Merge tag 'drm-next-2024-05-25' of https://gitlab.freedesktop.org/drm/kernel
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
c1d7c514 1// SPDX-License-Identifier: GPL-2.0
6cbd5570
CM
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
6cbd5570
CM
4 */
5
e20d96d6 6#include <linux/fs.h>
d98237b3 7#include <linux/blkdev.h>
fc7cbcd4 8#include <linux/radix-tree.h>
35b7e476 9#include <linux/writeback.h>
ce9adaa5 10#include <linux/workqueue.h>
a74a4b97 11#include <linux/kthread.h>
5a0e3ad6 12#include <linux/slab.h>
784b4e29 13#include <linux/migrate.h>
7a36ddec 14#include <linux/ratelimit.h>
6463fe58 15#include <linux/uuid.h>
803b2f54 16#include <linux/semaphore.h>
540adea3 17#include <linux/error-injection.h>
9678c543 18#include <linux/crc32c.h>
b89f6d1f 19#include <linux/sched/mm.h>
7e75bf3f 20#include <asm/unaligned.h>
6d97c6e3 21#include <crypto/hash.h>
eb60ceac
CM
22#include "ctree.h"
23#include "disk-io.h"
e089f05c 24#include "transaction.h"
0f7d52f4 25#include "btrfs_inode.h"
103c1972 26#include "bio.h"
db94535d 27#include "print-tree.h"
925baedd 28#include "locking.h"
e02119d5 29#include "tree-log.h"
fa9c0d79 30#include "free-space-cache.h"
70f6d82e 31#include "free-space-tree.h"
8dabb742 32#include "dev-replace.h"
53b381b3 33#include "raid56.h"
5ac1d209 34#include "sysfs.h"
fcebe456 35#include "qgroup.h"
ebb8765b 36#include "compression.h"
557ea5dd 37#include "tree-checker.h"
fd708b81 38#include "ref-verify.h"
aac0023c 39#include "block-group.h"
b0643e59 40#include "discard.h"
f603bb94 41#include "space-info.h"
b70f5097 42#include "zoned.h"
139e8cd3 43#include "subpage.h"
c7f13d42 44#include "fs.h"
07e81dc9 45#include "accessors.h"
a0231804 46#include "extent-tree.h"
45c40c8f 47#include "root-tree.h"
59b818e0 48#include "defrag.h"
c7a03b52 49#include "uuid-tree.h"
67707479 50#include "relocation.h"
2fc6822c 51#include "scrub.h"
c03b2207 52#include "super.h"
eb60ceac 53
319e4d06
QW
54#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
55 BTRFS_HEADER_FLAG_RELOC |\
56 BTRFS_SUPER_FLAG_ERROR |\
57 BTRFS_SUPER_FLAG_SEEDING |\
e2731e55
AJ
58 BTRFS_SUPER_FLAG_METADUMP |\
59 BTRFS_SUPER_FLAG_METADUMP_V2)
319e4d06 60
2ff7e61e
JM
61static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
62static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
ce9adaa5 63
141386e1
JB
64static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
65{
66 if (fs_info->csum_shash)
67 crypto_free_shash(fs_info->csum_shash);
68}
69
d352ac68 70/*
2996e1f8 71 * Compute the csum of a btree block and store the result to provided buffer.
d352ac68 72 */
c67b3892 73static void csum_tree_block(struct extent_buffer *buf, u8 *result)
19c00ddc 74{
d5178578 75 struct btrfs_fs_info *fs_info = buf->fs_info;
397239ed
QW
76 int num_pages;
77 u32 first_page_part;
d5178578 78 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
19c00ddc 79 char *kaddr;
e9be5a30 80 int i;
d5178578
JT
81
82 shash->tfm = fs_info->csum_shash;
83 crypto_shash_init(shash);
397239ed
QW
84
85 if (buf->addr) {
86 /* Pages are contiguous, handle them as a big one. */
87 kaddr = buf->addr;
88 first_page_part = fs_info->nodesize;
89 num_pages = 1;
90 } else {
082d5bb9 91 kaddr = folio_address(buf->folios[0]);
397239ed
QW
92 first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
93 num_pages = num_extent_pages(buf);
94 }
95
e9be5a30 96 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
a26663e7 97 first_page_part - BTRFS_CSUM_SIZE);
19c00ddc 98
13df3775
QW
99 /*
100 * Multiple single-page folios case would reach here.
101 *
102 * nodesize <= PAGE_SIZE and large folio all handled by above
103 * crypto_shash_update() already.
104 */
5ad9b471 105 for (i = 1; i < num_pages && INLINE_EXTENT_BUFFER_PAGES > 1; i++) {
082d5bb9 106 kaddr = folio_address(buf->folios[i]);
e9be5a30 107 crypto_shash_update(shash, kaddr, PAGE_SIZE);
19c00ddc 108 }
71a63551 109 memset(result, 0, BTRFS_CSUM_SIZE);
d5178578 110 crypto_shash_final(shash, result);
19c00ddc
CM
111}
112
d352ac68
CM
113/*
114 * we can't consider a given block up to date unless the transid of the
115 * block matches the transid in the parent node's pointer. This is how we
116 * detect blocks that either didn't get written at all or got written
117 * in the wrong place.
118 */
d87e6575 119int btrfs_buffer_uptodate(struct extent_buffer *eb, u64 parent_transid, int atomic)
1259ab75 120{
d87e6575 121 if (!extent_buffer_uptodate(eb))
1259ab75
CM
122 return 0;
123
d87e6575
CH
124 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
125 return 1;
126
b9fab919
CM
127 if (atomic)
128 return -EAGAIN;
129
d87e6575
CH
130 if (!extent_buffer_uptodate(eb) ||
131 btrfs_header_generation(eb) != parent_transid) {
132 btrfs_err_rl(eb->fs_info,
8f0ed7d4
QW
133"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
134 eb->start, eb->read_mirror,
29549aec 135 parent_transid, btrfs_header_generation(eb));
d87e6575 136 clear_extent_buffer_uptodate(eb);
9e2aff90 137 return 0;
d87e6575 138 }
9e2aff90 139 return 1;
1259ab75
CM
140}
141
e7e16f48
JT
142static bool btrfs_supported_super_csum(u16 csum_type)
143{
144 switch (csum_type) {
145 case BTRFS_CSUM_TYPE_CRC32:
3951e7f0 146 case BTRFS_CSUM_TYPE_XXHASH:
3831bf00 147 case BTRFS_CSUM_TYPE_SHA256:
352ae07b 148 case BTRFS_CSUM_TYPE_BLAKE2:
e7e16f48
JT
149 return true;
150 default:
151 return false;
152 }
153}
154
1104a885
DS
155/*
156 * Return 0 if the superblock checksum type matches the checksum value of that
157 * algorithm. Pass the raw disk superblock data.
158 */
3d17adea
QW
159int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
160 const struct btrfs_super_block *disk_sb)
1104a885 161{
51bce6c9 162 char result[BTRFS_CSUM_SIZE];
d5178578
JT
163 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
164
165 shash->tfm = fs_info->csum_shash;
1104a885 166
51bce6c9
JT
167 /*
168 * The super_block structure does not span the whole
169 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
170 * filled with zeros and is included in the checksum.
171 */
3d17adea 172 crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
fd08001f 173 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
1104a885 174
55fc29be 175 if (memcmp(disk_sb->csum, result, fs_info->csum_size))
51bce6c9 176 return 1;
1104a885 177
e7e16f48 178 return 0;
1104a885
DS
179}
180
bacf60e5
CH
181static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
182 int mirror_num)
183{
184 struct btrfs_fs_info *fs_info = eb->fs_info;
96c36eaa 185 int num_folios = num_extent_folios(eb);
bacf60e5
CH
186 int ret = 0;
187
188 if (sb_rdonly(fs_info->sb))
189 return -EROFS;
190
96c36eaa
QW
191 for (int i = 0; i < num_folios; i++) {
192 struct folio *folio = eb->folios[i];
193 u64 start = max_t(u64, eb->start, folio_pos(folio));
082d5bb9 194 u64 end = min_t(u64, eb->start + eb->len,
84cda1a6 195 folio_pos(folio) + eb->folio_size);
917ac778 196 u32 len = end - start;
bacf60e5 197
917ac778 198 ret = btrfs_repair_io_failure(fs_info, 0, start, len,
96c36eaa
QW
199 start, folio, offset_in_folio(folio, start),
200 mirror_num);
bacf60e5
CH
201 if (ret)
202 break;
bacf60e5
CH
203 }
204
205 return ret;
206}
207
d352ac68
CM
208/*
209 * helper to read a given tree block, doing retries as required when
210 * the checksums don't match and we have alternate mirrors to try.
581c1760 211 *
789d6a3a
QW
212 * @check: expected tree parentness check, see the comments of the
213 * structure for details.
d352ac68 214 */
6a2e9dc4 215int btrfs_read_extent_buffer(struct extent_buffer *eb,
789d6a3a 216 struct btrfs_tree_parent_check *check)
f188591e 217{
5ab12d1f 218 struct btrfs_fs_info *fs_info = eb->fs_info;
ea466794 219 int failed = 0;
f188591e
CM
220 int ret;
221 int num_copies = 0;
222 int mirror_num = 0;
ea466794 223 int failed_mirror = 0;
f188591e 224
789d6a3a
QW
225 ASSERT(check);
226
f188591e 227 while (1) {
f8397d69 228 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
947a6299
QW
229 ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
230 if (!ret)
231 break;
d397712b 232
0b246afa 233 num_copies = btrfs_num_copies(fs_info,
f188591e 234 eb->start, eb->len);
4235298e 235 if (num_copies == 1)
ea466794 236 break;
4235298e 237
5cf1ab56
JB
238 if (!failed_mirror) {
239 failed = 1;
240 failed_mirror = eb->read_mirror;
241 }
242
f188591e 243 mirror_num++;
ea466794
JB
244 if (mirror_num == failed_mirror)
245 mirror_num++;
246
4235298e 247 if (mirror_num > num_copies)
ea466794 248 break;
f188591e 249 }
ea466794 250
c0901581 251 if (failed && !ret && failed_mirror)
20a1fbf9 252 btrfs_repair_eb_io_failure(eb, failed_mirror);
ea466794
JB
253
254 return ret;
f188591e 255}
19c00ddc 256
31d89399
CH
257/*
258 * Checksum a dirty tree block before IO.
259 */
260blk_status_t btree_csum_one_bio(struct btrfs_bio *bbio)
eca0f6f6 261{
31d89399 262 struct extent_buffer *eb = bbio->private;
eca0f6f6 263 struct btrfs_fs_info *fs_info = eb->fs_info;
31d89399 264 u64 found_start = btrfs_header_bytenr(eb);
0124855f 265 u64 last_trans;
eca0f6f6
QW
266 u8 result[BTRFS_CSUM_SIZE];
267 int ret;
268
31d89399
CH
269 /* Btree blocks are always contiguous on disk. */
270 if (WARN_ON_ONCE(bbio->file_offset != eb->start))
271 return BLK_STS_IOERR;
272 if (WARN_ON_ONCE(bbio->bio.bi_iter.bi_size != eb->len))
273 return BLK_STS_IOERR;
274
aa6313e6
JT
275 /*
276 * If an extent_buffer is marked as EXTENT_BUFFER_ZONED_ZEROOUT, don't
277 * checksum it but zero-out its content. This is done to preserve
278 * ordering of I/O without unnecessarily writing out data.
279 */
cbf44cd9 280 if (test_bit(EXTENT_BUFFER_ZONED_ZEROOUT, &eb->bflags)) {
aa6313e6 281 memzero_extent_buffer(eb, 0, eb->len);
31d89399
CH
282 return BLK_STS_OK;
283 }
284
285 if (WARN_ON_ONCE(found_start != eb->start))
286 return BLK_STS_IOERR;
55151ea9
QW
287 if (WARN_ON(!btrfs_folio_test_uptodate(fs_info, eb->folios[0],
288 eb->start, eb->len)))
31d89399
CH
289 return BLK_STS_IOERR;
290
eca0f6f6
QW
291 ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
292 offsetof(struct btrfs_header, fsid),
293 BTRFS_FSID_SIZE) == 0);
294 csum_tree_block(eb, result);
295
296 if (btrfs_header_level(eb))
297 ret = btrfs_check_node(eb);
298 else
85d8a826 299 ret = btrfs_check_leaf(eb);
eca0f6f6 300
3777369f
QW
301 if (ret < 0)
302 goto error;
303
304 /*
305 * Also check the generation, the eb reached here must be newer than
306 * last committed. Or something seriously wrong happened.
307 */
0124855f
FM
308 last_trans = btrfs_get_last_trans_committed(fs_info);
309 if (unlikely(btrfs_header_generation(eb) <= last_trans)) {
3777369f 310 ret = -EUCLEAN;
eca0f6f6 311 btrfs_err(fs_info,
3777369f 312 "block=%llu bad generation, have %llu expect > %llu",
0124855f 313 eb->start, btrfs_header_generation(eb), last_trans);
3777369f 314 goto error;
eca0f6f6
QW
315 }
316 write_extent_buffer(eb, result, 0, fs_info->csum_size);
31d89399 317 return BLK_STS_OK;
3777369f
QW
318
319error:
320 btrfs_print_tree(eb, 0);
321 btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
322 eb->start);
16199ad9
FM
323 /*
324 * Be noisy if this is an extent buffer from a log tree. We don't abort
325 * a transaction in case there's a bad log tree extent buffer, we just
326 * fallback to a transaction commit. Still we want to know when there is
327 * a bad log tree extent buffer, as that may signal a bug somewhere.
328 */
329 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
330 btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
deb6216f
CH
331 return errno_to_blk_status(ret);
332}
333
413fb1bc 334static bool check_tree_block_fsid(struct extent_buffer *eb)
2b82032c 335{
b0c9b3b0 336 struct btrfs_fs_info *fs_info = eb->fs_info;
944d3f9f 337 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
44880fdc 338 u8 fsid[BTRFS_FSID_SIZE];
2b82032c 339
9a8658e3
DS
340 read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
341 BTRFS_FSID_SIZE);
67bc5ad0 342
944d3f9f 343 /*
f7361d8c
AJ
344 * alloc_fsid_devices() copies the fsid into fs_devices::metadata_uuid.
345 * This is then overwritten by metadata_uuid if it is present in the
346 * device_list_add(). The same true for a seed device as well. So use of
347 * fs_devices::metadata_uuid is appropriate here.
944d3f9f 348 */
67bc5ad0 349 if (memcmp(fsid, fs_info->fs_devices->metadata_uuid, BTRFS_FSID_SIZE) == 0)
413fb1bc 350 return false;
944d3f9f
NB
351
352 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
353 if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
413fb1bc 354 return false;
944d3f9f 355
413fb1bc 356 return true;
2b82032c
YZ
357}
358
77bf40a2 359/* Do basic extent buffer checks at read time */
046b562b
CH
360int btrfs_validate_extent_buffer(struct extent_buffer *eb,
361 struct btrfs_tree_parent_check *check)
ce9adaa5 362{
77bf40a2 363 struct btrfs_fs_info *fs_info = eb->fs_info;
ce9adaa5 364 u64 found_start;
77bf40a2
QW
365 const u32 csum_size = fs_info->csum_size;
366 u8 found_level;
2996e1f8 367 u8 result[BTRFS_CSUM_SIZE];
dfd29eed 368 const u8 *header_csum;
77bf40a2 369 int ret = 0;
ea466794 370
947a6299
QW
371 ASSERT(check);
372
ce9adaa5 373 found_start = btrfs_header_bytenr(eb);
727011e0 374 if (found_start != eb->start) {
8f0ed7d4
QW
375 btrfs_err_rl(fs_info,
376 "bad tree block start, mirror %u want %llu have %llu",
377 eb->read_mirror, eb->start, found_start);
f188591e 378 ret = -EIO;
77bf40a2 379 goto out;
ce9adaa5 380 }
b0c9b3b0 381 if (check_tree_block_fsid(eb)) {
8f0ed7d4
QW
382 btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
383 eb->start, eb->read_mirror);
1259ab75 384 ret = -EIO;
77bf40a2 385 goto out;
1259ab75 386 }
ce9adaa5 387 found_level = btrfs_header_level(eb);
1c24c3ce 388 if (found_level >= BTRFS_MAX_LEVEL) {
8f0ed7d4
QW
389 btrfs_err(fs_info,
390 "bad tree block level, mirror %u level %d on logical %llu",
391 eb->read_mirror, btrfs_header_level(eb), eb->start);
1c24c3ce 392 ret = -EIO;
77bf40a2 393 goto out;
1c24c3ce 394 }
ce9adaa5 395
c67b3892 396 csum_tree_block(eb, result);
082d5bb9 397 header_csum = folio_address(eb->folios[0]) +
8d993618 398 get_eb_offset_in_folio(eb, offsetof(struct btrfs_header, csum));
a826d6dc 399
dfd29eed 400 if (memcmp(result, header_csum, csum_size) != 0) {
2996e1f8 401 btrfs_warn_rl(fs_info,
8f0ed7d4
QW
402"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
403 eb->start, eb->read_mirror,
dfd29eed 404 CSUM_FMT_VALUE(csum_size, header_csum),
35be8851
JT
405 CSUM_FMT_VALUE(csum_size, result),
406 btrfs_header_level(eb));
2996e1f8 407 ret = -EUCLEAN;
77bf40a2 408 goto out;
2996e1f8
JT
409 }
410
947a6299 411 if (found_level != check->level) {
77177ed1
QW
412 btrfs_err(fs_info,
413 "level verify failed on logical %llu mirror %u wanted %u found %u",
414 eb->start, eb->read_mirror, check->level, found_level);
947a6299
QW
415 ret = -EIO;
416 goto out;
417 }
418 if (unlikely(check->transid &&
419 btrfs_header_generation(eb) != check->transid)) {
420 btrfs_err_rl(eb->fs_info,
421"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
422 eb->start, eb->read_mirror, check->transid,
423 btrfs_header_generation(eb));
424 ret = -EIO;
425 goto out;
426 }
427 if (check->has_first_key) {
428 struct btrfs_key *expect_key = &check->first_key;
429 struct btrfs_key found_key;
430
431 if (found_level)
432 btrfs_node_key_to_cpu(eb, &found_key, 0);
433 else
434 btrfs_item_key_to_cpu(eb, &found_key, 0);
435 if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
436 btrfs_err(fs_info,
437"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
438 eb->start, check->transid,
439 expect_key->objectid,
440 expect_key->type, expect_key->offset,
441 found_key.objectid, found_key.type,
442 found_key.offset);
443 ret = -EUCLEAN;
444 goto out;
445 }
446 }
447 if (check->owner_root) {
448 ret = btrfs_check_eb_owner(eb, check->owner_root);
449 if (ret < 0)
450 goto out;
451 }
452
a826d6dc
JB
453 /*
454 * If this is a leaf block and it is corrupt, set the corrupt bit so
455 * that we don't try and read the other copies of this block, just
456 * return -EIO.
457 */
85d8a826 458 if (found_level == 0 && btrfs_check_leaf(eb)) {
a826d6dc
JB
459 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
460 ret = -EIO;
461 }
ce9adaa5 462
813fd1dc 463 if (found_level > 0 && btrfs_check_node(eb))
053ab70f
LB
464 ret = -EIO;
465
aebcc159 466 if (ret)
75391f0d 467 btrfs_err(fs_info,
8f0ed7d4
QW
468 "read time tree block corruption detected on logical %llu mirror %u",
469 eb->start, eb->read_mirror);
77bf40a2
QW
470out:
471 return ret;
472}
473
3dd1462e 474#ifdef CONFIG_MIGRATION
8958b551
MWO
475static int btree_migrate_folio(struct address_space *mapping,
476 struct folio *dst, struct folio *src, enum migrate_mode mode)
784b4e29
CM
477{
478 /*
479 * we can't safely write a btree page from here,
480 * we haven't done the locking hook
481 */
8958b551 482 if (folio_test_dirty(src))
784b4e29
CM
483 return -EAGAIN;
484 /*
485 * Buffers may be managed in a filesystem specific way.
486 * We must have no buffers or drop them.
487 */
8958b551
MWO
488 if (folio_get_private(src) &&
489 !filemap_release_folio(src, GFP_KERNEL))
784b4e29 490 return -EAGAIN;
54184650 491 return migrate_folio(mapping, dst, src, mode);
784b4e29 492}
8958b551
MWO
493#else
494#define btree_migrate_folio NULL
3dd1462e 495#endif
784b4e29 496
0da5468f
CM
497static int btree_writepages(struct address_space *mapping,
498 struct writeback_control *wbc)
499{
e2d84521
MX
500 int ret;
501
d8d5f3e1 502 if (wbc->sync_mode == WB_SYNC_NONE) {
41044b41 503 struct btrfs_fs_info *fs_info;
448d640b
CM
504
505 if (wbc->for_kupdate)
506 return 0;
507
41044b41 508 fs_info = inode_to_fs_info(mapping->host);
b9473439 509 /* this is a bit racy, but that's ok */
d814a491
EL
510 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
511 BTRFS_DIRTY_METADATA_THRESH,
512 fs_info->dirty_metadata_batch);
e2d84521 513 if (ret < 0)
793955bc 514 return 0;
793955bc 515 }
0b32f4bb 516 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
517}
518
f913cff3 519static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
5f39d397 520{
f913cff3
MWO
521 if (folio_test_writeback(folio) || folio_test_dirty(folio))
522 return false;
0c4e538b 523
f913cff3 524 return try_release_extent_buffer(&folio->page);
d98237b3
CM
525}
526
895586eb
MWO
527static void btree_invalidate_folio(struct folio *folio, size_t offset,
528 size_t length)
d98237b3 529{
d1310b2e 530 struct extent_io_tree *tree;
c8293894
DS
531
532 tree = &folio_to_inode(folio)->io_tree;
895586eb 533 extent_invalidate_folio(tree, folio, offset);
f913cff3 534 btree_release_folio(folio, GFP_NOFS);
895586eb 535 if (folio_get_private(folio)) {
b33d2e53 536 btrfs_warn(folio_to_fs_info(folio),
895586eb
MWO
537 "folio private not zero on folio %llu",
538 (unsigned long long)folio_pos(folio));
539 folio_detach_private(folio);
9ad6b7bc 540 }
d98237b3
CM
541}
542
bb146eb2 543#ifdef DEBUG
0079c3b1
MWO
544static bool btree_dirty_folio(struct address_space *mapping,
545 struct folio *folio)
546{
41044b41 547 struct btrfs_fs_info *fs_info = inode_to_fs_info(mapping->host);
5e0e8799 548 struct btrfs_subpage_info *spi = fs_info->subpage_info;
139e8cd3 549 struct btrfs_subpage *subpage;
0b32f4bb 550 struct extent_buffer *eb;
139e8cd3 551 int cur_bit = 0;
0079c3b1 552 u64 page_start = folio_pos(folio);
139e8cd3
QW
553
554 if (fs_info->sectorsize == PAGE_SIZE) {
0079c3b1 555 eb = folio_get_private(folio);
139e8cd3
QW
556 BUG_ON(!eb);
557 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
558 BUG_ON(!atomic_read(&eb->refs));
49d0c642 559 btrfs_assert_tree_write_locked(eb);
0079c3b1 560 return filemap_dirty_folio(mapping, folio);
139e8cd3 561 }
5e0e8799
QW
562
563 ASSERT(spi);
0079c3b1 564 subpage = folio_get_private(folio);
139e8cd3 565
5e0e8799
QW
566 for (cur_bit = spi->dirty_offset;
567 cur_bit < spi->dirty_offset + spi->bitmap_nr_bits;
568 cur_bit++) {
139e8cd3
QW
569 unsigned long flags;
570 u64 cur;
139e8cd3
QW
571
572 spin_lock_irqsave(&subpage->lock, flags);
5e0e8799 573 if (!test_bit(cur_bit, subpage->bitmaps)) {
139e8cd3 574 spin_unlock_irqrestore(&subpage->lock, flags);
139e8cd3
QW
575 continue;
576 }
577 spin_unlock_irqrestore(&subpage->lock, flags);
578 cur = page_start + cur_bit * fs_info->sectorsize;
0b32f4bb 579
139e8cd3
QW
580 eb = find_extent_buffer(fs_info, cur);
581 ASSERT(eb);
582 ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
583 ASSERT(atomic_read(&eb->refs));
49d0c642 584 btrfs_assert_tree_write_locked(eb);
139e8cd3
QW
585 free_extent_buffer(eb);
586
5e0e8799 587 cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits) - 1;
139e8cd3 588 }
0079c3b1 589 return filemap_dirty_folio(mapping, folio);
0b32f4bb 590}
0079c3b1
MWO
591#else
592#define btree_dirty_folio filemap_dirty_folio
593#endif
0b32f4bb 594
7f09410b 595static const struct address_space_operations btree_aops = {
0da5468f 596 .writepages = btree_writepages,
f913cff3 597 .release_folio = btree_release_folio,
895586eb 598 .invalidate_folio = btree_invalidate_folio,
8958b551
MWO
599 .migrate_folio = btree_migrate_folio,
600 .dirty_folio = btree_dirty_folio,
d98237b3
CM
601};
602
2ff7e61e
JM
603struct extent_buffer *btrfs_find_create_tree_block(
604 struct btrfs_fs_info *fs_info,
3fbaf258
JB
605 u64 bytenr, u64 owner_root,
606 int level)
0999df54 607{
0b246afa
JM
608 if (btrfs_is_testing(fs_info))
609 return alloc_test_extent_buffer(fs_info, bytenr);
3fbaf258 610 return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
0999df54
CM
611}
612
581c1760
QW
613/*
614 * Read tree block at logical address @bytenr and do variant basic but critical
615 * verification.
