btrfs: Replace CURRENT_TIME by current_fs_time()
[linux-2.6-block.git] / fs / btrfs / extent_io.c
CommitLineData
d1310b2e
CM
1#include <linux/bitops.h>
2#include <linux/slab.h>
3#include <linux/bio.h>
4#include <linux/mm.h>
d1310b2e
CM
5#include <linux/pagemap.h>
6#include <linux/page-flags.h>
d1310b2e
CM
7#include <linux/spinlock.h>
8#include <linux/blkdev.h>
9#include <linux/swap.h>
d1310b2e
CM
10#include <linux/writeback.h>
11#include <linux/pagevec.h>
268bb0ce 12#include <linux/prefetch.h>
90a887c9 13#include <linux/cleancache.h>
d1310b2e
CM
14#include "extent_io.h"
15#include "extent_map.h"
902b22f3
DW
16#include "ctree.h"
17#include "btrfs_inode.h"
4a54c8c1 18#include "volumes.h"
21adbd5c 19#include "check-integrity.h"
0b32f4bb 20#include "locking.h"
606686ee 21#include "rcu-string.h"
fe09e16c 22#include "backref.h"
d1310b2e 23
d1310b2e
CM
24static struct kmem_cache *extent_state_cache;
25static struct kmem_cache *extent_buffer_cache;
9be3395b 26static struct bio_set *btrfs_bioset;
d1310b2e 27
27a3507d
FM
28static inline bool extent_state_in_tree(const struct extent_state *state)
29{
30 return !RB_EMPTY_NODE(&state->rb_node);
31}
32
6d49ba1b 33#ifdef CONFIG_BTRFS_DEBUG
d1310b2e
CM
34static LIST_HEAD(buffers);
35static LIST_HEAD(states);
4bef0848 36
d397712b 37static DEFINE_SPINLOCK(leak_lock);
6d49ba1b
ES
38
39static inline
40void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41{
42 unsigned long flags;
43
44 spin_lock_irqsave(&leak_lock, flags);
45 list_add(new, head);
46 spin_unlock_irqrestore(&leak_lock, flags);
47}
48
49static inline
50void btrfs_leak_debug_del(struct list_head *entry)
51{
52 unsigned long flags;
53
54 spin_lock_irqsave(&leak_lock, flags);
55 list_del(entry);
56 spin_unlock_irqrestore(&leak_lock, flags);
57}
58
59static inline
60void btrfs_leak_debug_check(void)
61{
62 struct extent_state *state;
63 struct extent_buffer *eb;
64
65 while (!list_empty(&states)) {
66 state = list_entry(states.next, struct extent_state, leak_list);
9ee49a04 67 pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
27a3507d
FM
68 state->start, state->end, state->state,
69 extent_state_in_tree(state),
c1c9ff7c 70 atomic_read(&state->refs));
6d49ba1b
ES
71 list_del(&state->leak_list);
72 kmem_cache_free(extent_state_cache, state);
73 }
74
75 while (!list_empty(&buffers)) {
76 eb = list_entry(buffers.next, struct extent_buffer, leak_list);
efe120a0 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
c1c9ff7c
GU
78 "refs %d\n",
79 eb->start, eb->len, atomic_read(&eb->refs));
6d49ba1b
ES
80 list_del(&eb->leak_list);
81 kmem_cache_free(extent_buffer_cache, eb);
82 }
83}
8d599ae1 84
a5dee37d
JB
85#define btrfs_debug_check_extent_io_range(tree, start, end) \
86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
8d599ae1 87static inline void __btrfs_debug_check_extent_io_range(const char *caller,
a5dee37d 88 struct extent_io_tree *tree, u64 start, u64 end)
8d599ae1 89{
a5dee37d
JB
90 struct inode *inode;
91 u64 isize;
8d599ae1 92
a5dee37d
JB
93 if (!tree->mapping)
94 return;
8d599ae1 95
a5dee37d
JB
96 inode = tree->mapping->host;
97 isize = i_size_read(inode);
8d599ae1 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
94647322
DS
99 btrfs_debug_rl(BTRFS_I(inode)->root->fs_info,
100 "%s: ino %llu isize %llu odd range [%llu,%llu]",
c1c9ff7c 101 caller, btrfs_ino(inode), isize, start, end);
8d599ae1
DS
102 }
103}
6d49ba1b
ES
104#else
105#define btrfs_leak_debug_add(new, head) do {} while (0)
106#define btrfs_leak_debug_del(entry) do {} while (0)
107#define btrfs_leak_debug_check() do {} while (0)
8d599ae1 108#define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0)
4bef0848 109#endif
d1310b2e 110
d1310b2e
CM
111#define BUFFER_LRU_MAX 64
112
113struct tree_entry {
114 u64 start;
115 u64 end;
d1310b2e
CM
116 struct rb_node rb_node;
117};
118
119struct extent_page_data {
120 struct bio *bio;
121 struct extent_io_tree *tree;
122 get_extent_t *get_extent;
de0022b9 123 unsigned long bio_flags;
771ed689
CM
124
125 /* tells writepage not to lock the state bits for this range
126 * it still does the unlocking
127 */
ffbd517d
CM
128 unsigned int extent_locked:1;
129
130 /* tells the submit_bio code to use a WRITE_SYNC */
131 unsigned int sync_io:1;
d1310b2e
CM
132};
133
d38ed27f
QW
134static void add_extent_changeset(struct extent_state *state, unsigned bits,
135 struct extent_changeset *changeset,
136 int set)
137{
138 int ret;
139
140 if (!changeset)
141 return;
142 if (set && (state->state & bits) == bits)
143 return;
fefdc557
QW
144 if (!set && (state->state & bits) == 0)
145 return;
d38ed27f
QW
146 changeset->bytes_changed += state->end - state->start + 1;
147 ret = ulist_add(changeset->range_changed, state->start, state->end,
148 GFP_ATOMIC);
149 /* ENOMEM */
150 BUG_ON(ret < 0);
151}
152
0b32f4bb 153static noinline void flush_write_bio(void *data);
c2d904e0
JM
154static inline struct btrfs_fs_info *
155tree_fs_info(struct extent_io_tree *tree)
156{
a5dee37d
JB
157 if (!tree->mapping)
158 return NULL;
c2d904e0
JM
159 return btrfs_sb(tree->mapping->host->i_sb);
160}
0b32f4bb 161
d1310b2e
CM
162int __init extent_io_init(void)
163{
837e1972 164 extent_state_cache = kmem_cache_create("btrfs_extent_state",
9601e3f6
CH
165 sizeof(struct extent_state), 0,
166 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
167 if (!extent_state_cache)
168 return -ENOMEM;
169
837e1972 170 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
9601e3f6
CH
171 sizeof(struct extent_buffer), 0,
172 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
d1310b2e
CM
173 if (!extent_buffer_cache)
174 goto free_state_cache;
9be3395b
CM
175
176 btrfs_bioset = bioset_create(BIO_POOL_SIZE,
177 offsetof(struct btrfs_io_bio, bio));
178 if (!btrfs_bioset)
179 goto free_buffer_cache;
b208c2f7
DW
180
181 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
182 goto free_bioset;
183
d1310b2e
CM
184 return 0;
185
b208c2f7
DW
186free_bioset:
187 bioset_free(btrfs_bioset);
188 btrfs_bioset = NULL;
189
9be3395b
CM
190free_buffer_cache:
191 kmem_cache_destroy(extent_buffer_cache);
192 extent_buffer_cache = NULL;
193
d1310b2e
CM
194free_state_cache:
195 kmem_cache_destroy(extent_state_cache);
9be3395b 196 extent_state_cache = NULL;
d1310b2e
CM
197 return -ENOMEM;
198}
199
200void extent_io_exit(void)
201{
6d49ba1b 202 btrfs_leak_debug_check();
8c0a8537
KS
203
204 /*
205 * Make sure all delayed rcu free are flushed before we
206 * destroy caches.
207 */
208 rcu_barrier();
d1310b2e
CM
209 if (extent_state_cache)
210 kmem_cache_destroy(extent_state_cache);
211 if (extent_buffer_cache)
212 kmem_cache_destroy(extent_buffer_cache);
9be3395b
CM
213 if (btrfs_bioset)
214 bioset_free(btrfs_bioset);
d1310b2e
CM
215}
216
217void extent_io_tree_init(struct extent_io_tree *tree,
f993c883 218 struct address_space *mapping)
d1310b2e 219{
6bef4d31 220 tree->state = RB_ROOT;
d1310b2e
CM
221 tree->ops = NULL;
222 tree->dirty_bytes = 0;
70dec807 223 spin_lock_init(&tree->lock);
d1310b2e 224 tree->mapping = mapping;
d1310b2e 225}
d1310b2e 226
b2950863 227static struct extent_state *alloc_extent_state(gfp_t mask)
d1310b2e
CM
228{
229 struct extent_state *state;
d1310b2e
CM
230
231 state = kmem_cache_alloc(extent_state_cache, mask);
2b114d1d 232 if (!state)
d1310b2e
CM
233 return state;
234 state->state = 0;
d1310b2e 235 state->private = 0;
27a3507d 236 RB_CLEAR_NODE(&state->rb_node);
6d49ba1b 237 btrfs_leak_debug_add(&state->leak_list, &states);
d1310b2e
CM
238 atomic_set(&state->refs, 1);
239 init_waitqueue_head(&state->wq);
143bede5 240 trace_alloc_extent_state(state, mask, _RET_IP_);
d1310b2e
CM
241 return state;
242}
d1310b2e 243
4845e44f 244void free_extent_state(struct extent_state *state)
d1310b2e 245{
d1310b2e
CM
246 if (!state)
247 return;
248 if (atomic_dec_and_test(&state->refs)) {
27a3507d 249 WARN_ON(extent_state_in_tree(state));
6d49ba1b 250 btrfs_leak_debug_del(&state->leak_list);
143bede5 251 trace_free_extent_state(state, _RET_IP_);
d1310b2e
CM
252 kmem_cache_free(extent_state_cache, state);
253 }
254}
d1310b2e 255
f2071b21
FM
256static struct rb_node *tree_insert(struct rb_root *root,
257 struct rb_node *search_start,
258 u64 offset,
12cfbad9
FDBM
259 struct rb_node *node,
260 struct rb_node ***p_in,
261 struct rb_node **parent_in)
d1310b2e 262{
f2071b21 263 struct rb_node **p;
d397712b 264 struct rb_node *parent = NULL;
d1310b2e
CM
265 struct tree_entry *entry;
266
12cfbad9
FDBM
267 if (p_in && parent_in) {
268 p = *p_in;
269 parent = *parent_in;
270 goto do_insert;
271 }
272
f2071b21 273 p = search_start ? &search_start : &root->rb_node;
d397712b 274 while (*p) {
d1310b2e
CM
275 parent = *p;
276 entry = rb_entry(parent, struct tree_entry, rb_node);
277
278 if (offset < entry->start)
279 p = &(*p)->rb_left;
280 else if (offset > entry->end)
281 p = &(*p)->rb_right;
282 else
283 return parent;
284 }
285
12cfbad9 286do_insert:
d1310b2e
CM
287 rb_link_node(node, parent, p);
288 rb_insert_color(node, root);
289 return NULL;
290}
291
80ea96b1 292static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
12cfbad9
FDBM
293 struct rb_node **prev_ret,
294 struct rb_node **next_ret,
295 struct rb_node ***p_ret,
296 struct rb_node **parent_ret)
d1310b2e 297{
80ea96b1 298 struct rb_root *root = &tree->state;
12cfbad9 299 struct rb_node **n = &root->rb_node;
d1310b2e
CM
300 struct rb_node *prev = NULL;
301 struct rb_node *orig_prev = NULL;
302 struct tree_entry *entry;
303 struct tree_entry *prev_entry = NULL;
304
12cfbad9
FDBM
305 while (*n) {
306 prev = *n;
307 entry = rb_entry(prev, struct tree_entry, rb_node);
d1310b2e
CM
308 prev_entry = entry;
309
310 if (offset < entry->start)
12cfbad9 311 n = &(*n)->rb_left;
d1310b2e 312 else if (offset > entry->end)
12cfbad9 313 n = &(*n)->rb_right;
d397712b 314 else
12cfbad9 315 return *n;
d1310b2e
CM
316 }
317
12cfbad9
FDBM
318 if (p_ret)
319 *p_ret = n;
320 if (parent_ret)
321 *parent_ret = prev;
322
d1310b2e
CM
323 if (prev_ret) {
324 orig_prev = prev;
d397712b 325 while (prev && offset > prev_entry->end) {
d1310b2e
CM
326 prev = rb_next(prev);
327 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
328 }
329 *prev_ret = prev;
330 prev = orig_prev;
331 }
332
333 if (next_ret) {
334 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
d397712b 335 while (prev && offset < prev_entry->start) {
d1310b2e
CM
336 prev = rb_prev(prev);
337 prev_entry = rb_entry(prev, struct tree_entry, rb_node);
338 }
339 *next_ret = prev;
340 }
341 return NULL;
342}
343
12cfbad9
FDBM
344static inline struct rb_node *
345tree_search_for_insert(struct extent_io_tree *tree,
346 u64 offset,
347 struct rb_node ***p_ret,
348 struct rb_node **parent_ret)
d1310b2e 349{
70dec807 350 struct rb_node *prev = NULL;
d1310b2e 351 struct rb_node *ret;
70dec807 352
12cfbad9 353 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
d397712b 354 if (!ret)
d1310b2e
CM
355 return prev;
356 return ret;
357}
358
12cfbad9
FDBM
359static inline struct rb_node *tree_search(struct extent_io_tree *tree,
360 u64 offset)
361{
362 return tree_search_for_insert(tree, offset, NULL, NULL);
363}
364
9ed74f2d
JB
365static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
366 struct extent_state *other)
367{
368 if (tree->ops && tree->ops->merge_extent_hook)
369 tree->ops->merge_extent_hook(tree->mapping->host, new,
370 other);
371}
372
d1310b2e
CM
373/*
374 * utility function to look for merge candidates inside a given range.
375 * Any extents with matching state are merged together into a single
376 * extent in the tree. Extents with EXTENT_IO in their state field
377 * are not merged because the end_io handlers need to be able to do
378 * operations on them without sleeping (or doing allocations/splits).
379 *
380 * This should be called with the tree lock held.
381 */
1bf85046
JM
382static void merge_state(struct extent_io_tree *tree,
383 struct extent_state *state)
d1310b2e
CM
384{
385 struct extent_state *other;
386 struct rb_node *other_node;
387
5b21f2ed 388 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
1bf85046 389 return;
d1310b2e
CM
390
391 other_node = rb_prev(&state->rb_node);
392 if (other_node) {
393 other = rb_entry(other_node, struct extent_state, rb_node);
394 if (other->end == state->start - 1 &&
395 other->state == state->state) {
9ed74f2d 396 merge_cb(tree, state, other);
d1310b2e 397 state->start = other->start;
d1310b2e 398 rb_erase(&other->rb_node, &tree->state);
27a3507d 399 RB_CLEAR_NODE(&other->rb_node);
d1310b2e
CM
400 free_extent_state(other);
401 }
402 }
403 other_node = rb_next(&state->rb_node);
404 if (other_node) {
405 other = rb_entry(other_node, struct extent_state, rb_node);
406 if (other->start == state->end + 1 &&
407 other->state == state->state) {
9ed74f2d 408 merge_cb(tree, state, other);
df98b6e2 409 state->end = other->end;
df98b6e2 410 rb_erase(&other->rb_node, &tree->state);
27a3507d 411 RB_CLEAR_NODE(&other->rb_node);
df98b6e2 412 free_extent_state(other);
d1310b2e
CM
413 }
414 }
d1310b2e
CM
415}
416
1bf85046 417static void set_state_cb(struct extent_io_tree *tree,
9ee49a04 418 struct extent_state *state, unsigned *bits)
291d673e 419{
1bf85046
JM
420 if (tree->ops && tree->ops->set_bit_hook)
421 tree->ops->set_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
422}
423
424static void clear_state_cb(struct extent_io_tree *tree,
9ee49a04 425 struct extent_state *state, unsigned *bits)
291d673e 426{
9ed74f2d
JB
427 if (tree->ops && tree->ops->clear_bit_hook)
428 tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
291d673e
CM
429}
430
3150b699 431static void set_state_bits(struct extent_io_tree *tree,
d38ed27f
QW
432 struct extent_state *state, unsigned *bits,
433 struct extent_changeset *changeset);
3150b699 434
d1310b2e
CM
435/*
436 * insert an extent_state struct into the tree. 'bits' are set on the
437 * struct before it is inserted.
438 *
439 * This may return -EEXIST if the extent is already there, in which case the
440 * state struct is freed.
441 *
442 * The tree lock is not taken internally. This is a utility function and
443 * probably isn't what you want to call (see set/clear_extent_bit).
444 */
445static int insert_state(struct extent_io_tree *tree,
446 struct extent_state *state, u64 start, u64 end,
12cfbad9
FDBM
447 struct rb_node ***p,
448 struct rb_node **parent,
d38ed27f 449 unsigned *bits, struct extent_changeset *changeset)
d1310b2e
CM
450{
451 struct rb_node *node;
452
31b1a2bd 453 if (end < start)
efe120a0 454 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
c1c9ff7c 455 end, start);
d1310b2e
CM
456 state->start = start;
457 state->end = end;
9ed74f2d 458
d38ed27f 459 set_state_bits(tree, state, bits, changeset);
3150b699 460
f2071b21 461 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
d1310b2e
CM
462 if (node) {
463 struct extent_state *found;
464 found = rb_entry(node, struct extent_state, rb_node);
efe120a0 465 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
c1c9ff7c
GU
466 "%llu %llu\n",
467 found->start, found->end, start, end);
d1310b2e
CM
468 return -EEXIST;
469 }
470 merge_state(tree, state);
471 return 0;
472}
473
1bf85046 474static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
9ed74f2d
JB
475 u64 split)
476{
477 if (tree->ops && tree->ops->split_extent_hook)
1bf85046 478 tree->ops->split_extent_hook(tree->mapping->host, orig, split);
9ed74f2d
JB
479}
480
d1310b2e
CM
481/*
482 * split a given extent state struct in two, inserting the preallocated
483 * struct 'prealloc' as the newly created second half. 'split' indicates an
484 * offset inside 'orig' where it should be split.
485 *
486 * Before calling,
487 * the tree has 'orig' at [orig->start, orig->end]. After calling, there
488 * are two extent state structs in the tree:
489 * prealloc: [orig->start, split - 1]
490 * orig: [ split, orig->end ]
491 *
492 * The tree locks are not taken by this function. They need to be held
493 * by the caller.
494 */
495static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
496 struct extent_state *prealloc, u64 split)
497{
498 struct rb_node *node;
9ed74f2d
JB
499
500 split_cb(tree, orig, split);
501
d1310b2e
CM
502 prealloc->start = orig->start;
503 prealloc->end = split - 1;
504 prealloc->state = orig->state;
505 orig->start = split;
506
f2071b21
FM
507 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
508 &prealloc->rb_node, NULL, NULL);
d1310b2e 509 if (node) {
d1310b2e
CM
510 free_extent_state(prealloc);
511 return -EEXIST;
512 }
513 return 0;
514}
515
cdc6a395
LZ
516static struct extent_state *next_state(struct extent_state *state)
517{
518 struct rb_node *next = rb_next(&state->rb_node);
519 if (next)
520 return rb_entry(next, struct extent_state, rb_node);
521 else
522 return NULL;
523}
524
d1310b2e
CM
525/*
526 * utility function to clear some bits in an extent state struct.
1b303fc0 527 * it will optionally wake up any one waiting on this state (wake == 1).
d1310b2e
CM
528 *
529 * If no bits are set on the state struct after clearing things, the
530 * struct is freed and removed from the tree
531 */
cdc6a395
LZ
532static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
533 struct extent_state *state,
fefdc557
QW
534 unsigned *bits, int wake,
535 struct extent_changeset *changeset)
d1310b2e 536{
cdc6a395 537 struct extent_state *next;
9ee49a04 538 unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
d1310b2e 539
0ca1f7ce 540 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
d1310b2e
CM
541 u64 range = state->end - state->start + 1;
542 WARN_ON(range > tree->dirty_bytes);
543 tree->dirty_bytes -= range;
544 }
291d673e 545 clear_state_cb(tree, state, bits);
fefdc557 546 add_extent_changeset(state, bits_to_clear, changeset, 0);
32c00aff 547 state->state &= ~bits_to_clear;
d1310b2e
CM
548 if (wake)
549 wake_up(&state->wq);
0ca1f7ce 550 if (state->state == 0) {
cdc6a395 551 next = next_state(state);
27a3507d 552 if (extent_state_in_tree(state)) {
d1310b2e 553 rb_erase(&state->rb_node, &tree->state);
27a3507d 554 RB_CLEAR_NODE(&state->rb_node);
d1310b2e
CM
555 free_extent_state(state);
556 } else {
557 WARN_ON(1);
558 }
559 } else {
560 merge_state(tree, state);
cdc6a395 561 next = next_state(state);
d1310b2e 562 }
cdc6a395 563 return next;
d1310b2e
CM
564}
565
8233767a
XG
566static struct extent_state *
567alloc_extent_state_atomic(struct extent_state *prealloc)
568{
569 if (!prealloc)
570 prealloc = alloc_extent_state(GFP_ATOMIC);
571
572 return prealloc;
573}
574
48a3b636 575static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
c2d904e0
JM
576{
577 btrfs_panic(tree_fs_info(tree), err, "Locking error: "
578 "Extent tree was modified by another "
579 "thread while locked.");
580}
581
d1310b2e
CM
582/*
583 * clear some bits on a range in the tree. This may require splitting
584 * or inserting elements in the tree, so the gfp mask is used to
585 * indicate which allocations or sleeping are allowed.
586 *
587 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
588 * the given range from the tree regardless of state (ie for truncate).
589 *
590 * the range [start, end] is inclusive.
591 *
6763af84 592 * This takes the tree lock, and returns 0 on success and < 0 on error.
d1310b2e 593 */
fefdc557
QW
594static int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
595 unsigned bits, int wake, int delete,
596 struct extent_state **cached_state,
597 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
598{
599 struct extent_state *state;
2c64c53d 600 struct extent_state *cached;
d1310b2e
CM
601 struct extent_state *prealloc = NULL;
602 struct rb_node *node;
5c939df5 603 u64 last_end;
d1310b2e 604 int err;
2ac55d41 605 int clear = 0;
d1310b2e 606
a5dee37d 607 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 608
7ee9e440
JB
609 if (bits & EXTENT_DELALLOC)
610 bits |= EXTENT_NORESERVE;
611
0ca1f7ce
YZ
612 if (delete)
613 bits |= ~EXTENT_CTLBITS;
614 bits |= EXTENT_FIRST_DELALLOC;
615
2ac55d41
JB
616 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
617 clear = 1;
d1310b2e 618again:
d0164adc 619 if (!prealloc && gfpflags_allow_blocking(mask)) {
c7bc6319
FM
620 /*
621 * Don't care for allocation failure here because we might end
622 * up not needing the pre-allocated extent state at all, which
623 * is the case if we only have in the tree extent states that
624 * cover our input range and don't cover too any other range.
625 * If we end up needing a new extent state we allocate it later.
626 */
d1310b2e 627 prealloc = alloc_extent_state(mask);
d1310b2e
CM
628 }
629
cad321ad 630 spin_lock(&tree->lock);
2c64c53d
CM
631 if (cached_state) {
632 cached = *cached_state;
2ac55d41
JB
633
634 if (clear) {
635 *cached_state = NULL;
636 cached_state = NULL;
637 }
638
27a3507d
FM
639 if (cached && extent_state_in_tree(cached) &&
640 cached->start <= start && cached->end > start) {
2ac55d41
JB
641 if (clear)
642 atomic_dec(&cached->refs);
2c64c53d 643 state = cached;
42daec29 644 goto hit_next;
2c64c53d 645 }
2ac55d41
JB
646 if (clear)
647 free_extent_state(cached);
2c64c53d 648 }
d1310b2e
CM
649 /*
650 * this search will find the extents that end after
651 * our range starts
652 */
80ea96b1 653 node = tree_search(tree, start);
d1310b2e
CM
654 if (!node)
655 goto out;
656 state = rb_entry(node, struct extent_state, rb_node);
2c64c53d 657hit_next:
d1310b2e
CM
658 if (state->start > end)
659 goto out;
660 WARN_ON(state->end < start);
5c939df5 661 last_end = state->end;
d1310b2e 662
0449314a 663 /* the state doesn't have the wanted bits, go ahead */
cdc6a395
LZ
664 if (!(state->state & bits)) {
665 state = next_state(state);
0449314a 666 goto next;
cdc6a395 667 }
0449314a 668
d1310b2e
CM
669 /*
670 * | ---- desired range ---- |
671 * | state | or
672 * | ------------- state -------------- |
673 *
674 * We need to split the extent we found, and may flip
675 * bits on second half.
676 *
677 * If the extent we found extends past our range, we
678 * just split and search again. It'll get split again
679 * the next time though.
680 *
681 * If the extent we found is inside our range, we clear
682 * the desired bit on it.
683 */
684
685 if (state->start < start) {
8233767a
XG
686 prealloc = alloc_extent_state_atomic(prealloc);
687 BUG_ON(!prealloc);
d1310b2e 688 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
689 if (err)
690 extent_io_tree_panic(tree, err);
691
d1310b2e
CM
692 prealloc = NULL;
693 if (err)
694 goto out;
695 if (state->end <= end) {
fefdc557
QW
696 state = clear_state_bit(tree, state, &bits, wake,
697 changeset);
d1ac6e41 698 goto next;
d1310b2e
CM
699 }
700 goto search_again;
701 }
702 /*
703 * | ---- desired range ---- |
704 * | state |
705 * We need to split the extent, and clear the bit
706 * on the first half
707 */
708 if (state->start <= end && state->end > end) {
8233767a
XG
709 prealloc = alloc_extent_state_atomic(prealloc);
710 BUG_ON(!prealloc);
d1310b2e 711 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
712 if (err)
713 extent_io_tree_panic(tree, err);
714
d1310b2e
CM
715 if (wake)
716 wake_up(&state->wq);
42daec29 717
fefdc557 718 clear_state_bit(tree, prealloc, &bits, wake, changeset);
9ed74f2d 719
d1310b2e
CM
720 prealloc = NULL;
721 goto out;
722 }
42daec29 723
fefdc557 724 state = clear_state_bit(tree, state, &bits, wake, changeset);
0449314a 725next:
5c939df5
YZ
726 if (last_end == (u64)-1)
727 goto out;
728 start = last_end + 1;
cdc6a395 729 if (start <= end && state && !need_resched())
692e5759 730 goto hit_next;
d1310b2e
CM
731 goto search_again;
732
733out:
cad321ad 734 spin_unlock(&tree->lock);
d1310b2e
CM
735 if (prealloc)
736 free_extent_state(prealloc);
737
6763af84 738 return 0;
d1310b2e
CM
739
740search_again:
741 if (start > end)
742 goto out;
cad321ad 743 spin_unlock(&tree->lock);
d0164adc 744 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
745 cond_resched();
746 goto again;
747}
d1310b2e 748
143bede5
JM
749static void wait_on_state(struct extent_io_tree *tree,
750 struct extent_state *state)
641f5219
CH
751 __releases(tree->lock)
752 __acquires(tree->lock)
d1310b2e
CM
753{
754 DEFINE_WAIT(wait);
755 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
cad321ad 756 spin_unlock(&tree->lock);
d1310b2e 757 schedule();
cad321ad 758 spin_lock(&tree->lock);
d1310b2e 759 finish_wait(&state->wq, &wait);
d1310b2e
CM
760}
761
762/*
763 * waits for one or more bits to clear on a range in the state tree.
