Btrfs: fix check on same raid type flag twice
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79}
80#else
81#define btrfs_leak_debug_add(new, head) do {} while (0)
82#define btrfs_leak_debug_del(entry) do {} while (0)
83#define btrfs_leak_debug_check() do {} while (0)
4bef0848 84#endif
d1310b2e 85
d1310b2e
CM
86#define BUFFER_LRU_MAX 64
87
88struct tree_entry {
89 u64 start;
90 u64 end;
d1310b2e
CM
91 struct rb_node rb_node;
92};
93
94struct extent_page_data {
95 struct bio *bio;
96 struct extent_io_tree *tree;
97 get_extent_t *get_extent;
de0022b9 98 unsigned long bio_flags;
771ed689
CM
99
100 /* tells writepage not to lock the state bits for this range
101 * it still does the unlocking
102 */
ffbd517d
CM
103 unsigned int extent_locked:1;
104
105 /* tells the submit_bio code to use a WRITE_SYNC */
106 unsigned int sync_io:1;
d1310b2e
CM
107};
108
0b32f4bb 109static noinline void flush_write_bio(void *data);
c2d904e0
JM
110static inline struct btrfs_fs_info *
111tree_fs_info(struct extent_io_tree *tree)
112{
113 return btrfs_sb(tree->mapping->host->i_sb);
114}
0b32f4bb 115
d1310b2e
CM
116int __init extent_io_init(void)
117{
837e1972 118 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
119 sizeof(struct extent_state), 0,
120 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
121 if (!extent_state_cache)
122 return -ENOMEM;
123
837e1972 124 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
125 sizeof(struct extent_buffer), 0,
126 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
127 if (!extent_buffer_cache)
128 goto free_state_cache;
9be3395b
CM
129
130 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
131 offsetof(struct btrfs_io_bio, bio));
132 if (!btrfs_bioset)
133 goto free_buffer_cache;
d1310b2e
CM
134 return 0;
135
9be3395b
CM
136free_buffer_cache:
137 kmem_cache_destroy(extent_buffer_cache);
138 extent_buffer_cache = NULL;
139
d1310b2e
CM
140free_state_cache:
141 kmem_cache_destroy(extent_state_cache);
9be3395b 142 extent_state_cache = NULL;
d1310b2e
CM
143 return -ENOMEM;
144}
145
146void extent_io_exit(void)
147{
6d49ba1b 148 btrfs_leak_debug_check();
8c0a8537
KS
149
150 /*
151 * Make sure all delayed rcu free are flushed before we
152 * destroy caches.
153 */
154 rcu_barrier();
d1310b2e
CM
155 if (extent_state_cache)
156 kmem_cache_destroy(extent_state_cache);
157 if (extent_buffer_cache)
158 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
159 if (btrfs_bioset)
160 bioset_free(btrfs_bioset);
d1310b2e
CM
161}
162
163void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 164 struct address_space *mapping)
d1310b2e 165{
6bef4d31 166 tree->state = RB_ROOT;
19fe0a8b 167 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
168 tree->ops = NULL;
169 tree->dirty_bytes = 0;
70dec807 170 spin_lock_init(&tree->lock);
6af118ce 171 spin_lock_init(&tree->buffer_lock);
d1310b2e 172 tree->mapping = mapping;
d1310b2e 173}
d1310b2e 174
b2950863 175static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
176{
177 struct extent_state *state;
d1310b2e
CM
178
179 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 180 if (!state)
d1310b2e
CM
181 return state;
182 state->state = 0;
d1310b2e 183 state->private = 0;
70dec807 184 state->tree = NULL;
6d49ba1b 185 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
186 atomic_set(&state->refs, 1);
187 init_waitqueue_head(&state->wq);
143bede5 188 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
189 return state;
190}
d1310b2e 191
4845e44f 192void free_extent_state(struct extent_state *state)
d1310b2e 193{
d1310b2e
CM
194 if (!state)
195 return;
196 if (atomic_dec_and_test(&state->refs)) {
70dec807 197 WARN_ON(state->tree);
6d49ba1b 198 btrfs_leak_debug_del(&state->leak_list);
143bede5 199 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
200 kmem_cache_free(extent_state_cache, state);
201 }
202}
d1310b2e
CM
203
204static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
205 struct rb_node *node)
206{
d397712b
CM
207 struct rb_node **p = &root->rb_node;
208 struct rb_node *parent = NULL;
d1310b2e
CM
209 struct tree_entry *entry;
210
d397712b 211 while (*p) {
d1310b2e
CM
212 parent = *p;
213 entry = rb_entry(parent, struct tree_entry, rb_node);
214
215 if (offset < entry->start)
216 p = &(*p)->rb_left;
217 else if (offset > entry->end)
218 p = &(*p)->rb_right;
219 else
220 return parent;
221 }
222
d1310b2e
CM
223 rb_link_node(node, parent, p);
224 rb_insert_color(node, root);
225 return NULL;
226}
227
80ea96b1 228static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
229 struct rb_node **prev_ret,
230 struct rb_node **next_ret)
231{
80ea96b1 232 struct rb_root *root = &tree->state;
d397712b 233 struct rb_node *n = root->rb_node;
d1310b2e
CM
234 struct rb_node *prev = NULL;
235 struct rb_node *orig_prev = NULL;
236 struct tree_entry *entry;
237 struct tree_entry *prev_entry = NULL;
238
d397712b 239 while (n) {
d1310b2e
CM
240 entry = rb_entry(n, struct tree_entry, rb_node);
241 prev = n;
242 prev_entry = entry;
243
244 if (offset < entry->start)
245 n = n->rb_left;
246 else if (offset > entry->end)
247 n = n->rb_right;
d397712b 248 else
d1310b2e
CM
249 return n;
250 }
251
252 if (prev_ret) {
253 orig_prev = prev;
d397712b 254 while (prev && offset > prev_entry->end) {
d1310b2e
CM
255 prev = rb_next(prev);
256 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
257 }
258 *prev_ret = prev;
259 prev = orig_prev;
260 }
261
262 if (next_ret) {
263 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 264 while (prev && offset < prev_entry->start) {
d1310b2e
CM
265 prev = rb_prev(prev);
266 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
267 }
268 *next_ret = prev;
269 }
270 return NULL;
271}
272
80ea96b1
CM
273static inline struct rb_node *tree_search(struct extent_io_tree *tree,
274 u64 offset)
d1310b2e 275{
70dec807 276 struct rb_node *prev = NULL;
d1310b2e 277 struct rb_node *ret;
70dec807 278
80ea96b1 279 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 280 if (!ret)
d1310b2e
CM
281 return prev;
282 return ret;
283}
284
9ed74f2d
JB
285static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
286 struct extent_state *other)
287{
288 if (tree->ops && tree->ops->merge_extent_hook)
289 tree->ops->merge_extent_hook(tree->mapping->host, new,
290 other);
291}
292
d1310b2e
CM
293/*
294 * utility function to look for merge candidates inside a given range.
295 * Any extents with matching state are merged together into a single
296 * extent in the tree. Extents with EXTENT_IO in their state field
297 * are not merged because the end_io handlers need to be able to do
298 * operations on them without sleeping (or doing allocations/splits).
299 *
300 * This should be called with the tree lock held.
301 */
1bf85046
JM
302static void merge_state(struct extent_io_tree *tree,
303 struct extent_state *state)
d1310b2e
CM
304{
305 struct extent_state *other;
306 struct rb_node *other_node;
307
5b21f2ed 308 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 309 return;
d1310b2e
CM
310
311 other_node = rb_prev(&state->rb_node);
312 if (other_node) {
313 other = rb_entry(other_node, struct extent_state, rb_node);
314 if (other->end == state->start - 1 &&
315 other->state == state->state) {
9ed74f2d 316 merge_cb(tree, state, other);
d1310b2e 317 state->start = other->start;
70dec807 318 other->tree = NULL;
d1310b2e
CM
319 rb_erase(&other->rb_node, &tree->state);
320 free_extent_state(other);
321 }
322 }
323 other_node = rb_next(&state->rb_node);
324 if (other_node) {
325 other = rb_entry(other_node, struct extent_state, rb_node);
326 if (other->start == state->end + 1 &&
327 other->state == state->state) {
9ed74f2d 328 merge_cb(tree, state, other);
df98b6e2
JB
329 state->end = other->end;
330 other->tree = NULL;
331 rb_erase(&other->rb_node, &tree->state);
332 free_extent_state(other);
d1310b2e
CM
333 }
334 }
d1310b2e
CM
335}
336
1bf85046 337static void set_state_cb(struct extent_io_tree *tree,
41074888 338 struct extent_state *state, unsigned long *bits)
291d673e 339{
1bf85046
JM
340 if (tree->ops && tree->ops->set_bit_hook)
341 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
342}
343
344static void clear_state_cb(struct extent_io_tree *tree,
41074888 345 struct extent_state *state, unsigned long *bits)
291d673e 346{
9ed74f2d
JB
347 if (tree->ops && tree->ops->clear_bit_hook)
348 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
349}
350
3150b699 351static void set_state_bits(struct extent_io_tree *tree,
41074888 352 struct extent_state *state, unsigned long *bits);
3150b699 353
d1310b2e
CM
354/*
355 * insert an extent_state struct into the tree. 'bits' are set on the
356 * struct before it is inserted.
357 *
358 * This may return -EEXIST if the extent is already there, in which case the
359 * state struct is freed.
360 *
361 * The tree lock is not taken internally. This is a utility function and
362 * probably isn't what you want to call (see set/clear_extent_bit).
363 */
364static int insert_state(struct extent_io_tree *tree,
365 struct extent_state *state, u64 start, u64 end,
41074888 366 unsigned long *bits)
d1310b2e
CM
367{
368 struct rb_node *node;
369
31b1a2bd
JL
370 if (end < start)
371 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
d397712b
CM
372 (unsigned long long)end,
373 (unsigned long long)start);
d1310b2e
CM
374 state->start = start;
375 state->end = end;
9ed74f2d 376
3150b699
XG
377 set_state_bits(tree, state, bits);
378
d1310b2e
CM
379 node = tree_insert(&tree->state, end, &state->rb_node);
380 if (node) {
381 struct extent_state *found;
382 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
383 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
384 "%llu %llu\n", (unsigned long long)found->start,
385 (unsigned long long)found->end,
386 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
387 return -EEXIST;
388 }
70dec807 389 state->tree = tree;
d1310b2e
CM
390 merge_state(tree, state);
391 return 0;
392}
393
1bf85046 394static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
395 u64 split)
396{
397 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 398 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
399}
400
d1310b2e
CM
401/*
402 * split a given extent state struct in two, inserting the preallocated
403 * struct 'prealloc' as the newly created second half. 'split' indicates an
404 * offset inside 'orig' where it should be split.
405 *
406 * Before calling,
407 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
408 * are two extent state structs in the tree:
409 * prealloc: [orig->start, split - 1]
410 * orig: [ split, orig->end ]
411 *
412 * The tree locks are not taken by this function. They need to be held
413 * by the caller.
414 */
415static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
416 struct extent_state *prealloc, u64 split)
417{
418 struct rb_node *node;
9ed74f2d
JB
419
420 split_cb(tree, orig, split);
421
d1310b2e
CM
422 prealloc->start = orig->start;
423 prealloc->end = split - 1;
424 prealloc->state = orig->state;
425 orig->start = split;
426
427 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
428 if (node) {
d1310b2e
CM
429 free_extent_state(prealloc);
430 return -EEXIST;
431 }
70dec807 432 prealloc->tree = tree;
d1310b2e
CM
433 return 0;
434}
435
cdc6a395
LZ
436static struct extent_state *next_state(struct extent_state *state)
437{
438 struct rb_node *next = rb_next(&state->rb_node);
439 if (next)
440 return rb_entry(next, struct extent_state, rb_node);
441 else
442 return NULL;
443}
444
d1310b2e
CM
445/*
446 * utility function to clear some bits in an extent state struct.
1b303fc0 447 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
448 *
449 * If no bits are set on the state struct after clearing things, the
450 * struct is freed and removed from the tree
451 */
cdc6a395
LZ
452static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
453 struct extent_state *state,
41074888 454 unsigned long *bits, int wake)
d1310b2e 455{
cdc6a395 456 struct extent_state *next;
41074888 457 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 458
0ca1f7ce 459 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
460 u64 range = state->end - state->start + 1;
461 WARN_ON(range > tree->dirty_bytes);
462 tree->dirty_bytes -= range;
463 }
291d673e 464 clear_state_cb(tree, state, bits);
32c00aff 465 state->state &= ~bits_to_clear;
d1310b2e
CM
466 if (wake)
467 wake_up(&state->wq);
0ca1f7ce 468 if (state->state == 0) {
cdc6a395 469 next = next_state(state);
70dec807 470 if (state->tree) {
d1310b2e 471 rb_erase(&state->rb_node, &tree->state);
70dec807 472 state->tree = NULL;
d1310b2e
CM
473 free_extent_state(state);
474 } else {
475 WARN_ON(1);
476 }
477 } else {
478 merge_state(tree, state);
cdc6a395 479 next = next_state(state);
d1310b2e 480 }
cdc6a395 481 return next;
d1310b2e
CM
482}
483
8233767a
XG
484static struct extent_state *
485alloc_extent_state_atomic(struct extent_state *prealloc)
486{
487 if (!prealloc)
488 prealloc = alloc_extent_state(GFP_ATOMIC);
489
490 return prealloc;
491}
492
48a3b636 493static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
494{
495 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
496 "Extent tree was modified by another "
497 "thread while locked.");
498}
499
d1310b2e
CM
500/*
501 * clear some bits on a range in the tree. This may require splitting
502 * or inserting elements in the tree, so the gfp mask is used to
503 * indicate which allocations or sleeping are allowed.
504 *
505 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
506 * the given range from the tree regardless of state (ie for truncate).
507 *
508 * the range [start, end] is inclusive.
509 *
6763af84 510 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
511 */
512int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 513 unsigned long bits, int wake, int delete,
2c64c53d
CM
514 struct extent_state **cached_state,
515 gfp_t mask)
d1310b2e
CM
516{
517 struct extent_state *state;
2c64c53d 518 struct extent_state *cached;
d1310b2e
CM
519 struct extent_state *prealloc = NULL;
520 struct rb_node *node;
5c939df5 521 u64 last_end;
d1310b2e 522 int err;
2ac55d41 523 int clear = 0;
d1310b2e 524
0ca1f7ce
YZ
525 if (delete)
526 bits |= ~EXTENT_CTLBITS;
527 bits |= EXTENT_FIRST_DELALLOC;
528
2ac55d41
JB
529 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
530 clear = 1;
d1310b2e
CM
531again:
532 if (!prealloc && (mask & __GFP_WAIT)) {
533 prealloc = alloc_extent_state(mask);
534 if (!prealloc)
535 return -ENOMEM;
536 }
537
cad321ad 538 spin_lock(&tree->lock);
2c64c53d
CM
539 if (cached_state) {
540 cached = *cached_state;
2ac55d41
JB
541
542 if (clear) {
543 *cached_state = NULL;
544 cached_state = NULL;
545 }
546
df98b6e2
JB
547 if (cached && cached->tree && cached->start <= start &&
548 cached->end > start) {
2ac55d41
JB
549 if (clear)
550 atomic_dec(&cached->refs);
2c64c53d 551 state = cached;
42daec29 552 goto hit_next;
2c64c53d 553 }
2ac55d41
JB
554 if (clear)
555 free_extent_state(cached);
2c64c53d 556 }
d1310b2e
CM
557 /*
558 * this search will find the extents that end after
559 * our range starts
560 */
80ea96b1 561 node = tree_search(tree, start);
d1310b2e
CM
562 if (!node)
563 goto out;
564 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 565hit_next:
d1310b2e
CM
566 if (state->start > end)
567 goto out;
568 WARN_ON(state->end < start);
5c939df5 569 last_end = state->end;
d1310b2e 570
0449314a 571 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
572 if (!(state->state & bits)) {
573 state = next_state(state);
0449314a 574 goto next;
cdc6a395 575 }
0449314a 576
d1310b2e
CM
577 /*
578 * | ---- desired range ---- |
579 * | state | or
580 * | ------------- state -------------- |
581 *
582 * We need to split the extent we found, and may flip
583 * bits on second half.
584 *
585 * If the extent we found extends past our range, we
586 * just split and search again. It'll get split again
587 * the next time though.
588 *
589 * If the extent we found is inside our range, we clear
590 * the desired bit on it.
591 */
592
593 if (state->start < start) {
8233767a
XG
594 prealloc = alloc_extent_state_atomic(prealloc);
595 BUG_ON(!prealloc);
d1310b2e 596 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
597 if (err)
598 extent_io_tree_panic(tree, err);
599
d1310b2e
CM
600 prealloc = NULL;
601 if (err)
602 goto out;
603 if (state->end <= end) {
d1ac6e41
LB
604 state = clear_state_bit(tree, state, &bits, wake);
605 goto next;
d1310b2e
CM
606 }
607 goto search_again;
608 }
609 /*
610 * | ---- desired range ---- |
611 * | state |
612 * We need to split the extent, and clear the bit
613 * on the first half
614 */
615 if (state->start <= end && state->end > end) {
8233767a
XG
616 prealloc = alloc_extent_state_atomic(prealloc);
617 BUG_ON(!prealloc);
d1310b2e 618 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
619 if (err)
620 extent_io_tree_panic(tree, err);
621
d1310b2e
CM
622 if (wake)
623 wake_up(&state->wq);
42daec29 624
6763af84 625 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 626
d1310b2e
CM
627 prealloc = NULL;
628 goto out;
629 }
42daec29 630
cdc6a395 631 state = clear_state_bit(tree, state, &bits, wake);
0449314a 632next:
5c939df5
YZ
633 if (last_end == (u64)-1)
634 goto out;
635 start = last_end + 1;
cdc6a395 636 if (start <= end && state && !need_resched())
692e5759 637 goto hit_next;
d1310b2e
CM
638 goto search_again;
639
640out:
cad321ad 641 spin_unlock(&tree->lock);
d1310b2e
CM
642 if (prealloc)
643 free_extent_state(prealloc);
644
6763af84 645 return 0;
d1310b2e
CM
646
647search_again:
648 if (start > end)
649 goto out;
cad321ad 650 spin_unlock(&tree->lock);
d1310b2e
CM
651 if (mask & __GFP_WAIT)
652 cond_resched();
653 goto again;
654}
d1310b2e 655
143bede5
JM
656static void wait_on_state(struct extent_io_tree *tree,
657 struct extent_state *state)
641f5219
CH
658 __releases(tree->lock)
659 __acquires(tree->lock)
d1310b2e
CM
660{
661 DEFINE_WAIT(wait);
662 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 663 spin_unlock(&tree->lock);
d1310b2e 664 schedule();
cad321ad 665 spin_lock(&tree->lock);
d1310b2e 666 finish_wait(&state->wq, &wait);
d1310b2e
CM
667}
668
669/*
670 * waits for one or more bits to clear on a range in the state tree.
671 * The range [start, end] is inclusive.
