Btrfs: Cleanup unused variant and argument of IO failure handlers
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
27a3507d
FM
67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1
DS
98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 printk_ratelimited(KERN_DEBUG
efe120a0 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
0b32f4bb 134static noinline void flush_write_bio(void *data);
c2d904e0
JM
135static inline struct btrfs_fs_info *
136tree_fs_info(struct extent_io_tree *tree)
137{
a5dee37d
JB
138 if (!tree->mapping)
139 return NULL;
c2d904e0
JM
140 return btrfs_sb(tree->mapping->host->i_sb);
141}
0b32f4bb 142
d1310b2e
CM
143int __init extent_io_init(void)
144{
837e1972 145 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
146 sizeof(struct extent_state), 0,
147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
148 if (!extent_state_cache)
149 return -ENOMEM;
150
837e1972 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
152 sizeof(struct extent_buffer), 0,
153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
154 if (!extent_buffer_cache)
155 goto free_state_cache;
9be3395b
CM
156
157 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 offsetof(struct btrfs_io_bio, bio));
159 if (!btrfs_bioset)
160 goto free_buffer_cache;
b208c2f7
DW
161
162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 goto free_bioset;
164
d1310b2e
CM
165 return 0;
166
b208c2f7
DW
167free_bioset:
168 bioset_free(btrfs_bioset);
169 btrfs_bioset = NULL;
170
9be3395b
CM
171free_buffer_cache:
172 kmem_cache_destroy(extent_buffer_cache);
173 extent_buffer_cache = NULL;
174
d1310b2e
CM
175free_state_cache:
176 kmem_cache_destroy(extent_state_cache);
9be3395b 177 extent_state_cache = NULL;
d1310b2e
CM
178 return -ENOMEM;
179}
180
181void extent_io_exit(void)
182{
6d49ba1b 183 btrfs_leak_debug_check();
8c0a8537
KS
184
185 /*
186 * Make sure all delayed rcu free are flushed before we
187 * destroy caches.
188 */
189 rcu_barrier();
d1310b2e
CM
190 if (extent_state_cache)
191 kmem_cache_destroy(extent_state_cache);
192 if (extent_buffer_cache)
193 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
194 if (btrfs_bioset)
195 bioset_free(btrfs_bioset);
d1310b2e
CM
196}
197
198void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 199 struct address_space *mapping)
d1310b2e 200{
6bef4d31 201 tree->state = RB_ROOT;
d1310b2e
CM
202 tree->ops = NULL;
203 tree->dirty_bytes = 0;
70dec807 204 spin_lock_init(&tree->lock);
d1310b2e 205 tree->mapping = mapping;
d1310b2e 206}
d1310b2e 207
b2950863 208static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
209{
210 struct extent_state *state;
d1310b2e
CM
211
212 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 213 if (!state)
d1310b2e
CM
214 return state;
215 state->state = 0;
d1310b2e 216 state->private = 0;
27a3507d 217 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 218 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
219 atomic_set(&state->refs, 1);
220 init_waitqueue_head(&state->wq);
143bede5 221 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
222 return state;
223}
d1310b2e 224
4845e44f 225void free_extent_state(struct extent_state *state)
d1310b2e 226{
d1310b2e
CM
227 if (!state)
228 return;
229 if (atomic_dec_and_test(&state->refs)) {
27a3507d 230 WARN_ON(extent_state_in_tree(state));
6d49ba1b 231 btrfs_leak_debug_del(&state->leak_list);
143bede5 232 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
233 kmem_cache_free(extent_state_cache, state);
234 }
235}
d1310b2e 236
f2071b21
FM
237static struct rb_node *tree_insert(struct rb_root *root,
238 struct rb_node *search_start,
239 u64 offset,
12cfbad9
FDBM
240 struct rb_node *node,
241 struct rb_node ***p_in,
242 struct rb_node **parent_in)
d1310b2e 243{
f2071b21 244 struct rb_node **p;
d397712b 245 struct rb_node *parent = NULL;
d1310b2e
CM
246 struct tree_entry *entry;
247
12cfbad9
FDBM
248 if (p_in && parent_in) {
249 p = *p_in;
250 parent = *parent_in;
251 goto do_insert;
252 }
253
f2071b21 254 p = search_start ? &search_start : &root->rb_node;
d397712b 255 while (*p) {
d1310b2e
CM
256 parent = *p;
257 entry = rb_entry(parent, struct tree_entry, rb_node);
258
259 if (offset < entry->start)
260 p = &(*p)->rb_left;
261 else if (offset > entry->end)
262 p = &(*p)->rb_right;
263 else
264 return parent;
265 }
266
12cfbad9 267do_insert:
d1310b2e
CM
268 rb_link_node(node, parent, p);
269 rb_insert_color(node, root);
270 return NULL;
271}
272
80ea96b1 273static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
274 struct rb_node **prev_ret,
275 struct rb_node **next_ret,
276 struct rb_node ***p_ret,
277 struct rb_node **parent_ret)
d1310b2e 278{
80ea96b1 279 struct rb_root *root = &tree->state;
12cfbad9 280 struct rb_node **n = &root->rb_node;
d1310b2e
CM
281 struct rb_node *prev = NULL;
282 struct rb_node *orig_prev = NULL;
283 struct tree_entry *entry;
284 struct tree_entry *prev_entry = NULL;
285
12cfbad9
FDBM
286 while (*n) {
287 prev = *n;
288 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
289 prev_entry = entry;
290
291 if (offset < entry->start)
12cfbad9 292 n = &(*n)->rb_left;
d1310b2e 293 else if (offset > entry->end)
12cfbad9 294 n = &(*n)->rb_right;
d397712b 295 else
12cfbad9 296 return *n;
d1310b2e
CM
297 }
298
12cfbad9
FDBM
299 if (p_ret)
300 *p_ret = n;
301 if (parent_ret)
302 *parent_ret = prev;
303
d1310b2e
CM
304 if (prev_ret) {
305 orig_prev = prev;
d397712b 306 while (prev && offset > prev_entry->end) {
d1310b2e
CM
307 prev = rb_next(prev);
308 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 }
310 *prev_ret = prev;
311 prev = orig_prev;
312 }
313
314 if (next_ret) {
315 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 316 while (prev && offset < prev_entry->start) {
d1310b2e
CM
317 prev = rb_prev(prev);
318 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 }
320 *next_ret = prev;
321 }
322 return NULL;
323}
324
12cfbad9
FDBM
325static inline struct rb_node *
326tree_search_for_insert(struct extent_io_tree *tree,
327 u64 offset,
328 struct rb_node ***p_ret,
329 struct rb_node **parent_ret)
d1310b2e 330{
70dec807 331 struct rb_node *prev = NULL;
d1310b2e 332 struct rb_node *ret;
70dec807 333
12cfbad9 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 335 if (!ret)
d1310b2e
CM
336 return prev;
337 return ret;
338}
339
12cfbad9
FDBM
340static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 u64 offset)
342{
343 return tree_search_for_insert(tree, offset, NULL, NULL);
344}
345
9ed74f2d
JB
346static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 struct extent_state *other)
348{
349 if (tree->ops && tree->ops->merge_extent_hook)
350 tree->ops->merge_extent_hook(tree->mapping->host, new,
351 other);
352}
353
d1310b2e
CM
354/*
355 * utility function to look for merge candidates inside a given range.
356 * Any extents with matching state are merged together into a single
357 * extent in the tree. Extents with EXTENT_IO in their state field
358 * are not merged because the end_io handlers need to be able to do
359 * operations on them without sleeping (or doing allocations/splits).
360 *
361 * This should be called with the tree lock held.
362 */
1bf85046
JM
363static void merge_state(struct extent_io_tree *tree,
364 struct extent_state *state)
d1310b2e
CM
365{
366 struct extent_state *other;
367 struct rb_node *other_node;
368
5b21f2ed 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 370 return;
d1310b2e
CM
371
372 other_node = rb_prev(&state->rb_node);
373 if (other_node) {
374 other = rb_entry(other_node, struct extent_state, rb_node);
375 if (other->end == state->start - 1 &&
376 other->state == state->state) {
9ed74f2d 377 merge_cb(tree, state, other);
d1310b2e 378 state->start = other->start;
d1310b2e 379 rb_erase(&other->rb_node, &tree->state);
27a3507d 380 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
381 free_extent_state(other);
382 }
383 }
384 other_node = rb_next(&state->rb_node);
385 if (other_node) {
386 other = rb_entry(other_node, struct extent_state, rb_node);
387 if (other->start == state->end + 1 &&
388 other->state == state->state) {
9ed74f2d 389 merge_cb(tree, state, other);
df98b6e2 390 state->end = other->end;
df98b6e2 391 rb_erase(&other->rb_node, &tree->state);
27a3507d 392 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 393 free_extent_state(other);
d1310b2e
CM
394 }
395 }
d1310b2e
CM
396}
397
1bf85046 398static void set_state_cb(struct extent_io_tree *tree,
41074888 399 struct extent_state *state, unsigned long *bits)
291d673e 400{
1bf85046
JM
401 if (tree->ops && tree->ops->set_bit_hook)
402 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
403}
404
405static void clear_state_cb(struct extent_io_tree *tree,
41074888 406 struct extent_state *state, unsigned long *bits)
291d673e 407{
9ed74f2d
JB
408 if (tree->ops && tree->ops->clear_bit_hook)
409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
410}
411
3150b699 412static void set_state_bits(struct extent_io_tree *tree,
41074888 413 struct extent_state *state, unsigned long *bits);
3150b699 414
d1310b2e
CM
415/*
416 * insert an extent_state struct into the tree. 'bits' are set on the
417 * struct before it is inserted.
418 *
419 * This may return -EEXIST if the extent is already there, in which case the
420 * state struct is freed.
421 *
422 * The tree lock is not taken internally. This is a utility function and
423 * probably isn't what you want to call (see set/clear_extent_bit).
424 */
425static int insert_state(struct extent_io_tree *tree,
426 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
427 struct rb_node ***p,
428 struct rb_node **parent,
41074888 429 unsigned long *bits)
d1310b2e
CM
430{
431 struct rb_node *node;
432
31b1a2bd 433 if (end < start)
efe120a0 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 435 end, start);
d1310b2e
CM
436 state->start = start;
437 state->end = end;
9ed74f2d 438
3150b699
XG
439 set_state_bits(tree, state, bits);
440
f2071b21 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
442 if (node) {
443 struct extent_state *found;
444 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
446 "%llu %llu\n",
447 found->start, found->end, start, end);
d1310b2e
CM
448 return -EEXIST;
449 }
450 merge_state(tree, state);
451 return 0;
452}
453
1bf85046 454static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
455 u64 split)
456{
457 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
459}
460
d1310b2e
CM
461/*
462 * split a given extent state struct in two, inserting the preallocated
463 * struct 'prealloc' as the newly created second half. 'split' indicates an
464 * offset inside 'orig' where it should be split.
465 *
466 * Before calling,
467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
468 * are two extent state structs in the tree:
469 * prealloc: [orig->start, split - 1]
470 * orig: [ split, orig->end ]
471 *
472 * The tree locks are not taken by this function. They need to be held
473 * by the caller.
474 */
475static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 struct extent_state *prealloc, u64 split)
477{
478 struct rb_node *node;
9ed74f2d
JB
479
480 split_cb(tree, orig, split);
481
d1310b2e
CM
482 prealloc->start = orig->start;
483 prealloc->end = split - 1;
484 prealloc->state = orig->state;
485 orig->start = split;
486
f2071b21
FM
487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 &prealloc->rb_node, NULL, NULL);
d1310b2e 489 if (node) {
d1310b2e
CM
490 free_extent_state(prealloc);
491 return -EEXIST;
492 }
493 return 0;
494}
495
cdc6a395
LZ
496static struct extent_state *next_state(struct extent_state *state)
497{
498 struct rb_node *next = rb_next(&state->rb_node);
499 if (next)
500 return rb_entry(next, struct extent_state, rb_node);
501 else
502 return NULL;
503}
504
d1310b2e
CM
505/*
506 * utility function to clear some bits in an extent state struct.
1b303fc0 507 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
508 *
509 * If no bits are set on the state struct after clearing things, the
510 * struct is freed and removed from the tree
511 */
cdc6a395
LZ
512static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 struct extent_state *state,
41074888 514 unsigned long *bits, int wake)
d1310b2e 515{
cdc6a395 516 struct extent_state *next;
41074888 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 518
0ca1f7ce 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
520 u64 range = state->end - state->start + 1;
521 WARN_ON(range > tree->dirty_bytes);
522 tree->dirty_bytes -= range;
523 }
291d673e 524 clear_state_cb(tree, state, bits);
32c00aff 525 state->state &= ~bits_to_clear;
d1310b2e
CM
526 if (wake)
527 wake_up(&state->wq);
0ca1f7ce 528 if (state->state == 0) {
cdc6a395 529 next = next_state(state);
27a3507d 530 if (extent_state_in_tree(state)) {
d1310b2e 531 rb_erase(&state->rb_node, &tree->state);
27a3507d 532 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
533 free_extent_state(state);
534 } else {
535 WARN_ON(1);
536 }
537 } else {
538 merge_state(tree, state);
cdc6a395 539 next = next_state(state);
d1310b2e 540 }
cdc6a395 541 return next;
d1310b2e
CM
542}
543
8233767a
XG
544static struct extent_state *
545alloc_extent_state_atomic(struct extent_state *prealloc)
546{
547 if (!prealloc)
548 prealloc = alloc_extent_state(GFP_ATOMIC);
549
550 return prealloc;
551}
552
48a3b636 553static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
554{
555 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 "Extent tree was modified by another "
557 "thread while locked.");
558}
559
d1310b2e
CM
560/*
561 * clear some bits on a range in the tree. This may require splitting
562 * or inserting elements in the tree, so the gfp mask is used to
563 * indicate which allocations or sleeping are allowed.
564 *
565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566 * the given range from the tree regardless of state (ie for truncate).
567 *
568 * the range [start, end] is inclusive.
569 *
6763af84 570 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
571 */
572int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 573 unsigned long bits, int wake, int delete,
2c64c53d
CM
574 struct extent_state **cached_state,
575 gfp_t mask)
d1310b2e
CM
576{
577 struct extent_state *state;
2c64c53d 578 struct extent_state *cached;
d1310b2e
CM
579 struct extent_state *prealloc = NULL;
580 struct rb_node *node;
5c939df5 581 u64 last_end;
d1310b2e 582 int err;
2ac55d41 583 int clear = 0;
d1310b2e 584
a5dee37d 585 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 586
7ee9e440
JB
587 if (bits & EXTENT_DELALLOC)
588 bits |= EXTENT_NORESERVE;
589
0ca1f7ce
YZ
590 if (delete)
591 bits |= ~EXTENT_CTLBITS;
592 bits |= EXTENT_FIRST_DELALLOC;
593
2ac55d41
JB
594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 clear = 1;
d1310b2e
CM
596again:
597 if (!prealloc && (mask & __GFP_WAIT)) {
598 prealloc = alloc_extent_state(mask);
599 if (!prealloc)
600 return -ENOMEM;
601 }
602
cad321ad 603 spin_lock(&tree->lock);
2c64c53d
CM
604 if (cached_state) {
605 cached = *cached_state;
2ac55d41
JB
606
607 if (clear) {
608 *cached_state = NULL;
609 cached_state = NULL;
610 }
611
27a3507d
FM
612 if (cached && extent_state_in_tree(cached) &&
613 cached->start <= start && cached->end > start) {
2ac55d41
JB
614 if (clear)
615 atomic_dec(&cached->refs);
2c64c53d 616 state = cached;
42daec29 617 goto hit_next;
2c64c53d 618 }
2ac55d41
JB
619 if (clear)
620 free_extent_state(cached);
2c64c53d 621 }
d1310b2e
CM
622 /*
623 * this search will find the extents that end after
624 * our range starts
625 */
80ea96b1 626 node = tree_search(tree, start);
d1310b2e
CM
627 if (!node)
628 goto out;
629 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 630hit_next:
d1310b2e
CM
631 if (state->start > end)
632 goto out;
633 WARN_ON(state->end < start);
5c939df5 634 last_end = state->end;
d1310b2e 635
0449314a 636 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
637 if (!(state->state & bits)) {
638 state = next_state(state);
0449314a 639 goto next;
cdc6a395 640 }
0449314a 641
d1310b2e
CM
642 /*
643 * | ---- desired range ---- |
644 * | state | or
645 * | ------------- state -------------- |
646 *
647 * We need to split the extent we found, and may flip
648 * bits on second half.
649 *
650 * If the extent we found extends past our range, we
651 * just split and search again. It'll get split again
652 * the next time though.
653 *
654 * If the extent we found is inside our range, we clear
655 * the desired bit on it.
656 */
657
658 if (state->start < start) {
8233767a
XG
659 prealloc = alloc_extent_state_atomic(prealloc);
660 BUG_ON(!prealloc);
d1310b2e 661 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
662 if (err)
663 extent_io_tree_panic(tree, err);
664
d1310b2e
CM
665 prealloc = NULL;
666 if (err)
667 goto out;
668 if (state->end <= end) {
d1ac6e41
LB
669 state = clear_state_bit(tree, state, &bits, wake);
670 goto next;
d1310b2e
CM
671 }
672 goto search_again;
673 }
674 /*
675 * | ---- desired range ---- |
676 * | state |
677 * We need to split the extent, and clear the bit
678 * on the first half
679 */
680 if (state->start <= end && state->end > end) {
8233767a
XG
681 prealloc = alloc_extent_state_atomic(prealloc);
682 BUG_ON(!prealloc);
d1310b2e 683 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
684 if (err)
685 extent_io_tree_panic(tree, err);
686
d1310b2e
CM
687 if (wake)
688 wake_up(&state->wq);
42daec29 689
6763af84 690 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 691
d1310b2e
CM
692 prealloc = NULL;
693 goto out;
694 }
42daec29 695
cdc6a395 696 state = clear_state_bit(tree, state, &bits, wake);
0449314a 697next:
5c939df5
YZ
698 if (last_end == (u64)-1)
699 goto out;
700 start = last_end + 1;
cdc6a395 701 if (start <= end && state && !need_resched())
692e5759 702 goto hit_next;
d1310b2e
CM
703 goto search_again;
704
705out:
cad321ad 706 spin_unlock(&tree->lock);
d1310b2e
CM
707 if (prealloc)
708 free_extent_state(prealloc);
709
6763af84 710 return 0;
d1310b2e
CM
711
712search_again:
713 if (start > end)
714 goto out;
cad321ad 715 spin_unlock(&tree->lock);
d1310b2e
CM
716 if (mask & __GFP_WAIT)
717 cond_resched();
718 goto again;
719}
d1310b2e 720
143bede5
JM
721static void wait_on_state(struct extent_io_tree *tree,
722 struct extent_state *state)
641f5219
CH
723 __releases(tree->lock)
724 __acquires(tree->lock)
d1310b2e
CM
725{
726 DEFINE_WAIT(wait);
727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 728 spin_unlock(&tree->lock);
d1310b2e 729 schedule();
cad321ad 730 spin_lock(&tree->lock);
d1310b2e 731 finish_wait(&state->wq, &wait);
d1310b2e
CM
732}
733
734/*
735 * waits for one or more bits to clear on a range in the state tree.
736 * The range [start, end] is inclusive.
