __u64 len, get_extent_t *get_extent)
4128{
975f84fe 4129 int ret = 0;
1506fcc8
YS
4130 u64 off = start;
4131 u64 max = start + len;
4132 u32 flags = 0;
975f84fe
JB
4133 u32 found_type;
4134 u64 last;
ec29ed5b 4135 u64 last_for_get_extent = 0;
1506fcc8 4136 u64 disko = 0;
ec29ed5b 4137 u64 isize = i_size_read(inode);
975f84fe 4138 struct btrfs_key found_key;
1506fcc8 4139 struct extent_map *em = NULL;
2ac55d41 4140 struct extent_state *cached_state = NULL;
975f84fe 4141 struct btrfs_path *path;
1506fcc8 4142 int end = 0;
ec29ed5b
CM
4143 u64 em_start = 0;
4144 u64 em_len = 0;
4145 u64 em_end = 0;
1506fcc8
YS
4146
4147 if (len == 0)
4148 return -EINVAL;
4149
975f84fe
JB
4150 path = btrfs_alloc_path();
4151 if (!path)
4152 return -ENOMEM;
4153 path->leave_spinning = 1;
4154
4d479cf0
JB
4155 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4156 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4157
ec29ed5b
CM
4158 /*
4159 * lookup the last file extent. We're not using i_size here
4160 * because there might be preallocation past i_size
4161 */
975f84fe 4162 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4163 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4164 if (ret < 0) {
4165 btrfs_free_path(path);
4166 return ret;
4167 }
4168 WARN_ON(!ret);
4169 path->slots[0]--;
975f84fe
JB
4170 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4171 found_type = btrfs_key_type(&found_key);
4172
ec29ed5b 4173 /* No extents, but there might be delalloc bits */
33345d01 4174 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4175 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4176 /* have to trust i_size as the end */
4177 last = (u64)-1;
4178 last_for_get_extent = isize;
4179 } else {
4180 /*
4181 * remember the start of the last extent. There are a
4182 * bunch of different factors that go into the length of the
4183 * extent, so its much less complex to remember where it started
4184 */
4185 last = found_key.offset;
4186 last_for_get_extent = last + 1;
975f84fe 4187 }
fe09e16c 4188 btrfs_release_path(path);
975f84fe 4189
ec29ed5b
CM
4190 /*
4191 * we might have some extents allocated but more delalloc past those
4192 * extents. so, we trust isize unless the start of the last extent is
4193 * beyond isize
4194 */
4195 if (last < isize) {
4196 last = (u64)-1;
4197 last_for_get_extent = isize;
4198 }
4199
a52f4cd2 4200 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4201 &cached_state);
ec29ed5b 4202
4d479cf0 4203 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4204 get_extent);
1506fcc8
YS
4205 if (!em)
4206 goto out;
4207 if (IS_ERR(em)) {
4208 ret = PTR_ERR(em);
4209 goto out;
4210 }
975f84fe 4211
1506fcc8 4212 while (!end) {
b76bb701 4213 u64 offset_in_extent = 0;
ea8efc74
CM
4214
4215 /* break if the extent we found is outside the range */
4216 if (em->start >= max || extent_map_end(em) < off)
4217 break;
4218
4219 /*
4220 * get_extent may return an extent that starts before our
4221 * requested range. We have to make sure the ranges
4222 * we return to fiemap always move forward and don't
4223 * overlap, so adjust the offsets here
4224 */
4225 em_start = max(em->start, off);
1506fcc8 4226
ea8efc74
CM
4227 /*
4228 * record the offset from the start of the extent
b76bb701
JB
4229 * for adjusting the disk offset below. Only do this if the
4230 * extent isn't compressed since our in ram offset may be past
4231 * what we have actually allocated on disk.
ea8efc74 4232 */
b76bb701
JB
4233 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4234 offset_in_extent = em_start - em->start;
ec29ed5b 4235 em_end = extent_map_end(em);
ea8efc74 4236 em_len = em_end - em_start;
1506fcc8
YS
4237 disko = 0;
4238 flags = 0;
4239
ea8efc74
CM
4240 /*
4241 * bump off for our next call to get_extent
4242 */
4243 off = extent_map_end(em);
4244 if (off >= max)
4245 end = 1;
4246
93dbfad7 4247 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4248 end = 1;
4249 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4250 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4251 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4252 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4253 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4254 flags |= (FIEMAP_EXTENT_DELALLOC |
4255 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4256 } else {
fe09e16c
LB
4257 unsigned long ref_cnt = 0;
4258
ea8efc74 4259 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4260
4261 /*
4262 * As btrfs supports shared space, this information
4263 * can be exported to userspace tools via
4264 * flag FIEMAP_EXTENT_SHARED.