764 * The range [start, end] is inclusive.
765 * The tree lock is taken by this function
766 */
41074888
DS
767static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
768 unsigned long bits)
d1310b2e
CM
769{
770 struct extent_state *state;
771 struct rb_node *node;
772
a5dee37d 773 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 774
cad321ad 775 spin_lock(&tree->lock);
d1310b2e
CM
776again:
777 while (1) {
778 /*
779 * this search will find all the extents that end after
780 * our range starts
781 */
80ea96b1 782 node = tree_search(tree, start);
c50d3e71 783process_node:
d1310b2e
CM
784 if (!node)
785 break;
786
787 state = rb_entry(node, struct extent_state, rb_node);
788
789 if (state->start > end)
790 goto out;
791
792 if (state->state & bits) {
793 start = state->start;
794 atomic_inc(&state->refs);
795 wait_on_state(tree, state);
796 free_extent_state(state);
797 goto again;
798 }
799 start = state->end + 1;
800
801 if (start > end)
802 break;
803
c50d3e71
FM
804 if (!cond_resched_lock(&tree->lock)) {
805 node = rb_next(node);
806 goto process_node;
807 }
d1310b2e
CM
808 }
809out:
cad321ad 810 spin_unlock(&tree->lock);
d1310b2e 811}
d1310b2e 812
1bf85046 813static void set_state_bits(struct extent_io_tree *tree,
d1310b2e 814 struct extent_state *state,
d38ed27f 815 unsigned *bits, struct extent_changeset *changeset)
d1310b2e 816{
9ee49a04 817 unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
9ed74f2d 818
1bf85046 819 set_state_cb(tree, state, bits);
0ca1f7ce 820 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
d1310b2e
CM
821 u64 range = state->end - state->start + 1;
822 tree->dirty_bytes += range;
823 }
d38ed27f 824 add_extent_changeset(state, bits_to_set, changeset, 1);
0ca1f7ce 825 state->state |= bits_to_set;
d1310b2e
CM
826}
827
e38e2ed7
FM
828static void cache_state_if_flags(struct extent_state *state,
829 struct extent_state **cached_ptr,
9ee49a04 830 unsigned flags)
2c64c53d
CM
831{
832 if (cached_ptr && !(*cached_ptr)) {
e38e2ed7 833 if (!flags || (state->state & flags)) {
2c64c53d
CM
834 *cached_ptr = state;
835 atomic_inc(&state->refs);
836 }
837 }
838}
839
e38e2ed7
FM
840static void cache_state(struct extent_state *state,
841 struct extent_state **cached_ptr)
842{
843 return cache_state_if_flags(state, cached_ptr,
844 EXTENT_IOBITS | EXTENT_BOUNDARY);
845}
846
d1310b2e 847/*
1edbb734
CM
848 * set some bits on a range in the tree. This may require allocations or
849 * sleeping, so the gfp mask is used to indicate what is allowed.
d1310b2e 850 *
1edbb734
CM
851 * If any of the exclusive bits are set, this will fail with -EEXIST if some
852 * part of the range already has the desired bits set. The start of the
853 * existing range is returned in failed_start in this case.
d1310b2e 854 *
1edbb734 855 * [start, end] is inclusive This takes the tree lock.
d1310b2e 856 */
1edbb734 857
3fbe5c02
JM
858static int __must_check
859__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 860 unsigned bits, unsigned exclusive_bits,
41074888 861 u64 *failed_start, struct extent_state **cached_state,
d38ed27f 862 gfp_t mask, struct extent_changeset *changeset)
d1310b2e
CM
863{
864 struct extent_state *state;
865 struct extent_state *prealloc = NULL;
866 struct rb_node *node;
12cfbad9
FDBM
867 struct rb_node **p;
868 struct rb_node *parent;
d1310b2e 869 int err = 0;
d1310b2e
CM
870 u64 last_start;
871 u64 last_end;
42daec29 872
a5dee37d 873 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 874
0ca1f7ce 875 bits |= EXTENT_FIRST_DELALLOC;
d1310b2e 876again:
d0164adc 877 if (!prealloc && gfpflags_allow_blocking(mask)) {
d1310b2e 878 prealloc = alloc_extent_state(mask);
8233767a 879 BUG_ON(!prealloc);
d1310b2e
CM
880 }
881
cad321ad 882 spin_lock(&tree->lock);
9655d298
CM
883 if (cached_state && *cached_state) {
884 state = *cached_state;
df98b6e2 885 if (state->start <= start && state->end > start &&
27a3507d 886 extent_state_in_tree(state)) {
9655d298
CM
887 node = &state->rb_node;
888 goto hit_next;
889 }
890 }
d1310b2e
CM
891 /*
892 * this search will find all the extents that end after
893 * our range starts.
894 */
12cfbad9 895 node = tree_search_for_insert(tree, start, &p, &parent);
d1310b2e 896 if (!node) {
8233767a
XG
897 prealloc = alloc_extent_state_atomic(prealloc);
898 BUG_ON(!prealloc);
12cfbad9 899 err = insert_state(tree, prealloc, start, end,
d38ed27f 900 &p, &parent, &bits, changeset);
c2d904e0
JM
901 if (err)
902 extent_io_tree_panic(tree, err);
903
c42ac0bc 904 cache_state(prealloc, cached_state);
d1310b2e 905 prealloc = NULL;
d1310b2e
CM
906 goto out;
907 }
d1310b2e 908 state = rb_entry(node, struct extent_state, rb_node);
40431d6c 909hit_next:
d1310b2e
CM
910 last_start = state->start;
911 last_end = state->end;
912
913 /*
914 * | ---- desired range ---- |
915 * | state |
916 *
917 * Just lock what we found and keep going
918 */
919 if (state->start == start && state->end <= end) {
1edbb734 920 if (state->state & exclusive_bits) {
d1310b2e
CM
921 *failed_start = state->start;
922 err = -EEXIST;
923 goto out;
924 }
42daec29 925
d38ed27f 926 set_state_bits(tree, state, &bits, changeset);
2c64c53d 927 cache_state(state, cached_state);
d1310b2e 928 merge_state(tree, state);
5c939df5
YZ
929 if (last_end == (u64)-1)
930 goto out;
931 start = last_end + 1;
d1ac6e41
LB
932 state = next_state(state);
933 if (start < end && state && state->start == start &&
934 !need_resched())
935 goto hit_next;
d1310b2e
CM
936 goto search_again;
937 }
938
939 /*
940 * | ---- desired range ---- |
941 * | state |
942 * or
943 * | ------------- state -------------- |
944 *
945 * We need to split the extent we found, and may flip bits on
946 * second half.
947 *
948 * If the extent we found extends past our
949 * range, we just split and search again. It'll get split
950 * again the next time though.
951 *
952 * If the extent we found is inside our range, we set the
953 * desired bit on it.
954 */
955 if (state->start < start) {
1edbb734 956 if (state->state & exclusive_bits) {
d1310b2e
CM
957 *failed_start = start;
958 err = -EEXIST;
959 goto out;
960 }
8233767a
XG
961
962 prealloc = alloc_extent_state_atomic(prealloc);
963 BUG_ON(!prealloc);
d1310b2e 964 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
965 if (err)
966 extent_io_tree_panic(tree, err);
967
d1310b2e
CM
968 prealloc = NULL;
969 if (err)
970 goto out;
971 if (state->end <= end) {
d38ed27f 972 set_state_bits(tree, state, &bits, changeset);
2c64c53d 973 cache_state(state, cached_state);
d1310b2e 974 merge_state(tree, state);
5c939df5
YZ
975 if (last_end == (u64)-1)
976 goto out;
977 start = last_end + 1;
d1ac6e41
LB
978 state = next_state(state);
979 if (start < end && state && state->start == start &&
980 !need_resched())
981 goto hit_next;
d1310b2e
CM
982 }
983 goto search_again;
984 }
985 /*
986 * | ---- desired range ---- |
987 * | state | or | state |
988 *
989 * There's a hole, we need to insert something in it and
990 * ignore the extent we found.
991 */
992 if (state->start > start) {
993 u64 this_end;
994 if (end < last_start)
995 this_end = end;
996 else
d397712b 997 this_end = last_start - 1;
8233767a
XG
998
999 prealloc = alloc_extent_state_atomic(prealloc);
1000 BUG_ON(!prealloc);
c7f895a2
XG
1001
1002 /*
1003 * Avoid to free 'prealloc' if it can be merged with
1004 * the later extent.
1005 */
d1310b2e 1006 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1007 NULL, NULL, &bits, changeset);
c2d904e0
JM
1008 if (err)
1009 extent_io_tree_panic(tree, err);
1010
9ed74f2d
JB
1011 cache_state(prealloc, cached_state);
1012 prealloc = NULL;
d1310b2e
CM
1013 start = this_end + 1;
1014 goto search_again;
1015 }
1016 /*
1017 * | ---- desired range ---- |
1018 * | state |
1019 * We need to split the extent, and set the bit
1020 * on the first half
1021 */
1022 if (state->start <= end && state->end > end) {
1edbb734 1023 if (state->state & exclusive_bits) {
d1310b2e
CM
1024 *failed_start = start;
1025 err = -EEXIST;
1026 goto out;
1027 }
8233767a
XG
1028
1029 prealloc = alloc_extent_state_atomic(prealloc);
1030 BUG_ON(!prealloc);
d1310b2e 1031 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1032 if (err)
1033 extent_io_tree_panic(tree, err);
d1310b2e 1034
d38ed27f 1035 set_state_bits(tree, prealloc, &bits, changeset);
2c64c53d 1036 cache_state(prealloc, cached_state);
d1310b2e
CM
1037 merge_state(tree, prealloc);
1038 prealloc = NULL;
1039 goto out;
1040 }
1041
1042 goto search_again;
1043
1044out:
cad321ad 1045 spin_unlock(&tree->lock);
d1310b2e
CM
1046 if (prealloc)
1047 free_extent_state(prealloc);
1048
1049 return err;
1050
1051search_again:
1052 if (start > end)
1053 goto out;
cad321ad 1054 spin_unlock(&tree->lock);
d0164adc 1055 if (gfpflags_allow_blocking(mask))
d1310b2e
CM
1056 cond_resched();
1057 goto again;
1058}
d1310b2e 1059
41074888 1060int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1061 unsigned bits, u64 * failed_start,
41074888 1062 struct extent_state **cached_state, gfp_t mask)
3fbe5c02
JM
1063{
1064 return __set_extent_bit(tree, start, end, bits, 0, failed_start,
d38ed27f 1065 cached_state, mask, NULL);
3fbe5c02
JM
1066}
1067
1068
462d6fac 1069/**
10983f2e
LB
1070 * convert_extent_bit - convert all bits in a given range from one bit to
1071 * another
462d6fac
JB
1072 * @tree: the io tree to search
1073 * @start: the start offset in bytes
1074 * @end: the end offset in bytes (inclusive)
1075 * @bits: the bits to set in this range
1076 * @clear_bits: the bits to clear in this range
e6138876 1077 * @cached_state: state that we're going to cache
462d6fac
JB
1078 * @mask: the allocation mask
1079 *
1080 * This will go through and set bits for the given range. If any states exist
1081 * already in this range they are set with the given bit and cleared of the
1082 * clear_bits. This is only meant to be used by things that are mergeable, ie
1083 * converting from say DELALLOC to DIRTY. This is not meant to be used with
1084 * boundary bits like LOCK.
1085 */
1086int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1087 unsigned bits, unsigned clear_bits,
e6138876 1088 struct extent_state **cached_state, gfp_t mask)
462d6fac
JB
1089{
1090 struct extent_state *state;
1091 struct extent_state *prealloc = NULL;
1092 struct rb_node *node;
12cfbad9
FDBM
1093 struct rb_node **p;
1094 struct rb_node *parent;
462d6fac
JB
1095 int err = 0;
1096 u64 last_start;
1097 u64 last_end;
c8fd3de7 1098 bool first_iteration = true;
462d6fac 1099
a5dee37d 1100 btrfs_debug_check_extent_io_range(tree, start, end);
8d599ae1 1101
462d6fac 1102again:
d0164adc 1103 if (!prealloc && gfpflags_allow_blocking(mask)) {
c8fd3de7
FM
1104 /*
1105 * Best effort, don't worry if extent state allocation fails
1106 * here for the first iteration. We might have a cached state
1107 * that matches exactly the target range, in which case no
1108 * extent state allocations are needed. We'll only know this
1109 * after locking the tree.
1110 */
462d6fac 1111 prealloc = alloc_extent_state(mask);
c8fd3de7 1112 if (!prealloc && !first_iteration)
462d6fac
JB
1113 return -ENOMEM;
1114 }
1115
1116 spin_lock(&tree->lock);
e6138876
JB
1117 if (cached_state && *cached_state) {
1118 state = *cached_state;
1119 if (state->start <= start && state->end > start &&
27a3507d 1120 extent_state_in_tree(state)) {
e6138876
JB
1121 node = &state->rb_node;
1122 goto hit_next;
1123 }
1124 }
1125
462d6fac
JB
1126 /*
1127 * this search will find all the extents that end after
1128 * our range starts.
1129 */
12cfbad9 1130 node = tree_search_for_insert(tree, start, &p, &parent);
462d6fac
JB
1131 if (!node) {
1132 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1133 if (!prealloc) {
1134 err = -ENOMEM;
1135 goto out;
1136 }
12cfbad9 1137 err = insert_state(tree, prealloc, start, end,
d38ed27f 1138 &p, &parent, &bits, NULL);
c2d904e0
JM
1139 if (err)
1140 extent_io_tree_panic(tree, err);
c42ac0bc
FDBM
1141 cache_state(prealloc, cached_state);
1142 prealloc = NULL;
462d6fac
JB
1143 goto out;
1144 }
1145 state = rb_entry(node, struct extent_state, rb_node);
1146hit_next:
1147 last_start = state->start;
1148 last_end = state->end;
1149
1150 /*
1151 * | ---- desired range ---- |
1152 * | state |
1153 *
1154 * Just lock what we found and keep going
1155 */
1156 if (state->start == start && state->end <= end) {
d38ed27f 1157 set_state_bits(tree, state, &bits, NULL);
e6138876 1158 cache_state(state, cached_state);
fefdc557 1159 state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
462d6fac
JB
1160 if (last_end == (u64)-1)
1161 goto out;
462d6fac 1162 start = last_end + 1;
d1ac6e41
LB
1163 if (start < end && state && state->start == start &&
1164 !need_resched())
1165 goto hit_next;
462d6fac
JB
1166 goto search_again;
1167 }
1168
1169 /*
1170 * | ---- desired range ---- |
1171 * | state |
1172 * or
1173 * | ------------- state -------------- |
1174 *
1175 * We need to split the extent we found, and may flip bits on
1176 * second half.
1177 *
1178 * If the extent we found extends past our
1179 * range, we just split and search again. It'll get split
1180 * again the next time though.
1181 *
1182 * If the extent we found is inside our range, we set the
1183 * desired bit on it.
1184 */
1185 if (state->start < start) {
1186 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1187 if (!prealloc) {
1188 err = -ENOMEM;
1189 goto out;
1190 }
462d6fac 1191 err = split_state(tree, state, prealloc, start);
c2d904e0
JM
1192 if (err)
1193 extent_io_tree_panic(tree, err);
462d6fac
JB
1194 prealloc = NULL;
1195 if (err)
1196 goto out;
1197 if (state->end <= end) {
d38ed27f 1198 set_state_bits(tree, state, &bits, NULL);
e6138876 1199 cache_state(state, cached_state);
fefdc557
QW
1200 state = clear_state_bit(tree, state, &clear_bits, 0,
1201 NULL);
462d6fac
JB
1202 if (last_end == (u64)-1)
1203 goto out;
1204 start = last_end + 1;
d1ac6e41
LB
1205 if (start < end && state && state->start == start &&
1206 !need_resched())
1207 goto hit_next;
462d6fac
JB
1208 }
1209 goto search_again;
1210 }
1211 /*
1212 * | ---- desired range ---- |
1213 * | state | or | state |
1214 *
1215 * There's a hole, we need to insert something in it and
1216 * ignore the extent we found.
1217 */
1218 if (state->start > start) {
1219 u64 this_end;
1220 if (end < last_start)
1221 this_end = end;
1222 else
1223 this_end = last_start - 1;
1224
1225 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1226 if (!prealloc) {
1227 err = -ENOMEM;
1228 goto out;
1229 }
462d6fac
JB
1230
1231 /*
1232 * Avoid to free 'prealloc' if it can be merged with
1233 * the later extent.
1234 */
1235 err = insert_state(tree, prealloc, start, this_end,
d38ed27f 1236 NULL, NULL, &bits, NULL);
c2d904e0
JM
1237 if (err)
1238 extent_io_tree_panic(tree, err);
e6138876 1239 cache_state(prealloc, cached_state);
462d6fac
JB
1240 prealloc = NULL;
1241 start = this_end + 1;
1242 goto search_again;
1243 }
1244 /*
1245 * | ---- desired range ---- |
1246 * | state |
1247 * We need to split the extent, and set the bit
1248 * on the first half
1249 */
1250 if (state->start <= end && state->end > end) {
1251 prealloc = alloc_extent_state_atomic(prealloc);
1cf4ffdb
LB
1252 if (!prealloc) {
1253 err = -ENOMEM;
1254 goto out;
1255 }
462d6fac
JB
1256
1257 err = split_state(tree, state, prealloc, end + 1);
c2d904e0
JM
1258 if (err)
1259 extent_io_tree_panic(tree, err);
462d6fac 1260
d38ed27f 1261 set_state_bits(tree, prealloc, &bits, NULL);
e6138876 1262 cache_state(prealloc, cached_state);
fefdc557 1263 clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
462d6fac
JB
1264 prealloc = NULL;
1265 goto out;
1266 }
1267
1268 goto search_again;
1269
1270out:
1271 spin_unlock(&tree->lock);
1272 if (prealloc)
1273 free_extent_state(prealloc);
1274
1275 return err;
1276
1277search_again:
1278 if (start > end)
1279 goto out;
1280 spin_unlock(&tree->lock);
d0164adc 1281 if (gfpflags_allow_blocking(mask))
462d6fac 1282 cond_resched();
c8fd3de7 1283 first_iteration = false;
462d6fac
JB
1284 goto again;
1285}
1286
d1310b2e 1287/* wrappers around set/clear extent bit */
d38ed27f
QW
1288int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1289 unsigned bits, gfp_t mask,
1290 struct extent_changeset *changeset)
1291{
1292 /*
1293 * We don't support EXTENT_LOCKED yet, as current changeset will
1294 * record any bits changed, so for EXTENT_LOCKED case, it will
1295 * either fail with -EEXIST or changeset will record the whole
1296 * range.
1297 */
1298 BUG_ON(bits & EXTENT_LOCKED);
1299
1300 return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, mask,
1301 changeset);
1302}
1303
fefdc557
QW
1304int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1305 unsigned bits, int wake, int delete,
1306 struct extent_state **cached, gfp_t mask)
1307{
1308 return __clear_extent_bit(tree, start, end, bits, wake, delete,
1309 cached, mask, NULL);
1310}
1311
fefdc557
QW
1312int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1313 unsigned bits, gfp_t mask,
1314 struct extent_changeset *changeset)
1315{
1316 /*
1317 * Don't support EXTENT_LOCKED case, same reason as
1318 * set_record_extent_bits().
1319 */
1320 BUG_ON(bits & EXTENT_LOCKED);
1321
1322 return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask,
1323 changeset);
1324}
1325
d352ac68
CM
1326/*
1327 * either insert or lock state struct between start and end use mask to tell
1328 * us if waiting is desired.
1329 */
1edbb734 1330int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
ff13db41 1331 struct extent_state **cached_state)
d1310b2e
CM
1332{
1333 int err;
1334 u64 failed_start;
9ee49a04 1335
d1310b2e 1336 while (1) {
ff13db41 1337 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
3fbe5c02 1338 EXTENT_LOCKED, &failed_start,
d38ed27f 1339 cached_state, GFP_NOFS, NULL);
d0082371 1340 if (err == -EEXIST) {
d1310b2e
CM
1341 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1342 start = failed_start;
d0082371 1343 } else
d1310b2e 1344 break;
d1310b2e
CM
1345 WARN_ON(start > end);
1346 }
1347 return err;
1348}
d1310b2e 1349
d0082371 1350int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
25179201
JB
1351{
1352 int err;
1353 u64 failed_start;
1354
3fbe5c02 1355 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
d38ed27f 1356 &failed_start, NULL, GFP_NOFS, NULL);
6643558d
YZ
1357 if (err == -EEXIST) {
1358 if (failed_start > start)
1359 clear_extent_bit(tree, start, failed_start - 1,
d0082371 1360 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
25179201 1361 return 0;
6643558d 1362 }
25179201
JB
1363 return 1;
1364}
25179201 1365
bd1fa4f0 1366void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611
CM
1367{
1368 unsigned long index = start >> PAGE_CACHE_SHIFT;
1369 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1370 struct page *page;
1371
1372 while (index <= end_index) {
1373 page = find_get_page(inode->i_mapping, index);
1374 BUG_ON(!page); /* Pages should be in the extent_io_tree */
1375 clear_page_dirty_for_io(page);
1376 page_cache_release(page);
1377 index++;
1378 }
4adaa611
CM
1379}
1380
f6311572 1381void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
4adaa611
CM
1382{
1383 unsigned long index = start >> PAGE_CACHE_SHIFT;
1384 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1385 struct page *page;
1386
1387 while (index <= end_index) {
1388 page = find_get_page(inode->i_mapping, index);
1389 BUG_ON(!page); /* Pages should be in the extent_io_tree */
4adaa611 1390 __set_page_dirty_nobuffers(page);
8d38633c 1391 account_page_redirty(page);
4adaa611
CM
1392 page_cache_release(page);
1393 index++;
1394 }
4adaa611
CM
1395}
1396
d1310b2e
CM
1397/*
1398 * helper function to set both pages and extents in the tree writeback
1399 */
35de6db2 1400static void set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
d1310b2e
CM
1401{
1402 unsigned long index = start >> PAGE_CACHE_SHIFT;
1403 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1404 struct page *page;
1405
1406 while (index <= end_index) {
1407 page = find_get_page(tree->mapping, index);
79787eaa 1408 BUG_ON(!page); /* Pages should be in the extent_io_tree */
d1310b2e
CM
1409 set_page_writeback(page);
1410 page_cache_release(page);
1411 index++;
1412 }
d1310b2e 1413}
d1310b2e 1414
d352ac68
CM
1415/* find the first state struct with 'bits' set after 'start', and
1416 * return it. tree->lock must be held. NULL will returned if
1417 * nothing was found after 'start'
1418 */
48a3b636
ES
1419static struct extent_state *
1420find_first_extent_bit_state(struct extent_io_tree *tree,
9ee49a04 1421 u64 start, unsigned bits)
d7fc640e
CM
1422{
1423 struct rb_node *node;
1424 struct extent_state *state;
1425
1426 /*
1427 * this search will find all the extents that end after
1428 * our range starts.
1429 */
1430 node = tree_search(tree, start);
d397712b 1431 if (!node)
d7fc640e 1432 goto out;
d7fc640e 1433
d397712b 1434 while (1) {
d7fc640e 1435 state = rb_entry(node, struct extent_state, rb_node);
d397712b 1436 if (state->end >= start && (state->state & bits))
d7fc640e 1437 return state;
d397712b 1438
d7fc640e
CM
1439 node = rb_next(node);
1440 if (!node)
1441 break;
1442 }
1443out:
1444 return NULL;
1445}
d7fc640e 1446
69261c4b
XG
1447/*
1448 * find the first offset in the io tree with 'bits' set. zero is
1449 * returned if we find something, and *start_ret and *end_ret are
1450 * set to reflect the state struct that was found.
1451 *
477d7eaf 1452 * If nothing was found, 1 is returned. If found something, return 0.
69261c4b
XG
1453 */
1454int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
9ee49a04 1455 u64 *start_ret, u64 *end_ret, unsigned bits,
e6138876 1456 struct extent_state **cached_state)
69261c4b
XG
1457{
1458 struct extent_state *state;
e6138876 1459 struct rb_node *n;
69261c4b
XG
1460 int ret = 1;
1461
1462 spin_lock(&tree->lock);
e6138876
JB
1463 if (cached_state && *cached_state) {
1464 state = *cached_state;
27a3507d 1465 if (state->end == start - 1 && extent_state_in_tree(state)) {
e6138876
JB
1466 n = rb_next(&state->rb_node);
1467 while (n) {
1468 state = rb_entry(n, struct extent_state,
1469 rb_node);
1470 if (state->state & bits)
1471 goto got_it;
1472 n = rb_next(n);
1473 }
1474 free_extent_state(*cached_state);
1475 *cached_state = NULL;
1476 goto out;
1477 }
1478 free_extent_state(*cached_state);
1479 *cached_state = NULL;
1480 }
1481
69261c4b 1482 state = find_first_extent_bit_state(tree, start, bits);
e6138876 1483got_it:
69261c4b 1484 if (state) {
e38e2ed7 1485 cache_state_if_flags(state, cached_state, 0);
69261c4b
XG
1486 *start_ret = state->start;
1487 *end_ret = state->end;
1488 ret = 0;
1489 }
e6138876 1490out:
69261c4b
XG
1491 spin_unlock(&tree->lock);
1492 return ret;
1493}
1494
d352ac68
CM
1495/*
1496 * find a contiguous range of bytes in the file marked as delalloc, not
1497 * more than 'max_bytes'. start and end are used to return the range,
1498 *
1499 * 1 is returned if we find something, 0 if nothing was in the tree
1500 */
c8b97818 1501static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
c2a128d2
JB
1502 u64 *start, u64 *end, u64 max_bytes,
1503 struct extent_state **cached_state)
d1310b2e
CM
1504{
1505 struct rb_node *node;
1506 struct extent_state *state;
1507 u64 cur_start = *start;
1508 u64 found = 0;
1509 u64 total_bytes = 0;
1510
cad321ad 1511 spin_lock(&tree->lock);
c8b97818 1512
d1310b2e
CM
1513 /*
1514 * this search will find all the extents that end after
1515 * our range starts.
