Btrfs: fix typo in log message when starting a balance
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
70f6d82e 45#include "free-space-tree.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
fcebe456 52#include "qgroup.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
e8c9f186 58static const struct extent_io_ops btree_extent_io_ops;
8b712842 59static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 60static void free_fs_root(struct btrfs_root *root);
fcd1f065 61static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 62 int read_only);
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
143bede5 66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 67static int btrfs_destroy_marked_extents(struct btrfs_root *root,
68 struct extent_io_tree *dirty_pages,
69 int mark);
70static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
71 struct extent_io_tree *pinned_extents);
48a3b636
ES
72static int btrfs_cleanup_transaction(struct btrfs_root *root);
73static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 74
d352ac68 75/*
97eb6b69
DS
76 * btrfs_end_io_wq structs are used to do processing in task context when an IO
77 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
78 * by writes to insert metadata for new file extents after IO is complete.
79 */
97eb6b69 80struct btrfs_end_io_wq {
ce9adaa5
CM
81 struct bio *bio;
82 bio_end_io_t *end_io;
83 void *private;
84 struct btrfs_fs_info *info;
85 int error;
bfebd8b5 86 enum btrfs_wq_endio_type metadata;
ce9adaa5 87 struct list_head list;
8b712842 88 struct btrfs_work work;
ce9adaa5 89};
0da5468f 90
97eb6b69
DS
91static struct kmem_cache *btrfs_end_io_wq_cache;
92
93int __init btrfs_end_io_wq_init(void)
94{
95 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
96 sizeof(struct btrfs_end_io_wq),
97 0,
98 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
99 NULL);
100 if (!btrfs_end_io_wq_cache)
101 return -ENOMEM;
102 return 0;
103}
104
105void btrfs_end_io_wq_exit(void)
106{
107 if (btrfs_end_io_wq_cache)
108 kmem_cache_destroy(btrfs_end_io_wq_cache);
109}
110
d352ac68
CM
111/*
112 * async submit bios are used to offload expensive checksumming
113 * onto the worker threads. They checksum file and metadata bios
114 * just before they are sent down the IO stack.
115 */
44b8bd7e
CM
116struct async_submit_bio {
117 struct inode *inode;
118 struct bio *bio;
119 struct list_head list;
4a69a410
CM
120 extent_submit_bio_hook_t *submit_bio_start;
121 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
122 int rw;
123 int mirror_num;
c8b97818 124 unsigned long bio_flags;
eaf25d93
CM
125 /*
126 * bio_offset is optional, can be used if the pages in the bio
127 * can't tell us where in the file the bio should go
128 */
129 u64 bio_offset;
8b712842 130 struct btrfs_work work;
79787eaa 131 int error;
44b8bd7e
CM
132};
133
85d4e461
CM
134/*
135 * Lockdep class keys for extent_buffer->lock's in this root. For a given
136 * eb, the lockdep key is determined by the btrfs_root it belongs to and
137 * the level the eb occupies in the tree.
138 *
139 * Different roots are used for different purposes and may nest inside each
140 * other and they require separate keysets. As lockdep keys should be
141 * static, assign keysets according to the purpose of the root as indicated
142 * by btrfs_root->objectid. This ensures that all special purpose roots
143 * have separate keysets.
4008c04a 144 *
85d4e461
CM
145 * Lock-nesting across peer nodes is always done with the immediate parent
146 * node locked thus preventing deadlock. As lockdep doesn't know this, use
147 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 148 *
85d4e461
CM
149 * The key is set by the readpage_end_io_hook after the buffer has passed
150 * csum validation but before the pages are unlocked. It is also set by
151 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 152 *
85d4e461
CM
153 * We also add a check to make sure the highest level of the tree is the
154 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
155 * needs update as well.
4008c04a
CM
156 */
157#ifdef CONFIG_DEBUG_LOCK_ALLOC
158# if BTRFS_MAX_LEVEL != 8
159# error
160# endif
85d4e461
CM
161
162static struct btrfs_lockdep_keyset {
163 u64 id; /* root objectid */
164 const char *name_stem; /* lock name stem */
165 char names[BTRFS_MAX_LEVEL + 1][20];
166 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
167} btrfs_lockdep_keysets[] = {
168 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
169 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
170 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
171 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
172 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
173 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 174 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
175 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
176 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
177 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 178 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 179 { .id = 0, .name_stem = "tree" },
4008c04a 180};
85d4e461
CM
181
182void __init btrfs_init_lockdep(void)
183{
184 int i, j;
185
186 /* initialize lockdep class names */
187 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
188 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
189
190 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
191 snprintf(ks->names[j], sizeof(ks->names[j]),
192 "btrfs-%s-%02d", ks->name_stem, j);
193 }
194}
195
196void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
197 int level)
198{
199 struct btrfs_lockdep_keyset *ks;
200
201 BUG_ON(level >= ARRAY_SIZE(ks->keys));
202
203 /* find the matching keyset, id 0 is the default entry */
204 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
205 if (ks->id == objectid)
206 break;
207
208 lockdep_set_class_and_name(&eb->lock,
209 &ks->keys[level], ks->names[level]);
210}
211
4008c04a
CM
212#endif
213
d352ac68
CM
214/*
215 * extents on the btree inode are pretty simple, there's one extent
216 * that covers the entire device
217 */
b2950863 218static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 219 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 220 int create)
7eccb903 221{
5f39d397
CM
222 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
223 struct extent_map *em;
224 int ret;
225
890871be 226 read_lock(&em_tree->lock);
d1310b2e 227 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
228 if (em) {
229 em->bdev =
230 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 231 read_unlock(&em_tree->lock);
5f39d397 232 goto out;
a061fc8d 233 }
890871be 234 read_unlock(&em_tree->lock);
7b13b7b1 235
172ddd60 236 em = alloc_extent_map();
5f39d397
CM
237 if (!em) {
238 em = ERR_PTR(-ENOMEM);
239 goto out;
240 }
241 em->start = 0;
0afbaf8c 242 em->len = (u64)-1;
c8b97818 243 em->block_len = (u64)-1;
5f39d397 244 em->block_start = 0;
a061fc8d 245 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 246
890871be 247 write_lock(&em_tree->lock);
09a2a8f9 248 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
249 if (ret == -EEXIST) {
250 free_extent_map(em);
7b13b7b1 251 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 252 if (!em)
0433f20d 253 em = ERR_PTR(-EIO);
5f39d397 254 } else if (ret) {
7b13b7b1 255 free_extent_map(em);
0433f20d 256 em = ERR_PTR(ret);
5f39d397 257 }
890871be 258 write_unlock(&em_tree->lock);
7b13b7b1 259
5f39d397
CM
260out:
261 return em;
7eccb903
CM
262}
263
b0496686 264u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 265{
0b947aff 266 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
267}
268
269void btrfs_csum_final(u32 crc, char *result)
270{
7e75bf3f 271 put_unaligned_le32(~crc, result);
19c00ddc
CM
272}
273
d352ac68
CM
274/*
275 * compute the csum for a btree block, and either verify it or write it
276 * into the csum field of the block.
277 */
01d58472
DD
278static int csum_tree_block(struct btrfs_fs_info *fs_info,
279 struct extent_buffer *buf,
19c00ddc
CM
280 int verify)
281{
01d58472 282 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 283 char *result = NULL;
19c00ddc
CM
284 unsigned long len;
285 unsigned long cur_len;
286 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
287 char *kaddr;
288 unsigned long map_start;
289 unsigned long map_len;
290 int err;
291 u32 crc = ~(u32)0;
607d432d 292 unsigned long inline_result;
19c00ddc
CM
293
294 len = buf->len - offset;
d397712b 295 while (len > 0) {
19c00ddc 296 err = map_private_extent_buffer(buf, offset, 32,
a6591715 297 &kaddr, &map_start, &map_len);
d397712b 298 if (err)
19c00ddc 299 return 1;
19c00ddc 300 cur_len = min(len, map_len - (offset - map_start));
b0496686 301 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
302 crc, cur_len);
303 len -= cur_len;
304 offset += cur_len;
19c00ddc 305 }
607d432d 306 if (csum_size > sizeof(inline_result)) {
31e818fe 307 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
308 if (!result)
309 return 1;
310 } else {
311 result = (char *)&inline_result;
312 }
313
19c00ddc
CM
314 btrfs_csum_final(crc, result);
315
316 if (verify) {
607d432d 317 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
318 u32 val;
319 u32 found = 0;
607d432d 320 memcpy(&found, result, csum_size);
e4204ded 321
607d432d 322 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
323 btrfs_warn_rl(fs_info,
324 "%s checksum verify failed on %llu wanted %X found %X "
325 "level %d",
01d58472 326 fs_info->sb->s_id, buf->start,
efe120a0 327 val, found, btrfs_header_level(buf));
607d432d
JB
328 if (result != (char *)&inline_result)
329 kfree(result);
19c00ddc
CM
330 return 1;
331 }
332 } else {
607d432d 333 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 334 }
607d432d
JB
335 if (result != (char *)&inline_result)
336 kfree(result);
19c00ddc
CM
337 return 0;
338}
339
d352ac68
CM
340/*
341 * we can't consider a given block up to date unless the transid of the
342 * block matches the transid in the parent node's pointer. This is how we
343 * detect blocks that either didn't get written at all or got written
344 * in the wrong place.
345 */
1259ab75 346static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
347 struct extent_buffer *eb, u64 parent_transid,
348 int atomic)
1259ab75 349{
2ac55d41 350 struct extent_state *cached_state = NULL;
1259ab75 351 int ret;
2755a0de 352 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
353
354 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
355 return 0;
356
b9fab919
CM
357 if (atomic)
358 return -EAGAIN;
359
a26e8c9f
JB
360 if (need_lock) {
361 btrfs_tree_read_lock(eb);
362 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
363 }
364
2ac55d41 365 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
ff13db41 366 &cached_state);
0b32f4bb 367 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
368 btrfs_header_generation(eb) == parent_transid) {
369 ret = 0;
370 goto out;
371 }
94647322
DS
372 btrfs_err_rl(eb->fs_info,
373 "parent transid verify failed on %llu wanted %llu found %llu",
374 eb->start,
29549aec 375 parent_transid, btrfs_header_generation(eb));
1259ab75 376 ret = 1;
a26e8c9f
JB
377
378 /*
379 * Things reading via commit roots that don't have normal protection,
380 * like send, can have a really old block in cache that may point at a
381 * block that has been free'd and re-allocated. So don't clear uptodate
382 * if we find an eb that is under IO (dirty/writeback) because we could
383 * end up reading in the stale data and then writing it back out and
384 * making everybody very sad.
385 */
386 if (!extent_buffer_under_io(eb))
387 clear_extent_buffer_uptodate(eb);
33958dc6 388out:
2ac55d41
JB
389 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
390 &cached_state, GFP_NOFS);
472b909f
JB
391 if (need_lock)
392 btrfs_tree_read_unlock_blocking(eb);
1259ab75 393 return ret;
1259ab75
CM
394}
395
1104a885
DS
396/*
397 * Return 0 if the superblock checksum type matches the checksum value of that
398 * algorithm. Pass the raw disk superblock data.
399 */
400static int btrfs_check_super_csum(char *raw_disk_sb)
401{
402 struct btrfs_super_block *disk_sb =
403 (struct btrfs_super_block *)raw_disk_sb;
404 u16 csum_type = btrfs_super_csum_type(disk_sb);
405 int ret = 0;
406
407 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
408 u32 crc = ~(u32)0;
409 const int csum_size = sizeof(crc);
410 char result[csum_size];
411
412 /*
413 * The super_block structure does not span the whole
414 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
415 * is filled with zeros and is included in the checkum.
416 */
417 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
418 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
419 btrfs_csum_final(crc, result);
420
421 if (memcmp(raw_disk_sb, result, csum_size))
422 ret = 1;
423 }
424
425 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 426 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
427 csum_type);
428 ret = 1;
429 }
430
431 return ret;
432}
433
d352ac68
CM
434/*
435 * helper to read a given tree block, doing retries as required when
436 * the checksums don't match and we have alternate mirrors to try.
437 */
f188591e
CM
438static int btree_read_extent_buffer_pages(struct btrfs_root *root,
439 struct extent_buffer *eb,
ca7a79ad 440 u64 start, u64 parent_transid)
f188591e
CM
441{
442 struct extent_io_tree *io_tree;
ea466794 443 int failed = 0;
f188591e
CM
444 int ret;
445 int num_copies = 0;
446 int mirror_num = 0;
ea466794 447 int failed_mirror = 0;
f188591e 448
a826d6dc 449 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
450 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
451 while (1) {
bb82ab88
AJ
452 ret = read_extent_buffer_pages(io_tree, eb, start,
453 WAIT_COMPLETE,
f188591e 454 btree_get_extent, mirror_num);
256dd1bb
SB
455 if (!ret) {
456 if (!verify_parent_transid(io_tree, eb,
b9fab919 457 parent_transid, 0))
256dd1bb
SB
458 break;
459 else
460 ret = -EIO;
461 }
d397712b 462
a826d6dc
JB
463 /*
464 * This buffer's crc is fine, but its contents are corrupted, so
465 * there is no reason to read the other copies, they won't be
466 * any less wrong.
467 */
468 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
469 break;
470
5d964051 471 num_copies = btrfs_num_copies(root->fs_info,
f188591e 472 eb->start, eb->len);
4235298e 473 if (num_copies == 1)
ea466794 474 break;
4235298e 475
5cf1ab56
JB
476 if (!failed_mirror) {
477 failed = 1;
478 failed_mirror = eb->read_mirror;
479 }
480
f188591e 481 mirror_num++;
ea466794
JB
482 if (mirror_num == failed_mirror)
483 mirror_num++;
484
4235298e 485 if (mirror_num > num_copies)
ea466794 486 break;
f188591e 487 }
ea466794 488
c0901581 489 if (failed && !ret && failed_mirror)
ea466794
JB
490 repair_eb_io_failure(root, eb, failed_mirror);
491
492 return ret;
f188591e 493}
19c00ddc 494
d352ac68 495/*
d397712b
CM
496 * checksum a dirty tree block before IO. This has extra checks to make sure
497 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 498 */
d397712b 499
01d58472 500static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 501{
4eee4fa4 502 u64 start = page_offset(page);
19c00ddc 503 u64 found_start;
19c00ddc 504 struct extent_buffer *eb;
f188591e 505
4f2de97a
JB
506 eb = (struct extent_buffer *)page->private;
507 if (page != eb->pages[0])
508 return 0;
19c00ddc 509 found_start = btrfs_header_bytenr(eb);
fae7f21c 510 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 511 return 0;
01d58472 512 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
513 return 0;
514}
515
01d58472 516static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
517 struct extent_buffer *eb)
518{
01d58472 519 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
520 u8 fsid[BTRFS_UUID_SIZE];
521 int ret = 1;
522
0a4e5586 523 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
524 while (fs_devices) {
525 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
526 ret = 0;
527 break;
528 }
529 fs_devices = fs_devices->seed;
530 }
531 return ret;
532}
533
a826d6dc 534#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
535 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
536 "root=%llu, slot=%d", reason, \
c1c9ff7c 537 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
538
539static noinline int check_leaf(struct btrfs_root *root,
540 struct extent_buffer *leaf)
541{
542 struct btrfs_key key;
543 struct btrfs_key leaf_key;
544 u32 nritems = btrfs_header_nritems(leaf);
545 int slot;
546
547 if (nritems == 0)
548 return 0;
549
550 /* Check the 0 item */
551 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
552 BTRFS_LEAF_DATA_SIZE(root)) {
553 CORRUPT("invalid item offset size pair", leaf, root, 0);
554 return -EIO;
555 }
556
557 /*
558 * Check to make sure each items keys are in the correct order and their
559 * offsets make sense. We only have to loop through nritems-1 because
560 * we check the current slot against the next slot, which verifies the
561 * next slot's offset+size makes sense and that the current's slot
562 * offset is correct.
563 */
564 for (slot = 0; slot < nritems - 1; slot++) {
565 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
566 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
567
568 /* Make sure the keys are in the right order */
569 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
570 CORRUPT("bad key order", leaf, root, slot);
571 return -EIO;
572 }
573
574 /*
575 * Make sure the offset and ends are right, remember that the
576 * item data starts at the end of the leaf and grows towards the
577 * front.
578 */
579 if (btrfs_item_offset_nr(leaf, slot) !=
580 btrfs_item_end_nr(leaf, slot + 1)) {
581 CORRUPT("slot offset bad", leaf, root, slot);
582 return -EIO;
583 }
584
585 /*
586 * Check to make sure that we don't point outside of the leaf,
587 * just incase all the items are consistent to eachother, but
588 * all point outside of the leaf.
