btrfs_ioctl_clone: Move clone code into it's own function
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79}
8d599ae1
DS
80
81#define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 struct inode *inode, u64 start, u64 end)
85{
86 u64 isize = i_size_read(inode);
87
88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 caller,
92 (unsigned long long)btrfs_ino(inode),
93 (unsigned long long)isize,
94 (unsigned long long)start,
95 (unsigned long long)end);
96 }
97}
6d49ba1b
ES
98#else
99#define btrfs_leak_debug_add(new, head) do {} while (0)
100#define btrfs_leak_debug_del(entry) do {} while (0)
101#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 102#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 103#endif
d1310b2e 104
d1310b2e
CM
105#define BUFFER_LRU_MAX 64
106
107struct tree_entry {
108 u64 start;
109 u64 end;
d1310b2e
CM
110 struct rb_node rb_node;
111};
112
113struct extent_page_data {
114 struct bio *bio;
115 struct extent_io_tree *tree;
116 get_extent_t *get_extent;
de0022b9 117 unsigned long bio_flags;
771ed689
CM
118
119 /* tells writepage not to lock the state bits for this range
120 * it still does the unlocking
121 */
ffbd517d
CM
122 unsigned int extent_locked:1;
123
124 /* tells the submit_bio code to use a WRITE_SYNC */
125 unsigned int sync_io:1;
d1310b2e
CM
126};
127
0b32f4bb 128static noinline void flush_write_bio(void *data);
c2d904e0
JM
129static inline struct btrfs_fs_info *
130tree_fs_info(struct extent_io_tree *tree)
131{
132 return btrfs_sb(tree->mapping->host->i_sb);
133}
0b32f4bb 134
d1310b2e
CM
135int __init extent_io_init(void)
136{
837e1972 137 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
138 sizeof(struct extent_state), 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
140 if (!extent_state_cache)
141 return -ENOMEM;
142
837e1972 143 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
144 sizeof(struct extent_buffer), 0,
145 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
146 if (!extent_buffer_cache)
147 goto free_state_cache;
9be3395b
CM
148
149 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 offsetof(struct btrfs_io_bio, bio));
151 if (!btrfs_bioset)
152 goto free_buffer_cache;
d1310b2e
CM
153 return 0;
154
9be3395b
CM
155free_buffer_cache:
156 kmem_cache_destroy(extent_buffer_cache);
157 extent_buffer_cache = NULL;
158
d1310b2e
CM
159free_state_cache:
160 kmem_cache_destroy(extent_state_cache);
9be3395b 161 extent_state_cache = NULL;
d1310b2e
CM
162 return -ENOMEM;
163}
164
165void extent_io_exit(void)
166{
6d49ba1b 167 btrfs_leak_debug_check();
8c0a8537
KS
168
169 /*
170 * Make sure all delayed rcu free are flushed before we
171 * destroy caches.
172 */
173 rcu_barrier();
d1310b2e
CM
174 if (extent_state_cache)
175 kmem_cache_destroy(extent_state_cache);
176 if (extent_buffer_cache)
177 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
178 if (btrfs_bioset)
179 bioset_free(btrfs_bioset);
d1310b2e
CM
180}
181
182void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 183 struct address_space *mapping)
d1310b2e 184{
6bef4d31 185 tree->state = RB_ROOT;
19fe0a8b 186 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
187 tree->ops = NULL;
188 tree->dirty_bytes = 0;
70dec807 189 spin_lock_init(&tree->lock);
6af118ce 190 spin_lock_init(&tree->buffer_lock);
d1310b2e 191 tree->mapping = mapping;
d1310b2e 192}
d1310b2e 193
b2950863 194static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
195{
196 struct extent_state *state;
d1310b2e
CM
197
198 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 199 if (!state)
d1310b2e
CM
200 return state;
201 state->state = 0;
d1310b2e 202 state->private = 0;
70dec807 203 state->tree = NULL;
6d49ba1b 204 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
205 atomic_set(&state->refs, 1);
206 init_waitqueue_head(&state->wq);
143bede5 207 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
208 return state;
209}
d1310b2e 210
4845e44f 211void free_extent_state(struct extent_state *state)
d1310b2e 212{
d1310b2e
CM
213 if (!state)
214 return;
215 if (atomic_dec_and_test(&state->refs)) {
70dec807 216 WARN_ON(state->tree);
6d49ba1b 217 btrfs_leak_debug_del(&state->leak_list);
143bede5 218 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
219 kmem_cache_free(extent_state_cache, state);
220 }
221}
d1310b2e
CM
222
223static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 struct rb_node *node)
225{
d397712b
CM
226 struct rb_node **p = &root->rb_node;
227 struct rb_node *parent = NULL;
d1310b2e
CM
228 struct tree_entry *entry;
229
d397712b 230 while (*p) {
d1310b2e
CM
231 parent = *p;
232 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234 if (offset < entry->start)
235 p = &(*p)->rb_left;
236 else if (offset > entry->end)
237 p = &(*p)->rb_right;
238 else
239 return parent;
240 }
241
d1310b2e
CM
242 rb_link_node(node, parent, p);
243 rb_insert_color(node, root);
244 return NULL;
245}
246
80ea96b1 247static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
248 struct rb_node **prev_ret,
249 struct rb_node **next_ret)
250{
80ea96b1 251 struct rb_root *root = &tree->state;
d397712b 252 struct rb_node *n = root->rb_node;
d1310b2e
CM
253 struct rb_node *prev = NULL;
254 struct rb_node *orig_prev = NULL;
255 struct tree_entry *entry;
256 struct tree_entry *prev_entry = NULL;
257
d397712b 258 while (n) {
d1310b2e
CM
259 entry = rb_entry(n, struct tree_entry, rb_node);
260 prev = n;
261 prev_entry = entry;
262
263 if (offset < entry->start)
264 n = n->rb_left;
265 else if (offset > entry->end)
266 n = n->rb_right;
d397712b 267 else
d1310b2e
CM
268 return n;
269 }
270
271 if (prev_ret) {
272 orig_prev = prev;
d397712b 273 while (prev && offset > prev_entry->end) {
d1310b2e
CM
274 prev = rb_next(prev);
275 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 }
277 *prev_ret = prev;
278 prev = orig_prev;
279 }
280
281 if (next_ret) {
282 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 283 while (prev && offset < prev_entry->start) {
d1310b2e
CM
284 prev = rb_prev(prev);
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 }
287 *next_ret = prev;
288 }
289 return NULL;
290}
291
80ea96b1
CM
292static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 u64 offset)
d1310b2e 294{
70dec807 295 struct rb_node *prev = NULL;
d1310b2e 296 struct rb_node *ret;
70dec807 297
80ea96b1 298 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 299 if (!ret)
d1310b2e
CM
300 return prev;
301 return ret;
302}
303
9ed74f2d
JB
304static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 struct extent_state *other)
306{
307 if (tree->ops && tree->ops->merge_extent_hook)
308 tree->ops->merge_extent_hook(tree->mapping->host, new,
309 other);
310}
311
d1310b2e
CM
312/*
313 * utility function to look for merge candidates inside a given range.
314 * Any extents with matching state are merged together into a single
315 * extent in the tree. Extents with EXTENT_IO in their state field
316 * are not merged because the end_io handlers need to be able to do
317 * operations on them without sleeping (or doing allocations/splits).
318 *
319 * This should be called with the tree lock held.
320 */
1bf85046
JM
321static void merge_state(struct extent_io_tree *tree,
322 struct extent_state *state)
d1310b2e
CM
323{
324 struct extent_state *other;
325 struct rb_node *other_node;
326
5b21f2ed 327 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 328 return;
d1310b2e
CM
329
330 other_node = rb_prev(&state->rb_node);
331 if (other_node) {
332 other = rb_entry(other_node, struct extent_state, rb_node);
333 if (other->end == state->start - 1 &&
334 other->state == state->state) {
9ed74f2d 335 merge_cb(tree, state, other);
d1310b2e 336 state->start = other->start;
70dec807 337 other->tree = NULL;
d1310b2e
CM
338 rb_erase(&other->rb_node, &tree->state);
339 free_extent_state(other);
340 }
341 }
342 other_node = rb_next(&state->rb_node);
343 if (other_node) {
344 other = rb_entry(other_node, struct extent_state, rb_node);
345 if (other->start == state->end + 1 &&
346 other->state == state->state) {
9ed74f2d 347 merge_cb(tree, state, other);
df98b6e2
JB
348 state->end = other->end;
349 other->tree = NULL;
350 rb_erase(&other->rb_node, &tree->state);
351 free_extent_state(other);
d1310b2e
CM
352 }
353 }
d1310b2e
CM
354}
355
1bf85046 356static void set_state_cb(struct extent_io_tree *tree,
41074888 357 struct extent_state *state, unsigned long *bits)
291d673e 358{
1bf85046
JM
359 if (tree->ops && tree->ops->set_bit_hook)
360 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
361}
362
363static void clear_state_cb(struct extent_io_tree *tree,
41074888 364 struct extent_state *state, unsigned long *bits)
291d673e 365{
9ed74f2d
JB
366 if (tree->ops && tree->ops->clear_bit_hook)
367 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
368}
369
3150b699 370static void set_state_bits(struct extent_io_tree *tree,
41074888 371 struct extent_state *state, unsigned long *bits);
3150b699 372
d1310b2e
CM
373/*
374 * insert an extent_state struct into the tree. 'bits' are set on the
375 * struct before it is inserted.
376 *
377 * This may return -EEXIST if the extent is already there, in which case the
378 * state struct is freed.
379 *
380 * The tree lock is not taken internally. This is a utility function and
381 * probably isn't what you want to call (see set/clear_extent_bit).
382 */
383static int insert_state(struct extent_io_tree *tree,
384 struct extent_state *state, u64 start, u64 end,
41074888 385 unsigned long *bits)
d1310b2e
CM
386{
387 struct rb_node *node;
388
31b1a2bd
JL
389 if (end < start)
390 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
d397712b
CM
391 (unsigned long long)end,
392 (unsigned long long)start);
d1310b2e
CM
393 state->start = start;
394 state->end = end;
9ed74f2d 395
3150b699
XG
396 set_state_bits(tree, state, bits);
397
d1310b2e
CM
398 node = tree_insert(&tree->state, end, &state->rb_node);
399 if (node) {
400 struct extent_state *found;
401 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
402 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 "%llu %llu\n", (unsigned long long)found->start,
404 (unsigned long long)found->end,
405 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
406 return -EEXIST;
407 }
70dec807 408 state->tree = tree;
d1310b2e
CM
409 merge_state(tree, state);
410 return 0;
411}
412
1bf85046 413static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
414 u64 split)
415{
416 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 417 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
418}
419
d1310b2e
CM
420/*
421 * split a given extent state struct in two, inserting the preallocated
422 * struct 'prealloc' as the newly created second half. 'split' indicates an
423 * offset inside 'orig' where it should be split.
424 *
425 * Before calling,
426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
427 * are two extent state structs in the tree:
428 * prealloc: [orig->start, split - 1]
429 * orig: [ split, orig->end ]
430 *
431 * The tree locks are not taken by this function. They need to be held
432 * by the caller.
433 */
434static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 struct extent_state *prealloc, u64 split)
436{
437 struct rb_node *node;
9ed74f2d
JB
438
439 split_cb(tree, orig, split);
440
d1310b2e
CM
441 prealloc->start = orig->start;
442 prealloc->end = split - 1;
443 prealloc->state = orig->state;
444 orig->start = split;
445
446 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 if (node) {
d1310b2e
CM
448 free_extent_state(prealloc);
449 return -EEXIST;
450 }
70dec807 451 prealloc->tree = tree;
d1310b2e
CM
452 return 0;
453}
454
cdc6a395
LZ
455static struct extent_state *next_state(struct extent_state *state)
456{
457 struct rb_node *next = rb_next(&state->rb_node);
458 if (next)
459 return rb_entry(next, struct extent_state, rb_node);
460 else
461 return NULL;
462}
463
d1310b2e
CM
464/*
465 * utility function to clear some bits in an extent state struct.
1b303fc0 466 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
467 *
468 * If no bits are set on the state struct after clearing things, the
469 * struct is freed and removed from the tree
470 */
cdc6a395
LZ
471static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 struct extent_state *state,
41074888 473 unsigned long *bits, int wake)
d1310b2e 474{
cdc6a395 475 struct extent_state *next;
41074888 476 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 477
0ca1f7ce 478 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
479 u64 range = state->end - state->start + 1;
480 WARN_ON(range > tree->dirty_bytes);
481 tree->dirty_bytes -= range;
482 }
291d673e 483 clear_state_cb(tree, state, bits);
32c00aff 484 state->state &= ~bits_to_clear;
d1310b2e
CM
485 if (wake)
486 wake_up(&state->wq);
0ca1f7ce 487 if (state->state == 0) {
cdc6a395 488 next = next_state(state);
70dec807 489 if (state->tree) {
d1310b2e 490 rb_erase(&state->rb_node, &tree->state);
70dec807 491 state->tree = NULL;
d1310b2e
CM
492 free_extent_state(state);
493 } else {
494 WARN_ON(1);
495 }
496 } else {
497 merge_state(tree, state);
cdc6a395 498 next = next_state(state);
d1310b2e 499 }
cdc6a395 500 return next;
d1310b2e
CM
501}
502
8233767a
XG
503static struct extent_state *
504alloc_extent_state_atomic(struct extent_state *prealloc)
505{
506 if (!prealloc)
507 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509 return prealloc;
510}
511
48a3b636 512static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
513{
514 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 "Extent tree was modified by another "
516 "thread while locked.");
517}
518
d1310b2e
CM
519/*
520 * clear some bits on a range in the tree. This may require splitting
521 * or inserting elements in the tree, so the gfp mask is used to
522 * indicate which allocations or sleeping are allowed.
523 *
524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525 * the given range from the tree regardless of state (ie for truncate).
526 *
527 * the range [start, end] is inclusive.
528 *
6763af84 529 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
530 */
531int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 532 unsigned long bits, int wake, int delete,
2c64c53d
CM
533 struct extent_state **cached_state,
534 gfp_t mask)
d1310b2e
CM
535{
536 struct extent_state *state;
2c64c53d 537 struct extent_state *cached;
d1310b2e
CM
538 struct extent_state *prealloc = NULL;
539 struct rb_node *node;
5c939df5 540 u64 last_end;
d1310b2e 541 int err;
2ac55d41 542 int clear = 0;
d1310b2e 543
8d599ae1
DS
544 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
7ee9e440
JB
546 if (bits & EXTENT_DELALLOC)
547 bits |= EXTENT_NORESERVE;
548
0ca1f7ce
YZ
549 if (delete)
550 bits |= ~EXTENT_CTLBITS;
551 bits |= EXTENT_FIRST_DELALLOC;
552
2ac55d41
JB
553 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 clear = 1;
d1310b2e
CM
555again:
556 if (!prealloc && (mask & __GFP_WAIT)) {
557 prealloc = alloc_extent_state(mask);
558 if (!prealloc)
559 return -ENOMEM;
560 }
561
cad321ad 562 spin_lock(&tree->lock);
2c64c53d
CM
563 if (cached_state) {
564 cached = *cached_state;
2ac55d41
JB
565
566 if (clear) {
567 *cached_state = NULL;
568 cached_state = NULL;
569 }
570
df98b6e2
JB
571 if (cached && cached->tree && cached->start <= start &&
572 cached->end > start) {
2ac55d41
JB
573 if (clear)
574 atomic_dec(&cached->refs);
2c64c53d 575 state = cached;
42daec29 576 goto hit_next;
2c64c53d 577 }
2ac55d41
JB
578 if (clear)
579 free_extent_state(cached);
2c64c53d 580 }
d1310b2e
CM
581 /*
582 * this search will find the extents that end after
583 * our range starts
584 */
80ea96b1 585 node = tree_search(tree, start);
d1310b2e
CM
586 if (!node)
587 goto out;
588 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 589hit_next:
d1310b2e
CM
590 if (state->start > end)
591 goto out;
592 WARN_ON(state->end < start);
5c939df5 593 last_end = state->end;
d1310b2e 594
0449314a 595 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
596 if (!(state->state & bits)) {
597 state = next_state(state);
0449314a 598 goto next;
cdc6a395 599 }
0449314a 600
d1310b2e
CM
601 /*
602 * | ---- desired range ---- |
603 * | state | or
604 * | ------------- state -------------- |
605 *
606 * We need to split the extent we found, and may flip
607 * bits on second half.
608 *
609 * If the extent we found extends past our range, we
610 * just split and search again. It'll get split again
611 * the next time though.
612 *
613 * If the extent we found is inside our range, we clear
614 * the desired bit on it.
615 */
616
617 if (state->start < start) {
8233767a
XG
618 prealloc = alloc_extent_state_atomic(prealloc);
619 BUG_ON(!prealloc);
d1310b2e 620 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
621 if (err)
622 extent_io_tree_panic(tree, err);
623
d1310b2e
CM
624 prealloc = NULL;
625 if (err)
626 goto out;
627 if (state->end <= end) {
d1ac6e41
LB
628 state = clear_state_bit(tree, state, &bits, wake);
629 goto next;
d1310b2e
CM
630 }
631 goto search_again;
632 }
633 /*
634 * | ---- desired range ---- |
635 * | state |
636 * We need to split the extent, and clear the bit
637 * on the first half
638 */
639 if (state->start <= end && state->end > end) {
8233767a
XG
640 prealloc = alloc_extent_state_atomic(prealloc);
641 BUG_ON(!prealloc);
d1310b2e 642 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
643 if (err)
644 extent_io_tree_panic(tree, err);
645
d1310b2e
CM
646 if (wake)
647 wake_up(&state->wq);
42daec29 648
6763af84 649 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 650
d1310b2e
CM
651 prealloc = NULL;
652 goto out;
653 }
42daec29 654
cdc6a395 655 state = clear_state_bit(tree, state, &bits, wake);
0449314a 656next:
5c939df5
YZ
657 if (last_end == (u64)-1)
658 goto out;
659 start = last_end + 1;
cdc6a395 660 if (start <= end && state && !need_resched())
692e5759 661 goto hit_next;
d1310b2e
CM
662 goto search_again;
663
664out:
cad321ad 665 spin_unlock(&tree->lock);
d1310b2e
CM
666 if (prealloc)
667 free_extent_state(prealloc);
668
6763af84 669 return 0;
d1310b2e
CM
670
671search_again:
672 if (start > end)
673 goto out;
cad321ad 674 spin_unlock(&tree->lock);
d1310b2e
CM
675 if (mask & __GFP_WAIT)
676 cond_resched();
677 goto again;
678}
d1310b2e 679
143bede5
JM
680static void wait_on_state(struct extent_io_tree *tree,
681 struct extent_state *state)
641f5219
CH
682 __releases(tree->lock)
683 __acquires(tree->lock)
d1310b2e
CM
684{
685 DEFINE_WAIT(wait);
686 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 687 spin_unlock(&tree->lock);
d1310b2e 688 schedule();
cad321ad 689 spin_lock(&tree->lock);
d1310b2e 690 finish_wait(&state->wq, &wait);
d1310b2e
CM
691}
692
693/*
694 * waits for one or more bits to clear on a range in the state tree.
695 * The range [start, end] is inclusive.