616 *
789d6a3a
QW
617 * @check: expected tree parentness check, see comments of the
618 * structure for details.
581c1760 619 */
2ff7e61e 620struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
789d6a3a 621 struct btrfs_tree_parent_check *check)
0999df54
CM
622{
623 struct extent_buffer *buf = NULL;
0999df54
CM
624 int ret;
625
789d6a3a
QW
626 ASSERT(check);
627
628 buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
629 check->level);
c871b0f2
LB
630 if (IS_ERR(buf))
631 return buf;
0999df54 632
789d6a3a 633 ret = btrfs_read_extent_buffer(buf, check);
0f0fe8f7 634 if (ret) {
537f38f0 635 free_extent_buffer_stale(buf);
64c043de 636 return ERR_PTR(ret);
0f0fe8f7 637 }
789d6a3a 638 if (btrfs_check_eb_owner(buf, check->owner_root)) {
88c602ab
QW
639 free_extent_buffer_stale(buf);
640 return ERR_PTR(-EUCLEAN);
641 }
5f39d397 642 return buf;
ce9adaa5 643
eb60ceac
CM
644}
645
da17066c 646static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 647 u64 objectid)
d97e63b6 648{
fef998d1 649 bool dummy = btrfs_is_testing(fs_info);
2e608bd1
JB
650
651 memset(&root->root_key, 0, sizeof(root->root_key));
652 memset(&root->root_item, 0, sizeof(root->root_item));
653 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
96dfcb46 654 root->fs_info = fs_info;
2e608bd1 655 root->root_key.objectid = objectid;
cfaa7295 656 root->node = NULL;
a28ec197 657 root->commit_root = NULL;
27cdeb70 658 root->state = 0;
abed4aaa 659 RB_CLEAR_NODE(&root->rb_node);
0b86a832 660
0f7d52f4 661 root->last_trans = 0;
6b8fad57 662 root->free_objectid = 0;
eb73c1b7 663 root->nr_delalloc_inodes = 0;
199c2a9c 664 root->nr_ordered_extents = 0;
6bef4d31 665 root->inode_tree = RB_ROOT;
905a95f3 666 xa_init(&root->delayed_nodes);
2e608bd1
JB
667
668 btrfs_init_root_block_rsv(root);
0b86a832
CM
669
670 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 671 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
672 INIT_LIST_HEAD(&root->delalloc_inodes);
673 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
674 INIT_LIST_HEAD(&root->ordered_extents);
675 INIT_LIST_HEAD(&root->ordered_root);
d2311e69 676 INIT_LIST_HEAD(&root->reloc_dirty_list);
5d4f98a2 677 spin_lock_init(&root->inode_lock);
eb73c1b7 678 spin_lock_init(&root->delalloc_lock);
199c2a9c 679 spin_lock_init(&root->ordered_extent_lock);
f0486c68 680 spin_lock_init(&root->accounting_lock);
8287475a 681 spin_lock_init(&root->qgroup_meta_rsv_lock);
a2135011 682 mutex_init(&root->objectid_mutex);
e02119d5 683 mutex_init(&root->log_mutex);
31f3d255 684 mutex_init(&root->ordered_extent_mutex);
573bfb72 685 mutex_init(&root->delalloc_mutex);
c53e9653 686 init_waitqueue_head(&root->qgroup_flush_wait);
7237f183
YZ
687 init_waitqueue_head(&root->log_writer_wait);
688 init_waitqueue_head(&root->log_commit_wait[0]);
689 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
690 INIT_LIST_HEAD(&root->log_ctxs[0]);
691 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
692 atomic_set(&root->log_commit[0], 0);
693 atomic_set(&root->log_commit[1], 0);
694 atomic_set(&root->log_writers, 0);
2ecb7923 695 atomic_set(&root->log_batch, 0);
0700cea7 696 refcount_set(&root->refs, 1);
8ecebf4d 697 atomic_set(&root->snapshot_force_cow, 0);
eede2bf3 698 atomic_set(&root->nr_swapfiles, 0);
6008859b 699 btrfs_set_root_log_transid(root, 0);
d1433deb 700 root->log_transid_committed = -1;
f9850787 701 btrfs_set_root_last_log_commit(root, 0);
2e608bd1 702 root->anon_dev = 0;
e289f03e 703 if (!dummy) {
43eb5f29 704 extent_io_tree_init(fs_info, &root->dirty_log_pages,
35da5a7e 705 IO_TREE_ROOT_DIRTY_LOG_PAGES);
e289f03e 706 extent_io_tree_init(fs_info, &root->log_csum_range,
35da5a7e 707 IO_TREE_LOG_CSUM_RANGE);
e289f03e 708 }
017e5369 709
5f3ab90a 710 spin_lock_init(&root->root_item_lock);
370a11b8 711 btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
bd647ce3
JB
712#ifdef CONFIG_BTRFS_DEBUG
713 INIT_LIST_HEAD(&root->leak_list);
fc7cbcd4 714 spin_lock(&fs_info->fs_roots_radix_lock);
bd647ce3 715 list_add_tail(&root->leak_list, &fs_info->allocated_roots);
fc7cbcd4 716 spin_unlock(&fs_info->fs_roots_radix_lock);
bd647ce3 717#endif
3768f368
CM
718}
719
74e4d827 720static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
96dfcb46 721 u64 objectid, gfp_t flags)
6f07e42e 722{
74e4d827 723 struct btrfs_root *root = kzalloc(sizeof(*root), flags);
6f07e42e 724 if (root)
96dfcb46 725 __setup_root(root, fs_info, objectid);
6f07e42e
AV
726 return root;
727}
728
06ea65a3
JB
729#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
730/* Should only be used by the testing infrastructure */
da17066c 731struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
06ea65a3
JB
732{
733 struct btrfs_root *root;
734
7c0260ee
JM
735 if (!fs_info)
736 return ERR_PTR(-EINVAL);
737
96dfcb46 738 root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
06ea65a3
JB
739 if (!root)
740 return ERR_PTR(-ENOMEM);
da17066c 741
b9ef22de 742 /* We don't use the stripesize in selftest, set it as sectorsize */
faa2dbf0 743 root->alloc_bytenr = 0;
06ea65a3
JB
744
745 return root;
746}
747#endif
748
abed4aaa
JB
749static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
750{
751 const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
752 const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
753
754 return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
755}
756
757static int global_root_key_cmp(const void *k, const struct rb_node *node)
758{
759 const struct btrfs_key *key = k;
760 const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
761
762 return btrfs_comp_cpu_keys(key, &root->root_key);
763}
764
765int btrfs_global_root_insert(struct btrfs_root *root)
766{
767 struct btrfs_fs_info *fs_info = root->fs_info;
768 struct rb_node *tmp;
745806fb 769 int ret = 0;
abed4aaa
JB
770
771 write_lock(&fs_info->global_root_lock);
772 tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
773 write_unlock(&fs_info->global_root_lock);
abed4aaa 774
745806fb
QW
775 if (tmp) {
776 ret = -EEXIST;
777 btrfs_warn(fs_info, "global root %llu %llu already exists",
e094f480 778 btrfs_root_id(root), root->root_key.offset);
745806fb
QW
779 }
780 return ret;
abed4aaa
JB
781}
782
783void btrfs_global_root_delete(struct btrfs_root *root)
784{
785 struct btrfs_fs_info *fs_info = root->fs_info;
786
787 write_lock(&fs_info->global_root_lock);
788 rb_erase(&root->rb_node, &fs_info->global_root_tree);
789 write_unlock(&fs_info->global_root_lock);
790}
791
792struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
793 struct btrfs_key *key)
794{
795 struct rb_node *node;
796 struct btrfs_root *root = NULL;
797
798 read_lock(&fs_info->global_root_lock);
799 node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
800 if (node)
801 root = container_of(node, struct btrfs_root, rb_node);
802 read_unlock(&fs_info->global_root_lock);
803
804 return root;
805}
806
f7238e50
JB
807static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
808{
809 struct btrfs_block_group *block_group;
810 u64 ret;
811
812 if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
813 return 0;
814
815 if (bytenr)
816 block_group = btrfs_lookup_block_group(fs_info, bytenr);
817 else
818 block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
819 ASSERT(block_group);
820 if (!block_group)
821 return 0;
822 ret = block_group->global_root_id;
823 btrfs_put_block_group(block_group);
824
825 return ret;
826}
827
abed4aaa
JB
828struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
829{
830 struct btrfs_key key = {
831 .objectid = BTRFS_CSUM_TREE_OBJECTID,
832 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 833 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
834 };
835
836 return btrfs_global_root(fs_info, &key);
837}
838
839struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
840{
841 struct btrfs_key key = {
842 .objectid = BTRFS_EXTENT_TREE_OBJECTID,
843 .type = BTRFS_ROOT_ITEM_KEY,
f7238e50 844 .offset = btrfs_global_root_id(fs_info, bytenr),
abed4aaa
JB
845 };
846
847 return btrfs_global_root(fs_info, &key);
848}
849
51129b33
JB
850struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
851{
852 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
853 return fs_info->block_group_root;
854 return btrfs_extent_root(fs_info, 0);
855}
856
20897f5c 857struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
20897f5c
AJ
858 u64 objectid)
859{
9b7a2440 860 struct btrfs_fs_info *fs_info = trans->fs_info;
20897f5c
AJ
861 struct extent_buffer *leaf;
862 struct btrfs_root *tree_root = fs_info->tree_root;
863 struct btrfs_root *root;
864 struct btrfs_key key;
b89f6d1f 865 unsigned int nofs_flag;
20897f5c 866 int ret = 0;
20897f5c 867
b89f6d1f
FM
868 /*
869 * We're holding a transaction handle, so use a NOFS memory allocation
870 * context to avoid deadlock if reclaim happens.
871 */
872 nofs_flag = memalloc_nofs_save();
96dfcb46 873 root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
b89f6d1f 874 memalloc_nofs_restore(nofs_flag);
20897f5c
AJ
875 if (!root)
876 return ERR_PTR(-ENOMEM);
877
20897f5c
AJ
878 root->root_key.objectid = objectid;
879 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
880 root->root_key.offset = 0;
881
9631e4cc 882 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
60ea105a 883 0, BTRFS_NESTING_NORMAL);
20897f5c
AJ
884 if (IS_ERR(leaf)) {
885 ret = PTR_ERR(leaf);
1dd05682 886 leaf = NULL;
c1b07854 887 goto fail;
20897f5c
AJ
888 }
889
20897f5c 890 root->node = leaf;
50564b65 891 btrfs_mark_buffer_dirty(trans, leaf);
20897f5c
AJ
892
893 root->commit_root = btrfs_root_node(root);
27cdeb70 894 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c 895
f944d2cb
DS
896 btrfs_set_root_flags(&root->root_item, 0);
897 btrfs_set_root_limit(&root->root_item, 0);
20897f5c
AJ
898 btrfs_set_root_bytenr(&root->root_item, leaf->start);
899 btrfs_set_root_generation(&root->root_item, trans->transid);
900 btrfs_set_root_level(&root->root_item, 0);
901 btrfs_set_root_refs(&root->root_item, 1);
902 btrfs_set_root_used(&root->root_item, leaf->len);
903 btrfs_set_root_last_snapshot(&root->root_item, 0);
904 btrfs_set_root_dirid(&root->root_item, 0);
33d85fda 905 if (is_fstree(objectid))
807fc790
AS
906 generate_random_guid(root->root_item.uuid);
907 else
908 export_guid(root->root_item.uuid, &guid_null);
c8422684 909 btrfs_set_root_drop_level(&root->root_item, 0);
20897f5c 910
8a6a87cd
BB
911 btrfs_tree_unlock(leaf);
912
20897f5c
AJ
913 key.objectid = objectid;
914 key.type = BTRFS_ROOT_ITEM_KEY;
915 key.offset = 0;
916 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
917 if (ret)
918 goto fail;
919
1dd05682
TI
920 return root;
921
8a6a87cd 922fail:
00246528 923 btrfs_put_root(root);
20897f5c 924
1dd05682 925 return ERR_PTR(ret);
20897f5c
AJ
926}
927
7237f183
YZ
928static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
929 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
930{
931 struct btrfs_root *root;
e02119d5 932
96dfcb46 933 root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
e02119d5 934 if (!root)
7237f183 935 return ERR_PTR(-ENOMEM);
e02119d5 936
e02119d5
CM
937 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
938 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
939 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 940
6ab6ebb7
NA
941 return root;
942}
943
944int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
945 struct btrfs_root *root)
946{
947 struct extent_buffer *leaf;
948
7237f183 949 /*
92a7cc42 950 * DON'T set SHAREABLE bit for log trees.
27cdeb70 951 *
92a7cc42
QW
952 * Log trees are not exposed to user space thus can't be snapshotted,
953 * and they go away before a real commit is actually done.
954 *
955 * They do store pointers to file data extents, and those reference
956 * counts still get updated (along with back refs to the log tree).
7237f183 957 */
e02119d5 958
4d75f8a9 959 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
60ea105a 960 NULL, 0, 0, 0, 0, BTRFS_NESTING_NORMAL);
6ab6ebb7
NA
961 if (IS_ERR(leaf))
962 return PTR_ERR(leaf);
e02119d5 963
7237f183 964 root->node = leaf;
e02119d5 965
50564b65 966 btrfs_mark_buffer_dirty(trans, root->node);
e02119d5 967 btrfs_tree_unlock(root->node);
6ab6ebb7
NA
968
969 return 0;
7237f183
YZ
970}
971
972int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
973 struct btrfs_fs_info *fs_info)
974{
975 struct btrfs_root *log_root;
976
977 log_root = alloc_log_tree(trans, fs_info);
978 if (IS_ERR(log_root))
979 return PTR_ERR(log_root);
6ab6ebb7 980
3ddebf27
NA
981 if (!btrfs_is_zoned(fs_info)) {
982 int ret = btrfs_alloc_log_tree_node(trans, log_root);
983
984 if (ret) {
985 btrfs_put_root(log_root);
986 return ret;
987 }
6ab6ebb7
NA
988 }
989
7237f183
YZ
990 WARN_ON(fs_info->log_root_tree);
991 fs_info->log_root_tree = log_root;
992 return 0;
993}
994
995int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
996 struct btrfs_root *root)
997{
0b246afa 998 struct btrfs_fs_info *fs_info = root->fs_info;
7237f183
YZ
999 struct btrfs_root *log_root;
1000 struct btrfs_inode_item *inode_item;
6ab6ebb7 1001 int ret;
7237f183 1002
0b246afa 1003 log_root = alloc_log_tree(trans, fs_info);
7237f183
YZ
1004 if (IS_ERR(log_root))
1005 return PTR_ERR(log_root);
1006
6ab6ebb7
NA
1007 ret = btrfs_alloc_log_tree_node(trans, log_root);
1008 if (ret) {
1009 btrfs_put_root(log_root);
1010 return ret;
1011 }
1012
7237f183 1013 log_root->last_trans = trans->transid;
e094f480 1014 log_root->root_key.offset = btrfs_root_id(root);
7237f183
YZ
1015
1016 inode_item = &log_root->root_item.inode;
3cae210f
QW
1017 btrfs_set_stack_inode_generation(inode_item, 1);
1018 btrfs_set_stack_inode_size(inode_item, 3);
1019 btrfs_set_stack_inode_nlink(inode_item, 1);
da17066c 1020 btrfs_set_stack_inode_nbytes(inode_item,
0b246afa 1021 fs_info->nodesize);
3cae210f 1022 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1023
5d4f98a2 1024 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1025
1026 WARN_ON(root->log_root);
1027 root->log_root = log_root;
6008859b 1028 btrfs_set_root_log_transid(root, 0);
d1433deb 1029 root->log_transid_committed = -1;
f9850787 1030 btrfs_set_root_last_log_commit(root, 0);
e02119d5
CM
1031 return 0;
1032}
1033
49d11bea
JB
1034static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1035 struct btrfs_path *path,
1036 struct btrfs_key *key)
e02119d5
CM
1037{
1038 struct btrfs_root *root;
789d6a3a 1039 struct btrfs_tree_parent_check check = { 0 };
e02119d5 1040 struct btrfs_fs_info *fs_info = tree_root->fs_info;
84234f3a 1041 u64 generation;
cb517eab 1042 int ret;
581c1760 1043 int level;
0f7d52f4 1044
96dfcb46 1045 root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
49d11bea
JB
1046 if (!root)
1047 return ERR_PTR(-ENOMEM);
0f7d52f4 1048
cb517eab
MX
1049 ret = btrfs_find_root(tree_root, key, path,
1050 &root->root_item, &root->root_key);
0f7d52f4 1051 if (ret) {
13a8a7c8
YZ
1052 if (ret > 0)
1053 ret = -ENOENT;
49d11bea 1054 goto fail;
0f7d52f4 1055 }
13a8a7c8 1056
84234f3a 1057 generation = btrfs_root_generation(&root->root_item);
581c1760 1058 level = btrfs_root_level(&root->root_item);
789d6a3a
QW
1059 check.level = level;
1060 check.transid = generation;
1061 check.owner_root = key->objectid;
1062 root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1063 &check);
64c043de
LB
1064 if (IS_ERR(root->node)) {
1065 ret = PTR_ERR(root->node);
8c38938c 1066 root->node = NULL;
49d11bea 1067 goto fail;
4eb150d6
QW
1068 }
1069 if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
cb517eab 1070 ret = -EIO;
49d11bea 1071 goto fail;
416bc658 1072 }
88c602ab
QW
1073
1074 /*
1075 * For real fs, and not log/reloc trees, root owner must
1076 * match its root node owner
1077 */
fef998d1 1078 if (!btrfs_is_testing(fs_info) &&
e094f480
JB
1079 btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
1080 btrfs_root_id(root) != BTRFS_TREE_RELOC_OBJECTID &&
1081 btrfs_root_id(root) != btrfs_header_owner(root->node)) {
88c602ab
QW
1082 btrfs_crit(fs_info,
1083"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
e094f480 1084 btrfs_root_id(root), root->node->start,
88c602ab 1085 btrfs_header_owner(root->node),
e094f480 1086 btrfs_root_id(root));
88c602ab
QW
1087 ret = -EUCLEAN;
1088 goto fail;
1089 }
5d4f98a2 1090 root->commit_root = btrfs_root_node(root);
cb517eab 1091 return root;
49d11bea 1092fail:
00246528 1093 btrfs_put_root(root);
49d11bea
JB
1094 return ERR_PTR(ret);
1095}
1096
1097struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1098 struct btrfs_key *key)
1099{
1100 struct btrfs_root *root;
1101 struct btrfs_path *path;
1102
1103 path = btrfs_alloc_path();
1104 if (!path)
1105 return ERR_PTR(-ENOMEM);
1106 root = read_tree_root_path(tree_root, path, key);
1107 btrfs_free_path(path);
1108
1109 return root;
cb517eab
MX
1110}
1111
2dfb1e43
QW
1112/*
1113 * Initialize subvolume root in-memory structure
1114 *
1115 * @anon_dev: anonymous device to attach to the root, if zero, allocate new
1116 */
1117static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
cb517eab
MX
1118{
1119 int ret;
1120
0b548539 1121 btrfs_drew_lock_init(&root->snapshot_lock);
8257b2dc 1122
e094f480 1123 if (btrfs_root_id(root) != BTRFS_TREE_LOG_OBJECTID &&
6ebcd021 1124 !btrfs_is_data_reloc_root(root) &&
e094f480 1125 is_fstree(btrfs_root_id(root))) {
92a7cc42 1126 set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
f39e4571
JB
1127 btrfs_check_and_init_root_item(&root->root_item);
1128 }
1129
851fd730
QW
1130 /*
1131 * Don't assign anonymous block device to roots that are not exposed to
1132 * userspace, the id pool is limited to 1M
1133 */
e094f480 1134 if (is_fstree(btrfs_root_id(root)) &&
851fd730 1135 btrfs_root_refs(&root->root_item) > 0) {
2dfb1e43
QW
1136 if (!anon_dev) {
1137 ret = get_anon_bdev(&root->anon_dev);
1138 if (ret)
1139 goto fail;
1140 } else {
1141 root->anon_dev = anon_dev;
1142 }
851fd730 1143 }
f32e48e9
CR
1144
1145 mutex_lock(&root->objectid_mutex);
453e4873 1146 ret = btrfs_init_root_free_objectid(root);
f32e48e9
CR
1147 if (ret) {
1148 mutex_unlock(&root->objectid_mutex);
876d2cf1 1149 goto fail;
f32e48e9
CR
1150 }
1151
6b8fad57 1152 ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
f32e48e9
CR
1153
1154 mutex_unlock(&root->objectid_mutex);
1155
cb517eab
MX
1156 return 0;
1157fail:
84db5ccf 1158 /* The caller is responsible to call btrfs_free_fs_root */
cb517eab
MX
1159 return ret;
1160}
1161
a98db0f3
JB
1162static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1163 u64 root_id)
cb517eab
MX
1164{
1165 struct btrfs_root *root;
1166
fc7cbcd4
DS
1167 spin_lock(&fs_info->fs_roots_radix_lock);
1168 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1169 (unsigned long)root_id);
25ac047c 1170 root = btrfs_grab_root(root);
fc7cbcd4 1171 spin_unlock(&fs_info->fs_roots_radix_lock);
cb517eab
MX
1172 return root;
1173}
1174
49d11bea
JB
1175static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1176 u64 objectid)
1177{
abed4aaa
JB
1178 struct btrfs_key key = {
1179 .objectid = objectid,
1180 .type = BTRFS_ROOT_ITEM_KEY,
1181 .offset = 0,
1182 };
1183
e91909aa
CH
1184 switch (objectid) {
1185 case BTRFS_ROOT_TREE_OBJECTID:
49d11bea 1186 return btrfs_grab_root(fs_info->tree_root);
e91909aa 1187 case BTRFS_EXTENT_TREE_OBJECTID:
abed4aaa 1188 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1189 case BTRFS_CHUNK_TREE_OBJECTID:
49d11bea 1190 return btrfs_grab_root(fs_info->chunk_root);
e91909aa 1191 case BTRFS_DEV_TREE_OBJECTID:
49d11bea 1192 return btrfs_grab_root(fs_info->dev_root);
e91909aa 1193 case BTRFS_CSUM_TREE_OBJECTID:
abed4aaa 1194 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
e91909aa 1195 case BTRFS_QUOTA_TREE_OBJECTID:
85724171 1196 return btrfs_grab_root(fs_info->quota_root);
e91909aa 1197 case BTRFS_UUID_TREE_OBJECTID:
85724171 1198 return btrfs_grab_root(fs_info->uuid_root);
e91909aa 1199 case BTRFS_BLOCK_GROUP_TREE_OBJECTID:
85724171 1200 return btrfs_grab_root(fs_info->block_group_root);
e91909aa 1201 case BTRFS_FREE_SPACE_TREE_OBJECTID:
85724171 1202 return btrfs_grab_root(btrfs_global_root(fs_info, &key));
51502090
JT
1203 case BTRFS_RAID_STRIPE_TREE_OBJECTID:
1204 return btrfs_grab_root(fs_info->stripe_root);
e91909aa
CH
1205 default:
1206 return NULL;
1207 }
49d11bea
JB
1208}
1209
cb517eab
MX
1210int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1211 struct btrfs_root *root)
1212{
1213 int ret;
1214
fc7cbcd4
DS
1215 ret = radix_tree_preload(GFP_NOFS);
1216 if (ret)
1217 return ret;
1218
1219 spin_lock(&fs_info->fs_roots_radix_lock);
1220 ret = radix_tree_insert(&fs_info->fs_roots_radix,
e094f480 1221 (unsigned long)btrfs_root_id(root),
fc7cbcd4 1222 root);
af01d2e5 1223 if (ret == 0) {
00246528 1224 btrfs_grab_root(root);
fc7cbcd4 1225 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
af01d2e5 1226 }
fc7cbcd4
DS
1227 spin_unlock(&fs_info->fs_roots_radix_lock);
1228 radix_tree_preload_end();
cb517eab
MX
1229
1230 return ret;
1231}
1232
bd647ce3
JB
1233void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1234{
1235#ifdef CONFIG_BTRFS_DEBUG
1236 struct btrfs_root *root;
1237
1238 while (!list_empty(&fs_info->allocated_roots)) {
457f1864
JB
1239 char buf[BTRFS_ROOT_NAME_BUF_LEN];
1240
bd647ce3
JB
1241 root = list_first_entry(&fs_info->allocated_roots,
1242 struct btrfs_root, leak_list);
457f1864 1243 btrfs_err(fs_info, "leaked root %s refcount %d",
71008734 1244 btrfs_root_name(&root->root_key, buf),
bd647ce3 1245 refcount_read(&root->refs));
8fd2b12e 1246 WARN_ON_ONCE(1);
bd647ce3 1247 while (refcount_read(&root->refs) > 1)
00246528
JB
1248 btrfs_put_root(root);
1249 btrfs_put_root(root);
bd647ce3
JB
1250 }
1251#endif
1252}
1253
abed4aaa
JB
1254static void free_global_roots(struct btrfs_fs_info *fs_info)
1255{
1256 struct btrfs_root *root;
1257 struct rb_node *node;
1258
1259 while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1260 root = rb_entry(node, struct btrfs_root, rb_node);
1261 rb_erase(&root->rb_node, &fs_info->global_root_tree);
1262 btrfs_put_root(root);
1263 }
1264}
1265
0d4b0463
JB
1266void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1267{
f1d97e76
FM
1268 struct percpu_counter *em_counter = &fs_info->evictable_extent_maps;
1269
141386e1
JB
1270 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1271 percpu_counter_destroy(&fs_info->delalloc_bytes);
5deb17e1 1272 percpu_counter_destroy(&fs_info->ordered_bytes);
f1d97e76
FM
1273 if (percpu_counter_initialized(em_counter))
1274 ASSERT(percpu_counter_sum_positive(em_counter) == 0);
1275 percpu_counter_destroy(em_counter);
141386e1
JB
1276 percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1277 btrfs_free_csum_hash(fs_info);
1278 btrfs_free_stripe_hash_table(fs_info);
1279 btrfs_free_ref_cache(fs_info);
0d4b0463
JB
1280 kfree(fs_info->balance_ctl);
1281 kfree(fs_info->delayed_root);
abed4aaa 1282 free_global_roots(fs_info);
00246528
JB
1283 btrfs_put_root(fs_info->tree_root);
1284 btrfs_put_root(fs_info->chunk_root);
1285 btrfs_put_root(fs_info->dev_root);
00246528
JB
1286 btrfs_put_root(fs_info->quota_root);
1287 btrfs_put_root(fs_info->uuid_root);
00246528 1288 btrfs_put_root(fs_info->fs_root);
aeb935a4 1289 btrfs_put_root(fs_info->data_reloc_root);
9c54e80d 1290 btrfs_put_root(fs_info->block_group_root);
51502090 1291 btrfs_put_root(fs_info->stripe_root);
bd647ce3 1292 btrfs_check_leaked_roots(fs_info);
3fd63727 1293 btrfs_extent_buffer_leak_debug_check(fs_info);
0d4b0463
JB
1294 kfree(fs_info->super_copy);
1295 kfree(fs_info->super_for_commit);
8481dd80 1296 kfree(fs_info->subpage_info);
0d4b0463
JB
1297 kvfree(fs_info);
1298}
1299
1300
2dfb1e43
QW
1301/*
1302 * Get an in-memory reference of a root structure.
