Btrfs: fix NULL pointer crash of deleting a seed device
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
efe120a0 62 printk(KERN_ERR "BTRFS: state leak: start %llu end %llu "
6d49ba1b 63 "state %lu in tree %p refs %d\n",
c1c9ff7c
GU
64 state->start, state->end, state->state, state->tree,
65 atomic_read(&state->refs));
6d49ba1b
ES
66 list_del(&state->leak_list);
67 kmem_cache_free(extent_state_cache, state);
68 }
69
70 while (!list_empty(&buffers)) {
71 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 72 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
73 "refs %d\n",
74 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
75 list_del(&eb->leak_list);
76 kmem_cache_free(extent_buffer_cache, eb);
77 }
78}
8d599ae1 79
a5dee37d
JB
80#define btrfs_debug_check_extent_io_range(tree, start, end) \
81 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 82static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 83 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 84{
a5dee37d
JB
85 struct inode *inode;
86 u64 isize;
8d599ae1 87
a5dee37d
JB
88 if (!tree->mapping)
89 return;
8d599ae1 90
a5dee37d
JB
91 inode = tree->mapping->host;
92 isize = i_size_read(inode);
8d599ae1
DS
93 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94 printk_ratelimited(KERN_DEBUG
efe120a0 95 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
c1c9ff7c 96 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
97 }
98}
6d49ba1b
ES
99#else
100#define btrfs_leak_debug_add(new, head) do {} while (0)
101#define btrfs_leak_debug_del(entry) do {} while (0)
102#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 103#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 104#endif
d1310b2e 105
d1310b2e
CM
106#define BUFFER_LRU_MAX 64
107
108struct tree_entry {
109 u64 start;
110 u64 end;
d1310b2e
CM
111 struct rb_node rb_node;
112};
113
114struct extent_page_data {
115 struct bio *bio;
116 struct extent_io_tree *tree;
117 get_extent_t *get_extent;
de0022b9 118 unsigned long bio_flags;
771ed689
CM
119
120 /* tells writepage not to lock the state bits for this range
121 * it still does the unlocking
122 */
ffbd517d
CM
123 unsigned int extent_locked:1;
124
125 /* tells the submit_bio code to use a WRITE_SYNC */
126 unsigned int sync_io:1;
d1310b2e
CM
127};
128
0b32f4bb 129static noinline void flush_write_bio(void *data);
c2d904e0
JM
130static inline struct btrfs_fs_info *
131tree_fs_info(struct extent_io_tree *tree)
132{
a5dee37d
JB
133 if (!tree->mapping)
134 return NULL;
c2d904e0
JM
135 return btrfs_sb(tree->mapping->host->i_sb);
136}
0b32f4bb 137
d1310b2e
CM
138int __init extent_io_init(void)
139{
837e1972 140 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
141 sizeof(struct extent_state), 0,
142 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
143 if (!extent_state_cache)
144 return -ENOMEM;
145
837e1972 146 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
147 sizeof(struct extent_buffer), 0,
148 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
149 if (!extent_buffer_cache)
150 goto free_state_cache;
9be3395b
CM
151
152 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
153 offsetof(struct btrfs_io_bio, bio));
154 if (!btrfs_bioset)
155 goto free_buffer_cache;
b208c2f7
DW
156
157 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
158 goto free_bioset;
159
d1310b2e
CM
160 return 0;
161
b208c2f7
DW
162free_bioset:
163 bioset_free(btrfs_bioset);
164 btrfs_bioset = NULL;
165
9be3395b
CM
166free_buffer_cache:
167 kmem_cache_destroy(extent_buffer_cache);
168 extent_buffer_cache = NULL;
169
d1310b2e
CM
170free_state_cache:
171 kmem_cache_destroy(extent_state_cache);
9be3395b 172 extent_state_cache = NULL;
d1310b2e
CM
173 return -ENOMEM;
174}
175
176void extent_io_exit(void)
177{
6d49ba1b 178 btrfs_leak_debug_check();
8c0a8537
KS
179
180 /*
181 * Make sure all delayed rcu free are flushed before we
182 * destroy caches.
183 */
184 rcu_barrier();
d1310b2e
CM
185 if (extent_state_cache)
186 kmem_cache_destroy(extent_state_cache);
187 if (extent_buffer_cache)
188 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
189 if (btrfs_bioset)
190 bioset_free(btrfs_bioset);
d1310b2e
CM
191}
192
193void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 194 struct address_space *mapping)
d1310b2e 195{
6bef4d31 196 tree->state = RB_ROOT;
d1310b2e
CM
197 tree->ops = NULL;
198 tree->dirty_bytes = 0;
70dec807 199 spin_lock_init(&tree->lock);
d1310b2e 200 tree->mapping = mapping;
d1310b2e 201}
d1310b2e 202
b2950863 203static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
204{
205 struct extent_state *state;
d1310b2e
CM
206
207 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 208 if (!state)
d1310b2e
CM
209 return state;
210 state->state = 0;
d1310b2e 211 state->private = 0;
70dec807 212 state->tree = NULL;
6d49ba1b 213 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
214 atomic_set(&state->refs, 1);
215 init_waitqueue_head(&state->wq);
143bede5 216 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
217 return state;
218}
d1310b2e 219
4845e44f 220void free_extent_state(struct extent_state *state)
d1310b2e 221{
d1310b2e
CM
222 if (!state)
223 return;
224 if (atomic_dec_and_test(&state->refs)) {
70dec807 225 WARN_ON(state->tree);
6d49ba1b 226 btrfs_leak_debug_del(&state->leak_list);
143bede5 227 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
228 kmem_cache_free(extent_state_cache, state);
229 }
230}
d1310b2e 231
f2071b21
FM
232static struct rb_node *tree_insert(struct rb_root *root,
233 struct rb_node *search_start,
234 u64 offset,
12cfbad9
FDBM
235 struct rb_node *node,
236 struct rb_node ***p_in,
237 struct rb_node **parent_in)
d1310b2e 238{
f2071b21 239 struct rb_node **p;
d397712b 240 struct rb_node *parent = NULL;
d1310b2e
CM
241 struct tree_entry *entry;
242
12cfbad9
FDBM
243 if (p_in && parent_in) {
244 p = *p_in;
245 parent = *parent_in;
246 goto do_insert;
247 }
248
f2071b21 249 p = search_start ? &search_start : &root->rb_node;
d397712b 250 while (*p) {
d1310b2e
CM
251 parent = *p;
252 entry = rb_entry(parent, struct tree_entry, rb_node);
253
254 if (offset < entry->start)
255 p = &(*p)->rb_left;
256 else if (offset > entry->end)
257 p = &(*p)->rb_right;
258 else
259 return parent;
260 }
261
12cfbad9 262do_insert:
d1310b2e
CM
263 rb_link_node(node, parent, p);
264 rb_insert_color(node, root);
265 return NULL;
266}
267
80ea96b1 268static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
269 struct rb_node **prev_ret,
270 struct rb_node **next_ret,
271 struct rb_node ***p_ret,
272 struct rb_node **parent_ret)
d1310b2e 273{
80ea96b1 274 struct rb_root *root = &tree->state;
12cfbad9 275 struct rb_node **n = &root->rb_node;
d1310b2e
CM
276 struct rb_node *prev = NULL;
277 struct rb_node *orig_prev = NULL;
278 struct tree_entry *entry;
279 struct tree_entry *prev_entry = NULL;
280
12cfbad9
FDBM
281 while (*n) {
282 prev = *n;
283 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
284 prev_entry = entry;
285
286 if (offset < entry->start)
12cfbad9 287 n = &(*n)->rb_left;
d1310b2e 288 else if (offset > entry->end)
12cfbad9 289 n = &(*n)->rb_right;
d397712b 290 else
12cfbad9 291 return *n;
d1310b2e
CM
292 }
293
12cfbad9
FDBM
294 if (p_ret)
295 *p_ret = n;
296 if (parent_ret)
297 *parent_ret = prev;
298
d1310b2e
CM
299 if (prev_ret) {
300 orig_prev = prev;
d397712b 301 while (prev && offset > prev_entry->end) {
d1310b2e
CM
302 prev = rb_next(prev);
303 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
304 }
305 *prev_ret = prev;
306 prev = orig_prev;
307 }
308
309 if (next_ret) {
310 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 311 while (prev && offset < prev_entry->start) {
d1310b2e
CM
312 prev = rb_prev(prev);
313 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
314 }
315 *next_ret = prev;
316 }
317 return NULL;
318}
319
12cfbad9
FDBM
320static inline struct rb_node *
321tree_search_for_insert(struct extent_io_tree *tree,
322 u64 offset,
323 struct rb_node ***p_ret,
324 struct rb_node **parent_ret)
d1310b2e 325{
70dec807 326 struct rb_node *prev = NULL;
d1310b2e 327 struct rb_node *ret;
70dec807 328
12cfbad9 329 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 330 if (!ret)
d1310b2e
CM
331 return prev;
332 return ret;
333}
334
12cfbad9
FDBM
335static inline struct rb_node *tree_search(struct extent_io_tree *tree,
336 u64 offset)
337{
338 return tree_search_for_insert(tree, offset, NULL, NULL);
339}
340
9ed74f2d
JB
341static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
342 struct extent_state *other)
343{
344 if (tree->ops && tree->ops->merge_extent_hook)
345 tree->ops->merge_extent_hook(tree->mapping->host, new,
346 other);
347}
348
d1310b2e
CM
349/*
350 * utility function to look for merge candidates inside a given range.
351 * Any extents with matching state are merged together into a single
352 * extent in the tree. Extents with EXTENT_IO in their state field
353 * are not merged because the end_io handlers need to be able to do
354 * operations on them without sleeping (or doing allocations/splits).
355 *
356 * This should be called with the tree lock held.
357 */
1bf85046
JM
358static void merge_state(struct extent_io_tree *tree,
359 struct extent_state *state)
d1310b2e
CM
360{
361 struct extent_state *other;
362 struct rb_node *other_node;
363
5b21f2ed 364 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 365 return;
d1310b2e
CM
366
367 other_node = rb_prev(&state->rb_node);
368 if (other_node) {
369 other = rb_entry(other_node, struct extent_state, rb_node);
370 if (other->end == state->start - 1 &&
371 other->state == state->state) {
9ed74f2d 372 merge_cb(tree, state, other);
d1310b2e 373 state->start = other->start;
70dec807 374 other->tree = NULL;
d1310b2e
CM
375 rb_erase(&other->rb_node, &tree->state);
376 free_extent_state(other);
377 }
378 }
379 other_node = rb_next(&state->rb_node);
380 if (other_node) {
381 other = rb_entry(other_node, struct extent_state, rb_node);
382 if (other->start == state->end + 1 &&
383 other->state == state->state) {
9ed74f2d 384 merge_cb(tree, state, other);
df98b6e2
JB
385 state->end = other->end;
386 other->tree = NULL;
387 rb_erase(&other->rb_node, &tree->state);
388 free_extent_state(other);
d1310b2e
CM
389 }
390 }
d1310b2e
CM
391}
392
1bf85046 393static void set_state_cb(struct extent_io_tree *tree,
41074888 394 struct extent_state *state, unsigned long *bits)
291d673e 395{
1bf85046
JM
396 if (tree->ops && tree->ops->set_bit_hook)
397 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
398}
399
400static void clear_state_cb(struct extent_io_tree *tree,
41074888 401 struct extent_state *state, unsigned long *bits)
291d673e 402{
9ed74f2d
JB
403 if (tree->ops && tree->ops->clear_bit_hook)
404 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
405}
406
3150b699 407static void set_state_bits(struct extent_io_tree *tree,
41074888 408 struct extent_state *state, unsigned long *bits);
3150b699 409
d1310b2e
CM
410/*
411 * insert an extent_state struct into the tree. 'bits' are set on the
412 * struct before it is inserted.
413 *
414 * This may return -EEXIST if the extent is already there, in which case the
415 * state struct is freed.
416 *
417 * The tree lock is not taken internally. This is a utility function and
418 * probably isn't what you want to call (see set/clear_extent_bit).
419 */
420static int insert_state(struct extent_io_tree *tree,
421 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
422 struct rb_node ***p,
423 struct rb_node **parent,
41074888 424 unsigned long *bits)
d1310b2e
CM
425{
426 struct rb_node *node;
427
31b1a2bd 428 if (end < start)
efe120a0 429 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 430 end, start);
d1310b2e
CM
431 state->start = start;
432 state->end = end;
9ed74f2d 433
3150b699
XG
434 set_state_bits(tree, state, bits);
435
f2071b21 436 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
437 if (node) {
438 struct extent_state *found;
439 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 440 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
441 "%llu %llu\n",
442 found->start, found->end, start, end);
d1310b2e
CM
443 return -EEXIST;
444 }
70dec807 445 state->tree = tree;
d1310b2e
CM
446 merge_state(tree, state);
447 return 0;
448}
449
1bf85046 450static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
451 u64 split)
452{
453 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 454 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
455}
456
d1310b2e
CM
457/*
458 * split a given extent state struct in two, inserting the preallocated
459 * struct 'prealloc' as the newly created second half. 'split' indicates an
460 * offset inside 'orig' where it should be split.
461 *
462 * Before calling,
463 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
464 * are two extent state structs in the tree:
465 * prealloc: [orig->start, split - 1]
466 * orig: [ split, orig->end ]
467 *
468 * The tree locks are not taken by this function. They need to be held
469 * by the caller.
470 */
471static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
472 struct extent_state *prealloc, u64 split)
473{
474 struct rb_node *node;
9ed74f2d
JB
475
476 split_cb(tree, orig, split);
477
d1310b2e
CM
478 prealloc->start = orig->start;
479 prealloc->end = split - 1;
480 prealloc->state = orig->state;
481 orig->start = split;
482
f2071b21
FM
483 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
484 &prealloc->rb_node, NULL, NULL);
d1310b2e 485 if (node) {
d1310b2e
CM
486 free_extent_state(prealloc);
487 return -EEXIST;
488 }
70dec807 489 prealloc->tree = tree;
d1310b2e
CM
490 return 0;
491}
492
cdc6a395
LZ
493static struct extent_state *next_state(struct extent_state *state)
494{
495 struct rb_node *next = rb_next(&state->rb_node);
496 if (next)
497 return rb_entry(next, struct extent_state, rb_node);
498 else
499 return NULL;
500}
501
d1310b2e
CM
502/*
503 * utility function to clear some bits in an extent state struct.
1b303fc0 504 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
505 *
506 * If no bits are set on the state struct after clearing things, the
507 * struct is freed and removed from the tree
508 */
cdc6a395
LZ
509static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
510 struct extent_state *state,
41074888 511 unsigned long *bits, int wake)
d1310b2e 512{
cdc6a395 513 struct extent_state *next;
41074888 514 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 515
0ca1f7ce 516 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
517 u64 range = state->end - state->start + 1;
518 WARN_ON(range > tree->dirty_bytes);
519 tree->dirty_bytes -= range;
520 }
291d673e 521 clear_state_cb(tree, state, bits);
32c00aff 522 state->state &= ~bits_to_clear;
d1310b2e
CM
523 if (wake)
524 wake_up(&state->wq);
0ca1f7ce 525 if (state->state == 0) {
cdc6a395 526 next = next_state(state);
70dec807 527 if (state->tree) {
d1310b2e 528 rb_erase(&state->rb_node, &tree->state);
70dec807 529 state->tree = NULL;
d1310b2e
CM
530 free_extent_state(state);
531 } else {
532 WARN_ON(1);
533 }
534 } else {
535 merge_state(tree, state);
cdc6a395 536 next = next_state(state);
d1310b2e 537 }
cdc6a395 538 return next;
d1310b2e
CM
539}
540
8233767a
XG
541static struct extent_state *
542alloc_extent_state_atomic(struct extent_state *prealloc)
543{
544 if (!prealloc)
545 prealloc = alloc_extent_state(GFP_ATOMIC);
546
547 return prealloc;
548}
549
48a3b636 550static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
551{
552 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
553 "Extent tree was modified by another "
554 "thread while locked.");
555}
556
d1310b2e
CM
557/*
558 * clear some bits on a range in the tree. This may require splitting
559 * or inserting elements in the tree, so the gfp mask is used to
560 * indicate which allocations or sleeping are allowed.
561 *
562 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
563 * the given range from the tree regardless of state (ie for truncate).
564 *
565 * the range [start, end] is inclusive.
566 *
6763af84 567 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
568 */
569int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 570 unsigned long bits, int wake, int delete,
2c64c53d
CM
571 struct extent_state **cached_state,
572 gfp_t mask)
d1310b2e
CM
573{
574 struct extent_state *state;
2c64c53d 575 struct extent_state *cached;
d1310b2e
CM
576 struct extent_state *prealloc = NULL;
577 struct rb_node *node;
5c939df5 578 u64 last_end;
d1310b2e 579 int err;
2ac55d41 580 int clear = 0;
d1310b2e 581
a5dee37d 582 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 583
7ee9e440
JB
584 if (bits & EXTENT_DELALLOC)
585 bits |= EXTENT_NORESERVE;
586
0ca1f7ce
YZ
587 if (delete)
588 bits |= ~EXTENT_CTLBITS;
589 bits |= EXTENT_FIRST_DELALLOC;
590
2ac55d41
JB
591 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
592 clear = 1;
d1310b2e
CM
593again:
594 if (!prealloc && (mask & __GFP_WAIT)) {
595 prealloc = alloc_extent_state(mask);
596 if (!prealloc)
597 return -ENOMEM;
598 }
599
cad321ad 600 spin_lock(&tree->lock);
2c64c53d
CM
601 if (cached_state) {
602 cached = *cached_state;
2ac55d41
JB
603
604 if (clear) {
605 *cached_state = NULL;
606 cached_state = NULL;
607 }
608
df98b6e2
JB
609 if (cached && cached->tree && cached->start <= start &&
610 cached->end > start) {
2ac55d41
JB
611 if (clear)
612 atomic_dec(&cached->refs);
2c64c53d 613 state = cached;
42daec29 614 goto hit_next;
2c64c53d 615 }
2ac55d41
JB
616 if (clear)
617 free_extent_state(cached);
2c64c53d 618 }
d1310b2e
CM
619 /*
620 * this search will find the extents that end after
621 * our range starts
622 */
80ea96b1 623 node = tree_search(tree, start);
d1310b2e
CM
624 if (!node)
625 goto out;
626 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 627hit_next:
d1310b2e
CM
628 if (state->start > end)
629 goto out;
630 WARN_ON(state->end < start);
5c939df5 631 last_end = state->end;
d1310b2e 632
0449314a 633 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
634 if (!(state->state & bits)) {
635 state = next_state(state);
0449314a 636 goto next;
cdc6a395 637 }
0449314a 638
d1310b2e
CM
639 /*
640 * | ---- desired range ---- |
641 * | state | or
642 * | ------------- state -------------- |
643 *
644 * We need to split the extent we found, and may flip
645 * bits on second half.
646 *
647 * If the extent we found extends past our range, we
648 * just split and search again. It'll get split again
649 * the next time though.
650 *
651 * If the extent we found is inside our range, we clear
652 * the desired bit on it.
653 */
654
655 if (state->start < start) {
8233767a
XG
656 prealloc = alloc_extent_state_atomic(prealloc);
657 BUG_ON(!prealloc);
d1310b2e 658 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
659 if (err)
660 extent_io_tree_panic(tree, err);
661
d1310b2e
CM
662 prealloc = NULL;
663 if (err)
664 goto out;
665 if (state->end <= end) {
d1ac6e41
LB
666 state = clear_state_bit(tree, state, &bits, wake);
667 goto next;
d1310b2e
CM
668 }
669 goto search_again;
670 }
671 /*
672 * | ---- desired range ---- |
673 * | state |
674 * We need to split the extent, and clear the bit
675 * on the first half
676 */
677 if (state->start <= end && state->end > end) {
8233767a
XG
678 prealloc = alloc_extent_state_atomic(prealloc);
679 BUG_ON(!prealloc);
d1310b2e 680 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
681 if (err)
682 extent_io_tree_panic(tree, err);
683
d1310b2e
CM
684 if (wake)
685 wake_up(&state->wq);
42daec29 686
6763af84 687 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 688
d1310b2e
CM
689 prealloc = NULL;
690 goto out;
691 }
42daec29 692
cdc6a395 693 state = clear_state_bit(tree, state, &bits, wake);
0449314a 694next:
5c939df5
YZ
695 if (last_end == (u64)-1)
696 goto out;
697 start = last_end + 1;
cdc6a395 698 if (start <= end && state && !need_resched())
692e5759 699 goto hit_next;
d1310b2e
CM
700 goto search_again;
701
702out:
cad321ad 703 spin_unlock(&tree->lock);
d1310b2e
CM
704 if (prealloc)
705 free_extent_state(prealloc);
706
6763af84 707 return 0;
d1310b2e
CM
708
709search_again:
710 if (start > end)
711 goto out;
cad321ad 712 spin_unlock(&tree->lock);
d1310b2e
CM
713 if (mask & __GFP_WAIT)
714 cond_resched();
715 goto again;
716}
d1310b2e 717
143bede5
JM
718static void wait_on_state(struct extent_io_tree *tree,
719 struct extent_state *state)
641f5219
CH
720 __releases(tree->lock)
721 __acquires(tree->lock)
d1310b2e
CM
722{
723 DEFINE_WAIT(wait);
724 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 725 spin_unlock(&tree->lock);
d1310b2e 726 schedule();
cad321ad 727 spin_lock(&tree->lock);
d1310b2e 728 finish_wait(&state->wq, &wait);
d1310b2e
CM
729}
730
731/*
732 * waits for one or more bits to clear on a range in the state tree.
