Btrfs: fix possible infinite loop in slow caching
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
26
27static LIST_HEAD(buffers);
28static LIST_HEAD(states);
4bef0848 29
b47eda86 30#define LEAK_DEBUG 0
3935127c 31#if LEAK_DEBUG
d397712b 32static DEFINE_SPINLOCK(leak_lock);
4bef0848 33#endif
d1310b2e 34
d1310b2e
CM
35#define BUFFER_LRU_MAX 64
36
37struct tree_entry {
38 u64 start;
39 u64 end;
d1310b2e
CM
40 struct rb_node rb_node;
41};
42
43struct extent_page_data {
44 struct bio *bio;
45 struct extent_io_tree *tree;
46 get_extent_t *get_extent;
de0022b9 47 unsigned long bio_flags;
771ed689
CM
48
49 /* tells writepage not to lock the state bits for this range
50 * it still does the unlocking
51 */
ffbd517d
CM
52 unsigned int extent_locked:1;
53
54 /* tells the submit_bio code to use a WRITE_SYNC */
55 unsigned int sync_io:1;
d1310b2e
CM
56};
57
0b32f4bb 58static noinline void flush_write_bio(void *data);
c2d904e0
JM
59static inline struct btrfs_fs_info *
60tree_fs_info(struct extent_io_tree *tree)
61{
62 return btrfs_sb(tree->mapping->host->i_sb);
63}
0b32f4bb 64
d1310b2e
CM
65int __init extent_io_init(void)
66{
837e1972 67 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
68 sizeof(struct extent_state), 0,
69 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
70 if (!extent_state_cache)
71 return -ENOMEM;
72
837e1972 73 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
74 sizeof(struct extent_buffer), 0,
75 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
76 if (!extent_buffer_cache)
77 goto free_state_cache;
78 return 0;
79
80free_state_cache:
81 kmem_cache_destroy(extent_state_cache);
82 return -ENOMEM;
83}
84
85void extent_io_exit(void)
86{
87 struct extent_state *state;
2d2ae547 88 struct extent_buffer *eb;
d1310b2e
CM
89
90 while (!list_empty(&states)) {
2d2ae547 91 state = list_entry(states.next, struct extent_state, leak_list);
d397712b
CM
92 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
93 "state %lu in tree %p refs %d\n",
94 (unsigned long long)state->start,
95 (unsigned long long)state->end,
96 state->state, state->tree, atomic_read(&state->refs));
2d2ae547 97 list_del(&state->leak_list);
d1310b2e
CM
98 kmem_cache_free(extent_state_cache, state);
99
100 }
101
2d2ae547
CM
102 while (!list_empty(&buffers)) {
103 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
d397712b
CM
104 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
105 "refs %d\n", (unsigned long long)eb->start,
106 eb->len, atomic_read(&eb->refs));
2d2ae547
CM
107 list_del(&eb->leak_list);
108 kmem_cache_free(extent_buffer_cache, eb);
109 }
8c0a8537
KS
110
111 /*
112 * Make sure all delayed rcu free are flushed before we
113 * destroy caches.
114 */
115 rcu_barrier();
d1310b2e
CM
116 if (extent_state_cache)
117 kmem_cache_destroy(extent_state_cache);
118 if (extent_buffer_cache)
119 kmem_cache_destroy(extent_buffer_cache);
120}
121
122void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 123 struct address_space *mapping)
d1310b2e 124{
6bef4d31 125 tree->state = RB_ROOT;
19fe0a8b 126 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
127 tree->ops = NULL;
128 tree->dirty_bytes = 0;
70dec807 129 spin_lock_init(&tree->lock);
6af118ce 130 spin_lock_init(&tree->buffer_lock);
d1310b2e 131 tree->mapping = mapping;
d1310b2e 132}
d1310b2e 133
b2950863 134static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
135{
136 struct extent_state *state;
3935127c 137#if LEAK_DEBUG
2d2ae547 138 unsigned long flags;
4bef0848 139#endif
d1310b2e
CM
140
141 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 142 if (!state)
d1310b2e
CM
143 return state;
144 state->state = 0;
d1310b2e 145 state->private = 0;
70dec807 146 state->tree = NULL;
3935127c 147#if LEAK_DEBUG
2d2ae547
CM
148 spin_lock_irqsave(&leak_lock, flags);
149 list_add(&state->leak_list, &states);
150 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 151#endif
d1310b2e
CM
152 atomic_set(&state->refs, 1);
153 init_waitqueue_head(&state->wq);
143bede5 154 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
155 return state;
156}
d1310b2e 157
4845e44f 158void free_extent_state(struct extent_state *state)
d1310b2e 159{
d1310b2e
CM
160 if (!state)
161 return;
162 if (atomic_dec_and_test(&state->refs)) {
3935127c 163#if LEAK_DEBUG
2d2ae547 164 unsigned long flags;
4bef0848 165#endif
70dec807 166 WARN_ON(state->tree);
3935127c 167#if LEAK_DEBUG
2d2ae547
CM
168 spin_lock_irqsave(&leak_lock, flags);
169 list_del(&state->leak_list);
170 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 171#endif
143bede5 172 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
173 kmem_cache_free(extent_state_cache, state);
174 }
175}
d1310b2e
CM
176
177static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
178 struct rb_node *node)
179{
d397712b
CM
180 struct rb_node **p = &root->rb_node;
181 struct rb_node *parent = NULL;
d1310b2e
CM
182 struct tree_entry *entry;
183
d397712b 184 while (*p) {
d1310b2e
CM
185 parent = *p;
186 entry = rb_entry(parent, struct tree_entry, rb_node);
187
188 if (offset < entry->start)
189 p = &(*p)->rb_left;
190 else if (offset > entry->end)
191 p = &(*p)->rb_right;
192 else
193 return parent;
194 }
195
d1310b2e
CM
196 rb_link_node(node, parent, p);
197 rb_insert_color(node, root);
198 return NULL;
199}
200
80ea96b1 201static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
202 struct rb_node **prev_ret,
203 struct rb_node **next_ret)
204{
80ea96b1 205 struct rb_root *root = &tree->state;
d397712b 206 struct rb_node *n = root->rb_node;
d1310b2e
CM
207 struct rb_node *prev = NULL;
208 struct rb_node *orig_prev = NULL;
209 struct tree_entry *entry;
210 struct tree_entry *prev_entry = NULL;
211
d397712b 212 while (n) {
d1310b2e
CM
213 entry = rb_entry(n, struct tree_entry, rb_node);
214 prev = n;
215 prev_entry = entry;
216
217 if (offset < entry->start)
218 n = n->rb_left;
219 else if (offset > entry->end)
220 n = n->rb_right;
d397712b 221 else
d1310b2e
CM
222 return n;
223 }
224
225 if (prev_ret) {
226 orig_prev = prev;
d397712b 227 while (prev && offset > prev_entry->end) {
d1310b2e
CM
228 prev = rb_next(prev);
229 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
230 }
231 *prev_ret = prev;
232 prev = orig_prev;
233 }
234
235 if (next_ret) {
236 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 237 while (prev && offset < prev_entry->start) {
d1310b2e
CM
238 prev = rb_prev(prev);
239 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
240 }
241 *next_ret = prev;
242 }
243 return NULL;
244}
245
80ea96b1
CM
246static inline struct rb_node *tree_search(struct extent_io_tree *tree,
247 u64 offset)
d1310b2e 248{
70dec807 249 struct rb_node *prev = NULL;
d1310b2e 250 struct rb_node *ret;
70dec807 251
80ea96b1 252 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 253 if (!ret)
d1310b2e
CM
254 return prev;
255 return ret;
256}
257
9ed74f2d
JB
258static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
259 struct extent_state *other)
260{
261 if (tree->ops && tree->ops->merge_extent_hook)
262 tree->ops->merge_extent_hook(tree->mapping->host, new,
263 other);
264}
265
d1310b2e
CM
266/*
267 * utility function to look for merge candidates inside a given range.
268 * Any extents with matching state are merged together into a single
269 * extent in the tree. Extents with EXTENT_IO in their state field
270 * are not merged because the end_io handlers need to be able to do
271 * operations on them without sleeping (or doing allocations/splits).
272 *
273 * This should be called with the tree lock held.
274 */
1bf85046
JM
275static void merge_state(struct extent_io_tree *tree,
276 struct extent_state *state)
d1310b2e
CM
277{
278 struct extent_state *other;
279 struct rb_node *other_node;
280
5b21f2ed 281 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 282 return;
d1310b2e
CM
283
284 other_node = rb_prev(&state->rb_node);
285 if (other_node) {
286 other = rb_entry(other_node, struct extent_state, rb_node);
287 if (other->end == state->start - 1 &&
288 other->state == state->state) {
9ed74f2d 289 merge_cb(tree, state, other);
d1310b2e 290 state->start = other->start;
70dec807 291 other->tree = NULL;
d1310b2e
CM
292 rb_erase(&other->rb_node, &tree->state);
293 free_extent_state(other);
294 }
295 }
296 other_node = rb_next(&state->rb_node);
297 if (other_node) {
298 other = rb_entry(other_node, struct extent_state, rb_node);
299 if (other->start == state->end + 1 &&
300 other->state == state->state) {
9ed74f2d 301 merge_cb(tree, state, other);
df98b6e2
JB
302 state->end = other->end;
303 other->tree = NULL;
304 rb_erase(&other->rb_node, &tree->state);
305 free_extent_state(other);
d1310b2e
CM
306 }
307 }
d1310b2e
CM
308}
309
1bf85046 310static void set_state_cb(struct extent_io_tree *tree,
0ca1f7ce 311 struct extent_state *state, int *bits)
291d673e 312{
1bf85046
JM
313 if (tree->ops && tree->ops->set_bit_hook)
314 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
315}
316
317static void clear_state_cb(struct extent_io_tree *tree,
0ca1f7ce 318 struct extent_state *state, int *bits)
291d673e 319{
9ed74f2d
JB
320 if (tree->ops && tree->ops->clear_bit_hook)
321 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
322}
323
3150b699
XG
324static void set_state_bits(struct extent_io_tree *tree,
325 struct extent_state *state, int *bits);
326
d1310b2e
CM
327/*
328 * insert an extent_state struct into the tree. 'bits' are set on the
329 * struct before it is inserted.
330 *
331 * This may return -EEXIST if the extent is already there, in which case the
332 * state struct is freed.
333 *
334 * The tree lock is not taken internally. This is a utility function and
335 * probably isn't what you want to call (see set/clear_extent_bit).
336 */
337static int insert_state(struct extent_io_tree *tree,
338 struct extent_state *state, u64 start, u64 end,
0ca1f7ce 339 int *bits)
d1310b2e
CM
340{
341 struct rb_node *node;
342
31b1a2bd
JL
343 if (end < start)
344 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
d397712b
CM
345 (unsigned long long)end,
346 (unsigned long long)start);
d1310b2e
CM
347 state->start = start;
348 state->end = end;
9ed74f2d 349
3150b699
XG
350 set_state_bits(tree, state, bits);
351
d1310b2e
CM
352 node = tree_insert(&tree->state, end, &state->rb_node);
353 if (node) {
354 struct extent_state *found;
355 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
356 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
357 "%llu %llu\n", (unsigned long long)found->start,
358 (unsigned long long)found->end,
359 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
360 return -EEXIST;
361 }
70dec807 362 state->tree = tree;
d1310b2e
CM
363 merge_state(tree, state);
364 return 0;
365}
366
1bf85046 367static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
368 u64 split)
369{
370 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 371 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
372}
373
d1310b2e
CM
374/*
375 * split a given extent state struct in two, inserting the preallocated
376 * struct 'prealloc' as the newly created second half. 'split' indicates an
377 * offset inside 'orig' where it should be split.
378 *
379 * Before calling,
380 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
381 * are two extent state structs in the tree:
382 * prealloc: [orig->start, split - 1]
383 * orig: [ split, orig->end ]
384 *
385 * The tree locks are not taken by this function. They need to be held
386 * by the caller.
387 */
388static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
389 struct extent_state *prealloc, u64 split)
390{
391 struct rb_node *node;
9ed74f2d
JB
392
393 split_cb(tree, orig, split);
394
d1310b2e
CM
395 prealloc->start = orig->start;
396 prealloc->end = split - 1;
397 prealloc->state = orig->state;
398 orig->start = split;
399
400 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
401 if (node) {
d1310b2e
CM
402 free_extent_state(prealloc);
403 return -EEXIST;
404 }
70dec807 405 prealloc->tree = tree;
d1310b2e
CM
406 return 0;
407}
408
cdc6a395
LZ
409static struct extent_state *next_state(struct extent_state *state)
410{
411 struct rb_node *next = rb_next(&state->rb_node);
412 if (next)
413 return rb_entry(next, struct extent_state, rb_node);
414 else
415 return NULL;
416}
417
d1310b2e
CM
418/*
419 * utility function to clear some bits in an extent state struct.
1b303fc0 420 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
421 *
422 * If no bits are set on the state struct after clearing things, the
423 * struct is freed and removed from the tree
424 */
cdc6a395
LZ
425static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
426 struct extent_state *state,
427 int *bits, int wake)
d1310b2e 428{
cdc6a395 429 struct extent_state *next;
0ca1f7ce 430 int bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 431
0ca1f7ce 432 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
433 u64 range = state->end - state->start + 1;
434 WARN_ON(range > tree->dirty_bytes);
435 tree->dirty_bytes -= range;
436 }
291d673e 437 clear_state_cb(tree, state, bits);
32c00aff 438 state->state &= ~bits_to_clear;
d1310b2e
CM
439 if (wake)
440 wake_up(&state->wq);
0ca1f7ce 441 if (state->state == 0) {
cdc6a395 442 next = next_state(state);
70dec807 443 if (state->tree) {
d1310b2e 444 rb_erase(&state->rb_node, &tree->state);
70dec807 445 state->tree = NULL;
d1310b2e
CM
446 free_extent_state(state);
447 } else {
448 WARN_ON(1);
449 }
450 } else {
451 merge_state(tree, state);
cdc6a395 452 next = next_state(state);
d1310b2e 453 }
cdc6a395 454 return next;
d1310b2e
CM
455}
456
8233767a
XG
457static struct extent_state *
458alloc_extent_state_atomic(struct extent_state *prealloc)
459{
460 if (!prealloc)
461 prealloc = alloc_extent_state(GFP_ATOMIC);
462
463 return prealloc;
464}
465
c2d904e0
JM
466void extent_io_tree_panic(struct extent_io_tree *tree, int err)
467{
468 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
469 "Extent tree was modified by another "
470 "thread while locked.");
471}
472
d1310b2e
CM
473/*
474 * clear some bits on a range in the tree. This may require splitting
475 * or inserting elements in the tree, so the gfp mask is used to
476 * indicate which allocations or sleeping are allowed.
477 *
478 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
479 * the given range from the tree regardless of state (ie for truncate).
480 *
481 * the range [start, end] is inclusive.
482 *
6763af84 483 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
484 */
485int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
2c64c53d
CM
486 int bits, int wake, int delete,
487 struct extent_state **cached_state,
488 gfp_t mask)
d1310b2e
CM
489{
490 struct extent_state *state;
2c64c53d 491 struct extent_state *cached;
d1310b2e
CM
492 struct extent_state *prealloc = NULL;
493 struct rb_node *node;
5c939df5 494 u64 last_end;
d1310b2e 495 int err;
2ac55d41 496 int clear = 0;
d1310b2e 497
0ca1f7ce
YZ
498 if (delete)
499 bits |= ~EXTENT_CTLBITS;
500 bits |= EXTENT_FIRST_DELALLOC;
501
2ac55d41
JB
502 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
503 clear = 1;
d1310b2e
CM
504again:
505 if (!prealloc && (mask & __GFP_WAIT)) {
506 prealloc = alloc_extent_state(mask);
507 if (!prealloc)
508 return -ENOMEM;
509 }
510
cad321ad 511 spin_lock(&tree->lock);
2c64c53d
CM
512 if (cached_state) {
513 cached = *cached_state;
2ac55d41
JB
514
515 if (clear) {
516 *cached_state = NULL;
517 cached_state = NULL;
518 }
519
df98b6e2
JB
520 if (cached && cached->tree && cached->start <= start &&
521 cached->end > start) {
2ac55d41
JB
522 if (clear)
523 atomic_dec(&cached->refs);
2c64c53d 524 state = cached;
42daec29 525 goto hit_next;
2c64c53d 526 }
2ac55d41
JB
527 if (clear)
528 free_extent_state(cached);
2c64c53d 529 }
d1310b2e
CM
530 /*
531 * this search will find the extents that end after
532 * our range starts
533 */
80ea96b1 534 node = tree_search(tree, start);
d1310b2e
CM
535 if (!node)
536 goto out;
537 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 538hit_next:
d1310b2e
CM
539 if (state->start > end)
540 goto out;
541 WARN_ON(state->end < start);
5c939df5 542 last_end = state->end;
d1310b2e 543
0449314a 544 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
545 if (!(state->state & bits)) {
546 state = next_state(state);
0449314a 547 goto next;
cdc6a395 548 }
0449314a 549
d1310b2e
CM
550 /*
551 * | ---- desired range ---- |
552 * | state | or
553 * | ------------- state -------------- |
554 *
555 * We need to split the extent we found, and may flip
556 * bits on second half.
557 *
558 * If the extent we found extends past our range, we
559 * just split and search again. It'll get split again
560 * the next time though.
561 *
562 * If the extent we found is inside our range, we clear
563 * the desired bit on it.
564 */
565
566 if (state->start < start) {
8233767a
XG
567 prealloc = alloc_extent_state_atomic(prealloc);
568 BUG_ON(!prealloc);
d1310b2e 569 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
570 if (err)
571 extent_io_tree_panic(tree, err);
572
d1310b2e
CM
573 prealloc = NULL;
574 if (err)
575 goto out;
576 if (state->end <= end) {
d1ac6e41
LB
577 state = clear_state_bit(tree, state, &bits, wake);
578 goto next;
d1310b2e
CM
579 }
580 goto search_again;
581 }
582 /*
583 * | ---- desired range ---- |
584 * | state |
585 * We need to split the extent, and clear the bit
586 * on the first half
587 */
588 if (state->start <= end && state->end > end) {
8233767a
XG
589 prealloc = alloc_extent_state_atomic(prealloc);
590 BUG_ON(!prealloc);
d1310b2e 591 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
592 if (err)
593 extent_io_tree_panic(tree, err);
594
d1310b2e
CM
595 if (wake)
596 wake_up(&state->wq);
42daec29 597
6763af84 598 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 599
d1310b2e
CM
600 prealloc = NULL;
601 goto out;
602 }
42daec29 603
cdc6a395 604 state = clear_state_bit(tree, state, &bits, wake);
0449314a 605next:
5c939df5
YZ
606 if (last_end == (u64)-1)
607 goto out;
608 start = last_end + 1;
cdc6a395 609 if (start <= end && state && !need_resched())
692e5759 610 goto hit_next;
d1310b2e
CM
611 goto search_again;
612
613out:
cad321ad 614 spin_unlock(&tree->lock);
d1310b2e
CM
615 if (prealloc)
616 free_extent_state(prealloc);
617
6763af84 618 return 0;
d1310b2e
CM
619
620search_again:
621 if (start > end)
622 goto out;
cad321ad 623 spin_unlock(&tree->lock);
d1310b2e
CM
624 if (mask & __GFP_WAIT)
625 cond_resched();
626 goto again;
627}
d1310b2e 628
143bede5
JM
629static void wait_on_state(struct extent_io_tree *tree,
630 struct extent_state *state)
641f5219
CH
631 __releases(tree->lock)
632 __acquires(tree->lock)
d1310b2e
CM
633{
634 DEFINE_WAIT(wait);
635 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 636 spin_unlock(&tree->lock);
d1310b2e 637 schedule();
cad321ad 638 spin_lock(&tree->lock);
d1310b2e 639 finish_wait(&state->wq, &wait);
d1310b2e
CM
640}
641
642/*
643 * waits for one or more bits to clear on a range in the state tree.
644 * The range [start, end] is inclusive.