589 */
590 if (btrfs_item_end_nr(leaf, slot) >
591 BTRFS_LEAF_DATA_SIZE(root)) {
592 CORRUPT("slot end outside of leaf", leaf, root, slot);
593 return -EIO;
594 }
595 }
596
597 return 0;
598}
599
facc8a22
MX
600static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
601 u64 phy_offset, struct page *page,
602 u64 start, u64 end, int mirror)
ce9adaa5 603{
ce9adaa5
CM
604 u64 found_start;
605 int found_level;
ce9adaa5
CM
606 struct extent_buffer *eb;
607 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 608 int ret = 0;
727011e0 609 int reads_done;
ce9adaa5 610
ce9adaa5
CM
611 if (!page->private)
612 goto out;
d397712b 613
4f2de97a 614 eb = (struct extent_buffer *)page->private;
d397712b 615
0b32f4bb
JB
616 /* the pending IO might have been the only thing that kept this buffer
617 * in memory. Make sure we have a ref for all this other checks
618 */
619 extent_buffer_get(eb);
620
621 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
622 if (!reads_done)
623 goto err;
f188591e 624
5cf1ab56 625 eb->read_mirror = mirror;
656f30db 626 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
627 ret = -EIO;
628 goto err;
629 }
630
ce9adaa5 631 found_start = btrfs_header_bytenr(eb);
727011e0 632 if (found_start != eb->start) {
94647322
DS
633 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
634 found_start, eb->start);
f188591e 635 ret = -EIO;
ce9adaa5
CM
636 goto err;
637 }
01d58472 638 if (check_tree_block_fsid(root->fs_info, eb)) {
94647322
DS
639 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
640 eb->start);
1259ab75
CM
641 ret = -EIO;
642 goto err;
643 }
ce9adaa5 644 found_level = btrfs_header_level(eb);
1c24c3ce 645 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 646 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
ce9adaa5 651
85d4e461
CM
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
4008c04a 654
01d58472 655 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 656 if (ret) {
f188591e 657 ret = -EIO;
a826d6dc
JB
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
ce9adaa5 670
0b32f4bb
JB
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
ce9adaa5 673err:
79fb65a1
JB
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 676 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 677
53b381b3
DW
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
0b32f4bb 685 clear_extent_buffer_uptodate(eb);
53b381b3 686 }
0b32f4bb 687 free_extent_buffer(eb);
ce9adaa5 688out:
f188591e 689 return ret;
ce9adaa5
CM
690}
691
ea466794 692static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 693{
4bb31e92
AJ
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
4f2de97a 697 eb = (struct extent_buffer *)page->private;
656f30db 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 699 eb->read_mirror = failed_mirror;
53b381b3 700 atomic_dec(&eb->io_pages);
ea466794 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 702 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
703 return -EIO; /* we fixed nothing */
704}
705
4246a0b6 706static void end_workqueue_bio(struct bio *bio)
ce9adaa5 707{
97eb6b69 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 709 struct btrfs_fs_info *fs_info;
9e0af237
LB
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
4246a0b6 714 end_io_wq->error = bio->bi_error;
d20f7043 715
7b6d91da 716 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
d20f7043 730 } else {
8b110e39
MX
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
d20f7043 745 }
9e0af237
LB
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
749}
750
22c59948 751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 752 enum btrfs_wq_endio_type metadata)
0b86a832 753{
97eb6b69 754 struct btrfs_end_io_wq *end_io_wq;
8b110e39 755
97eb6b69 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
22c59948 762 end_io_wq->info = info;
ce9adaa5
CM
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
22c59948 765 end_io_wq->metadata = metadata;
ce9adaa5
CM
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
769 return 0;
770}
771
b64a2851 772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 773{
4854ddd0 774 unsigned long limit = min_t(unsigned long,
5cdc7ad3 775 info->thread_pool_size,
4854ddd0
CM
776 info->fs_devices->open_devices);
777 return 256 * limit;
778}
0986fe9e 779
4a69a410
CM
780static void run_one_async_start(struct btrfs_work *work)
781{
4a69a410 782 struct async_submit_bio *async;
79787eaa 783 int ret;
4a69a410
CM
784
785 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
4a69a410
CM
791}
792
793static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
794{
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
4854ddd0 797 int limit;
8b712842
CM
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 801
b64a2851 802 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
803 limit = limit * 2 / 3;
804
ee863954
DS
805 /*
806 * atomic_dec_return implies a barrier for waitqueue_active
807 */
66657b31 808 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 809 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
810 wake_up(&fs_info->async_submit_wait);
811
79787eaa
JM
812 /* If an error occured we just want to clean up the bio and move on */
813 if (async->error) {
4246a0b6
CH
814 async->bio->bi_error = async->error;
815 bio_endio(async->bio);
79787eaa
JM
816 return;
817 }
818
4a69a410 819 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
820 async->mirror_num, async->bio_flags,
821 async->bio_offset);
4a69a410
CM
822}
823
824static void run_one_async_free(struct btrfs_work *work)
825{
826 struct async_submit_bio *async;
827
828 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
829 kfree(async);
830}
831
44b8bd7e
CM
832int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
833 int rw, struct bio *bio, int mirror_num,
c8b97818 834 unsigned long bio_flags,
eaf25d93 835 u64 bio_offset,
4a69a410
CM
836 extent_submit_bio_hook_t *submit_bio_start,
837 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
838{
839 struct async_submit_bio *async;
840
841 async = kmalloc(sizeof(*async), GFP_NOFS);
842 if (!async)
843 return -ENOMEM;
844
845 async->inode = inode;
846 async->rw = rw;
847 async->bio = bio;
848 async->mirror_num = mirror_num;
4a69a410
CM
849 async->submit_bio_start = submit_bio_start;
850 async->submit_bio_done = submit_bio_done;
851
9e0af237 852 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 853 run_one_async_done, run_one_async_free);
4a69a410 854
c8b97818 855 async->bio_flags = bio_flags;
eaf25d93 856 async->bio_offset = bio_offset;
8c8bee1d 857
79787eaa
JM
858 async->error = 0;
859
cb03c743 860 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 861
7b6d91da 862 if (rw & REQ_SYNC)
5cdc7ad3 863 btrfs_set_work_high_priority(&async->work);
d313d7a3 864
5cdc7ad3 865 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 866
d397712b 867 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
868 atomic_read(&fs_info->nr_async_submits)) {
869 wait_event(fs_info->async_submit_wait,
870 (atomic_read(&fs_info->nr_async_submits) == 0));
871 }
872
44b8bd7e
CM
873 return 0;
874}
875
ce3ed71a
CM
876static int btree_csum_one_bio(struct bio *bio)
877{
2c30c71b 878 struct bio_vec *bvec;
ce3ed71a 879 struct btrfs_root *root;
2c30c71b 880 int i, ret = 0;
ce3ed71a 881
2c30c71b 882 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 883 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 884 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
885 if (ret)
886 break;
ce3ed71a 887 }
2c30c71b 888
79787eaa 889 return ret;
ce3ed71a
CM
890}
891
4a69a410
CM
892static int __btree_submit_bio_start(struct inode *inode, int rw,
893 struct bio *bio, int mirror_num,
eaf25d93
CM
894 unsigned long bio_flags,
895 u64 bio_offset)
22c59948 896{
8b712842
CM
897 /*
898 * when we're called for a write, we're already in the async
5443be45 899 * submission context. Just jump into btrfs_map_bio
8b712842 900 */
79787eaa 901 return btree_csum_one_bio(bio);
4a69a410 902}
22c59948 903
4a69a410 904static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
905 int mirror_num, unsigned long bio_flags,
906 u64 bio_offset)
4a69a410 907{
61891923
SB
908 int ret;
909
8b712842 910 /*
4a69a410
CM
911 * when we're called for a write, we're already in the async
912 * submission context. Just jump into btrfs_map_bio
8b712842 913 */
61891923 914 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
915 if (ret) {
916 bio->bi_error = ret;
917 bio_endio(bio);
918 }
61891923 919 return ret;
0b86a832
CM
920}
921
de0022b9
JB
922static int check_async_write(struct inode *inode, unsigned long bio_flags)
923{
924 if (bio_flags & EXTENT_BIO_TREE_LOG)
925 return 0;
926#ifdef CONFIG_X86
927 if (cpu_has_xmm4_2)
928 return 0;
929#endif
930 return 1;
931}
932
44b8bd7e 933static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
934 int mirror_num, unsigned long bio_flags,
935 u64 bio_offset)
44b8bd7e 936{
de0022b9 937 int async = check_async_write(inode, bio_flags);
cad321ad
CM
938 int ret;
939
7b6d91da 940 if (!(rw & REQ_WRITE)) {
4a69a410
CM
941 /*
942 * called for a read, do the setup so that checksum validation
943 * can happen in the async kernel threads
944 */
f3f266ab 945 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 946 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 947 if (ret)
61891923
SB
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
de0022b9
JB
951 } else if (!async) {
952 ret = btree_csum_one_bio(bio);
953 if (ret)
61891923
SB
954 goto out_w_error;
955 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
956 mirror_num, 0);
957 } else {
958 /*
959 * kthread helpers are used to submit writes so that
960 * checksumming can happen in parallel across all CPUs
961 */
962 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
963 inode, rw, bio, mirror_num, 0,
964 bio_offset,
965 __btree_submit_bio_start,
966 __btree_submit_bio_done);
44b8bd7e 967 }
d313d7a3 968
4246a0b6
CH
969 if (ret)
970 goto out_w_error;
971 return 0;
972
61891923 973out_w_error:
4246a0b6
CH
974 bio->bi_error = ret;
975 bio_endio(bio);
61891923 976 return ret;
44b8bd7e
CM
977}
978
3dd1462e 979#ifdef CONFIG_MIGRATION
784b4e29 980static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
981 struct page *newpage, struct page *page,
982 enum migrate_mode mode)
784b4e29
CM
983{
984 /*
985 * we can't safely write a btree page from here,
986 * we haven't done the locking hook
987 */
988 if (PageDirty(page))
989 return -EAGAIN;
990 /*
991 * Buffers may be managed in a filesystem specific way.
992 * We must have no buffers or drop them.
993 */
994 if (page_has_private(page) &&
995 !try_to_release_page(page, GFP_KERNEL))
996 return -EAGAIN;
a6bc32b8 997 return migrate_page(mapping, newpage, page, mode);
784b4e29 998}
3dd1462e 999#endif
784b4e29 1000
0da5468f
CM
1001
1002static int btree_writepages(struct address_space *mapping,
1003 struct writeback_control *wbc)
1004{
e2d84521
MX
1005 struct btrfs_fs_info *fs_info;
1006 int ret;
1007
d8d5f3e1 1008 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1009
1010 if (wbc->for_kupdate)
1011 return 0;
1012
e2d84521 1013 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1014 /* this is a bit racy, but that's ok */
e2d84521
MX
1015 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1016 BTRFS_DIRTY_METADATA_THRESH);
1017 if (ret < 0)
793955bc 1018 return 0;
793955bc 1019 }
0b32f4bb 1020 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1021}
1022
b2950863 1023static int btree_readpage(struct file *file, struct page *page)
5f39d397 1024{
d1310b2e
CM
1025 struct extent_io_tree *tree;
1026 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1027 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1028}
22b0ebda 1029
70dec807 1030static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1031{
98509cfc 1032 if (PageWriteback(page) || PageDirty(page))
d397712b 1033 return 0;
0c4e538b 1034
f7a52a40 1035 return try_release_extent_buffer(page);
d98237b3
CM
1036}
1037
d47992f8
LC
1038static void btree_invalidatepage(struct page *page, unsigned int offset,
1039 unsigned int length)
d98237b3 1040{
d1310b2e
CM
1041 struct extent_io_tree *tree;
1042 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1043 extent_invalidatepage(tree, page, offset);
1044 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1045 if (PagePrivate(page)) {
efe120a0
FH
1046 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1047 "page private not zero on page %llu",
1048 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1049 ClearPagePrivate(page);
1050 set_page_private(page, 0);
1051 page_cache_release(page);
1052 }
d98237b3
CM
1053}
1054
0b32f4bb
JB
1055static int btree_set_page_dirty(struct page *page)
1056{
bb146eb2 1057#ifdef DEBUG
0b32f4bb
JB
1058 struct extent_buffer *eb;
1059
1060 BUG_ON(!PagePrivate(page));
1061 eb = (struct extent_buffer *)page->private;
1062 BUG_ON(!eb);
1063 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1064 BUG_ON(!atomic_read(&eb->refs));
1065 btrfs_assert_tree_locked(eb);
bb146eb2 1066#endif
0b32f4bb
JB
1067 return __set_page_dirty_nobuffers(page);
1068}
1069
7f09410b 1070static const struct address_space_operations btree_aops = {
d98237b3 1071 .readpage = btree_readpage,
0da5468f 1072 .writepages = btree_writepages,
5f39d397
CM
1073 .releasepage = btree_releasepage,
1074 .invalidatepage = btree_invalidatepage,
5a92bc88 1075#ifdef CONFIG_MIGRATION
784b4e29 1076 .migratepage = btree_migratepage,
5a92bc88 1077#endif
0b32f4bb 1078 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1079};
1080
d3e46fea 1081void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1082{
5f39d397
CM
1083 struct extent_buffer *buf = NULL;
1084 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1085
a83fffb7 1086 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1087 if (!buf)
6197d86e 1088 return;
d1310b2e 1089 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1090 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1091 free_extent_buffer(buf);
090d1875
CM
1092}
1093
c0dcaa4d 1094int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1095 int mirror_num, struct extent_buffer **eb)
1096{
1097 struct extent_buffer *buf = NULL;
1098 struct inode *btree_inode = root->fs_info->btree_inode;
1099 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1100 int ret;
1101
a83fffb7 1102 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1103 if (!buf)
1104 return 0;
1105
1106 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1107
1108 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1109 btree_get_extent, mirror_num);
1110 if (ret) {
1111 free_extent_buffer(buf);
1112 return ret;
1113 }
1114
1115 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1116 free_extent_buffer(buf);
1117 return -EIO;
0b32f4bb 1118 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1119 *eb = buf;
1120 } else {
1121 free_extent_buffer(buf);
1122 }
1123 return 0;
1124}
1125
01d58472 1126struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1127 u64 bytenr)
0999df54 1128{
01d58472 1129 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1130}
1131
1132struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1133 u64 bytenr)
0999df54 1134{
fccb84c9 1135 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1136 return alloc_test_extent_buffer(root->fs_info, bytenr);
1137 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1138}
1139
1140
e02119d5
CM
1141int btrfs_write_tree_block(struct extent_buffer *buf)
1142{
727011e0 1143 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1144 buf->start + buf->len - 1);
e02119d5
CM
1145}
1146
1147int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1148{
727011e0 1149 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1150 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1151}
1152
0999df54 1153struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1154 u64 parent_transid)
0999df54
CM
1155{
1156 struct extent_buffer *buf = NULL;
0999df54
CM
1157 int ret;
1158
a83fffb7 1159 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1160 if (!buf)
64c043de 1161 return ERR_PTR(-ENOMEM);
0999df54 1162
ca7a79ad 1163 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1164 if (ret) {
1165 free_extent_buffer(buf);
64c043de 1166 return ERR_PTR(ret);
0f0fe8f7 1167 }
5f39d397 1168 return buf;
ce9adaa5 1169
eb60ceac
CM
1170}
1171
01d58472
DD
1172void clean_tree_block(struct btrfs_trans_handle *trans,
1173 struct btrfs_fs_info *fs_info,
d5c13f92 1174 struct extent_buffer *buf)
ed2ff2cb 1175{
55c69072 1176 if (btrfs_header_generation(buf) ==
e2d84521 1177 fs_info->running_transaction->transid) {
b9447ef8 1178 btrfs_assert_tree_locked(buf);
b4ce94de 1179
b9473439 1180 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1181 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1182 -buf->len,
1183 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1184 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1185 btrfs_set_lock_blocking(buf);
1186 clear_extent_buffer_dirty(buf);
1187 }
925baedd 1188 }
5f39d397
CM
1189}
1190
8257b2dc
MX
1191static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1192{
1193 struct btrfs_subvolume_writers *writers;
1194 int ret;
1195
1196 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1197 if (!writers)
1198 return ERR_PTR(-ENOMEM);
1199
908c7f19 1200 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1201 if (ret < 0) {
1202 kfree(writers);
1203 return ERR_PTR(ret);
1204 }
1205
1206 init_waitqueue_head(&writers->wait);
1207 return writers;
1208}
1209
1210static void
1211btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1212{
1213 percpu_counter_destroy(&writers->counter);
1214 kfree(writers);
1215}
1216
707e8a07
DS
1217static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1218 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1219 u64 objectid)
d97e63b6 1220{
cfaa7295 1221 root->node = NULL;
a28ec197 1222 root->commit_root = NULL;
db94535d
CM
1223 root->sectorsize = sectorsize;
1224 root->nodesize = nodesize;
87ee04eb 1225 root->stripesize = stripesize;
27cdeb70 1226 root->state = 0;
d68fc57b 1227 root->orphan_cleanup_state = 0;
0b86a832 1228
0f7d52f4
CM
1229 root->objectid = objectid;
1230 root->last_trans = 0;
13a8a7c8 1231 root->highest_objectid = 0;
eb73c1b7 1232 root->nr_delalloc_inodes = 0;
199c2a9c 1233 root->nr_ordered_extents = 0;
58176a96 1234 root->name = NULL;
6bef4d31 1235 root->inode_tree = RB_ROOT;
16cdcec7 1236 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1237 root->block_rsv = NULL;
d68fc57b 1238 root->orphan_block_rsv = NULL;
0b86a832
CM
1239