733 * The range [start, end] is inclusive.
734 * The tree lock is taken by this function
735 */
41074888
DS
736static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
737 unsigned long bits)
d1310b2e
CM
738{
739 struct extent_state *state;
740 struct rb_node *node;
741
a5dee37d 742 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 743
cad321ad 744 spin_lock(&tree->lock);
d1310b2e
CM
745again:
746 while (1) {
747 /*
748 * this search will find all the extents that end after
749 * our range starts
750 */
80ea96b1 751 node = tree_search(tree, start);
c50d3e71 752process_node:
d1310b2e
CM
753 if (!node)
754 break;
755
756 state = rb_entry(node, struct extent_state, rb_node);
757
758 if (state->start > end)
759 goto out;
760
761 if (state->state & bits) {
762 start = state->start;
763 atomic_inc(&state->refs);
764 wait_on_state(tree, state);
765 free_extent_state(state);
766 goto again;
767 }
768 start = state->end + 1;
769
770 if (start > end)
771 break;
772
c50d3e71
FM
773 if (!cond_resched_lock(&tree->lock)) {
774 node = rb_next(node);
775 goto process_node;
776 }
d1310b2e
CM
777 }
778out:
cad321ad 779 spin_unlock(&tree->lock);
d1310b2e 780}
d1310b2e 781
1bf85046 782static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 783 struct extent_state *state,
41074888 784 unsigned long *bits)
d1310b2e 785{
41074888 786 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 787
1bf85046 788 set_state_cb(tree, state, bits);
0ca1f7ce 789 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
790 u64 range = state->end - state->start + 1;
791 tree->dirty_bytes += range;
792 }
0ca1f7ce 793 state->state |= bits_to_set;
d1310b2e
CM
794}
795
2c64c53d
CM
796static void cache_state(struct extent_state *state,
797 struct extent_state **cached_ptr)
798{
799 if (cached_ptr && !(*cached_ptr)) {
800 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
801 *cached_ptr = state;
802 atomic_inc(&state->refs);
803 }
804 }
805}
806
d1310b2e 807/*
1edbb734
CM
808 * set some bits on a range in the tree. This may require allocations or
809 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 810 *
1edbb734
CM
811 * If any of the exclusive bits are set, this will fail with -EEXIST if some
812 * part of the range already has the desired bits set. The start of the
813 * existing range is returned in failed_start in this case.
d1310b2e 814 *
1edbb734 815 * [start, end] is inclusive This takes the tree lock.
d1310b2e 816 */
1edbb734 817
3fbe5c02
JM
818static int __must_check
819__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
820 unsigned long bits, unsigned long exclusive_bits,
821 u64 *failed_start, struct extent_state **cached_state,
822 gfp_t mask)
d1310b2e
CM
823{
824 struct extent_state *state;
825 struct extent_state *prealloc = NULL;
826 struct rb_node *node;
12cfbad9
FDBM
827 struct rb_node **p;
828 struct rb_node *parent;
d1310b2e 829 int err = 0;
d1310b2e
CM
830 u64 last_start;
831 u64 last_end;
42daec29 832
a5dee37d 833 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 834
0ca1f7ce 835 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
836again:
837 if (!prealloc && (mask & __GFP_WAIT)) {
838 prealloc = alloc_extent_state(mask);
8233767a 839 BUG_ON(!prealloc);
d1310b2e
CM
840 }
841
cad321ad 842 spin_lock(&tree->lock);
9655d298
CM
843 if (cached_state && *cached_state) {
844 state = *cached_state;
df98b6e2
JB
845 if (state->start <= start && state->end > start &&
846 state->tree) {
9655d298
CM
847 node = &state->rb_node;
848 goto hit_next;
849 }
850 }
d1310b2e
CM
851 /*
852 * this search will find all the extents that end after
853 * our range starts.
854 */
12cfbad9 855 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 856 if (!node) {
8233767a
XG
857 prealloc = alloc_extent_state_atomic(prealloc);
858 BUG_ON(!prealloc);
12cfbad9
FDBM
859 err = insert_state(tree, prealloc, start, end,
860 &p, &parent, &bits);
c2d904e0
JM
861 if (err)
862 extent_io_tree_panic(tree, err);
863
c42ac0bc 864 cache_state(prealloc, cached_state);
d1310b2e 865 prealloc = NULL;
d1310b2e
CM
866 goto out;
867 }
d1310b2e 868 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 869hit_next:
d1310b2e
CM
870 last_start = state->start;
871 last_end = state->end;
872
873 /*
874 * | ---- desired range ---- |
875 * | state |
876 *
877 * Just lock what we found and keep going
878 */
879 if (state->start == start && state->end <= end) {
1edbb734 880 if (state->state & exclusive_bits) {
d1310b2e
CM
881 *failed_start = state->start;
882 err = -EEXIST;
883 goto out;
884 }
42daec29 885
1bf85046 886 set_state_bits(tree, state, &bits);
2c64c53d 887 cache_state(state, cached_state);
d1310b2e 888 merge_state(tree, state);
5c939df5
YZ
889 if (last_end == (u64)-1)
890 goto out;
891 start = last_end + 1;
d1ac6e41
LB
892 state = next_state(state);
893 if (start < end && state && state->start == start &&
894 !need_resched())
895 goto hit_next;
d1310b2e
CM
896 goto search_again;
897 }
898
899 /*
900 * | ---- desired range ---- |
901 * | state |
902 * or
903 * | ------------- state -------------- |
904 *
905 * We need to split the extent we found, and may flip bits on
906 * second half.
907 *
908 * If the extent we found extends past our
909 * range, we just split and search again. It'll get split
910 * again the next time though.
911 *
912 * If the extent we found is inside our range, we set the
913 * desired bit on it.
914 */
915 if (state->start < start) {
1edbb734 916 if (state->state & exclusive_bits) {
d1310b2e
CM
917 *failed_start = start;
918 err = -EEXIST;
919 goto out;
920 }
8233767a
XG
921
922 prealloc = alloc_extent_state_atomic(prealloc);
923 BUG_ON(!prealloc);
d1310b2e 924 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
925 if (err)
926 extent_io_tree_panic(tree, err);
927
d1310b2e
CM
928 prealloc = NULL;
929 if (err)
930 goto out;
931 if (state->end <= end) {
1bf85046 932 set_state_bits(tree, state, &bits);
2c64c53d 933 cache_state(state, cached_state);
d1310b2e 934 merge_state(tree, state);
5c939df5
YZ
935 if (last_end == (u64)-1)
936 goto out;
937 start = last_end + 1;
d1ac6e41
LB
938 state = next_state(state);
939 if (start < end && state && state->start == start &&
940 !need_resched())
941 goto hit_next;
d1310b2e
CM
942 }
943 goto search_again;
944 }
945 /*
946 * | ---- desired range ---- |
947 * | state | or | state |
948 *
949 * There's a hole, we need to insert something in it and
950 * ignore the extent we found.
951 */
952 if (state->start > start) {
953 u64 this_end;
954 if (end < last_start)
955 this_end = end;
956 else
d397712b 957 this_end = last_start - 1;
8233767a
XG
958
959 prealloc = alloc_extent_state_atomic(prealloc);
960 BUG_ON(!prealloc);
c7f895a2
XG
961
962 /*
963 * Avoid to free 'prealloc' if it can be merged with
964 * the later extent.
965 */
d1310b2e 966 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 967 NULL, NULL, &bits);
c2d904e0
JM
968 if (err)
969 extent_io_tree_panic(tree, err);
970
9ed74f2d
JB
971 cache_state(prealloc, cached_state);
972 prealloc = NULL;
d1310b2e
CM
973 start = this_end + 1;
974 goto search_again;
975 }
976 /*
977 * | ---- desired range ---- |
978 * | state |
979 * We need to split the extent, and set the bit
980 * on the first half
981 */
982 if (state->start <= end && state->end > end) {
1edbb734 983 if (state->state & exclusive_bits) {
d1310b2e
CM
984 *failed_start = start;
985 err = -EEXIST;
986 goto out;
987 }
8233767a
XG
988
989 prealloc = alloc_extent_state_atomic(prealloc);
990 BUG_ON(!prealloc);
d1310b2e 991 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
992 if (err)
993 extent_io_tree_panic(tree, err);
d1310b2e 994
1bf85046 995 set_state_bits(tree, prealloc, &bits);
2c64c53d 996 cache_state(prealloc, cached_state);
d1310b2e
CM
997 merge_state(tree, prealloc);
998 prealloc = NULL;
999 goto out;
1000 }
1001
1002 goto search_again;
1003
1004out:
cad321ad 1005 spin_unlock(&tree->lock);
d1310b2e
CM
1006 if (prealloc)
1007 free_extent_state(prealloc);
1008
1009 return err;
1010
1011search_again:
1012 if (start > end)
1013 goto out;
cad321ad 1014 spin_unlock(&tree->lock);
d1310b2e
CM
1015 if (mask & __GFP_WAIT)
1016 cond_resched();
1017 goto again;
1018}
d1310b2e 1019
41074888
DS
1020int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1021 unsigned long bits, u64 * failed_start,
1022 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1023{
1024 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1025 cached_state, mask);
1026}
1027
1028
462d6fac 1029/**
10983f2e
LB
1030 * convert_extent_bit - convert all bits in a given range from one bit to
1031 * another
462d6fac
JB
1032 * @tree: the io tree to search
1033 * @start: the start offset in bytes
1034 * @end: the end offset in bytes (inclusive)
1035 * @bits: the bits to set in this range
1036 * @clear_bits: the bits to clear in this range
e6138876 1037 * @cached_state: state that we're going to cache
462d6fac
JB
1038 * @mask: the allocation mask
1039 *
1040 * This will go through and set bits for the given range. If any states exist
1041 * already in this range they are set with the given bit and cleared of the
1042 * clear_bits. This is only meant to be used by things that are mergeable, ie
1043 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1044 * boundary bits like LOCK.
1045 */
1046int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1047 unsigned long bits, unsigned long clear_bits,
e6138876 1048 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1049{
1050 struct extent_state *state;
1051 struct extent_state *prealloc = NULL;
1052 struct rb_node *node;
12cfbad9
FDBM
1053 struct rb_node **p;
1054 struct rb_node *parent;
462d6fac
JB
1055 int err = 0;
1056 u64 last_start;
1057 u64 last_end;
1058
a5dee37d 1059 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1060
462d6fac
JB
1061again:
1062 if (!prealloc && (mask & __GFP_WAIT)) {
1063 prealloc = alloc_extent_state(mask);
1064 if (!prealloc)
1065 return -ENOMEM;
1066 }
1067
1068 spin_lock(&tree->lock);
e6138876
JB
1069 if (cached_state && *cached_state) {
1070 state = *cached_state;
1071 if (state->start <= start && state->end > start &&
1072 state->tree) {
1073 node = &state->rb_node;
1074 goto hit_next;
1075 }
1076 }
1077
462d6fac
JB
1078 /*
1079 * this search will find all the extents that end after
1080 * our range starts.
1081 */
12cfbad9 1082 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1083 if (!node) {
1084 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1085 if (!prealloc) {
1086 err = -ENOMEM;
1087 goto out;
1088 }
12cfbad9
FDBM
1089 err = insert_state(tree, prealloc, start, end,
1090 &p, &parent, &bits);
c2d904e0
JM
1091 if (err)
1092 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1093 cache_state(prealloc, cached_state);
1094 prealloc = NULL;
462d6fac
JB
1095 goto out;
1096 }
1097 state = rb_entry(node, struct extent_state, rb_node);
1098hit_next:
1099 last_start = state->start;
1100 last_end = state->end;
1101
1102 /*
1103 * | ---- desired range ---- |
1104 * | state |
1105 *
1106 * Just lock what we found and keep going
1107 */
1108 if (state->start == start && state->end <= end) {
462d6fac 1109 set_state_bits(tree, state, &bits);
e6138876 1110 cache_state(state, cached_state);
d1ac6e41 1111 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1112 if (last_end == (u64)-1)
1113 goto out;
462d6fac 1114 start = last_end + 1;
d1ac6e41
LB
1115 if (start < end && state && state->start == start &&
1116 !need_resched())
1117 goto hit_next;
462d6fac
JB
1118 goto search_again;
1119 }
1120
1121 /*
1122 * | ---- desired range ---- |
1123 * | state |
1124 * or
1125 * | ------------- state -------------- |
1126 *
1127 * We need to split the extent we found, and may flip bits on
1128 * second half.
1129 *
1130 * If the extent we found extends past our
1131 * range, we just split and search again. It'll get split
1132 * again the next time though.
1133 *
1134 * If the extent we found is inside our range, we set the
1135 * desired bit on it.
1136 */
1137 if (state->start < start) {
1138 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1139 if (!prealloc) {
1140 err = -ENOMEM;
1141 goto out;
1142 }
462d6fac 1143 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1144 if (err)
1145 extent_io_tree_panic(tree, err);
462d6fac
JB
1146 prealloc = NULL;
1147 if (err)
1148 goto out;
1149 if (state->end <= end) {
1150 set_state_bits(tree, state, &bits);
e6138876 1151 cache_state(state, cached_state);
d1ac6e41 1152 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1153 if (last_end == (u64)-1)
1154 goto out;
1155 start = last_end + 1;
d1ac6e41
LB
1156 if (start < end && state && state->start == start &&
1157 !need_resched())
1158 goto hit_next;
462d6fac
JB
1159 }
1160 goto search_again;
1161 }
1162 /*
1163 * | ---- desired range ---- |
1164 * | state | or | state |
1165 *
1166 * There's a hole, we need to insert something in it and
1167 * ignore the extent we found.
1168 */
1169 if (state->start > start) {
1170 u64 this_end;
1171 if (end < last_start)
1172 this_end = end;
1173 else
1174 this_end = last_start - 1;
1175
1176 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1177 if (!prealloc) {
1178 err = -ENOMEM;
1179 goto out;
1180 }
462d6fac
JB
1181
1182 /*
1183 * Avoid to free 'prealloc' if it can be merged with
1184 * the later extent.
1185 */
1186 err = insert_state(tree, prealloc, start, this_end,
12cfbad9 1187 NULL, NULL, &bits);
c2d904e0
JM
1188 if (err)
1189 extent_io_tree_panic(tree, err);
e6138876 1190 cache_state(prealloc, cached_state);
462d6fac
JB
1191 prealloc = NULL;
1192 start = this_end + 1;
1193 goto search_again;
1194 }
1195 /*
1196 * | ---- desired range ---- |
1197 * | state |
1198 * We need to split the extent, and set the bit
1199 * on the first half
1200 */
1201 if (state->start <= end && state->end > end) {
1202 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1203 if (!prealloc) {
1204 err = -ENOMEM;
1205 goto out;
1206 }
462d6fac
JB
1207
1208 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1209 if (err)
1210 extent_io_tree_panic(tree, err);
462d6fac
JB
1211
1212 set_state_bits(tree, prealloc, &bits);
e6138876 1213 cache_state(prealloc, cached_state);
462d6fac 1214 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1215 prealloc = NULL;
1216 goto out;
1217 }
1218
1219 goto search_again;
1220
1221out:
1222 spin_unlock(&tree->lock);
1223 if (prealloc)
1224 free_extent_state(prealloc);
1225
1226 return err;
1227
1228search_again:
1229 if (start > end)
1230 goto out;
1231 spin_unlock(&tree->lock);
1232 if (mask & __GFP_WAIT)
1233 cond_resched();
1234 goto again;
1235}
1236
d1310b2e
CM
1237/* wrappers around set/clear extent bit */
1238int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1239 gfp_t mask)
1240{
3fbe5c02 1241 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1242 NULL, mask);
d1310b2e 1243}
d1310b2e
CM
1244
1245int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1246 unsigned long bits, gfp_t mask)
d1310b2e 1247{
3fbe5c02 1248 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1249 NULL, mask);
d1310b2e 1250}
d1310b2e
CM
1251
1252int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1253 unsigned long bits, gfp_t mask)
d1310b2e 1254{
2c64c53d 1255 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1256}
d1310b2e
CM
1257
1258int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1259 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1260{
1261 return set_extent_bit(tree, start, end,
fee187d9 1262 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1263 NULL, cached_state, mask);
d1310b2e 1264}
d1310b2e 1265
9e8a4a8b
LB
1266int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1267 struct extent_state **cached_state, gfp_t mask)
1268{
1269 return set_extent_bit(tree, start, end,
1270 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1271 NULL, cached_state, mask);
1272}
1273
d1310b2e
CM
1274int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1275 gfp_t mask)
1276{
1277 return clear_extent_bit(tree, start, end,
32c00aff 1278 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1279 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1280}
d1310b2e
CM
1281
1282int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1283 gfp_t mask)
1284{
3fbe5c02 1285 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1286 NULL, mask);
d1310b2e 1287}
d1310b2e 1288
d1310b2e 1289int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1290 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1291{
6b67a320 1292 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1293 cached_state, mask);
d1310b2e 1294}
d1310b2e 1295
5fd02043
JB
1296int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1297 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1298{
2c64c53d 1299 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1300 cached_state, mask);
d1310b2e 1301}
d1310b2e 1302
d352ac68
CM
1303/*
1304 * either insert or lock state struct between start and end use mask to tell
1305 * us if waiting is desired.
1306 */
1edbb734 1307int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1308 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1309{
1310 int err;
1311 u64 failed_start;
1312 while (1) {
3fbe5c02
JM
1313 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1314 EXTENT_LOCKED, &failed_start,
1315 cached_state, GFP_NOFS);
d0082371 1316 if (err == -EEXIST) {
d1310b2e
CM
1317 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1318 start = failed_start;
d0082371 1319 } else
d1310b2e 1320 break;
d1310b2e
CM
1321 WARN_ON(start > end);
1322 }
1323 return err;
1324}
d1310b2e 1325
d0082371 1326int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1327{
d0082371 1328 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1329}
1330
d0082371 1331int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1332{
1333 int err;
1334 u64 failed_start;
1335
3fbe5c02
JM
1336 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1337 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1338 if (err == -EEXIST) {
1339 if (failed_start > start)
1340 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1341 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1342 return 0;
6643558d 1343 }
25179201
JB
1344 return 1;
1345}
25179201 1346
2c64c53d
CM
1347int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1348 struct extent_state **cached, gfp_t mask)
1349{
1350 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1351 mask);
1352}
1353
d0082371 1354int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1355{
2c64c53d 1356 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1357 GFP_NOFS);
d1310b2e 1358}
d1310b2e 1359
4adaa611
CM
1360int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1361{
1362 unsigned long index = start >> PAGE_CACHE_SHIFT;
1363 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1364 struct page *page;
1365
1366 while (index <= end_index) {
1367 page = find_get_page(inode->i_mapping, index);
1368 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1369 clear_page_dirty_for_io(page);
1370 page_cache_release(page);
1371 index++;
1372 }
1373 return 0;
1374}
1375
1376int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1377{
1378 unsigned long index = start >> PAGE_CACHE_SHIFT;
1379 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1380 struct page *page;
1381
1382 while (index <= end_index) {
1383 page = find_get_page(inode->i_mapping, index);
1384 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1385 account_page_redirty(page);
1386 __set_page_dirty_nobuffers(page);
1387 page_cache_release(page);
1388 index++;
1389 }
1390 return 0;
1391}
1392
d1310b2e
CM
1393/*
1394 * helper function to set both pages and extents in the tree writeback
1395 */
b2950863 1396static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1397{
1398 unsigned long index = start >> PAGE_CACHE_SHIFT;
1399 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1400 struct page *page;
1401
1402 while (index <= end_index) {
1403 page = find_get_page(tree->mapping, index);
79787eaa 1404 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1405 set_page_writeback(page);
1406 page_cache_release(page);
1407 index++;
1408 }
d1310b2e
CM
1409 return 0;
1410}
d1310b2e 1411
d352ac68
CM
1412/* find the first state struct with 'bits' set after 'start', and
1413 * return it. tree->lock must be held. NULL will returned if
1414 * nothing was found after 'start'
1415 */
48a3b636
ES
1416static struct extent_state *
1417find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1418 u64 start, unsigned long bits)
d7fc640e
CM
1419{
1420 struct rb_node *node;
1421 struct extent_state *state;
1422
1423 /*
1424 * this search will find all the extents that end after
1425 * our range starts.
