Btrfs: remove unnecessary argument of bio_readpage_error()
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
2db04966 16#include "compat.h"
902b22f3
DW
17#include "ctree.h"
18#include "btrfs_inode.h"
4a54c8c1 19#include "volumes.h"
21adbd5c 20#include "check-integrity.h"
0b32f4bb 21#include "locking.h"
606686ee 22#include "rcu-string.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
6d49ba1b 28#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
29static LIST_HEAD(buffers);
30static LIST_HEAD(states);
4bef0848 31
d397712b 32static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
33
34static inline
35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
36{
37 unsigned long flags;
38
39 spin_lock_irqsave(&leak_lock, flags);
40 list_add(new, head);
41 spin_unlock_irqrestore(&leak_lock, flags);
42}
43
44static inline
45void btrfs_leak_debug_del(struct list_head *entry)
46{
47 unsigned long flags;
48
49 spin_lock_irqsave(&leak_lock, flags);
50 list_del(entry);
51 spin_unlock_irqrestore(&leak_lock, flags);
52}
53
54static inline
55void btrfs_leak_debug_check(void)
56{
57 struct extent_state *state;
58 struct extent_buffer *eb;
59
60 while (!list_empty(&states)) {
61 state = list_entry(states.next, struct extent_state, leak_list);
62 printk(KERN_ERR "btrfs state leak: start %llu end %llu "
63 "state %lu in tree %p refs %d\n",
64 (unsigned long long)state->start,
65 (unsigned long long)state->end,
66 state->state, state->tree, atomic_read(&state->refs));
67 list_del(&state->leak_list);
68 kmem_cache_free(extent_state_cache, state);
69 }
70
71 while (!list_empty(&buffers)) {
72 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
73 printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
74 "refs %d\n", (unsigned long long)eb->start,
75 eb->len, atomic_read(&eb->refs));
76 list_del(&eb->leak_list);
77 kmem_cache_free(extent_buffer_cache, eb);
78 }
79}
8d599ae1
DS
80
81#define btrfs_debug_check_extent_io_range(inode, start, end) \
82 __btrfs_debug_check_extent_io_range(__func__, (inode), (start), (end))
83static inline void __btrfs_debug_check_extent_io_range(const char *caller,
84 struct inode *inode, u64 start, u64 end)
85{
86 u64 isize = i_size_read(inode);
87
88 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
89 printk_ratelimited(KERN_DEBUG
90 "btrfs: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
91 caller,
92 (unsigned long long)btrfs_ino(inode),
93 (unsigned long long)isize,
94 (unsigned long long)start,
95 (unsigned long long)end);
96 }
97}
6d49ba1b
ES
98#else
99#define btrfs_leak_debug_add(new, head) do {} while (0)
100#define btrfs_leak_debug_del(entry) do {} while (0)
101#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 102#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 103#endif
d1310b2e 104
d1310b2e
CM
105#define BUFFER_LRU_MAX 64
106
107struct tree_entry {
108 u64 start;
109 u64 end;
d1310b2e
CM
110 struct rb_node rb_node;
111};
112
113struct extent_page_data {
114 struct bio *bio;
115 struct extent_io_tree *tree;
116 get_extent_t *get_extent;
de0022b9 117 unsigned long bio_flags;
771ed689
CM
118
119 /* tells writepage not to lock the state bits for this range
120 * it still does the unlocking
121 */
ffbd517d
CM
122 unsigned int extent_locked:1;
123
124 /* tells the submit_bio code to use a WRITE_SYNC */
125 unsigned int sync_io:1;
d1310b2e
CM
126};
127
0b32f4bb 128static noinline void flush_write_bio(void *data);
c2d904e0
JM
129static inline struct btrfs_fs_info *
130tree_fs_info(struct extent_io_tree *tree)
131{
132 return btrfs_sb(tree->mapping->host->i_sb);
133}
0b32f4bb 134
d1310b2e
CM
135int __init extent_io_init(void)
136{
837e1972 137 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
138 sizeof(struct extent_state), 0,
139 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
140 if (!extent_state_cache)
141 return -ENOMEM;
142
837e1972 143 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
144 sizeof(struct extent_buffer), 0,
145 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
146 if (!extent_buffer_cache)
147 goto free_state_cache;
9be3395b
CM
148
149 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
150 offsetof(struct btrfs_io_bio, bio));
151 if (!btrfs_bioset)
152 goto free_buffer_cache;
d1310b2e
CM
153 return 0;
154
9be3395b
CM
155free_buffer_cache:
156 kmem_cache_destroy(extent_buffer_cache);
157 extent_buffer_cache = NULL;
158
d1310b2e
CM
159free_state_cache:
160 kmem_cache_destroy(extent_state_cache);
9be3395b 161 extent_state_cache = NULL;
d1310b2e
CM
162 return -ENOMEM;
163}
164
165void extent_io_exit(void)
166{
6d49ba1b 167 btrfs_leak_debug_check();
8c0a8537
KS
168
169 /*
170 * Make sure all delayed rcu free are flushed before we
171 * destroy caches.
172 */
173 rcu_barrier();
d1310b2e
CM
174 if (extent_state_cache)
175 kmem_cache_destroy(extent_state_cache);
176 if (extent_buffer_cache)
177 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
178 if (btrfs_bioset)
179 bioset_free(btrfs_bioset);
d1310b2e
CM
180}
181
182void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 183 struct address_space *mapping)
d1310b2e 184{
6bef4d31 185 tree->state = RB_ROOT;
19fe0a8b 186 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
d1310b2e
CM
187 tree->ops = NULL;
188 tree->dirty_bytes = 0;
70dec807 189 spin_lock_init(&tree->lock);
6af118ce 190 spin_lock_init(&tree->buffer_lock);
d1310b2e 191 tree->mapping = mapping;
d1310b2e 192}
d1310b2e 193
b2950863 194static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
195{
196 struct extent_state *state;
d1310b2e
CM
197
198 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 199 if (!state)
d1310b2e
CM
200 return state;
201 state->state = 0;
d1310b2e 202 state->private = 0;
70dec807 203 state->tree = NULL;
6d49ba1b 204 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
205 atomic_set(&state->refs, 1);
206 init_waitqueue_head(&state->wq);
143bede5 207 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
208 return state;
209}
d1310b2e 210
4845e44f 211void free_extent_state(struct extent_state *state)
d1310b2e 212{
d1310b2e
CM
213 if (!state)
214 return;
215 if (atomic_dec_and_test(&state->refs)) {
70dec807 216 WARN_ON(state->tree);
6d49ba1b 217 btrfs_leak_debug_del(&state->leak_list);
143bede5 218 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
219 kmem_cache_free(extent_state_cache, state);
220 }
221}
d1310b2e
CM
222
223static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
224 struct rb_node *node)
225{
d397712b
CM
226 struct rb_node **p = &root->rb_node;
227 struct rb_node *parent = NULL;
d1310b2e
CM
228 struct tree_entry *entry;
229
d397712b 230 while (*p) {
d1310b2e
CM
231 parent = *p;
232 entry = rb_entry(parent, struct tree_entry, rb_node);
233
234 if (offset < entry->start)
235 p = &(*p)->rb_left;
236 else if (offset > entry->end)
237 p = &(*p)->rb_right;
238 else
239 return parent;
240 }
241
d1310b2e
CM
242 rb_link_node(node, parent, p);
243 rb_insert_color(node, root);
244 return NULL;
245}
246
80ea96b1 247static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
d1310b2e
CM
248 struct rb_node **prev_ret,
249 struct rb_node **next_ret)
250{
80ea96b1 251 struct rb_root *root = &tree->state;
d397712b 252 struct rb_node *n = root->rb_node;
d1310b2e
CM
253 struct rb_node *prev = NULL;
254 struct rb_node *orig_prev = NULL;
255 struct tree_entry *entry;
256 struct tree_entry *prev_entry = NULL;
257
d397712b 258 while (n) {
d1310b2e
CM
259 entry = rb_entry(n, struct tree_entry, rb_node);
260 prev = n;
261 prev_entry = entry;
262
263 if (offset < entry->start)
264 n = n->rb_left;
265 else if (offset > entry->end)
266 n = n->rb_right;
d397712b 267 else
d1310b2e
CM
268 return n;
269 }
270
271 if (prev_ret) {
272 orig_prev = prev;
d397712b 273 while (prev && offset > prev_entry->end) {
d1310b2e
CM
274 prev = rb_next(prev);
275 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
276 }
277 *prev_ret = prev;
278 prev = orig_prev;
279 }
280
281 if (next_ret) {
282 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 283 while (prev && offset < prev_entry->start) {
d1310b2e
CM
284 prev = rb_prev(prev);
285 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
286 }
287 *next_ret = prev;
288 }
289 return NULL;
290}
291
80ea96b1
CM
292static inline struct rb_node *tree_search(struct extent_io_tree *tree,
293 u64 offset)
d1310b2e 294{
70dec807 295 struct rb_node *prev = NULL;
d1310b2e 296 struct rb_node *ret;
70dec807 297
80ea96b1 298 ret = __etree_search(tree, offset, &prev, NULL);
d397712b 299 if (!ret)
d1310b2e
CM
300 return prev;
301 return ret;
302}
303
9ed74f2d
JB
304static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
305 struct extent_state *other)
306{
307 if (tree->ops && tree->ops->merge_extent_hook)
308 tree->ops->merge_extent_hook(tree->mapping->host, new,
309 other);
310}
311
d1310b2e
CM
312/*
313 * utility function to look for merge candidates inside a given range.
314 * Any extents with matching state are merged together into a single
315 * extent in the tree. Extents with EXTENT_IO in their state field
316 * are not merged because the end_io handlers need to be able to do
317 * operations on them without sleeping (or doing allocations/splits).
318 *
319 * This should be called with the tree lock held.
320 */
1bf85046
JM
321static void merge_state(struct extent_io_tree *tree,
322 struct extent_state *state)
d1310b2e
CM
323{
324 struct extent_state *other;
325 struct rb_node *other_node;
326
5b21f2ed 327 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 328 return;
d1310b2e
CM
329
330 other_node = rb_prev(&state->rb_node);
331 if (other_node) {
332 other = rb_entry(other_node, struct extent_state, rb_node);
333 if (other->end == state->start - 1 &&
334 other->state == state->state) {
9ed74f2d 335 merge_cb(tree, state, other);
d1310b2e 336 state->start = other->start;
70dec807 337 other->tree = NULL;
d1310b2e
CM
338 rb_erase(&other->rb_node, &tree->state);
339 free_extent_state(other);
340 }
341 }
342 other_node = rb_next(&state->rb_node);
343 if (other_node) {
344 other = rb_entry(other_node, struct extent_state, rb_node);
345 if (other->start == state->end + 1 &&
346 other->state == state->state) {
9ed74f2d 347 merge_cb(tree, state, other);
df98b6e2
JB
348 state->end = other->end;
349 other->tree = NULL;
350 rb_erase(&other->rb_node, &tree->state);
351 free_extent_state(other);
d1310b2e
CM
352 }
353 }
d1310b2e
CM
354}
355
1bf85046 356static void set_state_cb(struct extent_io_tree *tree,
41074888 357 struct extent_state *state, unsigned long *bits)
291d673e 358{
1bf85046
JM
359 if (tree->ops && tree->ops->set_bit_hook)
360 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
361}
362
363static void clear_state_cb(struct extent_io_tree *tree,
41074888 364 struct extent_state *state, unsigned long *bits)
291d673e 365{
9ed74f2d
JB
366 if (tree->ops && tree->ops->clear_bit_hook)
367 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
368}
369
3150b699 370static void set_state_bits(struct extent_io_tree *tree,
41074888 371 struct extent_state *state, unsigned long *bits);
3150b699 372
d1310b2e
CM
373/*
374 * insert an extent_state struct into the tree. 'bits' are set on the
375 * struct before it is inserted.
376 *
377 * This may return -EEXIST if the extent is already there, in which case the
378 * state struct is freed.
379 *
380 * The tree lock is not taken internally. This is a utility function and
381 * probably isn't what you want to call (see set/clear_extent_bit).
382 */
383static int insert_state(struct extent_io_tree *tree,
384 struct extent_state *state, u64 start, u64 end,
41074888 385 unsigned long *bits)
d1310b2e
CM
386{
387 struct rb_node *node;
388
31b1a2bd
JL
389 if (end < start)
390 WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
d397712b
CM
391 (unsigned long long)end,
392 (unsigned long long)start);
d1310b2e
CM
393 state->start = start;
394 state->end = end;
9ed74f2d 395
3150b699
XG
396 set_state_bits(tree, state, bits);
397
d1310b2e
CM
398 node = tree_insert(&tree->state, end, &state->rb_node);
399 if (node) {
400 struct extent_state *found;
401 found = rb_entry(node, struct extent_state, rb_node);
d397712b
CM
402 printk(KERN_ERR "btrfs found node %llu %llu on insert of "
403 "%llu %llu\n", (unsigned long long)found->start,
404 (unsigned long long)found->end,
405 (unsigned long long)start, (unsigned long long)end);
d1310b2e
CM
406 return -EEXIST;
407 }
70dec807 408 state->tree = tree;
d1310b2e
CM
409 merge_state(tree, state);
410 return 0;
411}
412
1bf85046 413static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
414 u64 split)
415{
416 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 417 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
418}
419
d1310b2e
CM
420/*
421 * split a given extent state struct in two, inserting the preallocated
422 * struct 'prealloc' as the newly created second half. 'split' indicates an
423 * offset inside 'orig' where it should be split.
424 *
425 * Before calling,
426 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
427 * are two extent state structs in the tree:
428 * prealloc: [orig->start, split - 1]
429 * orig: [ split, orig->end ]
430 *
431 * The tree locks are not taken by this function. They need to be held
432 * by the caller.
433 */
434static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
435 struct extent_state *prealloc, u64 split)
436{
437 struct rb_node *node;
9ed74f2d
JB
438
439 split_cb(tree, orig, split);
440
d1310b2e
CM
441 prealloc->start = orig->start;
442 prealloc->end = split - 1;
443 prealloc->state = orig->state;
444 orig->start = split;
445
446 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
447 if (node) {
d1310b2e
CM
448 free_extent_state(prealloc);
449 return -EEXIST;
450 }
70dec807 451 prealloc->tree = tree;
d1310b2e
CM
452 return 0;
453}
454
cdc6a395
LZ
455static struct extent_state *next_state(struct extent_state *state)
456{
457 struct rb_node *next = rb_next(&state->rb_node);
458 if (next)
459 return rb_entry(next, struct extent_state, rb_node);
460 else
461 return NULL;
462}
463
d1310b2e
CM
464/*
465 * utility function to clear some bits in an extent state struct.
1b303fc0 466 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
467 *
468 * If no bits are set on the state struct after clearing things, the
469 * struct is freed and removed from the tree
470 */
cdc6a395
LZ
471static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
472 struct extent_state *state,
41074888 473 unsigned long *bits, int wake)
d1310b2e 474{
cdc6a395 475 struct extent_state *next;
41074888 476 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 477
0ca1f7ce 478 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
479 u64 range = state->end - state->start + 1;
480 WARN_ON(range > tree->dirty_bytes);
481 tree->dirty_bytes -= range;
482 }
291d673e 483 clear_state_cb(tree, state, bits);
32c00aff 484 state->state &= ~bits_to_clear;
d1310b2e
CM
485 if (wake)
486 wake_up(&state->wq);
0ca1f7ce 487 if (state->state == 0) {
cdc6a395 488 next = next_state(state);
70dec807 489 if (state->tree) {
d1310b2e 490 rb_erase(&state->rb_node, &tree->state);
70dec807 491 state->tree = NULL;
d1310b2e
CM
492 free_extent_state(state);
493 } else {
494 WARN_ON(1);
495 }
496 } else {
497 merge_state(tree, state);
cdc6a395 498 next = next_state(state);
d1310b2e 499 }
cdc6a395 500 return next;
d1310b2e
CM
501}
502
8233767a
XG
503static struct extent_state *
504alloc_extent_state_atomic(struct extent_state *prealloc)
505{
506 if (!prealloc)
507 prealloc = alloc_extent_state(GFP_ATOMIC);
508
509 return prealloc;
510}
511
48a3b636 512static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
513{
514 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
515 "Extent tree was modified by another "
516 "thread while locked.");
517}
518
d1310b2e
CM
519/*
520 * clear some bits on a range in the tree. This may require splitting
521 * or inserting elements in the tree, so the gfp mask is used to
522 * indicate which allocations or sleeping are allowed.
523 *
524 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
525 * the given range from the tree regardless of state (ie for truncate).
526 *
527 * the range [start, end] is inclusive.
528 *
6763af84 529 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e
CM
530 */
531int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 532 unsigned long bits, int wake, int delete,
2c64c53d
CM
533 struct extent_state **cached_state,
534 gfp_t mask)
d1310b2e
CM
535{
536 struct extent_state *state;
2c64c53d 537 struct extent_state *cached;
d1310b2e
CM
538 struct extent_state *prealloc = NULL;
539 struct rb_node *node;
5c939df5 540 u64 last_end;
d1310b2e 541 int err;
2ac55d41 542 int clear = 0;
d1310b2e 543
8d599ae1
DS
544 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
545
7ee9e440
JB
546 if (bits & EXTENT_DELALLOC)
547 bits |= EXTENT_NORESERVE;
548
0ca1f7ce
YZ
549 if (delete)
550 bits |= ~EXTENT_CTLBITS;
551 bits |= EXTENT_FIRST_DELALLOC;
552
2ac55d41
JB
553 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
554 clear = 1;
d1310b2e
CM
555again:
556 if (!prealloc && (mask & __GFP_WAIT)) {
557 prealloc = alloc_extent_state(mask);
558 if (!prealloc)
559 return -ENOMEM;
560 }
561
cad321ad 562 spin_lock(&tree->lock);
2c64c53d
CM
563 if (cached_state) {
564 cached = *cached_state;
2ac55d41
JB
565
566 if (clear) {
567 *cached_state = NULL;
568 cached_state = NULL;
569 }
570
df98b6e2
JB
571 if (cached && cached->tree && cached->start <= start &&
572 cached->end > start) {
2ac55d41
JB
573 if (clear)
574 atomic_dec(&cached->refs);
2c64c53d 575 state = cached;
42daec29 576 goto hit_next;
2c64c53d 577 }
2ac55d41
JB
578 if (clear)
579 free_extent_state(cached);
2c64c53d 580 }
d1310b2e
CM
581 /*
582 * this search will find the extents that end after
583 * our range starts
584 */
80ea96b1 585 node = tree_search(tree, start);
d1310b2e
CM
586 if (!node)
587 goto out;
588 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 589hit_next:
d1310b2e
CM
590 if (state->start > end)
591 goto out;
592 WARN_ON(state->end < start);
5c939df5 593 last_end = state->end;
d1310b2e 594
0449314a 595 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
596 if (!(state->state & bits)) {
597 state = next_state(state);
0449314a 598 goto next;
cdc6a395 599 }
0449314a 600
d1310b2e
CM
601 /*
602 * | ---- desired range ---- |
603 * | state | or
604 * | ------------- state -------------- |
605 *
606 * We need to split the extent we found, and may flip
607 * bits on second half.
608 *
609 * If the extent we found extends past our range, we
610 * just split and search again. It'll get split again
611 * the next time though.
612 *
613 * If the extent we found is inside our range, we clear
614 * the desired bit on it.
615 */
616
617 if (state->start < start) {
8233767a
XG
618 prealloc = alloc_extent_state_atomic(prealloc);
619 BUG_ON(!prealloc);
d1310b2e 620 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
621 if (err)
622 extent_io_tree_panic(tree, err);
623
d1310b2e
CM
624 prealloc = NULL;
625 if (err)
626 goto out;
627 if (state->end <= end) {
d1ac6e41
LB
628 state = clear_state_bit(tree, state, &bits, wake);
629 goto next;
d1310b2e
CM
630 }
631 goto search_again;
632 }
633 /*
634 * | ---- desired range ---- |
635 * | state |
636 * We need to split the extent, and clear the bit
637 * on the first half
638 */
639 if (state->start <= end && state->end > end) {
8233767a
XG
640 prealloc = alloc_extent_state_atomic(prealloc);
641 BUG_ON(!prealloc);
d1310b2e 642 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
643 if (err)
644 extent_io_tree_panic(tree, err);
645
d1310b2e
CM
646 if (wake)
647 wake_up(&state->wq);
42daec29 648
6763af84 649 clear_state_bit(tree, prealloc, &bits, wake);
9ed74f2d 650
d1310b2e
CM
651 prealloc = NULL;
652 goto out;
653 }
42daec29 654
cdc6a395 655 state = clear_state_bit(tree, state, &bits, wake);
0449314a 656next:
5c939df5
YZ
657 if (last_end == (u64)-1)
658 goto out;
659 start = last_end + 1;
cdc6a395 660 if (start <= end && state && !need_resched())
692e5759 661 goto hit_next;
d1310b2e
CM
662 goto search_again;
663
664out:
cad321ad 665 spin_unlock(&tree->lock);
d1310b2e
CM
666 if (prealloc)
667 free_extent_state(prealloc);
668
6763af84 669 return 0;
d1310b2e
CM
670
671search_again:
672 if (start > end)
673 goto out;
cad321ad 674 spin_unlock(&tree->lock);
d1310b2e
CM
675 if (mask & __GFP_WAIT)
676 cond_resched();
677 goto again;
678}
d1310b2e 679
143bede5
JM
680static void wait_on_state(struct extent_io_tree *tree,
681 struct extent_state *state)
641f5219
CH
682 __releases(tree->lock)
683 __acquires(tree->lock)
d1310b2e
CM
684{
685 DEFINE_WAIT(wait);
686 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 687 spin_unlock(&tree->lock);
d1310b2e 688 schedule();
cad321ad 689 spin_lock(&tree->lock);
d1310b2e 690 finish_wait(&state->wq, &wait);
d1310b2e
CM
691}
692
693/*
694 * waits for one or more bits to clear on a range in the state tree.
