Btrfs: improve error handling for btrfs_insert_dir_item callers
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
eb60ceac 47
d1310b2e 48static struct extent_io_ops btree_extent_io_ops;
8b712842 49static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 50static void free_fs_root(struct btrfs_root *root);
acce952b 51static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
52 int read_only);
53static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
54static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
55static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
56 struct btrfs_root *root);
57static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
58static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
59static int btrfs_destroy_marked_extents(struct btrfs_root *root,
60 struct extent_io_tree *dirty_pages,
61 int mark);
62static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
63 struct extent_io_tree *pinned_extents);
64static int btrfs_cleanup_transaction(struct btrfs_root *root);
ce9adaa5 65
d352ac68
CM
66/*
67 * end_io_wq structs are used to do processing in task context when an IO is
68 * complete. This is used during reads to verify checksums, and it is used
69 * by writes to insert metadata for new file extents after IO is complete.
70 */
ce9adaa5
CM
71struct end_io_wq {
72 struct bio *bio;
73 bio_end_io_t *end_io;
74 void *private;
75 struct btrfs_fs_info *info;
76 int error;
22c59948 77 int metadata;
ce9adaa5 78 struct list_head list;
8b712842 79 struct btrfs_work work;
ce9adaa5 80};
0da5468f 81
d352ac68
CM
82/*
83 * async submit bios are used to offload expensive checksumming
84 * onto the worker threads. They checksum file and metadata bios
85 * just before they are sent down the IO stack.
86 */
44b8bd7e
CM
87struct async_submit_bio {
88 struct inode *inode;
89 struct bio *bio;
90 struct list_head list;
4a69a410
CM
91 extent_submit_bio_hook_t *submit_bio_start;
92 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
93 int rw;
94 int mirror_num;
c8b97818 95 unsigned long bio_flags;
eaf25d93
CM
96 /*
97 * bio_offset is optional, can be used if the pages in the bio
98 * can't tell us where in the file the bio should go
99 */
100 u64 bio_offset;
8b712842 101 struct btrfs_work work;
44b8bd7e
CM
102};
103
85d4e461
CM
104/*
105 * Lockdep class keys for extent_buffer->lock's in this root. For a given
106 * eb, the lockdep key is determined by the btrfs_root it belongs to and
107 * the level the eb occupies in the tree.
108 *
109 * Different roots are used for different purposes and may nest inside each
110 * other and they require separate keysets. As lockdep keys should be
111 * static, assign keysets according to the purpose of the root as indicated
112 * by btrfs_root->objectid. This ensures that all special purpose roots
113 * have separate keysets.
4008c04a 114 *
85d4e461
CM
115 * Lock-nesting across peer nodes is always done with the immediate parent
116 * node locked thus preventing deadlock. As lockdep doesn't know this, use
117 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 118 *
85d4e461
CM
119 * The key is set by the readpage_end_io_hook after the buffer has passed
120 * csum validation but before the pages are unlocked. It is also set by
121 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 122 *
85d4e461
CM
123 * We also add a check to make sure the highest level of the tree is the
124 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
125 * needs update as well.
4008c04a
CM
126 */
127#ifdef CONFIG_DEBUG_LOCK_ALLOC
128# if BTRFS_MAX_LEVEL != 8
129# error
130# endif
85d4e461
CM
131
132static struct btrfs_lockdep_keyset {
133 u64 id; /* root objectid */
134 const char *name_stem; /* lock name stem */
135 char names[BTRFS_MAX_LEVEL + 1][20];
136 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
137} btrfs_lockdep_keysets[] = {
138 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
139 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
140 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
141 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
142 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
143 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
144 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
145 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
146 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
147 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
148 { .id = 0, .name_stem = "tree" },
4008c04a 149};
85d4e461
CM
150
151void __init btrfs_init_lockdep(void)
152{
153 int i, j;
154
155 /* initialize lockdep class names */
156 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
157 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
158
159 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
160 snprintf(ks->names[j], sizeof(ks->names[j]),
161 "btrfs-%s-%02d", ks->name_stem, j);
162 }
163}
164
165void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
166 int level)
167{
168 struct btrfs_lockdep_keyset *ks;
169
170 BUG_ON(level >= ARRAY_SIZE(ks->keys));
171
172 /* find the matching keyset, id 0 is the default entry */
173 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
174 if (ks->id == objectid)
175 break;
176
177 lockdep_set_class_and_name(&eb->lock,
178 &ks->keys[level], ks->names[level]);
179}
180
4008c04a
CM
181#endif
182
d352ac68
CM
183/*
184 * extents on the btree inode are pretty simple, there's one extent
185 * that covers the entire device
186 */
b2950863 187static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 188 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 189 int create)
7eccb903 190{
5f39d397
CM
191 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
192 struct extent_map *em;
193 int ret;
194
890871be 195 read_lock(&em_tree->lock);
d1310b2e 196 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
197 if (em) {
198 em->bdev =
199 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 200 read_unlock(&em_tree->lock);
5f39d397 201 goto out;
a061fc8d 202 }
890871be 203 read_unlock(&em_tree->lock);
7b13b7b1 204
172ddd60 205 em = alloc_extent_map();
5f39d397
CM
206 if (!em) {
207 em = ERR_PTR(-ENOMEM);
208 goto out;
209 }
210 em->start = 0;
0afbaf8c 211 em->len = (u64)-1;
c8b97818 212 em->block_len = (u64)-1;
5f39d397 213 em->block_start = 0;
a061fc8d 214 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 215
890871be 216 write_lock(&em_tree->lock);
5f39d397
CM
217 ret = add_extent_mapping(em_tree, em);
218 if (ret == -EEXIST) {
0afbaf8c
CM
219 u64 failed_start = em->start;
220 u64 failed_len = em->len;
221
5f39d397 222 free_extent_map(em);
7b13b7b1 223 em = lookup_extent_mapping(em_tree, start, len);
0afbaf8c 224 if (em) {
7b13b7b1 225 ret = 0;
0afbaf8c
CM
226 } else {
227 em = lookup_extent_mapping(em_tree, failed_start,
228 failed_len);
7b13b7b1 229 ret = -EIO;
0afbaf8c 230 }
5f39d397 231 } else if (ret) {
7b13b7b1
CM
232 free_extent_map(em);
233 em = NULL;
5f39d397 234 }
890871be 235 write_unlock(&em_tree->lock);
7b13b7b1
CM
236
237 if (ret)
238 em = ERR_PTR(ret);
5f39d397
CM
239out:
240 return em;
7eccb903
CM
241}
242
19c00ddc
CM
243u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
244{
163e783e 245 return crc32c(seed, data, len);
19c00ddc
CM
246}
247
248void btrfs_csum_final(u32 crc, char *result)
249{
7e75bf3f 250 put_unaligned_le32(~crc, result);
19c00ddc
CM
251}
252
d352ac68
CM
253/*
254 * compute the csum for a btree block, and either verify it or write it
255 * into the csum field of the block.
256 */
19c00ddc
CM
257static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
258 int verify)
259{
6c41761f 260 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 261 char *result = NULL;
19c00ddc
CM
262 unsigned long len;
263 unsigned long cur_len;
264 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
265 char *kaddr;
266 unsigned long map_start;
267 unsigned long map_len;
268 int err;
269 u32 crc = ~(u32)0;
607d432d 270 unsigned long inline_result;
19c00ddc
CM
271
272 len = buf->len - offset;
d397712b 273 while (len > 0) {
19c00ddc 274 err = map_private_extent_buffer(buf, offset, 32,
a6591715 275 &kaddr, &map_start, &map_len);
d397712b 276 if (err)
19c00ddc 277 return 1;
19c00ddc
CM
278 cur_len = min(len, map_len - (offset - map_start));
279 crc = btrfs_csum_data(root, kaddr + offset - map_start,
280 crc, cur_len);
281 len -= cur_len;
282 offset += cur_len;
19c00ddc 283 }
607d432d
JB
284 if (csum_size > sizeof(inline_result)) {
285 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
286 if (!result)
287 return 1;
288 } else {
289 result = (char *)&inline_result;
290 }
291
19c00ddc
CM
292 btrfs_csum_final(crc, result);
293
294 if (verify) {
607d432d 295 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
296 u32 val;
297 u32 found = 0;
607d432d 298 memcpy(&found, result, csum_size);
e4204ded 299
607d432d 300 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 301 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
302 "failed on %llu wanted %X found %X "
303 "level %d\n",
304 root->fs_info->sb->s_id,
305 (unsigned long long)buf->start, val, found,
306 btrfs_header_level(buf));
607d432d
JB
307 if (result != (char *)&inline_result)
308 kfree(result);
19c00ddc
CM
309 return 1;
310 }
311 } else {
607d432d 312 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 313 }
607d432d
JB
314 if (result != (char *)&inline_result)
315 kfree(result);
19c00ddc
CM
316 return 0;
317}
318
d352ac68
CM
319/*
320 * we can't consider a given block up to date unless the transid of the
321 * block matches the transid in the parent node's pointer. This is how we
322 * detect blocks that either didn't get written at all or got written
323 * in the wrong place.
324 */
1259ab75
CM
325static int verify_parent_transid(struct extent_io_tree *io_tree,
326 struct extent_buffer *eb, u64 parent_transid)
327{
2ac55d41 328 struct extent_state *cached_state = NULL;
1259ab75
CM
329 int ret;
330
331 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
332 return 0;
333
2ac55d41
JB
334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
335 0, &cached_state, GFP_NOFS);
336 if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
2ac55d41 347 clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
363 int ret;
364 int num_copies = 0;
365 int mirror_num = 0;
366
a826d6dc 367 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
368 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
369 while (1) {
bb82ab88
AJ
370 ret = read_extent_buffer_pages(io_tree, eb, start,
371 WAIT_COMPLETE,
f188591e 372 btree_get_extent, mirror_num);
1259ab75
CM
373 if (!ret &&
374 !verify_parent_transid(io_tree, eb, parent_transid))
f188591e 375 return ret;
d397712b 376
a826d6dc
JB
377 /*
378 * This buffer's crc is fine, but its contents are corrupted, so
379 * there is no reason to read the other copies, they won't be
380 * any less wrong.