645 * The tree lock is taken by this function
646 */
143bede5 647void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits)
d1310b2e
CM
648{
649 struct extent_state *state;
650 struct rb_node *node;
651
cad321ad 652 spin_lock(&tree->lock);
d1310b2e
CM
653again:
654 while (1) {
655 /*
656 * this search will find all the extents that end after
657 * our range starts
658 */
80ea96b1 659 node = tree_search(tree, start);
d1310b2e
CM
660 if (!node)
661 break;
662
663 state = rb_entry(node, struct extent_state, rb_node);
664
665 if (state->start > end)
666 goto out;
667
668 if (state->state & bits) {
669 start = state->start;
670 atomic_inc(&state->refs);
671 wait_on_state(tree, state);
672 free_extent_state(state);
673 goto again;
674 }
675 start = state->end + 1;
676
677 if (start > end)
678 break;
679
ded91f08 680 cond_resched_lock(&tree->lock);
d1310b2e
CM
681 }
682out:
cad321ad 683 spin_unlock(&tree->lock);
d1310b2e 684}
d1310b2e 685
1bf85046 686static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 687 struct extent_state *state,
0ca1f7ce 688 int *bits)
d1310b2e 689{
0ca1f7ce 690 int bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 691
1bf85046 692 set_state_cb(tree, state, bits);
0ca1f7ce 693 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
694 u64 range = state->end - state->start + 1;
695 tree->dirty_bytes += range;
696 }
0ca1f7ce 697 state->state |= bits_to_set;
d1310b2e
CM
698}
699
2c64c53d
CM
700static void cache_state(struct extent_state *state,
701 struct extent_state **cached_ptr)
702{
703 if (cached_ptr && !(*cached_ptr)) {
704 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
705 *cached_ptr = state;
706 atomic_inc(&state->refs);
707 }
708 }
709}
710
507903b8
AJ
711static void uncache_state(struct extent_state **cached_ptr)
712{
713 if (cached_ptr && (*cached_ptr)) {
714 struct extent_state *state = *cached_ptr;
109b36a2
CM
715 *cached_ptr = NULL;
716 free_extent_state(state);
507903b8
AJ
717 }
718}
719
d1310b2e 720/*
1edbb734
CM
721 * set some bits on a range in the tree. This may require allocations or
722 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 723 *
1edbb734
CM
724 * If any of the exclusive bits are set, this will fail with -EEXIST if some
725 * part of the range already has the desired bits set. The start of the
726 * existing range is returned in failed_start in this case.
d1310b2e 727 *
1edbb734 728 * [start, end] is inclusive This takes the tree lock.
d1310b2e 729 */
1edbb734 730
3fbe5c02
JM
731static int __must_check
732__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
733 int bits, int exclusive_bits, u64 *failed_start,
734 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
735{
736 struct extent_state *state;
737 struct extent_state *prealloc = NULL;
738 struct rb_node *node;
d1310b2e 739 int err = 0;
d1310b2e
CM
740 u64 last_start;
741 u64 last_end;
42daec29 742
0ca1f7ce 743 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
744again:
745 if (!prealloc && (mask & __GFP_WAIT)) {
746 prealloc = alloc_extent_state(mask);
8233767a 747 BUG_ON(!prealloc);
d1310b2e
CM
748 }
749
cad321ad 750 spin_lock(&tree->lock);
9655d298
CM
751 if (cached_state && *cached_state) {
752 state = *cached_state;
df98b6e2
JB
753 if (state->start <= start && state->end > start &&
754 state->tree) {
9655d298
CM
755 node = &state->rb_node;
756 goto hit_next;
757 }
758 }
d1310b2e
CM
759 /*
760 * this search will find all the extents that end after
761 * our range starts.
762 */
80ea96b1 763 node = tree_search(tree, start);
d1310b2e 764 if (!node) {
8233767a
XG
765 prealloc = alloc_extent_state_atomic(prealloc);
766 BUG_ON(!prealloc);
0ca1f7ce 767 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
768 if (err)
769 extent_io_tree_panic(tree, err);
770
d1310b2e 771 prealloc = NULL;
d1310b2e
CM
772 goto out;
773 }
d1310b2e 774 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 775hit_next:
d1310b2e
CM
776 last_start = state->start;
777 last_end = state->end;
778
779 /*
780 * | ---- desired range ---- |
781 * | state |
782 *
783 * Just lock what we found and keep going
784 */
785 if (state->start == start && state->end <= end) {
1edbb734 786 if (state->state & exclusive_bits) {
d1310b2e
CM
787 *failed_start = state->start;
788 err = -EEXIST;
789 goto out;
790 }
42daec29 791
1bf85046 792 set_state_bits(tree, state, &bits);
2c64c53d 793 cache_state(state, cached_state);
d1310b2e 794 merge_state(tree, state);
5c939df5
YZ
795 if (last_end == (u64)-1)
796 goto out;
797 start = last_end + 1;
d1ac6e41
LB
798 state = next_state(state);
799 if (start < end && state && state->start == start &&
800 !need_resched())
801 goto hit_next;
d1310b2e
CM
802 goto search_again;
803 }
804
805 /*
806 * | ---- desired range ---- |
807 * | state |
808 * or
809 * | ------------- state -------------- |
810 *
811 * We need to split the extent we found, and may flip bits on
812 * second half.
813 *
814 * If the extent we found extends past our
815 * range, we just split and search again. It'll get split
816 * again the next time though.
817 *
818 * If the extent we found is inside our range, we set the
819 * desired bit on it.
820 */
821 if (state->start < start) {
1edbb734 822 if (state->state & exclusive_bits) {
d1310b2e
CM
823 *failed_start = start;
824 err = -EEXIST;
825 goto out;
826 }
8233767a
XG
827
828 prealloc = alloc_extent_state_atomic(prealloc);
829 BUG_ON(!prealloc);
d1310b2e 830 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
831 if (err)
832 extent_io_tree_panic(tree, err);
833
d1310b2e
CM
834 prealloc = NULL;
835 if (err)
836 goto out;
837 if (state->end <= end) {
1bf85046 838 set_state_bits(tree, state, &bits);
2c64c53d 839 cache_state(state, cached_state);
d1310b2e 840 merge_state(tree, state);
5c939df5
YZ
841 if (last_end == (u64)-1)
842 goto out;
843 start = last_end + 1;
d1ac6e41
LB
844 state = next_state(state);
845 if (start < end && state && state->start == start &&
846 !need_resched())
847 goto hit_next;
d1310b2e
CM
848 }
849 goto search_again;
850 }
851 /*
852 * | ---- desired range ---- |
853 * | state | or | state |
854 *
855 * There's a hole, we need to insert something in it and
856 * ignore the extent we found.
857 */
858 if (state->start > start) {
859 u64 this_end;
860 if (end < last_start)
861 this_end = end;
862 else
d397712b 863 this_end = last_start - 1;
8233767a
XG
864
865 prealloc = alloc_extent_state_atomic(prealloc);
866 BUG_ON(!prealloc);
c7f895a2
XG
867
868 /*
869 * Avoid to free 'prealloc' if it can be merged with
870 * the later extent.
871 */
d1310b2e 872 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 873 &bits);
c2d904e0
JM
874 if (err)
875 extent_io_tree_panic(tree, err);
876
9ed74f2d
JB
877 cache_state(prealloc, cached_state);
878 prealloc = NULL;
d1310b2e
CM
879 start = this_end + 1;
880 goto search_again;
881 }
882 /*
883 * | ---- desired range ---- |
884 * | state |
885 * We need to split the extent, and set the bit
886 * on the first half
887 */
888 if (state->start <= end && state->end > end) {
1edbb734 889 if (state->state & exclusive_bits) {
d1310b2e
CM
890 *failed_start = start;
891 err = -EEXIST;
892 goto out;
893 }
8233767a
XG
894
895 prealloc = alloc_extent_state_atomic(prealloc);
896 BUG_ON(!prealloc);
d1310b2e 897 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
898 if (err)
899 extent_io_tree_panic(tree, err);
d1310b2e 900
1bf85046 901 set_state_bits(tree, prealloc, &bits);
2c64c53d 902 cache_state(prealloc, cached_state);
d1310b2e
CM
903 merge_state(tree, prealloc);
904 prealloc = NULL;
905 goto out;
906 }
907
908 goto search_again;
909
910out:
cad321ad 911 spin_unlock(&tree->lock);
d1310b2e
CM
912 if (prealloc)
913 free_extent_state(prealloc);
914
915 return err;
916
917search_again:
918 if (start > end)
919 goto out;
cad321ad 920 spin_unlock(&tree->lock);
d1310b2e
CM
921 if (mask & __GFP_WAIT)
922 cond_resched();
923 goto again;
924}
d1310b2e 925
3fbe5c02
JM
926int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits,
927 u64 *failed_start, struct extent_state **cached_state,
928 gfp_t mask)
929{
930 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
931 cached_state, mask);
932}
933
934
462d6fac 935/**
10983f2e
LB
936 * convert_extent_bit - convert all bits in a given range from one bit to
937 * another
462d6fac
JB
938 * @tree: the io tree to search
939 * @start: the start offset in bytes
940 * @end: the end offset in bytes (inclusive)
941 * @bits: the bits to set in this range
942 * @clear_bits: the bits to clear in this range
e6138876 943 * @cached_state: state that we're going to cache
462d6fac
JB
944 * @mask: the allocation mask
945 *
946 * This will go through and set bits for the given range. If any states exist
947 * already in this range they are set with the given bit and cleared of the
948 * clear_bits. This is only meant to be used by things that are mergeable, ie
949 * converting from say DELALLOC to DIRTY. This is not meant to be used with
950 * boundary bits like LOCK.
951 */
952int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
e6138876
JB
953 int bits, int clear_bits,
954 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
955{
956 struct extent_state *state;
957 struct extent_state *prealloc = NULL;
958 struct rb_node *node;
959 int err = 0;
960 u64 last_start;
961 u64 last_end;
962
963again:
964 if (!prealloc && (mask & __GFP_WAIT)) {
965 prealloc = alloc_extent_state(mask);
966 if (!prealloc)
967 return -ENOMEM;
968 }
969
970 spin_lock(&tree->lock);
e6138876
JB
971 if (cached_state && *cached_state) {
972 state = *cached_state;
973 if (state->start <= start && state->end > start &&
974 state->tree) {
975 node = &state->rb_node;
976 goto hit_next;
977 }
978 }
979
462d6fac
JB
980 /*
981 * this search will find all the extents that end after
982 * our range starts.
983 */
984 node = tree_search(tree, start);
985 if (!node) {
986 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
987 if (!prealloc) {
988 err = -ENOMEM;
989 goto out;
990 }
462d6fac
JB
991 err = insert_state(tree, prealloc, start, end, &bits);
992 prealloc = NULL;
c2d904e0
JM
993 if (err)
994 extent_io_tree_panic(tree, err);
462d6fac
JB
995 goto out;
996 }
997 state = rb_entry(node, struct extent_state, rb_node);
998hit_next:
999 last_start = state->start;
1000 last_end = state->end;
1001
1002 /*
1003 * | ---- desired range ---- |
1004 * | state |
1005 *
1006 * Just lock what we found and keep going
1007 */
1008 if (state->start == start && state->end <= end) {
462d6fac 1009 set_state_bits(tree, state, &bits);
e6138876 1010 cache_state(state, cached_state);
d1ac6e41 1011 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1012 if (last_end == (u64)-1)
1013 goto out;
462d6fac 1014 start = last_end + 1;
d1ac6e41
LB
1015 if (start < end && state && state->start == start &&
1016 !need_resched())
1017 goto hit_next;
462d6fac
JB
1018 goto search_again;
1019 }
1020
1021 /*
1022 * | ---- desired range ---- |
1023 * | state |
1024 * or
1025 * | ------------- state -------------- |
1026 *
1027 * We need to split the extent we found, and may flip bits on
1028 * second half.
1029 *
1030 * If the extent we found extends past our
1031 * range, we just split and search again. It'll get split
1032 * again the next time though.
1033 *
1034 * If the extent we found is inside our range, we set the
1035 * desired bit on it.
1036 */
1037 if (state->start < start) {
1038 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1039 if (!prealloc) {
1040 err = -ENOMEM;
1041 goto out;
1042 }
462d6fac 1043 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1044 if (err)
1045 extent_io_tree_panic(tree, err);
462d6fac
JB
1046 prealloc = NULL;
1047 if (err)
1048 goto out;
1049 if (state->end <= end) {
1050 set_state_bits(tree, state, &bits);
e6138876 1051 cache_state(state, cached_state);
d1ac6e41 1052 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1053 if (last_end == (u64)-1)
1054 goto out;
1055 start = last_end + 1;
d1ac6e41
LB
1056 if (start < end && state && state->start == start &&
1057 !need_resched())
1058 goto hit_next;
462d6fac
JB
1059 }
1060 goto search_again;
1061 }
1062 /*
1063 * | ---- desired range ---- |
1064 * | state | or | state |
1065 *
1066 * There's a hole, we need to insert something in it and
1067 * ignore the extent we found.
1068 */
1069 if (state->start > start) {
1070 u64 this_end;
1071 if (end < last_start)
1072 this_end = end;
1073 else
1074 this_end = last_start - 1;
1075
1076 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1077 if (!prealloc) {
1078 err = -ENOMEM;
1079 goto out;
1080 }
462d6fac
JB
1081
1082 /*
1083 * Avoid to free 'prealloc' if it can be merged with
1084 * the later extent.
1085 */
1086 err = insert_state(tree, prealloc, start, this_end,
1087 &bits);
c2d904e0
JM
1088 if (err)
1089 extent_io_tree_panic(tree, err);
e6138876 1090 cache_state(prealloc, cached_state);
462d6fac
JB
1091 prealloc = NULL;
1092 start = this_end + 1;
1093 goto search_again;
1094 }
1095 /*
1096 * | ---- desired range ---- |
1097 * | state |
1098 * We need to split the extent, and set the bit
1099 * on the first half
1100 */
1101 if (state->start <= end && state->end > end) {
1102 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1103 if (!prealloc) {
1104 err = -ENOMEM;
1105 goto out;
1106 }
462d6fac
JB
1107
1108 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1109 if (err)
1110 extent_io_tree_panic(tree, err);
462d6fac
JB
1111
1112 set_state_bits(tree, prealloc, &bits);
e6138876 1113 cache_state(prealloc, cached_state);
462d6fac 1114 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1115 prealloc = NULL;
1116 goto out;
1117 }
1118
1119 goto search_again;
1120
1121out:
1122 spin_unlock(&tree->lock);
1123 if (prealloc)
1124 free_extent_state(prealloc);
1125
1126 return err;
1127
1128search_again:
1129 if (start > end)
1130 goto out;
1131 spin_unlock(&tree->lock);
1132 if (mask & __GFP_WAIT)
1133 cond_resched();
1134 goto again;
1135}
1136
d1310b2e
CM
1137/* wrappers around set/clear extent bit */
1138int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1139 gfp_t mask)
1140{
3fbe5c02 1141 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1142 NULL, mask);
d1310b2e 1143}
d1310b2e
CM
1144
1145int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1146 int bits, gfp_t mask)
1147{
3fbe5c02 1148 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1149 NULL, mask);
d1310b2e 1150}
d1310b2e
CM
1151
1152int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1153 int bits, gfp_t mask)
1154{
2c64c53d 1155 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1156}
d1310b2e
CM
1157
1158int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1159 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1160{
1161 return set_extent_bit(tree, start, end,
fee187d9 1162 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1163 NULL, cached_state, mask);
d1310b2e 1164}
d1310b2e 1165
9e8a4a8b
LB
1166int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1167 struct extent_state **cached_state, gfp_t mask)
1168{
1169 return set_extent_bit(tree, start, end,
1170 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1171 NULL, cached_state, mask);
1172}
1173
d1310b2e
CM
1174int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1175 gfp_t mask)
1176{
1177 return clear_extent_bit(tree, start, end,
32c00aff 1178 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1179 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1180}
d1310b2e
CM
1181
1182int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1183 gfp_t mask)
1184{
3fbe5c02 1185 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1186 NULL, mask);
d1310b2e 1187}
d1310b2e 1188
d1310b2e 1189int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1190 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1191{
6b67a320 1192 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1193 cached_state, mask);
d1310b2e 1194}
d1310b2e 1195
5fd02043
JB
1196int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1197 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1198{
2c64c53d 1199 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1200 cached_state, mask);
d1310b2e 1201}
d1310b2e 1202
d352ac68
CM
1203/*
1204 * either insert or lock state struct between start and end use mask to tell
1205 * us if waiting is desired.
1206 */
1edbb734 1207int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
d0082371 1208 int bits, struct extent_state **cached_state)
d1310b2e
CM
1209{
1210 int err;
1211 u64 failed_start;
1212 while (1) {
3fbe5c02
JM
1213 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1214 EXTENT_LOCKED, &failed_start,
1215 cached_state, GFP_NOFS);
d0082371 1216 if (err == -EEXIST) {
d1310b2e
CM
1217 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1218 start = failed_start;
d0082371 1219 } else
d1310b2e 1220 break;
d1310b2e
CM
1221 WARN_ON(start > end);
1222 }
1223 return err;
1224}
d1310b2e 1225
d0082371 1226int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1227{
d0082371 1228 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1229}
1230
d0082371 1231int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1232{
1233 int err;
1234 u64 failed_start;
1235
3fbe5c02
JM
1236 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1237 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1238 if (err == -EEXIST) {
1239 if (failed_start > start)
1240 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1241 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1242 return 0;
6643558d 1243 }
25179201
JB
1244 return 1;
1245}
25179201 1246
2c64c53d
CM
1247int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1248 struct extent_state **cached, gfp_t mask)
1249{
1250 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1251 mask);
1252}
1253
d0082371 1254int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1255{
2c64c53d 1256 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1257 GFP_NOFS);
d1310b2e 1258}
d1310b2e 1259
4adaa611
CM
1260int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1261{
1262 unsigned long index = start >> PAGE_CACHE_SHIFT;
1263 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1264 struct page *page;
1265
1266 while (index <= end_index) {
1267 page = find_get_page(inode->i_mapping, index);
1268 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1269 clear_page_dirty_for_io(page);
1270 page_cache_release(page);
1271 index++;
1272 }
1273 return 0;
1274}
1275
1276int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1277{
1278 unsigned long index = start >> PAGE_CACHE_SHIFT;
1279 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1280 struct page *page;
1281
1282 while (index <= end_index) {
1283 page = find_get_page(inode->i_mapping, index);
1284 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1285 account_page_redirty(page);
1286 __set_page_dirty_nobuffers(page);
1287 page_cache_release(page);
1288 index++;
1289 }
1290 return 0;
1291}
1292
d1310b2e
CM
1293/*
1294 * helper function to set both pages and extents in the tree writeback
1295 */
b2950863 1296static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1297{
1298 unsigned long index = start >> PAGE_CACHE_SHIFT;
1299 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1300 struct page *page;
1301
1302 while (index <= end_index) {
1303 page = find_get_page(tree->mapping, index);
79787eaa 1304 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1305 set_page_writeback(page);
1306 page_cache_release(page);
1307 index++;
1308 }
d1310b2e
CM
1309 return 0;
1310}
d1310b2e 1311
d352ac68
CM
1312/* find the first state struct with 'bits' set after 'start', and
1313 * return it. tree->lock must be held. NULL will returned if
1314 * nothing was found after 'start'
1315 */
d7fc640e
CM
1316struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree,
1317 u64 start, int bits)
1318{
1319 struct rb_node *node;
1320 struct extent_state *state;
1321
1322 /*
1323 * this search will find all the extents that end after
1324 * our range starts.
1325 */
1326 node = tree_search(tree, start);
d397712b 1327 if (!node)
d7fc640e 1328 goto out;
d7fc640e 1329
d397712b 1330 while (1) {
d7fc640e 1331 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1332 if (state->end >= start && (state->state & bits))
d7fc640e 1333 return state;
d397712b 1334
d7fc640e
CM
1335 node = rb_next(node);
1336 if (!node)
1337 break;
1338 }
1339out:
1340 return NULL;
1341}
d7fc640e 1342
69261c4b
XG
1343/*
1344 * find the first offset in the io tree with 'bits' set. zero is
1345 * returned if we find something, and *start_ret and *end_ret are
1346 * set to reflect the state struct that was found.