1240 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1241 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1242 INIT_LIST_HEAD(&root->delalloc_inodes);
1243 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1244 INIT_LIST_HEAD(&root->ordered_extents);
1245 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1246 INIT_LIST_HEAD(&root->logged_list[0]);
1247 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1248 spin_lock_init(&root->orphan_lock);
5d4f98a2 1249 spin_lock_init(&root->inode_lock);
eb73c1b7 1250 spin_lock_init(&root->delalloc_lock);
199c2a9c 1251 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1252 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1253 spin_lock_init(&root->log_extents_lock[0]);
1254 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1255 mutex_init(&root->objectid_mutex);
e02119d5 1256 mutex_init(&root->log_mutex);
31f3d255 1257 mutex_init(&root->ordered_extent_mutex);
573bfb72 1258 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1259 init_waitqueue_head(&root->log_writer_wait);
1260 init_waitqueue_head(&root->log_commit_wait[0]);
1261 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1262 INIT_LIST_HEAD(&root->log_ctxs[0]);
1263 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1264 atomic_set(&root->log_commit[0], 0);
1265 atomic_set(&root->log_commit[1], 0);
1266 atomic_set(&root->log_writers, 0);
2ecb7923 1267 atomic_set(&root->log_batch, 0);
8a35d95f 1268 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1269 atomic_set(&root->refs, 1);
8257b2dc 1270 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1271 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1272 root->log_transid = 0;
d1433deb 1273 root->log_transid_committed = -1;
257c62e1 1274 root->last_log_commit = 0;
06ea65a3
JB
1275 if (fs_info)
1276 extent_io_tree_init(&root->dirty_log_pages,
1277 fs_info->btree_inode->i_mapping);
017e5369 1278
3768f368
CM
1279 memset(&root->root_key, 0, sizeof(root->root_key));
1280 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1281 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1282 if (fs_info)
1283 root->defrag_trans_start = fs_info->generation;
1284 else
1285 root->defrag_trans_start = 0;
4d775673 1286 root->root_key.objectid = objectid;
0ee5dc67 1287 root->anon_dev = 0;
8ea05e3a 1288
5f3ab90a 1289 spin_lock_init(&root->root_item_lock);
3768f368
CM
1290}
1291
f84a8bd6 1292static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1293{
1294 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1295 if (root)
1296 root->fs_info = fs_info;
1297 return root;
1298}
1299
06ea65a3
JB
1300#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1301/* Should only be used by the testing infrastructure */
1302struct btrfs_root *btrfs_alloc_dummy_root(void)
1303{
1304 struct btrfs_root *root;
1305
1306 root = btrfs_alloc_root(NULL);
1307 if (!root)
1308 return ERR_PTR(-ENOMEM);
707e8a07 1309 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1310 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1311 root->alloc_bytenr = 0;
06ea65a3
JB
1312
1313 return root;
1314}
1315#endif
1316
20897f5c
AJ
1317struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1318 struct btrfs_fs_info *fs_info,
1319 u64 objectid)
1320{
1321 struct extent_buffer *leaf;
1322 struct btrfs_root *tree_root = fs_info->tree_root;
1323 struct btrfs_root *root;
1324 struct btrfs_key key;
1325 int ret = 0;
6463fe58 1326 uuid_le uuid;
20897f5c
AJ
1327
1328 root = btrfs_alloc_root(fs_info);
1329 if (!root)
1330 return ERR_PTR(-ENOMEM);
1331
707e8a07
DS
1332 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1333 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1334 root->root_key.objectid = objectid;
1335 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1336 root->root_key.offset = 0;
1337
4d75f8a9 1338 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1339 if (IS_ERR(leaf)) {
1340 ret = PTR_ERR(leaf);
1dd05682 1341 leaf = NULL;
20897f5c
AJ
1342 goto fail;
1343 }
1344
20897f5c
AJ
1345 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1346 btrfs_set_header_bytenr(leaf, leaf->start);
1347 btrfs_set_header_generation(leaf, trans->transid);
1348 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1349 btrfs_set_header_owner(leaf, objectid);
1350 root->node = leaf;
1351
0a4e5586 1352 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1353 BTRFS_FSID_SIZE);
1354 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1355 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1356 BTRFS_UUID_SIZE);
1357 btrfs_mark_buffer_dirty(leaf);
1358
1359 root->commit_root = btrfs_root_node(root);
27cdeb70 1360 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1361
1362 root->root_item.flags = 0;
1363 root->root_item.byte_limit = 0;
1364 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1365 btrfs_set_root_generation(&root->root_item, trans->transid);
1366 btrfs_set_root_level(&root->root_item, 0);
1367 btrfs_set_root_refs(&root->root_item, 1);
1368 btrfs_set_root_used(&root->root_item, leaf->len);
1369 btrfs_set_root_last_snapshot(&root->root_item, 0);
1370 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1371 uuid_le_gen(&uuid);
1372 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1373 root->root_item.drop_level = 0;
1374
1375 key.objectid = objectid;
1376 key.type = BTRFS_ROOT_ITEM_KEY;
1377 key.offset = 0;
1378 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1379 if (ret)
1380 goto fail;
1381
1382 btrfs_tree_unlock(leaf);
1383
1dd05682
TI
1384 return root;
1385
20897f5c 1386fail:
1dd05682
TI
1387 if (leaf) {
1388 btrfs_tree_unlock(leaf);
59885b39 1389 free_extent_buffer(root->commit_root);
1dd05682
TI
1390 free_extent_buffer(leaf);
1391 }
1392 kfree(root);
20897f5c 1393
1dd05682 1394 return ERR_PTR(ret);
20897f5c
AJ
1395}
1396
7237f183
YZ
1397static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1398 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1399{
1400 struct btrfs_root *root;
1401 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1402 struct extent_buffer *leaf;
e02119d5 1403
6f07e42e 1404 root = btrfs_alloc_root(fs_info);
e02119d5 1405 if (!root)
7237f183 1406 return ERR_PTR(-ENOMEM);
e02119d5 1407
707e8a07
DS
1408 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1409 tree_root->stripesize, root, fs_info,
1410 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1411
1412 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1413 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1414 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1415
7237f183 1416 /*
27cdeb70
MX
1417 * DON'T set REF_COWS for log trees
1418 *
7237f183
YZ
1419 * log trees do not get reference counted because they go away
1420 * before a real commit is actually done. They do store pointers
1421 * to file data extents, and those reference counts still get
1422 * updated (along with back refs to the log tree).
1423 */
e02119d5 1424
4d75f8a9
DS
1425 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1426 NULL, 0, 0, 0);
7237f183
YZ
1427 if (IS_ERR(leaf)) {
1428 kfree(root);
1429 return ERR_CAST(leaf);
1430 }
e02119d5 1431
5d4f98a2
YZ
1432 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1433 btrfs_set_header_bytenr(leaf, leaf->start);
1434 btrfs_set_header_generation(leaf, trans->transid);
1435 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1436 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1437 root->node = leaf;
e02119d5
CM
1438
1439 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1440 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1441 btrfs_mark_buffer_dirty(root->node);
1442 btrfs_tree_unlock(root->node);
7237f183
YZ
1443 return root;
1444}
1445
1446int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1447 struct btrfs_fs_info *fs_info)
1448{
1449 struct btrfs_root *log_root;
1450
1451 log_root = alloc_log_tree(trans, fs_info);
1452 if (IS_ERR(log_root))
1453 return PTR_ERR(log_root);
1454 WARN_ON(fs_info->log_root_tree);
1455 fs_info->log_root_tree = log_root;
1456 return 0;
1457}
1458
1459int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1460 struct btrfs_root *root)
1461{
1462 struct btrfs_root *log_root;
1463 struct btrfs_inode_item *inode_item;
1464
1465 log_root = alloc_log_tree(trans, root->fs_info);
1466 if (IS_ERR(log_root))
1467 return PTR_ERR(log_root);
1468
1469 log_root->last_trans = trans->transid;
1470 log_root->root_key.offset = root->root_key.objectid;
1471
1472 inode_item = &log_root->root_item.inode;
3cae210f
QW
1473 btrfs_set_stack_inode_generation(inode_item, 1);
1474 btrfs_set_stack_inode_size(inode_item, 3);
1475 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1476 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1477 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1478
5d4f98a2 1479 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1480
1481 WARN_ON(root->log_root);
1482 root->log_root = log_root;
1483 root->log_transid = 0;
d1433deb 1484 root->log_transid_committed = -1;
257c62e1 1485 root->last_log_commit = 0;
e02119d5
CM
1486 return 0;
1487}
1488
35a3621b
SB
1489static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1490 struct btrfs_key *key)
e02119d5
CM
1491{
1492 struct btrfs_root *root;
1493 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1494 struct btrfs_path *path;
84234f3a 1495 u64 generation;
cb517eab 1496 int ret;
0f7d52f4 1497
cb517eab
MX
1498 path = btrfs_alloc_path();
1499 if (!path)
0f7d52f4 1500 return ERR_PTR(-ENOMEM);
cb517eab
MX
1501
1502 root = btrfs_alloc_root(fs_info);
1503 if (!root) {
1504 ret = -ENOMEM;
1505 goto alloc_fail;
0f7d52f4
CM
1506 }
1507
707e8a07
DS
1508 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1509 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1510
cb517eab
MX
1511 ret = btrfs_find_root(tree_root, key, path,
1512 &root->root_item, &root->root_key);
0f7d52f4 1513 if (ret) {
13a8a7c8
YZ
1514 if (ret > 0)
1515 ret = -ENOENT;
cb517eab 1516 goto find_fail;
0f7d52f4 1517 }
13a8a7c8 1518
84234f3a 1519 generation = btrfs_root_generation(&root->root_item);
db94535d 1520 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1521 generation);
64c043de
LB
1522 if (IS_ERR(root->node)) {
1523 ret = PTR_ERR(root->node);
cb517eab
MX
1524 goto find_fail;
1525 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1526 ret = -EIO;
64c043de
LB
1527 free_extent_buffer(root->node);
1528 goto find_fail;
416bc658 1529 }
5d4f98a2 1530 root->commit_root = btrfs_root_node(root);
13a8a7c8 1531out:
cb517eab
MX
1532 btrfs_free_path(path);
1533 return root;
1534
cb517eab
MX
1535find_fail:
1536 kfree(root);
1537alloc_fail:
1538 root = ERR_PTR(ret);
1539 goto out;
1540}
1541
1542struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1543 struct btrfs_key *location)
1544{
1545 struct btrfs_root *root;
1546
1547 root = btrfs_read_tree_root(tree_root, location);
1548 if (IS_ERR(root))
1549 return root;
1550
1551 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1552 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1553 btrfs_check_and_init_root_item(&root->root_item);
1554 }
13a8a7c8 1555
5eda7b5e
CM
1556 return root;
1557}
1558
cb517eab
MX
1559int btrfs_init_fs_root(struct btrfs_root *root)
1560{
1561 int ret;
8257b2dc 1562 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1563
1564 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1565 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1566 GFP_NOFS);
1567 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1568 ret = -ENOMEM;
1569 goto fail;
1570 }
1571
8257b2dc
MX
1572 writers = btrfs_alloc_subvolume_writers();
1573 if (IS_ERR(writers)) {
1574 ret = PTR_ERR(writers);
1575 goto fail;
1576 }
1577 root->subv_writers = writers;
1578
cb517eab 1579 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1580 spin_lock_init(&root->ino_cache_lock);
1581 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1582
1583 ret = get_anon_bdev(&root->anon_dev);
1584 if (ret)
8257b2dc 1585 goto free_writers;
f32e48e9
CR
1586
1587 mutex_lock(&root->objectid_mutex);
1588 ret = btrfs_find_highest_objectid(root,
1589 &root->highest_objectid);
1590 if (ret) {
1591 mutex_unlock(&root->objectid_mutex);
1592 goto free_root_dev;
1593 }
1594
1595 ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1596
1597 mutex_unlock(&root->objectid_mutex);
1598
cb517eab 1599 return 0;
8257b2dc 1600
f32e48e9
CR
1601free_root_dev:
1602 free_anon_bdev(root->anon_dev);
8257b2dc
MX
1603free_writers:
1604 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1605fail:
1606 kfree(root->free_ino_ctl);
1607 kfree(root->free_ino_pinned);
1608 return ret;
1609}
1610
171170c1
ST
1611static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1612 u64 root_id)
cb517eab
MX
1613{
1614 struct btrfs_root *root;
1615
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1618 (unsigned long)root_id);
1619 spin_unlock(&fs_info->fs_roots_radix_lock);
1620 return root;
1621}
1622
1623int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1624 struct btrfs_root *root)
1625{
1626 int ret;
1627
1628 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1629 if (ret)
1630 return ret;
1631
1632 spin_lock(&fs_info->fs_roots_radix_lock);
1633 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1634 (unsigned long)root->root_key.objectid,
1635 root);
1636 if (ret == 0)
27cdeb70 1637 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1638 spin_unlock(&fs_info->fs_roots_radix_lock);
1639 radix_tree_preload_end();
1640
1641 return ret;
1642}
1643
c00869f1
MX
1644struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1645 struct btrfs_key *location,
1646 bool check_ref)
5eda7b5e
CM
1647{
1648 struct btrfs_root *root;
381cf658 1649 struct btrfs_path *path;
1d4c08e0 1650 struct btrfs_key key;
5eda7b5e
CM
1651 int ret;
1652
edbd8d4e
CM
1653 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1654 return fs_info->tree_root;
1655 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1656 return fs_info->extent_root;
8f18cf13
CM
1657 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1658 return fs_info->chunk_root;
1659 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1660 return fs_info->dev_root;
0403e47e
YZ
1661 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1662 return fs_info->csum_root;
bcef60f2
AJ
1663 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1664 return fs_info->quota_root ? fs_info->quota_root :
1665 ERR_PTR(-ENOENT);
f7a81ea4
SB
1666 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1667 return fs_info->uuid_root ? fs_info->uuid_root :
1668 ERR_PTR(-ENOENT);
70f6d82e
OS
1669 if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1670 return fs_info->free_space_root ? fs_info->free_space_root :
1671 ERR_PTR(-ENOENT);
4df27c4d 1672again:
cb517eab 1673 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1674 if (root) {
c00869f1 1675 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1676 return ERR_PTR(-ENOENT);
5eda7b5e 1677 return root;
48475471 1678 }
5eda7b5e 1679
cb517eab 1680 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1681 if (IS_ERR(root))
1682 return root;
3394e160 1683
c00869f1 1684 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1685 ret = -ENOENT;
581bb050 1686 goto fail;
35a30d7c 1687 }
581bb050 1688
cb517eab 1689 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1690 if (ret)
1691 goto fail;
3394e160 1692
381cf658
DS
1693 path = btrfs_alloc_path();
1694 if (!path) {
1695 ret = -ENOMEM;
1696 goto fail;
1697 }
1d4c08e0
DS
1698 key.objectid = BTRFS_ORPHAN_OBJECTID;
1699 key.type = BTRFS_ORPHAN_ITEM_KEY;
1700 key.offset = location->objectid;
1701
1702 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1703 btrfs_free_path(path);
d68fc57b
YZ
1704 if (ret < 0)
1705 goto fail;
1706 if (ret == 0)
27cdeb70 1707 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1708
cb517eab 1709 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1710 if (ret) {
4df27c4d
YZ
1711 if (ret == -EEXIST) {
1712 free_fs_root(root);
1713 goto again;
1714 }
1715 goto fail;
0f7d52f4 1716 }
edbd8d4e 1717 return root;
4df27c4d
YZ
1718fail:
1719 free_fs_root(root);
1720 return ERR_PTR(ret);
edbd8d4e
CM
1721}
1722
04160088
CM
1723static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1724{
1725 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1726 int ret = 0;
04160088
CM
1727 struct btrfs_device *device;
1728 struct backing_dev_info *bdi;
b7967db7 1729
1f78160c
XG
1730 rcu_read_lock();
1731 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1732 if (!device->bdev)
1733 continue;
04160088 1734 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1735 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1736 ret = 1;
1737 break;
1738 }
1739 }
1f78160c 1740 rcu_read_unlock();
04160088
CM
1741 return ret;
1742}
1743
04160088
CM
1744static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1745{
ad081f14
JA
1746 int err;
1747
b4caecd4 1748 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1749 if (err)
1750 return err;
1751
df0ce26c 1752 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1753 bdi->congested_fn = btrfs_congested_fn;
1754 bdi->congested_data = info;
da2f0f74 1755 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1756 return 0;
1757}
1758
8b712842
CM
1759/*
1760 * called by the kthread helper functions to finally call the bio end_io
1761 * functions. This is where read checksum verification actually happens
1762 */
1763static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1764{
ce9adaa5 1765 struct bio *bio;
97eb6b69 1766 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1767
97eb6b69 1768 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1769 bio = end_io_wq->bio;
ce9adaa5 1770
4246a0b6 1771 bio->bi_error = end_io_wq->error;
8b712842
CM
1772 bio->bi_private = end_io_wq->private;
1773 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1774 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1775 bio_endio(bio);
44b8bd7e
CM
1776}
1777
a74a4b97
CM
1778static int cleaner_kthread(void *arg)
1779{
1780 struct btrfs_root *root = arg;
d0278245 1781 int again;
da288d28 1782 struct btrfs_trans_handle *trans;
a74a4b97 1783
69624913 1784 set_freezable();
a74a4b97 1785 do {
d0278245 1786 again = 0;
a74a4b97 1787
d0278245 1788 /* Make the cleaner go to sleep early. */
babbf170 1789 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1790 goto sleep;
1791
1792 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1793 goto sleep;
1794
dc7f370c
MX
1795 /*
1796 * Avoid the problem that we change the status of the fs
1797 * during the above check and trylock.