381 */
382 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
383 return ret;
384
f188591e
CM
385 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
386 eb->start, eb->len);
4235298e 387 if (num_copies == 1)
f188591e 388 return ret;
4235298e 389
f188591e 390 mirror_num++;
4235298e 391 if (mirror_num > num_copies)
f188591e 392 return ret;
f188591e 393 }
f188591e
CM
394 return -EIO;
395}
19c00ddc 396
d352ac68 397/*
d397712b
CM
398 * checksum a dirty tree block before IO. This has extra checks to make sure
399 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 400 */
d397712b 401
b2950863 402static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 403{
d1310b2e 404 struct extent_io_tree *tree;
35ebb934 405 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
19c00ddc 406 u64 found_start;
19c00ddc
CM
407 unsigned long len;
408 struct extent_buffer *eb;
f188591e
CM
409 int ret;
410
d1310b2e 411 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 412
eb14ab8e
CM
413 if (page->private == EXTENT_PAGE_PRIVATE) {
414 WARN_ON(1);
19c00ddc 415 goto out;
eb14ab8e
CM
416 }
417 if (!page->private) {
418 WARN_ON(1);
19c00ddc 419 goto out;
eb14ab8e 420 }
19c00ddc 421 len = page->private >> 2;
d397712b
CM
422 WARN_ON(len == 0);
423
ba144192 424 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
425 if (eb == NULL) {
426 WARN_ON(1);
427 goto out;
428 }
ca7a79ad
CM
429 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
430 btrfs_header_generation(eb));
f188591e 431 BUG_ON(ret);
784b4e29
CM
432 WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
433
19c00ddc
CM
434 found_start = btrfs_header_bytenr(eb);
435 if (found_start != start) {
55c69072
CM
436 WARN_ON(1);
437 goto err;
438 }
439 if (eb->first_page != page) {
55c69072
CM
440 WARN_ON(1);
441 goto err;
442 }
443 if (!PageUptodate(page)) {
55c69072
CM
444 WARN_ON(1);
445 goto err;
19c00ddc 446 }
19c00ddc 447 csum_tree_block(root, eb, 0);
55c69072 448err:
19c00ddc
CM
449 free_extent_buffer(eb);
450out:
451 return 0;
452}
453
2b82032c
YZ
454static int check_tree_block_fsid(struct btrfs_root *root,
455 struct extent_buffer *eb)
456{
457 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
458 u8 fsid[BTRFS_UUID_SIZE];
459 int ret = 1;
460
461 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
462 BTRFS_FSID_SIZE);
463 while (fs_devices) {
464 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
465 ret = 0;
466 break;
467 }
468 fs_devices = fs_devices->seed;
469 }
470 return ret;
471}
472
a826d6dc
JB
473#define CORRUPT(reason, eb, root, slot) \
474 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
475 "root=%llu, slot=%d\n", reason, \
476 (unsigned long long)btrfs_header_bytenr(eb), \
477 (unsigned long long)root->objectid, slot)
478
479static noinline int check_leaf(struct btrfs_root *root,
480 struct extent_buffer *leaf)
481{
482 struct btrfs_key key;
483 struct btrfs_key leaf_key;
484 u32 nritems = btrfs_header_nritems(leaf);
485 int slot;
486
487 if (nritems == 0)
488 return 0;
489
490 /* Check the 0 item */
491 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
492 BTRFS_LEAF_DATA_SIZE(root)) {
493 CORRUPT("invalid item offset size pair", leaf, root, 0);
494 return -EIO;
495 }
496
497 /*
498 * Check to make sure each items keys are in the correct order and their
499 * offsets make sense. We only have to loop through nritems-1 because
500 * we check the current slot against the next slot, which verifies the
501 * next slot's offset+size makes sense and that the current's slot
502 * offset is correct.
503 */
504 for (slot = 0; slot < nritems - 1; slot++) {
505 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
506 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
507
508 /* Make sure the keys are in the right order */
509 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
510 CORRUPT("bad key order", leaf, root, slot);
511 return -EIO;
512 }
513
514 /*
515 * Make sure the offset and ends are right, remember that the
516 * item data starts at the end of the leaf and grows towards the
517 * front.
518 */
519 if (btrfs_item_offset_nr(leaf, slot) !=
520 btrfs_item_end_nr(leaf, slot + 1)) {
521 CORRUPT("slot offset bad", leaf, root, slot);
522 return -EIO;
523 }
524
525 /*
526 * Check to make sure that we don't point outside of the leaf,
527 * just incase all the items are consistent to eachother, but
528 * all point outside of the leaf.
529 */
530 if (btrfs_item_end_nr(leaf, slot) >
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("slot end outside of leaf", leaf, root, slot);
533 return -EIO;
534 }
535 }
536
537 return 0;
538}
539
b2950863 540static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
ce9adaa5
CM
541 struct extent_state *state)
542{
543 struct extent_io_tree *tree;
544 u64 found_start;
545 int found_level;
546 unsigned long len;
547 struct extent_buffer *eb;
548 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 549 int ret = 0;
ce9adaa5
CM
550
551 tree = &BTRFS_I(page->mapping->host)->io_tree;
552 if (page->private == EXTENT_PAGE_PRIVATE)
553 goto out;
554 if (!page->private)
555 goto out;
d397712b 556
ce9adaa5 557 len = page->private >> 2;
d397712b
CM
558 WARN_ON(len == 0);
559
ba144192 560 eb = alloc_extent_buffer(tree, start, len, page);
91ca338d
TI
561 if (eb == NULL) {
562 ret = -EIO;
563 goto out;
564 }
f188591e 565
ce9adaa5 566 found_start = btrfs_header_bytenr(eb);
23a07867 567 if (found_start != start) {
7a36ddec 568 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
569 "%llu %llu\n",
570 (unsigned long long)found_start,
571 (unsigned long long)eb->start);
f188591e 572 ret = -EIO;
ce9adaa5
CM
573 goto err;
574 }
575 if (eb->first_page != page) {
d397712b
CM
576 printk(KERN_INFO "btrfs bad first page %lu %lu\n",
577 eb->first_page->index, page->index);
ce9adaa5 578 WARN_ON(1);
f188591e 579 ret = -EIO;
ce9adaa5
CM
580 goto err;
581 }
2b82032c 582 if (check_tree_block_fsid(root, eb)) {
7a36ddec 583 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 584 (unsigned long long)eb->start);
1259ab75
CM
585 ret = -EIO;
586 goto err;
587 }
ce9adaa5
CM
588 found_level = btrfs_header_level(eb);
589
85d4e461
CM
590 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
591 eb, found_level);
4008c04a 592
ce9adaa5 593 ret = csum_tree_block(root, eb, 1);
a826d6dc 594 if (ret) {
f188591e 595 ret = -EIO;
a826d6dc
JB
596 goto err;
597 }
598
599 /*
600 * If this is a leaf block and it is corrupt, set the corrupt bit so
601 * that we don't try and read the other copies of this block, just
602 * return -EIO.
603 */
604 if (found_level == 0 && check_leaf(root, eb)) {
605 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
606 ret = -EIO;
607 }
ce9adaa5
CM
608
609 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
610 end = eb->start + end - 1;
ce9adaa5 611err:
4bb31e92
AJ
612 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
613 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
614 btree_readahead_hook(root, eb, eb->start, ret);
615 }
616
ce9adaa5
CM
617 free_extent_buffer(eb);
618out:
f188591e 619 return ret;
ce9adaa5
CM
620}
621
4bb31e92
AJ
622static int btree_io_failed_hook(struct bio *failed_bio,
623 struct page *page, u64 start, u64 end,
32240a91 624 int mirror_num, struct extent_state *state)
4bb31e92
AJ
625{
626 struct extent_io_tree *tree;
627 unsigned long len;
628 struct extent_buffer *eb;
629 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
630
631 tree = &BTRFS_I(page->mapping->host)->io_tree;
632 if (page->private == EXTENT_PAGE_PRIVATE)
633 goto out;
634 if (!page->private)
635 goto out;
636
637 len = page->private >> 2;
638 WARN_ON(len == 0);
639
640 eb = alloc_extent_buffer(tree, start, len, page);
641 if (eb == NULL)
642 goto out;
643
644 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
645 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
646 btree_readahead_hook(root, eb, eb->start, -EIO);
647 }
c674e04e 648 free_extent_buffer(eb);
4bb31e92
AJ
649
650out:
651 return -EIO; /* we fixed nothing */
652}
653
ce9adaa5 654static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
655{
656 struct end_io_wq *end_io_wq = bio->bi_private;
657 struct btrfs_fs_info *fs_info;
ce9adaa5 658
ce9adaa5 659 fs_info = end_io_wq->info;
ce9adaa5 660 end_io_wq->error = err;
8b712842
CM
661 end_io_wq->work.func = end_workqueue_fn;
662 end_io_wq->work.flags = 0;
d20f7043 663
7b6d91da 664 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 665 if (end_io_wq->metadata == 1)
cad321ad
CM
666 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
667 &end_io_wq->work);
0cb59c99
JB
668 else if (end_io_wq->metadata == 2)
669 btrfs_queue_worker(&fs_info->endio_freespace_worker,
670 &end_io_wq->work);
cad321ad
CM
671 else
672 btrfs_queue_worker(&fs_info->endio_write_workers,
673 &end_io_wq->work);
d20f7043
CM
674 } else {
675 if (end_io_wq->metadata)
676 btrfs_queue_worker(&fs_info->endio_meta_workers,
677 &end_io_wq->work);
678 else
679 btrfs_queue_worker(&fs_info->endio_workers,
680 &end_io_wq->work);
681 }
ce9adaa5
CM
682}
683
0cb59c99
JB
684/*
685 * For the metadata arg you want
686 *
687 * 0 - if data
688 * 1 - if normal metadta
689 * 2 - if writing to the free space cache area
690 */
22c59948
CM
691int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
692 int metadata)
0b86a832 693{
ce9adaa5 694 struct end_io_wq *end_io_wq;
ce9adaa5
CM
695 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
696 if (!end_io_wq)
697 return -ENOMEM;
698
699 end_io_wq->private = bio->bi_private;
700 end_io_wq->end_io = bio->bi_end_io;
22c59948 701 end_io_wq->info = info;
ce9adaa5
CM
702 end_io_wq->error = 0;
703 end_io_wq->bio = bio;
22c59948 704 end_io_wq->metadata = metadata;
ce9adaa5
CM
705
706 bio->bi_private = end_io_wq;
707 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
708 return 0;
709}
710
b64a2851 711unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 712{
4854ddd0
CM
713 unsigned long limit = min_t(unsigned long,
714 info->workers.max_workers,
715 info->fs_devices->open_devices);
716 return 256 * limit;
717}
0986fe9e 718
4a69a410
CM
719static void run_one_async_start(struct btrfs_work *work)
720{
4a69a410
CM
721 struct async_submit_bio *async;
722
723 async = container_of(work, struct async_submit_bio, work);
4a69a410 724 async->submit_bio_start(async->inode, async->rw, async->bio,
eaf25d93
CM
725 async->mirror_num, async->bio_flags,
726 async->bio_offset);
4a69a410
CM
727}
728
729static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
730{
731 struct btrfs_fs_info *fs_info;
732 struct async_submit_bio *async;
4854ddd0 733 int limit;
8b712842
CM
734
735 async = container_of(work, struct async_submit_bio, work);
736 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 737
b64a2851 738 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