695 * The range [start, end] is inclusive.
696 * The tree lock is taken by this function
697 */
41074888
DS
698static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
699 unsigned long bits)
d1310b2e
CM
700{
701 struct extent_state *state;
702 struct rb_node *node;
703
8d599ae1
DS
704 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
705
cad321ad 706 spin_lock(&tree->lock);
d1310b2e
CM
707again:
708 while (1) {
709 /*
710 * this search will find all the extents that end after
711 * our range starts
712 */
80ea96b1 713 node = tree_search(tree, start);
d1310b2e
CM
714 if (!node)
715 break;
716
717 state = rb_entry(node, struct extent_state, rb_node);
718
719 if (state->start > end)
720 goto out;
721
722 if (state->state & bits) {
723 start = state->start;
724 atomic_inc(&state->refs);
725 wait_on_state(tree, state);
726 free_extent_state(state);
727 goto again;
728 }
729 start = state->end + 1;
730
731 if (start > end)
732 break;
733
ded91f08 734 cond_resched_lock(&tree->lock);
d1310b2e
CM
735 }
736out:
cad321ad 737 spin_unlock(&tree->lock);
d1310b2e 738}
d1310b2e 739
1bf85046 740static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 741 struct extent_state *state,
41074888 742 unsigned long *bits)
d1310b2e 743{
41074888 744 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 745
1bf85046 746 set_state_cb(tree, state, bits);
0ca1f7ce 747 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
748 u64 range = state->end - state->start + 1;
749 tree->dirty_bytes += range;
750 }
0ca1f7ce 751 state->state |= bits_to_set;
d1310b2e
CM
752}
753
2c64c53d
CM
754static void cache_state(struct extent_state *state,
755 struct extent_state **cached_ptr)
756{
757 if (cached_ptr && !(*cached_ptr)) {
758 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
759 *cached_ptr = state;
760 atomic_inc(&state->refs);
761 }
762 }
763}
764
507903b8
AJ
765static void uncache_state(struct extent_state **cached_ptr)
766{
767 if (cached_ptr && (*cached_ptr)) {
768 struct extent_state *state = *cached_ptr;
109b36a2
CM
769 *cached_ptr = NULL;
770 free_extent_state(state);
507903b8
AJ
771 }
772}
773
d1310b2e 774/*
1edbb734
CM
775 * set some bits on a range in the tree. This may require allocations or
776 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 777 *
1edbb734
CM
778 * If any of the exclusive bits are set, this will fail with -EEXIST if some
779 * part of the range already has the desired bits set. The start of the
780 * existing range is returned in failed_start in this case.
d1310b2e 781 *
1edbb734 782 * [start, end] is inclusive This takes the tree lock.
d1310b2e 783 */
1edbb734 784
3fbe5c02
JM
785static int __must_check
786__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888
DS
787 unsigned long bits, unsigned long exclusive_bits,
788 u64 *failed_start, struct extent_state **cached_state,
789 gfp_t mask)
d1310b2e
CM
790{
791 struct extent_state *state;
792 struct extent_state *prealloc = NULL;
793 struct rb_node *node;
d1310b2e 794 int err = 0;
d1310b2e
CM
795 u64 last_start;
796 u64 last_end;
42daec29 797
8d599ae1
DS
798 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
799
0ca1f7ce 800 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e
CM
801again:
802 if (!prealloc && (mask & __GFP_WAIT)) {
803 prealloc = alloc_extent_state(mask);
8233767a 804 BUG_ON(!prealloc);
d1310b2e
CM
805 }
806
cad321ad 807 spin_lock(&tree->lock);
9655d298
CM
808 if (cached_state && *cached_state) {
809 state = *cached_state;
df98b6e2
JB
810 if (state->start <= start && state->end > start &&
811 state->tree) {
9655d298
CM
812 node = &state->rb_node;
813 goto hit_next;
814 }
815 }
d1310b2e
CM
816 /*
817 * this search will find all the extents that end after
818 * our range starts.
819 */
80ea96b1 820 node = tree_search(tree, start);
d1310b2e 821 if (!node) {
8233767a
XG
822 prealloc = alloc_extent_state_atomic(prealloc);
823 BUG_ON(!prealloc);
0ca1f7ce 824 err = insert_state(tree, prealloc, start, end, &bits);
c2d904e0
JM
825 if (err)
826 extent_io_tree_panic(tree, err);
827
d1310b2e 828 prealloc = NULL;
d1310b2e
CM
829 goto out;
830 }
d1310b2e 831 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 832hit_next:
d1310b2e
CM
833 last_start = state->start;
834 last_end = state->end;
835
836 /*
837 * | ---- desired range ---- |
838 * | state |
839 *
840 * Just lock what we found and keep going
841 */
842 if (state->start == start && state->end <= end) {
1edbb734 843 if (state->state & exclusive_bits) {
d1310b2e
CM
844 *failed_start = state->start;
845 err = -EEXIST;
846 goto out;
847 }
42daec29 848
1bf85046 849 set_state_bits(tree, state, &bits);
2c64c53d 850 cache_state(state, cached_state);
d1310b2e 851 merge_state(tree, state);
5c939df5
YZ
852 if (last_end == (u64)-1)
853 goto out;
854 start = last_end + 1;
d1ac6e41
LB
855 state = next_state(state);
856 if (start < end && state && state->start == start &&
857 !need_resched())
858 goto hit_next;
d1310b2e
CM
859 goto search_again;
860 }
861
862 /*
863 * | ---- desired range ---- |
864 * | state |
865 * or
866 * | ------------- state -------------- |
867 *
868 * We need to split the extent we found, and may flip bits on
869 * second half.
870 *
871 * If the extent we found extends past our
872 * range, we just split and search again. It'll get split
873 * again the next time though.
874 *
875 * If the extent we found is inside our range, we set the
876 * desired bit on it.
877 */
878 if (state->start < start) {
1edbb734 879 if (state->state & exclusive_bits) {
d1310b2e
CM
880 *failed_start = start;
881 err = -EEXIST;
882 goto out;
883 }
8233767a
XG
884
885 prealloc = alloc_extent_state_atomic(prealloc);
886 BUG_ON(!prealloc);
d1310b2e 887 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
888 if (err)
889 extent_io_tree_panic(tree, err);
890
d1310b2e
CM
891 prealloc = NULL;
892 if (err)
893 goto out;
894 if (state->end <= end) {
1bf85046 895 set_state_bits(tree, state, &bits);
2c64c53d 896 cache_state(state, cached_state);
d1310b2e 897 merge_state(tree, state);
5c939df5
YZ
898 if (last_end == (u64)-1)
899 goto out;
900 start = last_end + 1;
d1ac6e41
LB
901 state = next_state(state);
902 if (start < end && state && state->start == start &&
903 !need_resched())
904 goto hit_next;
d1310b2e
CM
905 }
906 goto search_again;
907 }
908 /*
909 * | ---- desired range ---- |
910 * | state | or | state |
911 *
912 * There's a hole, we need to insert something in it and
913 * ignore the extent we found.
914 */
915 if (state->start > start) {
916 u64 this_end;
917 if (end < last_start)
918 this_end = end;
919 else
d397712b 920 this_end = last_start - 1;
8233767a
XG
921
922 prealloc = alloc_extent_state_atomic(prealloc);
923 BUG_ON(!prealloc);
c7f895a2
XG
924
925 /*
926 * Avoid to free 'prealloc' if it can be merged with
927 * the later extent.
928 */
d1310b2e 929 err = insert_state(tree, prealloc, start, this_end,
0ca1f7ce 930 &bits);
c2d904e0
JM
931 if (err)
932 extent_io_tree_panic(tree, err);
933
9ed74f2d
JB
934 cache_state(prealloc, cached_state);
935 prealloc = NULL;
d1310b2e
CM
936 start = this_end + 1;
937 goto search_again;
938 }
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * We need to split the extent, and set the bit
943 * on the first half
944 */
945 if (state->start <= end && state->end > end) {
1edbb734 946 if (state->state & exclusive_bits) {
d1310b2e
CM
947 *failed_start = start;
948 err = -EEXIST;
949 goto out;
950 }
8233767a
XG
951
952 prealloc = alloc_extent_state_atomic(prealloc);
953 BUG_ON(!prealloc);
d1310b2e 954 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
955 if (err)
956 extent_io_tree_panic(tree, err);
d1310b2e 957
1bf85046 958 set_state_bits(tree, prealloc, &bits);
2c64c53d 959 cache_state(prealloc, cached_state);
d1310b2e
CM
960 merge_state(tree, prealloc);
961 prealloc = NULL;
962 goto out;
963 }
964
965 goto search_again;
966
967out:
cad321ad 968 spin_unlock(&tree->lock);
d1310b2e
CM
969 if (prealloc)
970 free_extent_state(prealloc);
971
972 return err;
973
974search_again:
975 if (start > end)
976 goto out;
cad321ad 977 spin_unlock(&tree->lock);
d1310b2e
CM
978 if (mask & __GFP_WAIT)
979 cond_resched();
980 goto again;
981}
d1310b2e 982
41074888
DS
983int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
984 unsigned long bits, u64 * failed_start,
985 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
986{
987 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
988 cached_state, mask);
989}
990
991
462d6fac 992/**
10983f2e
LB
993 * convert_extent_bit - convert all bits in a given range from one bit to
994 * another
462d6fac
JB
995 * @tree: the io tree to search
996 * @start: the start offset in bytes
997 * @end: the end offset in bytes (inclusive)
998 * @bits: the bits to set in this range
999 * @clear_bits: the bits to clear in this range
e6138876 1000 * @cached_state: state that we're going to cache
462d6fac
JB
1001 * @mask: the allocation mask
1002 *
1003 * This will go through and set bits for the given range. If any states exist
1004 * already in this range they are set with the given bit and cleared of the
1005 * clear_bits. This is only meant to be used by things that are mergeable, ie
1006 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1007 * boundary bits like LOCK.
1008 */
1009int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1010 unsigned long bits, unsigned long clear_bits,
e6138876 1011 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1012{
1013 struct extent_state *state;
1014 struct extent_state *prealloc = NULL;
1015 struct rb_node *node;
1016 int err = 0;
1017 u64 last_start;
1018 u64 last_end;
1019
8d599ae1
DS
1020 btrfs_debug_check_extent_io_range(tree->mapping->host, start, end);
1021
462d6fac
JB
1022again:
1023 if (!prealloc && (mask & __GFP_WAIT)) {
1024 prealloc = alloc_extent_state(mask);
1025 if (!prealloc)
1026 return -ENOMEM;
1027 }
1028
1029 spin_lock(&tree->lock);
e6138876
JB
1030 if (cached_state && *cached_state) {
1031 state = *cached_state;
1032 if (state->start <= start && state->end > start &&
1033 state->tree) {
1034 node = &state->rb_node;
1035 goto hit_next;
1036 }
1037 }
1038
462d6fac
JB
1039 /*
1040 * this search will find all the extents that end after
1041 * our range starts.
1042 */
1043 node = tree_search(tree, start);
1044 if (!node) {
1045 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1046 if (!prealloc) {
1047 err = -ENOMEM;
1048 goto out;
1049 }
462d6fac
JB
1050 err = insert_state(tree, prealloc, start, end, &bits);
1051 prealloc = NULL;
c2d904e0
JM
1052 if (err)
1053 extent_io_tree_panic(tree, err);
462d6fac
JB
1054 goto out;
1055 }
1056 state = rb_entry(node, struct extent_state, rb_node);
1057hit_next:
1058 last_start = state->start;
1059 last_end = state->end;
1060
1061 /*
1062 * | ---- desired range ---- |
1063 * | state |
1064 *
1065 * Just lock what we found and keep going
1066 */
1067 if (state->start == start && state->end <= end) {
462d6fac 1068 set_state_bits(tree, state, &bits);
e6138876 1069 cache_state(state, cached_state);
d1ac6e41 1070 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1071 if (last_end == (u64)-1)
1072 goto out;
462d6fac 1073 start = last_end + 1;
d1ac6e41
LB
1074 if (start < end && state && state->start == start &&
1075 !need_resched())
1076 goto hit_next;
462d6fac
JB
1077 goto search_again;
1078 }
1079
1080 /*
1081 * | ---- desired range ---- |
1082 * | state |
1083 * or
1084 * | ------------- state -------------- |
1085 *
1086 * We need to split the extent we found, and may flip bits on
1087 * second half.
1088 *
1089 * If the extent we found extends past our
1090 * range, we just split and search again. It'll get split
1091 * again the next time though.
1092 *
1093 * If the extent we found is inside our range, we set the
1094 * desired bit on it.
1095 */
1096 if (state->start < start) {
1097 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1098 if (!prealloc) {
1099 err = -ENOMEM;
1100 goto out;
1101 }
462d6fac 1102 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1103 if (err)
1104 extent_io_tree_panic(tree, err);
462d6fac
JB
1105 prealloc = NULL;
1106 if (err)
1107 goto out;
1108 if (state->end <= end) {
1109 set_state_bits(tree, state, &bits);
e6138876 1110 cache_state(state, cached_state);
d1ac6e41 1111 state = clear_state_bit(tree, state, &clear_bits, 0);
462d6fac
JB
1112 if (last_end == (u64)-1)
1113 goto out;
1114 start = last_end + 1;
d1ac6e41
LB
1115 if (start < end && state && state->start == start &&
1116 !need_resched())
1117 goto hit_next;
462d6fac
JB
1118 }
1119 goto search_again;
1120 }
1121 /*
1122 * | ---- desired range ---- |
1123 * | state | or | state |
1124 *
1125 * There's a hole, we need to insert something in it and
1126 * ignore the extent we found.
1127 */
1128 if (state->start > start) {
1129 u64 this_end;
1130 if (end < last_start)
1131 this_end = end;
1132 else
1133 this_end = last_start - 1;
1134
1135 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1136 if (!prealloc) {
1137 err = -ENOMEM;
1138 goto out;
1139 }
462d6fac
JB
1140
1141 /*
1142 * Avoid to free 'prealloc' if it can be merged with
1143 * the later extent.
1144 */
1145 err = insert_state(tree, prealloc, start, this_end,
1146 &bits);
c2d904e0
JM
1147 if (err)
1148 extent_io_tree_panic(tree, err);
e6138876 1149 cache_state(prealloc, cached_state);
462d6fac
JB
1150 prealloc = NULL;
1151 start = this_end + 1;
1152 goto search_again;
1153 }
1154 /*
1155 * | ---- desired range ---- |
1156 * | state |
1157 * We need to split the extent, and set the bit
1158 * on the first half
1159 */
1160 if (state->start <= end && state->end > end) {
1161 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1162 if (!prealloc) {
1163 err = -ENOMEM;
1164 goto out;
1165 }
462d6fac
JB
1166
1167 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1168 if (err)
1169 extent_io_tree_panic(tree, err);
462d6fac
JB
1170
1171 set_state_bits(tree, prealloc, &bits);
e6138876 1172 cache_state(prealloc, cached_state);
462d6fac 1173 clear_state_bit(tree, prealloc, &clear_bits, 0);
462d6fac
JB
1174 prealloc = NULL;
1175 goto out;
1176 }
1177
1178 goto search_again;
1179
1180out:
1181 spin_unlock(&tree->lock);
1182 if (prealloc)
1183 free_extent_state(prealloc);
1184
1185 return err;
1186
1187search_again:
1188 if (start > end)
1189 goto out;
1190 spin_unlock(&tree->lock);
1191 if (mask & __GFP_WAIT)
1192 cond_resched();
1193 goto again;
1194}
1195
d1310b2e
CM
1196/* wrappers around set/clear extent bit */
1197int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1198 gfp_t mask)
1199{
3fbe5c02 1200 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
2c64c53d 1201 NULL, mask);
d1310b2e 1202}
d1310b2e
CM
1203
1204int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1205 unsigned long bits, gfp_t mask)
d1310b2e 1206{
3fbe5c02 1207 return set_extent_bit(tree, start, end, bits, NULL,
2c64c53d 1208 NULL, mask);
d1310b2e 1209}
d1310b2e
CM
1210
1211int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1212 unsigned long bits, gfp_t mask)
d1310b2e 1213{
2c64c53d 1214 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
d1310b2e 1215}
d1310b2e
CM
1216
1217int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
2ac55d41 1218 struct extent_state **cached_state, gfp_t mask)
d1310b2e
CM
1219{
1220 return set_extent_bit(tree, start, end,
fee187d9 1221 EXTENT_DELALLOC | EXTENT_UPTODATE,
3fbe5c02 1222 NULL, cached_state, mask);
d1310b2e 1223}
d1310b2e 1224
9e8a4a8b
LB
1225int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1226 struct extent_state **cached_state, gfp_t mask)
1227{
1228 return set_extent_bit(tree, start, end,
1229 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1230 NULL, cached_state, mask);
1231}
1232
d1310b2e
CM
1233int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1234 gfp_t mask)
1235{
1236 return clear_extent_bit(tree, start, end,
32c00aff 1237 EXTENT_DIRTY | EXTENT_DELALLOC |
0ca1f7ce 1238 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
d1310b2e 1239}
d1310b2e
CM
1240
1241int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1242 gfp_t mask)
1243{
3fbe5c02 1244 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
2c64c53d 1245 NULL, mask);
d1310b2e 1246}
d1310b2e 1247
d1310b2e 1248int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
507903b8 1249 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1250{
6b67a320 1251 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
3fbe5c02 1252 cached_state, mask);
d1310b2e 1253}
d1310b2e 1254
5fd02043
JB
1255int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1256 struct extent_state **cached_state, gfp_t mask)
d1310b2e 1257{
2c64c53d 1258 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
2ac55d41 1259 cached_state, mask);
d1310b2e 1260}
d1310b2e 1261
d352ac68
CM
1262/*
1263 * either insert or lock state struct between start and end use mask to tell
1264 * us if waiting is desired.
1265 */
1edbb734 1266int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1267 unsigned long bits, struct extent_state **cached_state)
d1310b2e
CM
1268{
1269 int err;
1270 u64 failed_start;
1271 while (1) {
3fbe5c02
JM
1272 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1273 EXTENT_LOCKED, &failed_start,
1274 cached_state, GFP_NOFS);
d0082371 1275 if (err == -EEXIST) {
d1310b2e
CM
1276 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1277 start = failed_start;
d0082371 1278 } else
d1310b2e 1279 break;
d1310b2e
CM
1280 WARN_ON(start > end);
1281 }
1282 return err;
1283}
d1310b2e 1284
d0082371 1285int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1edbb734 1286{
d0082371 1287 return lock_extent_bits(tree, start, end, 0, NULL);
1edbb734
CM
1288}
1289
d0082371 1290int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1291{
1292 int err;
1293 u64 failed_start;
1294
3fbe5c02
JM
1295 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1296 &failed_start, NULL, GFP_NOFS);
6643558d
YZ
1297 if (err == -EEXIST) {
1298 if (failed_start > start)
1299 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1300 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1301 return 0;
6643558d 1302 }
25179201
JB
1303 return 1;
1304}
25179201 1305
2c64c53d
CM
1306int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1307 struct extent_state **cached, gfp_t mask)
1308{
1309 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1310 mask);
1311}
1312
d0082371 1313int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e 1314{
2c64c53d 1315 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
d0082371 1316 GFP_NOFS);
d1310b2e 1317}
d1310b2e 1318
4adaa611
CM
1319int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1320{
1321 unsigned long index = start >> PAGE_CACHE_SHIFT;
1322 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1323 struct page *page;
1324
1325 while (index <= end_index) {
1326 page = find_get_page(inode->i_mapping, index);
1327 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1328 clear_page_dirty_for_io(page);
1329 page_cache_release(page);
1330 index++;
1331 }
1332 return 0;
1333}
1334
1335int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1336{
1337 unsigned long index = start >> PAGE_CACHE_SHIFT;
1338 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1339 struct page *page;
1340
1341 while (index <= end_index) {
1342 page = find_get_page(inode->i_mapping, index);
1343 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1344 account_page_redirty(page);
1345 __set_page_dirty_nobuffers(page);
1346 page_cache_release(page);
1347 index++;
1348 }
1349 return 0;
1350}
1351
d1310b2e
CM
1352/*
1353 * helper function to set both pages and extents in the tree writeback
1354 */
b2950863 1355static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1356{
1357 unsigned long index = start >> PAGE_CACHE_SHIFT;
1358 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1359 struct page *page;
1360
1361 while (index <= end_index) {
1362 page = find_get_page(tree->mapping, index);
79787eaa 1363 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1364 set_page_writeback(page);
1365 page_cache_release(page);
1366 index++;
1367 }
d1310b2e
CM
1368 return 0;
1369}
d1310b2e 1370
d352ac68
CM
1371/* find the first state struct with 'bits' set after 'start', and
1372 * return it. tree->lock must be held. NULL will returned if
1373 * nothing was found after 'start'
1374 */
48a3b636
ES
1375static struct extent_state *
1376find_first_extent_bit_state(struct extent_io_tree *tree,
41074888 1377 u64 start, unsigned long bits)
d7fc640e
CM
1378{
1379 struct rb_node *node;
1380 struct extent_state *state;
1381
1382 /*
1383 * this search will find all the extents that end after
1384 * our range starts.