696 * The tree lock is taken by this function
697 */
41074888
DS
698static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 unsigned long bits)
d1310b2e
CM
700{
701 struct extent_state *state;
702 struct rb_node *node;
703
8d599ae1
DS
704 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
cad321ad 706 spin_lock(&tree->lock);
d1310b2e
CM
707again:
708 while (1) {
709 /*
710 * this search will find all the extents that end after
711 * our range starts
712 */
80ea96b1 713 node = tree_search(tree, start);
d1310b2e
CM
714 if (!node)
715 break;
716
717 state = rb_entry(node, struct extent_state, rb_node);
718
719 if (state->start > end)
720 goto out;
721
722 if (state->state & bits) {
723 start = state->start;
724 atomic_inc(&state->refs);
725 wait_on_state(tree, state);
726 free_extent_state(state);
727 goto again;
728 }
729 start = state->end + 1;
730
731 if (start > end)
732 break;
733
ded91f08 734 cond_resched_lock(&tree->lock);
d1310b2e
CM
735 }
736out:
cad321ad 737 spin_unlock(&tree->lock);
d1310b2e 738}
d1310b2e 739
1bf85046 740static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 741 struct extent_state *state,
41074888 742 unsigned long *bits)
d1310b2e 743{
41074888 744 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 745
1bf85046 746 set_state_cb(tree, state, bits);
0ca1f7ce 747 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
748 u64 range = state->end - state->start + 1;
749 tree->dirty_bytes += range;
750 }
0ca1f7ce 751 state->state |= bits_to_set;
d1310b2e
CM
752}
753
2c64c53d
CM
754static void cache_state(struct extent_state *state,
755 struct extent_state **cached_ptr)
756{
757 if (cached_ptr && !(*cached_ptr)) {
758 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 *cached_ptr = state;
760 atomic_inc(&state->refs);
761 }
762 }
763}
764
d1310b2e 765/*
1edbb734
CM
766 * set some bits on a range in the tree. This may require allocations or
767 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 768 *
1edbb734
CM
769 * If any of the exclusive bits are set, this will fail with -EEXIST if some
770 * part of the range already has the desired bits set. The start of the
771 * existing range is returned in failed_start in this case.
d1310b2e 772 *
1edbb734 773 * [start, end] is inclusive This takes the tree lock.
d1310b2e 774 */
1edbb734 775
3fbe5c02
JM
776static int __must_check
777__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
778 unsigned long bits, unsigned long exclusive_bits,
779 u64 *failed_start, struct extent_state **cached_state,
780 gfp_t mask)
d1310b2e
CM
781{
782 struct extent_state *state;
783 struct extent_state *prealloc = NULL;
784 struct rb_node *node;
d1310b2e 785 int err = 0;
d1310b2e
CM
786 u64 last_start;
787 u64 last_end;
42daec29 788
8d599ae1
DS
789 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
790
0ca1f7ce 791 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
792again:
793 if (!prealloc && (mask & __GFP_WAIT)) {
794 prealloc = alloc_extent_state(mask);
8233767a 795 BUG_ON(!prealloc);
d1310b2e
CM
796 }
797
cad321ad 798 spin_lock(&tree->lock);
9655d298
CM
799 if (cached_state && *cached_state) {
800 state = *cached_state;
df98b6e2
JB
801 if (state->start <= start && state->end > start &&
802 state->tree) {
9655d298
CM
803 node = &state->rb_node;
804 goto hit_next;
805 }
806 }
d1310b2e
CM
807 /*
808 * this search will find all the extents that end after
809 * our range starts.
810 */
80ea96b1 811 node = tree_search(tree, start);
d1310b2e 812 if (!node) {
8233767a
XG
813 prealloc = alloc_extent_state_atomic(prealloc);
814 BUG_ON(!prealloc);
0ca1f7ce 815 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
816 if (err)
817 extent_io_tree_panic(tree, err);
818
d1310b2e 819 prealloc = NULL;
d1310b2e
CM
820 goto out;
821 }
d1310b2e 822 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 823hit_next:
d1310b2e
CM
824 last_start = state->start;
825 last_end = state->end;
826
827 /*
828 * | ---- desired range ---- |
829 * | state |
830 *
831 * Just lock what we found and keep going
832 */
833 if (state->start == start && state->end <= end) {
1edbb734 834 if (state->state & exclusive_bits) {
d1310b2e
CM
835 *failed_start = state->start;
836 err = -EEXIST;
837 goto out;
838 }
42daec29 839
1bf85046 840 set_state_bits(tree, state, &bits);
2c64c53d 841 cache_state(state, cached_state);
d1310b2e 842 merge_state(tree, state);
5c939df5
YZ
843 if (last_end == (u64)-1)
844 goto out;
845 start = last_end + 1;
d1ac6e41
LB
846 state = next_state(state);
847 if (start < end && state && state->start == start &&
848 !need_resched())
849 goto hit_next;
d1310b2e
CM
850 goto search_again;
851 }
852
853 /*
854 * | ---- desired range ---- |
855 * | state |
856 * or
857 * | ------------- state -------------- |
858 *
859 * We need to split the extent we found, and may flip bits on
860 * second half.
861 *
862 * If the extent we found extends past our
863 * range, we just split and search again. It'll get split
864 * again the next time though.
865 *
866 * If the extent we found is inside our range, we set the
867 * desired bit on it.
868 */
869 if (state->start < start) {
1edbb734 870 if (state->state & exclusive_bits) {
d1310b2e
CM
871 *failed_start = start;
872 err = -EEXIST;
873 goto out;
874 }
8233767a
XG
875
876 prealloc = alloc_extent_state_atomic(prealloc);
877 BUG_ON(!prealloc);
d1310b2e 878 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
879 if (err)
880 extent_io_tree_panic(tree, err);
881
d1310b2e
CM
882 prealloc = NULL;
883 if (err)
884 goto out;
885 if (state->end <= end) {
1bf85046 886 set_state_bits(tree, state, &bits);
2c64c53d 887 cache_state(state, cached_state);
d1310b2e 888 merge_state(tree, state);
5c939df5
YZ
889 if (last_end == (u64)-1)
890 goto out;
891 start = last_end + 1;
d1ac6e41
LB
892 state = next_state(state);
893 if (start < end && state && state->start == start &&
894 !need_resched())
895 goto hit_next;
d1310b2e
CM
896 }
897 goto search_again;
898 }
899 /*
900 * | ---- desired range ---- |
901 * | state | or | state |
902 *
903 * There's a hole, we need to insert something in it and
904 * ignore the extent we found.
905 */
906 if (state->start > start) {
907 u64 this_end;
908 if (end < last_start)
909 this_end = end;
910 else
d397712b 911 this_end = last_start - 1;
8233767a
XG
912
913 prealloc = alloc_extent_state_atomic(prealloc);
914 BUG_ON(!prealloc);
c7f895a2
XG
915
916 /*
917 * Avoid to free 'prealloc' if it can be merged with
918 * the later extent.
919 */
d1310b2e 920 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 921 &bits);
c2d904e0
JM
922 if (err)
923 extent_io_tree_panic(tree, err);
924
9ed74f2d
JB
925 cache_state(prealloc, cached_state);
926 prealloc = NULL;
d1310b2e
CM
927 start = this_end + 1;
928 goto search_again;
929 }
930 /*
931 * | ---- desired range ---- |
932 * | state |
933 * We need to split the extent, and set the bit
934 * on the first half
935 */
936 if (state->start <= end && state->end > end) {
1edbb734 937 if (state->state & exclusive_bits) {
d1310b2e
CM
938 *failed_start = start;
939 err = -EEXIST;
940 goto out;
941 }
8233767a
XG
942
943 prealloc = alloc_extent_state_atomic(prealloc);
944 BUG_ON(!prealloc);
d1310b2e 945 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
946 if (err)
947 extent_io_tree_panic(tree, err);
d1310b2e 948
1bf85046 949 set_state_bits(tree, prealloc, &bits);
2c64c53d 950 cache_state(prealloc, cached_state);
d1310b2e
CM
951 merge_state(tree, prealloc);
952 prealloc = NULL;
953 goto out;
954 }
955
956 goto search_again;
957
958out:
cad321ad 959 spin_unlock(&tree->lock);
d1310b2e
CM
960 if (prealloc)
961 free_extent_state(prealloc);
962
963 return err;
964
965search_again:
966 if (start > end)
967 goto out;
cad321ad 968 spin_unlock(&tree->lock);
d1310b2e
CM
969 if (mask & __GFP_WAIT)
970 cond_resched();
971 goto again;
972}
d1310b2e 973
41074888
DS
974int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
975 unsigned long bits, u64 * failed_start,
976 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
977{
978 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
979 cached_state, mask);
980}
981
982
462d6fac 983/**
10983f2e
LB
984 * convert_extent_bit - convert all bits in a given range from one bit to
985 * another
462d6fac
JB
986 * @tree: the io tree to search
987 * @start: the start offset in bytes
988 * @end: the end offset in bytes (inclusive)
989 * @bits: the bits to set in this range
990 * @clear_bits: the bits to clear in this range
e6138876 991 * @cached_state: state that we're going to cache
462d6fac
JB
992 * @mask: the allocation mask
993 *
994 * This will go through and set bits for the given range. If any states exist
995 * already in this range they are set with the given bit and cleared of the
996 * clear_bits. This is only meant to be used by things that are mergeable, ie
997 * converting from say DELALLOC to DIRTY. This is not meant to be used with
998 * boundary bits like LOCK.
999 */
1000int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1001 unsigned long bits, unsigned long clear_bits,
e6138876 1002 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1003{
1004 struct extent_state *state;
1005 struct extent_state *prealloc = NULL;
1006 struct rb_node *node;
1007 int err = 0;
1008 u64 last_start;
1009 u64 last_end;
1010
8d599ae1
DS
1011 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1012
462d6fac
JB
1013again:
1014 if (!prealloc && (mask & __GFP_WAIT)) {
1015 prealloc = alloc_extent_state(mask);
1016 if (!prealloc)
1017 return -ENOMEM;
1018 }
1019
1020 spin_lock(&tree->lock);
e6138876
JB
1021 if (cached_state && *cached_state) {
1022 state = *cached_state;
1023 if (state->start <= start && state->end > start &&
1024 state->tree) {
1025 node = &state->rb_node;
1026 goto hit_next;
1027 }
1028 }
1029
462d6fac
JB
1030 /*
1031 * this search will find all the extents that end after
1032 * our range starts.
1033 */
1034 node = tree_search(tree, start);
1035 if (!node) {
1036 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1037 if (!prealloc) {
1038 err = -ENOMEM;
1039 goto out;
1040 }
462d6fac
JB
1041 err = insert_state(tree, prealloc, start, end, &bits);
1042 prealloc = NULL;
c2d904e0
JM
1043 if (err)
1044 extent_io_tree_panic(tree, err);
462d6fac
JB
1045 goto out;
1046 }
1047 state = rb_entry(node, struct extent_state, rb_node);
1048hit_next:
1049 last_start = state->start;
1050 last_end = state->end;
1051
1052 /*
1053 * | ---- desired range ---- |
1054 * | state |
1055 *
1056 * Just lock what we found and keep going
1057 */
1058 if (state->start == start && state->end <= end) {
462d6fac 1059 set_state_bits(tree, state, &bits);
e6138876 1060 cache_state(state, cached_state);
d1ac6e41 1061 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1062 if (last_end == (u64)-1)
1063 goto out;
462d6fac 1064 start = last_end + 1;
d1ac6e41
LB
1065 if (start < end && state && state->start == start &&
1066 !need_resched())
1067 goto hit_next;
462d6fac
JB
1068 goto search_again;
1069 }
1070
1071 /*
1072 * | ---- desired range ---- |
1073 * | state |
1074 * or
1075 * | ------------- state -------------- |
1076 *
1077 * We need to split the extent we found, and may flip bits on
1078 * second half.
1079 *
1080 * If the extent we found extends past our
1081 * range, we just split and search again. It'll get split
1082 * again the next time though.
1083 *
1084 * If the extent we found is inside our range, we set the
1085 * desired bit on it.
1086 */
1087 if (state->start < start) {
1088 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1089 if (!prealloc) {
1090 err = -ENOMEM;
1091 goto out;
1092 }
462d6fac 1093 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1094 if (err)
1095 extent_io_tree_panic(tree, err);
462d6fac
JB
1096 prealloc = NULL;
1097 if (err)
1098 goto out;
1099 if (state->end <= end) {
1100 set_state_bits(tree, state, &bits);
e6138876 1101 cache_state(state, cached_state);
d1ac6e41 1102 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1103 if (last_end == (u64)-1)
1104 goto out;
1105 start = last_end + 1;
d1ac6e41
LB
1106 if (start < end && state && state->start == start &&
1107 !need_resched())
1108 goto hit_next;
462d6fac
JB
1109 }
1110 goto search_again;
1111 }
1112 /*
1113 * | ---- desired range ---- |
1114 * | state | or | state |
1115 *
1116 * There's a hole, we need to insert something in it and
1117 * ignore the extent we found.
1118 */
1119 if (state->start > start) {
1120 u64 this_end;
1121 if (end < last_start)
1122 this_end = end;
1123 else
1124 this_end = last_start - 1;
1125
1126 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1127 if (!prealloc) {
1128 err = -ENOMEM;
1129 goto out;
1130 }
462d6fac
JB
1131
1132 /*
1133 * Avoid to free 'prealloc' if it can be merged with
1134 * the later extent.
1135 */
1136 err = insert_state(tree, prealloc, start, this_end,
1137 &bits);
c2d904e0
JM
1138 if (err)
1139 extent_io_tree_panic(tree, err);
e6138876 1140 cache_state(prealloc, cached_state);
462d6fac
JB
1141 prealloc = NULL;
1142 start = this_end + 1;
1143 goto search_again;
1144 }
1145 /*
1146 * | ---- desired range ---- |
1147 * | state |
1148 * We need to split the extent, and set the bit
1149 * on the first half
1150 */
1151 if (state->start <= end && state->end > end) {
1152 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1153 if (!prealloc) {
1154 err = -ENOMEM;
1155 goto out;
1156 }
462d6fac
JB
1157
1158 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1159 if (err)
1160 extent_io_tree_panic(tree, err);
462d6fac
JB
1161
1162 set_state_bits(tree, prealloc, &bits);
e6138876 1163 cache_state(prealloc, cached_state);
462d6fac 1164 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1165 prealloc = NULL;
1166 goto out;
1167 }
1168
1169 goto search_again;
1170
1171out:
1172 spin_unlock(&tree->lock);
1173 if (prealloc)
1174 free_extent_state(prealloc);
1175
1176 return err;
1177
1178search_again:
1179 if (start > end)
1180 goto out;
1181 spin_unlock(&tree->lock);
1182 if (mask & __GFP_WAIT)
1183 cond_resched();
1184 goto again;
1185}
1186
d1310b2e
CM
1187/* wrappers around set/clear extent bit */
1188int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1189 gfp_t mask)
1190{
3fbe5c02 1191 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1192 NULL, mask);
d1310b2e 1193}
d1310b2e
CM
1194
1195int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1196 unsigned long bits, gfp_t mask)
d1310b2e 1197{
3fbe5c02 1198 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1199 NULL, mask);
d1310b2e 1200}
d1310b2e
CM
1201
1202int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1203 unsigned long bits, gfp_t mask)
d1310b2e 1204{
2c64c53d 1205 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1206}
d1310b2e
CM
1207
1208int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1209 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1210{
1211 return set_extent_bit(tree, start, end,
fee187d9 1212 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1213 NULL, cached_state, mask);
d1310b2e 1214}
d1310b2e 1215
9e8a4a8b
LB
1216int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1217 struct extent_state **cached_state, gfp_t mask)
1218{
1219 return set_extent_bit(tree, start, end,
1220 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1221 NULL, cached_state, mask);
1222}
1223
d1310b2e
CM
1224int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1225 gfp_t mask)
1226{
1227 return clear_extent_bit(tree, start, end,
32c00aff 1228 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1229 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1230}
d1310b2e
CM
1231
1232int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1233 gfp_t mask)
1234{
3fbe5c02 1235 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1236 NULL, mask);
d1310b2e 1237}
d1310b2e 1238
d1310b2e 1239int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1240 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1241{
6b67a320 1242 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1243 cached_state, mask);
d1310b2e 1244}
d1310b2e 1245
5fd02043
JB
1246int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1247 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1248{
2c64c53d 1249 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1250 cached_state, mask);
d1310b2e 1251}
d1310b2e 1252
d352ac68
CM
1253/*
1254 * either insert or lock state struct between start and end use mask to tell
1255 * us if waiting is desired.
1256 */
1edbb734 1257int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1258 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1259{
1260 int err;
1261 u64 failed_start;
1262 while (1) {
3fbe5c02
JM
1263 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1264 EXTENT_LOCKED, &failed_start,
1265 cached_state, GFP_NOFS);
d0082371 1266 if (err == -EEXIST) {
d1310b2e
CM
1267 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1268 start = failed_start;
d0082371 1269 } else
d1310b2e 1270 break;
d1310b2e
CM
1271 WARN_ON(start > end);
1272 }
1273 return err;
1274}
d1310b2e 1275
d0082371 1276int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1277{
d0082371 1278 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1279}
1280
d0082371 1281int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1282{
1283 int err;
1284 u64 failed_start;
1285
3fbe5c02
JM
1286 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1287 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1288 if (err == -EEXIST) {
1289 if (failed_start > start)
1290 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1291 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1292 return 0;
6643558d 1293 }
25179201
JB
1294 return 1;
1295}
25179201 1296
2c64c53d
CM
1297int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1298 struct extent_state **cached, gfp_t mask)
1299{
1300 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1301 mask);
1302}
1303
d0082371 1304int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1305{
2c64c53d 1306 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1307 GFP_NOFS);
d1310b2e 1308}
d1310b2e 1309
4adaa611
CM
1310int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1311{
1312 unsigned long index = start >> PAGE_CACHE_SHIFT;
1313 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1314 struct page *page;
1315
1316 while (index <= end_index) {
1317 page = find_get_page(inode->i_mapping, index);
1318 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1319 clear_page_dirty_for_io(page);
1320 page_cache_release(page);
1321 index++;
1322 }
1323 return 0;
1324}
1325
1326int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1327{
1328 unsigned long index = start >> PAGE_CACHE_SHIFT;
1329 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1330 struct page *page;
1331
1332 while (index <= end_index) {
1333 page = find_get_page(inode->i_mapping, index);
1334 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1335 account_page_redirty(page);
1336 __set_page_dirty_nobuffers(page);
1337 page_cache_release(page);
1338 index++;
1339 }
1340 return 0;
1341}
1342
d1310b2e
CM
1343/*
1344 * helper function to set both pages and extents in the tree writeback
1345 */
b2950863 1346static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1347{
1348 unsigned long index = start >> PAGE_CACHE_SHIFT;
1349 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1350 struct page *page;
1351
1352 while (index <= end_index) {
1353 page = find_get_page(tree->mapping, index);
79787eaa 1354 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1355 set_page_writeback(page);
1356 page_cache_release(page);
1357 index++;
1358 }
d1310b2e
CM
1359 return 0;
1360}
d1310b2e 1361
d352ac68
CM
1362/* find the first state struct with 'bits' set after 'start', and
1363 * return it. tree->lock must be held. NULL will returned if
1364 * nothing was found after 'start'
1365 */
48a3b636
ES
1366static struct extent_state *
1367find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1368 u64 start, unsigned long bits)
d7fc640e
CM
1369{
1370 struct rb_node *node;
1371 struct extent_state *state;
1372
1373 /*
1374 * this search will find all the extents that end after
1375 * our range starts.
1376 */
1377 node = tree_search(tree, start);
d397712b 1378 if (!node)
d7fc640e 1379 goto out;
d7fc640e 1380
d397712b 1381 while (1) {
d7fc640e 1382 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1383 if (state->end >= start && (state->state & bits))
d7fc640e 1384 return state;
d397712b 1385
d7fc640e
CM
1386 node = rb_next(node);
1387 if (!node)
1388 break;
1389 }
1390out:
1391 return NULL;
1392}
d7fc640e 1393
69261c4b
XG
1394/*
1395 * find the first offset in the io tree with 'bits' set. zero is
1396 * returned if we find something, and *start_ret and *end_ret are
1397 * set to reflect the state struct that was found.
1398 *
477d7eaf 1399 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1400 */
1401int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1402 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1403 struct extent_state **cached_state)
69261c4b
XG
1404{
1405 struct extent_state *state;
e6138876 1406 struct rb_node *n;
69261c4b
XG
1407 int ret = 1;
1408
1409 spin_lock(&tree->lock);
e6138876
JB
1410 if (cached_state && *cached_state) {
1411 state = *cached_state;
1412 if (state->end == start - 1 && state->tree) {
1413 n = rb_next(&state->rb_node);
1414 while (n) {
1415 state = rb_entry(n, struct extent_state,
1416 rb_node);
1417 if (state->state & bits)
1418 goto got_it;
1419 n = rb_next(n);
1420 }
1421 free_extent_state(*cached_state);
1422 *cached_state = NULL;
1423 goto out;
1424 }
1425 free_extent_state(*cached_state);
1426 *cached_state = NULL;
1427 }
1428
69261c4b 1429 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1430got_it:
69261c4b 1431 if (state) {
e6138876 1432 cache_state(state, cached_state);
69261c4b
XG
1433 *start_ret = state->start;
1434 *end_ret = state->end;
1435 ret = 0;
1436 }
e6138876 1437out:
69261c4b
XG
1438 spin_unlock(&tree->lock);
1439 return ret;
1440}
1441
d352ac68
CM
1442/*
1443 * find a contiguous range of bytes in the file marked as delalloc, not
1444 * more than 'max_bytes'. start and end are used to return the range,
1445 *
1446 * 1 is returned if we find something, 0 if nothing was in the tree
1447 */
c8b97818 1448static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1449 u64 *start, u64 *end, u64 max_bytes,
1450 struct extent_state **cached_state)
d1310b2e
CM
1451{
1452 struct rb_node *node;
1453 struct extent_state *state;
1454 u64 cur_start = *start;
1455 u64 found = 0;
1456 u64 total_bytes = 0;
1457
cad321ad 1458 spin_lock(&tree->lock);
c8b97818 1459
d1310b2e
CM
1460 /*
1461 * this search will find all the extents that end after
1462 * our range starts.