737 * The tree lock is taken by this function
738 */
41074888
DS
739static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 unsigned long bits)
d1310b2e
CM
741{
742 struct extent_state *state;
743 struct rb_node *node;
744
a5dee37d 745 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 746
cad321ad 747 spin_lock(&tree->lock);
d1310b2e
CM
748again:
749 while (1) {
750 /*
751 * this search will find all the extents that end after
752 * our range starts
753 */
80ea96b1 754 node = tree_search(tree, start);
c50d3e71 755process_node:
d1310b2e
CM
756 if (!node)
757 break;
758
759 state = rb_entry(node, struct extent_state, rb_node);
760
761 if (state->start > end)
762 goto out;
763
764 if (state->state & bits) {
765 start = state->start;
766 atomic_inc(&state->refs);
767 wait_on_state(tree, state);
768 free_extent_state(state);
769 goto again;
770 }
771 start = state->end + 1;
772
773 if (start > end)
774 break;
775
c50d3e71
FM
776 if (!cond_resched_lock(&tree->lock)) {
777 node = rb_next(node);
778 goto process_node;
779 }
d1310b2e
CM
780 }
781out:
cad321ad 782 spin_unlock(&tree->lock);
d1310b2e 783}
d1310b2e 784
1bf85046 785static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 786 struct extent_state *state,
41074888 787 unsigned long *bits)
d1310b2e 788{
41074888 789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 790
1bf85046 791 set_state_cb(tree, state, bits);
0ca1f7ce 792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
793 u64 range = state->end - state->start + 1;
794 tree->dirty_bytes += range;
795 }
0ca1f7ce 796 state->state |= bits_to_set;
d1310b2e
CM
797}
798
2c64c53d
CM
799static void cache_state(struct extent_state *state,
800 struct extent_state **cached_ptr)
801{
802 if (cached_ptr && !(*cached_ptr)) {
803 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804 *cached_ptr = state;
805 atomic_inc(&state->refs);
806 }
807 }
808}
809
d1310b2e 810/*
1edbb734
CM
811 * set some bits on a range in the tree. This may require allocations or
812 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 813 *
1edbb734
CM
814 * If any of the exclusive bits are set, this will fail with -EEXIST if some
815 * part of the range already has the desired bits set. The start of the
816 * existing range is returned in failed_start in this case.
d1310b2e 817 *
1edbb734 818 * [start, end] is inclusive This takes the tree lock.
d1310b2e 819 */
1edbb734 820
3fbe5c02
JM
821static int __must_check
822__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
823 unsigned long bits, unsigned long exclusive_bits,
824 u64 *failed_start, struct extent_state **cached_state,
825 gfp_t mask)
d1310b2e
CM
826{
827 struct extent_state *state;
828 struct extent_state *prealloc = NULL;
829 struct rb_node *node;
12cfbad9
FDBM
830 struct rb_node **p;
831 struct rb_node *parent;
d1310b2e 832 int err = 0;
d1310b2e
CM
833 u64 last_start;
834 u64 last_end;
42daec29 835
a5dee37d 836 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 837
0ca1f7ce 838 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
839again:
840 if (!prealloc && (mask & __GFP_WAIT)) {
841 prealloc = alloc_extent_state(mask);
8233767a 842 BUG_ON(!prealloc);
d1310b2e
CM
843 }
844
cad321ad 845 spin_lock(&tree->lock);
9655d298
CM
846 if (cached_state && *cached_state) {
847 state = *cached_state;
df98b6e2 848 if (state->start <= start && state->end > start &&
27a3507d 849 extent_state_in_tree(state)) {
9655d298
CM
850 node = &state->rb_node;
851 goto hit_next;
852 }
853 }
d1310b2e
CM
854 /*
855 * this search will find all the extents that end after
856 * our range starts.
857 */
12cfbad9 858 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 859 if (!node) {
8233767a
XG
860 prealloc = alloc_extent_state_atomic(prealloc);
861 BUG_ON(!prealloc);
12cfbad9
FDBM
862 err = insert_state(tree, prealloc, start, end,
863 &p, &parent, &bits);
c2d904e0
JM
864 if (err)
865 extent_io_tree_panic(tree, err);
866
c42ac0bc 867 cache_state(prealloc, cached_state);
d1310b2e 868 prealloc = NULL;
d1310b2e
CM
869 goto out;
870 }
d1310b2e 871 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 872hit_next:
d1310b2e
CM
873 last_start = state->start;
874 last_end = state->end;
875
876 /*
877 * | ---- desired range ---- |
878 * | state |
879 *
880 * Just lock what we found and keep going
881 */
882 if (state->start == start && state->end <= end) {
1edbb734 883 if (state->state & exclusive_bits) {
d1310b2e
CM
884 *failed_start = state->start;
885 err = -EEXIST;
886 goto out;
887 }
42daec29 888
1bf85046 889 set_state_bits(tree, state, &bits);
2c64c53d 890 cache_state(state, cached_state);
d1310b2e 891 merge_state(tree, state);
5c939df5
YZ
892 if (last_end == (u64)-1)
893 goto out;
894 start = last_end + 1;
d1ac6e41
LB
895 state = next_state(state);
896 if (start < end && state && state->start == start &&
897 !need_resched())
898 goto hit_next;
d1310b2e
CM
899 goto search_again;
900 }
901
902 /*
903 * | ---- desired range ---- |
904 * | state |
905 * or
906 * | ------------- state -------------- |
907 *
908 * We need to split the extent we found, and may flip bits on
909 * second half.
910 *
911 * If the extent we found extends past our
912 * range, we just split and search again. It'll get split
913 * again the next time though.
914 *
915 * If the extent we found is inside our range, we set the
916 * desired bit on it.
917 */
918 if (state->start < start) {
1edbb734 919 if (state->state & exclusive_bits) {
d1310b2e
CM
920 *failed_start = start;
921 err = -EEXIST;
922 goto out;
923 }
8233767a
XG
924
925 prealloc = alloc_extent_state_atomic(prealloc);
926 BUG_ON(!prealloc);
d1310b2e 927 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
928 if (err)
929 extent_io_tree_panic(tree, err);
930
d1310b2e
CM
931 prealloc = NULL;
932 if (err)
933 goto out;
934 if (state->end <= end) {
1bf85046 935 set_state_bits(tree, state, &bits);
2c64c53d 936 cache_state(state, cached_state);
d1310b2e 937 merge_state(tree, state);
5c939df5
YZ
938 if (last_end == (u64)-1)
939 goto out;
940 start = last_end + 1;
d1ac6e41
LB
941 state = next_state(state);
942 if (start < end && state && state->start == start &&
943 !need_resched())
944 goto hit_next;
d1310b2e
CM
945 }
946 goto search_again;
947 }
948 /*
949 * | ---- desired range ---- |
950 * | state | or | state |
951 *
952 * There's a hole, we need to insert something in it and
953 * ignore the extent we found.
954 */
955 if (state->start > start) {
956 u64 this_end;
957 if (end < last_start)
958 this_end = end;
959 else
d397712b 960 this_end = last_start - 1;
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
c7f895a2
XG
964
965 /*
966 * Avoid to free 'prealloc' if it can be merged with
967 * the later extent.
968 */
d1310b2e 969 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 970 NULL, NULL, &bits);
c2d904e0
JM
971 if (err)
972 extent_io_tree_panic(tree, err);
973
9ed74f2d
JB
974 cache_state(prealloc, cached_state);
975 prealloc = NULL;
d1310b2e
CM
976 start = this_end + 1;
977 goto search_again;
978 }
979 /*
980 * | ---- desired range ---- |
981 * | state |
982 * We need to split the extent, and set the bit
983 * on the first half
984 */
985 if (state->start <= end && state->end > end) {
1edbb734 986 if (state->state & exclusive_bits) {
d1310b2e
CM
987 *failed_start = start;
988 err = -EEXIST;
989 goto out;
990 }
8233767a
XG
991
992 prealloc = alloc_extent_state_atomic(prealloc);
993 BUG_ON(!prealloc);
d1310b2e 994 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
995 if (err)
996 extent_io_tree_panic(tree, err);
d1310b2e 997
1bf85046 998 set_state_bits(tree, prealloc, &bits);
2c64c53d 999 cache_state(prealloc, cached_state);
d1310b2e
CM
1000 merge_state(tree, prealloc);
1001 prealloc = NULL;
1002 goto out;
1003 }
1004
1005 goto search_again;
1006
1007out:
cad321ad 1008 spin_unlock(&tree->lock);
d1310b2e
CM
1009 if (prealloc)
1010 free_extent_state(prealloc);
1011
1012 return err;
1013
1014search_again:
1015 if (start > end)
1016 goto out;
cad321ad 1017 spin_unlock(&tree->lock);
d1310b2e
CM
1018 if (mask & __GFP_WAIT)
1019 cond_resched();
1020 goto again;
1021}
d1310b2e 1022
41074888
DS
1023int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024 unsigned long bits, u64 * failed_start,
1025 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1026{
1027 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028 cached_state, mask);
1029}
1030
1031
462d6fac 1032/**
10983f2e
LB
1033 * convert_extent_bit - convert all bits in a given range from one bit to
1034 * another
462d6fac
JB
1035 * @tree: the io tree to search
1036 * @start: the start offset in bytes
1037 * @end: the end offset in bytes (inclusive)
1038 * @bits: the bits to set in this range
1039 * @clear_bits: the bits to clear in this range
e6138876 1040 * @cached_state: state that we're going to cache
462d6fac
JB
1041 * @mask: the allocation mask
1042 *
1043 * This will go through and set bits for the given range. If any states exist
1044 * already in this range they are set with the given bit and cleared of the
1045 * clear_bits. This is only meant to be used by things that are mergeable, ie
1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1047 * boundary bits like LOCK.
1048 */
1049int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1050 unsigned long bits, unsigned long clear_bits,
e6138876 1051 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1052{
1053 struct extent_state *state;
1054 struct extent_state *prealloc = NULL;
1055 struct rb_node *node;
12cfbad9
FDBM
1056 struct rb_node **p;
1057 struct rb_node *parent;
462d6fac
JB
1058 int err = 0;
1059 u64 last_start;
1060 u64 last_end;
1061
a5dee37d 1062 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1063
462d6fac
JB
1064again:
1065 if (!prealloc && (mask & __GFP_WAIT)) {
1066 prealloc = alloc_extent_state(mask);
1067 if (!prealloc)
1068 return -ENOMEM;
1069 }
1070
1071 spin_lock(&tree->lock);
e6138876
JB
1072 if (cached_state && *cached_state) {
1073 state = *cached_state;
1074 if (state->start <= start && state->end > start &&
27a3507d 1075 extent_state_in_tree(state)) {
e6138876
JB
1076 node = &state->rb_node;
1077 goto hit_next;
1078 }
1079 }
1080
462d6fac
JB
1081 /*
1082 * this search will find all the extents that end after
1083 * our range starts.
1084 */
12cfbad9 1085 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1086 if (!node) {
1087 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1088 if (!prealloc) {
1089 err = -ENOMEM;
1090 goto out;
1091 }
12cfbad9
FDBM
1092 err = insert_state(tree, prealloc, start, end,
1093 &p, &parent, &bits);
c2d904e0
JM
1094 if (err)
1095 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1096 cache_state(prealloc, cached_state);
1097 prealloc = NULL;
462d6fac
JB
1098 goto out;
1099 }
1100 state = rb_entry(node, struct extent_state, rb_node);
1101hit_next:
1102 last_start = state->start;
1103 last_end = state->end;
1104
1105 /*
1106 * | ---- desired range ---- |
1107 * | state |
1108 *
1109 * Just lock what we found and keep going
1110 */
1111 if (state->start == start && state->end <= end) {
462d6fac 1112 set_state_bits(tree, state, &bits);
e6138876 1113 cache_state(state, cached_state);
d1ac6e41 1114 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1115 if (last_end == (u64)-1)
1116 goto out;
462d6fac 1117 start = last_end + 1;
d1ac6e41
LB
1118 if (start < end && state && state->start == start &&
1119 !need_resched())
1120 goto hit_next;
462d6fac
JB
1121 goto search_again;
1122 }
1123
1124 /*
1125 * | ---- desired range ---- |
1126 * | state |
1127 * or
1128 * | ------------- state -------------- |
1129 *
1130 * We need to split the extent we found, and may flip bits on
1131 * second half.
1132 *
1133 * If the extent we found extends past our
1134 * range, we just split and search again. It'll get split
1135 * again the next time though.
1136 *
1137 * If the extent we found is inside our range, we set the
1138 * desired bit on it.
1139 */
1140 if (state->start < start) {
1141 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1142 if (!prealloc) {
1143 err = -ENOMEM;
1144 goto out;
1145 }
462d6fac 1146 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
462d6fac
JB
1149 prealloc = NULL;
1150 if (err)
1151 goto out;
1152 if (state->end <= end) {
1153 set_state_bits(tree, state, &bits);
e6138876 1154 cache_state(state, cached_state);
d1ac6e41 1155 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1156 if (last_end == (u64)-1)
1157 goto out;
1158 start = last_end + 1;
d1ac6e41
LB
1159 if (start < end && state && state->start == start &&
1160 !need_resched())
1161 goto hit_next;
462d6fac
JB
1162 }
1163 goto search_again;
1164 }
1165 /*
1166 * | ---- desired range ---- |
1167 * | state | or | state |
1168 *
1169 * There's a hole, we need to insert something in it and
1170 * ignore the extent we found.
1171 */
1172 if (state->start > start) {
1173 u64 this_end;
1174 if (end < last_start)
1175 this_end = end;
1176 else
1177 this_end = last_start - 1;
1178
1179 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1180 if (!prealloc) {
1181 err = -ENOMEM;
1182 goto out;
1183 }
462d6fac
JB
1184
1185 /*
1186 * Avoid to free 'prealloc' if it can be merged with
1187 * the later extent.
1188 */
1189 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1190 NULL, NULL, &bits);
c2d904e0
JM
1191 if (err)
1192 extent_io_tree_panic(tree, err);
e6138876 1193 cache_state(prealloc, cached_state);
462d6fac
JB
1194 prealloc = NULL;
1195 start = this_end + 1;
1196 goto search_again;
1197 }
1198 /*
1199 * | ---- desired range ---- |
1200 * | state |
1201 * We need to split the extent, and set the bit
1202 * on the first half
1203 */
1204 if (state->start <= end && state->end > end) {
1205 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1206 if (!prealloc) {
1207 err = -ENOMEM;
1208 goto out;
1209 }
462d6fac
JB
1210
1211 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1212 if (err)
1213 extent_io_tree_panic(tree, err);
462d6fac
JB
1214
1215 set_state_bits(tree, prealloc, &bits);
e6138876 1216 cache_state(prealloc, cached_state);
462d6fac 1217 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1218 prealloc = NULL;
1219 goto out;
1220 }
1221
1222 goto search_again;
1223
1224out:
1225 spin_unlock(&tree->lock);
1226 if (prealloc)
1227 free_extent_state(prealloc);
1228
1229 return err;
1230
1231search_again:
1232 if (start > end)
1233 goto out;
1234 spin_unlock(&tree->lock);
1235 if (mask & __GFP_WAIT)
1236 cond_resched();
1237 goto again;
1238}
1239
d1310b2e
CM
1240/* wrappers around set/clear extent bit */
1241int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243{
3fbe5c02 1244 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1245 NULL, mask);
d1310b2e 1246}
d1310b2e
CM
1247
1248int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1249 unsigned long bits, gfp_t mask)
d1310b2e 1250{
3fbe5c02 1251 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1252 NULL, mask);
d1310b2e 1253}
d1310b2e
CM
1254
1255int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1256 unsigned long bits, gfp_t mask)
d1310b2e 1257{
2c64c53d 1258 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1259}
d1310b2e
CM
1260
1261int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1262 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1263{
1264 return set_extent_bit(tree, start, end,
fee187d9 1265 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1266 NULL, cached_state, mask);
d1310b2e 1267}
d1310b2e 1268
9e8a4a8b
LB
1269int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270 struct extent_state **cached_state, gfp_t mask)
1271{
1272 return set_extent_bit(tree, start, end,
1273 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274 NULL, cached_state, mask);
1275}
1276
d1310b2e
CM
1277int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278 gfp_t mask)
1279{
1280 return clear_extent_bit(tree, start, end,
32c00aff 1281 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1282 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1283}
d1310b2e
CM
1284
1285int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286 gfp_t mask)
1287{
3fbe5c02 1288 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1289 NULL, mask);
d1310b2e 1290}
d1310b2e 1291
d1310b2e 1292int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1293 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1294{
6b67a320 1295 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1296 cached_state, mask);
d1310b2e 1297}
d1310b2e 1298
5fd02043
JB
1299int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1301{
2c64c53d 1302 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1303 cached_state, mask);
d1310b2e 1304}
d1310b2e 1305
d352ac68
CM
1306/*
1307 * either insert or lock state struct between start and end use mask to tell
1308 * us if waiting is desired.
1309 */
1edbb734 1310int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1311 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1312{
1313 int err;
1314 u64 failed_start;
1315 while (1) {
3fbe5c02
JM
1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317 EXTENT_LOCKED, &failed_start,
1318 cached_state, GFP_NOFS);
d0082371 1319 if (err == -EEXIST) {
d1310b2e
CM
1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 start = failed_start;
d0082371 1322 } else
d1310b2e 1323 break;
d1310b2e
CM
1324 WARN_ON(start > end);
1325 }
1326 return err;
1327}
d1310b2e 1328
d0082371 1329int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1330{
d0082371 1331 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1332}
1333
d0082371 1334int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1335{
1336 int err;
1337 u64 failed_start;
1338
3fbe5c02
JM
1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1341 if (err == -EEXIST) {
1342 if (failed_start > start)
1343 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1344 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1345 return 0;
6643558d 1346 }
25179201
JB
1347 return 1;
1348}
25179201 1349
2c64c53d
CM
1350int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351 struct extent_state **cached, gfp_t mask)
1352{
1353 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354 mask);
1355}
1356
d0082371 1357int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1358{
2c64c53d 1359 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1360 GFP_NOFS);
d1310b2e 1361}
d1310b2e 1362
4adaa611
CM
1363int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364{
1365 unsigned long index = start >> PAGE_CACHE_SHIFT;
1366 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367 struct page *page;
1368
1369 while (index <= end_index) {
1370 page = find_get_page(inode->i_mapping, index);
1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 clear_page_dirty_for_io(page);
1373 page_cache_release(page);
1374 index++;
1375 }
1376 return 0;
1377}
1378
1379int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380{
1381 unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 struct page *page;
1384
1385 while (index <= end_index) {
1386 page = find_get_page(inode->i_mapping, index);
1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 account_page_redirty(page);
1389 __set_page_dirty_nobuffers(page);
1390 page_cache_release(page);
1391 index++;
1392 }
1393 return 0;
1394}
1395
d1310b2e
CM
1396/*
1397 * helper function to set both pages and extents in the tree writeback
1398 */
b2950863 1399static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1400{
1401 unsigned long index = start >> PAGE_CACHE_SHIFT;
1402 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403 struct page *page;
1404
1405 while (index <= end_index) {
1406 page = find_get_page(tree->mapping, index);
79787eaa 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1408 set_page_writeback(page);
1409 page_cache_release(page);
1410 index++;
1411 }
d1310b2e
CM
1412 return 0;
1413}
d1310b2e 1414
d352ac68
CM
1415/* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
48a3b636
ES
1419static struct extent_state *
1420find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1421 u64 start, unsigned long bits)
d7fc640e
CM
1422{
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
d397712b 1431 if (!node)
d7fc640e 1432 goto out;
d7fc640e 1433
d397712b 1434 while (1) {
d7fc640e 1435 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1436 if (state->end >= start && (state->state & bits))
d7fc640e 1437 return state;
d397712b 1438
d7fc640e
CM
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443out:
1444 return NULL;
1445}
d7fc640e 1446
69261c4b
XG
1447/*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
477d7eaf 1452 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1453 */
1454int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1455 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1456 struct extent_state **cached_state)
69261c4b
XG
1457{
1458 struct extent_state *state;
e6138876 1459 struct rb_node *n;
69261c4b
XG
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
e6138876
JB
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
27a3507d 1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
69261c4b 1482 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1483got_it:
69261c4b 1484 if (state) {
e6138876 1485 cache_state(state, cached_state);
69261c4b
XG
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
e6138876 1490out:
69261c4b
XG
1491 spin_unlock(&tree->lock);
1492 return ret;
1493}
1494
d352ac68
CM
1495/*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
c8b97818 1501static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
d1310b2e
CM
1504{
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
cad321ad 1511 spin_lock(&tree->lock);
c8b97818 1512
d1310b2e
CM
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
80ea96b1 1517 node = tree_search(tree, cur_start);
2b114d1d 1518 if (!node) {
3b951516
CM
1519 if (!found)
1520 *end = (u64)-1;
d1310b2e
CM
1521 goto out;
1522 }
1523
d397712b 1524 while (1) {
d1310b2e 1525 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
c2a128d2 1535 if (!found) {
d1310b2e 1536 *start = state->start;
c2a128d2
JB
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
d1310b2e
CM
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
d1310b2e 1544 total_bytes += state->end - state->start + 1;
7bf811a5 1545 if (total_bytes >= max_bytes)
573aecaf 1546 break;
573aecaf 1547 if (!node)
d1310b2e
CM
1548 break;
1549 }
1550out:
cad321ad 1551 spin_unlock(&tree->lock);
d1310b2e
CM
1552 return found;
1553}
1554
143bede5
JM
1555static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
c8b97818
CM
1558{
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
143bede5 1567 return;
c8b97818 1568
d397712b 1569 while (nr_pages > 0) {
c8b97818 1570 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
c8b97818
CM
1582}
1583
1584static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588{
1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
d397712b 1604 while (nrpages > 0) {
c8b97818 1605 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
771ed689 1618 if (pages[i] != locked_page) {
c8b97818 1619 lock_page(pages[i]);
f2b1c41c
CM
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 page_cache_release(pages[i]);
1625 goto done;
1626 }
1627 }
c8b97818 1628 page_cache_release(pages[i]);
771ed689 1629 pages_locked++;
c8b97818 1630 }
c8b97818
CM
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_CACHE_SHIFT);
1642 }
1643 return ret;
1644}
1645
1646/*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
294e30fe
JB
1652STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
c8b97818
CM
1656{
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
9655d298 1660 struct extent_state *cached_state = NULL;
c8b97818
CM
1661 int ret;
1662 int loops = 0;
1663
1664again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1669 max_bytes, &cached_state);
70b99e69 1670 if (!found || delalloc_end <= *start) {
c8b97818
CM
1671 *start = delalloc_start;
1672 *end = delalloc_end;
c2a128d2 1673 free_extent_state(cached_state);
385fe0be 1674 return 0;
c8b97818
CM
1675 }
1676
70b99e69
CM
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
d397712b 1682 if (delalloc_start < *start)
70b99e69 1683 delalloc_start = *start;
70b99e69 1684
c8b97818
CM
1685 /*
1686 * make sure to limit the number of pages we try to lock down
c8b97818 1687 */
7bf811a5
JB
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1690
c8b97818
CM
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
9655d298 1698 free_extent_state(cached_state);
7d788742 1699 cached_state = NULL;
c8b97818 1700 if (!loops) {
7bf811a5 1701 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
79787eaa 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1710
1711 /* step three, lock the state bits for the whole range */
d0082371 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1716 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1717 if (!ret) {
9655d298
CM
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
c8b97818
CM
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
9655d298 1725 free_extent_state(cached_state);
c8b97818
CM
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728out_failed:
1729 return found;
1730}
1731
c2790a2e
JB
1732int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 struct page *locked_page,
1734 unsigned long clear_bits,
1735 unsigned long page_ops)
c8b97818 1736{
c2790a2e 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
771ed689 1744
2c64c53d 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1746 if (page_ops == 0)
771ed689 1747 return 0;
c8b97818 1748
d397712b 1749 while (nr_pages > 0) {
c8b97818 1750 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1751 min_t(unsigned long,
1752 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1753 for (i = 0; i < ret; i++) {
8b62b72b 1754
c2790a2e 1755 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1756 SetPagePrivate2(pages[i]);
1757
c8b97818
CM
1758 if (pages[i] == locked_page) {
1759 page_cache_release(pages[i]);
1760 continue;
1761 }
c2790a2e 1762 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1763 clear_page_dirty_for_io(pages[i]);
c2790a2e 1764 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1765 set_page_writeback(pages[i]);
c2790a2e 1766 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1767 end_page_writeback(pages[i]);
c2790a2e 1768 if (page_ops & PAGE_UNLOCK)
771ed689 1769 unlock_page(pages[i]);
c8b97818
CM
1770 page_cache_release(pages[i]);
1771 }
1772 nr_pages -= ret;
1773 index += ret;
1774 cond_resched();
1775 }
1776 return 0;
1777}
c8b97818 1778
d352ac68
CM
1779/*
1780 * count the number of bytes in the tree that have a given bit(s)
1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1782 * cached. The total number found is returned.