1385 */
1386 node = tree_search(tree, start);
d397712b 1387 if (!node)
d7fc640e 1388 goto out;
d7fc640e 1389
d397712b 1390 while (1) {
d7fc640e 1391 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1392 if (state->end >= start && (state->state & bits))
d7fc640e 1393 return state;
d397712b 1394
d7fc640e
CM
1395 node = rb_next(node);
1396 if (!node)
1397 break;
1398 }
1399out:
1400 return NULL;
1401}
d7fc640e 1402
69261c4b
XG
1403/*
1404 * find the first offset in the io tree with 'bits' set. zero is
1405 * returned if we find something, and *start_ret and *end_ret are
1406 * set to reflect the state struct that was found.
1407 *
477d7eaf 1408 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1409 */
1410int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
41074888 1411 u64 *start_ret, u64 *end_ret, unsigned long bits,
e6138876 1412 struct extent_state **cached_state)
69261c4b
XG
1413{
1414 struct extent_state *state;
e6138876 1415 struct rb_node *n;
69261c4b
XG
1416 int ret = 1;
1417
1418 spin_lock(&tree->lock);
e6138876
JB
1419 if (cached_state && *cached_state) {
1420 state = *cached_state;
1421 if (state->end == start - 1 && state->tree) {
1422 n = rb_next(&state->rb_node);
1423 while (n) {
1424 state = rb_entry(n, struct extent_state,
1425 rb_node);
1426 if (state->state & bits)
1427 goto got_it;
1428 n = rb_next(n);
1429 }
1430 free_extent_state(*cached_state);
1431 *cached_state = NULL;
1432 goto out;
1433 }
1434 free_extent_state(*cached_state);
1435 *cached_state = NULL;
1436 }
1437
69261c4b 1438 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1439got_it:
69261c4b 1440 if (state) {
e6138876 1441 cache_state(state, cached_state);
69261c4b
XG
1442 *start_ret = state->start;
1443 *end_ret = state->end;
1444 ret = 0;
1445 }
e6138876 1446out:
69261c4b
XG
1447 spin_unlock(&tree->lock);
1448 return ret;
1449}
1450
d352ac68
CM
1451/*
1452 * find a contiguous range of bytes in the file marked as delalloc, not
1453 * more than 'max_bytes'. start and end are used to return the range,
1454 *
1455 * 1 is returned if we find something, 0 if nothing was in the tree
1456 */
c8b97818 1457static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1458 u64 *start, u64 *end, u64 max_bytes,
1459 struct extent_state **cached_state)
d1310b2e
CM
1460{
1461 struct rb_node *node;
1462 struct extent_state *state;
1463 u64 cur_start = *start;
1464 u64 found = 0;
1465 u64 total_bytes = 0;
1466
cad321ad 1467 spin_lock(&tree->lock);
c8b97818 1468
d1310b2e
CM
1469 /*
1470 * this search will find all the extents that end after
1471 * our range starts.
1472 */
80ea96b1 1473 node = tree_search(tree, cur_start);
2b114d1d 1474 if (!node) {
3b951516
CM
1475 if (!found)
1476 *end = (u64)-1;
d1310b2e
CM
1477 goto out;
1478 }
1479
d397712b 1480 while (1) {
d1310b2e 1481 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1482 if (found && (state->start != cur_start ||
1483 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1484 goto out;
1485 }
1486 if (!(state->state & EXTENT_DELALLOC)) {
1487 if (!found)
1488 *end = state->end;
1489 goto out;
1490 }
c2a128d2 1491 if (!found) {
d1310b2e 1492 *start = state->start;
c2a128d2
JB
1493 *cached_state = state;
1494 atomic_inc(&state->refs);
1495 }
d1310b2e
CM
1496 found++;
1497 *end = state->end;
1498 cur_start = state->end + 1;
1499 node = rb_next(node);
1500 if (!node)
1501 break;
1502 total_bytes += state->end - state->start + 1;
1503 if (total_bytes >= max_bytes)
1504 break;
1505 }
1506out:
cad321ad 1507 spin_unlock(&tree->lock);
d1310b2e
CM
1508 return found;
1509}
1510
143bede5
JM
1511static noinline void __unlock_for_delalloc(struct inode *inode,
1512 struct page *locked_page,
1513 u64 start, u64 end)
c8b97818
CM
1514{
1515 int ret;
1516 struct page *pages[16];
1517 unsigned long index = start >> PAGE_CACHE_SHIFT;
1518 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1519 unsigned long nr_pages = end_index - index + 1;
1520 int i;
1521
1522 if (index == locked_page->index && end_index == index)
143bede5 1523 return;
c8b97818 1524
d397712b 1525 while (nr_pages > 0) {
c8b97818 1526 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1527 min_t(unsigned long, nr_pages,
1528 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1529 for (i = 0; i < ret; i++) {
1530 if (pages[i] != locked_page)
1531 unlock_page(pages[i]);
1532 page_cache_release(pages[i]);
1533 }
1534 nr_pages -= ret;
1535 index += ret;
1536 cond_resched();
1537 }
c8b97818
CM
1538}
1539
1540static noinline int lock_delalloc_pages(struct inode *inode,
1541 struct page *locked_page,
1542 u64 delalloc_start,
1543 u64 delalloc_end)
1544{
1545 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1546 unsigned long start_index = index;
1547 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1548 unsigned long pages_locked = 0;
1549 struct page *pages[16];
1550 unsigned long nrpages;
1551 int ret;
1552 int i;
1553
1554 /* the caller is responsible for locking the start index */
1555 if (index == locked_page->index && index == end_index)
1556 return 0;
1557
1558 /* skip the page at the start index */
1559 nrpages = end_index - index + 1;
d397712b 1560 while (nrpages > 0) {
c8b97818 1561 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1562 min_t(unsigned long,
1563 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1564 if (ret == 0) {
1565 ret = -EAGAIN;
1566 goto done;
1567 }
1568 /* now we have an array of pages, lock them all */
1569 for (i = 0; i < ret; i++) {
1570 /*
1571 * the caller is taking responsibility for
1572 * locked_page
1573 */
771ed689 1574 if (pages[i] != locked_page) {
c8b97818 1575 lock_page(pages[i]);
f2b1c41c
CM
1576 if (!PageDirty(pages[i]) ||
1577 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1578 ret = -EAGAIN;
1579 unlock_page(pages[i]);
1580 page_cache_release(pages[i]);
1581 goto done;
1582 }
1583 }
c8b97818 1584 page_cache_release(pages[i]);
771ed689 1585 pages_locked++;
c8b97818 1586 }
c8b97818
CM
1587 nrpages -= ret;
1588 index += ret;
1589 cond_resched();
1590 }
1591 ret = 0;
1592done:
1593 if (ret && pages_locked) {
1594 __unlock_for_delalloc(inode, locked_page,
1595 delalloc_start,
1596 ((u64)(start_index + pages_locked - 1)) <<
1597 PAGE_CACHE_SHIFT);
1598 }
1599 return ret;
1600}
1601
1602/*
1603 * find a contiguous range of bytes in the file marked as delalloc, not
1604 * more than 'max_bytes'. start and end are used to return the range,
1605 *
1606 * 1 is returned if we find something, 0 if nothing was in the tree
1607 */
1608static noinline u64 find_lock_delalloc_range(struct inode *inode,
1609 struct extent_io_tree *tree,
1610 struct page *locked_page,
1611 u64 *start, u64 *end,
1612 u64 max_bytes)
1613{
1614 u64 delalloc_start;
1615 u64 delalloc_end;
1616 u64 found;
9655d298 1617 struct extent_state *cached_state = NULL;
c8b97818
CM
1618 int ret;
1619 int loops = 0;
1620
1621again:
1622 /* step one, find a bunch of delalloc bytes starting at start */
1623 delalloc_start = *start;
1624 delalloc_end = 0;
1625 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1626 max_bytes, &cached_state);
70b99e69 1627 if (!found || delalloc_end <= *start) {
c8b97818
CM
1628 *start = delalloc_start;
1629 *end = delalloc_end;
c2a128d2 1630 free_extent_state(cached_state);
c8b97818
CM
1631 return found;
1632 }
1633
70b99e69
CM
1634 /*
1635 * start comes from the offset of locked_page. We have to lock
1636 * pages in order, so we can't process delalloc bytes before
1637 * locked_page
1638 */
d397712b 1639 if (delalloc_start < *start)
70b99e69 1640 delalloc_start = *start;
70b99e69 1641
c8b97818
CM
1642 /*
1643 * make sure to limit the number of pages we try to lock down
1644 * if we're looping.
1645 */
d397712b 1646 if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
771ed689 1647 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
d397712b 1648
c8b97818
CM
1649 /* step two, lock all the pages after the page that has start */
1650 ret = lock_delalloc_pages(inode, locked_page,
1651 delalloc_start, delalloc_end);
1652 if (ret == -EAGAIN) {
1653 /* some of the pages are gone, lets avoid looping by
1654 * shortening the size of the delalloc range we're searching
1655 */
9655d298 1656 free_extent_state(cached_state);
c8b97818
CM
1657 if (!loops) {
1658 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1659 max_bytes = PAGE_CACHE_SIZE - offset;
1660 loops = 1;
1661 goto again;
1662 } else {
1663 found = 0;
1664 goto out_failed;
1665 }
1666 }
79787eaa 1667 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1668
1669 /* step three, lock the state bits for the whole range */
d0082371 1670 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
c8b97818
CM
1671
1672 /* then test to make sure it is all still delalloc */
1673 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1674 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1675 if (!ret) {
9655d298
CM
1676 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1677 &cached_state, GFP_NOFS);
c8b97818
CM
1678 __unlock_for_delalloc(inode, locked_page,
1679 delalloc_start, delalloc_end);
1680 cond_resched();
1681 goto again;
1682 }
9655d298 1683 free_extent_state(cached_state);
c8b97818
CM
1684 *start = delalloc_start;
1685 *end = delalloc_end;
1686out_failed:
1687 return found;
1688}
1689
1690int extent_clear_unlock_delalloc(struct inode *inode,
1691 struct extent_io_tree *tree,
1692 u64 start, u64 end, struct page *locked_page,
a791e35e 1693 unsigned long op)
c8b97818
CM
1694{
1695 int ret;
1696 struct page *pages[16];
1697 unsigned long index = start >> PAGE_CACHE_SHIFT;
1698 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1699 unsigned long nr_pages = end_index - index + 1;
1700 int i;
41074888 1701 unsigned long clear_bits = 0;
c8b97818 1702
a791e35e 1703 if (op & EXTENT_CLEAR_UNLOCK)
771ed689 1704 clear_bits |= EXTENT_LOCKED;
a791e35e 1705 if (op & EXTENT_CLEAR_DIRTY)
c8b97818
CM
1706 clear_bits |= EXTENT_DIRTY;
1707
a791e35e 1708 if (op & EXTENT_CLEAR_DELALLOC)
771ed689
CM
1709 clear_bits |= EXTENT_DELALLOC;
1710
2c64c53d 1711 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
32c00aff
JB
1712 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1713 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1714 EXTENT_SET_PRIVATE2)))
771ed689 1715 return 0;
c8b97818 1716
d397712b 1717 while (nr_pages > 0) {
c8b97818 1718 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1719 min_t(unsigned long,
1720 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1721 for (i = 0; i < ret; i++) {
8b62b72b 1722
a791e35e 1723 if (op & EXTENT_SET_PRIVATE2)
8b62b72b
CM
1724 SetPagePrivate2(pages[i]);
1725
c8b97818
CM
1726 if (pages[i] == locked_page) {
1727 page_cache_release(pages[i]);
1728 continue;
1729 }
a791e35e 1730 if (op & EXTENT_CLEAR_DIRTY)
c8b97818 1731 clear_page_dirty_for_io(pages[i]);
a791e35e 1732 if (op & EXTENT_SET_WRITEBACK)
c8b97818 1733 set_page_writeback(pages[i]);
a791e35e 1734 if (op & EXTENT_END_WRITEBACK)
c8b97818 1735 end_page_writeback(pages[i]);
a791e35e 1736 if (op & EXTENT_CLEAR_UNLOCK_PAGE)
771ed689 1737 unlock_page(pages[i]);
c8b97818
CM
1738 page_cache_release(pages[i]);
1739 }
1740 nr_pages -= ret;
1741 index += ret;
1742 cond_resched();
1743 }
1744 return 0;
1745}
c8b97818 1746
d352ac68
CM
1747/*
1748 * count the number of bytes in the tree that have a given bit(s)
1749 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1750 * cached. The total number found is returned.
1751 */
d1310b2e
CM
1752u64 count_range_bits(struct extent_io_tree *tree,
1753 u64 *start, u64 search_end, u64 max_bytes,
ec29ed5b 1754 unsigned long bits, int contig)
d1310b2e
CM
1755{
1756 struct rb_node *node;
1757 struct extent_state *state;
1758 u64 cur_start = *start;
1759 u64 total_bytes = 0;
ec29ed5b 1760 u64 last = 0;
d1310b2e
CM
1761 int found = 0;
1762
1763 if (search_end <= cur_start) {
d1310b2e
CM
1764 WARN_ON(1);
1765 return 0;
1766 }
1767
cad321ad 1768 spin_lock(&tree->lock);
d1310b2e
CM
1769 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1770 total_bytes = tree->dirty_bytes;
1771 goto out;
1772 }
1773 /*
1774 * this search will find all the extents that end after
1775 * our range starts.
1776 */
80ea96b1 1777 node = tree_search(tree, cur_start);
d397712b 1778 if (!node)
d1310b2e 1779 goto out;
d1310b2e 1780
d397712b 1781 while (1) {
d1310b2e
CM
1782 state = rb_entry(node, struct extent_state, rb_node);
1783 if (state->start > search_end)
1784 break;
ec29ed5b
CM
1785 if (contig && found && state->start > last + 1)
1786 break;
1787 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1788 total_bytes += min(search_end, state->end) + 1 -
1789 max(cur_start, state->start);
1790 if (total_bytes >= max_bytes)
1791 break;
1792 if (!found) {
af60bed2 1793 *start = max(cur_start, state->start);
d1310b2e
CM
1794 found = 1;
1795 }
ec29ed5b
CM
1796 last = state->end;
1797 } else if (contig && found) {
1798 break;
d1310b2e
CM
1799 }
1800 node = rb_next(node);
1801 if (!node)
1802 break;
1803 }
1804out:
cad321ad 1805 spin_unlock(&tree->lock);
d1310b2e
CM
1806 return total_bytes;
1807}
b2950863 1808
d352ac68
CM
1809/*
1810 * set the private field for a given byte offset in the tree. If there isn't
1811 * an extent_state there already, this does nothing.
1812 */
d1310b2e
CM
1813int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1814{
1815 struct rb_node *node;
1816 struct extent_state *state;
1817 int ret = 0;
1818
cad321ad 1819 spin_lock(&tree->lock);
d1310b2e
CM
1820 /*
1821 * this search will find all the extents that end after
1822 * our range starts.
1823 */
80ea96b1 1824 node = tree_search(tree, start);
2b114d1d 1825 if (!node) {
d1310b2e
CM
1826 ret = -ENOENT;
1827 goto out;
1828 }
1829 state = rb_entry(node, struct extent_state, rb_node);
1830 if (state->start != start) {
1831 ret = -ENOENT;
1832 goto out;
1833 }
1834 state->private = private;
1835out:
cad321ad 1836 spin_unlock(&tree->lock);
d1310b2e
CM
1837 return ret;
1838}
1839
e4100d98
MX
1840void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1841 int count)
1842{
1843 struct rb_node *node;
1844 struct extent_state *state;
1845
1846 spin_lock(&tree->lock);
1847 /*
1848 * this search will find all the extents that end after
1849 * our range starts.
1850 */
1851 node = tree_search(tree, start);
1852 BUG_ON(!node);
1853
1854 state = rb_entry(node, struct extent_state, rb_node);
1855 BUG_ON(state->start != start);
1856
1857 while (count) {
1858 state->private = *csums++;
1859 count--;
1860 state = next_state(state);
1861 }
1862 spin_unlock(&tree->lock);
1863}
1864
1865static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1866{
1867 struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1868
1869 return page_offset(bvec->bv_page) + bvec->bv_offset;
1870}
1871
1872void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1873 u32 csums[], int count)
1874{
1875 struct rb_node *node;
1876 struct extent_state *state = NULL;
1877 u64 start;
1878
1879 spin_lock(&tree->lock);
1880 do {
1881 start = __btrfs_get_bio_offset(bio, bio_index);
1882 if (state == NULL || state->start != start) {
1883 node = tree_search(tree, start);
1884 BUG_ON(!node);
1885
1886 state = rb_entry(node, struct extent_state, rb_node);
1887 BUG_ON(state->start != start);
1888 }
1889 state->private = *csums++;
1890 count--;
1891 bio_index++;
1892
1893 state = next_state(state);
1894 } while (count);
1895 spin_unlock(&tree->lock);
1896}
1897
d1310b2e
CM
1898int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1899{
1900 struct rb_node *node;
1901 struct extent_state *state;
1902 int ret = 0;
1903
cad321ad 1904 spin_lock(&tree->lock);
d1310b2e
CM
1905 /*
1906 * this search will find all the extents that end after
1907 * our range starts.
1908 */
80ea96b1 1909 node = tree_search(tree, start);
2b114d1d 1910 if (!node) {
d1310b2e
CM
1911 ret = -ENOENT;
1912 goto out;
1913 }
1914 state = rb_entry(node, struct extent_state, rb_node);
1915 if (state->start != start) {
1916 ret = -ENOENT;
1917 goto out;
1918 }
1919 *private = state->private;
1920out:
cad321ad 1921 spin_unlock(&tree->lock);
d1310b2e
CM
1922 return ret;
1923}
1924
1925/*
1926 * searches a range in the state tree for a given mask.
70dec807 1927 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1928 * has the bits set. Otherwise, 1 is returned if any bit in the
1929 * range is found set.
1930 */
1931int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
41074888 1932 unsigned long bits, int filled, struct extent_state *cached)
d1310b2e
CM
1933{
1934 struct extent_state *state = NULL;
1935 struct rb_node *node;
1936 int bitset = 0;
d1310b2e 1937
cad321ad 1938 spin_lock(&tree->lock);
df98b6e2
JB
1939 if (cached && cached->tree && cached->start <= start &&
1940 cached->end > start)
9655d298
CM
1941 node = &cached->rb_node;
1942 else
1943 node = tree_search(tree, start);
d1310b2e
CM
1944 while (node && start <= end) {
1945 state = rb_entry(node, struct extent_state, rb_node);
1946
1947 if (filled && state->start > start) {
1948 bitset = 0;
1949 break;
1950 }
1951
1952 if (state->start > end)
1953 break;
1954
1955 if (state->state & bits) {
1956 bitset = 1;
1957 if (!filled)
1958 break;
1959 } else if (filled) {
1960 bitset = 0;
1961 break;
1962 }
46562cec
CM
1963
1964 if (state->end == (u64)-1)
1965 break;
1966
d1310b2e
CM
1967 start = state->end + 1;
1968 if (start > end)
1969 break;
1970 node = rb_next(node);
1971 if (!node) {
1972 if (filled)
1973 bitset = 0;
1974 break;
1975 }
1976 }
cad321ad 1977 spin_unlock(&tree->lock);
d1310b2e
CM
1978 return bitset;
1979}
d1310b2e
CM
1980
1981/*
1982 * helper function to set a given page up to date if all the
1983 * extents in the tree for that page are up to date
1984 */
143bede5 1985static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1986{
4eee4fa4 1987 u64 start = page_offset(page);
d1310b2e 1988 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1989 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1990 SetPageUptodate(page);
d1310b2e
CM
1991}
1992
4a54c8c1
JS
1993/*
1994 * When IO fails, either with EIO or csum verification fails, we
1995 * try other mirrors that might have a good copy of the data. This
1996 * io_failure_record is used to record state as we go through all the
1997 * mirrors. If another mirror has good data, the page is set up to date
1998 * and things continue. If a good mirror can't be found, the original
1999 * bio end_io callback is called to indicate things have failed.