1463 */
80ea96b1 1464 node = tree_search(tree, cur_start);
2b114d1d 1465 if (!node) {
3b951516
CM
1466 if (!found)
1467 *end = (u64)-1;
d1310b2e
CM
1468 goto out;
1469 }
1470
d397712b 1471 while (1) {
d1310b2e 1472 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1473 if (found && (state->start != cur_start ||
1474 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1475 goto out;
1476 }
1477 if (!(state->state & EXTENT_DELALLOC)) {
1478 if (!found)
1479 *end = state->end;
1480 goto out;
1481 }
c2a128d2 1482 if (!found) {
d1310b2e 1483 *start = state->start;
c2a128d2
JB
1484 *cached_state = state;
1485 atomic_inc(&state->refs);
1486 }
d1310b2e
CM
1487 found++;
1488 *end = state->end;
1489 cur_start = state->end + 1;
1490 node = rb_next(node);
1491 if (!node)
1492 break;
1493 total_bytes += state->end - state->start + 1;
1494 if (total_bytes >= max_bytes)
1495 break;
1496 }
1497out:
cad321ad 1498 spin_unlock(&tree->lock);
d1310b2e
CM
1499 return found;
1500}
1501
143bede5
JM
1502static noinline void __unlock_for_delalloc(struct inode *inode,
1503 struct page *locked_page,
1504 u64 start, u64 end)
c8b97818
CM
1505{
1506 int ret;
1507 struct page *pages[16];
1508 unsigned long index = start >> PAGE_CACHE_SHIFT;
1509 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1510 unsigned long nr_pages = end_index - index + 1;
1511 int i;
1512
1513 if (index == locked_page->index && end_index == index)
143bede5 1514 return;
c8b97818 1515
d397712b 1516 while (nr_pages > 0) {
c8b97818 1517 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1518 min_t(unsigned long, nr_pages,
1519 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1520 for (i = 0; i < ret; i++) {
1521 if (pages[i] != locked_page)
1522 unlock_page(pages[i]);
1523 page_cache_release(pages[i]);
1524 }
1525 nr_pages -= ret;
1526 index += ret;
1527 cond_resched();
1528 }
c8b97818
CM
1529}
1530
1531static noinline int lock_delalloc_pages(struct inode *inode,
1532 struct page *locked_page,
1533 u64 delalloc_start,
1534 u64 delalloc_end)
1535{
1536 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1537 unsigned long start_index = index;
1538 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1539 unsigned long pages_locked = 0;
1540 struct page *pages[16];
1541 unsigned long nrpages;
1542 int ret;
1543 int i;
1544
1545 /* the caller is responsible for locking the start index */
1546 if (index == locked_page->index && index == end_index)
1547 return 0;
1548
1549 /* skip the page at the start index */
1550 nrpages = end_index - index + 1;
d397712b 1551 while (nrpages > 0) {
c8b97818 1552 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1553 min_t(unsigned long,
1554 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1555 if (ret == 0) {
1556 ret = -EAGAIN;
1557 goto done;
1558 }
1559 /* now we have an array of pages, lock them all */
1560 for (i = 0; i < ret; i++) {
1561 /*
1562 * the caller is taking responsibility for
1563 * locked_page
1564 */
771ed689 1565 if (pages[i] != locked_page) {
c8b97818 1566 lock_page(pages[i]);
f2b1c41c
CM
1567 if (!PageDirty(pages[i]) ||
1568 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1569 ret = -EAGAIN;
1570 unlock_page(pages[i]);
1571 page_cache_release(pages[i]);
1572 goto done;
1573 }
1574 }
c8b97818 1575 page_cache_release(pages[i]);
771ed689 1576 pages_locked++;
c8b97818 1577 }
c8b97818
CM
1578 nrpages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
1582 ret = 0;
1583done:
1584 if (ret && pages_locked) {
1585 __unlock_for_delalloc(inode, locked_page,
1586 delalloc_start,
1587 ((u64)(start_index + pages_locked - 1)) <<
1588 PAGE_CACHE_SHIFT);
1589 }
1590 return ret;
1591}
1592
1593/*
1594 * find a contiguous range of bytes in the file marked as delalloc, not
1595 * more than 'max_bytes'. start and end are used to return the range,
1596 *
1597 * 1 is returned if we find something, 0 if nothing was in the tree
1598 */
1599static noinline u64 find_lock_delalloc_range(struct inode *inode,
1600 struct extent_io_tree *tree,
1601 struct page *locked_page,
1602 u64 *start, u64 *end,
1603 u64 max_bytes)
1604{
1605 u64 delalloc_start;
1606 u64 delalloc_end;
1607 u64 found;
9655d298 1608 struct extent_state *cached_state = NULL;
c8b97818
CM
1609 int ret;
1610 int loops = 0;
1611
1612again:
1613 /* step one, find a bunch of delalloc bytes starting at start */
1614 delalloc_start = *start;
1615 delalloc_end = 0;
1616 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1617 max_bytes, &cached_state);
70b99e69 1618 if (!found || delalloc_end <= *start) {
c8b97818
CM
1619 *start = delalloc_start;
1620 *end = delalloc_end;
c2a128d2 1621 free_extent_state(cached_state);
c8b97818
CM
1622 return found;
1623 }
1624
70b99e69
CM
1625 /*
1626 * start comes from the offset of locked_page. We have to lock
1627 * pages in order, so we can't process delalloc bytes before
1628 * locked_page
1629 */
d397712b 1630 if (delalloc_start < *start)
70b99e69 1631 delalloc_start = *start;
70b99e69 1632
c8b97818
CM
1633 /*
1634 * make sure to limit the number of pages we try to lock down
1635 * if we're looping.
1636 */
d397712b 1637 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1638 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1639
c8b97818
CM
1640 /* step two, lock all the pages after the page that has start */
1641 ret = lock_delalloc_pages(inode, locked_page,
1642 delalloc_start, delalloc_end);
1643 if (ret == -EAGAIN) {
1644 /* some of the pages are gone, lets avoid looping by
1645 * shortening the size of the delalloc range we're searching
1646 */
9655d298 1647 free_extent_state(cached_state);
c8b97818
CM
1648 if (!loops) {
1649 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1650 max_bytes = PAGE_CACHE_SIZE - offset;
1651 loops = 1;
1652 goto again;
1653 } else {
1654 found = 0;
1655 goto out_failed;
1656 }
1657 }
79787eaa 1658 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1659
1660 /* step three, lock the state bits for the whole range */
d0082371 1661 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1662
1663 /* then test to make sure it is all still delalloc */
1664 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1665 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1666 if (!ret) {
9655d298
CM
1667 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1668 &cached_state, GFP_NOFS);
c8b97818
CM
1669 __unlock_for_delalloc(inode, locked_page,
1670 delalloc_start, delalloc_end);
1671 cond_resched();
1672 goto again;
1673 }
9655d298 1674 free_extent_state(cached_state);
c8b97818
CM
1675 *start = delalloc_start;
1676 *end = delalloc_end;
1677out_failed:
1678 return found;
1679}
1680
c2790a2e
JB
1681int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1682 struct page *locked_page,
1683 unsigned long clear_bits,
1684 unsigned long page_ops)
c8b97818 1685{
c2790a2e 1686 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1687 int ret;
1688 struct page *pages[16];
1689 unsigned long index = start >> PAGE_CACHE_SHIFT;
1690 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1691 unsigned long nr_pages = end_index - index + 1;
1692 int i;
771ed689 1693
2c64c53d 1694 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1695 if (page_ops == 0)
771ed689 1696 return 0;
c8b97818 1697
d397712b 1698 while (nr_pages > 0) {
c8b97818 1699 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1700 min_t(unsigned long,
1701 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1702 for (i = 0; i < ret; i++) {
8b62b72b 1703
c2790a2e 1704 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1705 SetPagePrivate2(pages[i]);
1706
c8b97818
CM
1707 if (pages[i] == locked_page) {
1708 page_cache_release(pages[i]);
1709 continue;
1710 }
c2790a2e 1711 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1712 clear_page_dirty_for_io(pages[i]);
c2790a2e 1713 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1714 set_page_writeback(pages[i]);
c2790a2e 1715 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1716 end_page_writeback(pages[i]);
c2790a2e 1717 if (page_ops & PAGE_UNLOCK)
771ed689 1718 unlock_page(pages[i]);
c8b97818
CM
1719 page_cache_release(pages[i]);
1720 }
1721 nr_pages -= ret;
1722 index += ret;
1723 cond_resched();
1724 }
1725 return 0;
1726}
c8b97818 1727
d352ac68
CM
1728/*
1729 * count the number of bytes in the tree that have a given bit(s)
1730 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1731 * cached. The total number found is returned.
1732 */
d1310b2e
CM
1733u64 count_range_bits(struct extent_io_tree *tree,
1734 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1735 unsigned long bits, int contig)
d1310b2e
CM
1736{
1737 struct rb_node *node;
1738 struct extent_state *state;
1739 u64 cur_start = *start;
1740 u64 total_bytes = 0;
ec29ed5b 1741 u64 last = 0;
d1310b2e
CM
1742 int found = 0;
1743
1744 if (search_end <= cur_start) {
d1310b2e
CM
1745 WARN_ON(1);
1746 return 0;
1747 }
1748
cad321ad 1749 spin_lock(&tree->lock);
d1310b2e
CM
1750 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1751 total_bytes = tree->dirty_bytes;
1752 goto out;
1753 }
1754 /*
1755 * this search will find all the extents that end after
1756 * our range starts.
1757 */
80ea96b1 1758 node = tree_search(tree, cur_start);
d397712b 1759 if (!node)
d1310b2e 1760 goto out;
d1310b2e 1761
d397712b 1762 while (1) {
d1310b2e
CM
1763 state = rb_entry(node, struct extent_state, rb_node);
1764 if (state->start > search_end)
1765 break;
ec29ed5b
CM
1766 if (contig && found && state->start > last + 1)
1767 break;
1768 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1769 total_bytes += min(search_end, state->end) + 1 -
1770 max(cur_start, state->start);
1771 if (total_bytes >= max_bytes)
1772 break;
1773 if (!found) {
af60bed2 1774 *start = max(cur_start, state->start);
d1310b2e
CM
1775 found = 1;
1776 }
ec29ed5b
CM
1777 last = state->end;
1778 } else if (contig && found) {
1779 break;
d1310b2e
CM
1780 }
1781 node = rb_next(node);
1782 if (!node)
1783 break;
1784 }
1785out:
cad321ad 1786 spin_unlock(&tree->lock);
d1310b2e
CM
1787 return total_bytes;
1788}
b2950863 1789
d352ac68
CM
1790/*
1791 * set the private field for a given byte offset in the tree. If there isn't
1792 * an extent_state there already, this does nothing.
1793 */
d1310b2e
CM
1794int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1795{
1796 struct rb_node *node;
1797 struct extent_state *state;
1798 int ret = 0;
1799
cad321ad 1800 spin_lock(&tree->lock);
d1310b2e
CM
1801 /*
1802 * this search will find all the extents that end after
1803 * our range starts.
1804 */
80ea96b1 1805 node = tree_search(tree, start);
2b114d1d 1806 if (!node) {
d1310b2e
CM
1807 ret = -ENOENT;
1808 goto out;
1809 }
1810 state = rb_entry(node, struct extent_state, rb_node);
1811 if (state->start != start) {
1812 ret = -ENOENT;
1813 goto out;
1814 }
1815 state->private = private;
1816out:
cad321ad 1817 spin_unlock(&tree->lock);
d1310b2e
CM
1818 return ret;
1819}
1820
1821int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1822{
1823 struct rb_node *node;
1824 struct extent_state *state;
1825 int ret = 0;
1826
cad321ad 1827 spin_lock(&tree->lock);
d1310b2e
CM
1828 /*
1829 * this search will find all the extents that end after
1830 * our range starts.
1831 */
80ea96b1 1832 node = tree_search(tree, start);
2b114d1d 1833 if (!node) {
d1310b2e
CM
1834 ret = -ENOENT;
1835 goto out;
1836 }
1837 state = rb_entry(node, struct extent_state, rb_node);
1838 if (state->start != start) {
1839 ret = -ENOENT;
1840 goto out;
1841 }
1842 *private = state->private;
1843out:
cad321ad 1844 spin_unlock(&tree->lock);
d1310b2e
CM
1845 return ret;
1846}
1847
1848/*
1849 * searches a range in the state tree for a given mask.
70dec807 1850 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1851 * has the bits set. Otherwise, 1 is returned if any bit in the
1852 * range is found set.
1853 */
1854int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1855 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1856{
1857 struct extent_state *state = NULL;
1858 struct rb_node *node;
1859 int bitset = 0;
d1310b2e 1860
cad321ad 1861 spin_lock(&tree->lock);
df98b6e2
JB
1862 if (cached && cached->tree && cached->start <= start &&
1863 cached->end > start)
9655d298
CM
1864 node = &cached->rb_node;
1865 else
1866 node = tree_search(tree, start);
d1310b2e
CM
1867 while (node && start <= end) {
1868 state = rb_entry(node, struct extent_state, rb_node);
1869
1870 if (filled && state->start > start) {
1871 bitset = 0;
1872 break;
1873 }
1874
1875 if (state->start > end)
1876 break;
1877
1878 if (state->state & bits) {
1879 bitset = 1;
1880 if (!filled)
1881 break;
1882 } else if (filled) {
1883 bitset = 0;
1884 break;
1885 }
46562cec
CM
1886
1887 if (state->end == (u64)-1)
1888 break;
1889
d1310b2e
CM
1890 start = state->end + 1;
1891 if (start > end)
1892 break;
1893 node = rb_next(node);
1894 if (!node) {
1895 if (filled)
1896 bitset = 0;
1897 break;
1898 }
1899 }
cad321ad 1900 spin_unlock(&tree->lock);
d1310b2e
CM
1901 return bitset;
1902}
d1310b2e
CM
1903
1904/*
1905 * helper function to set a given page up to date if all the
1906 * extents in the tree for that page are up to date
1907 */
143bede5 1908static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1909{
4eee4fa4 1910 u64 start = page_offset(page);
d1310b2e 1911 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1912 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1913 SetPageUptodate(page);
d1310b2e
CM
1914}
1915
4a54c8c1
JS
1916/*
1917 * When IO fails, either with EIO or csum verification fails, we
1918 * try other mirrors that might have a good copy of the data. This
1919 * io_failure_record is used to record state as we go through all the
1920 * mirrors. If another mirror has good data, the page is set up to date
1921 * and things continue. If a good mirror can't be found, the original
1922 * bio end_io callback is called to indicate things have failed.
1923 */
1924struct io_failure_record {
1925 struct page *page;
1926 u64 start;
1927 u64 len;
1928 u64 logical;
1929 unsigned long bio_flags;
1930 int this_mirror;
1931 int failed_mirror;
1932 int in_validation;
1933};
1934
1935static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1936 int did_repair)
1937{
1938 int ret;
1939 int err = 0;
1940 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1941
1942 set_state_private(failure_tree, rec->start, 0);
1943 ret = clear_extent_bits(failure_tree, rec->start,
1944 rec->start + rec->len - 1,
1945 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1946 if (ret)
1947 err = ret;
1948
53b381b3
DW
1949 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1950 rec->start + rec->len - 1,
1951 EXTENT_DAMAGED, GFP_NOFS);
1952 if (ret && !err)
1953 err = ret;
4a54c8c1
JS
1954
1955 kfree(rec);
1956 return err;
1957}
1958
1959static void repair_io_failure_callback(struct bio *bio, int err)
1960{
1961 complete(bio->bi_private);
1962}
1963
1964/*
1965 * this bypasses the standard btrfs submit functions deliberately, as
1966 * the standard behavior is to write all copies in a raid setup. here we only
1967 * want to write the one bad copy. so we do the mapping for ourselves and issue
1968 * submit_bio directly.
3ec706c8 1969 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1970 * actually prevents the read that triggered the error from finishing.
1971 * currently, there can be no more than two copies of every data bit. thus,
1972 * exactly one rewrite is required.
1973 */
3ec706c8 1974int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
1975 u64 length, u64 logical, struct page *page,
1976 int mirror_num)
1977{
1978 struct bio *bio;
1979 struct btrfs_device *dev;
1980 DECLARE_COMPLETION_ONSTACK(compl);
1981 u64 map_length = 0;
1982 u64 sector;
1983 struct btrfs_bio *bbio = NULL;
53b381b3 1984 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
1985 int ret;
1986
1987 BUG_ON(!mirror_num);
1988
53b381b3
DW
1989 /* we can't repair anything in raid56 yet */
1990 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
1991 return 0;
1992
9be3395b 1993 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
1994 if (!bio)
1995 return -EIO;
1996 bio->bi_private = &compl;
1997 bio->bi_end_io = repair_io_failure_callback;
1998 bio->bi_size = 0;
1999 map_length = length;
2000
3ec706c8 2001 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2002 &map_length, &bbio, mirror_num);
2003 if (ret) {
2004 bio_put(bio);
2005 return -EIO;
2006 }
2007 BUG_ON(mirror_num != bbio->mirror_num);
2008 sector = bbio->stripes[mirror_num-1].physical >> 9;
2009 bio->bi_sector = sector;
2010 dev = bbio->stripes[mirror_num-1].dev;
2011 kfree(bbio);
2012 if (!dev || !dev->bdev || !dev->writeable) {
2013 bio_put(bio);
2014 return -EIO;
2015 }
2016 bio->bi_bdev = dev->bdev;
4eee4fa4 2017 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2018 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2019 wait_for_completion(&compl);
2020
2021 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2022 /* try to remap that extent elsewhere? */
2023 bio_put(bio);
442a4f63 2024 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2025 return -EIO;
2026 }
2027
d5b025d5 2028 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2029 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2030 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2031
2032 bio_put(bio);
2033 return 0;
2034}
2035
ea466794
JB
2036int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2037 int mirror_num)
2038{
ea466794
JB
2039 u64 start = eb->start;
2040 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2041 int ret = 0;
ea466794
JB
2042
2043 for (i = 0; i < num_pages; i++) {
2044 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2045 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2046 start, p, mirror_num);
2047 if (ret)
2048 break;
2049 start += PAGE_CACHE_SIZE;
2050 }
2051
2052 return ret;
2053}
2054
4a54c8c1
JS
2055/*
2056 * each time an IO finishes, we do a fast check in the IO failure tree
2057 * to see if we need to process or clean up an io_failure_record
2058 */
2059static int clean_io_failure(u64 start, struct page *page)
2060{
2061 u64 private;
2062 u64 private_failure;
2063 struct io_failure_record *failrec;
3ec706c8 2064 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2065 struct extent_state *state;
2066 int num_copies;
2067 int did_repair = 0;
2068 int ret;
2069 struct inode *inode = page->mapping->host;
2070
2071 private = 0;
2072 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2073 (u64)-1, 1, EXTENT_DIRTY, 0);
2074 if (!ret)
2075 return 0;
2076
2077 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2078 &private_failure);
2079 if (ret)
2080 return 0;
2081
2082 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2083 BUG_ON(!failrec->this_mirror);
2084
2085 if (failrec->in_validation) {
2086 /* there was no real error, just free the record */
2087 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2088 failrec->start);
2089 did_repair = 1;
2090 goto out;
2091 }
2092
2093 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2094 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2095 failrec->start,
2096 EXTENT_LOCKED);
2097 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2098
883d0de4
MX
2099 if (state && state->start <= failrec->start &&
2100 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2101 fs_info = BTRFS_I(inode)->root->fs_info;
2102 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2103 failrec->len);
4a54c8c1 2104 if (num_copies > 1) {
3ec706c8 2105 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2106 failrec->logical, page,
2107 failrec->failed_mirror);
2108 did_repair = !ret;
2109 }
53b381b3 2110 ret = 0;
4a54c8c1
JS
2111 }
2112
2113out:
2114 if (!ret)
2115 ret = free_io_failure(inode, failrec, did_repair);
2116
2117 return ret;
2118}
2119
2120/*
2121 * this is a generic handler for readpage errors (default
2122 * readpage_io_failed_hook). if other copies exist, read those and write back
2123 * good data to the failed position. does not investigate in remapping the
2124 * failed extent elsewhere, hoping the device will be smart enough to do this as
2125 * needed
2126 */
2127
facc8a22
MX
2128static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2129 struct page *page, u64 start, u64 end,
2130 int failed_mirror)
4a54c8c1
JS
2131{
2132 struct io_failure_record *failrec = NULL;
2133 u64 private;
2134 struct extent_map *em;
2135 struct inode *inode = page->mapping->host;
2136 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2137 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2138 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2139 struct bio *bio;
facc8a22
MX
2140 struct btrfs_io_bio *btrfs_failed_bio;
2141 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2142 int num_copies;
2143 int ret;
2144 int read_mode;
2145 u64 logical;
2146
2147 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2148
2149 ret = get_state_private(failure_tree, start, &private);
2150 if (ret) {
2151 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2152 if (!failrec)
2153 return -ENOMEM;
2154 failrec->start = start;
2155 failrec->len = end - start + 1;
2156 failrec->this_mirror = 0;
2157 failrec->bio_flags = 0;
2158 failrec->in_validation = 0;
2159
2160 read_lock(&em_tree->lock);
2161 em = lookup_extent_mapping(em_tree, start, failrec->len);
2162 if (!em) {
2163 read_unlock(&em_tree->lock);
2164 kfree(failrec);
2165 return -EIO;
2166 }
2167
2168 if (em->start > start || em->start + em->len < start) {
2169 free_extent_map(em);
2170 em = NULL;
2171 }
2172 read_unlock(&em_tree->lock);
2173
7a2d6a64 2174 if (!em) {
4a54c8c1
JS
2175 kfree(failrec);
2176 return -EIO;
2177 }
2178 logical = start - em->start;
2179 logical = em->block_start + logical;
2180 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2181 logical = em->block_start;
2182 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2183 extent_set_compress_type(&failrec->bio_flags,
2184 em->compress_type);
2185 }
2186 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2187 "len=%llu\n", logical, start, failrec->len);
2188 failrec->logical = logical;
2189 free_extent_map(em);
2190
2191 /* set the bits in the private failure tree */
2192 ret = set_extent_bits(failure_tree, start, end,
2193 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2194 if (ret >= 0)
2195 ret = set_state_private(failure_tree, start,
2196 (u64)(unsigned long)failrec);
2197 /* set the bits in the inode's tree */
2198 if (ret >= 0)
2199 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2200 GFP_NOFS);
2201 if (ret < 0) {
2202 kfree(failrec);
2203 return ret;
2204 }
2205 } else {
2206 failrec = (struct io_failure_record *)(unsigned long)private;
2207 pr_debug("bio_readpage_error: (found) logical=%llu, "
2208 "start=%llu, len=%llu, validation=%d\n",
2209 failrec->logical, failrec->start, failrec->len,
2210 failrec->in_validation);
2211 /*
2212 * when data can be on disk more than twice, add to failrec here
2213 * (e.g. with a list for failed_mirror) to make
2214 * clean_io_failure() clean all those errors at once.