1347 *
477d7eaf 1348 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1349 */
1350int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
e6138876
JB
1351 u64 *start_ret, u64 *end_ret, int bits,
1352 struct extent_state **cached_state)
69261c4b
XG
1353{
1354 struct extent_state *state;
e6138876 1355 struct rb_node *n;
69261c4b
XG
1356 int ret = 1;
1357
1358 spin_lock(&tree->lock);
e6138876
JB
1359 if (cached_state && *cached_state) {
1360 state = *cached_state;
1361 if (state->end == start - 1 && state->tree) {
1362 n = rb_next(&state->rb_node);
1363 while (n) {
1364 state = rb_entry(n, struct extent_state,
1365 rb_node);
1366 if (state->state & bits)
1367 goto got_it;
1368 n = rb_next(n);
1369 }
1370 free_extent_state(*cached_state);
1371 *cached_state = NULL;
1372 goto out;
1373 }
1374 free_extent_state(*cached_state);
1375 *cached_state = NULL;
1376 }
1377
69261c4b 1378 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1379got_it:
69261c4b 1380 if (state) {
e6138876 1381 cache_state(state, cached_state);
69261c4b
XG
1382 *start_ret = state->start;
1383 *end_ret = state->end;
1384 ret = 0;
1385 }
e6138876 1386out:
69261c4b
XG
1387 spin_unlock(&tree->lock);
1388 return ret;
1389}
1390
d352ac68
CM
1391/*
1392 * find a contiguous range of bytes in the file marked as delalloc, not
1393 * more than 'max_bytes'. start and end are used to return the range,
1394 *
1395 * 1 is returned if we find something, 0 if nothing was in the tree
1396 */
c8b97818 1397static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1398 u64 *start, u64 *end, u64 max_bytes,
1399 struct extent_state **cached_state)
d1310b2e
CM
1400{
1401 struct rb_node *node;
1402 struct extent_state *state;
1403 u64 cur_start = *start;
1404 u64 found = 0;
1405 u64 total_bytes = 0;
1406
cad321ad 1407 spin_lock(&tree->lock);
c8b97818 1408
d1310b2e
CM
1409 /*
1410 * this search will find all the extents that end after
1411 * our range starts.
1412 */
80ea96b1 1413 node = tree_search(tree, cur_start);
2b114d1d 1414 if (!node) {
3b951516
CM
1415 if (!found)
1416 *end = (u64)-1;
d1310b2e
CM
1417 goto out;
1418 }
1419
d397712b 1420 while (1) {
d1310b2e 1421 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1422 if (found && (state->start != cur_start ||
1423 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1424 goto out;
1425 }
1426 if (!(state->state & EXTENT_DELALLOC)) {
1427 if (!found)
1428 *end = state->end;
1429 goto out;
1430 }
c2a128d2 1431 if (!found) {
d1310b2e 1432 *start = state->start;
c2a128d2
JB
1433 *cached_state = state;
1434 atomic_inc(&state->refs);
1435 }
d1310b2e
CM
1436 found++;
1437 *end = state->end;
1438 cur_start = state->end + 1;
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 total_bytes += state->end - state->start + 1;
1443 if (total_bytes >= max_bytes)
1444 break;
1445 }
1446out:
cad321ad 1447 spin_unlock(&tree->lock);
d1310b2e
CM
1448 return found;
1449}
1450
143bede5
JM
1451static noinline void __unlock_for_delalloc(struct inode *inode,
1452 struct page *locked_page,
1453 u64 start, u64 end)
c8b97818
CM
1454{
1455 int ret;
1456 struct page *pages[16];
1457 unsigned long index = start >> PAGE_CACHE_SHIFT;
1458 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1459 unsigned long nr_pages = end_index - index + 1;
1460 int i;
1461
1462 if (index == locked_page->index && end_index == index)
143bede5 1463 return;
c8b97818 1464
d397712b 1465 while (nr_pages > 0) {
c8b97818 1466 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1467 min_t(unsigned long, nr_pages,
1468 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1469 for (i = 0; i < ret; i++) {
1470 if (pages[i] != locked_page)
1471 unlock_page(pages[i]);
1472 page_cache_release(pages[i]);
1473 }
1474 nr_pages -= ret;
1475 index += ret;
1476 cond_resched();
1477 }
c8b97818
CM
1478}
1479
1480static noinline int lock_delalloc_pages(struct inode *inode,
1481 struct page *locked_page,
1482 u64 delalloc_start,
1483 u64 delalloc_end)
1484{
1485 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1486 unsigned long start_index = index;
1487 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1488 unsigned long pages_locked = 0;
1489 struct page *pages[16];
1490 unsigned long nrpages;
1491 int ret;
1492 int i;
1493
1494 /* the caller is responsible for locking the start index */
1495 if (index == locked_page->index && index == end_index)
1496 return 0;
1497
1498 /* skip the page at the start index */
1499 nrpages = end_index - index + 1;
d397712b 1500 while (nrpages > 0) {
c8b97818 1501 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1502 min_t(unsigned long,
1503 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1504 if (ret == 0) {
1505 ret = -EAGAIN;
1506 goto done;
1507 }
1508 /* now we have an array of pages, lock them all */
1509 for (i = 0; i < ret; i++) {
1510 /*
1511 * the caller is taking responsibility for
1512 * locked_page
1513 */
771ed689 1514 if (pages[i] != locked_page) {
c8b97818 1515 lock_page(pages[i]);
f2b1c41c
CM
1516 if (!PageDirty(pages[i]) ||
1517 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1518 ret = -EAGAIN;
1519 unlock_page(pages[i]);
1520 page_cache_release(pages[i]);
1521 goto done;
1522 }
1523 }
c8b97818 1524 page_cache_release(pages[i]);
771ed689 1525 pages_locked++;
c8b97818 1526 }
c8b97818
CM
1527 nrpages -= ret;
1528 index += ret;
1529 cond_resched();
1530 }
1531 ret = 0;
1532done:
1533 if (ret && pages_locked) {
1534 __unlock_for_delalloc(inode, locked_page,
1535 delalloc_start,
1536 ((u64)(start_index + pages_locked - 1)) <<
1537 PAGE_CACHE_SHIFT);
1538 }
1539 return ret;
1540}
1541
1542/*
1543 * find a contiguous range of bytes in the file marked as delalloc, not
1544 * more than 'max_bytes'. start and end are used to return the range,
1545 *
1546 * 1 is returned if we find something, 0 if nothing was in the tree
1547 */
1548static noinline u64 find_lock_delalloc_range(struct inode *inode,
1549 struct extent_io_tree *tree,
1550 struct page *locked_page,
1551 u64 *start, u64 *end,
1552 u64 max_bytes)
1553{
1554 u64 delalloc_start;
1555 u64 delalloc_end;
1556 u64 found;
9655d298 1557 struct extent_state *cached_state = NULL;
c8b97818
CM
1558 int ret;
1559 int loops = 0;
1560
1561again:
1562 /* step one, find a bunch of delalloc bytes starting at start */
1563 delalloc_start = *start;
1564 delalloc_end = 0;
1565 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1566 max_bytes, &cached_state);
70b99e69 1567 if (!found || delalloc_end <= *start) {
c8b97818
CM
1568 *start = delalloc_start;
1569 *end = delalloc_end;
c2a128d2 1570 free_extent_state(cached_state);
c8b97818
CM
1571 return found;
1572 }
1573
70b99e69
CM
1574 /*
1575 * start comes from the offset of locked_page. We have to lock
1576 * pages in order, so we can't process delalloc bytes before
1577 * locked_page
1578 */
d397712b 1579 if (delalloc_start < *start)
70b99e69 1580 delalloc_start = *start;
70b99e69 1581
c8b97818
CM
1582 /*
1583 * make sure to limit the number of pages we try to lock down
1584 * if we're looping.
1585 */
d397712b 1586 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1587 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1588
c8b97818
CM
1589 /* step two, lock all the pages after the page that has start */
1590 ret = lock_delalloc_pages(inode, locked_page,
1591 delalloc_start, delalloc_end);
1592 if (ret == -EAGAIN) {
1593 /* some of the pages are gone, lets avoid looping by
1594 * shortening the size of the delalloc range we're searching
1595 */
9655d298 1596 free_extent_state(cached_state);
c8b97818
CM
1597 if (!loops) {
1598 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1599 max_bytes = PAGE_CACHE_SIZE - offset;
1600 loops = 1;
1601 goto again;
1602 } else {
1603 found = 0;
1604 goto out_failed;
1605 }
1606 }
79787eaa 1607 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1608
1609 /* step three, lock the state bits for the whole range */
d0082371 1610 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1611
1612 /* then test to make sure it is all still delalloc */
1613 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1614 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1615 if (!ret) {
9655d298
CM
1616 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1617 &cached_state, GFP_NOFS);
c8b97818
CM
1618 __unlock_for_delalloc(inode, locked_page,
1619 delalloc_start, delalloc_end);
1620 cond_resched();
1621 goto again;
1622 }
9655d298 1623 free_extent_state(cached_state);
c8b97818
CM
1624 *start = delalloc_start;
1625 *end = delalloc_end;
1626out_failed:
1627 return found;
1628}
1629
1630int extent_clear_unlock_delalloc(struct inode *inode,
1631 struct extent_io_tree *tree,
1632 u64 start, u64 end, struct page *locked_page,
a791e35e 1633 unsigned long op)
c8b97818
CM
1634{
1635 int ret;
1636 struct page *pages[16];
1637 unsigned long index = start >> PAGE_CACHE_SHIFT;
1638 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1639 unsigned long nr_pages = end_index - index + 1;
1640 int i;
771ed689 1641 int clear_bits = 0;
c8b97818 1642
a791e35e 1643 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1644 clear_bits |= EXTENT_LOCKED;
a791e35e 1645 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1646 clear_bits |= EXTENT_DIRTY;
1647
a791e35e 1648 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1649 clear_bits |= EXTENT_DELALLOC;
1650
2c64c53d 1651 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1652 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1653 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1654 EXTENT_SET_PRIVATE2)))
771ed689 1655 return 0;
c8b97818 1656
d397712b 1657 while (nr_pages > 0) {
c8b97818 1658 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1659 min_t(unsigned long,
1660 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1661 for (i = 0; i < ret; i++) {
8b62b72b 1662
a791e35e 1663 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1664 SetPagePrivate2(pages[i]);
1665
c8b97818
CM
1666 if (pages[i] == locked_page) {
1667 page_cache_release(pages[i]);
1668 continue;
1669 }
a791e35e 1670 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1671 clear_page_dirty_for_io(pages[i]);
a791e35e 1672 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1673 set_page_writeback(pages[i]);
a791e35e 1674 if (op & EXTENT_END_WRITEBACK)
c8b97818 1675 end_page_writeback(pages[i]);
a791e35e 1676 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1677 unlock_page(pages[i]);
c8b97818
CM
1678 page_cache_release(pages[i]);
1679 }
1680 nr_pages -= ret;
1681 index += ret;
1682 cond_resched();
1683 }
1684 return 0;
1685}
c8b97818 1686
d352ac68
CM
1687/*
1688 * count the number of bytes in the tree that have a given bit(s)
1689 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1690 * cached. The total number found is returned.
1691 */
d1310b2e
CM
1692u64 count_range_bits(struct extent_io_tree *tree,
1693 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1694 unsigned long bits, int contig)
d1310b2e
CM
1695{
1696 struct rb_node *node;
1697 struct extent_state *state;
1698 u64 cur_start = *start;
1699 u64 total_bytes = 0;
ec29ed5b 1700 u64 last = 0;
d1310b2e
CM
1701 int found = 0;
1702
1703 if (search_end <= cur_start) {
d1310b2e
CM
1704 WARN_ON(1);
1705 return 0;
1706 }
1707
cad321ad 1708 spin_lock(&tree->lock);
d1310b2e
CM
1709 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1710 total_bytes = tree->dirty_bytes;
1711 goto out;
1712 }
1713 /*
1714 * this search will find all the extents that end after
1715 * our range starts.
1716 */
80ea96b1 1717 node = tree_search(tree, cur_start);
d397712b 1718 if (!node)
d1310b2e 1719 goto out;
d1310b2e 1720
d397712b 1721 while (1) {
d1310b2e
CM
1722 state = rb_entry(node, struct extent_state, rb_node);
1723 if (state->start > search_end)
1724 break;
ec29ed5b
CM
1725 if (contig && found && state->start > last + 1)
1726 break;
1727 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1728 total_bytes += min(search_end, state->end) + 1 -
1729 max(cur_start, state->start);
1730 if (total_bytes >= max_bytes)
1731 break;
1732 if (!found) {
af60bed2 1733 *start = max(cur_start, state->start);
d1310b2e
CM
1734 found = 1;
1735 }
ec29ed5b
CM
1736 last = state->end;
1737 } else if (contig && found) {
1738 break;
d1310b2e
CM
1739 }
1740 node = rb_next(node);
1741 if (!node)
1742 break;
1743 }
1744out:
cad321ad 1745 spin_unlock(&tree->lock);
d1310b2e
CM
1746 return total_bytes;
1747}
b2950863 1748
d352ac68
CM
1749/*
1750 * set the private field for a given byte offset in the tree. If there isn't
1751 * an extent_state there already, this does nothing.
1752 */
d1310b2e
CM
1753int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1754{
1755 struct rb_node *node;
1756 struct extent_state *state;
1757 int ret = 0;
1758
cad321ad 1759 spin_lock(&tree->lock);
d1310b2e
CM
1760 /*
1761 * this search will find all the extents that end after
1762 * our range starts.
1763 */
80ea96b1 1764 node = tree_search(tree, start);
2b114d1d 1765 if (!node) {
d1310b2e
CM
1766 ret = -ENOENT;
1767 goto out;
1768 }
1769 state = rb_entry(node, struct extent_state, rb_node);
1770 if (state->start != start) {
1771 ret = -ENOENT;
1772 goto out;
1773 }
1774 state->private = private;
1775out:
cad321ad 1776 spin_unlock(&tree->lock);
d1310b2e
CM
1777 return ret;
1778}
1779
e4100d98
MX
1780void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1781 int count)
1782{
1783 struct rb_node *node;
1784 struct extent_state *state;
1785
1786 spin_lock(&tree->lock);
1787 /*
1788 * this search will find all the extents that end after
1789 * our range starts.
1790 */
1791 node = tree_search(tree, start);
1792 BUG_ON(!node);
1793
1794 state = rb_entry(node, struct extent_state, rb_node);
1795 BUG_ON(state->start != start);
1796
1797 while (count) {
1798 state->private = *csums++;
1799 count--;
1800 state = next_state(state);
1801 }
1802 spin_unlock(&tree->lock);
1803}
1804
1805static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1806{
1807 struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1808
1809 return page_offset(bvec->bv_page) + bvec->bv_offset;
1810}
1811
1812void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1813 u32 csums[], int count)
1814{
1815 struct rb_node *node;
1816 struct extent_state *state = NULL;
1817 u64 start;
1818
1819 spin_lock(&tree->lock);
1820 do {
1821 start = __btrfs_get_bio_offset(bio, bio_index);
1822 if (state == NULL || state->start != start) {
1823 node = tree_search(tree, start);
1824 BUG_ON(!node);
1825
1826 state = rb_entry(node, struct extent_state, rb_node);
1827 BUG_ON(state->start != start);
1828 }
1829 state->private = *csums++;
1830 count--;
1831 bio_index++;
1832
1833 state = next_state(state);
1834 } while (count);
1835 spin_unlock(&tree->lock);
1836}
1837
d1310b2e
CM
1838int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1839{
1840 struct rb_node *node;
1841 struct extent_state *state;
1842 int ret = 0;
1843
cad321ad 1844 spin_lock(&tree->lock);
d1310b2e
CM
1845 /*
1846 * this search will find all the extents that end after
1847 * our range starts.
1848 */
80ea96b1 1849 node = tree_search(tree, start);
2b114d1d 1850 if (!node) {
d1310b2e
CM
1851 ret = -ENOENT;
1852 goto out;
1853 }
1854 state = rb_entry(node, struct extent_state, rb_node);
1855 if (state->start != start) {
1856 ret = -ENOENT;
1857 goto out;
1858 }
1859 *private = state->private;
1860out:
cad321ad 1861 spin_unlock(&tree->lock);
d1310b2e
CM
1862 return ret;
1863}
1864
1865/*
1866 * searches a range in the state tree for a given mask.
70dec807 1867 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1868 * has the bits set. Otherwise, 1 is returned if any bit in the
1869 * range is found set.
1870 */
1871int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9655d298 1872 int bits, int filled, struct extent_state *cached)
d1310b2e
CM
1873{
1874 struct extent_state *state = NULL;
1875 struct rb_node *node;
1876 int bitset = 0;
d1310b2e 1877
cad321ad 1878 spin_lock(&tree->lock);
df98b6e2
JB
1879 if (cached && cached->tree && cached->start <= start &&
1880 cached->end > start)
9655d298
CM
1881 node = &cached->rb_node;
1882 else
1883 node = tree_search(tree, start);
d1310b2e
CM
1884 while (node && start <= end) {
1885 state = rb_entry(node, struct extent_state, rb_node);
1886
1887 if (filled && state->start > start) {
1888 bitset = 0;
1889 break;
1890 }
1891
1892 if (state->start > end)
1893 break;
1894
1895 if (state->state & bits) {
1896 bitset = 1;
1897 if (!filled)
1898 break;
1899 } else if (filled) {
1900 bitset = 0;
1901 break;
1902 }
46562cec
CM
1903
1904 if (state->end == (u64)-1)
1905 break;
1906
d1310b2e
CM
1907 start = state->end + 1;
1908 if (start > end)
1909 break;
1910 node = rb_next(node);
1911 if (!node) {
1912 if (filled)
1913 bitset = 0;
1914 break;
1915 }
1916 }
cad321ad 1917 spin_unlock(&tree->lock);
d1310b2e
CM
1918 return bitset;
1919}
d1310b2e
CM
1920
1921/*
1922 * helper function to set a given page up to date if all the
1923 * extents in the tree for that page are up to date
1924 */
143bede5 1925static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1926{
4eee4fa4 1927 u64 start = page_offset(page);
d1310b2e 1928 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1929 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1930 SetPageUptodate(page);
d1310b2e
CM
1931}
1932
1933/*
1934 * helper function to unlock a page if all the extents in the tree
1935 * for that page are unlocked
1936 */
143bede5 1937static void check_page_locked(struct extent_io_tree *tree, struct page *page)
d1310b2e 1938{
4eee4fa4 1939 u64 start = page_offset(page);
d1310b2e 1940 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1941 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL))
d1310b2e 1942 unlock_page(page);
d1310b2e
CM
1943}
1944
1945/*
1946 * helper function to end page writeback if all the extents
1947 * in the tree for that page are done with writeback
1948 */
143bede5
JM
1949static void check_page_writeback(struct extent_io_tree *tree,
1950 struct page *page)
d1310b2e 1951{
1edbb734 1952 end_page_writeback(page);
d1310b2e
CM
1953}
1954
4a54c8c1
JS
1955/*
1956 * When IO fails, either with EIO or csum verification fails, we
1957 * try other mirrors that might have a good copy of the data. This
1958 * io_failure_record is used to record state as we go through all the
1959 * mirrors. If another mirror has good data, the page is set up to date
1960 * and things continue. If a good mirror can't be found, the original
1961 * bio end_io callback is called to indicate things have failed.
1962 */
1963struct io_failure_record {
1964 struct page *page;
1965 u64 start;
1966 u64 len;
1967 u64 logical;
1968 unsigned long bio_flags;
1969 int this_mirror;
1970 int failed_mirror;
1971 int in_validation;
1972};
1973
1974static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1975 int did_repair)
1976{
1977 int ret;
1978 int err = 0;
1979 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1980
1981 set_state_private(failure_tree, rec->start, 0);
1982 ret = clear_extent_bits(failure_tree, rec->start,
1983 rec->start + rec->len - 1,
1984 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1985 if (ret)
1986 err = ret;
1987
53b381b3
DW
1988 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1989 rec->start + rec->len - 1,
1990 EXTENT_DAMAGED, GFP_NOFS);
1991 if (ret && !err)
1992 err = ret;
4a54c8c1
JS
1993
1994 kfree(rec);
1995 return err;
1996}
1997
1998static void repair_io_failure_callback(struct bio *bio, int err)
1999{
2000 complete(bio->bi_private);
2001}
2002
2003/*
2004 * this bypasses the standard btrfs submit functions deliberately, as
2005 * the standard behavior is to write all copies in a raid setup. here we only
2006 * want to write the one bad copy. so we do the mapping for ourselves and issue
2007 * submit_bio directly.
3ec706c8 2008 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2009 * actually prevents the read that triggered the error from finishing.