2000 */
2001struct io_failure_record {
2002 struct page *page;
2003 u64 start;
2004 u64 len;
2005 u64 logical;
2006 unsigned long bio_flags;
2007 int this_mirror;
2008 int failed_mirror;
2009 int in_validation;
2010};
2011
2012static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
2013 int did_repair)
2014{
2015 int ret;
2016 int err = 0;
2017 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2018
2019 set_state_private(failure_tree, rec->start, 0);
2020 ret = clear_extent_bits(failure_tree, rec->start,
2021 rec->start + rec->len - 1,
2022 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2023 if (ret)
2024 err = ret;
2025
53b381b3
DW
2026 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
2027 rec->start + rec->len - 1,
2028 EXTENT_DAMAGED, GFP_NOFS);
2029 if (ret && !err)
2030 err = ret;
4a54c8c1
JS
2031
2032 kfree(rec);
2033 return err;
2034}
2035
2036static void repair_io_failure_callback(struct bio *bio, int err)
2037{
2038 complete(bio->bi_private);
2039}
2040
2041/*
2042 * this bypasses the standard btrfs submit functions deliberately, as
2043 * the standard behavior is to write all copies in a raid setup. here we only
2044 * want to write the one bad copy. so we do the mapping for ourselves and issue
2045 * submit_bio directly.
3ec706c8 2046 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
2047 * actually prevents the read that triggered the error from finishing.
2048 * currently, there can be no more than two copies of every data bit. thus,
2049 * exactly one rewrite is required.
2050 */
3ec706c8 2051int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
4a54c8c1
JS
2052 u64 length, u64 logical, struct page *page,
2053 int mirror_num)
2054{
2055 struct bio *bio;
2056 struct btrfs_device *dev;
2057 DECLARE_COMPLETION_ONSTACK(compl);
2058 u64 map_length = 0;
2059 u64 sector;
2060 struct btrfs_bio *bbio = NULL;
53b381b3 2061 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2062 int ret;
2063
2064 BUG_ON(!mirror_num);
2065
53b381b3
DW
2066 /* we can't repair anything in raid56 yet */
2067 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2068 return 0;
2069
9be3395b 2070 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2071 if (!bio)
2072 return -EIO;
2073 bio->bi_private = &compl;
2074 bio->bi_end_io = repair_io_failure_callback;
2075 bio->bi_size = 0;
2076 map_length = length;
2077
3ec706c8 2078 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2079 &map_length, &bbio, mirror_num);
2080 if (ret) {
2081 bio_put(bio);
2082 return -EIO;
2083 }
2084 BUG_ON(mirror_num != bbio->mirror_num);
2085 sector = bbio->stripes[mirror_num-1].physical >> 9;
2086 bio->bi_sector = sector;
2087 dev = bbio->stripes[mirror_num-1].dev;
2088 kfree(bbio);
2089 if (!dev || !dev->bdev || !dev->writeable) {
2090 bio_put(bio);
2091 return -EIO;
2092 }
2093 bio->bi_bdev = dev->bdev;
4eee4fa4 2094 bio_add_page(bio, page, length, start - page_offset(page));
21adbd5c 2095 btrfsic_submit_bio(WRITE_SYNC, bio);
4a54c8c1
JS
2096 wait_for_completion(&compl);
2097
2098 if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2099 /* try to remap that extent elsewhere? */
2100 bio_put(bio);
442a4f63 2101 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2102 return -EIO;
2103 }
2104
d5b025d5 2105 printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
606686ee
JB
2106 "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2107 start, rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2108
2109 bio_put(bio);
2110 return 0;
2111}
2112
ea466794
JB
2113int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2114 int mirror_num)
2115{
ea466794
JB
2116 u64 start = eb->start;
2117 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2118 int ret = 0;
ea466794
JB
2119
2120 for (i = 0; i < num_pages; i++) {
2121 struct page *p = extent_buffer_page(eb, i);
3ec706c8 2122 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
ea466794
JB
2123 start, p, mirror_num);
2124 if (ret)
2125 break;
2126 start += PAGE_CACHE_SIZE;
2127 }
2128
2129 return ret;
2130}
2131
4a54c8c1
JS
2132/*
2133 * each time an IO finishes, we do a fast check in the IO failure tree
2134 * to see if we need to process or clean up an io_failure_record
2135 */
2136static int clean_io_failure(u64 start, struct page *page)
2137{
2138 u64 private;
2139 u64 private_failure;
2140 struct io_failure_record *failrec;
3ec706c8 2141 struct btrfs_fs_info *fs_info;
4a54c8c1
JS
2142 struct extent_state *state;
2143 int num_copies;
2144 int did_repair = 0;
2145 int ret;
2146 struct inode *inode = page->mapping->host;
2147
2148 private = 0;
2149 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2150 (u64)-1, 1, EXTENT_DIRTY, 0);
2151 if (!ret)
2152 return 0;
2153
2154 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2155 &private_failure);
2156 if (ret)
2157 return 0;
2158
2159 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2160 BUG_ON(!failrec->this_mirror);
2161
2162 if (failrec->in_validation) {
2163 /* there was no real error, just free the record */
2164 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2165 failrec->start);
2166 did_repair = 1;
2167 goto out;
2168 }
2169
2170 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2171 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2172 failrec->start,
2173 EXTENT_LOCKED);
2174 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2175
2176 if (state && state->start == failrec->start) {
3ec706c8
SB
2177 fs_info = BTRFS_I(inode)->root->fs_info;
2178 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2179 failrec->len);
4a54c8c1 2180 if (num_copies > 1) {
3ec706c8 2181 ret = repair_io_failure(fs_info, start, failrec->len,
4a54c8c1
JS
2182 failrec->logical, page,
2183 failrec->failed_mirror);
2184 did_repair = !ret;
2185 }
53b381b3 2186 ret = 0;
4a54c8c1
JS
2187 }
2188
2189out:
2190 if (!ret)
2191 ret = free_io_failure(inode, failrec, did_repair);
2192
2193 return ret;
2194}
2195
2196/*
2197 * this is a generic handler for readpage errors (default
2198 * readpage_io_failed_hook). if other copies exist, read those and write back
2199 * good data to the failed position. does not investigate in remapping the
2200 * failed extent elsewhere, hoping the device will be smart enough to do this as
2201 * needed
2202 */
2203
2204static int bio_readpage_error(struct bio *failed_bio, struct page *page,
09a7f7a2 2205 u64 start, u64 end, int failed_mirror)
4a54c8c1
JS
2206{
2207 struct io_failure_record *failrec = NULL;
2208 u64 private;
2209 struct extent_map *em;
2210 struct inode *inode = page->mapping->host;
2211 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2212 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2213 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
09a7f7a2 2214 struct extent_state *state;
4a54c8c1
JS
2215 struct bio *bio;
2216 int num_copies;
2217 int ret;
2218 int read_mode;
2219 u64 logical;
2220
2221 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2222
2223 ret = get_state_private(failure_tree, start, &private);
2224 if (ret) {
2225 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2226 if (!failrec)
2227 return -ENOMEM;
2228 failrec->start = start;
2229 failrec->len = end - start + 1;
2230 failrec->this_mirror = 0;
2231 failrec->bio_flags = 0;
2232 failrec->in_validation = 0;
2233
2234 read_lock(&em_tree->lock);
2235 em = lookup_extent_mapping(em_tree, start, failrec->len);
2236 if (!em) {
2237 read_unlock(&em_tree->lock);
2238 kfree(failrec);
2239 return -EIO;
2240 }
2241
2242 if (em->start > start || em->start + em->len < start) {
2243 free_extent_map(em);
2244 em = NULL;
2245 }
2246 read_unlock(&em_tree->lock);
2247
7a2d6a64 2248 if (!em) {
4a54c8c1
JS
2249 kfree(failrec);
2250 return -EIO;
2251 }
2252 logical = start - em->start;
2253 logical = em->block_start + logical;
2254 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2255 logical = em->block_start;
2256 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2257 extent_set_compress_type(&failrec->bio_flags,
2258 em->compress_type);
2259 }
2260 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2261 "len=%llu\n", logical, start, failrec->len);
2262 failrec->logical = logical;
2263 free_extent_map(em);
2264
2265 /* set the bits in the private failure tree */
2266 ret = set_extent_bits(failure_tree, start, end,
2267 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2268 if (ret >= 0)
2269 ret = set_state_private(failure_tree, start,
2270 (u64)(unsigned long)failrec);
2271 /* set the bits in the inode's tree */
2272 if (ret >= 0)
2273 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2274 GFP_NOFS);
2275 if (ret < 0) {
2276 kfree(failrec);
2277 return ret;
2278 }
2279 } else {
2280 failrec = (struct io_failure_record *)(unsigned long)private;
2281 pr_debug("bio_readpage_error: (found) logical=%llu, "
2282 "start=%llu, len=%llu, validation=%d\n",
2283 failrec->logical, failrec->start, failrec->len,
2284 failrec->in_validation);
2285 /*
2286 * when data can be on disk more than twice, add to failrec here
2287 * (e.g. with a list for failed_mirror) to make
2288 * clean_io_failure() clean all those errors at once.
2289 */
2290 }
5d964051
SB
2291 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2292 failrec->logical, failrec->len);
4a54c8c1
JS
2293 if (num_copies == 1) {
2294 /*
2295 * we only have a single copy of the data, so don't bother with
2296 * all the retry and error correction code that follows. no
2297 * matter what the error is, it is very likely to persist.
2298 */
09a7f7a2
MX
2299 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2300 num_copies, failrec->this_mirror, failed_mirror);
4a54c8c1
JS
2301 free_io_failure(inode, failrec, 0);
2302 return -EIO;
2303 }
2304
09a7f7a2
MX
2305 spin_lock(&tree->lock);
2306 state = find_first_extent_bit_state(tree, failrec->start,
2307 EXTENT_LOCKED);
2308 if (state && state->start != failrec->start)
2309 state = NULL;
2310 spin_unlock(&tree->lock);
4a54c8c1
JS
2311
2312 /*
2313 * there are two premises:
2314 * a) deliver good data to the caller
2315 * b) correct the bad sectors on disk
2316 */
2317 if (failed_bio->bi_vcnt > 1) {
2318 /*
2319 * to fulfill b), we need to know the exact failing sectors, as
2320 * we don't want to rewrite any more than the failed ones. thus,
2321 * we need separate read requests for the failed bio
2322 *
2323 * if the following BUG_ON triggers, our validation request got
2324 * merged. we need separate requests for our algorithm to work.
2325 */
2326 BUG_ON(failrec->in_validation);
2327 failrec->in_validation = 1;
2328 failrec->this_mirror = failed_mirror;
2329 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2330 } else {
2331 /*
2332 * we're ready to fulfill a) and b) alongside. get a good copy
2333 * of the failed sector and if we succeed, we have setup
2334 * everything for repair_io_failure to do the rest for us.
2335 */
2336 if (failrec->in_validation) {
2337 BUG_ON(failrec->this_mirror != failed_mirror);
2338 failrec->in_validation = 0;
2339 failrec->this_mirror = 0;
2340 }
2341 failrec->failed_mirror = failed_mirror;
2342 failrec->this_mirror++;
2343 if (failrec->this_mirror == failed_mirror)
2344 failrec->this_mirror++;
2345 read_mode = READ_SYNC;
2346 }
2347
2348 if (!state || failrec->this_mirror > num_copies) {
2349 pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2350 "next_mirror %d, failed_mirror %d\n", state,
2351 num_copies, failrec->this_mirror, failed_mirror);
2352 free_io_failure(inode, failrec, 0);
2353 return -EIO;
2354 }
2355
9be3395b 2356 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
e627ee7b
TI
2357 if (!bio) {
2358 free_io_failure(inode, failrec, 0);
2359 return -EIO;
2360 }
4a54c8c1
JS
2361 bio->bi_private = state;
2362 bio->bi_end_io = failed_bio->bi_end_io;
2363 bio->bi_sector = failrec->logical >> 9;
2364 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2365 bio->bi_size = 0;
2366
2367 bio_add_page(bio, page, failrec->len, start - page_offset(page));
2368
2369 pr_debug("bio_readpage_error: submitting new read[%#x] to "
2370 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2371 failrec->this_mirror, num_copies, failrec->in_validation);
2372
013bd4c3
TI
2373 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2374 failrec->this_mirror,
2375 failrec->bio_flags, 0);
2376 return ret;
4a54c8c1
JS
2377}
2378
d1310b2e
CM
2379/* lots and lots of room for performance fixes in the end_bio funcs */
2380
87826df0
JM
2381int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2382{
2383 int uptodate = (err == 0);
2384 struct extent_io_tree *tree;
2385 int ret;
2386
2387 tree = &BTRFS_I(page->mapping->host)->io_tree;
2388
2389 if (tree->ops && tree->ops->writepage_end_io_hook) {
2390 ret = tree->ops->writepage_end_io_hook(page, start,
2391 end, NULL, uptodate);
2392 if (ret)
2393 uptodate = 0;
2394 }
2395
87826df0 2396 if (!uptodate) {
87826df0
JM
2397 ClearPageUptodate(page);
2398 SetPageError(page);
2399 }
2400 return 0;
2401}
2402
d1310b2e
CM
2403/*
2404 * after a writepage IO is done, we need to:
2405 * clear the uptodate bits on error
2406 * clear the writeback bits in the extent tree for this IO
2407 * end_page_writeback if the page has no more pending IO
2408 *
2409 * Scheduling is not allowed, so the extent state tree is expected
2410 * to have one and only one object corresponding to this IO.
2411 */
d1310b2e 2412static void end_bio_extent_writepage(struct bio *bio, int err)
d1310b2e 2413{
d1310b2e 2414 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
902b22f3 2415 struct extent_io_tree *tree;
d1310b2e
CM
2416 u64 start;
2417 u64 end;
d1310b2e 2418
d1310b2e
CM
2419 do {
2420 struct page *page = bvec->bv_page;
902b22f3
DW
2421 tree = &BTRFS_I(page->mapping->host)->io_tree;
2422
17a5adcc
AO
2423 /* We always issue full-page reads, but if some block
2424 * in a page fails to read, blk_update_request() will
2425 * advance bv_offset and adjust bv_len to compensate.
2426 * Print a warning for nonzero offsets, and an error
2427 * if they don't add up to a full page. */
2428 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2429 printk("%s page write in btrfs with offset %u and length %u\n",
2430 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2431 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2432 bvec->bv_offset, bvec->bv_len);
d1310b2e 2433
17a5adcc
AO
2434 start = page_offset(page);
2435 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e
CM
2436
2437 if (--bvec >= bio->bi_io_vec)
2438 prefetchw(&bvec->bv_page->flags);
1259ab75 2439
87826df0
JM
2440 if (end_extent_writepage(page, err, start, end))
2441 continue;
70dec807 2442
17a5adcc 2443 end_page_writeback(page);
d1310b2e 2444 } while (bvec >= bio->bi_io_vec);
2b1f55b0 2445
d1310b2e 2446 bio_put(bio);
d1310b2e
CM
2447}
2448
2449/*
2450 * after a readpage IO is done, we need to:
2451 * clear the uptodate bits on error
2452 * set the uptodate bits if things worked
2453 * set the page up to date if all extents in the tree are uptodate
2454 * clear the lock bit in the extent tree
2455 * unlock the page if there are no other extents locked for it
2456 *
2457 * Scheduling is not allowed, so the extent state tree is expected
2458 * to have one and only one object corresponding to this IO.
2459 */
d1310b2e 2460static void end_bio_extent_readpage(struct bio *bio, int err)
d1310b2e
CM
2461{
2462 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
4125bf76
CM
2463 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2464 struct bio_vec *bvec = bio->bi_io_vec;
902b22f3 2465 struct extent_io_tree *tree;
d1310b2e
CM
2466 u64 start;
2467 u64 end;
5cf1ab56 2468 int mirror;
d1310b2e
CM
2469 int ret;
2470
d20f7043
CM
2471 if (err)
2472 uptodate = 0;
2473
d1310b2e
CM
2474 do {
2475 struct page *page = bvec->bv_page;
507903b8
AJ
2476 struct extent_state *cached = NULL;
2477 struct extent_state *state;
9be3395b 2478 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
a71754fc 2479 struct inode *inode = page->mapping->host;
507903b8 2480
be3940c0 2481 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
9be3395b
CM
2482 "mirror=%lu\n", (u64)bio->bi_sector, err,
2483 io_bio->mirror_num);
a71754fc 2484 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2485
17a5adcc
AO
2486 /* We always issue full-page reads, but if some block
2487 * in a page fails to read, blk_update_request() will
2488 * advance bv_offset and adjust bv_len to compensate.
2489 * Print a warning for nonzero offsets, and an error
2490 * if they don't add up to a full page. */
2491 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2492 printk("%s page read in btrfs with offset %u and length %u\n",
2493 bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2494 ? KERN_ERR "partial" : KERN_INFO "incomplete",
2495 bvec->bv_offset, bvec->bv_len);
d1310b2e 2496
17a5adcc
AO
2497 start = page_offset(page);
2498 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2499
4125bf76 2500 if (++bvec <= bvec_end)
d1310b2e
CM
2501 prefetchw(&bvec->bv_page->flags);
2502
507903b8 2503 spin_lock(&tree->lock);
0d399205 2504 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
109b36a2 2505 if (state && state->start == start) {
507903b8
AJ
2506 /*
2507 * take a reference on the state, unlock will drop
2508 * the ref
2509 */
2510 cache_state(state, &cached);
2511 }
2512 spin_unlock(&tree->lock);
2513
9be3395b 2514 mirror = io_bio->mirror_num;
d1310b2e 2515 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
70dec807 2516 ret = tree->ops->readpage_end_io_hook(page, start, end,
5cf1ab56 2517 state, mirror);
5ee0844d 2518 if (ret)
d1310b2e 2519 uptodate = 0;
5ee0844d 2520 else
4a54c8c1 2521 clean_io_failure(start, page);
d1310b2e 2522 }
ea466794 2523
ea466794 2524 if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2525 ret = tree->ops->readpage_io_failed_hook(page, mirror);
ea466794
JB
2526 if (!ret && !err &&
2527 test_bit(BIO_UPTODATE, &bio->bi_flags))
2528 uptodate = 1;
2529 } else if (!uptodate) {
f4a8e656
JS
2530 /*
2531 * The generic bio_readpage_error handles errors the
2532 * following way: If possible, new read requests are
2533 * created and submitted and will end up in
2534 * end_bio_extent_readpage as well (if we're lucky, not
2535 * in the !uptodate case). In that case it returns 0 and
2536 * we just go on with the next page in our bio. If it
2537 * can't handle the error it will return -EIO and we
2538 * remain responsible for that page.