4265 */
4266 ret = iterate_inodes_from_logical(
4267 em->block_start,
4268 BTRFS_I(inode)->root->fs_info,
4269 path, count_ext_ref, &ref_cnt);
4270 if (ret < 0 && ret != -ENOENT)
4271 goto out_free;
4272
4273 if (ref_cnt > 1)
4274 flags |= FIEMAP_EXTENT_SHARED;
1506fcc8
YS
4275 }
4276 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4277 flags |= FIEMAP_EXTENT_ENCODED;
4278
1506fcc8
YS
4279 free_extent_map(em);
4280 em = NULL;
ec29ed5b
CM
4281 if ((em_start >= last) || em_len == (u64)-1 ||
4282 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4283 flags |= FIEMAP_EXTENT_LAST;
4284 end = 1;
4285 }
4286
ec29ed5b
CM
4287 /* now scan forward to see if this is really the last extent. */
4288 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4289 get_extent);
4290 if (IS_ERR(em)) {
4291 ret = PTR_ERR(em);
4292 goto out;
4293 }
4294 if (!em) {
975f84fe
JB
4295 flags |= FIEMAP_EXTENT_LAST;
4296 end = 1;
4297 }
ec29ed5b
CM
4298 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4299 em_len, flags);
4300 if (ret)
4301 goto out_free;
1506fcc8
YS
4302 }
4303out_free:
4304 free_extent_map(em);
4305out:
fe09e16c 4306 btrfs_free_path(path);
a52f4cd2 4307 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4308 &cached_state, GFP_NOFS);
1506fcc8
YS
4309 return ret;
4310}
4311
727011e0
CM
4312static void __free_extent_buffer(struct extent_buffer *eb)
4313{
6d49ba1b 4314 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4315 kmem_cache_free(extent_buffer_cache, eb);
4316}
4317
db7f3436
JB
4318static int extent_buffer_under_io(struct extent_buffer *eb)
4319{
4320 return (atomic_read(&eb->io_pages) ||
4321 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4322 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4323}
4324
4325/*
4326 * Helper for releasing extent buffer page.
4327 */
4328static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4329 unsigned long start_idx)
4330{
4331 unsigned long index;
4332 unsigned long num_pages;
4333 struct page *page;
4334 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4335
4336 BUG_ON(extent_buffer_under_io(eb));
4337
4338 num_pages = num_extent_pages(eb->start, eb->len);
4339 index = start_idx + num_pages;
4340 if (start_idx >= index)
4341 return;
4342
4343 do {
4344 index--;
4345 page = extent_buffer_page(eb, index);
4346 if (page && mapped) {
4347 spin_lock(&page->mapping->private_lock);
4348 /*
4349 * We do this since we'll remove the pages after we've
4350 * removed the eb from the radix tree, so we could race
4351 * and have this page now attached to the new eb. So
4352 * only clear page_private if it's still connected to
4353 * this eb.
4354 */
4355 if (PagePrivate(page) &&
4356 page->private == (unsigned long)eb) {
4357 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4358 BUG_ON(PageDirty(page));
4359 BUG_ON(PageWriteback(page));
4360 /*
4361 * We need to make sure we haven't be attached
4362 * to a new eb.
4363 */
4364 ClearPagePrivate(page);
4365 set_page_private(page, 0);
4366 /* One for the page private */
4367 page_cache_release(page);
4368 }
4369 spin_unlock(&page->mapping->private_lock);
4370
4371 }
4372 if (page) {
4373 /* One for when we alloced the page */
4374 page_cache_release(page);
4375 }
4376 } while (index != start_idx);
4377}
4378
4379/*
4380 * Helper for releasing the extent buffer.