1303 *
1304 * For essential trees like root/extent tree, we grab it from fs_info directly.
1305 * For subvolume trees, we check the cached filesystem roots first. If not
1306 * found, then read it from disk and add it to cached fs roots.
1307 *
1308 * Caller should release the root by calling btrfs_put_root() after the usage.
1309 *
1310 * NOTE: Reloc and log trees can't be read by this function as they share the
1311 * same root objectid.
1312 *
1313 * @objectid: root id
1314 * @anon_dev: preallocated anonymous block device number for new roots,
e2b54eaf 1315 * pass NULL for a new allocation.
2dfb1e43
QW
1316 * @check_ref: whether to check root item references, If true, return -ENOENT
1317 * for orphan roots
1318 */
1319static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
e2b54eaf 1320 u64 objectid, dev_t *anon_dev,
2dfb1e43 1321 bool check_ref)
5eda7b5e
CM
1322{
1323 struct btrfs_root *root;
381cf658 1324 struct btrfs_path *path;
1d4c08e0 1325 struct btrfs_key key;
5eda7b5e
CM
1326 int ret;
1327
49d11bea
JB
1328 root = btrfs_get_global_root(fs_info, objectid);
1329 if (root)
1330 return root;
773e722a
QW
1331
1332 /*
1333 * If we're called for non-subvolume trees, and above function didn't
1334 * find one, do not try to read it from disk.
1335 *
1336 * This is namely for free-space-tree and quota tree, which can change
1337 * at runtime and should only be grabbed from fs_info.
1338 */
1339 if (!is_fstree(objectid) && objectid != BTRFS_DATA_RELOC_TREE_OBJECTID)
1340 return ERR_PTR(-ENOENT);
4df27c4d 1341again:
56e9357a 1342 root = btrfs_lookup_fs_root(fs_info, objectid);
48475471 1343 if (root) {
e03ee2fe
QW
1344 /*
1345 * Some other caller may have read out the newly inserted
1346 * subvolume already (for things like backref walk etc). Not
1347 * that common but still possible. In that case, we just need
1348 * to free the anon_dev.
1349 */
e2b54eaf
FM
1350 if (unlikely(anon_dev && *anon_dev)) {
1351 free_anon_bdev(*anon_dev);
1352 *anon_dev = 0;
e03ee2fe
QW
1353 }
1354
bc44d7c4 1355 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
00246528 1356 btrfs_put_root(root);
48475471 1357 return ERR_PTR(-ENOENT);
bc44d7c4 1358 }
5eda7b5e 1359 return root;
48475471 1360 }
5eda7b5e 1361
56e9357a
DS
1362 key.objectid = objectid;
1363 key.type = BTRFS_ROOT_ITEM_KEY;
1364 key.offset = (u64)-1;
1365 root = btrfs_read_tree_root(fs_info->tree_root, &key);
5eda7b5e
CM
1366 if (IS_ERR(root))
1367 return root;
3394e160 1368
c00869f1 1369 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1370 ret = -ENOENT;
581bb050 1371 goto fail;
35a30d7c 1372 }
581bb050 1373
e2b54eaf 1374 ret = btrfs_init_fs_root(root, anon_dev ? *anon_dev : 0);
ac08aedf
CM
1375 if (ret)
1376 goto fail;
3394e160 1377
381cf658
DS
1378 path = btrfs_alloc_path();
1379 if (!path) {
1380 ret = -ENOMEM;
1381 goto fail;
1382 }
1d4c08e0
DS
1383 key.objectid = BTRFS_ORPHAN_OBJECTID;
1384 key.type = BTRFS_ORPHAN_ITEM_KEY;
56e9357a 1385 key.offset = objectid;
1d4c08e0
DS
1386
1387 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1388 btrfs_free_path(path);
d68fc57b
YZ
1389 if (ret < 0)
1390 goto fail;
1391 if (ret == 0)
27cdeb70 1392 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1393
cb517eab 1394 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1395 if (ret) {
168a2f77
JJB
1396 if (ret == -EEXIST) {
1397 btrfs_put_root(root);
4df27c4d 1398 goto again;
168a2f77 1399 }
4df27c4d 1400 goto fail;
0f7d52f4 1401 }
edbd8d4e 1402 return root;
4df27c4d 1403fail:
33fab972
FM
1404 /*
1405 * If our caller provided us an anonymous device, then it's his
143823cf 1406 * responsibility to free it in case we fail. So we have to set our
33fab972
FM
1407 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1408 * and once again by our caller.
1409 */
e2b54eaf 1410 if (anon_dev && *anon_dev)
33fab972 1411 root->anon_dev = 0;
8c38938c 1412 btrfs_put_root(root);
4df27c4d 1413 return ERR_PTR(ret);
edbd8d4e
CM
1414}
1415
2dfb1e43
QW
1416/*
1417 * Get in-memory reference of a root structure
1418 *
1419 * @objectid: tree objectid
1420 * @check_ref: if set, verify that the tree exists and the item has at least
1421 * one reference
1422 */
1423struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1424 u64 objectid, bool check_ref)
1425{
e2b54eaf 1426 return btrfs_get_root_ref(fs_info, objectid, NULL, check_ref);
2dfb1e43
QW
1427}
1428
1429/*
1430 * Get in-memory reference of a root structure, created as new, optionally pass
1431 * the anonymous block device id
1432 *
1433 * @objectid: tree objectid
e2b54eaf
FM
1434 * @anon_dev: if NULL, allocate a new anonymous block device or use the
1435 * parameter value if not NULL
2dfb1e43
QW
1436 */
1437struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
e2b54eaf 1438 u64 objectid, dev_t *anon_dev)
2dfb1e43
QW
1439{
1440 return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
1441}
1442
49d11bea 1443/*
9580503b
DS
1444 * Return a root for the given objectid.
1445 *
49d11bea
JB
1446 * @fs_info: the fs_info
1447 * @objectid: the objectid we need to lookup
1448 *
1449 * This is exclusively used for backref walking, and exists specifically because
1450 * of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
1451 * creation time, which means we may have to read the tree_root in order to look
1452 * up a fs root that is not in memory. If the root is not in memory we will
1453 * read the tree root commit root and look up the fs root from there. This is a
1454 * temporary root, it will not be inserted into the radix tree as it doesn't
1455 * have the most uptodate information, it'll simply be discarded once the
1456 * backref code is finished using the root.
1457 */
1458struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1459 struct btrfs_path *path,
1460 u64 objectid)
1461{
1462 struct btrfs_root *root;
1463 struct btrfs_key key;
1464
1465 ASSERT(path->search_commit_root && path->skip_locking);
1466
1467 /*
1468 * This can return -ENOENT if we ask for a root that doesn't exist, but
1469 * since this is called via the backref walking code we won't be looking
1470 * up a root that doesn't exist, unless there's corruption. So if root
1471 * != NULL just return it.
1472 */
1473 root = btrfs_get_global_root(fs_info, objectid);
1474 if (root)
1475 return root;
1476
1477 root = btrfs_lookup_fs_root(fs_info, objectid);
1478 if (root)
1479 return root;
1480
1481 key.objectid = objectid;
1482 key.type = BTRFS_ROOT_ITEM_KEY;
1483 key.offset = (u64)-1;
1484 root = read_tree_root_path(fs_info->tree_root, path, &key);
1485 btrfs_release_path(path);
1486
1487 return root;
1488}
1489
a74a4b97
CM
1490static int cleaner_kthread(void *arg)
1491{
0d031dc4 1492 struct btrfs_fs_info *fs_info = arg;
d0278245 1493 int again;
a74a4b97 1494
d6fd0ae2 1495 while (1) {
d0278245 1496 again = 0;
a74a4b97 1497
fd340d0f
JB
1498 set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1499
d0278245 1500 /* Make the cleaner go to sleep early. */
2ff7e61e 1501 if (btrfs_need_cleaner_sleep(fs_info))
d0278245
MX
1502 goto sleep;
1503
90c711ab
ZB
1504 /*
1505 * Do not do anything if we might cause open_ctree() to block
1506 * before we have finished mounting the filesystem.
1507 */
0b246afa 1508 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
90c711ab
ZB
1509 goto sleep;
1510
0b246afa 1511 if (!mutex_trylock(&fs_info->cleaner_mutex))
d0278245
MX
1512 goto sleep;
1513
dc7f370c
MX
1514 /*
1515 * Avoid the problem that we change the status of the fs
1516 * during the above check and trylock.
1517 */
2ff7e61e 1518 if (btrfs_need_cleaner_sleep(fs_info)) {
0b246afa 1519 mutex_unlock(&fs_info->cleaner_mutex);
dc7f370c 1520 goto sleep;
76dda93c 1521 }
a74a4b97 1522
b7625f46
QW
1523 if (test_and_clear_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags))
1524 btrfs_sysfs_feature_update(fs_info);
1525
2ff7e61e 1526 btrfs_run_delayed_iputs(fs_info);
c2d6cb16 1527
33c44184 1528 again = btrfs_clean_one_deleted_snapshot(fs_info);
0b246afa 1529 mutex_unlock(&fs_info->cleaner_mutex);
d0278245
MX
1530
1531 /*
05323cd1
MX
1532 * The defragger has dealt with the R/O remount and umount,
1533 * needn't do anything special here.
d0278245 1534 */
0b246afa 1535 btrfs_run_defrag_inodes(fs_info);
67c5e7d4
FM
1536
1537 /*
f3372065 1538 * Acquires fs_info->reclaim_bgs_lock to avoid racing
67c5e7d4
FM
1539 * with relocation (btrfs_relocate_chunk) and relocation
1540 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
f3372065 1541 * after acquiring fs_info->reclaim_bgs_lock. So we
67c5e7d4
FM
1542 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1543 * unused block groups.
1544 */
0b246afa 1545 btrfs_delete_unused_bgs(fs_info);
18bb8bbf
JT
1546
1547 /*
1548 * Reclaim block groups in the reclaim_bgs list after we deleted
1549 * all unused block_groups. This possibly gives us some more free
1550 * space.
1551 */
1552 btrfs_reclaim_bgs(fs_info);
d0278245 1553sleep:
a0a1db70 1554 clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
d6fd0ae2
OS
1555 if (kthread_should_park())
1556 kthread_parkme();
1557 if (kthread_should_stop())
1558 return 0;
838fe188 1559 if (!again) {
a74a4b97 1560 set_current_state(TASK_INTERRUPTIBLE);
d6fd0ae2 1561 schedule();
a74a4b97
CM
1562 __set_current_state(TASK_RUNNING);
1563 }
da288d28 1564 }
a74a4b97
CM
1565}
1566
1567static int transaction_kthread(void *arg)
1568{
1569 struct btrfs_root *root = arg;
0b246afa 1570 struct btrfs_fs_info *fs_info = root->fs_info;
a74a4b97
CM
1571 struct btrfs_trans_handle *trans;
1572 struct btrfs_transaction *cur;
8929ecfa 1573 u64 transid;
643900be 1574 time64_t delta;
a74a4b97 1575 unsigned long delay;
914b2007 1576 bool cannot_commit;
a74a4b97
CM
1577
1578 do {
914b2007 1579 cannot_commit = false;
ba1bc00f 1580 delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
0b246afa 1581 mutex_lock(&fs_info->transaction_kthread_mutex);
a74a4b97 1582
0b246afa
JM
1583 spin_lock(&fs_info->trans_lock);
1584 cur = fs_info->running_transaction;
a74a4b97 1585 if (!cur) {
0b246afa 1586 spin_unlock(&fs_info->trans_lock);
a74a4b97
CM
1587 goto sleep;
1588 }
31153d81 1589
643900be 1590 delta = ktime_get_seconds() - cur->start_time;
fdfbf020 1591 if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
77d20c68 1592 cur->state < TRANS_STATE_COMMIT_PREP &&
643900be 1593 delta < fs_info->commit_interval) {
0b246afa 1594 spin_unlock(&fs_info->trans_lock);
fb8a7e94
NB
1595 delay -= msecs_to_jiffies((delta - 1) * 1000);
1596 delay = min(delay,
1597 msecs_to_jiffies(fs_info->commit_interval * 1000));
a74a4b97
CM
1598 goto sleep;
1599 }
8929ecfa 1600 transid = cur->transid;
0b246afa 1601 spin_unlock(&fs_info->trans_lock);
56bec294 1602
79787eaa 1603 /* If the file system is aborted, this will always fail. */
354aa0fb 1604 trans = btrfs_attach_transaction(root);
914b2007 1605 if (IS_ERR(trans)) {
354aa0fb
MX
1606 if (PTR_ERR(trans) != -ENOENT)
1607 cannot_commit = true;
79787eaa 1608 goto sleep;
914b2007 1609 }
8929ecfa 1610 if (transid == trans->transid) {
3a45bb20 1611 btrfs_commit_transaction(trans);
8929ecfa 1612 } else {
3a45bb20 1613 btrfs_end_transaction(trans);
8929ecfa 1614 }
a74a4b97 1615sleep:
0b246afa
JM
1616 wake_up_process(fs_info->cleaner_kthread);
1617 mutex_unlock(&fs_info->transaction_kthread_mutex);
a74a4b97 1618
84961539 1619 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 1620 btrfs_cleanup_transaction(fs_info);
ce63f891 1621 if (!kthread_should_stop() &&
0b246afa 1622 (!btrfs_transaction_blocked(fs_info) ||
ce63f891 1623 cannot_commit))
bc5511d0 1624 schedule_timeout_interruptible(delay);
a74a4b97
CM
1625 } while (!kthread_should_stop());
1626 return 0;
1627}
1628
af31f5e5 1629/*
01f0f9da
NB
1630 * This will find the highest generation in the array of root backups. The
1631 * index of the highest array is returned, or -EINVAL if we can't find
1632 * anything.
af31f5e5
CM
1633 *
1634 * We check to make sure the array is valid by comparing the
1635 * generation of the latest root in the array with the generation
1636 * in the super block. If they don't match we pitch it.
1637 */
01f0f9da 1638static int find_newest_super_backup(struct btrfs_fs_info *info)
af31f5e5 1639{
01f0f9da 1640 const u64 newest_gen = btrfs_super_generation(info->super_copy);
af31f5e5 1641 u64 cur;
af31f5e5
CM
1642 struct btrfs_root_backup *root_backup;
1643 int i;
1644
1645 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1646 root_backup = info->super_copy->super_roots + i;
1647 cur = btrfs_backup_tree_root_gen(root_backup);
1648 if (cur == newest_gen)
01f0f9da 1649 return i;
af31f5e5
CM
1650 }
1651
01f0f9da 1652 return -EINVAL;
af31f5e5
CM
1653}
1654
af31f5e5
CM
1655/*
1656 * copy all the root pointers into the super backup array.
1657 * this will bump the backup pointer by one when it is
1658 * done
1659 */
1660static void backup_super_roots(struct btrfs_fs_info *info)
1661{
6ef108dd 1662 const int next_backup = info->backup_root_index;
af31f5e5 1663 struct btrfs_root_backup *root_backup;
af31f5e5
CM
1664
1665 root_backup = info->super_for_commit->super_roots + next_backup;
1666
1667 /*
1668 * make sure all of our padding and empty slots get zero filled
1669 * regardless of which ones we use today
1670 */
1671 memset(root_backup, 0, sizeof(*root_backup));
1672
1673 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1674
1675 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1676 btrfs_set_backup_tree_root_gen(root_backup,
1677 btrfs_header_generation(info->tree_root->node));
1678
1679 btrfs_set_backup_tree_root_level(root_backup,
1680 btrfs_header_level(info->tree_root->node));
1681
1682 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1683 btrfs_set_backup_chunk_root_gen(root_backup,
1684 btrfs_header_generation(info->chunk_root->node));
1685 btrfs_set_backup_chunk_root_level(root_backup,
1686 btrfs_header_level(info->chunk_root->node));
1687
1c56ab99 1688 if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
9c54e80d 1689 struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
f7238e50 1690 struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
9c54e80d
JB
1691
1692 btrfs_set_backup_extent_root(root_backup,
1693 extent_root->node->start);
1694 btrfs_set_backup_extent_root_gen(root_backup,
1695 btrfs_header_generation(extent_root->node));
1696 btrfs_set_backup_extent_root_level(root_backup,
1697 btrfs_header_level(extent_root->node));
f7238e50
JB
1698
1699 btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
1700 btrfs_set_backup_csum_root_gen(root_backup,
1701 btrfs_header_generation(csum_root->node));
1702 btrfs_set_backup_csum_root_level(root_backup,
1703 btrfs_header_level(csum_root->node));
9c54e80d 1704 }
af31f5e5 1705
7c7e82a7
CM
1706 /*
1707 * we might commit during log recovery, which happens before we set
1708 * the fs_root. Make sure it is valid before we fill it in.
1709 */
1710 if (info->fs_root && info->fs_root->node) {
1711 btrfs_set_backup_fs_root(root_backup,
1712 info->fs_root->node->start);
1713 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1714 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1715 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1716 btrfs_header_level(info->fs_root->node));
7c7e82a7 1717 }
af31f5e5
CM
1718
1719 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1720 btrfs_set_backup_dev_root_gen(root_backup,
1721 btrfs_header_generation(info->dev_root->node));
1722 btrfs_set_backup_dev_root_level(root_backup,
1723 btrfs_header_level(info->dev_root->node));
1724
af31f5e5
CM
1725 btrfs_set_backup_total_bytes(root_backup,
1726 btrfs_super_total_bytes(info->super_copy));
1727 btrfs_set_backup_bytes_used(root_backup,
1728 btrfs_super_bytes_used(info->super_copy));
1729 btrfs_set_backup_num_devices(root_backup,
1730 btrfs_super_num_devices(info->super_copy));
1731
1732 /*
1733 * if we don't copy this out to the super_copy, it won't get remembered
1734 * for the next commit
1735 */
1736 memcpy(&info->super_copy->super_roots,
1737 &info->super_for_commit->super_roots,
1738 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1739}
1740
bd2336b2 1741/*
9580503b
DS
1742 * Reads a backup root based on the passed priority. Prio 0 is the newest, prio
1743 * 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
bd2336b2 1744 *
9580503b
DS
1745 * @fs_info: filesystem whose backup roots need to be read
1746 * @priority: priority of backup root required
bd2336b2
NB
1747 *
1748 * Returns backup root index on success and -EINVAL otherwise.
1749 */
1750static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
1751{
1752 int backup_index = find_newest_super_backup(fs_info);
1753 struct btrfs_super_block *super = fs_info->super_copy;
1754 struct btrfs_root_backup *root_backup;
1755
1756 if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
1757 if (priority == 0)
1758 return backup_index;
1759
1760 backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
1761 backup_index %= BTRFS_NUM_BACKUP_ROOTS;
1762 } else {
1763 return -EINVAL;
1764 }
1765
1766 root_backup = super->super_roots + backup_index;
1767
1768 btrfs_set_super_generation(super,
1769 btrfs_backup_tree_root_gen(root_backup));
1770 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1771 btrfs_set_super_root_level(super,
1772 btrfs_backup_tree_root_level(root_backup));
1773 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1774
1775 /*
1776 * Fixme: the total bytes and num_devices need to match or we should
1777 * need a fsck
1778 */
1779 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1780 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1781
1782 return backup_index;
1783}
1784
7abadb64
LB
1785/* helper to cleanup workers */
1786static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1787{
dc6e3209 1788 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 1789 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 1790 btrfs_destroy_workqueue(fs_info->workers);
d7b9416f
CH
1791 if (fs_info->endio_workers)
1792 destroy_workqueue(fs_info->endio_workers);
385de0ef
CH
1793 if (fs_info->rmw_workers)
1794 destroy_workqueue(fs_info->rmw_workers);
fed8a72d
CH
1795 if (fs_info->compressed_write_workers)
1796 destroy_workqueue(fs_info->compressed_write_workers);
fccb5d86
QW
1797 btrfs_destroy_workqueue(fs_info->endio_write_workers);
1798 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
5b3bc44e 1799 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 1800 btrfs_destroy_workqueue(fs_info->caching_workers);
a44903ab 1801 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 1802 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
b0643e59
DZ
1803 if (fs_info->discard_ctl.discard_workers)
1804 destroy_workqueue(fs_info->discard_ctl.discard_workers);
a9b9477d
FM
1805 /*
1806 * Now that all other work queues are destroyed, we can safely destroy
1807 * the queues used for metadata I/O, since tasks from those other work
1808 * queues can do metadata I/O operations.