2010 * currently, there can be no more than two copies of every data bit. thus,
2011 * exactly one rewrite is required.
2012 */
3ec706c8 2013int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2014 u64 length, u64 logical, struct page *page,
2015 int mirror_num)
2016{
2017 struct bio *bio;
2018 struct btrfs_device *dev;
2019 DECLARE_COMPLETION_ONSTACK(compl);
2020 u64 map_length = 0;
2021 u64 sector;
2022 struct btrfs_bio *bbio = NULL;
53b381b3 2023 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2024 int ret;
2025
2026 BUG_ON(!mirror_num);
2027
53b381b3
DW
2028 /* we can't repair anything in raid56 yet */
2029 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2030 return 0;
2031
4a54c8c1
JS
2032 bio = bio_alloc(GFP_NOFS, 1);
2033 if (!bio)
2034 return -EIO;
2035 bio->bi_private = &compl;
2036 bio->bi_end_io = repair_io_failure_callback;
2037 bio->bi_size = 0;
2038 map_length = length;
2039
3ec706c8 2040 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2041 &map_length, &bbio, mirror_num);
2042 if (ret) {
2043 bio_put(bio);
2044 return -EIO;
2045 }
2046 BUG_ON(mirror_num != bbio->mirror_num);
2047 sector = bbio->stripes[mirror_num-1].physical >> 9;
2048 bio->bi_sector = sector;
2049 dev = bbio->stripes[mirror_num-1].dev;
2050 kfree(bbio);
2051 if (!dev || !dev->bdev || !dev->writeable) {
2052 bio_put(bio);
2053 return -EIO;
2054 }
2055 bio->bi_bdev = dev->bdev;
4eee4fa4 2056 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2057 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2058 wait_for_completion(&compl);
2059
2060 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2061 /* try to remap that extent elsewhere? */
2062 bio_put(bio);
442a4f63 2063 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2064 return -EIO;
2065 }
2066
d5b025d5 2067 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2068 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2069 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2070
2071 bio_put(bio);
2072 return 0;
2073}
2074
ea466794
JB
2075int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2076 int mirror_num)
2077{
ea466794
JB
2078 u64 start = eb->start;
2079 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2080 int ret = 0;
ea466794
JB
2081
2082 for (i = 0; i < num_pages; i++) {
2083 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2084 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2085 start, p, mirror_num);
2086 if (ret)
2087 break;
2088 start += PAGE_CACHE_SIZE;
2089 }
2090
2091 return ret;
2092}
2093
4a54c8c1
JS
2094/*
2095 * each time an IO finishes, we do a fast check in the IO failure tree
2096 * to see if we need to process or clean up an io_failure_record
2097 */
2098static int clean_io_failure(u64 start, struct page *page)
2099{
2100 u64 private;
2101 u64 private_failure;
2102 struct io_failure_record *failrec;
3ec706c8 2103 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2104 struct extent_state *state;
2105 int num_copies;
2106 int did_repair = 0;
2107 int ret;
2108 struct inode *inode = page->mapping->host;
2109
2110 private = 0;
2111 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2112 (u64)-1, 1, EXTENT_DIRTY, 0);
2113 if (!ret)
2114 return 0;
2115
2116 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2117 &private_failure);
2118 if (ret)
2119 return 0;
2120
2121 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2122 BUG_ON(!failrec->this_mirror);
2123
2124 if (failrec->in_validation) {
2125 /* there was no real error, just free the record */
2126 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2127 failrec->start);
2128 did_repair = 1;
2129 goto out;
2130 }
2131
2132 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2133 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2134 failrec->start,
2135 EXTENT_LOCKED);
2136 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2137
2138 if (state && state->start == failrec->start) {
3ec706c8
SB
2139 fs_info = BTRFS_I(inode)->root->fs_info;
2140 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2141 failrec->len);
4a54c8c1 2142 if (num_copies > 1) {
3ec706c8 2143 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2144 failrec->logical, page,
2145 failrec->failed_mirror);
2146 did_repair = !ret;
2147 }
53b381b3 2148 ret = 0;
4a54c8c1
JS
2149 }
2150
2151out:
2152 if (!ret)
2153 ret = free_io_failure(inode, failrec, did_repair);
2154
2155 return ret;
2156}
2157
2158/*
2159 * this is a generic handler for readpage errors (default
2160 * readpage_io_failed_hook). if other copies exist, read those and write back
2161 * good data to the failed position. does not investigate in remapping the
2162 * failed extent elsewhere, hoping the device will be smart enough to do this as
2163 * needed
2164 */
2165
2166static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2167 u64 start, u64 end, int failed_mirror,
2168 struct extent_state *state)
2169{
2170 struct io_failure_record *failrec = NULL;
2171 u64 private;
2172 struct extent_map *em;
2173 struct inode *inode = page->mapping->host;
2174 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2175 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2176 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2177 struct bio *bio;
2178 int num_copies;
2179 int ret;
2180 int read_mode;
2181 u64 logical;
2182
2183 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2184
2185 ret = get_state_private(failure_tree, start, &private);
2186 if (ret) {
2187 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2188 if (!failrec)
2189 return -ENOMEM;
2190 failrec->start = start;
2191 failrec->len = end - start + 1;
2192 failrec->this_mirror = 0;
2193 failrec->bio_flags = 0;
2194 failrec->in_validation = 0;
2195
2196 read_lock(&em_tree->lock);
2197 em = lookup_extent_mapping(em_tree, start, failrec->len);
2198 if (!em) {
2199 read_unlock(&em_tree->lock);
2200 kfree(failrec);
2201 return -EIO;
2202 }
2203
2204 if (em->start > start || em->start + em->len < start) {
2205 free_extent_map(em);
2206 em = NULL;
2207 }
2208 read_unlock(&em_tree->lock);
2209
7a2d6a64 2210 if (!em) {
4a54c8c1
JS
2211 kfree(failrec);
2212 return -EIO;
2213 }
2214 logical = start - em->start;
2215 logical = em->block_start + logical;
2216 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2217 logical = em->block_start;
2218 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2219 extent_set_compress_type(&failrec->bio_flags,
2220 em->compress_type);
2221 }
2222 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2223 "len=%llu\n", logical, start, failrec->len);
2224 failrec->logical = logical;
2225 free_extent_map(em);
2226
2227 /* set the bits in the private failure tree */
2228 ret = set_extent_bits(failure_tree, start, end,
2229 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2230 if (ret >= 0)
2231 ret = set_state_private(failure_tree, start,
2232 (u64)(unsigned long)failrec);
2233 /* set the bits in the inode's tree */
2234 if (ret >= 0)
2235 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2236 GFP_NOFS);
2237 if (ret < 0) {
2238 kfree(failrec);
2239 return ret;
2240 }
2241 } else {
2242 failrec = (struct io_failure_record *)(unsigned long)private;
2243 pr_debug("bio_readpage_error: (found) logical=%llu, "
2244 "start=%llu, len=%llu, validation=%d\n",
2245 failrec->logical, failrec->start, failrec->len,
2246 failrec->in_validation);
2247 /*
2248 * when data can be on disk more than twice, add to failrec here
2249 * (e.g. with a list for failed_mirror) to make
2250 * clean_io_failure() clean all those errors at once.
2251 */
2252 }
5d964051
SB
2253 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2254 failrec->logical, failrec->len);
4a54c8c1
JS
2255 if (num_copies == 1) {
2256 /*
2257 * we only have a single copy of the data, so don't bother with
2258 * all the retry and error correction code that follows. no
2259 * matter what the error is, it is very likely to persist.
2260 */
2261 pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2262 "state=%p, num_copies=%d, next_mirror %d, "
2263 "failed_mirror %d\n", state, num_copies,
2264 failrec->this_mirror, failed_mirror);
2265 free_io_failure(inode, failrec, 0);
2266 return -EIO;
2267 }
2268
2269 if (!state) {
2270 spin_lock(&tree->lock);
2271 state = find_first_extent_bit_state(tree, failrec->start,
2272 EXTENT_LOCKED);
2273 if (state && state->start != failrec->start)
2274 state = NULL;
2275 spin_unlock(&tree->lock);
2276 }
2277
2278 /*
2279 * there are two premises:
2280 * a) deliver good data to the caller
2281 * b) correct the bad sectors on disk
2282 */
2283 if (failed_bio->bi_vcnt > 1) {
2284 /*
2285 * to fulfill b), we need to know the exact failing sectors, as
2286 * we don't want to rewrite any more than the failed ones. thus,
2287 * we need separate read requests for the failed bio
2288 *
2289 * if the following BUG_ON triggers, our validation request got
2290 * merged. we need separate requests for our algorithm to work.
2291 */
2292 BUG_ON(failrec->in_validation);
2293 failrec->in_validation = 1;
2294 failrec->this_mirror = failed_mirror;
2295 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2296 } else {
2297 /*
2298 * we're ready to fulfill a) and b) alongside. get a good copy
2299 * of the failed sector and if we succeed, we have setup
2300 * everything for repair_io_failure to do the rest for us.
2301 */
2302 if (failrec->in_validation) {
2303 BUG_ON(failrec->this_mirror != failed_mirror);
2304 failrec->in_validation = 0;
2305 failrec->this_mirror = 0;
2306 }
2307 failrec->failed_mirror = failed_mirror;
2308 failrec->this_mirror++;
2309 if (failrec->this_mirror == failed_mirror)
2310 failrec->this_mirror++;
2311 read_mode = READ_SYNC;
2312 }
2313
2314 if (!state || failrec->this_mirror > num_copies) {
2315 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2316 "next_mirror %d, failed_mirror %d\n", state,
2317 num_copies, failrec->this_mirror, failed_mirror);
2318 free_io_failure(inode, failrec, 0);
2319 return -EIO;
2320 }
2321
2322 bio = bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2323 if (!bio) {
2324 free_io_failure(inode, failrec, 0);
2325 return -EIO;
2326 }
4a54c8c1
JS
2327 bio->bi_private = state;
2328 bio->bi_end_io = failed_bio->bi_end_io;
2329 bio->bi_sector = failrec->logical >> 9;
2330 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2331 bio->bi_size = 0;
2332
2333 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2334
2335 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2336 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2337 failrec->this_mirror, num_copies, failrec->in_validation);
2338
013bd4c3
TI
2339 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2340 failrec->this_mirror,
2341 failrec->bio_flags, 0);
2342 return ret;
4a54c8c1
JS
2343}
2344
d1310b2e
CM
2345/* lots and lots of room for performance fixes in the end_bio funcs */
2346
87826df0
JM
2347int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2348{
2349 int uptodate = (err == 0);
2350 struct extent_io_tree *tree;
2351 int ret;
2352
2353 tree = &BTRFS_I(page->mapping->host)->io_tree;
2354
2355 if (tree->ops && tree->ops->writepage_end_io_hook) {
2356 ret = tree->ops->writepage_end_io_hook(page, start,
2357 end, NULL, uptodate);
2358 if (ret)
2359 uptodate = 0;
2360 }
2361
87826df0 2362 if (!uptodate) {
87826df0
JM
2363 ClearPageUptodate(page);
2364 SetPageError(page);
2365 }
2366 return 0;
2367}
2368
d1310b2e
CM
2369/*
2370 * after a writepage IO is done, we need to:
2371 * clear the uptodate bits on error
2372 * clear the writeback bits in the extent tree for this IO
2373 * end_page_writeback if the page has no more pending IO
2374 *
2375 * Scheduling is not allowed, so the extent state tree is expected
2376 * to have one and only one object corresponding to this IO.
2377 */
d1310b2e 2378static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2379{
d1310b2e 2380 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2381 struct extent_io_tree *tree;
d1310b2e
CM
2382 u64 start;
2383 u64 end;
2384 int whole_page;
2385
d1310b2e
CM
2386 do {
2387 struct page *page = bvec->bv_page;
902b22f3
DW
2388 tree = &BTRFS_I(page->mapping->host)->io_tree;
2389
4eee4fa4 2390 start = page_offset(page) + bvec->bv_offset;
d1310b2e
CM
2391 end = start + bvec->bv_len - 1;
2392
2393 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2394 whole_page = 1;
2395 else
2396 whole_page = 0;
2397
2398 if (--bvec >= bio->bi_io_vec)
2399 prefetchw(&bvec->bv_page->flags);
1259ab75 2400
87826df0
JM
2401 if (end_extent_writepage(page, err, start, end))
2402 continue;
70dec807 2403
d1310b2e
CM
2404 if (whole_page)
2405 end_page_writeback(page);
2406 else
2407 check_page_writeback(tree, page);
d1310b2e 2408 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2409
d1310b2e 2410 bio_put(bio);
d1310b2e
CM
2411}
2412
2413/*
2414 * after a readpage IO is done, we need to:
2415 * clear the uptodate bits on error
2416 * set the uptodate bits if things worked
2417 * set the page up to date if all extents in the tree are uptodate
2418 * clear the lock bit in the extent tree
2419 * unlock the page if there are no other extents locked for it
2420 *
2421 * Scheduling is not allowed, so the extent state tree is expected
2422 * to have one and only one object corresponding to this IO.
2423 */
d1310b2e 2424static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2425{
2426 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2427 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2428 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2429 struct extent_io_tree *tree;
d1310b2e
CM
2430 u64 start;
2431 u64 end;
2432 int whole_page;
5cf1ab56 2433 int mirror;
d1310b2e
CM
2434 int ret;
2435
d20f7043
CM
2436 if (err)
2437 uptodate = 0;
2438
d1310b2e
CM
2439 do {
2440 struct page *page = bvec->bv_page;
507903b8
AJ
2441 struct extent_state *cached = NULL;
2442 struct extent_state *state;
2443
be3940c0
KO
2444 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2445 "mirror=%ld\n", (u64)bio->bi_sector, err,
4a54c8c1 2446 (long int)bio->bi_bdev);
902b22f3
DW
2447 tree = &BTRFS_I(page->mapping->host)->io_tree;
2448
4eee4fa4 2449 start = page_offset(page) + bvec->bv_offset;
d1310b2e
CM
2450 end = start + bvec->bv_len - 1;
2451
2452 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE)
2453 whole_page = 1;
2454 else
2455 whole_page = 0;
2456
4125bf76 2457 if (++bvec <= bvec_end)
d1310b2e
CM
2458 prefetchw(&bvec->bv_page->flags);
2459
507903b8 2460 spin_lock(&tree->lock);
0d399205 2461 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2462 if (state && state->start == start) {
507903b8
AJ
2463 /*
2464 * take a reference on the state, unlock will drop
2465 * the ref
2466 */
2467 cache_state(state, &cached);
2468 }
2469 spin_unlock(&tree->lock);
2470
5cf1ab56 2471 mirror = (int)(unsigned long)bio->bi_bdev;
d1310b2e 2472 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2473 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2474 state, mirror);
5ee0844d 2475 if (ret)
d1310b2e 2476 uptodate = 0;
5ee0844d 2477 else
4a54c8c1 2478 clean_io_failure(start, page);
d1310b2e 2479 }
ea466794 2480
ea466794 2481 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2482 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2483 if (!ret && !err &&
2484 test_bit(BIO_UPTODATE, &bio->bi_flags))
2485 uptodate = 1;
2486 } else if (!uptodate) {
f4a8e656
JS
2487 /*
2488 * The generic bio_readpage_error handles errors the
2489 * following way: If possible, new read requests are
2490 * created and submitted and will end up in
2491 * end_bio_extent_readpage as well (if we're lucky, not
2492 * in the !uptodate case). In that case it returns 0 and
2493 * we just go on with the next page in our bio. If it
2494 * can't handle the error it will return -EIO and we
2495 * remain responsible for that page.