4381 */
4382static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4383{
4384 btrfs_release_extent_buffer_page(eb, 0);
4385 __free_extent_buffer(eb);
4386}
4387
f28491e0
JB
4388static struct extent_buffer *
4389__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4390 unsigned long len, gfp_t mask)
d1310b2e
CM
4391{
4392 struct extent_buffer *eb = NULL;
4393
d1310b2e 4394 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4395 if (eb == NULL)
4396 return NULL;
d1310b2e
CM
4397 eb->start = start;
4398 eb->len = len;
f28491e0 4399 eb->fs_info = fs_info;
815a51c7 4400 eb->bflags = 0;
bd681513
CM
4401 rwlock_init(&eb->lock);
4402 atomic_set(&eb->write_locks, 0);
4403 atomic_set(&eb->read_locks, 0);
4404 atomic_set(&eb->blocking_readers, 0);
4405 atomic_set(&eb->blocking_writers, 0);
4406 atomic_set(&eb->spinning_readers, 0);
4407 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4408 eb->lock_nested = 0;
bd681513
CM
4409 init_waitqueue_head(&eb->write_lock_wq);
4410 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4411
6d49ba1b
ES
4412 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4413
3083ee2e 4414 spin_lock_init(&eb->refs_lock);
d1310b2e 4415 atomic_set(&eb->refs, 1);
0b32f4bb 4416 atomic_set(&eb->io_pages, 0);
727011e0 4417
b8dae313
DS
4418 /*
4419 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4420 */
4421 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4422 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4423 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4424
4425 return eb;
4426}
4427
815a51c7
JS
4428struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4429{
4430 unsigned long i;
4431 struct page *p;
4432 struct extent_buffer *new;
4433 unsigned long num_pages = num_extent_pages(src->start, src->len);
4434
9ec72677 4435 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4436 if (new == NULL)
4437 return NULL;
4438
4439 for (i = 0; i < num_pages; i++) {
9ec72677 4440 p = alloc_page(GFP_NOFS);
db7f3436
JB
4441 if (!p) {
4442 btrfs_release_extent_buffer(new);
4443 return NULL;
4444 }
815a51c7
JS
4445 attach_extent_buffer_page(new, p);
4446 WARN_ON(PageDirty(p));
4447 SetPageUptodate(p);
4448 new->pages[i] = p;
4449 }
4450
4451 copy_extent_buffer(new, src, 0, 0, src->len);
4452 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4453 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4454
4455 return new;
4456}
4457
4458struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4459{
4460 struct extent_buffer *eb;
4461 unsigned long num_pages = num_extent_pages(0, len);
4462 unsigned long i;
4463
9ec72677 4464 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4465 if (!eb)
4466 return NULL;
4467
4468 for (i = 0; i < num_pages; i++) {
9ec72677 4469 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4470 if (!eb->pages[i])
4471 goto err;
4472 }
4473 set_extent_buffer_uptodate(eb);
4474 btrfs_set_header_nritems(eb, 0);
4475 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4476
4477 return eb;
4478err:
84167d19
SB
4479 for (; i > 0; i--)
4480 __free_page(eb->pages[i - 1]);
815a51c7
JS
4481 __free_extent_buffer(eb);
4482 return NULL;
4483}
4484
0b32f4bb
JB
4485static void check_buffer_tree_ref(struct extent_buffer *eb)
4486{
242e18c7 4487 int refs;
0b32f4bb
JB
4488 /* the ref bit is tricky. We have to make sure it is set
4489 * if we have the buffer dirty. Otherwise the
4490 * code to free a buffer can end up dropping a dirty
4491 * page
4492 *
4493 * Once the ref bit is set, it won't go away while the
4494 * buffer is dirty or in writeback, and it also won't
4495 * go away while we have the reference count on the
4496 * eb bumped.
4497 *
4498 * We can't just set the ref bit without bumping the
4499 * ref on the eb because free_extent_buffer might
4500 * see the ref bit and try to clear it. If this happens
4501 * free_extent_buffer might end up dropping our original
4502 * ref by mistake and freeing the page before we are able
4503 * to add one more ref.
4504 *
4505 * So bump the ref count first, then set the bit. If someone
4506 * beat us to it, drop the ref we added.
4507 */
242e18c7
CM
4508 refs = atomic_read(&eb->refs);
4509 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4510 return;
4511
594831c4
JB
4512 spin_lock(&eb->refs_lock);
4513 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4514 atomic_inc(&eb->refs);
594831c4 4515 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4516}
4517
5df4235e
JB
4518static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4519{
4520 unsigned long num_pages, i;
4521
0b32f4bb
JB
4522 check_buffer_tree_ref(eb);
4523
5df4235e
JB
4524 num_pages = num_extent_pages(eb->start, eb->len);
4525 for (i = 0; i < num_pages; i++) {
4526 struct page *p = extent_buffer_page(eb, i);
4527 mark_page_accessed(p);
4528 }
4529}
4530
f28491e0
JB
4531struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4532 u64 start)
452c75c3
CS
4533{
4534 struct extent_buffer *eb;
4535
4536 rcu_read_lock();
f28491e0
JB
4537 eb = radix_tree_lookup(&fs_info->buffer_radix,
4538 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4539 if (eb && atomic_inc_not_zero(&eb->refs)) {
4540 rcu_read_unlock();
4541 mark_extent_buffer_accessed(eb);
4542 return eb;
4543 }
4544 rcu_read_unlock();
4545
4546 return NULL;
4547}
4548
f28491e0 4549struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4550 u64 start, unsigned long len)
d1310b2e
CM
4551{
4552 unsigned long num_pages = num_extent_pages(start, len);
4553 unsigned long i;
4554 unsigned long index = start >> PAGE_CACHE_SHIFT;
4555 struct extent_buffer *eb;
6af118ce 4556 struct extent_buffer *exists = NULL;
d1310b2e 4557 struct page *p;
f28491e0 4558 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4559 int uptodate = 1;
19fe0a8b 4560 int ret;
d1310b2e 4561
f28491e0 4562 eb = find_extent_buffer(fs_info, start);
452c75c3 4563 if (eb)
6af118ce 4564 return eb;
6af118ce 4565
f28491e0 4566 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4567 if (!eb)
d1310b2e
CM
4568 return NULL;
4569
727011e0 4570 for (i = 0; i < num_pages; i++, index++) {
a6591715 4571 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4572 if (!p)
6af118ce 4573 goto free_eb;
4f2de97a
JB
4574
4575 spin_lock(&mapping->private_lock);
4576 if (PagePrivate(p)) {
4577 /*
4578 * We could have already allocated an eb for this page
4579 * and attached one so lets see if we can get a ref on
4580 * the existing eb, and if we can we know it's good and
4581 * we can just return that one, else we know we can just
4582 * overwrite page->private.