1809 */
d7b9416f
CH
1810 if (fs_info->endio_meta_workers)
1811 destroy_workqueue(fs_info->endio_meta_workers);
7abadb64
LB
1812}
1813
2e9f5954
R
1814static void free_root_extent_buffers(struct btrfs_root *root)
1815{
1816 if (root) {
1817 free_extent_buffer(root->node);
1818 free_extent_buffer(root->commit_root);
1819 root->node = NULL;
1820 root->commit_root = NULL;
1821 }
1822}
1823
abed4aaa
JB
1824static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
1825{
1826 struct btrfs_root *root, *tmp;
1827
1828 rbtree_postorder_for_each_entry_safe(root, tmp,
1829 &fs_info->global_root_tree,
1830 rb_node)
1831 free_root_extent_buffers(root);
1832}
1833
af31f5e5 1834/* helper to cleanup tree roots */
4273eaff 1835static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
af31f5e5 1836{
2e9f5954 1837 free_root_extent_buffers(info->tree_root);
655b09fe 1838
abed4aaa 1839 free_global_root_pointers(info);
2e9f5954 1840 free_root_extent_buffers(info->dev_root);
2e9f5954
R
1841 free_root_extent_buffers(info->quota_root);
1842 free_root_extent_buffers(info->uuid_root);
8c38938c 1843 free_root_extent_buffers(info->fs_root);
aeb935a4 1844 free_root_extent_buffers(info->data_reloc_root);
9c54e80d 1845 free_root_extent_buffers(info->block_group_root);
51502090 1846 free_root_extent_buffers(info->stripe_root);
4273eaff 1847 if (free_chunk_root)
2e9f5954 1848 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
1849}
1850
8c38938c
JB
1851void btrfs_put_root(struct btrfs_root *root)
1852{
1853 if (!root)
1854 return;
1855
1856 if (refcount_dec_and_test(&root->refs)) {
1857 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1dae7e0e 1858 WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
8c38938c
JB
1859 if (root->anon_dev)
1860 free_anon_bdev(root->anon_dev);
923eb523 1861 free_root_extent_buffers(root);
8c38938c 1862#ifdef CONFIG_BTRFS_DEBUG
fc7cbcd4 1863 spin_lock(&root->fs_info->fs_roots_radix_lock);
8c38938c 1864 list_del_init(&root->leak_list);
fc7cbcd4 1865 spin_unlock(&root->fs_info->fs_roots_radix_lock);
8c38938c
JB
1866#endif
1867 kfree(root);
1868 }
1869}
1870
faa2dbf0 1871void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537 1872{
fc7cbcd4
DS
1873 int ret;
1874 struct btrfs_root *gang[8];
1875 int i;
171f6537
JB
1876
1877 while (!list_empty(&fs_info->dead_roots)) {
fc7cbcd4
DS
1878 gang[0] = list_entry(fs_info->dead_roots.next,
1879 struct btrfs_root, root_list);
1880 list_del(&gang[0]->root_list);
171f6537 1881
fc7cbcd4
DS
1882 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
1883 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
1884 btrfs_put_root(gang[0]);
171f6537
JB
1885 }
1886
fc7cbcd4
DS
1887 while (1) {
1888 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1889 (void **)gang, 0,
1890 ARRAY_SIZE(gang));
1891 if (!ret)
1892 break;
1893 for (i = 0; i < ret; i++)
1894 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537
JB
1895 }
1896}
af31f5e5 1897
638aa7ed
ES
1898static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
1899{
1900 mutex_init(&fs_info->scrub_lock);
1901 atomic_set(&fs_info->scrubs_running, 0);
1902 atomic_set(&fs_info->scrub_pause_req, 0);
1903 atomic_set(&fs_info->scrubs_paused, 0);
1904 atomic_set(&fs_info->scrub_cancel_req, 0);
1905 init_waitqueue_head(&fs_info->scrub_pause_wait);
ff09c4ca 1906 refcount_set(&fs_info->scrub_workers_refcnt, 0);
638aa7ed
ES
1907}
1908
779a65a4
ES
1909static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
1910{
1911 spin_lock_init(&fs_info->balance_lock);
1912 mutex_init(&fs_info->balance_mutex);
779a65a4
ES
1913 atomic_set(&fs_info->balance_pause_req, 0);
1914 atomic_set(&fs_info->balance_cancel_req, 0);
1915 fs_info->balance_ctl = NULL;
1916 init_waitqueue_head(&fs_info->balance_wait_q);
907d2710 1917 atomic_set(&fs_info->reloc_cancel_req, 0);
779a65a4
ES
1918}
1919
dcb2137c 1920static int btrfs_init_btree_inode(struct super_block *sb)
f37938e0 1921{
dcb2137c 1922 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
e256927b
JB
1923 unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
1924 fs_info->tree_root);
dcb2137c
CH
1925 struct inode *inode;
1926
1927 inode = new_inode(sb);
1928 if (!inode)
1929 return -ENOMEM;
2ff7e61e
JM
1930
1931 inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1932 set_nlink(inode, 1);
f37938e0
ES
1933 /*
1934 * we set the i_size on the btree inode to the max possible int.
1935 * the real end of the address space is determined by all of
1936 * the devices in the system
1937 */
2ff7e61e
JM
1938 inode->i_size = OFFSET_MAX;
1939 inode->i_mapping->a_ops = &btree_aops;
dcb2137c 1940 mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
f37938e0 1941
2ff7e61e 1942 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
43eb5f29 1943 extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
35da5a7e 1944 IO_TREE_BTREE_INODE_IO);
2ff7e61e 1945 extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
f37938e0 1946
5c8fd99f 1947 BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
adac5584
FM
1948 BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
1949 BTRFS_I(inode)->location.type = 0;
1950 BTRFS_I(inode)->location.offset = 0;
2ff7e61e 1951 set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
e256927b 1952 __insert_inode_hash(inode, hash);
dcb2137c
CH
1953 fs_info->btree_inode = inode;
1954
1955 return 0;
f37938e0
ES
1956}
1957
ad618368
ES
1958static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
1959{
ad618368 1960 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
129827e3 1961 init_rwsem(&fs_info->dev_replace.rwsem);
7f8d236a 1962 init_waitqueue_head(&fs_info->dev_replace.replace_wait);
ad618368
ES
1963}
1964
f9e92e40
ES
1965static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
1966{
1967 spin_lock_init(&fs_info->qgroup_lock);
1968 mutex_init(&fs_info->qgroup_ioctl_lock);
1969 fs_info->qgroup_tree = RB_ROOT;
f9e92e40
ES
1970 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
1971 fs_info->qgroup_seq = 1;
f9e92e40 1972 fs_info->qgroup_ulist = NULL;
d2c609b8 1973 fs_info->qgroup_rescan_running = false;
011b46c3 1974 fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
f9e92e40
ES
1975 mutex_init(&fs_info->qgroup_rescan_lock);
1976}
1977
d21deec5 1978static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2a458198 1979{
f7b885be 1980 u32 max_active = fs_info->thread_pool_size;
6f011058 1981 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
58e814fc 1982 unsigned int ordered_flags = WQ_MEM_RECLAIM | WQ_FREEZABLE;
2a458198
ES
1983
1984 fs_info->workers =
a31b4a43 1985 btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2a458198
ES
1986
1987 fs_info->delalloc_workers =
cb001095
JM
1988 btrfs_alloc_workqueue(fs_info, "delalloc",
1989 flags, max_active, 2);
2a458198
ES
1990
1991 fs_info->flush_workers =
cb001095
JM
1992 btrfs_alloc_workqueue(fs_info, "flush_delalloc",
1993 flags, max_active, 0);
2a458198
ES
1994
1995 fs_info->caching_workers =
cb001095 1996 btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2a458198 1997
2a458198 1998 fs_info->fixup_workers =
58e814fc 1999 btrfs_alloc_ordered_workqueue(fs_info, "fixup", ordered_flags);
2a458198 2000
2a458198 2001 fs_info->endio_workers =
d7b9416f 2002 alloc_workqueue("btrfs-endio", flags, max_active);
2a458198 2003 fs_info->endio_meta_workers =
d7b9416f 2004 alloc_workqueue("btrfs-endio-meta", flags, max_active);
385de0ef 2005 fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2a458198 2006 fs_info->endio_write_workers =
cb001095
JM
2007 btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2008 max_active, 2);
fed8a72d
CH
2009 fs_info->compressed_write_workers =
2010 alloc_workqueue("btrfs-compressed-write", flags, max_active);
2a458198 2011 fs_info->endio_freespace_worker =
cb001095
JM
2012 btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2013 max_active, 0);
2a458198 2014 fs_info->delayed_workers =
cb001095
JM
2015 btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2016 max_active, 0);
2a458198 2017 fs_info->qgroup_rescan_workers =
58e814fc
TH
2018 btrfs_alloc_ordered_workqueue(fs_info, "qgroup-rescan",
2019 ordered_flags);
b0643e59 2020 fs_info->discard_ctl.discard_workers =
58e814fc 2021 alloc_ordered_workqueue("btrfs_discard", WQ_FREEZABLE);
2a458198 2022
8bfec2e4 2023 if (!(fs_info->workers &&
a31b4a43 2024 fs_info->delalloc_workers && fs_info->flush_workers &&
2a458198 2025 fs_info->endio_workers && fs_info->endio_meta_workers &&
fed8a72d 2026 fs_info->compressed_write_workers &&
1a1a2851 2027 fs_info->endio_write_workers &&
2a458198 2028 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
f26c9238
QW
2029 fs_info->caching_workers && fs_info->fixup_workers &&
2030 fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
b0643e59 2031 fs_info->discard_ctl.discard_workers)) {
2a458198
ES
2032 return -ENOMEM;
2033 }
2034
2035 return 0;
2036}
2037
6d97c6e3
JT
2038static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2039{
2040 struct crypto_shash *csum_shash;
b4e967be 2041 const char *csum_driver = btrfs_super_csum_driver(csum_type);
6d97c6e3 2042
b4e967be 2043 csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
6d97c6e3
JT
2044
2045 if (IS_ERR(csum_shash)) {
2046 btrfs_err(fs_info, "error allocating %s hash for checksum",
b4e967be 2047 csum_driver);
6d97c6e3
JT
2048 return PTR_ERR(csum_shash);
2049 }
2050
2051 fs_info->csum_shash = csum_shash;
2052
68d99ab0
CH
2053 /*
2054 * Check if the checksum implementation is a fast accelerated one.
2055 * As-is this is a bit of a hack and should be replaced once the csum
2056 * implementations provide that information themselves.
2057 */
2058 switch (csum_type) {
2059 case BTRFS_CSUM_TYPE_CRC32:
2060 if (!strstr(crypto_shash_driver_name(csum_shash), "generic"))
2061 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2062 break;
efcfcbc6
DS
2063 case BTRFS_CSUM_TYPE_XXHASH:
2064 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
2065 break;
68d99ab0
CH
2066 default:
2067 break;
2068 }
2069
c8a5f8ca
DS
2070 btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2071 btrfs_super_csum_name(csum_type),
2072 crypto_shash_driver_name(csum_shash));
6d97c6e3
JT
2073 return 0;
2074}
2075
63443bf5
ES
2076static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2077 struct btrfs_fs_devices *fs_devices)
2078{
2079 int ret;
789d6a3a 2080 struct btrfs_tree_parent_check check = { 0 };
63443bf5
ES
2081 struct btrfs_root *log_tree_root;
2082 struct btrfs_super_block *disk_super = fs_info->super_copy;
2083 u64 bytenr = btrfs_super_log_root(disk_super);
581c1760 2084 int level = btrfs_super_log_root_level(disk_super);
63443bf5
ES
2085
2086 if (fs_devices->rw_devices == 0) {
f14d104d 2087 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2088 return -EIO;
2089 }
2090
96dfcb46
JB
2091 log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2092 GFP_KERNEL);
63443bf5
ES
2093 if (!log_tree_root)
2094 return -ENOMEM;
2095
789d6a3a
QW
2096 check.level = level;
2097 check.transid = fs_info->generation + 1;
2098 check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2099 log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
64c043de 2100 if (IS_ERR(log_tree_root->node)) {
f14d104d 2101 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2102 ret = PTR_ERR(log_tree_root->node);
8c38938c 2103 log_tree_root->node = NULL;
00246528 2104 btrfs_put_root(log_tree_root);
0eeff236 2105 return ret;
4eb150d6
QW
2106 }
2107 if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2108 btrfs_err(fs_info, "failed to read log tree");
00246528 2109 btrfs_put_root(log_tree_root);
63443bf5
ES
2110 return -EIO;
2111 }
4eb150d6 2112
63443bf5
ES
2113 /* returns with log_tree_root freed on success */
2114 ret = btrfs_recover_log_trees(log_tree_root);
2115 if (ret) {
0b246afa
JM
2116 btrfs_handle_fs_error(fs_info, ret,
2117 "Failed to recover log tree");
00246528 2118 btrfs_put_root(log_tree_root);
63443bf5
ES
2119 return ret;
2120 }
2121
bc98a42c 2122 if (sb_rdonly(fs_info->sb)) {
6bccf3ab 2123 ret = btrfs_commit_super(fs_info);
63443bf5
ES
2124 if (ret)
2125 return ret;
2126 }
2127
2128 return 0;
2129}
2130
abed4aaa
JB
2131static int load_global_roots_objectid(struct btrfs_root *tree_root,
2132 struct btrfs_path *path, u64 objectid,
2133 const char *name)
2134{
2135 struct btrfs_fs_info *fs_info = tree_root->fs_info;
2136 struct btrfs_root *root;
f7238e50 2137 u64 max_global_id = 0;
abed4aaa
JB
2138 int ret;
2139 struct btrfs_key key = {
2140 .objectid = objectid,
2141 .type = BTRFS_ROOT_ITEM_KEY,
2142 .offset = 0,
2143 };
2144 bool found = false;
2145
2146 /* If we have IGNOREDATACSUMS skip loading these roots. */
2147 if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2148 btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2149 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2150 return 0;
2151 }
2152
2153 while (1) {
2154 ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2155 if (ret < 0)
2156 break;
2157
2158 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2159 ret = btrfs_next_leaf(tree_root, path);
2160 if (ret) {
2161 if (ret > 0)
2162 ret = 0;
2163 break;
2164 }
2165 }
2166 ret = 0;
2167
2168 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2169 if (key.objectid != objectid)
2170 break;
2171 btrfs_release_path(path);
2172
f7238e50
JB
2173 /*
2174 * Just worry about this for extent tree, it'll be the same for
2175 * everybody.
2176 */
2177 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2178 max_global_id = max(max_global_id, key.offset);
2179
abed4aaa
JB
2180 found = true;
2181 root = read_tree_root_path(tree_root, path, &key);
2182 if (IS_ERR(root)) {
2183 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2184 ret = PTR_ERR(root);
2185 break;
2186 }
2187 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2188 ret = btrfs_global_root_insert(root);
2189 if (ret) {
2190 btrfs_put_root(root);
2191 break;
2192 }
2193 key.offset++;
2194 }
2195 btrfs_release_path(path);
2196
f7238e50
JB
2197 if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2198 fs_info->nr_global_roots = max_global_id + 1;
2199
abed4aaa
JB
2200 if (!found || ret) {
2201 if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2202 set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2203
2204 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2205 ret = ret ? ret : -ENOENT;
2206 else
2207 ret = 0;
2208 btrfs_err(fs_info, "failed to load root %s", name);
2209 }
2210 return ret;
2211}
2212
2213static int load_global_roots(struct btrfs_root *tree_root)
2214{
2215 struct btrfs_path *path;
2216 int ret = 0;
2217
2218 path = btrfs_alloc_path();
2219 if (!path)
2220 return -ENOMEM;
2221
2222 ret = load_global_roots_objectid(tree_root, path,
2223 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2224 if (ret)
2225 goto out;
2226 ret = load_global_roots_objectid(tree_root, path,
2227 BTRFS_CSUM_TREE_OBJECTID, "csum");
2228 if (ret)
2229 goto out;
2230 if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2231 goto out;
2232 ret = load_global_roots_objectid(tree_root, path,
2233 BTRFS_FREE_SPACE_TREE_OBJECTID,
2234 "free space");
2235out:
2236 btrfs_free_path(path);
2237 return ret;
2238}
2239
6bccf3ab 2240static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
4bbcaa64 2241{
6bccf3ab 2242 struct btrfs_root *tree_root = fs_info->tree_root;
a4f3d2c4 2243 struct btrfs_root *root;
4bbcaa64
ES
2244 struct btrfs_key location;
2245 int ret;
2246
2467d0fe 2247 ASSERT(fs_info->tree_root);
6bccf3ab 2248
abed4aaa
JB
2249 ret = load_global_roots(tree_root);
2250 if (ret)
2251 return ret;
2252
4bbcaa64
ES
2253 location.type = BTRFS_ROOT_ITEM_KEY;
2254 location.offset = 0;
2255
1c56ab99 2256 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
14033b08
QW
2257 location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2258 root = btrfs_read_tree_root(tree_root, &location);
2259 if (IS_ERR(root)) {
2260 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2261 ret = PTR_ERR(root);
2262 goto out;
2263 }
2264 } else {
2265 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2266 fs_info->block_group_root = root;
2267 }
2268 }
2269
2270 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4 2271 root = btrfs_read_tree_root(tree_root, &location);
f50f4353 2272 if (IS_ERR(root)) {
42437a63
JB
2273 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2274 ret = PTR_ERR(root);
2275 goto out;
2276 }
2277 } else {
2278 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2279 fs_info->dev_root = root;
f50f4353 2280 }
820a49da 2281 /* Initialize fs_info for all devices in any case */
a8d1b164
JT
2282 ret = btrfs_init_devices_late(fs_info);
2283 if (ret)
2284 goto out;
4bbcaa64 2285
aeb935a4
QW
2286 /*
2287 * This tree can share blocks with some other fs tree during relocation
2288 * and we need a proper setup by btrfs_get_fs_root
2289 */
56e9357a
DS
2290 root = btrfs_get_fs_root(tree_root->fs_info,
2291 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
aeb935a4 2292 if (IS_ERR(root)) {
42437a63
JB
2293 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2294 ret = PTR_ERR(root);
2295 goto out;
2296 }
2297 } else {
2298 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2299 fs_info->data_reloc_root = root;
aeb935a4 2300 }
aeb935a4 2301
4bbcaa64 2302 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2303 root = btrfs_read_tree_root(tree_root, &location);
2304 if (!IS_ERR(root)) {
2305 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
a4f3d2c4 2306 fs_info->quota_root = root;
4bbcaa64
ES
2307 }
2308
2309 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2310 root = btrfs_read_tree_root(tree_root, &location);
2311 if (IS_ERR(root)) {
42437a63
JB
2312 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2313 ret = PTR_ERR(root);
2314 if (ret != -ENOENT)
2315 goto out;
2316 }
4bbcaa64 2317 } else {
a4f3d2c4
DS
2318 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2319 fs_info->uuid_root = root;
4bbcaa64
ES
2320 }
2321
51502090
JT
2322 if (btrfs_fs_incompat(fs_info, RAID_STRIPE_TREE)) {
2323 location.objectid = BTRFS_RAID_STRIPE_TREE_OBJECTID;
2324 root = btrfs_read_tree_root(tree_root, &location);
2325 if (IS_ERR(root)) {
2326 if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2327 ret = PTR_ERR(root);
2328 goto out;
2329 }
2330 } else {
2331 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2332 fs_info->stripe_root = root;
2333 }
2334 }
2335
4bbcaa64 2336 return 0;
f50f4353
LB
2337out:
2338 btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2339 location.objectid, ret);
2340 return ret;
4bbcaa64
ES
2341}
2342
069ec957
QW
2343/*
2344 * Real super block validation
2345 * NOTE: super csum type and incompat features will not be checked here.
2346 *
2347 * @sb: super block to check
2348 * @mirror_num: the super block number to check its bytenr:
2349 * 0 the primary (1st) sb
2350 * 1, 2 2nd and 3rd backup copy
2351 * -1 skip bytenr check
2352 */
a05d3c91
QW
2353int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2354 struct btrfs_super_block *sb, int mirror_num)
21a852b0 2355{
21a852b0
QW
2356 u64 nodesize = btrfs_super_nodesize(sb);
2357 u64 sectorsize = btrfs_super_sectorsize(sb);
2358 int ret = 0;
2359
2360 if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2361 btrfs_err(fs_info, "no valid FS found");
2362 ret = -EINVAL;
2363 }
2364 if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2365 btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2366 btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2367 ret = -EINVAL;
2368 }
2369 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2370 btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2371 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2372 ret = -EINVAL;
2373 }
2374 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2375 btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2376 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2377 ret = -EINVAL;
2378 }
2379 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2380 btrfs_err(fs_info, "log_root level too big: %d >= %d",
2381 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2382 ret = -EINVAL;
2383 }
2384
2385 /*
2386 * Check sectorsize and nodesize first, other check will need it.
2387 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2388 */
2389 if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2390 sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2391 btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2392 ret = -EINVAL;
2393 }
0bb3eb3e
QW
2394
2395 /*
1a42daab
QW
2396 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2397 *
2398 * We can support 16K sectorsize with 64K page size without problem,
2399 * but such sectorsize/pagesize combination doesn't make much sense.
2400 * 4K will be our future standard, PAGE_SIZE is supported from the very
2401 * beginning.
0bb3eb3e 2402 */
1a42daab 2403 if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
21a852b0 2404 btrfs_err(fs_info,
0bb3eb3e 2405 "sectorsize %llu not yet supported for page size %lu",
21a852b0
QW
2406 sectorsize, PAGE_SIZE);
2407 ret = -EINVAL;
2408 }
0bb3eb3e 2409
21a852b0
QW
2410 if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2411 nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2412 btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2413 ret = -EINVAL;
2414 }
2415 if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2416 btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2417 le32_to_cpu(sb->__unused_leafsize), nodesize);
2418 ret = -EINVAL;
2419 }
2420
2421 /* Root alignment check */
2422 if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2423 btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2424 btrfs_super_root(sb));
2425 ret = -EINVAL;
2426 }
2427 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2428 btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2429 btrfs_super_chunk_root(sb));
2430 ret = -EINVAL;
2431 }
2432 if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2433 btrfs_warn(fs_info, "log_root block unaligned: %llu",
2434 btrfs_super_log_root(sb));
2435 ret = -EINVAL;
2436 }
2437
a5b8a5f9
AJ
2438 if (!fs_info->fs_devices->temp_fsid &&
2439 memcmp(fs_info->fs_devices->fsid, sb->fsid, BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2440 btrfs_err(fs_info,
2441 "superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
d167aa76 2442 sb->fsid, fs_info->fs_devices->fsid);
aefd7f70
NB
2443 ret = -EINVAL;
2444 }
2445
6bfe3959
AJ
2446 if (memcmp(fs_info->fs_devices->metadata_uuid, btrfs_sb_fsid_ptr(sb),
2447 BTRFS_FSID_SIZE) != 0) {
aefd7f70
NB
2448 btrfs_err(fs_info,
2449"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
6bfe3959 2450 btrfs_sb_fsid_ptr(sb), fs_info->fs_devices->metadata_uuid);
aefd7f70
NB
2451 ret = -EINVAL;
2452 }
2453
25984a5a
AJ
2454 if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2455 BTRFS_FSID_SIZE) != 0) {
2456 btrfs_err(fs_info,
2457 "dev_item UUID does not match metadata fsid: %pU != %pU",
2458 fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2459 ret = -EINVAL;
2460 }
2461
1c56ab99
QW
2462 /*
2463 * Artificial requirement for block-group-tree to force newer features
2464 * (free-space-tree, no-holes) so the test matrix is smaller.
2465 */
2466 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2467 (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2468 !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2469 btrfs_err(fs_info,
2470 "block-group-tree feature requires fres-space-tree and no-holes");
2471 ret = -EINVAL;
2472 }
2473
21a852b0
QW
2474 /*
2475 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2476 * done later
2477 */
2478 if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2479 btrfs_err(fs_info, "bytes_used is too small %llu",
2480 btrfs_super_bytes_used(sb));
2481 ret = -EINVAL;
2482 }
2483 if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2484 btrfs_err(fs_info, "invalid stripesize %u",
2485 btrfs_super_stripesize(sb));
2486 ret = -EINVAL;
2487 }
2488 if (btrfs_super_num_devices(sb) > (1UL << 31))
2489 btrfs_warn(fs_info, "suspicious number of devices: %llu",
2490 btrfs_super_num_devices(sb));
2491 if (btrfs_super_num_devices(sb) == 0) {
2492 btrfs_err(fs_info, "number of devices is 0");
2493 ret = -EINVAL;
2494 }
2495
069ec957
QW
2496 if (mirror_num >= 0 &&
2497 btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
21a852b0
QW
2498 btrfs_err(fs_info, "super offset mismatch %llu != %u",
2499 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2500 ret = -EINVAL;
2501 }
2502
2503 /*
2504 * Obvious sys_chunk_array corruptions, it must hold at least one key
2505 * and one chunk
2506 */
2507 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2508 btrfs_err(fs_info, "system chunk array too big %u > %u",
2509 btrfs_super_sys_array_size(sb),
2510 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2511 ret = -EINVAL;
2512 }
2513 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2514 + sizeof(struct btrfs_chunk)) {
2515 btrfs_err(fs_info, "system chunk array too small %u < %zu",
2516 btrfs_super_sys_array_size(sb),
2517 sizeof(struct btrfs_disk_key)
2518 + sizeof(struct btrfs_chunk));
2519 ret = -EINVAL;
2520 }
2521
2522 /*
2523 * The generation is a global counter, we'll trust it more than the others
2524 * but it's still possible that it's the one that's wrong.