672 * The tree lock is taken by this function
673 */
41074888
DS
674static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
675 unsigned long bits)
d1310b2e
CM
676{
677 struct extent_state *state;
678 struct rb_node *node;
679
cad321ad 680 spin_lock(&tree->lock);
d1310b2e
CM
681again:
682 while (1) {
683 /*
684 * this search will find all the extents that end after
685 * our range starts
686 */
80ea96b1 687 node = tree_search(tree, start);
d1310b2e
CM
688 if (!node)
689 break;
690
691 state = rb_entry(node, struct extent_state, rb_node);
692
693 if (state->start > end)
694 goto out;
695
696 if (state->state & bits) {
697 start = state->start;
698 atomic_inc(&state->refs);
699 wait_on_state(tree, state);
700 free_extent_state(state);
701 goto again;
702 }
703 start = state->end + 1;
704
705 if (start > end)
706 break;
707
ded91f08 708 cond_resched_lock(&tree->lock);
d1310b2e
CM
709 }
710out:
cad321ad 711 spin_unlock(&tree->lock);
d1310b2e 712}
d1310b2e 713
1bf85046 714static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 715 struct extent_state *state,
41074888 716 unsigned long *bits)
d1310b2e 717{
41074888 718 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 719
1bf85046 720 set_state_cb(tree, state, bits);
0ca1f7ce 721 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
722 u64 range = state->end - state->start + 1;
723 tree->dirty_bytes += range;
724 }
0ca1f7ce 725 state->state |= bits_to_set;
d1310b2e
CM
726}
727
2c64c53d
CM
728static void cache_state(struct extent_state *state,
729 struct extent_state **cached_ptr)
730{
731 if (cached_ptr && !(*cached_ptr)) {
732 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
733 *cached_ptr = state;
734 atomic_inc(&state->refs);
735 }
736 }
737}
738
507903b8
AJ
739static void uncache_state(struct extent_state **cached_ptr)
740{
741 if (cached_ptr && (*cached_ptr)) {
742 struct extent_state *state = *cached_ptr;
109b36a2
CM
743 *cached_ptr = NULL;
744 free_extent_state(state);
507903b8
AJ
745 }
746}
747
d1310b2e 748/*
1edbb734
CM
749 * set some bits on a range in the tree. This may require allocations or
750 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 751 *
1edbb734
CM
752 * If any of the exclusive bits are set, this will fail with -EEXIST if some
753 * part of the range already has the desired bits set. The start of the
754 * existing range is returned in failed_start in this case.
d1310b2e 755 *
1edbb734 756 * [start, end] is inclusive This takes the tree lock.
d1310b2e 757 */
1edbb734 758
3fbe5c02
JM
759static int __must_check
760__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
761 unsigned long bits, unsigned long exclusive_bits,
762 u64 *failed_start, struct extent_state **cached_state,
763 gfp_t mask)
d1310b2e
CM
764{
765 struct extent_state *state;
766 struct extent_state *prealloc = NULL;
767 struct rb_node *node;
d1310b2e 768 int err = 0;
d1310b2e
CM
769 u64 last_start;
770 u64 last_end;
42daec29 771
0ca1f7ce 772 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
773again:
774 if (!prealloc && (mask & __GFP_WAIT)) {
775 prealloc = alloc_extent_state(mask);
8233767a 776 BUG_ON(!prealloc);
d1310b2e
CM
777 }
778
cad321ad 779 spin_lock(&tree->lock);
9655d298
CM
780 if (cached_state && *cached_state) {
781 state = *cached_state;
df98b6e2
JB
782 if (state->start <= start && state->end > start &&
783 state->tree) {
9655d298
CM
784 node = &state->rb_node;
785 goto hit_next;
786 }
787 }
d1310b2e
CM
788 /*
789 * this search will find all the extents that end after
790 * our range starts.
791 */
80ea96b1 792 node = tree_search(tree, start);
d1310b2e 793 if (!node) {
8233767a
XG
794 prealloc = alloc_extent_state_atomic(prealloc);
795 BUG_ON(!prealloc);
0ca1f7ce 796 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
797 if (err)
798 extent_io_tree_panic(tree, err);
799
d1310b2e 800 prealloc = NULL;
d1310b2e
CM
801 goto out;
802 }
d1310b2e 803 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 804hit_next:
d1310b2e
CM
805 last_start = state->start;
806 last_end = state->end;
807
808 /*
809 * | ---- desired range ---- |
810 * | state |
811 *
812 * Just lock what we found and keep going
813 */
814 if (state->start == start && state->end <= end) {
1edbb734 815 if (state->state & exclusive_bits) {
d1310b2e
CM
816 *failed_start = state->start;
817 err = -EEXIST;
818 goto out;
819 }
42daec29 820
1bf85046 821 set_state_bits(tree, state, &bits);
2c64c53d 822 cache_state(state, cached_state);
d1310b2e 823 merge_state(tree, state);
5c939df5
YZ
824 if (last_end == (u64)-1)
825 goto out;
826 start = last_end + 1;
d1ac6e41
LB
827 state = next_state(state);
828 if (start < end && state && state->start == start &&
829 !need_resched())
830 goto hit_next;
d1310b2e
CM
831 goto search_again;
832 }
833
834 /*
835 * | ---- desired range ---- |
836 * | state |
837 * or
838 * | ------------- state -------------- |
839 *
840 * We need to split the extent we found, and may flip bits on
841 * second half.
842 *
843 * If the extent we found extends past our
844 * range, we just split and search again. It'll get split
845 * again the next time though.
846 *
847 * If the extent we found is inside our range, we set the
848 * desired bit on it.
849 */
850 if (state->start < start) {
1edbb734 851 if (state->state & exclusive_bits) {
d1310b2e
CM
852 *failed_start = start;
853 err = -EEXIST;
854 goto out;
855 }
8233767a
XG
856
857 prealloc = alloc_extent_state_atomic(prealloc);
858 BUG_ON(!prealloc);
d1310b2e 859 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
860 if (err)
861 extent_io_tree_panic(tree, err);
862
d1310b2e
CM
863 prealloc = NULL;
864 if (err)
865 goto out;
866 if (state->end <= end) {
1bf85046 867 set_state_bits(tree, state, &bits);
2c64c53d 868 cache_state(state, cached_state);
d1310b2e 869 merge_state(tree, state);
5c939df5
YZ
870 if (last_end == (u64)-1)
871 goto out;
872 start = last_end + 1;
d1ac6e41
LB
873 state = next_state(state);
874 if (start < end && state && state->start == start &&
875 !need_resched())
876 goto hit_next;
d1310b2e
CM
877 }
878 goto search_again;
879 }
880 /*
881 * | ---- desired range ---- |
882 * | state | or | state |
883 *
884 * There's a hole, we need to insert something in it and
885 * ignore the extent we found.
886 */
887 if (state->start > start) {
888 u64 this_end;
889 if (end < last_start)
890 this_end = end;
891 else
d397712b 892 this_end = last_start - 1;
8233767a
XG
893
894 prealloc = alloc_extent_state_atomic(prealloc);
895 BUG_ON(!prealloc);
c7f895a2
XG
896
897 /*
898 * Avoid to free 'prealloc' if it can be merged with
899 * the later extent.
900 */
d1310b2e 901 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 902 &bits);
c2d904e0
JM
903 if (err)
904 extent_io_tree_panic(tree, err);
905
9ed74f2d
JB
906 cache_state(prealloc, cached_state);
907 prealloc = NULL;
d1310b2e
CM
908 start = this_end + 1;
909 goto search_again;
910 }
911 /*
912 * | ---- desired range ---- |
913 * | state |
914 * We need to split the extent, and set the bit
915 * on the first half
916 */
917 if (state->start <= end && state->end > end) {
1edbb734 918 if (state->state & exclusive_bits) {
d1310b2e
CM
919 *failed_start = start;
920 err = -EEXIST;
921 goto out;
922 }
8233767a
XG
923
924 prealloc = alloc_extent_state_atomic(prealloc);
925 BUG_ON(!prealloc);
d1310b2e 926 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
927 if (err)
928 extent_io_tree_panic(tree, err);
d1310b2e 929
1bf85046 930 set_state_bits(tree, prealloc, &bits);
2c64c53d 931 cache_state(prealloc, cached_state);
d1310b2e
CM
932 merge_state(tree, prealloc);
933 prealloc = NULL;
934 goto out;
935 }
936
937 goto search_again;
938
939out:
cad321ad 940 spin_unlock(&tree->lock);
d1310b2e
CM
941 if (prealloc)
942 free_extent_state(prealloc);
943
944 return err;
945
946search_again:
947 if (start > end)
948 goto out;
cad321ad 949 spin_unlock(&tree->lock);
d1310b2e
CM
950 if (mask & __GFP_WAIT)
951 cond_resched();
952 goto again;
953}
d1310b2e 954
41074888
DS
955int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
956 unsigned long bits, u64 * failed_start,
957 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
958{
959 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
960 cached_state, mask);
961}
962
963
462d6fac 964/**
10983f2e
LB
965 * convert_extent_bit - convert all bits in a given range from one bit to
966 * another
462d6fac
JB
967 * @tree: the io tree to search
968 * @start: the start offset in bytes
969 * @end: the end offset in bytes (inclusive)
970 * @bits: the bits to set in this range
971 * @clear_bits: the bits to clear in this range
e6138876 972 * @cached_state: state that we're going to cache
462d6fac
JB
973 * @mask: the allocation mask
974 *
975 * This will go through and set bits for the given range. If any states exist
976 * already in this range they are set with the given bit and cleared of the
977 * clear_bits. This is only meant to be used by things that are mergeable, ie
978 * converting from say DELALLOC to DIRTY. This is not meant to be used with
979 * boundary bits like LOCK.
980 */
981int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 982 unsigned long bits, unsigned long clear_bits,
e6138876 983 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
984{
985 struct extent_state *state;
986 struct extent_state *prealloc = NULL;
987 struct rb_node *node;
988 int err = 0;
989 u64 last_start;
990 u64 last_end;
991
992again:
993 if (!prealloc && (mask & __GFP_WAIT)) {
994 prealloc = alloc_extent_state(mask);
995 if (!prealloc)
996 return -ENOMEM;
997 }
998
999 spin_lock(&tree->lock);
e6138876
JB
1000 if (cached_state && *cached_state) {
1001 state = *cached_state;
1002 if (state->start <= start && state->end > start &&
1003 state->tree) {
1004 node = &state->rb_node;
1005 goto hit_next;
1006 }
1007 }
1008
462d6fac
JB
1009 /*
1010 * this search will find all the extents that end after
1011 * our range starts.
1012 */
1013 node = tree_search(tree, start);
1014 if (!node) {
1015 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1016 if (!prealloc) {
1017 err = -ENOMEM;
1018 goto out;
1019 }
462d6fac
JB
1020 err = insert_state(tree, prealloc, start, end, &bits);
1021 prealloc = NULL;
c2d904e0
JM
1022 if (err)
1023 extent_io_tree_panic(tree, err);
462d6fac
JB
1024 goto out;
1025 }
1026 state = rb_entry(node, struct extent_state, rb_node);
1027hit_next:
1028 last_start = state->start;
1029 last_end = state->end;
1030
1031 /*
1032 * | ---- desired range ---- |
1033 * | state |
1034 *
1035 * Just lock what we found and keep going
1036 */
1037 if (state->start == start && state->end <= end) {
462d6fac 1038 set_state_bits(tree, state, &bits);
e6138876 1039 cache_state(state, cached_state);
d1ac6e41 1040 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1041 if (last_end == (u64)-1)
1042 goto out;
462d6fac 1043 start = last_end + 1;
d1ac6e41
LB
1044 if (start < end && state && state->start == start &&
1045 !need_resched())
1046 goto hit_next;
462d6fac
JB
1047 goto search_again;
1048 }
1049
1050 /*
1051 * | ---- desired range ---- |
1052 * | state |
1053 * or
1054 * | ------------- state -------------- |
1055 *
1056 * We need to split the extent we found, and may flip bits on
1057 * second half.
1058 *
1059 * If the extent we found extends past our
1060 * range, we just split and search again. It'll get split
1061 * again the next time though.
1062 *
1063 * If the extent we found is inside our range, we set the
1064 * desired bit on it.
1065 */
1066 if (state->start < start) {
1067 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1068 if (!prealloc) {
1069 err = -ENOMEM;
1070 goto out;
1071 }
462d6fac 1072 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1073 if (err)
1074 extent_io_tree_panic(tree, err);
462d6fac
JB
1075 prealloc = NULL;
1076 if (err)
1077 goto out;
1078 if (state->end <= end) {
1079 set_state_bits(tree, state, &bits);
e6138876 1080 cache_state(state, cached_state);
d1ac6e41 1081 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1082 if (last_end == (u64)-1)
1083 goto out;
1084 start = last_end + 1;
d1ac6e41
LB
1085 if (start < end && state && state->start == start &&
1086 !need_resched())
1087 goto hit_next;
462d6fac
JB
1088 }
1089 goto search_again;
1090 }
1091 /*
1092 * | ---- desired range ---- |
1093 * | state | or | state |
1094 *
1095 * There's a hole, we need to insert something in it and
1096 * ignore the extent we found.
1097 */
1098 if (state->start > start) {
1099 u64 this_end;
1100 if (end < last_start)
1101 this_end = end;
1102 else
1103 this_end = last_start - 1;
1104
1105 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1106 if (!prealloc) {
1107 err = -ENOMEM;
1108 goto out;
1109 }
462d6fac
JB
1110
1111 /*
1112 * Avoid to free 'prealloc' if it can be merged with
1113 * the later extent.
1114 */
1115 err = insert_state(tree, prealloc, start, this_end,
1116 &bits);
c2d904e0
JM
1117 if (err)
1118 extent_io_tree_panic(tree, err);
e6138876 1119 cache_state(prealloc, cached_state);
462d6fac
JB
1120 prealloc = NULL;
1121 start = this_end + 1;
1122 goto search_again;
1123 }
1124 /*
1125 * | ---- desired range ---- |
1126 * | state |
1127 * We need to split the extent, and set the bit
1128 * on the first half
1129 */
1130 if (state->start <= end && state->end > end) {
1131 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1132 if (!prealloc) {
1133 err = -ENOMEM;
1134 goto out;
1135 }
462d6fac
JB
1136
1137 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1138 if (err)
1139 extent_io_tree_panic(tree, err);
462d6fac
JB
1140
1141 set_state_bits(tree, prealloc, &bits);
e6138876 1142 cache_state(prealloc, cached_state);
462d6fac 1143 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1144 prealloc = NULL;
1145 goto out;
1146 }
1147
1148 goto search_again;
1149
1150out:
1151 spin_unlock(&tree->lock);
1152 if (prealloc)
1153 free_extent_state(prealloc);
1154
1155 return err;
1156
1157search_again:
1158 if (start > end)
1159 goto out;
1160 spin_unlock(&tree->lock);
1161 if (mask & __GFP_WAIT)
1162 cond_resched();
1163 goto again;
1164}
1165
d1310b2e
CM
1166/* wrappers around set/clear extent bit */
1167int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1168 gfp_t mask)
1169{
3fbe5c02 1170 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1171 NULL, mask);
d1310b2e 1172}
d1310b2e
CM
1173
1174int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1175 unsigned long bits, gfp_t mask)
d1310b2e 1176{
3fbe5c02 1177 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1178 NULL, mask);
d1310b2e 1179}
d1310b2e
CM
1180
1181int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1182 unsigned long bits, gfp_t mask)
d1310b2e 1183{
2c64c53d 1184 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1185}
d1310b2e
CM
1186
1187int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1188 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1189{
1190 return set_extent_bit(tree, start, end,
fee187d9 1191 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1192 NULL, cached_state, mask);
d1310b2e 1193}
d1310b2e 1194
9e8a4a8b
LB
1195int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1196 struct extent_state **cached_state, gfp_t mask)
1197{
1198 return set_extent_bit(tree, start, end,
1199 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1200 NULL, cached_state, mask);
1201}
1202
d1310b2e
CM
1203int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1204 gfp_t mask)
1205{
1206 return clear_extent_bit(tree, start, end,
32c00aff 1207 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1208 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1209}
d1310b2e
CM
1210
1211int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1212 gfp_t mask)
1213{
3fbe5c02 1214 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1215 NULL, mask);
d1310b2e 1216}
d1310b2e 1217
d1310b2e 1218int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1219 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1220{
6b67a320 1221 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1222 cached_state, mask);
d1310b2e 1223}
d1310b2e 1224
5fd02043
JB
1225int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1226 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1227{
2c64c53d 1228 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1229 cached_state, mask);
d1310b2e 1230}
d1310b2e 1231
d352ac68
CM
1232/*
1233 * either insert or lock state struct between start and end use mask to tell
1234 * us if waiting is desired.
1235 */
1edbb734 1236int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1237 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1238{
1239 int err;
1240 u64 failed_start;
1241 while (1) {
3fbe5c02
JM
1242 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1243 EXTENT_LOCKED, &failed_start,
1244 cached_state, GFP_NOFS);
d0082371 1245 if (err == -EEXIST) {
d1310b2e
CM
1246 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1247 start = failed_start;
d0082371 1248 } else
d1310b2e 1249 break;
d1310b2e
CM
1250 WARN_ON(start > end);
1251 }
1252 return err;
1253}
d1310b2e 1254
d0082371 1255int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1256{
d0082371 1257 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1258}
1259
d0082371 1260int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1261{
1262 int err;
1263 u64 failed_start;
1264
3fbe5c02
JM
1265 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1266 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1267 if (err == -EEXIST) {
1268 if (failed_start > start)
1269 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1270 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1271 return 0;
6643558d 1272 }
25179201
JB
1273 return 1;
1274}
25179201 1275
2c64c53d
CM
1276int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1277 struct extent_state **cached, gfp_t mask)
1278{
1279 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1280 mask);
1281}
1282
d0082371 1283int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1284{
2c64c53d 1285 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1286 GFP_NOFS);
d1310b2e 1287}
d1310b2e 1288
4adaa611
CM
1289int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1290{
1291 unsigned long index = start >> PAGE_CACHE_SHIFT;
1292 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1293 struct page *page;
1294
1295 while (index <= end_index) {
1296 page = find_get_page(inode->i_mapping, index);
1297 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1298 clear_page_dirty_for_io(page);
1299 page_cache_release(page);
1300 index++;
1301 }
1302 return 0;
1303}
1304
1305int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1306{
1307 unsigned long index = start >> PAGE_CACHE_SHIFT;
1308 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1309 struct page *page;
1310
1311 while (index <= end_index) {
1312 page = find_get_page(inode->i_mapping, index);
1313 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1314 account_page_redirty(page);
1315 __set_page_dirty_nobuffers(page);
1316 page_cache_release(page);
1317 index++;
1318 }
1319 return 0;
1320}
1321
d1310b2e
CM
1322/*
1323 * helper function to set both pages and extents in the tree writeback
1324 */
b2950863 1325static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1326{
1327 unsigned long index = start >> PAGE_CACHE_SHIFT;
1328 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1329 struct page *page;
1330
1331 while (index <= end_index) {
1332 page = find_get_page(tree->mapping, index);
79787eaa 1333 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1334 set_page_writeback(page);
1335 page_cache_release(page);
1336 index++;
1337 }
d1310b2e
CM
1338 return 0;
1339}
d1310b2e 1340
d352ac68
CM
1341/* find the first state struct with 'bits' set after 'start', and
1342 * return it. tree->lock must be held. NULL will returned if
1343 * nothing was found after 'start'
1344 */
48a3b636
ES
1345static struct extent_state *
1346find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1347 u64 start, unsigned long bits)
d7fc640e
CM
1348{
1349 struct rb_node *node;
1350 struct extent_state *state;
1351
1352 /*
1353 * this search will find all the extents that end after
1354 * our range starts.
1355 */
1356 node = tree_search(tree, start);
d397712b 1357 if (!node)
d7fc640e 1358 goto out;
d7fc640e 1359
d397712b 1360 while (1) {
d7fc640e 1361 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1362 if (state->end >= start && (state->state & bits))
d7fc640e 1363 return state;
d397712b 1364
d7fc640e
CM
1365 node = rb_next(node);
1366 if (!node)
1367 break;
1368 }
1369out:
1370 return NULL;
1371}
d7fc640e 1372
69261c4b
XG
1373/*
1374 * find the first offset in the io tree with 'bits' set. zero is
1375 * returned if we find something, and *start_ret and *end_ret are
1376 * set to reflect the state struct that was found.