1516 */
80ea96b1 1517 node = tree_search(tree, cur_start);
2b114d1d 1518 if (!node) {
3b951516
CM
1519 if (!found)
1520 *end = (u64)-1;
d1310b2e
CM
1521 goto out;
1522 }
1523
d397712b 1524 while (1) {
d1310b2e 1525 state = rb_entry(node, struct extent_state, rb_node);
5b21f2ed
ZY
1526 if (found && (state->start != cur_start ||
1527 (state->state & EXTENT_BOUNDARY))) {
d1310b2e
CM
1528 goto out;
1529 }
1530 if (!(state->state & EXTENT_DELALLOC)) {
1531 if (!found)
1532 *end = state->end;
1533 goto out;
1534 }
c2a128d2 1535 if (!found) {
d1310b2e 1536 *start = state->start;
c2a128d2
JB
1537 *cached_state = state;
1538 atomic_inc(&state->refs);
1539 }
d1310b2e
CM
1540 found++;
1541 *end = state->end;
1542 cur_start = state->end + 1;
1543 node = rb_next(node);
d1310b2e 1544 total_bytes += state->end - state->start + 1;
7bf811a5 1545 if (total_bytes >= max_bytes)
573aecaf 1546 break;
573aecaf 1547 if (!node)
d1310b2e
CM
1548 break;
1549 }
1550out:
cad321ad 1551 spin_unlock(&tree->lock);
d1310b2e
CM
1552 return found;
1553}
1554
143bede5
JM
1555static noinline void __unlock_for_delalloc(struct inode *inode,
1556 struct page *locked_page,
1557 u64 start, u64 end)
c8b97818
CM
1558{
1559 int ret;
1560 struct page *pages[16];
1561 unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 unsigned long nr_pages = end_index - index + 1;
1564 int i;
1565
1566 if (index == locked_page->index && end_index == index)
143bede5 1567 return;
c8b97818 1568
d397712b 1569 while (nr_pages > 0) {
c8b97818 1570 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1571 min_t(unsigned long, nr_pages,
1572 ARRAY_SIZE(pages)), pages);
c8b97818
CM
1573 for (i = 0; i < ret; i++) {
1574 if (pages[i] != locked_page)
1575 unlock_page(pages[i]);
1576 page_cache_release(pages[i]);
1577 }
1578 nr_pages -= ret;
1579 index += ret;
1580 cond_resched();
1581 }
c8b97818
CM
1582}
1583
1584static noinline int lock_delalloc_pages(struct inode *inode,
1585 struct page *locked_page,
1586 u64 delalloc_start,
1587 u64 delalloc_end)
1588{
1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 unsigned long start_index = index;
1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 unsigned long pages_locked = 0;
1593 struct page *pages[16];
1594 unsigned long nrpages;
1595 int ret;
1596 int i;
1597
1598 /* the caller is responsible for locking the start index */
1599 if (index == locked_page->index && index == end_index)
1600 return 0;
1601
1602 /* skip the page at the start index */
1603 nrpages = end_index - index + 1;
d397712b 1604 while (nrpages > 0) {
c8b97818 1605 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1606 min_t(unsigned long,
1607 nrpages, ARRAY_SIZE(pages)), pages);
c8b97818
CM
1608 if (ret == 0) {
1609 ret = -EAGAIN;
1610 goto done;
1611 }
1612 /* now we have an array of pages, lock them all */
1613 for (i = 0; i < ret; i++) {
1614 /*
1615 * the caller is taking responsibility for
1616 * locked_page
1617 */
771ed689 1618 if (pages[i] != locked_page) {
c8b97818 1619 lock_page(pages[i]);
f2b1c41c
CM
1620 if (!PageDirty(pages[i]) ||
1621 pages[i]->mapping != inode->i_mapping) {
771ed689
CM
1622 ret = -EAGAIN;
1623 unlock_page(pages[i]);
1624 page_cache_release(pages[i]);
1625 goto done;
1626 }
1627 }
c8b97818 1628 page_cache_release(pages[i]);
771ed689 1629 pages_locked++;
c8b97818 1630 }
c8b97818
CM
1631 nrpages -= ret;
1632 index += ret;
1633 cond_resched();
1634 }
1635 ret = 0;
1636done:
1637 if (ret && pages_locked) {
1638 __unlock_for_delalloc(inode, locked_page,
1639 delalloc_start,
1640 ((u64)(start_index + pages_locked - 1)) <<
1641 PAGE_CACHE_SHIFT);
1642 }
1643 return ret;
1644}
1645
1646/*
1647 * find a contiguous range of bytes in the file marked as delalloc, not
1648 * more than 'max_bytes'. start and end are used to return the range,
1649 *
1650 * 1 is returned if we find something, 0 if nothing was in the tree
1651 */
294e30fe
JB
1652STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 struct extent_io_tree *tree,
1654 struct page *locked_page, u64 *start,
1655 u64 *end, u64 max_bytes)
c8b97818
CM
1656{
1657 u64 delalloc_start;
1658 u64 delalloc_end;
1659 u64 found;
9655d298 1660 struct extent_state *cached_state = NULL;
c8b97818
CM
1661 int ret;
1662 int loops = 0;
1663
1664again:
1665 /* step one, find a bunch of delalloc bytes starting at start */
1666 delalloc_start = *start;
1667 delalloc_end = 0;
1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
c2a128d2 1669 max_bytes, &cached_state);
70b99e69 1670 if (!found || delalloc_end <= *start) {
c8b97818
CM
1671 *start = delalloc_start;
1672 *end = delalloc_end;
c2a128d2 1673 free_extent_state(cached_state);
385fe0be 1674 return 0;
c8b97818
CM
1675 }
1676
70b99e69
CM
1677 /*
1678 * start comes from the offset of locked_page. We have to lock
1679 * pages in order, so we can't process delalloc bytes before
1680 * locked_page
1681 */
d397712b 1682 if (delalloc_start < *start)
70b99e69 1683 delalloc_start = *start;
70b99e69 1684
c8b97818
CM
1685 /*
1686 * make sure to limit the number of pages we try to lock down
c8b97818 1687 */
7bf811a5
JB
1688 if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 delalloc_end = delalloc_start + max_bytes - 1;
d397712b 1690
c8b97818
CM
1691 /* step two, lock all the pages after the page that has start */
1692 ret = lock_delalloc_pages(inode, locked_page,
1693 delalloc_start, delalloc_end);
1694 if (ret == -EAGAIN) {
1695 /* some of the pages are gone, lets avoid looping by
1696 * shortening the size of the delalloc range we're searching
1697 */
9655d298 1698 free_extent_state(cached_state);
7d788742 1699 cached_state = NULL;
c8b97818 1700 if (!loops) {
7bf811a5 1701 max_bytes = PAGE_CACHE_SIZE;
c8b97818
CM
1702 loops = 1;
1703 goto again;
1704 } else {
1705 found = 0;
1706 goto out_failed;
1707 }
1708 }
79787eaa 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
c8b97818
CM
1710
1711 /* step three, lock the state bits for the whole range */
ff13db41 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
c8b97818
CM
1713
1714 /* then test to make sure it is all still delalloc */
1715 ret = test_range_bit(tree, delalloc_start, delalloc_end,
9655d298 1716 EXTENT_DELALLOC, 1, cached_state);
c8b97818 1717 if (!ret) {
9655d298
CM
1718 unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 &cached_state, GFP_NOFS);
c8b97818
CM
1720 __unlock_for_delalloc(inode, locked_page,
1721 delalloc_start, delalloc_end);
1722 cond_resched();
1723 goto again;
1724 }
9655d298 1725 free_extent_state(cached_state);
c8b97818
CM
1726 *start = delalloc_start;
1727 *end = delalloc_end;
1728out_failed:
1729 return found;
1730}
1731
a9d93e17 1732void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
c2790a2e 1733 struct page *locked_page,
9ee49a04 1734 unsigned clear_bits,
c2790a2e 1735 unsigned long page_ops)
c8b97818 1736{
c2790a2e 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
c8b97818
CM
1738 int ret;
1739 struct page *pages[16];
1740 unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 unsigned long nr_pages = end_index - index + 1;
1743 int i;
771ed689 1744
2c64c53d 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
c2790a2e 1746 if (page_ops == 0)
a9d93e17 1747 return;
c8b97818 1748
704de49d
FM
1749 if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1750 mapping_set_error(inode->i_mapping, -EIO);
1751
d397712b 1752 while (nr_pages > 0) {
c8b97818 1753 ret = find_get_pages_contig(inode->i_mapping, index,
5b050f04
CM
1754 min_t(unsigned long,
1755 nr_pages, ARRAY_SIZE(pages)), pages);
c8b97818 1756 for (i = 0; i < ret; i++) {
8b62b72b 1757
c2790a2e 1758 if (page_ops & PAGE_SET_PRIVATE2)
8b62b72b
CM
1759 SetPagePrivate2(pages[i]);
1760
c8b97818
CM
1761 if (pages[i] == locked_page) {
1762 page_cache_release(pages[i]);
1763 continue;
1764 }
c2790a2e 1765 if (page_ops & PAGE_CLEAR_DIRTY)
c8b97818 1766 clear_page_dirty_for_io(pages[i]);
c2790a2e 1767 if (page_ops & PAGE_SET_WRITEBACK)
c8b97818 1768 set_page_writeback(pages[i]);
704de49d
FM
1769 if (page_ops & PAGE_SET_ERROR)
1770 SetPageError(pages[i]);
c2790a2e 1771 if (page_ops & PAGE_END_WRITEBACK)
c8b97818 1772 end_page_writeback(pages[i]);
c2790a2e 1773 if (page_ops & PAGE_UNLOCK)
771ed689 1774 unlock_page(pages[i]);
c8b97818
CM
1775 page_cache_release(pages[i]);
1776 }
1777 nr_pages -= ret;
1778 index += ret;
1779 cond_resched();
1780 }
c8b97818 1781}
c8b97818 1782
d352ac68
CM
1783/*
1784 * count the number of bytes in the tree that have a given bit(s)
1785 * set. This can be fairly slow, except for EXTENT_DIRTY which is
1786 * cached. The total number found is returned.
1787 */
d1310b2e
CM
1788u64 count_range_bits(struct extent_io_tree *tree,
1789 u64 *start, u64 search_end, u64 max_bytes,
9ee49a04 1790 unsigned bits, int contig)
d1310b2e
CM
1791{
1792 struct rb_node *node;
1793 struct extent_state *state;
1794 u64 cur_start = *start;
1795 u64 total_bytes = 0;
ec29ed5b 1796 u64 last = 0;
d1310b2e
CM
1797 int found = 0;
1798
fae7f21c 1799 if (WARN_ON(search_end <= cur_start))
d1310b2e 1800 return 0;
d1310b2e 1801
cad321ad 1802 spin_lock(&tree->lock);
d1310b2e
CM
1803 if (cur_start == 0 && bits == EXTENT_DIRTY) {
1804 total_bytes = tree->dirty_bytes;
1805 goto out;
1806 }
1807 /*
1808 * this search will find all the extents that end after
1809 * our range starts.
1810 */
80ea96b1 1811 node = tree_search(tree, cur_start);
d397712b 1812 if (!node)
d1310b2e 1813 goto out;
d1310b2e 1814
d397712b 1815 while (1) {
d1310b2e
CM
1816 state = rb_entry(node, struct extent_state, rb_node);
1817 if (state->start > search_end)
1818 break;
ec29ed5b
CM
1819 if (contig && found && state->start > last + 1)
1820 break;
1821 if (state->end >= cur_start && (state->state & bits) == bits) {
d1310b2e
CM
1822 total_bytes += min(search_end, state->end) + 1 -
1823 max(cur_start, state->start);
1824 if (total_bytes >= max_bytes)
1825 break;
1826 if (!found) {
af60bed2 1827 *start = max(cur_start, state->start);
d1310b2e
CM
1828 found = 1;
1829 }
ec29ed5b
CM
1830 last = state->end;
1831 } else if (contig && found) {
1832 break;
d1310b2e
CM
1833 }
1834 node = rb_next(node);
1835 if (!node)
1836 break;
1837 }
1838out:
cad321ad 1839 spin_unlock(&tree->lock);
d1310b2e
CM
1840 return total_bytes;
1841}
b2950863 1842
d352ac68
CM
1843/*
1844 * set the private field for a given byte offset in the tree. If there isn't
1845 * an extent_state there already, this does nothing.
1846 */
171170c1 1847static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
d1310b2e
CM
1848{
1849 struct rb_node *node;
1850 struct extent_state *state;
1851 int ret = 0;
1852
cad321ad 1853 spin_lock(&tree->lock);
d1310b2e
CM
1854 /*
1855 * this search will find all the extents that end after
1856 * our range starts.
1857 */
80ea96b1 1858 node = tree_search(tree, start);
2b114d1d 1859 if (!node) {
d1310b2e
CM
1860 ret = -ENOENT;
1861 goto out;
1862 }
1863 state = rb_entry(node, struct extent_state, rb_node);
1864 if (state->start != start) {
1865 ret = -ENOENT;
1866 goto out;
1867 }
1868 state->private = private;
1869out:
cad321ad 1870 spin_unlock(&tree->lock);
d1310b2e
CM
1871 return ret;
1872}
1873
1874int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1875{
1876 struct rb_node *node;
1877 struct extent_state *state;
1878 int ret = 0;
1879
cad321ad 1880 spin_lock(&tree->lock);
d1310b2e
CM
1881 /*
1882 * this search will find all the extents that end after
1883 * our range starts.
1884 */
80ea96b1 1885 node = tree_search(tree, start);
2b114d1d 1886 if (!node) {
d1310b2e
CM
1887 ret = -ENOENT;
1888 goto out;
1889 }
1890 state = rb_entry(node, struct extent_state, rb_node);
1891 if (state->start != start) {
1892 ret = -ENOENT;
1893 goto out;
1894 }
1895 *private = state->private;
1896out:
cad321ad 1897 spin_unlock(&tree->lock);
d1310b2e
CM
1898 return ret;
1899}
1900
1901/*
1902 * searches a range in the state tree for a given mask.
70dec807 1903 * If 'filled' == 1, this returns 1 only if every extent in the tree
d1310b2e
CM
1904 * has the bits set. Otherwise, 1 is returned if any bit in the
1905 * range is found set.
1906 */
1907int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
9ee49a04 1908 unsigned bits, int filled, struct extent_state *cached)
d1310b2e
CM
1909{
1910 struct extent_state *state = NULL;
1911 struct rb_node *node;
1912 int bitset = 0;
d1310b2e 1913
cad321ad 1914 spin_lock(&tree->lock);
27a3507d 1915 if (cached && extent_state_in_tree(cached) && cached->start <= start &&
df98b6e2 1916 cached->end > start)
9655d298
CM
1917 node = &cached->rb_node;
1918 else
1919 node = tree_search(tree, start);
d1310b2e
CM
1920 while (node && start <= end) {
1921 state = rb_entry(node, struct extent_state, rb_node);
1922
1923 if (filled && state->start > start) {
1924 bitset = 0;
1925 break;
1926 }
1927
1928 if (state->start > end)
1929 break;
1930
1931 if (state->state & bits) {
1932 bitset = 1;
1933 if (!filled)
1934 break;
1935 } else if (filled) {
1936 bitset = 0;
1937 break;
1938 }
46562cec
CM
1939
1940 if (state->end == (u64)-1)
1941 break;
1942
d1310b2e
CM
1943 start = state->end + 1;
1944 if (start > end)
1945 break;
1946 node = rb_next(node);
1947 if (!node) {
1948 if (filled)
1949 bitset = 0;
1950 break;
1951 }
1952 }
cad321ad 1953 spin_unlock(&tree->lock);
d1310b2e
CM
1954 return bitset;
1955}
d1310b2e
CM
1956
1957/*
1958 * helper function to set a given page up to date if all the
1959 * extents in the tree for that page are up to date
1960 */
143bede5 1961static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
d1310b2e 1962{
4eee4fa4 1963 u64 start = page_offset(page);
d1310b2e 1964 u64 end = start + PAGE_CACHE_SIZE - 1;
9655d298 1965 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
d1310b2e 1966 SetPageUptodate(page);
d1310b2e
CM
1967}
1968
8b110e39 1969int free_io_failure(struct inode *inode, struct io_failure_record *rec)
4a54c8c1
JS
1970{
1971 int ret;
1972 int err = 0;
1973 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1974
1975 set_state_private(failure_tree, rec->start, 0);
1976 ret = clear_extent_bits(failure_tree, rec->start,
1977 rec->start + rec->len - 1,
1978 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1979 if (ret)
1980 err = ret;
1981
53b381b3
DW
1982 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1983 rec->start + rec->len - 1,
1984 EXTENT_DAMAGED, GFP_NOFS);
1985 if (ret && !err)
1986 err = ret;
4a54c8c1
JS
1987
1988 kfree(rec);
1989 return err;
1990}
1991
4a54c8c1
JS
1992/*
1993 * this bypasses the standard btrfs submit functions deliberately, as
1994 * the standard behavior is to write all copies in a raid setup. here we only
1995 * want to write the one bad copy. so we do the mapping for ourselves and issue
1996 * submit_bio directly.
3ec706c8 1997 * to avoid any synchronization issues, wait for the data after writing, which
4a54c8c1
JS
1998 * actually prevents the read that triggered the error from finishing.
1999 * currently, there can be no more than two copies of every data bit. thus,
2000 * exactly one rewrite is required.
2001 */
1203b681
MX
2002int repair_io_failure(struct inode *inode, u64 start, u64 length, u64 logical,
2003 struct page *page, unsigned int pg_offset, int mirror_num)
4a54c8c1 2004{
1203b681 2005 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2006 struct bio *bio;
2007 struct btrfs_device *dev;
4a54c8c1
JS
2008 u64 map_length = 0;
2009 u64 sector;
2010 struct btrfs_bio *bbio = NULL;
53b381b3 2011 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4a54c8c1
JS
2012 int ret;
2013
908960c6 2014 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
4a54c8c1
JS
2015 BUG_ON(!mirror_num);
2016
53b381b3
DW
2017 /* we can't repair anything in raid56 yet */
2018 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2019 return 0;
2020
9be3395b 2021 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
4a54c8c1
JS
2022 if (!bio)
2023 return -EIO;
4f024f37 2024 bio->bi_iter.bi_size = 0;
4a54c8c1
JS
2025 map_length = length;
2026
3ec706c8 2027 ret = btrfs_map_block(fs_info, WRITE, logical,
4a54c8c1
JS
2028 &map_length, &bbio, mirror_num);
2029 if (ret) {
2030 bio_put(bio);
2031 return -EIO;
2032 }
2033 BUG_ON(mirror_num != bbio->mirror_num);
2034 sector = bbio->stripes[mirror_num-1].physical >> 9;
4f024f37 2035 bio->bi_iter.bi_sector = sector;
4a54c8c1 2036 dev = bbio->stripes[mirror_num-1].dev;
6e9606d2 2037 btrfs_put_bbio(bbio);
4a54c8c1
JS
2038 if (!dev || !dev->bdev || !dev->writeable) {
2039 bio_put(bio);
2040 return -EIO;
2041 }
2042 bio->bi_bdev = dev->bdev;
ffdd2018 2043 bio_add_page(bio, page, length, pg_offset);
4a54c8c1 2044
33879d45 2045 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
4a54c8c1
JS
2046 /* try to remap that extent elsewhere? */
2047 bio_put(bio);
442a4f63 2048 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
4a54c8c1
JS
2049 return -EIO;
2050 }
2051
b14af3b4
DS
2052 btrfs_info_rl_in_rcu(fs_info,
2053 "read error corrected: ino %llu off %llu (dev %s sector %llu)",
1203b681
MX
2054 btrfs_ino(inode), start,
2055 rcu_str_deref(dev->name), sector);
4a54c8c1
JS
2056 bio_put(bio);
2057 return 0;
2058}
2059
ea466794
JB
2060int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2061 int mirror_num)
2062{
ea466794
JB
2063 u64 start = eb->start;
2064 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
d95603b2 2065 int ret = 0;
ea466794 2066
908960c6
ID
2067 if (root->fs_info->sb->s_flags & MS_RDONLY)
2068 return -EROFS;
2069
ea466794 2070 for (i = 0; i < num_pages; i++) {
fb85fc9a 2071 struct page *p = eb->pages[i];
1203b681
MX
2072
2073 ret = repair_io_failure(root->fs_info->btree_inode, start,
2074 PAGE_CACHE_SIZE, start, p,
2075 start - page_offset(p), mirror_num);
ea466794
JB
2076 if (ret)
2077 break;
2078 start += PAGE_CACHE_SIZE;
2079 }
2080
2081 return ret;
2082}
2083
4a54c8c1
JS
2084/*
2085 * each time an IO finishes, we do a fast check in the IO failure tree
2086 * to see if we need to process or clean up an io_failure_record
2087 */
8b110e39
MX
2088int clean_io_failure(struct inode *inode, u64 start, struct page *page,
2089 unsigned int pg_offset)
4a54c8c1
JS
2090{
2091 u64 private;
2092 u64 private_failure;
2093 struct io_failure_record *failrec;
908960c6 2094 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
4a54c8c1
JS
2095 struct extent_state *state;
2096 int num_copies;
4a54c8c1 2097 int ret;
4a54c8c1
JS
2098
2099 private = 0;
2100 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2101 (u64)-1, 1, EXTENT_DIRTY, 0);
2102 if (!ret)
2103 return 0;
2104
2105 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2106 &private_failure);
2107 if (ret)
2108 return 0;
2109
2110 failrec = (struct io_failure_record *)(unsigned long) private_failure;
2111 BUG_ON(!failrec->this_mirror);
2112
2113 if (failrec->in_validation) {
2114 /* there was no real error, just free the record */
2115 pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2116 failrec->start);
4a54c8c1
JS
2117 goto out;
2118 }
908960c6
ID
2119 if (fs_info->sb->s_flags & MS_RDONLY)
2120 goto out;
4a54c8c1
JS
2121
2122 spin_lock(&BTRFS_I(inode)->io_tree.lock);
2123 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2124 failrec->start,
2125 EXTENT_LOCKED);
2126 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2127
883d0de4
MX
2128 if (state && state->start <= failrec->start &&
2129 state->end >= failrec->start + failrec->len - 1) {
3ec706c8
SB
2130 num_copies = btrfs_num_copies(fs_info, failrec->logical,
2131 failrec->len);
4a54c8c1 2132 if (num_copies > 1) {
1203b681 2133 repair_io_failure(inode, start, failrec->len,
454ff3de 2134 failrec->logical, page,
1203b681 2135 pg_offset, failrec->failed_mirror);
4a54c8c1
JS
2136 }
2137 }
2138
2139out:
454ff3de 2140 free_io_failure(inode, failrec);
4a54c8c1 2141
454ff3de 2142 return 0;
4a54c8c1
JS
2143}
2144
f612496b
MX
2145/*
2146 * Can be called when
2147 * - hold extent lock
2148 * - under ordered extent
2149 * - the inode is freeing
2150 */
2151void btrfs_free_io_failure_record(struct inode *inode, u64 start, u64 end)
2152{
2153 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2154 struct io_failure_record *failrec;
2155 struct extent_state *state, *next;
2156
2157 if (RB_EMPTY_ROOT(&failure_tree->state))
2158 return;
2159
2160 spin_lock(&failure_tree->lock);
2161 state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2162 while (state) {
2163 if (state->start > end)
2164 break;
2165
2166 ASSERT(state->end <= end);
2167
2168 next = next_state(state);
2169
6e1103a6 2170 failrec = (struct io_failure_record *)(unsigned long)state->private;
f612496b
MX
2171 free_extent_state(state);
2172 kfree(failrec);
2173
2174 state = next;
2175 }
2176 spin_unlock(&failure_tree->lock);
2177}
2178
2fe6303e
MX
2179int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2180 struct io_failure_record **failrec_ret)
4a54c8c1 2181{
2fe6303e 2182 struct io_failure_record *failrec;
4a54c8c1
JS
2183 u64 private;
2184 struct extent_map *em;
4a54c8c1
JS
2185 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2186 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2187 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4a54c8c1 2188 int ret;
4a54c8c1
JS
2189 u64 logical;
2190
4a54c8c1
JS
2191 ret = get_state_private(failure_tree, start, &private);
2192 if (ret) {
2193 failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2194 if (!failrec)
2195 return -ENOMEM;
2fe6303e 2196
4a54c8c1
JS
2197 failrec->start = start;
2198 failrec->len = end - start + 1;
2199 failrec->this_mirror = 0;
2200 failrec->bio_flags = 0;
2201 failrec->in_validation = 0;
2202
2203 read_lock(&em_tree->lock);
2204 em = lookup_extent_mapping(em_tree, start, failrec->len);
2205 if (!em) {
2206 read_unlock(&em_tree->lock);
2207 kfree(failrec);
2208 return -EIO;
2209 }
2210
68ba990f 2211 if (em->start > start || em->start + em->len <= start) {
4a54c8c1
JS
2212 free_extent_map(em);
2213 em = NULL;
2214 }
2215 read_unlock(&em_tree->lock);
7a2d6a64 2216 if (!em) {
4a54c8c1
JS
2217 kfree(failrec);
2218 return -EIO;
2219 }
2fe6303e 2220
4a54c8c1
JS
2221 logical = start - em->start;
2222 logical = em->block_start + logical;
2223 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2224 logical = em->block_start;
2225 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2226 extent_set_compress_type(&failrec->bio_flags,
2227 em->compress_type);
2228 }
2fe6303e
MX
2229
2230 pr_debug("Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu\n",
2231 logical, start, failrec->len);
2232
4a54c8c1
JS
2233 failrec->logical = logical;
2234 free_extent_map(em);
2235
2236 /* set the bits in the private failure tree */
2237 ret = set_extent_bits(failure_tree, start, end,
2238 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2239 if (ret >= 0)
2240 ret = set_state_private(failure_tree, start,
2241 (u64)(unsigned long)failrec);
2242 /* set the bits in the inode's tree */
2243 if (ret >= 0)
2244 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2245 GFP_NOFS);
2246 if (ret < 0) {
2247 kfree(failrec);
2248 return ret;
2249 }
2250 } else {
2251 failrec = (struct io_failure_record *)(unsigned long)private;
2fe6303e 2252 pr_debug("Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d\n",
4a54c8c1
JS
2253 failrec->logical, failrec->start, failrec->len,
2254 failrec->in_validation);
2255 /*
2256 * when data can be on disk more than twice, add to failrec here
2257 * (e.g. with a list for failed_mirror) to make
2258 * clean_io_failure() clean all those errors at once.