1426 */
1427 node = tree_search(tree, start);
d397712b 1428 if (!node)
d7fc640e 1429 goto out;
d7fc640e 1430
d397712b 1431 while (1) {
d7fc640e 1432 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1433 if (state->end >= start && (state->state & bits))
d7fc640e 1434 return state;
d397712b 1435
d7fc640e
CM
1436 node = rb_next(node);
1437 if (!node)
1438 break;
1439 }
1440out:
1441 return NULL;
1442}
d7fc640e 1443
69261c4b
XG
1444/*
1445 * find the first offset in the io tree with 'bits' set. zero is
1446 * returned if we find something, and *start_ret and *end_ret are
1447 * set to reflect the state struct that was found.
1448 *
477d7eaf 1449 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1450 */
1451int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1452 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1453 struct extent_state **cached_state)
69261c4b
XG
1454{
1455 struct extent_state *state;
e6138876 1456 struct rb_node *n;
69261c4b
XG
1457 int ret = 1;
1458
1459 spin_lock(&tree->lock);
e6138876
JB
1460 if (cached_state && *cached_state) {
1461 state = *cached_state;
1462 if (state->end == start - 1 && state->tree) {
1463 n = rb_next(&state->rb_node);
1464 while (n) {
1465 state = rb_entry(n, struct extent_state,
1466 rb_node);
1467 if (state->state & bits)
1468 goto got_it;
1469 n = rb_next(n);
1470 }
1471 free_extent_state(*cached_state);
1472 *cached_state = NULL;
1473 goto out;
1474 }
1475 free_extent_state(*cached_state);
1476 *cached_state = NULL;
1477 }
1478
69261c4b 1479 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1480got_it:
69261c4b 1481 if (state) {
e6138876 1482 cache_state(state, cached_state);
69261c4b
XG
1483 *start_ret = state->start;
1484 *end_ret = state->end;
1485 ret = 0;
1486 }
e6138876 1487out:
69261c4b
XG
1488 spin_unlock(&tree->lock);
1489 return ret;
1490}
1491
d352ac68
CM
1492/*
1493 * find a contiguous range of bytes in the file marked as delalloc, not
1494 * more than 'max_bytes'. start and end are used to return the range,
1495 *
1496 * 1 is returned if we find something, 0 if nothing was in the tree
1497 */
c8b97818 1498static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1499 u64 *start, u64 *end, u64 max_bytes,
1500 struct extent_state **cached_state)
d1310b2e
CM
1501{
1502 struct rb_node *node;
1503 struct extent_state *state;
1504 u64 cur_start = *start;
1505 u64 found = 0;
1506 u64 total_bytes = 0;
1507
cad321ad 1508 spin_lock(&tree->lock);
c8b97818 1509
d1310b2e
CM
1510 /*
1511 * this search will find all the extents that end after
1512 * our range starts.
1513 */
80ea96b1 1514 node = tree_search(tree, cur_start);
2b114d1d 1515 if (!node) {
3b951516
CM
1516 if (!found)
1517 *end = (u64)-1;
d1310b2e
CM
1518 goto out;
1519 }
1520
d397712b 1521 while (1) {
d1310b2e 1522 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1523 if (found && (state->start != cur_start ||
1524 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1525 goto out;
1526 }
1527 if (!(state->state & EXTENT_DELALLOC)) {
1528 if (!found)
1529 *end = state->end;
1530 goto out;
1531 }
c2a128d2 1532 if (!found) {
d1310b2e 1533 *start = state->start;
c2a128d2
JB
1534 *cached_state = state;
1535 atomic_inc(&state->refs);
1536 }
d1310b2e
CM
1537 found++;
1538 *end = state->end;
1539 cur_start = state->end + 1;
1540 node = rb_next(node);
d1310b2e 1541 total_bytes += state->end - state->start + 1;
7bf811a5 1542 if (total_bytes >= max_bytes)
573aecaf 1543 break;
573aecaf 1544 if (!node)
d1310b2e
CM
1545 break;
1546 }
1547out:
cad321ad 1548 spin_unlock(&tree->lock);
d1310b2e
CM
1549 return found;
1550}
1551
143bede5
JM
1552static noinline void __unlock_for_delalloc(struct inode *inode,
1553 struct page *locked_page,
1554 u64 start, u64 end)
c8b97818
CM
1555{
1556 int ret;
1557 struct page *pages[16];
1558 unsigned long index = start >> PAGE_CACHE_SHIFT;
1559 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1560 unsigned long nr_pages = end_index - index + 1;
1561 int i;
1562
1563 if (index == locked_page->index && end_index == index)
143bede5 1564 return;
c8b97818 1565
d397712b 1566 while (nr_pages > 0) {
c8b97818 1567 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1568 min_t(unsigned long, nr_pages,
1569 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1570 for (i = 0; i < ret; i++) {
1571 if (pages[i] != locked_page)
1572 unlock_page(pages[i]);
1573 page_cache_release(pages[i]);
1574 }
1575 nr_pages -= ret;
1576 index += ret;
1577 cond_resched();
1578 }
c8b97818
CM
1579}
1580
1581static noinline int lock_delalloc_pages(struct inode *inode,
1582 struct page *locked_page,
1583 u64 delalloc_start,
1584 u64 delalloc_end)
1585{
1586 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1587 unsigned long start_index = index;
1588 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1589 unsigned long pages_locked = 0;
1590 struct page *pages[16];
1591 unsigned long nrpages;
1592 int ret;
1593 int i;
1594
1595 /* the caller is responsible for locking the start index */
1596 if (index == locked_page->index && index == end_index)
1597 return 0;
1598
1599 /* skip the page at the start index */
1600 nrpages = end_index - index + 1;
d397712b 1601 while (nrpages > 0) {
c8b97818 1602 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1603 min_t(unsigned long,
1604 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1605 if (ret == 0) {
1606 ret = -EAGAIN;
1607 goto done;
1608 }
1609 /* now we have an array of pages, lock them all */
1610 for (i = 0; i < ret; i++) {
1611 /*
1612 * the caller is taking responsibility for
1613 * locked_page
1614 */
771ed689 1615 if (pages[i] != locked_page) {
c8b97818 1616 lock_page(pages[i]);
f2b1c41c
CM
1617 if (!PageDirty(pages[i]) ||
1618 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1619 ret = -EAGAIN;
1620 unlock_page(pages[i]);
1621 page_cache_release(pages[i]);
1622 goto done;
1623 }
1624 }
c8b97818 1625 page_cache_release(pages[i]);
771ed689 1626 pages_locked++;
c8b97818 1627 }
c8b97818
CM
1628 nrpages -= ret;
1629 index += ret;
1630 cond_resched();
1631 }
1632 ret = 0;
1633done:
1634 if (ret && pages_locked) {
1635 __unlock_for_delalloc(inode, locked_page,
1636 delalloc_start,
1637 ((u64)(start_index + pages_locked - 1)) <<
1638 PAGE_CACHE_SHIFT);
1639 }
1640 return ret;
1641}
1642
1643/*
1644 * find a contiguous range of bytes in the file marked as delalloc, not
1645 * more than 'max_bytes'. start and end are used to return the range,
1646 *
1647 * 1 is returned if we find something, 0 if nothing was in the tree
1648 */
294e30fe
JB
1649STATIC u64 find_lock_delalloc_range(struct inode *inode,
1650 struct extent_io_tree *tree,
1651 struct page *locked_page, u64 *start,
1652 u64 *end, u64 max_bytes)
c8b97818
CM
1653{
1654 u64 delalloc_start;
1655 u64 delalloc_end;
1656 u64 found;
9655d298 1657 struct extent_state *cached_state = NULL;
c8b97818
CM
1658 int ret;
1659 int loops = 0;
1660
1661again:
1662 /* step one, find a bunch of delalloc bytes starting at start */
1663 delalloc_start = *start;
1664 delalloc_end = 0;
1665 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1666 max_bytes, &cached_state);
70b99e69 1667 if (!found || delalloc_end <= *start) {
c8b97818
CM
1668 *start = delalloc_start;
1669 *end = delalloc_end;
c2a128d2 1670 free_extent_state(cached_state);
385fe0be 1671 return 0;
c8b97818
CM
1672 }
1673
70b99e69
CM
1674 /*
1675 * start comes from the offset of locked_page. We have to lock
1676 * pages in order, so we can't process delalloc bytes before
1677 * locked_page
1678 */
d397712b 1679 if (delalloc_start < *start)
70b99e69 1680 delalloc_start = *start;
70b99e69 1681
c8b97818
CM
1682 /*
1683 * make sure to limit the number of pages we try to lock down
c8b97818 1684 */
7bf811a5
JB
1685 if (delalloc_end + 1 - delalloc_start > max_bytes)
1686 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1687
c8b97818
CM
1688 /* step two, lock all the pages after the page that has start */
1689 ret = lock_delalloc_pages(inode, locked_page,
1690 delalloc_start, delalloc_end);
1691 if (ret == -EAGAIN) {
1692 /* some of the pages are gone, lets avoid looping by
1693 * shortening the size of the delalloc range we're searching
1694 */
9655d298 1695 free_extent_state(cached_state);
c8b97818 1696 if (!loops) {
7bf811a5 1697 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1698 loops = 1;
1699 goto again;
1700 } else {
1701 found = 0;
1702 goto out_failed;
1703 }
1704 }
79787eaa 1705 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1706
1707 /* step three, lock the state bits for the whole range */
d0082371 1708 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1709
1710 /* then test to make sure it is all still delalloc */
1711 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1712 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1713 if (!ret) {
9655d298
CM
1714 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1715 &cached_state, GFP_NOFS);
c8b97818
CM
1716 __unlock_for_delalloc(inode, locked_page,
1717 delalloc_start, delalloc_end);
1718 cond_resched();
1719 goto again;
1720 }
9655d298 1721 free_extent_state(cached_state);
c8b97818
CM
1722 *start = delalloc_start;
1723 *end = delalloc_end;
1724out_failed:
1725 return found;
1726}
1727
c2790a2e
JB
1728int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1729 struct page *locked_page,
1730 unsigned long clear_bits,
1731 unsigned long page_ops)
c8b97818 1732{
c2790a2e 1733 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1734 int ret;
1735 struct page *pages[16];
1736 unsigned long index = start >> PAGE_CACHE_SHIFT;
1737 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1738 unsigned long nr_pages = end_index - index + 1;
1739 int i;
771ed689 1740
2c64c53d 1741 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1742 if (page_ops == 0)
771ed689 1743 return 0;
c8b97818 1744
d397712b 1745 while (nr_pages > 0) {
c8b97818 1746 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1747 min_t(unsigned long,
1748 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1749 for (i = 0; i < ret; i++) {
8b62b72b 1750
c2790a2e 1751 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1752 SetPagePrivate2(pages[i]);
1753
c8b97818
CM
1754 if (pages[i] == locked_page) {
1755 page_cache_release(pages[i]);
1756 continue;
1757 }
c2790a2e 1758 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1759 clear_page_dirty_for_io(pages[i]);
c2790a2e 1760 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1761 set_page_writeback(pages[i]);
c2790a2e 1762 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1763 end_page_writeback(pages[i]);
c2790a2e 1764 if (page_ops & PAGE_UNLOCK)
771ed689 1765 unlock_page(pages[i]);
c8b97818
CM
1766 page_cache_release(pages[i]);
1767 }
1768 nr_pages -= ret;
1769 index += ret;
1770 cond_resched();
1771 }
1772 return 0;
1773}
c8b97818 1774
d352ac68
CM
1775/*
1776 * count the number of bytes in the tree that have a given bit(s)
1777 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1778 * cached. The total number found is returned.
1779 */
d1310b2e
CM
1780u64 count_range_bits(struct extent_io_tree *tree,
1781 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1782 unsigned long bits, int contig)
d1310b2e
CM
1783{
1784 struct rb_node *node;
1785 struct extent_state *state;
1786 u64 cur_start = *start;
1787 u64 total_bytes = 0;
ec29ed5b 1788 u64 last = 0;
d1310b2e
CM
1789 int found = 0;
1790
fae7f21c 1791 if (WARN_ON(search_end <= cur_start))
d1310b2e 1792 return 0;
d1310b2e 1793
cad321ad 1794 spin_lock(&tree->lock);
d1310b2e
CM
1795 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1796 total_bytes = tree->dirty_bytes;
1797 goto out;
1798 }
1799 /*
1800 * this search will find all the extents that end after
1801 * our range starts.
1802 */
80ea96b1 1803 node = tree_search(tree, cur_start);
d397712b 1804 if (!node)
d1310b2e 1805 goto out;
d1310b2e 1806
d397712b 1807 while (1) {
d1310b2e
CM
1808 state = rb_entry(node, struct extent_state, rb_node);
1809 if (state->start > search_end)
1810 break;
ec29ed5b
CM
1811 if (contig && found && state->start > last + 1)
1812 break;
1813 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1814 total_bytes += min(search_end, state->end) + 1 -
1815 max(cur_start, state->start);
1816 if (total_bytes >= max_bytes)
1817 break;
1818 if (!found) {
af60bed2 1819 *start = max(cur_start, state->start);
d1310b2e
CM
1820 found = 1;
1821 }
ec29ed5b
CM
1822 last = state->end;
1823 } else if (contig && found) {
1824 break;
d1310b2e
CM
1825 }
1826 node = rb_next(node);
1827 if (!node)
1828 break;
1829 }
1830out:
cad321ad 1831 spin_unlock(&tree->lock);
d1310b2e
CM
1832 return total_bytes;
1833}
b2950863 1834
d352ac68
CM
1835/*
1836 * set the private field for a given byte offset in the tree. If there isn't
1837 * an extent_state there already, this does nothing.
1838 */
171170c1 1839static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1840{
1841 struct rb_node *node;
1842 struct extent_state *state;
1843 int ret = 0;
1844
cad321ad 1845 spin_lock(&tree->lock);
d1310b2e
CM
1846 /*
1847 * this search will find all the extents that end after
1848 * our range starts.
1849 */
80ea96b1 1850 node = tree_search(tree, start);
2b114d1d 1851 if (!node) {
d1310b2e
CM
1852 ret = -ENOENT;
1853 goto out;
1854 }
1855 state = rb_entry(node, struct extent_state, rb_node);
1856 if (state->start != start) {
1857 ret = -ENOENT;
1858 goto out;
1859 }
1860 state->private = private;
1861out:
cad321ad 1862 spin_unlock(&tree->lock);
d1310b2e
CM
1863 return ret;
1864}
1865
1866int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1867{
1868 struct rb_node *node;
1869 struct extent_state *state;
1870 int ret = 0;
1871
cad321ad 1872 spin_lock(&tree->lock);
d1310b2e
CM
1873 /*
1874 * this search will find all the extents that end after
1875 * our range starts.
1876 */
80ea96b1 1877 node = tree_search(tree, start);
2b114d1d 1878 if (!node) {
d1310b2e
CM
1879 ret = -ENOENT;
1880 goto out;
1881 }
1882 state = rb_entry(node, struct extent_state, rb_node);
1883 if (state->start != start) {
1884 ret = -ENOENT;
1885 goto out;
1886 }
1887 *private = state->private;
1888out:
cad321ad 1889 spin_unlock(&tree->lock);
d1310b2e
CM
1890 return ret;
1891}
1892
1893/*
1894 * searches a range in the state tree for a given mask.
70dec807 1895 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1896 * has the bits set. Otherwise, 1 is returned if any bit in the
1897 * range is found set.
1898 */
1899int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1900 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1901{
1902 struct extent_state *state = NULL;
1903 struct rb_node *node;
1904 int bitset = 0;
d1310b2e 1905
cad321ad 1906 spin_lock(&tree->lock);
df98b6e2
JB
1907 if (cached && cached->tree && cached->start <= start &&
1908 cached->end > start)
9655d298
CM
1909 node = &cached->rb_node;
1910 else
1911 node = tree_search(tree, start);
d1310b2e
CM
1912 while (node && start <= end) {
1913 state = rb_entry(node, struct extent_state, rb_node);
1914
1915 if (filled && state->start > start) {
1916 bitset = 0;
1917 break;
1918 }
1919
1920 if (state->start > end)
1921 break;
1922
1923 if (state->state & bits) {
1924 bitset = 1;
1925 if (!filled)
1926 break;
1927 } else if (filled) {
1928 bitset = 0;
1929 break;
1930 }
46562cec
CM
1931
1932 if (state->end == (u64)-1)
1933 break;
1934
d1310b2e
CM
1935 start = state->end + 1;
1936 if (start > end)
1937 break;
1938 node = rb_next(node);
1939 if (!node) {
1940 if (filled)
1941 bitset = 0;
1942 break;
1943 }
1944 }
cad321ad 1945 spin_unlock(&tree->lock);
d1310b2e
CM
1946 return bitset;
1947}
d1310b2e
CM
1948
1949/*
1950 * helper function to set a given page up to date if all the
1951 * extents in the tree for that page are up to date
1952 */
143bede5 1953static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1954{
4eee4fa4 1955 u64 start = page_offset(page);
d1310b2e 1956 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1957 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1958 SetPageUptodate(page);
d1310b2e
CM
1959}
1960
4a54c8c1
JS
1961/*
1962 * When IO fails, either with EIO or csum verification fails, we
1963 * try other mirrors that might have a good copy of the data. This
1964 * io_failure_record is used to record state as we go through all the
1965 * mirrors. If another mirror has good data, the page is set up to date
1966 * and things continue. If a good mirror can't be found, the original
1967 * bio end_io callback is called to indicate things have failed.
1968 */
1969struct io_failure_record {
1970 struct page *page;
1971 u64 start;
1972 u64 len;
1973 u64 logical;
1974 unsigned long bio_flags;
1975 int this_mirror;
1976 int failed_mirror;
1977 int in_validation;
1978};
1979
1980static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1981 int did_repair)
1982{
1983 int ret;
1984 int err = 0;
1985 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1986
1987 set_state_private(failure_tree, rec->start, 0);
1988 ret = clear_extent_bits(failure_tree, rec->start,
1989 rec->start + rec->len - 1,
1990 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1991 if (ret)
1992 err = ret;
1993
53b381b3
DW
1994 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1995 rec->start + rec->len - 1,
1996 EXTENT_DAMAGED, GFP_NOFS);
1997 if (ret && !err)
1998 err = ret;
4a54c8c1
JS
1999
2000 kfree(rec);
2001 return err;
2002}
2003
4a54c8c1
JS
2004/*
2005 * this bypasses the standard btrfs submit functions deliberately, as
2006 * the standard behavior is to write all copies in a raid setup. here we only
2007 * want to write the one bad copy. so we do the mapping for ourselves and issue
2008 * submit_bio directly.
3ec706c8 2009 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2010 * actually prevents the read that triggered the error from finishing.
2011 * currently, there can be no more than two copies of every data bit. thus,
2012 * exactly one rewrite is required.