1377 *
477d7eaf 1378 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1379 */
1380int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1381 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1382 struct extent_state **cached_state)
69261c4b
XG
1383{
1384 struct extent_state *state;
e6138876 1385 struct rb_node *n;
69261c4b
XG
1386 int ret = 1;
1387
1388 spin_lock(&tree->lock);
e6138876
JB
1389 if (cached_state && *cached_state) {
1390 state = *cached_state;
1391 if (state->end == start - 1 && state->tree) {
1392 n = rb_next(&state->rb_node);
1393 while (n) {
1394 state = rb_entry(n, struct extent_state,
1395 rb_node);
1396 if (state->state & bits)
1397 goto got_it;
1398 n = rb_next(n);
1399 }
1400 free_extent_state(*cached_state);
1401 *cached_state = NULL;
1402 goto out;
1403 }
1404 free_extent_state(*cached_state);
1405 *cached_state = NULL;
1406 }
1407
69261c4b 1408 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1409got_it:
69261c4b 1410 if (state) {
e6138876 1411 cache_state(state, cached_state);
69261c4b
XG
1412 *start_ret = state->start;
1413 *end_ret = state->end;
1414 ret = 0;
1415 }
e6138876 1416out:
69261c4b
XG
1417 spin_unlock(&tree->lock);
1418 return ret;
1419}
1420
d352ac68
CM
1421/*
1422 * find a contiguous range of bytes in the file marked as delalloc, not
1423 * more than 'max_bytes'. start and end are used to return the range,
1424 *
1425 * 1 is returned if we find something, 0 if nothing was in the tree
1426 */
c8b97818 1427static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1428 u64 *start, u64 *end, u64 max_bytes,
1429 struct extent_state **cached_state)
d1310b2e
CM
1430{
1431 struct rb_node *node;
1432 struct extent_state *state;
1433 u64 cur_start = *start;
1434 u64 found = 0;
1435 u64 total_bytes = 0;
1436
cad321ad 1437 spin_lock(&tree->lock);
c8b97818 1438
d1310b2e
CM
1439 /*
1440 * this search will find all the extents that end after
1441 * our range starts.
1442 */
80ea96b1 1443 node = tree_search(tree, cur_start);
2b114d1d 1444 if (!node) {
3b951516
CM
1445 if (!found)
1446 *end = (u64)-1;
d1310b2e
CM
1447 goto out;
1448 }
1449
d397712b 1450 while (1) {
d1310b2e 1451 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1452 if (found && (state->start != cur_start ||
1453 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1454 goto out;
1455 }
1456 if (!(state->state & EXTENT_DELALLOC)) {
1457 if (!found)
1458 *end = state->end;
1459 goto out;
1460 }
c2a128d2 1461 if (!found) {
d1310b2e 1462 *start = state->start;
c2a128d2
JB
1463 *cached_state = state;
1464 atomic_inc(&state->refs);
1465 }
d1310b2e
CM
1466 found++;
1467 *end = state->end;
1468 cur_start = state->end + 1;
1469 node = rb_next(node);
1470 if (!node)
1471 break;
1472 total_bytes += state->end - state->start + 1;
1473 if (total_bytes >= max_bytes)
1474 break;
1475 }
1476out:
cad321ad 1477 spin_unlock(&tree->lock);
d1310b2e
CM
1478 return found;
1479}
1480
143bede5
JM
1481static noinline void __unlock_for_delalloc(struct inode *inode,
1482 struct page *locked_page,
1483 u64 start, u64 end)
c8b97818
CM
1484{
1485 int ret;
1486 struct page *pages[16];
1487 unsigned long index = start >> PAGE_CACHE_SHIFT;
1488 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1489 unsigned long nr_pages = end_index - index + 1;
1490 int i;
1491
1492 if (index == locked_page->index && end_index == index)
143bede5 1493 return;
c8b97818 1494
d397712b 1495 while (nr_pages > 0) {
c8b97818 1496 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1497 min_t(unsigned long, nr_pages,
1498 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1499 for (i = 0; i < ret; i++) {
1500 if (pages[i] != locked_page)
1501 unlock_page(pages[i]);
1502 page_cache_release(pages[i]);
1503 }
1504 nr_pages -= ret;
1505 index += ret;
1506 cond_resched();
1507 }
c8b97818
CM
1508}
1509
1510static noinline int lock_delalloc_pages(struct inode *inode,
1511 struct page *locked_page,
1512 u64 delalloc_start,
1513 u64 delalloc_end)
1514{
1515 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1516 unsigned long start_index = index;
1517 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1518 unsigned long pages_locked = 0;
1519 struct page *pages[16];
1520 unsigned long nrpages;
1521 int ret;
1522 int i;
1523
1524 /* the caller is responsible for locking the start index */
1525 if (index == locked_page->index && index == end_index)
1526 return 0;
1527
1528 /* skip the page at the start index */
1529 nrpages = end_index - index + 1;
d397712b 1530 while (nrpages > 0) {
c8b97818 1531 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1532 min_t(unsigned long,
1533 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1534 if (ret == 0) {
1535 ret = -EAGAIN;
1536 goto done;
1537 }
1538 /* now we have an array of pages, lock them all */
1539 for (i = 0; i < ret; i++) {
1540 /*
1541 * the caller is taking responsibility for
1542 * locked_page
1543 */
771ed689 1544 if (pages[i] != locked_page) {
c8b97818 1545 lock_page(pages[i]);
f2b1c41c
CM
1546 if (!PageDirty(pages[i]) ||
1547 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1548 ret = -EAGAIN;
1549 unlock_page(pages[i]);
1550 page_cache_release(pages[i]);
1551 goto done;
1552 }
1553 }
c8b97818 1554 page_cache_release(pages[i]);
771ed689 1555 pages_locked++;
c8b97818 1556 }
c8b97818
CM
1557 nrpages -= ret;
1558 index += ret;
1559 cond_resched();
1560 }
1561 ret = 0;
1562done:
1563 if (ret && pages_locked) {
1564 __unlock_for_delalloc(inode, locked_page,
1565 delalloc_start,
1566 ((u64)(start_index + pages_locked - 1)) <<
1567 PAGE_CACHE_SHIFT);
1568 }
1569 return ret;
1570}
1571
1572/*
1573 * find a contiguous range of bytes in the file marked as delalloc, not
1574 * more than 'max_bytes'. start and end are used to return the range,
1575 *
1576 * 1 is returned if we find something, 0 if nothing was in the tree
1577 */
1578static noinline u64 find_lock_delalloc_range(struct inode *inode,
1579 struct extent_io_tree *tree,
1580 struct page *locked_page,
1581 u64 *start, u64 *end,
1582 u64 max_bytes)
1583{
1584 u64 delalloc_start;
1585 u64 delalloc_end;
1586 u64 found;
9655d298 1587 struct extent_state *cached_state = NULL;
c8b97818
CM
1588 int ret;
1589 int loops = 0;
1590
1591again:
1592 /* step one, find a bunch of delalloc bytes starting at start */
1593 delalloc_start = *start;
1594 delalloc_end = 0;
1595 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1596 max_bytes, &cached_state);
70b99e69 1597 if (!found || delalloc_end <= *start) {
c8b97818
CM
1598 *start = delalloc_start;
1599 *end = delalloc_end;
c2a128d2 1600 free_extent_state(cached_state);
c8b97818
CM
1601 return found;
1602 }
1603
70b99e69
CM
1604 /*
1605 * start comes from the offset of locked_page. We have to lock
1606 * pages in order, so we can't process delalloc bytes before
1607 * locked_page
1608 */
d397712b 1609 if (delalloc_start < *start)
70b99e69 1610 delalloc_start = *start;
70b99e69 1611
c8b97818
CM
1612 /*
1613 * make sure to limit the number of pages we try to lock down
1614 * if we're looping.
1615 */
d397712b 1616 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1617 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1618
c8b97818
CM
1619 /* step two, lock all the pages after the page that has start */
1620 ret = lock_delalloc_pages(inode, locked_page,
1621 delalloc_start, delalloc_end);
1622 if (ret == -EAGAIN) {
1623 /* some of the pages are gone, lets avoid looping by
1624 * shortening the size of the delalloc range we're searching
1625 */
9655d298 1626 free_extent_state(cached_state);
c8b97818
CM
1627 if (!loops) {
1628 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1629 max_bytes = PAGE_CACHE_SIZE - offset;
1630 loops = 1;
1631 goto again;
1632 } else {
1633 found = 0;
1634 goto out_failed;
1635 }
1636 }
79787eaa 1637 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1638
1639 /* step three, lock the state bits for the whole range */
d0082371 1640 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1641
1642 /* then test to make sure it is all still delalloc */
1643 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1644 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1645 if (!ret) {
9655d298
CM
1646 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1647 &cached_state, GFP_NOFS);
c8b97818
CM
1648 __unlock_for_delalloc(inode, locked_page,
1649 delalloc_start, delalloc_end);
1650 cond_resched();
1651 goto again;
1652 }
9655d298 1653 free_extent_state(cached_state);
c8b97818
CM
1654 *start = delalloc_start;
1655 *end = delalloc_end;
1656out_failed:
1657 return found;
1658}
1659
1660int extent_clear_unlock_delalloc(struct inode *inode,
1661 struct extent_io_tree *tree,
1662 u64 start, u64 end, struct page *locked_page,
a791e35e 1663 unsigned long op)
c8b97818
CM
1664{
1665 int ret;
1666 struct page *pages[16];
1667 unsigned long index = start >> PAGE_CACHE_SHIFT;
1668 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1669 unsigned long nr_pages = end_index - index + 1;
1670 int i;
41074888 1671 unsigned long clear_bits = 0;
c8b97818 1672
a791e35e 1673 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1674 clear_bits |= EXTENT_LOCKED;
a791e35e 1675 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1676 clear_bits |= EXTENT_DIRTY;
1677
a791e35e 1678 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1679 clear_bits |= EXTENT_DELALLOC;
1680
2c64c53d 1681 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1682 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1683 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1684 EXTENT_SET_PRIVATE2)))
771ed689 1685 return 0;
c8b97818 1686
d397712b 1687 while (nr_pages > 0) {
c8b97818 1688 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1689 min_t(unsigned long,
1690 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1691 for (i = 0; i < ret; i++) {
8b62b72b 1692
a791e35e 1693 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1694 SetPagePrivate2(pages[i]);
1695
c8b97818
CM
1696 if (pages[i] == locked_page) {
1697 page_cache_release(pages[i]);
1698 continue;
1699 }
a791e35e 1700 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1701 clear_page_dirty_for_io(pages[i]);
a791e35e 1702 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1703 set_page_writeback(pages[i]);
a791e35e 1704 if (op & EXTENT_END_WRITEBACK)
c8b97818 1705 end_page_writeback(pages[i]);
a791e35e 1706 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1707 unlock_page(pages[i]);
c8b97818
CM
1708 page_cache_release(pages[i]);
1709 }
1710 nr_pages -= ret;
1711 index += ret;
1712 cond_resched();
1713 }
1714 return 0;
1715}
c8b97818 1716
d352ac68
CM
1717/*
1718 * count the number of bytes in the tree that have a given bit(s)
1719 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1720 * cached. The total number found is returned.
1721 */
d1310b2e
CM
1722u64 count_range_bits(struct extent_io_tree *tree,
1723 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1724 unsigned long bits, int contig)
d1310b2e
CM
1725{
1726 struct rb_node *node;
1727 struct extent_state *state;
1728 u64 cur_start = *start;
1729 u64 total_bytes = 0;
ec29ed5b 1730 u64 last = 0;
d1310b2e
CM
1731 int found = 0;
1732
1733 if (search_end <= cur_start) {
d1310b2e
CM
1734 WARN_ON(1);
1735 return 0;
1736 }
1737
cad321ad 1738 spin_lock(&tree->lock);
d1310b2e
CM
1739 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1740 total_bytes = tree->dirty_bytes;
1741 goto out;
1742 }
1743 /*
1744 * this search will find all the extents that end after
1745 * our range starts.
1746 */
80ea96b1 1747 node = tree_search(tree, cur_start);
d397712b 1748 if (!node)
d1310b2e 1749 goto out;
d1310b2e 1750
d397712b 1751 while (1) {
d1310b2e
CM
1752 state = rb_entry(node, struct extent_state, rb_node);
1753 if (state->start > search_end)
1754 break;
ec29ed5b
CM
1755 if (contig && found && state->start > last + 1)
1756 break;
1757 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1758 total_bytes += min(search_end, state->end) + 1 -
1759 max(cur_start, state->start);
1760 if (total_bytes >= max_bytes)
1761 break;
1762 if (!found) {
af60bed2 1763 *start = max(cur_start, state->start);
d1310b2e
CM
1764 found = 1;
1765 }
ec29ed5b
CM
1766 last = state->end;
1767 } else if (contig && found) {
1768 break;
d1310b2e
CM
1769 }
1770 node = rb_next(node);
1771 if (!node)
1772 break;
1773 }
1774out:
cad321ad 1775 spin_unlock(&tree->lock);
d1310b2e
CM
1776 return total_bytes;
1777}
b2950863 1778
d352ac68
CM
1779/*
1780 * set the private field for a given byte offset in the tree. If there isn't
1781 * an extent_state there already, this does nothing.
1782 */
d1310b2e
CM
1783int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1784{
1785 struct rb_node *node;
1786 struct extent_state *state;
1787 int ret = 0;
1788
cad321ad 1789 spin_lock(&tree->lock);
d1310b2e
CM
1790 /*
1791 * this search will find all the extents that end after
1792 * our range starts.
1793 */
80ea96b1 1794 node = tree_search(tree, start);
2b114d1d 1795 if (!node) {
d1310b2e
CM
1796 ret = -ENOENT;
1797 goto out;
1798 }
1799 state = rb_entry(node, struct extent_state, rb_node);
1800 if (state->start != start) {
1801 ret = -ENOENT;
1802 goto out;
1803 }
1804 state->private = private;
1805out:
cad321ad 1806 spin_unlock(&tree->lock);
d1310b2e
CM
1807 return ret;
1808}
1809
e4100d98
MX
1810void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1811 int count)
1812{
1813 struct rb_node *node;
1814 struct extent_state *state;
1815
1816 spin_lock(&tree->lock);
1817 /*
1818 * this search will find all the extents that end after
1819 * our range starts.
1820 */
1821 node = tree_search(tree, start);
1822 BUG_ON(!node);
1823
1824 state = rb_entry(node, struct extent_state, rb_node);
1825 BUG_ON(state->start != start);
1826
1827 while (count) {
1828 state->private = *csums++;
1829 count--;
1830 state = next_state(state);
1831 }
1832 spin_unlock(&tree->lock);
1833}
1834
1835static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1836{
1837 struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1838
1839 return page_offset(bvec->bv_page) + bvec->bv_offset;
1840}
1841
1842void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1843 u32 csums[], int count)
1844{
1845 struct rb_node *node;
1846 struct extent_state *state = NULL;
1847 u64 start;
1848
1849 spin_lock(&tree->lock);
1850 do {
1851 start = __btrfs_get_bio_offset(bio, bio_index);
1852 if (state == NULL || state->start != start) {
1853 node = tree_search(tree, start);
1854 BUG_ON(!node);
1855
1856 state = rb_entry(node, struct extent_state, rb_node);
1857 BUG_ON(state->start != start);
1858 }
1859 state->private = *csums++;
1860 count--;
1861 bio_index++;
1862
1863 state = next_state(state);
1864 } while (count);
1865 spin_unlock(&tree->lock);
1866}
1867
d1310b2e
CM
1868int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1869{
1870 struct rb_node *node;
1871 struct extent_state *state;
1872 int ret = 0;
1873
cad321ad 1874 spin_lock(&tree->lock);
d1310b2e
CM
1875 /*
1876 * this search will find all the extents that end after
1877 * our range starts.
1878 */
80ea96b1 1879 node = tree_search(tree, start);
2b114d1d 1880 if (!node) {
d1310b2e
CM
1881 ret = -ENOENT;
1882 goto out;
1883 }
1884 state = rb_entry(node, struct extent_state, rb_node);
1885 if (state->start != start) {
1886 ret = -ENOENT;
1887 goto out;
1888 }
1889 *private = state->private;
1890out:
cad321ad 1891 spin_unlock(&tree->lock);
d1310b2e
CM
1892 return ret;
1893}
1894
1895/*
1896 * searches a range in the state tree for a given mask.
70dec807 1897 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1898 * has the bits set. Otherwise, 1 is returned if any bit in the
1899 * range is found set.
1900 */
1901int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1902 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1903{
1904 struct extent_state *state = NULL;
1905 struct rb_node *node;
1906 int bitset = 0;
d1310b2e 1907
cad321ad 1908 spin_lock(&tree->lock);
df98b6e2
JB
1909 if (cached && cached->tree && cached->start <= start &&
1910 cached->end > start)
9655d298
CM
1911 node = &cached->rb_node;
1912 else
1913 node = tree_search(tree, start);
d1310b2e
CM
1914 while (node && start <= end) {
1915 state = rb_entry(node, struct extent_state, rb_node);
1916
1917 if (filled && state->start > start) {
1918 bitset = 0;
1919 break;
1920 }
1921
1922 if (state->start > end)
1923 break;
1924
1925 if (state->state & bits) {
1926 bitset = 1;
1927 if (!filled)
1928 break;
1929 } else if (filled) {
1930 bitset = 0;
1931 break;
1932 }
46562cec
CM
1933
1934 if (state->end == (u64)-1)
1935 break;
1936
d1310b2e
CM
1937 start = state->end + 1;
1938 if (start > end)
1939 break;
1940 node = rb_next(node);
1941 if (!node) {
1942 if (filled)
1943 bitset = 0;
1944 break;
1945 }
1946 }
cad321ad 1947 spin_unlock(&tree->lock);
d1310b2e
CM
1948 return bitset;
1949}
d1310b2e
CM
1950
1951/*
1952 * helper function to set a given page up to date if all the
1953 * extents in the tree for that page are up to date
1954 */
143bede5 1955static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1956{
4eee4fa4 1957 u64 start = page_offset(page);
d1310b2e 1958 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1959 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1960 SetPageUptodate(page);
d1310b2e
CM
1961}
1962
4a54c8c1
JS
1963/*
1964 * When IO fails, either with EIO or csum verification fails, we
1965 * try other mirrors that might have a good copy of the data. This
1966 * io_failure_record is used to record state as we go through all the
1967 * mirrors. If another mirror has good data, the page is set up to date
1968 * and things continue. If a good mirror can't be found, the original
1969 * bio end_io callback is called to indicate things have failed.
1970 */
1971struct io_failure_record {
1972 struct page *page;
1973 u64 start;
1974 u64 len;
1975 u64 logical;
1976 unsigned long bio_flags;
1977 int this_mirror;
1978 int failed_mirror;
1979 int in_validation;
1980};
1981
1982static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1983 int did_repair)
1984{
1985 int ret;
1986 int err = 0;
1987 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1988
1989 set_state_private(failure_tree, rec->start, 0);
1990 ret = clear_extent_bits(failure_tree, rec->start,
1991 rec->start + rec->len - 1,
1992 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1993 if (ret)
1994 err = ret;
1995
53b381b3
DW
1996 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1997 rec->start + rec->len - 1,
1998 EXTENT_DAMAGED, GFP_NOFS);
1999 if (ret && !err)
2000 err = ret;
4a54c8c1
JS
2001
2002 kfree(rec);
2003 return err;
2004}
2005
2006static void repair_io_failure_callback(struct bio *bio, int err)
2007{
2008 complete(bio->bi_private);
2009}
2010
2011/*
2012 * this bypasses the standard btrfs submit functions deliberately, as
2013 * the standard behavior is to write all copies in a raid setup. here we only
2014 * want to write the one bad copy. so we do the mapping for ourselves and issue
2015 * submit_bio directly.
3ec706c8 2016 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2017 * actually prevents the read that triggered the error from finishing.
2018 * currently, there can be no more than two copies of every data bit. thus,
2019 * exactly one rewrite is required.