1798 */
babbf170 1799 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1800 mutex_unlock(&root->fs_info->cleaner_mutex);
1801 goto sleep;
76dda93c 1802 }
a74a4b97 1803
d0278245
MX
1804 btrfs_run_delayed_iputs(root);
1805 again = btrfs_clean_one_deleted_snapshot(root);
1806 mutex_unlock(&root->fs_info->cleaner_mutex);
1807
1808 /*
05323cd1
MX
1809 * The defragger has dealt with the R/O remount and umount,
1810 * needn't do anything special here.
d0278245
MX
1811 */
1812 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1813
1814 /*
1815 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1816 * with relocation (btrfs_relocate_chunk) and relocation
1817 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1818 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1819 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1820 * unused block groups.
1821 */
1822 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1823sleep:
9d1a2a3a 1824 if (!try_to_freeze() && !again) {
a74a4b97 1825 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1826 if (!kthread_should_stop())
1827 schedule();
a74a4b97
CM
1828 __set_current_state(TASK_RUNNING);
1829 }
1830 } while (!kthread_should_stop());
da288d28
FM
1831
1832 /*
1833 * Transaction kthread is stopped before us and wakes us up.
1834 * However we might have started a new transaction and COWed some
1835 * tree blocks when deleting unused block groups for example. So
1836 * make sure we commit the transaction we started to have a clean
1837 * shutdown when evicting the btree inode - if it has dirty pages
1838 * when we do the final iput() on it, eviction will trigger a
1839 * writeback for it which will fail with null pointer dereferences
1840 * since work queues and other resources were already released and
1841 * destroyed by the time the iput/eviction/writeback is made.
1842 */
1843 trans = btrfs_attach_transaction(root);
1844 if (IS_ERR(trans)) {
1845 if (PTR_ERR(trans) != -ENOENT)
1846 btrfs_err(root->fs_info,
1847 "cleaner transaction attach returned %ld",
1848 PTR_ERR(trans));
1849 } else {
1850 int ret;
1851
1852 ret = btrfs_commit_transaction(trans, root);
1853 if (ret)
1854 btrfs_err(root->fs_info,
1855 "cleaner open transaction commit returned %d",
1856 ret);
1857 }
1858
a74a4b97
CM
1859 return 0;
1860}
1861
1862static int transaction_kthread(void *arg)
1863{
1864 struct btrfs_root *root = arg;
1865 struct btrfs_trans_handle *trans;
1866 struct btrfs_transaction *cur;
8929ecfa 1867 u64 transid;
a74a4b97
CM
1868 unsigned long now;
1869 unsigned long delay;
914b2007 1870 bool cannot_commit;
a74a4b97
CM
1871
1872 do {
914b2007 1873 cannot_commit = false;
8b87dc17 1874 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1875 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1876
a4abeea4 1877 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1878 cur = root->fs_info->running_transaction;
1879 if (!cur) {
a4abeea4 1880 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1881 goto sleep;
1882 }
31153d81 1883
a74a4b97 1884 now = get_seconds();
4a9d8bde 1885 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1886 (now < cur->start_time ||
1887 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1888 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1889 delay = HZ * 5;
1890 goto sleep;
1891 }
8929ecfa 1892 transid = cur->transid;
a4abeea4 1893 spin_unlock(&root->fs_info->trans_lock);
56bec294 1894
79787eaa 1895 /* If the file system is aborted, this will always fail. */
354aa0fb 1896 trans = btrfs_attach_transaction(root);
914b2007 1897 if (IS_ERR(trans)) {
354aa0fb
MX
1898 if (PTR_ERR(trans) != -ENOENT)
1899 cannot_commit = true;
79787eaa 1900 goto sleep;
914b2007 1901 }
8929ecfa 1902 if (transid == trans->transid) {
79787eaa 1903 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1904 } else {
1905 btrfs_end_transaction(trans, root);
1906 }
a74a4b97
CM
1907sleep:
1908 wake_up_process(root->fs_info->cleaner_kthread);
1909 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1910
4e121c06
JB
1911 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1912 &root->fs_info->fs_state)))
1913 btrfs_cleanup_transaction(root);
a0acae0e 1914 if (!try_to_freeze()) {
a74a4b97 1915 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1916 if (!kthread_should_stop() &&
914b2007
JK
1917 (!btrfs_transaction_blocked(root->fs_info) ||
1918 cannot_commit))
8929ecfa 1919 schedule_timeout(delay);
a74a4b97
CM
1920 __set_current_state(TASK_RUNNING);
1921 }
1922 } while (!kthread_should_stop());
1923 return 0;
1924}
1925
af31f5e5
CM
1926/*
1927 * this will find the highest generation in the array of
1928 * root backups. The index of the highest array is returned,
1929 * or -1 if we can't find anything.
1930 *
1931 * We check to make sure the array is valid by comparing the
1932 * generation of the latest root in the array with the generation
1933 * in the super block. If they don't match we pitch it.
1934 */
1935static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1936{
1937 u64 cur;
1938 int newest_index = -1;
1939 struct btrfs_root_backup *root_backup;
1940 int i;
1941
1942 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1943 root_backup = info->super_copy->super_roots + i;
1944 cur = btrfs_backup_tree_root_gen(root_backup);
1945 if (cur == newest_gen)
1946 newest_index = i;
1947 }
1948
1949 /* check to see if we actually wrapped around */
1950 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1951 root_backup = info->super_copy->super_roots;
1952 cur = btrfs_backup_tree_root_gen(root_backup);
1953 if (cur == newest_gen)
1954 newest_index = 0;
1955 }
1956 return newest_index;
1957}
1958
1959
1960/*
1961 * find the oldest backup so we know where to store new entries
1962 * in the backup array. This will set the backup_root_index
1963 * field in the fs_info struct
1964 */
1965static void find_oldest_super_backup(struct btrfs_fs_info *info,
1966 u64 newest_gen)
1967{
1968 int newest_index = -1;
1969
1970 newest_index = find_newest_super_backup(info, newest_gen);
1971 /* if there was garbage in there, just move along */
1972 if (newest_index == -1) {
1973 info->backup_root_index = 0;
1974 } else {
1975 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1976 }
1977}
1978
1979/*
1980 * copy all the root pointers into the super backup array.
1981 * this will bump the backup pointer by one when it is
1982 * done
1983 */
1984static void backup_super_roots(struct btrfs_fs_info *info)
1985{
1986 int next_backup;
1987 struct btrfs_root_backup *root_backup;
1988 int last_backup;
1989
1990 next_backup = info->backup_root_index;
1991 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1992 BTRFS_NUM_BACKUP_ROOTS;
1993
1994 /*
1995 * just overwrite the last backup if we're at the same generation
1996 * this happens only at umount
1997 */
1998 root_backup = info->super_for_commit->super_roots + last_backup;
1999 if (btrfs_backup_tree_root_gen(root_backup) ==
2000 btrfs_header_generation(info->tree_root->node))
2001 next_backup = last_backup;
2002
2003 root_backup = info->super_for_commit->super_roots + next_backup;
2004
2005 /*
2006 * make sure all of our padding and empty slots get zero filled
2007 * regardless of which ones we use today
2008 */
2009 memset(root_backup, 0, sizeof(*root_backup));
2010
2011 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2012
2013 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2014 btrfs_set_backup_tree_root_gen(root_backup,
2015 btrfs_header_generation(info->tree_root->node));
2016
2017 btrfs_set_backup_tree_root_level(root_backup,
2018 btrfs_header_level(info->tree_root->node));
2019
2020 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2021 btrfs_set_backup_chunk_root_gen(root_backup,
2022 btrfs_header_generation(info->chunk_root->node));
2023 btrfs_set_backup_chunk_root_level(root_backup,
2024 btrfs_header_level(info->chunk_root->node));
2025
2026 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2027 btrfs_set_backup_extent_root_gen(root_backup,
2028 btrfs_header_generation(info->extent_root->node));
2029 btrfs_set_backup_extent_root_level(root_backup,
2030 btrfs_header_level(info->extent_root->node));
2031
7c7e82a7
CM
2032 /*
2033 * we might commit during log recovery, which happens before we set
2034 * the fs_root. Make sure it is valid before we fill it in.
2035 */
2036 if (info->fs_root && info->fs_root->node) {
2037 btrfs_set_backup_fs_root(root_backup,
2038 info->fs_root->node->start);
2039 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2040 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2041 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2042 btrfs_header_level(info->fs_root->node));
7c7e82a7 2043 }
af31f5e5
CM
2044
2045 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2046 btrfs_set_backup_dev_root_gen(root_backup,
2047 btrfs_header_generation(info->dev_root->node));
2048 btrfs_set_backup_dev_root_level(root_backup,
2049 btrfs_header_level(info->dev_root->node));
2050
2051 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2052 btrfs_set_backup_csum_root_gen(root_backup,
2053 btrfs_header_generation(info->csum_root->node));
2054 btrfs_set_backup_csum_root_level(root_backup,
2055 btrfs_header_level(info->csum_root->node));
2056
2057 btrfs_set_backup_total_bytes(root_backup,
2058 btrfs_super_total_bytes(info->super_copy));
2059 btrfs_set_backup_bytes_used(root_backup,
2060 btrfs_super_bytes_used(info->super_copy));
2061 btrfs_set_backup_num_devices(root_backup,
2062 btrfs_super_num_devices(info->super_copy));
2063
2064 /*
2065 * if we don't copy this out to the super_copy, it won't get remembered
2066 * for the next commit
2067 */
2068 memcpy(&info->super_copy->super_roots,
2069 &info->super_for_commit->super_roots,
2070 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2071}
2072
2073/*
2074 * this copies info out of the root backup array and back into
2075 * the in-memory super block. It is meant to help iterate through
2076 * the array, so you send it the number of backups you've already
2077 * tried and the last backup index you used.
2078 *
2079 * this returns -1 when it has tried all the backups
2080 */
2081static noinline int next_root_backup(struct btrfs_fs_info *info,
2082 struct btrfs_super_block *super,
2083 int *num_backups_tried, int *backup_index)
2084{
2085 struct btrfs_root_backup *root_backup;
2086 int newest = *backup_index;
2087
2088 if (*num_backups_tried == 0) {
2089 u64 gen = btrfs_super_generation(super);
2090
2091 newest = find_newest_super_backup(info, gen);
2092 if (newest == -1)
2093 return -1;
2094
2095 *backup_index = newest;
2096 *num_backups_tried = 1;
2097 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2098 /* we've tried all the backups, all done */
2099 return -1;
2100 } else {
2101 /* jump to the next oldest backup */
2102 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2103 BTRFS_NUM_BACKUP_ROOTS;
2104 *backup_index = newest;
2105 *num_backups_tried += 1;
2106 }
2107 root_backup = super->super_roots + newest;
2108
2109 btrfs_set_super_generation(super,
2110 btrfs_backup_tree_root_gen(root_backup));
2111 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2112 btrfs_set_super_root_level(super,
2113 btrfs_backup_tree_root_level(root_backup));
2114 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2115
2116 /*
2117 * fixme: the total bytes and num_devices need to match or we should
2118 * need a fsck
2119 */
2120 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2121 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2122 return 0;
2123}
2124
7abadb64
LB
2125/* helper to cleanup workers */
2126static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2127{
dc6e3209 2128 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2129 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2130 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2131 btrfs_destroy_workqueue(fs_info->endio_workers);
2132 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2133 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2134 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2135 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2136 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2137 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2138 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2139 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2140 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2141 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2142 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2143 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2144 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2145 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2146}
2147
2e9f5954
R
2148static void free_root_extent_buffers(struct btrfs_root *root)
2149{
2150 if (root) {
2151 free_extent_buffer(root->node);
2152 free_extent_buffer(root->commit_root);
2153 root->node = NULL;
2154 root->commit_root = NULL;
2155 }
2156}
2157
af31f5e5
CM
2158/* helper to cleanup tree roots */
2159static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2160{
2e9f5954 2161 free_root_extent_buffers(info->tree_root);
655b09fe 2162
2e9f5954
R
2163 free_root_extent_buffers(info->dev_root);
2164 free_root_extent_buffers(info->extent_root);
2165 free_root_extent_buffers(info->csum_root);
2166 free_root_extent_buffers(info->quota_root);
2167 free_root_extent_buffers(info->uuid_root);
2168 if (chunk_root)
2169 free_root_extent_buffers(info->chunk_root);
70f6d82e 2170 free_root_extent_buffers(info->free_space_root);
af31f5e5
CM
2171}
2172
faa2dbf0 2173void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2174{
2175 int ret;
2176 struct btrfs_root *gang[8];
2177 int i;
2178
2179 while (!list_empty(&fs_info->dead_roots)) {
2180 gang[0] = list_entry(fs_info->dead_roots.next,
2181 struct btrfs_root, root_list);
2182 list_del(&gang[0]->root_list);
2183
27cdeb70 2184 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2185 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2186 } else {
2187 free_extent_buffer(gang[0]->node);
2188 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2189 btrfs_put_fs_root(gang[0]);
171f6537
JB
2190 }
2191 }
2192
2193 while (1) {
2194 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2195 (void **)gang, 0,
2196 ARRAY_SIZE(gang));
2197 if (!ret)
2198 break;
2199 for (i = 0; i < ret; i++)
cb517eab 2200 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2201 }
1a4319cc
LB
2202
2203 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2204 btrfs_free_log_root_tree(NULL, fs_info);
2205 btrfs_destroy_pinned_extent(fs_info->tree_root,
2206 fs_info->pinned_extents);
2207 }
171f6537 2208}
af31f5e5 2209
638aa7ed
ES
2210static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2211{
2212 mutex_init(&fs_info->scrub_lock);
2213 atomic_set(&fs_info->scrubs_running, 0);
2214 atomic_set(&fs_info->scrub_pause_req, 0);
2215 atomic_set(&fs_info->scrubs_paused, 0);
2216 atomic_set(&fs_info->scrub_cancel_req, 0);
2217 init_waitqueue_head(&fs_info->scrub_pause_wait);
2218 fs_info->scrub_workers_refcnt = 0;
2219}
2220
779a65a4
ES
2221static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2222{
2223 spin_lock_init(&fs_info->balance_lock);
2224 mutex_init(&fs_info->balance_mutex);
2225 atomic_set(&fs_info->balance_running, 0);
2226 atomic_set(&fs_info->balance_pause_req, 0);
2227 atomic_set(&fs_info->balance_cancel_req, 0);
2228 fs_info->balance_ctl = NULL;
2229 init_waitqueue_head(&fs_info->balance_wait_q);
2230}
2231
f37938e0
ES
2232static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2233 struct btrfs_root *tree_root)
2234{
2235 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2236 set_nlink(fs_info->btree_inode, 1);
2237 /*
2238 * we set the i_size on the btree inode to the max possible int.