2215 */
2216 }
5d964051
SB
2217 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2218 failrec->logical, failrec->len);
4a54c8c1
JS
2219 if (num_copies == 1) {
2220 /*
2221 * we only have a single copy of the data, so don't bother with
2222 * all the retry and error correction code that follows. no
2223 * matter what the error is, it is very likely to persist.
2224 */
09a7f7a2
MX
2225 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2226 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2227 free_io_failure(inode, failrec, 0);
2228 return -EIO;
2229 }
2230
4a54c8c1
JS
2231 /*
2232 * there are two premises:
2233 * a) deliver good data to the caller
2234 * b) correct the bad sectors on disk
2235 */
2236 if (failed_bio->bi_vcnt > 1) {
2237 /*
2238 * to fulfill b), we need to know the exact failing sectors, as
2239 * we don't want to rewrite any more than the failed ones. thus,
2240 * we need separate read requests for the failed bio
2241 *
2242 * if the following BUG_ON triggers, our validation request got
2243 * merged. we need separate requests for our algorithm to work.
2244 */
2245 BUG_ON(failrec->in_validation);
2246 failrec->in_validation = 1;
2247 failrec->this_mirror = failed_mirror;
2248 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2249 } else {
2250 /*
2251 * we're ready to fulfill a) and b) alongside. get a good copy
2252 * of the failed sector and if we succeed, we have setup
2253 * everything for repair_io_failure to do the rest for us.
2254 */
2255 if (failrec->in_validation) {
2256 BUG_ON(failrec->this_mirror != failed_mirror);
2257 failrec->in_validation = 0;
2258 failrec->this_mirror = 0;
2259 }
2260 failrec->failed_mirror = failed_mirror;
2261 failrec->this_mirror++;
2262 if (failrec->this_mirror == failed_mirror)
2263 failrec->this_mirror++;
2264 read_mode = READ_SYNC;
2265 }
2266
facc8a22
MX
2267 if (failrec->this_mirror > num_copies) {
2268 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2269 num_copies, failrec->this_mirror, failed_mirror);
2270 free_io_failure(inode, failrec, 0);
2271 return -EIO;
2272 }
2273
9be3395b 2274 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2275 if (!bio) {
2276 free_io_failure(inode, failrec, 0);
2277 return -EIO;
2278 }
4a54c8c1
JS
2279 bio->bi_end_io = failed_bio->bi_end_io;
2280 bio->bi_sector = failrec->logical >> 9;
2281 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2282 bio->bi_size = 0;
2283
facc8a22
MX
2284 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2285 if (btrfs_failed_bio->csum) {
2286 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2287 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2288
2289 btrfs_bio = btrfs_io_bio(bio);
2290 btrfs_bio->csum = btrfs_bio->csum_inline;
2291 phy_offset >>= inode->i_sb->s_blocksize_bits;
2292 phy_offset *= csum_size;
2293 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2294 csum_size);
2295 }
2296
4a54c8c1
JS
2297 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2298
2299 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2300 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2301 failrec->this_mirror, num_copies, failrec->in_validation);
2302
013bd4c3
TI
2303 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2304 failrec->this_mirror,
2305 failrec->bio_flags, 0);
2306 return ret;
4a54c8c1
JS
2307}
2308
d1310b2e
CM
2309/* lots and lots of room for performance fixes in the end_bio funcs */
2310
87826df0
JM
2311int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2312{
2313 int uptodate = (err == 0);
2314 struct extent_io_tree *tree;
2315 int ret;
2316
2317 tree = &BTRFS_I(page->mapping->host)->io_tree;
2318
2319 if (tree->ops && tree->ops->writepage_end_io_hook) {
2320 ret = tree->ops->writepage_end_io_hook(page, start,
2321 end, NULL, uptodate);
2322 if (ret)
2323 uptodate = 0;
2324 }
2325
87826df0 2326 if (!uptodate) {
87826df0
JM
2327 ClearPageUptodate(page);
2328 SetPageError(page);
2329 }
2330 return 0;
2331}
2332
d1310b2e
CM
2333/*
2334 * after a writepage IO is done, we need to:
2335 * clear the uptodate bits on error
2336 * clear the writeback bits in the extent tree for this IO
2337 * end_page_writeback if the page has no more pending IO
2338 *
2339 * Scheduling is not allowed, so the extent state tree is expected
2340 * to have one and only one object corresponding to this IO.
2341 */
d1310b2e 2342static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2343{
d1310b2e 2344 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2345 struct extent_io_tree *tree;
d1310b2e
CM
2346 u64 start;
2347 u64 end;
d1310b2e 2348
d1310b2e
CM
2349 do {
2350 struct page *page = bvec->bv_page;
902b22f3
DW
2351 tree = &BTRFS_I(page->mapping->host)->io_tree;
2352
17a5adcc
AO
2353 /* We always issue full-page reads, but if some block
2354 * in a page fails to read, blk_update_request() will
2355 * advance bv_offset and adjust bv_len to compensate.
2356 * Print a warning for nonzero offsets, and an error
2357 * if they don't add up to a full page. */
2358 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2359 printk("%s page write in btrfs with offset %u and length %u\n",
2360 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2361 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2362 bvec->bv_offset, bvec->bv_len);
d1310b2e 2363
17a5adcc
AO
2364 start = page_offset(page);
2365 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2366
2367 if (--bvec >= bio->bi_io_vec)
2368 prefetchw(&bvec->bv_page->flags);
1259ab75 2369
87826df0
JM
2370 if (end_extent_writepage(page, err, start, end))
2371 continue;
70dec807 2372
17a5adcc 2373 end_page_writeback(page);
d1310b2e 2374 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2375
d1310b2e 2376 bio_put(bio);
d1310b2e
CM
2377}
2378
883d0de4
MX
2379static void
2380endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2381 int uptodate)
2382{
2383 struct extent_state *cached = NULL;
2384 u64 end = start + len - 1;
2385
2386 if (uptodate && tree->track_uptodate)
2387 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2388 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2389}
2390
d1310b2e
CM
2391/*
2392 * after a readpage IO is done, we need to:
2393 * clear the uptodate bits on error
2394 * set the uptodate bits if things worked
2395 * set the page up to date if all extents in the tree are uptodate
2396 * clear the lock bit in the extent tree
2397 * unlock the page if there are no other extents locked for it
2398 *
2399 * Scheduling is not allowed, so the extent state tree is expected
2400 * to have one and only one object corresponding to this IO.
2401 */
d1310b2e 2402static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2403{
2404 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2405 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2406 struct bio_vec *bvec = bio->bi_io_vec;
facc8a22 2407 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2408 struct extent_io_tree *tree;
facc8a22 2409 u64 offset = 0;
d1310b2e
CM
2410 u64 start;
2411 u64 end;
facc8a22 2412 u64 len;
883d0de4
MX
2413 u64 extent_start = 0;
2414 u64 extent_len = 0;
5cf1ab56 2415 int mirror;
d1310b2e
CM
2416 int ret;
2417
d20f7043
CM
2418 if (err)
2419 uptodate = 0;
2420
d1310b2e
CM
2421 do {
2422 struct page *page = bvec->bv_page;
a71754fc 2423 struct inode *inode = page->mapping->host;
507903b8 2424
be3940c0 2425 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2426 "mirror=%lu\n", (u64)bio->bi_sector, err,
2427 io_bio->mirror_num);
a71754fc 2428 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2429
17a5adcc
AO
2430 /* We always issue full-page reads, but if some block
2431 * in a page fails to read, blk_update_request() will
2432 * advance bv_offset and adjust bv_len to compensate.
2433 * Print a warning for nonzero offsets, and an error
2434 * if they don't add up to a full page. */
2435 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2436 printk("%s page read in btrfs with offset %u and length %u\n",
2437 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2438 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2439 bvec->bv_offset, bvec->bv_len);
d1310b2e 2440
17a5adcc
AO
2441 start = page_offset(page);
2442 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2443 len = bvec->bv_len;
d1310b2e 2444
4125bf76 2445 if (++bvec <= bvec_end)
d1310b2e
CM
2446 prefetchw(&bvec->bv_page->flags);
2447
9be3395b 2448 mirror = io_bio->mirror_num;
f2a09da9
MX
2449 if (likely(uptodate && tree->ops &&
2450 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2451 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2452 page, start, end,
2453 mirror);
5ee0844d 2454 if (ret)
d1310b2e 2455 uptodate = 0;
5ee0844d 2456 else
4a54c8c1 2457 clean_io_failure(start, page);
d1310b2e 2458 }
ea466794 2459
f2a09da9
MX
2460 if (likely(uptodate))
2461 goto readpage_ok;
2462
2463 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2464 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2465 if (!ret && !err &&
2466 test_bit(BIO_UPTODATE, &bio->bi_flags))
2467 uptodate = 1;
f2a09da9 2468 } else {
f4a8e656
JS
2469 /*
2470 * The generic bio_readpage_error handles errors the
2471 * following way: If possible, new read requests are
2472 * created and submitted and will end up in
2473 * end_bio_extent_readpage as well (if we're lucky, not
2474 * in the !uptodate case). In that case it returns 0 and
2475 * we just go on with the next page in our bio. If it
2476 * can't handle the error it will return -EIO and we
2477 * remain responsible for that page.
2478 */
facc8a22
MX
2479 ret = bio_readpage_error(bio, offset, page, start, end,
2480 mirror);
7e38326f 2481 if (ret == 0) {
3b951516
CM
2482 uptodate =
2483 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2484 if (err)
2485 uptodate = 0;
7e38326f
CM
2486 continue;
2487 }
2488 }
f2a09da9 2489readpage_ok:
883d0de4 2490 if (likely(uptodate)) {
a71754fc
JB
2491 loff_t i_size = i_size_read(inode);
2492 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2493 unsigned offset;
2494
2495 /* Zero out the end if this page straddles i_size */
2496 offset = i_size & (PAGE_CACHE_SIZE-1);
2497 if (page->index == end_index && offset)
2498 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2499 SetPageUptodate(page);
70dec807 2500 } else {
17a5adcc
AO
2501 ClearPageUptodate(page);
2502 SetPageError(page);
70dec807 2503 }
17a5adcc 2504 unlock_page(page);
facc8a22 2505 offset += len;
883d0de4
MX
2506
2507 if (unlikely(!uptodate)) {
2508 if (extent_len) {
2509 endio_readpage_release_extent(tree,
2510 extent_start,
2511 extent_len, 1);
2512 extent_start = 0;
2513 extent_len = 0;
2514 }
2515 endio_readpage_release_extent(tree, start,
2516 end - start + 1, 0);
2517 } else if (!extent_len) {
2518 extent_start = start;
2519 extent_len = end + 1 - start;
2520 } else if (extent_start + extent_len == start) {
2521 extent_len += end + 1 - start;
2522 } else {
2523 endio_readpage_release_extent(tree, extent_start,
2524 extent_len, uptodate);
2525 extent_start = start;
2526 extent_len = end + 1 - start;
2527 }
4125bf76 2528 } while (bvec <= bvec_end);
d1310b2e 2529
883d0de4
MX
2530 if (extent_len)
2531 endio_readpage_release_extent(tree, extent_start, extent_len,
2532 uptodate);
facc8a22
MX
2533 if (io_bio->end_io)
2534 io_bio->end_io(io_bio, err);
d1310b2e 2535 bio_put(bio);
d1310b2e
CM
2536}
2537
9be3395b
CM
2538/*
2539 * this allocates from the btrfs_bioset. We're returning a bio right now
2540 * but you can call btrfs_io_bio for the appropriate container_of magic
2541 */
88f794ed
MX
2542struct bio *
2543btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2544 gfp_t gfp_flags)
d1310b2e 2545{
facc8a22 2546 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2547 struct bio *bio;
2548
9be3395b 2549 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2550
2551 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2552 while (!bio && (nr_vecs /= 2)) {
2553 bio = bio_alloc_bioset(gfp_flags,
2554 nr_vecs, btrfs_bioset);
2555 }
d1310b2e
CM
2556 }
2557
2558 if (bio) {
e1c4b745 2559 bio->bi_size = 0;
d1310b2e
CM
2560 bio->bi_bdev = bdev;
2561 bio->bi_sector = first_sector;
facc8a22
MX
2562 btrfs_bio = btrfs_io_bio(bio);
2563 btrfs_bio->csum = NULL;
2564 btrfs_bio->csum_allocated = NULL;
2565 btrfs_bio->end_io = NULL;
d1310b2e
CM
2566 }
2567 return bio;
2568}
2569
9be3395b
CM
2570struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2571{
2572 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2573}
2574
2575
2576/* this also allocates from the btrfs_bioset */
2577struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2578{
facc8a22
MX
2579 struct btrfs_io_bio *btrfs_bio;
2580 struct bio *bio;
2581
2582 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2583 if (bio) {
2584 btrfs_bio = btrfs_io_bio(bio);
2585 btrfs_bio->csum = NULL;
2586 btrfs_bio->csum_allocated = NULL;
2587 btrfs_bio->end_io = NULL;
2588 }
2589 return bio;
9be3395b
CM
2590}
2591
2592
355808c2
JM
2593static int __must_check submit_one_bio(int rw, struct bio *bio,
2594 int mirror_num, unsigned long bio_flags)
d1310b2e 2595{
d1310b2e 2596 int ret = 0;
70dec807
CM
2597 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2598 struct page *page = bvec->bv_page;
2599 struct extent_io_tree *tree = bio->bi_private;
70dec807 2600 u64 start;
70dec807 2601
4eee4fa4 2602 start = page_offset(page) + bvec->bv_offset;
70dec807 2603
902b22f3 2604 bio->bi_private = NULL;
d1310b2e
CM
2605
2606 bio_get(bio);
2607
065631f6 2608 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2609 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2610 mirror_num, bio_flags, start);
0b86a832 2611 else
21adbd5c 2612 btrfsic_submit_bio(rw, bio);
4a54c8c1 2613
d1310b2e
CM
2614 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2615 ret = -EOPNOTSUPP;
2616 bio_put(bio);
2617 return ret;
2618}
2619
64a16701 2620static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2621 unsigned long offset, size_t size, struct bio *bio,
2622 unsigned long bio_flags)
2623{
2624 int ret = 0;
2625 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2626 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2627 bio_flags);
2628 BUG_ON(ret < 0);
2629 return ret;
2630
2631}
2632
d1310b2e
CM
2633static int submit_extent_page(int rw, struct extent_io_tree *tree,
2634 struct page *page, sector_t sector,
2635 size_t size, unsigned long offset,
2636 struct block_device *bdev,
2637 struct bio **bio_ret,
2638 unsigned long max_pages,
f188591e 2639 bio_end_io_t end_io_func,
c8b97818
CM
2640 int mirror_num,
2641 unsigned long prev_bio_flags,
2642 unsigned long bio_flags)
d1310b2e
CM
2643{
2644 int ret = 0;
2645 struct bio *bio;
2646 int nr;
c8b97818
CM
2647 int contig = 0;
2648 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2649 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2650 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2651
2652 if (bio_ret && *bio_ret) {
2653 bio = *bio_ret;
c8b97818
CM
2654 if (old_compressed)
2655 contig = bio->bi_sector == sector;
2656 else
f73a1c7d 2657 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2658
2659 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2660 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2661 bio_add_page(bio, page, page_size, offset) < page_size) {
2662 ret = submit_one_bio(rw, bio, mirror_num,
2663 prev_bio_flags);
79787eaa
JM
2664 if (ret < 0)
2665 return ret;
d1310b2e
CM
2666 bio = NULL;
2667 } else {
2668 return 0;
2669 }
2670 }
c8b97818
CM
2671 if (this_compressed)
2672 nr = BIO_MAX_PAGES;
2673 else
2674 nr = bio_get_nr_vecs(bdev);
2675
88f794ed 2676 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2677 if (!bio)
2678 return -ENOMEM;
70dec807 2679
c8b97818 2680 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2681 bio->bi_end_io = end_io_func;
2682 bio->bi_private = tree;
70dec807 2683
d397712b 2684 if (bio_ret)
d1310b2e 2685 *bio_ret = bio;
d397712b 2686 else
c8b97818 2687 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2688
2689 return ret;
2690}
2691
48a3b636
ES
2692static void attach_extent_buffer_page(struct extent_buffer *eb,
2693 struct page *page)
d1310b2e
CM
2694{
2695 if (!PagePrivate(page)) {
2696 SetPagePrivate(page);
d1310b2e 2697 page_cache_get(page);
4f2de97a
JB
2698 set_page_private(page, (unsigned long)eb);
2699 } else {
2700 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2701 }
2702}
2703
4f2de97a 2704void set_page_extent_mapped(struct page *page)
d1310b2e 2705{
4f2de97a
JB
2706 if (!PagePrivate(page)) {
2707 SetPagePrivate(page);
2708 page_cache_get(page);
2709 set_page_private(page, EXTENT_PAGE_PRIVATE);
2710 }
d1310b2e
CM
2711}
2712
125bac01
MX
2713static struct extent_map *
2714__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2715 u64 start, u64 len, get_extent_t *get_extent,
2716 struct extent_map **em_cached)
2717{
2718 struct extent_map *em;
2719
2720 if (em_cached && *em_cached) {
2721 em = *em_cached;
2722 if (em->in_tree && start >= em->start &&
2723 start < extent_map_end(em)) {
2724 atomic_inc(&em->refs);
2725 return em;
2726 }
2727
2728 free_extent_map(em);
2729 *em_cached = NULL;
2730 }
2731
2732 em = get_extent(inode, page, pg_offset, start, len, 0);
2733 if (em_cached && !IS_ERR_OR_NULL(em)) {
2734 BUG_ON(*em_cached);
2735 atomic_inc(&em->refs);
2736 *em_cached = em;
2737 }
2738 return em;
2739}
d1310b2e
CM
2740/*
2741 * basic readpage implementation. Locked extent state structs are inserted
2742 * into the tree that are removed when the IO is done (by the end_io
2743 * handlers)
79787eaa 2744 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2745 */
9974090b
MX
2746static int __do_readpage(struct extent_io_tree *tree,
2747 struct page *page,
2748 get_extent_t *get_extent,
125bac01 2749 struct extent_map **em_cached,
9974090b
MX
2750 struct bio **bio, int mirror_num,
2751 unsigned long *bio_flags, int rw)
d1310b2e
CM
2752{
2753 struct inode *inode = page->mapping->host;
4eee4fa4 2754 u64 start = page_offset(page);
d1310b2e
CM
2755 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2756 u64 end;
2757 u64 cur = start;
2758 u64 extent_offset;
2759 u64 last_byte = i_size_read(inode);
2760 u64 block_start;
2761 u64 cur_end;
2762 sector_t sector;
2763 struct extent_map *em;
2764 struct block_device *bdev;
2765 int ret;
2766 int nr = 0;
306e16ce 2767 size_t pg_offset = 0;
d1310b2e 2768 size_t iosize;
c8b97818 2769 size_t disk_io_size;
d1310b2e 2770 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2771 unsigned long this_bio_flag = 0;