2020 */
3ec706c8 2021int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2022 u64 length, u64 logical, struct page *page,
2023 int mirror_num)
2024{
2025 struct bio *bio;
2026 struct btrfs_device *dev;
2027 DECLARE_COMPLETION_ONSTACK(compl);
2028 u64 map_length = 0;
2029 u64 sector;
2030 struct btrfs_bio *bbio = NULL;
53b381b3 2031 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2032 int ret;
2033
2034 BUG_ON(!mirror_num);
2035
53b381b3
DW
2036 /* we can't repair anything in raid56 yet */
2037 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2038 return 0;
2039
9be3395b 2040 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2041 if (!bio)
2042 return -EIO;
2043 bio->bi_private = &compl;
2044 bio->bi_end_io = repair_io_failure_callback;
2045 bio->bi_size = 0;
2046 map_length = length;
2047
3ec706c8 2048 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2049 &map_length, &bbio, mirror_num);
2050 if (ret) {
2051 bio_put(bio);
2052 return -EIO;
2053 }
2054 BUG_ON(mirror_num != bbio->mirror_num);
2055 sector = bbio->stripes[mirror_num-1].physical >> 9;
2056 bio->bi_sector = sector;
2057 dev = bbio->stripes[mirror_num-1].dev;
2058 kfree(bbio);
2059 if (!dev || !dev->bdev || !dev->writeable) {
2060 bio_put(bio);
2061 return -EIO;
2062 }
2063 bio->bi_bdev = dev->bdev;
4eee4fa4 2064 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2065 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2066 wait_for_completion(&compl);
2067
2068 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2069 /* try to remap that extent elsewhere? */
2070 bio_put(bio);
442a4f63 2071 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2072 return -EIO;
2073 }
2074
d5b025d5 2075 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2076 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2077 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2078
2079 bio_put(bio);
2080 return 0;
2081}
2082
ea466794
JB
2083int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2084 int mirror_num)
2085{
ea466794
JB
2086 u64 start = eb->start;
2087 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2088 int ret = 0;
ea466794
JB
2089
2090 for (i = 0; i < num_pages; i++) {
2091 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2092 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2093 start, p, mirror_num);
2094 if (ret)
2095 break;
2096 start += PAGE_CACHE_SIZE;
2097 }
2098
2099 return ret;
2100}
2101
4a54c8c1
JS
2102/*
2103 * each time an IO finishes, we do a fast check in the IO failure tree
2104 * to see if we need to process or clean up an io_failure_record
2105 */
2106static int clean_io_failure(u64 start, struct page *page)
2107{
2108 u64 private;
2109 u64 private_failure;
2110 struct io_failure_record *failrec;
3ec706c8 2111 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2112 struct extent_state *state;
2113 int num_copies;
2114 int did_repair = 0;
2115 int ret;
2116 struct inode *inode = page->mapping->host;
2117
2118 private = 0;
2119 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2120 (u64)-1, 1, EXTENT_DIRTY, 0);
2121 if (!ret)
2122 return 0;
2123
2124 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2125 &private_failure);
2126 if (ret)
2127 return 0;
2128
2129 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2130 BUG_ON(!failrec->this_mirror);
2131
2132 if (failrec->in_validation) {
2133 /* there was no real error, just free the record */
2134 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2135 failrec->start);
2136 did_repair = 1;
2137 goto out;
2138 }
2139
2140 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2141 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2142 failrec->start,
2143 EXTENT_LOCKED);
2144 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2145
2146 if (state && state->start == failrec->start) {
3ec706c8
SB
2147 fs_info = BTRFS_I(inode)->root->fs_info;
2148 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2149 failrec->len);
4a54c8c1 2150 if (num_copies > 1) {
3ec706c8 2151 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2152 failrec->logical, page,
2153 failrec->failed_mirror);
2154 did_repair = !ret;
2155 }
53b381b3 2156 ret = 0;
4a54c8c1
JS
2157 }
2158
2159out:
2160 if (!ret)
2161 ret = free_io_failure(inode, failrec, did_repair);
2162
2163 return ret;
2164}
2165
2166/*
2167 * this is a generic handler for readpage errors (default
2168 * readpage_io_failed_hook). if other copies exist, read those and write back
2169 * good data to the failed position. does not investigate in remapping the
2170 * failed extent elsewhere, hoping the device will be smart enough to do this as
2171 * needed
2172 */
2173
2174static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2175 u64 start, u64 end, int failed_mirror,
2176 struct extent_state *state)
2177{
2178 struct io_failure_record *failrec = NULL;
2179 u64 private;
2180 struct extent_map *em;
2181 struct inode *inode = page->mapping->host;
2182 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185 struct bio *bio;
2186 int num_copies;
2187 int ret;
2188 int read_mode;
2189 u64 logical;
2190
2191 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2192
2193 ret = get_state_private(failure_tree, start, &private);
2194 if (ret) {
2195 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2196 if (!failrec)
2197 return -ENOMEM;
2198 failrec->start = start;
2199 failrec->len = end - start + 1;
2200 failrec->this_mirror = 0;
2201 failrec->bio_flags = 0;
2202 failrec->in_validation = 0;
2203
2204 read_lock(&em_tree->lock);
2205 em = lookup_extent_mapping(em_tree, start, failrec->len);
2206 if (!em) {
2207 read_unlock(&em_tree->lock);
2208 kfree(failrec);
2209 return -EIO;
2210 }
2211
2212 if (em->start > start || em->start + em->len < start) {
2213 free_extent_map(em);
2214 em = NULL;
2215 }
2216 read_unlock(&em_tree->lock);
2217
7a2d6a64 2218 if (!em) {
4a54c8c1
JS
2219 kfree(failrec);
2220 return -EIO;
2221 }
2222 logical = start - em->start;
2223 logical = em->block_start + logical;
2224 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2225 logical = em->block_start;
2226 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2227 extent_set_compress_type(&failrec->bio_flags,
2228 em->compress_type);
2229 }
2230 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2231 "len=%llu\n", logical, start, failrec->len);
2232 failrec->logical = logical;
2233 free_extent_map(em);
2234
2235 /* set the bits in the private failure tree */
2236 ret = set_extent_bits(failure_tree, start, end,
2237 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2238 if (ret >= 0)
2239 ret = set_state_private(failure_tree, start,
2240 (u64)(unsigned long)failrec);
2241 /* set the bits in the inode's tree */
2242 if (ret >= 0)
2243 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2244 GFP_NOFS);
2245 if (ret < 0) {
2246 kfree(failrec);
2247 return ret;
2248 }
2249 } else {
2250 failrec = (struct io_failure_record *)(unsigned long)private;
2251 pr_debug("bio_readpage_error: (found) logical=%llu, "
2252 "start=%llu, len=%llu, validation=%d\n",
2253 failrec->logical, failrec->start, failrec->len,
2254 failrec->in_validation);
2255 /*
2256 * when data can be on disk more than twice, add to failrec here
2257 * (e.g. with a list for failed_mirror) to make
2258 * clean_io_failure() clean all those errors at once.
2259 */
2260 }
5d964051
SB
2261 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2262 failrec->logical, failrec->len);
4a54c8c1
JS
2263 if (num_copies == 1) {
2264 /*
2265 * we only have a single copy of the data, so don't bother with
2266 * all the retry and error correction code that follows. no
2267 * matter what the error is, it is very likely to persist.
2268 */
2269 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2270 "state=%p, num_copies=%d, next_mirror %d, "
2271 "failed_mirror %d\n", state, num_copies,
2272 failrec->this_mirror, failed_mirror);
2273 free_io_failure(inode, failrec, 0);
2274 return -EIO;
2275 }
2276
2277 if (!state) {
2278 spin_lock(&tree->lock);
2279 state = find_first_extent_bit_state(tree, failrec->start,
2280 EXTENT_LOCKED);
2281 if (state && state->start != failrec->start)
2282 state = NULL;
2283 spin_unlock(&tree->lock);
2284 }
2285
2286 /*
2287 * there are two premises:
2288 * a) deliver good data to the caller
2289 * b) correct the bad sectors on disk
2290 */
2291 if (failed_bio->bi_vcnt > 1) {
2292 /*
2293 * to fulfill b), we need to know the exact failing sectors, as
2294 * we don't want to rewrite any more than the failed ones. thus,
2295 * we need separate read requests for the failed bio
2296 *
2297 * if the following BUG_ON triggers, our validation request got
2298 * merged. we need separate requests for our algorithm to work.
2299 */
2300 BUG_ON(failrec->in_validation);
2301 failrec->in_validation = 1;
2302 failrec->this_mirror = failed_mirror;
2303 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2304 } else {
2305 /*
2306 * we're ready to fulfill a) and b) alongside. get a good copy
2307 * of the failed sector and if we succeed, we have setup
2308 * everything for repair_io_failure to do the rest for us.
2309 */
2310 if (failrec->in_validation) {
2311 BUG_ON(failrec->this_mirror != failed_mirror);
2312 failrec->in_validation = 0;
2313 failrec->this_mirror = 0;
2314 }
2315 failrec->failed_mirror = failed_mirror;
2316 failrec->this_mirror++;
2317 if (failrec->this_mirror == failed_mirror)
2318 failrec->this_mirror++;
2319 read_mode = READ_SYNC;
2320 }
2321
2322 if (!state || failrec->this_mirror > num_copies) {
2323 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2324 "next_mirror %d, failed_mirror %d\n", state,
2325 num_copies, failrec->this_mirror, failed_mirror);
2326 free_io_failure(inode, failrec, 0);
2327 return -EIO;
2328 }
2329
9be3395b 2330 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2331 if (!bio) {
2332 free_io_failure(inode, failrec, 0);
2333 return -EIO;
2334 }
4a54c8c1
JS
2335 bio->bi_private = state;
2336 bio->bi_end_io = failed_bio->bi_end_io;
2337 bio->bi_sector = failrec->logical >> 9;
2338 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2339 bio->bi_size = 0;
2340
2341 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2342
2343 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2344 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2345 failrec->this_mirror, num_copies, failrec->in_validation);
2346
013bd4c3
TI
2347 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2348 failrec->this_mirror,
2349 failrec->bio_flags, 0);
2350 return ret;
4a54c8c1
JS
2351}
2352
d1310b2e
CM
2353/* lots and lots of room for performance fixes in the end_bio funcs */
2354
87826df0
JM
2355int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2356{
2357 int uptodate = (err == 0);
2358 struct extent_io_tree *tree;
2359 int ret;
2360
2361 tree = &BTRFS_I(page->mapping->host)->io_tree;
2362
2363 if (tree->ops && tree->ops->writepage_end_io_hook) {
2364 ret = tree->ops->writepage_end_io_hook(page, start,
2365 end, NULL, uptodate);
2366 if (ret)
2367 uptodate = 0;
2368 }
2369
87826df0 2370 if (!uptodate) {
87826df0
JM
2371 ClearPageUptodate(page);
2372 SetPageError(page);
2373 }
2374 return 0;
2375}
2376
d1310b2e
CM
2377/*
2378 * after a writepage IO is done, we need to:
2379 * clear the uptodate bits on error
2380 * clear the writeback bits in the extent tree for this IO
2381 * end_page_writeback if the page has no more pending IO
2382 *
2383 * Scheduling is not allowed, so the extent state tree is expected
2384 * to have one and only one object corresponding to this IO.
2385 */
d1310b2e 2386static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2387{
d1310b2e 2388 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2389 struct extent_io_tree *tree;
d1310b2e
CM
2390 u64 start;
2391 u64 end;
d1310b2e 2392
d1310b2e
CM
2393 do {
2394 struct page *page = bvec->bv_page;
902b22f3
DW
2395 tree = &BTRFS_I(page->mapping->host)->io_tree;
2396
17a5adcc
AO
2397 /* We always issue full-page reads, but if some block
2398 * in a page fails to read, blk_update_request() will
2399 * advance bv_offset and adjust bv_len to compensate.
2400 * Print a warning for nonzero offsets, and an error
2401 * if they don't add up to a full page. */
2402 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2403 printk("%s page write in btrfs with offset %u and length %u\n",
2404 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2405 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2406 bvec->bv_offset, bvec->bv_len);
d1310b2e 2407
17a5adcc
AO
2408 start = page_offset(page);
2409 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2410
2411 if (--bvec >= bio->bi_io_vec)
2412 prefetchw(&bvec->bv_page->flags);
1259ab75 2413
87826df0
JM
2414 if (end_extent_writepage(page, err, start, end))
2415 continue;
70dec807 2416
17a5adcc 2417 end_page_writeback(page);
d1310b2e 2418 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2419
d1310b2e 2420 bio_put(bio);
d1310b2e
CM
2421}
2422
2423/*
2424 * after a readpage IO is done, we need to:
2425 * clear the uptodate bits on error
2426 * set the uptodate bits if things worked
2427 * set the page up to date if all extents in the tree are uptodate
2428 * clear the lock bit in the extent tree
2429 * unlock the page if there are no other extents locked for it
2430 *
2431 * Scheduling is not allowed, so the extent state tree is expected
2432 * to have one and only one object corresponding to this IO.
2433 */
d1310b2e 2434static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2435{
2436 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2437 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2438 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2439 struct extent_io_tree *tree;
d1310b2e
CM
2440 u64 start;
2441 u64 end;
5cf1ab56 2442 int mirror;
d1310b2e
CM
2443 int ret;
2444
d20f7043
CM
2445 if (err)
2446 uptodate = 0;
2447
d1310b2e
CM
2448 do {
2449 struct page *page = bvec->bv_page;
507903b8
AJ
2450 struct extent_state *cached = NULL;
2451 struct extent_state *state;
9be3395b 2452 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
507903b8 2453
be3940c0 2454 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2455 "mirror=%lu\n", (u64)bio->bi_sector, err,
2456 io_bio->mirror_num);
902b22f3
DW
2457 tree = &BTRFS_I(page->mapping->host)->io_tree;
2458
17a5adcc
AO
2459 /* We always issue full-page reads, but if some block
2460 * in a page fails to read, blk_update_request() will
2461 * advance bv_offset and adjust bv_len to compensate.
2462 * Print a warning for nonzero offsets, and an error
2463 * if they don't add up to a full page. */
2464 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2465 printk("%s page read in btrfs with offset %u and length %u\n",
2466 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2467 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2468 bvec->bv_offset, bvec->bv_len);
d1310b2e 2469
17a5adcc
AO
2470 start = page_offset(page);
2471 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2472
4125bf76 2473 if (++bvec <= bvec_end)
d1310b2e
CM
2474 prefetchw(&bvec->bv_page->flags);
2475
507903b8 2476 spin_lock(&tree->lock);
0d399205 2477 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2478 if (state && state->start == start) {
507903b8
AJ
2479 /*
2480 * take a reference on the state, unlock will drop
2481 * the ref
2482 */
2483 cache_state(state, &cached);
2484 }
2485 spin_unlock(&tree->lock);
2486
9be3395b 2487 mirror = io_bio->mirror_num;
d1310b2e 2488 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2489 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2490 state, mirror);
5ee0844d 2491 if (ret)
d1310b2e 2492 uptodate = 0;
5ee0844d 2493 else
4a54c8c1 2494 clean_io_failure(start, page);
d1310b2e 2495 }
ea466794 2496
ea466794 2497 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2498 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2499 if (!ret && !err &&
2500 test_bit(BIO_UPTODATE, &bio->bi_flags))
2501 uptodate = 1;
2502 } else if (!uptodate) {
f4a8e656
JS
2503 /*
2504 * The generic bio_readpage_error handles errors the
2505 * following way: If possible, new read requests are
2506 * created and submitted and will end up in
2507 * end_bio_extent_readpage as well (if we're lucky, not
2508 * in the !uptodate case). In that case it returns 0 and
2509 * we just go on with the next page in our bio. If it
2510 * can't handle the error it will return -EIO and we
2511 * remain responsible for that page.