2239 * the real end of the address space is determined by all of
2240 * the devices in the system
2241 */
2242 fs_info->btree_inode->i_size = OFFSET_MAX;
2243 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2244
2245 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2246 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2247 fs_info->btree_inode->i_mapping);
2248 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2249 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2250
2251 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2252
2253 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2254 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2255 sizeof(struct btrfs_key));
2256 set_bit(BTRFS_INODE_DUMMY,
2257 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2258 btrfs_insert_inode_hash(fs_info->btree_inode);
2259}
2260
ad618368
ES
2261static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2262{
2263 fs_info->dev_replace.lock_owner = 0;
2264 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2265 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2266 mutex_init(&fs_info->dev_replace.lock_management_lock);
2267 mutex_init(&fs_info->dev_replace.lock);
2268 init_waitqueue_head(&fs_info->replace_wait);
2269}
2270
f9e92e40
ES
2271static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2272{
2273 spin_lock_init(&fs_info->qgroup_lock);
2274 mutex_init(&fs_info->qgroup_ioctl_lock);
2275 fs_info->qgroup_tree = RB_ROOT;
2276 fs_info->qgroup_op_tree = RB_ROOT;
2277 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2278 fs_info->qgroup_seq = 1;
2279 fs_info->quota_enabled = 0;
2280 fs_info->pending_quota_state = 0;
2281 fs_info->qgroup_ulist = NULL;
2282 mutex_init(&fs_info->qgroup_rescan_lock);
2283}
2284
2a458198
ES
2285static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2286 struct btrfs_fs_devices *fs_devices)
2287{
2288 int max_active = fs_info->thread_pool_size;
6f011058 2289 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2290
2291 fs_info->workers =
2292 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2293 max_active, 16);
2294
2295 fs_info->delalloc_workers =
2296 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2297
2298 fs_info->flush_workers =
2299 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2300
2301 fs_info->caching_workers =
2302 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2303
2304 /*
2305 * a higher idle thresh on the submit workers makes it much more
2306 * likely that bios will be send down in a sane order to the
2307 * devices
2308 */
2309 fs_info->submit_workers =
2310 btrfs_alloc_workqueue("submit", flags,
2311 min_t(u64, fs_devices->num_devices,
2312 max_active), 64);
2313
2314 fs_info->fixup_workers =
2315 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2316
2317 /*
2318 * endios are largely parallel and should have a very
2319 * low idle thresh
2320 */
2321 fs_info->endio_workers =
2322 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2323 fs_info->endio_meta_workers =
2324 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2325 fs_info->endio_meta_write_workers =
2326 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2327 fs_info->endio_raid56_workers =
2328 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2329 fs_info->endio_repair_workers =
2330 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2331 fs_info->rmw_workers =
2332 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2333 fs_info->endio_write_workers =
2334 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2335 fs_info->endio_freespace_worker =
2336 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2337 fs_info->delayed_workers =
2338 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2339 fs_info->readahead_workers =
2340 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2341 fs_info->qgroup_rescan_workers =
2342 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2343 fs_info->extent_workers =
2344 btrfs_alloc_workqueue("extent-refs", flags,
2345 min_t(u64, fs_devices->num_devices,
2346 max_active), 8);
2347
2348 if (!(fs_info->workers && fs_info->delalloc_workers &&
2349 fs_info->submit_workers && fs_info->flush_workers &&
2350 fs_info->endio_workers && fs_info->endio_meta_workers &&
2351 fs_info->endio_meta_write_workers &&
2352 fs_info->endio_repair_workers &&
2353 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2354 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2355 fs_info->caching_workers && fs_info->readahead_workers &&
2356 fs_info->fixup_workers && fs_info->delayed_workers &&
2357 fs_info->extent_workers &&
2358 fs_info->qgroup_rescan_workers)) {
2359 return -ENOMEM;
2360 }
2361
2362 return 0;
2363}
2364
63443bf5
ES
2365static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2366 struct btrfs_fs_devices *fs_devices)
2367{
2368 int ret;
2369 struct btrfs_root *tree_root = fs_info->tree_root;
2370 struct btrfs_root *log_tree_root;
2371 struct btrfs_super_block *disk_super = fs_info->super_copy;
2372 u64 bytenr = btrfs_super_log_root(disk_super);
2373
2374 if (fs_devices->rw_devices == 0) {
f14d104d 2375 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2376 return -EIO;
2377 }
2378
2379 log_tree_root = btrfs_alloc_root(fs_info);
2380 if (!log_tree_root)
2381 return -ENOMEM;
2382
2383 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2384 tree_root->stripesize, log_tree_root, fs_info,
2385 BTRFS_TREE_LOG_OBJECTID);
2386
2387 log_tree_root->node = read_tree_block(tree_root, bytenr,
2388 fs_info->generation + 1);
64c043de 2389 if (IS_ERR(log_tree_root->node)) {
f14d104d 2390 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2391 ret = PTR_ERR(log_tree_root->node);
64c043de 2392 kfree(log_tree_root);
0eeff236 2393 return ret;
64c043de 2394 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2395 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2396 free_extent_buffer(log_tree_root->node);
2397 kfree(log_tree_root);
2398 return -EIO;
2399 }
2400 /* returns with log_tree_root freed on success */
2401 ret = btrfs_recover_log_trees(log_tree_root);
2402 if (ret) {
a4553fef 2403 btrfs_std_error(tree_root->fs_info, ret,
63443bf5
ES
2404 "Failed to recover log tree");
2405 free_extent_buffer(log_tree_root->node);
2406 kfree(log_tree_root);
2407 return ret;
2408 }
2409
2410 if (fs_info->sb->s_flags & MS_RDONLY) {
2411 ret = btrfs_commit_super(tree_root);
2412 if (ret)
2413 return ret;
2414 }
2415
2416 return 0;
2417}
2418
4bbcaa64
ES
2419static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2420 struct btrfs_root *tree_root)
2421{
a4f3d2c4 2422 struct btrfs_root *root;
4bbcaa64
ES
2423 struct btrfs_key location;
2424 int ret;
2425
2426 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2427 location.type = BTRFS_ROOT_ITEM_KEY;
2428 location.offset = 0;
2429
a4f3d2c4
DS
2430 root = btrfs_read_tree_root(tree_root, &location);
2431 if (IS_ERR(root))
2432 return PTR_ERR(root);
2433 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2434 fs_info->extent_root = root;
4bbcaa64
ES
2435
2436 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2437 root = btrfs_read_tree_root(tree_root, &location);
2438 if (IS_ERR(root))
2439 return PTR_ERR(root);
2440 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2441 fs_info->dev_root = root;
4bbcaa64
ES
2442 btrfs_init_devices_late(fs_info);
2443
2444 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2445 root = btrfs_read_tree_root(tree_root, &location);
2446 if (IS_ERR(root))
2447 return PTR_ERR(root);
2448 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2449 fs_info->csum_root = root;
4bbcaa64
ES
2450
2451 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2452 root = btrfs_read_tree_root(tree_root, &location);
2453 if (!IS_ERR(root)) {
2454 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2455 fs_info->quota_enabled = 1;
2456 fs_info->pending_quota_state = 1;
a4f3d2c4 2457 fs_info->quota_root = root;
4bbcaa64
ES
2458 }
2459
2460 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2461 root = btrfs_read_tree_root(tree_root, &location);
2462 if (IS_ERR(root)) {
2463 ret = PTR_ERR(root);
4bbcaa64
ES
2464 if (ret != -ENOENT)
2465 return ret;
2466 } else {
a4f3d2c4
DS
2467 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2468 fs_info->uuid_root = root;
4bbcaa64
ES
2469 }
2470
70f6d82e
OS
2471 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2472 location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2473 root = btrfs_read_tree_root(tree_root, &location);
2474 if (IS_ERR(root))
2475 return PTR_ERR(root);
2476 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2477 fs_info->free_space_root = root;
2478 }
2479
4bbcaa64
ES
2480 return 0;
2481}
2482
ad2b2c80
AV
2483int open_ctree(struct super_block *sb,
2484 struct btrfs_fs_devices *fs_devices,
2485 char *options)
2e635a27 2486{
db94535d
CM
2487 u32 sectorsize;
2488 u32 nodesize;
87ee04eb 2489 u32 stripesize;
84234f3a 2490 u64 generation;
f2b636e8 2491 u64 features;
3de4586c 2492 struct btrfs_key location;
a061fc8d 2493 struct buffer_head *bh;
4d34b278 2494 struct btrfs_super_block *disk_super;
815745cf 2495 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2496 struct btrfs_root *tree_root;
4d34b278 2497 struct btrfs_root *chunk_root;
eb60ceac 2498 int ret;
e58ca020 2499 int err = -EINVAL;
af31f5e5
CM
2500 int num_backups_tried = 0;
2501 int backup_index = 0;
5cdc7ad3 2502 int max_active;
4543df7e 2503
f84a8bd6 2504 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2505 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2506 if (!tree_root || !chunk_root) {
39279cc3
CM
2507 err = -ENOMEM;
2508 goto fail;
2509 }
76dda93c
YZ
2510
2511 ret = init_srcu_struct(&fs_info->subvol_srcu);
2512 if (ret) {
2513 err = ret;
2514 goto fail;
2515 }
2516
2517 ret = setup_bdi(fs_info, &fs_info->bdi);
2518 if (ret) {
2519 err = ret;
2520 goto fail_srcu;
2521 }
2522
908c7f19 2523 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2524 if (ret) {
2525 err = ret;
2526 goto fail_bdi;
2527 }
2528 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2529 (1 + ilog2(nr_cpu_ids));
2530
908c7f19 2531 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2532 if (ret) {
2533 err = ret;
2534 goto fail_dirty_metadata_bytes;
2535 }
2536
908c7f19 2537 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2538 if (ret) {
2539 err = ret;
2540 goto fail_delalloc_bytes;
2541 }
2542
76dda93c
YZ
2543 fs_info->btree_inode = new_inode(sb);
2544 if (!fs_info->btree_inode) {
2545 err = -ENOMEM;
c404e0dc 2546 goto fail_bio_counter;
76dda93c
YZ
2547 }
2548
a6591715 2549 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2550
76dda93c 2551 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2552 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2553 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2554 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2555 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2556 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2557 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2558 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2559 spin_lock_init(&fs_info->trans_lock);
76dda93c 2560 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2561 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2562 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2563 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2564 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2565 spin_lock_init(&fs_info->super_lock);
fcebe456 2566 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2567 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2568 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2569 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2570 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2571 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2572 mutex_init(&fs_info->reloc_mutex);
573bfb72 2573 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2574 seqlock_init(&fs_info->profiles_lock);
d7c15171 2575 init_rwsem(&fs_info->delayed_iput_sem);
19c00ddc 2576
0b86a832 2577 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2578 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2579 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2580 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2581 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2582 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2583 BTRFS_BLOCK_RSV_GLOBAL);
2584 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2585 BTRFS_BLOCK_RSV_DELALLOC);
2586 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2587 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2588 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2589 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2590 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2591 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2592 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2593 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2594 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2595 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2596 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2597 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2598 fs_info->sb = sb;
95ac567a 2599 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2600 fs_info->metadata_ratio = 0;
4cb5300b 2601 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2602 fs_info->free_chunk_space = 0;
f29021b2 2603 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2604 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2605 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2606 /* readahead state */
d0164adc 2607 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2608 spin_lock_init(&fs_info->reada_lock);
c8b97818 2609
b34b086c
CM
2610 fs_info->thread_pool_size = min_t(unsigned long,
2611 num_online_cpus() + 2, 8);
0afbaf8c 2612
199c2a9c
MX
2613 INIT_LIST_HEAD(&fs_info->ordered_roots);
2614 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2615 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2616 GFP_NOFS);
2617 if (!fs_info->delayed_root) {
2618 err = -ENOMEM;
2619 goto fail_iput;
2620 }
2621 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2622
638aa7ed 2623 btrfs_init_scrub(fs_info);
21adbd5c
SB
2624#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2625 fs_info->check_integrity_print_mask = 0;
2626#endif
779a65a4 2627 btrfs_init_balance(fs_info);
21c7e756 2628 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2629
a061fc8d
CM
2630 sb->s_blocksize = 4096;
2631 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2632 sb->s_bdi = &fs_info->bdi;
a061fc8d 2633
f37938e0 2634 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2635
0f9dd46c 2636 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2637 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2638 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2639
11833d66 2640 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2641 fs_info->btree_inode->i_mapping);
11833d66 2642 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2643 fs_info->btree_inode->i_mapping);
11833d66 2644 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2645 fs_info->do_barriers = 1;
e18e4809 2646
39279cc3 2647
5a3f23d5 2648 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2649 mutex_init(&fs_info->tree_log_mutex);
925baedd 2650 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2651 mutex_init(&fs_info->transaction_kthread_mutex);
2652 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2653 mutex_init(&fs_info->volume_mutex);
1bbc621e 2654 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2655 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2656 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2657 init_rwsem(&fs_info->subvol_sem);
803b2f54 2658 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2659
ad618368 2660 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2661 btrfs_init_qgroup(fs_info);
416ac51d 2662
fa9c0d79
CM
2663 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2664 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2665
e6dcd2dc 2666 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2667 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2668 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2669 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2670
04216820
FM
2671 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2672
53b381b3
DW
2673 ret = btrfs_alloc_stripe_hash_table(fs_info);
2674 if (ret) {
83c8266a 2675 err = ret;
53b381b3
DW
2676 goto fail_alloc;
2677 }
2678
707e8a07 2679 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2680 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2681
3c4bb26b 2682 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2683
2684 /*
2685 * Read super block and check the signature bytes only
2686 */
a512bbf8 2687 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2688 if (IS_ERR(bh)) {
2689 err = PTR_ERR(bh);
16cdcec7 2690 goto fail_alloc;
20b45077 2691 }
39279cc3 2692
1104a885
DS
2693 /*
2694 * We want to check superblock checksum, the type is stored inside.
2695 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2696 */
2697 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2698 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885 2699 err = -EINVAL;
b2acdddf 2700 brelse(bh);
1104a885
DS
2701 goto fail_alloc;
2702 }
2703
2704 /*
2705 * super_copy is zeroed at allocation time and we never touch the
2706 * following bytes up to INFO_SIZE, the checksum is calculated from
2707 * the whole block of INFO_SIZE
2708 */
6c41761f
DS
2709 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2710 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2711 sizeof(*fs_info->super_for_commit));
a061fc8d 2712 brelse(bh);
5f39d397 2713
6c41761f 2714 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2715
1104a885
DS
2716 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2717 if (ret) {
efe120a0 2718 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2719 err = -EINVAL;
2720 goto fail_alloc;
2721 }
2722
6c41761f 2723 disk_super = fs_info->super_copy;
0f7d52f4 2724 if (!btrfs_super_root(disk_super))
16cdcec7 2725 goto fail_alloc;
0f7d52f4 2726
acce952b 2727 /* check FS state, whether FS is broken. */
87533c47
MX
2728 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2729 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2730
af31f5e5
CM
2731 /*
2732 * run through our array of backup supers and setup
2733 * our ring pointer to the oldest one
2734 */
2735 generation = btrfs_super_generation(disk_super);
2736 find_oldest_super_backup(fs_info, generation);
2737
75e7cb7f
LB
2738 /*
2739 * In the long term, we'll store the compression type in the super
2740 * block, and it'll be used for per file compression control.
2741 */
2742 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2743
2b82032c
YZ
2744 ret = btrfs_parse_options(tree_root, options);
2745 if (ret) {
2746 err = ret;
16cdcec7 2747 goto fail_alloc;
2b82032c 2748 }
dfe25020 2749
f2b636e8
JB
2750 features = btrfs_super_incompat_flags(disk_super) &
2751 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2752 if (features) {
2753 printk(KERN_ERR "BTRFS: couldn't mount because of "
2754 "unsupported optional features (%Lx).\n",
c1c9ff7c 2755 features);
f2b636e8 2756 err = -EINVAL;
16cdcec7 2757 goto fail_alloc;
f2b636e8
JB
2758 }
2759
707e8a07
DS
2760 /*
2761 * Leafsize and nodesize were always equal, this is only a sanity check.
2762 */
2763 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2764 btrfs_super_nodesize(disk_super)) {
2765 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2766 "blocksizes don't match. node %d leaf %d\n",
2767 btrfs_super_nodesize(disk_super),
707e8a07 2768 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2769 err = -EINVAL;
2770 goto fail_alloc;
2771 }
707e8a07 2772 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2773 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2774 "blocksize (%d) was too large\n",
707e8a07 2775 btrfs_super_nodesize(disk_super));
727011e0
CM
2776 err = -EINVAL;
2777 goto fail_alloc;
2778 }
2779
5d4f98a2 2780 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2781 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2782 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2783 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2784
3173a18f 2785 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2786 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2787
727011e0
CM
2788 /*
2789 * flag our filesystem as having big metadata blocks if
2790 * they are bigger than the page size
2791 */
707e8a07 2792 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2793 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2794 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2795 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2796 }
2797
bc3f116f 2798 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2799 sectorsize = btrfs_super_sectorsize(disk_super);
2800 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2801 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2802 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2803
2804 /*
2805 * mixed block groups end up with duplicate but slightly offset
2806 * extent buffers for the same range. It leads to corruptions
2807 */
2808 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2809 (sectorsize != nodesize)) {
aa8ee312 2810 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2811 "are not allowed for mixed block groups on %s\n",
2812 sb->s_id);
2813 goto fail_alloc;
2814 }
2815
ceda0864
MX
2816 /*
2817 * Needn't use the lock because there is no other task which will
2818 * update the flag.