2013 */
3ec706c8 2014int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2015 u64 length, u64 logical, struct page *page,
2016 int mirror_num)
2017{
2018 struct bio *bio;
2019 struct btrfs_device *dev;
4a54c8c1
JS
2020 u64 map_length = 0;
2021 u64 sector;
2022 struct btrfs_bio *bbio = NULL;
53b381b3 2023 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2024 int ret;
2025
908960c6 2026 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2027 BUG_ON(!mirror_num);
2028
53b381b3
DW
2029 /* we can't repair anything in raid56 yet */
2030 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2031 return 0;
2032
9be3395b 2033 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2034 if (!bio)
2035 return -EIO;
4f024f37 2036 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2037 map_length = length;
2038
3ec706c8 2039 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2040 &map_length, &bbio, mirror_num);
2041 if (ret) {
2042 bio_put(bio);
2043 return -EIO;
2044 }
2045 BUG_ON(mirror_num != bbio->mirror_num);
2046 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2047 bio->bi_iter.bi_sector = sector;
4a54c8c1
JS
2048 dev = bbio->stripes[mirror_num-1].dev;
2049 kfree(bbio);
2050 if (!dev || !dev->bdev || !dev->writeable) {
2051 bio_put(bio);
2052 return -EIO;
2053 }
2054 bio->bi_bdev = dev->bdev;
4eee4fa4 2055 bio_add_page(bio, page, length, start - page_offset(page));
4a54c8c1 2056
33879d45 2057 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2058 /* try to remap that extent elsewhere? */
2059 bio_put(bio);
442a4f63 2060 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2061 return -EIO;
2062 }
2063
efe120a0
FH
2064 printk_ratelimited_in_rcu(KERN_INFO
2065 "BTRFS: read error corrected: ino %lu off %llu "
2066 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2067 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2068
2069 bio_put(bio);
2070 return 0;
2071}
2072
ea466794
JB
2073int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2074 int mirror_num)
2075{
ea466794
JB
2076 u64 start = eb->start;
2077 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2078 int ret = 0;
ea466794 2079
908960c6
ID
2080 if (root->fs_info->sb->s_flags & MS_RDONLY)
2081 return -EROFS;
2082
ea466794
JB
2083 for (i = 0; i < num_pages; i++) {
2084 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2085 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2086 start, p, mirror_num);
2087 if (ret)
2088 break;
2089 start += PAGE_CACHE_SIZE;
2090 }
2091
2092 return ret;
2093}
2094
4a54c8c1
JS
2095/*
2096 * each time an IO finishes, we do a fast check in the IO failure tree
2097 * to see if we need to process or clean up an io_failure_record
2098 */
2099static int clean_io_failure(u64 start, struct page *page)
2100{
2101 u64 private;
2102 u64 private_failure;
2103 struct io_failure_record *failrec;
908960c6
ID
2104 struct inode *inode = page->mapping->host;
2105 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2106 struct extent_state *state;
2107 int num_copies;
2108 int did_repair = 0;
2109 int ret;
4a54c8c1
JS
2110
2111 private = 0;
2112 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2113 (u64)-1, 1, EXTENT_DIRTY, 0);
2114 if (!ret)
2115 return 0;
2116
2117 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2118 &private_failure);
2119 if (ret)
2120 return 0;
2121
2122 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2123 BUG_ON(!failrec->this_mirror);
2124
2125 if (failrec->in_validation) {
2126 /* there was no real error, just free the record */
2127 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2128 failrec->start);
2129 did_repair = 1;
2130 goto out;
2131 }
908960c6
ID
2132 if (fs_info->sb->s_flags & MS_RDONLY)
2133 goto out;
4a54c8c1
JS
2134
2135 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2136 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2137 failrec->start,
2138 EXTENT_LOCKED);
2139 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2140
883d0de4
MX
2141 if (state && state->start <= failrec->start &&
2142 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2143 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2144 failrec->len);
4a54c8c1 2145 if (num_copies > 1) {
3ec706c8 2146 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2147 failrec->logical, page,
2148 failrec->failed_mirror);
2149 did_repair = !ret;
2150 }
53b381b3 2151 ret = 0;
4a54c8c1
JS
2152 }
2153
2154out:
2155 if (!ret)
2156 ret = free_io_failure(inode, failrec, did_repair);
2157
2158 return ret;
2159}
2160
2161/*
2162 * this is a generic handler for readpage errors (default
2163 * readpage_io_failed_hook). if other copies exist, read those and write back
2164 * good data to the failed position. does not investigate in remapping the
2165 * failed extent elsewhere, hoping the device will be smart enough to do this as
2166 * needed
2167 */
2168
facc8a22
MX
2169static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2170 struct page *page, u64 start, u64 end,
2171 int failed_mirror)
4a54c8c1
JS
2172{
2173 struct io_failure_record *failrec = NULL;
2174 u64 private;
2175 struct extent_map *em;
2176 struct inode *inode = page->mapping->host;
2177 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2178 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2179 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2180 struct bio *bio;
facc8a22
MX
2181 struct btrfs_io_bio *btrfs_failed_bio;
2182 struct btrfs_io_bio *btrfs_bio;
4a54c8c1
JS
2183 int num_copies;
2184 int ret;
2185 int read_mode;
2186 u64 logical;
2187
2188 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2189
2190 ret = get_state_private(failure_tree, start, &private);
2191 if (ret) {
2192 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2193 if (!failrec)
2194 return -ENOMEM;
2195 failrec->start = start;
2196 failrec->len = end - start + 1;
2197 failrec->this_mirror = 0;
2198 failrec->bio_flags = 0;
2199 failrec->in_validation = 0;
2200
2201 read_lock(&em_tree->lock);
2202 em = lookup_extent_mapping(em_tree, start, failrec->len);
2203 if (!em) {
2204 read_unlock(&em_tree->lock);
2205 kfree(failrec);
2206 return -EIO;
2207 }
2208
68ba990f 2209 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2210 free_extent_map(em);
2211 em = NULL;
2212 }
2213 read_unlock(&em_tree->lock);
2214
7a2d6a64 2215 if (!em) {
4a54c8c1
JS
2216 kfree(failrec);
2217 return -EIO;
2218 }
2219 logical = start - em->start;
2220 logical = em->block_start + logical;
2221 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2222 logical = em->block_start;
2223 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2224 extent_set_compress_type(&failrec->bio_flags,
2225 em->compress_type);
2226 }
2227 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2228 "len=%llu\n", logical, start, failrec->len);
2229 failrec->logical = logical;
2230 free_extent_map(em);
2231
2232 /* set the bits in the private failure tree */
2233 ret = set_extent_bits(failure_tree, start, end,
2234 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2235 if (ret >= 0)
2236 ret = set_state_private(failure_tree, start,
2237 (u64)(unsigned long)failrec);
2238 /* set the bits in the inode's tree */
2239 if (ret >= 0)
2240 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2241 GFP_NOFS);
2242 if (ret < 0) {
2243 kfree(failrec);
2244 return ret;
2245 }
2246 } else {
2247 failrec = (struct io_failure_record *)(unsigned long)private;
2248 pr_debug("bio_readpage_error: (found) logical=%llu, "
2249 "start=%llu, len=%llu, validation=%d\n",
2250 failrec->logical, failrec->start, failrec->len,
2251 failrec->in_validation);
2252 /*
2253 * when data can be on disk more than twice, add to failrec here
2254 * (e.g. with a list for failed_mirror) to make
2255 * clean_io_failure() clean all those errors at once.
2256 */
2257 }
5d964051
SB
2258 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2259 failrec->logical, failrec->len);
4a54c8c1
JS
2260 if (num_copies == 1) {
2261 /*
2262 * we only have a single copy of the data, so don't bother with
2263 * all the retry and error correction code that follows. no
2264 * matter what the error is, it is very likely to persist.
2265 */
09a7f7a2
MX
2266 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2267 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2268 free_io_failure(inode, failrec, 0);
2269 return -EIO;
2270 }
2271
4a54c8c1
JS
2272 /*
2273 * there are two premises:
2274 * a) deliver good data to the caller
2275 * b) correct the bad sectors on disk
2276 */
2277 if (failed_bio->bi_vcnt > 1) {
2278 /*
2279 * to fulfill b), we need to know the exact failing sectors, as
2280 * we don't want to rewrite any more than the failed ones. thus,
2281 * we need separate read requests for the failed bio
2282 *
2283 * if the following BUG_ON triggers, our validation request got
2284 * merged. we need separate requests for our algorithm to work.
2285 */
2286 BUG_ON(failrec->in_validation);
2287 failrec->in_validation = 1;
2288 failrec->this_mirror = failed_mirror;
2289 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2290 } else {
2291 /*
2292 * we're ready to fulfill a) and b) alongside. get a good copy
2293 * of the failed sector and if we succeed, we have setup
2294 * everything for repair_io_failure to do the rest for us.
2295 */
2296 if (failrec->in_validation) {
2297 BUG_ON(failrec->this_mirror != failed_mirror);
2298 failrec->in_validation = 0;
2299 failrec->this_mirror = 0;
2300 }
2301 failrec->failed_mirror = failed_mirror;
2302 failrec->this_mirror++;
2303 if (failrec->this_mirror == failed_mirror)
2304 failrec->this_mirror++;
2305 read_mode = READ_SYNC;
2306 }
2307
facc8a22
MX
2308 if (failrec->this_mirror > num_copies) {
2309 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1
JS
2310 num_copies, failrec->this_mirror, failed_mirror);
2311 free_io_failure(inode, failrec, 0);
2312 return -EIO;
2313 }
2314
9be3395b 2315 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2316 if (!bio) {
2317 free_io_failure(inode, failrec, 0);
2318 return -EIO;
2319 }
4a54c8c1 2320 bio->bi_end_io = failed_bio->bi_end_io;
4f024f37 2321 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2322 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2323 bio->bi_iter.bi_size = 0;
4a54c8c1 2324
facc8a22
MX
2325 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2326 if (btrfs_failed_bio->csum) {
2327 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2328 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2329
2330 btrfs_bio = btrfs_io_bio(bio);
2331 btrfs_bio->csum = btrfs_bio->csum_inline;
2332 phy_offset >>= inode->i_sb->s_blocksize_bits;
2333 phy_offset *= csum_size;
2334 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2335 csum_size);
2336 }
2337
4a54c8c1
JS
2338 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2339
2340 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2341 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2342 failrec->this_mirror, num_copies, failrec->in_validation);
2343
013bd4c3
TI
2344 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2345 failrec->this_mirror,
2346 failrec->bio_flags, 0);
2347 return ret;
4a54c8c1
JS
2348}
2349
d1310b2e
CM
2350/* lots and lots of room for performance fixes in the end_bio funcs */
2351
87826df0
JM
2352int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2353{
2354 int uptodate = (err == 0);
2355 struct extent_io_tree *tree;
2356 int ret;
2357
2358 tree = &BTRFS_I(page->mapping->host)->io_tree;
2359
2360 if (tree->ops && tree->ops->writepage_end_io_hook) {
2361 ret = tree->ops->writepage_end_io_hook(page, start,
2362 end, NULL, uptodate);
2363 if (ret)
2364 uptodate = 0;
2365 }
2366
87826df0 2367 if (!uptodate) {
87826df0
JM
2368 ClearPageUptodate(page);
2369 SetPageError(page);
2370 }
2371 return 0;
2372}
2373
d1310b2e
CM
2374/*
2375 * after a writepage IO is done, we need to:
2376 * clear the uptodate bits on error
2377 * clear the writeback bits in the extent tree for this IO
2378 * end_page_writeback if the page has no more pending IO
2379 *
2380 * Scheduling is not allowed, so the extent state tree is expected
2381 * to have one and only one object corresponding to this IO.
2382 */
d1310b2e 2383static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2384{
2c30c71b 2385 struct bio_vec *bvec;
d1310b2e
CM
2386 u64 start;
2387 u64 end;
2c30c71b 2388 int i;
d1310b2e 2389
2c30c71b 2390 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2391 struct page *page = bvec->bv_page;
902b22f3 2392
17a5adcc
AO
2393 /* We always issue full-page reads, but if some block
2394 * in a page fails to read, blk_update_request() will
2395 * advance bv_offset and adjust bv_len to compensate.
2396 * Print a warning for nonzero offsets, and an error
2397 * if they don't add up to a full page. */
efe120a0
FH
2398 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2399 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2400 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2401 "partial page write in btrfs with offset %u and length %u",
2402 bvec->bv_offset, bvec->bv_len);
2403 else
2404 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2405 "incomplete page write in btrfs with offset %u and "
2406 "length %u",
2407 bvec->bv_offset, bvec->bv_len);
2408 }
d1310b2e 2409
17a5adcc
AO
2410 start = page_offset(page);
2411 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2412
87826df0
JM
2413 if (end_extent_writepage(page, err, start, end))
2414 continue;
70dec807 2415
17a5adcc 2416 end_page_writeback(page);
2c30c71b 2417 }
2b1f55b0 2418
d1310b2e 2419 bio_put(bio);
d1310b2e
CM
2420}
2421
883d0de4
MX
2422static void
2423endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2424 int uptodate)
2425{
2426 struct extent_state *cached = NULL;
2427 u64 end = start + len - 1;
2428
2429 if (uptodate && tree->track_uptodate)
2430 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2431 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2432}
2433
d1310b2e
CM
2434/*
2435 * after a readpage IO is done, we need to:
2436 * clear the uptodate bits on error
2437 * set the uptodate bits if things worked
2438 * set the page up to date if all extents in the tree are uptodate
2439 * clear the lock bit in the extent tree
2440 * unlock the page if there are no other extents locked for it
2441 *
2442 * Scheduling is not allowed, so the extent state tree is expected
2443 * to have one and only one object corresponding to this IO.
2444 */
d1310b2e 2445static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e 2446{
2c30c71b 2447 struct bio_vec *bvec;
d1310b2e 2448 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
facc8a22 2449 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2450 struct extent_io_tree *tree;
facc8a22 2451 u64 offset = 0;
d1310b2e
CM
2452 u64 start;
2453 u64 end;
facc8a22 2454 u64 len;
883d0de4
MX
2455 u64 extent_start = 0;
2456 u64 extent_len = 0;
5cf1ab56 2457 int mirror;
d1310b2e 2458 int ret;
2c30c71b 2459 int i;
d1310b2e 2460
d20f7043
CM
2461 if (err)
2462 uptodate = 0;
2463
2c30c71b 2464 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2465 struct page *page = bvec->bv_page;
a71754fc 2466 struct inode *inode = page->mapping->host;
507903b8 2467
be3940c0 2468 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4f024f37 2469 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
9be3395b 2470 io_bio->mirror_num);
a71754fc 2471 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2472
17a5adcc
AO
2473 /* We always issue full-page reads, but if some block
2474 * in a page fails to read, blk_update_request() will
2475 * advance bv_offset and adjust bv_len to compensate.
2476 * Print a warning for nonzero offsets, and an error
2477 * if they don't add up to a full page. */
efe120a0
FH
2478 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2479 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2480 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2481 "partial page read in btrfs with offset %u and length %u",
2482 bvec->bv_offset, bvec->bv_len);
2483 else
2484 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2485 "incomplete page read in btrfs with offset %u and "
2486 "length %u",
2487 bvec->bv_offset, bvec->bv_len);
2488 }
d1310b2e 2489
17a5adcc
AO
2490 start = page_offset(page);
2491 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2492 len = bvec->bv_len;
d1310b2e 2493
9be3395b 2494 mirror = io_bio->mirror_num;
f2a09da9
MX
2495 if (likely(uptodate && tree->ops &&
2496 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2497 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2498 page, start, end,
2499 mirror);
5ee0844d 2500 if (ret)
d1310b2e 2501 uptodate = 0;
5ee0844d 2502 else
4a54c8c1 2503 clean_io_failure(start, page);
d1310b2e 2504 }
ea466794 2505
f2a09da9
MX
2506 if (likely(uptodate))
2507 goto readpage_ok;
2508
2509 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2510 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2511 if (!ret && !err &&
2512 test_bit(BIO_UPTODATE, &bio->bi_flags))
2513 uptodate = 1;
f2a09da9 2514 } else {
f4a8e656
JS
2515 /*
2516 * The generic bio_readpage_error handles errors the
2517 * following way: If possible, new read requests are
2518 * created and submitted and will end up in
2519 * end_bio_extent_readpage as well (if we're lucky, not
2520 * in the !uptodate case). In that case it returns 0 and
2521 * we just go on with the next page in our bio. If it
2522 * can't handle the error it will return -EIO and we
2523 * remain responsible for that page.
2524 */
facc8a22
MX
2525 ret = bio_readpage_error(bio, offset, page, start, end,
2526 mirror);
7e38326f 2527 if (ret == 0) {
3b951516
CM
2528 uptodate =
2529 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2530 if (err)
2531 uptodate = 0;
7e38326f
CM
2532 continue;
2533 }
2534 }
f2a09da9 2535readpage_ok:
883d0de4 2536 if (likely(uptodate)) {
a71754fc
JB
2537 loff_t i_size = i_size_read(inode);
2538 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2539 unsigned offset;
2540
2541 /* Zero out the end if this page straddles i_size */
2542 offset = i_size & (PAGE_CACHE_SIZE-1);
2543 if (page->index == end_index && offset)
2544 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2545 SetPageUptodate(page);
70dec807 2546 } else {
17a5adcc
AO
2547 ClearPageUptodate(page);
2548 SetPageError(page);
70dec807 2549 }
17a5adcc 2550 unlock_page(page);
facc8a22 2551 offset += len;
883d0de4
MX
2552
2553 if (unlikely(!uptodate)) {
2554 if (extent_len) {
2555 endio_readpage_release_extent(tree,
2556 extent_start,
2557 extent_len, 1);
2558 extent_start = 0;
2559 extent_len = 0;
2560 }
2561 endio_readpage_release_extent(tree, start,
2562 end - start + 1, 0);
2563 } else if (!extent_len) {
2564 extent_start = start;
2565 extent_len = end + 1 - start;
2566 } else if (extent_start + extent_len == start) {
2567 extent_len += end + 1 - start;
2568 } else {
2569 endio_readpage_release_extent(tree, extent_start,
2570 extent_len, uptodate);
2571 extent_start = start;
2572 extent_len = end + 1 - start;
2573 }
2c30c71b 2574 }
d1310b2e 2575
883d0de4
MX
2576 if (extent_len)
2577 endio_readpage_release_extent(tree, extent_start, extent_len,
2578 uptodate);
facc8a22
MX
2579 if (io_bio->end_io)
2580 io_bio->end_io(io_bio, err);
d1310b2e 2581 bio_put(bio);
d1310b2e
CM
2582}
2583
9be3395b
CM
2584/*
2585 * this allocates from the btrfs_bioset. We're returning a bio right now
2586 * but you can call btrfs_io_bio for the appropriate container_of magic
2587 */
88f794ed
MX
2588struct bio *
2589btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2590 gfp_t gfp_flags)
d1310b2e 2591{
facc8a22 2592 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2593 struct bio *bio;
2594
9be3395b 2595 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2596
2597 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2598 while (!bio && (nr_vecs /= 2)) {
2599 bio = bio_alloc_bioset(gfp_flags,
2600 nr_vecs, btrfs_bioset);
2601 }
d1310b2e
CM
2602 }
2603
2604 if (bio) {
2605 bio->bi_bdev = bdev;
4f024f37 2606 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2607 btrfs_bio = btrfs_io_bio(bio);
2608 btrfs_bio->csum = NULL;
2609 btrfs_bio->csum_allocated = NULL;
2610 btrfs_bio->end_io = NULL;
d1310b2e
CM
2611 }
2612 return bio;
2613}
2614
9be3395b
CM
2615struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2616{
2617 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2618}
2619
2620
2621/* this also allocates from the btrfs_bioset */
2622struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2623{
facc8a22
MX
2624 struct btrfs_io_bio *btrfs_bio;
2625 struct bio *bio;
2626
2627 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2628 if (bio) {
2629 btrfs_bio = btrfs_io_bio(bio);
2630 btrfs_bio->csum = NULL;
2631 btrfs_bio->csum_allocated = NULL;
2632 btrfs_bio->end_io = NULL;
2633 }
2634 return bio;
9be3395b
CM
2635}
2636
2637
355808c2
JM
2638static int __must_check submit_one_bio(int rw, struct bio *bio,
2639 int mirror_num, unsigned long bio_flags)
d1310b2e 2640{
d1310b2e 2641 int ret = 0;
70dec807
CM
2642 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2643 struct page *page = bvec->bv_page;
2644 struct extent_io_tree *tree = bio->bi_private;
70dec807 2645 u64 start;
70dec807 2646
4eee4fa4 2647 start = page_offset(page) + bvec->bv_offset;
70dec807 2648
902b22f3 2649 bio->bi_private = NULL;
d1310b2e
CM
2650
2651 bio_get(bio);
2652
065631f6 2653 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2654 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2655 mirror_num, bio_flags, start);
0b86a832 2656 else
21adbd5c 2657 btrfsic_submit_bio(rw, bio);
4a54c8c1 2658
d1310b2e
CM
2659 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2660 ret = -EOPNOTSUPP;
2661 bio_put(bio);
2662 return ret;
2663}
2664
64a16701 2665static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2666 unsigned long offset, size_t size, struct bio *bio,
2667 unsigned long bio_flags)
2668{
2669 int ret = 0;
2670 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2671 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2672 bio_flags);
2673 BUG_ON(ret < 0);
2674 return ret;
2675
2676}
2677
d1310b2e
CM
2678static int submit_extent_page(int rw, struct extent_io_tree *tree,
2679 struct page *page, sector_t sector,
2680 size_t size, unsigned long offset,
2681 struct block_device *bdev,
2682 struct bio **bio_ret,
2683 unsigned long max_pages,
f188591e 2684 bio_end_io_t end_io_func,
c8b97818
CM
2685 int mirror_num,
2686 unsigned long prev_bio_flags,
2687 unsigned long bio_flags)
d1310b2e
CM
2688{
2689 int ret = 0;
2690 struct bio *bio;
2691 int nr;
c8b97818
CM
2692 int contig = 0;
2693 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2694 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2695 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2696
2697 if (bio_ret && *bio_ret) {
2698 bio = *bio_ret;
c8b97818 2699 if (old_compressed)