2512 */
5cf1ab56 2513 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2514 if (ret == 0) {
3b951516
CM
2515 uptodate =
2516 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2517 if (err)
2518 uptodate = 0;
507903b8 2519 uncache_state(&cached);
7e38326f
CM
2520 continue;
2521 }
2522 }
d1310b2e 2523
0b32f4bb 2524 if (uptodate && tree->track_uptodate) {
507903b8 2525 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2526 GFP_ATOMIC);
771ed689 2527 }
507903b8 2528 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2529
17a5adcc
AO
2530 if (uptodate) {
2531 SetPageUptodate(page);
70dec807 2532 } else {
17a5adcc
AO
2533 ClearPageUptodate(page);
2534 SetPageError(page);
70dec807 2535 }
17a5adcc 2536 unlock_page(page);
4125bf76 2537 } while (bvec <= bvec_end);
d1310b2e
CM
2538
2539 bio_put(bio);
d1310b2e
CM
2540}
2541
9be3395b
CM
2542/*
2543 * this allocates from the btrfs_bioset. We're returning a bio right now
2544 * but you can call btrfs_io_bio for the appropriate container_of magic
2545 */
88f794ed
MX
2546struct bio *
2547btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2548 gfp_t gfp_flags)
d1310b2e
CM
2549{
2550 struct bio *bio;
2551
9be3395b 2552 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2553
2554 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2555 while (!bio && (nr_vecs /= 2)) {
2556 bio = bio_alloc_bioset(gfp_flags,
2557 nr_vecs, btrfs_bioset);
2558 }
d1310b2e
CM
2559 }
2560
2561 if (bio) {
e1c4b745 2562 bio->bi_size = 0;
d1310b2e
CM
2563 bio->bi_bdev = bdev;
2564 bio->bi_sector = first_sector;
2565 }
2566 return bio;
2567}
2568
9be3395b
CM
2569struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570{
2571 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572}
2573
2574
2575/* this also allocates from the btrfs_bioset */
2576struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577{
2578 return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2579}
2580
2581
355808c2
JM
2582static int __must_check submit_one_bio(int rw, struct bio *bio,
2583 int mirror_num, unsigned long bio_flags)
d1310b2e 2584{
d1310b2e 2585 int ret = 0;
70dec807
CM
2586 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2587 struct page *page = bvec->bv_page;
2588 struct extent_io_tree *tree = bio->bi_private;
70dec807 2589 u64 start;
70dec807 2590
4eee4fa4 2591 start = page_offset(page) + bvec->bv_offset;
70dec807 2592
902b22f3 2593 bio->bi_private = NULL;
d1310b2e
CM
2594
2595 bio_get(bio);
2596
065631f6 2597 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2598 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2599 mirror_num, bio_flags, start);
0b86a832 2600 else
21adbd5c 2601 btrfsic_submit_bio(rw, bio);
4a54c8c1 2602
d1310b2e
CM
2603 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2604 ret = -EOPNOTSUPP;
2605 bio_put(bio);
2606 return ret;
2607}
2608
64a16701 2609static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2610 unsigned long offset, size_t size, struct bio *bio,
2611 unsigned long bio_flags)
2612{
2613 int ret = 0;
2614 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2615 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2616 bio_flags);
2617 BUG_ON(ret < 0);
2618 return ret;
2619
2620}
2621
d1310b2e
CM
2622static int submit_extent_page(int rw, struct extent_io_tree *tree,
2623 struct page *page, sector_t sector,
2624 size_t size, unsigned long offset,
2625 struct block_device *bdev,
2626 struct bio **bio_ret,
2627 unsigned long max_pages,
f188591e 2628 bio_end_io_t end_io_func,
c8b97818
CM
2629 int mirror_num,
2630 unsigned long prev_bio_flags,
2631 unsigned long bio_flags)
d1310b2e
CM
2632{
2633 int ret = 0;
2634 struct bio *bio;
2635 int nr;
c8b97818
CM
2636 int contig = 0;
2637 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2638 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2639 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2640
2641 if (bio_ret && *bio_ret) {
2642 bio = *bio_ret;
c8b97818
CM
2643 if (old_compressed)
2644 contig = bio->bi_sector == sector;
2645 else
2646 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2647 sector;
2648
2649 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2650 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2651 bio_add_page(bio, page, page_size, offset) < page_size) {
2652 ret = submit_one_bio(rw, bio, mirror_num,
2653 prev_bio_flags);
79787eaa
JM
2654 if (ret < 0)
2655 return ret;
d1310b2e
CM
2656 bio = NULL;
2657 } else {
2658 return 0;
2659 }
2660 }
c8b97818
CM
2661 if (this_compressed)
2662 nr = BIO_MAX_PAGES;
2663 else
2664 nr = bio_get_nr_vecs(bdev);
2665
88f794ed 2666 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2667 if (!bio)
2668 return -ENOMEM;
70dec807 2669
c8b97818 2670 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2671 bio->bi_end_io = end_io_func;
2672 bio->bi_private = tree;
70dec807 2673
d397712b 2674 if (bio_ret)
d1310b2e 2675 *bio_ret = bio;
d397712b 2676 else
c8b97818 2677 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2678
2679 return ret;
2680}
2681
48a3b636
ES
2682static void attach_extent_buffer_page(struct extent_buffer *eb,
2683 struct page *page)
d1310b2e
CM
2684{
2685 if (!PagePrivate(page)) {
2686 SetPagePrivate(page);
d1310b2e 2687 page_cache_get(page);
4f2de97a
JB
2688 set_page_private(page, (unsigned long)eb);
2689 } else {
2690 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2691 }
2692}
2693
4f2de97a 2694void set_page_extent_mapped(struct page *page)
d1310b2e 2695{
4f2de97a
JB
2696 if (!PagePrivate(page)) {
2697 SetPagePrivate(page);
2698 page_cache_get(page);
2699 set_page_private(page, EXTENT_PAGE_PRIVATE);
2700 }
d1310b2e
CM
2701}
2702
2703/*
2704 * basic readpage implementation. Locked extent state structs are inserted
2705 * into the tree that are removed when the IO is done (by the end_io
2706 * handlers)
79787eaa 2707 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2708 */
2709static int __extent_read_full_page(struct extent_io_tree *tree,
2710 struct page *page,
2711 get_extent_t *get_extent,
c8b97818 2712 struct bio **bio, int mirror_num,
d4c7ca86 2713 unsigned long *bio_flags, int rw)
d1310b2e
CM
2714{
2715 struct inode *inode = page->mapping->host;
4eee4fa4 2716 u64 start = page_offset(page);
d1310b2e
CM
2717 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2718 u64 end;
2719 u64 cur = start;
2720 u64 extent_offset;
2721 u64 last_byte = i_size_read(inode);
2722 u64 block_start;
2723 u64 cur_end;
2724 sector_t sector;
2725 struct extent_map *em;
2726 struct block_device *bdev;
11c65dcc 2727 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2728 int ret;
2729 int nr = 0;
306e16ce 2730 size_t pg_offset = 0;
d1310b2e 2731 size_t iosize;
c8b97818 2732 size_t disk_io_size;
d1310b2e 2733 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2734 unsigned long this_bio_flag = 0;
d1310b2e
CM
2735
2736 set_page_extent_mapped(page);
2737
90a887c9
DM
2738 if (!PageUptodate(page)) {
2739 if (cleancache_get_page(page) == 0) {
2740 BUG_ON(blocksize != PAGE_SIZE);
2741 goto out;
2742 }
2743 }
2744
d1310b2e 2745 end = page_end;
11c65dcc 2746 while (1) {
d0082371 2747 lock_extent(tree, start, end);
11c65dcc
JB
2748 ordered = btrfs_lookup_ordered_extent(inode, start);
2749 if (!ordered)
2750 break;
d0082371 2751 unlock_extent(tree, start, end);
11c65dcc
JB
2752 btrfs_start_ordered_extent(inode, ordered, 1);
2753 btrfs_put_ordered_extent(ordered);
2754 }
d1310b2e 2755
c8b97818
CM
2756 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2757 char *userpage;
2758 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2759
2760 if (zero_offset) {
2761 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2762 userpage = kmap_atomic(page);
c8b97818
CM
2763 memset(userpage + zero_offset, 0, iosize);
2764 flush_dcache_page(page);
7ac687d9 2765 kunmap_atomic(userpage);
c8b97818
CM
2766 }
2767 }
d1310b2e 2768 while (cur <= end) {
c8f2f24b
JB
2769 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2770
d1310b2e
CM
2771 if (cur >= last_byte) {
2772 char *userpage;
507903b8
AJ
2773 struct extent_state *cached = NULL;
2774
306e16ce 2775 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2776 userpage = kmap_atomic(page);
306e16ce 2777 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2778 flush_dcache_page(page);
7ac687d9 2779 kunmap_atomic(userpage);
d1310b2e 2780 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2781 &cached, GFP_NOFS);
2782 unlock_extent_cached(tree, cur, cur + iosize - 1,
2783 &cached, GFP_NOFS);
d1310b2e
CM
2784 break;
2785 }
306e16ce 2786 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2787 end - cur + 1, 0);
c704005d 2788 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2789 SetPageError(page);
d0082371 2790 unlock_extent(tree, cur, end);
d1310b2e
CM
2791 break;
2792 }
d1310b2e
CM
2793 extent_offset = cur - em->start;
2794 BUG_ON(extent_map_end(em) <= cur);
2795 BUG_ON(end < cur);
2796
261507a0 2797 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2798 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2799 extent_set_compress_type(&this_bio_flag,
2800 em->compress_type);
2801 }
c8b97818 2802
d1310b2e
CM
2803 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2804 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2805 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2806 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2807 disk_io_size = em->block_len;
2808 sector = em->block_start >> 9;
2809 } else {
2810 sector = (em->block_start + extent_offset) >> 9;
2811 disk_io_size = iosize;
2812 }
d1310b2e
CM
2813 bdev = em->bdev;
2814 block_start = em->block_start;
d899e052
YZ
2815 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2816 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2817 free_extent_map(em);
2818 em = NULL;
2819
2820 /* we've found a hole, just zero and go on */
2821 if (block_start == EXTENT_MAP_HOLE) {
2822 char *userpage;
507903b8
AJ
2823 struct extent_state *cached = NULL;
2824
7ac687d9 2825 userpage = kmap_atomic(page);
306e16ce 2826 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2827 flush_dcache_page(page);
7ac687d9 2828 kunmap_atomic(userpage);
d1310b2e
CM
2829
2830 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2831 &cached, GFP_NOFS);
2832 unlock_extent_cached(tree, cur, cur + iosize - 1,
2833 &cached, GFP_NOFS);
d1310b2e 2834 cur = cur + iosize;
306e16ce 2835 pg_offset += iosize;
d1310b2e
CM
2836 continue;
2837 }
2838 /* the get_extent function already copied into the page */
9655d298
CM
2839 if (test_range_bit(tree, cur, cur_end,
2840 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2841 check_page_uptodate(tree, page);
d0082371 2842 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2843 cur = cur + iosize;
306e16ce 2844 pg_offset += iosize;
d1310b2e
CM
2845 continue;
2846 }
70dec807
CM
2847 /* we have an inline extent but it didn't get marked up
2848 * to date. Error out
2849 */
2850 if (block_start == EXTENT_MAP_INLINE) {
2851 SetPageError(page);
d0082371 2852 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2853 cur = cur + iosize;
306e16ce 2854 pg_offset += iosize;
70dec807
CM
2855 continue;
2856 }
d1310b2e 2857
c8f2f24b 2858 pnr -= page->index;
d4c7ca86 2859 ret = submit_extent_page(rw, tree, page,
306e16ce 2860 sector, disk_io_size, pg_offset,
89642229 2861 bdev, bio, pnr,
c8b97818
CM
2862 end_bio_extent_readpage, mirror_num,
2863 *bio_flags,
2864 this_bio_flag);
c8f2f24b
JB
2865 if (!ret) {
2866 nr++;
2867 *bio_flags = this_bio_flag;
2868 } else {
d1310b2e 2869 SetPageError(page);
edd33c99
JB
2870 unlock_extent(tree, cur, cur + iosize - 1);
2871 }
d1310b2e 2872 cur = cur + iosize;
306e16ce 2873 pg_offset += iosize;
d1310b2e 2874 }
90a887c9 2875out:
d1310b2e
CM
2876 if (!nr) {
2877 if (!PageError(page))
2878 SetPageUptodate(page);
2879 unlock_page(page);
2880 }
2881 return 0;
2882}
2883
2884int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2885 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2886{
2887 struct bio *bio = NULL;
c8b97818 2888 unsigned long bio_flags = 0;
d1310b2e
CM
2889 int ret;
2890
8ddc7d9c 2891 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 2892 &bio_flags, READ);
d1310b2e 2893 if (bio)
8ddc7d9c 2894 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2895 return ret;
2896}
d1310b2e 2897
11c8349b
CM
2898static noinline void update_nr_written(struct page *page,
2899 struct writeback_control *wbc,
2900 unsigned long nr_written)
2901{
2902 wbc->nr_to_write -= nr_written;
2903 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2904 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2905 page->mapping->writeback_index = page->index + nr_written;
2906}
2907
d1310b2e
CM
2908/*
2909 * the writepage semantics are similar to regular writepage. extent
2910 * records are inserted to lock ranges in the tree, and as dirty areas
2911 * are found, they are marked writeback. Then the lock bits are removed
2912 * and the end_io handler clears the writeback ranges
2913 */
2914static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2915 void *data)
2916{
2917 struct inode *inode = page->mapping->host;
2918 struct extent_page_data *epd = data;
2919 struct extent_io_tree *tree = epd->tree;
4eee4fa4 2920 u64 start = page_offset(page);
d1310b2e
CM
2921 u64 delalloc_start;
2922 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2923 u64 end;
2924 u64 cur = start;
2925 u64 extent_offset;
2926 u64 last_byte = i_size_read(inode);
2927 u64 block_start;
2928 u64 iosize;
2929 sector_t sector;
2c64c53d 2930 struct extent_state *cached_state = NULL;
d1310b2e
CM
2931 struct extent_map *em;
2932 struct block_device *bdev;
2933 int ret;
2934 int nr = 0;
7f3c74fb 2935 size_t pg_offset = 0;
d1310b2e
CM
2936 size_t blocksize;
2937 loff_t i_size = i_size_read(inode);
2938 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2939 u64 nr_delalloc;
2940 u64 delalloc_end;
c8b97818
CM
2941 int page_started;
2942 int compressed;
ffbd517d 2943 int write_flags;
771ed689 2944 unsigned long nr_written = 0;
9e487107 2945 bool fill_delalloc = true;
d1310b2e 2946
ffbd517d 2947 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2948 write_flags = WRITE_SYNC;
ffbd517d
CM
2949 else
2950 write_flags = WRITE;
2951
1abe9b8a 2952 trace___extent_writepage(page, inode, wbc);
2953
d1310b2e 2954 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2955
2956 ClearPageError(page);
2957
7f3c74fb 2958 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2959 if (page->index > end_index ||
7f3c74fb 2960 (page->index == end_index && !pg_offset)) {
39be25cd 2961 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2962 unlock_page(page);
2963 return 0;
2964 }
2965
2966 if (page->index == end_index) {
2967 char *userpage;
2968
7ac687d9 2969 userpage = kmap_atomic(page);
7f3c74fb
CM
2970 memset(userpage + pg_offset, 0,
2971 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2972 kunmap_atomic(userpage);
211c17f5 2973 flush_dcache_page(page);
d1310b2e 2974 }
7f3c74fb 2975 pg_offset = 0;
d1310b2e
CM
2976
2977 set_page_extent_mapped(page);
2978
9e487107
JB
2979 if (!tree->ops || !tree->ops->fill_delalloc)
2980 fill_delalloc = false;
2981
d1310b2e
CM
2982 delalloc_start = start;
2983 delalloc_end = 0;
c8b97818 2984 page_started = 0;
9e487107 2985 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2986 u64 delalloc_to_write = 0;
11c8349b
CM
2987 /*
2988 * make sure the wbc mapping index is at least updated
2989 * to this page.
2990 */
2991 update_nr_written(page, wbc, 0);
2992
d397712b 2993 while (delalloc_end < page_end) {
771ed689 2994 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2995 page,
2996 &delalloc_start,
d1310b2e
CM
2997 &delalloc_end,
2998 128 * 1024 * 1024);
771ed689
CM
2999 if (nr_delalloc == 0) {
3000 delalloc_start = delalloc_end + 1;
3001 continue;
3002 }
013bd4c3
TI
3003 ret = tree->ops->fill_delalloc(inode, page,
3004 delalloc_start,
3005 delalloc_end,
3006 &page_started,
3007 &nr_written);
79787eaa
JM
3008 /* File system has been set read-only */
3009 if (ret) {
3010 SetPageError(page);
3011 goto done;
3012 }
f85d7d6c
CM
3013 /*
3014 * delalloc_end is already one less than the total
3015 * length, so we don't subtract one from
3016 * PAGE_CACHE_SIZE
3017 */
3018 delalloc_to_write += (delalloc_end - delalloc_start +
3019 PAGE_CACHE_SIZE) >>
3020 PAGE_CACHE_SHIFT;
d1310b2e 3021 delalloc_start = delalloc_end + 1;
d1310b2e 3022 }
f85d7d6c
CM
3023 if (wbc->nr_to_write < delalloc_to_write) {
3024 int thresh = 8192;
3025
3026 if (delalloc_to_write < thresh * 2)
3027 thresh = delalloc_to_write;
3028 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3029 thresh);
3030 }
c8b97818 3031
771ed689
CM
3032 /* did the fill delalloc function already unlock and start
3033 * the IO?
3034 */
3035 if (page_started) {
3036 ret = 0;
11c8349b
CM
3037 /*
3038 * we've unlocked the page, so we can't update
3039 * the mapping's writeback index, just update
3040 * nr_to_write.
3041 */
3042 wbc->nr_to_write -= nr_written;
3043 goto done_unlocked;
771ed689 3044 }
c8b97818 3045 }
247e743c 3046 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3047 ret = tree->ops->writepage_start_hook(page, start,
3048 page_end);
87826df0
JM
3049 if (ret) {
3050 /* Fixup worker will requeue */
3051 if (ret == -EBUSY)
3052 wbc->pages_skipped++;
3053 else
3054 redirty_page_for_writepage(wbc, page);
11c8349b 3055 update_nr_written(page, wbc, nr_written);
247e743c 3056 unlock_page(page);
771ed689 3057 ret = 0;
11c8349b 3058 goto done_unlocked;
247e743c
CM
3059 }
3060 }
3061
11c8349b
CM
3062 /*
3063 * we don't want to touch the inode after unlocking the page,
3064 * so we update the mapping writeback index now
3065 */
3066 update_nr_written(page, wbc, nr_written + 1);
771ed689 3067
d1310b2e 3068 end = page_end;
d1310b2e 3069 if (last_byte <= start) {
e6dcd2dc
CM
3070 if (tree->ops && tree->ops->writepage_end_io_hook)
3071 tree->ops->writepage_end_io_hook(page, start,
3072 page_end, NULL, 1);
d1310b2e
CM
3073 goto done;
3074 }
3075
d1310b2e
CM
3076 blocksize = inode->i_sb->s_blocksize;
3077
3078 while (cur <= end) {
3079 if (cur >= last_byte) {
e6dcd2dc
CM
3080 if (tree->ops && tree->ops->writepage_end_io_hook)
3081 tree->ops->writepage_end_io_hook(page, cur,
3082 page_end, NULL, 1);
d1310b2e
CM
3083 break;
3084 }
7f3c74fb 3085 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3086 end - cur + 1, 1);
c704005d 3087 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3088 SetPageError(page);
3089 break;
3090 }
3091
3092 extent_offset = cur - em->start;
3093 BUG_ON(extent_map_end(em) <= cur);
3094 BUG_ON(end < cur);
3095 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3096 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3097 sector = (em->block_start + extent_offset) >> 9;
3098 bdev = em->bdev;
3099 block_start = em->block_start;
c8b97818 3100 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3101 free_extent_map(em);
3102 em = NULL;
3103
c8b97818
CM
3104 /*
3105 * compressed and inline extents are written through other
3106 * paths in the FS
3107 */
3108 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3109 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3110 /*
3111 * end_io notification does not happen here for
3112 * compressed extents
3113 */
3114 if (!compressed && tree->ops &&
3115 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3116 tree->ops->writepage_end_io_hook(page, cur,
3117 cur + iosize - 1,
3118 NULL, 1);
c8b97818
CM
3119 else if (compressed) {
3120 /* we don't want to end_page_writeback on
3121 * a compressed extent. this happens
3122 * elsewhere
3123 */
3124 nr++;
3125 }
3126
3127 cur += iosize;
7f3c74fb 3128 pg_offset += iosize;
d1310b2e
CM
3129 continue;
3130 }
d1310b2e
CM
3131 /* leave this out until we have a page_mkwrite call */
3132 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3133 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3134 cur = cur + iosize;
7f3c74fb 3135 pg_offset += iosize;
d1310b2e
CM
3136 continue;
3137 }
c8b97818 3138
d1310b2e
CM
3139 if (tree->ops && tree->ops->writepage_io_hook) {
3140 ret = tree->ops->writepage_io_hook(page, cur,
3141 cur + iosize - 1);
3142 } else {
3143 ret = 0;
3144 }
1259ab75 3145 if (ret) {
d1310b2e 3146 SetPageError(page);
1259ab75 3147 } else {
d1310b2e 3148 unsigned long max_nr = end_index + 1;
7f3c74fb 3149
d1310b2e
CM
3150 set_range_writeback(tree, cur, cur + iosize - 1);
3151 if (!PageWriteback(page)) {
d397712b
CM
3152 printk(KERN_ERR "btrfs warning page %lu not "
3153 "writeback, cur %llu end %llu\n",
3154 page->index, (unsigned long long)cur,
d1310b2e
CM
3155 (unsigned long long)end);
3156 }
3157
ffbd517d
CM
3158 ret = submit_extent_page(write_flags, tree, page,
3159 sector, iosize, pg_offset,
3160 bdev, &epd->bio, max_nr,
c8b97818
CM
3161 end_bio_extent_writepage,
3162 0, 0, 0);
d1310b2e
CM
3163 if (ret)
3164 SetPageError(page);
3165 }
3166 cur = cur + iosize;
7f3c74fb 3167 pg_offset += iosize;
d1310b2e
CM
3168 nr++;
3169 }
3170done:
3171 if (nr == 0) {
3172 /* make sure the mapping tag for page dirty gets cleared */
3173 set_page_writeback(page);
3174 end_page_writeback(page);
3175 }
d1310b2e 3176 unlock_page(page);
771ed689 3177
11c8349b
CM
3178done_unlocked:
3179
2c64c53d
CM
3180 /* drop our reference on any cached states */
3181 free_extent_state(cached_state);
d1310b2e
CM
3182 return 0;
3183}
3184
0b32f4bb
JB
3185static int eb_wait(void *word)
3186{
3187 io_schedule();
3188 return 0;
3189}
3190
fd8b2b61 3191void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3192{
3193 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3194 TASK_UNINTERRUPTIBLE);
3195}
3196
3197static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3198 struct btrfs_fs_info *fs_info,
3199 struct extent_page_data *epd)
3200{
3201 unsigned long i, num_pages;
3202 int flush = 0;
3203 int ret = 0;
3204
3205 if (!btrfs_try_tree_write_lock(eb)) {
3206 flush = 1;
3207 flush_write_bio(epd);
3208 btrfs_tree_lock(eb);
3209 }
3210
3211 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3212 btrfs_tree_unlock(eb);
3213 if (!epd->sync_io)
3214 return 0;
3215 if (!flush) {
3216 flush_write_bio(epd);
3217 flush = 1;
3218 }
a098d8e8
CM
3219 while (1) {
3220 wait_on_extent_buffer_writeback(eb);
3221 btrfs_tree_lock(eb);
3222 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3223 break;
0b32f4bb 3224 btrfs_tree_unlock(eb);
0b32f4bb
JB
3225 }
3226 }
3227
51561ffe
JB
3228 /*
3229 * We need to do this to prevent races in people who check if the eb is
3230 * under IO since we can end up having no IO bits set for a short period
3231 * of time.