d1310b2e
CM
2772
2773 set_page_extent_mapped(page);
2774
9974090b 2775 end = page_end;
90a887c9
DM
2776 if (!PageUptodate(page)) {
2777 if (cleancache_get_page(page) == 0) {
2778 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2779 unlock_extent(tree, start, end);
90a887c9
DM
2780 goto out;
2781 }
2782 }
2783
c8b97818
CM
2784 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2785 char *userpage;
2786 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2787
2788 if (zero_offset) {
2789 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2790 userpage = kmap_atomic(page);
c8b97818
CM
2791 memset(userpage + zero_offset, 0, iosize);
2792 flush_dcache_page(page);
7ac687d9 2793 kunmap_atomic(userpage);
c8b97818
CM
2794 }
2795 }
d1310b2e 2796 while (cur <= end) {
c8f2f24b
JB
2797 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2798
d1310b2e
CM
2799 if (cur >= last_byte) {
2800 char *userpage;
507903b8
AJ
2801 struct extent_state *cached = NULL;
2802
306e16ce 2803 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2804 userpage = kmap_atomic(page);
306e16ce 2805 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2806 flush_dcache_page(page);
7ac687d9 2807 kunmap_atomic(userpage);
d1310b2e 2808 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2809 &cached, GFP_NOFS);
2810 unlock_extent_cached(tree, cur, cur + iosize - 1,
2811 &cached, GFP_NOFS);
d1310b2e
CM
2812 break;
2813 }
125bac01
MX
2814 em = __get_extent_map(inode, page, pg_offset, cur,
2815 end - cur + 1, get_extent, em_cached);
c704005d 2816 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2817 SetPageError(page);
d0082371 2818 unlock_extent(tree, cur, end);
d1310b2e
CM
2819 break;
2820 }
d1310b2e
CM
2821 extent_offset = cur - em->start;
2822 BUG_ON(extent_map_end(em) <= cur);
2823 BUG_ON(end < cur);
2824
261507a0 2825 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2826 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2827 extent_set_compress_type(&this_bio_flag,
2828 em->compress_type);
2829 }
c8b97818 2830
d1310b2e
CM
2831 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2832 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2833 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2834 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2835 disk_io_size = em->block_len;
2836 sector = em->block_start >> 9;
2837 } else {
2838 sector = (em->block_start + extent_offset) >> 9;
2839 disk_io_size = iosize;
2840 }
d1310b2e
CM
2841 bdev = em->bdev;
2842 block_start = em->block_start;
d899e052
YZ
2843 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2844 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2845 free_extent_map(em);
2846 em = NULL;
2847
2848 /* we've found a hole, just zero and go on */
2849 if (block_start == EXTENT_MAP_HOLE) {
2850 char *userpage;
507903b8
AJ
2851 struct extent_state *cached = NULL;
2852
7ac687d9 2853 userpage = kmap_atomic(page);
306e16ce 2854 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2855 flush_dcache_page(page);
7ac687d9 2856 kunmap_atomic(userpage);
d1310b2e
CM
2857
2858 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2859 &cached, GFP_NOFS);
2860 unlock_extent_cached(tree, cur, cur + iosize - 1,
2861 &cached, GFP_NOFS);
d1310b2e 2862 cur = cur + iosize;
306e16ce 2863 pg_offset += iosize;
d1310b2e
CM
2864 continue;
2865 }
2866 /* the get_extent function already copied into the page */
9655d298
CM
2867 if (test_range_bit(tree, cur, cur_end,
2868 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2869 check_page_uptodate(tree, page);
d0082371 2870 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2871 cur = cur + iosize;
306e16ce 2872 pg_offset += iosize;
d1310b2e
CM
2873 continue;
2874 }
70dec807
CM
2875 /* we have an inline extent but it didn't get marked up
2876 * to date. Error out
2877 */
2878 if (block_start == EXTENT_MAP_INLINE) {
2879 SetPageError(page);
d0082371 2880 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2881 cur = cur + iosize;
306e16ce 2882 pg_offset += iosize;
70dec807
CM
2883 continue;
2884 }
d1310b2e 2885
c8f2f24b 2886 pnr -= page->index;
d4c7ca86 2887 ret = submit_extent_page(rw, tree, page,
306e16ce 2888 sector, disk_io_size, pg_offset,
89642229 2889 bdev, bio, pnr,
c8b97818
CM
2890 end_bio_extent_readpage, mirror_num,
2891 *bio_flags,
2892 this_bio_flag);
c8f2f24b
JB
2893 if (!ret) {
2894 nr++;
2895 *bio_flags = this_bio_flag;
2896 } else {
d1310b2e 2897 SetPageError(page);
edd33c99
JB
2898 unlock_extent(tree, cur, cur + iosize - 1);
2899 }
d1310b2e 2900 cur = cur + iosize;
306e16ce 2901 pg_offset += iosize;
d1310b2e 2902 }
90a887c9 2903out:
d1310b2e
CM
2904 if (!nr) {
2905 if (!PageError(page))
2906 SetPageUptodate(page);
2907 unlock_page(page);
2908 }
2909 return 0;
2910}
2911
9974090b
MX
2912static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2913 struct page *pages[], int nr_pages,
2914 u64 start, u64 end,
2915 get_extent_t *get_extent,
125bac01 2916 struct extent_map **em_cached,
9974090b
MX
2917 struct bio **bio, int mirror_num,
2918 unsigned long *bio_flags, int rw)
2919{
2920 struct inode *inode;
2921 struct btrfs_ordered_extent *ordered;
2922 int index;
2923
2924 inode = pages[0]->mapping->host;
2925 while (1) {
2926 lock_extent(tree, start, end);
2927 ordered = btrfs_lookup_ordered_range(inode, start,
2928 end - start + 1);
2929 if (!ordered)
2930 break;
2931 unlock_extent(tree, start, end);
2932 btrfs_start_ordered_extent(inode, ordered, 1);
2933 btrfs_put_ordered_extent(ordered);
2934 }
2935
2936 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2937 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2938 mirror_num, bio_flags, rw);
9974090b
MX
2939 page_cache_release(pages[index]);
2940 }
2941}
2942
2943static void __extent_readpages(struct extent_io_tree *tree,
2944 struct page *pages[],
2945 int nr_pages, get_extent_t *get_extent,
125bac01 2946 struct extent_map **em_cached,
9974090b
MX
2947 struct bio **bio, int mirror_num,
2948 unsigned long *bio_flags, int rw)
2949{
2950 u64 start;
2951 u64 end = 0;
2952 u64 page_start;
2953 int index;
2954 int first_index;
2955
2956 for (index = 0; index < nr_pages; index++) {
2957 page_start = page_offset(pages[index]);
2958 if (!end) {
2959 start = page_start;
2960 end = start + PAGE_CACHE_SIZE - 1;
2961 first_index = index;
2962 } else if (end + 1 == page_start) {
2963 end += PAGE_CACHE_SIZE;
2964 } else {
2965 __do_contiguous_readpages(tree, &pages[first_index],
2966 index - first_index, start,
125bac01
MX
2967 end, get_extent, em_cached,
2968 bio, mirror_num, bio_flags,
2969 rw);
9974090b
MX
2970 start = page_start;
2971 end = start + PAGE_CACHE_SIZE - 1;
2972 first_index = index;
2973 }
2974 }
2975
2976 if (end)
2977 __do_contiguous_readpages(tree, &pages[first_index],
2978 index - first_index, start,
125bac01 2979 end, get_extent, em_cached, bio,
9974090b
MX
2980 mirror_num, bio_flags, rw);
2981}
2982
2983static int __extent_read_full_page(struct extent_io_tree *tree,
2984 struct page *page,
2985 get_extent_t *get_extent,
2986 struct bio **bio, int mirror_num,
2987 unsigned long *bio_flags, int rw)
2988{
2989 struct inode *inode = page->mapping->host;
2990 struct btrfs_ordered_extent *ordered;
2991 u64 start = page_offset(page);
2992 u64 end = start + PAGE_CACHE_SIZE - 1;
2993 int ret;
2994
2995 while (1) {
2996 lock_extent(tree, start, end);
2997 ordered = btrfs_lookup_ordered_extent(inode, start);
2998 if (!ordered)
2999 break;
3000 unlock_extent(tree, start, end);
3001 btrfs_start_ordered_extent(inode, ordered, 1);
3002 btrfs_put_ordered_extent(ordered);
3003 }
3004
125bac01
MX
3005 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3006 bio_flags, rw);
9974090b
MX
3007 return ret;
3008}
3009
d1310b2e 3010int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3011 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3012{
3013 struct bio *bio = NULL;
c8b97818 3014 unsigned long bio_flags = 0;
d1310b2e
CM
3015 int ret;
3016
8ddc7d9c 3017 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3018 &bio_flags, READ);
d1310b2e 3019 if (bio)
8ddc7d9c 3020 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3021 return ret;
3022}
d1310b2e 3023
11c8349b
CM
3024static noinline void update_nr_written(struct page *page,
3025 struct writeback_control *wbc,
3026 unsigned long nr_written)
3027{
3028 wbc->nr_to_write -= nr_written;
3029 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3030 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3031 page->mapping->writeback_index = page->index + nr_written;
3032}
3033
d1310b2e
CM
3034/*
3035 * the writepage semantics are similar to regular writepage. extent
3036 * records are inserted to lock ranges in the tree, and as dirty areas
3037 * are found, they are marked writeback. Then the lock bits are removed
3038 * and the end_io handler clears the writeback ranges
3039 */
3040static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3041 void *data)
3042{
3043 struct inode *inode = page->mapping->host;
3044 struct extent_page_data *epd = data;
3045 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3046 u64 start = page_offset(page);
d1310b2e
CM
3047 u64 delalloc_start;
3048 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3049 u64 end;
3050 u64 cur = start;
3051 u64 extent_offset;
3052 u64 last_byte = i_size_read(inode);
3053 u64 block_start;
3054 u64 iosize;
3055 sector_t sector;
2c64c53d 3056 struct extent_state *cached_state = NULL;
d1310b2e
CM
3057 struct extent_map *em;
3058 struct block_device *bdev;
3059 int ret;
3060 int nr = 0;
7f3c74fb 3061 size_t pg_offset = 0;
d1310b2e
CM
3062 size_t blocksize;
3063 loff_t i_size = i_size_read(inode);
3064 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3065 u64 nr_delalloc;
3066 u64 delalloc_end;
c8b97818
CM
3067 int page_started;
3068 int compressed;
ffbd517d 3069 int write_flags;
771ed689 3070 unsigned long nr_written = 0;
9e487107 3071 bool fill_delalloc = true;
d1310b2e 3072
ffbd517d 3073 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3074 write_flags = WRITE_SYNC;
ffbd517d
CM
3075 else
3076 write_flags = WRITE;
3077
1abe9b8a 3078 trace___extent_writepage(page, inode, wbc);
3079
d1310b2e 3080 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3081
3082 ClearPageError(page);
3083
7f3c74fb 3084 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3085 if (page->index > end_index ||
7f3c74fb 3086 (page->index == end_index && !pg_offset)) {
d47992f8 3087 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3088 unlock_page(page);
3089 return 0;
3090 }
3091
3092 if (page->index == end_index) {
3093 char *userpage;
3094
7ac687d9 3095 userpage = kmap_atomic(page);
7f3c74fb
CM
3096 memset(userpage + pg_offset, 0,
3097 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3098 kunmap_atomic(userpage);
211c17f5 3099 flush_dcache_page(page);
d1310b2e 3100 }
7f3c74fb 3101 pg_offset = 0;
d1310b2e
CM
3102
3103 set_page_extent_mapped(page);
3104
9e487107
JB
3105 if (!tree->ops || !tree->ops->fill_delalloc)
3106 fill_delalloc = false;
3107
d1310b2e
CM
3108 delalloc_start = start;
3109 delalloc_end = 0;
c8b97818 3110 page_started = 0;
9e487107 3111 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3112 u64 delalloc_to_write = 0;
11c8349b
CM
3113 /*
3114 * make sure the wbc mapping index is at least updated
3115 * to this page.
3116 */
3117 update_nr_written(page, wbc, 0);
3118
d397712b 3119 while (delalloc_end < page_end) {
771ed689 3120 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3121 page,
3122 &delalloc_start,
d1310b2e
CM
3123 &delalloc_end,
3124 128 * 1024 * 1024);
771ed689
CM
3125 if (nr_delalloc == 0) {
3126 delalloc_start = delalloc_end + 1;
3127 continue;
3128 }
013bd4c3
TI
3129 ret = tree->ops->fill_delalloc(inode, page,
3130 delalloc_start,
3131 delalloc_end,
3132 &page_started,
3133 &nr_written);
79787eaa
JM
3134 /* File system has been set read-only */
3135 if (ret) {
3136 SetPageError(page);
3137 goto done;
3138 }
f85d7d6c
CM
3139 /*
3140 * delalloc_end is already one less than the total
3141 * length, so we don't subtract one from
3142 * PAGE_CACHE_SIZE
3143 */
3144 delalloc_to_write += (delalloc_end - delalloc_start +
3145 PAGE_CACHE_SIZE) >>
3146 PAGE_CACHE_SHIFT;
d1310b2e 3147 delalloc_start = delalloc_end + 1;
d1310b2e 3148 }
f85d7d6c
CM
3149 if (wbc->nr_to_write < delalloc_to_write) {
3150 int thresh = 8192;
3151
3152 if (delalloc_to_write < thresh * 2)
3153 thresh = delalloc_to_write;
3154 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3155 thresh);
3156 }
c8b97818 3157
771ed689
CM
3158 /* did the fill delalloc function already unlock and start
3159 * the IO?
3160 */
3161 if (page_started) {
3162 ret = 0;
11c8349b
CM
3163 /*
3164 * we've unlocked the page, so we can't update
3165 * the mapping's writeback index, just update
3166 * nr_to_write.
3167 */
3168 wbc->nr_to_write -= nr_written;
3169 goto done_unlocked;
771ed689 3170 }
c8b97818 3171 }
247e743c 3172 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3173 ret = tree->ops->writepage_start_hook(page, start,
3174 page_end);
87826df0
JM
3175 if (ret) {
3176 /* Fixup worker will requeue */
3177 if (ret == -EBUSY)
3178 wbc->pages_skipped++;
3179 else
3180 redirty_page_for_writepage(wbc, page);
11c8349b 3181 update_nr_written(page, wbc, nr_written);
247e743c 3182 unlock_page(page);
771ed689 3183 ret = 0;
11c8349b 3184 goto done_unlocked;
247e743c
CM
3185 }
3186 }
3187
11c8349b
CM
3188 /*
3189 * we don't want to touch the inode after unlocking the page,
3190 * so we update the mapping writeback index now
3191 */
3192 update_nr_written(page, wbc, nr_written + 1);
771ed689 3193
d1310b2e 3194 end = page_end;
d1310b2e 3195 if (last_byte <= start) {
e6dcd2dc
CM
3196 if (tree->ops && tree->ops->writepage_end_io_hook)
3197 tree->ops->writepage_end_io_hook(page, start,
3198 page_end, NULL, 1);
d1310b2e
CM
3199 goto done;
3200 }
3201
d1310b2e
CM
3202 blocksize = inode->i_sb->s_blocksize;
3203
3204 while (cur <= end) {
3205 if (cur >= last_byte) {
e6dcd2dc
CM
3206 if (tree->ops && tree->ops->writepage_end_io_hook)
3207 tree->ops->writepage_end_io_hook(page, cur,
3208 page_end, NULL, 1);
d1310b2e
CM
3209 break;
3210 }
7f3c74fb 3211 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3212 end - cur + 1, 1);
c704005d 3213 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3214 SetPageError(page);
3215 break;
3216 }
3217
3218 extent_offset = cur - em->start;
3219 BUG_ON(extent_map_end(em) <= cur);
3220 BUG_ON(end < cur);
3221 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3222 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3223 sector = (em->block_start + extent_offset) >> 9;
3224 bdev = em->bdev;
3225 block_start = em->block_start;
c8b97818 3226 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3227 free_extent_map(em);
3228 em = NULL;
3229
c8b97818
CM
3230 /*
3231 * compressed and inline extents are written through other
3232 * paths in the FS
3233 */
3234 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3235 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3236 /*
3237 * end_io notification does not happen here for
3238 * compressed extents
3239 */
3240 if (!compressed && tree->ops &&
3241 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3242 tree->ops->writepage_end_io_hook(page, cur,
3243 cur + iosize - 1,
3244 NULL, 1);
c8b97818
CM
3245 else if (compressed) {
3246 /* we don't want to end_page_writeback on
3247 * a compressed extent. this happens
3248 * elsewhere
3249 */
3250 nr++;
3251 }
3252
3253 cur += iosize;
7f3c74fb 3254 pg_offset += iosize;
d1310b2e
CM
3255 continue;
3256 }
d1310b2e
CM
3257 /* leave this out until we have a page_mkwrite call */
3258 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3259 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3260 cur = cur + iosize;
7f3c74fb 3261 pg_offset += iosize;
d1310b2e
CM
3262 continue;
3263 }
c8b97818 3264
d1310b2e
CM
3265 if (tree->ops && tree->ops->writepage_io_hook) {
3266 ret = tree->ops->writepage_io_hook(page, cur,
3267 cur + iosize - 1);
3268 } else {
3269 ret = 0;
3270 }
1259ab75 3271 if (ret) {
d1310b2e 3272 SetPageError(page);
1259ab75 3273 } else {
d1310b2e 3274 unsigned long max_nr = end_index + 1;
7f3c74fb 3275
d1310b2e
CM
3276 set_range_writeback(tree, cur, cur + iosize - 1);
3277 if (!PageWriteback(page)) {
d397712b
CM
3278 printk(KERN_ERR "btrfs warning page %lu not "
3279 "writeback, cur %llu end %llu\n",
3280 page->index, (unsigned long long)cur,
d1310b2e
CM
3281 (unsigned long long)end);
3282 }
3283
ffbd517d
CM
3284 ret = submit_extent_page(write_flags, tree, page,
3285 sector, iosize, pg_offset,
3286 bdev, &epd->bio, max_nr,
c8b97818
CM
3287 end_bio_extent_writepage,
3288 0, 0, 0);
d1310b2e
CM
3289 if (ret)
3290 SetPageError(page);
3291 }
3292 cur = cur + iosize;
7f3c74fb 3293 pg_offset += iosize;
d1310b2e
CM
3294 nr++;
3295 }
3296done:
3297 if (nr == 0) {
3298 /* make sure the mapping tag for page dirty gets cleared */
3299 set_page_writeback(page);
3300 end_page_writeback(page);
3301 }
d1310b2e 3302 unlock_page(page);
771ed689 3303
11c8349b
CM
3304done_unlocked:
3305
2c64c53d
CM
3306 /* drop our reference on any cached states */
3307 free_extent_state(cached_state);
d1310b2e
CM
3308 return 0;
3309}
3310
0b32f4bb
JB
3311static int eb_wait(void *word)
3312{
3313 io_schedule();
3314 return 0;
3315}
3316
fd8b2b61 3317void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3318{
3319 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3320 TASK_UNINTERRUPTIBLE);
3321}
3322
3323static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3324 struct btrfs_fs_info *fs_info,
3325 struct extent_page_data *epd)
3326{
3327 unsigned long i, num_pages;
3328 int flush = 0;
3329 int ret = 0;
3330
3331 if (!btrfs_try_tree_write_lock(eb)) {
3332 flush = 1;
3333 flush_write_bio(epd);
3334 btrfs_tree_lock(eb);
3335 }
3336
3337 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3338 btrfs_tree_unlock(eb);
3339 if (!epd->sync_io)
3340 return 0;
3341 if (!flush) {
3342 flush_write_bio(epd);
3343 flush = 1;
3344 }
a098d8e8
CM
3345 while (1) {
3346 wait_on_extent_buffer_writeback(eb);
3347 btrfs_tree_lock(eb);
3348 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3349 break;
0b32f4bb 3350 btrfs_tree_unlock(eb);
0b32f4bb
JB
3351 }
3352 }
3353
51561ffe
JB
3354 /*
3355 * We need to do this to prevent races in people who check if the eb is
3356 * under IO since we can end up having no IO bits set for a short period
3357 * of time.