4583 */
4584 exists = (struct extent_buffer *)p->private;
4585 if (atomic_inc_not_zero(&exists->refs)) {
4586 spin_unlock(&mapping->private_lock);
4587 unlock_page(p);
17de39ac 4588 page_cache_release(p);
5df4235e 4589 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4590 goto free_eb;
4591 }
4592
0b32f4bb 4593 /*
4f2de97a
JB
4594 * Do this so attach doesn't complain and we need to
4595 * drop the ref the old guy had.
4596 */
4597 ClearPagePrivate(p);
0b32f4bb 4598 WARN_ON(PageDirty(p));
4f2de97a 4599 page_cache_release(p);
d1310b2e 4600 }
4f2de97a
JB
4601 attach_extent_buffer_page(eb, p);
4602 spin_unlock(&mapping->private_lock);
0b32f4bb 4603 WARN_ON(PageDirty(p));
d1310b2e 4604 mark_page_accessed(p);
727011e0 4605 eb->pages[i] = p;
d1310b2e
CM
4606 if (!PageUptodate(p))
4607 uptodate = 0;
eb14ab8e
CM
4608
4609 /*
4610 * see below about how we avoid a nasty race with release page
4611 * and why we unlock later
4612 */
d1310b2e
CM
4613 }
4614 if (uptodate)
b4ce94de 4615 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4616again:
19fe0a8b
MX
4617 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4618 if (ret)
4619 goto free_eb;
4620
f28491e0
JB
4621 spin_lock(&fs_info->buffer_lock);
4622 ret = radix_tree_insert(&fs_info->buffer_radix,
4623 start >> PAGE_CACHE_SHIFT, eb);
4624 spin_unlock(&fs_info->buffer_lock);
452c75c3 4625 radix_tree_preload_end();
19fe0a8b 4626 if (ret == -EEXIST) {
f28491e0 4627 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4628 if (exists)
4629 goto free_eb;
4630 else
115391d2 4631 goto again;
6af118ce 4632 }
6af118ce 4633 /* add one reference for the tree */
0b32f4bb 4634 check_buffer_tree_ref(eb);
34b41ace 4635 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4636
4637 /*
4638 * there is a race where release page may have
4639 * tried to find this extent buffer in the radix
4640 * but failed. It will tell the VM it is safe to
4641 * reclaim the, and it will clear the page private bit.
4642 * We must make sure to set the page private bit properly
4643 * after the extent buffer is in the radix tree so
4644 * it doesn't get lost
4645 */
727011e0
CM
4646 SetPageChecked(eb->pages[0]);
4647 for (i = 1; i < num_pages; i++) {
4648 p = extent_buffer_page(eb, i);
727011e0
CM
4649 ClearPageChecked(p);
4650 unlock_page(p);
4651 }
4652 unlock_page(eb->pages[0]);
d1310b2e
CM
4653 return eb;
4654
6af118ce 4655free_eb:
727011e0
CM
4656 for (i = 0; i < num_pages; i++) {
4657 if (eb->pages[i])
4658 unlock_page(eb->pages[i]);
4659 }
eb14ab8e 4660
17de39ac 4661 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4662 btrfs_release_extent_buffer(eb);
6af118ce 4663 return exists;
d1310b2e 4664}
d1310b2e 4665
3083ee2e
JB
4666static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4667{
4668 struct extent_buffer *eb =
4669 container_of(head, struct extent_buffer, rcu_head);
4670
4671 __free_extent_buffer(eb);
4672}
4673
3083ee2e 4674/* Expects to have eb->eb_lock already held */
f7a52a40 4675static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4676{
4677 WARN_ON(atomic_read(&eb->refs) == 0);
4678 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4679 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4680 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4681
815a51c7 4682 spin_unlock(&eb->refs_lock);
3083ee2e 4683
f28491e0
JB
4684 spin_lock(&fs_info->buffer_lock);
4685 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4686 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4687 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4688 } else {
4689 spin_unlock(&eb->refs_lock);
815a51c7 4690 }
3083ee2e
JB
4691
4692 /* Should be safe to release our pages at this point */
4693 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4694 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4695 return 1;
3083ee2e
JB
4696 }
4697 spin_unlock(&eb->refs_lock);
e64860aa
JB
4698
4699 return 0;
3083ee2e
JB
4700}
4701
d1310b2e
CM
4702void free_extent_buffer(struct extent_buffer *eb)
4703{
242e18c7
CM
4704 int refs;
4705 int old;
d1310b2e
CM
4706 if (!eb)
4707 return;
4708
242e18c7
CM
4709 while (1) {
4710 refs = atomic_read(&eb->refs);
4711 if (refs <= 3)
4712 break;
4713 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4714 if (old == refs)
4715 return;
4716 }
4717
3083ee2e 4718 spin_lock(&eb->refs_lock);
815a51c7
JS
4719 if (atomic_read(&eb->refs) == 2 &&