2819 */
a6fa6fae 2820 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2821
f2b636e8
JB
2822 features = btrfs_super_compat_ro_flags(disk_super) &
2823 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2824 if (!(sb->s_flags & MS_RDONLY) && features) {
2825 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2826 "unsupported option features (%Lx).\n",
c1c9ff7c 2827 features);
f2b636e8 2828 err = -EINVAL;
16cdcec7 2829 goto fail_alloc;
f2b636e8 2830 }
61d92c32 2831
5cdc7ad3 2832 max_active = fs_info->thread_pool_size;
61d92c32 2833
2a458198
ES
2834 ret = btrfs_init_workqueues(fs_info, fs_devices);
2835 if (ret) {
2836 err = ret;
0dc3b84a
JB
2837 goto fail_sb_buffer;
2838 }
4543df7e 2839
4575c9cc 2840 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818 2841 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
ee22184b 2842 SZ_4M / PAGE_CACHE_SIZE);
4575c9cc 2843
db94535d 2844 tree_root->nodesize = nodesize;
db94535d 2845 tree_root->sectorsize = sectorsize;
87ee04eb 2846 tree_root->stripesize = stripesize;
a061fc8d
CM
2847
2848 sb->s_blocksize = sectorsize;
2849 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2850
3cae210f 2851 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2852 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2853 goto fail_sb_buffer;
2854 }
19c00ddc 2855
8d082fb7 2856 if (sectorsize != PAGE_SIZE) {
aa8ee312 2857 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2858 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2859 goto fail_sb_buffer;
2860 }
2861
925baedd 2862 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2863 ret = btrfs_read_sys_array(tree_root);
925baedd 2864 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2865 if (ret) {
aa8ee312 2866 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2867 "array on %s\n", sb->s_id);
5d4f98a2 2868 goto fail_sb_buffer;
84eed90f 2869 }
0b86a832 2870
84234f3a 2871 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2872
707e8a07
DS
2873 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2874 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2875
2876 chunk_root->node = read_tree_block(chunk_root,
2877 btrfs_super_chunk_root(disk_super),
ce86cd59 2878 generation);
64c043de
LB
2879 if (IS_ERR(chunk_root->node) ||
2880 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2881 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2882 sb->s_id);
e5fffbac 2883 if (!IS_ERR(chunk_root->node))
2884 free_extent_buffer(chunk_root->node);
95ab1f64 2885 chunk_root->node = NULL;
af31f5e5 2886 goto fail_tree_roots;
83121942 2887 }
5d4f98a2
YZ
2888 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2889 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2890
e17cade2 2891 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2892 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2893
0b86a832 2894 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2895 if (ret) {
aa8ee312 2896 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2897 sb->s_id);
af31f5e5 2898 goto fail_tree_roots;
2b82032c 2899 }
0b86a832 2900
8dabb742
SB
2901 /*
2902 * keep the device that is marked to be the target device for the
2903 * dev_replace procedure
2904 */
9eaed21e 2905 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2906
a6b0d5c8 2907 if (!fs_devices->latest_bdev) {
aa8ee312 2908 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2909 sb->s_id);
2910 goto fail_tree_roots;
2911 }
2912
af31f5e5 2913retry_root_backup:
84234f3a 2914 generation = btrfs_super_generation(disk_super);
0b86a832 2915
e20d96d6 2916 tree_root->node = read_tree_block(tree_root,
db94535d 2917 btrfs_super_root(disk_super),
ce86cd59 2918 generation);
64c043de
LB
2919 if (IS_ERR(tree_root->node) ||
2920 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2921 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2922 sb->s_id);
e5fffbac 2923 if (!IS_ERR(tree_root->node))
2924 free_extent_buffer(tree_root->node);
95ab1f64 2925 tree_root->node = NULL;
af31f5e5 2926 goto recovery_tree_root;
83121942 2927 }
af31f5e5 2928
5d4f98a2
YZ
2929 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2930 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2931 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2932
f32e48e9
CR
2933 mutex_lock(&tree_root->objectid_mutex);
2934 ret = btrfs_find_highest_objectid(tree_root,
2935 &tree_root->highest_objectid);
2936 if (ret) {
2937 mutex_unlock(&tree_root->objectid_mutex);
2938 goto recovery_tree_root;
2939 }
2940
2941 ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2942
2943 mutex_unlock(&tree_root->objectid_mutex);
2944
4bbcaa64
ES
2945 ret = btrfs_read_roots(fs_info, tree_root);
2946 if (ret)
af31f5e5 2947 goto recovery_tree_root;
f7a81ea4 2948
8929ecfa
YZ
2949 fs_info->generation = generation;
2950 fs_info->last_trans_committed = generation;
8929ecfa 2951
68310a5e
ID
2952 ret = btrfs_recover_balance(fs_info);
2953 if (ret) {
aa8ee312 2954 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2955 goto fail_block_groups;
2956 }
2957
733f4fbb
SB
2958 ret = btrfs_init_dev_stats(fs_info);
2959 if (ret) {
efe120a0 2960 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2961 ret);
2962 goto fail_block_groups;
2963 }
2964
8dabb742
SB
2965 ret = btrfs_init_dev_replace(fs_info);
2966 if (ret) {
efe120a0 2967 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2968 goto fail_block_groups;
2969 }
2970
9eaed21e 2971 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2972
b7c35e81
AJ
2973 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2974 if (ret) {
2975 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2976 goto fail_block_groups;
2977 }
2978
2979 ret = btrfs_sysfs_add_device(fs_devices);
2980 if (ret) {
2981 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2982 goto fail_fsdev_sysfs;
2983 }
2984
96f3136e 2985 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2986 if (ret) {
efe120a0 2987 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2988 goto fail_fsdev_sysfs;
c59021f8 2989 }
2990
c59021f8 2991 ret = btrfs_init_space_info(fs_info);
2992 if (ret) {
efe120a0 2993 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2994 goto fail_sysfs;
c59021f8 2995 }
2996
4bbcaa64 2997 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2998 if (ret) {
efe120a0 2999 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 3000 goto fail_sysfs;
1b1d1f66 3001 }
5af3e8cc
SB
3002 fs_info->num_tolerated_disk_barrier_failures =
3003 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
3004 if (fs_info->fs_devices->missing_devices >
3005 fs_info->num_tolerated_disk_barrier_failures &&
3006 !(sb->s_flags & MS_RDONLY)) {
78fa1770
ZL
3007 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
3008 fs_info->fs_devices->missing_devices,
3009 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 3010 goto fail_sysfs;
292fd7fc 3011 }
9078a3e1 3012
a74a4b97
CM
3013 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3014 "btrfs-cleaner");
57506d50 3015 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 3016 goto fail_sysfs;
a74a4b97
CM
3017
3018 fs_info->transaction_kthread = kthread_run(transaction_kthread,
3019 tree_root,
3020 "btrfs-transaction");
57506d50 3021 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 3022 goto fail_cleaner;
a74a4b97 3023
c289811c
CM
3024 if (!btrfs_test_opt(tree_root, SSD) &&
3025 !btrfs_test_opt(tree_root, NOSSD) &&
3026 !fs_info->fs_devices->rotating) {
efe120a0 3027 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
3028 "mode\n");
3029 btrfs_set_opt(fs_info->mount_opt, SSD);
3030 }
3031
572d9ab7
DS
3032 /*
3033 * Mount does not set all options immediatelly, we can do it now and do
3034 * not have to wait for transaction commit
3035 */
3036 btrfs_apply_pending_changes(fs_info);
3818aea2 3037
21adbd5c
SB
3038#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3039 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
3040 ret = btrfsic_mount(tree_root, fs_devices,
3041 btrfs_test_opt(tree_root,
3042 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3043 1 : 0,
3044 fs_info->check_integrity_print_mask);
3045 if (ret)
efe120a0 3046 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
3047 " integrity check module %s\n", sb->s_id);
3048 }
3049#endif
bcef60f2
AJ
3050 ret = btrfs_read_qgroup_config(fs_info);
3051 if (ret)
3052 goto fail_trans_kthread;
21adbd5c 3053
acce952b 3054 /* do not make disk changes in broken FS */
68ce9682 3055 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 3056 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3057 if (ret) {
63443bf5 3058 err = ret;
28c16cbb 3059 goto fail_qgroup;
79787eaa 3060 }
e02119d5 3061 }
1a40e23b 3062
76dda93c 3063 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3064 if (ret)
28c16cbb 3065 goto fail_qgroup;
76dda93c 3066
7c2ca468 3067 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3068 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3069 if (ret)
28c16cbb 3070 goto fail_qgroup;
d68fc57b 3071
5f316481 3072 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3073 ret = btrfs_recover_relocation(tree_root);
5f316481 3074 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3075 if (ret < 0) {
3076 printk(KERN_WARNING
efe120a0 3077 "BTRFS: failed to recover relocation\n");
d7ce5843 3078 err = -EINVAL;
bcef60f2 3079 goto fail_qgroup;
d7ce5843 3080 }
7c2ca468 3081 }
1a40e23b 3082
3de4586c
CM
3083 location.objectid = BTRFS_FS_TREE_OBJECTID;
3084 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3085 location.offset = 0;
3de4586c 3086
3de4586c 3087 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3088 if (IS_ERR(fs_info->fs_root)) {
3089 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3090 goto fail_qgroup;
3140c9a3 3091 }
c289811c 3092
2b6ba629
ID
3093 if (sb->s_flags & MS_RDONLY)
3094 return 0;
59641015 3095
511711af
CM
3096 if (btrfs_test_opt(tree_root, FREE_SPACE_TREE) &&
3097 !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3098 pr_info("BTRFS: creating free space tree\n");
3099 ret = btrfs_create_free_space_tree(fs_info);
3100 if (ret) {
3101 pr_warn("BTRFS: failed to create free space tree %d\n",
3102 ret);
3103 close_ctree(tree_root);
3104 return ret;
3105 }
3106 }
3107
2b6ba629
ID
3108 down_read(&fs_info->cleanup_work_sem);
3109 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3110 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3111 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3112 close_ctree(tree_root);
3113 return ret;
3114 }
3115 up_read(&fs_info->cleanup_work_sem);
59641015 3116
2b6ba629
ID
3117 ret = btrfs_resume_balance_async(fs_info);
3118 if (ret) {
efe120a0 3119 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3120 close_ctree(tree_root);
3121 return ret;
e3acc2a6
JB
3122 }
3123
8dabb742
SB
3124 ret = btrfs_resume_dev_replace_async(fs_info);
3125 if (ret) {
efe120a0 3126 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3127 close_ctree(tree_root);
3128 return ret;
3129 }
3130
b382a324
JS
3131 btrfs_qgroup_rescan_resume(fs_info);
3132
70f6d82e
OS
3133 if (btrfs_test_opt(tree_root, CLEAR_CACHE) &&
3134 btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3135 pr_info("BTRFS: clearing free space tree\n");
3136 ret = btrfs_clear_free_space_tree(fs_info);
3137 if (ret) {
3138 pr_warn("BTRFS: failed to clear free space tree %d\n",
3139 ret);
3140 close_ctree(tree_root);
3141 return ret;
3142 }
3143 }
3144
4bbcaa64 3145 if (!fs_info->uuid_root) {
efe120a0 3146 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3147 ret = btrfs_create_uuid_tree(fs_info);
3148 if (ret) {
efe120a0 3149 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3150 ret);
3151 close_ctree(tree_root);
3152 return ret;
3153 }
4bbcaa64
ES
3154 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3155 fs_info->generation !=
3156 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3157 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3158 ret = btrfs_check_uuid_tree(fs_info);
3159 if (ret) {
efe120a0 3160 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3161 ret);
3162 close_ctree(tree_root);
3163 return ret;
3164 }
3165 } else {
3166 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3167 }
3168
47ab2a6c
JB
3169 fs_info->open = 1;
3170
ad2b2c80 3171 return 0;
39279cc3 3172
bcef60f2
AJ
3173fail_qgroup:
3174 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3175fail_trans_kthread:
3176 kthread_stop(fs_info->transaction_kthread);
54067ae9 3177 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3178 btrfs_free_fs_roots(fs_info);
3f157a2f 3179fail_cleaner:
a74a4b97 3180 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3181
3182 /*
3183 * make sure we're done with the btree inode before we stop our
3184 * kthreads
3185 */
3186 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3187
2365dd3c 3188fail_sysfs:
6618a59b 3189 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3190
b7c35e81
AJ
3191fail_fsdev_sysfs:
3192 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3193
1b1d1f66 3194fail_block_groups:
54067ae9 3195 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3196 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3197
3198fail_tree_roots:
3199 free_root_pointers(fs_info, 1);
2b8195bb 3200 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3201
39279cc3 3202fail_sb_buffer:
7abadb64 3203 btrfs_stop_all_workers(fs_info);
16cdcec7 3204fail_alloc:
4543df7e 3205fail_iput:
586e46e2
ID
3206 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3207
4543df7e 3208 iput(fs_info->btree_inode);
c404e0dc
MX
3209fail_bio_counter:
3210 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3211fail_delalloc_bytes:
3212 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3213fail_dirty_metadata_bytes:
3214 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3215fail_bdi:
7e662854 3216 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3217fail_srcu:
3218 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3219fail:
53b381b3 3220 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3221 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3222 return err;
af31f5e5
CM
3223
3224recovery_tree_root:
af31f5e5
CM
3225 if (!btrfs_test_opt(tree_root, RECOVERY))
3226 goto fail_tree_roots;
3227
3228 free_root_pointers(fs_info, 0);
3229
3230 /* don't use the log in recovery mode, it won't be valid */
3231 btrfs_set_super_log_root(disk_super, 0);
3232
3233 /* we can't trust the free space cache either */
3234 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3235
3236 ret = next_root_backup(fs_info, fs_info->super_copy,
3237 &num_backups_tried, &backup_index);
3238 if (ret == -1)
3239 goto fail_block_groups;
3240 goto retry_root_backup;
eb60ceac
CM
3241}
3242
f2984462
CM
3243static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3244{
f2984462
CM
3245 if (uptodate) {
3246 set_buffer_uptodate(bh);
3247 } else {
442a4f63
SB
3248 struct btrfs_device *device = (struct btrfs_device *)
3249 bh->b_private;
3250
b14af3b4
DS
3251 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3252 "lost page write due to IO error on %s",
606686ee 3253 rcu_str_deref(device->name));
1259ab75
CM
3254 /* note, we dont' set_buffer_write_io_error because we have
3255 * our own ways of dealing with the IO errors
3256 */
f2984462 3257 clear_buffer_uptodate(bh);
442a4f63 3258 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3259 }
3260 unlock_buffer(bh);
3261 put_bh(bh);
3262}
3263
29c36d72
AJ
3264int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3265 struct buffer_head **bh_ret)
3266{
3267 struct buffer_head *bh;
3268 struct btrfs_super_block *super;
3269 u64 bytenr;
3270
3271 bytenr = btrfs_sb_offset(copy_num);
3272 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3273 return -EINVAL;
3274
3275 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3276 /*
3277 * If we fail to read from the underlying devices, as of now
3278 * the best option we have is to mark it EIO.
3279 */
3280 if (!bh)
3281 return -EIO;
3282
3283 super = (struct btrfs_super_block *)bh->b_data;
3284 if (btrfs_super_bytenr(super) != bytenr ||
3285 btrfs_super_magic(super) != BTRFS_MAGIC) {
3286 brelse(bh);
3287 return -EINVAL;
3288 }
3289
3290 *bh_ret = bh;
3291 return 0;
3292}
3293
3294
a512bbf8
YZ
3295struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3296{
3297 struct buffer_head *bh;
3298 struct buffer_head *latest = NULL;
3299 struct btrfs_super_block *super;
3300 int i;
3301 u64 transid = 0;
92fc03fb 3302 int ret = -EINVAL;
a512bbf8
YZ
3303
3304 /* we would like to check all the supers, but that would make
3305 * a btrfs mount succeed after a mkfs from a different FS.
3306 * So, we need to add a special mount option to scan for
3307 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3308 */
3309 for (i = 0; i < 1; i++) {
29c36d72
AJ
3310 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3311 if (ret)
a512bbf8
YZ
3312 continue;
3313
3314 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3315
3316 if (!latest || btrfs_super_generation(super) > transid) {
3317 brelse(latest);
3318 latest = bh;
3319 transid = btrfs_super_generation(super);
3320 } else {
3321 brelse(bh);
3322 }
3323 }
92fc03fb
AJ
3324
3325 if (!latest)
3326 return ERR_PTR(ret);
3327
a512bbf8
YZ
3328 return latest;
3329}
3330
4eedeb75
HH
3331/*
3332 * this should be called twice, once with wait == 0 and
3333 * once with wait == 1. When wait == 0 is done, all the buffer heads
3334 * we write are pinned.
3335 *
3336 * They are released when wait == 1 is done.
3337 * max_mirrors must be the same for both runs, and it indicates how
3338 * many supers on this one device should be written.
3339 *
3340 * max_mirrors == 0 means to write them all.
3341 */
a512bbf8
YZ
3342static int write_dev_supers(struct btrfs_device *device,
3343 struct btrfs_super_block *sb,
3344 int do_barriers, int wait, int max_mirrors)
3345{
3346 struct buffer_head *bh;
3347 int i;
3348 int ret;
3349 int errors = 0;
3350 u32 crc;
3351 u64 bytenr;
a512bbf8
YZ
3352
3353 if (max_mirrors == 0)
3354 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3355
a512bbf8
YZ
3356 for (i = 0; i < max_mirrors; i++) {
3357 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3358 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3359 device->commit_total_bytes)
a512bbf8
YZ
3360 break;
3361
3362 if (wait) {
3363 bh = __find_get_block(device->bdev, bytenr / 4096,
3364 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3365 if (!bh) {
3366 errors++;
3367 continue;
3368 }
a512bbf8 3369 wait_on_buffer(bh);
4eedeb75
HH
3370 if (!buffer_uptodate(bh))
3371 errors++;
3372
3373 /* drop our reference */
3374 brelse(bh);
3375
3376 /* drop the reference from the wait == 0 run */
3377 brelse(bh);
3378 continue;
a512bbf8
YZ
3379 } else {
3380 btrfs_set_super_bytenr(sb, bytenr);
3381
3382 crc = ~(u32)0;
b0496686 3383 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3384 BTRFS_CSUM_SIZE, crc,
3385 BTRFS_SUPER_INFO_SIZE -
3386 BTRFS_CSUM_SIZE);
3387 btrfs_csum_final(crc, sb->csum);
3388
4eedeb75
HH
3389 /*
3390 * one reference for us, and we leave it for the
3391 * caller
3392 */
a512bbf8
YZ
3393 bh = __getblk(device->bdev, bytenr / 4096,
3394 BTRFS_SUPER_INFO_SIZE);
634554dc 3395 if (!bh) {
f14d104d
DS
3396 btrfs_err(device->dev_root->fs_info,
3397 "couldn't get super buffer head for bytenr %llu",
3398 bytenr);
634554dc
JB
3399 errors++;
3400 continue;
3401 }
3402
a512bbf8
YZ
3403 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3404
4eedeb75 3405 /* one reference for submit_bh */
a512bbf8 3406 get_bh(bh);
4eedeb75
HH
3407
3408 set_buffer_uptodate(bh);
a512bbf8
YZ
3409 lock_buffer(bh);
3410 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3411 bh->b_private = device;
a512bbf8
YZ
3412 }
3413
387125fc
CM
3414 /*
3415 * we fua the first super. The others we allow
3416 * to go down lazy.