2496 */
5cf1ab56 2497 ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
7e38326f 2498 if (ret == 0) {
3b951516
CM
2499 uptodate =
2500 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2501 if (err)
2502 uptodate = 0;
507903b8 2503 uncache_state(&cached);
7e38326f
CM
2504 continue;
2505 }
2506 }
d1310b2e 2507
0b32f4bb 2508 if (uptodate && tree->track_uptodate) {
507903b8 2509 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2510 GFP_ATOMIC);
771ed689 2511 }
507903b8 2512 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2513
70dec807
CM
2514 if (whole_page) {
2515 if (uptodate) {
2516 SetPageUptodate(page);
2517 } else {
2518 ClearPageUptodate(page);
2519 SetPageError(page);
2520 }
d1310b2e 2521 unlock_page(page);
70dec807
CM
2522 } else {
2523 if (uptodate) {
2524 check_page_uptodate(tree, page);
2525 } else {
2526 ClearPageUptodate(page);
2527 SetPageError(page);
2528 }
d1310b2e 2529 check_page_locked(tree, page);
70dec807 2530 }
4125bf76 2531 } while (bvec <= bvec_end);
d1310b2e
CM
2532
2533 bio_put(bio);
d1310b2e
CM
2534}
2535
88f794ed
MX
2536struct bio *
2537btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2538 gfp_t gfp_flags)
d1310b2e
CM
2539{
2540 struct bio *bio;
2541
2542 bio = bio_alloc(gfp_flags, nr_vecs);
2543
2544 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2545 while (!bio && (nr_vecs /= 2))
2546 bio = bio_alloc(gfp_flags, nr_vecs);
2547 }
2548
2549 if (bio) {
e1c4b745 2550 bio->bi_size = 0;
d1310b2e
CM
2551 bio->bi_bdev = bdev;
2552 bio->bi_sector = first_sector;
2553 }
2554 return bio;
2555}
2556
355808c2
JM
2557static int __must_check submit_one_bio(int rw, struct bio *bio,
2558 int mirror_num, unsigned long bio_flags)
d1310b2e 2559{
d1310b2e 2560 int ret = 0;
70dec807
CM
2561 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2562 struct page *page = bvec->bv_page;
2563 struct extent_io_tree *tree = bio->bi_private;
70dec807 2564 u64 start;
70dec807 2565
4eee4fa4 2566 start = page_offset(page) + bvec->bv_offset;
70dec807 2567
902b22f3 2568 bio->bi_private = NULL;
d1310b2e
CM
2569
2570 bio_get(bio);
2571
065631f6 2572 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2573 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2574 mirror_num, bio_flags, start);
0b86a832 2575 else
21adbd5c 2576 btrfsic_submit_bio(rw, bio);
4a54c8c1 2577
d1310b2e
CM
2578 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2579 ret = -EOPNOTSUPP;
2580 bio_put(bio);
2581 return ret;
2582}
2583
64a16701 2584static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2585 unsigned long offset, size_t size, struct bio *bio,
2586 unsigned long bio_flags)
2587{
2588 int ret = 0;
2589 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2590 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2591 bio_flags);
2592 BUG_ON(ret < 0);
2593 return ret;
2594
2595}
2596
d1310b2e
CM
2597static int submit_extent_page(int rw, struct extent_io_tree *tree,
2598 struct page *page, sector_t sector,
2599 size_t size, unsigned long offset,
2600 struct block_device *bdev,
2601 struct bio **bio_ret,
2602 unsigned long max_pages,
f188591e 2603 bio_end_io_t end_io_func,
c8b97818
CM
2604 int mirror_num,
2605 unsigned long prev_bio_flags,
2606 unsigned long bio_flags)
d1310b2e
CM
2607{
2608 int ret = 0;
2609 struct bio *bio;
2610 int nr;
c8b97818
CM
2611 int contig = 0;
2612 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2613 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2614 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2615
2616 if (bio_ret && *bio_ret) {
2617 bio = *bio_ret;
c8b97818
CM
2618 if (old_compressed)
2619 contig = bio->bi_sector == sector;
2620 else
2621 contig = bio->bi_sector + (bio->bi_size >> 9) ==
2622 sector;
2623
2624 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2625 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2626 bio_add_page(bio, page, page_size, offset) < page_size) {
2627 ret = submit_one_bio(rw, bio, mirror_num,
2628 prev_bio_flags);
79787eaa
JM
2629 if (ret < 0)
2630 return ret;
d1310b2e
CM
2631 bio = NULL;
2632 } else {
2633 return 0;
2634 }
2635 }
c8b97818
CM
2636 if (this_compressed)
2637 nr = BIO_MAX_PAGES;
2638 else
2639 nr = bio_get_nr_vecs(bdev);
2640
88f794ed 2641 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2642 if (!bio)
2643 return -ENOMEM;
70dec807 2644
c8b97818 2645 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2646 bio->bi_end_io = end_io_func;
2647 bio->bi_private = tree;
70dec807 2648
d397712b 2649 if (bio_ret)
d1310b2e 2650 *bio_ret = bio;
d397712b 2651 else
c8b97818 2652 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2653
2654 return ret;
2655}
2656
4f2de97a 2657void attach_extent_buffer_page(struct extent_buffer *eb, struct page *page)
d1310b2e
CM
2658{
2659 if (!PagePrivate(page)) {
2660 SetPagePrivate(page);
d1310b2e 2661 page_cache_get(page);
4f2de97a
JB
2662 set_page_private(page, (unsigned long)eb);
2663 } else {
2664 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2665 }
2666}
2667
4f2de97a 2668void set_page_extent_mapped(struct page *page)
d1310b2e 2669{
4f2de97a
JB
2670 if (!PagePrivate(page)) {
2671 SetPagePrivate(page);
2672 page_cache_get(page);
2673 set_page_private(page, EXTENT_PAGE_PRIVATE);
2674 }
d1310b2e
CM
2675}
2676
2677/*
2678 * basic readpage implementation. Locked extent state structs are inserted
2679 * into the tree that are removed when the IO is done (by the end_io
2680 * handlers)
79787eaa 2681 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2682 */
2683static int __extent_read_full_page(struct extent_io_tree *tree,
2684 struct page *page,
2685 get_extent_t *get_extent,
c8b97818
CM
2686 struct bio **bio, int mirror_num,
2687 unsigned long *bio_flags)
d1310b2e
CM
2688{
2689 struct inode *inode = page->mapping->host;
4eee4fa4 2690 u64 start = page_offset(page);
d1310b2e
CM
2691 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2692 u64 end;
2693 u64 cur = start;
2694 u64 extent_offset;
2695 u64 last_byte = i_size_read(inode);
2696 u64 block_start;
2697 u64 cur_end;
2698 sector_t sector;
2699 struct extent_map *em;
2700 struct block_device *bdev;
11c65dcc 2701 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2702 int ret;
2703 int nr = 0;
306e16ce 2704 size_t pg_offset = 0;
d1310b2e 2705 size_t iosize;
c8b97818 2706 size_t disk_io_size;
d1310b2e 2707 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2708 unsigned long this_bio_flag = 0;
d1310b2e
CM
2709
2710 set_page_extent_mapped(page);
2711
90a887c9
DM
2712 if (!PageUptodate(page)) {
2713 if (cleancache_get_page(page) == 0) {
2714 BUG_ON(blocksize != PAGE_SIZE);
2715 goto out;
2716 }
2717 }
2718
d1310b2e 2719 end = page_end;
11c65dcc 2720 while (1) {
d0082371 2721 lock_extent(tree, start, end);
11c65dcc
JB
2722 ordered = btrfs_lookup_ordered_extent(inode, start);
2723 if (!ordered)
2724 break;
d0082371 2725 unlock_extent(tree, start, end);
11c65dcc
JB
2726 btrfs_start_ordered_extent(inode, ordered, 1);
2727 btrfs_put_ordered_extent(ordered);
2728 }
d1310b2e 2729
c8b97818
CM
2730 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2731 char *userpage;
2732 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2733
2734 if (zero_offset) {
2735 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2736 userpage = kmap_atomic(page);
c8b97818
CM
2737 memset(userpage + zero_offset, 0, iosize);
2738 flush_dcache_page(page);
7ac687d9 2739 kunmap_atomic(userpage);
c8b97818
CM
2740 }
2741 }
d1310b2e 2742 while (cur <= end) {
c8f2f24b
JB
2743 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2744
d1310b2e
CM
2745 if (cur >= last_byte) {
2746 char *userpage;
507903b8
AJ
2747 struct extent_state *cached = NULL;
2748
306e16ce 2749 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2750 userpage = kmap_atomic(page);
306e16ce 2751 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2752 flush_dcache_page(page);
7ac687d9 2753 kunmap_atomic(userpage);
d1310b2e 2754 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2755 &cached, GFP_NOFS);
2756 unlock_extent_cached(tree, cur, cur + iosize - 1,
2757 &cached, GFP_NOFS);
d1310b2e
CM
2758 break;
2759 }
306e16ce 2760 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2761 end - cur + 1, 0);
c704005d 2762 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2763 SetPageError(page);
d0082371 2764 unlock_extent(tree, cur, end);
d1310b2e
CM
2765 break;
2766 }
d1310b2e
CM
2767 extent_offset = cur - em->start;
2768 BUG_ON(extent_map_end(em) <= cur);
2769 BUG_ON(end < cur);
2770
261507a0 2771 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2772 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2773 extent_set_compress_type(&this_bio_flag,
2774 em->compress_type);
2775 }
c8b97818 2776
d1310b2e
CM
2777 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2778 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2779 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2780 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2781 disk_io_size = em->block_len;
2782 sector = em->block_start >> 9;
2783 } else {
2784 sector = (em->block_start + extent_offset) >> 9;
2785 disk_io_size = iosize;
2786 }
d1310b2e
CM
2787 bdev = em->bdev;
2788 block_start = em->block_start;
d899e052
YZ
2789 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2790 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2791 free_extent_map(em);
2792 em = NULL;
2793
2794 /* we've found a hole, just zero and go on */
2795 if (block_start == EXTENT_MAP_HOLE) {
2796 char *userpage;
507903b8
AJ
2797 struct extent_state *cached = NULL;
2798
7ac687d9 2799 userpage = kmap_atomic(page);
306e16ce 2800 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2801 flush_dcache_page(page);
7ac687d9 2802 kunmap_atomic(userpage);
d1310b2e
CM
2803
2804 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2805 &cached, GFP_NOFS);
2806 unlock_extent_cached(tree, cur, cur + iosize - 1,
2807 &cached, GFP_NOFS);
d1310b2e 2808 cur = cur + iosize;
306e16ce 2809 pg_offset += iosize;
d1310b2e
CM
2810 continue;
2811 }
2812 /* the get_extent function already copied into the page */
9655d298
CM
2813 if (test_range_bit(tree, cur, cur_end,
2814 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2815 check_page_uptodate(tree, page);
d0082371 2816 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2817 cur = cur + iosize;
306e16ce 2818 pg_offset += iosize;
d1310b2e
CM
2819 continue;
2820 }
70dec807
CM
2821 /* we have an inline extent but it didn't get marked up
2822 * to date. Error out
2823 */
2824 if (block_start == EXTENT_MAP_INLINE) {
2825 SetPageError(page);
d0082371 2826 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2827 cur = cur + iosize;
306e16ce 2828 pg_offset += iosize;
70dec807
CM
2829 continue;
2830 }
d1310b2e 2831
c8f2f24b
JB
2832 pnr -= page->index;
2833 ret = submit_extent_page(READ, tree, page,
306e16ce 2834 sector, disk_io_size, pg_offset,
89642229 2835 bdev, bio, pnr,
c8b97818
CM
2836 end_bio_extent_readpage, mirror_num,
2837 *bio_flags,
2838 this_bio_flag);
c8f2f24b
JB
2839 if (!ret) {
2840 nr++;
2841 *bio_flags = this_bio_flag;
2842 } else {
d1310b2e 2843 SetPageError(page);
edd33c99
JB
2844 unlock_extent(tree, cur, cur + iosize - 1);
2845 }
d1310b2e 2846 cur = cur + iosize;
306e16ce 2847 pg_offset += iosize;
d1310b2e 2848 }
90a887c9 2849out:
d1310b2e
CM
2850 if (!nr) {
2851 if (!PageError(page))
2852 SetPageUptodate(page);
2853 unlock_page(page);
2854 }
2855 return 0;
2856}
2857
2858int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2859 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2860{
2861 struct bio *bio = NULL;
c8b97818 2862 unsigned long bio_flags = 0;
d1310b2e
CM
2863 int ret;
2864
8ddc7d9c 2865 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
c8b97818 2866 &bio_flags);
d1310b2e 2867 if (bio)
8ddc7d9c 2868 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2869 return ret;
2870}
d1310b2e 2871
11c8349b
CM
2872static noinline void update_nr_written(struct page *page,
2873 struct writeback_control *wbc,
2874 unsigned long nr_written)
2875{
2876 wbc->nr_to_write -= nr_written;
2877 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2878 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2879 page->mapping->writeback_index = page->index + nr_written;
2880}
2881
d1310b2e
CM
2882/*
2883 * the writepage semantics are similar to regular writepage. extent
2884 * records are inserted to lock ranges in the tree, and as dirty areas
2885 * are found, they are marked writeback. Then the lock bits are removed
2886 * and the end_io handler clears the writeback ranges
2887 */
2888static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2889 void *data)
2890{
2891 struct inode *inode = page->mapping->host;
2892 struct extent_page_data *epd = data;
2893 struct extent_io_tree *tree = epd->tree;
4eee4fa4 2894 u64 start = page_offset(page);
d1310b2e
CM
2895 u64 delalloc_start;
2896 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2897 u64 end;
2898 u64 cur = start;
2899 u64 extent_offset;
2900 u64 last_byte = i_size_read(inode);
2901 u64 block_start;
2902 u64 iosize;
2903 sector_t sector;
2c64c53d 2904 struct extent_state *cached_state = NULL;
d1310b2e
CM
2905 struct extent_map *em;
2906 struct block_device *bdev;
2907 int ret;
2908 int nr = 0;
7f3c74fb 2909 size_t pg_offset = 0;
d1310b2e
CM
2910 size_t blocksize;
2911 loff_t i_size = i_size_read(inode);
2912 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2913 u64 nr_delalloc;
2914 u64 delalloc_end;
c8b97818
CM
2915 int page_started;
2916 int compressed;
ffbd517d 2917 int write_flags;
771ed689 2918 unsigned long nr_written = 0;
9e487107 2919 bool fill_delalloc = true;
d1310b2e 2920
ffbd517d 2921 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2922 write_flags = WRITE_SYNC;
ffbd517d
CM
2923 else
2924 write_flags = WRITE;
2925
1abe9b8a 2926 trace___extent_writepage(page, inode, wbc);
2927
d1310b2e 2928 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2929
2930 ClearPageError(page);
2931
7f3c74fb 2932 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2933 if (page->index > end_index ||
7f3c74fb 2934 (page->index == end_index && !pg_offset)) {
39be25cd 2935 page->mapping->a_ops->invalidatepage(page, 0);
d1310b2e
CM
2936 unlock_page(page);
2937 return 0;
2938 }
2939
2940 if (page->index == end_index) {
2941 char *userpage;
2942
7ac687d9 2943 userpage = kmap_atomic(page);
7f3c74fb
CM
2944 memset(userpage + pg_offset, 0,
2945 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 2946 kunmap_atomic(userpage);
211c17f5 2947 flush_dcache_page(page);
d1310b2e 2948 }
7f3c74fb 2949 pg_offset = 0;
d1310b2e
CM
2950
2951 set_page_extent_mapped(page);
2952
9e487107
JB
2953 if (!tree->ops || !tree->ops->fill_delalloc)
2954 fill_delalloc = false;
2955
d1310b2e
CM
2956 delalloc_start = start;
2957 delalloc_end = 0;
c8b97818 2958 page_started = 0;
9e487107 2959 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 2960 u64 delalloc_to_write = 0;
11c8349b
CM
2961 /*
2962 * make sure the wbc mapping index is at least updated
2963 * to this page.
2964 */
2965 update_nr_written(page, wbc, 0);
2966
d397712b 2967 while (delalloc_end < page_end) {
771ed689 2968 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
2969 page,
2970 &delalloc_start,
d1310b2e
CM
2971 &delalloc_end,
2972 128 * 1024 * 1024);
771ed689
CM
2973 if (nr_delalloc == 0) {
2974 delalloc_start = delalloc_end + 1;
2975 continue;
2976 }
013bd4c3
TI
2977 ret = tree->ops->fill_delalloc(inode, page,
2978 delalloc_start,
2979 delalloc_end,
2980 &page_started,
2981 &nr_written);
79787eaa
JM
2982 /* File system has been set read-only */
2983 if (ret) {
2984 SetPageError(page);
2985 goto done;
2986 }
f85d7d6c
CM
2987 /*
2988 * delalloc_end is already one less than the total
2989 * length, so we don't subtract one from
2990 * PAGE_CACHE_SIZE
2991 */
2992 delalloc_to_write += (delalloc_end - delalloc_start +
2993 PAGE_CACHE_SIZE) >>
2994 PAGE_CACHE_SHIFT;
d1310b2e 2995 delalloc_start = delalloc_end + 1;
d1310b2e 2996 }
f85d7d6c
CM
2997 if (wbc->nr_to_write < delalloc_to_write) {
2998 int thresh = 8192;
2999
3000 if (delalloc_to_write < thresh * 2)
3001 thresh = delalloc_to_write;
3002 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3003 thresh);
3004 }
c8b97818 3005
771ed689
CM
3006 /* did the fill delalloc function already unlock and start
3007 * the IO?
3008 */
3009 if (page_started) {
3010 ret = 0;
11c8349b
CM
3011 /*
3012 * we've unlocked the page, so we can't update
3013 * the mapping's writeback index, just update
3014 * nr_to_write.
3015 */
3016 wbc->nr_to_write -= nr_written;
3017 goto done_unlocked;
771ed689 3018 }
c8b97818 3019 }
247e743c 3020 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3021 ret = tree->ops->writepage_start_hook(page, start,
3022 page_end);
87826df0
JM
3023 if (ret) {
3024 /* Fixup worker will requeue */
3025 if (ret == -EBUSY)
3026 wbc->pages_skipped++;
3027 else
3028 redirty_page_for_writepage(wbc, page);
11c8349b 3029 update_nr_written(page, wbc, nr_written);
247e743c 3030 unlock_page(page);
771ed689 3031 ret = 0;
11c8349b 3032 goto done_unlocked;
247e743c
CM
3033 }
3034 }
3035
11c8349b
CM
3036 /*
3037 * we don't want to touch the inode after unlocking the page,
3038 * so we update the mapping writeback index now
3039 */
3040 update_nr_written(page, wbc, nr_written + 1);
771ed689 3041
d1310b2e 3042 end = page_end;
d1310b2e 3043 if (last_byte <= start) {
e6dcd2dc
CM
3044 if (tree->ops && tree->ops->writepage_end_io_hook)
3045 tree->ops->writepage_end_io_hook(page, start,
3046 page_end, NULL, 1);
d1310b2e
CM
3047 goto done;
3048 }
3049
d1310b2e
CM
3050 blocksize = inode->i_sb->s_blocksize;
3051
3052 while (cur <= end) {
3053 if (cur >= last_byte) {
e6dcd2dc
CM
3054 if (tree->ops && tree->ops->writepage_end_io_hook)
3055 tree->ops->writepage_end_io_hook(page, cur,
3056 page_end, NULL, 1);
d1310b2e
CM
3057 break;
3058 }
7f3c74fb 3059 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3060 end - cur + 1, 1);
c704005d 3061 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3062 SetPageError(page);
3063 break;
3064 }
3065
3066 extent_offset = cur - em->start;
3067 BUG_ON(extent_map_end(em) <= cur);
3068 BUG_ON(end < cur);
3069 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3070 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3071 sector = (em->block_start + extent_offset) >> 9;
3072 bdev = em->bdev;
3073 block_start = em->block_start;
c8b97818 3074 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3075 free_extent_map(em);
3076 em = NULL;
3077
c8b97818
CM
3078 /*
3079 * compressed and inline extents are written through other
3080 * paths in the FS
3081 */
3082 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3083 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3084 /*
3085 * end_io notification does not happen here for
3086 * compressed extents
3087 */
3088 if (!compressed && tree->ops &&
3089 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3090 tree->ops->writepage_end_io_hook(page, cur,
3091 cur + iosize - 1,
3092 NULL, 1);
c8b97818
CM
3093 else if (compressed) {
3094 /* we don't want to end_page_writeback on
3095 * a compressed extent. this happens
3096 * elsewhere
3097 */
3098 nr++;
3099 }
3100
3101 cur += iosize;
7f3c74fb 3102 pg_offset += iosize;
d1310b2e
CM
3103 continue;
3104 }
d1310b2e
CM
3105 /* leave this out until we have a page_mkwrite call */
3106 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3107 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3108 cur = cur + iosize;
7f3c74fb 3109 pg_offset += iosize;
d1310b2e
CM
3110 continue;
3111 }
c8b97818 3112
d1310b2e
CM
3113 if (tree->ops && tree->ops->writepage_io_hook) {
3114 ret = tree->ops->writepage_io_hook(page, cur,
3115 cur + iosize - 1);
3116 } else {
3117 ret = 0;
3118 }
1259ab75 3119 if (ret) {
d1310b2e 3120 SetPageError(page);
1259ab75 3121 } else {
d1310b2e 3122 unsigned long max_nr = end_index + 1;
7f3c74fb 3123
d1310b2e
CM
3124 set_range_writeback(tree, cur, cur + iosize - 1);
3125 if (!PageWriteback(page)) {
d397712b
CM
3126 printk(KERN_ERR "btrfs warning page %lu not "
3127 "writeback, cur %llu end %llu\n",
3128 page->index, (unsigned long long)cur,
d1310b2e
CM
3129 (unsigned long long)end);
3130 }
3131
ffbd517d
CM
3132 ret = submit_extent_page(write_flags, tree, page,
3133 sector, iosize, pg_offset,
3134 bdev, &epd->bio, max_nr,
c8b97818
CM
3135 end_bio_extent_writepage,
3136 0, 0, 0);
d1310b2e
CM
3137 if (ret)
3138 SetPageError(page);
3139 }
3140 cur = cur + iosize;
7f3c74fb 3141 pg_offset += iosize;
d1310b2e
CM
3142 nr++;
3143 }
3144done:
3145 if (nr == 0) {
3146 /* make sure the mapping tag for page dirty gets cleared */
3147 set_page_writeback(page);
3148 end_page_writeback(page);
3149 }
d1310b2e 3150 unlock_page(page);
771ed689 3151
11c8349b
CM
3152done_unlocked:
3153
2c64c53d
CM
3154 /* drop our reference on any cached states */
3155 free_extent_state(cached_state);
d1310b2e
CM
3156 return 0;
3157}
3158
0b32f4bb
JB
3159static int eb_wait(void *word)
3160{
3161 io_schedule();
3162 return 0;
3163}
3164
3165static void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3166{
3167 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3168 TASK_UNINTERRUPTIBLE);
3169}
3170
3171static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3172 struct btrfs_fs_info *fs_info,
3173 struct extent_page_data *epd)
3174{
3175 unsigned long i, num_pages;
3176 int flush = 0;
3177 int ret = 0;
3178
3179 if (!btrfs_try_tree_write_lock(eb)) {
3180 flush = 1;
3181 flush_write_bio(epd);
3182 btrfs_tree_lock(eb);
3183 }
3184
3185 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3186 btrfs_tree_unlock(eb);
3187 if (!epd->sync_io)
3188 return 0;
3189 if (!flush) {
3190 flush_write_bio(epd);
3191 flush = 1;
3192 }
a098d8e8
CM
3193 while (1) {
3194 wait_on_extent_buffer_writeback(eb);
3195 btrfs_tree_lock(eb);
3196 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3197 break;
0b32f4bb 3198 btrfs_tree_unlock(eb);
0b32f4bb
JB
3199 }
3200 }
3201
51561ffe
JB
3202 /*
3203 * We need to do this to prevent races in people who check if the eb is
3204 * under IO since we can end up having no IO bits set for a short period
3205 * of time.