2525 */
2526 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2527 btrfs_warn(fs_info,
2528 "suspicious: generation < chunk_root_generation: %llu < %llu",
2529 btrfs_super_generation(sb),
2530 btrfs_super_chunk_root_generation(sb));
2531 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2532 && btrfs_super_cache_generation(sb) != (u64)-1)
2533 btrfs_warn(fs_info,
2534 "suspicious: generation < cache_generation: %llu < %llu",
2535 btrfs_super_generation(sb),
2536 btrfs_super_cache_generation(sb));
2537
2538 return ret;
2539}
2540
069ec957
QW
2541/*
2542 * Validation of super block at mount time.
2543 * Some checks already done early at mount time, like csum type and incompat
2544 * flags will be skipped.
2545 */
2546static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2547{
a05d3c91 2548 return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
069ec957
QW
2549}
2550
75cb857d
QW
2551/*
2552 * Validation of super block at write time.
2553 * Some checks like bytenr check will be skipped as their values will be
2554 * overwritten soon.
2555 * Extra checks like csum type and incompat flags will be done here.
2556 */
2557static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2558 struct btrfs_super_block *sb)
2559{
2560 int ret;
2561
a05d3c91 2562 ret = btrfs_validate_super(fs_info, sb, -1);
75cb857d
QW
2563 if (ret < 0)
2564 goto out;
e7e16f48 2565 if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
75cb857d
QW
2566 ret = -EUCLEAN;
2567 btrfs_err(fs_info, "invalid csum type, has %u want %u",
2568 btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2569 goto out;
2570 }
2571 if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2572 ret = -EUCLEAN;
2573 btrfs_err(fs_info,
2574 "invalid incompat flags, has 0x%llx valid mask 0x%llx",
2575 btrfs_super_incompat_flags(sb),
2576 (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2577 goto out;
2578 }
2579out:
2580 if (ret < 0)
2581 btrfs_err(fs_info,
2582 "super block corruption detected before writing it to disk");
2583 return ret;
2584}
2585
bd676446
JB
2586static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2587{
789d6a3a
QW
2588 struct btrfs_tree_parent_check check = {
2589 .level = level,
2590 .transid = gen,
e094f480 2591 .owner_root = btrfs_root_id(root)
789d6a3a 2592 };
bd676446
JB
2593 int ret = 0;
2594
789d6a3a 2595 root->node = read_tree_block(root->fs_info, bytenr, &check);
bd676446
JB
2596 if (IS_ERR(root->node)) {
2597 ret = PTR_ERR(root->node);
2598 root->node = NULL;
4eb150d6
QW
2599 return ret;
2600 }
2601 if (!extent_buffer_uptodate(root->node)) {
bd676446
JB
2602 free_extent_buffer(root->node);
2603 root->node = NULL;
4eb150d6 2604 return -EIO;
bd676446
JB
2605 }
2606
bd676446
JB
2607 btrfs_set_root_node(&root->root_item, root->node);
2608 root->commit_root = btrfs_root_node(root);
2609 btrfs_set_root_refs(&root->root_item, 1);
2610 return ret;
2611}
2612
2613static int load_important_roots(struct btrfs_fs_info *fs_info)
2614{
2615 struct btrfs_super_block *sb = fs_info->super_copy;
2616 u64 gen, bytenr;
2617 int level, ret;
2618
2619 bytenr = btrfs_super_root(sb);
2620 gen = btrfs_super_generation(sb);
2621 level = btrfs_super_root_level(sb);
2622 ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
9c54e80d 2623 if (ret) {
bd676446 2624 btrfs_warn(fs_info, "couldn't read tree root");
9c54e80d
JB
2625 return ret;
2626 }
14033b08 2627 return 0;
bd676446
JB
2628}
2629
6ef108dd 2630static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
b8522a1e 2631{
6ef108dd 2632 int backup_index = find_newest_super_backup(fs_info);
b8522a1e
NB
2633 struct btrfs_super_block *sb = fs_info->super_copy;
2634 struct btrfs_root *tree_root = fs_info->tree_root;
2635 bool handle_error = false;
2636 int ret = 0;
2637 int i;
2638
2639 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
b8522a1e
NB
2640 if (handle_error) {
2641 if (!IS_ERR(tree_root->node))
2642 free_extent_buffer(tree_root->node);
2643 tree_root->node = NULL;
2644
2645 if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2646 break;
2647
2648 free_root_pointers(fs_info, 0);
2649
2650 /*
2651 * Don't use the log in recovery mode, it won't be
2652 * valid
2653 */
2654 btrfs_set_super_log_root(sb, 0);
2655
745806fb 2656 btrfs_warn(fs_info, "try to load backup roots slot %d", i);
b8522a1e 2657 ret = read_backup_root(fs_info, i);
6ef108dd 2658 backup_index = ret;
b8522a1e
NB
2659 if (ret < 0)
2660 return ret;
2661 }
b8522a1e 2662
bd676446
JB
2663 ret = load_important_roots(fs_info);
2664 if (ret) {
217f5004 2665 handle_error = true;
b8522a1e
NB
2666 continue;
2667 }
2668
336a0d8d
NB
2669 /*
2670 * No need to hold btrfs_root::objectid_mutex since the fs
2671 * hasn't been fully initialised and we are the only user
2672 */
453e4873 2673 ret = btrfs_init_root_free_objectid(tree_root);
b8522a1e 2674 if (ret < 0) {
b8522a1e
NB
2675 handle_error = true;
2676 continue;
2677 }
2678
6b8fad57 2679 ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
b8522a1e
NB
2680
2681 ret = btrfs_read_roots(fs_info);
2682 if (ret < 0) {
2683 handle_error = true;
2684 continue;
2685 }
2686
2687 /* All successful */
bd676446 2688 fs_info->generation = btrfs_header_generation(tree_root->node);
0124855f 2689 btrfs_set_last_trans_committed(fs_info, fs_info->generation);
d96b3424 2690 fs_info->last_reloc_trans = 0;
6ef108dd
NB
2691
2692 /* Always begin writing backup roots after the one being used */
2693 if (backup_index < 0) {
2694 fs_info->backup_root_index = 0;
2695 } else {
2696 fs_info->backup_root_index = backup_index + 1;
2697 fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
2698 }
b8522a1e
NB
2699 break;
2700 }
2701
2702 return ret;
2703}
2704
8260edba 2705void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
2e635a27 2706{
fc7cbcd4 2707 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
01cd3909 2708 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2709 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2710 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2711 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2712 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2713 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2714 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2715 spin_lock_init(&fs_info->trans_lock);
fc7cbcd4 2716 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2717 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2718 spin_lock_init(&fs_info->defrag_inodes_lock);
ceda0864 2719 spin_lock_init(&fs_info->super_lock);
f28491e0 2720 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2721 spin_lock_init(&fs_info->unused_bgs_lock);
40ab3be1 2722 spin_lock_init(&fs_info->treelog_bg_lock);
afba2bc0 2723 spin_lock_init(&fs_info->zone_active_bgs_lock);
c2707a25 2724 spin_lock_init(&fs_info->relocation_bg_lock);
f29021b2 2725 rwlock_init(&fs_info->tree_mod_log_lock);
abed4aaa 2726 rwlock_init(&fs_info->global_root_lock);
d7c15171 2727 mutex_init(&fs_info->unused_bg_unpin_mutex);
f3372065 2728 mutex_init(&fs_info->reclaim_bgs_lock);
7585717f 2729 mutex_init(&fs_info->reloc_mutex);
573bfb72 2730 mutex_init(&fs_info->delalloc_root_mutex);
0bc09ca1 2731 mutex_init(&fs_info->zoned_meta_io_lock);
5f0addf7 2732 mutex_init(&fs_info->zoned_data_reloc_io_lock);
de98ced9 2733 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2734
e1489b4f 2735 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
5a9ba670 2736 btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
8b53779e 2737 btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
5f4403e1 2738 btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
77d20c68
JB
2739 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_prep,
2740 BTRFS_LOCKDEP_TRANS_COMMIT_PREP);
3e738c53
IA
2741 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
2742 BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2743 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
2744 BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2745 btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
2746 BTRFS_LOCKDEP_TRANS_COMPLETED);
e1489b4f 2747
0b86a832 2748 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2749 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2750 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2751 INIT_LIST_HEAD(&fs_info->unused_bgs);
18bb8bbf 2752 INIT_LIST_HEAD(&fs_info->reclaim_bgs);
afba2bc0 2753 INIT_LIST_HEAD(&fs_info->zone_active_bgs);
bd647ce3
JB
2754#ifdef CONFIG_BTRFS_DEBUG
2755 INIT_LIST_HEAD(&fs_info->allocated_roots);
3fd63727
JB
2756 INIT_LIST_HEAD(&fs_info->allocated_ebs);
2757 spin_lock_init(&fs_info->eb_leak_lock);
bd647ce3 2758#endif
7dc66abb
FM
2759 fs_info->mapping_tree = RB_ROOT_CACHED;
2760 rwlock_init(&fs_info->mapping_tree_lock);
66d8f3dd
MX
2761 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2762 BTRFS_BLOCK_RSV_GLOBAL);
66d8f3dd
MX
2763 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2764 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2765 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2766 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2767 BTRFS_BLOCK_RSV_DELOPS);
ba2c4d4e
JB
2768 btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
2769 BTRFS_BLOCK_RSV_DELREFS);
2770
771ed689 2771 atomic_set(&fs_info->async_delalloc_pages, 0);
4cb5300b 2772 atomic_set(&fs_info->defrag_running, 0);
034f784d 2773 atomic_set(&fs_info->nr_delayed_iputs, 0);
fc36ed7e 2774 atomic64_set(&fs_info->tree_mod_seq, 0);
abed4aaa 2775 fs_info->global_root_tree = RB_ROOT;
95ac567a 2776 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2777 fs_info->metadata_ratio = 0;
4cb5300b 2778 fs_info->defrag_inodes = RB_ROOT;
a5ed45f8 2779 atomic64_set(&fs_info->free_chunk_space, 0);
f29021b2 2780 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2781 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fd708b81 2782 btrfs_init_ref_verify(fs_info);
c8b97818 2783
b34b086c
CM
2784 fs_info->thread_pool_size = min_t(unsigned long,
2785 num_online_cpus() + 2, 8);
0afbaf8c 2786
199c2a9c
MX
2787 INIT_LIST_HEAD(&fs_info->ordered_roots);
2788 spin_lock_init(&fs_info->ordered_root_lock);
69fe2d75 2789
638aa7ed 2790 btrfs_init_scrub(fs_info);
779a65a4 2791 btrfs_init_balance(fs_info);
57056740 2792 btrfs_init_async_reclaim_work(fs_info);
a2de733c 2793
16b0c258 2794 rwlock_init(&fs_info->block_group_cache_lock);
08dddb29 2795 fs_info->block_group_cache_tree = RB_ROOT_CACHED;
0f9dd46c 2796
fe119a6e 2797 extent_io_tree_init(fs_info, &fs_info->excluded_extents,
35da5a7e 2798 IO_TREE_FS_EXCLUDED_EXTENTS);
39279cc3 2799
5a3f23d5 2800 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2801 mutex_init(&fs_info->tree_log_mutex);
925baedd 2802 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2803 mutex_init(&fs_info->transaction_kthread_mutex);
2804 mutex_init(&fs_info->cleaner_mutex);
1bbc621e 2805 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2806 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2807 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2808 init_rwsem(&fs_info->subvol_sem);
803b2f54 2809 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2810
ad618368 2811 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2812 btrfs_init_qgroup(fs_info);
b0643e59 2813 btrfs_discard_init(fs_info);
416ac51d 2814
fa9c0d79
CM
2815 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2816 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2817
e6dcd2dc 2818 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2819 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2820 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2821 init_waitqueue_head(&fs_info->async_submit_wait);
034f784d 2822 init_waitqueue_head(&fs_info->delayed_iputs_wait);
3768f368 2823
da17066c
JM
2824 /* Usable values until the real ones are cached from the superblock */
2825 fs_info->nodesize = 4096;
2826 fs_info->sectorsize = 4096;
ab108d99 2827 fs_info->sectorsize_bits = ilog2(4096);
da17066c
JM
2828 fs_info->stripesize = 4096;
2829
6207c9e3
JB
2830 /* Default compress algorithm when user does -o compress */
2831 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
f7b12a62
NA
2833 fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
2834
eede2bf3
OS
2835 spin_lock_init(&fs_info->swapfile_pins_lock);
2836 fs_info->swapfile_pins = RB_ROOT;
2837
18bb8bbf
JT
2838 fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
2839 INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
8260edba
JB
2840}
2841
2842static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
2843{
2844 int ret;
2845
2846 fs_info->sb = sb;
4e00422e 2847 /* Temporary fixed values for block size until we read the superblock. */
8260edba
JB
2848 sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
2849 sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
9e967495 2850
5deb17e1 2851 ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
ae18c37a 2852 if (ret)
c75e8394 2853 return ret;
ae18c37a 2854
f1d97e76
FM
2855 ret = percpu_counter_init(&fs_info->evictable_extent_maps, 0, GFP_KERNEL);
2856 if (ret)
2857 return ret;
2858
ae18c37a
JB
2859 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2860 if (ret)
c75e8394 2861 return ret;
ae18c37a
JB
2862
2863 fs_info->dirty_metadata_batch = PAGE_SIZE *
2864 (1 + ilog2(nr_cpu_ids));
2865
2866 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2867 if (ret)
c75e8394 2868 return ret;
ae18c37a
JB
2869
2870 ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
2871 GFP_KERNEL);
2872 if (ret)
c75e8394 2873 return ret;
ae18c37a
JB
2874
2875 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2876 GFP_KERNEL);
c75e8394
JB
2877 if (!fs_info->delayed_root)
2878 return -ENOMEM;
ae18c37a
JB
2879 btrfs_init_delayed_root(fs_info->delayed_root);
2880
a0a1db70
FM
2881 if (sb_rdonly(sb))
2882 set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
2883
c75e8394 2884 return btrfs_alloc_stripe_hash_table(fs_info);
ae18c37a
JB
2885}
2886
97f4dd09
NB
2887static int btrfs_uuid_rescan_kthread(void *data)
2888{
0d031dc4 2889 struct btrfs_fs_info *fs_info = data;
97f4dd09
NB
2890 int ret;
2891
2892 /*
2893 * 1st step is to iterate through the existing UUID tree and
2894 * to delete all entries that contain outdated data.
2895 * 2nd step is to add all missing entries to the UUID tree.
2896 */
2897 ret = btrfs_uuid_tree_iterate(fs_info);
2898 if (ret < 0) {
c94bec2c
JB
2899 if (ret != -EINTR)
2900 btrfs_warn(fs_info, "iterating uuid_tree failed %d",
2901 ret);
97f4dd09
NB
2902 up(&fs_info->uuid_tree_rescan_sem);
2903 return ret;
2904 }
2905 return btrfs_uuid_scan_kthread(data);
2906}
2907
2908static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
2909{
2910 struct task_struct *task;
2911
2912 down(&fs_info->uuid_tree_rescan_sem);
2913 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
2914 if (IS_ERR(task)) {
2915 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
2916 btrfs_warn(fs_info, "failed to start uuid_rescan task");
2917 up(&fs_info->uuid_tree_rescan_sem);
2918 return PTR_ERR(task);
2919 }
2920
2921 return 0;
2922}
2923
504b1596
FM
2924static int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2925{
2926 u64 root_objectid = 0;
2927 struct btrfs_root *gang[8];
2928 int i = 0;
2929 int err = 0;
2930 unsigned int ret = 0;
2931
2932 while (1) {
2933 spin_lock(&fs_info->fs_roots_radix_lock);
2934 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2935 (void **)gang, root_objectid,
2936 ARRAY_SIZE(gang));
2937 if (!ret) {
2938 spin_unlock(&fs_info->fs_roots_radix_lock);
2939 break;
2940 }
e094f480 2941 root_objectid = btrfs_root_id(gang[ret - 1]) + 1;
504b1596
FM
2942
2943 for (i = 0; i < ret; i++) {
2944 /* Avoid to grab roots in dead_roots. */
2945 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
2946 gang[i] = NULL;
2947 continue;
2948 }
2949 /* Grab all the search result for later use. */
2950 gang[i] = btrfs_grab_root(gang[i]);
2951 }
2952 spin_unlock(&fs_info->fs_roots_radix_lock);
2953
2954 for (i = 0; i < ret; i++) {
2955 if (!gang[i])
2956 continue;
e094f480 2957 root_objectid = btrfs_root_id(gang[i]);
504b1596
FM
2958 err = btrfs_orphan_cleanup(gang[i]);
2959 if (err)
2960 goto out;
2961 btrfs_put_root(gang[i]);
2962 }
2963 root_objectid++;
2964 }
2965out:
2966 /* Release the uncleaned roots due to error. */
2967 for (; i < ret; i++) {
2968 if (gang[i])
2969 btrfs_put_root(gang[i]);
2970 }
2971 return err;
2972}
2973
44c0ca21
BB
2974/*
2975 * Mounting logic specific to read-write file systems. Shared by open_ctree
2976 * and btrfs_remount when remounting from read-only to read-write.
2977 */
2978int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
2979{
2980 int ret;
94846229 2981 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1d6a4fc8 2982 bool rebuild_free_space_tree = false;
8b228324
BB
2983
2984 if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
2985 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
272efa30
JB
2986 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
2987 btrfs_warn(fs_info,
2988 "'clear_cache' option is ignored with extent tree v2");
2989 else
2990 rebuild_free_space_tree = true;
8b228324
BB
2991 } else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
2992 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
2993 btrfs_warn(fs_info, "free space tree is invalid");
1d6a4fc8 2994 rebuild_free_space_tree = true;
8b228324
BB
2995 }
2996
1d6a4fc8
QW
2997 if (rebuild_free_space_tree) {
2998 btrfs_info(fs_info, "rebuilding free space tree");
2999 ret = btrfs_rebuild_free_space_tree(fs_info);
8b228324
BB
3000 if (ret) {
3001 btrfs_warn(fs_info,
1d6a4fc8
QW
3002 "failed to rebuild free space tree: %d", ret);
3003 goto out;
3004 }
3005 }
3006
3007 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3008 !btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
3009 btrfs_info(fs_info, "disabling free space tree");
3010 ret = btrfs_delete_free_space_tree(fs_info);
3011 if (ret) {
3012 btrfs_warn(fs_info,
3013 "failed to disable free space tree: %d", ret);
8b228324
BB
3014 goto out;
3015 }
3016 }
44c0ca21 3017
8d488a8c
FM
3018 /*
3019 * btrfs_find_orphan_roots() is responsible for finding all the dead
3020 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
fc7cbcd4 3021 * them into the fs_info->fs_roots_radix tree. This must be done before
8d488a8c
FM
3022 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3023 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3024 * item before the root's tree is deleted - this means that if we unmount
3025 * or crash before the deletion completes, on the next mount we will not
3026 * delete what remains of the tree because the orphan item does not
3027 * exists anymore, which is what tells us we have a pending deletion.
3028 */
3029 ret = btrfs_find_orphan_roots(fs_info);
3030 if (ret)
3031 goto out;
3032
44c0ca21
BB
3033 ret = btrfs_cleanup_fs_roots(fs_info);
3034 if (ret)
3035 goto out;
3036
8f1c21d7
BB
3037 down_read(&fs_info->cleanup_work_sem);
3038 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3039 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3040 up_read(&fs_info->cleanup_work_sem);
3041 goto out;
3042 }
3043 up_read(&fs_info->cleanup_work_sem);
3044
44c0ca21 3045 mutex_lock(&fs_info->cleaner_mutex);
7eefae6b 3046 ret = btrfs_recover_relocation(fs_info);
44c0ca21
BB
3047 mutex_unlock(&fs_info->cleaner_mutex);
3048 if (ret < 0) {
3049 btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3050 goto out;
3051 }
3052
5011139a
BB
3053 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3054 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3055 btrfs_info(fs_info, "creating free space tree");
3056 ret = btrfs_create_free_space_tree(fs_info);
3057 if (ret) {
3058 btrfs_warn(fs_info,
3059 "failed to create free space tree: %d", ret);
3060 goto out;
3061 }
3062 }
3063
94846229
BB
3064 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3065 ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3066 if (ret)
3067 goto out;
3068 }
3069
44c0ca21
BB
3070 ret = btrfs_resume_balance_async(fs_info);
3071 if (ret)
3072 goto out;
3073
3074 ret = btrfs_resume_dev_replace_async(fs_info);
3075 if (ret) {
3076 btrfs_warn(fs_info, "failed to resume dev_replace");
3077 goto out;
3078 }
3079
3080 btrfs_qgroup_rescan_resume(fs_info);
3081
3082 if (!fs_info->uuid_root) {
3083 btrfs_info(fs_info, "creating UUID tree");
3084 ret = btrfs_create_uuid_tree(fs_info);
3085 if (ret) {
3086 btrfs_warn(fs_info,
3087 "failed to create the UUID tree %d", ret);
3088 goto out;
3089 }
3090 }
3091
3092out:
3093 return ret;
3094}
3095
d7f67ac9
QW
3096/*
3097 * Do various sanity and dependency checks of different features.
3098 *
2ba48b20
QW
3099 * @is_rw_mount: If the mount is read-write.
3100 *
d7f67ac9
QW
3101 * This is the place for less strict checks (like for subpage or artificial
3102 * feature dependencies).
3103 *
3104 * For strict checks or possible corruption detection, see
3105 * btrfs_validate_super().
3106 *
3107 * This should be called after btrfs_parse_options(), as some mount options
3108 * (space cache related) can modify on-disk format like free space tree and
3109 * screw up certain feature dependencies.
3110 */
2ba48b20 3111int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
d7f67ac9
QW
3112{
3113 struct btrfs_super_block *disk_super = fs_info->super_copy;
3114 u64 incompat = btrfs_super_incompat_flags(disk_super);
3115 const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3116 const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3117
3118 if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3119 btrfs_err(fs_info,
3120 "cannot mount because of unknown incompat features (0x%llx)",
3121 incompat);
3122 return -EINVAL;
3123 }
3124
3125 /* Runtime limitation for mixed block groups. */
3126 if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3127 (fs_info->sectorsize != fs_info->nodesize)) {
3128 btrfs_err(fs_info,
3129"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3130 fs_info->nodesize, fs_info->sectorsize);
3131 return -EINVAL;
3132 }
3133
3134 /* Mixed backref is an always-enabled feature. */
3135 incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3136
3137 /* Set compression related flags just in case. */
3138 if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3139 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3140 else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3141 incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3142
3143 /*
3144 * An ancient flag, which should really be marked deprecated.
3145 * Such runtime limitation doesn't really need a incompat flag.
3146 */
3147 if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3148 incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3149
2ba48b20 3150 if (compat_ro_unsupp && is_rw_mount) {
d7f67ac9
QW
3151 btrfs_err(fs_info,
3152 "cannot mount read-write because of unknown compat_ro features (0x%llx)",
3153 compat_ro);
3154 return -EINVAL;
3155 }
3156
3157 /*
3158 * We have unsupported RO compat features, although RO mounted, we
3159 * should not cause any metadata writes, including log replay.
3160 * Or we could screw up whatever the new feature requires.
3161 */
3162 if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3163 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3164 btrfs_err(fs_info,
3165"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3166 compat_ro);
3167 return -EINVAL;
3168 }
3169
3170 /*
3171 * Artificial limitations for block group tree, to force
3172 * block-group-tree to rely on no-holes and free-space-tree.
3173 */
3174 if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3175 (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3176 !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3177 btrfs_err(fs_info,
3178"block-group-tree feature requires no-holes and free-space-tree features");
3179 return -EINVAL;
3180 }
3181
3182 /*
3183 * Subpage runtime limitation on v1 cache.