3232 */
3233 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3234 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3235 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3236 spin_unlock(&eb->refs_lock);
0b32f4bb 3237 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3238 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3239 -eb->len,
3240 fs_info->dirty_metadata_batch);
0b32f4bb 3241 ret = 1;
51561ffe
JB
3242 } else {
3243 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3244 }
3245
3246 btrfs_tree_unlock(eb);
3247
3248 if (!ret)
3249 return ret;
3250
3251 num_pages = num_extent_pages(eb->start, eb->len);
3252 for (i = 0; i < num_pages; i++) {
3253 struct page *p = extent_buffer_page(eb, i);
3254
3255 if (!trylock_page(p)) {
3256 if (!flush) {
3257 flush_write_bio(epd);
3258 flush = 1;
3259 }
3260 lock_page(p);
3261 }
3262 }
3263
3264 return ret;
3265}
3266
3267static void end_extent_buffer_writeback(struct extent_buffer *eb)
3268{
3269 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3270 smp_mb__after_clear_bit();
3271 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3272}
3273
3274static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3275{
3276 int uptodate = err == 0;
3277 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3278 struct extent_buffer *eb;
3279 int done;
3280
3281 do {
3282 struct page *page = bvec->bv_page;
3283
3284 bvec--;
3285 eb = (struct extent_buffer *)page->private;
3286 BUG_ON(!eb);
3287 done = atomic_dec_and_test(&eb->io_pages);
3288
3289 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3290 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3291 ClearPageUptodate(page);
3292 SetPageError(page);
3293 }
3294
3295 end_page_writeback(page);
3296
3297 if (!done)
3298 continue;
3299
3300 end_extent_buffer_writeback(eb);
3301 } while (bvec >= bio->bi_io_vec);
3302
3303 bio_put(bio);
3304
3305}
3306
3307static int write_one_eb(struct extent_buffer *eb,
3308 struct btrfs_fs_info *fs_info,
3309 struct writeback_control *wbc,
3310 struct extent_page_data *epd)
3311{
3312 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3313 u64 offset = eb->start;
3314 unsigned long i, num_pages;
de0022b9 3315 unsigned long bio_flags = 0;
d4c7ca86 3316 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3317 int ret = 0;
0b32f4bb
JB
3318
3319 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3320 num_pages = num_extent_pages(eb->start, eb->len);
3321 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3322 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3323 bio_flags = EXTENT_BIO_TREE_LOG;
3324
0b32f4bb
JB
3325 for (i = 0; i < num_pages; i++) {
3326 struct page *p = extent_buffer_page(eb, i);
3327
3328 clear_page_dirty_for_io(p);
3329 set_page_writeback(p);
3330 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3331 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3332 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3333 0, epd->bio_flags, bio_flags);
3334 epd->bio_flags = bio_flags;
0b32f4bb
JB
3335 if (ret) {
3336 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3337 SetPageError(p);
3338 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3339 end_extent_buffer_writeback(eb);
3340 ret = -EIO;
3341 break;
3342 }
3343 offset += PAGE_CACHE_SIZE;
3344 update_nr_written(p, wbc, 1);
3345 unlock_page(p);
3346 }
3347
3348 if (unlikely(ret)) {
3349 for (; i < num_pages; i++) {
3350 struct page *p = extent_buffer_page(eb, i);
3351 unlock_page(p);
3352 }
3353 }
3354
3355 return ret;
3356}
3357
3358int btree_write_cache_pages(struct address_space *mapping,
3359 struct writeback_control *wbc)
3360{
3361 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3362 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3363 struct extent_buffer *eb, *prev_eb = NULL;
3364 struct extent_page_data epd = {
3365 .bio = NULL,
3366 .tree = tree,
3367 .extent_locked = 0,
3368 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3369 .bio_flags = 0,
0b32f4bb
JB
3370 };
3371 int ret = 0;
3372 int done = 0;
3373 int nr_to_write_done = 0;
3374 struct pagevec pvec;
3375 int nr_pages;
3376 pgoff_t index;
3377 pgoff_t end; /* Inclusive */
3378 int scanned = 0;
3379 int tag;
3380
3381 pagevec_init(&pvec, 0);
3382 if (wbc->range_cyclic) {
3383 index = mapping->writeback_index; /* Start from prev offset */
3384 end = -1;
3385 } else {
3386 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3387 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3388 scanned = 1;
3389 }
3390 if (wbc->sync_mode == WB_SYNC_ALL)
3391 tag = PAGECACHE_TAG_TOWRITE;
3392 else
3393 tag = PAGECACHE_TAG_DIRTY;
3394retry:
3395 if (wbc->sync_mode == WB_SYNC_ALL)
3396 tag_pages_for_writeback(mapping, index, end);
3397 while (!done && !nr_to_write_done && (index <= end) &&
3398 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3399 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3400 unsigned i;
3401
3402 scanned = 1;
3403 for (i = 0; i < nr_pages; i++) {
3404 struct page *page = pvec.pages[i];
3405
3406 if (!PagePrivate(page))
3407 continue;
3408
3409 if (!wbc->range_cyclic && page->index > end) {
3410 done = 1;
3411 break;
3412 }
3413
b5bae261
JB
3414 spin_lock(&mapping->private_lock);
3415 if (!PagePrivate(page)) {
3416 spin_unlock(&mapping->private_lock);
3417 continue;
3418 }
3419
0b32f4bb 3420 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3421
3422 /*
3423 * Shouldn't happen and normally this would be a BUG_ON
3424 * but no sense in crashing the users box for something
3425 * we can survive anyway.
3426 */
0b32f4bb 3427 if (!eb) {
b5bae261 3428 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3429 WARN_ON(1);
3430 continue;
3431 }
3432
b5bae261
JB
3433 if (eb == prev_eb) {
3434 spin_unlock(&mapping->private_lock);
0b32f4bb 3435 continue;
b5bae261 3436 }
0b32f4bb 3437
b5bae261
JB
3438 ret = atomic_inc_not_zero(&eb->refs);
3439 spin_unlock(&mapping->private_lock);
3440 if (!ret)
0b32f4bb 3441 continue;
0b32f4bb
JB
3442
3443 prev_eb = eb;
3444 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3445 if (!ret) {
3446 free_extent_buffer(eb);
3447 continue;
3448 }
3449
3450 ret = write_one_eb(eb, fs_info, wbc, &epd);
3451 if (ret) {
3452 done = 1;
3453 free_extent_buffer(eb);
3454 break;
3455 }
3456 free_extent_buffer(eb);
3457
3458 /*
3459 * the filesystem may choose to bump up nr_to_write.
3460 * We have to make sure to honor the new nr_to_write
3461 * at any time
3462 */
3463 nr_to_write_done = wbc->nr_to_write <= 0;
3464 }
3465 pagevec_release(&pvec);
3466 cond_resched();
3467 }
3468 if (!scanned && !done) {
3469 /*
3470 * We hit the last page and there is more work to be done: wrap
3471 * back to the start of the file
3472 */
3473 scanned = 1;
3474 index = 0;
3475 goto retry;
3476 }
3477 flush_write_bio(&epd);
3478 return ret;
3479}
3480
d1310b2e 3481/**
4bef0848 3482 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3483 * @mapping: address space structure to write
3484 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3485 * @writepage: function called for each page
3486 * @data: data passed to writepage function
3487 *
3488 * If a page is already under I/O, write_cache_pages() skips it, even
3489 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3490 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3491 * and msync() need to guarantee that all the data which was dirty at the time
3492 * the call was made get new I/O started against them. If wbc->sync_mode is
3493 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3494 * existing IO to complete.
3495 */
b2950863 3496static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3497 struct address_space *mapping,
3498 struct writeback_control *wbc,
d2c3f4f6
CM
3499 writepage_t writepage, void *data,
3500 void (*flush_fn)(void *))
d1310b2e 3501{
7fd1a3f7 3502 struct inode *inode = mapping->host;
d1310b2e
CM
3503 int ret = 0;
3504 int done = 0;
f85d7d6c 3505 int nr_to_write_done = 0;
d1310b2e
CM
3506 struct pagevec pvec;
3507 int nr_pages;
3508 pgoff_t index;
3509 pgoff_t end; /* Inclusive */
3510 int scanned = 0;
f7aaa06b 3511 int tag;
d1310b2e 3512
7fd1a3f7
JB
3513 /*
3514 * We have to hold onto the inode so that ordered extents can do their
3515 * work when the IO finishes. The alternative to this is failing to add
3516 * an ordered extent if the igrab() fails there and that is a huge pain
3517 * to deal with, so instead just hold onto the inode throughout the
3518 * writepages operation. If it fails here we are freeing up the inode
3519 * anyway and we'd rather not waste our time writing out stuff that is
3520 * going to be truncated anyway.
3521 */
3522 if (!igrab(inode))
3523 return 0;
3524
d1310b2e
CM
3525 pagevec_init(&pvec, 0);
3526 if (wbc->range_cyclic) {
3527 index = mapping->writeback_index; /* Start from prev offset */
3528 end = -1;
3529 } else {
3530 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3531 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3532 scanned = 1;
3533 }
f7aaa06b
JB
3534 if (wbc->sync_mode == WB_SYNC_ALL)
3535 tag = PAGECACHE_TAG_TOWRITE;
3536 else
3537 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3538retry:
f7aaa06b
JB
3539 if (wbc->sync_mode == WB_SYNC_ALL)
3540 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3541 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3542 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3543 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3544 unsigned i;
3545
3546 scanned = 1;
3547 for (i = 0; i < nr_pages; i++) {
3548 struct page *page = pvec.pages[i];
3549
3550 /*
3551 * At this point we hold neither mapping->tree_lock nor
3552 * lock on the page itself: the page may be truncated or
3553 * invalidated (changing page->mapping to NULL), or even
3554 * swizzled back from swapper_space to tmpfs file
3555 * mapping
3556 */
c8f2f24b
JB
3557 if (!trylock_page(page)) {
3558 flush_fn(data);
3559 lock_page(page);
01d658f2 3560 }
d1310b2e
CM
3561
3562 if (unlikely(page->mapping != mapping)) {
3563 unlock_page(page);
3564 continue;
3565 }
3566
3567 if (!wbc->range_cyclic && page->index > end) {
3568 done = 1;
3569 unlock_page(page);
3570 continue;
3571 }
3572
d2c3f4f6 3573 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3574 if (PageWriteback(page))
3575 flush_fn(data);
d1310b2e 3576 wait_on_page_writeback(page);
d2c3f4f6 3577 }
d1310b2e
CM
3578
3579 if (PageWriteback(page) ||
3580 !clear_page_dirty_for_io(page)) {
3581 unlock_page(page);
3582 continue;
3583 }
3584
3585 ret = (*writepage)(page, wbc, data);
3586
3587 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3588 unlock_page(page);
3589 ret = 0;
3590 }
f85d7d6c 3591 if (ret)
d1310b2e 3592 done = 1;
f85d7d6c
CM
3593
3594 /*
3595 * the filesystem may choose to bump up nr_to_write.
3596 * We have to make sure to honor the new nr_to_write
3597 * at any time
3598 */
3599 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3600 }
3601 pagevec_release(&pvec);
3602 cond_resched();
3603 }
3604 if (!scanned && !done) {
3605 /*
3606 * We hit the last page and there is more work to be done: wrap
3607 * back to the start of the file
3608 */
3609 scanned = 1;
3610 index = 0;
3611 goto retry;
3612 }
7fd1a3f7 3613 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3614 return ret;
3615}
d1310b2e 3616
ffbd517d 3617static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3618{
d2c3f4f6 3619 if (epd->bio) {
355808c2
JM
3620 int rw = WRITE;
3621 int ret;
3622
ffbd517d 3623 if (epd->sync_io)
355808c2
JM
3624 rw = WRITE_SYNC;
3625
de0022b9 3626 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3627 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3628 epd->bio = NULL;
3629 }
3630}
3631
ffbd517d
CM
3632static noinline void flush_write_bio(void *data)
3633{
3634 struct extent_page_data *epd = data;
3635 flush_epd_write_bio(epd);
3636}
3637
d1310b2e
CM
3638int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3639 get_extent_t *get_extent,
3640 struct writeback_control *wbc)
3641{
3642 int ret;
d1310b2e
CM
3643 struct extent_page_data epd = {
3644 .bio = NULL,
3645 .tree = tree,
3646 .get_extent = get_extent,
771ed689 3647 .extent_locked = 0,
ffbd517d 3648 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3649 .bio_flags = 0,
d1310b2e 3650 };
d1310b2e 3651
d1310b2e
CM
3652 ret = __extent_writepage(page, wbc, &epd);
3653
ffbd517d 3654 flush_epd_write_bio(&epd);
d1310b2e
CM
3655 return ret;
3656}
d1310b2e 3657
771ed689
CM
3658int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3659 u64 start, u64 end, get_extent_t *get_extent,
3660 int mode)
3661{
3662 int ret = 0;
3663 struct address_space *mapping = inode->i_mapping;
3664 struct page *page;
3665 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3666 PAGE_CACHE_SHIFT;
3667
3668 struct extent_page_data epd = {
3669 .bio = NULL,
3670 .tree = tree,
3671 .get_extent = get_extent,
3672 .extent_locked = 1,
ffbd517d 3673 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3674 .bio_flags = 0,
771ed689
CM
3675 };
3676 struct writeback_control wbc_writepages = {
771ed689 3677 .sync_mode = mode,
771ed689
CM
3678 .nr_to_write = nr_pages * 2,
3679 .range_start = start,
3680 .range_end = end + 1,
3681 };
3682
d397712b 3683 while (start <= end) {
771ed689
CM
3684 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3685 if (clear_page_dirty_for_io(page))
3686 ret = __extent_writepage(page, &wbc_writepages, &epd);
3687 else {
3688 if (tree->ops && tree->ops->writepage_end_io_hook)
3689 tree->ops->writepage_end_io_hook(page, start,
3690 start + PAGE_CACHE_SIZE - 1,
3691 NULL, 1);
3692 unlock_page(page);
3693 }
3694 page_cache_release(page);
3695 start += PAGE_CACHE_SIZE;
3696 }
3697
ffbd517d 3698 flush_epd_write_bio(&epd);
771ed689
CM
3699 return ret;
3700}
d1310b2e
CM
3701
3702int extent_writepages(struct extent_io_tree *tree,
3703 struct address_space *mapping,
3704 get_extent_t *get_extent,
3705 struct writeback_control *wbc)
3706{
3707 int ret = 0;
3708 struct extent_page_data epd = {
3709 .bio = NULL,
3710 .tree = tree,
3711 .get_extent = get_extent,
771ed689 3712 .extent_locked = 0,
ffbd517d 3713 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3714 .bio_flags = 0,
d1310b2e
CM
3715 };
3716
4bef0848 3717 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3718 __extent_writepage, &epd,
3719 flush_write_bio);
ffbd517d 3720 flush_epd_write_bio(&epd);
d1310b2e
CM
3721 return ret;
3722}
d1310b2e
CM
3723
3724int extent_readpages(struct extent_io_tree *tree,
3725 struct address_space *mapping,
3726 struct list_head *pages, unsigned nr_pages,
3727 get_extent_t get_extent)
3728{
3729 struct bio *bio = NULL;
3730 unsigned page_idx;
c8b97818 3731 unsigned long bio_flags = 0;
67c9684f
LB
3732 struct page *pagepool[16];
3733 struct page *page;
3734 int i = 0;
3735 int nr = 0;
d1310b2e 3736
d1310b2e 3737 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3738 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3739
3740 prefetchw(&page->flags);
3741 list_del(&page->lru);
67c9684f 3742 if (add_to_page_cache_lru(page, mapping,
43e817a1 3743 page->index, GFP_NOFS)) {
67c9684f
LB
3744 page_cache_release(page);
3745 continue;
d1310b2e 3746 }
67c9684f
LB
3747
3748 pagepool[nr++] = page;
3749 if (nr < ARRAY_SIZE(pagepool))
3750 continue;
3751 for (i = 0; i < nr; i++) {
3752 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3753 &bio, 0, &bio_flags, READ);
67c9684f
LB
3754 page_cache_release(pagepool[i]);
3755 }
3756 nr = 0;
d1310b2e 3757 }
67c9684f
LB
3758 for (i = 0; i < nr; i++) {
3759 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3760 &bio, 0, &bio_flags, READ);
67c9684f 3761 page_cache_release(pagepool[i]);
d1310b2e 3762 }
67c9684f 3763
d1310b2e
CM
3764 BUG_ON(!list_empty(pages));
3765 if (bio)
79787eaa 3766 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3767 return 0;
3768}
d1310b2e
CM
3769
3770/*
3771 * basic invalidatepage code, this waits on any locked or writeback
3772 * ranges corresponding to the page, and then deletes any extent state
3773 * records from the tree
3774 */
3775int extent_invalidatepage(struct extent_io_tree *tree,
3776 struct page *page, unsigned long offset)
3777{
2ac55d41 3778 struct extent_state *cached_state = NULL;
4eee4fa4 3779 u64 start = page_offset(page);
d1310b2e
CM
3780 u64 end = start + PAGE_CACHE_SIZE - 1;
3781 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3782
fda2832f 3783 start += ALIGN(offset, blocksize);
d1310b2e
CM
3784 if (start > end)
3785 return 0;
3786
d0082371 3787 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3788 wait_on_page_writeback(page);
d1310b2e 3789 clear_extent_bit(tree, start, end,
32c00aff
JB
3790 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3791 EXTENT_DO_ACCOUNTING,
2ac55d41 3792 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3793 return 0;
3794}
d1310b2e 3795
7b13b7b1
CM
3796/*
3797 * a helper for releasepage, this tests for areas of the page that
3798 * are locked or under IO and drops the related state bits if it is safe
3799 * to drop the page.
3800 */
48a3b636
ES
3801static int try_release_extent_state(struct extent_map_tree *map,
3802 struct extent_io_tree *tree,
3803 struct page *page, gfp_t mask)
7b13b7b1 3804{
4eee4fa4 3805 u64 start = page_offset(page);
7b13b7b1
CM
3806 u64 end = start + PAGE_CACHE_SIZE - 1;
3807 int ret = 1;
3808
211f90e6 3809 if (test_range_bit(tree, start, end,
8b62b72b 3810 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3811 ret = 0;
3812 else {
3813 if ((mask & GFP_NOFS) == GFP_NOFS)
3814 mask = GFP_NOFS;
11ef160f
CM
3815 /*
3816 * at this point we can safely clear everything except the
3817 * locked bit and the nodatasum bit
3818 */
e3f24cc5 3819 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3820 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3821 0, 0, NULL, mask);
e3f24cc5
CM
3822
3823 /* if clear_extent_bit failed for enomem reasons,
3824 * we can't allow the release to continue.