1783 */
d1310b2e
CM
1784u64 count_range_bits(struct extent_io_tree *tree,
1785 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1786 unsigned long bits, int contig)
d1310b2e
CM
1787{
1788 struct rb_node *node;
1789 struct extent_state *state;
1790 u64 cur_start = *start;
1791 u64 total_bytes = 0;
ec29ed5b 1792 u64 last = 0;
d1310b2e
CM
1793 int found = 0;
1794
fae7f21c 1795 if (WARN_ON(search_end <= cur_start))
d1310b2e 1796 return 0;
d1310b2e 1797
cad321ad 1798 spin_lock(&tree->lock);
d1310b2e
CM
1799 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 total_bytes = tree->dirty_bytes;
1801 goto out;
1802 }
1803 /*
1804 * this search will find all the extents that end after
1805 * our range starts.
1806 */
80ea96b1 1807 node = tree_search(tree, cur_start);
d397712b 1808 if (!node)
d1310b2e 1809 goto out;
d1310b2e 1810
d397712b 1811 while (1) {
d1310b2e
CM
1812 state = rb_entry(node, struct extent_state, rb_node);
1813 if (state->start > search_end)
1814 break;
ec29ed5b
CM
1815 if (contig && found && state->start > last + 1)
1816 break;
1817 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1818 total_bytes += min(search_end, state->end) + 1 -
1819 max(cur_start, state->start);
1820 if (total_bytes >= max_bytes)
1821 break;
1822 if (!found) {
af60bed2 1823 *start = max(cur_start, state->start);
d1310b2e
CM
1824 found = 1;
1825 }
ec29ed5b
CM
1826 last = state->end;
1827 } else if (contig && found) {
1828 break;
d1310b2e
CM
1829 }
1830 node = rb_next(node);
1831 if (!node)
1832 break;
1833 }
1834out:
cad321ad 1835 spin_unlock(&tree->lock);
d1310b2e
CM
1836 return total_bytes;
1837}
b2950863 1838
d352ac68
CM
1839/*
1840 * set the private field for a given byte offset in the tree. If there isn't
1841 * an extent_state there already, this does nothing.
1842 */
171170c1 1843static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1844{
1845 struct rb_node *node;
1846 struct extent_state *state;
1847 int ret = 0;
1848
cad321ad 1849 spin_lock(&tree->lock);
d1310b2e
CM
1850 /*
1851 * this search will find all the extents that end after
1852 * our range starts.
1853 */
80ea96b1 1854 node = tree_search(tree, start);
2b114d1d 1855 if (!node) {
d1310b2e
CM
1856 ret = -ENOENT;
1857 goto out;
1858 }
1859 state = rb_entry(node, struct extent_state, rb_node);
1860 if (state->start != start) {
1861 ret = -ENOENT;
1862 goto out;
1863 }
1864 state->private = private;
1865out:
cad321ad 1866 spin_unlock(&tree->lock);
d1310b2e
CM
1867 return ret;
1868}
1869
1870int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871{
1872 struct rb_node *node;
1873 struct extent_state *state;
1874 int ret = 0;
1875
cad321ad 1876 spin_lock(&tree->lock);
d1310b2e
CM
1877 /*
1878 * this search will find all the extents that end after
1879 * our range starts.
1880 */
80ea96b1 1881 node = tree_search(tree, start);
2b114d1d 1882 if (!node) {
d1310b2e
CM
1883 ret = -ENOENT;
1884 goto out;
1885 }
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 if (state->start != start) {
1888 ret = -ENOENT;
1889 goto out;
1890 }
1891 *private = state->private;
1892out:
cad321ad 1893 spin_unlock(&tree->lock);
d1310b2e
CM
1894 return ret;
1895}
1896
1897/*
1898 * searches a range in the state tree for a given mask.
70dec807 1899 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1900 * has the bits set. Otherwise, 1 is returned if any bit in the
1901 * range is found set.
1902 */
1903int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1904 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1905{
1906 struct extent_state *state = NULL;
1907 struct rb_node *node;
1908 int bitset = 0;
d1310b2e 1909
cad321ad 1910 spin_lock(&tree->lock);
27a3507d 1911 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1912 cached->end > start)
9655d298
CM
1913 node = &cached->rb_node;
1914 else
1915 node = tree_search(tree, start);
d1310b2e
CM
1916 while (node && start <= end) {
1917 state = rb_entry(node, struct extent_state, rb_node);
1918
1919 if (filled && state->start > start) {
1920 bitset = 0;
1921 break;
1922 }
1923
1924 if (state->start > end)
1925 break;
1926
1927 if (state->state & bits) {
1928 bitset = 1;
1929 if (!filled)
1930 break;
1931 } else if (filled) {
1932 bitset = 0;
1933 break;
1934 }
46562cec
CM
1935
1936 if (state->end == (u64)-1)
1937 break;
1938
d1310b2e
CM
1939 start = state->end + 1;
1940 if (start > end)
1941 break;
1942 node = rb_next(node);
1943 if (!node) {
1944 if (filled)
1945 bitset = 0;
1946 break;
1947 }
1948 }
cad321ad 1949 spin_unlock(&tree->lock);
d1310b2e
CM
1950 return bitset;
1951}
d1310b2e
CM
1952
1953/*
1954 * helper function to set a given page up to date if all the
1955 * extents in the tree for that page are up to date
1956 */
143bede5 1957static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1958{
4eee4fa4 1959 u64 start = page_offset(page);
d1310b2e 1960 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1961 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1962 SetPageUptodate(page);
d1310b2e
CM
1963}
1964
4a54c8c1
JS
1965/*
1966 * When IO fails, either with EIO or csum verification fails, we
1967 * try other mirrors that might have a good copy of the data. This
1968 * io_failure_record is used to record state as we go through all the
1969 * mirrors. If another mirror has good data, the page is set up to date
1970 * and things continue. If a good mirror can't be found, the original
1971 * bio end_io callback is called to indicate things have failed.
1972 */
1973struct io_failure_record {
1974 struct page *page;
1975 u64 start;
1976 u64 len;
1977 u64 logical;
1978 unsigned long bio_flags;
1979 int this_mirror;
1980 int failed_mirror;
1981 int in_validation;
1982};
1983
454ff3de 1984static int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1985{
1986 int ret;
1987 int err = 0;
1988 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1989
1990 set_state_private(failure_tree, rec->start, 0);
1991 ret = clear_extent_bits(failure_tree, rec->start,
1992 rec->start + rec->len - 1,
1993 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1994 if (ret)
1995 err = ret;
1996
53b381b3
DW
1997 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1998 rec->start + rec->len - 1,
1999 EXTENT_DAMAGED, GFP_NOFS);
2000 if (ret && !err)
2001 err = ret;
4a54c8c1
JS
2002
2003 kfree(rec);
2004 return err;
2005}
2006
4a54c8c1
JS
2007/*
2008 * this bypasses the standard btrfs submit functions deliberately, as
2009 * the standard behavior is to write all copies in a raid setup. here we only
2010 * want to write the one bad copy. so we do the mapping for ourselves and issue
2011 * submit_bio directly.
3ec706c8 2012 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2013 * actually prevents the read that triggered the error from finishing.
2014 * currently, there can be no more than two copies of every data bit. thus,
2015 * exactly one rewrite is required.
2016 */
3ec706c8 2017int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2018 u64 length, u64 logical, struct page *page,
2019 int mirror_num)
2020{
2021 struct bio *bio;
2022 struct btrfs_device *dev;
4a54c8c1
JS
2023 u64 map_length = 0;
2024 u64 sector;
2025 struct btrfs_bio *bbio = NULL;
53b381b3 2026 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2027 int ret;
2028
908960c6 2029 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2030 BUG_ON(!mirror_num);
2031
53b381b3
DW
2032 /* we can't repair anything in raid56 yet */
2033 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2034 return 0;
2035
9be3395b 2036 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2037 if (!bio)
2038 return -EIO;
4f024f37 2039 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2040 map_length = length;
2041
3ec706c8 2042 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2043 &map_length, &bbio, mirror_num);
2044 if (ret) {
2045 bio_put(bio);
2046 return -EIO;
2047 }
2048 BUG_ON(mirror_num != bbio->mirror_num);
2049 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2050 bio->bi_iter.bi_sector = sector;
4a54c8c1
JS
2051 dev = bbio->stripes[mirror_num-1].dev;
2052 kfree(bbio);
2053 if (!dev || !dev->bdev || !dev->writeable) {
2054 bio_put(bio);
2055 return -EIO;
2056 }
2057 bio->bi_bdev = dev->bdev;
4eee4fa4 2058 bio_add_page(bio, page, length, start - page_offset(page));
4a54c8c1 2059
33879d45 2060 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2061 /* try to remap that extent elsewhere? */
2062 bio_put(bio);
442a4f63 2063 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2064 return -EIO;
2065 }
2066
efe120a0
FH
2067 printk_ratelimited_in_rcu(KERN_INFO
2068 "BTRFS: read error corrected: ino %lu off %llu "
2069 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2070 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2071
2072 bio_put(bio);
2073 return 0;
2074}
2075
ea466794
JB
2076int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2077 int mirror_num)
2078{
ea466794
JB
2079 u64 start = eb->start;
2080 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2081 int ret = 0;
ea466794 2082
908960c6
ID
2083 if (root->fs_info->sb->s_flags & MS_RDONLY)
2084 return -EROFS;
2085
ea466794
JB
2086 for (i = 0; i < num_pages; i++) {
2087 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2088 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2089 start, p, mirror_num);
2090 if (ret)
2091 break;
2092 start += PAGE_CACHE_SIZE;
2093 }
2094
2095 return ret;
2096}
2097
4a54c8c1
JS
2098/*
2099 * each time an IO finishes, we do a fast check in the IO failure tree
2100 * to see if we need to process or clean up an io_failure_record
2101 */
2102static int clean_io_failure(u64 start, struct page *page)
2103{
2104 u64 private;
2105 u64 private_failure;
2106 struct io_failure_record *failrec;
908960c6
ID
2107 struct inode *inode = page->mapping->host;
2108 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2109 struct extent_state *state;
2110 int num_copies;
4a54c8c1 2111 int ret;
4a54c8c1
JS
2112
2113 private = 0;
2114 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2115 (u64)-1, 1, EXTENT_DIRTY, 0);
2116 if (!ret)
2117 return 0;
2118
2119 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2120 &private_failure);
2121 if (ret)
2122 return 0;
2123
2124 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2125 BUG_ON(!failrec->this_mirror);
2126
2127 if (failrec->in_validation) {
2128 /* there was no real error, just free the record */
2129 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2130 failrec->start);
4a54c8c1
JS
2131 goto out;
2132 }
908960c6
ID
2133 if (fs_info->sb->s_flags & MS_RDONLY)
2134 goto out;
4a54c8c1
JS
2135
2136 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2137 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2138 failrec->start,
2139 EXTENT_LOCKED);
2140 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2141
883d0de4
MX
2142 if (state && state->start <= failrec->start &&
2143 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2144 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2145 failrec->len);
4a54c8c1 2146 if (num_copies > 1) {
454ff3de
MX
2147 repair_io_failure(fs_info, start, failrec->len,
2148 failrec->logical, page,
2149 failrec->failed_mirror);
4a54c8c1
JS
2150 }
2151 }
2152
2153out:
454ff3de 2154 free_io_failure(inode, failrec);
4a54c8c1 2155
454ff3de 2156 return 0;
4a54c8c1
JS
2157}
2158
2159/*
2160 * this is a generic handler for readpage errors (default
2161 * readpage_io_failed_hook). if other copies exist, read those and write back
2162 * good data to the failed position. does not investigate in remapping the
2163 * failed extent elsewhere, hoping the device will be smart enough to do this as
2164 * needed
2165 */
2166
facc8a22
MX
2167static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2168 struct page *page, u64 start, u64 end,
2169 int failed_mirror)
4a54c8c1
JS
2170{
2171 struct io_failure_record *failrec = NULL;
2172 u64 private;
2173 struct extent_map *em;
2174 struct inode *inode = page->mapping->host;
2175 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2176 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2177 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2178 struct bio *bio;
facc8a22
MX
2179 struct btrfs_io_bio *btrfs_failed_bio;
2180 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2181 int num_copies;
2182 int ret;
2183 int read_mode;
2184 u64 logical;
2185
2186 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2187
2188 ret = get_state_private(failure_tree, start, &private);
2189 if (ret) {
2190 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2191 if (!failrec)
2192 return -ENOMEM;
2193 failrec->start = start;
2194 failrec->len = end - start + 1;
2195 failrec->this_mirror = 0;
2196 failrec->bio_flags = 0;
2197 failrec->in_validation = 0;
2198
2199 read_lock(&em_tree->lock);
2200 em = lookup_extent_mapping(em_tree, start, failrec->len);
2201 if (!em) {
2202 read_unlock(&em_tree->lock);
2203 kfree(failrec);
2204 return -EIO;
2205 }
2206
68ba990f 2207 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2208 free_extent_map(em);
2209 em = NULL;
2210 }
2211 read_unlock(&em_tree->lock);
2212
7a2d6a64 2213 if (!em) {
4a54c8c1
JS
2214 kfree(failrec);
2215 return -EIO;
2216 }
2217 logical = start - em->start;
2218 logical = em->block_start + logical;
2219 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2220 logical = em->block_start;
2221 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2222 extent_set_compress_type(&failrec->bio_flags,
2223 em->compress_type);
2224 }
2225 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2226 "len=%llu\n", logical, start, failrec->len);
2227 failrec->logical = logical;
2228 free_extent_map(em);
2229
2230 /* set the bits in the private failure tree */
2231 ret = set_extent_bits(failure_tree, start, end,
2232 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2233 if (ret >= 0)
2234 ret = set_state_private(failure_tree, start,
2235 (u64)(unsigned long)failrec);
2236 /* set the bits in the inode's tree */
2237 if (ret >= 0)
2238 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2239 GFP_NOFS);
2240 if (ret < 0) {
2241 kfree(failrec);
2242 return ret;
2243 }
2244 } else {
2245 failrec = (struct io_failure_record *)(unsigned long)private;
2246 pr_debug("bio_readpage_error: (found) logical=%llu, "
2247 "start=%llu, len=%llu, validation=%d\n",
2248 failrec->logical, failrec->start, failrec->len,
2249 failrec->in_validation);
2250 /*
2251 * when data can be on disk more than twice, add to failrec here
2252 * (e.g. with a list for failed_mirror) to make
2253 * clean_io_failure() clean all those errors at once.
2254 */
2255 }
5d964051
SB
2256 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2257 failrec->logical, failrec->len);
4a54c8c1
JS
2258 if (num_copies == 1) {
2259 /*
2260 * we only have a single copy of the data, so don't bother with
2261 * all the retry and error correction code that follows. no
2262 * matter what the error is, it is very likely to persist.
2263 */
09a7f7a2
MX
2264 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2265 num_copies, failrec->this_mirror, failed_mirror);
454ff3de 2266 free_io_failure(inode, failrec);
4a54c8c1
JS
2267 return -EIO;
2268 }
2269
4a54c8c1
JS
2270 /*
2271 * there are two premises:
2272 * a) deliver good data to the caller
2273 * b) correct the bad sectors on disk
2274 */
2275 if (failed_bio->bi_vcnt > 1) {
2276 /*
2277 * to fulfill b), we need to know the exact failing sectors, as
2278 * we don't want to rewrite any more than the failed ones. thus,
2279 * we need separate read requests for the failed bio
2280 *
2281 * if the following BUG_ON triggers, our validation request got
2282 * merged. we need separate requests for our algorithm to work.
2283 */
2284 BUG_ON(failrec->in_validation);
2285 failrec->in_validation = 1;
2286 failrec->this_mirror = failed_mirror;
2287 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2288 } else {
2289 /*
2290 * we're ready to fulfill a) and b) alongside. get a good copy
2291 * of the failed sector and if we succeed, we have setup
2292 * everything for repair_io_failure to do the rest for us.