2259 */
2260 }
2fe6303e
MX
2261
2262 *failrec_ret = failrec;
2263
2264 return 0;
2265}
2266
2267int btrfs_check_repairable(struct inode *inode, struct bio *failed_bio,
2268 struct io_failure_record *failrec, int failed_mirror)
2269{
2270 int num_copies;
2271
5d964051
SB
2272 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2273 failrec->logical, failrec->len);
4a54c8c1
JS
2274 if (num_copies == 1) {
2275 /*
2276 * we only have a single copy of the data, so don't bother with
2277 * all the retry and error correction code that follows. no
2278 * matter what the error is, it is very likely to persist.
2279 */
2fe6303e 2280 pr_debug("Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
09a7f7a2 2281 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2282 return 0;
4a54c8c1
JS
2283 }
2284
4a54c8c1
JS
2285 /*
2286 * there are two premises:
2287 * a) deliver good data to the caller
2288 * b) correct the bad sectors on disk
2289 */
2290 if (failed_bio->bi_vcnt > 1) {
2291 /*
2292 * to fulfill b), we need to know the exact failing sectors, as
2293 * we don't want to rewrite any more than the failed ones. thus,
2294 * we need separate read requests for the failed bio
2295 *
2296 * if the following BUG_ON triggers, our validation request got
2297 * merged. we need separate requests for our algorithm to work.
2298 */
2299 BUG_ON(failrec->in_validation);
2300 failrec->in_validation = 1;
2301 failrec->this_mirror = failed_mirror;
4a54c8c1
JS
2302 } else {
2303 /*
2304 * we're ready to fulfill a) and b) alongside. get a good copy
2305 * of the failed sector and if we succeed, we have setup
2306 * everything for repair_io_failure to do the rest for us.
2307 */
2308 if (failrec->in_validation) {
2309 BUG_ON(failrec->this_mirror != failed_mirror);
2310 failrec->in_validation = 0;
2311 failrec->this_mirror = 0;
2312 }
2313 failrec->failed_mirror = failed_mirror;
2314 failrec->this_mirror++;
2315 if (failrec->this_mirror == failed_mirror)
2316 failrec->this_mirror++;
4a54c8c1
JS
2317 }
2318
facc8a22 2319 if (failrec->this_mirror > num_copies) {
2fe6303e 2320 pr_debug("Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
4a54c8c1 2321 num_copies, failrec->this_mirror, failed_mirror);
2fe6303e 2322 return 0;
4a54c8c1
JS
2323 }
2324
2fe6303e
MX
2325 return 1;
2326}
2327
2328
2329struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2330 struct io_failure_record *failrec,
2331 struct page *page, int pg_offset, int icsum,
8b110e39 2332 bio_end_io_t *endio_func, void *data)
2fe6303e
MX
2333{
2334 struct bio *bio;
2335 struct btrfs_io_bio *btrfs_failed_bio;
2336 struct btrfs_io_bio *btrfs_bio;
2337
9be3395b 2338 bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2fe6303e
MX
2339 if (!bio)
2340 return NULL;
2341
2342 bio->bi_end_io = endio_func;
4f024f37 2343 bio->bi_iter.bi_sector = failrec->logical >> 9;
4a54c8c1 2344 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
4f024f37 2345 bio->bi_iter.bi_size = 0;
8b110e39 2346 bio->bi_private = data;
4a54c8c1 2347
facc8a22
MX
2348 btrfs_failed_bio = btrfs_io_bio(failed_bio);
2349 if (btrfs_failed_bio->csum) {
2350 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2351 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2352
2353 btrfs_bio = btrfs_io_bio(bio);
2354 btrfs_bio->csum = btrfs_bio->csum_inline;
2fe6303e
MX
2355 icsum *= csum_size;
2356 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
facc8a22
MX
2357 csum_size);
2358 }
2359
2fe6303e
MX
2360 bio_add_page(bio, page, failrec->len, pg_offset);
2361
2362 return bio;
2363}
2364
2365/*
2366 * this is a generic handler for readpage errors (default
2367 * readpage_io_failed_hook). if other copies exist, read those and write back
2368 * good data to the failed position. does not investigate in remapping the
2369 * failed extent elsewhere, hoping the device will be smart enough to do this as
2370 * needed
2371 */
2372
2373static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2374 struct page *page, u64 start, u64 end,
2375 int failed_mirror)
2376{
2377 struct io_failure_record *failrec;
2378 struct inode *inode = page->mapping->host;
2379 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2380 struct bio *bio;
2381 int read_mode;
2382 int ret;
2383
2384 BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2385
2386 ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2387 if (ret)
2388 return ret;
2389
2390 ret = btrfs_check_repairable(inode, failed_bio, failrec, failed_mirror);
2391 if (!ret) {
2392 free_io_failure(inode, failrec);
2393 return -EIO;
2394 }
2395
2396 if (failed_bio->bi_vcnt > 1)
2397 read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2398 else
2399 read_mode = READ_SYNC;
2400
2401 phy_offset >>= inode->i_sb->s_blocksize_bits;
2402 bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2403 start - page_offset(page),
8b110e39
MX
2404 (int)phy_offset, failed_bio->bi_end_io,
2405 NULL);
2fe6303e
MX
2406 if (!bio) {
2407 free_io_failure(inode, failrec);
2408 return -EIO;
2409 }
4a54c8c1 2410
2fe6303e
MX
2411 pr_debug("Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d\n",
2412 read_mode, failrec->this_mirror, failrec->in_validation);
4a54c8c1 2413
013bd4c3
TI
2414 ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2415 failrec->this_mirror,
2416 failrec->bio_flags, 0);
6c387ab2 2417 if (ret) {
454ff3de 2418 free_io_failure(inode, failrec);
6c387ab2
MX
2419 bio_put(bio);
2420 }
2421
013bd4c3 2422 return ret;
4a54c8c1
JS
2423}
2424
d1310b2e
CM
2425/* lots and lots of room for performance fixes in the end_bio funcs */
2426
b5227c07 2427void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
87826df0
JM
2428{
2429 int uptodate = (err == 0);
2430 struct extent_io_tree *tree;
3e2426bd 2431 int ret = 0;
87826df0
JM
2432
2433 tree = &BTRFS_I(page->mapping->host)->io_tree;
2434
2435 if (tree->ops && tree->ops->writepage_end_io_hook) {
2436 ret = tree->ops->writepage_end_io_hook(page, start,
2437 end, NULL, uptodate);
2438 if (ret)
2439 uptodate = 0;
2440 }
2441
87826df0 2442 if (!uptodate) {
87826df0
JM
2443 ClearPageUptodate(page);
2444 SetPageError(page);
5dca6eea
LB
2445 ret = ret < 0 ? ret : -EIO;
2446 mapping_set_error(page->mapping, ret);
87826df0 2447 }
87826df0
JM
2448}
2449
d1310b2e
CM
2450/*
2451 * after a writepage IO is done, we need to:
2452 * clear the uptodate bits on error
2453 * clear the writeback bits in the extent tree for this IO
2454 * end_page_writeback if the page has no more pending IO
2455 *
2456 * Scheduling is not allowed, so the extent state tree is expected
2457 * to have one and only one object corresponding to this IO.
2458 */
4246a0b6 2459static void end_bio_extent_writepage(struct bio *bio)
d1310b2e 2460{
2c30c71b 2461 struct bio_vec *bvec;
d1310b2e
CM
2462 u64 start;
2463 u64 end;
2c30c71b 2464 int i;
d1310b2e 2465
2c30c71b 2466 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2467 struct page *page = bvec->bv_page;
902b22f3 2468
17a5adcc
AO
2469 /* We always issue full-page reads, but if some block
2470 * in a page fails to read, blk_update_request() will
2471 * advance bv_offset and adjust bv_len to compensate.
2472 * Print a warning for nonzero offsets, and an error
2473 * if they don't add up to a full page. */
efe120a0
FH
2474 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2475 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2476 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2477 "partial page write in btrfs with offset %u and length %u",
2478 bvec->bv_offset, bvec->bv_len);
2479 else
2480 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2481 "incomplete page write in btrfs with offset %u and "
2482 "length %u",
2483 bvec->bv_offset, bvec->bv_len);
2484 }
d1310b2e 2485
17a5adcc
AO
2486 start = page_offset(page);
2487 end = start + bvec->bv_offset + bvec->bv_len - 1;
d1310b2e 2488
b5227c07 2489 end_extent_writepage(page, bio->bi_error, start, end);
17a5adcc 2490 end_page_writeback(page);
2c30c71b 2491 }
2b1f55b0 2492
d1310b2e 2493 bio_put(bio);
d1310b2e
CM
2494}
2495
883d0de4
MX
2496static void
2497endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2498 int uptodate)
2499{
2500 struct extent_state *cached = NULL;
2501 u64 end = start + len - 1;
2502
2503 if (uptodate && tree->track_uptodate)
2504 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2505 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2506}
2507
d1310b2e
CM
2508/*
2509 * after a readpage IO is done, we need to:
2510 * clear the uptodate bits on error
2511 * set the uptodate bits if things worked
2512 * set the page up to date if all extents in the tree are uptodate
2513 * clear the lock bit in the extent tree
2514 * unlock the page if there are no other extents locked for it
2515 *
2516 * Scheduling is not allowed, so the extent state tree is expected
2517 * to have one and only one object corresponding to this IO.
2518 */
4246a0b6 2519static void end_bio_extent_readpage(struct bio *bio)
d1310b2e 2520{
2c30c71b 2521 struct bio_vec *bvec;
4246a0b6 2522 int uptodate = !bio->bi_error;
facc8a22 2523 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
902b22f3 2524 struct extent_io_tree *tree;
facc8a22 2525 u64 offset = 0;
d1310b2e
CM
2526 u64 start;
2527 u64 end;
facc8a22 2528 u64 len;
883d0de4
MX
2529 u64 extent_start = 0;
2530 u64 extent_len = 0;
5cf1ab56 2531 int mirror;
d1310b2e 2532 int ret;
2c30c71b 2533 int i;
d1310b2e 2534
2c30c71b 2535 bio_for_each_segment_all(bvec, bio, i) {
d1310b2e 2536 struct page *page = bvec->bv_page;
a71754fc 2537 struct inode *inode = page->mapping->host;
507903b8 2538
be3940c0 2539 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
4246a0b6
CH
2540 "mirror=%u\n", (u64)bio->bi_iter.bi_sector,
2541 bio->bi_error, io_bio->mirror_num);
a71754fc 2542 tree = &BTRFS_I(inode)->io_tree;
902b22f3 2543
17a5adcc
AO
2544 /* We always issue full-page reads, but if some block
2545 * in a page fails to read, blk_update_request() will
2546 * advance bv_offset and adjust bv_len to compensate.
2547 * Print a warning for nonzero offsets, and an error
2548 * if they don't add up to a full page. */
efe120a0
FH
2549 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2550 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2551 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2552 "partial page read in btrfs with offset %u and length %u",
2553 bvec->bv_offset, bvec->bv_len);
2554 else
2555 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2556 "incomplete page read in btrfs with offset %u and "
2557 "length %u",
2558 bvec->bv_offset, bvec->bv_len);
2559 }
d1310b2e 2560
17a5adcc
AO
2561 start = page_offset(page);
2562 end = start + bvec->bv_offset + bvec->bv_len - 1;
facc8a22 2563 len = bvec->bv_len;
d1310b2e 2564
9be3395b 2565 mirror = io_bio->mirror_num;
f2a09da9
MX
2566 if (likely(uptodate && tree->ops &&
2567 tree->ops->readpage_end_io_hook)) {
facc8a22
MX
2568 ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2569 page, start, end,
2570 mirror);
5ee0844d 2571 if (ret)
d1310b2e 2572 uptodate = 0;
5ee0844d 2573 else
1203b681 2574 clean_io_failure(inode, start, page, 0);
d1310b2e 2575 }
ea466794 2576
f2a09da9
MX
2577 if (likely(uptodate))
2578 goto readpage_ok;
2579
2580 if (tree->ops && tree->ops->readpage_io_failed_hook) {
5cf1ab56 2581 ret = tree->ops->readpage_io_failed_hook(page, mirror);
4246a0b6 2582 if (!ret && !bio->bi_error)
ea466794 2583 uptodate = 1;
f2a09da9 2584 } else {
f4a8e656
JS
2585 /*
2586 * The generic bio_readpage_error handles errors the
2587 * following way: If possible, new read requests are
2588 * created and submitted and will end up in
2589 * end_bio_extent_readpage as well (if we're lucky, not
2590 * in the !uptodate case). In that case it returns 0 and
2591 * we just go on with the next page in our bio. If it
2592 * can't handle the error it will return -EIO and we
2593 * remain responsible for that page.
2594 */
facc8a22
MX
2595 ret = bio_readpage_error(bio, offset, page, start, end,
2596 mirror);
7e38326f 2597 if (ret == 0) {
4246a0b6 2598 uptodate = !bio->bi_error;
38c1c2e4 2599 offset += len;
7e38326f
CM
2600 continue;
2601 }
2602 }
f2a09da9 2603readpage_ok:
883d0de4 2604 if (likely(uptodate)) {
a71754fc
JB
2605 loff_t i_size = i_size_read(inode);
2606 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
a583c026 2607 unsigned off;
a71754fc
JB
2608
2609 /* Zero out the end if this page straddles i_size */
a583c026
LB
2610 off = i_size & (PAGE_CACHE_SIZE-1);
2611 if (page->index == end_index && off)
2612 zero_user_segment(page, off, PAGE_CACHE_SIZE);
17a5adcc 2613 SetPageUptodate(page);
70dec807 2614 } else {
17a5adcc
AO
2615 ClearPageUptodate(page);
2616 SetPageError(page);
70dec807 2617 }
17a5adcc 2618 unlock_page(page);
facc8a22 2619 offset += len;
883d0de4
MX
2620
2621 if (unlikely(!uptodate)) {
2622 if (extent_len) {
2623 endio_readpage_release_extent(tree,
2624 extent_start,
2625 extent_len, 1);
2626 extent_start = 0;
2627 extent_len = 0;
2628 }
2629 endio_readpage_release_extent(tree, start,
2630 end - start + 1, 0);
2631 } else if (!extent_len) {
2632 extent_start = start;
2633 extent_len = end + 1 - start;
2634 } else if (extent_start + extent_len == start) {
2635 extent_len += end + 1 - start;
2636 } else {
2637 endio_readpage_release_extent(tree, extent_start,
2638 extent_len, uptodate);
2639 extent_start = start;
2640 extent_len = end + 1 - start;
2641 }
2c30c71b 2642 }
d1310b2e 2643
883d0de4
MX
2644 if (extent_len)
2645 endio_readpage_release_extent(tree, extent_start, extent_len,
2646 uptodate);
facc8a22 2647 if (io_bio->end_io)
4246a0b6 2648 io_bio->end_io(io_bio, bio->bi_error);
d1310b2e 2649 bio_put(bio);
d1310b2e
CM
2650}
2651
9be3395b
CM
2652/*
2653 * this allocates from the btrfs_bioset. We're returning a bio right now
2654 * but you can call btrfs_io_bio for the appropriate container_of magic
2655 */
88f794ed
MX
2656struct bio *
2657btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2658 gfp_t gfp_flags)
d1310b2e 2659{
facc8a22 2660 struct btrfs_io_bio *btrfs_bio;
d1310b2e
CM
2661 struct bio *bio;
2662
9be3395b 2663 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
d1310b2e
CM
2664
2665 if (bio == NULL && (current->flags & PF_MEMALLOC)) {
9be3395b
CM
2666 while (!bio && (nr_vecs /= 2)) {
2667 bio = bio_alloc_bioset(gfp_flags,
2668 nr_vecs, btrfs_bioset);
2669 }
d1310b2e
CM
2670 }
2671
2672 if (bio) {
2673 bio->bi_bdev = bdev;
4f024f37 2674 bio->bi_iter.bi_sector = first_sector;
facc8a22
MX
2675 btrfs_bio = btrfs_io_bio(bio);
2676 btrfs_bio->csum = NULL;
2677 btrfs_bio->csum_allocated = NULL;
2678 btrfs_bio->end_io = NULL;
d1310b2e
CM
2679 }
2680 return bio;
2681}
2682
9be3395b
CM
2683struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2684{
23ea8e5a
MX
2685 struct btrfs_io_bio *btrfs_bio;
2686 struct bio *new;
9be3395b 2687
23ea8e5a
MX
2688 new = bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2689 if (new) {
2690 btrfs_bio = btrfs_io_bio(new);
2691 btrfs_bio->csum = NULL;
2692 btrfs_bio->csum_allocated = NULL;
2693 btrfs_bio->end_io = NULL;
3a9508b0
CM
2694
2695#ifdef CONFIG_BLK_CGROUP
da2f0f74
CM
2696 /* FIXME, put this into bio_clone_bioset */
2697 if (bio->bi_css)
2698 bio_associate_blkcg(new, bio->bi_css);
3a9508b0 2699#endif
23ea8e5a
MX
2700 }
2701 return new;
2702}
9be3395b
CM
2703
2704/* this also allocates from the btrfs_bioset */
2705struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2706{
facc8a22
MX
2707 struct btrfs_io_bio *btrfs_bio;
2708 struct bio *bio;
2709
2710 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2711 if (bio) {
2712 btrfs_bio = btrfs_io_bio(bio);
2713 btrfs_bio->csum = NULL;
2714 btrfs_bio->csum_allocated = NULL;
2715 btrfs_bio->end_io = NULL;
2716 }
2717 return bio;
9be3395b
CM
2718}
2719
2720
355808c2
JM
2721static int __must_check submit_one_bio(int rw, struct bio *bio,
2722 int mirror_num, unsigned long bio_flags)
d1310b2e 2723{
d1310b2e 2724 int ret = 0;
70dec807
CM
2725 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2726 struct page *page = bvec->bv_page;
2727 struct extent_io_tree *tree = bio->bi_private;
70dec807 2728 u64 start;
70dec807 2729
4eee4fa4 2730 start = page_offset(page) + bvec->bv_offset;
70dec807 2731
902b22f3 2732 bio->bi_private = NULL;
d1310b2e
CM
2733
2734 bio_get(bio);
2735
065631f6 2736 if (tree->ops && tree->ops->submit_bio_hook)
6b82ce8d 2737 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
eaf25d93 2738 mirror_num, bio_flags, start);
0b86a832 2739 else
21adbd5c 2740 btrfsic_submit_bio(rw, bio);
4a54c8c1 2741
d1310b2e
CM
2742 bio_put(bio);
2743 return ret;
2744}
2745
64a16701 2746static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
3444a972
JM
2747 unsigned long offset, size_t size, struct bio *bio,
2748 unsigned long bio_flags)
2749{
2750 int ret = 0;
2751 if (tree->ops && tree->ops->merge_bio_hook)
64a16701 2752 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
3444a972
JM
2753 bio_flags);
2754 BUG_ON(ret < 0);
2755 return ret;
2756
2757}
2758
d1310b2e 2759static int submit_extent_page(int rw, struct extent_io_tree *tree,
da2f0f74 2760 struct writeback_control *wbc,
d1310b2e
CM
2761 struct page *page, sector_t sector,
2762 size_t size, unsigned long offset,
2763 struct block_device *bdev,
2764 struct bio **bio_ret,
2765 unsigned long max_pages,
f188591e 2766 bio_end_io_t end_io_func,
c8b97818
CM
2767 int mirror_num,
2768 unsigned long prev_bio_flags,
005efedf
FM
2769 unsigned long bio_flags,
2770 bool force_bio_submit)
d1310b2e
CM
2771{
2772 int ret = 0;
2773 struct bio *bio;
c8b97818 2774 int contig = 0;
c8b97818 2775 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
5b050f04 2776 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
d1310b2e
CM
2777
2778 if (bio_ret && *bio_ret) {
2779 bio = *bio_ret;
c8b97818 2780 if (old_compressed)
4f024f37 2781 contig = bio->bi_iter.bi_sector == sector;
c8b97818 2782 else
f73a1c7d 2783 contig = bio_end_sector(bio) == sector;
c8b97818
CM
2784
2785 if (prev_bio_flags != bio_flags || !contig ||
005efedf 2786 force_bio_submit ||
64a16701 2787 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
c8b97818
CM
2788 bio_add_page(bio, page, page_size, offset) < page_size) {
2789 ret = submit_one_bio(rw, bio, mirror_num,
2790 prev_bio_flags);
289454ad
NA
2791 if (ret < 0) {
2792 *bio_ret = NULL;
79787eaa 2793 return ret;
289454ad 2794 }
d1310b2e
CM
2795 bio = NULL;
2796 } else {
da2f0f74
CM
2797 if (wbc)
2798 wbc_account_io(wbc, page, page_size);
d1310b2e
CM
2799 return 0;
2800 }
2801 }
c8b97818 2802
b54ffb73
KO
2803 bio = btrfs_bio_alloc(bdev, sector, BIO_MAX_PAGES,
2804 GFP_NOFS | __GFP_HIGH);
5df67083
TI
2805 if (!bio)
2806 return -ENOMEM;
70dec807 2807
c8b97818 2808 bio_add_page(bio, page, page_size, offset);
d1310b2e
CM
2809 bio->bi_end_io = end_io_func;
2810 bio->bi_private = tree;
da2f0f74
CM
2811 if (wbc) {
2812 wbc_init_bio(wbc, bio);
2813 wbc_account_io(wbc, page, page_size);
2814 }
70dec807 2815
d397712b 2816 if (bio_ret)
d1310b2e 2817 *bio_ret = bio;
d397712b 2818 else
c8b97818 2819 ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
d1310b2e
CM
2820
2821 return ret;
2822}
2823
48a3b636
ES
2824static void attach_extent_buffer_page(struct extent_buffer *eb,
2825 struct page *page)
d1310b2e
CM
2826{
2827 if (!PagePrivate(page)) {
2828 SetPagePrivate(page);
d1310b2e 2829 page_cache_get(page);
4f2de97a
JB
2830 set_page_private(page, (unsigned long)eb);
2831 } else {
2832 WARN_ON(page->private != (unsigned long)eb);
d1310b2e
CM
2833 }
2834}
2835
4f2de97a 2836void set_page_extent_mapped(struct page *page)
d1310b2e 2837{
4f2de97a
JB
2838 if (!PagePrivate(page)) {
2839 SetPagePrivate(page);
2840 page_cache_get(page);
2841 set_page_private(page, EXTENT_PAGE_PRIVATE);
2842 }
d1310b2e
CM
2843}
2844
125bac01
MX
2845static struct extent_map *
2846__get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2847 u64 start, u64 len, get_extent_t *get_extent,
2848 struct extent_map **em_cached)
2849{
2850 struct extent_map *em;
2851
2852 if (em_cached && *em_cached) {
2853 em = *em_cached;
cbc0e928 2854 if (extent_map_in_tree(em) && start >= em->start &&
125bac01
MX
2855 start < extent_map_end(em)) {
2856 atomic_inc(&em->refs);
2857 return em;
2858 }
2859
2860 free_extent_map(em);
2861 *em_cached = NULL;
2862 }
2863
2864 em = get_extent(inode, page, pg_offset, start, len, 0);
2865 if (em_cached && !IS_ERR_OR_NULL(em)) {
2866 BUG_ON(*em_cached);
2867 atomic_inc(&em->refs);
2868 *em_cached = em;
2869 }
2870 return em;
2871}
d1310b2e
CM
2872/*
2873 * basic readpage implementation. Locked extent state structs are inserted
2874 * into the tree that are removed when the IO is done (by the end_io
2875 * handlers)
79787eaa 2876 * XXX JDM: This needs looking at to ensure proper page locking
d1310b2e 2877 */
9974090b
MX
2878static int __do_readpage(struct extent_io_tree *tree,
2879 struct page *page,
2880 get_extent_t *get_extent,
125bac01 2881 struct extent_map **em_cached,
9974090b 2882 struct bio **bio, int mirror_num,
005efedf
FM
2883 unsigned long *bio_flags, int rw,
2884 u64 *prev_em_start)
d1310b2e
CM
2885{
2886 struct inode *inode = page->mapping->host;
4eee4fa4 2887 u64 start = page_offset(page);
d1310b2e
CM
2888 u64 page_end = start + PAGE_CACHE_SIZE - 1;
2889 u64 end;
2890 u64 cur = start;
2891 u64 extent_offset;
2892 u64 last_byte = i_size_read(inode);
2893 u64 block_start;
2894 u64 cur_end;
2895 sector_t sector;
2896 struct extent_map *em;
2897 struct block_device *bdev;
2898 int ret;
2899 int nr = 0;
4b384318 2900 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
306e16ce 2901 size_t pg_offset = 0;
d1310b2e 2902 size_t iosize;
c8b97818 2903 size_t disk_io_size;
d1310b2e 2904 size_t blocksize = inode->i_sb->s_blocksize;
4b384318 2905 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
d1310b2e
CM
2906
2907 set_page_extent_mapped(page);
2908
9974090b 2909 end = page_end;
90a887c9
DM
2910 if (!PageUptodate(page)) {
2911 if (cleancache_get_page(page) == 0) {
2912 BUG_ON(blocksize != PAGE_SIZE);
9974090b 2913 unlock_extent(tree, start, end);
90a887c9
DM
2914 goto out;
2915 }
2916 }
2917
c8b97818
CM
2918 if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2919 char *userpage;
2920 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2921
2922 if (zero_offset) {
2923 iosize = PAGE_CACHE_SIZE - zero_offset;
7ac687d9 2924 userpage = kmap_atomic(page);
c8b97818
CM
2925 memset(userpage + zero_offset, 0, iosize);
2926 flush_dcache_page(page);
7ac687d9 2927 kunmap_atomic(userpage);
c8b97818
CM
2928 }
2929 }
d1310b2e 2930 while (cur <= end) {
c8f2f24b 2931 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
005efedf 2932 bool force_bio_submit = false;
c8f2f24b 2933
d1310b2e
CM
2934 if (cur >= last_byte) {
2935 char *userpage;
507903b8
AJ
2936 struct extent_state *cached = NULL;
2937
306e16ce 2938 iosize = PAGE_CACHE_SIZE - pg_offset;
7ac687d9 2939 userpage = kmap_atomic(page);
306e16ce 2940 memset(userpage + pg_offset, 0, iosize);
d1310b2e 2941 flush_dcache_page(page);
7ac687d9 2942 kunmap_atomic(userpage);
d1310b2e 2943 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 2944 &cached, GFP_NOFS);
4b384318
MF
2945 if (!parent_locked)
2946 unlock_extent_cached(tree, cur,
2947 cur + iosize - 1,
2948 &cached, GFP_NOFS);
d1310b2e
CM
2949 break;
2950 }
125bac01
MX
2951 em = __get_extent_map(inode, page, pg_offset, cur,
2952 end - cur + 1, get_extent, em_cached);
c704005d 2953 if (IS_ERR_OR_NULL(em)) {
d1310b2e 2954 SetPageError(page);
4b384318
MF
2955 if (!parent_locked)
2956 unlock_extent(tree, cur, end);
d1310b2e
CM
2957 break;
2958 }
d1310b2e
CM
2959 extent_offset = cur - em->start;
2960 BUG_ON(extent_map_end(em) <= cur);
2961 BUG_ON(end < cur);
2962
261507a0 2963 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4b384318 2964 this_bio_flag |= EXTENT_BIO_COMPRESSED;
261507a0
LZ
2965 extent_set_compress_type(&this_bio_flag,
2966 em->compress_type);
2967 }
c8b97818 2968
d1310b2e
CM
2969 iosize = min(extent_map_end(em) - cur, end - cur + 1);
2970 cur_end = min(extent_map_end(em) - 1, end);
fda2832f 2971 iosize = ALIGN(iosize, blocksize);
c8b97818
CM
2972 if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2973 disk_io_size = em->block_len;
2974 sector = em->block_start >> 9;
2975 } else {
2976 sector = (em->block_start + extent_offset) >> 9;
2977 disk_io_size = iosize;
2978 }
d1310b2e
CM
2979 bdev = em->bdev;
2980 block_start = em->block_start;
d899e052
YZ
2981 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2982 block_start = EXTENT_MAP_HOLE;
005efedf
FM
2983
2984 /*
2985 * If we have a file range that points to a compressed extent
2986 * and it's followed by a consecutive file range that points to
2987 * to the same compressed extent (possibly with a different
2988 * offset and/or length, so it either points to the whole extent
2989 * or only part of it), we must make sure we do not submit a
2990 * single bio to populate the pages for the 2 ranges because
2991 * this makes the compressed extent read zero out the pages
2992 * belonging to the 2nd range. Imagine the following scenario:
2993 *
2994 * File layout
2995 * [0 - 8K] [8K - 24K]
2996 * | |
2997 * | |
2998 * points to extent X, points to extent X,
2999 * offset 4K, length of 8K offset 0, length 16K
3000 *
3001 * [extent X, compressed length = 4K uncompressed length = 16K]
3002 *
3003 * If the bio to read the compressed extent covers both ranges,
3004 * it will decompress extent X into the pages belonging to the
3005 * first range and then it will stop, zeroing out the remaining
3006 * pages that belong to the other range that points to extent X.