4720 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4721 atomic_dec(&eb->refs);
4722
3083ee2e
JB
4723 if (atomic_read(&eb->refs) == 2 &&
4724 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4725 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4726 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4727 atomic_dec(&eb->refs);
4728
4729 /*
4730 * I know this is terrible, but it's temporary until we stop tracking
4731 * the uptodate bits and such for the extent buffers.
4732 */
f7a52a40 4733 release_extent_buffer(eb);
3083ee2e
JB
4734}
4735
4736void free_extent_buffer_stale(struct extent_buffer *eb)
4737{
4738 if (!eb)
d1310b2e
CM
4739 return;
4740
3083ee2e
JB
4741 spin_lock(&eb->refs_lock);
4742 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4743
0b32f4bb 4744 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4745 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4746 atomic_dec(&eb->refs);
f7a52a40 4747 release_extent_buffer(eb);
d1310b2e 4748}
d1310b2e 4749
1d4284bd 4750void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4751{
d1310b2e
CM
4752 unsigned long i;
4753 unsigned long num_pages;
4754 struct page *page;
4755
d1310b2e
CM
4756 num_pages = num_extent_pages(eb->start, eb->len);
4757
4758 for (i = 0; i < num_pages; i++) {
4759 page = extent_buffer_page(eb, i);
b9473439 4760 if (!PageDirty(page))
d2c3f4f6
CM
4761 continue;
4762
a61e6f29 4763 lock_page(page);
eb14ab8e
CM
4764 WARN_ON(!PagePrivate(page));
4765
d1310b2e 4766 clear_page_dirty_for_io(page);
0ee0fda0 4767 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4768 if (!PageDirty(page)) {
4769 radix_tree_tag_clear(&page->mapping->page_tree,
4770 page_index(page),
4771 PAGECACHE_TAG_DIRTY);
4772 }
0ee0fda0 4773 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4774 ClearPageError(page);
a61e6f29 4775 unlock_page(page);
d1310b2e 4776 }
0b32f4bb 4777 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4778}
d1310b2e 4779
0b32f4bb 4780int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4781{
4782 unsigned long i;
4783 unsigned long num_pages;
b9473439 4784 int was_dirty = 0;
d1310b2e 4785
0b32f4bb
JB
4786 check_buffer_tree_ref(eb);
4787
b9473439 4788 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4789
d1310b2e 4790 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4791 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4792 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4793
b9473439 4794 for (i = 0; i < num_pages; i++)
0b32f4bb 4795 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4796 return was_dirty;
d1310b2e 4797}
d1310b2e 4798
0b32f4bb 4799int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4800{
4801 unsigned long i;
4802 struct page *page;
4803 unsigned long num_pages;
4804
b4ce94de 4805 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4806 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4807 for (i = 0; i < num_pages; i++) {
4808 page = extent_buffer_page(eb, i);
33958dc6
CM
4809 if (page)
4810 ClearPageUptodate(page);
1259ab75
CM
4811 }
4812 return 0;
4813}
4814
0b32f4bb 4815int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4816{
4817 unsigned long i;
4818 struct page *page;
4819 unsigned long num_pages;
4820
0b32f4bb 4821 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4822 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4823 for (i = 0; i < num_pages; i++) {
4824 page = extent_buffer_page(eb, i);
d1310b2e
CM
4825 SetPageUptodate(page);
4826 }
4827 return 0;
4828}
d1310b2e 4829
0b32f4bb 4830int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4831{
0b32f4bb 4832 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4833}
d1310b2e
CM
4834
4835int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4836 struct extent_buffer *eb, u64 start, int wait,
f188591e 4837 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4838{
4839 unsigned long i;
4840 unsigned long start_i;
4841 struct page *page;
4842 int err;
4843 int ret = 0;
ce9adaa5
CM
4844 int locked_pages = 0;
4845 int all_uptodate = 1;
d1310b2e 4846 unsigned long num_pages;
727011e0 4847 unsigned long num_reads = 0;
a86c12c7 4848 struct bio *bio = NULL;
c8b97818 4849 unsigned long bio_flags = 0;
a86c12c7 4850
b4ce94de 4851 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4852 return 0;
4853
d1310b2e
CM
4854 if (start) {
4855 WARN_ON(start < eb->start);
4856 start_i = (start >> PAGE_CACHE_SHIFT) -