2293 */
2294 if (failrec->in_validation) {
2295 BUG_ON(failrec->this_mirror != failed_mirror);
2296 failrec->in_validation = 0;
2297 failrec->this_mirror = 0;
2298 }
2299 failrec->failed_mirror = failed_mirror;
2300 failrec->this_mirror++;
2301 if (failrec->this_mirror == failed_mirror)
2302 failrec->this_mirror++;
2303 read_mode = READ_SYNC;
2304 }
2305
facc8a22
MX
2306 if (failrec->this_mirror > num_copies) {
2307 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2308 num_copies, failrec->this_mirror, failed_mirror);
454ff3de 2309 free_io_failure(inode, failrec);
4a54c8c1
JS
2310 return -EIO;
2311 }
2312
9be3395b 2313 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b 2314 if (!bio) {
454ff3de 2315 free_io_failure(inode, failrec);
e627ee7b
TI
2316 return -EIO;
2317 }
4a54c8c1 2318 bio->bi_end_io = failed_bio->bi_end_io;
4f024f37 2319 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2320 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2321 bio->bi_iter.bi_size = 0;
4a54c8c1 2322
facc8a22
MX
2323 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2324 if (btrfs_failed_bio->csum) {
2325 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2326 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2327
2328 btrfs_bio = btrfs_io_bio(bio);
2329 btrfs_bio->csum = btrfs_bio->csum_inline;
2330 phy_offset >>= inode->i_sb->s_blocksize_bits;
2331 phy_offset *= csum_size;
2332 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2333 csum_size);
2334 }
2335
4a54c8c1
JS
2336 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2337
2338 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2339 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2340 failrec->this_mirror, num_copies, failrec->in_validation);
2341
013bd4c3
TI
2342 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2343 failrec->this_mirror,
2344 failrec->bio_flags, 0);
6c387ab2 2345 if (ret) {
454ff3de 2346 free_io_failure(inode, failrec);
6c387ab2
MX
2347 bio_put(bio);
2348 }
2349
013bd4c3 2350 return ret;
4a54c8c1
JS
2351}
2352
d1310b2e
CM
2353/* lots and lots of room for performance fixes in the end_bio funcs */
2354
87826df0
JM
2355int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2356{
2357 int uptodate = (err == 0);
2358 struct extent_io_tree *tree;
3e2426bd 2359 int ret = 0;
87826df0
JM
2360
2361 tree = &BTRFS_I(page->mapping->host)->io_tree;
2362
2363 if (tree->ops && tree->ops->writepage_end_io_hook) {
2364 ret = tree->ops->writepage_end_io_hook(page, start,
2365 end, NULL, uptodate);
2366 if (ret)
2367 uptodate = 0;
2368 }
2369
87826df0 2370 if (!uptodate) {
87826df0
JM
2371 ClearPageUptodate(page);
2372 SetPageError(page);
5dca6eea
LB
2373 ret = ret < 0 ? ret : -EIO;
2374 mapping_set_error(page->mapping, ret);
87826df0
JM
2375 }
2376 return 0;
2377}
2378
d1310b2e
CM
2379/*
2380 * after a writepage IO is done, we need to:
2381 * clear the uptodate bits on error
2382 * clear the writeback bits in the extent tree for this IO
2383 * end_page_writeback if the page has no more pending IO
2384 *
2385 * Scheduling is not allowed, so the extent state tree is expected
2386 * to have one and only one object corresponding to this IO.
2387 */
d1310b2e 2388static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2389{
2c30c71b 2390 struct bio_vec *bvec;
d1310b2e
CM
2391 u64 start;
2392 u64 end;
2c30c71b 2393 int i;
d1310b2e 2394
2c30c71b 2395 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2396 struct page *page = bvec->bv_page;
902b22f3 2397
17a5adcc
AO
2398 /* We always issue full-page reads, but if some block
2399 * in a page fails to read, blk_update_request() will
2400 * advance bv_offset and adjust bv_len to compensate.
2401 * Print a warning for nonzero offsets, and an error
2402 * if they don't add up to a full page. */
efe120a0
FH
2403 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2404 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2405 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2406 "partial page write in btrfs with offset %u and length %u",
2407 bvec->bv_offset, bvec->bv_len);
2408 else
2409 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2410 "incomplete page write in btrfs with offset %u and "
2411 "length %u",
2412 bvec->bv_offset, bvec->bv_len);
2413 }
d1310b2e 2414
17a5adcc
AO
2415 start = page_offset(page);
2416 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2417
87826df0
JM
2418 if (end_extent_writepage(page, err, start, end))
2419 continue;
70dec807 2420
17a5adcc 2421 end_page_writeback(page);
2c30c71b 2422 }
2b1f55b0 2423
d1310b2e 2424 bio_put(bio);
d1310b2e
CM
2425}
2426
883d0de4
MX
2427static void
2428endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2429 int uptodate)
2430{
2431 struct extent_state *cached = NULL;
2432 u64 end = start + len - 1;
2433
2434 if (uptodate && tree->track_uptodate)
2435 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2436 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2437}
2438
d1310b2e
CM
2439/*
2440 * after a readpage IO is done, we need to:
2441 * clear the uptodate bits on error
2442 * set the uptodate bits if things worked
2443 * set the page up to date if all extents in the tree are uptodate
2444 * clear the lock bit in the extent tree
2445 * unlock the page if there are no other extents locked for it
2446 *
2447 * Scheduling is not allowed, so the extent state tree is expected
2448 * to have one and only one object corresponding to this IO.
2449 */
d1310b2e 2450static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2451{
2c30c71b 2452 struct bio_vec *bvec;
d1310b2e 2453 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2454 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2455 struct extent_io_tree *tree;
facc8a22 2456 u64 offset = 0;
d1310b2e
CM
2457 u64 start;
2458 u64 end;
facc8a22 2459 u64 len;
883d0de4
MX
2460 u64 extent_start = 0;
2461 u64 extent_len = 0;
5cf1ab56 2462 int mirror;
d1310b2e 2463 int ret;
2c30c71b 2464 int i;
d1310b2e 2465
d20f7043
CM
2466 if (err)
2467 uptodate = 0;
2468
2c30c71b 2469 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2470 struct page *page = bvec->bv_page;
a71754fc 2471 struct inode *inode = page->mapping->host;
507903b8 2472
be3940c0 2473 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
c1dc0896 2474 "mirror=%u\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2475 io_bio->mirror_num);
a71754fc 2476 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2477
17a5adcc
AO
2478 /* We always issue full-page reads, but if some block
2479 * in a page fails to read, blk_update_request() will
2480 * advance bv_offset and adjust bv_len to compensate.
2481 * Print a warning for nonzero offsets, and an error
2482 * if they don't add up to a full page. */
efe120a0
FH
2483 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2484 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2485 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2486 "partial page read in btrfs with offset %u and length %u",
2487 bvec->bv_offset, bvec->bv_len);
2488 else
2489 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2490 "incomplete page read in btrfs with offset %u and "
2491 "length %u",
2492 bvec->bv_offset, bvec->bv_len);
2493 }
d1310b2e 2494
17a5adcc
AO
2495 start = page_offset(page);
2496 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2497 len = bvec->bv_len;
d1310b2e 2498
9be3395b 2499 mirror = io_bio->mirror_num;
f2a09da9
MX
2500 if (likely(uptodate && tree->ops &&
2501 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2502 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2503 page, start, end,
2504 mirror);
5ee0844d 2505 if (ret)
d1310b2e 2506 uptodate = 0;
5ee0844d 2507 else
4a54c8c1 2508 clean_io_failure(start, page);
d1310b2e 2509 }
ea466794 2510
f2a09da9
MX
2511 if (likely(uptodate))
2512 goto readpage_ok;
2513
2514 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2515 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2516 if (!ret && !err &&
2517 test_bit(BIO_UPTODATE, &bio->bi_flags))
2518 uptodate = 1;
f2a09da9 2519 } else {
f4a8e656
JS
2520 /*
2521 * The generic bio_readpage_error handles errors the
2522 * following way: If possible, new read requests are
2523 * created and submitted and will end up in
2524 * end_bio_extent_readpage as well (if we're lucky, not
2525 * in the !uptodate case). In that case it returns 0 and
2526 * we just go on with the next page in our bio. If it
2527 * can't handle the error it will return -EIO and we
2528 * remain responsible for that page.
2529 */
facc8a22
MX
2530 ret = bio_readpage_error(bio, offset, page, start, end,
2531 mirror);
7e38326f 2532 if (ret == 0) {
3b951516
CM
2533 uptodate =
2534 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2535 if (err)
2536 uptodate = 0;
38c1c2e4 2537 offset += len;
7e38326f
CM
2538 continue;
2539 }
2540 }
f2a09da9 2541readpage_ok:
883d0de4 2542 if (likely(uptodate)) {
a71754fc
JB
2543 loff_t i_size = i_size_read(inode);
2544 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2545 unsigned off;
a71754fc
JB
2546
2547 /* Zero out the end if this page straddles i_size */
a583c026
LB
2548 off = i_size & (PAGE_CACHE_SIZE-1);
2549 if (page->index == end_index && off)
2550 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2551 SetPageUptodate(page);
70dec807 2552 } else {
17a5adcc
AO
2553 ClearPageUptodate(page);
2554 SetPageError(page);
70dec807 2555 }
17a5adcc 2556 unlock_page(page);
facc8a22 2557 offset += len;
883d0de4
MX
2558
2559 if (unlikely(!uptodate)) {
2560 if (extent_len) {
2561 endio_readpage_release_extent(tree,
2562 extent_start,
2563 extent_len, 1);
2564 extent_start = 0;
2565 extent_len = 0;
2566 }
2567 endio_readpage_release_extent(tree, start,
2568 end - start + 1, 0);
2569 } else if (!extent_len) {
2570 extent_start = start;
2571 extent_len = end + 1 - start;
2572 } else if (extent_start + extent_len == start) {
2573 extent_len += end + 1 - start;
2574 } else {
2575 endio_readpage_release_extent(tree, extent_start,
2576 extent_len, uptodate);
2577 extent_start = start;
2578 extent_len = end + 1 - start;
2579 }
2c30c71b 2580 }
d1310b2e 2581
883d0de4
MX
2582 if (extent_len)
2583 endio_readpage_release_extent(tree, extent_start, extent_len,
2584 uptodate);
facc8a22
MX
2585 if (io_bio->end_io)
2586 io_bio->end_io(io_bio, err);
d1310b2e 2587 bio_put(bio);
d1310b2e
CM
2588}
2589
9be3395b
CM
2590/*
2591 * this allocates from the btrfs_bioset. We're returning a bio right now
2592 * but you can call btrfs_io_bio for the appropriate container_of magic
2593 */
88f794ed
MX
2594struct bio *
2595btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2596 gfp_t gfp_flags)
d1310b2e 2597{
facc8a22 2598 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2599 struct bio *bio;
2600
9be3395b 2601 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2602
2603 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2604 while (!bio && (nr_vecs /= 2)) {
2605 bio = bio_alloc_bioset(gfp_flags,
2606 nr_vecs, btrfs_bioset);
2607 }
d1310b2e
CM
2608 }
2609
2610 if (bio) {
2611 bio->bi_bdev = bdev;
4f024f37 2612 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2613 btrfs_bio = btrfs_io_bio(bio);
2614 btrfs_bio->csum = NULL;
2615 btrfs_bio->csum_allocated = NULL;
2616 btrfs_bio->end_io = NULL;
d1310b2e
CM
2617 }
2618 return bio;
2619}
2620
9be3395b
CM
2621struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2622{
23ea8e5a
MX
2623 struct btrfs_io_bio *btrfs_bio;
2624 struct bio *new;
9be3395b 2625
23ea8e5a
MX
2626 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2627 if (new) {
2628 btrfs_bio = btrfs_io_bio(new);
2629 btrfs_bio->csum = NULL;
2630 btrfs_bio->csum_allocated = NULL;
2631 btrfs_bio->end_io = NULL;
2632 }
2633 return new;
2634}
9be3395b
CM
2635
2636/* this also allocates from the btrfs_bioset */
2637struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2638{
facc8a22
MX
2639 struct btrfs_io_bio *btrfs_bio;
2640 struct bio *bio;
2641
2642 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2643 if (bio) {
2644 btrfs_bio = btrfs_io_bio(bio);
2645 btrfs_bio->csum = NULL;
2646 btrfs_bio->csum_allocated = NULL;
2647 btrfs_bio->end_io = NULL;
2648 }
2649 return bio;
9be3395b
CM
2650}
2651
2652
355808c2
JM
2653static int __must_check submit_one_bio(int rw, struct bio *bio,
2654 int mirror_num, unsigned long bio_flags)
d1310b2e 2655{
d1310b2e 2656 int ret = 0;
70dec807
CM
2657 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2658 struct page *page = bvec->bv_page;
2659 struct extent_io_tree *tree = bio->bi_private;
70dec807 2660 u64 start;
70dec807 2661
4eee4fa4 2662 start = page_offset(page) + bvec->bv_offset;
70dec807 2663
902b22f3 2664 bio->bi_private = NULL;
d1310b2e
CM
2665
2666 bio_get(bio);
2667
065631f6 2668 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2669 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2670 mirror_num, bio_flags, start);
0b86a832 2671 else
21adbd5c 2672 btrfsic_submit_bio(rw, bio);
4a54c8c1 2673
d1310b2e
CM
2674 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2675 ret = -EOPNOTSUPP;
2676 bio_put(bio);
2677 return ret;
2678}
2679
64a16701 2680static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2681 unsigned long offset, size_t size, struct bio *bio,
2682 unsigned long bio_flags)
2683{
2684 int ret = 0;
2685 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2686 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2687 bio_flags);
2688 BUG_ON(ret < 0);
2689 return ret;
2690
2691}
2692
d1310b2e
CM
2693static int submit_extent_page(int rw, struct extent_io_tree *tree,
2694 struct page *page, sector_t sector,
2695 size_t size, unsigned long offset,
2696 struct block_device *bdev,
2697 struct bio **bio_ret,
2698 unsigned long max_pages,
f188591e 2699 bio_end_io_t end_io_func,
c8b97818
CM
2700 int mirror_num,
2701 unsigned long prev_bio_flags,
2702 unsigned long bio_flags)
d1310b2e
CM
2703{
2704 int ret = 0;
2705 struct bio *bio;
2706 int nr;
c8b97818
CM
2707 int contig = 0;
2708 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2709 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2710 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2711
2712 if (bio_ret && *bio_ret) {
2713 bio = *bio_ret;
c8b97818 2714 if (old_compressed)
4f024f37 2715 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2716 else
f73a1c7d 2717 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2718
2719 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2720 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2721 bio_add_page(bio, page, page_size, offset) < page_size) {
2722 ret = submit_one_bio(rw, bio, mirror_num,
2723 prev_bio_flags);
79787eaa
JM
2724 if (ret < 0)
2725 return ret;
d1310b2e
CM
2726 bio = NULL;
2727 } else {
2728 return 0;
2729 }
2730 }
c8b97818
CM
2731 if (this_compressed)
2732 nr = BIO_MAX_PAGES;
2733 else
2734 nr = bio_get_nr_vecs(bdev);
2735
88f794ed 2736 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2737 if (!bio)
2738 return -ENOMEM;
70dec807 2739
c8b97818 2740 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2741 bio->bi_end_io = end_io_func;
2742 bio->bi_private = tree;
70dec807 2743
d397712b 2744 if (bio_ret)
d1310b2e 2745 *bio_ret = bio;
d397712b 2746 else
c8b97818 2747 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2748
2749 return ret;
2750}
2751
48a3b636
ES
2752static void attach_extent_buffer_page(struct extent_buffer *eb,
2753 struct page *page)
d1310b2e
CM
2754{
2755 if (!PagePrivate(page)) {
2756 SetPagePrivate(page);
d1310b2e 2757 page_cache_get(page);
4f2de97a
JB
2758 set_page_private(page, (unsigned long)eb);
2759 } else {
2760 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2761 }
2762}
2763
4f2de97a 2764void set_page_extent_mapped(struct page *page)
d1310b2e 2765{
4f2de97a
JB
2766 if (!PagePrivate(page)) {
2767 SetPagePrivate(page);
2768 page_cache_get(page);
2769 set_page_private(page, EXTENT_PAGE_PRIVATE);
2770 }
d1310b2e
CM
2771}
2772
125bac01
MX
2773static struct extent_map *
2774__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2775 u64 start, u64 len, get_extent_t *get_extent,
2776 struct extent_map **em_cached)
2777{
2778 struct extent_map *em;
2779
2780 if (em_cached && *em_cached) {
2781 em = *em_cached;
cbc0e928 2782 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2783 start < extent_map_end(em)) {
2784 atomic_inc(&em->refs);
2785 return em;
2786 }
2787
2788 free_extent_map(em);
2789 *em_cached = NULL;
2790 }
2791
2792 em = get_extent(inode, page, pg_offset, start, len, 0);
2793 if (em_cached && !IS_ERR_OR_NULL(em)) {
2794 BUG_ON(*em_cached);
2795 atomic_inc(&em->refs);
2796 *em_cached = em;
2797 }
2798 return em;
2799}
d1310b2e
CM
2800/*
2801 * basic readpage implementation. Locked extent state structs are inserted
2802 * into the tree that are removed when the IO is done (by the end_io
2803 * handlers)
79787eaa 2804 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2805 */
9974090b
MX
2806static int __do_readpage(struct extent_io_tree *tree,
2807 struct page *page,
2808 get_extent_t *get_extent,
125bac01 2809 struct extent_map **em_cached,
9974090b
MX
2810 struct bio **bio, int mirror_num,
2811 unsigned long *bio_flags, int rw)
d1310b2e
CM
2812{
2813 struct inode *inode = page->mapping->host;
4eee4fa4 2814 u64 start = page_offset(page);
d1310b2e
CM
2815 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2816 u64 end;
2817 u64 cur = start;
2818 u64 extent_offset;
2819 u64 last_byte = i_size_read(inode);
2820 u64 block_start;
2821 u64 cur_end;
2822 sector_t sector;
2823 struct extent_map *em;
2824 struct block_device *bdev;
2825 int ret;
2826 int nr = 0;
4b384318 2827 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2828 size_t pg_offset = 0;
d1310b2e 2829 size_t iosize;
c8b97818 2830 size_t disk_io_size;
d1310b2e 2831 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2832 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2833
2834 set_page_extent_mapped(page);
2835
9974090b 2836 end = page_end;
90a887c9
DM
2837 if (!PageUptodate(page)) {
2838 if (cleancache_get_page(page) == 0) {
2839 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2840 unlock_extent(tree, start, end);
90a887c9
DM
2841 goto out;
2842 }
2843 }
2844
c8b97818
CM
2845 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2846 char *userpage;
2847 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2848
2849 if (zero_offset) {
2850 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2851 userpage = kmap_atomic(page);
c8b97818
CM
2852 memset(userpage + zero_offset, 0, iosize);
2853 flush_dcache_page(page);
7ac687d9 2854 kunmap_atomic(userpage);
c8b97818
CM
2855 }
2856 }
d1310b2e 2857 while (cur <= end) {
c8f2f24b
JB
2858 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2859
d1310b2e
CM
2860 if (cur >= last_byte) {
2861 char *userpage;
507903b8
AJ
2862 struct extent_state *cached = NULL;
2863
306e16ce 2864 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2865 userpage = kmap_atomic(page);
306e16ce 2866 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2867 flush_dcache_page(page);
7ac687d9 2868 kunmap_atomic(userpage);
d1310b2e 2869 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2870 &cached, GFP_NOFS);
4b384318
MF