3358 */
3359 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3360 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3361 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3362 spin_unlock(&eb->refs_lock);
0b32f4bb 3363 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3364 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3365 -eb->len,
3366 fs_info->dirty_metadata_batch);
0b32f4bb 3367 ret = 1;
51561ffe
JB
3368 } else {
3369 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3370 }
3371
3372 btrfs_tree_unlock(eb);
3373
3374 if (!ret)
3375 return ret;
3376
3377 num_pages = num_extent_pages(eb->start, eb->len);
3378 for (i = 0; i < num_pages; i++) {
3379 struct page *p = extent_buffer_page(eb, i);
3380
3381 if (!trylock_page(p)) {
3382 if (!flush) {
3383 flush_write_bio(epd);
3384 flush = 1;
3385 }
3386 lock_page(p);
3387 }
3388 }
3389
3390 return ret;
3391}
3392
3393static void end_extent_buffer_writeback(struct extent_buffer *eb)
3394{
3395 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3396 smp_mb__after_clear_bit();
3397 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3398}
3399
3400static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3401{
3402 int uptodate = err == 0;
3403 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3404 struct extent_buffer *eb;
3405 int done;
3406
3407 do {
3408 struct page *page = bvec->bv_page;
3409
3410 bvec--;
3411 eb = (struct extent_buffer *)page->private;
3412 BUG_ON(!eb);
3413 done = atomic_dec_and_test(&eb->io_pages);
3414
3415 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3416 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3417 ClearPageUptodate(page);
3418 SetPageError(page);
3419 }
3420
3421 end_page_writeback(page);
3422
3423 if (!done)
3424 continue;
3425
3426 end_extent_buffer_writeback(eb);
3427 } while (bvec >= bio->bi_io_vec);
3428
3429 bio_put(bio);
3430
3431}
3432
3433static int write_one_eb(struct extent_buffer *eb,
3434 struct btrfs_fs_info *fs_info,
3435 struct writeback_control *wbc,
3436 struct extent_page_data *epd)
3437{
3438 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3439 u64 offset = eb->start;
3440 unsigned long i, num_pages;
de0022b9 3441 unsigned long bio_flags = 0;
d4c7ca86 3442 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3443 int ret = 0;
0b32f4bb
JB
3444
3445 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3446 num_pages = num_extent_pages(eb->start, eb->len);
3447 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3448 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3449 bio_flags = EXTENT_BIO_TREE_LOG;
3450
0b32f4bb
JB
3451 for (i = 0; i < num_pages; i++) {
3452 struct page *p = extent_buffer_page(eb, i);
3453
3454 clear_page_dirty_for_io(p);
3455 set_page_writeback(p);
3456 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3457 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3458 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3459 0, epd->bio_flags, bio_flags);
3460 epd->bio_flags = bio_flags;
0b32f4bb
JB
3461 if (ret) {
3462 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3463 SetPageError(p);
3464 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3465 end_extent_buffer_writeback(eb);
3466 ret = -EIO;
3467 break;
3468 }
3469 offset += PAGE_CACHE_SIZE;
3470 update_nr_written(p, wbc, 1);
3471 unlock_page(p);
3472 }
3473
3474 if (unlikely(ret)) {
3475 for (; i < num_pages; i++) {
3476 struct page *p = extent_buffer_page(eb, i);
3477 unlock_page(p);
3478 }
3479 }
3480
3481 return ret;
3482}
3483
3484int btree_write_cache_pages(struct address_space *mapping,
3485 struct writeback_control *wbc)
3486{
3487 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3488 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3489 struct extent_buffer *eb, *prev_eb = NULL;
3490 struct extent_page_data epd = {
3491 .bio = NULL,
3492 .tree = tree,
3493 .extent_locked = 0,
3494 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3495 .bio_flags = 0,
0b32f4bb
JB
3496 };
3497 int ret = 0;
3498 int done = 0;
3499 int nr_to_write_done = 0;
3500 struct pagevec pvec;
3501 int nr_pages;
3502 pgoff_t index;
3503 pgoff_t end; /* Inclusive */
3504 int scanned = 0;
3505 int tag;
3506
3507 pagevec_init(&pvec, 0);
3508 if (wbc->range_cyclic) {
3509 index = mapping->writeback_index; /* Start from prev offset */
3510 end = -1;
3511 } else {
3512 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3513 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3514 scanned = 1;
3515 }
3516 if (wbc->sync_mode == WB_SYNC_ALL)
3517 tag = PAGECACHE_TAG_TOWRITE;
3518 else
3519 tag = PAGECACHE_TAG_DIRTY;
3520retry:
3521 if (wbc->sync_mode == WB_SYNC_ALL)
3522 tag_pages_for_writeback(mapping, index, end);
3523 while (!done && !nr_to_write_done && (index <= end) &&
3524 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3525 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3526 unsigned i;
3527
3528 scanned = 1;
3529 for (i = 0; i < nr_pages; i++) {
3530 struct page *page = pvec.pages[i];
3531
3532 if (!PagePrivate(page))
3533 continue;
3534
3535 if (!wbc->range_cyclic && page->index > end) {
3536 done = 1;
3537 break;
3538 }
3539
b5bae261
JB
3540 spin_lock(&mapping->private_lock);
3541 if (!PagePrivate(page)) {
3542 spin_unlock(&mapping->private_lock);
3543 continue;
3544 }
3545
0b32f4bb 3546 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3547
3548 /*
3549 * Shouldn't happen and normally this would be a BUG_ON
3550 * but no sense in crashing the users box for something
3551 * we can survive anyway.
3552 */
0b32f4bb 3553 if (!eb) {
b5bae261 3554 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3555 WARN_ON(1);
3556 continue;
3557 }
3558
b5bae261
JB
3559 if (eb == prev_eb) {
3560 spin_unlock(&mapping->private_lock);
0b32f4bb 3561 continue;
b5bae261 3562 }
0b32f4bb 3563
b5bae261
JB
3564 ret = atomic_inc_not_zero(&eb->refs);
3565 spin_unlock(&mapping->private_lock);
3566 if (!ret)
0b32f4bb 3567 continue;
0b32f4bb
JB
3568
3569 prev_eb = eb;
3570 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3571 if (!ret) {
3572 free_extent_buffer(eb);
3573 continue;
3574 }
3575
3576 ret = write_one_eb(eb, fs_info, wbc, &epd);
3577 if (ret) {
3578 done = 1;
3579 free_extent_buffer(eb);
3580 break;
3581 }
3582 free_extent_buffer(eb);
3583
3584 /*
3585 * the filesystem may choose to bump up nr_to_write.
3586 * We have to make sure to honor the new nr_to_write
3587 * at any time
3588 */
3589 nr_to_write_done = wbc->nr_to_write <= 0;
3590 }
3591 pagevec_release(&pvec);
3592 cond_resched();
3593 }
3594 if (!scanned && !done) {
3595 /*
3596 * We hit the last page and there is more work to be done: wrap
3597 * back to the start of the file
3598 */
3599 scanned = 1;
3600 index = 0;
3601 goto retry;
3602 }
3603 flush_write_bio(&epd);
3604 return ret;
3605}
3606
d1310b2e 3607/**
4bef0848 3608 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3609 * @mapping: address space structure to write
3610 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3611 * @writepage: function called for each page
3612 * @data: data passed to writepage function
3613 *
3614 * If a page is already under I/O, write_cache_pages() skips it, even
3615 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3616 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3617 * and msync() need to guarantee that all the data which was dirty at the time
3618 * the call was made get new I/O started against them. If wbc->sync_mode is
3619 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3620 * existing IO to complete.
3621 */
b2950863 3622static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3623 struct address_space *mapping,
3624 struct writeback_control *wbc,
d2c3f4f6
CM
3625 writepage_t writepage, void *data,
3626 void (*flush_fn)(void *))
d1310b2e 3627{
7fd1a3f7 3628 struct inode *inode = mapping->host;
d1310b2e
CM
3629 int ret = 0;
3630 int done = 0;
f85d7d6c 3631 int nr_to_write_done = 0;
d1310b2e
CM
3632 struct pagevec pvec;
3633 int nr_pages;
3634 pgoff_t index;
3635 pgoff_t end; /* Inclusive */
3636 int scanned = 0;
f7aaa06b 3637 int tag;
d1310b2e 3638
7fd1a3f7
JB
3639 /*
3640 * We have to hold onto the inode so that ordered extents can do their
3641 * work when the IO finishes. The alternative to this is failing to add
3642 * an ordered extent if the igrab() fails there and that is a huge pain
3643 * to deal with, so instead just hold onto the inode throughout the
3644 * writepages operation. If it fails here we are freeing up the inode
3645 * anyway and we'd rather not waste our time writing out stuff that is
3646 * going to be truncated anyway.
3647 */
3648 if (!igrab(inode))
3649 return 0;
3650
d1310b2e
CM
3651 pagevec_init(&pvec, 0);
3652 if (wbc->range_cyclic) {
3653 index = mapping->writeback_index; /* Start from prev offset */
3654 end = -1;
3655 } else {
3656 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3657 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3658 scanned = 1;
3659 }
f7aaa06b
JB
3660 if (wbc->sync_mode == WB_SYNC_ALL)
3661 tag = PAGECACHE_TAG_TOWRITE;
3662 else
3663 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3664retry:
f7aaa06b
JB
3665 if (wbc->sync_mode == WB_SYNC_ALL)
3666 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3667 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3668 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3669 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3670 unsigned i;
3671
3672 scanned = 1;
3673 for (i = 0; i < nr_pages; i++) {
3674 struct page *page = pvec.pages[i];
3675
3676 /*
3677 * At this point we hold neither mapping->tree_lock nor
3678 * lock on the page itself: the page may be truncated or
3679 * invalidated (changing page->mapping to NULL), or even
3680 * swizzled back from swapper_space to tmpfs file
3681 * mapping
3682 */
c8f2f24b
JB
3683 if (!trylock_page(page)) {
3684 flush_fn(data);
3685 lock_page(page);
01d658f2 3686 }
d1310b2e
CM
3687
3688 if (unlikely(page->mapping != mapping)) {
3689 unlock_page(page);
3690 continue;
3691 }
3692
3693 if (!wbc->range_cyclic && page->index > end) {
3694 done = 1;
3695 unlock_page(page);
3696 continue;
3697 }
3698
d2c3f4f6 3699 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3700 if (PageWriteback(page))
3701 flush_fn(data);
d1310b2e 3702 wait_on_page_writeback(page);
d2c3f4f6 3703 }
d1310b2e
CM
3704
3705 if (PageWriteback(page) ||
3706 !clear_page_dirty_for_io(page)) {
3707 unlock_page(page);
3708 continue;
3709 }
3710
3711 ret = (*writepage)(page, wbc, data);
3712
3713 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3714 unlock_page(page);
3715 ret = 0;
3716 }
f85d7d6c 3717 if (ret)
d1310b2e 3718 done = 1;
f85d7d6c
CM
3719
3720 /*
3721 * the filesystem may choose to bump up nr_to_write.
3722 * We have to make sure to honor the new nr_to_write
3723 * at any time
3724 */
3725 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3726 }
3727 pagevec_release(&pvec);
3728 cond_resched();
3729 }
3730 if (!scanned && !done) {
3731 /*
3732 * We hit the last page and there is more work to be done: wrap
3733 * back to the start of the file
3734 */
3735 scanned = 1;
3736 index = 0;
3737 goto retry;
3738 }
7fd1a3f7 3739 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3740 return ret;
3741}
d1310b2e 3742
ffbd517d 3743static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3744{
d2c3f4f6 3745 if (epd->bio) {
355808c2
JM
3746 int rw = WRITE;
3747 int ret;
3748
ffbd517d 3749 if (epd->sync_io)
355808c2
JM
3750 rw = WRITE_SYNC;
3751
de0022b9 3752 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3753 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3754 epd->bio = NULL;
3755 }
3756}
3757
ffbd517d
CM
3758static noinline void flush_write_bio(void *data)
3759{
3760 struct extent_page_data *epd = data;
3761 flush_epd_write_bio(epd);
3762}
3763
d1310b2e
CM
3764int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3765 get_extent_t *get_extent,
3766 struct writeback_control *wbc)
3767{
3768 int ret;
d1310b2e
CM
3769 struct extent_page_data epd = {
3770 .bio = NULL,
3771 .tree = tree,
3772 .get_extent = get_extent,
771ed689 3773 .extent_locked = 0,
ffbd517d 3774 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3775 .bio_flags = 0,
d1310b2e 3776 };
d1310b2e 3777
d1310b2e
CM
3778 ret = __extent_writepage(page, wbc, &epd);
3779
ffbd517d 3780 flush_epd_write_bio(&epd);
d1310b2e
CM
3781 return ret;
3782}
d1310b2e 3783
771ed689
CM
3784int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3785 u64 start, u64 end, get_extent_t *get_extent,
3786 int mode)
3787{
3788 int ret = 0;
3789 struct address_space *mapping = inode->i_mapping;
3790 struct page *page;
3791 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3792 PAGE_CACHE_SHIFT;
3793
3794 struct extent_page_data epd = {
3795 .bio = NULL,
3796 .tree = tree,
3797 .get_extent = get_extent,
3798 .extent_locked = 1,
ffbd517d 3799 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3800 .bio_flags = 0,
771ed689
CM
3801 };
3802 struct writeback_control wbc_writepages = {
771ed689 3803 .sync_mode = mode,
771ed689
CM
3804 .nr_to_write = nr_pages * 2,
3805 .range_start = start,
3806 .range_end = end + 1,
3807 };
3808
d397712b 3809 while (start <= end) {
771ed689
CM
3810 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3811 if (clear_page_dirty_for_io(page))
3812 ret = __extent_writepage(page, &wbc_writepages, &epd);
3813 else {
3814 if (tree->ops && tree->ops->writepage_end_io_hook)
3815 tree->ops->writepage_end_io_hook(page, start,
3816 start + PAGE_CACHE_SIZE - 1,
3817 NULL, 1);
3818 unlock_page(page);
3819 }
3820 page_cache_release(page);
3821 start += PAGE_CACHE_SIZE;
3822 }
3823
ffbd517d 3824 flush_epd_write_bio(&epd);
771ed689
CM
3825 return ret;
3826}
d1310b2e
CM
3827
3828int extent_writepages(struct extent_io_tree *tree,
3829 struct address_space *mapping,
3830 get_extent_t *get_extent,
3831 struct writeback_control *wbc)
3832{
3833 int ret = 0;
3834 struct extent_page_data epd = {
3835 .bio = NULL,
3836 .tree = tree,
3837 .get_extent = get_extent,
771ed689 3838 .extent_locked = 0,
ffbd517d 3839 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3840 .bio_flags = 0,
d1310b2e
CM
3841 };
3842
4bef0848 3843 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3844 __extent_writepage, &epd,
3845 flush_write_bio);
ffbd517d 3846 flush_epd_write_bio(&epd);
d1310b2e
CM
3847 return ret;
3848}
d1310b2e
CM
3849
3850int extent_readpages(struct extent_io_tree *tree,
3851 struct address_space *mapping,
3852 struct list_head *pages, unsigned nr_pages,
3853 get_extent_t get_extent)
3854{
3855 struct bio *bio = NULL;
3856 unsigned page_idx;
c8b97818 3857 unsigned long bio_flags = 0;
67c9684f
LB
3858 struct page *pagepool[16];
3859 struct page *page;
125bac01 3860 struct extent_map *em_cached = NULL;
67c9684f 3861 int nr = 0;
d1310b2e 3862
d1310b2e 3863 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3864 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3865
3866 prefetchw(&page->flags);
3867 list_del(&page->lru);
67c9684f 3868 if (add_to_page_cache_lru(page, mapping,
43e817a1 3869 page->index, GFP_NOFS)) {
67c9684f
LB
3870 page_cache_release(page);
3871 continue;
d1310b2e 3872 }
67c9684f
LB
3873
3874 pagepool[nr++] = page;
3875 if (nr < ARRAY_SIZE(pagepool))
3876 continue;
125bac01 3877 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3878 &bio, 0, &bio_flags, READ);
67c9684f 3879 nr = 0;
d1310b2e 3880 }
9974090b 3881 if (nr)
125bac01 3882 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3883 &bio, 0, &bio_flags, READ);
67c9684f 3884
125bac01
MX
3885 if (em_cached)
3886 free_extent_map(em_cached);
3887
d1310b2e
CM
3888 BUG_ON(!list_empty(pages));
3889 if (bio)
79787eaa 3890 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3891 return 0;
3892}
d1310b2e
CM
3893
3894/*
3895 * basic invalidatepage code, this waits on any locked or writeback
3896 * ranges corresponding to the page, and then deletes any extent state
3897 * records from the tree
3898 */
3899int extent_invalidatepage(struct extent_io_tree *tree,
3900 struct page *page, unsigned long offset)
3901{
2ac55d41 3902 struct extent_state *cached_state = NULL;
4eee4fa4 3903 u64 start = page_offset(page);
d1310b2e
CM
3904 u64 end = start + PAGE_CACHE_SIZE - 1;
3905 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3906
fda2832f 3907 start += ALIGN(offset, blocksize);
d1310b2e
CM
3908 if (start > end)
3909 return 0;
3910
d0082371 3911 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3912 wait_on_page_writeback(page);
d1310b2e 3913 clear_extent_bit(tree, start, end,
32c00aff
JB
3914 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3915 EXTENT_DO_ACCOUNTING,
2ac55d41 3916 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3917 return 0;
3918}
d1310b2e 3919
7b13b7b1
CM
3920/*
3921 * a helper for releasepage, this tests for areas of the page that
3922 * are locked or under IO and drops the related state bits if it is safe
3923 * to drop the page.
3924 */
48a3b636
ES
3925static int try_release_extent_state(struct extent_map_tree *map,
3926 struct extent_io_tree *tree,
3927 struct page *page, gfp_t mask)
7b13b7b1 3928{
4eee4fa4 3929 u64 start = page_offset(page);
7b13b7b1
CM
3930 u64 end = start + PAGE_CACHE_SIZE - 1;
3931 int ret = 1;
3932
211f90e6 3933 if (test_range_bit(tree, start, end,
8b62b72b 3934 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3935 ret = 0;
3936 else {
3937 if ((mask & GFP_NOFS) == GFP_NOFS)
3938 mask = GFP_NOFS;
11ef160f
CM
3939 /*
3940 * at this point we can safely clear everything except the
3941 * locked bit and the nodatasum bit
3942 */
e3f24cc5 3943 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3944 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3945 0, 0, NULL, mask);
e3f24cc5
CM
3946
3947 /* if clear_extent_bit failed for enomem reasons,
3948 * we can't allow the release to continue.