3417 */
e8117c26
WS
3418 if (i == 0)
3419 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3420 else
3421 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3422 if (ret)
a512bbf8 3423 errors++;
a512bbf8
YZ
3424 }
3425 return errors < i ? 0 : -1;
3426}
3427
387125fc
CM
3428/*
3429 * endio for the write_dev_flush, this will wake anyone waiting
3430 * for the barrier when it is done
3431 */
4246a0b6 3432static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3433{
387125fc
CM
3434 if (bio->bi_private)
3435 complete(bio->bi_private);
3436 bio_put(bio);
3437}
3438
3439/*
3440 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3441 * sent down. With wait == 1, it waits for the previous flush.
3442 *
3443 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3444 * capable
3445 */
3446static int write_dev_flush(struct btrfs_device *device, int wait)
3447{
3448 struct bio *bio;
3449 int ret = 0;
3450
3451 if (device->nobarriers)
3452 return 0;
3453
3454 if (wait) {
3455 bio = device->flush_bio;
3456 if (!bio)
3457 return 0;
3458
3459 wait_for_completion(&device->flush_wait);
3460
4246a0b6
CH
3461 if (bio->bi_error) {
3462 ret = bio->bi_error;
5af3e8cc
SB
3463 btrfs_dev_stat_inc_and_print(device,
3464 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3465 }
3466
3467 /* drop the reference from the wait == 0 run */
3468 bio_put(bio);
3469 device->flush_bio = NULL;
3470
3471 return ret;
3472 }
3473
3474 /*
3475 * one reference for us, and we leave it for the
3476 * caller
3477 */
9c017abc 3478 device->flush_bio = NULL;
9be3395b 3479 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3480 if (!bio)
3481 return -ENOMEM;
3482
3483 bio->bi_end_io = btrfs_end_empty_barrier;
3484 bio->bi_bdev = device->bdev;
3485 init_completion(&device->flush_wait);
3486 bio->bi_private = &device->flush_wait;
3487 device->flush_bio = bio;
3488
3489 bio_get(bio);
21adbd5c 3490 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3491
3492 return 0;
3493}
3494
3495/*
3496 * send an empty flush down to each device in parallel,
3497 * then wait for them
3498 */
3499static int barrier_all_devices(struct btrfs_fs_info *info)
3500{
3501 struct list_head *head;
3502 struct btrfs_device *dev;
5af3e8cc
SB
3503 int errors_send = 0;
3504 int errors_wait = 0;
387125fc
CM
3505 int ret;
3506
3507 /* send down all the barriers */
3508 head = &info->fs_devices->devices;
3509 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3510 if (dev->missing)
3511 continue;
387125fc 3512 if (!dev->bdev) {
5af3e8cc 3513 errors_send++;
387125fc
CM
3514 continue;
3515 }
3516 if (!dev->in_fs_metadata || !dev->writeable)
3517 continue;
3518
3519 ret = write_dev_flush(dev, 0);
3520 if (ret)
5af3e8cc 3521 errors_send++;
387125fc
CM
3522 }
3523
3524 /* wait for all the barriers */
3525 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3526 if (dev->missing)
3527 continue;
387125fc 3528 if (!dev->bdev) {
5af3e8cc 3529 errors_wait++;
387125fc
CM
3530 continue;
3531 }
3532 if (!dev->in_fs_metadata || !dev->writeable)
3533 continue;
3534
3535 ret = write_dev_flush(dev, 1);
3536 if (ret)
5af3e8cc 3537 errors_wait++;
387125fc 3538 }
5af3e8cc
SB
3539 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3540 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3541 return -EIO;
3542 return 0;
3543}
3544
943c6e99
ZL
3545int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3546{
8789f4fe
ZL
3547 int raid_type;
3548 int min_tolerated = INT_MAX;
943c6e99 3549
8789f4fe
ZL
3550 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3551 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3552 min_tolerated = min(min_tolerated,
3553 btrfs_raid_array[BTRFS_RAID_SINGLE].
3554 tolerated_failures);
943c6e99 3555
8789f4fe
ZL
3556 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3557 if (raid_type == BTRFS_RAID_SINGLE)
3558 continue;
3559 if (!(flags & btrfs_raid_group[raid_type]))
3560 continue;
3561 min_tolerated = min(min_tolerated,
3562 btrfs_raid_array[raid_type].
3563 tolerated_failures);
3564 }
943c6e99 3565
8789f4fe
ZL
3566 if (min_tolerated == INT_MAX) {
3567 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3568 min_tolerated = 0;
3569 }
3570
3571 return min_tolerated;
943c6e99
ZL
3572}
3573
5af3e8cc
SB
3574int btrfs_calc_num_tolerated_disk_barrier_failures(
3575 struct btrfs_fs_info *fs_info)
3576{
3577 struct btrfs_ioctl_space_info space;
3578 struct btrfs_space_info *sinfo;
3579 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3580 BTRFS_BLOCK_GROUP_SYSTEM,
3581 BTRFS_BLOCK_GROUP_METADATA,
3582 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3583 int i;
3584 int c;
3585 int num_tolerated_disk_barrier_failures =
3586 (int)fs_info->fs_devices->num_devices;
3587
2c458045 3588 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3589 struct btrfs_space_info *tmp;
3590
3591 sinfo = NULL;
3592 rcu_read_lock();
3593 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3594 if (tmp->flags == types[i]) {
3595 sinfo = tmp;
3596 break;
3597 }
3598 }
3599 rcu_read_unlock();
3600
3601 if (!sinfo)
3602 continue;
3603
3604 down_read(&sinfo->groups_sem);
3605 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3606 u64 flags;
3607
3608 if (list_empty(&sinfo->block_groups[c]))
3609 continue;
3610
3611 btrfs_get_block_group_info(&sinfo->block_groups[c],
3612 &space);
3613 if (space.total_bytes == 0 || space.used_bytes == 0)
3614 continue;
3615 flags = space.flags;
943c6e99
ZL
3616
3617 num_tolerated_disk_barrier_failures = min(
3618 num_tolerated_disk_barrier_failures,
3619 btrfs_get_num_tolerated_disk_barrier_failures(
3620 flags));
5af3e8cc
SB
3621 }
3622 up_read(&sinfo->groups_sem);
3623 }
3624
3625 return num_tolerated_disk_barrier_failures;
3626}
3627
48a3b636 3628static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3629{
e5e9a520 3630 struct list_head *head;
f2984462 3631 struct btrfs_device *dev;
a061fc8d 3632 struct btrfs_super_block *sb;
f2984462 3633 struct btrfs_dev_item *dev_item;
f2984462
CM
3634 int ret;
3635 int do_barriers;
a236aed1
CM
3636 int max_errors;
3637 int total_errors = 0;
a061fc8d 3638 u64 flags;
f2984462
CM
3639
3640 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3641 backup_super_roots(root->fs_info);
f2984462 3642
6c41761f 3643 sb = root->fs_info->super_for_commit;
a061fc8d 3644 dev_item = &sb->dev_item;
e5e9a520 3645
174ba509 3646 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3647 head = &root->fs_info->fs_devices->devices;
d7306801 3648 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3649
5af3e8cc
SB
3650 if (do_barriers) {
3651 ret = barrier_all_devices(root->fs_info);
3652 if (ret) {
3653 mutex_unlock(
3654 &root->fs_info->fs_devices->device_list_mutex);
a4553fef 3655 btrfs_std_error(root->fs_info, ret,
5af3e8cc
SB
3656 "errors while submitting device barriers.");
3657 return ret;
3658 }
3659 }
387125fc 3660
1f78160c 3661 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3662 if (!dev->bdev) {
3663 total_errors++;
3664 continue;
3665 }
2b82032c 3666 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3667 continue;
3668
2b82032c 3669 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3670 btrfs_set_stack_device_type(dev_item, dev->type);
3671 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3672 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3673 dev->commit_total_bytes);
ce7213c7
MX
3674 btrfs_set_stack_device_bytes_used(dev_item,
3675 dev->commit_bytes_used);
a061fc8d
CM
3676 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3677 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3678 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3679 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3680 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3681
a061fc8d
CM
3682 flags = btrfs_super_flags(sb);
3683 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3684
a512bbf8 3685 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3686 if (ret)
3687 total_errors++;
f2984462 3688 }
a236aed1 3689 if (total_errors > max_errors) {
efe120a0 3690 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3691 total_errors);
a724b436 3692 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3693
9d565ba4 3694 /* FUA is masked off if unsupported and can't be the reason */
a4553fef 3695 btrfs_std_error(root->fs_info, -EIO,
9d565ba4
SB
3696 "%d errors while writing supers", total_errors);
3697 return -EIO;
a236aed1 3698 }
f2984462 3699
a512bbf8 3700 total_errors = 0;
1f78160c 3701 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3702 if (!dev->bdev)
3703 continue;
2b82032c 3704 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3705 continue;
3706
a512bbf8
YZ
3707 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3708 if (ret)
3709 total_errors++;
f2984462 3710 }
174ba509 3711 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3712 if (total_errors > max_errors) {
a4553fef 3713 btrfs_std_error(root->fs_info, -EIO,
79787eaa
JM
3714 "%d errors while writing supers", total_errors);
3715 return -EIO;
a236aed1 3716 }
f2984462
CM
3717 return 0;
3718}
3719
a512bbf8
YZ
3720int write_ctree_super(struct btrfs_trans_handle *trans,
3721 struct btrfs_root *root, int max_mirrors)
eb60ceac 3722{
f570e757 3723 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3724}
3725
cb517eab
MX
3726/* Drop a fs root from the radix tree and free it. */
3727void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3728 struct btrfs_root *root)
2619ba1f 3729{
4df27c4d 3730 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3731 radix_tree_delete(&fs_info->fs_roots_radix,
3732 (unsigned long)root->root_key.objectid);
4df27c4d 3733 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3734
3735 if (btrfs_root_refs(&root->root_item) == 0)
3736 synchronize_srcu(&fs_info->subvol_srcu);
3737
1a4319cc 3738 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3739 btrfs_free_log(NULL, root);
3321719e 3740
faa2dbf0
JB
3741 if (root->free_ino_pinned)
3742 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3743 if (root->free_ino_ctl)
3744 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3745 free_fs_root(root);
4df27c4d
YZ
3746}
3747
3748static void free_fs_root(struct btrfs_root *root)
3749{
57cdc8db 3750 iput(root->ino_cache_inode);
4df27c4d 3751 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3752 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3753 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3754 if (root->anon_dev)
3755 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3756 if (root->subv_writers)
3757 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3758 free_extent_buffer(root->node);
3759 free_extent_buffer(root->commit_root);
581bb050
LZ
3760 kfree(root->free_ino_ctl);
3761 kfree(root->free_ino_pinned);
d397712b 3762 kfree(root->name);
b0feb9d9 3763 btrfs_put_fs_root(root);
2619ba1f
CM
3764}
3765
cb517eab
MX
3766void btrfs_free_fs_root(struct btrfs_root *root)
3767{
3768 free_fs_root(root);
2619ba1f
CM
3769}
3770
c146afad 3771int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3772{
c146afad
YZ
3773 u64 root_objectid = 0;
3774 struct btrfs_root *gang[8];
65d33fd7
QW
3775 int i = 0;
3776 int err = 0;
3777 unsigned int ret = 0;
3778 int index;
e089f05c 3779
c146afad 3780 while (1) {
65d33fd7 3781 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3782 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3783 (void **)gang, root_objectid,
3784 ARRAY_SIZE(gang));
65d33fd7
QW
3785 if (!ret) {
3786 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3787 break;
65d33fd7 3788 }
5d4f98a2 3789 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3790
c146afad 3791 for (i = 0; i < ret; i++) {
65d33fd7
QW
3792 /* Avoid to grab roots in dead_roots */
3793 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3794 gang[i] = NULL;
3795 continue;
3796 }
3797 /* grab all the search result for later use */
3798 gang[i] = btrfs_grab_fs_root(gang[i]);
3799 }
3800 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3801
65d33fd7
QW
3802 for (i = 0; i < ret; i++) {
3803 if (!gang[i])
3804 continue;
c146afad 3805 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3806 err = btrfs_orphan_cleanup(gang[i]);
3807 if (err)
65d33fd7
QW
3808 break;
3809 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3810 }
3811 root_objectid++;
3812 }
65d33fd7
QW
3813
3814 /* release the uncleaned roots due to error */
3815 for (; i < ret; i++) {
3816 if (gang[i])
3817 btrfs_put_fs_root(gang[i]);
3818 }
3819 return err;
c146afad 3820}
a2135011 3821
c146afad
YZ
3822int btrfs_commit_super(struct btrfs_root *root)
3823{
3824 struct btrfs_trans_handle *trans;
a74a4b97 3825
c146afad 3826 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3827 btrfs_run_delayed_iputs(root);
c146afad 3828 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3829 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3830
3831 /* wait until ongoing cleanup work done */
3832 down_write(&root->fs_info->cleanup_work_sem);
3833 up_write(&root->fs_info->cleanup_work_sem);
3834
7a7eaa40 3835 trans = btrfs_join_transaction(root);
3612b495
TI
3836 if (IS_ERR(trans))
3837 return PTR_ERR(trans);
d52c1bcc 3838 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3839}
3840
3abdbd78 3841void close_ctree(struct btrfs_root *root)
c146afad
YZ
3842{
3843 struct btrfs_fs_info *fs_info = root->fs_info;
3844 int ret;
3845
3846 fs_info->closing = 1;
3847 smp_mb();
3848
7343dd61
JM
3849 /* wait for the qgroup rescan worker to stop */
3850 btrfs_qgroup_wait_for_completion(fs_info);
3851
803b2f54
SB
3852 /* wait for the uuid_scan task to finish */
3853 down(&fs_info->uuid_tree_rescan_sem);
3854 /* avoid complains from lockdep et al., set sem back to initial state */
3855 up(&fs_info->uuid_tree_rescan_sem);
3856
837d5b6e 3857 /* pause restriper - we want to resume on mount */
aa1b8cd4 3858 btrfs_pause_balance(fs_info);
837d5b6e 3859
8dabb742
SB
3860 btrfs_dev_replace_suspend_for_unmount(fs_info);
3861
aa1b8cd4 3862 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3863
3864 /* wait for any defraggers to finish */
3865 wait_event(fs_info->transaction_wait,
3866 (atomic_read(&fs_info->defrag_running) == 0));
3867
3868 /* clear out the rbtree of defraggable inodes */
26176e7c 3869 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3870
21c7e756
MX
3871 cancel_work_sync(&fs_info->async_reclaim_work);
3872
c146afad 3873 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3874 /*
3875 * If the cleaner thread is stopped and there are
3876 * block groups queued for removal, the deletion will be
3877 * skipped when we quit the cleaner thread.
3878 */
e44163e1 3879 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3880
acce952b 3881 ret = btrfs_commit_super(root);
3882 if (ret)
04892340 3883 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3884 }
3885
87533c47 3886 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3887 btrfs_error_commit_super(root);
0f7d52f4 3888
e3029d9f
AV
3889 kthread_stop(fs_info->transaction_kthread);
3890 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3891
f25784b3
YZ
3892 fs_info->closing = 2;
3893 smp_mb();
3894
04892340 3895 btrfs_free_qgroup_config(fs_info);
bcef60f2 3896
963d678b 3897 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3898 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3899 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3900 }
bcc63abb 3901
6618a59b 3902 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3903 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3904
faa2dbf0 3905 btrfs_free_fs_roots(fs_info);
d10c5f31 3906
1a4319cc
LB
3907 btrfs_put_block_group_cache(fs_info);
3908
2b1360da
JB
3909 btrfs_free_block_groups(fs_info);
3910
de348ee0
WS
3911 /*
3912 * we must make sure there is not any read request to
3913 * submit after we stopping all workers.