2871 if (!parent_locked)
2872 unlock_extent_cached(tree, cur,
2873 cur + iosize - 1,
2874 &cached, GFP_NOFS);
d1310b2e
CM
2875 break;
2876 }
125bac01
MX
2877 em = __get_extent_map(inode, page, pg_offset, cur,
2878 end - cur + 1, get_extent, em_cached);
c704005d 2879 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2880 SetPageError(page);
4b384318
MF
2881 if (!parent_locked)
2882 unlock_extent(tree, cur, end);
d1310b2e
CM
2883 break;
2884 }
d1310b2e
CM
2885 extent_offset = cur - em->start;
2886 BUG_ON(extent_map_end(em) <= cur);
2887 BUG_ON(end < cur);
2888
261507a0 2889 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2890 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2891 extent_set_compress_type(&this_bio_flag,
2892 em->compress_type);
2893 }
c8b97818 2894
d1310b2e
CM
2895 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2896 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2897 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2898 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2899 disk_io_size = em->block_len;
2900 sector = em->block_start >> 9;
2901 } else {
2902 sector = (em->block_start + extent_offset) >> 9;
2903 disk_io_size = iosize;
2904 }
d1310b2e
CM
2905 bdev = em->bdev;
2906 block_start = em->block_start;
d899e052
YZ
2907 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2908 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2909 free_extent_map(em);
2910 em = NULL;
2911
2912 /* we've found a hole, just zero and go on */
2913 if (block_start == EXTENT_MAP_HOLE) {
2914 char *userpage;
507903b8
AJ
2915 struct extent_state *cached = NULL;
2916
7ac687d9 2917 userpage = kmap_atomic(page);
306e16ce 2918 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2919 flush_dcache_page(page);
7ac687d9 2920 kunmap_atomic(userpage);
d1310b2e
CM
2921
2922 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2923 &cached, GFP_NOFS);
2924 unlock_extent_cached(tree, cur, cur + iosize - 1,
2925 &cached, GFP_NOFS);
d1310b2e 2926 cur = cur + iosize;
306e16ce 2927 pg_offset += iosize;
d1310b2e
CM
2928 continue;
2929 }
2930 /* the get_extent function already copied into the page */
9655d298
CM
2931 if (test_range_bit(tree, cur, cur_end,
2932 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2933 check_page_uptodate(tree, page);
4b384318
MF
2934 if (!parent_locked)
2935 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2936 cur = cur + iosize;
306e16ce 2937 pg_offset += iosize;
d1310b2e
CM
2938 continue;
2939 }
70dec807
CM
2940 /* we have an inline extent but it didn't get marked up
2941 * to date. Error out
2942 */
2943 if (block_start == EXTENT_MAP_INLINE) {
2944 SetPageError(page);
4b384318
MF
2945 if (!parent_locked)
2946 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2947 cur = cur + iosize;
306e16ce 2948 pg_offset += iosize;
70dec807
CM
2949 continue;
2950 }
d1310b2e 2951
c8f2f24b 2952 pnr -= page->index;
d4c7ca86 2953 ret = submit_extent_page(rw, tree, page,
306e16ce 2954 sector, disk_io_size, pg_offset,
89642229 2955 bdev, bio, pnr,
c8b97818
CM
2956 end_bio_extent_readpage, mirror_num,
2957 *bio_flags,
2958 this_bio_flag);
c8f2f24b
JB
2959 if (!ret) {
2960 nr++;
2961 *bio_flags = this_bio_flag;
2962 } else {
d1310b2e 2963 SetPageError(page);
4b384318
MF
2964 if (!parent_locked)
2965 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2966 }
d1310b2e 2967 cur = cur + iosize;
306e16ce 2968 pg_offset += iosize;
d1310b2e 2969 }
90a887c9 2970out:
d1310b2e
CM
2971 if (!nr) {
2972 if (!PageError(page))
2973 SetPageUptodate(page);
2974 unlock_page(page);
2975 }
2976 return 0;
2977}
2978
9974090b
MX
2979static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2980 struct page *pages[], int nr_pages,
2981 u64 start, u64 end,
2982 get_extent_t *get_extent,
125bac01 2983 struct extent_map **em_cached,
9974090b
MX
2984 struct bio **bio, int mirror_num,
2985 unsigned long *bio_flags, int rw)
2986{
2987 struct inode *inode;
2988 struct btrfs_ordered_extent *ordered;
2989 int index;
2990
2991 inode = pages[0]->mapping->host;
2992 while (1) {
2993 lock_extent(tree, start, end);
2994 ordered = btrfs_lookup_ordered_range(inode, start,
2995 end - start + 1);
2996 if (!ordered)
2997 break;
2998 unlock_extent(tree, start, end);
2999 btrfs_start_ordered_extent(inode, ordered, 1);
3000 btrfs_put_ordered_extent(ordered);
3001 }
3002
3003 for (index = 0; index < nr_pages; index++) {
125bac01
MX
3004 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
3005 mirror_num, bio_flags, rw);
9974090b
MX
3006 page_cache_release(pages[index]);
3007 }
3008}
3009
3010static void __extent_readpages(struct extent_io_tree *tree,
3011 struct page *pages[],
3012 int nr_pages, get_extent_t *get_extent,
125bac01 3013 struct extent_map **em_cached,
9974090b
MX
3014 struct bio **bio, int mirror_num,
3015 unsigned long *bio_flags, int rw)
3016{
35a3621b 3017 u64 start = 0;
9974090b
MX
3018 u64 end = 0;
3019 u64 page_start;
3020 int index;
35a3621b 3021 int first_index = 0;
9974090b
MX
3022
3023 for (index = 0; index < nr_pages; index++) {
3024 page_start = page_offset(pages[index]);
3025 if (!end) {
3026 start = page_start;
3027 end = start + PAGE_CACHE_SIZE - 1;
3028 first_index = index;
3029 } else if (end + 1 == page_start) {
3030 end += PAGE_CACHE_SIZE;
3031 } else {
3032 __do_contiguous_readpages(tree, &pages[first_index],
3033 index - first_index, start,
125bac01
MX
3034 end, get_extent, em_cached,
3035 bio, mirror_num, bio_flags,
3036 rw);
9974090b
MX
3037 start = page_start;
3038 end = start + PAGE_CACHE_SIZE - 1;
3039 first_index = index;
3040 }
3041 }
3042
3043 if (end)
3044 __do_contiguous_readpages(tree, &pages[first_index],
3045 index - first_index, start,
125bac01 3046 end, get_extent, em_cached, bio,
9974090b
MX
3047 mirror_num, bio_flags, rw);
3048}
3049
3050static int __extent_read_full_page(struct extent_io_tree *tree,
3051 struct page *page,
3052 get_extent_t *get_extent,
3053 struct bio **bio, int mirror_num,
3054 unsigned long *bio_flags, int rw)
3055{
3056 struct inode *inode = page->mapping->host;
3057 struct btrfs_ordered_extent *ordered;
3058 u64 start = page_offset(page);
3059 u64 end = start + PAGE_CACHE_SIZE - 1;
3060 int ret;
3061
3062 while (1) {
3063 lock_extent(tree, start, end);
3064 ordered = btrfs_lookup_ordered_extent(inode, start);
3065 if (!ordered)
3066 break;
3067 unlock_extent(tree, start, end);
3068 btrfs_start_ordered_extent(inode, ordered, 1);
3069 btrfs_put_ordered_extent(ordered);
3070 }
3071
125bac01
MX
3072 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3073 bio_flags, rw);
9974090b
MX
3074 return ret;
3075}
3076
d1310b2e 3077int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3078 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3079{
3080 struct bio *bio = NULL;
c8b97818 3081 unsigned long bio_flags = 0;
d1310b2e
CM
3082 int ret;
3083
8ddc7d9c 3084 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3085 &bio_flags, READ);
d1310b2e 3086 if (bio)
8ddc7d9c 3087 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3088 return ret;
3089}
d1310b2e 3090
4b384318
MF
3091int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3092 get_extent_t *get_extent, int mirror_num)
3093{
3094 struct bio *bio = NULL;
3095 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3096 int ret;
3097
3098 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3099 &bio_flags, READ);
3100 if (bio)
3101 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3102 return ret;
3103}
3104
11c8349b
CM
3105static noinline void update_nr_written(struct page *page,
3106 struct writeback_control *wbc,
3107 unsigned long nr_written)
3108{
3109 wbc->nr_to_write -= nr_written;
3110 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3111 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3112 page->mapping->writeback_index = page->index + nr_written;
3113}
3114
d1310b2e 3115/*
40f76580
CM
3116 * helper for __extent_writepage, doing all of the delayed allocation setup.
3117 *
3118 * This returns 1 if our fill_delalloc function did all the work required
3119 * to write the page (copy into inline extent). In this case the IO has
3120 * been started and the page is already unlocked.
3121 *
3122 * This returns 0 if all went well (page still locked)
3123 * This returns < 0 if there were errors (page still locked)
d1310b2e 3124 */
40f76580
CM
3125static noinline_for_stack int writepage_delalloc(struct inode *inode,
3126 struct page *page, struct writeback_control *wbc,
3127 struct extent_page_data *epd,
3128 u64 delalloc_start,
3129 unsigned long *nr_written)
3130{
3131 struct extent_io_tree *tree = epd->tree;
3132 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3133 u64 nr_delalloc;
3134 u64 delalloc_to_write = 0;
3135 u64 delalloc_end = 0;
3136 int ret;
3137 int page_started = 0;
3138
3139 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3140 return 0;
3141
3142 while (delalloc_end < page_end) {
3143 nr_delalloc = find_lock_delalloc_range(inode, tree,
3144 page,
3145 &delalloc_start,
3146 &delalloc_end,
3147 128 * 1024 * 1024);
3148 if (nr_delalloc == 0) {
3149 delalloc_start = delalloc_end + 1;
3150 continue;
3151 }
3152 ret = tree->ops->fill_delalloc(inode, page,
3153 delalloc_start,
3154 delalloc_end,
3155 &page_started,
3156 nr_written);
3157 /* File system has been set read-only */
3158 if (ret) {
3159 SetPageError(page);
3160 /* fill_delalloc should be return < 0 for error
3161 * but just in case, we use > 0 here meaning the
3162 * IO is started, so we don't want to return > 0
3163 * unless things are going well.
3164 */
3165 ret = ret < 0 ? ret : -EIO;
3166 goto done;
3167 }
3168 /*
3169 * delalloc_end is already one less than the total
3170 * length, so we don't subtract one from
3171 * PAGE_CACHE_SIZE
3172 */
3173 delalloc_to_write += (delalloc_end - delalloc_start +
3174 PAGE_CACHE_SIZE) >>
3175 PAGE_CACHE_SHIFT;
3176 delalloc_start = delalloc_end + 1;
3177 }
3178 if (wbc->nr_to_write < delalloc_to_write) {
3179 int thresh = 8192;
3180
3181 if (delalloc_to_write < thresh * 2)
3182 thresh = delalloc_to_write;
3183 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3184 thresh);
3185 }
3186
3187 /* did the fill delalloc function already unlock and start
3188 * the IO?
3189 */
3190 if (page_started) {
3191 /*
3192 * we've unlocked the page, so we can't update
3193 * the mapping's writeback index, just update
3194 * nr_to_write.
3195 */
3196 wbc->nr_to_write -= *nr_written;
3197 return 1;
3198 }
3199
3200 ret = 0;
3201
3202done:
3203 return ret;
3204}
3205
3206/*
3207 * helper for __extent_writepage. This calls the writepage start hooks,
3208 * and does the loop to map the page into extents and bios.
3209 *
3210 * We return 1 if the IO is started and the page is unlocked,
3211 * 0 if all went well (page still locked)
3212 * < 0 if there were errors (page still locked)
3213 */
3214static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3215 struct page *page,
3216 struct writeback_control *wbc,
3217 struct extent_page_data *epd,
3218 loff_t i_size,
3219 unsigned long nr_written,
3220 int write_flags, int *nr_ret)
d1310b2e 3221{
d1310b2e 3222 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3223 u64 start = page_offset(page);
d1310b2e
CM
3224 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3225 u64 end;
3226 u64 cur = start;
3227 u64 extent_offset;
d1310b2e
CM
3228 u64 block_start;
3229 u64 iosize;
3230 sector_t sector;
2c64c53d 3231 struct extent_state *cached_state = NULL;
d1310b2e
CM
3232 struct extent_map *em;
3233 struct block_device *bdev;
7f3c74fb 3234 size_t pg_offset = 0;
d1310b2e 3235 size_t blocksize;
40f76580
CM
3236 int ret = 0;
3237 int nr = 0;
3238 bool compressed;
c8b97818 3239
247e743c 3240 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3241 ret = tree->ops->writepage_start_hook(page, start,
3242 page_end);
87826df0
JM
3243 if (ret) {
3244 /* Fixup worker will requeue */
3245 if (ret == -EBUSY)
3246 wbc->pages_skipped++;
3247 else
3248 redirty_page_for_writepage(wbc, page);
40f76580 3249
11c8349b 3250 update_nr_written(page, wbc, nr_written);
247e743c 3251 unlock_page(page);
40f76580 3252 ret = 1;
11c8349b 3253 goto done_unlocked;
247e743c
CM
3254 }
3255 }
3256
11c8349b
CM
3257 /*
3258 * we don't want to touch the inode after unlocking the page,
3259 * so we update the mapping writeback index now
3260 */
3261 update_nr_written(page, wbc, nr_written + 1);
771ed689 3262
d1310b2e 3263 end = page_end;
40f76580 3264 if (i_size <= start) {
e6dcd2dc
CM
3265 if (tree->ops && tree->ops->writepage_end_io_hook)
3266 tree->ops->writepage_end_io_hook(page, start,
3267 page_end, NULL, 1);
d1310b2e
CM
3268 goto done;
3269 }
3270
d1310b2e
CM
3271 blocksize = inode->i_sb->s_blocksize;
3272
3273 while (cur <= end) {
40f76580
CM
3274 u64 em_end;
3275 if (cur >= i_size) {
e6dcd2dc
CM
3276 if (tree->ops && tree->ops->writepage_end_io_hook)
3277 tree->ops->writepage_end_io_hook(page, cur,
3278 page_end, NULL, 1);
d1310b2e
CM
3279 break;
3280 }
7f3c74fb 3281 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3282 end - cur + 1, 1);
c704005d 3283 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3284 SetPageError(page);
61391d56 3285 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3286 break;
3287 }
3288
3289 extent_offset = cur - em->start;
40f76580
CM
3290 em_end = extent_map_end(em);
3291 BUG_ON(em_end <= cur);
d1310b2e 3292 BUG_ON(end < cur);
40f76580 3293 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3294 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3295 sector = (em->block_start + extent_offset) >> 9;
3296 bdev = em->bdev;
3297 block_start = em->block_start;
c8b97818 3298 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3299 free_extent_map(em);
3300 em = NULL;
3301
c8b97818
CM
3302 /*
3303 * compressed and inline extents are written through other
3304 * paths in the FS
3305 */
3306 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3307 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3308 /*
3309 * end_io notification does not happen here for
3310 * compressed extents
3311 */
3312 if (!compressed && tree->ops &&
3313 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3314 tree->ops->writepage_end_io_hook(page, cur,
3315 cur + iosize - 1,
3316 NULL, 1);
c8b97818
CM
3317 else if (compressed) {
3318 /* we don't want to end_page_writeback on
3319 * a compressed extent. this happens
3320 * elsewhere
3321 */
3322 nr++;
3323 }
3324
3325 cur += iosize;
7f3c74fb 3326 pg_offset += iosize;
d1310b2e
CM
3327 continue;
3328 }
c8b97818 3329
d1310b2e
CM
3330 if (tree->ops && tree->ops->writepage_io_hook) {
3331 ret = tree->ops->writepage_io_hook(page, cur,
3332 cur + iosize - 1);
3333 } else {
3334 ret = 0;
3335 }
1259ab75 3336 if (ret) {
d1310b2e 3337 SetPageError(page);
1259ab75 3338 } else {
40f76580 3339 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3340
d1310b2e
CM
3341 set_range_writeback(tree, cur, cur + iosize - 1);
3342 if (!PageWriteback(page)) {
efe120a0
FH
3343 btrfs_err(BTRFS_I(inode)->root->fs_info,
3344 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3345 page->index, cur, end);
d1310b2e
CM
3346 }
3347
ffbd517d
CM
3348 ret = submit_extent_page(write_flags, tree, page,
3349 sector, iosize, pg_offset,
3350 bdev, &epd->bio, max_nr,
c8b97818
CM
3351 end_bio_extent_writepage,
3352 0, 0, 0);
d1310b2e
CM
3353 if (ret)
3354 SetPageError(page);
3355 }
3356 cur = cur + iosize;
7f3c74fb 3357 pg_offset += iosize;
d1310b2e
CM
3358 nr++;
3359 }
40f76580
CM
3360done:
3361 *nr_ret = nr;
3362
3363done_unlocked:
3364
3365 /* drop our reference on any cached states */
3366 free_extent_state(cached_state);
3367 return ret;
3368}
3369
3370/*
3371 * the writepage semantics are similar to regular writepage. extent
3372 * records are inserted to lock ranges in the tree, and as dirty areas
3373 * are found, they are marked writeback. Then the lock bits are removed
3374 * and the end_io handler clears the writeback ranges
3375 */
3376static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3377 void *data)
3378{
3379 struct inode *inode = page->mapping->host;
3380 struct extent_page_data *epd = data;
3381 u64 start = page_offset(page);
3382 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3383 int ret;
3384 int nr = 0;
3385 size_t pg_offset = 0;
3386 loff_t i_size = i_size_read(inode);
3387 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3388 int write_flags;
3389 unsigned long nr_written = 0;
3390
3391 if (wbc->sync_mode == WB_SYNC_ALL)
3392 write_flags = WRITE_SYNC;
3393 else
3394 write_flags = WRITE;
3395
3396 trace___extent_writepage(page, inode, wbc);
3397
3398 WARN_ON(!PageLocked(page));
3399
3400 ClearPageError(page);
3401
3402 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3403 if (page->index > end_index ||
3404 (page->index == end_index && !pg_offset)) {
3405 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3406 unlock_page(page);
3407 return 0;
3408 }
3409
3410 if (page->index == end_index) {
3411 char *userpage;
3412
3413 userpage = kmap_atomic(page);
3414 memset(userpage + pg_offset, 0,
3415 PAGE_CACHE_SIZE - pg_offset);
3416 kunmap_atomic(userpage);
3417 flush_dcache_page(page);
3418 }
3419
3420 pg_offset = 0;
3421
3422 set_page_extent_mapped(page);
3423
3424 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3425 if (ret == 1)
3426 goto done_unlocked;
3427 if (ret)
3428 goto done;
3429
3430 ret = __extent_writepage_io(inode, page, wbc, epd,
3431 i_size, nr_written, write_flags, &nr);
3432 if (ret == 1)
3433 goto done_unlocked;
3434
d1310b2e
CM
3435done:
3436 if (nr == 0) {
3437 /* make sure the mapping tag for page dirty gets cleared */
3438 set_page_writeback(page);
3439 end_page_writeback(page);
3440 }
61391d56
FM
3441 if (PageError(page)) {
3442 ret = ret < 0 ? ret : -EIO;
3443 end_extent_writepage(page, ret, start, page_end);
3444 }
d1310b2e 3445 unlock_page(page);
40f76580 3446 return ret;
771ed689 3447
11c8349b 3448done_unlocked:
d1310b2e
CM
3449 return 0;
3450}
3451
fd8b2b61 3452void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3453{
74316201
N
3454 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3455 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3456}
3457
0e378df1
CM
3458static noinline_for_stack int
3459lock_extent_buffer_for_io(struct extent_buffer *eb,
3460 struct btrfs_fs_info *fs_info,
3461 struct extent_page_data *epd)
0b32f4bb
JB
3462{
3463 unsigned long i, num_pages;
3464 int flush = 0;
3465 int ret = 0;
3466
3467 if (!btrfs_try_tree_write_lock(eb)) {
3468 flush = 1;
3469 flush_write_bio(epd);
3470 btrfs_tree_lock(eb);
3471 }
3472
3473 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3474 btrfs_tree_unlock(eb);
3475 if (!epd->sync_io)
3476 return 0;
3477 if (!flush) {
3478 flush_write_bio(epd);
3479 flush = 1;
3480 }
a098d8e8
CM
3481 while (1) {
3482 wait_on_extent_buffer_writeback(eb);
3483 btrfs_tree_lock(eb);
3484 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3485 break;
0b32f4bb 3486 btrfs_tree_unlock(eb);
0b32f4bb
JB
3487 }
3488 }
3489
51561ffe
JB
3490 /*
3491 * We need to do this to prevent races in people who check if the eb is
3492 * under IO since we can end up having no IO bits set for a short period
3493 * of time.