739 limit = limit * 2 / 3;
740
8b712842 741 atomic_dec(&fs_info->nr_async_submits);
0986fe9e 742
b64a2851
CM
743 if (atomic_read(&fs_info->nr_async_submits) < limit &&
744 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
745 wake_up(&fs_info->async_submit_wait);
746
4a69a410 747 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
748 async->mirror_num, async->bio_flags,
749 async->bio_offset);
4a69a410
CM
750}
751
752static void run_one_async_free(struct btrfs_work *work)
753{
754 struct async_submit_bio *async;
755
756 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
757 kfree(async);
758}
759
44b8bd7e
CM
760int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
761 int rw, struct bio *bio, int mirror_num,
c8b97818 762 unsigned long bio_flags,
eaf25d93 763 u64 bio_offset,
4a69a410
CM
764 extent_submit_bio_hook_t *submit_bio_start,
765 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
766{
767 struct async_submit_bio *async;
768
769 async = kmalloc(sizeof(*async), GFP_NOFS);
770 if (!async)
771 return -ENOMEM;
772
773 async->inode = inode;
774 async->rw = rw;
775 async->bio = bio;
776 async->mirror_num = mirror_num;
4a69a410
CM
777 async->submit_bio_start = submit_bio_start;
778 async->submit_bio_done = submit_bio_done;
779
780 async->work.func = run_one_async_start;
781 async->work.ordered_func = run_one_async_done;
782 async->work.ordered_free = run_one_async_free;
783
8b712842 784 async->work.flags = 0;
c8b97818 785 async->bio_flags = bio_flags;
eaf25d93 786 async->bio_offset = bio_offset;
8c8bee1d 787
cb03c743 788 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 789
7b6d91da 790 if (rw & REQ_SYNC)
d313d7a3
CM
791 btrfs_set_work_high_prio(&async->work);
792
8b712842 793 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 794
d397712b 795 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
796 atomic_read(&fs_info->nr_async_submits)) {
797 wait_event(fs_info->async_submit_wait,
798 (atomic_read(&fs_info->nr_async_submits) == 0));
799 }
800
44b8bd7e
CM
801 return 0;
802}
803
ce3ed71a
CM
804static int btree_csum_one_bio(struct bio *bio)
805{
806 struct bio_vec *bvec = bio->bi_io_vec;
807 int bio_index = 0;
808 struct btrfs_root *root;
809
810 WARN_ON(bio->bi_vcnt <= 0);
d397712b 811 while (bio_index < bio->bi_vcnt) {
ce3ed71a
CM
812 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
813 csum_dirty_buffer(root, bvec->bv_page);
814 bio_index++;
815 bvec++;
816 }
817 return 0;
818}
819
4a69a410
CM
820static int __btree_submit_bio_start(struct inode *inode, int rw,
821 struct bio *bio, int mirror_num,
eaf25d93
CM
822 unsigned long bio_flags,
823 u64 bio_offset)
22c59948 824{
8b712842
CM
825 /*
826 * when we're called for a write, we're already in the async
5443be45 827 * submission context. Just jump into btrfs_map_bio
8b712842 828 */
4a69a410
CM
829 btree_csum_one_bio(bio);
830 return 0;
831}
22c59948 832
4a69a410 833static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
834 int mirror_num, unsigned long bio_flags,
835 u64 bio_offset)
4a69a410 836{
8b712842 837 /*
4a69a410
CM
838 * when we're called for a write, we're already in the async
839 * submission context. Just jump into btrfs_map_bio
8b712842 840 */
8b712842 841 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
0b86a832
CM
842}
843
44b8bd7e 844static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
845 int mirror_num, unsigned long bio_flags,
846 u64 bio_offset)
44b8bd7e 847{
cad321ad
CM
848 int ret;
849
850 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
851 bio, 1);
852 BUG_ON(ret);
853
7b6d91da 854 if (!(rw & REQ_WRITE)) {
4a69a410
CM
855 /*
856 * called for a read, do the setup so that checksum validation
857 * can happen in the async kernel threads
858 */
4a69a410 859 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
6f3577bd 860 mirror_num, 0);
44b8bd7e 861 }
d313d7a3 862
cad321ad
CM
863 /*
864 * kthread helpers are used to submit writes so that checksumming
865 * can happen in parallel across all CPUs
866 */
44b8bd7e 867 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
c8b97818 868 inode, rw, bio, mirror_num, 0,
eaf25d93 869 bio_offset,
4a69a410
CM
870 __btree_submit_bio_start,
871 __btree_submit_bio_done);
44b8bd7e
CM
872}
873
3dd1462e 874#ifdef CONFIG_MIGRATION
784b4e29
CM
875static int btree_migratepage(struct address_space *mapping,
876 struct page *newpage, struct page *page)
877{
878 /*
879 * we can't safely write a btree page from here,
880 * we haven't done the locking hook
881 */
882 if (PageDirty(page))
883 return -EAGAIN;
884 /*
885 * Buffers may be managed in a filesystem specific way.
886 * We must have no buffers or drop them.
887 */
888 if (page_has_private(page) &&
889 !try_to_release_page(page, GFP_KERNEL))
890 return -EAGAIN;
784b4e29
CM
891 return migrate_page(mapping, newpage, page);
892}
3dd1462e 893#endif
784b4e29 894
0da5468f
CM
895static int btree_writepage(struct page *page, struct writeback_control *wbc)
896{
d1310b2e 897 struct extent_io_tree *tree;
b9473439
CM
898 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
899 struct extent_buffer *eb;
900 int was_dirty;
901
d1310b2e 902 tree = &BTRFS_I(page->mapping->host)->io_tree;
b9473439
CM
903 if (!(current->flags & PF_MEMALLOC)) {
904 return extent_write_full_page(tree, page,
905 btree_get_extent, wbc);
906 }
5443be45 907
b9473439 908 redirty_page_for_writepage(wbc, page);
784b4e29 909 eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
b9473439
CM
910 WARN_ON(!eb);
911
912 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
913 if (!was_dirty) {
914 spin_lock(&root->fs_info->delalloc_lock);
915 root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
916 spin_unlock(&root->fs_info->delalloc_lock);
5443be45 917 }
b9473439
CM
918 free_extent_buffer(eb);
919
920 unlock_page(page);
921 return 0;
5f39d397 922}
0da5468f
CM
923
924static int btree_writepages(struct address_space *mapping,
925 struct writeback_control *wbc)
926{
d1310b2e
CM
927 struct extent_io_tree *tree;
928 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 929 if (wbc->sync_mode == WB_SYNC_NONE) {
b9473439 930 struct btrfs_root *root = BTRFS_I(mapping->host)->root;
793955bc 931 u64 num_dirty;
24ab9cd8 932 unsigned long thresh = 32 * 1024 * 1024;
448d640b
CM
933
934 if (wbc->for_kupdate)
935 return 0;
936
b9473439
CM
937 /* this is a bit racy, but that's ok */
938 num_dirty = root->fs_info->dirty_metadata_bytes;
d397712b 939 if (num_dirty < thresh)
793955bc 940 return 0;
793955bc 941 }
0da5468f
CM
942 return extent_writepages(tree, mapping, btree_get_extent, wbc);
943}
944
b2950863 945static int btree_readpage(struct file *file, struct page *page)
5f39d397 946{
d1310b2e
CM
947 struct extent_io_tree *tree;
948 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 949 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 950}
22b0ebda 951
70dec807 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 953{
d1310b2e
CM
954 struct extent_io_tree *tree;
955 struct extent_map_tree *map;
5f39d397 956 int ret;
d98237b3 957
98509cfc 958 if (PageWriteback(page) || PageDirty(page))
d397712b 959 return 0;
98509cfc 960
d1310b2e
CM
961 tree = &BTRFS_I(page->mapping->host)->io_tree;
962 map = &BTRFS_I(page->mapping->host)->extent_tree;
6af118ce 963
0c4e538b
DS
964 /*
965 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
966 * slab allocation from alloc_extent_state down the callchain where
967 * it'd hit a BUG_ON as those flags are not allowed.
968 */
969 gfp_flags &= ~GFP_SLAB_BUG_MASK;
970
7b13b7b1 971 ret = try_release_extent_state(map, tree, page, gfp_flags);
d397712b 972 if (!ret)
6af118ce 973 return 0;
6af118ce
CM
974
975 ret = try_release_extent_buffer(tree, page);
5f39d397
CM
976 if (ret == 1) {
977 ClearPagePrivate(page);
978 set_page_private(page, 0);
979 page_cache_release(page);
980 }
6af118ce 981
d98237b3
CM
982 return ret;
983}
984
5f39d397 985static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 986{
d1310b2e
CM
987 struct extent_io_tree *tree;
988 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
989 extent_invalidatepage(tree, page, offset);
990 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 991 if (PagePrivate(page)) {
d397712b
CM
992 printk(KERN_WARNING "btrfs warning page private not zero "
993 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
994 ClearPagePrivate(page);
995 set_page_private(page, 0);
996 page_cache_release(page);
997 }
d98237b3
CM
998}
999
7f09410b 1000static const struct address_space_operations btree_aops = {
d98237b3
CM
1001 .readpage = btree_readpage,
1002 .writepage = btree_writepage,
0da5468f 1003 .writepages = btree_writepages,
5f39d397
CM
1004 .releasepage = btree_releasepage,
1005 .invalidatepage = btree_invalidatepage,
5a92bc88 1006#ifdef CONFIG_MIGRATION
784b4e29 1007 .migratepage = btree_migratepage,
5a92bc88 1008#endif
d98237b3
CM
1009};
1010
ca7a79ad
CM
1011int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1012 u64 parent_transid)
090d1875 1013{
5f39d397
CM
1014 struct extent_buffer *buf = NULL;
1015 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1016 int ret = 0;
090d1875 1017
db94535d 1018 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1019 if (!buf)
090d1875 1020 return 0;
d1310b2e 1021 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1022 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1023 free_extent_buffer(buf);
de428b63 1024 return ret;
090d1875
CM
1025}
1026
ab0fff03
AJ
1027int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1028 int mirror_num, struct extent_buffer **eb)
1029{
1030 struct extent_buffer *buf = NULL;
1031 struct inode *btree_inode = root->fs_info->btree_inode;
1032 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1033 int ret;
1034
1035 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1036 if (!buf)
1037 return 0;
1038
1039 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1040
1041 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1042 btree_get_extent, mirror_num);
1043 if (ret) {
1044 free_extent_buffer(buf);
1045 return ret;
1046 }
1047
1048 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1049 free_extent_buffer(buf);
1050 return -EIO;
1051 } else if (extent_buffer_uptodate(io_tree, buf, NULL)) {
1052 *eb = buf;
1053 } else {
1054 free_extent_buffer(buf);
1055 }
1056 return 0;
1057}
1058
0999df54
CM
1059struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1060 u64 bytenr, u32 blocksize)
1061{
1062 struct inode *btree_inode = root->fs_info->btree_inode;
1063 struct extent_buffer *eb;
1064 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1065 bytenr, blocksize);
0999df54
CM
1066 return eb;
1067}
1068
1069struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1070 u64 bytenr, u32 blocksize)
1071{