3184 *
3185 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3186 * we're already defaulting to v2 cache, no need to bother v1 as it's
3187 * going to be deprecated anyway.
3188 */
3189 if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3190 btrfs_warn(fs_info,
3191 "v1 space cache is not supported for page size %lu with sectorsize %u",
3192 PAGE_SIZE, fs_info->sectorsize);
3193 return -EINVAL;
3194 }
3195
3196 /* This can be called by remount, we need to protect the super block. */
3197 spin_lock(&fs_info->super_lock);
3198 btrfs_set_super_incompat_flags(disk_super, incompat);
3199 spin_unlock(&fs_info->super_lock);
3200
3201 return 0;
3202}
3203
ae18c37a
JB
3204int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3205 char *options)
3206{
3207 u32 sectorsize;
3208 u32 nodesize;
3209 u32 stripesize;
3210 u64 generation;
ae18c37a 3211 u16 csum_type;
ae18c37a
JB
3212 struct btrfs_super_block *disk_super;
3213 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3214 struct btrfs_root *tree_root;
3215 struct btrfs_root *chunk_root;
3216 int ret;
ae18c37a
JB
3217 int level;
3218
8260edba 3219 ret = init_mount_fs_info(fs_info, sb);
4871c33b 3220 if (ret)
ae18c37a 3221 goto fail;
53b381b3 3222
ae18c37a
JB
3223 /* These need to be init'ed before we start creating inodes and such. */
3224 tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3225 GFP_KERNEL);
3226 fs_info->tree_root = tree_root;
3227 chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3228 GFP_KERNEL);
3229 fs_info->chunk_root = chunk_root;
3230 if (!tree_root || !chunk_root) {
4871c33b 3231 ret = -ENOMEM;
c75e8394 3232 goto fail;
ae18c37a
JB
3233 }
3234
dcb2137c 3235 ret = btrfs_init_btree_inode(sb);
4871c33b 3236 if (ret)
c75e8394 3237 goto fail;
ae18c37a 3238
d24fa5c1 3239 invalidate_bdev(fs_devices->latest_dev->bdev);
1104a885
DS
3240
3241 /*
3242 * Read super block and check the signature bytes only
3243 */
d24fa5c1 3244 disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
8f32380d 3245 if (IS_ERR(disk_super)) {
4871c33b 3246 ret = PTR_ERR(disk_super);
16cdcec7 3247 goto fail_alloc;
20b45077 3248 }
39279cc3 3249
2db31320 3250 btrfs_info(fs_info, "first mount of filesystem %pU", disk_super->fsid);
8dc3f22c 3251 /*
260db43c 3252 * Verify the type first, if that or the checksum value are
8dc3f22c
JT
3253 * corrupted, we'll find out
3254 */
8f32380d 3255 csum_type = btrfs_super_csum_type(disk_super);
51bce6c9 3256 if (!btrfs_supported_super_csum(csum_type)) {
8dc3f22c 3257 btrfs_err(fs_info, "unsupported checksum algorithm: %u",
51bce6c9 3258 csum_type);
4871c33b 3259 ret = -EINVAL;
8f32380d 3260 btrfs_release_disk_super(disk_super);
8dc3f22c
JT
3261 goto fail_alloc;
3262 }
3263
83c68bbc
SY
3264 fs_info->csum_size = btrfs_super_csum_size(disk_super);
3265
6d97c6e3
JT
3266 ret = btrfs_init_csum_hash(fs_info, csum_type);
3267 if (ret) {
8f32380d 3268 btrfs_release_disk_super(disk_super);
6d97c6e3
JT
3269 goto fail_alloc;
3270 }
3271
1104a885
DS
3272 /*
3273 * We want to check superblock checksum, the type is stored inside.
3274 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3275 */
3d17adea 3276 if (btrfs_check_super_csum(fs_info, disk_super)) {
05135f59 3277 btrfs_err(fs_info, "superblock checksum mismatch");
4871c33b 3278 ret = -EINVAL;
8f32380d 3279 btrfs_release_disk_super(disk_super);
141386e1 3280 goto fail_alloc;
1104a885
DS
3281 }
3282
3283 /*
3284 * super_copy is zeroed at allocation time and we never touch the
3285 * following bytes up to INFO_SIZE, the checksum is calculated from
3286 * the whole block of INFO_SIZE
3287 */
8f32380d
JT
3288 memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3289 btrfs_release_disk_super(disk_super);
5f39d397 3290
fbc6feae
NB
3291 disk_super = fs_info->super_copy;
3292
fbc6feae
NB
3293 memcpy(fs_info->super_for_commit, fs_info->super_copy,
3294 sizeof(*fs_info->super_for_commit));
de37aa51 3295
069ec957 3296 ret = btrfs_validate_mount_super(fs_info);
1104a885 3297 if (ret) {
05135f59 3298 btrfs_err(fs_info, "superblock contains fatal errors");
4871c33b 3299 ret = -EINVAL;
141386e1 3300 goto fail_alloc;
1104a885
DS
3301 }
3302
4871c33b
QW
3303 if (!btrfs_super_root(disk_super)) {
3304 btrfs_err(fs_info, "invalid superblock tree root bytenr");
3305 ret = -EINVAL;
141386e1 3306 goto fail_alloc;
4871c33b 3307 }
0f7d52f4 3308
acce952b 3309 /* check FS state, whether FS is broken. */
87533c47 3310 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
ae3364e5 3311 WRITE_ONCE(fs_info->fs_error, -EUCLEAN);
acce952b 3312
6f93e834
AJ
3313 /* Set up fs_info before parsing mount options */
3314 nodesize = btrfs_super_nodesize(disk_super);
3315 sectorsize = btrfs_super_sectorsize(disk_super);
3316 stripesize = sectorsize;
3317 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3318 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3319
3320 fs_info->nodesize = nodesize;
3321 fs_info->sectorsize = sectorsize;
3322 fs_info->sectorsize_bits = ilog2(sectorsize);
3323 fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3324 fs_info->stripesize = stripesize;
3325
a6a8f22a
JB
3326 /*
3327 * Handle the space caching options appropriately now that we have the
3328 * super block loaded and validated.
3329 */
3330 btrfs_set_free_space_cache_settings(fs_info);
3331
ad21f15b
JB
3332 if (!btrfs_check_options(fs_info, &fs_info->mount_opt, sb->s_flags)) {
3333 ret = -EINVAL;
141386e1 3334 goto fail_alloc;
ad21f15b 3335 }
dfe25020 3336
2ba48b20 3337 ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
4871c33b 3338 if (ret < 0)
dc4d3168 3339 goto fail_alloc;
dc4d3168 3340
ad21f15b
JB
3341 /*
3342 * At this point our mount options are validated, if we set ->max_inline
3343 * to something non-standard make sure we truncate it to sectorsize.
3344 */
3345 fs_info->max_inline = min_t(u64, fs_info->max_inline, fs_info->sectorsize);
3346
8481dd80
QW
3347 if (sectorsize < PAGE_SIZE) {
3348 struct btrfs_subpage_info *subpage_info;
3349
95ea0486
QW
3350 btrfs_warn(fs_info,
3351 "read-write for sector size %u with page size %lu is experimental",
3352 sectorsize, PAGE_SIZE);
8481dd80 3353 subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
4871c33b
QW
3354 if (!subpage_info) {
3355 ret = -ENOMEM;
8481dd80 3356 goto fail_alloc;
4871c33b 3357 }
8481dd80
QW
3358 btrfs_init_subpage_info(subpage_info, sectorsize);
3359 fs_info->subpage_info = subpage_info;
c8050b3b 3360 }
0bb3eb3e 3361
d21deec5 3362 ret = btrfs_init_workqueues(fs_info);
4871c33b 3363 if (ret)
0dc3b84a 3364 goto fail_sb_buffer;
4543df7e 3365
9e11ceee
JK
3366 sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3367 sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
4575c9cc 3368
4e00422e 3369 /* Update the values for the current filesystem. */
a061fc8d
CM
3370 sb->s_blocksize = sectorsize;
3371 sb->s_blocksize_bits = blksize_bits(sectorsize);
de37aa51 3372 memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
db94535d 3373
925baedd 3374 mutex_lock(&fs_info->chunk_mutex);
6bccf3ab 3375 ret = btrfs_read_sys_array(fs_info);
925baedd 3376 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 3377 if (ret) {
05135f59 3378 btrfs_err(fs_info, "failed to read the system array: %d", ret);
5d4f98a2 3379 goto fail_sb_buffer;
84eed90f 3380 }
0b86a832 3381
84234f3a 3382 generation = btrfs_super_chunk_root_generation(disk_super);
581c1760 3383 level = btrfs_super_chunk_root_level(disk_super);
bd676446
JB
3384 ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3385 generation, level);
3386 if (ret) {
05135f59 3387 btrfs_err(fs_info, "failed to read chunk root");
af31f5e5 3388 goto fail_tree_roots;
83121942 3389 }
0b86a832 3390
e17cade2 3391 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
c4ac7541
DS
3392 offsetof(struct btrfs_header, chunk_tree_uuid),
3393 BTRFS_UUID_SIZE);
e17cade2 3394
5b4aacef 3395 ret = btrfs_read_chunk_tree(fs_info);
2b82032c 3396 if (ret) {
05135f59 3397 btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
af31f5e5 3398 goto fail_tree_roots;
2b82032c 3399 }
0b86a832 3400
8dabb742 3401 /*
bacce86a
AJ
3402 * At this point we know all the devices that make this filesystem,
3403 * including the seed devices but we don't know yet if the replace
3404 * target is required. So free devices that are not part of this
1a9fd417 3405 * filesystem but skip the replace target device which is checked
bacce86a 3406 * below in btrfs_init_dev_replace().
8dabb742 3407 */
bacce86a 3408 btrfs_free_extra_devids(fs_devices);
d24fa5c1 3409 if (!fs_devices->latest_dev->bdev) {
05135f59 3410 btrfs_err(fs_info, "failed to read devices");
4871c33b 3411 ret = -EIO;
a6b0d5c8
CM
3412 goto fail_tree_roots;
3413 }
3414
b8522a1e 3415 ret = init_tree_roots(fs_info);
4bbcaa64 3416 if (ret)
b8522a1e 3417 goto fail_tree_roots;
8929ecfa 3418
73651042
NA
3419 /*
3420 * Get zone type information of zoned block devices. This will also
3421 * handle emulation of a zoned filesystem if a regular device has the
3422 * zoned incompat feature flag set.
3423 */
3424 ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3425 if (ret) {
3426 btrfs_err(fs_info,
4871c33b 3427 "zoned: failed to read device zone info: %d", ret);
73651042
NA
3428 goto fail_block_groups;
3429 }
3430
75ec1db8
JB
3431 /*
3432 * If we have a uuid root and we're not being told to rescan we need to
3433 * check the generation here so we can set the
3434 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
3435 * transaction during a balance or the log replay without updating the
3436 * uuid generation, and then if we crash we would rescan the uuid tree,
3437 * even though it was perfectly fine.
3438 */
3439 if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3440 fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3441 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3442
cf90d884
QW
3443 ret = btrfs_verify_dev_extents(fs_info);
3444 if (ret) {
3445 btrfs_err(fs_info,
3446 "failed to verify dev extents against chunks: %d",
3447 ret);
3448 goto fail_block_groups;
3449 }
68310a5e
ID
3450 ret = btrfs_recover_balance(fs_info);
3451 if (ret) {
05135f59 3452 btrfs_err(fs_info, "failed to recover balance: %d", ret);
68310a5e
ID
3453 goto fail_block_groups;
3454 }
3455
733f4fbb
SB
3456 ret = btrfs_init_dev_stats(fs_info);
3457 if (ret) {
05135f59 3458 btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
733f4fbb
SB
3459 goto fail_block_groups;
3460 }
3461
8dabb742
SB
3462 ret = btrfs_init_dev_replace(fs_info);
3463 if (ret) {
05135f59 3464 btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
8dabb742
SB
3465 goto fail_block_groups;
3466 }
3467
b70f5097
NA
3468 ret = btrfs_check_zoned_mode(fs_info);
3469 if (ret) {
3470 btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3471 ret);
3472 goto fail_block_groups;
3473 }
3474
c6761a9e 3475 ret = btrfs_sysfs_add_fsid(fs_devices);
b7c35e81 3476 if (ret) {
05135f59
DS
3477 btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3478 ret);
b7c35e81
AJ
3479 goto fail_block_groups;
3480 }
3481
96f3136e 3482 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 3483 if (ret) {
05135f59 3484 btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
b7c35e81 3485 goto fail_fsdev_sysfs;
c59021f8 3486 }
3487
c59021f8 3488 ret = btrfs_init_space_info(fs_info);
3489 if (ret) {
05135f59 3490 btrfs_err(fs_info, "failed to initialize space info: %d", ret);
2365dd3c 3491 goto fail_sysfs;
c59021f8 3492 }
3493
5b4aacef 3494 ret = btrfs_read_block_groups(fs_info);
1b1d1f66 3495 if (ret) {
05135f59 3496 btrfs_err(fs_info, "failed to read block groups: %d", ret);
2365dd3c 3497 goto fail_sysfs;
1b1d1f66 3498 }
4330e183 3499
16beac87
NA
3500 btrfs_free_zone_cache(fs_info);
3501
a7e1ac7b
NA
3502 btrfs_check_active_zone_reservation(fs_info);
3503
5c78a5e7
AJ
3504 if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3505 !btrfs_check_rw_degradable(fs_info, NULL)) {
05135f59 3506 btrfs_warn(fs_info,
52042d8e 3507 "writable mount is not allowed due to too many missing devices");
4871c33b 3508 ret = -EINVAL;
2365dd3c 3509 goto fail_sysfs;
292fd7fc 3510 }
9078a3e1 3511
33c44184 3512 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
a74a4b97 3513 "btrfs-cleaner");
4871c33b
QW
3514 if (IS_ERR(fs_info->cleaner_kthread)) {
3515 ret = PTR_ERR(fs_info->cleaner_kthread);
2365dd3c 3516 goto fail_sysfs;
4871c33b 3517 }
a74a4b97
CM
3518
3519 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3520 tree_root,
3521 "btrfs-transaction");
4871c33b
QW
3522 if (IS_ERR(fs_info->transaction_kthread)) {
3523 ret = PTR_ERR(fs_info->transaction_kthread);
3f157a2f 3524 goto fail_cleaner;
4871c33b 3525 }
a74a4b97 3526
bcef60f2
AJ
3527 ret = btrfs_read_qgroup_config(fs_info);
3528 if (ret)
3529 goto fail_trans_kthread;
21adbd5c 3530
fd708b81
JB
3531 if (btrfs_build_ref_tree(fs_info))
3532 btrfs_err(fs_info, "couldn't build ref tree");
3533
96da0919
QW
3534 /* do not make disk changes in broken FS or nologreplay is given */
3535 if (btrfs_super_log_root(disk_super) != 0 &&
0b246afa 3536 !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
e8294f2f 3537 btrfs_info(fs_info, "start tree-log replay");
63443bf5 3538 ret = btrfs_replay_log(fs_info, fs_devices);
4871c33b 3539 if (ret)
28c16cbb 3540 goto fail_qgroup;
e02119d5 3541 }
1a40e23b 3542
56e9357a 3543 fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
3140c9a3 3544 if (IS_ERR(fs_info->fs_root)) {
4871c33b
QW
3545 ret = PTR_ERR(fs_info->fs_root);
3546 btrfs_warn(fs_info, "failed to read fs tree: %d", ret);
315bf8ef 3547 fs_info->fs_root = NULL;
bcef60f2 3548 goto fail_qgroup;
3140c9a3 3549 }
c289811c 3550
bc98a42c 3551 if (sb_rdonly(sb))
83e3a40a 3552 return 0;
59641015 3553
44c0ca21 3554 ret = btrfs_start_pre_rw_mount(fs_info);
2b6ba629 3555 if (ret) {
6bccf3ab 3556 close_ctree(fs_info);
2b6ba629 3557 return ret;
e3acc2a6 3558 }
b0643e59 3559 btrfs_discard_resume(fs_info);
b382a324 3560
44c0ca21
BB
3561 if (fs_info->uuid_root &&
3562 (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3563 fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
05135f59 3564 btrfs_info(fs_info, "checking UUID tree");
70f80175
SB
3565 ret = btrfs_check_uuid_tree(fs_info);
3566 if (ret) {
05135f59
DS
3567 btrfs_warn(fs_info,
3568 "failed to check the UUID tree: %d", ret);
6bccf3ab 3569 close_ctree(fs_info);
70f80175
SB
3570 return ret;
3571 }
f7a81ea4 3572 }
94846229 3573
afcdd129 3574 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
47ab2a6c 3575
b4be6aef
JB
3576 /* Kick the cleaner thread so it'll start deleting snapshots. */
3577 if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3578 wake_up_process(fs_info->cleaner_kthread);
3579
ad2b2c80 3580 return 0;
39279cc3 3581
bcef60f2
AJ
3582fail_qgroup:
3583 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3584fail_trans_kthread:
3585 kthread_stop(fs_info->transaction_kthread);
2ff7e61e 3586 btrfs_cleanup_transaction(fs_info);
faa2dbf0 3587 btrfs_free_fs_roots(fs_info);
3f157a2f 3588fail_cleaner:
a74a4b97 3589 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3590
3591 /*
3592 * make sure we're done with the btree inode before we stop our
3593 * kthreads
3594 */
3595 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3596
2365dd3c 3597fail_sysfs:
6618a59b 3598 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3599
b7c35e81
AJ
3600fail_fsdev_sysfs:
3601 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3602
1b1d1f66 3603fail_block_groups:
54067ae9 3604 btrfs_put_block_group_cache(fs_info);
af31f5e5
CM
3605
3606fail_tree_roots:
9e3aa805
JB
3607 if (fs_info->data_reloc_root)
3608 btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
4273eaff 3609 free_root_pointers(fs_info, true);
2b8195bb 3610 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3611
39279cc3 3612fail_sb_buffer:
7abadb64 3613 btrfs_stop_all_workers(fs_info);
5cdd7db6 3614 btrfs_free_block_groups(fs_info);
16cdcec7 3615fail_alloc:
7dc66abb 3616 btrfs_mapping_tree_free(fs_info);
586e46e2 3617
4543df7e 3618 iput(fs_info->btree_inode);
7e662854 3619fail:
586e46e2 3620 btrfs_close_devices(fs_info->fs_devices);
4871c33b
QW
3621 ASSERT(ret < 0);
3622 return ret;
eb60ceac 3623}
663faf9f 3624ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
eb60ceac 3625
314b6dd0 3626static void btrfs_end_super_write(struct bio *bio)
f2984462 3627{
314b6dd0 3628 struct btrfs_device *device = bio->bi_private;
617fb10e 3629 struct folio_iter fi;
314b6dd0 3630
617fb10e 3631 bio_for_each_folio_all(fi, bio) {
314b6dd0
JT
3632 if (bio->bi_status) {
3633 btrfs_warn_rl_in_rcu(device->fs_info,
617fb10e 3634 "lost super block write due to IO error on %s (%d)",
cb3e217b 3635 btrfs_dev_name(device),
314b6dd0 3636 blk_status_to_errno(bio->bi_status));
314b6dd0
JT
3637 btrfs_dev_stat_inc_and_print(device,
3638 BTRFS_DEV_STAT_WRITE_ERRS);
bc00965d
MWO
3639 /* Ensure failure if the primary sb fails. */
3640 if (bio->bi_opf & REQ_FUA)
3641 atomic_add(BTRFS_SUPER_PRIMARY_WRITE_ERROR,
3642 &device->sb_write_errors);
3643 else
3644 atomic_inc(&device->sb_write_errors);
314b6dd0 3645 }
617fb10e
MWO
3646 folio_unlock(fi.folio);
3647 folio_put(fi.folio);
f2984462 3648 }
314b6dd0
JT
3649
3650 bio_put(bio);
f2984462
CM
3651}
3652
8f32380d 3653struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
a05d3c91 3654 int copy_num, bool drop_cache)
29c36d72 3655{
29c36d72 3656 struct btrfs_super_block *super;
8f32380d 3657 struct page *page;
12659251 3658 u64 bytenr, bytenr_orig;
224941e8 3659 struct address_space *mapping = bdev->bd_mapping;
12659251
NA
3660 int ret;
3661
3662 bytenr_orig = btrfs_sb_offset(copy_num);
3663 ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
3664 if (ret == -ENOENT)
3665 return ERR_PTR(-EINVAL);
3666 else if (ret)
3667 return ERR_PTR(ret);
29c36d72 3668
cda00eba 3669 if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
8f32380d 3670 return ERR_PTR(-EINVAL);
29c36d72 3671
a05d3c91
QW
3672 if (drop_cache) {
3673 /* This should only be called with the primary sb. */
3674 ASSERT(copy_num == 0);
3675
3676 /*
3677 * Drop the page of the primary superblock, so later read will
3678 * always read from the device.
3679 */
3680 invalidate_inode_pages2_range(mapping,
3681 bytenr >> PAGE_SHIFT,
3682 (bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
3683 }
3684
8f32380d
JT
3685 page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
3686 if (IS_ERR(page))
3687 return ERR_CAST(page);
29c36d72 3688
8f32380d 3689 super = page_address(page);
96c2e067
AJ
3690 if (btrfs_super_magic(super) != BTRFS_MAGIC) {
3691 btrfs_release_disk_super(super);
3692 return ERR_PTR(-ENODATA);
3693 }
3694
12659251 3695 if (btrfs_super_bytenr(super) != bytenr_orig) {
8f32380d
JT
3696 btrfs_release_disk_super(super);
3697 return ERR_PTR(-EINVAL);
29c36d72
AJ
3698 }
3699
8f32380d 3700 return super;
29c36d72
AJ
3701}
3702
3703
8f32380d 3704struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
a512bbf8 3705{
8f32380d 3706 struct btrfs_super_block *super, *latest = NULL;
a512bbf8
YZ
3707 int i;
3708 u64 transid = 0;
a512bbf8
YZ
3709
3710 /* we would like to check all the supers, but that would make
3711 * a btrfs mount succeed after a mkfs from a different FS.
3712 * So, we need to add a special mount option to scan for
3713 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3714 */
3715 for (i = 0; i < 1; i++) {
a05d3c91 3716 super = btrfs_read_dev_one_super(bdev, i, false);
8f32380d 3717 if (IS_ERR(super))
a512bbf8
YZ
3718 continue;
3719
a512bbf8 3720 if (!latest || btrfs_super_generation(super) > transid) {
8f32380d
JT
3721 if (latest)
3722 btrfs_release_disk_super(super);
3723
3724 latest = super;
a512bbf8 3725 transid = btrfs_super_generation(super);
a512bbf8
YZ
3726 }
3727 }
92fc03fb 3728
8f32380d 3729 return super;
a512bbf8
YZ
3730}
3731
4eedeb75 3732/*
abbb3b8e 3733 * Write superblock @sb to the @device. Do not wait for completion, all the
f93ee0df 3734 * folios we use for writing are locked.
4eedeb75 3735 *
abbb3b8e
DS
3736 * Write @max_mirrors copies of the superblock, where 0 means default that fit
3737 * the expected device size at commit time. Note that max_mirrors must be
3738 * same for write and wait phases.
4eedeb75 3739 *
f93ee0df 3740 * Return number of errors when folio is not found or submission fails.