3494 */
3495 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3496 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3497 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3498 spin_unlock(&eb->refs_lock);
0b32f4bb 3499 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3500 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3501 -eb->len,
3502 fs_info->dirty_metadata_batch);
0b32f4bb 3503 ret = 1;
51561ffe
JB
3504 } else {
3505 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3506 }
3507
3508 btrfs_tree_unlock(eb);
3509
3510 if (!ret)
3511 return ret;
3512
3513 num_pages = num_extent_pages(eb->start, eb->len);
3514 for (i = 0; i < num_pages; i++) {
3515 struct page *p = extent_buffer_page(eb, i);
3516
3517 if (!trylock_page(p)) {
3518 if (!flush) {
3519 flush_write_bio(epd);
3520 flush = 1;
3521 }
3522 lock_page(p);
3523 }
3524 }
3525
3526 return ret;
3527}
3528
3529static void end_extent_buffer_writeback(struct extent_buffer *eb)
3530{
3531 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3532 smp_mb__after_atomic();
0b32f4bb
JB
3533 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3534}
3535
3536static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3537{
2c30c71b 3538 struct bio_vec *bvec;
0b32f4bb 3539 struct extent_buffer *eb;
2c30c71b 3540 int i, done;
0b32f4bb 3541
2c30c71b 3542 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3543 struct page *page = bvec->bv_page;
3544
0b32f4bb
JB
3545 eb = (struct extent_buffer *)page->private;
3546 BUG_ON(!eb);
3547 done = atomic_dec_and_test(&eb->io_pages);
3548
2c30c71b 3549 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
0b32f4bb
JB
3550 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3551 ClearPageUptodate(page);
3552 SetPageError(page);
3553 }
3554
3555 end_page_writeback(page);
3556
3557 if (!done)
3558 continue;
3559
3560 end_extent_buffer_writeback(eb);
2c30c71b 3561 }
0b32f4bb
JB
3562
3563 bio_put(bio);
0b32f4bb
JB
3564}
3565
0e378df1 3566static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3567 struct btrfs_fs_info *fs_info,
3568 struct writeback_control *wbc,
3569 struct extent_page_data *epd)
3570{
3571 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3572 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3573 u64 offset = eb->start;
3574 unsigned long i, num_pages;
de0022b9 3575 unsigned long bio_flags = 0;
d4c7ca86 3576 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3577 int ret = 0;
0b32f4bb
JB
3578
3579 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3580 num_pages = num_extent_pages(eb->start, eb->len);
3581 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3582 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3583 bio_flags = EXTENT_BIO_TREE_LOG;
3584
0b32f4bb
JB
3585 for (i = 0; i < num_pages; i++) {
3586 struct page *p = extent_buffer_page(eb, i);
3587
3588 clear_page_dirty_for_io(p);
3589 set_page_writeback(p);
f28491e0 3590 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3591 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3592 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3593 0, epd->bio_flags, bio_flags);
3594 epd->bio_flags = bio_flags;
0b32f4bb
JB
3595 if (ret) {
3596 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3597 SetPageError(p);
3598 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3599 end_extent_buffer_writeback(eb);
3600 ret = -EIO;
3601 break;
3602 }
3603 offset += PAGE_CACHE_SIZE;
3604 update_nr_written(p, wbc, 1);
3605 unlock_page(p);
3606 }
3607
3608 if (unlikely(ret)) {
3609 for (; i < num_pages; i++) {
3610 struct page *p = extent_buffer_page(eb, i);
3611 unlock_page(p);
3612 }
3613 }
3614
3615 return ret;
3616}
3617
3618int btree_write_cache_pages(struct address_space *mapping,
3619 struct writeback_control *wbc)
3620{
3621 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3622 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3623 struct extent_buffer *eb, *prev_eb = NULL;
3624 struct extent_page_data epd = {
3625 .bio = NULL,
3626 .tree = tree,
3627 .extent_locked = 0,
3628 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3629 .bio_flags = 0,
0b32f4bb
JB
3630 };
3631 int ret = 0;
3632 int done = 0;
3633 int nr_to_write_done = 0;
3634 struct pagevec pvec;
3635 int nr_pages;
3636 pgoff_t index;
3637 pgoff_t end; /* Inclusive */
3638 int scanned = 0;
3639 int tag;
3640
3641 pagevec_init(&pvec, 0);
3642 if (wbc->range_cyclic) {
3643 index = mapping->writeback_index; /* Start from prev offset */
3644 end = -1;
3645 } else {
3646 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3647 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3648 scanned = 1;
3649 }
3650 if (wbc->sync_mode == WB_SYNC_ALL)
3651 tag = PAGECACHE_TAG_TOWRITE;
3652 else
3653 tag = PAGECACHE_TAG_DIRTY;
3654retry:
3655 if (wbc->sync_mode == WB_SYNC_ALL)
3656 tag_pages_for_writeback(mapping, index, end);
3657 while (!done && !nr_to_write_done && (index <= end) &&
3658 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3659 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3660 unsigned i;
3661
3662 scanned = 1;
3663 for (i = 0; i < nr_pages; i++) {
3664 struct page *page = pvec.pages[i];
3665
3666 if (!PagePrivate(page))
3667 continue;
3668
3669 if (!wbc->range_cyclic && page->index > end) {
3670 done = 1;
3671 break;
3672 }
3673
b5bae261
JB
3674 spin_lock(&mapping->private_lock);
3675 if (!PagePrivate(page)) {
3676 spin_unlock(&mapping->private_lock);
3677 continue;
3678 }
3679
0b32f4bb 3680 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3681
3682 /*
3683 * Shouldn't happen and normally this would be a BUG_ON
3684 * but no sense in crashing the users box for something
3685 * we can survive anyway.
3686 */
fae7f21c 3687 if (WARN_ON(!eb)) {
b5bae261 3688 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3689 continue;
3690 }
3691
b5bae261
JB
3692 if (eb == prev_eb) {
3693 spin_unlock(&mapping->private_lock);
0b32f4bb 3694 continue;
b5bae261 3695 }
0b32f4bb 3696
b5bae261
JB
3697 ret = atomic_inc_not_zero(&eb->refs);
3698 spin_unlock(&mapping->private_lock);
3699 if (!ret)
0b32f4bb 3700 continue;
0b32f4bb
JB
3701
3702 prev_eb = eb;
3703 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3704 if (!ret) {
3705 free_extent_buffer(eb);
3706 continue;
3707 }
3708
3709 ret = write_one_eb(eb, fs_info, wbc, &epd);
3710 if (ret) {
3711 done = 1;
3712 free_extent_buffer(eb);
3713 break;
3714 }
3715 free_extent_buffer(eb);
3716
3717 /*
3718 * the filesystem may choose to bump up nr_to_write.
3719 * We have to make sure to honor the new nr_to_write
3720 * at any time
3721 */
3722 nr_to_write_done = wbc->nr_to_write <= 0;
3723 }
3724 pagevec_release(&pvec);
3725 cond_resched();
3726 }
3727 if (!scanned && !done) {
3728 /*
3729 * We hit the last page and there is more work to be done: wrap
3730 * back to the start of the file
3731 */
3732 scanned = 1;
3733 index = 0;
3734 goto retry;
3735 }
3736 flush_write_bio(&epd);
3737 return ret;
3738}
3739
d1310b2e 3740/**
4bef0848 3741 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3742 * @mapping: address space structure to write
3743 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3744 * @writepage: function called for each page
3745 * @data: data passed to writepage function
3746 *
3747 * If a page is already under I/O, write_cache_pages() skips it, even
3748 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3749 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3750 * and msync() need to guarantee that all the data which was dirty at the time
3751 * the call was made get new I/O started against them. If wbc->sync_mode is
3752 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3753 * existing IO to complete.
3754 */
b2950863 3755static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3756 struct address_space *mapping,
3757 struct writeback_control *wbc,
d2c3f4f6
CM
3758 writepage_t writepage, void *data,
3759 void (*flush_fn)(void *))
d1310b2e 3760{
7fd1a3f7 3761 struct inode *inode = mapping->host;
d1310b2e
CM
3762 int ret = 0;
3763 int done = 0;
61391d56 3764 int err = 0;
f85d7d6c 3765 int nr_to_write_done = 0;
d1310b2e
CM
3766 struct pagevec pvec;
3767 int nr_pages;
3768 pgoff_t index;
3769 pgoff_t end; /* Inclusive */
3770 int scanned = 0;
f7aaa06b 3771 int tag;
d1310b2e 3772
7fd1a3f7
JB
3773 /*
3774 * We have to hold onto the inode so that ordered extents can do their
3775 * work when the IO finishes. The alternative to this is failing to add
3776 * an ordered extent if the igrab() fails there and that is a huge pain
3777 * to deal with, so instead just hold onto the inode throughout the
3778 * writepages operation. If it fails here we are freeing up the inode
3779 * anyway and we'd rather not waste our time writing out stuff that is
3780 * going to be truncated anyway.
3781 */
3782 if (!igrab(inode))
3783 return 0;
3784
d1310b2e
CM
3785 pagevec_init(&pvec, 0);
3786 if (wbc->range_cyclic) {
3787 index = mapping->writeback_index; /* Start from prev offset */
3788 end = -1;
3789 } else {
3790 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3791 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3792 scanned = 1;
3793 }
f7aaa06b
JB
3794 if (wbc->sync_mode == WB_SYNC_ALL)
3795 tag = PAGECACHE_TAG_TOWRITE;
3796 else
3797 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3798retry:
f7aaa06b
JB
3799 if (wbc->sync_mode == WB_SYNC_ALL)
3800 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3801 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3802 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3803 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3804 unsigned i;
3805
3806 scanned = 1;
3807 for (i = 0; i < nr_pages; i++) {
3808 struct page *page = pvec.pages[i];
3809
3810 /*
3811 * At this point we hold neither mapping->tree_lock nor
3812 * lock on the page itself: the page may be truncated or
3813 * invalidated (changing page->mapping to NULL), or even
3814 * swizzled back from swapper_space to tmpfs file
3815 * mapping
3816 */
c8f2f24b
JB
3817 if (!trylock_page(page)) {
3818 flush_fn(data);
3819 lock_page(page);
01d658f2 3820 }
d1310b2e
CM
3821
3822 if (unlikely(page->mapping != mapping)) {
3823 unlock_page(page);
3824 continue;
3825 }
3826
3827 if (!wbc->range_cyclic && page->index > end) {
3828 done = 1;
3829 unlock_page(page);
3830 continue;
3831 }
3832
d2c3f4f6 3833 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3834 if (PageWriteback(page))
3835 flush_fn(data);
d1310b2e 3836 wait_on_page_writeback(page);
d2c3f4f6 3837 }
d1310b2e
CM
3838
3839 if (PageWriteback(page) ||
3840 !clear_page_dirty_for_io(page)) {
3841 unlock_page(page);
3842 continue;
3843 }
3844
3845 ret = (*writepage)(page, wbc, data);
3846
3847 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3848 unlock_page(page);
3849 ret = 0;
3850 }
61391d56
FM
3851 if (!err && ret < 0)
3852 err = ret;
f85d7d6c
CM
3853
3854 /*
3855 * the filesystem may choose to bump up nr_to_write.
3856 * We have to make sure to honor the new nr_to_write
3857 * at any time
3858 */
3859 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3860 }
3861 pagevec_release(&pvec);
3862 cond_resched();
3863 }
61391d56 3864 if (!scanned && !done && !err) {
d1310b2e
CM
3865 /*
3866 * We hit the last page and there is more work to be done: wrap
3867 * back to the start of the file
3868 */
3869 scanned = 1;
3870 index = 0;
3871 goto retry;
3872 }
7fd1a3f7 3873 btrfs_add_delayed_iput(inode);
61391d56 3874 return err;
d1310b2e 3875}
d1310b2e 3876
ffbd517d 3877static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3878{
d2c3f4f6 3879 if (epd->bio) {
355808c2
JM
3880 int rw = WRITE;
3881 int ret;
3882
ffbd517d 3883 if (epd->sync_io)
355808c2
JM
3884 rw = WRITE_SYNC;
3885
de0022b9 3886 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3887 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3888 epd->bio = NULL;
3889 }
3890}
3891
ffbd517d
CM
3892static noinline void flush_write_bio(void *data)
3893{
3894 struct extent_page_data *epd = data;
3895 flush_epd_write_bio(epd);
3896}
3897
d1310b2e
CM
3898int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3899 get_extent_t *get_extent,
3900 struct writeback_control *wbc)
3901{
3902 int ret;
d1310b2e
CM
3903 struct extent_page_data epd = {
3904 .bio = NULL,
3905 .tree = tree,
3906 .get_extent = get_extent,
771ed689 3907 .extent_locked = 0,
ffbd517d 3908 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3909 .bio_flags = 0,
d1310b2e 3910 };
d1310b2e 3911
d1310b2e
CM
3912 ret = __extent_writepage(page, wbc, &epd);
3913
ffbd517d 3914 flush_epd_write_bio(&epd);
d1310b2e
CM
3915 return ret;
3916}
d1310b2e 3917
771ed689
CM
3918int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3919 u64 start, u64 end, get_extent_t *get_extent,
3920 int mode)
3921{
3922 int ret = 0;
3923 struct address_space *mapping = inode->i_mapping;
3924 struct page *page;
3925 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3926 PAGE_CACHE_SHIFT;
3927
3928 struct extent_page_data epd = {
3929 .bio = NULL,
3930 .tree = tree,
3931 .get_extent = get_extent,
3932 .extent_locked = 1,
ffbd517d 3933 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3934 .bio_flags = 0,
771ed689
CM
3935 };
3936 struct writeback_control wbc_writepages = {
771ed689 3937 .sync_mode = mode,
771ed689
CM
3938 .nr_to_write = nr_pages * 2,
3939 .range_start = start,
3940 .range_end = end + 1,
3941 };
3942
d397712b 3943 while (start <= end) {
771ed689
CM
3944 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3945 if (clear_page_dirty_for_io(page))
3946 ret = __extent_writepage(page, &wbc_writepages, &epd);
3947 else {
3948 if (tree->ops && tree->ops->writepage_end_io_hook)
3949 tree->ops->writepage_end_io_hook(page, start,
3950 start + PAGE_CACHE_SIZE - 1,
3951 NULL, 1);
3952 unlock_page(page);
3953 }
3954 page_cache_release(page);
3955 start += PAGE_CACHE_SIZE;
3956 }
3957
ffbd517d 3958 flush_epd_write_bio(&epd);
771ed689
CM
3959 return ret;
3960}
d1310b2e
CM
3961
3962int extent_writepages(struct extent_io_tree *tree,
3963 struct address_space *mapping,
3964 get_extent_t *get_extent,
3965 struct writeback_control *wbc)
3966{
3967 int ret = 0;
3968 struct extent_page_data epd = {
3969 .bio = NULL,
3970 .tree = tree,
3971 .get_extent = get_extent,
771ed689 3972 .extent_locked = 0,
ffbd517d 3973 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3974 .bio_flags = 0,
d1310b2e
CM
3975 };
3976
4bef0848 3977 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3978 __extent_writepage, &epd,
3979 flush_write_bio);
ffbd517d 3980 flush_epd_write_bio(&epd);
d1310b2e
CM
3981 return ret;
3982}
d1310b2e
CM
3983
3984int extent_readpages(struct extent_io_tree *tree,
3985 struct address_space *mapping,
3986 struct list_head *pages, unsigned nr_pages,
3987 get_extent_t get_extent)
3988{
3989 struct bio *bio = NULL;
3990 unsigned page_idx;
c8b97818 3991 unsigned long bio_flags = 0;
67c9684f
LB
3992 struct page *pagepool[16];
3993 struct page *page;
125bac01 3994 struct extent_map *em_cached = NULL;
67c9684f 3995 int nr = 0;
d1310b2e 3996
d1310b2e 3997 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3998 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3999
4000 prefetchw(&page->flags);
4001 list_del(&page->lru);
67c9684f 4002 if (add_to_page_cache_lru(page, mapping,
43e817a1 4003 page->index, GFP_NOFS)) {
67c9684f
LB
4004 page_cache_release(page);
4005 continue;
d1310b2e 4006 }
67c9684f
LB
4007
4008 pagepool[nr++] = page;
4009 if (nr < ARRAY_SIZE(pagepool))
4010 continue;
125bac01 4011 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4012 &bio, 0, &bio_flags, READ);
67c9684f 4013 nr = 0;
d1310b2e 4014 }
9974090b 4015 if (nr)
125bac01 4016 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 4017 &bio, 0, &bio_flags, READ);
67c9684f 4018
125bac01
MX
4019 if (em_cached)
4020 free_extent_map(em_cached);
4021
d1310b2e
CM
4022 BUG_ON(!list_empty(pages));
4023 if (bio)
79787eaa 4024 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4025 return 0;
4026}
d1310b2e
CM
4027
4028/*
4029 * basic invalidatepage code, this waits on any locked or writeback
4030 * ranges corresponding to the page, and then deletes any extent state
4031 * records from the tree
4032 */
4033int extent_invalidatepage(struct extent_io_tree *tree,
4034 struct page *page, unsigned long offset)
4035{
2ac55d41 4036 struct extent_state *cached_state = NULL;
4eee4fa4 4037 u64 start = page_offset(page);
d1310b2e
CM
4038 u64 end = start + PAGE_CACHE_SIZE - 1;
4039 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4040
fda2832f 4041 start += ALIGN(offset, blocksize);
d1310b2e
CM
4042 if (start > end)
4043 return 0;
4044
d0082371 4045 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 4046 wait_on_page_writeback(page);
d1310b2e 4047 clear_extent_bit(tree, start, end,
32c00aff
JB
4048 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4049 EXTENT_DO_ACCOUNTING,
2ac55d41 4050 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4051 return 0;
4052}
d1310b2e 4053
7b13b7b1
CM
4054/*
4055 * a helper for releasepage, this tests for areas of the page that
4056 * are locked or under IO and drops the related state bits if it is safe
4057 * to drop the page.
4058 */
48a3b636
ES
4059static int try_release_extent_state(struct extent_map_tree *map,
4060 struct extent_io_tree *tree,
4061 struct page *page, gfp_t mask)
7b13b7b1 4062{
4eee4fa4 4063 u64 start = page_offset(page);
7b13b7b1
CM
4064 u64 end = start + PAGE_CACHE_SIZE - 1;
4065 int ret = 1;
4066
211f90e6 4067 if (test_range_bit(tree, start, end,
8b62b72b 4068 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4069 ret = 0;
4070 else {
4071 if ((mask & GFP_NOFS) == GFP_NOFS)
4072 mask = GFP_NOFS;
11ef160f
CM
4073 /*
4074 * at this point we can safely clear everything except the
4075 * locked bit and the nodatasum bit
4076 */
e3f24cc5 4077 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4078 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4079 0, 0, NULL, mask);
e3f24cc5
CM
4080
4081 /* if clear_extent_bit failed for enomem reasons,
4082 * we can't allow the release to continue.
4083 */
4084 if (ret < 0)
4085 ret = 0;
4086 else
4087 ret = 1;
7b13b7b1
CM
4088 }
4089 return ret;
4090}
7b13b7b1 4091
d1310b2e
CM
4092/*
4093 * a helper for releasepage. As long as there are no locked extents
4094 * in the range corresponding to the page, both state records and extent
4095 * map records are removed
4096 */
4097int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4098 struct extent_io_tree *tree, struct page *page,
4099 gfp_t mask)
d1310b2e
CM
4100{
4101 struct extent_map *em;
4eee4fa4 4102 u64 start = page_offset(page);
d1310b2e 4103 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4104
70dec807
CM
4105 if ((mask & __GFP_WAIT) &&
4106 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4107 u64 len;
70dec807 4108 while (start <= end) {
39b5637f 4109 len = end - start + 1;
890871be 4110 write_lock(&map->lock);
39b5637f 4111 em = lookup_extent_mapping(map, start, len);
285190d9 4112 if (!em) {
890871be 4113 write_unlock(&map->lock);
70dec807
CM
4114 break;
4115 }
7f3c74fb
CM
4116 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4117 em->start != start) {
890871be 4118 write_unlock(&map->lock);
70dec807
CM
4119 free_extent_map(em);
4120 break;
4121 }
4122 if (!test_range_bit(tree, em->start,
4123 extent_map_end(em) - 1,
8b62b72b 4124 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4125 0, NULL)) {
70dec807
CM
4126 remove_extent_mapping(map, em);
4127 /* once for the rb tree */
4128 free_extent_map(em);
4129 }
4130 start = extent_map_end(em);
890871be 4131 write_unlock(&map->lock);
70dec807
CM
4132
4133 /* once for us */
d1310b2e
CM
4134 free_extent_map(em);
4135 }
d1310b2e 4136 }
7b13b7b1 4137 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4138}
d1310b2e 4139
ec29ed5b
CM
4140/*
4141 * helper function for fiemap, which doesn't want to see any holes.