2539 */
09a7f7a2 2540 ret = bio_readpage_error(bio, page, start, end, mirror);
7e38326f 2541 if (ret == 0) {
3b951516
CM
2542 uptodate =
2543 test_bit(BIO_UPTODATE, &bio->bi_flags);
d20f7043
CM
2544 if (err)
2545 uptodate = 0;
507903b8 2546 uncache_state(&cached);
7e38326f
CM
2547 continue;
2548 }
2549 }
d1310b2e 2550
0b32f4bb 2551 if (uptodate && tree->track_uptodate) {
507903b8 2552 set_extent_uptodate(tree, start, end, &cached,
902b22f3 2553 GFP_ATOMIC);
771ed689 2554 }
507903b8 2555 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
d1310b2e 2556
17a5adcc 2557 if (uptodate) {
a71754fc
JB
2558 loff_t i_size = i_size_read(inode);
2559 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2560 unsigned offset;
2561
2562 /* Zero out the end if this page straddles i_size */
2563 offset = i_size & (PAGE_CACHE_SIZE-1);
2564 if (page->index == end_index && offset)
2565 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
17a5adcc 2566 SetPageUptodate(page);
70dec807 2567 } else {
17a5adcc
AO
2568 ClearPageUptodate(page);
2569 SetPageError(page);
70dec807 2570 }
17a5adcc 2571 unlock_page(page);
4125bf76 2572 } while (bvec <= bvec_end);
d1310b2e
CM
2573
2574 bio_put(bio);
d1310b2e
CM
2575}
2576
9be3395b
CM
2577/*
2578 * this allocates from the btrfs_bioset. We're returning a bio right now
2579 * but you can call btrfs_io_bio for the appropriate container_of magic
2580 */
88f794ed
MX
2581struct bio *
2582btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2583 gfp_t gfp_flags)
d1310b2e
CM
2584{
2585 struct bio *bio;
2586
9be3395b 2587 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2588
2589 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2590 while (!bio && (nr_vecs /= 2)) {
2591 bio = bio_alloc_bioset(gfp_flags,
2592 nr_vecs, btrfs_bioset);
2593 }
d1310b2e
CM
2594 }
2595
2596 if (bio) {
e1c4b745 2597 bio->bi_size = 0;
d1310b2e
CM
2598 bio->bi_bdev = bdev;
2599 bio->bi_sector = first_sector;
2600 }
2601 return bio;
2602}
2603
9be3395b
CM
2604struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2605{
2606 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2607}
2608
2609
2610/* this also allocates from the btrfs_bioset */
2611struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2612{
2613 return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2614}
2615
2616
355808c2
JM
2617static int __must_check submit_one_bio(int rw, struct bio *bio,
2618 int mirror_num, unsigned long bio_flags)
d1310b2e 2619{
d1310b2e 2620 int ret = 0;
70dec807
CM
2621 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2622 struct page *page = bvec->bv_page;
2623 struct extent_io_tree *tree = bio->bi_private;
70dec807 2624 u64 start;
70dec807 2625
4eee4fa4 2626 start = page_offset(page) + bvec->bv_offset;
70dec807 2627
902b22f3 2628 bio->bi_private = NULL;
d1310b2e
CM
2629
2630 bio_get(bio);
2631
065631f6 2632 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2633 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2634 mirror_num, bio_flags, start);
0b86a832 2635 else
21adbd5c 2636 btrfsic_submit_bio(rw, bio);
4a54c8c1 2637
d1310b2e
CM
2638 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2639 ret = -EOPNOTSUPP;
2640 bio_put(bio);
2641 return ret;
2642}
2643
64a16701 2644static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2645 unsigned long offset, size_t size, struct bio *bio,
2646 unsigned long bio_flags)
2647{
2648 int ret = 0;
2649 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2650 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2651 bio_flags);
2652 BUG_ON(ret < 0);
2653 return ret;
2654
2655}
2656
d1310b2e
CM
2657static int submit_extent_page(int rw, struct extent_io_tree *tree,
2658 struct page *page, sector_t sector,
2659 size_t size, unsigned long offset,
2660 struct block_device *bdev,
2661 struct bio **bio_ret,
2662 unsigned long max_pages,
f188591e 2663 bio_end_io_t end_io_func,
c8b97818
CM
2664 int mirror_num,
2665 unsigned long prev_bio_flags,
2666 unsigned long bio_flags)
d1310b2e
CM
2667{
2668 int ret = 0;
2669 struct bio *bio;
2670 int nr;
c8b97818
CM
2671 int contig = 0;
2672 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2673 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2674 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2675
2676 if (bio_ret && *bio_ret) {
2677 bio = *bio_ret;
c8b97818
CM
2678 if (old_compressed)
2679 contig = bio->bi_sector == sector;
2680 else
f73a1c7d 2681 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2682
2683 if (prev_bio_flags != bio_flags || !contig ||
64a16701 2684 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2685 bio_add_page(bio, page, page_size, offset) < page_size) {
2686 ret = submit_one_bio(rw, bio, mirror_num,
2687 prev_bio_flags);
79787eaa
JM
2688 if (ret < 0)
2689 return ret;
d1310b2e
CM
2690 bio = NULL;
2691 } else {
2692 return 0;
2693 }
2694 }
c8b97818
CM
2695 if (this_compressed)
2696 nr = BIO_MAX_PAGES;
2697 else
2698 nr = bio_get_nr_vecs(bdev);
2699
88f794ed 2700 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
5df67083
TI
2701 if (!bio)
2702 return -ENOMEM;
70dec807 2703
c8b97818 2704 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2705 bio->bi_end_io = end_io_func;
2706 bio->bi_private = tree;
70dec807 2707
d397712b 2708 if (bio_ret)
d1310b2e 2709 *bio_ret = bio;
d397712b 2710 else
c8b97818 2711 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2712
2713 return ret;
2714}
2715
48a3b636
ES
2716static void attach_extent_buffer_page(struct extent_buffer *eb,
2717 struct page *page)
d1310b2e
CM
2718{
2719 if (!PagePrivate(page)) {
2720 SetPagePrivate(page);
d1310b2e 2721 page_cache_get(page);
4f2de97a
JB
2722 set_page_private(page, (unsigned long)eb);
2723 } else {
2724 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2725 }
2726}
2727
4f2de97a 2728void set_page_extent_mapped(struct page *page)
d1310b2e 2729{
4f2de97a
JB
2730 if (!PagePrivate(page)) {
2731 SetPagePrivate(page);
2732 page_cache_get(page);
2733 set_page_private(page, EXTENT_PAGE_PRIVATE);
2734 }
d1310b2e
CM
2735}
2736
2737/*
2738 * basic readpage implementation. Locked extent state structs are inserted
2739 * into the tree that are removed when the IO is done (by the end_io
2740 * handlers)
79787eaa 2741 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e
CM
2742 */
2743static int __extent_read_full_page(struct extent_io_tree *tree,
2744 struct page *page,
2745 get_extent_t *get_extent,
c8b97818 2746 struct bio **bio, int mirror_num,
d4c7ca86 2747 unsigned long *bio_flags, int rw)
d1310b2e
CM
2748{
2749 struct inode *inode = page->mapping->host;
4eee4fa4 2750 u64 start = page_offset(page);
d1310b2e
CM
2751 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2752 u64 end;
2753 u64 cur = start;
2754 u64 extent_offset;
2755 u64 last_byte = i_size_read(inode);
2756 u64 block_start;
2757 u64 cur_end;
2758 sector_t sector;
2759 struct extent_map *em;
2760 struct block_device *bdev;
11c65dcc 2761 struct btrfs_ordered_extent *ordered;
d1310b2e
CM
2762 int ret;
2763 int nr = 0;
306e16ce 2764 size_t pg_offset = 0;
d1310b2e 2765 size_t iosize;
c8b97818 2766 size_t disk_io_size;
d1310b2e 2767 size_t blocksize = inode->i_sb->s_blocksize;
c8b97818 2768 unsigned long this_bio_flag = 0;
d1310b2e
CM
2769
2770 set_page_extent_mapped(page);
2771
90a887c9
DM
2772 if (!PageUptodate(page)) {
2773 if (cleancache_get_page(page) == 0) {
2774 BUG_ON(blocksize != PAGE_SIZE);
2775 goto out;
2776 }
2777 }
2778
d1310b2e 2779 end = page_end;
11c65dcc 2780 while (1) {
d0082371 2781 lock_extent(tree, start, end);
11c65dcc
JB
2782 ordered = btrfs_lookup_ordered_extent(inode, start);
2783 if (!ordered)
2784 break;
d0082371 2785 unlock_extent(tree, start, end);
11c65dcc
JB
2786 btrfs_start_ordered_extent(inode, ordered, 1);
2787 btrfs_put_ordered_extent(ordered);
2788 }
d1310b2e 2789
c8b97818
CM
2790 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2791 char *userpage;
2792 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2793
2794 if (zero_offset) {
2795 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2796 userpage = kmap_atomic(page);
c8b97818
CM
2797 memset(userpage + zero_offset, 0, iosize);
2798 flush_dcache_page(page);
7ac687d9 2799 kunmap_atomic(userpage);
c8b97818
CM
2800 }
2801 }
d1310b2e 2802 while (cur <= end) {
c8f2f24b
JB
2803 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2804
d1310b2e
CM
2805 if (cur >= last_byte) {
2806 char *userpage;
507903b8
AJ
2807 struct extent_state *cached = NULL;
2808
306e16ce 2809 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2810 userpage = kmap_atomic(page);
306e16ce 2811 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2812 flush_dcache_page(page);
7ac687d9 2813 kunmap_atomic(userpage);
d1310b2e 2814 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2815 &cached, GFP_NOFS);
2816 unlock_extent_cached(tree, cur, cur + iosize - 1,
2817 &cached, GFP_NOFS);
d1310b2e
CM
2818 break;
2819 }
306e16ce 2820 em = get_extent(inode, page, pg_offset, cur,
d1310b2e 2821 end - cur + 1, 0);
c704005d 2822 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2823 SetPageError(page);
d0082371 2824 unlock_extent(tree, cur, end);
d1310b2e
CM
2825 break;
2826 }
d1310b2e
CM
2827 extent_offset = cur - em->start;
2828 BUG_ON(extent_map_end(em) <= cur);
2829 BUG_ON(end < cur);
2830
261507a0 2831 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
c8b97818 2832 this_bio_flag = EXTENT_BIO_COMPRESSED;
261507a0
LZ
2833 extent_set_compress_type(&this_bio_flag,
2834 em->compress_type);
2835 }
c8b97818 2836
d1310b2e
CM
2837 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2838 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2839 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2840 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2841 disk_io_size = em->block_len;
2842 sector = em->block_start >> 9;
2843 } else {
2844 sector = (em->block_start + extent_offset) >> 9;
2845 disk_io_size = iosize;
2846 }
d1310b2e
CM
2847 bdev = em->bdev;
2848 block_start = em->block_start;
d899e052
YZ
2849 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2850 block_start = EXTENT_MAP_HOLE;
d1310b2e
CM
2851 free_extent_map(em);
2852 em = NULL;
2853
2854 /* we've found a hole, just zero and go on */
2855 if (block_start == EXTENT_MAP_HOLE) {
2856 char *userpage;
507903b8
AJ
2857 struct extent_state *cached = NULL;
2858
7ac687d9 2859 userpage = kmap_atomic(page);
306e16ce 2860 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2861 flush_dcache_page(page);
7ac687d9 2862 kunmap_atomic(userpage);
d1310b2e
CM
2863
2864 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8
AJ
2865 &cached, GFP_NOFS);
2866 unlock_extent_cached(tree, cur, cur + iosize - 1,
2867 &cached, GFP_NOFS);
d1310b2e 2868 cur = cur + iosize;
306e16ce 2869 pg_offset += iosize;
d1310b2e
CM
2870 continue;
2871 }
2872 /* the get_extent function already copied into the page */
9655d298
CM
2873 if (test_range_bit(tree, cur, cur_end,
2874 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 2875 check_page_uptodate(tree, page);
d0082371 2876 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 2877 cur = cur + iosize;
306e16ce 2878 pg_offset += iosize;
d1310b2e
CM
2879 continue;
2880 }
70dec807
CM
2881 /* we have an inline extent but it didn't get marked up
2882 * to date. Error out
2883 */
2884 if (block_start == EXTENT_MAP_INLINE) {
2885 SetPageError(page);
d0082371 2886 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 2887 cur = cur + iosize;
306e16ce 2888 pg_offset += iosize;
70dec807
CM
2889 continue;
2890 }
d1310b2e 2891
c8f2f24b 2892 pnr -= page->index;
d4c7ca86 2893 ret = submit_extent_page(rw, tree, page,
306e16ce 2894 sector, disk_io_size, pg_offset,
89642229 2895 bdev, bio, pnr,
c8b97818
CM
2896 end_bio_extent_readpage, mirror_num,
2897 *bio_flags,
2898 this_bio_flag);
c8f2f24b
JB
2899 if (!ret) {
2900 nr++;
2901 *bio_flags = this_bio_flag;
2902 } else {
d1310b2e 2903 SetPageError(page);
edd33c99
JB
2904 unlock_extent(tree, cur, cur + iosize - 1);
2905 }
d1310b2e 2906 cur = cur + iosize;
306e16ce 2907 pg_offset += iosize;
d1310b2e 2908 }
90a887c9 2909out:
d1310b2e
CM
2910 if (!nr) {
2911 if (!PageError(page))
2912 SetPageUptodate(page);
2913 unlock_page(page);
2914 }
2915 return 0;
2916}
2917
2918int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 2919 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
2920{
2921 struct bio *bio = NULL;
c8b97818 2922 unsigned long bio_flags = 0;
d1310b2e
CM
2923 int ret;
2924
8ddc7d9c 2925 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 2926 &bio_flags, READ);
d1310b2e 2927 if (bio)
8ddc7d9c 2928 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
2929 return ret;
2930}
d1310b2e 2931
11c8349b
CM
2932static noinline void update_nr_written(struct page *page,
2933 struct writeback_control *wbc,
2934 unsigned long nr_written)
2935{
2936 wbc->nr_to_write -= nr_written;
2937 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2938 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2939 page->mapping->writeback_index = page->index + nr_written;
2940}
2941
d1310b2e
CM
2942/*
2943 * the writepage semantics are similar to regular writepage. extent
2944 * records are inserted to lock ranges in the tree, and as dirty areas
2945 * are found, they are marked writeback. Then the lock bits are removed
2946 * and the end_io handler clears the writeback ranges
2947 */
2948static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2949 void *data)
2950{
2951 struct inode *inode = page->mapping->host;
2952 struct extent_page_data *epd = data;
2953 struct extent_io_tree *tree = epd->tree;
4eee4fa4 2954 u64 start = page_offset(page);
d1310b2e
CM
2955 u64 delalloc_start;
2956 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2957 u64 end;
2958 u64 cur = start;
2959 u64 extent_offset;
2960 u64 last_byte = i_size_read(inode);
2961 u64 block_start;
2962 u64 iosize;
2963 sector_t sector;
2c64c53d 2964 struct extent_state *cached_state = NULL;
d1310b2e
CM
2965 struct extent_map *em;
2966 struct block_device *bdev;
2967 int ret;
2968 int nr = 0;
7f3c74fb 2969 size_t pg_offset = 0;
d1310b2e
CM
2970 size_t blocksize;
2971 loff_t i_size = i_size_read(inode);
2972 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2973 u64 nr_delalloc;
2974 u64 delalloc_end;
c8b97818
CM
2975 int page_started;
2976 int compressed;
ffbd517d 2977 int write_flags;
771ed689 2978 unsigned long nr_written = 0;
9e487107 2979 bool fill_delalloc = true;
d1310b2e 2980
ffbd517d 2981 if (wbc->sync_mode == WB_SYNC_ALL)
721a9602 2982 write_flags = WRITE_SYNC;
ffbd517d
CM
2983 else
2984 write_flags = WRITE;
2985
1abe9b8a 2986 trace___extent_writepage(page, inode, wbc);
2987
d1310b2e 2988 WARN_ON(!PageLocked(page));
bf0da8c1
CM
2989
2990 ClearPageError(page);
2991
7f3c74fb 2992 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
211c17f5 2993 if (page->index > end_index ||
7f3c74fb 2994 (page->index == end_index && !pg_offset)) {
d47992f8 2995 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
d1310b2e
CM
2996 unlock_page(page);
2997 return 0;
2998 }
2999
3000 if (page->index == end_index) {
3001 char *userpage;
3002
7ac687d9 3003 userpage = kmap_atomic(page);
7f3c74fb
CM
3004 memset(userpage + pg_offset, 0,
3005 PAGE_CACHE_SIZE - pg_offset);
7ac687d9 3006 kunmap_atomic(userpage);
211c17f5 3007 flush_dcache_page(page);
d1310b2e 3008 }
7f3c74fb 3009 pg_offset = 0;
d1310b2e
CM
3010
3011 set_page_extent_mapped(page);
3012
9e487107
JB
3013 if (!tree->ops || !tree->ops->fill_delalloc)
3014 fill_delalloc = false;
3015
d1310b2e
CM
3016 delalloc_start = start;
3017 delalloc_end = 0;
c8b97818 3018 page_started = 0;
9e487107 3019 if (!epd->extent_locked && fill_delalloc) {
f85d7d6c 3020 u64 delalloc_to_write = 0;
11c8349b
CM
3021 /*
3022 * make sure the wbc mapping index is at least updated
3023 * to this page.
3024 */
3025 update_nr_written(page, wbc, 0);
3026
d397712b 3027 while (delalloc_end < page_end) {
771ed689 3028 nr_delalloc = find_lock_delalloc_range(inode, tree,
c8b97818
CM
3029 page,
3030 &delalloc_start,
d1310b2e
CM
3031 &delalloc_end,
3032 128 * 1024 * 1024);
771ed689
CM
3033 if (nr_delalloc == 0) {
3034 delalloc_start = delalloc_end + 1;
3035 continue;
3036 }
013bd4c3
TI
3037 ret = tree->ops->fill_delalloc(inode, page,
3038 delalloc_start,
3039 delalloc_end,
3040 &page_started,
3041 &nr_written);
79787eaa
JM
3042 /* File system has been set read-only */
3043 if (ret) {
3044 SetPageError(page);
3045 goto done;
3046 }
f85d7d6c
CM
3047 /*
3048 * delalloc_end is already one less than the total
3049 * length, so we don't subtract one from
3050 * PAGE_CACHE_SIZE
3051 */
3052 delalloc_to_write += (delalloc_end - delalloc_start +
3053 PAGE_CACHE_SIZE) >>
3054 PAGE_CACHE_SHIFT;
d1310b2e 3055 delalloc_start = delalloc_end + 1;
d1310b2e 3056 }
f85d7d6c
CM
3057 if (wbc->nr_to_write < delalloc_to_write) {
3058 int thresh = 8192;
3059
3060 if (delalloc_to_write < thresh * 2)
3061 thresh = delalloc_to_write;
3062 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3063 thresh);
3064 }
c8b97818 3065
771ed689
CM
3066 /* did the fill delalloc function already unlock and start
3067 * the IO?
3068 */
3069 if (page_started) {
3070 ret = 0;
11c8349b
CM
3071 /*
3072 * we've unlocked the page, so we can't update
3073 * the mapping's writeback index, just update
3074 * nr_to_write.
3075 */
3076 wbc->nr_to_write -= nr_written;
3077 goto done_unlocked;
771ed689 3078 }
c8b97818 3079 }
247e743c 3080 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3081 ret = tree->ops->writepage_start_hook(page, start,
3082 page_end);
87826df0
JM
3083 if (ret) {
3084 /* Fixup worker will requeue */
3085 if (ret == -EBUSY)
3086 wbc->pages_skipped++;
3087 else
3088 redirty_page_for_writepage(wbc, page);
11c8349b 3089 update_nr_written(page, wbc, nr_written);
247e743c 3090 unlock_page(page);
771ed689 3091 ret = 0;
11c8349b 3092 goto done_unlocked;
247e743c
CM
3093 }
3094 }
3095
11c8349b
CM
3096 /*
3097 * we don't want to touch the inode after unlocking the page,
3098 * so we update the mapping writeback index now
3099 */
3100 update_nr_written(page, wbc, nr_written + 1);
771ed689 3101
d1310b2e 3102 end = page_end;
d1310b2e 3103 if (last_byte <= start) {
e6dcd2dc
CM
3104 if (tree->ops && tree->ops->writepage_end_io_hook)
3105 tree->ops->writepage_end_io_hook(page, start,
3106 page_end, NULL, 1);
d1310b2e
CM
3107 goto done;
3108 }
3109
d1310b2e
CM
3110 blocksize = inode->i_sb->s_blocksize;
3111
3112 while (cur <= end) {
3113 if (cur >= last_byte) {
e6dcd2dc
CM
3114 if (tree->ops && tree->ops->writepage_end_io_hook)
3115 tree->ops->writepage_end_io_hook(page, cur,
3116 page_end, NULL, 1);
d1310b2e
CM
3117 break;
3118 }
7f3c74fb 3119 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3120 end - cur + 1, 1);
c704005d 3121 if (IS_ERR_OR_NULL(em)) {
d1310b2e
CM
3122 SetPageError(page);
3123 break;
3124 }
3125
3126 extent_offset = cur - em->start;
3127 BUG_ON(extent_map_end(em) <= cur);
3128 BUG_ON(end < cur);
3129 iosize = min(extent_map_end(em) - cur, end - cur + 1);
fda2832f 3130 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3131 sector = (em->block_start + extent_offset) >> 9;
3132 bdev = em->bdev;
3133 block_start = em->block_start;
c8b97818 3134 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3135 free_extent_map(em);
3136 em = NULL;
3137
c8b97818
CM
3138 /*
3139 * compressed and inline extents are written through other
3140 * paths in the FS
3141 */
3142 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3143 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3144 /*
3145 * end_io notification does not happen here for
3146 * compressed extents
3147 */
3148 if (!compressed && tree->ops &&
3149 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3150 tree->ops->writepage_end_io_hook(page, cur,
3151 cur + iosize - 1,
3152 NULL, 1);
c8b97818
CM
3153 else if (compressed) {
3154 /* we don't want to end_page_writeback on
3155 * a compressed extent. this happens
3156 * elsewhere
3157 */
3158 nr++;
3159 }
3160
3161 cur += iosize;
7f3c74fb 3162 pg_offset += iosize;
d1310b2e
CM
3163 continue;
3164 }
d1310b2e
CM
3165 /* leave this out until we have a page_mkwrite call */
3166 if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
9655d298 3167 EXTENT_DIRTY, 0, NULL)) {
d1310b2e 3168 cur = cur + iosize;
7f3c74fb 3169 pg_offset += iosize;
d1310b2e
CM
3170 continue;
3171 }
c8b97818 3172
d1310b2e
CM
3173 if (tree->ops && tree->ops->writepage_io_hook) {
3174 ret = tree->ops->writepage_io_hook(page, cur,
3175 cur + iosize - 1);
3176 } else {
3177 ret = 0;
3178 }
1259ab75 3179 if (ret) {
d1310b2e 3180 SetPageError(page);
1259ab75 3181 } else {
d1310b2e 3182 unsigned long max_nr = end_index + 1;
7f3c74fb 3183
d1310b2e
CM
3184 set_range_writeback(tree, cur, cur + iosize - 1);
3185 if (!PageWriteback(page)) {
d397712b
CM
3186 printk(KERN_ERR "btrfs warning page %lu not "
3187 "writeback, cur %llu end %llu\n",
3188 page->index, (unsigned long long)cur,
d1310b2e
CM
3189 (unsigned long long)end);
3190 }
3191
ffbd517d
CM
3192 ret = submit_extent_page(write_flags, tree, page,
3193 sector, iosize, pg_offset,
3194 bdev, &epd->bio, max_nr,
c8b97818
CM
3195 end_bio_extent_writepage,
3196 0, 0, 0);
d1310b2e
CM
3197 if (ret)
3198 SetPageError(page);
3199 }
3200 cur = cur + iosize;
7f3c74fb 3201 pg_offset += iosize;
d1310b2e
CM
3202 nr++;
3203 }
3204done:
3205 if (nr == 0) {
3206 /* make sure the mapping tag for page dirty gets cleared */
3207 set_page_writeback(page);
3208 end_page_writeback(page);
3209 }
d1310b2e 3210 unlock_page(page);
771ed689 3211
11c8349b
CM
3212done_unlocked:
3213
2c64c53d
CM
3214 /* drop our reference on any cached states */
3215 free_extent_state(cached_state);
d1310b2e
CM
3216 return 0;
3217}
3218
0b32f4bb
JB
3219static int eb_wait(void *word)
3220{
3221 io_schedule();
3222 return 0;
3223}
3224
fd8b2b61 3225void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb
JB
3226{
3227 wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3228 TASK_UNINTERRUPTIBLE);
3229}
3230
3231static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3232 struct btrfs_fs_info *fs_info,
3233 struct extent_page_data *epd)
3234{
3235 unsigned long i, num_pages;
3236 int flush = 0;
3237 int ret = 0;
3238
3239 if (!btrfs_try_tree_write_lock(eb)) {
3240 flush = 1;
3241 flush_write_bio(epd);
3242 btrfs_tree_lock(eb);
3243 }
3244
3245 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3246 btrfs_tree_unlock(eb);
3247 if (!epd->sync_io)
3248 return 0;
3249 if (!flush) {
3250 flush_write_bio(epd);
3251 flush = 1;
3252 }
a098d8e8
CM
3253 while (1) {
3254 wait_on_extent_buffer_writeback(eb);
3255 btrfs_tree_lock(eb);
3256 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3257 break;
0b32f4bb 3258 btrfs_tree_unlock(eb);
0b32f4bb
JB
3259 }
3260 }
3261
51561ffe
JB
3262 /*
3263 * We need to do this to prevent races in people who check if the eb is
3264 * under IO since we can end up having no IO bits set for a short period
3265 * of time.