3007 * So here we make sure we submit 2 bios, one for the first
3008 * range and another one for the third range. Both will target
3009 * the same physical extent from disk, but we can't currently
3010 * make the compressed bio endio callback populate the pages
3011 * for both ranges because each compressed bio is tightly
3012 * coupled with a single extent map, and each range can have
3013 * an extent map with a different offset value relative to the
3014 * uncompressed data of our extent and different lengths. This
3015 * is a corner case so we prioritize correctness over
3016 * non-optimal behavior (submitting 2 bios for the same extent).
3017 */
3018 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3019 prev_em_start && *prev_em_start != (u64)-1 &&
3020 *prev_em_start != em->orig_start)
3021 force_bio_submit = true;
3022
3023 if (prev_em_start)
3024 *prev_em_start = em->orig_start;
3025
d1310b2e
CM
3026 free_extent_map(em);
3027 em = NULL;
3028
3029 /* we've found a hole, just zero and go on */
3030 if (block_start == EXTENT_MAP_HOLE) {
3031 char *userpage;
507903b8
AJ
3032 struct extent_state *cached = NULL;
3033
7ac687d9 3034 userpage = kmap_atomic(page);
306e16ce 3035 memset(userpage + pg_offset, 0, iosize);
d1310b2e 3036 flush_dcache_page(page);
7ac687d9 3037 kunmap_atomic(userpage);
d1310b2e
CM
3038
3039 set_extent_uptodate(tree, cur, cur + iosize - 1,
507903b8 3040 &cached, GFP_NOFS);
5e6ecb36
FM
3041 if (parent_locked)
3042 free_extent_state(cached);
3043 else
3044 unlock_extent_cached(tree, cur,
3045 cur + iosize - 1,
3046 &cached, GFP_NOFS);
d1310b2e 3047 cur = cur + iosize;
306e16ce 3048 pg_offset += iosize;
d1310b2e
CM
3049 continue;
3050 }
3051 /* the get_extent function already copied into the page */
9655d298
CM
3052 if (test_range_bit(tree, cur, cur_end,
3053 EXTENT_UPTODATE, 1, NULL)) {
a1b32a59 3054 check_page_uptodate(tree, page);
4b384318
MF
3055 if (!parent_locked)
3056 unlock_extent(tree, cur, cur + iosize - 1);
d1310b2e 3057 cur = cur + iosize;
306e16ce 3058 pg_offset += iosize;
d1310b2e
CM
3059 continue;
3060 }
70dec807
CM
3061 /* we have an inline extent but it didn't get marked up
3062 * to date. Error out
3063 */
3064 if (block_start == EXTENT_MAP_INLINE) {
3065 SetPageError(page);
4b384318
MF
3066 if (!parent_locked)
3067 unlock_extent(tree, cur, cur + iosize - 1);
70dec807 3068 cur = cur + iosize;
306e16ce 3069 pg_offset += iosize;
70dec807
CM
3070 continue;
3071 }
d1310b2e 3072
c8f2f24b 3073 pnr -= page->index;
da2f0f74 3074 ret = submit_extent_page(rw, tree, NULL, page,
306e16ce 3075 sector, disk_io_size, pg_offset,
89642229 3076 bdev, bio, pnr,
c8b97818
CM
3077 end_bio_extent_readpage, mirror_num,
3078 *bio_flags,
005efedf
FM
3079 this_bio_flag,
3080 force_bio_submit);
c8f2f24b
JB
3081 if (!ret) {
3082 nr++;
3083 *bio_flags = this_bio_flag;
3084 } else {
d1310b2e 3085 SetPageError(page);
4b384318
MF
3086 if (!parent_locked)
3087 unlock_extent(tree, cur, cur + iosize - 1);
edd33c99 3088 }
d1310b2e 3089 cur = cur + iosize;
306e16ce 3090 pg_offset += iosize;
d1310b2e 3091 }
90a887c9 3092out:
d1310b2e
CM
3093 if (!nr) {
3094 if (!PageError(page))
3095 SetPageUptodate(page);
3096 unlock_page(page);
3097 }
3098 return 0;
3099}
3100
9974090b
MX
3101static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3102 struct page *pages[], int nr_pages,
3103 u64 start, u64 end,
3104 get_extent_t *get_extent,
125bac01 3105 struct extent_map **em_cached,
9974090b 3106 struct bio **bio, int mirror_num,
808f80b4
FM
3107 unsigned long *bio_flags, int rw,
3108 u64 *prev_em_start)
9974090b
MX
3109{
3110 struct inode *inode;
3111 struct btrfs_ordered_extent *ordered;
3112 int index;
3113
3114 inode = pages[0]->mapping->host;
3115 while (1) {
3116 lock_extent(tree, start, end);
3117 ordered = btrfs_lookup_ordered_range(inode, start,
3118 end - start + 1);
3119 if (!ordered)
3120 break;
3121 unlock_extent(tree, start, end);
3122 btrfs_start_ordered_extent(inode, ordered, 1);
3123 btrfs_put_ordered_extent(ordered);
3124 }
3125
3126 for (index = 0; index < nr_pages; index++) {
125bac01 3127 __do_readpage(tree, pages[index], get_extent, em_cached, bio,
808f80b4 3128 mirror_num, bio_flags, rw, prev_em_start);
9974090b
MX
3129 page_cache_release(pages[index]);
3130 }
3131}
3132
3133static void __extent_readpages(struct extent_io_tree *tree,
3134 struct page *pages[],
3135 int nr_pages, get_extent_t *get_extent,
125bac01 3136 struct extent_map **em_cached,
9974090b 3137 struct bio **bio, int mirror_num,
808f80b4
FM
3138 unsigned long *bio_flags, int rw,
3139 u64 *prev_em_start)
9974090b 3140{
35a3621b 3141 u64 start = 0;
9974090b
MX
3142 u64 end = 0;
3143 u64 page_start;
3144 int index;
35a3621b 3145 int first_index = 0;
9974090b
MX
3146
3147 for (index = 0; index < nr_pages; index++) {
3148 page_start = page_offset(pages[index]);
3149 if (!end) {
3150 start = page_start;
3151 end = start + PAGE_CACHE_SIZE - 1;
3152 first_index = index;
3153 } else if (end + 1 == page_start) {
3154 end += PAGE_CACHE_SIZE;
3155 } else {
3156 __do_contiguous_readpages(tree, &pages[first_index],
3157 index - first_index, start,
125bac01
MX
3158 end, get_extent, em_cached,
3159 bio, mirror_num, bio_flags,
808f80b4 3160 rw, prev_em_start);
9974090b
MX
3161 start = page_start;
3162 end = start + PAGE_CACHE_SIZE - 1;
3163 first_index = index;
3164 }
3165 }
3166
3167 if (end)
3168 __do_contiguous_readpages(tree, &pages[first_index],
3169 index - first_index, start,
125bac01 3170 end, get_extent, em_cached, bio,
808f80b4
FM
3171 mirror_num, bio_flags, rw,
3172 prev_em_start);
9974090b
MX
3173}
3174
3175static int __extent_read_full_page(struct extent_io_tree *tree,
3176 struct page *page,
3177 get_extent_t *get_extent,
3178 struct bio **bio, int mirror_num,
3179 unsigned long *bio_flags, int rw)
3180{
3181 struct inode *inode = page->mapping->host;
3182 struct btrfs_ordered_extent *ordered;
3183 u64 start = page_offset(page);
3184 u64 end = start + PAGE_CACHE_SIZE - 1;
3185 int ret;
3186
3187 while (1) {
3188 lock_extent(tree, start, end);
3189 ordered = btrfs_lookup_ordered_extent(inode, start);
3190 if (!ordered)
3191 break;
3192 unlock_extent(tree, start, end);
3193 btrfs_start_ordered_extent(inode, ordered, 1);
3194 btrfs_put_ordered_extent(ordered);
3195 }
3196
125bac01 3197 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
005efedf 3198 bio_flags, rw, NULL);
9974090b
MX
3199 return ret;
3200}
3201
d1310b2e 3202int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
8ddc7d9c 3203 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
3204{
3205 struct bio *bio = NULL;
c8b97818 3206 unsigned long bio_flags = 0;
d1310b2e
CM
3207 int ret;
3208
8ddc7d9c 3209 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
d4c7ca86 3210 &bio_flags, READ);
d1310b2e 3211 if (bio)
8ddc7d9c 3212 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
d1310b2e
CM
3213 return ret;
3214}
d1310b2e 3215
4b384318
MF
3216int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3217 get_extent_t *get_extent, int mirror_num)
3218{
3219 struct bio *bio = NULL;
3220 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3221 int ret;
3222
3223 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
005efedf 3224 &bio_flags, READ, NULL);
4b384318
MF
3225 if (bio)
3226 ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3227 return ret;
3228}
3229
11c8349b
CM
3230static noinline void update_nr_written(struct page *page,
3231 struct writeback_control *wbc,
3232 unsigned long nr_written)
3233{
3234 wbc->nr_to_write -= nr_written;
3235 if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3236 wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3237 page->mapping->writeback_index = page->index + nr_written;
3238}
3239
d1310b2e 3240/*
40f76580
CM
3241 * helper for __extent_writepage, doing all of the delayed allocation setup.
3242 *
3243 * This returns 1 if our fill_delalloc function did all the work required
3244 * to write the page (copy into inline extent). In this case the IO has
3245 * been started and the page is already unlocked.
3246 *
3247 * This returns 0 if all went well (page still locked)
3248 * This returns < 0 if there were errors (page still locked)
d1310b2e 3249 */
40f76580
CM
3250static noinline_for_stack int writepage_delalloc(struct inode *inode,
3251 struct page *page, struct writeback_control *wbc,
3252 struct extent_page_data *epd,
3253 u64 delalloc_start,
3254 unsigned long *nr_written)
3255{
3256 struct extent_io_tree *tree = epd->tree;
3257 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3258 u64 nr_delalloc;
3259 u64 delalloc_to_write = 0;
3260 u64 delalloc_end = 0;
3261 int ret;
3262 int page_started = 0;
3263
3264 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3265 return 0;
3266
3267 while (delalloc_end < page_end) {
3268 nr_delalloc = find_lock_delalloc_range(inode, tree,
3269 page,
3270 &delalloc_start,
3271 &delalloc_end,
dcab6a3b 3272 BTRFS_MAX_EXTENT_SIZE);
40f76580
CM
3273 if (nr_delalloc == 0) {
3274 delalloc_start = delalloc_end + 1;
3275 continue;
3276 }
3277 ret = tree->ops->fill_delalloc(inode, page,
3278 delalloc_start,
3279 delalloc_end,
3280 &page_started,
3281 nr_written);
3282 /* File system has been set read-only */
3283 if (ret) {
3284 SetPageError(page);
3285 /* fill_delalloc should be return < 0 for error
3286 * but just in case, we use > 0 here meaning the
3287 * IO is started, so we don't want to return > 0
3288 * unless things are going well.
3289 */
3290 ret = ret < 0 ? ret : -EIO;
3291 goto done;
3292 }
3293 /*
3294 * delalloc_end is already one less than the total
3295 * length, so we don't subtract one from
3296 * PAGE_CACHE_SIZE
3297 */
3298 delalloc_to_write += (delalloc_end - delalloc_start +
3299 PAGE_CACHE_SIZE) >>
3300 PAGE_CACHE_SHIFT;
3301 delalloc_start = delalloc_end + 1;
3302 }
3303 if (wbc->nr_to_write < delalloc_to_write) {
3304 int thresh = 8192;
3305
3306 if (delalloc_to_write < thresh * 2)
3307 thresh = delalloc_to_write;
3308 wbc->nr_to_write = min_t(u64, delalloc_to_write,
3309 thresh);
3310 }
3311
3312 /* did the fill delalloc function already unlock and start
3313 * the IO?
3314 */
3315 if (page_started) {
3316 /*
3317 * we've unlocked the page, so we can't update
3318 * the mapping's writeback index, just update
3319 * nr_to_write.
3320 */
3321 wbc->nr_to_write -= *nr_written;
3322 return 1;
3323 }
3324
3325 ret = 0;
3326
3327done:
3328 return ret;
3329}
3330
3331/*
3332 * helper for __extent_writepage. This calls the writepage start hooks,
3333 * and does the loop to map the page into extents and bios.
3334 *
3335 * We return 1 if the IO is started and the page is unlocked,
3336 * 0 if all went well (page still locked)
3337 * < 0 if there were errors (page still locked)
3338 */
3339static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3340 struct page *page,
3341 struct writeback_control *wbc,
3342 struct extent_page_data *epd,
3343 loff_t i_size,
3344 unsigned long nr_written,
3345 int write_flags, int *nr_ret)
d1310b2e 3346{
d1310b2e 3347 struct extent_io_tree *tree = epd->tree;
4eee4fa4 3348 u64 start = page_offset(page);
d1310b2e
CM
3349 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3350 u64 end;
3351 u64 cur = start;
3352 u64 extent_offset;
d1310b2e
CM
3353 u64 block_start;
3354 u64 iosize;
3355 sector_t sector;
2c64c53d 3356 struct extent_state *cached_state = NULL;
d1310b2e
CM
3357 struct extent_map *em;
3358 struct block_device *bdev;
7f3c74fb 3359 size_t pg_offset = 0;
d1310b2e 3360 size_t blocksize;
40f76580
CM
3361 int ret = 0;
3362 int nr = 0;
3363 bool compressed;
c8b97818 3364
247e743c 3365 if (tree->ops && tree->ops->writepage_start_hook) {
c8b97818
CM
3366 ret = tree->ops->writepage_start_hook(page, start,
3367 page_end);
87826df0
JM
3368 if (ret) {
3369 /* Fixup worker will requeue */
3370 if (ret == -EBUSY)
3371 wbc->pages_skipped++;
3372 else
3373 redirty_page_for_writepage(wbc, page);
40f76580 3374
11c8349b 3375 update_nr_written(page, wbc, nr_written);
247e743c 3376 unlock_page(page);
40f76580 3377 ret = 1;
11c8349b 3378 goto done_unlocked;
247e743c
CM
3379 }
3380 }
3381
11c8349b
CM
3382 /*
3383 * we don't want to touch the inode after unlocking the page,
3384 * so we update the mapping writeback index now
3385 */
3386 update_nr_written(page, wbc, nr_written + 1);
771ed689 3387
d1310b2e 3388 end = page_end;
40f76580 3389 if (i_size <= start) {
e6dcd2dc
CM
3390 if (tree->ops && tree->ops->writepage_end_io_hook)
3391 tree->ops->writepage_end_io_hook(page, start,
3392 page_end, NULL, 1);
d1310b2e
CM
3393 goto done;
3394 }
3395
d1310b2e
CM
3396 blocksize = inode->i_sb->s_blocksize;
3397
3398 while (cur <= end) {
40f76580
CM
3399 u64 em_end;
3400 if (cur >= i_size) {
e6dcd2dc
CM
3401 if (tree->ops && tree->ops->writepage_end_io_hook)
3402 tree->ops->writepage_end_io_hook(page, cur,
3403 page_end, NULL, 1);
d1310b2e
CM
3404 break;
3405 }
7f3c74fb 3406 em = epd->get_extent(inode, page, pg_offset, cur,
d1310b2e 3407 end - cur + 1, 1);
c704005d 3408 if (IS_ERR_OR_NULL(em)) {
d1310b2e 3409 SetPageError(page);
61391d56 3410 ret = PTR_ERR_OR_ZERO(em);
d1310b2e
CM
3411 break;
3412 }
3413
3414 extent_offset = cur - em->start;
40f76580
CM
3415 em_end = extent_map_end(em);
3416 BUG_ON(em_end <= cur);
d1310b2e 3417 BUG_ON(end < cur);
40f76580 3418 iosize = min(em_end - cur, end - cur + 1);
fda2832f 3419 iosize = ALIGN(iosize, blocksize);
d1310b2e
CM
3420 sector = (em->block_start + extent_offset) >> 9;
3421 bdev = em->bdev;
3422 block_start = em->block_start;
c8b97818 3423 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
d1310b2e
CM
3424 free_extent_map(em);
3425 em = NULL;
3426
c8b97818
CM
3427 /*
3428 * compressed and inline extents are written through other
3429 * paths in the FS
3430 */
3431 if (compressed || block_start == EXTENT_MAP_HOLE ||
d1310b2e 3432 block_start == EXTENT_MAP_INLINE) {
c8b97818
CM
3433 /*
3434 * end_io notification does not happen here for
3435 * compressed extents
3436 */
3437 if (!compressed && tree->ops &&
3438 tree->ops->writepage_end_io_hook)
e6dcd2dc
CM
3439 tree->ops->writepage_end_io_hook(page, cur,
3440 cur + iosize - 1,
3441 NULL, 1);
c8b97818
CM
3442 else if (compressed) {
3443 /* we don't want to end_page_writeback on
3444 * a compressed extent. this happens
3445 * elsewhere
3446 */
3447 nr++;
3448 }
3449
3450 cur += iosize;
7f3c74fb 3451 pg_offset += iosize;
d1310b2e
CM
3452 continue;
3453 }
c8b97818 3454
d1310b2e
CM
3455 if (tree->ops && tree->ops->writepage_io_hook) {
3456 ret = tree->ops->writepage_io_hook(page, cur,
3457 cur + iosize - 1);
3458 } else {
3459 ret = 0;
3460 }
1259ab75 3461 if (ret) {
d1310b2e 3462 SetPageError(page);
1259ab75 3463 } else {
40f76580 3464 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
7f3c74fb 3465
d1310b2e
CM
3466 set_range_writeback(tree, cur, cur + iosize - 1);
3467 if (!PageWriteback(page)) {
efe120a0
FH
3468 btrfs_err(BTRFS_I(inode)->root->fs_info,
3469 "page %lu not writeback, cur %llu end %llu",
c1c9ff7c 3470 page->index, cur, end);
d1310b2e
CM
3471 }
3472
da2f0f74 3473 ret = submit_extent_page(write_flags, tree, wbc, page,
ffbd517d
CM
3474 sector, iosize, pg_offset,
3475 bdev, &epd->bio, max_nr,
c8b97818 3476 end_bio_extent_writepage,
005efedf 3477 0, 0, 0, false);
d1310b2e
CM
3478 if (ret)
3479 SetPageError(page);
3480 }
3481 cur = cur + iosize;
7f3c74fb 3482 pg_offset += iosize;
d1310b2e
CM
3483 nr++;
3484 }
40f76580
CM
3485done:
3486 *nr_ret = nr;
3487
3488done_unlocked:
3489
3490 /* drop our reference on any cached states */
3491 free_extent_state(cached_state);
3492 return ret;
3493}
3494
3495/*
3496 * the writepage semantics are similar to regular writepage. extent
3497 * records are inserted to lock ranges in the tree, and as dirty areas
3498 * are found, they are marked writeback. Then the lock bits are removed
3499 * and the end_io handler clears the writeback ranges
3500 */
3501static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3502 void *data)
3503{
3504 struct inode *inode = page->mapping->host;
3505 struct extent_page_data *epd = data;
3506 u64 start = page_offset(page);
3507 u64 page_end = start + PAGE_CACHE_SIZE - 1;
3508 int ret;
3509 int nr = 0;
3510 size_t pg_offset = 0;
3511 loff_t i_size = i_size_read(inode);
3512 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3513 int write_flags;
3514 unsigned long nr_written = 0;
3515
3516 if (wbc->sync_mode == WB_SYNC_ALL)
3517 write_flags = WRITE_SYNC;
3518 else
3519 write_flags = WRITE;
3520
3521 trace___extent_writepage(page, inode, wbc);
3522
3523 WARN_ON(!PageLocked(page));
3524
3525 ClearPageError(page);
3526
3527 pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3528 if (page->index > end_index ||
3529 (page->index == end_index && !pg_offset)) {
3530 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3531 unlock_page(page);
3532 return 0;
3533 }
3534
3535 if (page->index == end_index) {
3536 char *userpage;
3537
3538 userpage = kmap_atomic(page);
3539 memset(userpage + pg_offset, 0,
3540 PAGE_CACHE_SIZE - pg_offset);
3541 kunmap_atomic(userpage);
3542 flush_dcache_page(page);
3543 }
3544
3545 pg_offset = 0;
3546
3547 set_page_extent_mapped(page);
3548
3549 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3550 if (ret == 1)
3551 goto done_unlocked;
3552 if (ret)
3553 goto done;
3554
3555 ret = __extent_writepage_io(inode, page, wbc, epd,
3556 i_size, nr_written, write_flags, &nr);
3557 if (ret == 1)
3558 goto done_unlocked;
3559
d1310b2e
CM
3560done:
3561 if (nr == 0) {
3562 /* make sure the mapping tag for page dirty gets cleared */
3563 set_page_writeback(page);
3564 end_page_writeback(page);
3565 }
61391d56
FM
3566 if (PageError(page)) {
3567 ret = ret < 0 ? ret : -EIO;
3568 end_extent_writepage(page, ret, start, page_end);
3569 }
d1310b2e 3570 unlock_page(page);
40f76580 3571 return ret;
771ed689 3572
11c8349b 3573done_unlocked:
d1310b2e
CM
3574 return 0;
3575}
3576
fd8b2b61 3577void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
0b32f4bb 3578{
74316201
N
3579 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3580 TASK_UNINTERRUPTIBLE);
0b32f4bb
JB
3581}
3582
0e378df1
CM
3583static noinline_for_stack int
3584lock_extent_buffer_for_io(struct extent_buffer *eb,
3585 struct btrfs_fs_info *fs_info,
3586 struct extent_page_data *epd)
0b32f4bb
JB
3587{
3588 unsigned long i, num_pages;
3589 int flush = 0;
3590 int ret = 0;
3591
3592 if (!btrfs_try_tree_write_lock(eb)) {
3593 flush = 1;
3594 flush_write_bio(epd);
3595 btrfs_tree_lock(eb);
3596 }
3597
3598 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3599 btrfs_tree_unlock(eb);
3600 if (!epd->sync_io)
3601 return 0;
3602 if (!flush) {
3603 flush_write_bio(epd);
3604 flush = 1;
3605 }
a098d8e8
CM
3606 while (1) {
3607 wait_on_extent_buffer_writeback(eb);
3608 btrfs_tree_lock(eb);
3609 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3610 break;
0b32f4bb 3611 btrfs_tree_unlock(eb);
0b32f4bb
JB
3612 }
3613 }
3614
51561ffe
JB
3615 /*
3616 * We need to do this to prevent races in people who check if the eb is
3617 * under IO since we can end up having no IO bits set for a short period
3618 * of time.