4857 (eb->start >> PAGE_CACHE_SHIFT);
4858 } else {
4859 start_i = 0;
4860 }
4861
4862 num_pages = num_extent_pages(eb->start, eb->len);
4863 for (i = start_i; i < num_pages; i++) {
4864 page = extent_buffer_page(eb, i);
bb82ab88 4865 if (wait == WAIT_NONE) {
2db04966 4866 if (!trylock_page(page))
ce9adaa5 4867 goto unlock_exit;
d1310b2e
CM
4868 } else {
4869 lock_page(page);
4870 }
ce9adaa5 4871 locked_pages++;
727011e0
CM
4872 if (!PageUptodate(page)) {
4873 num_reads++;
ce9adaa5 4874 all_uptodate = 0;
727011e0 4875 }
ce9adaa5
CM
4876 }
4877 if (all_uptodate) {
4878 if (start_i == 0)
b4ce94de 4879 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4880 goto unlock_exit;
4881 }
4882
ea466794 4883 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4884 eb->read_mirror = 0;
0b32f4bb 4885 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4886 for (i = start_i; i < num_pages; i++) {
4887 page = extent_buffer_page(eb, i);
ce9adaa5 4888 if (!PageUptodate(page)) {
f188591e 4889 ClearPageError(page);
a86c12c7 4890 err = __extent_read_full_page(tree, page,
f188591e 4891 get_extent, &bio,
d4c7ca86
JB
4892 mirror_num, &bio_flags,
4893 READ | REQ_META);
d397712b 4894 if (err)
d1310b2e 4895 ret = err;
d1310b2e
CM
4896 } else {
4897 unlock_page(page);
4898 }
4899 }
4900
355808c2 4901 if (bio) {
d4c7ca86
JB
4902 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4903 bio_flags);
79787eaa
JM
4904 if (err)
4905 return err;
355808c2 4906 }
a86c12c7 4907
bb82ab88 4908 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4909 return ret;
d397712b 4910
d1310b2e
CM
4911 for (i = start_i; i < num_pages; i++) {
4912 page = extent_buffer_page(eb, i);
4913 wait_on_page_locked(page);
d397712b 4914 if (!PageUptodate(page))
d1310b2e 4915 ret = -EIO;
d1310b2e 4916 }
d397712b 4917
d1310b2e 4918 return ret;
ce9adaa5
CM
4919
4920unlock_exit:
4921 i = start_i;
d397712b 4922 while (locked_pages > 0) {
ce9adaa5
CM
4923 page = extent_buffer_page(eb, i);
4924 i++;
4925 unlock_page(page);
4926 locked_pages--;
4927 }
4928 return ret;
d1310b2e 4929}
d1310b2e
CM
4930
4931void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4932 unsigned long start,
4933 unsigned long len)
4934{
4935 size_t cur;
4936 size_t offset;
4937 struct page *page;
4938 char *kaddr;
4939 char *dst = (char *)dstv;
4940 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4941 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4942
4943 WARN_ON(start > eb->len);
4944 WARN_ON(start + len > eb->start + eb->len);
4945
778746b5 4946 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4947
d397712b 4948 while (len > 0) {
d1310b2e 4949 page = extent_buffer_page(eb, i);
d1310b2e
CM
4950
4951 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4952 kaddr = page_address(page);
d1310b2e 4953 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4954
4955 dst += cur;
4956 len -= cur;
4957 offset = 0;
4958 i++;
4959 }
4960}
d1310b2e
CM
4961
4962int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4963 unsigned long min_len, char **map,
d1310b2e 4964 unsigned long *map_start,
a6591715 4965 unsigned long *map_len)
d1310b2e
CM
4966{
4967 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4968 char *kaddr;
4969 struct page *p;
4970 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4971 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4972 unsigned long end_i = (start_offset + start + min_len - 1) >>
4973 PAGE_CACHE_SHIFT;
4974
4975 if (i != end_i)
4976 return -EINVAL;
4977
4978 if (i == 0) {
4979 offset = start_offset;
4980 *map_start = 0;
4981 } else {
4982 offset = 0;
4983 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4984 }
d397712b 4985
d1310b2e 4986 if (start + min_len > eb->len) {
31b1a2bd 4987 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
4988 "wanted %lu %lu\n",
4989 eb->start, eb->len, start, min_len);
85026533 4990 return -EINVAL;
d1310b2e
CM
4991 }
4992
4993 p = extent_buffer_page(eb, i);
a6591715 4994 kaddr = page_address(p);
d1310b2e
CM
4995 *map = kaddr + offset;
4996 *map_len = PAGE_CACHE_SIZE - offset;
4997 return 0;
4998}
d1310b2e 4999
d1310b2e
CM
5000int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5001 unsigned long start,
5002 unsigned long len)
5003{
5004 size_t cur;
5005 size_t offset;
5006 struct page *page;
5007 char *kaddr;
5008 char *ptr = (char *)ptrv;