4eedeb75 3741 */
a512bbf8 3742static int write_dev_supers(struct btrfs_device *device,
abbb3b8e 3743 struct btrfs_super_block *sb, int max_mirrors)
a512bbf8 3744{
d5178578 3745 struct btrfs_fs_info *fs_info = device->fs_info;
224941e8 3746 struct address_space *mapping = device->bdev->bd_mapping;
d5178578 3747 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
a512bbf8 3748 int i;
12659251
NA
3749 int ret;
3750 u64 bytenr, bytenr_orig;
a512bbf8 3751
bc00965d
MWO
3752 atomic_set(&device->sb_write_errors, 0);
3753
a512bbf8
YZ
3754 if (max_mirrors == 0)
3755 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3756
d5178578
JT
3757 shash->tfm = fs_info->csum_shash;
3758
a512bbf8 3759 for (i = 0; i < max_mirrors; i++) {
f93ee0df 3760 struct folio *folio;
314b6dd0
JT
3761 struct bio *bio;
3762 struct btrfs_super_block *disk_super;
f93ee0df 3763 size_t offset;
314b6dd0 3764
12659251
NA
3765 bytenr_orig = btrfs_sb_offset(i);
3766 ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
3767 if (ret == -ENOENT) {
3768 continue;
3769 } else if (ret < 0) {
3770 btrfs_err(device->fs_info,
3771 "couldn't get super block location for mirror %d",
3772 i);
bc00965d 3773 atomic_inc(&device->sb_write_errors);
12659251
NA
3774 continue;
3775 }
935e5cc9
MX
3776 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3777 device->commit_total_bytes)
a512bbf8
YZ
3778 break;
3779
12659251 3780 btrfs_set_super_bytenr(sb, bytenr_orig);
4eedeb75 3781
fd08001f
EB
3782 crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
3783 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
3784 sb->csum);
4eedeb75 3785
f93ee0df
MWO
3786 folio = __filemap_get_folio(mapping, bytenr >> PAGE_SHIFT,
3787 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3788 GFP_NOFS);
3789 if (IS_ERR(folio)) {
abbb3b8e 3790 btrfs_err(device->fs_info,
314b6dd0 3791 "couldn't get super block page for bytenr %llu",
abbb3b8e 3792 bytenr);
bc00965d 3793 atomic_inc(&device->sb_write_errors);
4eedeb75 3794 continue;
abbb3b8e 3795 }
f93ee0df 3796 ASSERT(folio_order(folio) == 0);
634554dc 3797
f93ee0df
MWO
3798 offset = offset_in_folio(folio, bytenr);
3799 disk_super = folio_address(folio) + offset;
314b6dd0 3800 memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4eedeb75 3801
314b6dd0
JT
3802 /*
3803 * Directly use bios here instead of relying on the page cache
3804 * to do I/O, so we don't lose the ability to do integrity
3805 * checking.
3806 */
07888c66
CH
3807 bio = bio_alloc(device->bdev, 1,
3808 REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
3809 GFP_NOFS);
314b6dd0
JT
3810 bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
3811 bio->bi_private = device;
3812 bio->bi_end_io = btrfs_end_super_write;
f93ee0df 3813 bio_add_folio_nofail(bio, folio, BTRFS_SUPER_INFO_SIZE, offset);
a512bbf8 3814
387125fc 3815 /*
314b6dd0
JT
3816 * We FUA only the first super block. The others we allow to
3817 * go down lazy and there's a short window where the on-disk
3818 * copies might still contain the older version.
387125fc 3819 */
1b9e619c 3820 if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
314b6dd0 3821 bio->bi_opf |= REQ_FUA;
58ff51f1 3822 submit_bio(bio);
8376d9e1
NA
3823
3824 if (btrfs_advance_sb_log(device, i))
bc00965d 3825 atomic_inc(&device->sb_write_errors);
a512bbf8 3826 }
bc00965d 3827 return atomic_read(&device->sb_write_errors) < i ? 0 : -1;
a512bbf8
YZ
3828}
3829
abbb3b8e
DS
3830/*
3831 * Wait for write completion of superblocks done by write_dev_supers,
3832 * @max_mirrors same for write and wait phases.
3833 *
bc00965d
MWO
3834 * Return -1 if primary super block write failed or when there were no super block
3835 * copies written. Otherwise 0.
abbb3b8e
DS
3836 */
3837static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
3838{
abbb3b8e
DS
3839 int i;
3840 int errors = 0;
b6a535fa 3841 bool primary_failed = false;
12659251 3842 int ret;
abbb3b8e
DS
3843 u64 bytenr;
3844
3845 if (max_mirrors == 0)
3846 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3847
3848 for (i = 0; i < max_mirrors; i++) {
c94b7349 3849 struct folio *folio;
314b6dd0 3850
12659251
NA
3851 ret = btrfs_sb_log_location(device, i, READ, &bytenr);
3852 if (ret == -ENOENT) {
3853 break;
3854 } else if (ret < 0) {
3855 errors++;
3856 if (i == 0)
3857 primary_failed = true;
3858 continue;
3859 }
abbb3b8e
DS
3860 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3861 device->commit_total_bytes)
3862 break;
3863
38da32ee 3864 folio = filemap_get_folio(device->bdev->bd_mapping,
c94b7349 3865 bytenr >> PAGE_SHIFT);
bc00965d
MWO
3866 /* If the folio has been removed, then we know it completed. */
3867 if (IS_ERR(folio))
abbb3b8e 3868 continue;
c94b7349
MWO
3869 ASSERT(folio_order(folio) == 0);
3870
3871 /* Folio will be unlocked once the write completes. */
3872 folio_wait_locked(folio);
c94b7349 3873 folio_put(folio);
abbb3b8e
DS
3874 }
3875
bc00965d
MWO
3876 errors += atomic_read(&device->sb_write_errors);
3877 if (errors >= BTRFS_SUPER_PRIMARY_WRITE_ERROR)
3878 primary_failed = true;
b6a535fa
HM
3879 if (primary_failed) {
3880 btrfs_err(device->fs_info, "error writing primary super block to device %llu",
3881 device->devid);
3882 return -1;
3883 }
3884
abbb3b8e
DS
3885 return errors < i ? 0 : -1;
3886}
3887
387125fc
CM
3888/*
3889 * endio for the write_dev_flush, this will wake anyone waiting
3890 * for the barrier when it is done
3891 */
4246a0b6 3892static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3893{
f9e69aa9 3894 bio_uninit(bio);
e0ae9994 3895 complete(bio->bi_private);
387125fc
CM
3896}
3897
3898/*
4fc6441a
AJ
3899 * Submit a flush request to the device if it supports it. Error handling is
3900 * done in the waiting counterpart.
387125fc 3901 */
4fc6441a 3902static void write_dev_flush(struct btrfs_device *device)
387125fc 3903{
f9e69aa9 3904 struct bio *bio = &device->flush_bio;
387125fc 3905
bfd3ea94
AJ
3906 device->last_flush_error = BLK_STS_OK;
3907
f9e69aa9
CH
3908 bio_init(bio, device->bdev, NULL, 0,
3909 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
387125fc 3910 bio->bi_end_io = btrfs_end_empty_barrier;
387125fc
CM
3911 init_completion(&device->flush_wait);
3912 bio->bi_private = &device->flush_wait;
58ff51f1 3913 submit_bio(bio);
1c3063b6 3914 set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4fc6441a 3915}
387125fc 3916
4fc6441a
AJ
3917/*
3918 * If the flush bio has been submitted by write_dev_flush, wait for it.
1b465784 3919 * Return true for any error, and false otherwise.
4fc6441a 3920 */
1b465784 3921static bool wait_dev_flush(struct btrfs_device *device)
4fc6441a 3922{
f9e69aa9 3923 struct bio *bio = &device->flush_bio;
387125fc 3924
7e812f20 3925 if (!test_and_clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
1b465784 3926 return false;
387125fc 3927
2980d574 3928 wait_for_completion_io(&device->flush_wait);
387125fc 3929
bfd3ea94
AJ
3930 if (bio->bi_status) {
3931 device->last_flush_error = bio->bi_status;
3932 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_FLUSH_ERRS);
1b465784 3933 return true;
bfd3ea94
AJ
3934 }
3935
1b465784 3936 return false;
387125fc 3937}
387125fc 3938
387125fc
CM
3939/*
3940 * send an empty flush down to each device in parallel,
3941 * then wait for them
3942 */
3943static int barrier_all_devices(struct btrfs_fs_info *info)
3944{
3945 struct list_head *head;
3946 struct btrfs_device *dev;
5af3e8cc 3947 int errors_wait = 0;
387125fc 3948
1538e6c5 3949 lockdep_assert_held(&info->fs_devices->device_list_mutex);
387125fc
CM
3950 /* send down all the barriers */
3951 head = &info->fs_devices->devices;
1538e6c5 3952 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3953 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3954 continue;
cea7c8bf 3955 if (!dev->bdev)
387125fc 3956 continue;
e12c9621 3957 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3958 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3959 continue;
3960
4fc6441a 3961 write_dev_flush(dev);
387125fc
CM
3962 }
3963
3964 /* wait for all the barriers */
1538e6c5 3965 list_for_each_entry(dev, head, dev_list) {
e6e674bd 3966 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
f88ba6a2 3967 continue;
387125fc 3968 if (!dev->bdev) {
5af3e8cc 3969 errors_wait++;
387125fc
CM
3970 continue;
3971 }
e12c9621 3972 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 3973 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
387125fc
CM
3974 continue;
3975
1b465784 3976 if (wait_dev_flush(dev))
5af3e8cc 3977 errors_wait++;
401b41e5
AJ
3978 }
3979
de38a206
AJ
3980 /*
3981 * Checks last_flush_error of disks in order to determine the device
3982 * state.
3983 */
3984 if (errors_wait && !btrfs_check_rw_degradable(info, NULL))
3985 return -EIO;
3986
387125fc
CM
3987 return 0;
3988}
3989
943c6e99
ZL
3990int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3991{
8789f4fe
ZL
3992 int raid_type;
3993 int min_tolerated = INT_MAX;
943c6e99 3994
8789f4fe
ZL
3995 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3996 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
8c3e3582 3997 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
3998 btrfs_raid_array[BTRFS_RAID_SINGLE].
3999 tolerated_failures);
943c6e99 4000
8789f4fe
ZL
4001 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4002 if (raid_type == BTRFS_RAID_SINGLE)
4003 continue;
41a6e891 4004 if (!(flags & btrfs_raid_array[raid_type].bg_flag))
8789f4fe 4005 continue;
8c3e3582 4006 min_tolerated = min_t(int, min_tolerated,
8789f4fe
ZL
4007 btrfs_raid_array[raid_type].
4008 tolerated_failures);
4009 }
943c6e99 4010
8789f4fe 4011 if (min_tolerated == INT_MAX) {
ab8d0fc4 4012 pr_warn("BTRFS: unknown raid flag: %llu", flags);
8789f4fe
ZL
4013 min_tolerated = 0;
4014 }
4015
4016 return min_tolerated;
943c6e99
ZL
4017}
4018
eece6a9c 4019int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
f2984462 4020{
e5e9a520 4021 struct list_head *head;
f2984462 4022 struct btrfs_device *dev;
a061fc8d 4023 struct btrfs_super_block *sb;
f2984462 4024 struct btrfs_dev_item *dev_item;
f2984462
CM
4025 int ret;
4026 int do_barriers;
a236aed1
CM
4027 int max_errors;
4028 int total_errors = 0;
a061fc8d 4029 u64 flags;
f2984462 4030
0b246afa 4031 do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
fed3b381
LB
4032
4033 /*
4034 * max_mirrors == 0 indicates we're from commit_transaction,
4035 * not from fsync where the tree roots in fs_info have not
4036 * been consistent on disk.
4037 */
4038 if (max_mirrors == 0)
4039 backup_super_roots(fs_info);
f2984462 4040
0b246afa 4041 sb = fs_info->super_for_commit;
a061fc8d 4042 dev_item = &sb->dev_item;
e5e9a520 4043
0b246afa
JM
4044 mutex_lock(&fs_info->fs_devices->device_list_mutex);
4045 head = &fs_info->fs_devices->devices;
4046 max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
387125fc 4047
5af3e8cc 4048 if (do_barriers) {
0b246afa 4049 ret = barrier_all_devices(fs_info);
5af3e8cc
SB
4050 if (ret) {
4051 mutex_unlock(
0b246afa
JM
4052 &fs_info->fs_devices->device_list_mutex);
4053 btrfs_handle_fs_error(fs_info, ret,
4054 "errors while submitting device barriers.");
5af3e8cc
SB
4055 return ret;
4056 }
4057 }
387125fc 4058
1538e6c5 4059 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4060 if (!dev->bdev) {
4061 total_errors++;
4062 continue;
4063 }
e12c9621 4064 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4065 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4066 continue;
4067
2b82032c 4068 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
4069 btrfs_set_stack_device_type(dev_item, dev->type);
4070 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 4071 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 4072 dev->commit_total_bytes);
ce7213c7
MX
4073 btrfs_set_stack_device_bytes_used(dev_item,
4074 dev->commit_bytes_used);
a061fc8d
CM
4075 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4076 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4077 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4078 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
7239ff4b
NB
4079 memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4080 BTRFS_FSID_SIZE);
a512bbf8 4081
a061fc8d
CM
4082 flags = btrfs_super_flags(sb);
4083 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4084
75cb857d
QW
4085 ret = btrfs_validate_write_super(fs_info, sb);
4086 if (ret < 0) {
4087 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4088 btrfs_handle_fs_error(fs_info, -EUCLEAN,
4089 "unexpected superblock corruption detected");
4090 return -EUCLEAN;
4091 }
4092
abbb3b8e 4093 ret = write_dev_supers(dev, sb, max_mirrors);
a236aed1
CM
4094 if (ret)
4095 total_errors++;
f2984462 4096 }
a236aed1 4097 if (total_errors > max_errors) {
0b246afa
JM
4098 btrfs_err(fs_info, "%d errors while writing supers",
4099 total_errors);
4100 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
79787eaa 4101
9d565ba4 4102 /* FUA is masked off if unsupported and can't be the reason */
0b246afa
JM
4103 btrfs_handle_fs_error(fs_info, -EIO,
4104 "%d errors while writing supers",
4105 total_errors);
9d565ba4 4106 return -EIO;
a236aed1 4107 }
f2984462 4108
a512bbf8 4109 total_errors = 0;
1538e6c5 4110 list_for_each_entry(dev, head, dev_list) {
dfe25020
CM
4111 if (!dev->bdev)
4112 continue;
e12c9621 4113 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
ebbede42 4114 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
dfe25020
CM
4115 continue;
4116
abbb3b8e 4117 ret = wait_dev_supers(dev, max_mirrors);
a512bbf8
YZ
4118 if (ret)
4119 total_errors++;
f2984462 4120 }
0b246afa 4121 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
a236aed1 4122 if (total_errors > max_errors) {
0b246afa
JM
4123 btrfs_handle_fs_error(fs_info, -EIO,
4124 "%d errors while writing supers",
4125 total_errors);
79787eaa 4126 return -EIO;
a236aed1 4127 }
f2984462
CM
4128 return 0;
4129}
4130
cb517eab
MX
4131/* Drop a fs root from the radix tree and free it. */
4132void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4133 struct btrfs_root *root)
2619ba1f 4134{
4785e24f
JB
4135 bool drop_ref = false;
4136
fc7cbcd4
DS
4137 spin_lock(&fs_info->fs_roots_radix_lock);
4138 radix_tree_delete(&fs_info->fs_roots_radix,
e094f480 4139 (unsigned long)btrfs_root_id(root));
fc7cbcd4 4140 if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4785e24f 4141 drop_ref = true;
fc7cbcd4 4142 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c 4143
84961539 4144 if (BTRFS_FS_ERROR(fs_info)) {
ef67963d 4145 ASSERT(root->log_root == NULL);
1c1ea4f7 4146 if (root->reloc_root) {
00246528 4147 btrfs_put_root(root->reloc_root);
1c1ea4f7
LB
4148 root->reloc_root = NULL;
4149 }
4150 }
3321719e 4151
4785e24f
JB
4152 if (drop_ref)
4153 btrfs_put_root(root);
2619ba1f
CM
4154}
4155
6bccf3ab 4156int btrfs_commit_super(struct btrfs_fs_info *fs_info)
c146afad 4157{
6bccf3ab 4158 struct btrfs_root *root = fs_info->tree_root;
c146afad 4159 struct btrfs_trans_handle *trans;
a74a4b97 4160
0b246afa 4161 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4162 btrfs_run_delayed_iputs(fs_info);
0b246afa
JM
4163 mutex_unlock(&fs_info->cleaner_mutex);
4164 wake_up_process(fs_info->cleaner_kthread);
c71bf099
YZ
4165
4166 /* wait until ongoing cleanup work done */
0b246afa
JM
4167 down_write(&fs_info->cleanup_work_sem);
4168 up_write(&fs_info->cleanup_work_sem);
c71bf099 4169
7a7eaa40 4170 trans = btrfs_join_transaction(root);
3612b495
TI
4171 if (IS_ERR(trans))
4172 return PTR_ERR(trans);
3a45bb20 4173 return btrfs_commit_transaction(trans);
c146afad
YZ
4174}
4175
36c86a9e
QW
4176static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4177{
4178 struct btrfs_transaction *trans;
4179 struct btrfs_transaction *tmp;
4180 bool found = false;
4181
36c86a9e
QW
4182 /*
4183 * This function is only called at the very end of close_ctree(),
4184 * thus no other running transaction, no need to take trans_lock.
4185 */
4186 ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4187 list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4188 struct extent_state *cached = NULL;
4189 u64 dirty_bytes = 0;
4190 u64 cur = 0;
4191 u64 found_start;
4192 u64 found_end;
4193
4194 found = true;
e5860f82 4195 while (find_first_extent_bit(&trans->dirty_pages, cur,
36c86a9e
QW
4196 &found_start, &found_end, EXTENT_DIRTY, &cached)) {
4197 dirty_bytes += found_end + 1 - found_start;
4198 cur = found_end + 1;
4199 }
4200 btrfs_warn(fs_info,
4201 "transaction %llu (with %llu dirty metadata bytes) is not committed",
4202 trans->transid, dirty_bytes);
4203 btrfs_cleanup_one_transaction(trans, fs_info);
4204
4205 if (trans == fs_info->running_transaction)
4206 fs_info->running_transaction = NULL;
4207 list_del_init(&trans->list);
4208
4209 btrfs_put_transaction(trans);
4210 trace_btrfs_transaction_commit(fs_info);
4211 }
4212 ASSERT(!found);
4213}
4214
b105e927 4215void __cold close_ctree(struct btrfs_fs_info *fs_info)
c146afad 4216{
c146afad
YZ
4217 int ret;
4218
afcdd129 4219 set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
31e70e52 4220
8a1f1e3d
FM
4221 /*
4222 * If we had UNFINISHED_DROPS we could still be processing them, so
4223 * clear that bit and wake up relocation so it can stop.
4224 * We must do this before stopping the block group reclaim task, because
4225 * at btrfs_relocate_block_group() we wait for this bit, and after the
4226 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4227 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4228 * return 1.
4229 */
4230 btrfs_wake_unfinished_drop(fs_info);
4231
31e70e52
FM
4232 /*
4233 * We may have the reclaim task running and relocating a data block group,
4234 * in which case it may create delayed iputs. So stop it before we park
4235 * the cleaner kthread otherwise we can get new delayed iputs after
4236 * parking the cleaner, and that can make the async reclaim task to hang
4237 * if it's waiting for delayed iputs to complete, since the cleaner is
4238 * parked and can not run delayed iputs - this will make us hang when
4239 * trying to stop the async reclaim task.
4240 */
4241 cancel_work_sync(&fs_info->reclaim_bgs_work);
d6fd0ae2
OS
4242 /*
4243 * We don't want the cleaner to start new transactions, add more delayed
4244 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4245 * because that frees the task_struct, and the transaction kthread might
4246 * still try to wake up the cleaner.
4247 */
4248 kthread_park(fs_info->cleaner_kthread);
c146afad 4249
7343dd61 4250 /* wait for the qgroup rescan worker to stop */
d06f23d6 4251 btrfs_qgroup_wait_for_completion(fs_info, false);
7343dd61 4252
803b2f54
SB
4253 /* wait for the uuid_scan task to finish */
4254 down(&fs_info->uuid_tree_rescan_sem);
4255 /* avoid complains from lockdep et al., set sem back to initial state */
4256 up(&fs_info->uuid_tree_rescan_sem);
4257
837d5b6e 4258 /* pause restriper - we want to resume on mount */
aa1b8cd4 4259 btrfs_pause_balance(fs_info);
837d5b6e 4260
8dabb742
SB
4261 btrfs_dev_replace_suspend_for_unmount(fs_info);
4262
aa1b8cd4 4263 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
4264
4265 /* wait for any defraggers to finish */
4266 wait_event(fs_info->transaction_wait,
4267 (atomic_read(&fs_info->defrag_running) == 0));
4268
4269 /* clear out the rbtree of defraggable inodes */
26176e7c 4270 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 4271
a362bb86
FM
4272 /*
4273 * After we parked the cleaner kthread, ordered extents may have
4274 * completed and created new delayed iputs. If one of the async reclaim
4275 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4276 * can hang forever trying to stop it, because if a delayed iput is
4277 * added after it ran btrfs_run_delayed_iputs() and before it called
4278 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4279 * no one else to run iputs.
4280 *
4281 * So wait for all ongoing ordered extents to complete and then run
4282 * delayed iputs. This works because once we reach this point no one
4283 * can either create new ordered extents nor create delayed iputs
4284 * through some other means.
4285 *
4286 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4287 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4288 * but the delayed iput for the respective inode is made only when doing
4289 * the final btrfs_put_ordered_extent() (which must happen at
4290 * btrfs_finish_ordered_io() when we are unmounting).
4291 */
4292 btrfs_flush_workqueue(fs_info->endio_write_workers);
4293 /* Ordered extents for free space inodes. */
4294 btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4295 btrfs_run_delayed_iputs(fs_info);
4296
21c7e756 4297 cancel_work_sync(&fs_info->async_reclaim_work);
57056740 4298 cancel_work_sync(&fs_info->async_data_reclaim_work);
576fa348 4299 cancel_work_sync(&fs_info->preempt_reclaim_work);
21c7e756 4300
b0643e59
DZ
4301 /* Cancel or finish ongoing discard work */
4302 btrfs_discard_cleanup(fs_info);
4303
bc98a42c 4304 if (!sb_rdonly(fs_info->sb)) {
e44163e1 4305 /*
d6fd0ae2
OS
4306 * The cleaner kthread is stopped, so do one final pass over
4307 * unused block groups.
e44163e1 4308 */
0b246afa 4309 btrfs_delete_unused_bgs(fs_info);
e44163e1 4310
f0cc2cd7
FM
4311 /*
4312 * There might be existing delayed inode workers still running
4313 * and holding an empty delayed inode item. We must wait for
4314 * them to complete first because they can create a transaction.
4315 * This happens when someone calls btrfs_balance_delayed_items()
4316 * and then a transaction commit runs the same delayed nodes
4317 * before any delayed worker has done something with the nodes.
4318 * We must wait for any worker here and not at transaction
4319 * commit time since that could cause a deadlock.
4320 * This is a very rare case.
4321 */
4322 btrfs_flush_workqueue(fs_info->delayed_workers);
4323
6bccf3ab 4324 ret = btrfs_commit_super(fs_info);
acce952b 4325 if (ret)
04892340 4326 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 4327 }
4328
84961539 4329 if (BTRFS_FS_ERROR(fs_info))
2ff7e61e 4330 btrfs_error_commit_super(fs_info);
0f7d52f4 4331
e3029d9f
AV
4332 kthread_stop(fs_info->transaction_kthread);
4333 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 4334
e187831e 4335 ASSERT(list_empty(&fs_info->delayed_iputs));
afcdd129 4336 set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
f25784b3 4337
5958253c
QW
4338 if (btrfs_check_quota_leak(fs_info)) {
4339 WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4340 btrfs_err(fs_info, "qgroup reserved space leaked");
4341 }
4342
04892340 4343 btrfs_free_qgroup_config(fs_info);
fe816d0f 4344 ASSERT(list_empty(&fs_info->delalloc_roots));
bcef60f2 4345
963d678b 4346 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 4347 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 4348 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 4349 }
bcc63abb 4350
5deb17e1 4351 if (percpu_counter_sum(&fs_info->ordered_bytes))
4297ff84 4352 btrfs_info(fs_info, "at unmount dio bytes count %lld",
5deb17e1 4353 percpu_counter_sum(&fs_info->ordered_bytes));
4297ff84 4354
6618a59b 4355 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 4356 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 4357
1a4319cc
LB
4358 btrfs_put_block_group_cache(fs_info);
4359
de348ee0
WS
4360 /*
4361 * we must make sure there is not any read request to
4362 * submit after we stopping all workers.
4363 */
4364 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
4365 btrfs_stop_all_workers(fs_info);
4366
0a31daa4 4367 /* We shouldn't have any transaction open at this point */
36c86a9e 4368 warn_about_uncommitted_trans(fs_info);
0a31daa4 4369
afcdd129 4370 clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4273eaff 4371 free_root_pointers(fs_info, true);
8c38938c 4372 btrfs_free_fs_roots(fs_info);
9ad6b7bc 4373
4e19443d
JB
4374 /*
4375 * We must free the block groups after dropping the fs_roots as we could
4376 * have had an IO error and have left over tree log blocks that aren't
4377 * cleaned up until the fs roots are freed. This makes the block group
4378 * accounting appear to be wrong because there's pending reserved bytes,
4379 * so make sure we do the block group cleanup afterwards.