4142 * This maps until we find something past 'last'
4143 */
4144static struct extent_map *get_extent_skip_holes(struct inode *inode,
4145 u64 offset,
4146 u64 last,
4147 get_extent_t *get_extent)
4148{
4149 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4150 struct extent_map *em;
4151 u64 len;
4152
4153 if (offset >= last)
4154 return NULL;
4155
67871254 4156 while (1) {
ec29ed5b
CM
4157 len = last - offset;
4158 if (len == 0)
4159 break;
fda2832f 4160 len = ALIGN(len, sectorsize);
ec29ed5b 4161 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4162 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4163 return em;
4164
4165 /* if this isn't a hole return it */
4166 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4167 em->block_start != EXTENT_MAP_HOLE) {
4168 return em;
4169 }
4170
4171 /* this is a hole, advance to the next extent */
4172 offset = extent_map_end(em);
4173 free_extent_map(em);
4174 if (offset >= last)
4175 break;
4176 }
4177 return NULL;
4178}
4179
1506fcc8
YS
4180int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4181 __u64 start, __u64 len, get_extent_t *get_extent)
4182{
975f84fe 4183 int ret = 0;
1506fcc8
YS
4184 u64 off = start;
4185 u64 max = start + len;
4186 u32 flags = 0;
975f84fe
JB
4187 u32 found_type;
4188 u64 last;
ec29ed5b 4189 u64 last_for_get_extent = 0;
1506fcc8 4190 u64 disko = 0;
ec29ed5b 4191 u64 isize = i_size_read(inode);
975f84fe 4192 struct btrfs_key found_key;
1506fcc8 4193 struct extent_map *em = NULL;
2ac55d41 4194 struct extent_state *cached_state = NULL;
975f84fe 4195 struct btrfs_path *path;
dc046b10 4196 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4197 int end = 0;
ec29ed5b
CM
4198 u64 em_start = 0;
4199 u64 em_len = 0;
4200 u64 em_end = 0;
1506fcc8
YS
4201
4202 if (len == 0)
4203 return -EINVAL;
4204
975f84fe
JB
4205 path = btrfs_alloc_path();
4206 if (!path)
4207 return -ENOMEM;
4208 path->leave_spinning = 1;
4209
2c91943b
QW
4210 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4211 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4212
ec29ed5b
CM
4213 /*
4214 * lookup the last file extent. We're not using i_size here
4215 * because there might be preallocation past i_size
4216 */
dc046b10
JB
4217 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4218 0);
975f84fe
JB
4219 if (ret < 0) {
4220 btrfs_free_path(path);
4221 return ret;
4222 }
4223 WARN_ON(!ret);
4224 path->slots[0]--;
975f84fe 4225 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4226 found_type = found_key.type;
975f84fe 4227
ec29ed5b 4228 /* No extents, but there might be delalloc bits */
33345d01 4229 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4230 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4231 /* have to trust i_size as the end */
4232 last = (u64)-1;
4233 last_for_get_extent = isize;
4234 } else {
4235 /*
4236 * remember the start of the last extent. There are a
4237 * bunch of different factors that go into the length of the
4238 * extent, so its much less complex to remember where it started
4239 */
4240 last = found_key.offset;
4241 last_for_get_extent = last + 1;
975f84fe 4242 }
fe09e16c 4243 btrfs_release_path(path);
975f84fe 4244
ec29ed5b
CM
4245 /*
4246 * we might have some extents allocated but more delalloc past those
4247 * extents. so, we trust isize unless the start of the last extent is
4248 * beyond isize
4249 */
4250 if (last < isize) {
4251 last = (u64)-1;
4252 last_for_get_extent = isize;
4253 }
4254
a52f4cd2 4255 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4256 &cached_state);
ec29ed5b 4257
4d479cf0 4258 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4259 get_extent);
1506fcc8
YS
4260 if (!em)
4261 goto out;
4262 if (IS_ERR(em)) {
4263 ret = PTR_ERR(em);
4264 goto out;
4265 }
975f84fe 4266
1506fcc8 4267 while (!end) {
b76bb701 4268 u64 offset_in_extent = 0;
ea8efc74
CM
4269
4270 /* break if the extent we found is outside the range */
4271 if (em->start >= max || extent_map_end(em) < off)
4272 break;
4273
4274 /*
4275 * get_extent may return an extent that starts before our
4276 * requested range. We have to make sure the ranges
4277 * we return to fiemap always move forward and don't
4278 * overlap, so adjust the offsets here
4279 */
4280 em_start = max(em->start, off);
1506fcc8 4281
ea8efc74
CM
4282 /*
4283 * record the offset from the start of the extent
b76bb701
JB
4284 * for adjusting the disk offset below. Only do this if the
4285 * extent isn't compressed since our in ram offset may be past
4286 * what we have actually allocated on disk.
ea8efc74 4287 */
b76bb701
JB
4288 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4289 offset_in_extent = em_start - em->start;
ec29ed5b 4290 em_end = extent_map_end(em);
ea8efc74 4291 em_len = em_end - em_start;
1506fcc8
YS
4292 disko = 0;
4293 flags = 0;
4294
ea8efc74
CM
4295 /*
4296 * bump off for our next call to get_extent
4297 */
4298 off = extent_map_end(em);
4299 if (off >= max)
4300 end = 1;
4301
93dbfad7 4302 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4303 end = 1;
4304 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4305 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4306 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4307 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4308 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4309 flags |= (FIEMAP_EXTENT_DELALLOC |
4310 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4311 } else if (fieinfo->fi_extents_max) {
4312 u64 bytenr = em->block_start -
4313 (em->start - em->orig_start);
fe09e16c 4314
ea8efc74 4315 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4316
4317 /*
4318 * As btrfs supports shared space, this information
4319 * can be exported to userspace tools via
dc046b10
JB
4320 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4321 * then we're just getting a count and we can skip the
4322 * lookup stuff.
fe09e16c 4323 */
dc046b10
JB
4324 ret = btrfs_check_shared(NULL, root->fs_info,
4325 root->objectid,
4326 btrfs_ino(inode), bytenr);
4327 if (ret < 0)
fe09e16c 4328 goto out_free;
dc046b10 4329 if (ret)
fe09e16c 4330 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4331 ret = 0;
1506fcc8
YS
4332 }
4333 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4334 flags |= FIEMAP_EXTENT_ENCODED;
4335
1506fcc8
YS
4336 free_extent_map(em);
4337 em = NULL;
ec29ed5b
CM
4338 if ((em_start >= last) || em_len == (u64)-1 ||
4339 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4340 flags |= FIEMAP_EXTENT_LAST;
4341 end = 1;
4342 }
4343
ec29ed5b
CM
4344 /* now scan forward to see if this is really the last extent. */
4345 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4346 get_extent);
4347 if (IS_ERR(em)) {
4348 ret = PTR_ERR(em);
4349 goto out;
4350 }
4351 if (!em) {
975f84fe
JB
4352 flags |= FIEMAP_EXTENT_LAST;
4353 end = 1;
4354 }
ec29ed5b
CM
4355 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4356 em_len, flags);
4357 if (ret)
4358 goto out_free;
1506fcc8
YS
4359 }
4360out_free:
4361 free_extent_map(em);
4362out:
fe09e16c 4363 btrfs_free_path(path);
a52f4cd2 4364 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4365 &cached_state, GFP_NOFS);
1506fcc8
YS
4366 return ret;
4367}
4368
727011e0
CM
4369static void __free_extent_buffer(struct extent_buffer *eb)
4370{
6d49ba1b 4371 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4372 kmem_cache_free(extent_buffer_cache, eb);
4373}
4374
a26e8c9f 4375int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4376{
4377 return (atomic_read(&eb->io_pages) ||
4378 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4379 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4380}
4381
4382/*
4383 * Helper for releasing extent buffer page.
4384 */
4385static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4386 unsigned long start_idx)
4387{
4388 unsigned long index;
4389 unsigned long num_pages;
4390 struct page *page;
4391 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4392
4393 BUG_ON(extent_buffer_under_io(eb));
4394
4395 num_pages = num_extent_pages(eb->start, eb->len);
4396 index = start_idx + num_pages;
4397 if (start_idx >= index)
4398 return;
4399
4400 do {
4401 index--;
4402 page = extent_buffer_page(eb, index);
4403 if (page && mapped) {
4404 spin_lock(&page->mapping->private_lock);
4405 /*
4406 * We do this since we'll remove the pages after we've
4407 * removed the eb from the radix tree, so we could race
4408 * and have this page now attached to the new eb. So
4409 * only clear page_private if it's still connected to
4410 * this eb.
4411 */
4412 if (PagePrivate(page) &&
4413 page->private == (unsigned long)eb) {
4414 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4415 BUG_ON(PageDirty(page));
4416 BUG_ON(PageWriteback(page));
4417 /*
4418 * We need to make sure we haven't be attached
4419 * to a new eb.
4420 */
4421 ClearPagePrivate(page);
4422 set_page_private(page, 0);
4423 /* One for the page private */
4424 page_cache_release(page);
4425 }
4426 spin_unlock(&page->mapping->private_lock);
4427
4428 }
4429 if (page) {
4430 /* One for when we alloced the page */
4431 page_cache_release(page);
4432 }
4433 } while (index != start_idx);
4434}
4435
4436/*
4437 * Helper for releasing the extent buffer.
4438 */
4439static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4440{
4441 btrfs_release_extent_buffer_page(eb, 0);
4442 __free_extent_buffer(eb);
4443}
4444
f28491e0
JB
4445static struct extent_buffer *
4446__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4447 unsigned long len, gfp_t mask)
d1310b2e
CM
4448{
4449 struct extent_buffer *eb = NULL;
4450
d1310b2e 4451 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4452 if (eb == NULL)
4453 return NULL;
d1310b2e
CM
4454 eb->start = start;
4455 eb->len = len;
f28491e0 4456 eb->fs_info = fs_info;
815a51c7 4457 eb->bflags = 0;
bd681513
CM
4458 rwlock_init(&eb->lock);
4459 atomic_set(&eb->write_locks, 0);
4460 atomic_set(&eb->read_locks, 0);
4461 atomic_set(&eb->blocking_readers, 0);
4462 atomic_set(&eb->blocking_writers, 0);
4463 atomic_set(&eb->spinning_readers, 0);
4464 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4465 eb->lock_nested = 0;
bd681513
CM
4466 init_waitqueue_head(&eb->write_lock_wq);
4467 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4468
6d49ba1b
ES
4469 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4470
3083ee2e 4471 spin_lock_init(&eb->refs_lock);
d1310b2e 4472 atomic_set(&eb->refs, 1);
0b32f4bb 4473 atomic_set(&eb->io_pages, 0);
727011e0 4474
b8dae313
DS
4475 /*
4476 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4477 */
4478 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4479 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4480 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4481
4482 return eb;
4483}
4484
815a51c7
JS
4485struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4486{
4487 unsigned long i;
4488 struct page *p;
4489 struct extent_buffer *new;
4490 unsigned long num_pages = num_extent_pages(src->start, src->len);
4491
9ec72677 4492 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4493 if (new == NULL)
4494 return NULL;
4495
4496 for (i = 0; i < num_pages; i++) {
9ec72677 4497 p = alloc_page(GFP_NOFS);
db7f3436
JB
4498 if (!p) {
4499 btrfs_release_extent_buffer(new);
4500 return NULL;
4501 }
815a51c7
JS
4502 attach_extent_buffer_page(new, p);
4503 WARN_ON(PageDirty(p));
4504 SetPageUptodate(p);
4505 new->pages[i] = p;
4506 }
4507
4508 copy_extent_buffer(new, src, 0, 0, src->len);
4509 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4510 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4511
4512 return new;
4513}
4514
4515struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4516{
4517 struct extent_buffer *eb;
4518 unsigned long num_pages = num_extent_pages(0, len);
4519 unsigned long i;
4520
9ec72677 4521 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4522 if (!eb)
4523 return NULL;
4524
4525 for (i = 0; i < num_pages; i++) {
9ec72677 4526 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4527 if (!eb->pages[i])
4528 goto err;
4529 }
4530 set_extent_buffer_uptodate(eb);
4531 btrfs_set_header_nritems(eb, 0);
4532 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4533
4534 return eb;
4535err:
84167d19
SB
4536 for (; i > 0; i--)
4537 __free_page(eb->pages[i - 1]);
815a51c7
JS
4538 __free_extent_buffer(eb);
4539 return NULL;
4540}
4541
0b32f4bb
JB
4542static void check_buffer_tree_ref(struct extent_buffer *eb)
4543{
242e18c7 4544 int refs;
0b32f4bb
JB
4545 /* the ref bit is tricky. We have to make sure it is set
4546 * if we have the buffer dirty. Otherwise the
4547 * code to free a buffer can end up dropping a dirty
4548 * page
4549 *
4550 * Once the ref bit is set, it won't go away while the
4551 * buffer is dirty or in writeback, and it also won't
4552 * go away while we have the reference count on the
4553 * eb bumped.
4554 *
4555 * We can't just set the ref bit without bumping the
4556 * ref on the eb because free_extent_buffer might
4557 * see the ref bit and try to clear it. If this happens
4558 * free_extent_buffer might end up dropping our original
4559 * ref by mistake and freeing the page before we are able
4560 * to add one more ref.
4561 *
4562 * So bump the ref count first, then set the bit. If someone
4563 * beat us to it, drop the ref we added.
4564 */
242e18c7
CM
4565 refs = atomic_read(&eb->refs);
4566 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4567 return;
4568
594831c4
JB
4569 spin_lock(&eb->refs_lock);
4570 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4571 atomic_inc(&eb->refs);
594831c4 4572 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4573}
4574
2457aec6
MG
4575static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4576 struct page *accessed)
5df4235e
JB
4577{
4578 unsigned long num_pages, i;
4579
0b32f4bb
JB
4580 check_buffer_tree_ref(eb);
4581
5df4235e
JB
4582 num_pages = num_extent_pages(eb->start, eb->len);
4583 for (i = 0; i < num_pages; i++) {
4584 struct page *p = extent_buffer_page(eb, i);
2457aec6
MG
4585 if (p != accessed)
4586 mark_page_accessed(p);
5df4235e
JB
4587 }
4588}
4589
f28491e0
JB
4590struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4591 u64 start)
452c75c3
CS
4592{
4593 struct extent_buffer *eb;
4594
4595 rcu_read_lock();
f28491e0
JB
4596 eb = radix_tree_lookup(&fs_info->buffer_radix,
4597 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4598 if (eb && atomic_inc_not_zero(&eb->refs)) {
4599 rcu_read_unlock();
2457aec6 4600 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4601 return eb;
4602 }
4603 rcu_read_unlock();
4604
4605 return NULL;
4606}
4607
faa2dbf0
JB
4608#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4609struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4610 u64 start, unsigned long len)
4611{
4612 struct extent_buffer *eb, *exists = NULL;
4613 int ret;
4614
4615 eb = find_extent_buffer(fs_info, start);
4616 if (eb)
4617 return eb;
4618 eb = alloc_dummy_extent_buffer(start, len);
4619 if (!eb)
4620 return NULL;
4621 eb->fs_info = fs_info;
4622again:
4623 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4624 if (ret)
4625 goto free_eb;
4626 spin_lock(&fs_info->buffer_lock);
4627 ret = radix_tree_insert(&fs_info->buffer_radix,
4628 start >> PAGE_CACHE_SHIFT, eb);
4629 spin_unlock(&fs_info->buffer_lock);
4630 radix_tree_preload_end();
4631 if (ret == -EEXIST) {
4632 exists = find_extent_buffer(fs_info, start);
4633 if (exists)
4634 goto free_eb;
4635 else
4636 goto again;
4637 }
4638 check_buffer_tree_ref(eb);
4639 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4640
4641 /*
4642 * We will free dummy extent buffer's if they come into
4643 * free_extent_buffer with a ref count of 2, but if we are using this we
4644 * want the buffers to stay in memory until we're done with them, so
4645 * bump the ref count again.
4646 */
4647 atomic_inc(&eb->refs);
4648 return eb;
4649free_eb:
4650 btrfs_release_extent_buffer(eb);
4651 return exists;
4652}
4653#endif
4654
f28491e0 4655struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4656 u64 start, unsigned long len)
d1310b2e
CM
4657{
4658 unsigned long num_pages = num_extent_pages(start, len);
4659 unsigned long i;
4660 unsigned long index = start >> PAGE_CACHE_SHIFT;
4661 struct extent_buffer *eb;
6af118ce 4662 struct extent_buffer *exists = NULL;
d1310b2e 4663 struct page *p;
f28491e0 4664 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4665 int uptodate = 1;
19fe0a8b 4666 int ret;
d1310b2e 4667
f28491e0 4668 eb = find_extent_buffer(fs_info, start);
452c75c3 4669 if (eb)
6af118ce 4670 return eb;
6af118ce 4671
f28491e0 4672 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4673 if (!eb)
d1310b2e
CM
4674 return NULL;
4675
727011e0 4676 for (i = 0; i < num_pages; i++, index++) {
a6591715 4677 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4678 if (!p)
6af118ce 4679 goto free_eb;
4f2de97a
JB
4680
4681 spin_lock(&mapping->private_lock);
4682 if (PagePrivate(p)) {
4683 /*
4684 * We could have already allocated an eb for this page
4685 * and attached one so lets see if we can get a ref on
4686 * the existing eb, and if we can we know it's good and
4687 * we can just return that one, else we know we can just
4688 * overwrite page->private.
4689 */
4690 exists = (struct extent_buffer *)p->private;
4691 if (atomic_inc_not_zero(&exists->refs)) {
4692 spin_unlock(&mapping->private_lock);
4693 unlock_page(p);
17de39ac 4694 page_cache_release(p);
2457aec6 4695 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4696 goto free_eb;
4697 }
4698
0b32f4bb 4699 /*
4f2de97a
JB
4700 * Do this so attach doesn't complain and we need to
4701 * drop the ref the old guy had.
4702 */
4703 ClearPagePrivate(p);
0b32f4bb 4704 WARN_ON(PageDirty(p));
4f2de97a 4705 page_cache_release(p);
d1310b2e 4706 }
4f2de97a
JB
4707 attach_extent_buffer_page(eb, p);
4708 spin_unlock(&mapping->private_lock);
0b32f4bb 4709 WARN_ON(PageDirty(p));
727011e0 4710 eb->pages[i] = p;
d1310b2e
CM
4711 if (!PageUptodate(p))
4712 uptodate = 0;
eb14ab8e
CM
4713
4714 /*
4715 * see below about how we avoid a nasty race with release page
4716 * and why we unlock later
4717 */
d1310b2e
CM
4718 }
4719 if (uptodate)
b4ce94de 4720 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4721again:
19fe0a8b
MX
4722 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4723 if (ret)
4724 goto free_eb;
4725
f28491e0
JB
4726 spin_lock(&fs_info->buffer_lock);
4727 ret = radix_tree_insert(&fs_info->buffer_radix,
4728 start >> PAGE_CACHE_SHIFT, eb);
4729 spin_unlock(&fs_info->buffer_lock);
452c75c3 4730 radix_tree_preload_end();
19fe0a8b 4731 if (ret == -EEXIST) {
f28491e0 4732 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4733 if (exists)
4734 goto free_eb;
4735 else
115391d2 4736 goto again;
6af118ce 4737 }
6af118ce 4738 /* add one reference for the tree */
0b32f4bb 4739 check_buffer_tree_ref(eb);
34b41ace 4740 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4741
4742 /*
4743 * there is a race where release page may have
4744 * tried to find this extent buffer in the radix
4745 * but failed. It will tell the VM it is safe to
4746 * reclaim the, and it will clear the page private bit.