1072 struct inode *btree_inode = root->fs_info->btree_inode;
1073 struct extent_buffer *eb;
1074
1075 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
ba144192 1076 bytenr, blocksize, NULL);
0999df54
CM
1077 return eb;
1078}
1079
1080
e02119d5
CM
1081int btrfs_write_tree_block(struct extent_buffer *buf)
1082{
8aa38c31
CH
1083 return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1084 buf->start + buf->len - 1);
e02119d5
CM
1085}
1086
1087int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1088{
8aa38c31
CH
1089 return filemap_fdatawait_range(buf->first_page->mapping,
1090 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1091}
1092
0999df54 1093struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1094 u32 blocksize, u64 parent_transid)
0999df54
CM
1095{
1096 struct extent_buffer *buf = NULL;
0999df54
CM
1097 int ret;
1098
0999df54
CM
1099 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1100 if (!buf)
1101 return NULL;
0999df54 1102
ca7a79ad 1103 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
ce9adaa5 1104
d397712b 1105 if (ret == 0)
b4ce94de 1106 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
5f39d397 1107 return buf;
ce9adaa5 1108
eb60ceac
CM
1109}
1110
e089f05c 1111int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
5f39d397 1112 struct extent_buffer *buf)
ed2ff2cb 1113{
5f39d397 1114 struct inode *btree_inode = root->fs_info->btree_inode;
55c69072 1115 if (btrfs_header_generation(buf) ==
925baedd 1116 root->fs_info->running_transaction->transid) {
b9447ef8 1117 btrfs_assert_tree_locked(buf);
b4ce94de 1118
b9473439
CM
1119 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1120 spin_lock(&root->fs_info->delalloc_lock);
1121 if (root->fs_info->dirty_metadata_bytes >= buf->len)
1122 root->fs_info->dirty_metadata_bytes -= buf->len;
1123 else
1124 WARN_ON(1);
1125 spin_unlock(&root->fs_info->delalloc_lock);
1126 }
b4ce94de 1127
b9473439
CM
1128 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1129 btrfs_set_lock_blocking(buf);
d1310b2e 1130 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
55c69072 1131 buf);
925baedd 1132 }
5f39d397
CM
1133 return 0;
1134}
1135
db94535d 1136static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
87ee04eb 1137 u32 stripesize, struct btrfs_root *root,
9f5fae2f 1138 struct btrfs_fs_info *fs_info,
e20d96d6 1139 u64 objectid)
d97e63b6 1140{
cfaa7295 1141 root->node = NULL;
a28ec197 1142 root->commit_root = NULL;
db94535d
CM
1143 root->sectorsize = sectorsize;
1144 root->nodesize = nodesize;
1145 root->leafsize = leafsize;
87ee04eb 1146 root->stripesize = stripesize;
123abc88 1147 root->ref_cows = 0;
0b86a832 1148 root->track_dirty = 0;
c71bf099 1149 root->in_radix = 0;
d68fc57b
YZ
1150 root->orphan_item_inserted = 0;
1151 root->orphan_cleanup_state = 0;
0b86a832 1152
9f5fae2f 1153 root->fs_info = fs_info;
0f7d52f4
CM
1154 root->objectid = objectid;
1155 root->last_trans = 0;
13a8a7c8 1156 root->highest_objectid = 0;
58176a96 1157 root->name = NULL;
6bef4d31 1158 root->inode_tree = RB_ROOT;
16cdcec7 1159 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1160 root->block_rsv = NULL;
d68fc57b 1161 root->orphan_block_rsv = NULL;
0b86a832
CM
1162
1163 INIT_LIST_HEAD(&root->dirty_list);
7b128766 1164 INIT_LIST_HEAD(&root->orphan_list);
5d4f98a2 1165 INIT_LIST_HEAD(&root->root_list);
d68fc57b 1166 spin_lock_init(&root->orphan_lock);
5d4f98a2 1167 spin_lock_init(&root->inode_lock);
f0486c68 1168 spin_lock_init(&root->accounting_lock);
a2135011 1169 mutex_init(&root->objectid_mutex);
e02119d5 1170 mutex_init(&root->log_mutex);
7237f183
YZ
1171 init_waitqueue_head(&root->log_writer_wait);
1172 init_waitqueue_head(&root->log_commit_wait[0]);
1173 init_waitqueue_head(&root->log_commit_wait[1]);
1174 atomic_set(&root->log_commit[0], 0);
1175 atomic_set(&root->log_commit[1], 0);
1176 atomic_set(&root->log_writers, 0);
1177 root->log_batch = 0;
1178 root->log_transid = 0;
257c62e1 1179 root->last_log_commit = 0;
d0c803c4 1180 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1181 fs_info->btree_inode->i_mapping);
017e5369 1182
3768f368
CM
1183 memset(&root->root_key, 0, sizeof(root->root_key));
1184 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1185 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1186 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1187 root->defrag_trans_start = fs_info->generation;
58176a96 1188 init_completion(&root->kobj_unregister);
6702ed49 1189 root->defrag_running = 0;
4d775673 1190 root->root_key.objectid = objectid;
0ee5dc67 1191 root->anon_dev = 0;
3768f368
CM
1192 return 0;
1193}
1194
db94535d 1195static int find_and_setup_root(struct btrfs_root *tree_root,
9f5fae2f
CM
1196 struct btrfs_fs_info *fs_info,
1197 u64 objectid,
e20d96d6 1198 struct btrfs_root *root)
3768f368
CM
1199{
1200 int ret;
db94535d 1201 u32 blocksize;
84234f3a 1202 u64 generation;
3768f368 1203
db94535d 1204 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1205 tree_root->sectorsize, tree_root->stripesize,
1206 root, fs_info, objectid);
3768f368
CM
1207 ret = btrfs_find_last_root(tree_root, objectid,
1208 &root->root_item, &root->root_key);
4df27c4d
YZ
1209 if (ret > 0)
1210 return -ENOENT;
3768f368
CM
1211 BUG_ON(ret);
1212
84234f3a 1213 generation = btrfs_root_generation(&root->root_item);
db94535d 1214 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1215 root->commit_root = NULL;
db94535d 1216 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1217 blocksize, generation);
68433b73
CM
1218 if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1219 free_extent_buffer(root->node);
af31f5e5 1220 root->node = NULL;
68433b73
CM
1221 return -EIO;
1222 }
4df27c4d 1223 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1224 return 0;
1225}
1226
7237f183
YZ
1227static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1228 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1229{
1230 struct btrfs_root *root;
1231 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1232 struct extent_buffer *leaf;
e02119d5
CM
1233
1234 root = kzalloc(sizeof(*root), GFP_NOFS);
1235 if (!root)
7237f183 1236 return ERR_PTR(-ENOMEM);
e02119d5
CM
1237
1238 __setup_root(tree_root->nodesize, tree_root->leafsize,
1239 tree_root->sectorsize, tree_root->stripesize,
1240 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1241
1242 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1243 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1244 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1245 /*
1246 * log trees do not get reference counted because they go away
1247 * before a real commit is actually done. They do store pointers
1248 * to file data extents, and those reference counts still get
1249 * updated (along with back refs to the log tree).
1250 */
e02119d5
CM
1251 root->ref_cows = 0;
1252
5d4f98a2 1253 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0
AJ
1254 BTRFS_TREE_LOG_OBJECTID, NULL,
1255 0, 0, 0, 0);
7237f183
YZ
1256 if (IS_ERR(leaf)) {
1257 kfree(root);
1258 return ERR_CAST(leaf);
1259 }
e02119d5 1260
5d4f98a2
YZ
1261 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1262 btrfs_set_header_bytenr(leaf, leaf->start);
1263 btrfs_set_header_generation(leaf, trans->transid);
1264 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1265 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1266 root->node = leaf;
e02119d5
CM
1267
1268 write_extent_buffer(root->node, root->fs_info->fsid,
1269 (unsigned long)btrfs_header_fsid(root->node),
1270 BTRFS_FSID_SIZE);
1271 btrfs_mark_buffer_dirty(root->node);
1272 btrfs_tree_unlock(root->node);
7237f183
YZ
1273 return root;
1274}
1275
1276int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1277 struct btrfs_fs_info *fs_info)
1278{
1279 struct btrfs_root *log_root;
1280
1281 log_root = alloc_log_tree(trans, fs_info);
1282 if (IS_ERR(log_root))
1283 return PTR_ERR(log_root);
1284 WARN_ON(fs_info->log_root_tree);
1285 fs_info->log_root_tree = log_root;
1286 return 0;
1287}
1288
1289int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1290 struct btrfs_root *root)
1291{
1292 struct btrfs_root *log_root;
1293 struct btrfs_inode_item *inode_item;
1294
1295 log_root = alloc_log_tree(trans, root->fs_info);
1296 if (IS_ERR(log_root))
1297 return PTR_ERR(log_root);
1298
1299 log_root->last_trans = trans->transid;
1300 log_root->root_key.offset = root->root_key.objectid;
1301
1302 inode_item = &log_root->root_item.inode;
1303 inode_item->generation = cpu_to_le64(1);
1304 inode_item->size = cpu_to_le64(3);
1305 inode_item->nlink = cpu_to_le32(1);
1306 inode_item->nbytes = cpu_to_le64(root->leafsize);
1307 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1308
5d4f98a2 1309 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1310
1311 WARN_ON(root->log_root);
1312 root->log_root = log_root;
1313 root->log_transid = 0;
257c62e1 1314 root->last_log_commit = 0;
e02119d5
CM
1315 return 0;
1316}
1317
1318struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1319 struct btrfs_key *location)
1320{
1321 struct btrfs_root *root;
1322 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1323 struct btrfs_path *path;
5f39d397 1324 struct extent_buffer *l;
84234f3a 1325 u64 generation;
db94535d 1326 u32 blocksize;
0f7d52f4
CM
1327 int ret = 0;
1328
5eda7b5e 1329 root = kzalloc(sizeof(*root), GFP_NOFS);
0cf6c620 1330 if (!root)
0f7d52f4 1331 return ERR_PTR(-ENOMEM);
0f7d52f4 1332 if (location->offset == (u64)-1) {
db94535d 1333 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1334 location->objectid, root);
1335 if (ret) {
0f7d52f4
CM
1336 kfree(root);
1337 return ERR_PTR(ret);
1338 }
13a8a7c8 1339 goto out;
0f7d52f4
CM
1340 }
1341
db94535d 1342 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1343 tree_root->sectorsize, tree_root->stripesize,
1344 root, fs_info, location->objectid);
0f7d52f4
CM
1345
1346 path = btrfs_alloc_path();
db5b493a
TI
1347 if (!path) {
1348 kfree(root);
1349 return ERR_PTR(-ENOMEM);
1350 }
0f7d52f4 1351 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1352 if (ret == 0) {
1353 l = path->nodes[0];
1354 read_extent_buffer(l, &root->root_item,
1355 btrfs_item_ptr_offset(l, path->slots[0]),
1356 sizeof(root->root_item));
1357 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1358 }
0f7d52f4
CM
1359 btrfs_free_path(path);
1360 if (ret) {
5e540f77 1361 kfree(root);
13a8a7c8
YZ
1362 if (ret > 0)
1363 ret = -ENOENT;
0f7d52f4
CM
1364 return ERR_PTR(ret);
1365 }
13a8a7c8 1366
84234f3a 1367 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1368 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1369 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1370 blocksize, generation);
5d4f98a2 1371 root->commit_root = btrfs_root_node(root);
0f7d52f4 1372 BUG_ON(!root->node);