3206 */
3207 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3208 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3209 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3210 spin_unlock(&eb->refs_lock);
0b32f4bb 3211 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3212 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3213 -eb->len,
3214 fs_info->dirty_metadata_batch);
0b32f4bb 3215 ret = 1;
51561ffe
JB
3216 } else {
3217 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3218 }
3219
3220 btrfs_tree_unlock(eb);
3221
3222 if (!ret)
3223 return ret;
3224
3225 num_pages = num_extent_pages(eb->start, eb->len);
3226 for (i = 0; i < num_pages; i++) {
3227 struct page *p = extent_buffer_page(eb, i);
3228
3229 if (!trylock_page(p)) {
3230 if (!flush) {
3231 flush_write_bio(epd);
3232 flush = 1;
3233 }
3234 lock_page(p);
3235 }
3236 }
3237
3238 return ret;
3239}
3240
3241static void end_extent_buffer_writeback(struct extent_buffer *eb)
3242{
3243 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3244 smp_mb__after_clear_bit();
3245 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3246}
3247
3248static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3249{
3250 int uptodate = err == 0;
3251 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3252 struct extent_buffer *eb;
3253 int done;
3254
3255 do {
3256 struct page *page = bvec->bv_page;
3257
3258 bvec--;
3259 eb = (struct extent_buffer *)page->private;
3260 BUG_ON(!eb);
3261 done = atomic_dec_and_test(&eb->io_pages);
3262
3263 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3264 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3265 ClearPageUptodate(page);
3266 SetPageError(page);
3267 }
3268
3269 end_page_writeback(page);
3270
3271 if (!done)
3272 continue;
3273
3274 end_extent_buffer_writeback(eb);
3275 } while (bvec >= bio->bi_io_vec);
3276
3277 bio_put(bio);
3278
3279}
3280
3281static int write_one_eb(struct extent_buffer *eb,
3282 struct btrfs_fs_info *fs_info,
3283 struct writeback_control *wbc,
3284 struct extent_page_data *epd)
3285{
3286 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3287 u64 offset = eb->start;
3288 unsigned long i, num_pages;
de0022b9 3289 unsigned long bio_flags = 0;
0b32f4bb 3290 int rw = (epd->sync_io ? WRITE_SYNC : WRITE);
d7dbe9e7 3291 int ret = 0;
0b32f4bb
JB
3292
3293 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3294 num_pages = num_extent_pages(eb->start, eb->len);
3295 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3296 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3297 bio_flags = EXTENT_BIO_TREE_LOG;
3298
0b32f4bb
JB
3299 for (i = 0; i < num_pages; i++) {
3300 struct page *p = extent_buffer_page(eb, i);
3301
3302 clear_page_dirty_for_io(p);
3303 set_page_writeback(p);
3304 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3305 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3306 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3307 0, epd->bio_flags, bio_flags);
3308 epd->bio_flags = bio_flags;
0b32f4bb
JB
3309 if (ret) {
3310 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3311 SetPageError(p);
3312 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3313 end_extent_buffer_writeback(eb);
3314 ret = -EIO;
3315 break;
3316 }
3317 offset += PAGE_CACHE_SIZE;
3318 update_nr_written(p, wbc, 1);
3319 unlock_page(p);
3320 }
3321
3322 if (unlikely(ret)) {
3323 for (; i < num_pages; i++) {
3324 struct page *p = extent_buffer_page(eb, i);
3325 unlock_page(p);
3326 }
3327 }
3328
3329 return ret;
3330}
3331
3332int btree_write_cache_pages(struct address_space *mapping,
3333 struct writeback_control *wbc)
3334{
3335 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3336 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3337 struct extent_buffer *eb, *prev_eb = NULL;
3338 struct extent_page_data epd = {
3339 .bio = NULL,
3340 .tree = tree,
3341 .extent_locked = 0,
3342 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3343 .bio_flags = 0,
0b32f4bb
JB
3344 };
3345 int ret = 0;
3346 int done = 0;
3347 int nr_to_write_done = 0;
3348 struct pagevec pvec;
3349 int nr_pages;
3350 pgoff_t index;
3351 pgoff_t end; /* Inclusive */
3352 int scanned = 0;
3353 int tag;
3354
3355 pagevec_init(&pvec, 0);
3356 if (wbc->range_cyclic) {
3357 index = mapping->writeback_index; /* Start from prev offset */
3358 end = -1;
3359 } else {
3360 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3361 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3362 scanned = 1;
3363 }
3364 if (wbc->sync_mode == WB_SYNC_ALL)
3365 tag = PAGECACHE_TAG_TOWRITE;
3366 else
3367 tag = PAGECACHE_TAG_DIRTY;
3368retry:
3369 if (wbc->sync_mode == WB_SYNC_ALL)
3370 tag_pages_for_writeback(mapping, index, end);
3371 while (!done && !nr_to_write_done && (index <= end) &&
3372 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3373 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3374 unsigned i;
3375
3376 scanned = 1;
3377 for (i = 0; i < nr_pages; i++) {
3378 struct page *page = pvec.pages[i];
3379
3380 if (!PagePrivate(page))
3381 continue;
3382
3383 if (!wbc->range_cyclic && page->index > end) {
3384 done = 1;
3385 break;
3386 }
3387
b5bae261
JB
3388 spin_lock(&mapping->private_lock);
3389 if (!PagePrivate(page)) {
3390 spin_unlock(&mapping->private_lock);
3391 continue;
3392 }
3393
0b32f4bb 3394 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3395
3396 /*
3397 * Shouldn't happen and normally this would be a BUG_ON
3398 * but no sense in crashing the users box for something
3399 * we can survive anyway.
3400 */
0b32f4bb 3401 if (!eb) {
b5bae261 3402 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3403 WARN_ON(1);
3404 continue;
3405 }
3406
b5bae261
JB
3407 if (eb == prev_eb) {
3408 spin_unlock(&mapping->private_lock);
0b32f4bb 3409 continue;
b5bae261 3410 }
0b32f4bb 3411
b5bae261
JB
3412 ret = atomic_inc_not_zero(&eb->refs);
3413 spin_unlock(&mapping->private_lock);
3414 if (!ret)
0b32f4bb 3415 continue;
0b32f4bb
JB
3416
3417 prev_eb = eb;
3418 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3419 if (!ret) {
3420 free_extent_buffer(eb);
3421 continue;
3422 }
3423
3424 ret = write_one_eb(eb, fs_info, wbc, &epd);
3425 if (ret) {
3426 done = 1;
3427 free_extent_buffer(eb);
3428 break;
3429 }
3430 free_extent_buffer(eb);
3431
3432 /*
3433 * the filesystem may choose to bump up nr_to_write.
3434 * We have to make sure to honor the new nr_to_write
3435 * at any time
3436 */
3437 nr_to_write_done = wbc->nr_to_write <= 0;
3438 }
3439 pagevec_release(&pvec);
3440 cond_resched();
3441 }
3442 if (!scanned && !done) {
3443 /*
3444 * We hit the last page and there is more work to be done: wrap
3445 * back to the start of the file
3446 */
3447 scanned = 1;
3448 index = 0;
3449 goto retry;
3450 }
3451 flush_write_bio(&epd);
3452 return ret;
3453}
3454
d1310b2e 3455/**
4bef0848 3456 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3457 * @mapping: address space structure to write
3458 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3459 * @writepage: function called for each page
3460 * @data: data passed to writepage function
3461 *
3462 * If a page is already under I/O, write_cache_pages() skips it, even
3463 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3464 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3465 * and msync() need to guarantee that all the data which was dirty at the time
3466 * the call was made get new I/O started against them. If wbc->sync_mode is
3467 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3468 * existing IO to complete.
3469 */
b2950863 3470static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3471 struct address_space *mapping,
3472 struct writeback_control *wbc,
d2c3f4f6
CM
3473 writepage_t writepage, void *data,
3474 void (*flush_fn)(void *))
d1310b2e 3475{
7fd1a3f7 3476 struct inode *inode = mapping->host;
d1310b2e
CM
3477 int ret = 0;
3478 int done = 0;
f85d7d6c 3479 int nr_to_write_done = 0;
d1310b2e
CM
3480 struct pagevec pvec;
3481 int nr_pages;
3482 pgoff_t index;
3483 pgoff_t end; /* Inclusive */
3484 int scanned = 0;
f7aaa06b 3485 int tag;
d1310b2e 3486
7fd1a3f7
JB
3487 /*
3488 * We have to hold onto the inode so that ordered extents can do their
3489 * work when the IO finishes. The alternative to this is failing to add
3490 * an ordered extent if the igrab() fails there and that is a huge pain
3491 * to deal with, so instead just hold onto the inode throughout the
3492 * writepages operation. If it fails here we are freeing up the inode
3493 * anyway and we'd rather not waste our time writing out stuff that is
3494 * going to be truncated anyway.
3495 */
3496 if (!igrab(inode))
3497 return 0;
3498
d1310b2e
CM
3499 pagevec_init(&pvec, 0);
3500 if (wbc->range_cyclic) {
3501 index = mapping->writeback_index; /* Start from prev offset */
3502 end = -1;
3503 } else {
3504 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3505 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3506 scanned = 1;
3507 }
f7aaa06b
JB
3508 if (wbc->sync_mode == WB_SYNC_ALL)
3509 tag = PAGECACHE_TAG_TOWRITE;
3510 else
3511 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3512retry:
f7aaa06b
JB
3513 if (wbc->sync_mode == WB_SYNC_ALL)
3514 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3515 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3516 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3517 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3518 unsigned i;
3519
3520 scanned = 1;
3521 for (i = 0; i < nr_pages; i++) {
3522 struct page *page = pvec.pages[i];
3523
3524 /*
3525 * At this point we hold neither mapping->tree_lock nor
3526 * lock on the page itself: the page may be truncated or
3527 * invalidated (changing page->mapping to NULL), or even
3528 * swizzled back from swapper_space to tmpfs file
3529 * mapping
3530 */
c8f2f24b
JB
3531 if (!trylock_page(page)) {
3532 flush_fn(data);
3533 lock_page(page);
01d658f2 3534 }
d1310b2e
CM
3535
3536 if (unlikely(page->mapping != mapping)) {
3537 unlock_page(page);
3538 continue;
3539 }
3540
3541 if (!wbc->range_cyclic && page->index > end) {
3542 done = 1;
3543 unlock_page(page);
3544 continue;
3545 }
3546
d2c3f4f6 3547 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3548 if (PageWriteback(page))
3549 flush_fn(data);
d1310b2e 3550 wait_on_page_writeback(page);
d2c3f4f6 3551 }
d1310b2e
CM
3552
3553 if (PageWriteback(page) ||
3554 !clear_page_dirty_for_io(page)) {
3555 unlock_page(page);
3556 continue;
3557 }
3558
3559 ret = (*writepage)(page, wbc, data);
3560
3561 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3562 unlock_page(page);
3563 ret = 0;
3564 }
f85d7d6c 3565 if (ret)
d1310b2e 3566 done = 1;
f85d7d6c
CM
3567
3568 /*
3569 * the filesystem may choose to bump up nr_to_write.
3570 * We have to make sure to honor the new nr_to_write
3571 * at any time
3572 */
3573 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3574 }
3575 pagevec_release(&pvec);
3576 cond_resched();
3577 }
3578 if (!scanned && !done) {
3579 /*
3580 * We hit the last page and there is more work to be done: wrap
3581 * back to the start of the file
3582 */
3583 scanned = 1;
3584 index = 0;
3585 goto retry;
3586 }
7fd1a3f7 3587 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3588 return ret;
3589}
d1310b2e 3590
ffbd517d 3591static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3592{
d2c3f4f6 3593 if (epd->bio) {
355808c2
JM
3594 int rw = WRITE;
3595 int ret;
3596
ffbd517d 3597 if (epd->sync_io)
355808c2
JM
3598 rw = WRITE_SYNC;
3599
de0022b9 3600 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3601 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3602 epd->bio = NULL;
3603 }
3604}
3605
ffbd517d
CM
3606static noinline void flush_write_bio(void *data)
3607{
3608 struct extent_page_data *epd = data;
3609 flush_epd_write_bio(epd);
3610}
3611
d1310b2e
CM
3612int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3613 get_extent_t *get_extent,
3614 struct writeback_control *wbc)
3615{
3616 int ret;
d1310b2e
CM
3617 struct extent_page_data epd = {
3618 .bio = NULL,
3619 .tree = tree,
3620 .get_extent = get_extent,
771ed689 3621 .extent_locked = 0,
ffbd517d 3622 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3623 .bio_flags = 0,
d1310b2e 3624 };
d1310b2e 3625
d1310b2e
CM
3626 ret = __extent_writepage(page, wbc, &epd);
3627
ffbd517d 3628 flush_epd_write_bio(&epd);
d1310b2e
CM
3629 return ret;
3630}
d1310b2e 3631
771ed689
CM
3632int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3633 u64 start, u64 end, get_extent_t *get_extent,
3634 int mode)
3635{
3636 int ret = 0;
3637 struct address_space *mapping = inode->i_mapping;
3638 struct page *page;
3639 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3640 PAGE_CACHE_SHIFT;
3641
3642 struct extent_page_data epd = {
3643 .bio = NULL,
3644 .tree = tree,
3645 .get_extent = get_extent,
3646 .extent_locked = 1,
ffbd517d 3647 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3648 .bio_flags = 0,
771ed689
CM
3649 };
3650 struct writeback_control wbc_writepages = {
771ed689 3651 .sync_mode = mode,
771ed689
CM
3652 .nr_to_write = nr_pages * 2,
3653 .range_start = start,
3654 .range_end = end + 1,
3655 };
3656
d397712b 3657 while (start <= end) {
771ed689
CM
3658 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3659 if (clear_page_dirty_for_io(page))
3660 ret = __extent_writepage(page, &wbc_writepages, &epd);
3661 else {
3662 if (tree->ops && tree->ops->writepage_end_io_hook)
3663 tree->ops->writepage_end_io_hook(page, start,
3664 start + PAGE_CACHE_SIZE - 1,
3665 NULL, 1);
3666 unlock_page(page);
3667 }
3668 page_cache_release(page);
3669 start += PAGE_CACHE_SIZE;
3670 }
3671
ffbd517d 3672 flush_epd_write_bio(&epd);
771ed689
CM
3673 return ret;
3674}
d1310b2e
CM
3675
3676int extent_writepages(struct extent_io_tree *tree,
3677 struct address_space *mapping,
3678 get_extent_t *get_extent,
3679 struct writeback_control *wbc)
3680{
3681 int ret = 0;
3682 struct extent_page_data epd = {
3683 .bio = NULL,
3684 .tree = tree,
3685 .get_extent = get_extent,
771ed689 3686 .extent_locked = 0,
ffbd517d 3687 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3688 .bio_flags = 0,
d1310b2e
CM
3689 };
3690
4bef0848 3691 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3692 __extent_writepage, &epd,
3693 flush_write_bio);
ffbd517d 3694 flush_epd_write_bio(&epd);
d1310b2e
CM
3695 return ret;
3696}
d1310b2e
CM
3697
3698int extent_readpages(struct extent_io_tree *tree,
3699 struct address_space *mapping,
3700 struct list_head *pages, unsigned nr_pages,
3701 get_extent_t get_extent)
3702{
3703 struct bio *bio = NULL;
3704 unsigned page_idx;
c8b97818 3705 unsigned long bio_flags = 0;
67c9684f
LB
3706 struct page *pagepool[16];
3707 struct page *page;
3708 int i = 0;
3709 int nr = 0;
d1310b2e 3710
d1310b2e 3711 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3712 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3713
3714 prefetchw(&page->flags);
3715 list_del(&page->lru);
67c9684f 3716 if (add_to_page_cache_lru(page, mapping,
43e817a1 3717 page->index, GFP_NOFS)) {
67c9684f
LB
3718 page_cache_release(page);
3719 continue;
d1310b2e 3720 }
67c9684f
LB
3721
3722 pagepool[nr++] = page;
3723 if (nr < ARRAY_SIZE(pagepool))
3724 continue;
3725 for (i = 0; i < nr; i++) {
3726 __extent_read_full_page(tree, pagepool[i], get_extent,
3727 &bio, 0, &bio_flags);
3728 page_cache_release(pagepool[i]);
3729 }
3730 nr = 0;
d1310b2e 3731 }
67c9684f
LB
3732 for (i = 0; i < nr; i++) {
3733 __extent_read_full_page(tree, pagepool[i], get_extent,
3734 &bio, 0, &bio_flags);
3735 page_cache_release(pagepool[i]);
d1310b2e 3736 }
67c9684f 3737
d1310b2e
CM
3738 BUG_ON(!list_empty(pages));
3739 if (bio)
79787eaa 3740 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3741 return 0;
3742}
d1310b2e
CM
3743
3744/*
3745 * basic invalidatepage code, this waits on any locked or writeback
3746 * ranges corresponding to the page, and then deletes any extent state
3747 * records from the tree
3748 */
3749int extent_invalidatepage(struct extent_io_tree *tree,
3750 struct page *page, unsigned long offset)
3751{
2ac55d41 3752 struct extent_state *cached_state = NULL;
4eee4fa4 3753 u64 start = page_offset(page);
d1310b2e
CM
3754 u64 end = start + PAGE_CACHE_SIZE - 1;
3755 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3756
fda2832f 3757 start += ALIGN(offset, blocksize);
d1310b2e
CM
3758 if (start > end)
3759 return 0;
3760
d0082371 3761 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3762 wait_on_page_writeback(page);
d1310b2e 3763 clear_extent_bit(tree, start, end,
32c00aff
JB
3764 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3765 EXTENT_DO_ACCOUNTING,
2ac55d41 3766 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3767 return 0;
3768}
d1310b2e 3769
7b13b7b1
CM
3770/*
3771 * a helper for releasepage, this tests for areas of the page that
3772 * are locked or under IO and drops the related state bits if it is safe
3773 * to drop the page.
3774 */
3775int try_release_extent_state(struct extent_map_tree *map,
3776 struct extent_io_tree *tree, struct page *page,
3777 gfp_t mask)
3778{
4eee4fa4 3779 u64 start = page_offset(page);
7b13b7b1
CM
3780 u64 end = start + PAGE_CACHE_SIZE - 1;
3781 int ret = 1;
3782
211f90e6 3783 if (test_range_bit(tree, start, end,
8b62b72b 3784 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3785 ret = 0;
3786 else {
3787 if ((mask & GFP_NOFS) == GFP_NOFS)
3788 mask = GFP_NOFS;
11ef160f
CM
3789 /*
3790 * at this point we can safely clear everything except the
3791 * locked bit and the nodatasum bit
3792 */
e3f24cc5 3793 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3794 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3795 0, 0, NULL, mask);
e3f24cc5
CM
3796
3797 /* if clear_extent_bit failed for enomem reasons,
3798 * we can't allow the release to continue.
3799 */
3800 if (ret < 0)
3801 ret = 0;
3802 else
3803 ret = 1;
7b13b7b1
CM
3804 }
3805 return ret;
3806}
7b13b7b1 3807
d1310b2e
CM
3808/*
3809 * a helper for releasepage. As long as there are no locked extents
3810 * in the range corresponding to the page, both state records and extent
3811 * map records are removed
3812 */
3813int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3814 struct extent_io_tree *tree, struct page *page,
3815 gfp_t mask)
d1310b2e
CM
3816{
3817 struct extent_map *em;
4eee4fa4 3818 u64 start = page_offset(page);
d1310b2e 3819 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3820
70dec807
CM
3821 if ((mask & __GFP_WAIT) &&
3822 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3823 u64 len;
70dec807 3824 while (start <= end) {
39b5637f 3825 len = end - start + 1;
890871be 3826 write_lock(&map->lock);
39b5637f 3827 em = lookup_extent_mapping(map, start, len);
285190d9 3828 if (!em) {
890871be 3829 write_unlock(&map->lock);
70dec807
CM
3830 break;
3831 }
7f3c74fb
CM
3832 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3833 em->start != start) {
890871be 3834 write_unlock(&map->lock);
70dec807
CM
3835 free_extent_map(em);
3836 break;
3837 }
3838 if (!test_range_bit(tree, em->start,
3839 extent_map_end(em) - 1,
8b62b72b 3840 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3841 0, NULL)) {
70dec807
CM
3842 remove_extent_mapping(map, em);
3843 /* once for the rb tree */
3844 free_extent_map(em);
3845 }
3846 start = extent_map_end(em);
890871be 3847 write_unlock(&map->lock);
70dec807
CM
3848
3849 /* once for us */
d1310b2e
CM
3850 free_extent_map(em);
3851 }
d1310b2e 3852 }
7b13b7b1 3853 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3854}
d1310b2e 3855
ec29ed5b
CM
3856/*
3857 * helper function for fiemap, which doesn't want to see any holes.