3266 */
3267 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3268 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3269 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3270 spin_unlock(&eb->refs_lock);
0b32f4bb 3271 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3272 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3273 -eb->len,
3274 fs_info->dirty_metadata_batch);
0b32f4bb 3275 ret = 1;
51561ffe
JB
3276 } else {
3277 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3278 }
3279
3280 btrfs_tree_unlock(eb);
3281
3282 if (!ret)
3283 return ret;
3284
3285 num_pages = num_extent_pages(eb->start, eb->len);
3286 for (i = 0; i < num_pages; i++) {
3287 struct page *p = extent_buffer_page(eb, i);
3288
3289 if (!trylock_page(p)) {
3290 if (!flush) {
3291 flush_write_bio(epd);
3292 flush = 1;
3293 }
3294 lock_page(p);
3295 }
3296 }
3297
3298 return ret;
3299}
3300
3301static void end_extent_buffer_writeback(struct extent_buffer *eb)
3302{
3303 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3304 smp_mb__after_clear_bit();
3305 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3306}
3307
3308static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3309{
3310 int uptodate = err == 0;
3311 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3312 struct extent_buffer *eb;
3313 int done;
3314
3315 do {
3316 struct page *page = bvec->bv_page;
3317
3318 bvec--;
3319 eb = (struct extent_buffer *)page->private;
3320 BUG_ON(!eb);
3321 done = atomic_dec_and_test(&eb->io_pages);
3322
3323 if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3324 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3325 ClearPageUptodate(page);
3326 SetPageError(page);
3327 }
3328
3329 end_page_writeback(page);
3330
3331 if (!done)
3332 continue;
3333
3334 end_extent_buffer_writeback(eb);
3335 } while (bvec >= bio->bi_io_vec);
3336
3337 bio_put(bio);
3338
3339}
3340
3341static int write_one_eb(struct extent_buffer *eb,
3342 struct btrfs_fs_info *fs_info,
3343 struct writeback_control *wbc,
3344 struct extent_page_data *epd)
3345{
3346 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3347 u64 offset = eb->start;
3348 unsigned long i, num_pages;
de0022b9 3349 unsigned long bio_flags = 0;
d4c7ca86 3350 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3351 int ret = 0;
0b32f4bb
JB
3352
3353 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3354 num_pages = num_extent_pages(eb->start, eb->len);
3355 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3356 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3357 bio_flags = EXTENT_BIO_TREE_LOG;
3358
0b32f4bb
JB
3359 for (i = 0; i < num_pages; i++) {
3360 struct page *p = extent_buffer_page(eb, i);
3361
3362 clear_page_dirty_for_io(p);
3363 set_page_writeback(p);
3364 ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3365 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3366 -1, end_bio_extent_buffer_writepage,
de0022b9
JB
3367 0, epd->bio_flags, bio_flags);
3368 epd->bio_flags = bio_flags;
0b32f4bb
JB
3369 if (ret) {
3370 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3371 SetPageError(p);
3372 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3373 end_extent_buffer_writeback(eb);
3374 ret = -EIO;
3375 break;
3376 }
3377 offset += PAGE_CACHE_SIZE;
3378 update_nr_written(p, wbc, 1);
3379 unlock_page(p);
3380 }
3381
3382 if (unlikely(ret)) {
3383 for (; i < num_pages; i++) {
3384 struct page *p = extent_buffer_page(eb, i);
3385 unlock_page(p);
3386 }
3387 }
3388
3389 return ret;
3390}
3391
3392int btree_write_cache_pages(struct address_space *mapping,
3393 struct writeback_control *wbc)
3394{
3395 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3396 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3397 struct extent_buffer *eb, *prev_eb = NULL;
3398 struct extent_page_data epd = {
3399 .bio = NULL,
3400 .tree = tree,
3401 .extent_locked = 0,
3402 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3403 .bio_flags = 0,
0b32f4bb
JB
3404 };
3405 int ret = 0;
3406 int done = 0;
3407 int nr_to_write_done = 0;
3408 struct pagevec pvec;
3409 int nr_pages;
3410 pgoff_t index;
3411 pgoff_t end; /* Inclusive */
3412 int scanned = 0;
3413 int tag;
3414
3415 pagevec_init(&pvec, 0);
3416 if (wbc->range_cyclic) {
3417 index = mapping->writeback_index; /* Start from prev offset */
3418 end = -1;
3419 } else {
3420 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3421 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3422 scanned = 1;
3423 }
3424 if (wbc->sync_mode == WB_SYNC_ALL)
3425 tag = PAGECACHE_TAG_TOWRITE;
3426 else
3427 tag = PAGECACHE_TAG_DIRTY;
3428retry:
3429 if (wbc->sync_mode == WB_SYNC_ALL)
3430 tag_pages_for_writeback(mapping, index, end);
3431 while (!done && !nr_to_write_done && (index <= end) &&
3432 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3433 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3434 unsigned i;
3435
3436 scanned = 1;
3437 for (i = 0; i < nr_pages; i++) {
3438 struct page *page = pvec.pages[i];
3439
3440 if (!PagePrivate(page))
3441 continue;
3442
3443 if (!wbc->range_cyclic && page->index > end) {
3444 done = 1;
3445 break;
3446 }
3447
b5bae261
JB
3448 spin_lock(&mapping->private_lock);
3449 if (!PagePrivate(page)) {
3450 spin_unlock(&mapping->private_lock);
3451 continue;
3452 }
3453
0b32f4bb 3454 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3455
3456 /*
3457 * Shouldn't happen and normally this would be a BUG_ON
3458 * but no sense in crashing the users box for something
3459 * we can survive anyway.
3460 */
0b32f4bb 3461 if (!eb) {
b5bae261 3462 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3463 WARN_ON(1);
3464 continue;
3465 }
3466
b5bae261
JB
3467 if (eb == prev_eb) {
3468 spin_unlock(&mapping->private_lock);
0b32f4bb 3469 continue;
b5bae261 3470 }
0b32f4bb 3471
b5bae261
JB
3472 ret = atomic_inc_not_zero(&eb->refs);
3473 spin_unlock(&mapping->private_lock);
3474 if (!ret)
0b32f4bb 3475 continue;
0b32f4bb
JB
3476
3477 prev_eb = eb;
3478 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3479 if (!ret) {
3480 free_extent_buffer(eb);
3481 continue;
3482 }
3483
3484 ret = write_one_eb(eb, fs_info, wbc, &epd);
3485 if (ret) {
3486 done = 1;
3487 free_extent_buffer(eb);
3488 break;
3489 }
3490 free_extent_buffer(eb);
3491
3492 /*
3493 * the filesystem may choose to bump up nr_to_write.
3494 * We have to make sure to honor the new nr_to_write
3495 * at any time
3496 */
3497 nr_to_write_done = wbc->nr_to_write <= 0;
3498 }
3499 pagevec_release(&pvec);
3500 cond_resched();
3501 }
3502 if (!scanned && !done) {
3503 /*
3504 * We hit the last page and there is more work to be done: wrap
3505 * back to the start of the file
3506 */
3507 scanned = 1;
3508 index = 0;
3509 goto retry;
3510 }
3511 flush_write_bio(&epd);
3512 return ret;
3513}
3514
d1310b2e 3515/**
4bef0848 3516 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3517 * @mapping: address space structure to write
3518 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3519 * @writepage: function called for each page
3520 * @data: data passed to writepage function
3521 *
3522 * If a page is already under I/O, write_cache_pages() skips it, even
3523 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3524 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3525 * and msync() need to guarantee that all the data which was dirty at the time
3526 * the call was made get new I/O started against them. If wbc->sync_mode is
3527 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3528 * existing IO to complete.
3529 */
b2950863 3530static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3531 struct address_space *mapping,
3532 struct writeback_control *wbc,
d2c3f4f6
CM
3533 writepage_t writepage, void *data,
3534 void (*flush_fn)(void *))
d1310b2e 3535{
7fd1a3f7 3536 struct inode *inode = mapping->host;
d1310b2e
CM
3537 int ret = 0;
3538 int done = 0;
f85d7d6c 3539 int nr_to_write_done = 0;
d1310b2e
CM
3540 struct pagevec pvec;
3541 int nr_pages;
3542 pgoff_t index;
3543 pgoff_t end; /* Inclusive */
3544 int scanned = 0;
f7aaa06b 3545 int tag;
d1310b2e 3546
7fd1a3f7
JB
3547 /*
3548 * We have to hold onto the inode so that ordered extents can do their
3549 * work when the IO finishes. The alternative to this is failing to add
3550 * an ordered extent if the igrab() fails there and that is a huge pain
3551 * to deal with, so instead just hold onto the inode throughout the
3552 * writepages operation. If it fails here we are freeing up the inode
3553 * anyway and we'd rather not waste our time writing out stuff that is
3554 * going to be truncated anyway.
3555 */
3556 if (!igrab(inode))
3557 return 0;
3558
d1310b2e
CM
3559 pagevec_init(&pvec, 0);
3560 if (wbc->range_cyclic) {
3561 index = mapping->writeback_index; /* Start from prev offset */
3562 end = -1;
3563 } else {
3564 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3565 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3566 scanned = 1;
3567 }
f7aaa06b
JB
3568 if (wbc->sync_mode == WB_SYNC_ALL)
3569 tag = PAGECACHE_TAG_TOWRITE;
3570 else
3571 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3572retry:
f7aaa06b
JB
3573 if (wbc->sync_mode == WB_SYNC_ALL)
3574 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3575 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3576 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3577 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3578 unsigned i;
3579
3580 scanned = 1;
3581 for (i = 0; i < nr_pages; i++) {
3582 struct page *page = pvec.pages[i];
3583
3584 /*
3585 * At this point we hold neither mapping->tree_lock nor
3586 * lock on the page itself: the page may be truncated or
3587 * invalidated (changing page->mapping to NULL), or even
3588 * swizzled back from swapper_space to tmpfs file
3589 * mapping
3590 */
c8f2f24b
JB
3591 if (!trylock_page(page)) {
3592 flush_fn(data);
3593 lock_page(page);
01d658f2 3594 }
d1310b2e
CM
3595
3596 if (unlikely(page->mapping != mapping)) {
3597 unlock_page(page);
3598 continue;
3599 }
3600
3601 if (!wbc->range_cyclic && page->index > end) {
3602 done = 1;
3603 unlock_page(page);
3604 continue;
3605 }
3606
d2c3f4f6 3607 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
3608 if (PageWriteback(page))
3609 flush_fn(data);
d1310b2e 3610 wait_on_page_writeback(page);
d2c3f4f6 3611 }
d1310b2e
CM
3612
3613 if (PageWriteback(page) ||
3614 !clear_page_dirty_for_io(page)) {
3615 unlock_page(page);
3616 continue;
3617 }
3618
3619 ret = (*writepage)(page, wbc, data);
3620
3621 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3622 unlock_page(page);
3623 ret = 0;
3624 }
f85d7d6c 3625 if (ret)
d1310b2e 3626 done = 1;
f85d7d6c
CM
3627
3628 /*
3629 * the filesystem may choose to bump up nr_to_write.
3630 * We have to make sure to honor the new nr_to_write
3631 * at any time
3632 */
3633 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
3634 }
3635 pagevec_release(&pvec);
3636 cond_resched();
3637 }
3638 if (!scanned && !done) {
3639 /*
3640 * We hit the last page and there is more work to be done: wrap
3641 * back to the start of the file
3642 */
3643 scanned = 1;
3644 index = 0;
3645 goto retry;
3646 }
7fd1a3f7 3647 btrfs_add_delayed_iput(inode);
d1310b2e
CM
3648 return ret;
3649}
d1310b2e 3650
ffbd517d 3651static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 3652{
d2c3f4f6 3653 if (epd->bio) {
355808c2
JM
3654 int rw = WRITE;
3655 int ret;
3656
ffbd517d 3657 if (epd->sync_io)
355808c2
JM
3658 rw = WRITE_SYNC;
3659
de0022b9 3660 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 3661 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
3662 epd->bio = NULL;
3663 }
3664}
3665
ffbd517d
CM
3666static noinline void flush_write_bio(void *data)
3667{
3668 struct extent_page_data *epd = data;
3669 flush_epd_write_bio(epd);
3670}
3671
d1310b2e
CM
3672int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3673 get_extent_t *get_extent,
3674 struct writeback_control *wbc)
3675{
3676 int ret;
d1310b2e
CM
3677 struct extent_page_data epd = {
3678 .bio = NULL,
3679 .tree = tree,
3680 .get_extent = get_extent,
771ed689 3681 .extent_locked = 0,
ffbd517d 3682 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3683 .bio_flags = 0,
d1310b2e 3684 };
d1310b2e 3685
d1310b2e
CM
3686 ret = __extent_writepage(page, wbc, &epd);
3687
ffbd517d 3688 flush_epd_write_bio(&epd);
d1310b2e
CM
3689 return ret;
3690}
d1310b2e 3691
771ed689
CM
3692int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3693 u64 start, u64 end, get_extent_t *get_extent,
3694 int mode)
3695{
3696 int ret = 0;
3697 struct address_space *mapping = inode->i_mapping;
3698 struct page *page;
3699 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3700 PAGE_CACHE_SHIFT;
3701
3702 struct extent_page_data epd = {
3703 .bio = NULL,
3704 .tree = tree,
3705 .get_extent = get_extent,
3706 .extent_locked = 1,
ffbd517d 3707 .sync_io = mode == WB_SYNC_ALL,
de0022b9 3708 .bio_flags = 0,
771ed689
CM
3709 };
3710 struct writeback_control wbc_writepages = {
771ed689 3711 .sync_mode = mode,
771ed689
CM
3712 .nr_to_write = nr_pages * 2,
3713 .range_start = start,
3714 .range_end = end + 1,
3715 };
3716
d397712b 3717 while (start <= end) {
771ed689
CM
3718 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3719 if (clear_page_dirty_for_io(page))
3720 ret = __extent_writepage(page, &wbc_writepages, &epd);
3721 else {
3722 if (tree->ops && tree->ops->writepage_end_io_hook)
3723 tree->ops->writepage_end_io_hook(page, start,
3724 start + PAGE_CACHE_SIZE - 1,
3725 NULL, 1);
3726 unlock_page(page);
3727 }
3728 page_cache_release(page);
3729 start += PAGE_CACHE_SIZE;
3730 }
3731
ffbd517d 3732 flush_epd_write_bio(&epd);
771ed689
CM
3733 return ret;
3734}
d1310b2e
CM
3735
3736int extent_writepages(struct extent_io_tree *tree,
3737 struct address_space *mapping,
3738 get_extent_t *get_extent,
3739 struct writeback_control *wbc)
3740{
3741 int ret = 0;
3742 struct extent_page_data epd = {
3743 .bio = NULL,
3744 .tree = tree,
3745 .get_extent = get_extent,
771ed689 3746 .extent_locked = 0,
ffbd517d 3747 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3748 .bio_flags = 0,
d1310b2e
CM
3749 };
3750
4bef0848 3751 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
3752 __extent_writepage, &epd,
3753 flush_write_bio);
ffbd517d 3754 flush_epd_write_bio(&epd);
d1310b2e
CM
3755 return ret;
3756}
d1310b2e
CM
3757
3758int extent_readpages(struct extent_io_tree *tree,
3759 struct address_space *mapping,
3760 struct list_head *pages, unsigned nr_pages,
3761 get_extent_t get_extent)
3762{
3763 struct bio *bio = NULL;
3764 unsigned page_idx;
c8b97818 3765 unsigned long bio_flags = 0;
67c9684f
LB
3766 struct page *pagepool[16];
3767 struct page *page;
3768 int i = 0;
3769 int nr = 0;
d1310b2e 3770
d1310b2e 3771 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 3772 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
3773
3774 prefetchw(&page->flags);
3775 list_del(&page->lru);
67c9684f 3776 if (add_to_page_cache_lru(page, mapping,
43e817a1 3777 page->index, GFP_NOFS)) {
67c9684f
LB
3778 page_cache_release(page);
3779 continue;
d1310b2e 3780 }
67c9684f
LB
3781
3782 pagepool[nr++] = page;
3783 if (nr < ARRAY_SIZE(pagepool))
3784 continue;
3785 for (i = 0; i < nr; i++) {
3786 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3787 &bio, 0, &bio_flags, READ);
67c9684f
LB
3788 page_cache_release(pagepool[i]);
3789 }
3790 nr = 0;
d1310b2e 3791 }
67c9684f
LB
3792 for (i = 0; i < nr; i++) {
3793 __extent_read_full_page(tree, pagepool[i], get_extent,
d4c7ca86 3794 &bio, 0, &bio_flags, READ);
67c9684f 3795 page_cache_release(pagepool[i]);
d1310b2e 3796 }
67c9684f 3797
d1310b2e
CM
3798 BUG_ON(!list_empty(pages));
3799 if (bio)
79787eaa 3800 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
3801 return 0;
3802}
d1310b2e
CM
3803
3804/*
3805 * basic invalidatepage code, this waits on any locked or writeback
3806 * ranges corresponding to the page, and then deletes any extent state
3807 * records from the tree
3808 */
3809int extent_invalidatepage(struct extent_io_tree *tree,
3810 struct page *page, unsigned long offset)
3811{
2ac55d41 3812 struct extent_state *cached_state = NULL;
4eee4fa4 3813 u64 start = page_offset(page);
d1310b2e
CM
3814 u64 end = start + PAGE_CACHE_SIZE - 1;
3815 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3816
fda2832f 3817 start += ALIGN(offset, blocksize);
d1310b2e
CM
3818 if (start > end)
3819 return 0;
3820
d0082371 3821 lock_extent_bits(tree, start, end, 0, &cached_state);
1edbb734 3822 wait_on_page_writeback(page);
d1310b2e 3823 clear_extent_bit(tree, start, end,
32c00aff
JB
3824 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3825 EXTENT_DO_ACCOUNTING,
2ac55d41 3826 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
3827 return 0;
3828}
d1310b2e 3829
7b13b7b1
CM
3830/*
3831 * a helper for releasepage, this tests for areas of the page that
3832 * are locked or under IO and drops the related state bits if it is safe
3833 * to drop the page.
3834 */
48a3b636
ES
3835static int try_release_extent_state(struct extent_map_tree *map,
3836 struct extent_io_tree *tree,
3837 struct page *page, gfp_t mask)
7b13b7b1 3838{
4eee4fa4 3839 u64 start = page_offset(page);
7b13b7b1
CM
3840 u64 end = start + PAGE_CACHE_SIZE - 1;
3841 int ret = 1;
3842
211f90e6 3843 if (test_range_bit(tree, start, end,
8b62b72b 3844 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
3845 ret = 0;
3846 else {
3847 if ((mask & GFP_NOFS) == GFP_NOFS)
3848 mask = GFP_NOFS;
11ef160f
CM
3849 /*
3850 * at this point we can safely clear everything except the
3851 * locked bit and the nodatasum bit
3852 */
e3f24cc5 3853 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
3854 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3855 0, 0, NULL, mask);
e3f24cc5
CM
3856
3857 /* if clear_extent_bit failed for enomem reasons,
3858 * we can't allow the release to continue.