5009 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5010 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5011 int ret = 0;
5012
5013 WARN_ON(start > eb->len);
5014 WARN_ON(start + len > eb->start + eb->len);
5015
778746b5 5016 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5017
d397712b 5018 while (len > 0) {
d1310b2e 5019 page = extent_buffer_page(eb, i);
d1310b2e
CM
5020
5021 cur = min(len, (PAGE_CACHE_SIZE - offset));
5022
a6591715 5023 kaddr = page_address(page);
d1310b2e 5024 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5025 if (ret)
5026 break;
5027
5028 ptr += cur;
5029 len -= cur;
5030 offset = 0;
5031 i++;
5032 }
5033 return ret;
5034}
d1310b2e
CM
5035
5036void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5037 unsigned long start, unsigned long len)
5038{
5039 size_t cur;
5040 size_t offset;
5041 struct page *page;
5042 char *kaddr;
5043 char *src = (char *)srcv;
5044 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5045 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5046
5047 WARN_ON(start > eb->len);
5048 WARN_ON(start + len > eb->start + eb->len);
5049
778746b5 5050 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5051
d397712b 5052 while (len > 0) {
d1310b2e
CM
5053 page = extent_buffer_page(eb, i);
5054 WARN_ON(!PageUptodate(page));
5055
5056 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5057 kaddr = page_address(page);
d1310b2e 5058 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5059
5060 src += cur;
5061 len -= cur;
5062 offset = 0;
5063 i++;
5064 }
5065}
d1310b2e
CM
5066
5067void memset_extent_buffer(struct extent_buffer *eb, char c,
5068 unsigned long start, unsigned long len)
5069{
5070 size_t cur;
5071 size_t offset;
5072 struct page *page;
5073 char *kaddr;
5074 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5075 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5076
5077 WARN_ON(start > eb->len);
5078 WARN_ON(start + len > eb->start + eb->len);
5079
778746b5 5080 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5081
d397712b 5082 while (len > 0) {
d1310b2e
CM
5083 page = extent_buffer_page(eb, i);
5084 WARN_ON(!PageUptodate(page));
5085
5086 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5087 kaddr = page_address(page);
d1310b2e 5088 memset(kaddr + offset, c, cur);
d1310b2e
CM
5089
5090 len -= cur;
5091 offset = 0;
5092 i++;
5093 }
5094}
d1310b2e
CM
5095
5096void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5097 unsigned long dst_offset, unsigned long src_offset,
5098 unsigned long len)
5099{
5100 u64 dst_len = dst->len;
5101 size_t cur;
5102 size_t offset;
5103 struct page *page;
5104 char *kaddr;
5105 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5106 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5107
5108 WARN_ON(src->len != dst_len);
5109
5110 offset = (start_offset + dst_offset) &
778746b5 5111 (PAGE_CACHE_SIZE - 1);
d1310b2e 5112
d397712b 5113 while (len > 0) {
d1310b2e
CM
5114 page = extent_buffer_page(dst, i);
5115 WARN_ON(!PageUptodate(page));
5116
5117 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5118
a6591715 5119 kaddr = page_address(page);
d1310b2e 5120 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5121
5122 src_offset += cur;
5123 len -= cur;
5124 offset = 0;
5125 i++;
5126 }
5127}
d1310b2e 5128
3387206f
ST
5129static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5130{
5131 unsigned long distance = (src > dst) ? src - dst : dst - src;
5132 return distance < len;
5133}
5134
d1310b2e
CM
5135static void copy_pages(struct page *dst_page, struct page *src_page,
5136 unsigned long dst_off, unsigned long src_off,
5137 unsigned long len)
5138{
a6591715 5139 char *dst_kaddr = page_address(dst_page);
d1310b2e 5140 char *src_kaddr;
727011e0 5141 int must_memmove = 0;
d1310b2e 5142
3387206f 5143 if (dst_page != src_page) {
a6591715 5144 src_kaddr = page_address(src_page);
3387206f 5145 } else {
d1310b2e 5146 src_kaddr = dst_kaddr;
727011e0
CM
5147 if (areas_overlap(src_off, dst_off, len))
5148 must_memmove = 1;
3387206f 5149 }
d1310b2e 5150
727011e0
CM
5151 if (must_memmove)
5152 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5153 else
5154 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5155}
5156
5157void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5158 unsigned long src_offset, unsigned long len)
5159{
5160 size_t cur;
5161 size_t dst_off_in_page;
5162 size_t src_off_in_page;