3858 * This maps until we find something past 'last'
3859 */
3860static struct extent_map *get_extent_skip_holes(struct inode *inode,
3861 u64 offset,
3862 u64 last,
3863 get_extent_t *get_extent)
3864{
3865 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3866 struct extent_map *em;
3867 u64 len;
3868
3869 if (offset >= last)
3870 return NULL;
3871
3872 while(1) {
3873 len = last - offset;
3874 if (len == 0)
3875 break;
fda2832f 3876 len = ALIGN(len, sectorsize);
ec29ed5b 3877 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3878 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3879 return em;
3880
3881 /* if this isn't a hole return it */
3882 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3883 em->block_start != EXTENT_MAP_HOLE) {
3884 return em;
3885 }
3886
3887 /* this is a hole, advance to the next extent */
3888 offset = extent_map_end(em);
3889 free_extent_map(em);
3890 if (offset >= last)
3891 break;
3892 }
3893 return NULL;
3894}
3895
1506fcc8
YS
3896int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3897 __u64 start, __u64 len, get_extent_t *get_extent)
3898{
975f84fe 3899 int ret = 0;
1506fcc8
YS
3900 u64 off = start;
3901 u64 max = start + len;
3902 u32 flags = 0;
975f84fe
JB
3903 u32 found_type;
3904 u64 last;
ec29ed5b 3905 u64 last_for_get_extent = 0;
1506fcc8 3906 u64 disko = 0;
ec29ed5b 3907 u64 isize = i_size_read(inode);
975f84fe 3908 struct btrfs_key found_key;
1506fcc8 3909 struct extent_map *em = NULL;
2ac55d41 3910 struct extent_state *cached_state = NULL;
975f84fe
JB
3911 struct btrfs_path *path;
3912 struct btrfs_file_extent_item *item;
1506fcc8 3913 int end = 0;
ec29ed5b
CM
3914 u64 em_start = 0;
3915 u64 em_len = 0;
3916 u64 em_end = 0;
1506fcc8 3917 unsigned long emflags;
1506fcc8
YS
3918
3919 if (len == 0)
3920 return -EINVAL;
3921
975f84fe
JB
3922 path = btrfs_alloc_path();
3923 if (!path)
3924 return -ENOMEM;
3925 path->leave_spinning = 1;
3926
4d479cf0
JB
3927 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3928 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3929
ec29ed5b
CM
3930 /*
3931 * lookup the last file extent. We're not using i_size here
3932 * because there might be preallocation past i_size
3933 */
975f84fe 3934 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3935 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3936 if (ret < 0) {
3937 btrfs_free_path(path);
3938 return ret;
3939 }
3940 WARN_ON(!ret);
3941 path->slots[0]--;
3942 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3943 struct btrfs_file_extent_item);
3944 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3945 found_type = btrfs_key_type(&found_key);
3946
ec29ed5b 3947 /* No extents, but there might be delalloc bits */
33345d01 3948 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 3949 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
3950 /* have to trust i_size as the end */
3951 last = (u64)-1;
3952 last_for_get_extent = isize;
3953 } else {
3954 /*
3955 * remember the start of the last extent. There are a
3956 * bunch of different factors that go into the length of the
3957 * extent, so its much less complex to remember where it started
3958 */
3959 last = found_key.offset;
3960 last_for_get_extent = last + 1;
975f84fe 3961 }
975f84fe
JB
3962 btrfs_free_path(path);
3963
ec29ed5b
CM
3964 /*
3965 * we might have some extents allocated but more delalloc past those
3966 * extents. so, we trust isize unless the start of the last extent is
3967 * beyond isize
3968 */
3969 if (last < isize) {
3970 last = (u64)-1;
3971 last_for_get_extent = isize;
3972 }
3973
2ac55d41 3974 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0,
d0082371 3975 &cached_state);
ec29ed5b 3976
4d479cf0 3977 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 3978 get_extent);
1506fcc8
YS
3979 if (!em)
3980 goto out;
3981 if (IS_ERR(em)) {
3982 ret = PTR_ERR(em);
3983 goto out;
3984 }
975f84fe 3985
1506fcc8 3986 while (!end) {
ea8efc74
CM
3987 u64 offset_in_extent;
3988
3989 /* break if the extent we found is outside the range */
3990 if (em->start >= max || extent_map_end(em) < off)
3991 break;
3992
3993 /*
3994 * get_extent may return an extent that starts before our
3995 * requested range. We have to make sure the ranges
3996 * we return to fiemap always move forward and don't
3997 * overlap, so adjust the offsets here
3998 */
3999 em_start = max(em->start, off);
1506fcc8 4000
ea8efc74
CM
4001 /*
4002 * record the offset from the start of the extent
4003 * for adjusting the disk offset below
4004 */
4005 offset_in_extent = em_start - em->start;
ec29ed5b 4006 em_end = extent_map_end(em);
ea8efc74 4007 em_len = em_end - em_start;
ec29ed5b 4008 emflags = em->flags;
1506fcc8
YS
4009 disko = 0;
4010 flags = 0;
4011
ea8efc74
CM
4012 /*
4013 * bump off for our next call to get_extent
4014 */
4015 off = extent_map_end(em);
4016 if (off >= max)
4017 end = 1;
4018
93dbfad7 4019 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4020 end = 1;
4021 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4022 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4023 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4024 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4025 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4026 flags |= (FIEMAP_EXTENT_DELALLOC |
4027 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4028 } else {
ea8efc74 4029 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4030 }
4031 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4032 flags |= FIEMAP_EXTENT_ENCODED;
4033
1506fcc8
YS
4034 free_extent_map(em);
4035 em = NULL;
ec29ed5b
CM
4036 if ((em_start >= last) || em_len == (u64)-1 ||
4037 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4038 flags |= FIEMAP_EXTENT_LAST;
4039 end = 1;
4040 }
4041
ec29ed5b
CM
4042 /* now scan forward to see if this is really the last extent. */
4043 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4044 get_extent);
4045 if (IS_ERR(em)) {
4046 ret = PTR_ERR(em);
4047 goto out;
4048 }
4049 if (!em) {
975f84fe
JB
4050 flags |= FIEMAP_EXTENT_LAST;
4051 end = 1;
4052 }
ec29ed5b
CM
4053 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4054 em_len, flags);
4055 if (ret)
4056 goto out_free;
1506fcc8
YS
4057 }
4058out_free:
4059 free_extent_map(em);
4060out:
2ac55d41
JB
4061 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len,
4062 &cached_state, GFP_NOFS);
1506fcc8
YS
4063 return ret;
4064}
4065
727011e0
CM
4066static void __free_extent_buffer(struct extent_buffer *eb)
4067{
4068#if LEAK_DEBUG
4069 unsigned long flags;
4070 spin_lock_irqsave(&leak_lock, flags);
4071 list_del(&eb->leak_list);
4072 spin_unlock_irqrestore(&leak_lock, flags);
4073#endif
727011e0
CM
4074 kmem_cache_free(extent_buffer_cache, eb);
4075}
4076
d1310b2e
CM
4077static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4078 u64 start,
4079 unsigned long len,
4080 gfp_t mask)
4081{
4082 struct extent_buffer *eb = NULL;
3935127c 4083#if LEAK_DEBUG
2d2ae547 4084 unsigned long flags;
4bef0848 4085#endif
d1310b2e 4086
d1310b2e 4087 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4088 if (eb == NULL)
4089 return NULL;
d1310b2e
CM
4090 eb->start = start;
4091 eb->len = len;
4f2de97a 4092 eb->tree = tree;
815a51c7 4093 eb->bflags = 0;
bd681513
CM
4094 rwlock_init(&eb->lock);
4095 atomic_set(&eb->write_locks, 0);
4096 atomic_set(&eb->read_locks, 0);
4097 atomic_set(&eb->blocking_readers, 0);
4098 atomic_set(&eb->blocking_writers, 0);
4099 atomic_set(&eb->spinning_readers, 0);
4100 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4101 eb->lock_nested = 0;
bd681513
CM
4102 init_waitqueue_head(&eb->write_lock_wq);
4103 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4104
3935127c 4105#if LEAK_DEBUG
2d2ae547
CM
4106 spin_lock_irqsave(&leak_lock, flags);
4107 list_add(&eb->leak_list, &buffers);
4108 spin_unlock_irqrestore(&leak_lock, flags);
4bef0848 4109#endif
3083ee2e 4110 spin_lock_init(&eb->refs_lock);
d1310b2e 4111 atomic_set(&eb->refs, 1);
0b32f4bb 4112 atomic_set(&eb->io_pages, 0);
727011e0 4113
b8dae313
DS
4114 /*
4115 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4116 */
4117 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4118 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4119 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4120
4121 return eb;
4122}
4123
815a51c7
JS
4124struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4125{
4126 unsigned long i;
4127 struct page *p;
4128 struct extent_buffer *new;
4129 unsigned long num_pages = num_extent_pages(src->start, src->len);
4130
4131 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4132 if (new == NULL)
4133 return NULL;
4134
4135 for (i = 0; i < num_pages; i++) {
4136 p = alloc_page(GFP_ATOMIC);
4137 BUG_ON(!p);
4138 attach_extent_buffer_page(new, p);
4139 WARN_ON(PageDirty(p));
4140 SetPageUptodate(p);
4141 new->pages[i] = p;
4142 }
4143
4144 copy_extent_buffer(new, src, 0, 0, src->len);
4145 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4146 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4147
4148 return new;
4149}
4150
4151struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4152{
4153 struct extent_buffer *eb;
4154 unsigned long num_pages = num_extent_pages(0, len);
4155 unsigned long i;
4156
4157 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4158 if (!eb)
4159 return NULL;
4160
4161 for (i = 0; i < num_pages; i++) {
4162 eb->pages[i] = alloc_page(GFP_ATOMIC);
4163 if (!eb->pages[i])
4164 goto err;
4165 }
4166 set_extent_buffer_uptodate(eb);
4167 btrfs_set_header_nritems(eb, 0);
4168 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4169
4170 return eb;
4171err:
84167d19
SB
4172 for (; i > 0; i--)
4173 __free_page(eb->pages[i - 1]);
815a51c7
JS
4174 __free_extent_buffer(eb);
4175 return NULL;
4176}
4177
0b32f4bb 4178static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4179{
0b32f4bb
JB
4180 return (atomic_read(&eb->io_pages) ||
4181 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4182 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4183}
4184
897ca6e9
MX
4185/*
4186 * Helper for releasing extent buffer page.
4187 */
4188static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4189 unsigned long start_idx)
4190{
4191 unsigned long index;
39bab87b 4192 unsigned long num_pages;
897ca6e9 4193 struct page *page;
815a51c7 4194 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4195
0b32f4bb 4196 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4197
39bab87b
WSH
4198 num_pages = num_extent_pages(eb->start, eb->len);
4199 index = start_idx + num_pages;
897ca6e9
MX
4200 if (start_idx >= index)
4201 return;
4202
4203 do {
4204 index--;
4205 page = extent_buffer_page(eb, index);
815a51c7 4206 if (page && mapped) {
4f2de97a
JB
4207 spin_lock(&page->mapping->private_lock);
4208 /*
4209 * We do this since we'll remove the pages after we've
4210 * removed the eb from the radix tree, so we could race
4211 * and have this page now attached to the new eb. So
4212 * only clear page_private if it's still connected to
4213 * this eb.
4214 */
4215 if (PagePrivate(page) &&
4216 page->private == (unsigned long)eb) {
0b32f4bb 4217 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4218 BUG_ON(PageDirty(page));
4219 BUG_ON(PageWriteback(page));
4f2de97a
JB
4220 /*
4221 * We need to make sure we haven't be attached
4222 * to a new eb.
4223 */
4224 ClearPagePrivate(page);
4225 set_page_private(page, 0);
4226 /* One for the page private */
4227 page_cache_release(page);
4228 }
4229 spin_unlock(&page->mapping->private_lock);
4230
815a51c7
JS
4231 }
4232 if (page) {
4f2de97a 4233 /* One for when we alloced the page */
897ca6e9 4234 page_cache_release(page);
4f2de97a 4235 }
897ca6e9
MX
4236 } while (index != start_idx);
4237}
4238
4239/*
4240 * Helper for releasing the extent buffer.
4241 */
4242static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4243{
4244 btrfs_release_extent_buffer_page(eb, 0);
4245 __free_extent_buffer(eb);
4246}
4247
0b32f4bb
JB
4248static void check_buffer_tree_ref(struct extent_buffer *eb)
4249{
242e18c7 4250 int refs;
0b32f4bb
JB
4251 /* the ref bit is tricky. We have to make sure it is set
4252 * if we have the buffer dirty. Otherwise the
4253 * code to free a buffer can end up dropping a dirty
4254 * page
4255 *
4256 * Once the ref bit is set, it won't go away while the
4257 * buffer is dirty or in writeback, and it also won't
4258 * go away while we have the reference count on the
4259 * eb bumped.
4260 *
4261 * We can't just set the ref bit without bumping the
4262 * ref on the eb because free_extent_buffer might
4263 * see the ref bit and try to clear it. If this happens
4264 * free_extent_buffer might end up dropping our original
4265 * ref by mistake and freeing the page before we are able
4266 * to add one more ref.
4267 *
4268 * So bump the ref count first, then set the bit. If someone
4269 * beat us to it, drop the ref we added.
4270 */
242e18c7
CM
4271 refs = atomic_read(&eb->refs);
4272 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4273 return;
4274
594831c4
JB
4275 spin_lock(&eb->refs_lock);
4276 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4277 atomic_inc(&eb->refs);
594831c4 4278 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4279}
4280
5df4235e
JB
4281static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4282{
4283 unsigned long num_pages, i;
4284
0b32f4bb
JB
4285 check_buffer_tree_ref(eb);
4286
5df4235e
JB
4287 num_pages = num_extent_pages(eb->start, eb->len);
4288 for (i = 0; i < num_pages; i++) {
4289 struct page *p = extent_buffer_page(eb, i);
4290 mark_page_accessed(p);
4291 }
4292}
4293
d1310b2e 4294struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4295 u64 start, unsigned long len)
d1310b2e
CM
4296{
4297 unsigned long num_pages = num_extent_pages(start, len);
4298 unsigned long i;
4299 unsigned long index = start >> PAGE_CACHE_SHIFT;
4300 struct extent_buffer *eb;
6af118ce 4301 struct extent_buffer *exists = NULL;
d1310b2e
CM
4302 struct page *p;
4303 struct address_space *mapping = tree->mapping;
4304 int uptodate = 1;
19fe0a8b 4305 int ret;
d1310b2e 4306
19fe0a8b
MX
4307 rcu_read_lock();
4308 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4309 if (eb && atomic_inc_not_zero(&eb->refs)) {
4310 rcu_read_unlock();
5df4235e 4311 mark_extent_buffer_accessed(eb);
6af118ce
CM
4312 return eb;
4313 }
19fe0a8b 4314 rcu_read_unlock();
6af118ce 4315
ba144192 4316 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4317 if (!eb)
d1310b2e
CM
4318 return NULL;
4319
727011e0 4320 for (i = 0; i < num_pages; i++, index++) {
a6591715 4321 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4322 if (!p)
6af118ce 4323 goto free_eb;
4f2de97a
JB
4324
4325 spin_lock(&mapping->private_lock);
4326 if (PagePrivate(p)) {
4327 /*
4328 * We could have already allocated an eb for this page
4329 * and attached one so lets see if we can get a ref on
4330 * the existing eb, and if we can we know it's good and
4331 * we can just return that one, else we know we can just
4332 * overwrite page->private.
4333 */
4334 exists = (struct extent_buffer *)p->private;
4335 if (atomic_inc_not_zero(&exists->refs)) {
4336 spin_unlock(&mapping->private_lock);
4337 unlock_page(p);
17de39ac 4338 page_cache_release(p);
5df4235e 4339 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4340 goto free_eb;
4341 }
4342
0b32f4bb 4343 /*
4f2de97a
JB
4344 * Do this so attach doesn't complain and we need to
4345 * drop the ref the old guy had.
4346 */
4347 ClearPagePrivate(p);
0b32f4bb 4348 WARN_ON(PageDirty(p));
4f2de97a 4349 page_cache_release(p);
d1310b2e 4350 }
4f2de97a
JB
4351 attach_extent_buffer_page(eb, p);
4352 spin_unlock(&mapping->private_lock);
0b32f4bb 4353 WARN_ON(PageDirty(p));
d1310b2e 4354 mark_page_accessed(p);
727011e0 4355 eb->pages[i] = p;
d1310b2e
CM
4356 if (!PageUptodate(p))
4357 uptodate = 0;
eb14ab8e
CM
4358
4359 /*
4360 * see below about how we avoid a nasty race with release page
4361 * and why we unlock later
4362 */
d1310b2e
CM
4363 }
4364 if (uptodate)
b4ce94de 4365 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4366again:
19fe0a8b
MX
4367 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4368 if (ret)
4369 goto free_eb;
4370
6af118ce 4371 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4372 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4373 if (ret == -EEXIST) {
4374 exists = radix_tree_lookup(&tree->buffer,
4375 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4376 if (!atomic_inc_not_zero(&exists->refs)) {
4377 spin_unlock(&tree->buffer_lock);
4378 radix_tree_preload_end();
115391d2
JB
4379 exists = NULL;
4380 goto again;
4381 }
6af118ce 4382 spin_unlock(&tree->buffer_lock);
19fe0a8b 4383 radix_tree_preload_end();
5df4235e 4384 mark_extent_buffer_accessed(exists);
6af118ce
CM
4385 goto free_eb;
4386 }
6af118ce 4387 /* add one reference for the tree */
0b32f4bb 4388 check_buffer_tree_ref(eb);
f044ba78 4389 spin_unlock(&tree->buffer_lock);
19fe0a8b 4390 radix_tree_preload_end();
eb14ab8e
CM
4391
4392 /*
4393 * there is a race where release page may have
4394 * tried to find this extent buffer in the radix
4395 * but failed. It will tell the VM it is safe to
4396 * reclaim the, and it will clear the page private bit.
4397 * We must make sure to set the page private bit properly
4398 * after the extent buffer is in the radix tree so
4399 * it doesn't get lost
4400 */
727011e0
CM
4401 SetPageChecked(eb->pages[0]);
4402 for (i = 1; i < num_pages; i++) {
4403 p = extent_buffer_page(eb, i);
727011e0
CM
4404 ClearPageChecked(p);
4405 unlock_page(p);
4406 }
4407 unlock_page(eb->pages[0]);
d1310b2e
CM
4408 return eb;
4409
6af118ce 4410free_eb:
727011e0
CM
4411 for (i = 0; i < num_pages; i++) {
4412 if (eb->pages[i])
4413 unlock_page(eb->pages[i]);
4414 }
eb14ab8e 4415
17de39ac 4416 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4417 btrfs_release_extent_buffer(eb);
6af118ce 4418 return exists;
d1310b2e 4419}
d1310b2e
CM
4420
4421struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4422 u64 start, unsigned long len)
d1310b2e 4423{
d1310b2e 4424 struct extent_buffer *eb;
d1310b2e 4425
19fe0a8b
MX
4426 rcu_read_lock();
4427 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4428 if (eb && atomic_inc_not_zero(&eb->refs)) {
4429 rcu_read_unlock();
5df4235e 4430 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4431 return eb;
4432 }
4433 rcu_read_unlock();
0f9dd46c 4434
19fe0a8b 4435 return NULL;
d1310b2e 4436}
d1310b2e 4437
3083ee2e
JB
4438static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4439{
4440 struct extent_buffer *eb =
4441 container_of(head, struct extent_buffer, rcu_head);
4442
4443 __free_extent_buffer(eb);
4444}
4445
3083ee2e 4446/* Expects to have eb->eb_lock already held */
e64860aa 4447static int release_extent_buffer(struct extent_buffer *eb, gfp_t mask)
3083ee2e
JB
4448{
4449 WARN_ON(atomic_read(&eb->refs) == 0);
4450 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4451 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4452 spin_unlock(&eb->refs_lock);
4453 } else {
4454 struct extent_io_tree *tree = eb->tree;
3083ee2e 4455
815a51c7 4456 spin_unlock(&eb->refs_lock);
3083ee2e 4457
815a51c7
JS
4458 spin_lock(&tree->buffer_lock);
4459 radix_tree_delete(&tree->buffer,
4460 eb->start >> PAGE_CACHE_SHIFT);
4461 spin_unlock(&tree->buffer_lock);
4462 }
3083ee2e
JB
4463
4464 /* Should be safe to release our pages at this point */
4465 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4466 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4467 return 1;
3083ee2e
JB
4468 }
4469 spin_unlock(&eb->refs_lock);
e64860aa
JB
4470
4471 return 0;
3083ee2e
JB
4472}
4473
d1310b2e
CM
4474void free_extent_buffer(struct extent_buffer *eb)
4475{
242e18c7
CM
4476 int refs;
4477 int old;
d1310b2e
CM
4478 if (!eb)
4479 return;
4480
242e18c7
CM
4481 while (1) {
4482 refs = atomic_read(&eb->refs);
4483 if (refs <= 3)
4484 break;
4485 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4486 if (old == refs)
4487 return;
4488 }
4489
3083ee2e 4490 spin_lock(&eb->refs_lock);
815a51c7
JS
4491 if (atomic_read(&eb->refs) == 2 &&
4492 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4493 atomic_dec(&eb->refs);
4494
3083ee2e
JB
4495 if (atomic_read(&eb->refs) == 2 &&
4496 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4497 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4498 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4499 atomic_dec(&eb->refs);
4500
4501 /*
4502 * I know this is terrible, but it's temporary until we stop tracking
4503 * the uptodate bits and such for the extent buffers.