3825 */
3826 if (ret < 0)
3827 ret = 0;
3828 else
3829 ret = 1;
7b13b7b1
CM
3830 }
3831 return ret;
3832}
7b13b7b1 3833
d1310b2e
CM
3834/*
3835 * a helper for releasepage. As long as there are no locked extents
3836 * in the range corresponding to the page, both state records and extent
3837 * map records are removed
3838 */
3839int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3840 struct extent_io_tree *tree, struct page *page,
3841 gfp_t mask)
d1310b2e
CM
3842{
3843 struct extent_map *em;
4eee4fa4 3844 u64 start = page_offset(page);
d1310b2e 3845 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3846
70dec807
CM
3847 if ((mask & __GFP_WAIT) &&
3848 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3849 u64 len;
70dec807 3850 while (start <= end) {
39b5637f 3851 len = end - start + 1;
890871be 3852 write_lock(&map->lock);
39b5637f 3853 em = lookup_extent_mapping(map, start, len);
285190d9 3854 if (!em) {
890871be 3855 write_unlock(&map->lock);
70dec807
CM
3856 break;
3857 }
7f3c74fb
CM
3858 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3859 em->start != start) {
890871be 3860 write_unlock(&map->lock);
70dec807
CM
3861 free_extent_map(em);
3862 break;
3863 }
3864 if (!test_range_bit(tree, em->start,
3865 extent_map_end(em) - 1,
8b62b72b 3866 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3867 0, NULL)) {
70dec807
CM
3868 remove_extent_mapping(map, em);
3869 /* once for the rb tree */
3870 free_extent_map(em);
3871 }
3872 start = extent_map_end(em);
890871be 3873 write_unlock(&map->lock);
70dec807
CM
3874
3875 /* once for us */
d1310b2e
CM
3876 free_extent_map(em);
3877 }
d1310b2e 3878 }
7b13b7b1 3879 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3880}
d1310b2e 3881
ec29ed5b
CM
3882/*
3883 * helper function for fiemap, which doesn't want to see any holes.
3884 * This maps until we find something past 'last'
3885 */
3886static struct extent_map *get_extent_skip_holes(struct inode *inode,
3887 u64 offset,
3888 u64 last,
3889 get_extent_t *get_extent)
3890{
3891 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3892 struct extent_map *em;
3893 u64 len;
3894
3895 if (offset >= last)
3896 return NULL;
3897
3898 while(1) {
3899 len = last - offset;
3900 if (len == 0)
3901 break;
fda2832f 3902 len = ALIGN(len, sectorsize);
ec29ed5b 3903 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3904 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3905 return em;
3906
3907 /* if this isn't a hole return it */
3908 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3909 em->block_start != EXTENT_MAP_HOLE) {
3910 return em;
3911 }
3912
3913 /* this is a hole, advance to the next extent */
3914 offset = extent_map_end(em);
3915 free_extent_map(em);
3916 if (offset >= last)
3917 break;
3918 }
3919 return NULL;
3920}
3921
1506fcc8
YS
3922int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3923 __u64 start, __u64 len, get_extent_t *get_extent)
3924{
975f84fe 3925 int ret = 0;
1506fcc8
YS
3926 u64 off = start;
3927 u64 max = start + len;
3928 u32 flags = 0;
975f84fe
JB
3929 u32 found_type;
3930 u64 last;
ec29ed5b 3931 u64 last_for_get_extent = 0;
1506fcc8 3932 u64 disko = 0;
ec29ed5b 3933 u64 isize = i_size_read(inode);
975f84fe 3934 struct btrfs_key found_key;
1506fcc8 3935 struct extent_map *em = NULL;
2ac55d41 3936 struct extent_state *cached_state = NULL;
975f84fe
JB
3937 struct btrfs_path *path;
3938 struct btrfs_file_extent_item *item;
1506fcc8 3939 int end = 0;
ec29ed5b
CM
3940 u64 em_start = 0;
3941 u64 em_len = 0;
3942 u64 em_end = 0;
1506fcc8 3943 unsigned long emflags;
1506fcc8
YS
3944
3945 if (len == 0)
3946 return -EINVAL;
3947
975f84fe
JB
3948 path = btrfs_alloc_path();
3949 if (!path)
3950 return -ENOMEM;
3951 path->leave_spinning = 1;
3952
4d479cf0
JB
3953 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3954 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3955
ec29ed5b
CM
3956 /*
3957 * lookup the last file extent. We're not using i_size here
3958 * because there might be preallocation past i_size
3959 */
975f84fe 3960 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3961 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3962 if (ret < 0) {
3963 btrfs_free_path(path);
3964 return ret;
3965 }
3966 WARN_ON(!ret);
3967 path->slots[0]--;
3968 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3969 struct btrfs_file_extent_item);
3970 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3971 found_type = btrfs_key_type(&found_key);
3972
ec29ed5b 3973 /* No extents, but there might be delalloc bits */
33345d01 3974 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3975 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3976 /* have to trust i_size as the end */
3977 last = (u64)-1;
3978 last_for_get_extent = isize;
3979 } else {
3980 /*
3981 * remember the start of the last extent. There are a
3982 * bunch of different factors that go into the length of the
3983 * extent, so its much less complex to remember where it started
3984 */
3985 last = found_key.offset;
3986 last_for_get_extent = last + 1;
975f84fe 3987 }
975f84fe
JB
3988 btrfs_free_path(path);
3989
ec29ed5b
CM
3990 /*
3991 * we might have some extents allocated but more delalloc past those
3992 * extents. so, we trust isize unless the start of the last extent is
3993 * beyond isize
3994 */
3995 if (last < isize) {
3996 last = (u64)-1;
3997 last_for_get_extent = isize;
3998 }
3999
a52f4cd2 4000 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4001 &cached_state);
ec29ed5b 4002
4d479cf0 4003 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4004 get_extent);
1506fcc8
YS
4005 if (!em)
4006 goto out;
4007 if (IS_ERR(em)) {
4008 ret = PTR_ERR(em);
4009 goto out;
4010 }
975f84fe 4011
1506fcc8 4012 while (!end) {
ea8efc74
CM
4013 u64 offset_in_extent;
4014
4015 /* break if the extent we found is outside the range */
4016 if (em->start >= max || extent_map_end(em) < off)
4017 break;
4018
4019 /*
4020 * get_extent may return an extent that starts before our
4021 * requested range. We have to make sure the ranges
4022 * we return to fiemap always move forward and don't
4023 * overlap, so adjust the offsets here
4024 */
4025 em_start = max(em->start, off);
1506fcc8 4026
ea8efc74
CM
4027 /*
4028 * record the offset from the start of the extent
4029 * for adjusting the disk offset below
4030 */
4031 offset_in_extent = em_start - em->start;
ec29ed5b 4032 em_end = extent_map_end(em);
ea8efc74 4033 em_len = em_end - em_start;
ec29ed5b 4034 emflags = em->flags;
1506fcc8
YS
4035 disko = 0;
4036 flags = 0;
4037
ea8efc74
CM
4038 /*
4039 * bump off for our next call to get_extent
4040 */
4041 off = extent_map_end(em);
4042 if (off >= max)
4043 end = 1;
4044
93dbfad7 4045 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4046 end = 1;
4047 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4048 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4049 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4050 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4051 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4052 flags |= (FIEMAP_EXTENT_DELALLOC |
4053 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4054 } else {
ea8efc74 4055 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4056 }
4057 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4058 flags |= FIEMAP_EXTENT_ENCODED;
4059
1506fcc8
YS
4060 free_extent_map(em);
4061 em = NULL;
ec29ed5b
CM
4062 if ((em_start >= last) || em_len == (u64)-1 ||
4063 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4064 flags |= FIEMAP_EXTENT_LAST;
4065 end = 1;
4066 }
4067
ec29ed5b
CM
4068 /* now scan forward to see if this is really the last extent. */
4069 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4070 get_extent);
4071 if (IS_ERR(em)) {
4072 ret = PTR_ERR(em);
4073 goto out;
4074 }
4075 if (!em) {
975f84fe
JB
4076 flags |= FIEMAP_EXTENT_LAST;
4077 end = 1;
4078 }
ec29ed5b
CM
4079 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4080 em_len, flags);
4081 if (ret)
4082 goto out_free;
1506fcc8
YS
4083 }
4084out_free:
4085 free_extent_map(em);
4086out:
a52f4cd2 4087 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4088 &cached_state, GFP_NOFS);
1506fcc8
YS
4089 return ret;
4090}
4091
727011e0
CM
4092static void __free_extent_buffer(struct extent_buffer *eb)
4093{
6d49ba1b 4094 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4095 kmem_cache_free(extent_buffer_cache, eb);
4096}
4097
d1310b2e
CM
4098static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4099 u64 start,
4100 unsigned long len,
4101 gfp_t mask)
4102{
4103 struct extent_buffer *eb = NULL;
4104
d1310b2e 4105 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4106 if (eb == NULL)
4107 return NULL;
d1310b2e
CM
4108 eb->start = start;
4109 eb->len = len;
4f2de97a 4110 eb->tree = tree;
815a51c7 4111 eb->bflags = 0;
bd681513
CM
4112 rwlock_init(&eb->lock);
4113 atomic_set(&eb->write_locks, 0);
4114 atomic_set(&eb->read_locks, 0);
4115 atomic_set(&eb->blocking_readers, 0);
4116 atomic_set(&eb->blocking_writers, 0);
4117 atomic_set(&eb->spinning_readers, 0);
4118 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4119 eb->lock_nested = 0;
bd681513
CM
4120 init_waitqueue_head(&eb->write_lock_wq);
4121 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4122
6d49ba1b
ES
4123 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4124
3083ee2e 4125 spin_lock_init(&eb->refs_lock);
d1310b2e 4126 atomic_set(&eb->refs, 1);
0b32f4bb 4127 atomic_set(&eb->io_pages, 0);
727011e0 4128
b8dae313
DS
4129 /*
4130 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4131 */
4132 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4133 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4134 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4135
4136 return eb;
4137}
4138
815a51c7
JS
4139struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4140{
4141 unsigned long i;
4142 struct page *p;
4143 struct extent_buffer *new;
4144 unsigned long num_pages = num_extent_pages(src->start, src->len);
4145
4146 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4147 if (new == NULL)
4148 return NULL;
4149
4150 for (i = 0; i < num_pages; i++) {
4151 p = alloc_page(GFP_ATOMIC);
4152 BUG_ON(!p);
4153 attach_extent_buffer_page(new, p);
4154 WARN_ON(PageDirty(p));
4155 SetPageUptodate(p);
4156 new->pages[i] = p;
4157 }
4158
4159 copy_extent_buffer(new, src, 0, 0, src->len);
4160 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4161 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4162
4163 return new;
4164}
4165
4166struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4167{
4168 struct extent_buffer *eb;
4169 unsigned long num_pages = num_extent_pages(0, len);
4170 unsigned long i;
4171
4172 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4173 if (!eb)
4174 return NULL;
4175
4176 for (i = 0; i < num_pages; i++) {
4177 eb->pages[i] = alloc_page(GFP_ATOMIC);
4178 if (!eb->pages[i])
4179 goto err;
4180 }
4181 set_extent_buffer_uptodate(eb);
4182 btrfs_set_header_nritems(eb, 0);
4183 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4184
4185 return eb;
4186err:
84167d19
SB
4187 for (; i > 0; i--)
4188 __free_page(eb->pages[i - 1]);
815a51c7
JS
4189 __free_extent_buffer(eb);
4190 return NULL;
4191}
4192
0b32f4bb 4193static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4194{
0b32f4bb
JB
4195 return (atomic_read(&eb->io_pages) ||
4196 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4197 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4198}
4199
897ca6e9
MX
4200/*
4201 * Helper for releasing extent buffer page.
4202 */
4203static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4204 unsigned long start_idx)
4205{
4206 unsigned long index;
39bab87b 4207 unsigned long num_pages;
897ca6e9 4208 struct page *page;
815a51c7 4209 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4210
0b32f4bb 4211 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4212
39bab87b
WSH
4213 num_pages = num_extent_pages(eb->start, eb->len);
4214 index = start_idx + num_pages;
897ca6e9
MX
4215 if (start_idx >= index)
4216 return;
4217
4218 do {
4219 index--;
4220 page = extent_buffer_page(eb, index);
815a51c7 4221 if (page && mapped) {
4f2de97a
JB
4222 spin_lock(&page->mapping->private_lock);
4223 /*
4224 * We do this since we'll remove the pages after we've
4225 * removed the eb from the radix tree, so we could race
4226 * and have this page now attached to the new eb. So
4227 * only clear page_private if it's still connected to
4228 * this eb.
4229 */
4230 if (PagePrivate(page) &&
4231 page->private == (unsigned long)eb) {
0b32f4bb 4232 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4233 BUG_ON(PageDirty(page));
4234 BUG_ON(PageWriteback(page));
4f2de97a
JB
4235 /*
4236 * We need to make sure we haven't be attached
4237 * to a new eb.
4238 */
4239 ClearPagePrivate(page);
4240 set_page_private(page, 0);
4241 /* One for the page private */
4242 page_cache_release(page);
4243 }
4244 spin_unlock(&page->mapping->private_lock);
4245
815a51c7
JS
4246 }
4247 if (page) {
4f2de97a 4248 /* One for when we alloced the page */
897ca6e9 4249 page_cache_release(page);
4f2de97a 4250 }
897ca6e9
MX
4251 } while (index != start_idx);
4252}
4253
4254/*
4255 * Helper for releasing the extent buffer.
4256 */
4257static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4258{
4259 btrfs_release_extent_buffer_page(eb, 0);
4260 __free_extent_buffer(eb);
4261}
4262
0b32f4bb
JB
4263static void check_buffer_tree_ref(struct extent_buffer *eb)
4264{
242e18c7 4265 int refs;
0b32f4bb
JB
4266 /* the ref bit is tricky. We have to make sure it is set
4267 * if we have the buffer dirty. Otherwise the
4268 * code to free a buffer can end up dropping a dirty
4269 * page
4270 *
4271 * Once the ref bit is set, it won't go away while the
4272 * buffer is dirty or in writeback, and it also won't
4273 * go away while we have the reference count on the
4274 * eb bumped.
4275 *
4276 * We can't just set the ref bit without bumping the
4277 * ref on the eb because free_extent_buffer might
4278 * see the ref bit and try to clear it. If this happens
4279 * free_extent_buffer might end up dropping our original
4280 * ref by mistake and freeing the page before we are able
4281 * to add one more ref.
4282 *
4283 * So bump the ref count first, then set the bit. If someone
4284 * beat us to it, drop the ref we added.
4285 */
242e18c7
CM
4286 refs = atomic_read(&eb->refs);
4287 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4288 return;
4289
594831c4
JB
4290 spin_lock(&eb->refs_lock);
4291 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4292 atomic_inc(&eb->refs);
594831c4 4293 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4294}
4295
5df4235e
JB
4296static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4297{
4298 unsigned long num_pages, i;
4299
0b32f4bb
JB
4300 check_buffer_tree_ref(eb);
4301
5df4235e
JB
4302 num_pages = num_extent_pages(eb->start, eb->len);
4303 for (i = 0; i < num_pages; i++) {
4304 struct page *p = extent_buffer_page(eb, i);
4305 mark_page_accessed(p);
4306 }
4307}
4308
d1310b2e 4309struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4310 u64 start, unsigned long len)
d1310b2e
CM
4311{
4312 unsigned long num_pages = num_extent_pages(start, len);
4313 unsigned long i;
4314 unsigned long index = start >> PAGE_CACHE_SHIFT;
4315 struct extent_buffer *eb;
6af118ce 4316 struct extent_buffer *exists = NULL;
d1310b2e
CM
4317 struct page *p;
4318 struct address_space *mapping = tree->mapping;
4319 int uptodate = 1;
19fe0a8b 4320 int ret;
d1310b2e 4321
19fe0a8b
MX
4322 rcu_read_lock();
4323 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4324 if (eb && atomic_inc_not_zero(&eb->refs)) {
4325 rcu_read_unlock();
5df4235e 4326 mark_extent_buffer_accessed(eb);
6af118ce
CM
4327 return eb;
4328 }
19fe0a8b 4329 rcu_read_unlock();
6af118ce 4330
ba144192 4331 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4332 if (!eb)
d1310b2e
CM
4333 return NULL;
4334
727011e0 4335 for (i = 0; i < num_pages; i++, index++) {
a6591715 4336 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4337 if (!p)
6af118ce 4338 goto free_eb;
4f2de97a
JB
4339
4340 spin_lock(&mapping->private_lock);
4341 if (PagePrivate(p)) {
4342 /*
4343 * We could have already allocated an eb for this page
4344 * and attached one so lets see if we can get a ref on
4345 * the existing eb, and if we can we know it's good and
4346 * we can just return that one, else we know we can just
4347 * overwrite page->private.
4348 */
4349 exists = (struct extent_buffer *)p->private;
4350 if (atomic_inc_not_zero(&exists->refs)) {
4351 spin_unlock(&mapping->private_lock);
4352 unlock_page(p);
17de39ac 4353 page_cache_release(p);
5df4235e 4354 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4355 goto free_eb;
4356 }
4357
0b32f4bb 4358 /*
4f2de97a
JB
4359 * Do this so attach doesn't complain and we need to
4360 * drop the ref the old guy had.
4361 */
4362 ClearPagePrivate(p);
0b32f4bb 4363 WARN_ON(PageDirty(p));
4f2de97a 4364 page_cache_release(p);
d1310b2e 4365 }
4f2de97a
JB
4366 attach_extent_buffer_page(eb, p);
4367 spin_unlock(&mapping->private_lock);
0b32f4bb 4368 WARN_ON(PageDirty(p));
d1310b2e 4369 mark_page_accessed(p);
727011e0 4370 eb->pages[i] = p;
d1310b2e
CM
4371 if (!PageUptodate(p))
4372 uptodate = 0;
eb14ab8e
CM
4373
4374 /*
4375 * see below about how we avoid a nasty race with release page
4376 * and why we unlock later
4377 */
d1310b2e
CM
4378 }
4379 if (uptodate)
b4ce94de 4380 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4381again:
19fe0a8b
MX
4382 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4383 if (ret)
4384 goto free_eb;
4385
6af118ce 4386 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4387 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4388 if (ret == -EEXIST) {
4389 exists = radix_tree_lookup(&tree->buffer,
4390 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4391 if (!atomic_inc_not_zero(&exists->refs)) {
4392 spin_unlock(&tree->buffer_lock);
4393 radix_tree_preload_end();
115391d2
JB
4394 exists = NULL;
4395 goto again;
4396 }
6af118ce 4397 spin_unlock(&tree->buffer_lock);
19fe0a8b 4398 radix_tree_preload_end();
5df4235e 4399 mark_extent_buffer_accessed(exists);
6af118ce
CM
4400 goto free_eb;
4401 }
6af118ce 4402 /* add one reference for the tree */
0b32f4bb 4403 check_buffer_tree_ref(eb);
f044ba78 4404 spin_unlock(&tree->buffer_lock);
19fe0a8b 4405 radix_tree_preload_end();
eb14ab8e
CM
4406
4407 /*
4408 * there is a race where release page may have
4409 * tried to find this extent buffer in the radix
4410 * but failed. It will tell the VM it is safe to
4411 * reclaim the, and it will clear the page private bit.