3914 */
3915 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3916 btrfs_stop_all_workers(fs_info);
3917
47ab2a6c 3918 fs_info->open = 0;
13e6c37b 3919 free_root_pointers(fs_info, 1);
9ad6b7bc 3920
13e6c37b 3921 iput(fs_info->btree_inode);
d6bfde87 3922
21adbd5c
SB
3923#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3924 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3925 btrfsic_unmount(root, fs_info->fs_devices);
3926#endif
3927
dfe25020 3928 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3929 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3930
e2d84521 3931 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3932 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3933 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3934 bdi_destroy(&fs_info->bdi);
76dda93c 3935 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3936
53b381b3
DW
3937 btrfs_free_stripe_hash_table(fs_info);
3938
cdfb080e 3939 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3940 root->orphan_block_rsv = NULL;
04216820
FM
3941
3942 lock_chunks(root);
3943 while (!list_empty(&fs_info->pinned_chunks)) {
3944 struct extent_map *em;
3945
3946 em = list_first_entry(&fs_info->pinned_chunks,
3947 struct extent_map, list);
3948 list_del_init(&em->list);
3949 free_extent_map(em);
3950 }
3951 unlock_chunks(root);
eb60ceac
CM
3952}
3953
b9fab919
CM
3954int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3955 int atomic)
5f39d397 3956{
1259ab75 3957 int ret;
727011e0 3958 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3959
0b32f4bb 3960 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3961 if (!ret)
3962 return ret;
3963
3964 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3965 parent_transid, atomic);
3966 if (ret == -EAGAIN)
3967 return ret;
1259ab75 3968 return !ret;
5f39d397
CM
3969}
3970
5f39d397
CM
3971void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3972{
06ea65a3 3973 struct btrfs_root *root;
5f39d397 3974 u64 transid = btrfs_header_generation(buf);
b9473439 3975 int was_dirty;
b4ce94de 3976
06ea65a3
JB
3977#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3978 /*
3979 * This is a fast path so only do this check if we have sanity tests
3980 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3981 * outside of the sanity tests.
3982 */
3983 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3984 return;
3985#endif
3986 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3987 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3988 if (transid != root->fs_info->generation)
3989 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3990 "found %llu running %llu\n",
c1c9ff7c 3991 buf->start, transid, root->fs_info->generation);
0b32f4bb 3992 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3993 if (!was_dirty)
3994 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3995 buf->len,
3996 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3997#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3998 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3999 btrfs_print_leaf(root, buf);
4000 ASSERT(0);
4001 }
4002#endif
eb60ceac
CM
4003}
4004
b53d3f5d
LB
4005static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
4006 int flush_delayed)
16cdcec7
MX
4007{
4008 /*
4009 * looks as though older kernels can get into trouble with
4010 * this code, they end up stuck in balance_dirty_pages forever
4011 */
e2d84521 4012 int ret;
16cdcec7
MX
4013
4014 if (current->flags & PF_MEMALLOC)
4015 return;
4016
b53d3f5d
LB
4017 if (flush_delayed)
4018 btrfs_balance_delayed_items(root);
16cdcec7 4019
e2d84521
MX
4020 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
4021 BTRFS_DIRTY_METADATA_THRESH);
4022 if (ret > 0) {
d0e1d66b
NJ
4023 balance_dirty_pages_ratelimited(
4024 root->fs_info->btree_inode->i_mapping);
16cdcec7 4025 }
16cdcec7
MX
4026}
4027
b53d3f5d 4028void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 4029{
b53d3f5d
LB
4030 __btrfs_btree_balance_dirty(root, 1);
4031}
585ad2c3 4032
b53d3f5d
LB
4033void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
4034{
4035 __btrfs_btree_balance_dirty(root, 0);
35b7e476 4036}
6b80053d 4037
ca7a79ad 4038int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 4039{
727011e0 4040 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 4041 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 4042}
0da5468f 4043
fcd1f065 4044static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 4045 int read_only)
4046{
c926093e
DS
4047 struct btrfs_super_block *sb = fs_info->super_copy;
4048 int ret = 0;
4049
21e7626b
DS
4050 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4051 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
4052 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4053 ret = -EINVAL;
4054 }
21e7626b
DS
4055 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4056 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
4057 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4058 ret = -EINVAL;
4059 }
21e7626b
DS
4060 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4061 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4062 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4063 ret = -EINVAL;
4064 }
4065
1104a885 4066 /*
c926093e
DS
4067 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4068 * items yet, they'll be verified later. Issue just a warning.
1104a885 4069 */
21e7626b 4070 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 4071 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4072 btrfs_super_root(sb));
21e7626b 4073 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
4074 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4075 btrfs_super_chunk_root(sb));
21e7626b 4076 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 4077 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 4078 btrfs_super_log_root(sb));
c926093e 4079
75d6ad38
DS
4080 /*
4081 * Check the lower bound, the alignment and other constraints are
4082 * checked later.
4083 */
4084 if (btrfs_super_nodesize(sb) < 4096) {
4085 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4086 btrfs_super_nodesize(sb));
4087 ret = -EINVAL;
4088 }
4089 if (btrfs_super_sectorsize(sb) < 4096) {
4090 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4091 btrfs_super_sectorsize(sb));
4092 ret = -EINVAL;
4093 }
4094
c926093e
DS
4095 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4096 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4097 fs_info->fsid, sb->dev_item.fsid);
4098 ret = -EINVAL;
4099 }
4100
4101 /*
4102 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4103 * done later
4104 */
21e7626b 4105 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4106 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4107 btrfs_super_num_devices(sb));
75d6ad38
DS
4108 if (btrfs_super_num_devices(sb) == 0) {
4109 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4110 ret = -EINVAL;
4111 }
c926093e 4112
21e7626b 4113 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4114 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4115 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4116 ret = -EINVAL;
4117 }
4118
ce7fca5f
DS
4119 /*
4120 * Obvious sys_chunk_array corruptions, it must hold at least one key
4121 * and one chunk
4122 */
4123 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4124 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4125 btrfs_super_sys_array_size(sb),
4126 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4127 ret = -EINVAL;
4128 }
4129 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4130 + sizeof(struct btrfs_chunk)) {
d2207129 4131 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4132 btrfs_super_sys_array_size(sb),
4133 sizeof(struct btrfs_disk_key)
4134 + sizeof(struct btrfs_chunk));
4135 ret = -EINVAL;
4136 }
4137
c926093e
DS
4138 /*
4139 * The generation is a global counter, we'll trust it more than the others
4140 * but it's still possible that it's the one that's wrong.
4141 */
21e7626b 4142 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4143 printk(KERN_WARNING
4144 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4145 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4146 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4147 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4148 printk(KERN_WARNING
4149 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4150 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4151
4152 return ret;
acce952b 4153}
4154
48a3b636 4155static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4156{
acce952b 4157 mutex_lock(&root->fs_info->cleaner_mutex);
4158 btrfs_run_delayed_iputs(root);
4159 mutex_unlock(&root->fs_info->cleaner_mutex);
4160
4161 down_write(&root->fs_info->cleanup_work_sem);
4162 up_write(&root->fs_info->cleanup_work_sem);
4163
4164 /* cleanup FS via transaction */
4165 btrfs_cleanup_transaction(root);
acce952b 4166}
4167
143bede5 4168static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4169{
acce952b 4170 struct btrfs_ordered_extent *ordered;
acce952b 4171
199c2a9c 4172 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4173 /*
4174 * This will just short circuit the ordered completion stuff which will
4175 * make sure the ordered extent gets properly cleaned up.
4176 */
199c2a9c 4177 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4178 root_extent_list)
4179 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4180 spin_unlock(&root->ordered_extent_lock);
4181}
4182
4183static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4184{
4185 struct btrfs_root *root;
4186 struct list_head splice;
4187
4188 INIT_LIST_HEAD(&splice);
4189
4190 spin_lock(&fs_info->ordered_root_lock);
4191 list_splice_init(&fs_info->ordered_roots, &splice);
4192 while (!list_empty(&splice)) {
4193 root = list_first_entry(&splice, struct btrfs_root,
4194 ordered_root);
1de2cfde
JB
4195 list_move_tail(&root->ordered_root,
4196 &fs_info->ordered_roots);
199c2a9c 4197
2a85d9ca 4198 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4199 btrfs_destroy_ordered_extents(root);
4200
2a85d9ca
LB
4201 cond_resched();
4202 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4203 }
4204 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4205}
4206
35a3621b
SB
4207static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4208 struct btrfs_root *root)
acce952b 4209{
4210 struct rb_node *node;
4211 struct btrfs_delayed_ref_root *delayed_refs;
4212 struct btrfs_delayed_ref_node *ref;
4213 int ret = 0;
4214
4215 delayed_refs = &trans->delayed_refs;
4216
4217 spin_lock(&delayed_refs->lock);
d7df2c79 4218 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4219 spin_unlock(&delayed_refs->lock);
efe120a0 4220 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4221 return ret;
4222 }
4223
d7df2c79
JB
4224 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4225 struct btrfs_delayed_ref_head *head;
c6fc2454 4226 struct btrfs_delayed_ref_node *tmp;
e78417d1 4227 bool pin_bytes = false;
acce952b 4228
d7df2c79
JB
4229 head = rb_entry(node, struct btrfs_delayed_ref_head,
4230 href_node);
4231 if (!mutex_trylock(&head->mutex)) {
4232 atomic_inc(&head->node.refs);
4233 spin_unlock(&delayed_refs->lock);
eb12db69 4234
d7df2c79 4235 mutex_lock(&head->mutex);
e78417d1 4236 mutex_unlock(&head->mutex);
d7df2c79
JB
4237 btrfs_put_delayed_ref(&head->node);
4238 spin_lock(&delayed_refs->lock);
4239 continue;
4240 }
4241 spin_lock(&head->lock);
c6fc2454
QW
4242 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4243 list) {
d7df2c79 4244 ref->in_tree = 0;
c6fc2454 4245 list_del(&ref->list);
d7df2c79
JB
4246 atomic_dec(&delayed_refs->num_entries);
4247 btrfs_put_delayed_ref(ref);
e78417d1 4248 }
d7df2c79
JB
4249 if (head->must_insert_reserved)
4250 pin_bytes = true;
4251 btrfs_free_delayed_extent_op(head->extent_op);
4252 delayed_refs->num_heads--;
4253 if (head->processing == 0)
4254 delayed_refs->num_heads_ready--;
4255 atomic_dec(&delayed_refs->num_entries);
4256 head->node.in_tree = 0;
4257 rb_erase(&head->href_node, &delayed_refs->href_root);
4258 spin_unlock(&head->lock);
4259 spin_unlock(&delayed_refs->lock);
4260 mutex_unlock(&head->mutex);
acce952b 4261
d7df2c79
JB
4262 if (pin_bytes)
4263 btrfs_pin_extent(root, head->node.bytenr,
4264 head->node.num_bytes, 1);
4265 btrfs_put_delayed_ref(&head->node);
acce952b 4266 cond_resched();
4267 spin_lock(&delayed_refs->lock);
4268 }
4269
4270 spin_unlock(&delayed_refs->lock);
4271
4272 return ret;
4273}
4274
143bede5 4275static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4276{
4277 struct btrfs_inode *btrfs_inode;
4278 struct list_head splice;
4279
4280 INIT_LIST_HEAD(&splice);
4281
eb73c1b7
MX
4282 spin_lock(&root->delalloc_lock);
4283 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4284
4285 while (!list_empty(&splice)) {
eb73c1b7
MX
4286 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4287 delalloc_inodes);
acce952b 4288
4289 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4290 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4291 &btrfs_inode->runtime_flags);
eb73c1b7 4292 spin_unlock(&root->delalloc_lock);
acce952b 4293
4294 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4295
eb73c1b7 4296 spin_lock(&root->delalloc_lock);
acce952b 4297 }
4298
eb73c1b7
MX
4299 spin_unlock(&root->delalloc_lock);
4300}
4301
4302static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4303{
4304 struct btrfs_root *root;
4305 struct list_head splice;
4306
4307 INIT_LIST_HEAD(&splice);
4308
4309 spin_lock(&fs_info->delalloc_root_lock);
4310 list_splice_init(&fs_info->delalloc_roots, &splice);
4311 while (!list_empty(&splice)) {
4312 root = list_first_entry(&splice, struct btrfs_root,
4313 delalloc_root);
4314 list_del_init(&root->delalloc_root);
4315 root = btrfs_grab_fs_root(root);
4316 BUG_ON(!root);
4317 spin_unlock(&fs_info->delalloc_root_lock);
4318
4319 btrfs_destroy_delalloc_inodes(root);
4320 btrfs_put_fs_root(root);
4321
4322 spin_lock(&fs_info->delalloc_root_lock);
4323 }
4324 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4325}
4326
4327static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4328 struct extent_io_tree *dirty_pages,
4329 int mark)
4330{
4331 int ret;
acce952b 4332 struct extent_buffer *eb;
4333 u64 start = 0;
4334 u64 end;
acce952b 4335
4336 while (1) {
4337 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4338 mark, NULL);
acce952b 4339 if (ret)
4340 break;
4341
4342 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4343 while (start <= end) {
01d58472 4344 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4345 start += root->nodesize;
fd8b2b61 4346 if (!eb)
acce952b 4347 continue;
fd8b2b61 4348 wait_on_extent_buffer_writeback(eb);
acce952b 4349
fd8b2b61
JB
4350 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4351 &eb->bflags))
4352 clear_extent_buffer_dirty(eb);
4353 free_extent_buffer_stale(eb);
acce952b 4354 }
4355 }
4356
4357 return ret;
4358}
4359
4360static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4361 struct extent_io_tree *pinned_extents)
4362{
4363 struct extent_io_tree *unpin;
4364 u64 start;
4365 u64 end;
4366 int ret;
ed0eaa14 4367 bool loop = true;
acce952b 4368
4369 unpin = pinned_extents;
ed0eaa14 4370again:
acce952b 4371 while (1) {
4372 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4373 EXTENT_DIRTY, NULL);
acce952b 4374 if (ret)
4375 break;
4376
acce952b 4377 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4378 btrfs_error_unpin_extent_range(root, start, end);
4379 cond_resched();
4380 }
4381
ed0eaa14
LB
4382 if (loop) {
4383 if (unpin == &root->fs_info->freed_extents[0])
4384 unpin = &root->fs_info->freed_extents[1];
4385 else
4386 unpin = &root->fs_info->freed_extents[0];
4387 loop = false;
4388 goto again;
4389 }
4390
acce952b 4391 return 0;
4392}
4393
49b25e05
JM
4394void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4395 struct btrfs_root *root)
4396{
4397 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4398
4a9d8bde 4399 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4400 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4401
4a9d8bde 4402 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4403 wake_up(&root->fs_info->transaction_wait);
49b25e05 4404
67cde344
MX
4405 btrfs_destroy_delayed_inodes(root);
4406 btrfs_assert_delayed_root_empty(root);
49b25e05 4407
49b25e05
JM
4408 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4409 EXTENT_DIRTY);
6e841e32
LB
4410 btrfs_destroy_pinned_extent(root,
4411 root->fs_info->pinned_extents);
49b25e05 4412
4a9d8bde
MX
4413 cur_trans->state =TRANS_STATE_COMPLETED;
4414 wake_up(&cur_trans->commit_wait);
4415
49b25e05
JM
4416 /*
4417 memset(cur_trans, 0, sizeof(*cur_trans));
4418 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4419 */
4420}
4421
48a3b636 4422static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4423{
4424 struct btrfs_transaction *t;
acce952b 4425
acce952b 4426 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4427
a4abeea4 4428 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4429 while (!list_empty(&root->fs_info->trans_list)) {
4430 t = list_first_entry(&root->fs_info->trans_list,
4431 struct btrfs_transaction, list);
4432 if (t->state >= TRANS_STATE_COMMIT_START) {
4433 atomic_inc(&t->use_count);
4434 spin_unlock(&root->fs_info->trans_lock);
4435 btrfs_wait_for_commit(root, t->transid);
4436 btrfs_put_transaction(t);
4437 spin_lock(&root->fs_info->trans_lock);
4438 continue;
4439 }
4440 if (t == root->fs_info->running_transaction) {
4441 t->state = TRANS_STATE_COMMIT_DOING;
4442 spin_unlock(&root->fs_info->trans_lock);
4443 /*
4444 * We wait for 0 num_writers since we don't hold a trans
4445 * handle open currently for this transaction.
4446 */
4447 wait_event(t->writer_wait,
4448 atomic_read(&t->num_writers) == 0);
4449 } else {
4450 spin_unlock(&root->fs_info->trans_lock);
4451 }
4452 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4453
724e2315
JB
4454 spin_lock(&root->fs_info->trans_lock);
4455 if (t == root->fs_info->running_transaction)
4456 root->fs_info->running_transaction = NULL;
acce952b 4457 list_del_init(&t->list);
724e2315 4458 spin_unlock(&root->fs_info->trans_lock);
acce952b 4459
724e2315
JB
4460 btrfs_put_transaction(t);
4461 trace_btrfs_transaction_commit(root);
4462 spin_lock(&root->fs_info->trans_lock);
4463 }
4464 spin_unlock(&root->fs_info->trans_lock);
4465 btrfs_destroy_all_ordered_extents(root->fs_info);
4466 btrfs_destroy_delayed_inodes(root);
4467 btrfs_assert_delayed_root_empty(root);
4468 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4469 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4470 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4471
4472 return 0;
4473}
4474
e8c9f186 4475static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4476 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4477 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4478 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4479 /* note we're sharing with inode.c for the merge bio hook */
4480 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4481};