4504 */
4505 release_extent_buffer(eb, GFP_ATOMIC);
4506}
4507
4508void free_extent_buffer_stale(struct extent_buffer *eb)
4509{
4510 if (!eb)
d1310b2e
CM
4511 return;
4512
3083ee2e
JB
4513 spin_lock(&eb->refs_lock);
4514 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4515
0b32f4bb 4516 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4517 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4518 atomic_dec(&eb->refs);
4519 release_extent_buffer(eb, GFP_NOFS);
d1310b2e 4520}
d1310b2e 4521
1d4284bd 4522void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4523{
d1310b2e
CM
4524 unsigned long i;
4525 unsigned long num_pages;
4526 struct page *page;
4527
d1310b2e
CM
4528 num_pages = num_extent_pages(eb->start, eb->len);
4529
4530 for (i = 0; i < num_pages; i++) {
4531 page = extent_buffer_page(eb, i);
b9473439 4532 if (!PageDirty(page))
d2c3f4f6
CM
4533 continue;
4534
a61e6f29 4535 lock_page(page);
eb14ab8e
CM
4536 WARN_ON(!PagePrivate(page));
4537
d1310b2e 4538 clear_page_dirty_for_io(page);
0ee0fda0 4539 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4540 if (!PageDirty(page)) {
4541 radix_tree_tag_clear(&page->mapping->page_tree,
4542 page_index(page),
4543 PAGECACHE_TAG_DIRTY);
4544 }
0ee0fda0 4545 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4546 ClearPageError(page);
a61e6f29 4547 unlock_page(page);
d1310b2e 4548 }
0b32f4bb 4549 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4550}
d1310b2e 4551
0b32f4bb 4552int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4553{
4554 unsigned long i;
4555 unsigned long num_pages;
b9473439 4556 int was_dirty = 0;
d1310b2e 4557
0b32f4bb
JB
4558 check_buffer_tree_ref(eb);
4559
b9473439 4560 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4561
d1310b2e 4562 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4563 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4564 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4565
b9473439 4566 for (i = 0; i < num_pages; i++)
0b32f4bb 4567 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4568 return was_dirty;
d1310b2e 4569}
d1310b2e 4570
0b32f4bb 4571static int range_straddles_pages(u64 start, u64 len)
19b6caf4
CM
4572{
4573 if (len < PAGE_CACHE_SIZE)
4574 return 1;
4575 if (start & (PAGE_CACHE_SIZE - 1))
4576 return 1;
4577 if ((start + len) & (PAGE_CACHE_SIZE - 1))
4578 return 1;
4579 return 0;
4580}
4581
0b32f4bb 4582int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4583{
4584 unsigned long i;
4585 struct page *page;
4586 unsigned long num_pages;
4587
b4ce94de 4588 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4589 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4590 for (i = 0; i < num_pages; i++) {
4591 page = extent_buffer_page(eb, i);
33958dc6
CM
4592 if (page)
4593 ClearPageUptodate(page);
1259ab75
CM
4594 }
4595 return 0;
4596}
4597
0b32f4bb 4598int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4599{
4600 unsigned long i;
4601 struct page *page;
4602 unsigned long num_pages;
4603
0b32f4bb 4604 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4605 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4606 for (i = 0; i < num_pages; i++) {
4607 page = extent_buffer_page(eb, i);
d1310b2e
CM
4608 SetPageUptodate(page);
4609 }
4610 return 0;
4611}
d1310b2e 4612
ce9adaa5
CM
4613int extent_range_uptodate(struct extent_io_tree *tree,
4614 u64 start, u64 end)
4615{
4616 struct page *page;
4617 int ret;
4618 int pg_uptodate = 1;
4619 int uptodate;
4620 unsigned long index;
4621
0b32f4bb 4622 if (range_straddles_pages(start, end - start + 1)) {
19b6caf4
CM
4623 ret = test_range_bit(tree, start, end,
4624 EXTENT_UPTODATE, 1, NULL);
4625 if (ret)
4626 return 1;
4627 }
d397712b 4628 while (start <= end) {
ce9adaa5
CM
4629 index = start >> PAGE_CACHE_SHIFT;
4630 page = find_get_page(tree->mapping, index);
8bedd51b
MH
4631 if (!page)
4632 return 1;
ce9adaa5
CM
4633 uptodate = PageUptodate(page);
4634 page_cache_release(page);
4635 if (!uptodate) {
4636 pg_uptodate = 0;
4637 break;
4638 }
4639 start += PAGE_CACHE_SIZE;
4640 }
4641 return pg_uptodate;
4642}
4643
0b32f4bb 4644int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4645{
0b32f4bb 4646 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4647}
d1310b2e
CM
4648
4649int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4650 struct extent_buffer *eb, u64 start, int wait,
f188591e 4651 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4652{
4653 unsigned long i;
4654 unsigned long start_i;
4655 struct page *page;
4656 int err;
4657 int ret = 0;
ce9adaa5
CM
4658 int locked_pages = 0;
4659 int all_uptodate = 1;
d1310b2e 4660 unsigned long num_pages;
727011e0 4661 unsigned long num_reads = 0;
a86c12c7 4662 struct bio *bio = NULL;
c8b97818 4663 unsigned long bio_flags = 0;
a86c12c7 4664
b4ce94de 4665 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4666 return 0;
4667
d1310b2e
CM
4668 if (start) {
4669 WARN_ON(start < eb->start);
4670 start_i = (start >> PAGE_CACHE_SHIFT) -
4671 (eb->start >> PAGE_CACHE_SHIFT);
4672 } else {
4673 start_i = 0;
4674 }
4675
4676 num_pages = num_extent_pages(eb->start, eb->len);
4677 for (i = start_i; i < num_pages; i++) {
4678 page = extent_buffer_page(eb, i);
bb82ab88 4679 if (wait == WAIT_NONE) {
2db04966 4680 if (!trylock_page(page))
ce9adaa5 4681 goto unlock_exit;
d1310b2e
CM
4682 } else {
4683 lock_page(page);
4684 }
ce9adaa5 4685 locked_pages++;
727011e0
CM
4686 if (!PageUptodate(page)) {
4687 num_reads++;
ce9adaa5 4688 all_uptodate = 0;
727011e0 4689 }
ce9adaa5
CM
4690 }
4691 if (all_uptodate) {
4692 if (start_i == 0)
b4ce94de 4693 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4694 goto unlock_exit;
4695 }
4696
ea466794 4697 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4698 eb->read_mirror = 0;
0b32f4bb 4699 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4700 for (i = start_i; i < num_pages; i++) {
4701 page = extent_buffer_page(eb, i);
ce9adaa5 4702 if (!PageUptodate(page)) {
f188591e 4703 ClearPageError(page);
a86c12c7 4704 err = __extent_read_full_page(tree, page,
f188591e 4705 get_extent, &bio,
c8b97818 4706 mirror_num, &bio_flags);
d397712b 4707 if (err)
d1310b2e 4708 ret = err;
d1310b2e
CM
4709 } else {
4710 unlock_page(page);
4711 }
4712 }
4713
355808c2
JM
4714 if (bio) {
4715 err = submit_one_bio(READ, bio, mirror_num, bio_flags);
79787eaa
JM
4716 if (err)
4717 return err;
355808c2 4718 }
a86c12c7 4719
bb82ab88 4720 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4721 return ret;
d397712b 4722
d1310b2e
CM
4723 for (i = start_i; i < num_pages; i++) {
4724 page = extent_buffer_page(eb, i);
4725 wait_on_page_locked(page);
d397712b 4726 if (!PageUptodate(page))
d1310b2e 4727 ret = -EIO;
d1310b2e 4728 }
d397712b 4729
d1310b2e 4730 return ret;
ce9adaa5
CM
4731
4732unlock_exit:
4733 i = start_i;
d397712b 4734 while (locked_pages > 0) {
ce9adaa5
CM
4735 page = extent_buffer_page(eb, i);
4736 i++;
4737 unlock_page(page);
4738 locked_pages--;
4739 }
4740 return ret;
d1310b2e 4741}
d1310b2e
CM
4742
4743void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4744 unsigned long start,
4745 unsigned long len)
4746{
4747 size_t cur;
4748 size_t offset;
4749 struct page *page;
4750 char *kaddr;
4751 char *dst = (char *)dstv;
4752 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4753 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4754
4755 WARN_ON(start > eb->len);
4756 WARN_ON(start + len > eb->start + eb->len);
4757
4758 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4759
d397712b 4760 while (len > 0) {
d1310b2e 4761 page = extent_buffer_page(eb, i);
d1310b2e
CM
4762
4763 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4764 kaddr = page_address(page);
d1310b2e 4765 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4766
4767 dst += cur;
4768 len -= cur;
4769 offset = 0;
4770 i++;
4771 }
4772}
d1310b2e
CM
4773
4774int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4775 unsigned long min_len, char **map,
d1310b2e 4776 unsigned long *map_start,
a6591715 4777 unsigned long *map_len)
d1310b2e
CM
4778{
4779 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4780 char *kaddr;
4781 struct page *p;
4782 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4783 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4784 unsigned long end_i = (start_offset + start + min_len - 1) >>
4785 PAGE_CACHE_SHIFT;
4786
4787 if (i != end_i)
4788 return -EINVAL;
4789
4790 if (i == 0) {
4791 offset = start_offset;
4792 *map_start = 0;
4793 } else {
4794 offset = 0;
4795 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4796 }
d397712b 4797
d1310b2e 4798 if (start + min_len > eb->len) {
31b1a2bd 4799 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
d397712b
CM
4800 "wanted %lu %lu\n", (unsigned long long)eb->start,
4801 eb->len, start, min_len);
85026533 4802 return -EINVAL;
d1310b2e
CM
4803 }
4804
4805 p = extent_buffer_page(eb, i);
a6591715 4806 kaddr = page_address(p);
d1310b2e
CM
4807 *map = kaddr + offset;
4808 *map_len = PAGE_CACHE_SIZE - offset;
4809 return 0;
4810}
d1310b2e 4811
d1310b2e
CM
4812int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4813 unsigned long start,
4814 unsigned long len)
4815{
4816 size_t cur;
4817 size_t offset;
4818 struct page *page;
4819 char *kaddr;
4820 char *ptr = (char *)ptrv;
4821 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4822 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4823 int ret = 0;
4824
4825 WARN_ON(start > eb->len);
4826 WARN_ON(start + len > eb->start + eb->len);
4827
4828 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4829
d397712b 4830 while (len > 0) {
d1310b2e 4831 page = extent_buffer_page(eb, i);
d1310b2e
CM
4832
4833 cur = min(len, (PAGE_CACHE_SIZE - offset));
4834
a6591715 4835 kaddr = page_address(page);
d1310b2e 4836 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4837 if (ret)
4838 break;
4839
4840 ptr += cur;
4841 len -= cur;
4842 offset = 0;
4843 i++;
4844 }
4845 return ret;
4846}
d1310b2e
CM
4847
4848void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4849 unsigned long start, unsigned long len)
4850{
4851 size_t cur;
4852 size_t offset;
4853 struct page *page;
4854 char *kaddr;
4855 char *src = (char *)srcv;
4856 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4857 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4858
4859 WARN_ON(start > eb->len);
4860 WARN_ON(start + len > eb->start + eb->len);
4861
4862 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4863
d397712b 4864 while (len > 0) {
d1310b2e
CM
4865 page = extent_buffer_page(eb, i);
4866 WARN_ON(!PageUptodate(page));
4867
4868 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4869 kaddr = page_address(page);
d1310b2e 4870 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4871
4872 src += cur;
4873 len -= cur;
4874 offset = 0;
4875 i++;
4876 }
4877}
d1310b2e
CM
4878
4879void memset_extent_buffer(struct extent_buffer *eb, char c,
4880 unsigned long start, unsigned long len)
4881{
4882 size_t cur;
4883 size_t offset;
4884 struct page *page;
4885 char *kaddr;
4886 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4887 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4888
4889 WARN_ON(start > eb->len);
4890 WARN_ON(start + len > eb->start + eb->len);
4891
4892 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4893
d397712b 4894 while (len > 0) {
d1310b2e
CM
4895 page = extent_buffer_page(eb, i);
4896 WARN_ON(!PageUptodate(page));
4897
4898 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4899 kaddr = page_address(page);
d1310b2e 4900 memset(kaddr + offset, c, cur);
d1310b2e
CM
4901
4902 len -= cur;
4903 offset = 0;
4904 i++;
4905 }
4906}
d1310b2e
CM
4907
4908void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4909 unsigned long dst_offset, unsigned long src_offset,
4910 unsigned long len)
4911{
4912 u64 dst_len = dst->len;
4913 size_t cur;
4914 size_t offset;
4915 struct page *page;
4916 char *kaddr;
4917 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4918 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4919
4920 WARN_ON(src->len != dst_len);
4921
4922 offset = (start_offset + dst_offset) &
4923 ((unsigned long)PAGE_CACHE_SIZE - 1);
4924
d397712b 4925 while (len > 0) {
d1310b2e
CM
4926 page = extent_buffer_page(dst, i);
4927 WARN_ON(!PageUptodate(page));
4928
4929 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4930
a6591715 4931 kaddr = page_address(page);
d1310b2e 4932 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4933
4934 src_offset += cur;
4935 len -= cur;
4936 offset = 0;
4937 i++;
4938 }
4939}
d1310b2e
CM
4940
4941static void move_pages(struct page *dst_page, struct page *src_page,
4942 unsigned long dst_off, unsigned long src_off,
4943 unsigned long len)
4944{
a6591715 4945 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4946 if (dst_page == src_page) {
4947 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4948 } else {
a6591715 4949 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4950 char *p = dst_kaddr + dst_off + len;
4951 char *s = src_kaddr + src_off + len;
4952
4953 while (len--)
4954 *--p = *--s;
d1310b2e 4955 }
d1310b2e
CM
4956}
4957
3387206f
ST
4958static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4959{
4960 unsigned long distance = (src > dst) ? src - dst : dst - src;
4961 return distance < len;
4962}
4963
d1310b2e
CM
4964static void copy_pages(struct page *dst_page, struct page *src_page,
4965 unsigned long dst_off, unsigned long src_off,
4966 unsigned long len)
4967{
a6591715 4968 char *dst_kaddr = page_address(dst_page);
d1310b2e 4969 char *src_kaddr;
727011e0 4970 int must_memmove = 0;
d1310b2e 4971
3387206f 4972 if (dst_page != src_page) {
a6591715 4973 src_kaddr = page_address(src_page);
3387206f 4974 } else {
d1310b2e 4975 src_kaddr = dst_kaddr;
727011e0
CM
4976 if (areas_overlap(src_off, dst_off, len))
4977 must_memmove = 1;
3387206f 4978 }
d1310b2e 4979
727011e0
CM
4980 if (must_memmove)
4981 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4982 else
4983 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4984}
4985
4986void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4987 unsigned long src_offset, unsigned long len)
4988{
4989 size_t cur;
4990 size_t dst_off_in_page;
4991 size_t src_off_in_page;
4992 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4993 unsigned long dst_i;
4994 unsigned long src_i;
4995
4996 if (src_offset + len > dst->len) {
d397712b
CM
4997 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4998 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
4999 BUG_ON(1);
5000 }
5001 if (dst_offset + len > dst->len) {
d397712b
CM
5002 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5003 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5004 BUG_ON(1);
5005 }
5006
d397712b 5007 while (len > 0) {
d1310b2e
CM
5008 dst_off_in_page = (start_offset + dst_offset) &
5009 ((unsigned long)PAGE_CACHE_SIZE - 1);
5010 src_off_in_page = (start_offset + src_offset) &
5011 ((unsigned long)PAGE_CACHE_SIZE - 1);
5012
5013 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5014 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5015
5016 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5017 src_off_in_page));
5018 cur = min_t(unsigned long, cur,
5019 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5020
5021 copy_pages(extent_buffer_page(dst, dst_i),
5022 extent_buffer_page(dst, src_i),
5023 dst_off_in_page, src_off_in_page, cur);
5024
5025 src_offset += cur;
5026 dst_offset += cur;
5027 len -= cur;
5028 }
5029}
d1310b2e
CM
5030
5031void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5032 unsigned long src_offset, unsigned long len)
5033{
5034 size_t cur;
5035 size_t dst_off_in_page;
5036 size_t src_off_in_page;
5037 unsigned long dst_end = dst_offset + len - 1;
5038 unsigned long src_end = src_offset + len - 1;
5039 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5040 unsigned long dst_i;
5041 unsigned long src_i;
5042
5043 if (src_offset + len > dst->len) {
d397712b
CM
5044 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5045 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5046 BUG_ON(1);
5047 }
5048 if (dst_offset + len > dst->len) {
d397712b
CM
5049 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5050 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5051 BUG_ON(1);
5052 }
727011e0 5053 if (dst_offset < src_offset) {
d1310b2e
CM
5054 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5055 return;
5056 }
d397712b 5057 while (len > 0) {
d1310b2e
CM
5058 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5059 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5060
5061 dst_off_in_page = (start_offset + dst_end) &
5062 ((unsigned long)PAGE_CACHE_SIZE - 1);
5063 src_off_in_page = (start_offset + src_end) &
5064 ((unsigned long)PAGE_CACHE_SIZE - 1);
5065
5066 cur = min_t(unsigned long, len, src_off_in_page + 1);
5067 cur = min(cur, dst_off_in_page + 1);
5068 move_pages(extent_buffer_page(dst, dst_i),
5069 extent_buffer_page(dst, src_i),
5070 dst_off_in_page - cur + 1,
5071 src_off_in_page - cur + 1, cur);
5072
5073 dst_end -= cur;
5074 src_end -= cur;
5075 len -= cur;
5076 }
5077}
6af118ce 5078
3083ee2e 5079int try_release_extent_buffer(struct page *page, gfp_t mask)
19fe0a8b 5080{
6af118ce 5081 struct extent_buffer *eb;
6af118ce 5082
3083ee2e
JB
5083 /*
5084 * We need to make sure noboody is attaching this page to an eb right
5085 * now.
5086 */
5087 spin_lock(&page->mapping->private_lock);
5088 if (!PagePrivate(page)) {
5089 spin_unlock(&page->mapping->private_lock);
4f2de97a 5090 return 1;
45f49bce 5091 }
6af118ce 5092
3083ee2e
JB
5093 eb = (struct extent_buffer *)page->private;
5094 BUG_ON(!eb);
19fe0a8b
MX
5095
5096 /*
3083ee2e
JB
5097 * This is a little awful but should be ok, we need to make sure that
5098 * the eb doesn't disappear out from under us while we're looking at
5099 * this page.
19fe0a8b 5100 */
3083ee2e 5101 spin_lock(&eb->refs_lock);
0b32f4bb 5102 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5103 spin_unlock(&eb->refs_lock);
5104 spin_unlock(&page->mapping->private_lock);
5105 return 0;
b9473439 5106 }
3083ee2e 5107 spin_unlock(&page->mapping->private_lock);
897ca6e9 5108
3083ee2e
JB
5109 if ((mask & GFP_NOFS) == GFP_NOFS)
5110 mask = GFP_NOFS;
19fe0a8b 5111
19fe0a8b 5112 /*
3083ee2e
JB
5113 * If tree ref isn't set then we know the ref on this eb is a real ref,
5114 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5115 */
3083ee2e
JB
5116 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5117 spin_unlock(&eb->refs_lock);
5118 return 0;
b9473439 5119 }
19fe0a8b 5120
e64860aa 5121 return release_extent_buffer(eb, mask);
6af118ce 5122}