3949 */
3950 if (ret < 0)
3951 ret = 0;
3952 else
3953 ret = 1;
7b13b7b1
CM
3954 }
3955 return ret;
3956}
7b13b7b1 3957
d1310b2e
CM
3958/*
3959 * a helper for releasepage. As long as there are no locked extents
3960 * in the range corresponding to the page, both state records and extent
3961 * map records are removed
3962 */
3963int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3964 struct extent_io_tree *tree, struct page *page,
3965 gfp_t mask)
d1310b2e
CM
3966{
3967 struct extent_map *em;
4eee4fa4 3968 u64 start = page_offset(page);
d1310b2e 3969 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3970
70dec807
CM
3971 if ((mask & __GFP_WAIT) &&
3972 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3973 u64 len;
70dec807 3974 while (start <= end) {
39b5637f 3975 len = end - start + 1;
890871be 3976 write_lock(&map->lock);
39b5637f 3977 em = lookup_extent_mapping(map, start, len);
285190d9 3978 if (!em) {
890871be 3979 write_unlock(&map->lock);
70dec807
CM
3980 break;
3981 }
7f3c74fb
CM
3982 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3983 em->start != start) {
890871be 3984 write_unlock(&map->lock);
70dec807
CM
3985 free_extent_map(em);
3986 break;
3987 }
3988 if (!test_range_bit(tree, em->start,
3989 extent_map_end(em) - 1,
8b62b72b 3990 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3991 0, NULL)) {
70dec807
CM
3992 remove_extent_mapping(map, em);
3993 /* once for the rb tree */
3994 free_extent_map(em);
3995 }
3996 start = extent_map_end(em);
890871be 3997 write_unlock(&map->lock);
70dec807
CM
3998
3999 /* once for us */
d1310b2e
CM
4000 free_extent_map(em);
4001 }
d1310b2e 4002 }
7b13b7b1 4003 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4004}
d1310b2e 4005
ec29ed5b
CM
4006/*
4007 * helper function for fiemap, which doesn't want to see any holes.
4008 * This maps until we find something past 'last'
4009 */
4010static struct extent_map *get_extent_skip_holes(struct inode *inode,
4011 u64 offset,
4012 u64 last,
4013 get_extent_t *get_extent)
4014{
4015 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4016 struct extent_map *em;
4017 u64 len;
4018
4019 if (offset >= last)
4020 return NULL;
4021
4022 while(1) {
4023 len = last - offset;
4024 if (len == 0)
4025 break;
fda2832f 4026 len = ALIGN(len, sectorsize);
ec29ed5b 4027 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4028 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4029 return em;
4030
4031 /* if this isn't a hole return it */
4032 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4033 em->block_start != EXTENT_MAP_HOLE) {
4034 return em;
4035 }
4036
4037 /* this is a hole, advance to the next extent */
4038 offset = extent_map_end(em);
4039 free_extent_map(em);
4040 if (offset >= last)
4041 break;
4042 }
4043 return NULL;
4044}
4045
1506fcc8
YS
4046int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4047 __u64 start, __u64 len, get_extent_t *get_extent)
4048{
975f84fe 4049 int ret = 0;
1506fcc8
YS
4050 u64 off = start;
4051 u64 max = start + len;
4052 u32 flags = 0;
975f84fe
JB
4053 u32 found_type;
4054 u64 last;
ec29ed5b 4055 u64 last_for_get_extent = 0;
1506fcc8 4056 u64 disko = 0;
ec29ed5b 4057 u64 isize = i_size_read(inode);
975f84fe 4058 struct btrfs_key found_key;
1506fcc8 4059 struct extent_map *em = NULL;
2ac55d41 4060 struct extent_state *cached_state = NULL;
975f84fe
JB
4061 struct btrfs_path *path;
4062 struct btrfs_file_extent_item *item;
1506fcc8 4063 int end = 0;
ec29ed5b
CM
4064 u64 em_start = 0;
4065 u64 em_len = 0;
4066 u64 em_end = 0;
1506fcc8 4067 unsigned long emflags;
1506fcc8
YS
4068
4069 if (len == 0)
4070 return -EINVAL;
4071
975f84fe
JB
4072 path = btrfs_alloc_path();
4073 if (!path)
4074 return -ENOMEM;
4075 path->leave_spinning = 1;
4076
4d479cf0
JB
4077 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4078 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4079
ec29ed5b
CM
4080 /*
4081 * lookup the last file extent. We're not using i_size here
4082 * because there might be preallocation past i_size
4083 */
975f84fe 4084 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4085 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4086 if (ret < 0) {
4087 btrfs_free_path(path);
4088 return ret;
4089 }
4090 WARN_ON(!ret);
4091 path->slots[0]--;
4092 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4093 struct btrfs_file_extent_item);
4094 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4095 found_type = btrfs_key_type(&found_key);
4096
ec29ed5b 4097 /* No extents, but there might be delalloc bits */
33345d01 4098 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4099 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4100 /* have to trust i_size as the end */
4101 last = (u64)-1;
4102 last_for_get_extent = isize;
4103 } else {
4104 /*
4105 * remember the start of the last extent. There are a
4106 * bunch of different factors that go into the length of the
4107 * extent, so its much less complex to remember where it started
4108 */
4109 last = found_key.offset;
4110 last_for_get_extent = last + 1;
975f84fe 4111 }
975f84fe
JB
4112 btrfs_free_path(path);
4113
ec29ed5b
CM
4114 /*
4115 * we might have some extents allocated but more delalloc past those
4116 * extents. so, we trust isize unless the start of the last extent is
4117 * beyond isize
4118 */
4119 if (last < isize) {
4120 last = (u64)-1;
4121 last_for_get_extent = isize;
4122 }
4123
a52f4cd2 4124 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4125 &cached_state);
ec29ed5b 4126
4d479cf0 4127 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4128 get_extent);
1506fcc8
YS
4129 if (!em)
4130 goto out;
4131 if (IS_ERR(em)) {
4132 ret = PTR_ERR(em);
4133 goto out;
4134 }
975f84fe 4135
1506fcc8 4136 while (!end) {
b76bb701 4137 u64 offset_in_extent = 0;
ea8efc74
CM
4138
4139 /* break if the extent we found is outside the range */
4140 if (em->start >= max || extent_map_end(em) < off)
4141 break;
4142
4143 /*
4144 * get_extent may return an extent that starts before our
4145 * requested range. We have to make sure the ranges
4146 * we return to fiemap always move forward and don't
4147 * overlap, so adjust the offsets here
4148 */
4149 em_start = max(em->start, off);
1506fcc8 4150
ea8efc74
CM
4151 /*
4152 * record the offset from the start of the extent
b76bb701
JB
4153 * for adjusting the disk offset below. Only do this if the
4154 * extent isn't compressed since our in ram offset may be past
4155 * what we have actually allocated on disk.
ea8efc74 4156 */
b76bb701
JB
4157 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4158 offset_in_extent = em_start - em->start;
ec29ed5b 4159 em_end = extent_map_end(em);
ea8efc74 4160 em_len = em_end - em_start;
ec29ed5b 4161 emflags = em->flags;
1506fcc8
YS
4162 disko = 0;
4163 flags = 0;
4164
ea8efc74
CM
4165 /*
4166 * bump off for our next call to get_extent
4167 */
4168 off = extent_map_end(em);
4169 if (off >= max)
4170 end = 1;
4171
93dbfad7 4172 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4173 end = 1;
4174 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4175 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4176 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4177 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4178 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4179 flags |= (FIEMAP_EXTENT_DELALLOC |
4180 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4181 } else {
ea8efc74 4182 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4183 }
4184 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4185 flags |= FIEMAP_EXTENT_ENCODED;
4186
1506fcc8
YS
4187 free_extent_map(em);
4188 em = NULL;
ec29ed5b
CM
4189 if ((em_start >= last) || em_len == (u64)-1 ||
4190 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4191 flags |= FIEMAP_EXTENT_LAST;
4192 end = 1;
4193 }
4194
ec29ed5b
CM
4195 /* now scan forward to see if this is really the last extent. */
4196 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4197 get_extent);
4198 if (IS_ERR(em)) {
4199 ret = PTR_ERR(em);
4200 goto out;
4201 }
4202 if (!em) {
975f84fe
JB
4203 flags |= FIEMAP_EXTENT_LAST;
4204 end = 1;
4205 }
ec29ed5b
CM
4206 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4207 em_len, flags);
4208 if (ret)
4209 goto out_free;
1506fcc8
YS
4210 }
4211out_free:
4212 free_extent_map(em);
4213out:
a52f4cd2 4214 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4215 &cached_state, GFP_NOFS);
1506fcc8
YS
4216 return ret;
4217}
4218
727011e0
CM
4219static void __free_extent_buffer(struct extent_buffer *eb)
4220{
6d49ba1b 4221 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4222 kmem_cache_free(extent_buffer_cache, eb);
4223}
4224
db7f3436
JB
4225static int extent_buffer_under_io(struct extent_buffer *eb)
4226{
4227 return (atomic_read(&eb->io_pages) ||
4228 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4229 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4230}
4231
4232/*
4233 * Helper for releasing extent buffer page.
4234 */
4235static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4236 unsigned long start_idx)
4237{
4238 unsigned long index;
4239 unsigned long num_pages;
4240 struct page *page;
4241 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4242
4243 BUG_ON(extent_buffer_under_io(eb));
4244
4245 num_pages = num_extent_pages(eb->start, eb->len);
4246 index = start_idx + num_pages;
4247 if (start_idx >= index)
4248 return;
4249
4250 do {
4251 index--;
4252 page = extent_buffer_page(eb, index);
4253 if (page && mapped) {
4254 spin_lock(&page->mapping->private_lock);
4255 /*
4256 * We do this since we'll remove the pages after we've
4257 * removed the eb from the radix tree, so we could race
4258 * and have this page now attached to the new eb. So
4259 * only clear page_private if it's still connected to
4260 * this eb.
4261 */
4262 if (PagePrivate(page) &&
4263 page->private == (unsigned long)eb) {
4264 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4265 BUG_ON(PageDirty(page));
4266 BUG_ON(PageWriteback(page));
4267 /*
4268 * We need to make sure we haven't be attached
4269 * to a new eb.
4270 */
4271 ClearPagePrivate(page);
4272 set_page_private(page, 0);
4273 /* One for the page private */
4274 page_cache_release(page);
4275 }
4276 spin_unlock(&page->mapping->private_lock);
4277
4278 }
4279 if (page) {
4280 /* One for when we alloced the page */
4281 page_cache_release(page);
4282 }
4283 } while (index != start_idx);
4284}
4285
4286/*
4287 * Helper for releasing the extent buffer.
4288 */
4289static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4290{
4291 btrfs_release_extent_buffer_page(eb, 0);
4292 __free_extent_buffer(eb);
4293}
4294
d1310b2e
CM
4295static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4296 u64 start,
4297 unsigned long len,
4298 gfp_t mask)
4299{
4300 struct extent_buffer *eb = NULL;
4301
d1310b2e 4302 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4303 if (eb == NULL)
4304 return NULL;
d1310b2e
CM
4305 eb->start = start;
4306 eb->len = len;
4f2de97a 4307 eb->tree = tree;
815a51c7 4308 eb->bflags = 0;
bd681513
CM
4309 rwlock_init(&eb->lock);
4310 atomic_set(&eb->write_locks, 0);
4311 atomic_set(&eb->read_locks, 0);
4312 atomic_set(&eb->blocking_readers, 0);
4313 atomic_set(&eb->blocking_writers, 0);
4314 atomic_set(&eb->spinning_readers, 0);
4315 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4316 eb->lock_nested = 0;
bd681513
CM
4317 init_waitqueue_head(&eb->write_lock_wq);
4318 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4319
6d49ba1b
ES
4320 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4321
3083ee2e 4322 spin_lock_init(&eb->refs_lock);
d1310b2e 4323 atomic_set(&eb->refs, 1);
0b32f4bb 4324 atomic_set(&eb->io_pages, 0);
727011e0 4325
b8dae313
DS
4326 /*
4327 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4328 */
4329 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4330 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4331 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4332
4333 return eb;
4334}
4335
815a51c7
JS
4336struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4337{
4338 unsigned long i;
4339 struct page *p;
4340 struct extent_buffer *new;
4341 unsigned long num_pages = num_extent_pages(src->start, src->len);
4342
9ec72677 4343 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4344 if (new == NULL)
4345 return NULL;
4346
4347 for (i = 0; i < num_pages; i++) {
9ec72677 4348 p = alloc_page(GFP_NOFS);
db7f3436
JB
4349 if (!p) {
4350 btrfs_release_extent_buffer(new);
4351 return NULL;
4352 }
815a51c7
JS
4353 attach_extent_buffer_page(new, p);
4354 WARN_ON(PageDirty(p));
4355 SetPageUptodate(p);
4356 new->pages[i] = p;
4357 }
4358
4359 copy_extent_buffer(new, src, 0, 0, src->len);
4360 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4361 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4362
4363 return new;
4364}
4365
4366struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4367{
4368 struct extent_buffer *eb;
4369 unsigned long num_pages = num_extent_pages(0, len);
4370 unsigned long i;
4371
9ec72677 4372 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4373 if (!eb)
4374 return NULL;
4375
4376 for (i = 0; i < num_pages; i++) {
9ec72677 4377 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4378 if (!eb->pages[i])
4379 goto err;
4380 }
4381 set_extent_buffer_uptodate(eb);
4382 btrfs_set_header_nritems(eb, 0);
4383 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4384
4385 return eb;
4386err:
84167d19
SB
4387 for (; i > 0; i--)
4388 __free_page(eb->pages[i - 1]);
815a51c7
JS
4389 __free_extent_buffer(eb);
4390 return NULL;
4391}
4392
0b32f4bb
JB
4393static void check_buffer_tree_ref(struct extent_buffer *eb)
4394{
242e18c7 4395 int refs;
0b32f4bb
JB
4396 /* the ref bit is tricky. We have to make sure it is set
4397 * if we have the buffer dirty. Otherwise the
4398 * code to free a buffer can end up dropping a dirty
4399 * page
4400 *
4401 * Once the ref bit is set, it won't go away while the
4402 * buffer is dirty or in writeback, and it also won't
4403 * go away while we have the reference count on the
4404 * eb bumped.
4405 *
4406 * We can't just set the ref bit without bumping the
4407 * ref on the eb because free_extent_buffer might
4408 * see the ref bit and try to clear it. If this happens
4409 * free_extent_buffer might end up dropping our original
4410 * ref by mistake and freeing the page before we are able
4411 * to add one more ref.
4412 *
4413 * So bump the ref count first, then set the bit. If someone
4414 * beat us to it, drop the ref we added.
4415 */
242e18c7
CM
4416 refs = atomic_read(&eb->refs);
4417 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4418 return;
4419
594831c4
JB
4420 spin_lock(&eb->refs_lock);
4421 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4422 atomic_inc(&eb->refs);
594831c4 4423 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4424}
4425
5df4235e
JB
4426static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4427{
4428 unsigned long num_pages, i;
4429
0b32f4bb
JB
4430 check_buffer_tree_ref(eb);
4431
5df4235e
JB
4432 num_pages = num_extent_pages(eb->start, eb->len);
4433 for (i = 0; i < num_pages; i++) {
4434 struct page *p = extent_buffer_page(eb, i);
4435 mark_page_accessed(p);
4436 }
4437}
4438
d1310b2e 4439struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4440 u64 start, unsigned long len)
d1310b2e
CM
4441{
4442 unsigned long num_pages = num_extent_pages(start, len);
4443 unsigned long i;
4444 unsigned long index = start >> PAGE_CACHE_SHIFT;
4445 struct extent_buffer *eb;
6af118ce 4446 struct extent_buffer *exists = NULL;
d1310b2e
CM
4447 struct page *p;
4448 struct address_space *mapping = tree->mapping;
4449 int uptodate = 1;
19fe0a8b 4450 int ret;
d1310b2e 4451
19fe0a8b
MX
4452 rcu_read_lock();
4453 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4454 if (eb && atomic_inc_not_zero(&eb->refs)) {
4455 rcu_read_unlock();
5df4235e 4456 mark_extent_buffer_accessed(eb);
6af118ce
CM
4457 return eb;
4458 }
19fe0a8b 4459 rcu_read_unlock();
6af118ce 4460
ba144192 4461 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4462 if (!eb)
d1310b2e
CM
4463 return NULL;
4464
727011e0 4465 for (i = 0; i < num_pages; i++, index++) {
a6591715 4466 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4467 if (!p)
6af118ce 4468 goto free_eb;
4f2de97a
JB
4469
4470 spin_lock(&mapping->private_lock);
4471 if (PagePrivate(p)) {
4472 /*
4473 * We could have already allocated an eb for this page
4474 * and attached one so lets see if we can get a ref on
4475 * the existing eb, and if we can we know it's good and
4476 * we can just return that one, else we know we can just
4477 * overwrite page->private.
4478 */
4479 exists = (struct extent_buffer *)p->private;
4480 if (atomic_inc_not_zero(&exists->refs)) {
4481 spin_unlock(&mapping->private_lock);
4482 unlock_page(p);
17de39ac 4483 page_cache_release(p);
5df4235e 4484 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4485 goto free_eb;
4486 }
4487
0b32f4bb 4488 /*
4f2de97a
JB
4489 * Do this so attach doesn't complain and we need to
4490 * drop the ref the old guy had.
4491 */
4492 ClearPagePrivate(p);
0b32f4bb 4493 WARN_ON(PageDirty(p));
4f2de97a 4494 page_cache_release(p);
d1310b2e 4495 }
4f2de97a
JB
4496 attach_extent_buffer_page(eb, p);
4497 spin_unlock(&mapping->private_lock);
0b32f4bb 4498 WARN_ON(PageDirty(p));
d1310b2e 4499 mark_page_accessed(p);
727011e0 4500 eb->pages[i] = p;
d1310b2e
CM
4501 if (!PageUptodate(p))
4502 uptodate = 0;
eb14ab8e
CM
4503
4504 /*
4505 * see below about how we avoid a nasty race with release page
4506 * and why we unlock later
4507 */
d1310b2e
CM
4508 }
4509 if (uptodate)
b4ce94de 4510 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4511again:
19fe0a8b
MX
4512 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4513 if (ret)
4514 goto free_eb;
4515
6af118ce 4516 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4517 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4518 if (ret == -EEXIST) {
4519 exists = radix_tree_lookup(&tree->buffer,
4520 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4521 if (!atomic_inc_not_zero(&exists->refs)) {
4522 spin_unlock(&tree->buffer_lock);
4523 radix_tree_preload_end();
115391d2
JB
4524 exists = NULL;
4525 goto again;
4526 }
6af118ce 4527 spin_unlock(&tree->buffer_lock);
19fe0a8b 4528 radix_tree_preload_end();
5df4235e 4529 mark_extent_buffer_accessed(exists);
6af118ce
CM
4530 goto free_eb;
4531 }
6af118ce 4532 /* add one reference for the tree */
0b32f4bb 4533 check_buffer_tree_ref(eb);
f044ba78 4534 spin_unlock(&tree->buffer_lock);
19fe0a8b 4535 radix_tree_preload_end();
eb14ab8e
CM
4536
4537 /*
4538 * there is a race where release page may have
4539 * tried to find this extent buffer in the radix
4540 * but failed. It will tell the VM it is safe to
4541 * reclaim the, and it will clear the page private bit.