3859 */
3860 if (ret < 0)
3861 ret = 0;
3862 else
3863 ret = 1;
7b13b7b1
CM
3864 }
3865 return ret;
3866}
7b13b7b1 3867
d1310b2e
CM
3868/*
3869 * a helper for releasepage. As long as there are no locked extents
3870 * in the range corresponding to the page, both state records and extent
3871 * map records are removed
3872 */
3873int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
3874 struct extent_io_tree *tree, struct page *page,
3875 gfp_t mask)
d1310b2e
CM
3876{
3877 struct extent_map *em;
4eee4fa4 3878 u64 start = page_offset(page);
d1310b2e 3879 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 3880
70dec807
CM
3881 if ((mask & __GFP_WAIT) &&
3882 page->mapping->host->i_size > 16 * 1024 * 1024) {
39b5637f 3883 u64 len;
70dec807 3884 while (start <= end) {
39b5637f 3885 len = end - start + 1;
890871be 3886 write_lock(&map->lock);
39b5637f 3887 em = lookup_extent_mapping(map, start, len);
285190d9 3888 if (!em) {
890871be 3889 write_unlock(&map->lock);
70dec807
CM
3890 break;
3891 }
7f3c74fb
CM
3892 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3893 em->start != start) {
890871be 3894 write_unlock(&map->lock);
70dec807
CM
3895 free_extent_map(em);
3896 break;
3897 }
3898 if (!test_range_bit(tree, em->start,
3899 extent_map_end(em) - 1,
8b62b72b 3900 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 3901 0, NULL)) {
70dec807
CM
3902 remove_extent_mapping(map, em);
3903 /* once for the rb tree */
3904 free_extent_map(em);
3905 }
3906 start = extent_map_end(em);
890871be 3907 write_unlock(&map->lock);
70dec807
CM
3908
3909 /* once for us */
d1310b2e
CM
3910 free_extent_map(em);
3911 }
d1310b2e 3912 }
7b13b7b1 3913 return try_release_extent_state(map, tree, page, mask);
d1310b2e 3914}
d1310b2e 3915
ec29ed5b
CM
3916/*
3917 * helper function for fiemap, which doesn't want to see any holes.
3918 * This maps until we find something past 'last'
3919 */
3920static struct extent_map *get_extent_skip_holes(struct inode *inode,
3921 u64 offset,
3922 u64 last,
3923 get_extent_t *get_extent)
3924{
3925 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3926 struct extent_map *em;
3927 u64 len;
3928
3929 if (offset >= last)
3930 return NULL;
3931
3932 while(1) {
3933 len = last - offset;
3934 if (len == 0)
3935 break;
fda2832f 3936 len = ALIGN(len, sectorsize);
ec29ed5b 3937 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 3938 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
3939 return em;
3940
3941 /* if this isn't a hole return it */
3942 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3943 em->block_start != EXTENT_MAP_HOLE) {
3944 return em;
3945 }
3946
3947 /* this is a hole, advance to the next extent */
3948 offset = extent_map_end(em);
3949 free_extent_map(em);
3950 if (offset >= last)
3951 break;
3952 }
3953 return NULL;
3954}
3955
1506fcc8
YS
3956int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3957 __u64 start, __u64 len, get_extent_t *get_extent)
3958{
975f84fe 3959 int ret = 0;
1506fcc8
YS
3960 u64 off = start;
3961 u64 max = start + len;
3962 u32 flags = 0;
975f84fe
JB
3963 u32 found_type;
3964 u64 last;
ec29ed5b 3965 u64 last_for_get_extent = 0;
1506fcc8 3966 u64 disko = 0;
ec29ed5b 3967 u64 isize = i_size_read(inode);
975f84fe 3968 struct btrfs_key found_key;
1506fcc8 3969 struct extent_map *em = NULL;
2ac55d41 3970 struct extent_state *cached_state = NULL;
975f84fe
JB
3971 struct btrfs_path *path;
3972 struct btrfs_file_extent_item *item;
1506fcc8 3973 int end = 0;
ec29ed5b
CM
3974 u64 em_start = 0;
3975 u64 em_len = 0;
3976 u64 em_end = 0;
1506fcc8 3977 unsigned long emflags;
1506fcc8
YS
3978
3979 if (len == 0)
3980 return -EINVAL;
3981
975f84fe
JB
3982 path = btrfs_alloc_path();
3983 if (!path)
3984 return -ENOMEM;
3985 path->leave_spinning = 1;
3986
4d479cf0
JB
3987 start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3988 len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3989
ec29ed5b
CM
3990 /*
3991 * lookup the last file extent. We're not using i_size here
3992 * because there might be preallocation past i_size
3993 */
975f84fe 3994 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
33345d01 3995 path, btrfs_ino(inode), -1, 0);
975f84fe
JB
3996 if (ret < 0) {
3997 btrfs_free_path(path);
3998 return ret;
3999 }
4000 WARN_ON(!ret);
4001 path->slots[0]--;
4002 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4003 struct btrfs_file_extent_item);
4004 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4005 found_type = btrfs_key_type(&found_key);
4006
ec29ed5b 4007 /* No extents, but there might be delalloc bits */
33345d01 4008 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4009 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4010 /* have to trust i_size as the end */
4011 last = (u64)-1;
4012 last_for_get_extent = isize;
4013 } else {
4014 /*
4015 * remember the start of the last extent. There are a
4016 * bunch of different factors that go into the length of the
4017 * extent, so its much less complex to remember where it started
4018 */
4019 last = found_key.offset;
4020 last_for_get_extent = last + 1;
975f84fe 4021 }
975f84fe
JB
4022 btrfs_free_path(path);
4023
ec29ed5b
CM
4024 /*
4025 * we might have some extents allocated but more delalloc past those
4026 * extents. so, we trust isize unless the start of the last extent is
4027 * beyond isize
4028 */
4029 if (last < isize) {
4030 last = (u64)-1;
4031 last_for_get_extent = isize;
4032 }
4033
a52f4cd2 4034 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
d0082371 4035 &cached_state);
ec29ed5b 4036
4d479cf0 4037 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4038 get_extent);
1506fcc8
YS
4039 if (!em)
4040 goto out;
4041 if (IS_ERR(em)) {
4042 ret = PTR_ERR(em);
4043 goto out;
4044 }
975f84fe 4045
1506fcc8 4046 while (!end) {
b76bb701 4047 u64 offset_in_extent = 0;
ea8efc74
CM
4048
4049 /* break if the extent we found is outside the range */
4050 if (em->start >= max || extent_map_end(em) < off)
4051 break;
4052
4053 /*
4054 * get_extent may return an extent that starts before our
4055 * requested range. We have to make sure the ranges
4056 * we return to fiemap always move forward and don't
4057 * overlap, so adjust the offsets here
4058 */
4059 em_start = max(em->start, off);
1506fcc8 4060
ea8efc74
CM
4061 /*
4062 * record the offset from the start of the extent
b76bb701
JB
4063 * for adjusting the disk offset below. Only do this if the
4064 * extent isn't compressed since our in ram offset may be past
4065 * what we have actually allocated on disk.
ea8efc74 4066 */
b76bb701
JB
4067 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4068 offset_in_extent = em_start - em->start;
ec29ed5b 4069 em_end = extent_map_end(em);
ea8efc74 4070 em_len = em_end - em_start;
ec29ed5b 4071 emflags = em->flags;
1506fcc8
YS
4072 disko = 0;
4073 flags = 0;
4074
ea8efc74
CM
4075 /*
4076 * bump off for our next call to get_extent
4077 */
4078 off = extent_map_end(em);
4079 if (off >= max)
4080 end = 1;
4081
93dbfad7 4082 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4083 end = 1;
4084 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4085 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4086 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4087 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4088 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4089 flags |= (FIEMAP_EXTENT_DELALLOC |
4090 FIEMAP_EXTENT_UNKNOWN);
93dbfad7 4091 } else {
ea8efc74 4092 disko = em->block_start + offset_in_extent;
1506fcc8
YS
4093 }
4094 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4095 flags |= FIEMAP_EXTENT_ENCODED;
4096
1506fcc8
YS
4097 free_extent_map(em);
4098 em = NULL;
ec29ed5b
CM
4099 if ((em_start >= last) || em_len == (u64)-1 ||
4100 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4101 flags |= FIEMAP_EXTENT_LAST;
4102 end = 1;
4103 }
4104
ec29ed5b
CM
4105 /* now scan forward to see if this is really the last extent. */
4106 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4107 get_extent);
4108 if (IS_ERR(em)) {
4109 ret = PTR_ERR(em);
4110 goto out;
4111 }
4112 if (!em) {
975f84fe
JB
4113 flags |= FIEMAP_EXTENT_LAST;
4114 end = 1;
4115 }
ec29ed5b
CM
4116 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4117 em_len, flags);
4118 if (ret)
4119 goto out_free;
1506fcc8
YS
4120 }
4121out_free:
4122 free_extent_map(em);
4123out:
a52f4cd2 4124 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4125 &cached_state, GFP_NOFS);
1506fcc8
YS
4126 return ret;
4127}
4128
727011e0
CM
4129static void __free_extent_buffer(struct extent_buffer *eb)
4130{
6d49ba1b 4131 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4132 kmem_cache_free(extent_buffer_cache, eb);
4133}
4134
d1310b2e
CM
4135static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4136 u64 start,
4137 unsigned long len,
4138 gfp_t mask)
4139{
4140 struct extent_buffer *eb = NULL;
4141
d1310b2e 4142 eb = kmem_cache_zalloc(extent_buffer_cache, mask);
91ca338d
TI
4143 if (eb == NULL)
4144 return NULL;
d1310b2e
CM
4145 eb->start = start;
4146 eb->len = len;
4f2de97a 4147 eb->tree = tree;
815a51c7 4148 eb->bflags = 0;
bd681513
CM
4149 rwlock_init(&eb->lock);
4150 atomic_set(&eb->write_locks, 0);
4151 atomic_set(&eb->read_locks, 0);
4152 atomic_set(&eb->blocking_readers, 0);
4153 atomic_set(&eb->blocking_writers, 0);
4154 atomic_set(&eb->spinning_readers, 0);
4155 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4156 eb->lock_nested = 0;
bd681513
CM
4157 init_waitqueue_head(&eb->write_lock_wq);
4158 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4159
6d49ba1b
ES
4160 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4161
3083ee2e 4162 spin_lock_init(&eb->refs_lock);
d1310b2e 4163 atomic_set(&eb->refs, 1);
0b32f4bb 4164 atomic_set(&eb->io_pages, 0);
727011e0 4165
b8dae313
DS
4166 /*
4167 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4168 */
4169 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4170 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4171 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4172
4173 return eb;
4174}
4175
815a51c7
JS
4176struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4177{
4178 unsigned long i;
4179 struct page *p;
4180 struct extent_buffer *new;
4181 unsigned long num_pages = num_extent_pages(src->start, src->len);
4182
4183 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4184 if (new == NULL)
4185 return NULL;
4186
4187 for (i = 0; i < num_pages; i++) {
4188 p = alloc_page(GFP_ATOMIC);
4189 BUG_ON(!p);
4190 attach_extent_buffer_page(new, p);
4191 WARN_ON(PageDirty(p));
4192 SetPageUptodate(p);
4193 new->pages[i] = p;
4194 }
4195
4196 copy_extent_buffer(new, src, 0, 0, src->len);
4197 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4198 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4199
4200 return new;
4201}
4202
4203struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4204{
4205 struct extent_buffer *eb;
4206 unsigned long num_pages = num_extent_pages(0, len);
4207 unsigned long i;
4208
4209 eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4210 if (!eb)
4211 return NULL;
4212
4213 for (i = 0; i < num_pages; i++) {
4214 eb->pages[i] = alloc_page(GFP_ATOMIC);
4215 if (!eb->pages[i])
4216 goto err;
4217 }
4218 set_extent_buffer_uptodate(eb);
4219 btrfs_set_header_nritems(eb, 0);
4220 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4221
4222 return eb;
4223err:
84167d19
SB
4224 for (; i > 0; i--)
4225 __free_page(eb->pages[i - 1]);
815a51c7
JS
4226 __free_extent_buffer(eb);
4227 return NULL;
4228}
4229
0b32f4bb 4230static int extent_buffer_under_io(struct extent_buffer *eb)
d1310b2e 4231{
0b32f4bb
JB
4232 return (atomic_read(&eb->io_pages) ||
4233 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4234 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
d1310b2e
CM
4235}
4236
897ca6e9
MX
4237/*
4238 * Helper for releasing extent buffer page.
4239 */
4240static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4241 unsigned long start_idx)
4242{
4243 unsigned long index;
39bab87b 4244 unsigned long num_pages;
897ca6e9 4245 struct page *page;
815a51c7 4246 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
897ca6e9 4247
0b32f4bb 4248 BUG_ON(extent_buffer_under_io(eb));
897ca6e9 4249
39bab87b
WSH
4250 num_pages = num_extent_pages(eb->start, eb->len);
4251 index = start_idx + num_pages;
897ca6e9
MX
4252 if (start_idx >= index)
4253 return;
4254
4255 do {
4256 index--;
4257 page = extent_buffer_page(eb, index);
815a51c7 4258 if (page && mapped) {
4f2de97a
JB
4259 spin_lock(&page->mapping->private_lock);
4260 /*
4261 * We do this since we'll remove the pages after we've
4262 * removed the eb from the radix tree, so we could race
4263 * and have this page now attached to the new eb. So
4264 * only clear page_private if it's still connected to
4265 * this eb.
4266 */
4267 if (PagePrivate(page) &&
4268 page->private == (unsigned long)eb) {
0b32f4bb 4269 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
3083ee2e
JB
4270 BUG_ON(PageDirty(page));
4271 BUG_ON(PageWriteback(page));
4f2de97a
JB
4272 /*
4273 * We need to make sure we haven't be attached
4274 * to a new eb.
4275 */
4276 ClearPagePrivate(page);
4277 set_page_private(page, 0);
4278 /* One for the page private */
4279 page_cache_release(page);
4280 }
4281 spin_unlock(&page->mapping->private_lock);
4282
815a51c7
JS
4283 }
4284 if (page) {
4f2de97a 4285 /* One for when we alloced the page */
897ca6e9 4286 page_cache_release(page);
4f2de97a 4287 }
897ca6e9
MX
4288 } while (index != start_idx);
4289}
4290
4291/*
4292 * Helper for releasing the extent buffer.
4293 */
4294static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4295{
4296 btrfs_release_extent_buffer_page(eb, 0);
4297 __free_extent_buffer(eb);
4298}
4299
0b32f4bb
JB
4300static void check_buffer_tree_ref(struct extent_buffer *eb)
4301{
242e18c7 4302 int refs;
0b32f4bb
JB
4303 /* the ref bit is tricky. We have to make sure it is set
4304 * if we have the buffer dirty. Otherwise the
4305 * code to free a buffer can end up dropping a dirty
4306 * page
4307 *
4308 * Once the ref bit is set, it won't go away while the
4309 * buffer is dirty or in writeback, and it also won't
4310 * go away while we have the reference count on the
4311 * eb bumped.
4312 *
4313 * We can't just set the ref bit without bumping the
4314 * ref on the eb because free_extent_buffer might
4315 * see the ref bit and try to clear it. If this happens
4316 * free_extent_buffer might end up dropping our original
4317 * ref by mistake and freeing the page before we are able
4318 * to add one more ref.
4319 *
4320 * So bump the ref count first, then set the bit. If someone
4321 * beat us to it, drop the ref we added.
4322 */
242e18c7
CM
4323 refs = atomic_read(&eb->refs);
4324 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4325 return;
4326
594831c4
JB
4327 spin_lock(&eb->refs_lock);
4328 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4329 atomic_inc(&eb->refs);
594831c4 4330 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4331}
4332
5df4235e
JB
4333static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4334{
4335 unsigned long num_pages, i;
4336
0b32f4bb
JB
4337 check_buffer_tree_ref(eb);
4338
5df4235e
JB
4339 num_pages = num_extent_pages(eb->start, eb->len);
4340 for (i = 0; i < num_pages; i++) {
4341 struct page *p = extent_buffer_page(eb, i);
4342 mark_page_accessed(p);
4343 }
4344}
4345
d1310b2e 4346struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
727011e0 4347 u64 start, unsigned long len)
d1310b2e
CM
4348{
4349 unsigned long num_pages = num_extent_pages(start, len);
4350 unsigned long i;
4351 unsigned long index = start >> PAGE_CACHE_SHIFT;
4352 struct extent_buffer *eb;
6af118ce 4353 struct extent_buffer *exists = NULL;
d1310b2e
CM
4354 struct page *p;
4355 struct address_space *mapping = tree->mapping;
4356 int uptodate = 1;
19fe0a8b 4357 int ret;
d1310b2e 4358
19fe0a8b
MX
4359 rcu_read_lock();
4360 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4361 if (eb && atomic_inc_not_zero(&eb->refs)) {
4362 rcu_read_unlock();
5df4235e 4363 mark_extent_buffer_accessed(eb);
6af118ce
CM
4364 return eb;
4365 }
19fe0a8b 4366 rcu_read_unlock();
6af118ce 4367
ba144192 4368 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
2b114d1d 4369 if (!eb)
d1310b2e
CM
4370 return NULL;
4371
727011e0 4372 for (i = 0; i < num_pages; i++, index++) {
a6591715 4373 p = find_or_create_page(mapping, index, GFP_NOFS);
4804b382 4374 if (!p)
6af118ce 4375 goto free_eb;
4f2de97a
JB
4376
4377 spin_lock(&mapping->private_lock);
4378 if (PagePrivate(p)) {
4379 /*
4380 * We could have already allocated an eb for this page
4381 * and attached one so lets see if we can get a ref on
4382 * the existing eb, and if we can we know it's good and
4383 * we can just return that one, else we know we can just
4384 * overwrite page->private.
4385 */
4386 exists = (struct extent_buffer *)p->private;
4387 if (atomic_inc_not_zero(&exists->refs)) {
4388 spin_unlock(&mapping->private_lock);
4389 unlock_page(p);
17de39ac 4390 page_cache_release(p);
5df4235e 4391 mark_extent_buffer_accessed(exists);
4f2de97a
JB
4392 goto free_eb;
4393 }
4394
0b32f4bb 4395 /*
4f2de97a
JB
4396 * Do this so attach doesn't complain and we need to
4397 * drop the ref the old guy had.
4398 */
4399 ClearPagePrivate(p);
0b32f4bb 4400 WARN_ON(PageDirty(p));
4f2de97a 4401 page_cache_release(p);
d1310b2e 4402 }
4f2de97a
JB
4403 attach_extent_buffer_page(eb, p);
4404 spin_unlock(&mapping->private_lock);
0b32f4bb 4405 WARN_ON(PageDirty(p));
d1310b2e 4406 mark_page_accessed(p);
727011e0 4407 eb->pages[i] = p;
d1310b2e
CM
4408 if (!PageUptodate(p))
4409 uptodate = 0;
eb14ab8e
CM
4410
4411 /*
4412 * see below about how we avoid a nasty race with release page
4413 * and why we unlock later
4414 */
d1310b2e
CM
4415 }
4416 if (uptodate)
b4ce94de 4417 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4418again:
19fe0a8b
MX
4419 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4420 if (ret)
4421 goto free_eb;
4422
6af118ce 4423 spin_lock(&tree->buffer_lock);
19fe0a8b
MX
4424 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4425 if (ret == -EEXIST) {
4426 exists = radix_tree_lookup(&tree->buffer,
4427 start >> PAGE_CACHE_SHIFT);
115391d2
JB
4428 if (!atomic_inc_not_zero(&exists->refs)) {
4429 spin_unlock(&tree->buffer_lock);
4430 radix_tree_preload_end();
115391d2
JB
4431 exists = NULL;
4432 goto again;
4433 }
6af118ce 4434 spin_unlock(&tree->buffer_lock);
19fe0a8b 4435 radix_tree_preload_end();
5df4235e 4436 mark_extent_buffer_accessed(exists);
6af118ce
CM
4437 goto free_eb;
4438 }
6af118ce 4439 /* add one reference for the tree */
0b32f4bb 4440 check_buffer_tree_ref(eb);
f044ba78 4441 spin_unlock(&tree->buffer_lock);
19fe0a8b 4442 radix_tree_preload_end();
eb14ab8e
CM
4443
4444 /*
4445 * there is a race where release page may have
4446 * tried to find this extent buffer in the radix
4447 * but failed. It will tell the VM it is safe to
4448 * reclaim the, and it will clear the page private bit.