3619 */
3620 spin_lock(&eb->refs_lock);
0b32f4bb
JB
3621 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3622 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
51561ffe 3623 spin_unlock(&eb->refs_lock);
0b32f4bb 3624 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
e2d84521
MX
3625 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3626 -eb->len,
3627 fs_info->dirty_metadata_batch);
0b32f4bb 3628 ret = 1;
51561ffe
JB
3629 } else {
3630 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
3631 }
3632
3633 btrfs_tree_unlock(eb);
3634
3635 if (!ret)
3636 return ret;
3637
3638 num_pages = num_extent_pages(eb->start, eb->len);
3639 for (i = 0; i < num_pages; i++) {
fb85fc9a 3640 struct page *p = eb->pages[i];
0b32f4bb
JB
3641
3642 if (!trylock_page(p)) {
3643 if (!flush) {
3644 flush_write_bio(epd);
3645 flush = 1;
3646 }
3647 lock_page(p);
3648 }
3649 }
3650
3651 return ret;
3652}
3653
3654static void end_extent_buffer_writeback(struct extent_buffer *eb)
3655{
3656 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
4e857c58 3657 smp_mb__after_atomic();
0b32f4bb
JB
3658 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3659}
3660
656f30db
FM
3661static void set_btree_ioerr(struct page *page)
3662{
3663 struct extent_buffer *eb = (struct extent_buffer *)page->private;
3664 struct btrfs_inode *btree_ino = BTRFS_I(eb->fs_info->btree_inode);
3665
3666 SetPageError(page);
3667 if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3668 return;
3669
3670 /*
3671 * If writeback for a btree extent that doesn't belong to a log tree
3672 * failed, increment the counter transaction->eb_write_errors.
3673 * We do this because while the transaction is running and before it's
3674 * committing (when we call filemap_fdata[write|wait]_range against
3675 * the btree inode), we might have
3676 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3677 * returns an error or an error happens during writeback, when we're
3678 * committing the transaction we wouldn't know about it, since the pages
3679 * can be no longer dirty nor marked anymore for writeback (if a
3680 * subsequent modification to the extent buffer didn't happen before the
3681 * transaction commit), which makes filemap_fdata[write|wait]_range not
3682 * able to find the pages tagged with SetPageError at transaction
3683 * commit time. So if this happens we must abort the transaction,
3684 * otherwise we commit a super block with btree roots that point to
3685 * btree nodes/leafs whose content on disk is invalid - either garbage
3686 * or the content of some node/leaf from a past generation that got
3687 * cowed or deleted and is no longer valid.
3688 *
3689 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3690 * not be enough - we need to distinguish between log tree extents vs
3691 * non-log tree extents, and the next filemap_fdatawait_range() call
3692 * will catch and clear such errors in the mapping - and that call might
3693 * be from a log sync and not from a transaction commit. Also, checking
3694 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3695 * not done and would not be reliable - the eb might have been released
3696 * from memory and reading it back again means that flag would not be
3697 * set (since it's a runtime flag, not persisted on disk).
3698 *
3699 * Using the flags below in the btree inode also makes us achieve the
3700 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3701 * writeback for all dirty pages and before filemap_fdatawait_range()
3702 * is called, the writeback for all dirty pages had already finished
3703 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3704 * filemap_fdatawait_range() would return success, as it could not know
3705 * that writeback errors happened (the pages were no longer tagged for
3706 * writeback).
3707 */
3708 switch (eb->log_index) {
3709 case -1:
3710 set_bit(BTRFS_INODE_BTREE_ERR, &btree_ino->runtime_flags);
3711 break;
3712 case 0:
3713 set_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
3714 break;
3715 case 1:
3716 set_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
3717 break;
3718 default:
3719 BUG(); /* unexpected, logic error */
3720 }
3721}
3722
4246a0b6 3723static void end_bio_extent_buffer_writepage(struct bio *bio)
0b32f4bb 3724{
2c30c71b 3725 struct bio_vec *bvec;
0b32f4bb 3726 struct extent_buffer *eb;
2c30c71b 3727 int i, done;
0b32f4bb 3728
2c30c71b 3729 bio_for_each_segment_all(bvec, bio, i) {
0b32f4bb
JB
3730 struct page *page = bvec->bv_page;
3731
0b32f4bb
JB
3732 eb = (struct extent_buffer *)page->private;
3733 BUG_ON(!eb);
3734 done = atomic_dec_and_test(&eb->io_pages);
3735
4246a0b6
CH
3736 if (bio->bi_error ||
3737 test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
0b32f4bb 3738 ClearPageUptodate(page);
656f30db 3739 set_btree_ioerr(page);
0b32f4bb
JB
3740 }
3741
3742 end_page_writeback(page);
3743
3744 if (!done)
3745 continue;
3746
3747 end_extent_buffer_writeback(eb);
2c30c71b 3748 }
0b32f4bb
JB
3749
3750 bio_put(bio);
0b32f4bb
JB
3751}
3752
0e378df1 3753static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
0b32f4bb
JB
3754 struct btrfs_fs_info *fs_info,
3755 struct writeback_control *wbc,
3756 struct extent_page_data *epd)
3757{
3758 struct block_device *bdev = fs_info->fs_devices->latest_bdev;
f28491e0 3759 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
0b32f4bb
JB
3760 u64 offset = eb->start;
3761 unsigned long i, num_pages;
de0022b9 3762 unsigned long bio_flags = 0;
d4c7ca86 3763 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
d7dbe9e7 3764 int ret = 0;
0b32f4bb 3765
656f30db 3766 clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
0b32f4bb
JB
3767 num_pages = num_extent_pages(eb->start, eb->len);
3768 atomic_set(&eb->io_pages, num_pages);
de0022b9
JB
3769 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3770 bio_flags = EXTENT_BIO_TREE_LOG;
3771
0b32f4bb 3772 for (i = 0; i < num_pages; i++) {
fb85fc9a 3773 struct page *p = eb->pages[i];
0b32f4bb
JB
3774
3775 clear_page_dirty_for_io(p);
3776 set_page_writeback(p);
da2f0f74 3777 ret = submit_extent_page(rw, tree, wbc, p, offset >> 9,
0b32f4bb
JB
3778 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3779 -1, end_bio_extent_buffer_writepage,
005efedf 3780 0, epd->bio_flags, bio_flags, false);
de0022b9 3781 epd->bio_flags = bio_flags;
0b32f4bb 3782 if (ret) {
656f30db 3783 set_btree_ioerr(p);
55e3bd2e 3784 end_page_writeback(p);
0b32f4bb
JB
3785 if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3786 end_extent_buffer_writeback(eb);
3787 ret = -EIO;
3788 break;
3789 }
3790 offset += PAGE_CACHE_SIZE;
3791 update_nr_written(p, wbc, 1);
3792 unlock_page(p);
3793 }
3794
3795 if (unlikely(ret)) {
3796 for (; i < num_pages; i++) {
bbf65cf0 3797 struct page *p = eb->pages[i];
81465028 3798 clear_page_dirty_for_io(p);
0b32f4bb
JB
3799 unlock_page(p);
3800 }
3801 }
3802
3803 return ret;
3804}
3805
3806int btree_write_cache_pages(struct address_space *mapping,
3807 struct writeback_control *wbc)
3808{
3809 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3810 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3811 struct extent_buffer *eb, *prev_eb = NULL;
3812 struct extent_page_data epd = {
3813 .bio = NULL,
3814 .tree = tree,
3815 .extent_locked = 0,
3816 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 3817 .bio_flags = 0,
0b32f4bb
JB
3818 };
3819 int ret = 0;
3820 int done = 0;
3821 int nr_to_write_done = 0;
3822 struct pagevec pvec;
3823 int nr_pages;
3824 pgoff_t index;
3825 pgoff_t end; /* Inclusive */
3826 int scanned = 0;
3827 int tag;
3828
3829 pagevec_init(&pvec, 0);
3830 if (wbc->range_cyclic) {
3831 index = mapping->writeback_index; /* Start from prev offset */
3832 end = -1;
3833 } else {
3834 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3835 end = wbc->range_end >> PAGE_CACHE_SHIFT;
3836 scanned = 1;
3837 }
3838 if (wbc->sync_mode == WB_SYNC_ALL)
3839 tag = PAGECACHE_TAG_TOWRITE;
3840 else
3841 tag = PAGECACHE_TAG_DIRTY;
3842retry:
3843 if (wbc->sync_mode == WB_SYNC_ALL)
3844 tag_pages_for_writeback(mapping, index, end);
3845 while (!done && !nr_to_write_done && (index <= end) &&
3846 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3847 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3848 unsigned i;
3849
3850 scanned = 1;
3851 for (i = 0; i < nr_pages; i++) {
3852 struct page *page = pvec.pages[i];
3853
3854 if (!PagePrivate(page))
3855 continue;
3856
3857 if (!wbc->range_cyclic && page->index > end) {
3858 done = 1;
3859 break;
3860 }
3861
b5bae261
JB
3862 spin_lock(&mapping->private_lock);
3863 if (!PagePrivate(page)) {
3864 spin_unlock(&mapping->private_lock);
3865 continue;
3866 }
3867
0b32f4bb 3868 eb = (struct extent_buffer *)page->private;
b5bae261
JB
3869
3870 /*
3871 * Shouldn't happen and normally this would be a BUG_ON
3872 * but no sense in crashing the users box for something
3873 * we can survive anyway.
3874 */
fae7f21c 3875 if (WARN_ON(!eb)) {
b5bae261 3876 spin_unlock(&mapping->private_lock);
0b32f4bb
JB
3877 continue;
3878 }
3879
b5bae261
JB
3880 if (eb == prev_eb) {
3881 spin_unlock(&mapping->private_lock);
0b32f4bb 3882 continue;
b5bae261 3883 }
0b32f4bb 3884
b5bae261
JB
3885 ret = atomic_inc_not_zero(&eb->refs);
3886 spin_unlock(&mapping->private_lock);
3887 if (!ret)
0b32f4bb 3888 continue;
0b32f4bb
JB
3889
3890 prev_eb = eb;
3891 ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3892 if (!ret) {
3893 free_extent_buffer(eb);
3894 continue;
3895 }
3896
3897 ret = write_one_eb(eb, fs_info, wbc, &epd);
3898 if (ret) {
3899 done = 1;
3900 free_extent_buffer(eb);
3901 break;
3902 }
3903 free_extent_buffer(eb);
3904
3905 /*
3906 * the filesystem may choose to bump up nr_to_write.
3907 * We have to make sure to honor the new nr_to_write
3908 * at any time
3909 */
3910 nr_to_write_done = wbc->nr_to_write <= 0;
3911 }
3912 pagevec_release(&pvec);
3913 cond_resched();
3914 }
3915 if (!scanned && !done) {
3916 /*
3917 * We hit the last page and there is more work to be done: wrap
3918 * back to the start of the file
3919 */
3920 scanned = 1;
3921 index = 0;
3922 goto retry;
3923 }
3924 flush_write_bio(&epd);
3925 return ret;
3926}
3927
d1310b2e 3928/**
4bef0848 3929 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
d1310b2e
CM
3930 * @mapping: address space structure to write
3931 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3932 * @writepage: function called for each page
3933 * @data: data passed to writepage function
3934 *
3935 * If a page is already under I/O, write_cache_pages() skips it, even
3936 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
3937 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
3938 * and msync() need to guarantee that all the data which was dirty at the time
3939 * the call was made get new I/O started against them. If wbc->sync_mode is
3940 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3941 * existing IO to complete.
3942 */
b2950863 3943static int extent_write_cache_pages(struct extent_io_tree *tree,
4bef0848
CM
3944 struct address_space *mapping,
3945 struct writeback_control *wbc,
d2c3f4f6
CM
3946 writepage_t writepage, void *data,
3947 void (*flush_fn)(void *))
d1310b2e 3948{
7fd1a3f7 3949 struct inode *inode = mapping->host;
d1310b2e
CM
3950 int ret = 0;
3951 int done = 0;
61391d56 3952 int err = 0;
f85d7d6c 3953 int nr_to_write_done = 0;
d1310b2e
CM
3954 struct pagevec pvec;
3955 int nr_pages;
3956 pgoff_t index;
3957 pgoff_t end; /* Inclusive */
3958 int scanned = 0;
f7aaa06b 3959 int tag;
d1310b2e 3960
7fd1a3f7
JB
3961 /*
3962 * We have to hold onto the inode so that ordered extents can do their
3963 * work when the IO finishes. The alternative to this is failing to add
3964 * an ordered extent if the igrab() fails there and that is a huge pain
3965 * to deal with, so instead just hold onto the inode throughout the
3966 * writepages operation. If it fails here we are freeing up the inode
3967 * anyway and we'd rather not waste our time writing out stuff that is
3968 * going to be truncated anyway.
3969 */
3970 if (!igrab(inode))
3971 return 0;
3972
d1310b2e
CM
3973 pagevec_init(&pvec, 0);
3974 if (wbc->range_cyclic) {
3975 index = mapping->writeback_index; /* Start from prev offset */
3976 end = -1;
3977 } else {
3978 index = wbc->range_start >> PAGE_CACHE_SHIFT;
3979 end = wbc->range_end >> PAGE_CACHE_SHIFT;
d1310b2e
CM
3980 scanned = 1;
3981 }
f7aaa06b
JB
3982 if (wbc->sync_mode == WB_SYNC_ALL)
3983 tag = PAGECACHE_TAG_TOWRITE;
3984 else
3985 tag = PAGECACHE_TAG_DIRTY;
d1310b2e 3986retry:
f7aaa06b
JB
3987 if (wbc->sync_mode == WB_SYNC_ALL)
3988 tag_pages_for_writeback(mapping, index, end);
f85d7d6c 3989 while (!done && !nr_to_write_done && (index <= end) &&
f7aaa06b
JB
3990 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3991 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
d1310b2e
CM
3992 unsigned i;
3993
3994 scanned = 1;
3995 for (i = 0; i < nr_pages; i++) {
3996 struct page *page = pvec.pages[i];
3997
3998 /*
3999 * At this point we hold neither mapping->tree_lock nor
4000 * lock on the page itself: the page may be truncated or
4001 * invalidated (changing page->mapping to NULL), or even
4002 * swizzled back from swapper_space to tmpfs file
4003 * mapping
4004 */
c8f2f24b
JB
4005 if (!trylock_page(page)) {
4006 flush_fn(data);
4007 lock_page(page);
01d658f2 4008 }
d1310b2e
CM
4009
4010 if (unlikely(page->mapping != mapping)) {
4011 unlock_page(page);
4012 continue;
4013 }
4014
4015 if (!wbc->range_cyclic && page->index > end) {
4016 done = 1;
4017 unlock_page(page);
4018 continue;
4019 }
4020
d2c3f4f6 4021 if (wbc->sync_mode != WB_SYNC_NONE) {
0e6bd956
CM
4022 if (PageWriteback(page))
4023 flush_fn(data);
d1310b2e 4024 wait_on_page_writeback(page);
d2c3f4f6 4025 }
d1310b2e
CM
4026
4027 if (PageWriteback(page) ||
4028 !clear_page_dirty_for_io(page)) {
4029 unlock_page(page);
4030 continue;
4031 }
4032
4033 ret = (*writepage)(page, wbc, data);
4034
4035 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
4036 unlock_page(page);
4037 ret = 0;
4038 }
61391d56
FM
4039 if (!err && ret < 0)
4040 err = ret;
f85d7d6c
CM
4041
4042 /*
4043 * the filesystem may choose to bump up nr_to_write.
4044 * We have to make sure to honor the new nr_to_write
4045 * at any time
4046 */
4047 nr_to_write_done = wbc->nr_to_write <= 0;
d1310b2e
CM
4048 }
4049 pagevec_release(&pvec);
4050 cond_resched();
4051 }
61391d56 4052 if (!scanned && !done && !err) {
d1310b2e
CM
4053 /*
4054 * We hit the last page and there is more work to be done: wrap
4055 * back to the start of the file
4056 */
4057 scanned = 1;
4058 index = 0;
4059 goto retry;
4060 }
7fd1a3f7 4061 btrfs_add_delayed_iput(inode);
61391d56 4062 return err;
d1310b2e 4063}
d1310b2e 4064
ffbd517d 4065static void flush_epd_write_bio(struct extent_page_data *epd)
d2c3f4f6 4066{
d2c3f4f6 4067 if (epd->bio) {
355808c2
JM
4068 int rw = WRITE;
4069 int ret;
4070
ffbd517d 4071 if (epd->sync_io)
355808c2
JM
4072 rw = WRITE_SYNC;
4073
de0022b9 4074 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
79787eaa 4075 BUG_ON(ret < 0); /* -ENOMEM */
d2c3f4f6
CM
4076 epd->bio = NULL;
4077 }
4078}
4079
ffbd517d
CM
4080static noinline void flush_write_bio(void *data)
4081{
4082 struct extent_page_data *epd = data;
4083 flush_epd_write_bio(epd);
4084}
4085
d1310b2e
CM
4086int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
4087 get_extent_t *get_extent,
4088 struct writeback_control *wbc)
4089{
4090 int ret;
d1310b2e
CM
4091 struct extent_page_data epd = {
4092 .bio = NULL,
4093 .tree = tree,
4094 .get_extent = get_extent,
771ed689 4095 .extent_locked = 0,
ffbd517d 4096 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4097 .bio_flags = 0,
d1310b2e 4098 };
d1310b2e 4099
d1310b2e
CM
4100 ret = __extent_writepage(page, wbc, &epd);
4101
ffbd517d 4102 flush_epd_write_bio(&epd);
d1310b2e
CM
4103 return ret;
4104}
d1310b2e 4105
771ed689
CM
4106int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
4107 u64 start, u64 end, get_extent_t *get_extent,
4108 int mode)
4109{
4110 int ret = 0;
4111 struct address_space *mapping = inode->i_mapping;
4112 struct page *page;
4113 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
4114 PAGE_CACHE_SHIFT;
4115
4116 struct extent_page_data epd = {
4117 .bio = NULL,
4118 .tree = tree,
4119 .get_extent = get_extent,
4120 .extent_locked = 1,
ffbd517d 4121 .sync_io = mode == WB_SYNC_ALL,
de0022b9 4122 .bio_flags = 0,
771ed689
CM
4123 };
4124 struct writeback_control wbc_writepages = {
771ed689 4125 .sync_mode = mode,
771ed689
CM
4126 .nr_to_write = nr_pages * 2,
4127 .range_start = start,
4128 .range_end = end + 1,
4129 };
4130
d397712b 4131 while (start <= end) {
771ed689
CM
4132 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
4133 if (clear_page_dirty_for_io(page))
4134 ret = __extent_writepage(page, &wbc_writepages, &epd);
4135 else {
4136 if (tree->ops && tree->ops->writepage_end_io_hook)
4137 tree->ops->writepage_end_io_hook(page, start,
4138 start + PAGE_CACHE_SIZE - 1,
4139 NULL, 1);
4140 unlock_page(page);
4141 }
4142 page_cache_release(page);
4143 start += PAGE_CACHE_SIZE;
4144 }
4145
ffbd517d 4146 flush_epd_write_bio(&epd);
771ed689
CM
4147 return ret;
4148}
d1310b2e
CM
4149
4150int extent_writepages(struct extent_io_tree *tree,
4151 struct address_space *mapping,
4152 get_extent_t *get_extent,
4153 struct writeback_control *wbc)
4154{
4155 int ret = 0;
4156 struct extent_page_data epd = {
4157 .bio = NULL,
4158 .tree = tree,
4159 .get_extent = get_extent,
771ed689 4160 .extent_locked = 0,
ffbd517d 4161 .sync_io = wbc->sync_mode == WB_SYNC_ALL,
de0022b9 4162 .bio_flags = 0,
d1310b2e
CM
4163 };
4164
4bef0848 4165 ret = extent_write_cache_pages(tree, mapping, wbc,
d2c3f4f6
CM
4166 __extent_writepage, &epd,
4167 flush_write_bio);
ffbd517d 4168 flush_epd_write_bio(&epd);
d1310b2e
CM
4169 return ret;
4170}
d1310b2e
CM
4171
4172int extent_readpages(struct extent_io_tree *tree,
4173 struct address_space *mapping,
4174 struct list_head *pages, unsigned nr_pages,
4175 get_extent_t get_extent)
4176{
4177 struct bio *bio = NULL;
4178 unsigned page_idx;
c8b97818 4179 unsigned long bio_flags = 0;
67c9684f
LB
4180 struct page *pagepool[16];
4181 struct page *page;
125bac01 4182 struct extent_map *em_cached = NULL;
67c9684f 4183 int nr = 0;
808f80b4 4184 u64 prev_em_start = (u64)-1;
d1310b2e 4185
d1310b2e 4186 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
67c9684f 4187 page = list_entry(pages->prev, struct page, lru);
d1310b2e
CM
4188
4189 prefetchw(&page->flags);
4190 list_del(&page->lru);
67c9684f 4191 if (add_to_page_cache_lru(page, mapping,
43e817a1 4192 page->index, GFP_NOFS)) {
67c9684f
LB
4193 page_cache_release(page);
4194 continue;
d1310b2e 4195 }
67c9684f
LB
4196
4197 pagepool[nr++] = page;
4198 if (nr < ARRAY_SIZE(pagepool))
4199 continue;
125bac01 4200 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4201 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4202 nr = 0;
d1310b2e 4203 }
9974090b 4204 if (nr)
125bac01 4205 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
808f80b4 4206 &bio, 0, &bio_flags, READ, &prev_em_start);
67c9684f 4207
125bac01
MX
4208 if (em_cached)
4209 free_extent_map(em_cached);
4210
d1310b2e
CM
4211 BUG_ON(!list_empty(pages));
4212 if (bio)
79787eaa 4213 return submit_one_bio(READ, bio, 0, bio_flags);
d1310b2e
CM
4214 return 0;
4215}
d1310b2e
CM
4216
4217/*
4218 * basic invalidatepage code, this waits on any locked or writeback
4219 * ranges corresponding to the page, and then deletes any extent state
4220 * records from the tree
4221 */
4222int extent_invalidatepage(struct extent_io_tree *tree,
4223 struct page *page, unsigned long offset)
4224{
2ac55d41 4225 struct extent_state *cached_state = NULL;
4eee4fa4 4226 u64 start = page_offset(page);
d1310b2e
CM
4227 u64 end = start + PAGE_CACHE_SIZE - 1;
4228 size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4229
fda2832f 4230 start += ALIGN(offset, blocksize);
d1310b2e
CM
4231 if (start > end)
4232 return 0;
4233
ff13db41 4234 lock_extent_bits(tree, start, end, &cached_state);
1edbb734 4235 wait_on_page_writeback(page);
d1310b2e 4236 clear_extent_bit(tree, start, end,
32c00aff
JB
4237 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4238 EXTENT_DO_ACCOUNTING,
2ac55d41 4239 1, 1, &cached_state, GFP_NOFS);
d1310b2e
CM
4240 return 0;
4241}
d1310b2e 4242
7b13b7b1
CM
4243/*
4244 * a helper for releasepage, this tests for areas of the page that
4245 * are locked or under IO and drops the related state bits if it is safe
4246 * to drop the page.
4247 */
48a3b636
ES
4248static int try_release_extent_state(struct extent_map_tree *map,
4249 struct extent_io_tree *tree,
4250 struct page *page, gfp_t mask)
7b13b7b1 4251{
4eee4fa4 4252 u64 start = page_offset(page);
7b13b7b1
CM
4253 u64 end = start + PAGE_CACHE_SIZE - 1;
4254 int ret = 1;
4255
211f90e6 4256 if (test_range_bit(tree, start, end,
8b62b72b 4257 EXTENT_IOBITS, 0, NULL))
7b13b7b1
CM
4258 ret = 0;
4259 else {
4260 if ((mask & GFP_NOFS) == GFP_NOFS)
4261 mask = GFP_NOFS;
11ef160f
CM
4262 /*
4263 * at this point we can safely clear everything except the
4264 * locked bit and the nodatasum bit
4265 */
e3f24cc5 4266 ret = clear_extent_bit(tree, start, end,
11ef160f
CM
4267 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4268 0, 0, NULL, mask);
e3f24cc5
CM
4269
4270 /* if clear_extent_bit failed for enomem reasons,
4271 * we can't allow the release to continue.
4272 */
4273 if (ret < 0)
4274 ret = 0;
4275 else
4276 ret = 1;
7b13b7b1
CM
4277 }
4278 return ret;
4279}
7b13b7b1 4280
d1310b2e
CM
4281/*
4282 * a helper for releasepage. As long as there are no locked extents
4283 * in the range corresponding to the page, both state records and extent
4284 * map records are removed
4285 */
4286int try_release_extent_mapping(struct extent_map_tree *map,
70dec807
CM
4287 struct extent_io_tree *tree, struct page *page,
4288 gfp_t mask)
d1310b2e
CM
4289{
4290 struct extent_map *em;
4eee4fa4 4291 u64 start = page_offset(page);
d1310b2e 4292 u64 end = start + PAGE_CACHE_SIZE - 1;
7b13b7b1 4293
d0164adc 4294 if (gfpflags_allow_blocking(mask) &&
ee22184b 4295 page->mapping->host->i_size > SZ_16M) {
39b5637f 4296 u64 len;
70dec807 4297 while (start <= end) {
39b5637f 4298 len = end - start + 1;
890871be 4299 write_lock(&map->lock);
39b5637f 4300 em = lookup_extent_mapping(map, start, len);
285190d9 4301 if (!em) {
890871be 4302 write_unlock(&map->lock);
70dec807
CM
4303 break;
4304 }
7f3c74fb
CM
4305 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4306 em->start != start) {
890871be 4307 write_unlock(&map->lock);
70dec807
CM
4308 free_extent_map(em);
4309 break;
4310 }
4311 if (!test_range_bit(tree, em->start,
4312 extent_map_end(em) - 1,
8b62b72b 4313 EXTENT_LOCKED | EXTENT_WRITEBACK,
9655d298 4314 0, NULL)) {
70dec807
CM
4315 remove_extent_mapping(map, em);
4316 /* once for the rb tree */
4317 free_extent_map(em);
4318 }
4319 start = extent_map_end(em);
890871be 4320 write_unlock(&map->lock);
70dec807
CM
4321
4322 /* once for us */
d1310b2e
CM
4323 free_extent_map(em);
4324 }
d1310b2e 4325 }
7b13b7b1 4326 return try_release_extent_state(map, tree, page, mask);
d1310b2e 4327}
d1310b2e 4328
ec29ed5b
CM
4329/*
4330 * helper function for fiemap, which doesn't want to see any holes.