4f024f37 2700 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2701 else
f73a1c7d 2702 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2703
2704 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2705 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2706 bio_add_page(bio, page, page_size, offset) < page_size) {
2707 ret = submit_one_bio(rw, bio, mirror_num,
2708 prev_bio_flags);
79787eaa
JM
2709 if (ret < 0)
2710 return ret;
d1310b2e
CM
2711 bio = NULL;
2712 } else {
2713 return 0;
2714 }
2715 }
c8b97818
CM
2716 if (this_compressed)
2717 nr = BIO_MAX_PAGES;
2718 else
2719 nr = bio_get_nr_vecs(bdev);
2720
88f794ed 2721 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2722 if (!bio)
2723 return -ENOMEM;
70dec807 2724
c8b97818 2725 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2726 bio->bi_end_io = end_io_func;
2727 bio->bi_private = tree;
70dec807 2728
d397712b 2729 if (bio_ret)
d1310b2e 2730 *bio_ret = bio;
d397712b 2731 else
c8b97818 2732 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2733
2734 return ret;
2735}
2736
48a3b636
ES
2737static void attach_extent_buffer_page(struct extent_buffer *eb,
2738 struct page *page)
d1310b2e
CM
2739{
2740 if (!PagePrivate(page)) {
2741 SetPagePrivate(page);
d1310b2e 2742 page_cache_get(page);
4f2de97a
JB
2743 set_page_private(page, (unsigned long)eb);
2744 } else {
2745 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2746 }
2747}
2748
4f2de97a 2749void set_page_extent_mapped(struct page *page)
d1310b2e 2750{
4f2de97a
JB
2751 if (!PagePrivate(page)) {
2752 SetPagePrivate(page);
2753 page_cache_get(page);
2754 set_page_private(page, EXTENT_PAGE_PRIVATE);
2755 }
d1310b2e
CM
2756}
2757
125bac01
MX
2758static struct extent_map *
2759__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2760 u64 start, u64 len, get_extent_t *get_extent,
2761 struct extent_map **em_cached)
2762{
2763 struct extent_map *em;
2764
2765 if (em_cached && *em_cached) {
2766 em = *em_cached;
cbc0e928 2767 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2768 start < extent_map_end(em)) {
2769 atomic_inc(&em->refs);
2770 return em;
2771 }
2772
2773 free_extent_map(em);
2774 *em_cached = NULL;
2775 }
2776
2777 em = get_extent(inode, page, pg_offset, start, len, 0);
2778 if (em_cached && !IS_ERR_OR_NULL(em)) {
2779 BUG_ON(*em_cached);
2780 atomic_inc(&em->refs);
2781 *em_cached = em;
2782 }
2783 return em;
2784}
d1310b2e
CM
2785/*
2786 * basic readpage implementation. Locked extent state structs are inserted
2787 * into the tree that are removed when the IO is done (by the end_io
2788 * handlers)
79787eaa 2789 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2790 */
9974090b
MX
2791static int __do_readpage(struct extent_io_tree *tree,
2792 struct page *page,
2793 get_extent_t *get_extent,
125bac01 2794 struct extent_map **em_cached,
9974090b
MX
2795 struct bio **bio, int mirror_num,
2796 unsigned long *bio_flags, int rw)
d1310b2e
CM
2797{
2798 struct inode *inode = page->mapping->host;
4eee4fa4 2799 u64 start = page_offset(page);
d1310b2e
CM
2800 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2801 u64 end;
2802 u64 cur = start;
2803 u64 extent_offset;
2804 u64 last_byte = i_size_read(inode);
2805 u64 block_start;
2806 u64 cur_end;
2807 sector_t sector;
2808 struct extent_map *em;
2809 struct block_device *bdev;
2810 int ret;
2811 int nr = 0;
4b384318 2812 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2813 size_t pg_offset = 0;
d1310b2e 2814 size_t iosize;
c8b97818 2815 size_t disk_io_size;
d1310b2e 2816 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2817 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2818
2819 set_page_extent_mapped(page);
2820
9974090b 2821 end = page_end;
90a887c9
DM
2822 if (!PageUptodate(page)) {
2823 if (cleancache_get_page(page) == 0) {
2824 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2825 unlock_extent(tree, start, end);
90a887c9
DM
2826 goto out;
2827 }
2828 }
2829
c8b97818
CM
2830 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2831 char *userpage;
2832 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2833
2834 if (zero_offset) {
2835 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2836 userpage = kmap_atomic(page);
c8b97818
CM
2837 memset(userpage + zero_offset, 0, iosize);
2838 flush_dcache_page(page);
7ac687d9 2839 kunmap_atomic(userpage);
c8b97818
CM
2840 }
2841 }
d1310b2e 2842 while (cur <= end) {
c8f2f24b
JB
2843 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2844
d1310b2e
CM
2845 if (cur >= last_byte) {
2846 char *userpage;
507903b8
AJ
2847 struct extent_state *cached = NULL;
2848
306e16ce 2849 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2850 userpage = kmap_atomic(page);
306e16ce 2851 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2852 flush_dcache_page(page);
7ac687d9 2853 kunmap_atomic(userpage);
d1310b2e 2854 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2855 &cached, GFP_NOFS);
4b384318
MF
2856 if (!parent_locked)
2857 unlock_extent_cached(tree, cur,
2858 cur + iosize - 1,
2859 &cached, GFP_NOFS);
d1310b2e
CM
2860 break;
2861 }
125bac01
MX
2862 em = __get_extent_map(inode, page, pg_offset, cur,
2863 end - cur + 1, get_extent, em_cached);
c704005d 2864 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2865 SetPageError(page);
4b384318
MF
2866 if (!parent_locked)
2867 unlock_extent(tree, cur, end);
d1310b2e
CM
2868 break;
2869 }
d1310b2e
CM
2870 extent_offset = cur - em->start;
2871 BUG_ON(extent_map_end(em) <= cur);
2872 BUG_ON(end < cur);
2873
261507a0 2874 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2875 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2876 extent_set_compress_type(&this_bio_flag,
2877 em->compress_type);
2878 }
c8b97818 2879
d1310b2e
CM
2880 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2881 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2882 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2883 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2884 disk_io_size = em->block_len;
2885 sector = em->block_start >> 9;
2886 } else {
2887 sector = (em->block_start + extent_offset) >> 9;
2888 disk_io_size = iosize;
2889 }
d1310b2e
CM
2890 bdev = em->bdev;
2891 block_start = em->block_start;
d899e052
YZ
2892 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2893 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2894 free_extent_map(em);
2895 em = NULL;
2896
2897 /* we've found a hole, just zero and go on */
2898 if (block_start == EXTENT_MAP_HOLE) {
2899 char *userpage;
507903b8
AJ
2900 struct extent_state *cached = NULL;
2901
7ac687d9 2902 userpage = kmap_atomic(page);
306e16ce 2903 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2904 flush_dcache_page(page);
7ac687d9 2905 kunmap_atomic(userpage);
d1310b2e
CM
2906
2907 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2908 &cached, GFP_NOFS);
2909 unlock_extent_cached(tree, cur, cur + iosize - 1,
2910 &cached, GFP_NOFS);
d1310b2e 2911 cur = cur + iosize;
306e16ce 2912 pg_offset += iosize;
d1310b2e
CM
2913 continue;
2914 }
2915 /* the get_extent function already copied into the page */
9655d298
CM
2916 if (test_range_bit(tree, cur, cur_end,
2917 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2918 check_page_uptodate(tree, page);
4b384318
MF
2919 if (!parent_locked)
2920 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2921 cur = cur + iosize;
306e16ce 2922 pg_offset += iosize;
d1310b2e
CM
2923 continue;
2924 }
70dec807
CM
2925 /* we have an inline extent but it didn't get marked up
2926 * to date. Error out
2927 */
2928 if (block_start == EXTENT_MAP_INLINE) {
2929 SetPageError(page);
4b384318
MF
2930 if (!parent_locked)
2931 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2932 cur = cur + iosize;
306e16ce 2933 pg_offset += iosize;
70dec807
CM
2934 continue;
2935 }
d1310b2e 2936
c8f2f24b 2937 pnr -= page->index;
d4c7ca86 2938 ret = submit_extent_page(rw, tree, page,
306e16ce 2939 sector, disk_io_size, pg_offset,
89642229 2940 bdev, bio, pnr,
c8b97818
CM
2941 end_bio_extent_readpage, mirror_num,
2942 *bio_flags,
2943 this_bio_flag);
c8f2f24b
JB
2944 if (!ret) {
2945 nr++;
2946 *bio_flags = this_bio_flag;
2947 } else {
d1310b2e 2948 SetPageError(page);
4b384318
MF
2949 if (!parent_locked)
2950 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 2951 }
d1310b2e 2952 cur = cur + iosize;
306e16ce 2953 pg_offset += iosize;
d1310b2e 2954 }
90a887c9 2955out:
d1310b2e
CM
2956 if (!nr) {
2957 if (!PageError(page))
2958 SetPageUptodate(page);
2959 unlock_page(page);
2960 }
2961 return 0;
2962}
2963
9974090b
MX
2964static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2965 struct page *pages[], int nr_pages,
2966 u64 start, u64 end,
2967 get_extent_t *get_extent,
125bac01 2968 struct extent_map **em_cached,
9974090b
MX
2969 struct bio **bio, int mirror_num,
2970 unsigned long *bio_flags, int rw)
2971{
2972 struct inode *inode;
2973 struct btrfs_ordered_extent *ordered;
2974 int index;
2975
2976 inode = pages[0]->mapping->host;
2977 while (1) {
2978 lock_extent(tree, start, end);
2979 ordered = btrfs_lookup_ordered_range(inode, start,
2980 end - start + 1);
2981 if (!ordered)
2982 break;
2983 unlock_extent(tree, start, end);
2984 btrfs_start_ordered_extent(inode, ordered, 1);
2985 btrfs_put_ordered_extent(ordered);
2986 }
2987
2988 for (index = 0; index < nr_pages; index++) {
125bac01
MX
2989 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
2990 mirror_num, bio_flags, rw);
9974090b
MX
2991 page_cache_release(pages[index]);
2992 }
2993}
2994
2995static void __extent_readpages(struct extent_io_tree *tree,
2996 struct page *pages[],
2997 int nr_pages, get_extent_t *get_extent,
125bac01 2998 struct extent_map **em_cached,
9974090b
MX
2999 struct bio **bio, int mirror_num,
3000 unsigned long *bio_flags, int rw)
3001{
35a3621b 3002 u64 start = 0;
9974090b
MX
3003 u64 end = 0;
3004 u64 page_start;
3005 int index;
35a3621b 3006 int first_index = 0;
9974090b
MX
3007
3008 for (index = 0; index < nr_pages; index++) {
3009 page_start = page_offset(pages[index]);
3010 if (!end) {
3011 start = page_start;
3012 end = start + PAGE_CACHE_SIZE - 1;
3013 first_index = index;
3014 } else if (end + 1 == page_start) {
3015 end += PAGE_CACHE_SIZE;
3016 } else {
3017 __do_contiguous_readpages(tree, &pages[first_index],
3018 index - first_index, start,
125bac01
MX
3019 end, get_extent, em_cached,
3020 bio, mirror_num, bio_flags,
3021 rw);
9974090b
MX
3022 start = page_start;
3023 end = start + PAGE_CACHE_SIZE - 1;
3024 first_index = index;
3025 }
3026 }
3027
3028 if (end)
3029 __do_contiguous_readpages(tree, &pages[first_index],
3030 index - first_index, start,
125bac01 3031 end, get_extent, em_cached, bio,
9974090b
MX
3032 mirror_num, bio_flags, rw);
3033}
3034
3035static int __extent_read_full_page(struct extent_io_tree *tree,
3036 struct page *page,
3037 get_extent_t *get_extent,
3038 struct bio **bio, int mirror_num,
3039 unsigned long *bio_flags, int rw)
3040{
3041 struct inode *inode = page->mapping->host;
3042 struct btrfs_ordered_extent *ordered;
3043 u64 start = page_offset(page);
3044 u64 end = start + PAGE_CACHE_SIZE - 1;
3045 int ret;
3046
3047 while (1) {
3048 lock_extent(tree, start, end);
3049 ordered = btrfs_lookup_ordered_extent(inode, start);
3050 if (!ordered)
3051 break;
3052 unlock_extent(tree, start, end);
3053 btrfs_start_ordered_extent(inode, ordered, 1);
3054 btrfs_put_ordered_extent(ordered);
3055 }
3056
125bac01
MX
3057 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3058 bio_flags, rw);
9974090b
MX
3059 return ret;
3060}
3061
d1310b2e 3062int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3063 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3064{
3065 struct bio *bio = NULL;
c8b97818 3066 unsigned long bio_flags = 0;
d1310b2e
CM
3067 int ret;
3068
8ddc7d9c 3069 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3070 &bio_flags, READ);
d1310b2e 3071 if (bio)
8ddc7d9c 3072 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3073 return ret;
3074}
d1310b2e 3075
4b384318
MF
3076int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3077 get_extent_t *get_extent, int mirror_num)
3078{
3079 struct bio *bio = NULL;
3080 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3081 int ret;
3082
3083 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3084 &bio_flags, READ);
3085 if (bio)
3086 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3087 return ret;
3088}
3089
11c8349b
CM
3090static noinline void update_nr_written(struct page *page,
3091 struct writeback_control *wbc,
3092 unsigned long nr_written)
3093{
3094 wbc->nr_to_write -= nr_written;
3095 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3096 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3097 page->mapping->writeback_index = page->index + nr_written;
3098}
3099
d1310b2e
CM
3100/*
3101 * the writepage semantics are similar to regular writepage. extent
3102 * records are inserted to lock ranges in the tree, and as dirty areas
3103 * are found, they are marked writeback. Then the lock bits are removed
3104 * and the end_io handler clears the writeback ranges
3105 */
3106static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3107 void *data)
3108{
3109 struct inode *inode = page->mapping->host;
3110 struct extent_page_data *epd = data;
3111 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3112 u64 start = page_offset(page);
d1310b2e
CM
3113 u64 delalloc_start;
3114 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3115 u64 end;
3116 u64 cur = start;
3117 u64 extent_offset;
3118 u64 last_byte = i_size_read(inode);
3119 u64 block_start;
3120 u64 iosize;
3121 sector_t sector;
2c64c53d 3122 struct extent_state *cached_state = NULL;
d1310b2e
CM
3123 struct extent_map *em;
3124 struct block_device *bdev;
3125 int ret;
3126 int nr = 0;
7f3c74fb 3127 size_t pg_offset = 0;
d1310b2e
CM
3128 size_t blocksize;
3129 loff_t i_size = i_size_read(inode);
3130 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3131 u64 nr_delalloc;
3132 u64 delalloc_end;
c8b97818
CM
3133 int page_started;
3134 int compressed;
ffbd517d 3135 int write_flags;
771ed689 3136 unsigned long nr_written = 0;
9e487107 3137 bool fill_delalloc = true;
d1310b2e 3138
ffbd517d 3139 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 3140 write_flags = WRITE_SYNC;
ffbd517d
CM
3141 else
3142 write_flags = WRITE;
3143
1abe9b8a 3144 trace___extent_writepage(page, inode, wbc);
3145
d1310b2e 3146 WARN_ON(!PageLocked(page));
bf0da8c1
CM
3147
3148 ClearPageError(page);
3149
7f3c74fb 3150 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 3151 if (page->index > end_index ||
7f3c74fb 3152 (page->index == end_index && !pg_offset)) {
d47992f8 3153 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
3154 unlock_page(page);
3155 return 0;
3156 }
3157
3158 if (page->index == end_index) {
3159 char *userpage;
3160
7ac687d9 3161 userpage = kmap_atomic(page);
7f3c74fb
CM
3162 memset(userpage + pg_offset, 0,
3163 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3164 kunmap_atomic(userpage);
211c17f5 3165 flush_dcache_page(page);
d1310b2e 3166 }
7f3c74fb 3167 pg_offset = 0;
d1310b2e
CM
3168
3169 set_page_extent_mapped(page);
3170
9e487107
JB
3171 if (!tree->ops || !tree->ops->fill_delalloc)
3172 fill_delalloc = false;
3173
d1310b2e
CM
3174 delalloc_start = start;
3175 delalloc_end = 0;
c8b97818 3176 page_started = 0;
9e487107 3177 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3178 u64 delalloc_to_write = 0;
11c8349b
CM
3179 /*
3180 * make sure the wbc mapping index is at least updated
3181 * to this page.
3182 */
3183 update_nr_written(page, wbc, 0);
3184
d397712b 3185 while (delalloc_end < page_end) {
771ed689 3186 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3187 page,
3188 &delalloc_start,
d1310b2e
CM
3189 &delalloc_end,
3190 128 * 1024 * 1024);
771ed689
CM
3191 if (nr_delalloc == 0) {
3192 delalloc_start = delalloc_end + 1;
3193 continue;
3194 }
013bd4c3
TI
3195 ret = tree->ops->fill_delalloc(inode, page,
3196 delalloc_start,
3197 delalloc_end,
3198 &page_started,
3199 &nr_written);
79787eaa
JM
3200 /* File system has been set read-only */
3201 if (ret) {
3202 SetPageError(page);
3203 goto done;
3204 }
f85d7d6c
CM
3205 /*
3206 * delalloc_end is already one less than the total
3207 * length, so we don't subtract one from
3208 * PAGE_CACHE_SIZE
3209 */
3210 delalloc_to_write += (delalloc_end - delalloc_start +
3211 PAGE_CACHE_SIZE) >>
3212 PAGE_CACHE_SHIFT;
d1310b2e 3213 delalloc_start = delalloc_end + 1;
d1310b2e 3214 }
f85d7d6c
CM
3215 if (wbc->nr_to_write < delalloc_to_write) {
3216 int thresh = 8192;
3217
3218 if (delalloc_to_write < thresh * 2)
3219 thresh = delalloc_to_write;
3220 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3221 thresh);
3222 }
c8b97818 3223
771ed689
CM
3224 /* did the fill delalloc function already unlock and start
3225 * the IO?
3226 */
3227 if (page_started) {
3228 ret = 0;
11c8349b
CM
3229 /*
3230 * we've unlocked the page, so we can't update
3231 * the mapping's writeback index, just update
3232 * nr_to_write.
3233 */
3234 wbc->nr_to_write -= nr_written;
3235 goto done_unlocked;
771ed689 3236 }
c8b97818 3237 }
247e743c 3238 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3239 ret = tree->ops->writepage_start_hook(page, start,
3240 page_end);
87826df0
JM
3241 if (ret) {
3242 /* Fixup worker will requeue */
3243 if (ret == -EBUSY)
3244 wbc->pages_skipped++;
3245 else
3246 redirty_page_for_writepage(wbc, page);
11c8349b 3247 update_nr_written(page, wbc, nr_written);
247e743c 3248 unlock_page(page);
771ed689 3249 ret = 0;
11c8349b 3250 goto done_unlocked;
247e743c
CM
3251 }
3252 }
3253
11c8349b
CM
3254 /*
3255 * we don't want to touch the inode after unlocking the page,
3256 * so we update the mapping writeback index now
3257 */
3258 update_nr_written(page, wbc, nr_written + 1);
771ed689 3259
d1310b2e 3260 end = page_end;
d1310b2e 3261 if (last_byte <= start) {
e6dcd2dc
CM
3262 if (tree->ops && tree->ops->writepage_end_io_hook)
3263 tree->ops->writepage_end_io_hook(page, start,
3264 page_end, NULL, 1);
d1310b2e
CM
3265 goto done;
3266 }
3267
d1310b2e
CM
3268 blocksize = inode->i_sb->s_blocksize;
3269
3270 while (cur <= end) {
3271 if (cur >= last_byte) {
e6dcd2dc
CM
3272 if (tree->ops && tree->ops->writepage_end_io_hook)
3273 tree->ops->writepage_end_io_hook(page, cur,
3274 page_end, NULL, 1);
d1310b2e
CM
3275 break;
3276 }
7f3c74fb 3277 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3278 end - cur + 1, 1);
c704005d 3279 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3280 SetPageError(page);
61391d56 3281 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3282 break;
3283 }
3284
3285 extent_offset = cur - em->start;
3286 BUG_ON(extent_map_end(em) <= cur);
3287 BUG_ON(end < cur);
3288 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3289 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3290 sector = (em->block_start + extent_offset) >> 9;
3291 bdev = em->bdev;
3292 block_start = em->block_start;
c8b97818 3293 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3294 free_extent_map(em);
3295 em = NULL;
3296
c8b97818
CM
3297 /*
3298 * compressed and inline extents are written through other
3299 * paths in the FS
3300 */
3301 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3302 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3303 /*
3304 * end_io notification does not happen here for
3305 * compressed extents
3306 */
3307 if (!compressed && tree->ops &&
3308 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3309 tree->ops->writepage_end_io_hook(page, cur,
3310 cur + iosize - 1,
3311 NULL, 1);
c8b97818
CM
3312 else if (compressed) {
3313 /* we don't want to end_page_writeback on
3314 * a compressed extent. this happens
3315 * elsewhere
3316 */
3317 nr++;
3318 }
3319
3320 cur += iosize;
7f3c74fb 3321 pg_offset += iosize;
d1310b2e
CM
3322 continue;
3323 }
d1310b2e
CM
3324 /* leave this out until we have a page_mkwrite call */
3325 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3326 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3327 cur = cur + iosize;
7f3c74fb 3328 pg_offset += iosize;
d1310b2e
CM
3329 continue;
3330 }
c8b97818 3331
d1310b2e
CM
3332 if (tree->ops && tree->ops->writepage_io_hook) {
3333 ret = tree->ops->writepage_io_hook(page, cur,
3334 cur + iosize - 1);
3335 } else {
3336 ret = 0;
3337 }
1259ab75 3338 if (ret) {
d1310b2e 3339 SetPageError(page);
1259ab75 3340 } else {
d1310b2e 3341 unsigned long max_nr = end_index + 1;
7f3c74fb 3342
d1310b2e
CM
3343 set_range_writeback(tree, cur, cur + iosize - 1);
3344 if (!PageWriteback(page)) {
efe120a0
FH
3345 btrfs_err(BTRFS_I(inode)->root->fs_info,
3346 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3347 page->index, cur, end);
d1310b2e
CM
3348 }
3349
ffbd517d
CM
3350 ret = submit_extent_page(write_flags, tree, page,
3351 sector, iosize, pg_offset,
3352 bdev, &epd->bio, max_nr,
c8b97818
CM
3353 end_bio_extent_writepage,
3354 0, 0, 0);
d1310b2e
CM
3355 if (ret)
3356 SetPageError(page);
3357 }
3358 cur = cur + iosize;
7f3c74fb 3359 pg_offset += iosize;
d1310b2e
CM
3360 nr++;
3361 }
3362done:
3363 if (nr == 0) {
3364 /* make sure the mapping tag for page dirty gets cleared */
3365 set_page_writeback(page);
3366 end_page_writeback(page);
3367 }
61391d56
FM
3368 if (PageError(page)) {
3369 ret = ret < 0 ? ret : -EIO;
3370 end_extent_writepage(page, ret, start, page_end);
3371 }
d1310b2e 3372 unlock_page(page);
771ed689 3373
11c8349b
CM
3374done_unlocked:
3375
2c64c53d
CM
3376 /* drop our reference on any cached states */
3377 free_extent_state(cached_state);
61391d56 3378 return ret;
d1310b2e
CM
3379}
3380
0b32f4bb
JB
3381static int eb_wait(void *word)
3382{
3383 io_schedule();
3384 return 0;
3385}
3386
fd8b2b61 3387void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3388{
3389 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3390 TASK_UNINTERRUPTIBLE);
3391}
3392
3393static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3394 struct btrfs_fs_info *fs_info,
3395 struct extent_page_data *epd)
3396{
3397 unsigned long i, num_pages;
3398 int flush = 0;
3399 int ret = 0;
3400
3401 if (!btrfs_try_tree_write_lock(eb)) {
3402 flush = 1;
3403 flush_write_bio(epd);
3404 btrfs_tree_lock(eb);
3405 }
3406
3407 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3408 btrfs_tree_unlock(eb);
3409 if (!epd->sync_io)
3410 return 0;
3411 if (!flush) {
3412 flush_write_bio(epd);
3413 flush = 1;
3414 }
a098d8e8
CM
3415 while (1) {
3416 wait_on_extent_buffer_writeback(eb);
3417 btrfs_tree_lock(eb);
3418 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3419 break;
0b32f4bb 3420 btrfs_tree_unlock(eb);
0b32f4bb
JB
3421 }
3422 }
3423
51561ffe
JB
3424 /*
3425 * We need to do this to prevent races in people who check if the eb is
3426 * under IO since we can end up having no IO bits set for a short period
3427 * of time.