4747 * We must make sure to set the page private bit properly
4748 * after the extent buffer is in the radix tree so
4749 * it doesn't get lost
4750 */
727011e0
CM
4751 SetPageChecked(eb->pages[0]);
4752 for (i = 1; i < num_pages; i++) {
4753 p = extent_buffer_page(eb, i);
727011e0
CM
4754 ClearPageChecked(p);
4755 unlock_page(p);
4756 }
4757 unlock_page(eb->pages[0]);
d1310b2e
CM
4758 return eb;
4759
6af118ce 4760free_eb:
727011e0
CM
4761 for (i = 0; i < num_pages; i++) {
4762 if (eb->pages[i])
4763 unlock_page(eb->pages[i]);
4764 }
eb14ab8e 4765
17de39ac 4766 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4767 btrfs_release_extent_buffer(eb);
6af118ce 4768 return exists;
d1310b2e 4769}
d1310b2e 4770
3083ee2e
JB
4771static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4772{
4773 struct extent_buffer *eb =
4774 container_of(head, struct extent_buffer, rcu_head);
4775
4776 __free_extent_buffer(eb);
4777}
4778
3083ee2e 4779/* Expects to have eb->eb_lock already held */
f7a52a40 4780static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4781{
4782 WARN_ON(atomic_read(&eb->refs) == 0);
4783 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4784 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4785 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4786
815a51c7 4787 spin_unlock(&eb->refs_lock);
3083ee2e 4788
f28491e0
JB
4789 spin_lock(&fs_info->buffer_lock);
4790 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4791 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4792 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4793 } else {
4794 spin_unlock(&eb->refs_lock);
815a51c7 4795 }
3083ee2e
JB
4796
4797 /* Should be safe to release our pages at this point */
4798 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4799 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4800 return 1;
3083ee2e
JB
4801 }
4802 spin_unlock(&eb->refs_lock);
e64860aa
JB
4803
4804 return 0;
3083ee2e
JB
4805}
4806
d1310b2e
CM
4807void free_extent_buffer(struct extent_buffer *eb)
4808{
242e18c7
CM
4809 int refs;
4810 int old;
d1310b2e
CM
4811 if (!eb)
4812 return;
4813
242e18c7
CM
4814 while (1) {
4815 refs = atomic_read(&eb->refs);
4816 if (refs <= 3)
4817 break;
4818 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4819 if (old == refs)
4820 return;
4821 }
4822
3083ee2e 4823 spin_lock(&eb->refs_lock);
815a51c7
JS
4824 if (atomic_read(&eb->refs) == 2 &&
4825 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4826 atomic_dec(&eb->refs);
4827
3083ee2e
JB
4828 if (atomic_read(&eb->refs) == 2 &&
4829 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4830 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4831 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4832 atomic_dec(&eb->refs);
4833
4834 /*
4835 * I know this is terrible, but it's temporary until we stop tracking
4836 * the uptodate bits and such for the extent buffers.
4837 */
f7a52a40 4838 release_extent_buffer(eb);
3083ee2e
JB
4839}
4840
4841void free_extent_buffer_stale(struct extent_buffer *eb)
4842{
4843 if (!eb)
d1310b2e
CM
4844 return;
4845
3083ee2e
JB
4846 spin_lock(&eb->refs_lock);
4847 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4848
0b32f4bb 4849 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4850 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4851 atomic_dec(&eb->refs);
f7a52a40 4852 release_extent_buffer(eb);
d1310b2e 4853}
d1310b2e 4854
1d4284bd 4855void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4856{
d1310b2e
CM
4857 unsigned long i;
4858 unsigned long num_pages;
4859 struct page *page;
4860
d1310b2e
CM
4861 num_pages = num_extent_pages(eb->start, eb->len);
4862
4863 for (i = 0; i < num_pages; i++) {
4864 page = extent_buffer_page(eb, i);
b9473439 4865 if (!PageDirty(page))
d2c3f4f6
CM
4866 continue;
4867
a61e6f29 4868 lock_page(page);
eb14ab8e
CM
4869 WARN_ON(!PagePrivate(page));
4870
d1310b2e 4871 clear_page_dirty_for_io(page);
0ee0fda0 4872 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4873 if (!PageDirty(page)) {
4874 radix_tree_tag_clear(&page->mapping->page_tree,
4875 page_index(page),
4876 PAGECACHE_TAG_DIRTY);
4877 }
0ee0fda0 4878 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4879 ClearPageError(page);
a61e6f29 4880 unlock_page(page);
d1310b2e 4881 }
0b32f4bb 4882 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4883}
d1310b2e 4884
0b32f4bb 4885int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4886{
4887 unsigned long i;
4888 unsigned long num_pages;
b9473439 4889 int was_dirty = 0;
d1310b2e 4890
0b32f4bb
JB
4891 check_buffer_tree_ref(eb);
4892
b9473439 4893 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4894
d1310b2e 4895 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4896 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4897 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4898
b9473439 4899 for (i = 0; i < num_pages; i++)
0b32f4bb 4900 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4901 return was_dirty;
d1310b2e 4902}
d1310b2e 4903
0b32f4bb 4904int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4905{
4906 unsigned long i;
4907 struct page *page;
4908 unsigned long num_pages;
4909
b4ce94de 4910 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4911 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4912 for (i = 0; i < num_pages; i++) {
4913 page = extent_buffer_page(eb, i);
33958dc6
CM
4914 if (page)
4915 ClearPageUptodate(page);
1259ab75
CM
4916 }
4917 return 0;
4918}
4919
0b32f4bb 4920int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4921{
4922 unsigned long i;
4923 struct page *page;
4924 unsigned long num_pages;
4925
0b32f4bb 4926 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4927 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4928 for (i = 0; i < num_pages; i++) {
4929 page = extent_buffer_page(eb, i);
d1310b2e
CM
4930 SetPageUptodate(page);
4931 }
4932 return 0;
4933}
d1310b2e 4934
0b32f4bb 4935int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4936{
0b32f4bb 4937 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4938}
d1310b2e
CM
4939
4940int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4941 struct extent_buffer *eb, u64 start, int wait,
f188591e 4942 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4943{
4944 unsigned long i;
4945 unsigned long start_i;
4946 struct page *page;
4947 int err;
4948 int ret = 0;
ce9adaa5
CM
4949 int locked_pages = 0;
4950 int all_uptodate = 1;
d1310b2e 4951 unsigned long num_pages;
727011e0 4952 unsigned long num_reads = 0;
a86c12c7 4953 struct bio *bio = NULL;
c8b97818 4954 unsigned long bio_flags = 0;
a86c12c7 4955
b4ce94de 4956 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4957 return 0;
4958
d1310b2e
CM
4959 if (start) {
4960 WARN_ON(start < eb->start);
4961 start_i = (start >> PAGE_CACHE_SHIFT) -
4962 (eb->start >> PAGE_CACHE_SHIFT);
4963 } else {
4964 start_i = 0;
4965 }
4966
4967 num_pages = num_extent_pages(eb->start, eb->len);
4968 for (i = start_i; i < num_pages; i++) {
4969 page = extent_buffer_page(eb, i);
bb82ab88 4970 if (wait == WAIT_NONE) {
2db04966 4971 if (!trylock_page(page))
ce9adaa5 4972 goto unlock_exit;
d1310b2e
CM
4973 } else {
4974 lock_page(page);
4975 }
ce9adaa5 4976 locked_pages++;
727011e0
CM
4977 if (!PageUptodate(page)) {
4978 num_reads++;
ce9adaa5 4979 all_uptodate = 0;
727011e0 4980 }
ce9adaa5
CM
4981 }
4982 if (all_uptodate) {
4983 if (start_i == 0)
b4ce94de 4984 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4985 goto unlock_exit;
4986 }
4987
ea466794 4988 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4989 eb->read_mirror = 0;
0b32f4bb 4990 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4991 for (i = start_i; i < num_pages; i++) {
4992 page = extent_buffer_page(eb, i);
ce9adaa5 4993 if (!PageUptodate(page)) {
f188591e 4994 ClearPageError(page);
a86c12c7 4995 err = __extent_read_full_page(tree, page,
f188591e 4996 get_extent, &bio,
d4c7ca86
JB
4997 mirror_num, &bio_flags,
4998 READ | REQ_META);
d397712b 4999 if (err)
d1310b2e 5000 ret = err;
d1310b2e
CM
5001 } else {
5002 unlock_page(page);
5003 }
5004 }
5005
355808c2 5006 if (bio) {
d4c7ca86
JB
5007 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5008 bio_flags);
79787eaa
JM
5009 if (err)
5010 return err;
355808c2 5011 }
a86c12c7 5012
bb82ab88 5013 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5014 return ret;
d397712b 5015
d1310b2e
CM
5016 for (i = start_i; i < num_pages; i++) {
5017 page = extent_buffer_page(eb, i);
5018 wait_on_page_locked(page);
d397712b 5019 if (!PageUptodate(page))
d1310b2e 5020 ret = -EIO;
d1310b2e 5021 }
d397712b 5022
d1310b2e 5023 return ret;
ce9adaa5
CM
5024
5025unlock_exit:
5026 i = start_i;
d397712b 5027 while (locked_pages > 0) {
ce9adaa5
CM
5028 page = extent_buffer_page(eb, i);
5029 i++;
5030 unlock_page(page);
5031 locked_pages--;
5032 }
5033 return ret;
d1310b2e 5034}
d1310b2e
CM
5035
5036void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5037 unsigned long start,
5038 unsigned long len)
5039{
5040 size_t cur;
5041 size_t offset;
5042 struct page *page;
5043 char *kaddr;
5044 char *dst = (char *)dstv;
5045 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5046 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5047
5048 WARN_ON(start > eb->len);
5049 WARN_ON(start + len > eb->start + eb->len);
5050
778746b5 5051 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5052
d397712b 5053 while (len > 0) {
d1310b2e 5054 page = extent_buffer_page(eb, i);
d1310b2e
CM
5055
5056 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5057 kaddr = page_address(page);
d1310b2e 5058 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5059
5060 dst += cur;
5061 len -= cur;
5062 offset = 0;
5063 i++;
5064 }
5065}
d1310b2e 5066
550ac1d8
GH
5067int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5068 unsigned long start,
5069 unsigned long len)
5070{
5071 size_t cur;
5072 size_t offset;
5073 struct page *page;
5074 char *kaddr;
5075 char __user *dst = (char __user *)dstv;
5076 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5077 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5078 int ret = 0;
5079
5080 WARN_ON(start > eb->len);
5081 WARN_ON(start + len > eb->start + eb->len);
5082
5083 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5084
5085 while (len > 0) {
5086 page = extent_buffer_page(eb, i);
5087
5088 cur = min(len, (PAGE_CACHE_SIZE - offset));
5089 kaddr = page_address(page);
5090 if (copy_to_user(dst, kaddr + offset, cur)) {
5091 ret = -EFAULT;
5092 break;
5093 }
5094
5095 dst += cur;
5096 len -= cur;
5097 offset = 0;
5098 i++;
5099 }
5100
5101 return ret;
5102}
5103
d1310b2e 5104int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5105 unsigned long min_len, char **map,
d1310b2e 5106 unsigned long *map_start,
a6591715 5107 unsigned long *map_len)
d1310b2e
CM
5108{
5109 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5110 char *kaddr;
5111 struct page *p;
5112 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5113 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5114 unsigned long end_i = (start_offset + start + min_len - 1) >>
5115 PAGE_CACHE_SHIFT;
5116
5117 if (i != end_i)
5118 return -EINVAL;
5119
5120 if (i == 0) {
5121 offset = start_offset;
5122 *map_start = 0;
5123 } else {
5124 offset = 0;
5125 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5126 }
d397712b 5127
d1310b2e 5128 if (start + min_len > eb->len) {
31b1a2bd 5129 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5130 "wanted %lu %lu\n",
5131 eb->start, eb->len, start, min_len);
85026533 5132 return -EINVAL;
d1310b2e
CM
5133 }
5134
5135 p = extent_buffer_page(eb, i);
a6591715 5136 kaddr = page_address(p);
d1310b2e
CM
5137 *map = kaddr + offset;
5138 *map_len = PAGE_CACHE_SIZE - offset;
5139 return 0;
5140}
d1310b2e 5141
d1310b2e
CM
5142int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5143 unsigned long start,
5144 unsigned long len)
5145{
5146 size_t cur;
5147 size_t offset;
5148 struct page *page;
5149 char *kaddr;
5150 char *ptr = (char *)ptrv;
5151 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5152 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5153 int ret = 0;
5154
5155 WARN_ON(start > eb->len);
5156 WARN_ON(start + len > eb->start + eb->len);
5157
778746b5 5158 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5159
d397712b 5160 while (len > 0) {
d1310b2e 5161 page = extent_buffer_page(eb, i);
d1310b2e
CM
5162
5163 cur = min(len, (PAGE_CACHE_SIZE - offset));
5164
a6591715 5165 kaddr = page_address(page);
d1310b2e 5166 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5167 if (ret)
5168 break;
5169
5170 ptr += cur;
5171 len -= cur;
5172 offset = 0;
5173 i++;
5174 }
5175 return ret;
5176}
d1310b2e
CM
5177
5178void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5179 unsigned long start, unsigned long len)
5180{
5181 size_t cur;
5182 size_t offset;
5183 struct page *page;
5184 char *kaddr;
5185 char *src = (char *)srcv;
5186 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5187 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5188
5189 WARN_ON(start > eb->len);
5190 WARN_ON(start + len > eb->start + eb->len);
5191
778746b5 5192 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5193
d397712b 5194 while (len > 0) {
d1310b2e
CM
5195 page = extent_buffer_page(eb, i);
5196 WARN_ON(!PageUptodate(page));
5197
5198 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5199 kaddr = page_address(page);
d1310b2e 5200 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5201
5202 src += cur;
5203 len -= cur;
5204 offset = 0;
5205 i++;
5206 }
5207}
d1310b2e
CM
5208
5209void memset_extent_buffer(struct extent_buffer *eb, char c,
5210 unsigned long start, unsigned long len)
5211{
5212 size_t cur;
5213 size_t offset;
5214 struct page *page;
5215 char *kaddr;
5216 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5217 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5218
5219 WARN_ON(start > eb->len);
5220 WARN_ON(start + len > eb->start + eb->len);
5221
778746b5 5222 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5223
d397712b 5224 while (len > 0) {
d1310b2e
CM
5225 page = extent_buffer_page(eb, i);
5226 WARN_ON(!PageUptodate(page));
5227
5228 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5229 kaddr = page_address(page);
d1310b2e 5230 memset(kaddr + offset, c, cur);
d1310b2e
CM
5231
5232 len -= cur;
5233 offset = 0;
5234 i++;
5235 }
5236}
d1310b2e
CM
5237
5238void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5239 unsigned long dst_offset, unsigned long src_offset,
5240 unsigned long len)
5241{
5242 u64 dst_len = dst->len;
5243 size_t cur;
5244 size_t offset;
5245 struct page *page;
5246 char *kaddr;
5247 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5248 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5249
5250 WARN_ON(src->len != dst_len);
5251
5252 offset = (start_offset + dst_offset) &
778746b5 5253 (PAGE_CACHE_SIZE - 1);
d1310b2e 5254
d397712b 5255 while (len > 0) {
d1310b2e
CM
5256 page = extent_buffer_page(dst, i);
5257 WARN_ON(!PageUptodate(page));
5258
5259 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5260
a6591715 5261 kaddr = page_address(page);
d1310b2e 5262 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5263
5264 src_offset += cur;
5265 len -= cur;
5266 offset = 0;
5267 i++;
5268 }
5269}
d1310b2e 5270
3387206f
ST
5271static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5272{
5273 unsigned long distance = (src > dst) ? src - dst : dst - src;
5274 return distance < len;
5275}
5276
d1310b2e
CM
5277static void copy_pages(struct page *dst_page, struct page *src_page,
5278 unsigned long dst_off, unsigned long src_off,
5279 unsigned long len)
5280{
a6591715 5281 char *dst_kaddr = page_address(dst_page);
d1310b2e 5282 char *src_kaddr;
727011e0 5283 int must_memmove = 0;
d1310b2e 5284
3387206f 5285 if (dst_page != src_page) {
a6591715 5286 src_kaddr = page_address(src_page);
3387206f 5287 } else {
d1310b2e 5288 src_kaddr = dst_kaddr;
727011e0
CM
5289 if (areas_overlap(src_off, dst_off, len))
5290 must_memmove = 1;
3387206f 5291 }
d1310b2e 5292
727011e0
CM
5293 if (must_memmove)
5294 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5295 else
5296 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5297}
5298
5299void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5300 unsigned long src_offset, unsigned long len)
5301{
5302 size_t cur;
5303 size_t dst_off_in_page;
5304 size_t src_off_in_page;
5305 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5306 unsigned long dst_i;
5307 unsigned long src_i;
5308
5309 if (src_offset + len > dst->len) {
efe120a0 5310 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5311 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5312 BUG_ON(1);
5313 }
5314 if (dst_offset + len > dst->len) {
efe120a0 5315 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5316 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5317 BUG_ON(1);
5318 }
5319
d397712b 5320 while (len > 0) {
d1310b2e 5321 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5322 (PAGE_CACHE_SIZE - 1);
d1310b2e 5323 src_off_in_page = (start_offset + src_offset) &
778746b5 5324 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5325
5326 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5327 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5328
5329 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5330 src_off_in_page));
5331 cur = min_t(unsigned long, cur,
5332 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5333
5334 copy_pages(extent_buffer_page(dst, dst_i),
5335 extent_buffer_page(dst, src_i),
5336 dst_off_in_page, src_off_in_page, cur);
5337
5338 src_offset += cur;
5339 dst_offset += cur;
5340 len -= cur;
5341 }
5342}
d1310b2e
CM
5343
5344void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5345 unsigned long src_offset, unsigned long len)
5346{
5347 size_t cur;
5348 size_t dst_off_in_page;
5349 size_t src_off_in_page;
5350 unsigned long dst_end = dst_offset + len - 1;
5351 unsigned long src_end = src_offset + len - 1;
5352 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5353 unsigned long dst_i;
5354 unsigned long src_i;
5355
5356 if (src_offset + len > dst->len) {
efe120a0 5357 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5358 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5359 BUG_ON(1);
5360 }
5361 if (dst_offset + len > dst->len) {
efe120a0 5362 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5363 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5364 BUG_ON(1);
5365 }
727011e0 5366 if (dst_offset < src_offset) {
d1310b2e
CM
5367 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5368 return;
5369 }
d397712b 5370 while (len > 0) {
d1310b2e
CM
5371 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5372 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5373
5374 dst_off_in_page = (start_offset + dst_end) &
778746b5 5375 (PAGE_CACHE_SIZE - 1);
d1310b2e 5376 src_off_in_page = (start_offset + src_end) &
778746b5 5377 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5378
5379 cur = min_t(unsigned long, len, src_off_in_page + 1);
5380 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5381 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5382 extent_buffer_page(dst, src_i),
5383 dst_off_in_page - cur + 1,
5384 src_off_in_page - cur + 1, cur);
5385
5386 dst_end -= cur;
5387 src_end -= cur;
5388 len -= cur;
5389 }
5390}
6af118ce 5391
f7a52a40 5392int try_release_extent_buffer(struct page *page)
19fe0a8b 5393{
6af118ce 5394 struct extent_buffer *eb;
6af118ce 5395
3083ee2e
JB
5396 /*
5397 * We need to make sure noboody is attaching this page to an eb right
5398 * now.
5399 */
5400 spin_lock(&page->mapping->private_lock);
5401 if (!PagePrivate(page)) {
5402 spin_unlock(&page->mapping->private_lock);
4f2de97a 5403 return 1;
45f49bce 5404 }
6af118ce 5405
3083ee2e
JB
5406 eb = (struct extent_buffer *)page->private;
5407 BUG_ON(!eb);
19fe0a8b
MX
5408
5409 /*
3083ee2e
JB
5410 * This is a little awful but should be ok, we need to make sure that
5411 * the eb doesn't disappear out from under us while we're looking at
5412 * this page.
19fe0a8b 5413 */
3083ee2e 5414 spin_lock(&eb->refs_lock);
0b32f4bb 5415 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5416 spin_unlock(&eb->refs_lock);
5417 spin_unlock(&page->mapping->private_lock);
5418 return 0;
b9473439 5419 }
3083ee2e 5420 spin_unlock(&page->mapping->private_lock);
897ca6e9 5421
19fe0a8b 5422 /*
3083ee2e
JB
5423 * If tree ref isn't set then we know the ref on this eb is a real ref,
5424 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5425 */
3083ee2e
JB
5426 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5427 spin_unlock(&eb->refs_lock);
5428 return 0;
b9473439 5429 }
19fe0a8b 5430
f7a52a40 5431 return release_extent_buffer(eb);
6af118ce 5432}