4380 */
4381 btrfs_free_block_groups(fs_info);
4382
13e6c37b 4383 iput(fs_info->btree_inode);
d6bfde87 4384
7dc66abb 4385 btrfs_mapping_tree_free(fs_info);
68c94e55 4386 btrfs_close_devices(fs_info->fs_devices);
eb60ceac
CM
4387}
4388
50564b65
FM
4389void btrfs_mark_buffer_dirty(struct btrfs_trans_handle *trans,
4390 struct extent_buffer *buf)
5f39d397 4391{
2f4d60df 4392 struct btrfs_fs_info *fs_info = buf->fs_info;
5f39d397 4393 u64 transid = btrfs_header_generation(buf);
b4ce94de 4394
06ea65a3
JB
4395#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4396 /*
4397 * This is a fast path so only do this check if we have sanity tests
52042d8e 4398 * enabled. Normal people shouldn't be using unmapped buffers as dirty
06ea65a3
JB
4399 * outside of the sanity tests.
4400 */
b0132a3b 4401 if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
06ea65a3
JB
4402 return;
4403#endif
50564b65
FM
4404 /* This is an active transaction (its state < TRANS_STATE_UNBLOCKED). */
4405 ASSERT(trans->transid == fs_info->generation);
49d0c642 4406 btrfs_assert_tree_write_locked(buf);
4ebe8d47 4407 if (unlikely(transid != fs_info->generation)) {
50564b65 4408 btrfs_abort_transaction(trans, -EUCLEAN);
20cbe460
FM
4409 btrfs_crit(fs_info,
4410"dirty buffer transid mismatch, logical %llu found transid %llu running transid %llu",
4411 buf->start, transid, fs_info->generation);
50564b65 4412 }
f18cc978 4413 set_extent_buffer_dirty(buf);
eb60ceac
CM
4414}
4415
2ff7e61e 4416static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
b53d3f5d 4417 int flush_delayed)
16cdcec7
MX
4418{
4419 /*
4420 * looks as though older kernels can get into trouble with
4421 * this code, they end up stuck in balance_dirty_pages forever
4422 */
e2d84521 4423 int ret;
16cdcec7
MX
4424
4425 if (current->flags & PF_MEMALLOC)
4426 return;
4427
b53d3f5d 4428 if (flush_delayed)
2ff7e61e 4429 btrfs_balance_delayed_items(fs_info);
16cdcec7 4430
d814a491
EL
4431 ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4432 BTRFS_DIRTY_METADATA_THRESH,
4433 fs_info->dirty_metadata_batch);
e2d84521 4434 if (ret > 0) {
0b246afa 4435 balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
16cdcec7 4436 }
16cdcec7
MX
4437}
4438
2ff7e61e 4439void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
35b7e476 4440{
2ff7e61e 4441 __btrfs_btree_balance_dirty(fs_info, 1);
b53d3f5d 4442}
585ad2c3 4443
2ff7e61e 4444void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
b53d3f5d 4445{
2ff7e61e 4446 __btrfs_btree_balance_dirty(fs_info, 0);
35b7e476 4447}
6b80053d 4448
2ff7e61e 4449static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
acce952b 4450{
fe816d0f
NB
4451 /* cleanup FS via transaction */
4452 btrfs_cleanup_transaction(fs_info);
4453
0b246afa 4454 mutex_lock(&fs_info->cleaner_mutex);
2ff7e61e 4455 btrfs_run_delayed_iputs(fs_info);
0b246afa 4456 mutex_unlock(&fs_info->cleaner_mutex);
acce952b 4457
0b246afa
JM
4458 down_write(&fs_info->cleanup_work_sem);
4459 up_write(&fs_info->cleanup_work_sem);
acce952b 4460}
4461
ef67963d
JB
4462static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4463{
fc7cbcd4
DS
4464 struct btrfs_root *gang[8];
4465 u64 root_objectid = 0;
4466 int ret;
4467
4468 spin_lock(&fs_info->fs_roots_radix_lock);
4469 while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4470 (void **)gang, root_objectid,
4471 ARRAY_SIZE(gang))) != 0) {
4472 int i;
4473
4474 for (i = 0; i < ret; i++)
4475 gang[i] = btrfs_grab_root(gang[i]);
4476 spin_unlock(&fs_info->fs_roots_radix_lock);
4477
4478 for (i = 0; i < ret; i++) {
4479 if (!gang[i])
ef67963d 4480 continue;
e094f480 4481 root_objectid = btrfs_root_id(gang[i]);
fc7cbcd4
DS
4482 btrfs_free_log(NULL, gang[i]);
4483 btrfs_put_root(gang[i]);
ef67963d 4484 }
fc7cbcd4
DS
4485 root_objectid++;
4486 spin_lock(&fs_info->fs_roots_radix_lock);
ef67963d 4487 }
fc7cbcd4 4488 spin_unlock(&fs_info->fs_roots_radix_lock);
ef67963d
JB
4489 btrfs_free_log_root_tree(NULL, fs_info);
4490}
4491
143bede5 4492static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4493{
acce952b 4494 struct btrfs_ordered_extent *ordered;
acce952b 4495
199c2a9c 4496 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4497 /*
4498 * This will just short circuit the ordered completion stuff which will
4499 * make sure the ordered extent gets properly cleaned up.
4500 */
199c2a9c 4501 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4502 root_extent_list)
4503 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4504 spin_unlock(&root->ordered_extent_lock);
4505}
4506
4507static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4508{
4509 struct btrfs_root *root;
84af994b 4510 LIST_HEAD(splice);
199c2a9c
MX
4511
4512 spin_lock(&fs_info->ordered_root_lock);
4513 list_splice_init(&fs_info->ordered_roots, &splice);
4514 while (!list_empty(&splice)) {
4515 root = list_first_entry(&splice, struct btrfs_root,
4516 ordered_root);
1de2cfde
JB
4517 list_move_tail(&root->ordered_root,
4518 &fs_info->ordered_roots);
199c2a9c 4519
2a85d9ca 4520 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4521 btrfs_destroy_ordered_extents(root);
4522
2a85d9ca
LB
4523 cond_resched();
4524 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4525 }
4526 spin_unlock(&fs_info->ordered_root_lock);
74d5d229
JB
4527
4528 /*
4529 * We need this here because if we've been flipped read-only we won't
4530 * get sync() from the umount, so we need to make sure any ordered
4531 * extents that haven't had their dirty pages IO start writeout yet
4532 * actually get run and error out properly.
4533 */
4534 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
acce952b 4535}
4536
99f09ce3
FM
4537static void btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4538 struct btrfs_fs_info *fs_info)
acce952b 4539{
4540 struct rb_node *node;
4541 struct btrfs_delayed_ref_root *delayed_refs;
4542 struct btrfs_delayed_ref_node *ref;
acce952b 4543
4544 delayed_refs = &trans->delayed_refs;
4545
4546 spin_lock(&delayed_refs->lock);
d7df2c79 4547 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4548 spin_unlock(&delayed_refs->lock);
b79ce3dd 4549 btrfs_debug(fs_info, "delayed_refs has NO entry");
99f09ce3 4550 return;
acce952b 4551 }
4552
5c9d028b 4553 while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
d7df2c79 4554 struct btrfs_delayed_ref_head *head;
0e0adbcf 4555 struct rb_node *n;
e78417d1 4556 bool pin_bytes = false;
acce952b 4557
d7df2c79
JB
4558 head = rb_entry(node, struct btrfs_delayed_ref_head,
4559 href_node);
3069bd26 4560 if (btrfs_delayed_ref_lock(delayed_refs, head))
d7df2c79 4561 continue;
3069bd26 4562
d7df2c79 4563 spin_lock(&head->lock);
e3d03965 4564 while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
0e0adbcf
JB
4565 ref = rb_entry(n, struct btrfs_delayed_ref_node,
4566 ref_node);
e3d03965 4567 rb_erase_cached(&ref->ref_node, &head->ref_tree);
0e0adbcf 4568 RB_CLEAR_NODE(&ref->ref_node);
1d57ee94
WX
4569 if (!list_empty(&ref->add_list))
4570 list_del(&ref->add_list);
d7df2c79
JB
4571 atomic_dec(&delayed_refs->num_entries);
4572 btrfs_put_delayed_ref(ref);
adb86dbe 4573 btrfs_delayed_refs_rsv_release(fs_info, 1, 0);
e78417d1 4574 }
d7df2c79
JB
4575 if (head->must_insert_reserved)
4576 pin_bytes = true;
4577 btrfs_free_delayed_extent_op(head->extent_op);
fa781cea 4578 btrfs_delete_ref_head(delayed_refs, head);
d7df2c79
JB
4579 spin_unlock(&head->lock);
4580 spin_unlock(&delayed_refs->lock);
4581 mutex_unlock(&head->mutex);
acce952b 4582
f603bb94
NB
4583 if (pin_bytes) {
4584 struct btrfs_block_group *cache;
4585
4586 cache = btrfs_lookup_block_group(fs_info, head->bytenr);
4587 BUG_ON(!cache);
4588
4589 spin_lock(&cache->space_info->lock);
4590 spin_lock(&cache->lock);
4591 cache->pinned += head->num_bytes;
4592 btrfs_space_info_update_bytes_pinned(fs_info,
4593 cache->space_info, head->num_bytes);
4594 cache->reserved -= head->num_bytes;
4595 cache->space_info->bytes_reserved -= head->num_bytes;
4596 spin_unlock(&cache->lock);
4597 spin_unlock(&cache->space_info->lock);
f603bb94
NB
4598
4599 btrfs_put_block_group(cache);
4600
4601 btrfs_error_unpin_extent_range(fs_info, head->bytenr,
4602 head->bytenr + head->num_bytes - 1);
4603 }
31890da0 4604 btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
d278850e 4605 btrfs_put_delayed_ref_head(head);
acce952b 4606 cond_resched();
4607 spin_lock(&delayed_refs->lock);
4608 }
81f7eb00 4609 btrfs_qgroup_destroy_extent_records(trans);
acce952b 4610
4611 spin_unlock(&delayed_refs->lock);
acce952b 4612}
4613
143bede5 4614static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4615{
4616 struct btrfs_inode *btrfs_inode;
84af994b 4617 LIST_HEAD(splice);
acce952b 4618
eb73c1b7
MX
4619 spin_lock(&root->delalloc_lock);
4620 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4621
4622 while (!list_empty(&splice)) {
fe816d0f 4623 struct inode *inode = NULL;
eb73c1b7
MX
4624 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4625 delalloc_inodes);
5a8a57f9 4626 btrfs_del_delalloc_inode(btrfs_inode);
eb73c1b7 4627 spin_unlock(&root->delalloc_lock);
acce952b 4628
fe816d0f
NB
4629 /*
4630 * Make sure we get a live inode and that it'll not disappear
4631 * meanwhile.
4632 */
4633 inode = igrab(&btrfs_inode->vfs_inode);
4634 if (inode) {
597441b3
JB
4635 unsigned int nofs_flag;
4636
4637 nofs_flag = memalloc_nofs_save();
fe816d0f 4638 invalidate_inode_pages2(inode->i_mapping);
597441b3 4639 memalloc_nofs_restore(nofs_flag);
fe816d0f
NB
4640 iput(inode);
4641 }
eb73c1b7 4642 spin_lock(&root->delalloc_lock);
acce952b 4643 }
eb73c1b7
MX
4644 spin_unlock(&root->delalloc_lock);
4645}
4646
4647static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4648{
4649 struct btrfs_root *root;
84af994b 4650 LIST_HEAD(splice);
eb73c1b7
MX
4651
4652 spin_lock(&fs_info->delalloc_root_lock);
4653 list_splice_init(&fs_info->delalloc_roots, &splice);
4654 while (!list_empty(&splice)) {
4655 root = list_first_entry(&splice, struct btrfs_root,
4656 delalloc_root);
00246528 4657 root = btrfs_grab_root(root);
eb73c1b7
MX
4658 BUG_ON(!root);
4659 spin_unlock(&fs_info->delalloc_root_lock);
4660
4661 btrfs_destroy_delalloc_inodes(root);
00246528 4662 btrfs_put_root(root);
eb73c1b7
MX
4663
4664 spin_lock(&fs_info->delalloc_root_lock);
4665 }
4666 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4667}
4668
aec5716c
FM
4669static void btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4670 struct extent_io_tree *dirty_pages,
4671 int mark)
acce952b 4672{
acce952b 4673 struct extent_buffer *eb;
4674 u64 start = 0;
4675 u64 end;
acce952b 4676
e5860f82
FM
4677 while (find_first_extent_bit(dirty_pages, start, &start, &end,
4678 mark, NULL)) {
91166212 4679 clear_extent_bits(dirty_pages, start, end, mark);
acce952b 4680 while (start <= end) {
0b246afa
JM
4681 eb = find_extent_buffer(fs_info, start);
4682 start += fs_info->nodesize;
fd8b2b61 4683 if (!eb)
acce952b 4684 continue;
c4e54a65
JB
4685
4686 btrfs_tree_lock(eb);
fd8b2b61 4687 wait_on_extent_buffer_writeback(eb);
190a8339 4688 btrfs_clear_buffer_dirty(NULL, eb);
c4e54a65 4689 btrfs_tree_unlock(eb);
acce952b 4690
fd8b2b61 4691 free_extent_buffer_stale(eb);
acce952b 4692 }
4693 }
acce952b 4694}
4695
46d81ebd
FM
4696static void btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4697 struct extent_io_tree *unpin)
acce952b 4698{
acce952b 4699 u64 start;
4700 u64 end;
acce952b 4701
acce952b 4702 while (1) {
0e6ec385
FM
4703 struct extent_state *cached_state = NULL;
4704
fcd5e742
LF
4705 /*
4706 * The btrfs_finish_extent_commit() may get the same range as
4707 * ours between find_first_extent_bit and clear_extent_dirty.
4708 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
4709 * the same extent range.
4710 */
4711 mutex_lock(&fs_info->unused_bg_unpin_mutex);
e5860f82
FM
4712 if (!find_first_extent_bit(unpin, 0, &start, &end,
4713 EXTENT_DIRTY, &cached_state)) {
fcd5e742 4714 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4715 break;
fcd5e742 4716 }
acce952b 4717
0e6ec385
FM
4718 clear_extent_dirty(unpin, start, end, &cached_state);
4719 free_extent_state(cached_state);
2ff7e61e 4720 btrfs_error_unpin_extent_range(fs_info, start, end);
fcd5e742 4721 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
acce952b 4722 cond_resched();
4723 }
acce952b 4724}
4725
32da5386 4726static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
c79a1751
LB
4727{
4728 struct inode *inode;
4729
4730 inode = cache->io_ctl.inode;
4731 if (inode) {
597441b3
JB
4732 unsigned int nofs_flag;
4733
4734 nofs_flag = memalloc_nofs_save();
c79a1751 4735 invalidate_inode_pages2(inode->i_mapping);
597441b3
JB
4736 memalloc_nofs_restore(nofs_flag);
4737
c79a1751
LB
4738 BTRFS_I(inode)->generation = 0;
4739 cache->io_ctl.inode = NULL;
4740 iput(inode);
4741 }
bbc37d6e 4742 ASSERT(cache->io_ctl.pages == NULL);
c79a1751
LB
4743 btrfs_put_block_group(cache);
4744}
4745
4746void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
2ff7e61e 4747 struct btrfs_fs_info *fs_info)
c79a1751 4748{
32da5386 4749 struct btrfs_block_group *cache;
c79a1751
LB
4750
4751 spin_lock(&cur_trans->dirty_bgs_lock);
4752 while (!list_empty(&cur_trans->dirty_bgs)) {
4753 cache = list_first_entry(&cur_trans->dirty_bgs,
32da5386 4754 struct btrfs_block_group,
c79a1751 4755 dirty_list);
c79a1751
LB
4756
4757 if (!list_empty(&cache->io_list)) {
4758 spin_unlock(&cur_trans->dirty_bgs_lock);
4759 list_del_init(&cache->io_list);
4760 btrfs_cleanup_bg_io(cache);
4761 spin_lock(&cur_trans->dirty_bgs_lock);
4762 }
4763
4764 list_del_init(&cache->dirty_list);
4765 spin_lock(&cache->lock);
4766 cache->disk_cache_state = BTRFS_DC_ERROR;
4767 spin_unlock(&cache->lock);
4768
4769 spin_unlock(&cur_trans->dirty_bgs_lock);
4770 btrfs_put_block_group(cache);
f66e0209 4771 btrfs_dec_delayed_refs_rsv_bg_updates(fs_info);
c79a1751
LB
4772 spin_lock(&cur_trans->dirty_bgs_lock);
4773 }
4774 spin_unlock(&cur_trans->dirty_bgs_lock);
4775
45ae2c18
NB
4776 /*
4777 * Refer to the definition of io_bgs member for details why it's safe
4778 * to use it without any locking
4779 */
c79a1751
LB
4780 while (!list_empty(&cur_trans->io_bgs)) {
4781 cache = list_first_entry(&cur_trans->io_bgs,
32da5386 4782 struct btrfs_block_group,
c79a1751 4783 io_list);
c79a1751
LB
4784
4785 list_del_init(&cache->io_list);
4786 spin_lock(&cache->lock);
4787 cache->disk_cache_state = BTRFS_DC_ERROR;
4788 spin_unlock(&cache->lock);
4789 btrfs_cleanup_bg_io(cache);
4790 }
4791}
4792
b321a52c
BB
4793static void btrfs_free_all_qgroup_pertrans(struct btrfs_fs_info *fs_info)
4794{
4795 struct btrfs_root *gang[8];
4796 int i;
4797 int ret;
4798
4799 spin_lock(&fs_info->fs_roots_radix_lock);
4800 while (1) {
4801 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
4802 (void **)gang, 0,
4803 ARRAY_SIZE(gang),
4804 BTRFS_ROOT_TRANS_TAG);
4805 if (ret == 0)
4806 break;
4807 for (i = 0; i < ret; i++) {
4808 struct btrfs_root *root = gang[i];
4809
4810 btrfs_qgroup_free_meta_all_pertrans(root);
4811 radix_tree_tag_clear(&fs_info->fs_roots_radix,
e094f480 4812 (unsigned long)btrfs_root_id(root),
b321a52c
BB
4813 BTRFS_ROOT_TRANS_TAG);
4814 }
4815 }
4816 spin_unlock(&fs_info->fs_roots_radix_lock);
4817}
4818
49b25e05 4819void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
2ff7e61e 4820 struct btrfs_fs_info *fs_info)
49b25e05 4821{
bbbf7243
NB
4822 struct btrfs_device *dev, *tmp;
4823
2ff7e61e 4824 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
c79a1751
LB
4825 ASSERT(list_empty(&cur_trans->dirty_bgs));
4826 ASSERT(list_empty(&cur_trans->io_bgs));
4827
bbbf7243
NB
4828 list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
4829 post_commit_list) {
4830 list_del_init(&dev->post_commit_list);
4831 }
4832
2ff7e61e 4833 btrfs_destroy_delayed_refs(cur_trans, fs_info);
49b25e05 4834
4a9d8bde 4835 cur_trans->state = TRANS_STATE_COMMIT_START;
0b246afa 4836 wake_up(&fs_info->transaction_blocked_wait);
49b25e05 4837
4a9d8bde 4838 cur_trans->state = TRANS_STATE_UNBLOCKED;
0b246afa 4839 wake_up(&fs_info->transaction_wait);
49b25e05 4840
2ff7e61e 4841 btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
49b25e05 4842 EXTENT_DIRTY);
fe119a6e 4843 btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
49b25e05 4844
4a9d8bde
MX
4845 cur_trans->state =TRANS_STATE_COMPLETED;
4846 wake_up(&cur_trans->commit_wait);
49b25e05
JM
4847}
4848
2ff7e61e 4849static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
acce952b 4850{
4851 struct btrfs_transaction *t;
acce952b 4852
0b246afa 4853 mutex_lock(&fs_info->transaction_kthread_mutex);
acce952b 4854
0b246afa
JM
4855 spin_lock(&fs_info->trans_lock);
4856 while (!list_empty(&fs_info->trans_list)) {
4857 t = list_first_entry(&fs_info->trans_list,
724e2315 4858 struct btrfs_transaction, list);
77d20c68 4859 if (t->state >= TRANS_STATE_COMMIT_PREP) {
9b64f57d 4860 refcount_inc(&t->use_count);
0b246afa 4861 spin_unlock(&fs_info->trans_lock);
2ff7e61e 4862 btrfs_wait_for_commit(fs_info, t->transid);
724e2315 4863 btrfs_put_transaction(t);
0b246afa 4864 spin_lock(&fs_info->trans_lock);
724e2315
JB
4865 continue;
4866 }
0b246afa 4867 if (t == fs_info->running_transaction) {
724e2315 4868 t->state = TRANS_STATE_COMMIT_DOING;
0b246afa 4869 spin_unlock(&fs_info->trans_lock);
724e2315
JB
4870 /*
4871 * We wait for 0 num_writers since we don't hold a trans
4872 * handle open currently for this transaction.
4873 */
4874 wait_event(t->writer_wait,
4875 atomic_read(&t->num_writers) == 0);
4876 } else {
0b246afa 4877 spin_unlock(&fs_info->trans_lock);
724e2315 4878 }
2ff7e61e 4879 btrfs_cleanup_one_transaction(t, fs_info);
4a9d8bde 4880
0b246afa
JM
4881 spin_lock(&fs_info->trans_lock);
4882 if (t == fs_info->running_transaction)
4883 fs_info->running_transaction = NULL;
acce952b 4884 list_del_init(&t->list);
0b246afa 4885 spin_unlock(&fs_info->trans_lock);
acce952b 4886
724e2315 4887 btrfs_put_transaction(t);
2e4e97ab 4888 trace_btrfs_transaction_commit(fs_info);
0b246afa 4889 spin_lock(&fs_info->trans_lock);
724e2315 4890 }
0b246afa
JM
4891 spin_unlock(&fs_info->trans_lock);
4892 btrfs_destroy_all_ordered_extents(fs_info);
ccdf9b30
JM
4893 btrfs_destroy_delayed_inodes(fs_info);
4894 btrfs_assert_delayed_root_empty(fs_info);
0b246afa 4895 btrfs_destroy_all_delalloc_inodes(fs_info);
ef67963d 4896 btrfs_drop_all_logs(fs_info);
5f2fb819 4897 btrfs_free_all_qgroup_pertrans(fs_info);
0b246afa 4898 mutex_unlock(&fs_info->transaction_kthread_mutex);
acce952b 4899
4900 return 0;
4901}
ec7d6dfd 4902
453e4873 4903int btrfs_init_root_free_objectid(struct btrfs_root *root)
ec7d6dfd
NB
4904{
4905 struct btrfs_path *path;
4906 int ret;
4907 struct extent_buffer *l;
4908 struct btrfs_key search_key;
4909 struct btrfs_key found_key;
4910 int slot;
4911
4912 path = btrfs_alloc_path();
4913 if (!path)
4914 return -ENOMEM;
4915
4916 search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
4917 search_key.type = -1;
4918 search_key.offset = (u64)-1;
4919 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
4920 if (ret < 0)
4921 goto error;
a6724290
DS
4922 if (ret == 0) {
4923 /*
4924 * Key with offset -1 found, there would have to exist a root
4925 * with such id, but this is out of valid range.
4926 */
4927 ret = -EUCLEAN;
4928 goto error;
4929 }
ec7d6dfd
NB
4930 if (path->slots[0] > 0) {
4931 slot = path->slots[0] - 1;
4932 l = path->nodes[0];
4933 btrfs_item_key_to_cpu(l, &found_key, slot);
23125104
NB
4934 root->free_objectid = max_t(u64, found_key.objectid + 1,
4935 BTRFS_FIRST_FREE_OBJECTID);
ec7d6dfd 4936 } else {
23125104 4937 root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
ec7d6dfd
NB
4938 }
4939 ret = 0;
4940error:
4941 btrfs_free_path(path);
4942 return ret;
4943}
4944
543068a2 4945int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
ec7d6dfd
NB
4946{
4947 int ret;
4948 mutex_lock(&root->objectid_mutex);
4949
6b8fad57 4950 if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
ec7d6dfd
NB
4951 btrfs_warn(root->fs_info,
4952 "the objectid of root %llu reaches its highest value",
e094f480 4953 btrfs_root_id(root));
ec7d6dfd
NB
4954 ret = -ENOSPC;
4955 goto out;
4956 }
4957
23125104 4958 *objectid = root->free_objectid++;
ec7d6dfd
NB
4959 ret = 0;
4960out:
4961 mutex_unlock(&root->objectid_mutex);
4962 return ret;
4963}