3428 */
3429 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3430 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3431 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3432 spin_unlock(&eb->refs_lock);
0b32f4bb 3433 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3434 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3435 -eb->len,
3436 fs_info->dirty_metadata_batch);
0b32f4bb 3437 ret = 1;
51561ffe
JB
3438 } else {
3439 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3440 }
3441
3442 btrfs_tree_unlock(eb);
3443
3444 if (!ret)
3445 return ret;
3446
3447 num_pages = num_extent_pages(eb->start, eb->len);
3448 for (i = 0; i < num_pages; i++) {
3449 struct page *p = extent_buffer_page(eb, i);
3450
3451 if (!trylock_page(p)) {
3452 if (!flush) {
3453 flush_write_bio(epd);
3454 flush = 1;
3455 }
3456 lock_page(p);
3457 }
3458 }
3459
3460 return ret;
3461}
3462
3463static void end_extent_buffer_writeback(struct extent_buffer *eb)
3464{
3465 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3466 smp_mb__after_clear_bit();
3467 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3468}
3469
3470static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3471{
2c30c71b 3472 struct bio_vec *bvec;
0b32f4bb 3473 struct extent_buffer *eb;
2c30c71b 3474 int i, done;
0b32f4bb 3475
2c30c71b 3476 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3477 struct page *page = bvec->bv_page;
3478
0b32f4bb
JB
3479 eb = (struct extent_buffer *)page->private;
3480 BUG_ON(!eb);
3481 done = atomic_dec_and_test(&eb->io_pages);
3482
2c30c71b 3483 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
0b32f4bb
JB
3484 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3485 ClearPageUptodate(page);
3486 SetPageError(page);
3487 }
3488
3489 end_page_writeback(page);
3490
3491 if (!done)
3492 continue;
3493
3494 end_extent_buffer_writeback(eb);
2c30c71b 3495 }
0b32f4bb
JB
3496
3497 bio_put(bio);
0b32f4bb
JB
3498}
3499
3500static int write_one_eb(struct extent_buffer *eb,
3501 struct btrfs_fs_info *fs_info,
3502 struct writeback_control *wbc,
3503 struct extent_page_data *epd)
3504{
3505 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3506 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3507 u64 offset = eb->start;
3508 unsigned long i, num_pages;
de0022b9 3509 unsigned long bio_flags = 0;
d4c7ca86 3510 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3511 int ret = 0;
0b32f4bb
JB
3512
3513 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3514 num_pages = num_extent_pages(eb->start, eb->len);
3515 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3516 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3517 bio_flags = EXTENT_BIO_TREE_LOG;
3518
0b32f4bb
JB
3519 for (i = 0; i < num_pages; i++) {
3520 struct page *p = extent_buffer_page(eb, i);
3521
3522 clear_page_dirty_for_io(p);
3523 set_page_writeback(p);
f28491e0 3524 ret = submit_extent_page(rw, tree, p, offset >> 9,
0b32f4bb
JB
3525 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3526 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3527 0, epd->bio_flags, bio_flags);
3528 epd->bio_flags = bio_flags;
0b32f4bb
JB
3529 if (ret) {
3530 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3531 SetPageError(p);
3532 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3533 end_extent_buffer_writeback(eb);
3534 ret = -EIO;
3535 break;
3536 }
3537 offset += PAGE_CACHE_SIZE;
3538 update_nr_written(p, wbc, 1);
3539 unlock_page(p);
3540 }
3541
3542 if (unlikely(ret)) {
3543 for (; i < num_pages; i++) {
3544 struct page *p = extent_buffer_page(eb, i);
3545 unlock_page(p);
3546 }
3547 }
3548
3549 return ret;
3550}
3551
3552int btree_write_cache_pages(struct address_space *mapping,
3553 struct writeback_control *wbc)
3554{
3555 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3556 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3557 struct extent_buffer *eb, *prev_eb = NULL;
3558 struct extent_page_data epd = {
3559 .bio = NULL,
3560 .tree = tree,
3561 .extent_locked = 0,
3562 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3563 .bio_flags = 0,
0b32f4bb
JB
3564 };
3565 int ret = 0;
3566 int done = 0;
3567 int nr_to_write_done = 0;
3568 struct pagevec pvec;
3569 int nr_pages;
3570 pgoff_t index;
3571 pgoff_t end; /* Inclusive */
3572 int scanned = 0;
3573 int tag;
3574
3575 pagevec_init(&pvec, 0);
3576 if (wbc->range_cyclic) {
3577 index = mapping->writeback_index; /* Start from prev offset */
3578 end = -1;
3579 } else {
3580 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3581 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3582 scanned = 1;
3583 }
3584 if (wbc->sync_mode == WB_SYNC_ALL)
3585 tag = PAGECACHE_TAG_TOWRITE;
3586 else
3587 tag = PAGECACHE_TAG_DIRTY;
3588retry:
3589 if (wbc->sync_mode == WB_SYNC_ALL)
3590 tag_pages_for_writeback(mapping, index, end);
3591 while (!done && !nr_to_write_done && (index <= end) &&
3592 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3593 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3594 unsigned i;
3595
3596 scanned = 1;
3597 for (i = 0; i < nr_pages; i++) {
3598 struct page *page = pvec.pages[i];
3599
3600 if (!PagePrivate(page))
3601 continue;
3602
3603 if (!wbc->range_cyclic && page->index > end) {
3604 done = 1;
3605 break;
3606 }
3607
b5bae261
JB
3608 spin_lock(&mapping->private_lock);
3609 if (!PagePrivate(page)) {
3610 spin_unlock(&mapping->private_lock);
3611 continue;
3612 }
3613
0b32f4bb 3614 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3615
3616 /*
3617 * Shouldn't happen and normally this would be a BUG_ON
3618 * but no sense in crashing the users box for something
3619 * we can survive anyway.
3620 */
fae7f21c 3621 if (WARN_ON(!eb)) {
b5bae261 3622 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3623 continue;
3624 }
3625
b5bae261
JB
3626 if (eb == prev_eb) {
3627 spin_unlock(&mapping->private_lock);
0b32f4bb 3628 continue;
b5bae261 3629 }
0b32f4bb 3630
b5bae261
JB
3631 ret = atomic_inc_not_zero(&eb->refs);
3632 spin_unlock(&mapping->private_lock);
3633 if (!ret)
0b32f4bb 3634 continue;
0b32f4bb
JB
3635
3636 prev_eb = eb;
3637 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3638 if (!ret) {
3639 free_extent_buffer(eb);
3640 continue;
3641 }
3642
3643 ret = write_one_eb(eb, fs_info, wbc, &epd);
3644 if (ret) {
3645 done = 1;
3646 free_extent_buffer(eb);
3647 break;
3648 }
3649 free_extent_buffer(eb);
3650
3651 /*
3652 * the filesystem may choose to bump up nr_to_write.
3653 * We have to make sure to honor the new nr_to_write
3654 * at any time
3655 */
3656 nr_to_write_done = wbc->nr_to_write <= 0;
3657 }
3658 pagevec_release(&pvec);
3659 cond_resched();
3660 }
3661 if (!scanned && !done) {
3662 /*
3663 * We hit the last page and there is more work to be done: wrap
3664 * back to the start of the file
3665 */
3666 scanned = 1;
3667 index = 0;
3668 goto retry;
3669 }
3670 flush_write_bio(&epd);
3671 return ret;
3672}
3673
d1310b2e 3674/**
4bef0848 3675 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3676 * @mapping: address space structure to write
3677 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3678 * @writepage: function called for each page
3679 * @data: data passed to writepage function
3680 *
3681 * If a page is already under I/O, write_cache_pages() skips it, even
3682 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3683 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3684 * and msync() need to guarantee that all the data which was dirty at the time
3685 * the call was made get new I/O started against them. If wbc->sync_mode is
3686 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3687 * existing IO to complete.
3688 */
b2950863 3689static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3690 struct address_space *mapping,
3691 struct writeback_control *wbc,
d2c3f4f6
CM
3692 writepage_t writepage, void *data,
3693 void (*flush_fn)(void *))
d1310b2e 3694{
7fd1a3f7 3695 struct inode *inode = mapping->host;
d1310b2e
CM
3696 int ret = 0;
3697 int done = 0;
61391d56 3698 int err = 0;
f85d7d6c 3699 int nr_to_write_done = 0;
d1310b2e
CM
3700 struct pagevec pvec;
3701 int nr_pages;
3702 pgoff_t index;
3703 pgoff_t end; /* Inclusive */
3704 int scanned = 0;
f7aaa06b 3705 int tag;
d1310b2e 3706
7fd1a3f7
JB
3707 /*
3708 * We have to hold onto the inode so that ordered extents can do their
3709 * work when the IO finishes. The alternative to this is failing to add
3710 * an ordered extent if the igrab() fails there and that is a huge pain
3711 * to deal with, so instead just hold onto the inode throughout the
3712 * writepages operation. If it fails here we are freeing up the inode
3713 * anyway and we'd rather not waste our time writing out stuff that is
3714 * going to be truncated anyway.
3715 */
3716 if (!igrab(inode))
3717 return 0;
3718
d1310b2e
CM
3719 pagevec_init(&pvec, 0);
3720 if (wbc->range_cyclic) {
3721 index = mapping->writeback_index; /* Start from prev offset */
3722 end = -1;
3723 } else {
3724 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3725 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3726 scanned = 1;
3727 }
f7aaa06b
JB
3728 if (wbc->sync_mode == WB_SYNC_ALL)
3729 tag = PAGECACHE_TAG_TOWRITE;
3730 else
3731 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3732retry:
f7aaa06b
JB
3733 if (wbc->sync_mode == WB_SYNC_ALL)
3734 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3735 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3736 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3737 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3738 unsigned i;
3739
3740 scanned = 1;
3741 for (i = 0; i < nr_pages; i++) {
3742 struct page *page = pvec.pages[i];
3743
3744 /*
3745 * At this point we hold neither mapping->tree_lock nor
3746 * lock on the page itself: the page may be truncated or
3747 * invalidated (changing page->mapping to NULL), or even
3748 * swizzled back from swapper_space to tmpfs file
3749 * mapping
3750 */
c8f2f24b
JB
3751 if (!trylock_page(page)) {
3752 flush_fn(data);
3753 lock_page(page);
01d658f2 3754 }
d1310b2e
CM
3755
3756 if (unlikely(page->mapping != mapping)) {
3757 unlock_page(page);
3758 continue;
3759 }
3760
3761 if (!wbc->range_cyclic && page->index > end) {
3762 done = 1;
3763 unlock_page(page);
3764 continue;
3765 }
3766
d2c3f4f6 3767 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3768 if (PageWriteback(page))
3769 flush_fn(data);
d1310b2e 3770 wait_on_page_writeback(page);
d2c3f4f6 3771 }
d1310b2e
CM
3772
3773 if (PageWriteback(page) ||
3774 !clear_page_dirty_for_io(page)) {
3775 unlock_page(page);
3776 continue;
3777 }
3778
3779 ret = (*writepage)(page, wbc, data);
3780
3781 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3782 unlock_page(page);
3783 ret = 0;
3784 }
61391d56
FM
3785 if (!err && ret < 0)
3786 err = ret;
f85d7d6c
CM
3787
3788 /*
3789 * the filesystem may choose to bump up nr_to_write.
3790 * We have to make sure to honor the new nr_to_write
3791 * at any time
3792 */
3793 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3794 }
3795 pagevec_release(&pvec);
3796 cond_resched();
3797 }
61391d56 3798 if (!scanned && !done && !err) {
d1310b2e
CM
3799 /*
3800 * We hit the last page and there is more work to be done: wrap
3801 * back to the start of the file
3802 */
3803 scanned = 1;
3804 index = 0;
3805 goto retry;
3806 }
7fd1a3f7 3807 btrfs_add_delayed_iput(inode);
61391d56 3808 return err;
d1310b2e 3809}
d1310b2e 3810
ffbd517d 3811static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3812{
d2c3f4f6 3813 if (epd->bio) {
355808c2
JM
3814 int rw = WRITE;
3815 int ret;
3816
ffbd517d 3817 if (epd->sync_io)
355808c2
JM
3818 rw = WRITE_SYNC;
3819
de0022b9 3820 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3821 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3822 epd->bio = NULL;
3823 }
3824}
3825
ffbd517d
CM
3826static noinline void flush_write_bio(void *data)
3827{
3828 struct extent_page_data *epd = data;
3829 flush_epd_write_bio(epd);
3830}
3831
d1310b2e
CM
3832int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3833 get_extent_t *get_extent,
3834 struct writeback_control *wbc)
3835{
3836 int ret;
d1310b2e
CM
3837 struct extent_page_data epd = {
3838 .bio = NULL,
3839 .tree = tree,
3840 .get_extent = get_extent,
771ed689 3841 .extent_locked = 0,
ffbd517d 3842 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3843 .bio_flags = 0,
d1310b2e 3844 };
d1310b2e 3845
d1310b2e
CM
3846 ret = __extent_writepage(page, wbc, &epd);
3847
ffbd517d 3848 flush_epd_write_bio(&epd);
d1310b2e
CM
3849 return ret;
3850}
d1310b2e 3851
771ed689
CM
3852int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3853 u64 start, u64 end, get_extent_t *get_extent,
3854 int mode)
3855{
3856 int ret = 0;
3857 struct address_space *mapping = inode->i_mapping;
3858 struct page *page;
3859 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3860 PAGE_CACHE_SHIFT;
3861
3862 struct extent_page_data epd = {
3863 .bio = NULL,
3864 .tree = tree,
3865 .get_extent = get_extent,
3866 .extent_locked = 1,
ffbd517d 3867 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3868 .bio_flags = 0,
771ed689
CM
3869 };
3870 struct writeback_control wbc_writepages = {
771ed689 3871 .sync_mode = mode,
771ed689
CM
3872 .nr_to_write = nr_pages * 2,
3873 .range_start = start,
3874 .range_end = end + 1,
3875 };
3876
d397712b 3877 while (start <= end) {
771ed689
CM
3878 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3879 if (clear_page_dirty_for_io(page))
3880 ret = __extent_writepage(page, &wbc_writepages, &epd);
3881 else {
3882 if (tree->ops && tree->ops->writepage_end_io_hook)
3883 tree->ops->writepage_end_io_hook(page, start,
3884 start + PAGE_CACHE_SIZE - 1,
3885 NULL, 1);
3886 unlock_page(page);
3887 }
3888 page_cache_release(page);
3889 start += PAGE_CACHE_SIZE;
3890 }
3891
ffbd517d 3892 flush_epd_write_bio(&epd);
771ed689
CM
3893 return ret;
3894}
d1310b2e
CM
3895
3896int extent_writepages(struct extent_io_tree *tree,
3897 struct address_space *mapping,
3898 get_extent_t *get_extent,
3899 struct writeback_control *wbc)
3900{
3901 int ret = 0;
3902 struct extent_page_data epd = {
3903 .bio = NULL,
3904 .tree = tree,
3905 .get_extent = get_extent,
771ed689 3906 .extent_locked = 0,
ffbd517d 3907 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3908 .bio_flags = 0,
d1310b2e
CM
3909 };
3910
4bef0848 3911 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3912 __extent_writepage, &epd,
3913 flush_write_bio);
ffbd517d 3914 flush_epd_write_bio(&epd);
d1310b2e
CM
3915 return ret;
3916}
d1310b2e
CM
3917
3918int extent_readpages(struct extent_io_tree *tree,
3919 struct address_space *mapping,
3920 struct list_head *pages, unsigned nr_pages,
3921 get_extent_t get_extent)
3922{
3923 struct bio *bio = NULL;
3924 unsigned page_idx;
c8b97818 3925 unsigned long bio_flags = 0;
67c9684f
LB
3926 struct page *pagepool[16];
3927 struct page *page;
125bac01 3928 struct extent_map *em_cached = NULL;
67c9684f 3929 int nr = 0;
d1310b2e 3930
d1310b2e 3931 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3932 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3933
3934 prefetchw(&page->flags);
3935 list_del(&page->lru);
67c9684f 3936 if (add_to_page_cache_lru(page, mapping,
43e817a1 3937 page->index, GFP_NOFS)) {
67c9684f
LB
3938 page_cache_release(page);
3939 continue;
d1310b2e 3940 }
67c9684f
LB
3941
3942 pagepool[nr++] = page;
3943 if (nr < ARRAY_SIZE(pagepool))
3944 continue;
125bac01 3945 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3946 &bio, 0, &bio_flags, READ);
67c9684f 3947 nr = 0;
d1310b2e 3948 }
9974090b 3949 if (nr)
125bac01 3950 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
9974090b 3951 &bio, 0, &bio_flags, READ);
67c9684f 3952
125bac01
MX
3953 if (em_cached)
3954 free_extent_map(em_cached);
3955
d1310b2e
CM
3956 BUG_ON(!list_empty(pages));
3957 if (bio)
79787eaa 3958 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3959 return 0;
3960}
d1310b2e
CM
3961
3962/*
3963 * basic invalidatepage code, this waits on any locked or writeback
3964 * ranges corresponding to the page, and then deletes any extent state
3965 * records from the tree
3966 */
3967int extent_invalidatepage(struct extent_io_tree *tree,
3968 struct page *page, unsigned long offset)
3969{
2ac55d41 3970 struct extent_state *cached_state = NULL;
4eee4fa4 3971 u64 start = page_offset(page);
d1310b2e
CM
3972 u64 end = start + PAGE_CACHE_SIZE - 1;
3973 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3974
fda2832f 3975 start += ALIGN(offset, blocksize);
d1310b2e
CM
3976 if (start > end)
3977 return 0;
3978
d0082371 3979 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3980 wait_on_page_writeback(page);
d1310b2e 3981 clear_extent_bit(tree, start, end,
32c00aff
JB
3982 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3983 EXTENT_DO_ACCOUNTING,
2ac55d41 3984 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3985 return 0;
3986}
d1310b2e 3987
7b13b7b1
CM
3988/*
3989 * a helper for releasepage, this tests for areas of the page that
3990 * are locked or under IO and drops the related state bits if it is safe
3991 * to drop the page.