13a8a7c8 1373out:
08fe4db1 1374 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1375 root->ref_cows = 1;
08fe4db1
LZ
1376 btrfs_check_and_init_root_item(&root->root_item);
1377 }
13a8a7c8 1378
5eda7b5e
CM
1379 return root;
1380}
1381
edbd8d4e
CM
1382struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1383 struct btrfs_key *location)
5eda7b5e
CM
1384{
1385 struct btrfs_root *root;
1386 int ret;
1387
edbd8d4e
CM
1388 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1389 return fs_info->tree_root;
1390 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1391 return fs_info->extent_root;
8f18cf13
CM
1392 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1393 return fs_info->chunk_root;
1394 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1395 return fs_info->dev_root;
0403e47e
YZ
1396 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1397 return fs_info->csum_root;
4df27c4d
YZ
1398again:
1399 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1400 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1401 (unsigned long)location->objectid);
4df27c4d 1402 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1403 if (root)
1404 return root;
1405
e02119d5 1406 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1407 if (IS_ERR(root))
1408 return root;
3394e160 1409
581bb050 1410 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1411 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1412 GFP_NOFS);
35a30d7c
DS
1413 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1414 ret = -ENOMEM;
581bb050 1415 goto fail;
35a30d7c 1416 }
581bb050
LZ
1417
1418 btrfs_init_free_ino_ctl(root);
1419 mutex_init(&root->fs_commit_mutex);
1420 spin_lock_init(&root->cache_lock);
1421 init_waitqueue_head(&root->cache_wait);
1422
0ee5dc67 1423 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1424 if (ret)
1425 goto fail;
3394e160 1426
d68fc57b
YZ
1427 if (btrfs_root_refs(&root->root_item) == 0) {
1428 ret = -ENOENT;
1429 goto fail;
1430 }
1431
1432 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1433 if (ret < 0)
1434 goto fail;
1435 if (ret == 0)
1436 root->orphan_item_inserted = 1;
1437
4df27c4d
YZ
1438 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1439 if (ret)
1440 goto fail;
1441
1442 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1443 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1444 (unsigned long)root->root_key.objectid,
0f7d52f4 1445 root);
d68fc57b 1446 if (ret == 0)
4df27c4d 1447 root->in_radix = 1;
d68fc57b 1448
4df27c4d
YZ
1449 spin_unlock(&fs_info->fs_roots_radix_lock);
1450 radix_tree_preload_end();
0f7d52f4 1451 if (ret) {
4df27c4d
YZ
1452 if (ret == -EEXIST) {
1453 free_fs_root(root);
1454 goto again;
1455 }
1456 goto fail;
0f7d52f4 1457 }
4df27c4d
YZ
1458
1459 ret = btrfs_find_dead_roots(fs_info->tree_root,
1460 root->root_key.objectid);
1461 WARN_ON(ret);
edbd8d4e 1462 return root;
4df27c4d
YZ
1463fail:
1464 free_fs_root(root);
1465 return ERR_PTR(ret);
edbd8d4e
CM
1466}
1467
04160088
CM
1468static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1469{
1470 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1471 int ret = 0;
04160088
CM
1472 struct btrfs_device *device;
1473 struct backing_dev_info *bdi;
b7967db7 1474
1f78160c
XG
1475 rcu_read_lock();
1476 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1477 if (!device->bdev)
1478 continue;
04160088
CM
1479 bdi = blk_get_backing_dev_info(device->bdev);
1480 if (bdi && bdi_congested(bdi, bdi_bits)) {
1481 ret = 1;
1482 break;
1483 }
1484 }
1f78160c 1485 rcu_read_unlock();
04160088
CM
1486 return ret;
1487}
1488
ad081f14
JA
1489/*
1490 * If this fails, caller must call bdi_destroy() to get rid of the
1491 * bdi again.
1492 */
04160088
CM
1493static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1494{
ad081f14
JA
1495 int err;
1496
1497 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1498 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1499 if (err)
1500 return err;
1501
4575c9cc 1502 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1503 bdi->congested_fn = btrfs_congested_fn;
1504 bdi->congested_data = info;
1505 return 0;
1506}
1507
ce9adaa5
CM
1508static int bio_ready_for_csum(struct bio *bio)
1509{
1510 u64 length = 0;
1511 u64 buf_len = 0;
1512 u64 start = 0;
1513 struct page *page;
1514 struct extent_io_tree *io_tree = NULL;
ce9adaa5
CM
1515 struct bio_vec *bvec;
1516 int i;
1517 int ret;
1518
1519 bio_for_each_segment(bvec, bio, i) {
1520 page = bvec->bv_page;
1521 if (page->private == EXTENT_PAGE_PRIVATE) {
1522 length += bvec->bv_len;
1523 continue;
1524 }
1525 if (!page->private) {
1526 length += bvec->bv_len;
1527 continue;
1528 }
1529 length = bvec->bv_len;
1530 buf_len = page->private >> 2;
1531 start = page_offset(page) + bvec->bv_offset;
1532 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
ce9adaa5
CM
1533 }
1534 /* are we fully contained in this bio? */
1535 if (buf_len <= length)
1536 return 1;
1537
1538 ret = extent_range_uptodate(io_tree, start + length,
1539 start + buf_len - 1);
ce9adaa5
CM
1540 return ret;
1541}
1542
8b712842
CM
1543/*
1544 * called by the kthread helper functions to finally call the bio end_io
1545 * functions. This is where read checksum verification actually happens
1546 */
1547static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1548{
ce9adaa5 1549 struct bio *bio;
8b712842
CM
1550 struct end_io_wq *end_io_wq;
1551 struct btrfs_fs_info *fs_info;
ce9adaa5 1552 int error;
ce9adaa5 1553
8b712842
CM
1554 end_io_wq = container_of(work, struct end_io_wq, work);
1555 bio = end_io_wq->bio;
1556 fs_info = end_io_wq->info;
ce9adaa5 1557
cad321ad 1558 /* metadata bio reads are special because the whole tree block must
8b712842
CM
1559 * be checksummed at once. This makes sure the entire block is in
1560 * ram and up to date before trying to verify things. For
1561 * blocksize <= pagesize, it is basically a noop
1562 */
7b6d91da 1563 if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
cad321ad 1564 !bio_ready_for_csum(bio)) {
d20f7043 1565 btrfs_queue_worker(&fs_info->endio_meta_workers,
8b712842
CM
1566 &end_io_wq->work);
1567 return;
1568 }
1569 error = end_io_wq->error;
1570 bio->bi_private = end_io_wq->private;
1571 bio->bi_end_io = end_io_wq->end_io;
1572 kfree(end_io_wq);
8b712842 1573 bio_endio(bio, error);
44b8bd7e
CM
1574}
1575
a74a4b97
CM
1576static int cleaner_kthread(void *arg)
1577{
1578 struct btrfs_root *root = arg;
1579
1580 do {
a74a4b97 1581 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
76dda93c
YZ
1582
1583 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1584 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1585 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1586 btrfs_clean_old_snapshots(root);
1587 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1588 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1589 }
a74a4b97
CM
1590
1591 if (freezing(current)) {
1592 refrigerator();
1593 } else {
a74a4b97 1594 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1595 if (!kthread_should_stop())
1596 schedule();
a74a4b97
CM
1597 __set_current_state(TASK_RUNNING);
1598 }
1599 } while (!kthread_should_stop());
1600 return 0;
1601}
1602
1603static int transaction_kthread(void *arg)
1604{
1605 struct btrfs_root *root = arg;
1606 struct btrfs_trans_handle *trans;
1607 struct btrfs_transaction *cur;
8929ecfa 1608 u64 transid;
a74a4b97
CM
1609 unsigned long now;
1610 unsigned long delay;
1611 int ret;
1612
1613 do {
a74a4b97
CM
1614 delay = HZ * 30;
1615 vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1616 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1617
a4abeea4 1618 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1619 cur = root->fs_info->running_transaction;
1620 if (!cur) {
a4abeea4 1621 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1622 goto sleep;
1623 }
31153d81 1624
a74a4b97 1625 now = get_seconds();
8929ecfa
YZ
1626 if (!cur->blocked &&
1627 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1628 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1629 delay = HZ * 5;
1630 goto sleep;
1631 }
8929ecfa 1632 transid = cur->transid;
a4abeea4 1633 spin_unlock(&root->fs_info->trans_lock);
56bec294 1634
7a7eaa40 1635 trans = btrfs_join_transaction(root);
3612b495 1636 BUG_ON(IS_ERR(trans));
8929ecfa
YZ
1637 if (transid == trans->transid) {
1638 ret = btrfs_commit_transaction(trans, root);
1639 BUG_ON(ret);
1640 } else {
1641 btrfs_end_transaction(trans, root);
1642 }
a74a4b97
CM
1643sleep:
1644 wake_up_process(root->fs_info->cleaner_kthread);
1645 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1646
1647 if (freezing(current)) {
1648 refrigerator();
1649 } else {
a74a4b97 1650 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1651 if (!kthread_should_stop() &&
1652 !btrfs_transaction_blocked(root->fs_info))
1653 schedule_timeout(delay);
a74a4b97
CM
1654 __set_current_state(TASK_RUNNING);
1655 }
1656 } while (!kthread_should_stop());
1657 return 0;
1658}
1659
af31f5e5
CM
1660/*
1661 * this will find the highest generation in the array of
1662 * root backups. The index of the highest array is returned,
1663 * or -1 if we can't find anything.
1664 *
1665 * We check to make sure the array is valid by comparing the
1666 * generation of the latest root in the array with the generation
1667 * in the super block. If they don't match we pitch it.
1668 */
1669static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1670{
1671 u64 cur;
1672 int newest_index = -1;
1673 struct btrfs_root_backup *root_backup;
1674 int i;
1675
1676 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1677 root_backup = info->super_copy->super_roots + i;
1678 cur = btrfs_backup_tree_root_gen(root_backup);
1679 if (cur == newest_gen)
1680 newest_index = i;
1681 }
1682
1683 /* check to see if we actually wrapped around */
1684 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1685 root_backup = info->super_copy->super_roots;
1686 cur = btrfs_backup_tree_root_gen(root_backup);
1687 if (cur == newest_gen)
1688 newest_index = 0;
1689 }
1690 return newest_index;
1691}
1692
1693
1694/*
1695 * find the oldest backup so we know where to store new entries
1696 * in the backup array. This will set the backup_root_index
1697 * field in the fs_info struct
1698 */
1699static void find_oldest_super_backup(struct btrfs_fs_info *info,
1700 u64 newest_gen)
1701{
1702 int newest_index = -1;
1703
1704 newest_index = find_newest_super_backup(info, newest_gen);
1705 /* if there was garbage in there, just move along */
1706 if (newest_index == -1) {
1707 info->backup_root_index = 0;
1708 } else {
1709 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1710 }
1711}
1712
1713/*
1714 * copy all the root pointers into the super backup array.