4412 * We must make sure to set the page private bit properly
4413 * after the extent buffer is in the radix tree so
4414 * it doesn't get lost
4415 */
727011e0
CM
4416 SetPageChecked(eb->pages[0]);
4417 for (i = 1; i < num_pages; i++) {
4418 p = extent_buffer_page(eb, i);
727011e0
CM
4419 ClearPageChecked(p);
4420 unlock_page(p);
4421 }
4422 unlock_page(eb->pages[0]);
d1310b2e
CM
4423 return eb;
4424
6af118ce 4425free_eb:
727011e0
CM
4426 for (i = 0; i < num_pages; i++) {
4427 if (eb->pages[i])
4428 unlock_page(eb->pages[i]);
4429 }
eb14ab8e 4430
17de39ac 4431 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4432 btrfs_release_extent_buffer(eb);
6af118ce 4433 return exists;
d1310b2e 4434}
d1310b2e
CM
4435
4436struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4437 u64 start, unsigned long len)
d1310b2e 4438{
d1310b2e 4439 struct extent_buffer *eb;
d1310b2e 4440
19fe0a8b
MX
4441 rcu_read_lock();
4442 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4443 if (eb && atomic_inc_not_zero(&eb->refs)) {
4444 rcu_read_unlock();
5df4235e 4445 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4446 return eb;
4447 }
4448 rcu_read_unlock();
0f9dd46c 4449
19fe0a8b 4450 return NULL;
d1310b2e 4451}
d1310b2e 4452
3083ee2e
JB
4453static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4454{
4455 struct extent_buffer *eb =
4456 container_of(head, struct extent_buffer, rcu_head);
4457
4458 __free_extent_buffer(eb);
4459}
4460
3083ee2e 4461/* Expects to have eb->eb_lock already held */
f7a52a40 4462static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4463{
4464 WARN_ON(atomic_read(&eb->refs) == 0);
4465 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4466 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4467 spin_unlock(&eb->refs_lock);
4468 } else {
4469 struct extent_io_tree *tree = eb->tree;
3083ee2e 4470
815a51c7 4471 spin_unlock(&eb->refs_lock);
3083ee2e 4472
815a51c7
JS
4473 spin_lock(&tree->buffer_lock);
4474 radix_tree_delete(&tree->buffer,
4475 eb->start >> PAGE_CACHE_SHIFT);
4476 spin_unlock(&tree->buffer_lock);
4477 }
3083ee2e
JB
4478
4479 /* Should be safe to release our pages at this point */
4480 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4481 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4482 return 1;
3083ee2e
JB
4483 }
4484 spin_unlock(&eb->refs_lock);
e64860aa
JB
4485
4486 return 0;
3083ee2e
JB
4487}
4488
d1310b2e
CM
4489void free_extent_buffer(struct extent_buffer *eb)
4490{
242e18c7
CM
4491 int refs;
4492 int old;
d1310b2e
CM
4493 if (!eb)
4494 return;
4495
242e18c7
CM
4496 while (1) {
4497 refs = atomic_read(&eb->refs);
4498 if (refs <= 3)
4499 break;
4500 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4501 if (old == refs)
4502 return;
4503 }
4504
3083ee2e 4505 spin_lock(&eb->refs_lock);
815a51c7
JS
4506 if (atomic_read(&eb->refs) == 2 &&
4507 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4508 atomic_dec(&eb->refs);
4509
3083ee2e
JB
4510 if (atomic_read(&eb->refs) == 2 &&
4511 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4512 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4513 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4514 atomic_dec(&eb->refs);
4515
4516 /*
4517 * I know this is terrible, but it's temporary until we stop tracking
4518 * the uptodate bits and such for the extent buffers.
4519 */
f7a52a40 4520 release_extent_buffer(eb);
3083ee2e
JB
4521}
4522
4523void free_extent_buffer_stale(struct extent_buffer *eb)
4524{
4525 if (!eb)
d1310b2e
CM
4526 return;
4527
3083ee2e
JB
4528 spin_lock(&eb->refs_lock);
4529 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4530
0b32f4bb 4531 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4532 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4533 atomic_dec(&eb->refs);
f7a52a40 4534 release_extent_buffer(eb);
d1310b2e 4535}
d1310b2e 4536
1d4284bd 4537void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4538{
d1310b2e
CM
4539 unsigned long i;
4540 unsigned long num_pages;
4541 struct page *page;
4542
d1310b2e
CM
4543 num_pages = num_extent_pages(eb->start, eb->len);
4544
4545 for (i = 0; i < num_pages; i++) {
4546 page = extent_buffer_page(eb, i);
b9473439 4547 if (!PageDirty(page))
d2c3f4f6
CM
4548 continue;
4549
a61e6f29 4550 lock_page(page);
eb14ab8e
CM
4551 WARN_ON(!PagePrivate(page));
4552
d1310b2e 4553 clear_page_dirty_for_io(page);
0ee0fda0 4554 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4555 if (!PageDirty(page)) {
4556 radix_tree_tag_clear(&page->mapping->page_tree,
4557 page_index(page),
4558 PAGECACHE_TAG_DIRTY);
4559 }
0ee0fda0 4560 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4561 ClearPageError(page);
a61e6f29 4562 unlock_page(page);
d1310b2e 4563 }
0b32f4bb 4564 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4565}
d1310b2e 4566
0b32f4bb 4567int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4568{
4569 unsigned long i;
4570 unsigned long num_pages;
b9473439 4571 int was_dirty = 0;
d1310b2e 4572
0b32f4bb
JB
4573 check_buffer_tree_ref(eb);
4574
b9473439 4575 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4576
d1310b2e 4577 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4578 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4579 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4580
b9473439 4581 for (i = 0; i < num_pages; i++)
0b32f4bb 4582 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4583 return was_dirty;
d1310b2e 4584}
d1310b2e 4585
0b32f4bb 4586int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4587{
4588 unsigned long i;
4589 struct page *page;
4590 unsigned long num_pages;
4591
b4ce94de 4592 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4593 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4594 for (i = 0; i < num_pages; i++) {
4595 page = extent_buffer_page(eb, i);
33958dc6
CM
4596 if (page)
4597 ClearPageUptodate(page);
1259ab75
CM
4598 }
4599 return 0;
4600}
4601
0b32f4bb 4602int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4603{
4604 unsigned long i;
4605 struct page *page;
4606 unsigned long num_pages;
4607
0b32f4bb 4608 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4609 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4610 for (i = 0; i < num_pages; i++) {
4611 page = extent_buffer_page(eb, i);
d1310b2e
CM
4612 SetPageUptodate(page);
4613 }
4614 return 0;
4615}
d1310b2e 4616
0b32f4bb 4617int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4618{
0b32f4bb 4619 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4620}
d1310b2e
CM
4621
4622int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4623 struct extent_buffer *eb, u64 start, int wait,
f188591e 4624 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4625{
4626 unsigned long i;
4627 unsigned long start_i;
4628 struct page *page;
4629 int err;
4630 int ret = 0;
ce9adaa5
CM
4631 int locked_pages = 0;
4632 int all_uptodate = 1;
d1310b2e 4633 unsigned long num_pages;
727011e0 4634 unsigned long num_reads = 0;
a86c12c7 4635 struct bio *bio = NULL;
c8b97818 4636 unsigned long bio_flags = 0;
a86c12c7 4637
b4ce94de 4638 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4639 return 0;
4640
d1310b2e
CM
4641 if (start) {
4642 WARN_ON(start < eb->start);
4643 start_i = (start >> PAGE_CACHE_SHIFT) -
4644 (eb->start >> PAGE_CACHE_SHIFT);
4645 } else {
4646 start_i = 0;
4647 }
4648
4649 num_pages = num_extent_pages(eb->start, eb->len);
4650 for (i = start_i; i < num_pages; i++) {
4651 page = extent_buffer_page(eb, i);
bb82ab88 4652 if (wait == WAIT_NONE) {
2db04966 4653 if (!trylock_page(page))
ce9adaa5 4654 goto unlock_exit;
d1310b2e
CM
4655 } else {
4656 lock_page(page);
4657 }
ce9adaa5 4658 locked_pages++;
727011e0
CM
4659 if (!PageUptodate(page)) {
4660 num_reads++;
ce9adaa5 4661 all_uptodate = 0;
727011e0 4662 }
ce9adaa5
CM
4663 }
4664 if (all_uptodate) {
4665 if (start_i == 0)
b4ce94de 4666 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4667 goto unlock_exit;
4668 }
4669
ea466794 4670 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4671 eb->read_mirror = 0;
0b32f4bb 4672 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4673 for (i = start_i; i < num_pages; i++) {
4674 page = extent_buffer_page(eb, i);
ce9adaa5 4675 if (!PageUptodate(page)) {
f188591e 4676 ClearPageError(page);
a86c12c7 4677 err = __extent_read_full_page(tree, page,
f188591e 4678 get_extent, &bio,
d4c7ca86
JB
4679 mirror_num, &bio_flags,
4680 READ | REQ_META);
d397712b 4681 if (err)
d1310b2e 4682 ret = err;
d1310b2e
CM
4683 } else {
4684 unlock_page(page);
4685 }
4686 }
4687
355808c2 4688 if (bio) {
d4c7ca86
JB
4689 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4690 bio_flags);
79787eaa
JM
4691 if (err)
4692 return err;
355808c2 4693 }
a86c12c7 4694
bb82ab88 4695 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4696 return ret;
d397712b 4697
d1310b2e
CM
4698 for (i = start_i; i < num_pages; i++) {
4699 page = extent_buffer_page(eb, i);
4700 wait_on_page_locked(page);
d397712b 4701 if (!PageUptodate(page))
d1310b2e 4702 ret = -EIO;
d1310b2e 4703 }
d397712b 4704
d1310b2e 4705 return ret;
ce9adaa5
CM
4706
4707unlock_exit:
4708 i = start_i;
d397712b 4709 while (locked_pages > 0) {
ce9adaa5
CM
4710 page = extent_buffer_page(eb, i);
4711 i++;
4712 unlock_page(page);
4713 locked_pages--;
4714 }
4715 return ret;
d1310b2e 4716}
d1310b2e
CM
4717
4718void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4719 unsigned long start,
4720 unsigned long len)
4721{
4722 size_t cur;
4723 size_t offset;
4724 struct page *page;
4725 char *kaddr;
4726 char *dst = (char *)dstv;
4727 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4728 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4729
4730 WARN_ON(start > eb->len);
4731 WARN_ON(start + len > eb->start + eb->len);
4732
4733 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4734
d397712b 4735 while (len > 0) {
d1310b2e 4736 page = extent_buffer_page(eb, i);
d1310b2e
CM
4737
4738 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4739 kaddr = page_address(page);
d1310b2e 4740 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4741
4742 dst += cur;
4743 len -= cur;
4744 offset = 0;
4745 i++;
4746 }
4747}
d1310b2e
CM
4748
4749int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4750 unsigned long min_len, char **map,
d1310b2e 4751 unsigned long *map_start,
a6591715 4752 unsigned long *map_len)
d1310b2e
CM
4753{
4754 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4755 char *kaddr;
4756 struct page *p;
4757 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4758 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4759 unsigned long end_i = (start_offset + start + min_len - 1) >>
4760 PAGE_CACHE_SHIFT;
4761
4762 if (i != end_i)
4763 return -EINVAL;
4764
4765 if (i == 0) {
4766 offset = start_offset;
4767 *map_start = 0;
4768 } else {
4769 offset = 0;
4770 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4771 }
d397712b 4772
d1310b2e 4773 if (start + min_len > eb->len) {
31b1a2bd 4774 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
d397712b
CM
4775 "wanted %lu %lu\n", (unsigned long long)eb->start,
4776 eb->len, start, min_len);
85026533 4777 return -EINVAL;
d1310b2e
CM
4778 }
4779
4780 p = extent_buffer_page(eb, i);
a6591715 4781 kaddr = page_address(p);
d1310b2e
CM
4782 *map = kaddr + offset;
4783 *map_len = PAGE_CACHE_SIZE - offset;
4784 return 0;
4785}
d1310b2e 4786
d1310b2e
CM
4787int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4788 unsigned long start,
4789 unsigned long len)
4790{
4791 size_t cur;
4792 size_t offset;
4793 struct page *page;
4794 char *kaddr;
4795 char *ptr = (char *)ptrv;
4796 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4797 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4798 int ret = 0;
4799
4800 WARN_ON(start > eb->len);
4801 WARN_ON(start + len > eb->start + eb->len);
4802
4803 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4804
d397712b 4805 while (len > 0) {
d1310b2e 4806 page = extent_buffer_page(eb, i);
d1310b2e
CM
4807
4808 cur = min(len, (PAGE_CACHE_SIZE - offset));
4809
a6591715 4810 kaddr = page_address(page);
d1310b2e 4811 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4812 if (ret)
4813 break;
4814
4815 ptr += cur;
4816 len -= cur;
4817 offset = 0;
4818 i++;
4819 }
4820 return ret;
4821}
d1310b2e
CM
4822
4823void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4824 unsigned long start, unsigned long len)
4825{
4826 size_t cur;
4827 size_t offset;
4828 struct page *page;
4829 char *kaddr;
4830 char *src = (char *)srcv;
4831 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4832 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4833
4834 WARN_ON(start > eb->len);
4835 WARN_ON(start + len > eb->start + eb->len);
4836
4837 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4838
d397712b 4839 while (len > 0) {
d1310b2e
CM
4840 page = extent_buffer_page(eb, i);
4841 WARN_ON(!PageUptodate(page));
4842
4843 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4844 kaddr = page_address(page);
d1310b2e 4845 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4846
4847 src += cur;
4848 len -= cur;
4849 offset = 0;
4850 i++;
4851 }
4852}
d1310b2e
CM
4853
4854void memset_extent_buffer(struct extent_buffer *eb, char c,
4855 unsigned long start, unsigned long len)
4856{
4857 size_t cur;
4858 size_t offset;
4859 struct page *page;
4860 char *kaddr;
4861 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4862 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4863
4864 WARN_ON(start > eb->len);
4865 WARN_ON(start + len > eb->start + eb->len);
4866
4867 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4868
d397712b 4869 while (len > 0) {
d1310b2e
CM
4870 page = extent_buffer_page(eb, i);
4871 WARN_ON(!PageUptodate(page));
4872
4873 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4874 kaddr = page_address(page);
d1310b2e 4875 memset(kaddr + offset, c, cur);
d1310b2e
CM
4876
4877 len -= cur;
4878 offset = 0;
4879 i++;
4880 }
4881}
d1310b2e
CM
4882
4883void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4884 unsigned long dst_offset, unsigned long src_offset,
4885 unsigned long len)
4886{
4887 u64 dst_len = dst->len;
4888 size_t cur;
4889 size_t offset;
4890 struct page *page;
4891 char *kaddr;
4892 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4893 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4894
4895 WARN_ON(src->len != dst_len);
4896
4897 offset = (start_offset + dst_offset) &
4898 ((unsigned long)PAGE_CACHE_SIZE - 1);
4899
d397712b 4900 while (len > 0) {
d1310b2e
CM
4901 page = extent_buffer_page(dst, i);
4902 WARN_ON(!PageUptodate(page));
4903
4904 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4905
a6591715 4906 kaddr = page_address(page);
d1310b2e 4907 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4908
4909 src_offset += cur;
4910 len -= cur;
4911 offset = 0;
4912 i++;
4913 }
4914}
d1310b2e
CM
4915
4916static void move_pages(struct page *dst_page, struct page *src_page,
4917 unsigned long dst_off, unsigned long src_off,
4918 unsigned long len)
4919{
a6591715 4920 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4921 if (dst_page == src_page) {
4922 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4923 } else {
a6591715 4924 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4925 char *p = dst_kaddr + dst_off + len;
4926 char *s = src_kaddr + src_off + len;
4927
4928 while (len--)
4929 *--p = *--s;
d1310b2e 4930 }
d1310b2e
CM
4931}
4932
3387206f
ST
4933static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4934{
4935 unsigned long distance = (src > dst) ? src - dst : dst - src;
4936 return distance < len;
4937}
4938
d1310b2e
CM
4939static void copy_pages(struct page *dst_page, struct page *src_page,
4940 unsigned long dst_off, unsigned long src_off,
4941 unsigned long len)
4942{
a6591715 4943 char *dst_kaddr = page_address(dst_page);
d1310b2e 4944 char *src_kaddr;
727011e0 4945 int must_memmove = 0;
d1310b2e 4946
3387206f 4947 if (dst_page != src_page) {
a6591715 4948 src_kaddr = page_address(src_page);
3387206f 4949 } else {
d1310b2e 4950 src_kaddr = dst_kaddr;
727011e0
CM
4951 if (areas_overlap(src_off, dst_off, len))
4952 must_memmove = 1;
3387206f 4953 }
d1310b2e 4954
727011e0
CM
4955 if (must_memmove)
4956 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4957 else
4958 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4959}
4960
4961void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4962 unsigned long src_offset, unsigned long len)
4963{
4964 size_t cur;
4965 size_t dst_off_in_page;
4966 size_t src_off_in_page;
4967 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4968 unsigned long dst_i;
4969 unsigned long src_i;
4970
4971 if (src_offset + len > dst->len) {
d397712b
CM
4972 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4973 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4974 BUG_ON(1);
4975 }
4976 if (dst_offset + len > dst->len) {
d397712b
CM
4977 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4978 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
4979 BUG_ON(1);
4980 }
4981
d397712b 4982 while (len > 0) {
d1310b2e
CM
4983 dst_off_in_page = (start_offset + dst_offset) &
4984 ((unsigned long)PAGE_CACHE_SIZE - 1);
4985 src_off_in_page = (start_offset + src_offset) &
4986 ((unsigned long)PAGE_CACHE_SIZE - 1);
4987
4988 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4989 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4990
4991 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4992 src_off_in_page));
4993 cur = min_t(unsigned long, cur,
4994 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4995
4996 copy_pages(extent_buffer_page(dst, dst_i),
4997 extent_buffer_page(dst, src_i),
4998 dst_off_in_page, src_off_in_page, cur);
4999
5000 src_offset += cur;
5001 dst_offset += cur;
5002 len -= cur;
5003 }
5004}
d1310b2e
CM
5005
5006void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5007 unsigned long src_offset, unsigned long len)
5008{
5009 size_t cur;
5010 size_t dst_off_in_page;
5011 size_t src_off_in_page;
5012 unsigned long dst_end = dst_offset + len - 1;
5013 unsigned long src_end = src_offset + len - 1;
5014 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5015 unsigned long dst_i;
5016 unsigned long src_i;
5017
5018 if (src_offset + len > dst->len) {
d397712b
CM
5019 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5020 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5021 BUG_ON(1);
5022 }
5023 if (dst_offset + len > dst->len) {
d397712b
CM
5024 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5025 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5026 BUG_ON(1);
5027 }
727011e0 5028 if (dst_offset < src_offset) {
d1310b2e
CM
5029 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5030 return;
5031 }
d397712b 5032 while (len > 0) {
d1310b2e
CM
5033 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5034 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5035
5036 dst_off_in_page = (start_offset + dst_end) &
5037 ((unsigned long)PAGE_CACHE_SIZE - 1);
5038 src_off_in_page = (start_offset + src_end) &
5039 ((unsigned long)PAGE_CACHE_SIZE - 1);
5040
5041 cur = min_t(unsigned long, len, src_off_in_page + 1);
5042 cur = min(cur, dst_off_in_page + 1);
5043 move_pages(extent_buffer_page(dst, dst_i),
5044 extent_buffer_page(dst, src_i),
5045 dst_off_in_page - cur + 1,
5046 src_off_in_page - cur + 1, cur);
5047
5048 dst_end -= cur;
5049 src_end -= cur;
5050 len -= cur;
5051 }
5052}
6af118ce 5053
f7a52a40 5054int try_release_extent_buffer(struct page *page)
19fe0a8b 5055{
6af118ce 5056 struct extent_buffer *eb;
6af118ce 5057
3083ee2e
JB
5058 /*
5059 * We need to make sure noboody is attaching this page to an eb right
5060 * now.
5061 */
5062 spin_lock(&page->mapping->private_lock);
5063 if (!PagePrivate(page)) {
5064 spin_unlock(&page->mapping->private_lock);
4f2de97a 5065 return 1;
45f49bce 5066 }
6af118ce 5067
3083ee2e
JB
5068 eb = (struct extent_buffer *)page->private;
5069 BUG_ON(!eb);
19fe0a8b
MX
5070
5071 /*
3083ee2e
JB
5072 * This is a little awful but should be ok, we need to make sure that
5073 * the eb doesn't disappear out from under us while we're looking at
5074 * this page.
19fe0a8b 5075 */
3083ee2e 5076 spin_lock(&eb->refs_lock);
0b32f4bb 5077 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5078 spin_unlock(&eb->refs_lock);
5079 spin_unlock(&page->mapping->private_lock);
5080 return 0;
b9473439 5081 }
3083ee2e 5082 spin_unlock(&page->mapping->private_lock);
897ca6e9 5083
19fe0a8b 5084 /*
3083ee2e
JB
5085 * If tree ref isn't set then we know the ref on this eb is a real ref,
5086 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5087 */
3083ee2e
JB
5088 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5089 spin_unlock(&eb->refs_lock);
5090 return 0;
b9473439 5091 }
19fe0a8b 5092
f7a52a40 5093 return release_extent_buffer(eb);
6af118ce 5094}