3992 */
48a3b636
ES
3993static int try_release_extent_state(struct extent_map_tree *map,
3994 struct extent_io_tree *tree,
3995 struct page *page, gfp_t mask)
7b13b7b1 3996{
4eee4fa4 3997 u64 start = page_offset(page);
7b13b7b1
CM
3998 u64 end = start + PAGE_CACHE_SIZE - 1;
3999 int ret = 1;
4000
211f90e6 4001 if (test_range_bit(tree, start, end,
8b62b72b 4002 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4003 ret = 0;
4004 else {
4005 if ((mask & GFP_NOFS) == GFP_NOFS)
4006 mask = GFP_NOFS;
11ef160f
CM
4007 /*
4008 * at this point we can safely clear everything except the
4009 * locked bit and the nodatasum bit
4010 */
e3f24cc5 4011 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4012 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4013 0, 0, NULL, mask);
e3f24cc5
CM
4014
4015 /* if clear_extent_bit failed for enomem reasons,
4016 * we can't allow the release to continue.
4017 */
4018 if (ret < 0)
4019 ret = 0;
4020 else
4021 ret = 1;
7b13b7b1
CM
4022 }
4023 return ret;
4024}
7b13b7b1 4025
d1310b2e
CM
4026/*
4027 * a helper for releasepage. As long as there are no locked extents
4028 * in the range corresponding to the page, both state records and extent
4029 * map records are removed
4030 */
4031int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4032 struct extent_io_tree *tree, struct page *page,
4033 gfp_t mask)
d1310b2e
CM
4034{
4035 struct extent_map *em;
4eee4fa4 4036 u64 start = page_offset(page);
d1310b2e 4037 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4038
70dec807
CM
4039 if ((mask & __GFP_WAIT) &&
4040 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 4041 u64 len;
70dec807 4042 while (start <= end) {
39b5637f 4043 len = end - start + 1;
890871be 4044 write_lock(&map->lock);
39b5637f 4045 em = lookup_extent_mapping(map, start, len);
285190d9 4046 if (!em) {
890871be 4047 write_unlock(&map->lock);
70dec807
CM
4048 break;
4049 }
7f3c74fb
CM
4050 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4051 em->start != start) {
890871be 4052 write_unlock(&map->lock);
70dec807
CM
4053 free_extent_map(em);
4054 break;
4055 }
4056 if (!test_range_bit(tree, em->start,
4057 extent_map_end(em) - 1,
8b62b72b 4058 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4059 0, NULL)) {
70dec807
CM
4060 remove_extent_mapping(map, em);
4061 /* once for the rb tree */
4062 free_extent_map(em);
4063 }
4064 start = extent_map_end(em);
890871be 4065 write_unlock(&map->lock);
70dec807
CM
4066
4067 /* once for us */
d1310b2e
CM
4068 free_extent_map(em);
4069 }
d1310b2e 4070 }
7b13b7b1 4071 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4072}
d1310b2e 4073
ec29ed5b
CM
4074/*
4075 * helper function for fiemap, which doesn't want to see any holes.
4076 * This maps until we find something past 'last'
4077 */
4078static struct extent_map *get_extent_skip_holes(struct inode *inode,
4079 u64 offset,
4080 u64 last,
4081 get_extent_t *get_extent)
4082{
4083 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4084 struct extent_map *em;
4085 u64 len;
4086
4087 if (offset >= last)
4088 return NULL;
4089
67871254 4090 while (1) {
ec29ed5b
CM
4091 len = last - offset;
4092 if (len == 0)
4093 break;
fda2832f 4094 len = ALIGN(len, sectorsize);
ec29ed5b 4095 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4096 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4097 return em;
4098
4099 /* if this isn't a hole return it */
4100 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4101 em->block_start != EXTENT_MAP_HOLE) {
4102 return em;
4103 }
4104
4105 /* this is a hole, advance to the next extent */
4106 offset = extent_map_end(em);
4107 free_extent_map(em);
4108 if (offset >= last)
4109 break;
4110 }
4111 return NULL;
4112}
4113
fe09e16c
LB
4114static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4115{
4116 unsigned long cnt = *((unsigned long *)ctx);
4117
4118 cnt++;
4119 *((unsigned long *)ctx) = cnt;
4120
4121 /* Now we're sure that the extent is shared. */
4122 if (cnt > 1)
4123 return 1;
4124 return 0;
4125}
4126
1506fcc8
YS
4127int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4128 __u64 start, __u64 len, get_extent_t *get_extent)
4129{
975f84fe 4130 int ret = 0;
1506fcc8
YS
4131 u64 off = start;
4132 u64 max = start + len;
4133 u32 flags = 0;
975f84fe
JB
4134 u32 found_type;
4135 u64 last;
ec29ed5b 4136 u64 last_for_get_extent = 0;
1506fcc8 4137 u64 disko = 0;
ec29ed5b 4138 u64 isize = i_size_read(inode);
975f84fe 4139 struct btrfs_key found_key;
1506fcc8 4140 struct extent_map *em = NULL;
2ac55d41 4141 struct extent_state *cached_state = NULL;
975f84fe 4142 struct btrfs_path *path;
1506fcc8 4143 int end = 0;
ec29ed5b
CM
4144 u64 em_start = 0;
4145 u64 em_len = 0;
4146 u64 em_end = 0;
1506fcc8
YS
4147
4148 if (len == 0)
4149 return -EINVAL;
4150
975f84fe
JB
4151 path = btrfs_alloc_path();
4152 if (!path)
4153 return -ENOMEM;
4154 path->leave_spinning = 1;
4155
4d479cf0
JB
4156 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
4157 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
4158
ec29ed5b
CM
4159 /*
4160 * lookup the last file extent. We're not using i_size here
4161 * because there might be preallocation past i_size
4162 */
975f84fe 4163 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 4164 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
4165 if (ret < 0) {
4166 btrfs_free_path(path);
4167 return ret;
4168 }
4169 WARN_ON(!ret);
4170 path->slots[0]--;
975f84fe
JB
4171 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4172 found_type = btrfs_key_type(&found_key);
4173
ec29ed5b 4174 /* No extents, but there might be delalloc bits */
33345d01 4175 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4176 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4177 /* have to trust i_size as the end */
4178 last = (u64)-1;
4179 last_for_get_extent = isize;
4180 } else {
4181 /*
4182 * remember the start of the last extent. There are a
4183 * bunch of different factors that go into the length of the
4184 * extent, so its much less complex to remember where it started
4185 */
4186 last = found_key.offset;
4187 last_for_get_extent = last + 1;
975f84fe 4188 }
fe09e16c 4189 btrfs_release_path(path);
975f84fe 4190
ec29ed5b
CM
4191 /*
4192 * we might have some extents allocated but more delalloc past those
4193 * extents. so, we trust isize unless the start of the last extent is
4194 * beyond isize
4195 */
4196 if (last < isize) {
4197 last = (u64)-1;
4198 last_for_get_extent = isize;
4199 }
4200
a52f4cd2 4201 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4202 &cached_state);
ec29ed5b 4203
4d479cf0 4204 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4205 get_extent);
1506fcc8
YS
4206 if (!em)
4207 goto out;
4208 if (IS_ERR(em)) {
4209 ret = PTR_ERR(em);
4210 goto out;
4211 }
975f84fe 4212
1506fcc8 4213 while (!end) {
b76bb701 4214 u64 offset_in_extent = 0;
ea8efc74
CM
4215
4216 /* break if the extent we found is outside the range */
4217 if (em->start >= max || extent_map_end(em) < off)
4218 break;
4219
4220 /*
4221 * get_extent may return an extent that starts before our
4222 * requested range. We have to make sure the ranges
4223 * we return to fiemap always move forward and don't
4224 * overlap, so adjust the offsets here
4225 */
4226 em_start = max(em->start, off);
1506fcc8 4227
ea8efc74
CM
4228 /*
4229 * record the offset from the start of the extent
b76bb701
JB
4230 * for adjusting the disk offset below. Only do this if the
4231 * extent isn't compressed since our in ram offset may be past
4232 * what we have actually allocated on disk.
ea8efc74 4233 */
b76bb701
JB
4234 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4235 offset_in_extent = em_start - em->start;
ec29ed5b 4236 em_end = extent_map_end(em);
ea8efc74 4237 em_len = em_end - em_start;
1506fcc8
YS
4238 disko = 0;
4239 flags = 0;
4240
ea8efc74
CM
4241 /*
4242 * bump off for our next call to get_extent
4243 */
4244 off = extent_map_end(em);
4245 if (off >= max)
4246 end = 1;
4247
93dbfad7 4248 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4249 end = 1;
4250 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4251 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4252 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4253 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4254 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4255 flags |= (FIEMAP_EXTENT_DELALLOC |
4256 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4257 } else {
fe09e16c
LB
4258 unsigned long ref_cnt = 0;
4259
ea8efc74 4260 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4261
4262 /*
4263 * As btrfs supports shared space, this information
4264 * can be exported to userspace tools via
4265 * flag FIEMAP_EXTENT_SHARED.
4266 */
4267 ret = iterate_inodes_from_logical(
4268 em->block_start,
4269 BTRFS_I(inode)->root->fs_info,
4270 path, count_ext_ref, &ref_cnt);
4271 if (ret < 0 && ret != -ENOENT)
4272 goto out_free;
4273
4274 if (ref_cnt > 1)
4275 flags |= FIEMAP_EXTENT_SHARED;
1506fcc8
YS
4276 }
4277 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4278 flags |= FIEMAP_EXTENT_ENCODED;
4279
1506fcc8
YS
4280 free_extent_map(em);
4281 em = NULL;
ec29ed5b
CM
4282 if ((em_start >= last) || em_len == (u64)-1 ||
4283 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4284 flags |= FIEMAP_EXTENT_LAST;
4285 end = 1;
4286 }
4287
ec29ed5b
CM
4288 /* now scan forward to see if this is really the last extent. */
4289 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4290 get_extent);
4291 if (IS_ERR(em)) {
4292 ret = PTR_ERR(em);
4293 goto out;
4294 }
4295 if (!em) {
975f84fe
JB
4296 flags |= FIEMAP_EXTENT_LAST;
4297 end = 1;
4298 }
ec29ed5b
CM
4299 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4300 em_len, flags);
4301 if (ret)
4302 goto out_free;
1506fcc8
YS
4303 }
4304out_free:
4305 free_extent_map(em);
4306out:
fe09e16c 4307 btrfs_free_path(path);
a52f4cd2 4308 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4309 &cached_state, GFP_NOFS);
1506fcc8
YS
4310 return ret;
4311}
4312
727011e0
CM
4313static void __free_extent_buffer(struct extent_buffer *eb)
4314{
6d49ba1b 4315 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4316 kmem_cache_free(extent_buffer_cache, eb);
4317}
4318
a26e8c9f 4319int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4320{
4321 return (atomic_read(&eb->io_pages) ||
4322 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4323 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4324}
4325
4326/*
4327 * Helper for releasing extent buffer page.
4328 */
4329static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4330 unsigned long start_idx)
4331{
4332 unsigned long index;
4333 unsigned long num_pages;
4334 struct page *page;
4335 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4336
4337 BUG_ON(extent_buffer_under_io(eb));
4338
4339 num_pages = num_extent_pages(eb->start, eb->len);
4340 index = start_idx + num_pages;
4341 if (start_idx >= index)
4342 return;
4343
4344 do {
4345 index--;
4346 page = extent_buffer_page(eb, index);
4347 if (page && mapped) {
4348 spin_lock(&page->mapping->private_lock);
4349 /*
4350 * We do this since we'll remove the pages after we've
4351 * removed the eb from the radix tree, so we could race
4352 * and have this page now attached to the new eb. So
4353 * only clear page_private if it's still connected to
4354 * this eb.
4355 */
4356 if (PagePrivate(page) &&
4357 page->private == (unsigned long)eb) {
4358 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4359 BUG_ON(PageDirty(page));
4360 BUG_ON(PageWriteback(page));
4361 /*
4362 * We need to make sure we haven't be attached
4363 * to a new eb.
4364 */
4365 ClearPagePrivate(page);
4366 set_page_private(page, 0);
4367 /* One for the page private */
4368 page_cache_release(page);
4369 }
4370 spin_unlock(&page->mapping->private_lock);
4371
4372 }
4373 if (page) {
4374 /* One for when we alloced the page */
4375 page_cache_release(page);
4376 }
4377 } while (index != start_idx);
4378}
4379
4380/*
4381 * Helper for releasing the extent buffer.
4382 */
4383static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4384{
4385 btrfs_release_extent_buffer_page(eb, 0);
4386 __free_extent_buffer(eb);
4387}
4388
f28491e0
JB
4389static struct extent_buffer *
4390__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4391 unsigned long len, gfp_t mask)
d1310b2e
CM
4392{
4393 struct extent_buffer *eb = NULL;
4394
d1310b2e 4395 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4396 if (eb == NULL)
4397 return NULL;
d1310b2e
CM
4398 eb->start = start;
4399 eb->len = len;
f28491e0 4400 eb->fs_info = fs_info;
815a51c7 4401 eb->bflags = 0;
bd681513
CM
4402 rwlock_init(&eb->lock);
4403 atomic_set(&eb->write_locks, 0);
4404 atomic_set(&eb->read_locks, 0);
4405 atomic_set(&eb->blocking_readers, 0);
4406 atomic_set(&eb->blocking_writers, 0);
4407 atomic_set(&eb->spinning_readers, 0);
4408 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4409 eb->lock_nested = 0;
bd681513
CM
4410 init_waitqueue_head(&eb->write_lock_wq);
4411 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4412
6d49ba1b
ES
4413 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4414
3083ee2e 4415 spin_lock_init(&eb->refs_lock);
d1310b2e 4416 atomic_set(&eb->refs, 1);
0b32f4bb 4417 atomic_set(&eb->io_pages, 0);
727011e0 4418
b8dae313
DS
4419 /*
4420 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4421 */
4422 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4423 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4424 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4425
4426 return eb;
4427}
4428
815a51c7
JS
4429struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4430{
4431 unsigned long i;
4432 struct page *p;
4433 struct extent_buffer *new;
4434 unsigned long num_pages = num_extent_pages(src->start, src->len);
4435
9ec72677 4436 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
815a51c7
JS
4437 if (new == NULL)
4438 return NULL;
4439
4440 for (i = 0; i < num_pages; i++) {
9ec72677 4441 p = alloc_page(GFP_NOFS);
db7f3436
JB
4442 if (!p) {
4443 btrfs_release_extent_buffer(new);
4444 return NULL;
4445 }
815a51c7
JS
4446 attach_extent_buffer_page(new, p);
4447 WARN_ON(PageDirty(p));
4448 SetPageUptodate(p);
4449 new->pages[i] = p;
4450 }
4451
4452 copy_extent_buffer(new, src, 0, 0, src->len);
4453 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4454 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4455
4456 return new;
4457}
4458
4459struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4460{
4461 struct extent_buffer *eb;
4462 unsigned long num_pages = num_extent_pages(0, len);
4463 unsigned long i;
4464
9ec72677 4465 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
815a51c7
JS
4466 if (!eb)
4467 return NULL;
4468
4469 for (i = 0; i < num_pages; i++) {
9ec72677 4470 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4471 if (!eb->pages[i])
4472 goto err;
4473 }
4474 set_extent_buffer_uptodate(eb);
4475 btrfs_set_header_nritems(eb, 0);
4476 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4477
4478 return eb;
4479err:
84167d19
SB
4480 for (; i > 0; i--)
4481 __free_page(eb->pages[i - 1]);
815a51c7
JS
4482 __free_extent_buffer(eb);
4483 return NULL;
4484}
4485
0b32f4bb
JB
4486static void check_buffer_tree_ref(struct extent_buffer *eb)
4487{
242e18c7 4488 int refs;
0b32f4bb
JB
4489 /* the ref bit is tricky. We have to make sure it is set
4490 * if we have the buffer dirty. Otherwise the
4491 * code to free a buffer can end up dropping a dirty
4492 * page
4493 *
4494 * Once the ref bit is set, it won't go away while the
4495 * buffer is dirty or in writeback, and it also won't
4496 * go away while we have the reference count on the
4497 * eb bumped.
4498 *
4499 * We can't just set the ref bit without bumping the
4500 * ref on the eb because free_extent_buffer might
4501 * see the ref bit and try to clear it. If this happens
4502 * free_extent_buffer might end up dropping our original
4503 * ref by mistake and freeing the page before we are able
4504 * to add one more ref.
4505 *
4506 * So bump the ref count first, then set the bit. If someone
4507 * beat us to it, drop the ref we added.
4508 */
242e18c7
CM
4509 refs = atomic_read(&eb->refs);
4510 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4511 return;
4512
594831c4
JB
4513 spin_lock(&eb->refs_lock);
4514 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4515 atomic_inc(&eb->refs);
594831c4 4516 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4517}
4518
5df4235e
JB
4519static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4520{
4521 unsigned long num_pages, i;
4522
0b32f4bb
JB
4523 check_buffer_tree_ref(eb);
4524
5df4235e
JB
4525 num_pages = num_extent_pages(eb->start, eb->len);
4526 for (i = 0; i < num_pages; i++) {
4527 struct page *p = extent_buffer_page(eb, i);
4528 mark_page_accessed(p);
4529 }
4530}
4531
f28491e0
JB
4532struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4533 u64 start)
452c75c3
CS
4534{
4535 struct extent_buffer *eb;
4536
4537 rcu_read_lock();
f28491e0
JB
4538 eb = radix_tree_lookup(&fs_info->buffer_radix,
4539 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4540 if (eb && atomic_inc_not_zero(&eb->refs)) {
4541 rcu_read_unlock();
4542 mark_extent_buffer_accessed(eb);
4543 return eb;
4544 }
4545 rcu_read_unlock();
4546
4547 return NULL;
4548}
4549
f28491e0 4550struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
727011e0 4551 u64 start, unsigned long len)
d1310b2e
CM
4552{
4553 unsigned long num_pages = num_extent_pages(start, len);
4554 unsigned long i;
4555 unsigned long index = start >> PAGE_CACHE_SHIFT;
4556 struct extent_buffer *eb;
6af118ce 4557 struct extent_buffer *exists = NULL;
d1310b2e 4558 struct page *p;
f28491e0 4559 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4560 int uptodate = 1;
19fe0a8b 4561 int ret;
d1310b2e 4562
f28491e0 4563 eb = find_extent_buffer(fs_info, start);
452c75c3 4564 if (eb)
6af118ce 4565 return eb;
6af118ce 4566
f28491e0 4567 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
2b114d1d 4568 if (!eb)
d1310b2e
CM
4569 return NULL;
4570
727011e0 4571 for (i = 0; i < num_pages; i++, index++) {
a6591715 4572 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4573 if (!p)
6af118ce 4574 goto free_eb;
4f2de97a
JB
4575
4576 spin_lock(&mapping->private_lock);
4577 if (PagePrivate(p)) {
4578 /*
4579 * We could have already allocated an eb for this page
4580 * and attached one so lets see if we can get a ref on
4581 * the existing eb, and if we can we know it's good and
4582 * we can just return that one, else we know we can just
4583 * overwrite page->private.
4584 */
4585 exists = (struct extent_buffer *)p->private;
4586 if (atomic_inc_not_zero(&exists->refs)) {
4587 spin_unlock(&mapping->private_lock);
4588 unlock_page(p);
17de39ac 4589 page_cache_release(p);
5df4235e 4590 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4591 goto free_eb;
4592 }
4593
0b32f4bb 4594 /*
4f2de97a
JB
4595 * Do this so attach doesn't complain and we need to
4596 * drop the ref the old guy had.
4597 */
4598 ClearPagePrivate(p);
0b32f4bb 4599 WARN_ON(PageDirty(p));
4f2de97a 4600 page_cache_release(p);
d1310b2e 4601 }
4f2de97a
JB
4602 attach_extent_buffer_page(eb, p);
4603 spin_unlock(&mapping->private_lock);
0b32f4bb 4604 WARN_ON(PageDirty(p));
d1310b2e 4605 mark_page_accessed(p);
727011e0 4606 eb->pages[i] = p;
d1310b2e
CM
4607 if (!PageUptodate(p))
4608 uptodate = 0;
eb14ab8e
CM
4609
4610 /*
4611 * see below about how we avoid a nasty race with release page
4612 * and why we unlock later
4613 */
d1310b2e
CM
4614 }
4615 if (uptodate)
b4ce94de 4616 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4617again:
19fe0a8b
MX
4618 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4619 if (ret)
4620 goto free_eb;
4621
f28491e0
JB
4622 spin_lock(&fs_info->buffer_lock);
4623 ret = radix_tree_insert(&fs_info->buffer_radix,
4624 start >> PAGE_CACHE_SHIFT, eb);
4625 spin_unlock(&fs_info->buffer_lock);
452c75c3 4626 radix_tree_preload_end();
19fe0a8b 4627 if (ret == -EEXIST) {
f28491e0 4628 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4629 if (exists)
4630 goto free_eb;
4631 else
115391d2 4632 goto again;
6af118ce 4633 }
6af118ce 4634 /* add one reference for the tree */
0b32f4bb 4635 check_buffer_tree_ref(eb);
34b41ace 4636 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4637
4638 /*
4639 * there is a race where release page may have
4640 * tried to find this extent buffer in the radix
4641 * but failed. It will tell the VM it is safe to
4642 * reclaim the, and it will clear the page private bit.