1715 * this will bump the backup pointer by one when it is
1716 * done
1717 */
1718static void backup_super_roots(struct btrfs_fs_info *info)
1719{
1720 int next_backup;
1721 struct btrfs_root_backup *root_backup;
1722 int last_backup;
1723
1724 next_backup = info->backup_root_index;
1725 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1726 BTRFS_NUM_BACKUP_ROOTS;
1727
1728 /*
1729 * just overwrite the last backup if we're at the same generation
1730 * this happens only at umount
1731 */
1732 root_backup = info->super_for_commit->super_roots + last_backup;
1733 if (btrfs_backup_tree_root_gen(root_backup) ==
1734 btrfs_header_generation(info->tree_root->node))
1735 next_backup = last_backup;
1736
1737 root_backup = info->super_for_commit->super_roots + next_backup;
1738
1739 /*
1740 * make sure all of our padding and empty slots get zero filled
1741 * regardless of which ones we use today
1742 */
1743 memset(root_backup, 0, sizeof(*root_backup));
1744
1745 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1746
1747 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1748 btrfs_set_backup_tree_root_gen(root_backup,
1749 btrfs_header_generation(info->tree_root->node));
1750
1751 btrfs_set_backup_tree_root_level(root_backup,
1752 btrfs_header_level(info->tree_root->node));
1753
1754 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1755 btrfs_set_backup_chunk_root_gen(root_backup,
1756 btrfs_header_generation(info->chunk_root->node));
1757 btrfs_set_backup_chunk_root_level(root_backup,
1758 btrfs_header_level(info->chunk_root->node));
1759
1760 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1761 btrfs_set_backup_extent_root_gen(root_backup,
1762 btrfs_header_generation(info->extent_root->node));
1763 btrfs_set_backup_extent_root_level(root_backup,
1764 btrfs_header_level(info->extent_root->node));
1765
7c7e82a7
CM
1766 /*
1767 * we might commit during log recovery, which happens before we set
1768 * the fs_root. Make sure it is valid before we fill it in.
1769 */
1770 if (info->fs_root && info->fs_root->node) {
1771 btrfs_set_backup_fs_root(root_backup,
1772 info->fs_root->node->start);
1773 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1774 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1775 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1776 btrfs_header_level(info->fs_root->node));
7c7e82a7 1777 }
af31f5e5
CM
1778
1779 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1780 btrfs_set_backup_dev_root_gen(root_backup,
1781 btrfs_header_generation(info->dev_root->node));
1782 btrfs_set_backup_dev_root_level(root_backup,
1783 btrfs_header_level(info->dev_root->node));
1784
1785 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1786 btrfs_set_backup_csum_root_gen(root_backup,
1787 btrfs_header_generation(info->csum_root->node));
1788 btrfs_set_backup_csum_root_level(root_backup,
1789 btrfs_header_level(info->csum_root->node));
1790
1791 btrfs_set_backup_total_bytes(root_backup,
1792 btrfs_super_total_bytes(info->super_copy));
1793 btrfs_set_backup_bytes_used(root_backup,
1794 btrfs_super_bytes_used(info->super_copy));
1795 btrfs_set_backup_num_devices(root_backup,
1796 btrfs_super_num_devices(info->super_copy));
1797
1798 /*
1799 * if we don't copy this out to the super_copy, it won't get remembered
1800 * for the next commit
1801 */
1802 memcpy(&info->super_copy->super_roots,
1803 &info->super_for_commit->super_roots,
1804 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1805}
1806
1807/*
1808 * this copies info out of the root backup array and back into
1809 * the in-memory super block. It is meant to help iterate through
1810 * the array, so you send it the number of backups you've already
1811 * tried and the last backup index you used.
1812 *
1813 * this returns -1 when it has tried all the backups
1814 */
1815static noinline int next_root_backup(struct btrfs_fs_info *info,
1816 struct btrfs_super_block *super,
1817 int *num_backups_tried, int *backup_index)
1818{
1819 struct btrfs_root_backup *root_backup;
1820 int newest = *backup_index;
1821
1822 if (*num_backups_tried == 0) {
1823 u64 gen = btrfs_super_generation(super);
1824
1825 newest = find_newest_super_backup(info, gen);
1826 if (newest == -1)
1827 return -1;
1828
1829 *backup_index = newest;
1830 *num_backups_tried = 1;
1831 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1832 /* we've tried all the backups, all done */
1833 return -1;
1834 } else {
1835 /* jump to the next oldest backup */
1836 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1837 BTRFS_NUM_BACKUP_ROOTS;
1838 *backup_index = newest;
1839 *num_backups_tried += 1;
1840 }
1841 root_backup = super->super_roots + newest;
1842
1843 btrfs_set_super_generation(super,
1844 btrfs_backup_tree_root_gen(root_backup));
1845 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1846 btrfs_set_super_root_level(super,
1847 btrfs_backup_tree_root_level(root_backup));
1848 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1849
1850 /*
1851 * fixme: the total bytes and num_devices need to match or we should
1852 * need a fsck
1853 */
1854 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1855 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1856 return 0;
1857}
1858
1859/* helper to cleanup tree roots */
1860static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1861{
1862 free_extent_buffer(info->tree_root->node);
1863 free_extent_buffer(info->tree_root->commit_root);
1864 free_extent_buffer(info->dev_root->node);
1865 free_extent_buffer(info->dev_root->commit_root);
1866 free_extent_buffer(info->extent_root->node);
1867 free_extent_buffer(info->extent_root->commit_root);
1868 free_extent_buffer(info->csum_root->node);
1869 free_extent_buffer(info->csum_root->commit_root);
1870
1871 info->tree_root->node = NULL;
1872 info->tree_root->commit_root = NULL;
1873 info->dev_root->node = NULL;
1874 info->dev_root->commit_root = NULL;
1875 info->extent_root->node = NULL;
1876 info->extent_root->commit_root = NULL;
1877 info->csum_root->node = NULL;
1878 info->csum_root->commit_root = NULL;
1879
1880 if (chunk_root) {
1881 free_extent_buffer(info->chunk_root->node);
1882 free_extent_buffer(info->chunk_root->commit_root);
1883 info->chunk_root->node = NULL;
1884 info->chunk_root->commit_root = NULL;
1885 }
1886}
1887
1888
8a4b83cc 1889struct btrfs_root *open_ctree(struct super_block *sb,
dfe25020
CM
1890 struct btrfs_fs_devices *fs_devices,
1891 char *options)
2e635a27 1892{
db94535d
CM
1893 u32 sectorsize;
1894 u32 nodesize;
1895 u32 leafsize;
1896 u32 blocksize;
87ee04eb 1897 u32 stripesize;
84234f3a 1898 u64 generation;
f2b636e8 1899 u64 features;
3de4586c 1900 struct btrfs_key location;
a061fc8d 1901 struct buffer_head *bh;
4d34b278 1902 struct btrfs_super_block *disk_super;
450ba0ea 1903 struct btrfs_root *tree_root = btrfs_sb(sb);
4d34b278
ID
1904 struct btrfs_fs_info *fs_info = tree_root->fs_info;
1905 struct btrfs_root *extent_root;
1906 struct btrfs_root *csum_root;
1907 struct btrfs_root *chunk_root;
1908 struct btrfs_root *dev_root;
e02119d5 1909 struct btrfs_root *log_tree_root;
eb60ceac 1910 int ret;
e58ca020 1911 int err = -EINVAL;
af31f5e5
CM
1912 int num_backups_tried = 0;
1913 int backup_index = 0;
4543df7e 1914
4d34b278
ID
1915 extent_root = fs_info->extent_root =
1916 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1917 csum_root = fs_info->csum_root =
1918 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1919 chunk_root = fs_info->chunk_root =
1920 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
1921 dev_root = fs_info->dev_root =
1922 kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
8790d502 1923
4d34b278 1924 if (!extent_root || !csum_root || !chunk_root || !dev_root) {
39279cc3
CM
1925 err = -ENOMEM;
1926 goto fail;
1927 }
76dda93c
YZ
1928
1929 ret = init_srcu_struct(&fs_info->subvol_srcu);
1930 if (ret) {
1931 err = ret;
1932 goto fail;
1933 }
1934
1935 ret = setup_bdi(fs_info, &fs_info->bdi);
1936 if (ret) {
1937 err = ret;
1938 goto fail_srcu;
1939 }
1940
1941 fs_info->btree_inode = new_inode(sb);
1942 if (!fs_info->btree_inode) {
1943 err = -ENOMEM;
1944 goto fail_bdi;
1945 }
1946
a6591715 1947 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 1948
76dda93c 1949 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 1950 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 1951 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 1952 INIT_LIST_HEAD(&fs_info->delayed_iputs);
19c00ddc 1953 INIT_LIST_HEAD(&fs_info->hashers);
ea8c2819 1954 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 1955 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 1956 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 1957 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 1958 spin_lock_init(&fs_info->trans_lock);
31153d81 1959 spin_lock_init(&fs_info->ref_cache_lock);
76dda93c 1960 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 1961 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 1962 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 1963 spin_lock_init(&fs_info->free_chunk_lock);
7585717f 1964 mutex_init(&fs_info->reloc_mutex);
19c00ddc 1965
58176a96 1966 init_completion(&fs_info->kobj_unregister);
0b86a832 1967 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 1968 INIT_LIST_HEAD(&fs_info->space_info);
0b86a832 1969 btrfs_mapping_init(&fs_info->mapping_tree);
f0486c68
YZ
1970 btrfs_init_block_rsv(&fs_info->global_block_rsv);
1971 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1972 btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1973 btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1974 btrfs_init_block_rsv(&fs_info->empty_block_rsv);
6d668dda 1975 btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
cb03c743 1976 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 1977 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 1978 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 1979 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 1980 atomic_set(&fs_info->defrag_running, 0);
e20d96d6 1981 fs_info->sb = sb;
6f568d35 1982 fs_info->max_inline = 8192 * 1024;
9ed74f2d 1983 fs_info->metadata_ratio = 0;
4cb5300b 1984 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 1985 fs_info->trans_no_join = 0;
2bf64758 1986 fs_info->free_chunk_space = 0;
c8b97818 1987
90519d66
AJ
1988 /* readahead state */
1989 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1990 spin_lock_init(&fs_info->reada_lock);
c8b97818 1991
b34b086c
CM
1992 fs_info->thread_pool_size = min_t(unsigned long,
1993 num_online_cpus() + 2, 8);
0afbaf8c 1994
3eaa2885
CM
1995 INIT_LIST_HEAD(&fs_info->ordered_extents);
1996 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
1997 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1998 GFP_NOFS);
1999 if (!fs_info->delayed_root) {
2000 err = -ENOMEM;
2001 goto fail_iput;
2002 }
2003 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2004
a2de733c
AJ
2005 mutex_init(&fs_info->scrub_lock);
2006 atomic_set(&fs_info->scrubs_running, 0);
2007 atomic_set(&fs_info->scrub_pause_req, 0);
2008 atomic_set(&fs_info->scrubs_paused, 0);
2009 atomic_set(&fs_info->scrub_cancel_req, 0);
2010 init_waitqueue_head(&fs_info->scrub_pause_wait);
2011 init_rwsem(&fs_info->scrub_super_lock);
2012 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2013#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2014 fs_info->check_integrity_print_mask = 0;
2015#endif
a2de733c 2016
c9e9f97b
ID
2017 spin_lock_init(&fs_info->balance_lock);
2018 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2019 atomic_set(&fs_info->balance_running, 0);
2020 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2021 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2022 fs_info->balance_ctl = NULL;
837d5b6e 2023 init_waitqueue_head(&fs_info->balance_wait_q);
c9e9f97b 2024
a061fc8d
CM
2025 sb->s_blocksize = 4096;
2026 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2027 sb->s_bdi = &fs_info->bdi;
a061fc8d 2028
76dda93c 2029 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2030 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2031 /*
2032 * we set the i_size on the btree inode to the max possible int.