4542 * We must make sure to set the page private bit properly
4543 * after the extent buffer is in the radix tree so
4544 * it doesn't get lost
4545 */
727011e0
CM
4546 SetPageChecked(eb->pages[0]);
4547 for (i = 1; i < num_pages; i++) {
4548 p = extent_buffer_page(eb, i);
727011e0
CM
4549 ClearPageChecked(p);
4550 unlock_page(p);
4551 }
4552 unlock_page(eb->pages[0]);
d1310b2e
CM
4553 return eb;
4554
6af118ce 4555free_eb:
727011e0
CM
4556 for (i = 0; i < num_pages; i++) {
4557 if (eb->pages[i])
4558 unlock_page(eb->pages[i]);
4559 }
eb14ab8e 4560
17de39ac 4561 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4562 btrfs_release_extent_buffer(eb);
6af118ce 4563 return exists;
d1310b2e 4564}
d1310b2e
CM
4565
4566struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4567 u64 start, unsigned long len)
d1310b2e 4568{
d1310b2e 4569 struct extent_buffer *eb;
d1310b2e 4570
19fe0a8b
MX
4571 rcu_read_lock();
4572 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4573 if (eb && atomic_inc_not_zero(&eb->refs)) {
4574 rcu_read_unlock();
5df4235e 4575 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4576 return eb;
4577 }
4578 rcu_read_unlock();
0f9dd46c 4579
19fe0a8b 4580 return NULL;
d1310b2e 4581}
d1310b2e 4582
3083ee2e
JB
4583static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4584{
4585 struct extent_buffer *eb =
4586 container_of(head, struct extent_buffer, rcu_head);
4587
4588 __free_extent_buffer(eb);
4589}
4590
3083ee2e 4591/* Expects to have eb->eb_lock already held */
f7a52a40 4592static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4593{
4594 WARN_ON(atomic_read(&eb->refs) == 0);
4595 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4596 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4597 spin_unlock(&eb->refs_lock);
4598 } else {
4599 struct extent_io_tree *tree = eb->tree;
3083ee2e 4600
815a51c7 4601 spin_unlock(&eb->refs_lock);
3083ee2e 4602
815a51c7
JS
4603 spin_lock(&tree->buffer_lock);
4604 radix_tree_delete(&tree->buffer,
4605 eb->start >> PAGE_CACHE_SHIFT);
4606 spin_unlock(&tree->buffer_lock);
4607 }
3083ee2e
JB
4608
4609 /* Should be safe to release our pages at this point */
4610 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4611 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4612 return 1;
3083ee2e
JB
4613 }
4614 spin_unlock(&eb->refs_lock);
e64860aa
JB
4615
4616 return 0;
3083ee2e
JB
4617}
4618
d1310b2e
CM
4619void free_extent_buffer(struct extent_buffer *eb)
4620{
242e18c7
CM
4621 int refs;
4622 int old;
d1310b2e
CM
4623 if (!eb)
4624 return;
4625
242e18c7
CM
4626 while (1) {
4627 refs = atomic_read(&eb->refs);
4628 if (refs <= 3)
4629 break;
4630 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4631 if (old == refs)
4632 return;
4633 }
4634
3083ee2e 4635 spin_lock(&eb->refs_lock);
815a51c7
JS
4636 if (atomic_read(&eb->refs) == 2 &&
4637 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4638 atomic_dec(&eb->refs);
4639
3083ee2e
JB
4640 if (atomic_read(&eb->refs) == 2 &&
4641 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4642 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4643 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4644 atomic_dec(&eb->refs);
4645
4646 /*
4647 * I know this is terrible, but it's temporary until we stop tracking
4648 * the uptodate bits and such for the extent buffers.
4649 */
f7a52a40 4650 release_extent_buffer(eb);
3083ee2e
JB
4651}
4652
4653void free_extent_buffer_stale(struct extent_buffer *eb)
4654{
4655 if (!eb)
d1310b2e
CM
4656 return;
4657
3083ee2e
JB
4658 spin_lock(&eb->refs_lock);
4659 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4660
0b32f4bb 4661 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4662 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4663 atomic_dec(&eb->refs);
f7a52a40 4664 release_extent_buffer(eb);
d1310b2e 4665}
d1310b2e 4666
1d4284bd 4667void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4668{
d1310b2e
CM
4669 unsigned long i;
4670 unsigned long num_pages;
4671 struct page *page;
4672
d1310b2e
CM
4673 num_pages = num_extent_pages(eb->start, eb->len);
4674
4675 for (i = 0; i < num_pages; i++) {
4676 page = extent_buffer_page(eb, i);
b9473439 4677 if (!PageDirty(page))
d2c3f4f6
CM
4678 continue;
4679
a61e6f29 4680 lock_page(page);
eb14ab8e
CM
4681 WARN_ON(!PagePrivate(page));
4682
d1310b2e 4683 clear_page_dirty_for_io(page);
0ee0fda0 4684 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4685 if (!PageDirty(page)) {
4686 radix_tree_tag_clear(&page->mapping->page_tree,
4687 page_index(page),
4688 PAGECACHE_TAG_DIRTY);
4689 }
0ee0fda0 4690 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4691 ClearPageError(page);
a61e6f29 4692 unlock_page(page);
d1310b2e 4693 }
0b32f4bb 4694 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4695}
d1310b2e 4696
0b32f4bb 4697int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4698{
4699 unsigned long i;
4700 unsigned long num_pages;
b9473439 4701 int was_dirty = 0;
d1310b2e 4702
0b32f4bb
JB
4703 check_buffer_tree_ref(eb);
4704
b9473439 4705 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4706
d1310b2e 4707 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4708 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4709 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4710
b9473439 4711 for (i = 0; i < num_pages; i++)
0b32f4bb 4712 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4713 return was_dirty;
d1310b2e 4714}
d1310b2e 4715
0b32f4bb 4716int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4717{
4718 unsigned long i;
4719 struct page *page;
4720 unsigned long num_pages;
4721
b4ce94de 4722 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4723 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4724 for (i = 0; i < num_pages; i++) {
4725 page = extent_buffer_page(eb, i);
33958dc6
CM
4726 if (page)
4727 ClearPageUptodate(page);
1259ab75
CM
4728 }
4729 return 0;
4730}
4731
0b32f4bb 4732int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4733{
4734 unsigned long i;
4735 struct page *page;
4736 unsigned long num_pages;
4737
0b32f4bb 4738 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4739 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4740 for (i = 0; i < num_pages; i++) {
4741 page = extent_buffer_page(eb, i);
d1310b2e
CM
4742 SetPageUptodate(page);
4743 }
4744 return 0;
4745}
d1310b2e 4746
0b32f4bb 4747int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4748{
0b32f4bb 4749 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4750}
d1310b2e
CM
4751
4752int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4753 struct extent_buffer *eb, u64 start, int wait,
f188591e 4754 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4755{
4756 unsigned long i;
4757 unsigned long start_i;
4758 struct page *page;
4759 int err;
4760 int ret = 0;
ce9adaa5
CM
4761 int locked_pages = 0;
4762 int all_uptodate = 1;
d1310b2e 4763 unsigned long num_pages;
727011e0 4764 unsigned long num_reads = 0;
a86c12c7 4765 struct bio *bio = NULL;
c8b97818 4766 unsigned long bio_flags = 0;
a86c12c7 4767
b4ce94de 4768 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4769 return 0;
4770
d1310b2e
CM
4771 if (start) {
4772 WARN_ON(start < eb->start);
4773 start_i = (start >> PAGE_CACHE_SHIFT) -
4774 (eb->start >> PAGE_CACHE_SHIFT);
4775 } else {
4776 start_i = 0;
4777 }
4778
4779 num_pages = num_extent_pages(eb->start, eb->len);
4780 for (i = start_i; i < num_pages; i++) {
4781 page = extent_buffer_page(eb, i);
bb82ab88 4782 if (wait == WAIT_NONE) {
2db04966 4783 if (!trylock_page(page))
ce9adaa5 4784 goto unlock_exit;
d1310b2e
CM
4785 } else {
4786 lock_page(page);
4787 }
ce9adaa5 4788 locked_pages++;
727011e0
CM
4789 if (!PageUptodate(page)) {
4790 num_reads++;
ce9adaa5 4791 all_uptodate = 0;
727011e0 4792 }
ce9adaa5
CM
4793 }
4794 if (all_uptodate) {
4795 if (start_i == 0)
b4ce94de 4796 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4797 goto unlock_exit;
4798 }
4799
ea466794 4800 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4801 eb->read_mirror = 0;
0b32f4bb 4802 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4803 for (i = start_i; i < num_pages; i++) {
4804 page = extent_buffer_page(eb, i);
ce9adaa5 4805 if (!PageUptodate(page)) {
f188591e 4806 ClearPageError(page);
a86c12c7 4807 err = __extent_read_full_page(tree, page,
f188591e 4808 get_extent, &bio,
d4c7ca86
JB
4809 mirror_num, &bio_flags,
4810 READ | REQ_META);
d397712b 4811 if (err)
d1310b2e 4812 ret = err;
d1310b2e
CM
4813 } else {
4814 unlock_page(page);
4815 }
4816 }
4817
355808c2 4818 if (bio) {
d4c7ca86
JB
4819 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4820 bio_flags);
79787eaa
JM
4821 if (err)
4822 return err;
355808c2 4823 }
a86c12c7 4824
bb82ab88 4825 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4826 return ret;
d397712b 4827
d1310b2e
CM
4828 for (i = start_i; i < num_pages; i++) {
4829 page = extent_buffer_page(eb, i);
4830 wait_on_page_locked(page);
d397712b 4831 if (!PageUptodate(page))
d1310b2e 4832 ret = -EIO;
d1310b2e 4833 }
d397712b 4834
d1310b2e 4835 return ret;
ce9adaa5
CM
4836
4837unlock_exit:
4838 i = start_i;
d397712b 4839 while (locked_pages > 0) {
ce9adaa5
CM
4840 page = extent_buffer_page(eb, i);
4841 i++;
4842 unlock_page(page);
4843 locked_pages--;
4844 }
4845 return ret;
d1310b2e 4846}
d1310b2e
CM
4847
4848void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4849 unsigned long start,
4850 unsigned long len)
4851{
4852 size_t cur;
4853 size_t offset;
4854 struct page *page;
4855 char *kaddr;
4856 char *dst = (char *)dstv;
4857 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4858 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4859
4860 WARN_ON(start > eb->len);
4861 WARN_ON(start + len > eb->start + eb->len);
4862
4863 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4864
d397712b 4865 while (len > 0) {
d1310b2e 4866 page = extent_buffer_page(eb, i);
d1310b2e
CM
4867
4868 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4869 kaddr = page_address(page);
d1310b2e 4870 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4871
4872 dst += cur;
4873 len -= cur;
4874 offset = 0;
4875 i++;
4876 }
4877}
d1310b2e
CM
4878
4879int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4880 unsigned long min_len, char **map,
d1310b2e 4881 unsigned long *map_start,
a6591715 4882 unsigned long *map_len)
d1310b2e
CM
4883{
4884 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4885 char *kaddr;
4886 struct page *p;
4887 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4888 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4889 unsigned long end_i = (start_offset + start + min_len - 1) >>
4890 PAGE_CACHE_SHIFT;
4891
4892 if (i != end_i)
4893 return -EINVAL;
4894
4895 if (i == 0) {
4896 offset = start_offset;
4897 *map_start = 0;
4898 } else {
4899 offset = 0;
4900 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4901 }
d397712b 4902
d1310b2e 4903 if (start + min_len > eb->len) {
31b1a2bd 4904 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
d397712b
CM
4905 "wanted %lu %lu\n", (unsigned long long)eb->start,
4906 eb->len, start, min_len);
85026533 4907 return -EINVAL;
d1310b2e
CM
4908 }
4909
4910 p = extent_buffer_page(eb, i);
a6591715 4911 kaddr = page_address(p);
d1310b2e
CM
4912 *map = kaddr + offset;
4913 *map_len = PAGE_CACHE_SIZE - offset;
4914 return 0;
4915}
d1310b2e 4916
d1310b2e
CM
4917int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4918 unsigned long start,
4919 unsigned long len)
4920{
4921 size_t cur;
4922 size_t offset;
4923 struct page *page;
4924 char *kaddr;
4925 char *ptr = (char *)ptrv;
4926 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4927 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4928 int ret = 0;
4929
4930 WARN_ON(start > eb->len);
4931 WARN_ON(start + len > eb->start + eb->len);
4932
4933 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4934
d397712b 4935 while (len > 0) {
d1310b2e 4936 page = extent_buffer_page(eb, i);
d1310b2e
CM
4937
4938 cur = min(len, (PAGE_CACHE_SIZE - offset));
4939
a6591715 4940 kaddr = page_address(page);
d1310b2e 4941 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4942 if (ret)
4943 break;
4944
4945 ptr += cur;
4946 len -= cur;
4947 offset = 0;
4948 i++;
4949 }
4950 return ret;
4951}
d1310b2e
CM
4952
4953void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4954 unsigned long start, unsigned long len)
4955{
4956 size_t cur;
4957 size_t offset;
4958 struct page *page;
4959 char *kaddr;
4960 char *src = (char *)srcv;
4961 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4962 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4963
4964 WARN_ON(start > eb->len);
4965 WARN_ON(start + len > eb->start + eb->len);
4966
4967 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4968
d397712b 4969 while (len > 0) {
d1310b2e
CM
4970 page = extent_buffer_page(eb, i);
4971 WARN_ON(!PageUptodate(page));
4972
4973 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4974 kaddr = page_address(page);
d1310b2e 4975 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4976
4977 src += cur;
4978 len -= cur;
4979 offset = 0;
4980 i++;
4981 }
4982}
d1310b2e
CM
4983
4984void memset_extent_buffer(struct extent_buffer *eb, char c,
4985 unsigned long start, unsigned long len)
4986{
4987 size_t cur;
4988 size_t offset;
4989 struct page *page;
4990 char *kaddr;
4991 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4992 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4993
4994 WARN_ON(start > eb->len);
4995 WARN_ON(start + len > eb->start + eb->len);
4996
4997 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4998
d397712b 4999 while (len > 0) {
d1310b2e
CM
5000 page = extent_buffer_page(eb, i);
5001 WARN_ON(!PageUptodate(page));
5002
5003 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5004 kaddr = page_address(page);
d1310b2e 5005 memset(kaddr + offset, c, cur);
d1310b2e
CM
5006
5007 len -= cur;
5008 offset = 0;
5009 i++;
5010 }
5011}
d1310b2e
CM
5012
5013void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5014 unsigned long dst_offset, unsigned long src_offset,
5015 unsigned long len)
5016{
5017 u64 dst_len = dst->len;
5018 size_t cur;
5019 size_t offset;
5020 struct page *page;
5021 char *kaddr;
5022 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5023 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5024
5025 WARN_ON(src->len != dst_len);
5026
5027 offset = (start_offset + dst_offset) &
5028 ((unsigned long)PAGE_CACHE_SIZE - 1);
5029
d397712b 5030 while (len > 0) {
d1310b2e
CM
5031 page = extent_buffer_page(dst, i);
5032 WARN_ON(!PageUptodate(page));
5033
5034 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5035
a6591715 5036 kaddr = page_address(page);
d1310b2e 5037 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5038
5039 src_offset += cur;
5040 len -= cur;
5041 offset = 0;
5042 i++;
5043 }
5044}
d1310b2e
CM
5045
5046static void move_pages(struct page *dst_page, struct page *src_page,
5047 unsigned long dst_off, unsigned long src_off,
5048 unsigned long len)
5049{
a6591715 5050 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
5051 if (dst_page == src_page) {
5052 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
5053 } else {
a6591715 5054 char *src_kaddr = page_address(src_page);
d1310b2e
CM
5055 char *p = dst_kaddr + dst_off + len;
5056 char *s = src_kaddr + src_off + len;
5057
5058 while (len--)
5059 *--p = *--s;
d1310b2e 5060 }
d1310b2e
CM
5061}
5062
3387206f
ST
5063static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5064{
5065 unsigned long distance = (src > dst) ? src - dst : dst - src;
5066 return distance < len;
5067}
5068
d1310b2e
CM
5069static void copy_pages(struct page *dst_page, struct page *src_page,
5070 unsigned long dst_off, unsigned long src_off,
5071 unsigned long len)
5072{
a6591715 5073 char *dst_kaddr = page_address(dst_page);
d1310b2e 5074 char *src_kaddr;
727011e0 5075 int must_memmove = 0;
d1310b2e 5076
3387206f 5077 if (dst_page != src_page) {
a6591715 5078 src_kaddr = page_address(src_page);
3387206f 5079 } else {
d1310b2e 5080 src_kaddr = dst_kaddr;
727011e0
CM
5081 if (areas_overlap(src_off, dst_off, len))
5082 must_memmove = 1;
3387206f 5083 }
d1310b2e 5084
727011e0
CM
5085 if (must_memmove)
5086 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5087 else
5088 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5089}
5090
5091void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5092 unsigned long src_offset, unsigned long len)
5093{
5094 size_t cur;
5095 size_t dst_off_in_page;
5096 size_t src_off_in_page;
5097 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5098 unsigned long dst_i;
5099 unsigned long src_i;
5100
5101 if (src_offset + len > dst->len) {
d397712b
CM
5102 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5103 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5104 BUG_ON(1);
5105 }
5106 if (dst_offset + len > dst->len) {
d397712b
CM
5107 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5108 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5109 BUG_ON(1);
5110 }
5111
d397712b 5112 while (len > 0) {
d1310b2e
CM
5113 dst_off_in_page = (start_offset + dst_offset) &
5114 ((unsigned long)PAGE_CACHE_SIZE - 1);
5115 src_off_in_page = (start_offset + src_offset) &
5116 ((unsigned long)PAGE_CACHE_SIZE - 1);
5117
5118 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5119 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5120
5121 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5122 src_off_in_page));
5123 cur = min_t(unsigned long, cur,
5124 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5125
5126 copy_pages(extent_buffer_page(dst, dst_i),
5127 extent_buffer_page(dst, src_i),
5128 dst_off_in_page, src_off_in_page, cur);
5129
5130 src_offset += cur;
5131 dst_offset += cur;
5132 len -= cur;
5133 }
5134}
d1310b2e
CM
5135
5136void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5137 unsigned long src_offset, unsigned long len)
5138{
5139 size_t cur;
5140 size_t dst_off_in_page;
5141 size_t src_off_in_page;
5142 unsigned long dst_end = dst_offset + len - 1;
5143 unsigned long src_end = src_offset + len - 1;
5144 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5145 unsigned long dst_i;
5146 unsigned long src_i;
5147
5148 if (src_offset + len > dst->len) {
d397712b
CM
5149 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5150 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5151 BUG_ON(1);
5152 }
5153 if (dst_offset + len > dst->len) {
d397712b
CM
5154 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5155 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5156 BUG_ON(1);
5157 }
727011e0 5158 if (dst_offset < src_offset) {
d1310b2e
CM
5159 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5160 return;
5161 }
d397712b 5162 while (len > 0) {
d1310b2e
CM
5163 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5164 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5165
5166 dst_off_in_page = (start_offset + dst_end) &
5167 ((unsigned long)PAGE_CACHE_SIZE - 1);
5168 src_off_in_page = (start_offset + src_end) &
5169 ((unsigned long)PAGE_CACHE_SIZE - 1);
5170
5171 cur = min_t(unsigned long, len, src_off_in_page + 1);
5172 cur = min(cur, dst_off_in_page + 1);
5173 move_pages(extent_buffer_page(dst, dst_i),
5174 extent_buffer_page(dst, src_i),
5175 dst_off_in_page - cur + 1,
5176 src_off_in_page - cur + 1, cur);
5177
5178 dst_end -= cur;
5179 src_end -= cur;
5180 len -= cur;
5181 }
5182}
6af118ce 5183
f7a52a40 5184int try_release_extent_buffer(struct page *page)
19fe0a8b 5185{
6af118ce 5186 struct extent_buffer *eb;
6af118ce 5187
3083ee2e
JB
5188 /*
5189 * We need to make sure noboody is attaching this page to an eb right
5190 * now.
5191 */
5192 spin_lock(&page->mapping->private_lock);
5193 if (!PagePrivate(page)) {
5194 spin_unlock(&page->mapping->private_lock);
4f2de97a 5195 return 1;
45f49bce 5196 }
6af118ce 5197
3083ee2e
JB
5198 eb = (struct extent_buffer *)page->private;
5199 BUG_ON(!eb);
19fe0a8b
MX
5200
5201 /*
3083ee2e
JB
5202 * This is a little awful but should be ok, we need to make sure that
5203 * the eb doesn't disappear out from under us while we're looking at
5204 * this page.
19fe0a8b 5205 */
3083ee2e 5206 spin_lock(&eb->refs_lock);
0b32f4bb 5207 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5208 spin_unlock(&eb->refs_lock);
5209 spin_unlock(&page->mapping->private_lock);
5210 return 0;
b9473439 5211 }
3083ee2e 5212 spin_unlock(&page->mapping->private_lock);
897ca6e9 5213
19fe0a8b 5214 /*
3083ee2e
JB
5215 * If tree ref isn't set then we know the ref on this eb is a real ref,
5216 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5217 */
3083ee2e
JB
5218 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5219 spin_unlock(&eb->refs_lock);
5220 return 0;
b9473439 5221 }
19fe0a8b 5222
f7a52a40 5223 return release_extent_buffer(eb);
6af118ce 5224}