4331 * This maps until we find something past 'last'
4332 */
4333static struct extent_map *get_extent_skip_holes(struct inode *inode,
4334 u64 offset,
4335 u64 last,
4336 get_extent_t *get_extent)
4337{
4338 u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4339 struct extent_map *em;
4340 u64 len;
4341
4342 if (offset >= last)
4343 return NULL;
4344
67871254 4345 while (1) {
ec29ed5b
CM
4346 len = last - offset;
4347 if (len == 0)
4348 break;
fda2832f 4349 len = ALIGN(len, sectorsize);
ec29ed5b 4350 em = get_extent(inode, NULL, 0, offset, len, 0);
c704005d 4351 if (IS_ERR_OR_NULL(em))
ec29ed5b
CM
4352 return em;
4353
4354 /* if this isn't a hole return it */
4355 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4356 em->block_start != EXTENT_MAP_HOLE) {
4357 return em;
4358 }
4359
4360 /* this is a hole, advance to the next extent */
4361 offset = extent_map_end(em);
4362 free_extent_map(em);
4363 if (offset >= last)
4364 break;
4365 }
4366 return NULL;
4367}
4368
1506fcc8
YS
4369int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4370 __u64 start, __u64 len, get_extent_t *get_extent)
4371{
975f84fe 4372 int ret = 0;
1506fcc8
YS
4373 u64 off = start;
4374 u64 max = start + len;
4375 u32 flags = 0;
975f84fe
JB
4376 u32 found_type;
4377 u64 last;
ec29ed5b 4378 u64 last_for_get_extent = 0;
1506fcc8 4379 u64 disko = 0;
ec29ed5b 4380 u64 isize = i_size_read(inode);
975f84fe 4381 struct btrfs_key found_key;
1506fcc8 4382 struct extent_map *em = NULL;
2ac55d41 4383 struct extent_state *cached_state = NULL;
975f84fe 4384 struct btrfs_path *path;
dc046b10 4385 struct btrfs_root *root = BTRFS_I(inode)->root;
1506fcc8 4386 int end = 0;
ec29ed5b
CM
4387 u64 em_start = 0;
4388 u64 em_len = 0;
4389 u64 em_end = 0;
1506fcc8
YS
4390
4391 if (len == 0)
4392 return -EINVAL;
4393
975f84fe
JB
4394 path = btrfs_alloc_path();
4395 if (!path)
4396 return -ENOMEM;
4397 path->leave_spinning = 1;
4398
2c91943b
QW
4399 start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4400 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4d479cf0 4401
ec29ed5b
CM
4402 /*
4403 * lookup the last file extent. We're not using i_size here
4404 * because there might be preallocation past i_size
4405 */
dc046b10
JB
4406 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode), -1,
4407 0);
975f84fe
JB
4408 if (ret < 0) {
4409 btrfs_free_path(path);
4410 return ret;
4411 }
4412 WARN_ON(!ret);
4413 path->slots[0]--;
975f84fe 4414 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
962a298f 4415 found_type = found_key.type;
975f84fe 4416
ec29ed5b 4417 /* No extents, but there might be delalloc bits */
33345d01 4418 if (found_key.objectid != btrfs_ino(inode) ||
975f84fe 4419 found_type != BTRFS_EXTENT_DATA_KEY) {
ec29ed5b
CM
4420 /* have to trust i_size as the end */
4421 last = (u64)-1;
4422 last_for_get_extent = isize;
4423 } else {
4424 /*
4425 * remember the start of the last extent. There are a
4426 * bunch of different factors that go into the length of the
4427 * extent, so its much less complex to remember where it started
4428 */
4429 last = found_key.offset;
4430 last_for_get_extent = last + 1;
975f84fe 4431 }
fe09e16c 4432 btrfs_release_path(path);
975f84fe 4433
ec29ed5b
CM
4434 /*
4435 * we might have some extents allocated but more delalloc past those
4436 * extents. so, we trust isize unless the start of the last extent is
4437 * beyond isize
4438 */
4439 if (last < isize) {
4440 last = (u64)-1;
4441 last_for_get_extent = isize;
4442 }
4443
ff13db41 4444 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
d0082371 4445 &cached_state);
ec29ed5b 4446
4d479cf0 4447 em = get_extent_skip_holes(inode, start, last_for_get_extent,
ec29ed5b 4448 get_extent);
1506fcc8
YS
4449 if (!em)
4450 goto out;
4451 if (IS_ERR(em)) {
4452 ret = PTR_ERR(em);
4453 goto out;
4454 }
975f84fe 4455
1506fcc8 4456 while (!end) {
b76bb701 4457 u64 offset_in_extent = 0;
ea8efc74
CM
4458
4459 /* break if the extent we found is outside the range */
4460 if (em->start >= max || extent_map_end(em) < off)
4461 break;
4462
4463 /*
4464 * get_extent may return an extent that starts before our
4465 * requested range. We have to make sure the ranges
4466 * we return to fiemap always move forward and don't
4467 * overlap, so adjust the offsets here
4468 */
4469 em_start = max(em->start, off);
1506fcc8 4470
ea8efc74
CM
4471 /*
4472 * record the offset from the start of the extent
b76bb701
JB
4473 * for adjusting the disk offset below. Only do this if the
4474 * extent isn't compressed since our in ram offset may be past
4475 * what we have actually allocated on disk.
ea8efc74 4476 */
b76bb701
JB
4477 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4478 offset_in_extent = em_start - em->start;
ec29ed5b 4479 em_end = extent_map_end(em);
ea8efc74 4480 em_len = em_end - em_start;
1506fcc8
YS
4481 disko = 0;
4482 flags = 0;
4483
ea8efc74
CM
4484 /*
4485 * bump off for our next call to get_extent
4486 */
4487 off = extent_map_end(em);
4488 if (off >= max)
4489 end = 1;
4490
93dbfad7 4491 if (em->block_start == EXTENT_MAP_LAST_BYTE) {
1506fcc8
YS
4492 end = 1;
4493 flags |= FIEMAP_EXTENT_LAST;
93dbfad7 4494 } else if (em->block_start == EXTENT_MAP_INLINE) {
1506fcc8
YS
4495 flags |= (FIEMAP_EXTENT_DATA_INLINE |
4496 FIEMAP_EXTENT_NOT_ALIGNED);
93dbfad7 4497 } else if (em->block_start == EXTENT_MAP_DELALLOC) {
1506fcc8
YS
4498 flags |= (FIEMAP_EXTENT_DELALLOC |
4499 FIEMAP_EXTENT_UNKNOWN);
dc046b10
JB
4500 } else if (fieinfo->fi_extents_max) {
4501 u64 bytenr = em->block_start -
4502 (em->start - em->orig_start);
fe09e16c 4503
ea8efc74 4504 disko = em->block_start + offset_in_extent;
fe09e16c
LB
4505
4506 /*
4507 * As btrfs supports shared space, this information
4508 * can be exported to userspace tools via
dc046b10
JB
4509 * flag FIEMAP_EXTENT_SHARED. If fi_extents_max == 0
4510 * then we're just getting a count and we can skip the
4511 * lookup stuff.
fe09e16c 4512 */
dc046b10
JB
4513 ret = btrfs_check_shared(NULL, root->fs_info,
4514 root->objectid,
4515 btrfs_ino(inode), bytenr);
4516 if (ret < 0)
fe09e16c 4517 goto out_free;
dc046b10 4518 if (ret)
fe09e16c 4519 flags |= FIEMAP_EXTENT_SHARED;
dc046b10 4520 ret = 0;
1506fcc8
YS
4521 }
4522 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4523 flags |= FIEMAP_EXTENT_ENCODED;
0d2b2372
JB
4524 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4525 flags |= FIEMAP_EXTENT_UNWRITTEN;
1506fcc8 4526
1506fcc8
YS
4527 free_extent_map(em);
4528 em = NULL;
ec29ed5b
CM
4529 if ((em_start >= last) || em_len == (u64)-1 ||
4530 (last == (u64)-1 && isize <= em_end)) {
1506fcc8
YS
4531 flags |= FIEMAP_EXTENT_LAST;
4532 end = 1;
4533 }
4534
ec29ed5b
CM
4535 /* now scan forward to see if this is really the last extent. */
4536 em = get_extent_skip_holes(inode, off, last_for_get_extent,
4537 get_extent);
4538 if (IS_ERR(em)) {
4539 ret = PTR_ERR(em);
4540 goto out;
4541 }
4542 if (!em) {
975f84fe
JB
4543 flags |= FIEMAP_EXTENT_LAST;
4544 end = 1;
4545 }
ec29ed5b
CM
4546 ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4547 em_len, flags);
26e726af
CS
4548 if (ret) {
4549 if (ret == 1)
4550 ret = 0;
ec29ed5b 4551 goto out_free;
26e726af 4552 }
1506fcc8
YS
4553 }
4554out_free:
4555 free_extent_map(em);
4556out:
fe09e16c 4557 btrfs_free_path(path);
a52f4cd2 4558 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
2ac55d41 4559 &cached_state, GFP_NOFS);
1506fcc8
YS
4560 return ret;
4561}
4562
727011e0
CM
4563static void __free_extent_buffer(struct extent_buffer *eb)
4564{
6d49ba1b 4565 btrfs_leak_debug_del(&eb->leak_list);
727011e0
CM
4566 kmem_cache_free(extent_buffer_cache, eb);
4567}
4568
a26e8c9f 4569int extent_buffer_under_io(struct extent_buffer *eb)
db7f3436
JB
4570{
4571 return (atomic_read(&eb->io_pages) ||
4572 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4573 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4574}
4575
4576/*
4577 * Helper for releasing extent buffer page.
4578 */
a50924e3 4579static void btrfs_release_extent_buffer_page(struct extent_buffer *eb)
db7f3436
JB
4580{
4581 unsigned long index;
db7f3436
JB
4582 struct page *page;
4583 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4584
4585 BUG_ON(extent_buffer_under_io(eb));
4586
a50924e3
DS
4587 index = num_extent_pages(eb->start, eb->len);
4588 if (index == 0)
db7f3436
JB
4589 return;
4590
4591 do {
4592 index--;
fb85fc9a 4593 page = eb->pages[index];
5d2361db
FL
4594 if (!page)
4595 continue;
4596 if (mapped)
db7f3436 4597 spin_lock(&page->mapping->private_lock);
5d2361db
FL
4598 /*
4599 * We do this since we'll remove the pages after we've
4600 * removed the eb from the radix tree, so we could race
4601 * and have this page now attached to the new eb. So
4602 * only clear page_private if it's still connected to
4603 * this eb.
4604 */
4605 if (PagePrivate(page) &&
4606 page->private == (unsigned long)eb) {
4607 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4608 BUG_ON(PageDirty(page));
4609 BUG_ON(PageWriteback(page));
db7f3436 4610 /*
5d2361db
FL
4611 * We need to make sure we haven't be attached
4612 * to a new eb.
db7f3436 4613 */
5d2361db
FL
4614 ClearPagePrivate(page);
4615 set_page_private(page, 0);
4616 /* One for the page private */
db7f3436
JB
4617 page_cache_release(page);
4618 }
5d2361db
FL
4619
4620 if (mapped)
4621 spin_unlock(&page->mapping->private_lock);
4622
4623 /* One for when we alloced the page */
4624 page_cache_release(page);
a50924e3 4625 } while (index != 0);
db7f3436
JB
4626}
4627
4628/*
4629 * Helper for releasing the extent buffer.
4630 */
4631static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4632{
a50924e3 4633 btrfs_release_extent_buffer_page(eb);
db7f3436
JB
4634 __free_extent_buffer(eb);
4635}
4636
f28491e0
JB
4637static struct extent_buffer *
4638__alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
23d79d81 4639 unsigned long len)
d1310b2e
CM
4640{
4641 struct extent_buffer *eb = NULL;
4642
d1b5c567 4643 eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
d1310b2e
CM
4644 eb->start = start;
4645 eb->len = len;
f28491e0 4646 eb->fs_info = fs_info;
815a51c7 4647 eb->bflags = 0;
bd681513
CM
4648 rwlock_init(&eb->lock);
4649 atomic_set(&eb->write_locks, 0);
4650 atomic_set(&eb->read_locks, 0);
4651 atomic_set(&eb->blocking_readers, 0);
4652 atomic_set(&eb->blocking_writers, 0);
4653 atomic_set(&eb->spinning_readers, 0);
4654 atomic_set(&eb->spinning_writers, 0);
5b25f70f 4655 eb->lock_nested = 0;
bd681513
CM
4656 init_waitqueue_head(&eb->write_lock_wq);
4657 init_waitqueue_head(&eb->read_lock_wq);
b4ce94de 4658
6d49ba1b
ES
4659 btrfs_leak_debug_add(&eb->leak_list, &buffers);
4660
3083ee2e 4661 spin_lock_init(&eb->refs_lock);
d1310b2e 4662 atomic_set(&eb->refs, 1);
0b32f4bb 4663 atomic_set(&eb->io_pages, 0);
727011e0 4664
b8dae313
DS
4665 /*
4666 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4667 */
4668 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4669 > MAX_INLINE_EXTENT_BUFFER_SIZE);
4670 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
d1310b2e
CM
4671
4672 return eb;
4673}
4674
815a51c7
JS
4675struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4676{
4677 unsigned long i;
4678 struct page *p;
4679 struct extent_buffer *new;
4680 unsigned long num_pages = num_extent_pages(src->start, src->len);
4681
3f556f78 4682 new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
815a51c7
JS
4683 if (new == NULL)
4684 return NULL;
4685
4686 for (i = 0; i < num_pages; i++) {
9ec72677 4687 p = alloc_page(GFP_NOFS);
db7f3436
JB
4688 if (!p) {
4689 btrfs_release_extent_buffer(new);
4690 return NULL;
4691 }
815a51c7
JS
4692 attach_extent_buffer_page(new, p);
4693 WARN_ON(PageDirty(p));
4694 SetPageUptodate(p);
4695 new->pages[i] = p;
4696 }
4697
4698 copy_extent_buffer(new, src, 0, 0, src->len);
4699 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4700 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4701
4702 return new;
4703}
4704
0f331229
OS
4705struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4706 u64 start, unsigned long len)
815a51c7
JS
4707{
4708 struct extent_buffer *eb;
3f556f78 4709 unsigned long num_pages;
815a51c7
JS
4710 unsigned long i;
4711
0f331229 4712 num_pages = num_extent_pages(start, len);
3f556f78
DS
4713
4714 eb = __alloc_extent_buffer(fs_info, start, len);
815a51c7
JS
4715 if (!eb)
4716 return NULL;
4717
4718 for (i = 0; i < num_pages; i++) {
9ec72677 4719 eb->pages[i] = alloc_page(GFP_NOFS);
815a51c7
JS
4720 if (!eb->pages[i])
4721 goto err;
4722 }
4723 set_extent_buffer_uptodate(eb);
4724 btrfs_set_header_nritems(eb, 0);
4725 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4726
4727 return eb;
4728err:
84167d19
SB
4729 for (; i > 0; i--)
4730 __free_page(eb->pages[i - 1]);
815a51c7
JS
4731 __free_extent_buffer(eb);
4732 return NULL;
4733}
4734
0f331229
OS
4735struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4736 u64 start)
4737{
4738 unsigned long len;
4739
4740 if (!fs_info) {
4741 /*
4742 * Called only from tests that don't always have a fs_info
4743 * available, but we know that nodesize is 4096
4744 */
4745 len = 4096;
4746 } else {
4747 len = fs_info->tree_root->nodesize;
4748 }
4749
4750 return __alloc_dummy_extent_buffer(fs_info, start, len);
4751}
4752
0b32f4bb
JB
4753static void check_buffer_tree_ref(struct extent_buffer *eb)
4754{
242e18c7 4755 int refs;
0b32f4bb
JB
4756 /* the ref bit is tricky. We have to make sure it is set
4757 * if we have the buffer dirty. Otherwise the
4758 * code to free a buffer can end up dropping a dirty
4759 * page
4760 *
4761 * Once the ref bit is set, it won't go away while the
4762 * buffer is dirty or in writeback, and it also won't
4763 * go away while we have the reference count on the
4764 * eb bumped.
4765 *
4766 * We can't just set the ref bit without bumping the
4767 * ref on the eb because free_extent_buffer might
4768 * see the ref bit and try to clear it. If this happens
4769 * free_extent_buffer might end up dropping our original
4770 * ref by mistake and freeing the page before we are able
4771 * to add one more ref.
4772 *
4773 * So bump the ref count first, then set the bit. If someone
4774 * beat us to it, drop the ref we added.
4775 */
242e18c7
CM
4776 refs = atomic_read(&eb->refs);
4777 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4778 return;
4779
594831c4
JB
4780 spin_lock(&eb->refs_lock);
4781 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
0b32f4bb 4782 atomic_inc(&eb->refs);
594831c4 4783 spin_unlock(&eb->refs_lock);
0b32f4bb
JB
4784}
4785
2457aec6
MG
4786static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4787 struct page *accessed)
5df4235e
JB
4788{
4789 unsigned long num_pages, i;
4790
0b32f4bb
JB
4791 check_buffer_tree_ref(eb);
4792
5df4235e
JB
4793 num_pages = num_extent_pages(eb->start, eb->len);
4794 for (i = 0; i < num_pages; i++) {
fb85fc9a
DS
4795 struct page *p = eb->pages[i];
4796
2457aec6
MG
4797 if (p != accessed)
4798 mark_page_accessed(p);
5df4235e
JB
4799 }
4800}
4801
f28491e0
JB
4802struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4803 u64 start)
452c75c3
CS
4804{
4805 struct extent_buffer *eb;
4806
4807 rcu_read_lock();
f28491e0
JB
4808 eb = radix_tree_lookup(&fs_info->buffer_radix,
4809 start >> PAGE_CACHE_SHIFT);
452c75c3
CS
4810 if (eb && atomic_inc_not_zero(&eb->refs)) {
4811 rcu_read_unlock();
062c19e9
FM
4812 /*
4813 * Lock our eb's refs_lock to avoid races with
4814 * free_extent_buffer. When we get our eb it might be flagged
4815 * with EXTENT_BUFFER_STALE and another task running
4816 * free_extent_buffer might have seen that flag set,
4817 * eb->refs == 2, that the buffer isn't under IO (dirty and
4818 * writeback flags not set) and it's still in the tree (flag
4819 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4820 * of decrementing the extent buffer's reference count twice.
4821 * So here we could race and increment the eb's reference count,
4822 * clear its stale flag, mark it as dirty and drop our reference
4823 * before the other task finishes executing free_extent_buffer,
4824 * which would later result in an attempt to free an extent
4825 * buffer that is dirty.
4826 */
4827 if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4828 spin_lock(&eb->refs_lock);
4829 spin_unlock(&eb->refs_lock);
4830 }
2457aec6 4831 mark_extent_buffer_accessed(eb, NULL);
452c75c3
CS
4832 return eb;
4833 }
4834 rcu_read_unlock();
4835
4836 return NULL;
4837}
4838
faa2dbf0
JB
4839#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4840struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4841 u64 start)
faa2dbf0
JB
4842{
4843 struct extent_buffer *eb, *exists = NULL;
4844 int ret;
4845
4846 eb = find_extent_buffer(fs_info, start);
4847 if (eb)
4848 return eb;
3f556f78 4849 eb = alloc_dummy_extent_buffer(fs_info, start);
faa2dbf0
JB
4850 if (!eb)
4851 return NULL;
4852 eb->fs_info = fs_info;
4853again:
4854 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4855 if (ret)
4856 goto free_eb;
4857 spin_lock(&fs_info->buffer_lock);
4858 ret = radix_tree_insert(&fs_info->buffer_radix,
4859 start >> PAGE_CACHE_SHIFT, eb);
4860 spin_unlock(&fs_info->buffer_lock);
4861 radix_tree_preload_end();
4862 if (ret == -EEXIST) {
4863 exists = find_extent_buffer(fs_info, start);
4864 if (exists)
4865 goto free_eb;
4866 else
4867 goto again;
4868 }
4869 check_buffer_tree_ref(eb);
4870 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4871
4872 /*
4873 * We will free dummy extent buffer's if they come into
4874 * free_extent_buffer with a ref count of 2, but if we are using this we
4875 * want the buffers to stay in memory until we're done with them, so
4876 * bump the ref count again.
4877 */
4878 atomic_inc(&eb->refs);
4879 return eb;
4880free_eb:
4881 btrfs_release_extent_buffer(eb);
4882 return exists;
4883}
4884#endif
4885
f28491e0 4886struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
ce3e6984 4887 u64 start)
d1310b2e 4888{
ce3e6984 4889 unsigned long len = fs_info->tree_root->nodesize;
d1310b2e
CM
4890 unsigned long num_pages = num_extent_pages(start, len);
4891 unsigned long i;
4892 unsigned long index = start >> PAGE_CACHE_SHIFT;
4893 struct extent_buffer *eb;
6af118ce 4894 struct extent_buffer *exists = NULL;
d1310b2e 4895 struct page *p;
f28491e0 4896 struct address_space *mapping = fs_info->btree_inode->i_mapping;
d1310b2e 4897 int uptodate = 1;
19fe0a8b 4898 int ret;
d1310b2e 4899
f28491e0 4900 eb = find_extent_buffer(fs_info, start);
452c75c3 4901 if (eb)
6af118ce 4902 return eb;
6af118ce 4903
23d79d81 4904 eb = __alloc_extent_buffer(fs_info, start, len);
2b114d1d 4905 if (!eb)
d1310b2e
CM
4906 return NULL;
4907
727011e0 4908 for (i = 0; i < num_pages; i++, index++) {
d1b5c567 4909 p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4804b382 4910 if (!p)
6af118ce 4911 goto free_eb;
4f2de97a
JB
4912
4913 spin_lock(&mapping->private_lock);
4914 if (PagePrivate(p)) {
4915 /*
4916 * We could have already allocated an eb for this page
4917 * and attached one so lets see if we can get a ref on
4918 * the existing eb, and if we can we know it's good and
4919 * we can just return that one, else we know we can just
4920 * overwrite page->private.
4921 */
4922 exists = (struct extent_buffer *)p->private;
4923 if (atomic_inc_not_zero(&exists->refs)) {
4924 spin_unlock(&mapping->private_lock);
4925 unlock_page(p);
17de39ac 4926 page_cache_release(p);
2457aec6 4927 mark_extent_buffer_accessed(exists, p);
4f2de97a
JB
4928 goto free_eb;
4929 }
5ca64f45 4930 exists = NULL;
4f2de97a 4931
0b32f4bb 4932 /*
4f2de97a
JB
4933 * Do this so attach doesn't complain and we need to
4934 * drop the ref the old guy had.
4935 */
4936 ClearPagePrivate(p);
0b32f4bb 4937 WARN_ON(PageDirty(p));
4f2de97a 4938 page_cache_release(p);
d1310b2e 4939 }
4f2de97a
JB
4940 attach_extent_buffer_page(eb, p);
4941 spin_unlock(&mapping->private_lock);
0b32f4bb 4942 WARN_ON(PageDirty(p));
727011e0 4943 eb->pages[i] = p;
d1310b2e
CM
4944 if (!PageUptodate(p))
4945 uptodate = 0;
eb14ab8e
CM
4946
4947 /*
4948 * see below about how we avoid a nasty race with release page
4949 * and why we unlock later
4950 */
d1310b2e
CM
4951 }
4952 if (uptodate)
b4ce94de 4953 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
115391d2 4954again:
19fe0a8b
MX
4955 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4956 if (ret)
4957 goto free_eb;
4958
f28491e0
JB
4959 spin_lock(&fs_info->buffer_lock);
4960 ret = radix_tree_insert(&fs_info->buffer_radix,
4961 start >> PAGE_CACHE_SHIFT, eb);
4962 spin_unlock(&fs_info->buffer_lock);
452c75c3 4963 radix_tree_preload_end();
19fe0a8b 4964 if (ret == -EEXIST) {
f28491e0 4965 exists = find_extent_buffer(fs_info, start);
452c75c3
CS
4966 if (exists)
4967 goto free_eb;
4968 else
115391d2 4969 goto again;
6af118ce 4970 }
6af118ce 4971 /* add one reference for the tree */
0b32f4bb 4972 check_buffer_tree_ref(eb);
34b41ace 4973 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
eb14ab8e
CM
4974
4975 /*
4976 * there is a race where release page may have
4977 * tried to find this extent buffer in the radix
4978 * but failed. It will tell the VM it is safe to
4979 * reclaim the, and it will clear the page private bit.
4980 * We must make sure to set the page private bit properly
4981 * after the extent buffer is in the radix tree so
4982 * it doesn't get lost
4983 */
727011e0
CM
4984 SetPageChecked(eb->pages[0]);
4985 for (i = 1; i < num_pages; i++) {
fb85fc9a 4986 p = eb->pages[i];
727011e0
CM
4987 ClearPageChecked(p);
4988 unlock_page(p);
4989 }
4990 unlock_page(eb->pages[0]);
d1310b2e
CM
4991 return eb;
4992
6af118ce 4993free_eb:
5ca64f45 4994 WARN_ON(!atomic_dec_and_test(&eb->refs));
727011e0
CM
4995 for (i = 0; i < num_pages; i++) {
4996 if (eb->pages[i])
4997 unlock_page(eb->pages[i]);
4998 }
eb14ab8e 4999
897ca6e9 5000 btrfs_release_extent_buffer(eb);
6af118ce 5001 return exists;
d1310b2e 5002}
d1310b2e 5003
3083ee2e
JB
5004static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5005{
5006 struct extent_buffer *eb =
5007 container_of(head, struct extent_buffer, rcu_head);
5008
5009 __free_extent_buffer(eb);
5010}
5011
3083ee2e 5012/* Expects to have eb->eb_lock already held */
f7a52a40 5013static int release_extent_buffer(struct extent_buffer *eb)
3083ee2e
JB
5014{
5015 WARN_ON(atomic_read(&eb->refs) == 0);
5016 if (atomic_dec_and_test(&eb->refs)) {
34b41ace 5017 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
f28491e0 5018 struct btrfs_fs_info *fs_info = eb->fs_info;
3083ee2e 5019
815a51c7 5020 spin_unlock(&eb->refs_lock);
3083ee2e 5021
f28491e0
JB
5022 spin_lock(&fs_info->buffer_lock);
5023 radix_tree_delete(&fs_info->buffer_radix,
815a51c7 5024 eb->start >> PAGE_CACHE_SHIFT);
f28491e0 5025 spin_unlock(&fs_info->buffer_lock);
34b41ace
JB
5026 } else {
5027 spin_unlock(&eb->refs_lock);
815a51c7 5028 }
3083ee2e
JB
5029
5030 /* Should be safe to release our pages at this point */
a50924e3 5031 btrfs_release_extent_buffer_page(eb);
bcb7e449
JB
5032#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5033 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))) {
5034 __free_extent_buffer(eb);
5035 return 1;
5036 }
5037#endif
3083ee2e 5038 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
e64860aa 5039 return 1;
3083ee2e
JB
5040 }
5041 spin_unlock(&eb->refs_lock);
e64860aa
JB
5042
5043 return 0;
3083ee2e
JB
5044}
5045
d1310b2e
CM
5046void free_extent_buffer(struct extent_buffer *eb)
5047{
242e18c7
CM
5048 int refs;
5049 int old;
d1310b2e
CM
5050 if (!eb)
5051 return;
5052
242e18c7
CM
5053 while (1) {
5054 refs = atomic_read(&eb->refs);
5055 if (refs <= 3)
5056 break;
5057 old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5058 if (old == refs)
5059 return;
5060 }
5061
3083ee2e 5062 spin_lock(&eb->refs_lock);
815a51c7
JS
5063 if (atomic_read(&eb->refs) == 2 &&
5064 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
5065 atomic_dec(&eb->refs);
5066
3083ee2e
JB
5067 if (atomic_read(&eb->refs) == 2 &&
5068 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
0b32f4bb 5069 !extent_buffer_under_io(eb) &&
3083ee2e
JB
5070 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5071 atomic_dec(&eb->refs);
5072
5073 /*
5074 * I know this is terrible, but it's temporary until we stop tracking
5075 * the uptodate bits and such for the extent buffers.