2033 * the real end of the address space is determined by all of
2034 * the devices in the system
2035 */
2036 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2037 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2038 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2039
5d4f98a2 2040 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2041 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2042 fs_info->btree_inode->i_mapping);
a8067e02 2043 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2044
2045 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2046
76dda93c
YZ
2047 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2048 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2049 sizeof(struct btrfs_key));
2050 BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
c65ddb52 2051 insert_inode_hash(fs_info->btree_inode);
76dda93c 2052
0f9dd46c 2053 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2054 fs_info->block_group_cache_tree = RB_ROOT;
0f9dd46c 2055
11833d66 2056 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2057 fs_info->btree_inode->i_mapping);
11833d66 2058 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2059 fs_info->btree_inode->i_mapping);
11833d66 2060 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2061 fs_info->do_barriers = 1;
e18e4809 2062
39279cc3 2063
5a3f23d5 2064 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2065 mutex_init(&fs_info->tree_log_mutex);
925baedd 2066 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2067 mutex_init(&fs_info->transaction_kthread_mutex);
2068 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2069 mutex_init(&fs_info->volume_mutex);
276e680d 2070 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2071 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2072 init_rwsem(&fs_info->subvol_sem);
fa9c0d79
CM
2073
2074 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2075 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2076
e6dcd2dc 2077 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2078 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2079 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2080 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2081
0b86a832 2082 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2083 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2084
a512bbf8 2085 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2086 if (!bh) {
2087 err = -EINVAL;
16cdcec7 2088 goto fail_alloc;
20b45077 2089 }
39279cc3 2090
6c41761f
DS
2091 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2092 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2093 sizeof(*fs_info->super_for_commit));
a061fc8d 2094 brelse(bh);
5f39d397 2095
6c41761f 2096 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2097
6c41761f 2098 disk_super = fs_info->super_copy;
0f7d52f4 2099 if (!btrfs_super_root(disk_super))
16cdcec7 2100 goto fail_alloc;
0f7d52f4 2101
acce952b 2102 /* check FS state, whether FS is broken. */
2103 fs_info->fs_state |= btrfs_super_flags(disk_super);
2104
2105 btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2106
af31f5e5
CM
2107 /*
2108 * run through our array of backup supers and setup
2109 * our ring pointer to the oldest one
2110 */
2111 generation = btrfs_super_generation(disk_super);
2112 find_oldest_super_backup(fs_info, generation);
2113
75e7cb7f
LB
2114 /*
2115 * In the long term, we'll store the compression type in the super
2116 * block, and it'll be used for per file compression control.
2117 */
2118 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2119
2b82032c
YZ
2120 ret = btrfs_parse_options(tree_root, options);
2121 if (ret) {
2122 err = ret;
16cdcec7 2123 goto fail_alloc;
2b82032c 2124 }
dfe25020 2125
f2b636e8
JB
2126 features = btrfs_super_incompat_flags(disk_super) &
2127 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2128 if (features) {
2129 printk(KERN_ERR "BTRFS: couldn't mount because of "
2130 "unsupported optional features (%Lx).\n",
21380931 2131 (unsigned long long)features);
f2b636e8 2132 err = -EINVAL;
16cdcec7 2133 goto fail_alloc;
f2b636e8
JB
2134 }
2135
5d4f98a2 2136 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae
LZ
2137 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2138 if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
2139 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2140 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2141
f2b636e8
JB
2142 features = btrfs_super_compat_ro_flags(disk_super) &
2143 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2144 if (!(sb->s_flags & MS_RDONLY) && features) {
2145 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2146 "unsupported option features (%Lx).\n",
21380931 2147 (unsigned long long)features);
f2b636e8 2148 err = -EINVAL;
16cdcec7 2149 goto fail_alloc;
f2b636e8 2150 }
61d92c32
CM
2151
2152 btrfs_init_workers(&fs_info->generic_worker,
2153 "genwork", 1, NULL);
2154
5443be45 2155 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2156 fs_info->thread_pool_size,
2157 &fs_info->generic_worker);
c8b97818 2158
771ed689 2159 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2160 fs_info->thread_pool_size,
2161 &fs_info->generic_worker);
771ed689 2162
5443be45 2163 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2164 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2165 fs_info->thread_pool_size),
2166 &fs_info->generic_worker);
61b49440 2167
bab39bf9
JB
2168 btrfs_init_workers(&fs_info->caching_workers, "cache",
2169 2, &fs_info->generic_worker);
2170
61b49440
CM
2171 /* a higher idle thresh on the submit workers makes it much more
2172 * likely that bios will be send down in a sane order to the
2173 * devices
2174 */
2175 fs_info->submit_workers.idle_thresh = 64;
53863232 2176
771ed689 2177 fs_info->workers.idle_thresh = 16;
4a69a410 2178 fs_info->workers.ordered = 1;
61b49440 2179
771ed689
CM
2180 fs_info->delalloc_workers.idle_thresh = 2;
2181 fs_info->delalloc_workers.ordered = 1;
2182
61d92c32
CM
2183 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2184 &fs_info->generic_worker);
5443be45 2185 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2186 fs_info->thread_pool_size,
2187 &fs_info->generic_worker);
d20f7043 2188 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2189 fs_info->thread_pool_size,
2190 &fs_info->generic_worker);
cad321ad 2191 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2192 "endio-meta-write", fs_info->thread_pool_size,
2193 &fs_info->generic_worker);
5443be45 2194 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2195 fs_info->thread_pool_size,
2196 &fs_info->generic_worker);
0cb59c99
JB
2197 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2198 1, &fs_info->generic_worker);
16cdcec7
MX
2199 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2200 fs_info->thread_pool_size,
2201 &fs_info->generic_worker);
90519d66
AJ
2202 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2203 fs_info->thread_pool_size,
2204 &fs_info->generic_worker);
61b49440
CM
2205
2206 /*
2207 * endios are largely parallel and should have a very
2208 * low idle thresh
2209 */
2210 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2211 fs_info->endio_meta_workers.idle_thresh = 4;
2212
9042846b
CM
2213 fs_info->endio_write_workers.idle_thresh = 2;
2214 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2215 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2216
0dc3b84a
JB
2217 /*
2218 * btrfs_start_workers can really only fail because of ENOMEM so just
2219 * return -ENOMEM if any of these fail.
2220 */
2221 ret = btrfs_start_workers(&fs_info->workers);
2222 ret |= btrfs_start_workers(&fs_info->generic_worker);
2223 ret |= btrfs_start_workers(&fs_info->submit_workers);
2224 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2225 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2226 ret |= btrfs_start_workers(&fs_info->endio_workers);
2227 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2228 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2229 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2230 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2231 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2232 ret |= btrfs_start_workers(&fs_info->caching_workers);
2233 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2234 if (ret) {
2235 ret = -ENOMEM;
2236 goto fail_sb_buffer;
2237 }
4543df7e 2238
4575c9cc 2239 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2240 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2241 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2242
db94535d
CM
2243 nodesize = btrfs_super_nodesize(disk_super);
2244 leafsize = btrfs_super_leafsize(disk_super);
2245 sectorsize = btrfs_super_sectorsize(disk_super);
87ee04eb 2246 stripesize = btrfs_super_stripesize(disk_super);
db94535d
CM
2247 tree_root->nodesize = nodesize;
2248 tree_root->leafsize = leafsize;
2249 tree_root->sectorsize = sectorsize;
87ee04eb 2250 tree_root->stripesize = stripesize;
a061fc8d
CM
2251
2252 sb->s_blocksize = sectorsize;
2253 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2254
39279cc3
CM
2255 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2256 sizeof(disk_super->magic))) {
d397712b 2257 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2258 goto fail_sb_buffer;
2259 }
19c00ddc 2260
941b2ddf
KM
2261 if (sectorsize < PAGE_SIZE) {
2262 printk(KERN_WARNING "btrfs: Incompatible sector size "
2263 "found on %s\n", sb->s_id);
2264 goto fail_sb_buffer;
2265 }
2266
925baedd 2267 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2268 ret = btrfs_read_sys_array(tree_root);
925baedd 2269 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2270 if (ret) {
d397712b
CM
2271 printk(KERN_WARNING "btrfs: failed to read the system "
2272 "array on %s\n", sb->s_id);
5d4f98a2 2273 goto fail_sb_buffer;
84eed90f 2274 }
0b86a832
CM
2275
2276 blocksize = btrfs_level_size(tree_root,
2277 btrfs_super_chunk_root_level(disk_super));
84234f3a 2278 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2279
2280 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2281 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2282
2283 chunk_root->node = read_tree_block(chunk_root,
2284 btrfs_super_chunk_root(disk_super),
84234f3a 2285 blocksize, generation);
0b86a832 2286 BUG_ON(!chunk_root->node);
83121942
DW
2287 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2288 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2289 sb->s_id);
af31f5e5 2290 goto fail_tree_roots;
83121942 2291 }
5d4f98a2
YZ
2292 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2293 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2294
e17cade2 2295 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2296 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2297 BTRFS_UUID_SIZE);
e17cade2 2298
0b86a832 2299 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2300 if (ret) {
d397712b
CM
2301 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2302 sb->s_id);
af31f5e5 2303 goto fail_tree_roots;
2b82032c 2304 }
0b86a832 2305
dfe25020
CM
2306 btrfs_close_extra_devices(fs_devices);
2307
af31f5e5 2308retry_root_backup:
db94535d
CM
2309 blocksize = btrfs_level_size(tree_root,
2310 btrfs_super_root_level(disk_super));