4643 * We must make sure to set the page private bit properly
4644 * after the extent buffer is in the radix tree so
4645 * it doesn't get lost
4646 */
727011e0
CM
4647 SetPageChecked(eb->pages[0]);
4648 for (i = 1; i < num_pages; i++) {
4649 p = extent_buffer_page(eb, i);
727011e0
CM
4650 ClearPageChecked(p);
4651 unlock_page(p);
4652 }
4653 unlock_page(eb->pages[0]);
d1310b2e
CM
4654 return eb;
4655
6af118ce 4656free_eb:
727011e0
CM
4657 for (i = 0; i < num_pages; i++) {
4658 if (eb->pages[i])
4659 unlock_page(eb->pages[i]);
4660 }
eb14ab8e 4661
17de39ac 4662 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4663 btrfs_release_extent_buffer(eb);
6af118ce 4664 return exists;
d1310b2e 4665}
d1310b2e 4666
3083ee2e
JB
4667static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4668{
4669 struct extent_buffer *eb =
4670 container_of(head, struct extent_buffer, rcu_head);
4671
4672 __free_extent_buffer(eb);
4673}
4674
3083ee2e 4675/* Expects to have eb->eb_lock already held */
f7a52a40 4676static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4677{
4678 WARN_ON(atomic_read(&eb->refs) == 0);
4679 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 4680 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 4681 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 4682
815a51c7 4683 spin_unlock(&eb->refs_lock);
3083ee2e 4684
f28491e0
JB
4685 spin_lock(&fs_info->buffer_lock);
4686 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 4687 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 4688 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
4689 } else {
4690 spin_unlock(&eb->refs_lock);
815a51c7 4691 }
3083ee2e
JB
4692
4693 /* Should be safe to release our pages at this point */
4694 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4695 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4696 return 1;
3083ee2e
JB
4697 }
4698 spin_unlock(&eb->refs_lock);
e64860aa
JB
4699
4700 return 0;
3083ee2e
JB
4701}
4702
d1310b2e
CM
4703void free_extent_buffer(struct extent_buffer *eb)
4704{
242e18c7
CM
4705 int refs;
4706 int old;
d1310b2e
CM
4707 if (!eb)
4708 return;
4709
242e18c7
CM
4710 while (1) {
4711 refs = atomic_read(&eb->refs);
4712 if (refs <= 3)
4713 break;
4714 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4715 if (old == refs)
4716 return;
4717 }
4718
3083ee2e 4719 spin_lock(&eb->refs_lock);
815a51c7
JS
4720 if (atomic_read(&eb->refs) == 2 &&
4721 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4722 atomic_dec(&eb->refs);
4723
3083ee2e
JB
4724 if (atomic_read(&eb->refs) == 2 &&
4725 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4726 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4727 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4728 atomic_dec(&eb->refs);
4729
4730 /*
4731 * I know this is terrible, but it's temporary until we stop tracking
4732 * the uptodate bits and such for the extent buffers.
4733 */
f7a52a40 4734 release_extent_buffer(eb);
3083ee2e
JB
4735}
4736
4737void free_extent_buffer_stale(struct extent_buffer *eb)
4738{
4739 if (!eb)
d1310b2e
CM
4740 return;
4741
3083ee2e
JB
4742 spin_lock(&eb->refs_lock);
4743 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4744
0b32f4bb 4745 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4746 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4747 atomic_dec(&eb->refs);
f7a52a40 4748 release_extent_buffer(eb);
d1310b2e 4749}
d1310b2e 4750
1d4284bd 4751void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4752{
d1310b2e
CM
4753 unsigned long i;
4754 unsigned long num_pages;
4755 struct page *page;
4756
d1310b2e
CM
4757 num_pages = num_extent_pages(eb->start, eb->len);
4758
4759 for (i = 0; i < num_pages; i++) {
4760 page = extent_buffer_page(eb, i);
b9473439 4761 if (!PageDirty(page))
d2c3f4f6
CM
4762 continue;
4763
a61e6f29 4764 lock_page(page);
eb14ab8e
CM
4765 WARN_ON(!PagePrivate(page));
4766
d1310b2e 4767 clear_page_dirty_for_io(page);
0ee0fda0 4768 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4769 if (!PageDirty(page)) {
4770 radix_tree_tag_clear(&page->mapping->page_tree,
4771 page_index(page),
4772 PAGECACHE_TAG_DIRTY);
4773 }
0ee0fda0 4774 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4775 ClearPageError(page);
a61e6f29 4776 unlock_page(page);
d1310b2e 4777 }
0b32f4bb 4778 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4779}
d1310b2e 4780
0b32f4bb 4781int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4782{
4783 unsigned long i;
4784 unsigned long num_pages;
b9473439 4785 int was_dirty = 0;
d1310b2e 4786
0b32f4bb
JB
4787 check_buffer_tree_ref(eb);
4788
b9473439 4789 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4790
d1310b2e 4791 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4792 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4793 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4794
b9473439 4795 for (i = 0; i < num_pages; i++)
0b32f4bb 4796 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4797 return was_dirty;
d1310b2e 4798}
d1310b2e 4799
0b32f4bb 4800int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4801{
4802 unsigned long i;
4803 struct page *page;
4804 unsigned long num_pages;
4805
b4ce94de 4806 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4807 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4808 for (i = 0; i < num_pages; i++) {
4809 page = extent_buffer_page(eb, i);
33958dc6
CM
4810 if (page)
4811 ClearPageUptodate(page);
1259ab75
CM
4812 }
4813 return 0;
4814}
4815
0b32f4bb 4816int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4817{
4818 unsigned long i;
4819 struct page *page;
4820 unsigned long num_pages;
4821
0b32f4bb 4822 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4823 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4824 for (i = 0; i < num_pages; i++) {
4825 page = extent_buffer_page(eb, i);
d1310b2e
CM
4826 SetPageUptodate(page);
4827 }
4828 return 0;
4829}
d1310b2e 4830
0b32f4bb 4831int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4832{
0b32f4bb 4833 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4834}
d1310b2e
CM
4835
4836int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4837 struct extent_buffer *eb, u64 start, int wait,
f188591e 4838 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4839{
4840 unsigned long i;
4841 unsigned long start_i;
4842 struct page *page;
4843 int err;
4844 int ret = 0;
ce9adaa5
CM
4845 int locked_pages = 0;
4846 int all_uptodate = 1;
d1310b2e 4847 unsigned long num_pages;
727011e0 4848 unsigned long num_reads = 0;
a86c12c7 4849 struct bio *bio = NULL;
c8b97818 4850 unsigned long bio_flags = 0;
a86c12c7 4851
b4ce94de 4852 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4853 return 0;
4854
d1310b2e
CM
4855 if (start) {
4856 WARN_ON(start < eb->start);
4857 start_i = (start >> PAGE_CACHE_SHIFT) -
4858 (eb->start >> PAGE_CACHE_SHIFT);
4859 } else {
4860 start_i = 0;
4861 }
4862
4863 num_pages = num_extent_pages(eb->start, eb->len);
4864 for (i = start_i; i < num_pages; i++) {
4865 page = extent_buffer_page(eb, i);
bb82ab88 4866 if (wait == WAIT_NONE) {
2db04966 4867 if (!trylock_page(page))
ce9adaa5 4868 goto unlock_exit;
d1310b2e
CM
4869 } else {
4870 lock_page(page);
4871 }
ce9adaa5 4872 locked_pages++;
727011e0
CM
4873 if (!PageUptodate(page)) {
4874 num_reads++;
ce9adaa5 4875 all_uptodate = 0;
727011e0 4876 }
ce9adaa5
CM
4877 }
4878 if (all_uptodate) {
4879 if (start_i == 0)
b4ce94de 4880 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4881 goto unlock_exit;
4882 }
4883
ea466794 4884 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4885 eb->read_mirror = 0;
0b32f4bb 4886 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4887 for (i = start_i; i < num_pages; i++) {
4888 page = extent_buffer_page(eb, i);
ce9adaa5 4889 if (!PageUptodate(page)) {
f188591e 4890 ClearPageError(page);
a86c12c7 4891 err = __extent_read_full_page(tree, page,
f188591e 4892 get_extent, &bio,
d4c7ca86
JB
4893 mirror_num, &bio_flags,
4894 READ | REQ_META);
d397712b 4895 if (err)
d1310b2e 4896 ret = err;
d1310b2e
CM
4897 } else {
4898 unlock_page(page);
4899 }
4900 }
4901
355808c2 4902 if (bio) {
d4c7ca86
JB
4903 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4904 bio_flags);
79787eaa
JM
4905 if (err)
4906 return err;
355808c2 4907 }
a86c12c7 4908
bb82ab88 4909 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4910 return ret;
d397712b 4911
d1310b2e
CM
4912 for (i = start_i; i < num_pages; i++) {
4913 page = extent_buffer_page(eb, i);
4914 wait_on_page_locked(page);
d397712b 4915 if (!PageUptodate(page))
d1310b2e 4916 ret = -EIO;
d1310b2e 4917 }
d397712b 4918
d1310b2e 4919 return ret;
ce9adaa5
CM
4920
4921unlock_exit:
4922 i = start_i;
d397712b 4923 while (locked_pages > 0) {
ce9adaa5
CM
4924 page = extent_buffer_page(eb, i);
4925 i++;
4926 unlock_page(page);
4927 locked_pages--;
4928 }
4929 return ret;
d1310b2e 4930}
d1310b2e
CM
4931
4932void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4933 unsigned long start,
4934 unsigned long len)
4935{
4936 size_t cur;
4937 size_t offset;
4938 struct page *page;
4939 char *kaddr;
4940 char *dst = (char *)dstv;
4941 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4942 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4943
4944 WARN_ON(start > eb->len);
4945 WARN_ON(start + len > eb->start + eb->len);
4946
778746b5 4947 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 4948
d397712b 4949 while (len > 0) {
d1310b2e 4950 page = extent_buffer_page(eb, i);
d1310b2e
CM
4951
4952 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4953 kaddr = page_address(page);
d1310b2e 4954 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4955
4956 dst += cur;
4957 len -= cur;
4958 offset = 0;
4959 i++;
4960 }
4961}
d1310b2e
CM
4962
4963int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4964 unsigned long min_len, char **map,
d1310b2e 4965 unsigned long *map_start,
a6591715 4966 unsigned long *map_len)
d1310b2e
CM
4967{
4968 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4969 char *kaddr;
4970 struct page *p;
4971 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4972 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4973 unsigned long end_i = (start_offset + start + min_len - 1) >>
4974 PAGE_CACHE_SHIFT;
4975
4976 if (i != end_i)
4977 return -EINVAL;
4978
4979 if (i == 0) {
4980 offset = start_offset;
4981 *map_start = 0;
4982 } else {
4983 offset = 0;
4984 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4985 }
d397712b 4986
d1310b2e 4987 if (start + min_len > eb->len) {
31b1a2bd 4988 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
4989 "wanted %lu %lu\n",
4990 eb->start, eb->len, start, min_len);
85026533 4991 return -EINVAL;
d1310b2e
CM
4992 }
4993
4994 p = extent_buffer_page(eb, i);
a6591715 4995 kaddr = page_address(p);
d1310b2e
CM
4996 *map = kaddr + offset;
4997 *map_len = PAGE_CACHE_SIZE - offset;
4998 return 0;
4999}
d1310b2e 5000
d1310b2e
CM
5001int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5002 unsigned long start,
5003 unsigned long len)
5004{
5005 size_t cur;
5006 size_t offset;
5007 struct page *page;
5008 char *kaddr;
5009 char *ptr = (char *)ptrv;
5010 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5011 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5012 int ret = 0;
5013
5014 WARN_ON(start > eb->len);
5015 WARN_ON(start + len > eb->start + eb->len);
5016
778746b5 5017 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5018
d397712b 5019 while (len > 0) {
d1310b2e 5020 page = extent_buffer_page(eb, i);
d1310b2e
CM
5021
5022 cur = min(len, (PAGE_CACHE_SIZE - offset));
5023
a6591715 5024 kaddr = page_address(page);
d1310b2e 5025 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5026 if (ret)
5027 break;
5028
5029 ptr += cur;
5030 len -= cur;
5031 offset = 0;
5032 i++;
5033 }
5034 return ret;
5035}
d1310b2e
CM
5036
5037void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5038 unsigned long start, unsigned long len)
5039{
5040 size_t cur;
5041 size_t offset;
5042 struct page *page;
5043 char *kaddr;
5044 char *src = (char *)srcv;
5045 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5046 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5047
5048 WARN_ON(start > eb->len);
5049 WARN_ON(start + len > eb->start + eb->len);
5050
778746b5 5051 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5052
d397712b 5053 while (len > 0) {
d1310b2e
CM
5054 page = extent_buffer_page(eb, i);
5055 WARN_ON(!PageUptodate(page));
5056
5057 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5058 kaddr = page_address(page);
d1310b2e 5059 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5060
5061 src += cur;
5062 len -= cur;
5063 offset = 0;
5064 i++;
5065 }
5066}
d1310b2e
CM
5067
5068void memset_extent_buffer(struct extent_buffer *eb, char c,
5069 unsigned long start, unsigned long len)
5070{
5071 size_t cur;
5072 size_t offset;
5073 struct page *page;
5074 char *kaddr;
5075 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5076 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5077
5078 WARN_ON(start > eb->len);
5079 WARN_ON(start + len > eb->start + eb->len);
5080
778746b5 5081 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5082
d397712b 5083 while (len > 0) {
d1310b2e
CM
5084 page = extent_buffer_page(eb, i);
5085 WARN_ON(!PageUptodate(page));
5086
5087 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5088 kaddr = page_address(page);
d1310b2e 5089 memset(kaddr + offset, c, cur);
d1310b2e
CM
5090
5091 len -= cur;
5092 offset = 0;
5093 i++;
5094 }
5095}
d1310b2e
CM
5096
5097void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5098 unsigned long dst_offset, unsigned long src_offset,
5099 unsigned long len)
5100{
5101 u64 dst_len = dst->len;
5102 size_t cur;
5103 size_t offset;
5104 struct page *page;
5105 char *kaddr;
5106 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5107 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5108
5109 WARN_ON(src->len != dst_len);
5110
5111 offset = (start_offset + dst_offset) &
778746b5 5112 (PAGE_CACHE_SIZE - 1);
d1310b2e 5113
d397712b 5114 while (len > 0) {
d1310b2e
CM
5115 page = extent_buffer_page(dst, i);
5116 WARN_ON(!PageUptodate(page));
5117
5118 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5119
a6591715 5120 kaddr = page_address(page);
d1310b2e 5121 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5122
5123 src_offset += cur;
5124 len -= cur;
5125 offset = 0;
5126 i++;
5127 }
5128}
d1310b2e 5129
3387206f
ST
5130static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5131{
5132 unsigned long distance = (src > dst) ? src - dst : dst - src;
5133 return distance < len;
5134}
5135
d1310b2e
CM
5136static void copy_pages(struct page *dst_page, struct page *src_page,
5137 unsigned long dst_off, unsigned long src_off,
5138 unsigned long len)
5139{
a6591715 5140 char *dst_kaddr = page_address(dst_page);
d1310b2e 5141 char *src_kaddr;
727011e0 5142 int must_memmove = 0;
d1310b2e 5143
3387206f 5144 if (dst_page != src_page) {
a6591715 5145 src_kaddr = page_address(src_page);
3387206f 5146 } else {
d1310b2e 5147 src_kaddr = dst_kaddr;
727011e0
CM
5148 if (areas_overlap(src_off, dst_off, len))
5149 must_memmove = 1;
3387206f 5150 }
d1310b2e 5151
727011e0
CM
5152 if (must_memmove)
5153 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5154 else
5155 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5156}
5157
5158void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5159 unsigned long src_offset, unsigned long len)
5160{
5161 size_t cur;
5162 size_t dst_off_in_page;
5163 size_t src_off_in_page;
5164 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5165 unsigned long dst_i;
5166 unsigned long src_i;
5167
5168 if (src_offset + len > dst->len) {
efe120a0 5169 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5170 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5171 BUG_ON(1);
5172 }
5173 if (dst_offset + len > dst->len) {
efe120a0 5174 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5175 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5176 BUG_ON(1);
5177 }
5178
d397712b 5179 while (len > 0) {
d1310b2e 5180 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5181 (PAGE_CACHE_SIZE - 1);
d1310b2e 5182 src_off_in_page = (start_offset + src_offset) &
778746b5 5183 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5184
5185 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5186 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5187
5188 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5189 src_off_in_page));
5190 cur = min_t(unsigned long, cur,
5191 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5192
5193 copy_pages(extent_buffer_page(dst, dst_i),
5194 extent_buffer_page(dst, src_i),
5195 dst_off_in_page, src_off_in_page, cur);
5196
5197 src_offset += cur;
5198 dst_offset += cur;
5199 len -= cur;
5200 }
5201}
d1310b2e
CM
5202
5203void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5204 unsigned long src_offset, unsigned long len)
5205{
5206 size_t cur;
5207 size_t dst_off_in_page;
5208 size_t src_off_in_page;
5209 unsigned long dst_end = dst_offset + len - 1;
5210 unsigned long src_end = src_offset + len - 1;
5211 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5212 unsigned long dst_i;
5213 unsigned long src_i;
5214
5215 if (src_offset + len > dst->len) {
efe120a0 5216 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
d397712b 5217 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5218 BUG_ON(1);
5219 }
5220 if (dst_offset + len > dst->len) {
efe120a0 5221 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
d397712b 5222 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5223 BUG_ON(1);
5224 }
727011e0 5225 if (dst_offset < src_offset) {
d1310b2e
CM
5226 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5227 return;
5228 }
d397712b 5229 while (len > 0) {
d1310b2e
CM
5230 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5231 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5232
5233 dst_off_in_page = (start_offset + dst_end) &
778746b5 5234 (PAGE_CACHE_SIZE - 1);
d1310b2e 5235 src_off_in_page = (start_offset + src_end) &
778746b5 5236 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5237
5238 cur = min_t(unsigned long, len, src_off_in_page + 1);
5239 cur = min(cur, dst_off_in_page + 1);
1877e1a7 5240 copy_pages(extent_buffer_page(dst, dst_i),
d1310b2e
CM
5241 extent_buffer_page(dst, src_i),
5242 dst_off_in_page - cur + 1,
5243 src_off_in_page - cur + 1, cur);
5244
5245 dst_end -= cur;
5246 src_end -= cur;
5247 len -= cur;
5248 }
5249}
6af118ce 5250
f7a52a40 5251int try_release_extent_buffer(struct page *page)
19fe0a8b 5252{
6af118ce 5253 struct extent_buffer *eb;
6af118ce 5254
3083ee2e
JB
5255 /*
5256 * We need to make sure noboody is attaching this page to an eb right
5257 * now.
5258 */
5259 spin_lock(&page->mapping->private_lock);
5260 if (!PagePrivate(page)) {
5261 spin_unlock(&page->mapping->private_lock);
4f2de97a 5262 return 1;
45f49bce 5263 }
6af118ce 5264
3083ee2e
JB
5265 eb = (struct extent_buffer *)page->private;
5266 BUG_ON(!eb);
19fe0a8b
MX
5267
5268 /*
3083ee2e
JB
5269 * This is a little awful but should be ok, we need to make sure that
5270 * the eb doesn't disappear out from under us while we're looking at
5271 * this page.
19fe0a8b 5272 */
3083ee2e 5273 spin_lock(&eb->refs_lock);
0b32f4bb 5274 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5275 spin_unlock(&eb->refs_lock);
5276 spin_unlock(&page->mapping->private_lock);
5277 return 0;
b9473439 5278 }
3083ee2e 5279 spin_unlock(&page->mapping->private_lock);
897ca6e9 5280
19fe0a8b 5281 /*
3083ee2e
JB
5282 * If tree ref isn't set then we know the ref on this eb is a real ref,
5283 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5284 */
3083ee2e
JB
5285 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5286 spin_unlock(&eb->refs_lock);
5287 return 0;
b9473439 5288 }
19fe0a8b 5289
f7a52a40 5290 return release_extent_buffer(eb);
6af118ce 5291}