5076 */
f7a52a40 5077 release_extent_buffer(eb);
3083ee2e
JB
5078}
5079
5080void free_extent_buffer_stale(struct extent_buffer *eb)
5081{
5082 if (!eb)
d1310b2e
CM
5083 return;
5084
3083ee2e
JB
5085 spin_lock(&eb->refs_lock);
5086 set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5087
0b32f4bb 5088 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
3083ee2e
JB
5089 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5090 atomic_dec(&eb->refs);
f7a52a40 5091 release_extent_buffer(eb);
d1310b2e 5092}
d1310b2e 5093
1d4284bd 5094void clear_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e 5095{
d1310b2e
CM
5096 unsigned long i;
5097 unsigned long num_pages;
5098 struct page *page;
5099
d1310b2e
CM
5100 num_pages = num_extent_pages(eb->start, eb->len);
5101
5102 for (i = 0; i < num_pages; i++) {
fb85fc9a 5103 page = eb->pages[i];
b9473439 5104 if (!PageDirty(page))
d2c3f4f6
CM
5105 continue;
5106
a61e6f29 5107 lock_page(page);
eb14ab8e
CM
5108 WARN_ON(!PagePrivate(page));
5109
d1310b2e 5110 clear_page_dirty_for_io(page);
0ee0fda0 5111 spin_lock_irq(&page->mapping->tree_lock);
d1310b2e
CM
5112 if (!PageDirty(page)) {
5113 radix_tree_tag_clear(&page->mapping->page_tree,
5114 page_index(page),
5115 PAGECACHE_TAG_DIRTY);
5116 }
0ee0fda0 5117 spin_unlock_irq(&page->mapping->tree_lock);
bf0da8c1 5118 ClearPageError(page);
a61e6f29 5119 unlock_page(page);
d1310b2e 5120 }
0b32f4bb 5121 WARN_ON(atomic_read(&eb->refs) == 0);
d1310b2e 5122}
d1310b2e 5123
0b32f4bb 5124int set_extent_buffer_dirty(struct extent_buffer *eb)
d1310b2e
CM
5125{
5126 unsigned long i;
5127 unsigned long num_pages;
b9473439 5128 int was_dirty = 0;
d1310b2e 5129
0b32f4bb
JB
5130 check_buffer_tree_ref(eb);
5131
b9473439 5132 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
0b32f4bb 5133
d1310b2e 5134 num_pages = num_extent_pages(eb->start, eb->len);
3083ee2e 5135 WARN_ON(atomic_read(&eb->refs) == 0);
0b32f4bb
JB
5136 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5137
b9473439 5138 for (i = 0; i < num_pages; i++)
fb85fc9a 5139 set_page_dirty(eb->pages[i]);
b9473439 5140 return was_dirty;
d1310b2e 5141}
d1310b2e 5142
69ba3927 5143void clear_extent_buffer_uptodate(struct extent_buffer *eb)
1259ab75
CM
5144{
5145 unsigned long i;
5146 struct page *page;
5147 unsigned long num_pages;
5148
b4ce94de 5149 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
0b32f4bb 5150 num_pages = num_extent_pages(eb->start, eb->len);
1259ab75 5151 for (i = 0; i < num_pages; i++) {
fb85fc9a 5152 page = eb->pages[i];
33958dc6
CM
5153 if (page)
5154 ClearPageUptodate(page);
1259ab75 5155 }
1259ab75
CM
5156}
5157
09c25a8c 5158void set_extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e
CM
5159{
5160 unsigned long i;
5161 struct page *page;
5162 unsigned long num_pages;
5163
0b32f4bb 5164 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5165 num_pages = num_extent_pages(eb->start, eb->len);
d1310b2e 5166 for (i = 0; i < num_pages; i++) {
fb85fc9a 5167 page = eb->pages[i];
d1310b2e
CM
5168 SetPageUptodate(page);
5169 }
d1310b2e 5170}
d1310b2e 5171
0b32f4bb 5172int extent_buffer_uptodate(struct extent_buffer *eb)
d1310b2e 5173{
0b32f4bb 5174 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
d1310b2e 5175}
d1310b2e
CM
5176
5177int read_extent_buffer_pages(struct extent_io_tree *tree,
bb82ab88 5178 struct extent_buffer *eb, u64 start, int wait,
f188591e 5179 get_extent_t *get_extent, int mirror_num)
d1310b2e
CM
5180{
5181 unsigned long i;
5182 unsigned long start_i;
5183 struct page *page;
5184 int err;
5185 int ret = 0;
ce9adaa5
CM
5186 int locked_pages = 0;
5187 int all_uptodate = 1;
d1310b2e 5188 unsigned long num_pages;
727011e0 5189 unsigned long num_reads = 0;
a86c12c7 5190 struct bio *bio = NULL;
c8b97818 5191 unsigned long bio_flags = 0;
a86c12c7 5192
b4ce94de 5193 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
d1310b2e
CM
5194 return 0;
5195
d1310b2e
CM
5196 if (start) {
5197 WARN_ON(start < eb->start);
5198 start_i = (start >> PAGE_CACHE_SHIFT) -
5199 (eb->start >> PAGE_CACHE_SHIFT);
5200 } else {
5201 start_i = 0;
5202 }
5203
5204 num_pages = num_extent_pages(eb->start, eb->len);
5205 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5206 page = eb->pages[i];
bb82ab88 5207 if (wait == WAIT_NONE) {
2db04966 5208 if (!trylock_page(page))
ce9adaa5 5209 goto unlock_exit;
d1310b2e
CM
5210 } else {
5211 lock_page(page);
5212 }
ce9adaa5 5213 locked_pages++;
727011e0
CM
5214 if (!PageUptodate(page)) {
5215 num_reads++;
ce9adaa5 5216 all_uptodate = 0;
727011e0 5217 }
ce9adaa5
CM
5218 }
5219 if (all_uptodate) {
5220 if (start_i == 0)
b4ce94de 5221 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
ce9adaa5
CM
5222 goto unlock_exit;
5223 }
5224
656f30db 5225 clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 5226 eb->read_mirror = 0;
0b32f4bb 5227 atomic_set(&eb->io_pages, num_reads);
ce9adaa5 5228 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5229 page = eb->pages[i];
ce9adaa5 5230 if (!PageUptodate(page)) {
f188591e 5231 ClearPageError(page);
a86c12c7 5232 err = __extent_read_full_page(tree, page,
f188591e 5233 get_extent, &bio,
d4c7ca86
JB
5234 mirror_num, &bio_flags,
5235 READ | REQ_META);
d397712b 5236 if (err)
d1310b2e 5237 ret = err;
d1310b2e
CM
5238 } else {
5239 unlock_page(page);
5240 }
5241 }
5242
355808c2 5243 if (bio) {
d4c7ca86
JB
5244 err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5245 bio_flags);
79787eaa
JM
5246 if (err)
5247 return err;
355808c2 5248 }
a86c12c7 5249
bb82ab88 5250 if (ret || wait != WAIT_COMPLETE)
d1310b2e 5251 return ret;
d397712b 5252
d1310b2e 5253 for (i = start_i; i < num_pages; i++) {
fb85fc9a 5254 page = eb->pages[i];
d1310b2e 5255 wait_on_page_locked(page);
d397712b 5256 if (!PageUptodate(page))
d1310b2e 5257 ret = -EIO;
d1310b2e 5258 }
d397712b 5259
d1310b2e 5260 return ret;
ce9adaa5
CM
5261
5262unlock_exit:
5263 i = start_i;
d397712b 5264 while (locked_pages > 0) {
fb85fc9a 5265 page = eb->pages[i];
ce9adaa5
CM
5266 i++;
5267 unlock_page(page);
5268 locked_pages--;
5269 }
5270 return ret;
d1310b2e 5271}
d1310b2e
CM
5272
5273void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5274 unsigned long start,
5275 unsigned long len)
5276{
5277 size_t cur;
5278 size_t offset;
5279 struct page *page;
5280 char *kaddr;
5281 char *dst = (char *)dstv;
5282 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5283 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
d1310b2e
CM
5284
5285 WARN_ON(start > eb->len);
5286 WARN_ON(start + len > eb->start + eb->len);
5287
778746b5 5288 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5289
d397712b 5290 while (len > 0) {
fb85fc9a 5291 page = eb->pages[i];
d1310b2e
CM
5292
5293 cur = min(len, (PAGE_CACHE_SIZE - offset));
a6591715 5294 kaddr = page_address(page);
d1310b2e 5295 memcpy(dst, kaddr + offset, cur);
d1310b2e
CM
5296
5297 dst += cur;
5298 len -= cur;
5299 offset = 0;
5300 i++;
5301 }
5302}
d1310b2e 5303
550ac1d8
GH
5304int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5305 unsigned long start,
5306 unsigned long len)
5307{
5308 size_t cur;
5309 size_t offset;
5310 struct page *page;
5311 char *kaddr;
5312 char __user *dst = (char __user *)dstv;
5313 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5314 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5315 int ret = 0;
5316
5317 WARN_ON(start > eb->len);
5318 WARN_ON(start + len > eb->start + eb->len);
5319
5320 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5321
5322 while (len > 0) {
fb85fc9a 5323 page = eb->pages[i];
550ac1d8
GH
5324
5325 cur = min(len, (PAGE_CACHE_SIZE - offset));
5326 kaddr = page_address(page);
5327 if (copy_to_user(dst, kaddr + offset, cur)) {
5328 ret = -EFAULT;
5329 break;
5330 }
5331
5332 dst += cur;
5333 len -= cur;
5334 offset = 0;
5335 i++;
5336 }
5337
5338 return ret;
5339}
5340
d1310b2e 5341int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
a6591715 5342 unsigned long min_len, char **map,
d1310b2e 5343 unsigned long *map_start,
a6591715 5344 unsigned long *map_len)
d1310b2e
CM
5345{
5346 size_t offset = start & (PAGE_CACHE_SIZE - 1);
5347 char *kaddr;
5348 struct page *p;
5349 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5350 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5351 unsigned long end_i = (start_offset + start + min_len - 1) >>
5352 PAGE_CACHE_SHIFT;
5353
5354 if (i != end_i)
5355 return -EINVAL;
5356
5357 if (i == 0) {
5358 offset = start_offset;
5359 *map_start = 0;
5360 } else {
5361 offset = 0;
5362 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5363 }
d397712b 5364
d1310b2e 5365 if (start + min_len > eb->len) {
31b1a2bd 5366 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
c1c9ff7c
GU
5367 "wanted %lu %lu\n",
5368 eb->start, eb->len, start, min_len);
85026533 5369 return -EINVAL;
d1310b2e
CM
5370 }
5371
fb85fc9a 5372 p = eb->pages[i];
a6591715 5373 kaddr = page_address(p);
d1310b2e
CM
5374 *map = kaddr + offset;
5375 *map_len = PAGE_CACHE_SIZE - offset;
5376 return 0;
5377}
d1310b2e 5378
d1310b2e
CM
5379int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5380 unsigned long start,
5381 unsigned long len)
5382{
5383 size_t cur;
5384 size_t offset;
5385 struct page *page;
5386 char *kaddr;
5387 char *ptr = (char *)ptrv;
5388 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5389 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5390 int ret = 0;
5391
5392 WARN_ON(start > eb->len);
5393 WARN_ON(start + len > eb->start + eb->len);
5394
778746b5 5395 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5396
d397712b 5397 while (len > 0) {
fb85fc9a 5398 page = eb->pages[i];
d1310b2e
CM
5399
5400 cur = min(len, (PAGE_CACHE_SIZE - offset));
5401
a6591715 5402 kaddr = page_address(page);
d1310b2e 5403 ret = memcmp(ptr, kaddr + offset, cur);
d1310b2e
CM
5404 if (ret)
5405 break;
5406
5407 ptr += cur;
5408 len -= cur;
5409 offset = 0;
5410 i++;
5411 }
5412 return ret;
5413}
d1310b2e
CM
5414
5415void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5416 unsigned long start, unsigned long len)
5417{
5418 size_t cur;
5419 size_t offset;
5420 struct page *page;
5421 char *kaddr;
5422 char *src = (char *)srcv;
5423 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5424 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5425
5426 WARN_ON(start > eb->len);
5427 WARN_ON(start + len > eb->start + eb->len);
5428
778746b5 5429 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5430
d397712b 5431 while (len > 0) {
fb85fc9a 5432 page = eb->pages[i];
d1310b2e
CM
5433 WARN_ON(!PageUptodate(page));
5434
5435 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5436 kaddr = page_address(page);
d1310b2e 5437 memcpy(kaddr + offset, src, cur);
d1310b2e
CM
5438
5439 src += cur;
5440 len -= cur;
5441 offset = 0;
5442 i++;
5443 }
5444}
d1310b2e
CM
5445
5446void memset_extent_buffer(struct extent_buffer *eb, char c,
5447 unsigned long start, unsigned long len)
5448{
5449 size_t cur;
5450 size_t offset;
5451 struct page *page;
5452 char *kaddr;
5453 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5454 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5455
5456 WARN_ON(start > eb->len);
5457 WARN_ON(start + len > eb->start + eb->len);
5458
778746b5 5459 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
d1310b2e 5460
d397712b 5461 while (len > 0) {
fb85fc9a 5462 page = eb->pages[i];
d1310b2e
CM
5463 WARN_ON(!PageUptodate(page));
5464
5465 cur = min(len, PAGE_CACHE_SIZE - offset);
a6591715 5466 kaddr = page_address(page);
d1310b2e 5467 memset(kaddr + offset, c, cur);
d1310b2e
CM
5468
5469 len -= cur;
5470 offset = 0;
5471 i++;
5472 }
5473}
d1310b2e
CM
5474
5475void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5476 unsigned long dst_offset, unsigned long src_offset,
5477 unsigned long len)
5478{
5479 u64 dst_len = dst->len;
5480 size_t cur;
5481 size_t offset;
5482 struct page *page;
5483 char *kaddr;
5484 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5485 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5486
5487 WARN_ON(src->len != dst_len);
5488
5489 offset = (start_offset + dst_offset) &
778746b5 5490 (PAGE_CACHE_SIZE - 1);
d1310b2e 5491
d397712b 5492 while (len > 0) {
fb85fc9a 5493 page = dst->pages[i];
d1310b2e
CM
5494 WARN_ON(!PageUptodate(page));
5495
5496 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5497
a6591715 5498 kaddr = page_address(page);
d1310b2e 5499 read_extent_buffer(src, kaddr + offset, src_offset, cur);
d1310b2e
CM
5500
5501 src_offset += cur;
5502 len -= cur;
5503 offset = 0;
5504 i++;
5505 }
5506}
d1310b2e 5507
3e1e8bb7
OS
5508/*
5509 * The extent buffer bitmap operations are done with byte granularity because
5510 * bitmap items are not guaranteed to be aligned to a word and therefore a
5511 * single word in a bitmap may straddle two pages in the extent buffer.
5512 */
5513#define BIT_BYTE(nr) ((nr) / BITS_PER_BYTE)
5514#define BYTE_MASK ((1 << BITS_PER_BYTE) - 1)
5515#define BITMAP_FIRST_BYTE_MASK(start) \
5516 ((BYTE_MASK << ((start) & (BITS_PER_BYTE - 1))) & BYTE_MASK)
5517#define BITMAP_LAST_BYTE_MASK(nbits) \
5518 (BYTE_MASK >> (-(nbits) & (BITS_PER_BYTE - 1)))
5519
5520/*
5521 * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5522 * given bit number
5523 * @eb: the extent buffer
5524 * @start: offset of the bitmap item in the extent buffer
5525 * @nr: bit number
5526 * @page_index: return index of the page in the extent buffer that contains the
5527 * given bit number
5528 * @page_offset: return offset into the page given by page_index
5529 *
5530 * This helper hides the ugliness of finding the byte in an extent buffer which
5531 * contains a given bit.
5532 */
5533static inline void eb_bitmap_offset(struct extent_buffer *eb,
5534 unsigned long start, unsigned long nr,
5535 unsigned long *page_index,
5536 size_t *page_offset)
5537{
5538 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5539 size_t byte_offset = BIT_BYTE(nr);
5540 size_t offset;
5541
5542 /*
5543 * The byte we want is the offset of the extent buffer + the offset of
5544 * the bitmap item in the extent buffer + the offset of the byte in the
5545 * bitmap item.
5546 */
5547 offset = start_offset + start + byte_offset;
5548
5549 *page_index = offset >> PAGE_CACHE_SHIFT;
5550 *page_offset = offset & (PAGE_CACHE_SIZE - 1);
5551}
5552
5553/**
5554 * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5555 * @eb: the extent buffer
5556 * @start: offset of the bitmap item in the extent buffer
5557 * @nr: bit number to test
5558 */
5559int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5560 unsigned long nr)
5561{
5562 char *kaddr;
5563 struct page *page;
5564 unsigned long i;
5565 size_t offset;
5566
5567 eb_bitmap_offset(eb, start, nr, &i, &offset);
5568 page = eb->pages[i];
5569 WARN_ON(!PageUptodate(page));
5570 kaddr = page_address(page);
5571 return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5572}
5573
5574/**
5575 * extent_buffer_bitmap_set - set an area of a bitmap
5576 * @eb: the extent buffer
5577 * @start: offset of the bitmap item in the extent buffer
5578 * @pos: bit number of the first bit
5579 * @len: number of bits to set
5580 */
5581void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5582 unsigned long pos, unsigned long len)
5583{
5584 char *kaddr;
5585 struct page *page;
5586 unsigned long i;
5587 size_t offset;
5588 const unsigned int size = pos + len;
5589 int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5590 unsigned int mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5591
5592 eb_bitmap_offset(eb, start, pos, &i, &offset);
5593 page = eb->pages[i];
5594 WARN_ON(!PageUptodate(page));
5595 kaddr = page_address(page);
5596
5597 while (len >= bits_to_set) {
5598 kaddr[offset] |= mask_to_set;
5599 len -= bits_to_set;
5600 bits_to_set = BITS_PER_BYTE;
5601 mask_to_set = ~0U;
5602 if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5603 offset = 0;
5604 page = eb->pages[++i];
5605 WARN_ON(!PageUptodate(page));
5606 kaddr = page_address(page);
5607 }
5608 }
5609 if (len) {
5610 mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5611 kaddr[offset] |= mask_to_set;
5612 }
5613}
5614
5615
5616/**
5617 * extent_buffer_bitmap_clear - clear an area of a bitmap
5618 * @eb: the extent buffer
5619 * @start: offset of the bitmap item in the extent buffer
5620 * @pos: bit number of the first bit
5621 * @len: number of bits to clear
5622 */
5623void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5624 unsigned long pos, unsigned long len)
5625{
5626 char *kaddr;
5627 struct page *page;
5628 unsigned long i;
5629 size_t offset;
5630 const unsigned int size = pos + len;
5631 int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5632 unsigned int mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5633
5634 eb_bitmap_offset(eb, start, pos, &i, &offset);
5635 page = eb->pages[i];
5636 WARN_ON(!PageUptodate(page));
5637 kaddr = page_address(page);
5638
5639 while (len >= bits_to_clear) {
5640 kaddr[offset] &= ~mask_to_clear;
5641 len -= bits_to_clear;
5642 bits_to_clear = BITS_PER_BYTE;
5643 mask_to_clear = ~0U;
5644 if (++offset >= PAGE_CACHE_SIZE && len > 0) {
5645 offset = 0;
5646 page = eb->pages[++i];
5647 WARN_ON(!PageUptodate(page));
5648 kaddr = page_address(page);
5649 }
5650 }
5651 if (len) {
5652 mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5653 kaddr[offset] &= ~mask_to_clear;
5654 }
5655}
5656
3387206f
ST
5657static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5658{
5659 unsigned long distance = (src > dst) ? src - dst : dst - src;
5660 return distance < len;
5661}
5662
d1310b2e
CM
5663static void copy_pages(struct page *dst_page, struct page *src_page,
5664 unsigned long dst_off, unsigned long src_off,
5665 unsigned long len)
5666{
a6591715 5667 char *dst_kaddr = page_address(dst_page);
d1310b2e 5668 char *src_kaddr;
727011e0 5669 int must_memmove = 0;
d1310b2e 5670
3387206f 5671 if (dst_page != src_page) {
a6591715 5672 src_kaddr = page_address(src_page);
3387206f 5673 } else {
d1310b2e 5674 src_kaddr = dst_kaddr;
727011e0
CM
5675 if (areas_overlap(src_off, dst_off, len))
5676 must_memmove = 1;
3387206f 5677 }
d1310b2e 5678
727011e0
CM
5679 if (must_memmove)
5680 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5681 else
5682 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
d1310b2e
CM
5683}
5684
5685void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5686 unsigned long src_offset, unsigned long len)
5687{
5688 size_t cur;
5689 size_t dst_off_in_page;
5690 size_t src_off_in_page;
5691 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5692 unsigned long dst_i;
5693 unsigned long src_i;
5694
5695 if (src_offset + len > dst->len) {
f14d104d
DS
5696 btrfs_err(dst->fs_info,
5697 "memmove bogus src_offset %lu move "
5698 "len %lu dst len %lu", src_offset, len, dst->len);
d1310b2e
CM
5699 BUG_ON(1);
5700 }
5701 if (dst_offset + len > dst->len) {
f14d104d
DS
5702 btrfs_err(dst->fs_info,
5703 "memmove bogus dst_offset %lu move "
5704 "len %lu dst len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5705 BUG_ON(1);
5706 }
5707
d397712b 5708 while (len > 0) {
d1310b2e 5709 dst_off_in_page = (start_offset + dst_offset) &
778746b5 5710 (PAGE_CACHE_SIZE - 1);
d1310b2e 5711 src_off_in_page = (start_offset + src_offset) &
778746b5 5712 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5713
5714 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5715 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5716
5717 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5718 src_off_in_page));
5719 cur = min_t(unsigned long, cur,
5720 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5721
fb85fc9a 5722 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5723 dst_off_in_page, src_off_in_page, cur);
5724
5725 src_offset += cur;
5726 dst_offset += cur;
5727 len -= cur;
5728 }
5729}
d1310b2e
CM
5730
5731void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5732 unsigned long src_offset, unsigned long len)
5733{
5734 size_t cur;
5735 size_t dst_off_in_page;
5736 size_t src_off_in_page;
5737 unsigned long dst_end = dst_offset + len - 1;
5738 unsigned long src_end = src_offset + len - 1;
5739 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5740 unsigned long dst_i;
5741 unsigned long src_i;
5742
5743 if (src_offset + len > dst->len) {
f14d104d
DS
5744 btrfs_err(dst->fs_info, "memmove bogus src_offset %lu move "
5745 "len %lu len %lu", src_offset, len, dst->len);
d1310b2e
CM
5746 BUG_ON(1);
5747 }
5748 if (dst_offset + len > dst->len) {
f14d104d
DS
5749 btrfs_err(dst->fs_info, "memmove bogus dst_offset %lu move "
5750 "len %lu len %lu", dst_offset, len, dst->len);
d1310b2e
CM
5751 BUG_ON(1);
5752 }
727011e0 5753 if (dst_offset < src_offset) {
d1310b2e
CM
5754 memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5755 return;
5756 }
d397712b 5757 while (len > 0) {
d1310b2e
CM
5758 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5759 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5760
5761 dst_off_in_page = (start_offset + dst_end) &
778746b5 5762 (PAGE_CACHE_SIZE - 1);
d1310b2e 5763 src_off_in_page = (start_offset + src_end) &
778746b5 5764 (PAGE_CACHE_SIZE - 1);
d1310b2e
CM
5765
5766 cur = min_t(unsigned long, len, src_off_in_page + 1);
5767 cur = min(cur, dst_off_in_page + 1);
fb85fc9a 5768 copy_pages(dst->pages[dst_i], dst->pages[src_i],
d1310b2e
CM
5769 dst_off_in_page - cur + 1,
5770 src_off_in_page - cur + 1, cur);
5771
5772 dst_end -= cur;
5773 src_end -= cur;
5774 len -= cur;
5775 }
5776}
6af118ce 5777
f7a52a40 5778int try_release_extent_buffer(struct page *page)
19fe0a8b 5779{
6af118ce 5780 struct extent_buffer *eb;
6af118ce 5781
3083ee2e
JB
5782 /*
5783 * We need to make sure noboody is attaching this page to an eb right
5784 * now.
5785 */
5786 spin_lock(&page->mapping->private_lock);
5787 if (!PagePrivate(page)) {
5788 spin_unlock(&page->mapping->private_lock);
4f2de97a 5789 return 1;
45f49bce 5790 }
6af118ce 5791
3083ee2e
JB
5792 eb = (struct extent_buffer *)page->private;
5793 BUG_ON(!eb);
19fe0a8b
MX
5794
5795 /*
3083ee2e
JB
5796 * This is a little awful but should be ok, we need to make sure that
5797 * the eb doesn't disappear out from under us while we're looking at
5798 * this page.
19fe0a8b 5799 */
3083ee2e 5800 spin_lock(&eb->refs_lock);
0b32f4bb 5801 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
3083ee2e
JB
5802 spin_unlock(&eb->refs_lock);
5803 spin_unlock(&page->mapping->private_lock);
5804 return 0;
b9473439 5805 }
3083ee2e 5806 spin_unlock(&page->mapping->private_lock);
897ca6e9 5807
19fe0a8b 5808 /*
3083ee2e
JB
5809 * If tree ref isn't set then we know the ref on this eb is a real ref,
5810 * so just return, this page will likely be freed soon anyway.
19fe0a8b 5811 */
3083ee2e
JB
5812 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5813 spin_unlock(&eb->refs_lock);
5814 return 0;
b9473439 5815 }
19fe0a8b 5816
f7a52a40 5817 return release_extent_buffer(eb);
6af118ce 5818}