4449 * We must make sure to set the page private bit properly
4450 * after the extent buffer is in the radix tree so
4451 * it doesn't get lost
4452 */
727011e0
CM
4453 SetPageChecked(eb->pages[0]);
4454 for (i = 1; i < num_pages; i++) {
4455 p = extent_buffer_page(eb, i);
727011e0
CM
4456 ClearPageChecked(p);
4457 unlock_page(p);
4458 }
4459 unlock_page(eb->pages[0]);
d1310b2e
CM
4460 return eb;
4461
6af118ce 4462free_eb:
727011e0
CM
4463 for (i = 0; i < num_pages; i++) {
4464 if (eb->pages[i])
4465 unlock_page(eb->pages[i]);
4466 }
eb14ab8e 4467
17de39ac 4468 WARN_ON(!atomic_dec_and_test(&eb->refs));
897ca6e9 4469 btrfs_release_extent_buffer(eb);
6af118ce 4470 return exists;
d1310b2e 4471}
d1310b2e
CM
4472
4473struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
f09d1f60 4474 u64 start, unsigned long len)
d1310b2e 4475{
d1310b2e 4476 struct extent_buffer *eb;
d1310b2e 4477
19fe0a8b
MX
4478 rcu_read_lock();
4479 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4480 if (eb && atomic_inc_not_zero(&eb->refs)) {
4481 rcu_read_unlock();
5df4235e 4482 mark_extent_buffer_accessed(eb);
19fe0a8b
MX
4483 return eb;
4484 }
4485 rcu_read_unlock();
0f9dd46c 4486
19fe0a8b 4487 return NULL;
d1310b2e 4488}
d1310b2e 4489
3083ee2e
JB
4490static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4491{
4492 struct extent_buffer *eb =
4493 container_of(head, struct extent_buffer, rcu_head);
4494
4495 __free_extent_buffer(eb);
4496}
4497
3083ee2e 4498/* Expects to have eb->eb_lock already held */
f7a52a40 4499static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
4500{
4501 WARN_ON(atomic_read(&eb->refs) == 0);
4502 if (atomic_dec_and_test(&eb->refs)) {
815a51c7
JS
4503 if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4504 spin_unlock(&eb->refs_lock);
4505 } else {
4506 struct extent_io_tree *tree = eb->tree;
3083ee2e 4507
815a51c7 4508 spin_unlock(&eb->refs_lock);
3083ee2e 4509
815a51c7
JS
4510 spin_lock(&tree->buffer_lock);
4511 radix_tree_delete(&tree->buffer,
4512 eb->start >> PAGE_CACHE_SHIFT);
4513 spin_unlock(&tree->buffer_lock);
4514 }
3083ee2e
JB
4515
4516 /* Should be safe to release our pages at this point */
4517 btrfs_release_extent_buffer_page(eb, 0);
3083ee2e 4518 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 4519 return 1;
3083ee2e
JB
4520 }
4521 spin_unlock(&eb->refs_lock);
e64860aa
JB
4522
4523 return 0;
3083ee2e
JB
4524}
4525
d1310b2e
CM
4526void free_extent_buffer(struct extent_buffer *eb)
4527{
242e18c7
CM
4528 int refs;
4529 int old;
d1310b2e
CM
4530 if (!eb)
4531 return;
4532
242e18c7
CM
4533 while (1) {
4534 refs = atomic_read(&eb->refs);
4535 if (refs <= 3)
4536 break;
4537 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4538 if (old == refs)
4539 return;
4540 }
4541
3083ee2e 4542 spin_lock(&eb->refs_lock);
815a51c7
JS
4543 if (atomic_read(&eb->refs) == 2 &&
4544 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4545 atomic_dec(&eb->refs);
4546
3083ee2e
JB
4547 if (atomic_read(&eb->refs) == 2 &&
4548 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 4549 !extent_buffer_under_io(eb) &&
3083ee2e
JB
4550 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4551 atomic_dec(&eb->refs);
4552
4553 /*
4554 * I know this is terrible, but it's temporary until we stop tracking
4555 * the uptodate bits and such for the extent buffers.
4556 */
f7a52a40 4557 release_extent_buffer(eb);
3083ee2e
JB
4558}
4559
4560void free_extent_buffer_stale(struct extent_buffer *eb)
4561{
4562 if (!eb)
d1310b2e
CM
4563 return;
4564
3083ee2e
JB
4565 spin_lock(&eb->refs_lock);
4566 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4567
0b32f4bb 4568 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
4569 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4570 atomic_dec(&eb->refs);
f7a52a40 4571 release_extent_buffer(eb);
d1310b2e 4572}
d1310b2e 4573
1d4284bd 4574void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 4575{
d1310b2e
CM
4576 unsigned long i;
4577 unsigned long num_pages;
4578 struct page *page;
4579
d1310b2e
CM
4580 num_pages = num_extent_pages(eb->start, eb->len);
4581
4582 for (i = 0; i < num_pages; i++) {
4583 page = extent_buffer_page(eb, i);
b9473439 4584 if (!PageDirty(page))
d2c3f4f6
CM
4585 continue;
4586
a61e6f29 4587 lock_page(page);
eb14ab8e
CM
4588 WARN_ON(!PagePrivate(page));
4589
d1310b2e 4590 clear_page_dirty_for_io(page);
0ee0fda0 4591 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
4592 if (!PageDirty(page)) {
4593 radix_tree_tag_clear(&page->mapping->page_tree,
4594 page_index(page),
4595 PAGECACHE_TAG_DIRTY);
4596 }
0ee0fda0 4597 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 4598 ClearPageError(page);
a61e6f29 4599 unlock_page(page);
d1310b2e 4600 }
0b32f4bb 4601 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 4602}
d1310b2e 4603
0b32f4bb 4604int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
4605{
4606 unsigned long i;
4607 unsigned long num_pages;
b9473439 4608 int was_dirty = 0;
d1310b2e 4609
0b32f4bb
JB
4610 check_buffer_tree_ref(eb);
4611
b9473439 4612 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 4613
d1310b2e 4614 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 4615 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
4616 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4617
b9473439 4618 for (i = 0; i < num_pages; i++)
0b32f4bb 4619 set_page_dirty(extent_buffer_page(eb, i));
b9473439 4620 return was_dirty;
d1310b2e 4621}
d1310b2e 4622
0b32f4bb 4623int clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
4624{
4625 unsigned long i;
4626 struct page *page;
4627 unsigned long num_pages;
4628
b4ce94de 4629 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 4630 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75
CM
4631 for (i = 0; i < num_pages; i++) {
4632 page = extent_buffer_page(eb, i);
33958dc6
CM
4633 if (page)
4634 ClearPageUptodate(page);
1259ab75
CM
4635 }
4636 return 0;
4637}
4638
0b32f4bb 4639int set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
4640{
4641 unsigned long i;
4642 struct page *page;
4643 unsigned long num_pages;
4644
0b32f4bb 4645 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4646 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e
CM
4647 for (i = 0; i < num_pages; i++) {
4648 page = extent_buffer_page(eb, i);
d1310b2e
CM
4649 SetPageUptodate(page);
4650 }
4651 return 0;
4652}
d1310b2e 4653
0b32f4bb 4654int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 4655{
0b32f4bb 4656 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 4657}
d1310b2e
CM
4658
4659int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 4660 struct extent_buffer *eb, u64 start, int wait,
f188591e 4661 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
4662{
4663 unsigned long i;
4664 unsigned long start_i;
4665 struct page *page;
4666 int err;
4667 int ret = 0;
ce9adaa5
CM
4668 int locked_pages = 0;
4669 int all_uptodate = 1;
d1310b2e 4670 unsigned long num_pages;
727011e0 4671 unsigned long num_reads = 0;
a86c12c7 4672 struct bio *bio = NULL;
c8b97818 4673 unsigned long bio_flags = 0;
a86c12c7 4674
b4ce94de 4675 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
4676 return 0;
4677
d1310b2e
CM
4678 if (start) {
4679 WARN_ON(start < eb->start);
4680 start_i = (start >> PAGE_CACHE_SHIFT) -
4681 (eb->start >> PAGE_CACHE_SHIFT);
4682 } else {
4683 start_i = 0;
4684 }
4685
4686 num_pages = num_extent_pages(eb->start, eb->len);
4687 for (i = start_i; i < num_pages; i++) {
4688 page = extent_buffer_page(eb, i);
bb82ab88 4689 if (wait == WAIT_NONE) {
2db04966 4690 if (!trylock_page(page))
ce9adaa5 4691 goto unlock_exit;
d1310b2e
CM
4692 } else {
4693 lock_page(page);
4694 }
ce9adaa5 4695 locked_pages++;
727011e0
CM
4696 if (!PageUptodate(page)) {
4697 num_reads++;
ce9adaa5 4698 all_uptodate = 0;
727011e0 4699 }
ce9adaa5
CM
4700 }
4701 if (all_uptodate) {
4702 if (start_i == 0)
b4ce94de 4703 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
4704 goto unlock_exit;
4705 }
4706
ea466794 4707 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 4708 eb->read_mirror = 0;
0b32f4bb 4709 atomic_set(&eb->io_pages, num_reads);
ce9adaa5
CM
4710 for (i = start_i; i < num_pages; i++) {
4711 page = extent_buffer_page(eb, i);
ce9adaa5 4712 if (!PageUptodate(page)) {
f188591e 4713 ClearPageError(page);
a86c12c7 4714 err = __extent_read_full_page(tree, page,
f188591e 4715 get_extent, &bio,
d4c7ca86
JB
4716 mirror_num, &bio_flags,
4717 READ | REQ_META);
d397712b 4718 if (err)
d1310b2e 4719 ret = err;
d1310b2e
CM
4720 } else {
4721 unlock_page(page);
4722 }
4723 }
4724
355808c2 4725 if (bio) {
d4c7ca86
JB
4726 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4727 bio_flags);
79787eaa
JM
4728 if (err)
4729 return err;
355808c2 4730 }
a86c12c7 4731
bb82ab88 4732 if (ret || wait != WAIT_COMPLETE)
d1310b2e 4733 return ret;
d397712b 4734
d1310b2e
CM
4735 for (i = start_i; i < num_pages; i++) {
4736 page = extent_buffer_page(eb, i);
4737 wait_on_page_locked(page);
d397712b 4738 if (!PageUptodate(page))
d1310b2e 4739 ret = -EIO;
d1310b2e 4740 }
d397712b 4741
d1310b2e 4742 return ret;
ce9adaa5
CM
4743
4744unlock_exit:
4745 i = start_i;
d397712b 4746 while (locked_pages > 0) {
ce9adaa5
CM
4747 page = extent_buffer_page(eb, i);
4748 i++;
4749 unlock_page(page);
4750 locked_pages--;
4751 }
4752 return ret;
d1310b2e 4753}
d1310b2e
CM
4754
4755void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4756 unsigned long start,
4757 unsigned long len)
4758{
4759 size_t cur;
4760 size_t offset;
4761 struct page *page;
4762 char *kaddr;
4763 char *dst = (char *)dstv;
4764 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4765 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
4766
4767 WARN_ON(start > eb->len);
4768 WARN_ON(start + len > eb->start + eb->len);
4769
4770 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4771
d397712b 4772 while (len > 0) {
d1310b2e 4773 page = extent_buffer_page(eb, i);
d1310b2e
CM
4774
4775 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 4776 kaddr = page_address(page);
d1310b2e 4777 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
4778
4779 dst += cur;
4780 len -= cur;
4781 offset = 0;
4782 i++;
4783 }
4784}
d1310b2e
CM
4785
4786int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 4787 unsigned long min_len, char **map,
d1310b2e 4788 unsigned long *map_start,
a6591715 4789 unsigned long *map_len)
d1310b2e
CM
4790{
4791 size_t offset = start & (PAGE_CACHE_SIZE - 1);
4792 char *kaddr;
4793 struct page *p;
4794 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4795 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4796 unsigned long end_i = (start_offset + start + min_len - 1) >>
4797 PAGE_CACHE_SHIFT;
4798
4799 if (i != end_i)
4800 return -EINVAL;
4801
4802 if (i == 0) {
4803 offset = start_offset;
4804 *map_start = 0;
4805 } else {
4806 offset = 0;
4807 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4808 }
d397712b 4809
d1310b2e 4810 if (start + min_len > eb->len) {
31b1a2bd 4811 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
d397712b
CM
4812 "wanted %lu %lu\n", (unsigned long long)eb->start,
4813 eb->len, start, min_len);
85026533 4814 return -EINVAL;
d1310b2e
CM
4815 }
4816
4817 p = extent_buffer_page(eb, i);
a6591715 4818 kaddr = page_address(p);
d1310b2e
CM
4819 *map = kaddr + offset;
4820 *map_len = PAGE_CACHE_SIZE - offset;
4821 return 0;
4822}
d1310b2e 4823
d1310b2e
CM
4824int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4825 unsigned long start,
4826 unsigned long len)
4827{
4828 size_t cur;
4829 size_t offset;
4830 struct page *page;
4831 char *kaddr;
4832 char *ptr = (char *)ptrv;
4833 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4834 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4835 int ret = 0;
4836
4837 WARN_ON(start > eb->len);
4838 WARN_ON(start + len > eb->start + eb->len);
4839
4840 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4841
d397712b 4842 while (len > 0) {
d1310b2e 4843 page = extent_buffer_page(eb, i);
d1310b2e
CM
4844
4845 cur = min(len, (PAGE_CACHE_SIZE - offset));
4846
a6591715 4847 kaddr = page_address(page);
d1310b2e 4848 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
4849 if (ret)
4850 break;
4851
4852 ptr += cur;
4853 len -= cur;
4854 offset = 0;
4855 i++;
4856 }
4857 return ret;
4858}
d1310b2e
CM
4859
4860void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4861 unsigned long start, unsigned long len)
4862{
4863 size_t cur;
4864 size_t offset;
4865 struct page *page;
4866 char *kaddr;
4867 char *src = (char *)srcv;
4868 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4869 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4870
4871 WARN_ON(start > eb->len);
4872 WARN_ON(start + len > eb->start + eb->len);
4873
4874 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4875
d397712b 4876 while (len > 0) {
d1310b2e
CM
4877 page = extent_buffer_page(eb, i);
4878 WARN_ON(!PageUptodate(page));
4879
4880 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4881 kaddr = page_address(page);
d1310b2e 4882 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
4883
4884 src += cur;
4885 len -= cur;
4886 offset = 0;
4887 i++;
4888 }
4889}
d1310b2e
CM
4890
4891void memset_extent_buffer(struct extent_buffer *eb, char c,
4892 unsigned long start, unsigned long len)
4893{
4894 size_t cur;
4895 size_t offset;
4896 struct page *page;
4897 char *kaddr;
4898 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4899 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4900
4901 WARN_ON(start > eb->len);
4902 WARN_ON(start + len > eb->start + eb->len);
4903
4904 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4905
d397712b 4906 while (len > 0) {
d1310b2e
CM
4907 page = extent_buffer_page(eb, i);
4908 WARN_ON(!PageUptodate(page));
4909
4910 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 4911 kaddr = page_address(page);
d1310b2e 4912 memset(kaddr + offset, c, cur);
d1310b2e
CM
4913
4914 len -= cur;
4915 offset = 0;
4916 i++;
4917 }
4918}
d1310b2e
CM
4919
4920void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4921 unsigned long dst_offset, unsigned long src_offset,
4922 unsigned long len)
4923{
4924 u64 dst_len = dst->len;
4925 size_t cur;
4926 size_t offset;
4927 struct page *page;
4928 char *kaddr;
4929 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4930 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4931
4932 WARN_ON(src->len != dst_len);
4933
4934 offset = (start_offset + dst_offset) &
4935 ((unsigned long)PAGE_CACHE_SIZE - 1);
4936
d397712b 4937 while (len > 0) {
d1310b2e
CM
4938 page = extent_buffer_page(dst, i);
4939 WARN_ON(!PageUptodate(page));
4940
4941 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4942
a6591715 4943 kaddr = page_address(page);
d1310b2e 4944 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
4945
4946 src_offset += cur;
4947 len -= cur;
4948 offset = 0;
4949 i++;
4950 }
4951}
d1310b2e
CM
4952
4953static void move_pages(struct page *dst_page, struct page *src_page,
4954 unsigned long dst_off, unsigned long src_off,
4955 unsigned long len)
4956{
a6591715 4957 char *dst_kaddr = page_address(dst_page);
d1310b2e
CM
4958 if (dst_page == src_page) {
4959 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4960 } else {
a6591715 4961 char *src_kaddr = page_address(src_page);
d1310b2e
CM
4962 char *p = dst_kaddr + dst_off + len;
4963 char *s = src_kaddr + src_off + len;
4964
4965 while (len--)
4966 *--p = *--s;
d1310b2e 4967 }
d1310b2e
CM
4968}
4969
3387206f
ST
4970static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4971{
4972 unsigned long distance = (src > dst) ? src - dst : dst - src;
4973 return distance < len;
4974}
4975
d1310b2e
CM
4976static void copy_pages(struct page *dst_page, struct page *src_page,
4977 unsigned long dst_off, unsigned long src_off,
4978 unsigned long len)
4979{
a6591715 4980 char *dst_kaddr = page_address(dst_page);
d1310b2e 4981 char *src_kaddr;
727011e0 4982 int must_memmove = 0;
d1310b2e 4983
3387206f 4984 if (dst_page != src_page) {
a6591715 4985 src_kaddr = page_address(src_page);
3387206f 4986 } else {
d1310b2e 4987 src_kaddr = dst_kaddr;
727011e0
CM
4988 if (areas_overlap(src_off, dst_off, len))
4989 must_memmove = 1;
3387206f 4990 }
d1310b2e 4991
727011e0
CM
4992 if (must_memmove)
4993 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4994 else
4995 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
4996}
4997
4998void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4999 unsigned long src_offset, unsigned long len)
5000{
5001 size_t cur;
5002 size_t dst_off_in_page;
5003 size_t src_off_in_page;
5004 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5005 unsigned long dst_i;
5006 unsigned long src_i;
5007
5008 if (src_offset + len > dst->len) {
d397712b
CM
5009 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5010 "len %lu dst len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5011 BUG_ON(1);
5012 }
5013 if (dst_offset + len > dst->len) {
d397712b
CM
5014 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5015 "len %lu dst len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5016 BUG_ON(1);
5017 }
5018
d397712b 5019 while (len > 0) {
d1310b2e
CM
5020 dst_off_in_page = (start_offset + dst_offset) &
5021 ((unsigned long)PAGE_CACHE_SIZE - 1);
5022 src_off_in_page = (start_offset + src_offset) &
5023 ((unsigned long)PAGE_CACHE_SIZE - 1);
5024
5025 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5026 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5027
5028 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5029 src_off_in_page));
5030 cur = min_t(unsigned long, cur,
5031 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5032
5033 copy_pages(extent_buffer_page(dst, dst_i),
5034 extent_buffer_page(dst, src_i),
5035 dst_off_in_page, src_off_in_page, cur);
5036
5037 src_offset += cur;
5038 dst_offset += cur;
5039 len -= cur;
5040 }
5041}
d1310b2e
CM
5042
5043void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5044 unsigned long src_offset, unsigned long len)
5045{
5046 size_t cur;
5047 size_t dst_off_in_page;
5048 size_t src_off_in_page;
5049 unsigned long dst_end = dst_offset + len - 1;
5050 unsigned long src_end = src_offset + len - 1;
5051 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5052 unsigned long dst_i;
5053 unsigned long src_i;
5054
5055 if (src_offset + len > dst->len) {
d397712b
CM
5056 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5057 "len %lu len %lu\n", src_offset, len, dst->len);
d1310b2e
CM
5058 BUG_ON(1);
5059 }
5060 if (dst_offset + len > dst->len) {
d397712b
CM
5061 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5062 "len %lu len %lu\n", dst_offset, len, dst->len);
d1310b2e
CM
5063 BUG_ON(1);
5064 }
727011e0 5065 if (dst_offset < src_offset) {
d1310b2e
CM
5066 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5067 return;
5068 }
d397712b 5069 while (len > 0) {
d1310b2e
CM
5070 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5071 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5072
5073 dst_off_in_page = (start_offset + dst_end) &
5074 ((unsigned long)PAGE_CACHE_SIZE - 1);
5075 src_off_in_page = (start_offset + src_end) &
5076 ((unsigned long)PAGE_CACHE_SIZE - 1);
5077
5078 cur = min_t(unsigned long, len, src_off_in_page + 1);
5079 cur = min(cur, dst_off_in_page + 1);
5080 move_pages(extent_buffer_page(dst, dst_i),
5081 extent_buffer_page(dst, src_i),
5082 dst_off_in_page - cur + 1,
5083 src_off_in_page - cur + 1, cur);
5084
5085 dst_end -= cur;
5086 src_end -= cur;
5087 len -= cur;
5088 }
5089}
6af118ce 5090
f7a52a40 5091int try_release_extent_buffer(struct page *page)
19fe0a8b 5092{
6af118ce 5093 struct extent_buffer *eb;
6af118ce 5094
3083ee2e
JB
5095 /*
5096 * We need to make sure noboody is attaching this page to an eb right
5097 * now.
5098 */
5099 spin_lock(&page->mapping->private_lock);
5100 if (!PagePrivate(page)) {
5101 spin_unlock(&page->mapping->private_lock);
4f2de97a 5102 return 1;
45f49bce 5103 }
6af118ce 5104
3083ee2e
JB
5105 eb = (struct extent_buffer *)page->private;
5106 BUG_ON(!eb);
19fe0a8b
MX
5107
5108 /*
3083ee2e
JB
5109 * This is a little awful but should be ok, we need to make sure that
5110 * the eb doesn't disappear out from under us while we're looking at
5111 * this page.
19fe0a8b 5112 */
3083ee2e 5113 spin_lock(&eb->refs_lock);
0b32f4bb 5114 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5115 spin_unlock(&eb->refs_lock);
5116 spin_unlock(&page->mapping->private_lock);
5117 return 0;
b9473439 5118 }
3083ee2e 5119 spin_unlock(&page->mapping->private_lock);
897ca6e9 5120
19fe0a8b 5121 /*
3083ee2e
JB
5122 * If tree ref isn't set then we know the ref on this eb is a real ref,
5123 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5124 */
3083ee2e
JB
5125 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5126 spin_unlock(&eb->refs_lock);
5127 return 0;
b9473439 5128 }
19fe0a8b 5129
f7a52a40 5130 return release_extent_buffer(eb);
6af118ce 5131}