5163 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5164 unsigned long dst_i;
5165 unsigned long src_i;
5166
5167 if (src_offset + len > dst->len) {
efe120a0 5168 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5169 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5170 BUG_ON(1);
5171 }
5172 if (dst_offset + len > dst->len) {
efe120a0 5173 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5174 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5175 BUG_ON(1);
5176 }
5177
d397712b 5178 while (len > 0) {
d1310b2e 5179 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5180 (PAGE_CACHE_SIZE - 1);
d1310b2e 5181 src_off_in_page = (start_offset + src_offset) &
778746b5 5182 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5183
5184 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5185 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5186
5187 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5188 src_off_in_page));
5189 cur = min_t(unsigned long, cur,
5190 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5191
5192 copy_pages(extent_buffer_page(dst, dst_i),
5193 extent_buffer_page(dst, src_i),
5194 dst_off_in_page, src_off_in_page, cur);
5195
5196 src_offset += cur;
5197 dst_offset += cur;
5198 len -= cur;
5199 }
5200}
d1310b2e
CM
5201
5202void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5203 unsigned long src_offset, unsigned long len)
5204{
5205 size_t cur;
5206 size_t dst_off_in_page;
5207 size_t src_off_in_page;
5208 unsigned long dst_end = dst_offset + len - 1;
5209 unsigned long src_end = src_offset + len - 1;
5210 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5211 unsigned long dst_i;
5212 unsigned long src_i;
5213
5214 if (src_offset + len > dst->len) {
efe120a0 5215 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5216 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5217 BUG_ON(1);
5218 }
5219 if (dst_offset + len > dst->len) {
efe120a0 5220 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5221 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5222 BUG_ON(1);
5223 }
727011e0 5224 if (dst_offset < src_offset) {
d1310b2e
CM
5225 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5226 return;
5227 }
d397712b 5228 while (len > 0) {
d1310b2e
CM
5229 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5230 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5231
5232 dst_off_in_page = (start_offset + dst_end) &
778746b5 5233 (PAGE_CACHE_SIZE - 1);
d1310b2e 5234 src_off_in_page = (start_offset + src_end) &
778746b5 5235 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5236
5237 cur = min_t(unsigned long, len, src_off_in_page + 1);
5238 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5239 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5240 extent_buffer_page(dst, src_i),
5241 dst_off_in_page - cur + 1,
5242 src_off_in_page - cur + 1, cur);
5243
5244 dst_end -= cur;
5245 src_end -= cur;
5246 len -= cur;
5247 }
5248}
6af118ce 5249
f7a52a40 5250int try_release_extent_buffer(struct page *page)
19fe0a8b 5251{
6af118ce 5252 struct extent_buffer *eb;
6af118ce 5253
3083ee2e
JB
5254 /*
5255 * We need to make sure noboody is attaching this page to an eb right
5256 * now.
5257 */
5258 spin_lock(&page->mapping->private_lock);
5259 if (!PagePrivate(page)) {
5260 spin_unlock(&page->mapping->private_lock);
4f2de97a 5261 return 1;
45f49bce 5262 }
6af118ce 5263
3083ee2e
JB
5264 eb = (struct extent_buffer *)page->private;
5265 BUG_ON(!eb);
19fe0a8b
MX
5266
5267 /*
3083ee2e
JB
5268 * This is a little awful but should be ok, we need to make sure that
5269 * the eb doesn't disappear out from under us while we're looking at
5270 * this page.
19fe0a8b 5271 */
3083ee2e 5272 spin_lock(&eb->refs_lock);
0b32f4bb 5273 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5274 spin_unlock(&eb->refs_lock);
5275 spin_unlock(&page->mapping->private_lock);
5276 return 0;
b9473439 5277 }
3083ee2e 5278 spin_unlock(&page->mapping->private_lock);
897ca6e9 5279
19fe0a8b 5280 /*
3083ee2e
JB
5281 * If tree ref isn't set then we know the ref on this eb is a real ref,
5282 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5283 */
3083ee2e
JB
5284 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5285 spin_unlock(&eb->refs_lock);
5286 return 0;
b9473439 5287 }
19fe0a8b 5288
f7a52a40 5289 return release_extent_buffer(eb);
6af118ce 5290}