84234f3a 2311 generation = btrfs_super_generation(disk_super);
0b86a832 2312
e20d96d6 2313 tree_root->node = read_tree_block(tree_root,
db94535d 2314 btrfs_super_root(disk_super),
84234f3a 2315 blocksize, generation);
af31f5e5
CM
2316 if (!tree_root->node ||
2317 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2318 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2319 sb->s_id);
af31f5e5
CM
2320
2321 goto recovery_tree_root;
83121942 2322 }
af31f5e5 2323
5d4f98a2
YZ
2324 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2325 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2326
2327 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2328 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2329 if (ret)
af31f5e5 2330 goto recovery_tree_root;
0b86a832
CM
2331 extent_root->track_dirty = 1;
2332
2333 ret = find_and_setup_root(tree_root, fs_info,
2334 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2335 if (ret)
af31f5e5 2336 goto recovery_tree_root;
5d4f98a2 2337 dev_root->track_dirty = 1;
3768f368 2338
d20f7043
CM
2339 ret = find_and_setup_root(tree_root, fs_info,
2340 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2341 if (ret)
af31f5e5 2342 goto recovery_tree_root;
d20f7043
CM
2343
2344 csum_root->track_dirty = 1;
2345
8929ecfa
YZ
2346 fs_info->generation = generation;
2347 fs_info->last_trans_committed = generation;
8929ecfa 2348
c59021f8 2349 ret = btrfs_init_space_info(fs_info);
2350 if (ret) {
2351 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2352 goto fail_block_groups;
2353 }
2354
1b1d1f66
JB
2355 ret = btrfs_read_block_groups(extent_root);
2356 if (ret) {
2357 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2358 goto fail_block_groups;
2359 }
9078a3e1 2360
a74a4b97
CM
2361 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2362 "btrfs-cleaner");
57506d50 2363 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2364 goto fail_block_groups;
a74a4b97
CM
2365
2366 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2367 tree_root,
2368 "btrfs-transaction");
57506d50 2369 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2370 goto fail_cleaner;
a74a4b97 2371
c289811c
CM
2372 if (!btrfs_test_opt(tree_root, SSD) &&
2373 !btrfs_test_opt(tree_root, NOSSD) &&
2374 !fs_info->fs_devices->rotating) {
2375 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2376 "mode\n");
2377 btrfs_set_opt(fs_info->mount_opt, SSD);
2378 }
2379
21adbd5c
SB
2380#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2381 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2382 ret = btrfsic_mount(tree_root, fs_devices,
2383 btrfs_test_opt(tree_root,
2384 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2385 1 : 0,
2386 fs_info->check_integrity_print_mask);
2387 if (ret)
2388 printk(KERN_WARNING "btrfs: failed to initialize"
2389 " integrity check module %s\n", sb->s_id);
2390 }
2391#endif
2392
acce952b 2393 /* do not make disk changes in broken FS */
2394 if (btrfs_super_log_root(disk_super) != 0 &&
2395 !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
e02119d5
CM
2396 u64 bytenr = btrfs_super_log_root(disk_super);
2397
7c2ca468 2398 if (fs_devices->rw_devices == 0) {
d397712b
CM
2399 printk(KERN_WARNING "Btrfs log replay required "
2400 "on RO media\n");
7c2ca468
CM
2401 err = -EIO;
2402 goto fail_trans_kthread;
2403 }
e02119d5
CM
2404 blocksize =
2405 btrfs_level_size(tree_root,
2406 btrfs_super_log_root_level(disk_super));
d18a2c44 2407
676e4c86
DC
2408 log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2409 if (!log_tree_root) {
2410 err = -ENOMEM;
2411 goto fail_trans_kthread;
2412 }
e02119d5
CM
2413
2414 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2415 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2416
2417 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2418 blocksize,
2419 generation + 1);
e02119d5
CM
2420 ret = btrfs_recover_log_trees(log_tree_root);
2421 BUG_ON(ret);
e556ce2c
YZ
2422
2423 if (sb->s_flags & MS_RDONLY) {
2424 ret = btrfs_commit_super(tree_root);
2425 BUG_ON(ret);
2426 }
e02119d5 2427 }
1a40e23b 2428
76dda93c
YZ
2429 ret = btrfs_find_orphan_roots(tree_root);
2430 BUG_ON(ret);
2431
7c2ca468 2432 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b
YZ
2433 ret = btrfs_cleanup_fs_roots(fs_info);
2434 BUG_ON(ret);
2435
5d4f98a2 2436 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2437 if (ret < 0) {
2438 printk(KERN_WARNING
2439 "btrfs: failed to recover relocation\n");
2440 err = -EINVAL;
2441 goto fail_trans_kthread;
2442 }
7c2ca468 2443 }
1a40e23b 2444
3de4586c
CM
2445 location.objectid = BTRFS_FS_TREE_OBJECTID;
2446 location.type = BTRFS_ROOT_ITEM_KEY;
2447 location.offset = (u64)-1;
2448
3de4586c
CM
2449 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2450 if (!fs_info->fs_root)
7c2ca468 2451 goto fail_trans_kthread;
3140c9a3
DC
2452 if (IS_ERR(fs_info->fs_root)) {
2453 err = PTR_ERR(fs_info->fs_root);
2454 goto fail_trans_kthread;
2455 }
c289811c 2456
e3acc2a6
JB
2457 if (!(sb->s_flags & MS_RDONLY)) {
2458 down_read(&fs_info->cleanup_work_sem);
66b4ffd1
JB
2459 err = btrfs_orphan_cleanup(fs_info->fs_root);
2460 if (!err)
2461 err = btrfs_orphan_cleanup(fs_info->tree_root);
e3acc2a6 2462 up_read(&fs_info->cleanup_work_sem);
59641015
ID
2463
2464 if (!err)
2465 err = btrfs_recover_balance(fs_info->tree_root);
2466
66b4ffd1
JB
2467 if (err) {
2468 close_ctree(tree_root);
2469 return ERR_PTR(err);
2470 }
e3acc2a6
JB
2471 }
2472
0f7d52f4 2473 return tree_root;
39279cc3 2474
7c2ca468
CM
2475fail_trans_kthread:
2476 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2477fail_cleaner:
a74a4b97 2478 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2479
2480 /*
2481 * make sure we're done with the btree inode before we stop our
2482 * kthreads
2483 */
2484 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2485 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2486
1b1d1f66
JB
2487fail_block_groups:
2488 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2489
2490fail_tree_roots:
2491 free_root_pointers(fs_info, 1);
2492
39279cc3 2493fail_sb_buffer:
61d92c32 2494 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2495 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2496 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2497 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2498 btrfs_stop_workers(&fs_info->workers);
2499 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2500 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2501 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2502 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2503 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2504 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2505 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2506 btrfs_stop_workers(&fs_info->caching_workers);
16cdcec7 2507fail_alloc:
4543df7e 2508fail_iput:
586e46e2
ID
2509 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2510
7c2ca468 2511 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2512 iput(fs_info->btree_inode);
ad081f14 2513fail_bdi:
7e662854 2514 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2515fail_srcu:
2516 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2517fail:
586e46e2 2518 btrfs_close_devices(fs_info->fs_devices);
6c41761f 2519 free_fs_info(fs_info);
39279cc3 2520 return ERR_PTR(err);
af31f5e5
CM
2521
2522recovery_tree_root:
af31f5e5
CM
2523 if (!btrfs_test_opt(tree_root, RECOVERY))
2524 goto fail_tree_roots;
2525
2526 free_root_pointers(fs_info, 0);
2527
2528 /* don't use the log in recovery mode, it won't be valid */
2529 btrfs_set_super_log_root(disk_super, 0);
2530
2531 /* we can't trust the free space cache either */
2532 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2533
2534 ret = next_root_backup(fs_info, fs_info->super_copy,
2535 &num_backups_tried, &backup_index);
2536 if (ret == -1)
2537 goto fail_block_groups;
2538 goto retry_root_backup;
eb60ceac
CM
2539}
2540
f2984462
CM
2541static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2542{
2543 char b[BDEVNAME_SIZE];
2544
2545 if (uptodate) {
2546 set_buffer_uptodate(bh);
2547 } else {
7a36ddec 2548 printk_ratelimited(KERN_WARNING "lost page write due to "
f2984462
CM
2549 "I/O error on %s\n",
2550 bdevname(bh->b_bdev, b));
1259ab75
CM
2551 /* note, we dont' set_buffer_write_io_error because we have
2552 * our own ways of dealing with the IO errors
2553 */
f2984462
CM
2554 clear_buffer_uptodate(bh);
2555 }
2556 unlock_buffer(bh);
2557 put_bh(bh);
2558}
2559
a512bbf8
YZ
2560struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2561{
2562 struct buffer_head *bh;
2563 struct buffer_head *latest = NULL;
2564 struct btrfs_super_block *super;
2565 int i;
2566 u64 transid = 0;
2567 u64 bytenr;
2568
2569 /* we would like to check all the supers, but that would make
2570 * a btrfs mount succeed after a mkfs from a different FS.
2571 * So, we need to add a special mount option to scan for
2572 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2573 */
2574 for (i = 0; i < 1; i++) {
2575 bytenr = btrfs_sb_offset(i);
2576 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2577 break;
2578 bh = __bread(bdev, bytenr / 4096, 4096);
2579 if (!bh)
2580 continue;
2581
2582 super = (struct btrfs_super_block *)bh->b_data;
2583 if (btrfs_super_bytenr(super) != bytenr ||
2584 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2585 sizeof(super->magic))) {
2586 brelse(bh);
2587 continue;
2588 }
2589
2590 if (!latest || btrfs_super_generation(super) > transid) {
2591 brelse(latest);
2592 latest = bh;
2593 transid = btrfs_super_generation(super);
2594 } else {
2595 brelse(bh);
2596 }
2597 }
2598 return latest;
2599}
2600
4eedeb75
HH
2601/*
2602 * this should be called twice, once with wait == 0 and
2603 * once with wait == 1. When wait == 0 is done, all the buffer heads
2604 * we write are pinned.
2605 *
2606 * They are released when wait == 1 is done.
2607 * max_mirrors must be the same for both runs, and it indicates how
2608 * many supers on this one device should be written.
2609 *
2610 * max_mirrors == 0 means to write them all.
2611 */
a512bbf8
YZ
2612static int write_dev_supers(struct btrfs_device *device,
2613 struct btrfs_super_block *sb,
2614 int do_barriers, int wait, int max_mirrors)
2615{
2616 struct buffer_head *bh;
2617 int i;
2618 int ret;
2619 int errors = 0;
2620 u32 crc;
2621 u64 bytenr;
a512bbf8
YZ
2622
2623 if (max_mirrors == 0)
2624 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2625
a512bbf8
YZ
2626 for (i = 0; i < max_mirrors; i++) {
2627 bytenr = btrfs_sb_offset(i);
2628 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2629 break;
2630
2631 if (wait) {
2632 bh = __find_get_block(device->bdev, bytenr / 4096,
2633 BTRFS_SUPER_INFO_SIZE);
2634 BUG_ON(!bh);
a512bbf8 2635 wait_on_buffer(bh);
4eedeb75
HH
2636 if (!buffer_uptodate(bh))
2637 errors++;
2638
2639 /* drop our reference */
2640 brelse(bh);
2641
2642 /* drop the reference from the wait == 0 run */
2643 brelse(bh);
2644 continue;
a512bbf8
YZ
2645 } else {
2646 btrfs_set_super_bytenr(sb, bytenr);
2647
2648 crc = ~(u32)0;
2649 crc = btrfs_csum_data(NULL, (char *)sb +
2650 BTRFS_CSUM_SIZE, crc,
2651 BTRFS_SUPER_INFO_SIZE -
2652 BTRFS_CSUM_SIZE);
2653 btrfs_csum_final(crc, sb->csum);
2654
4eedeb75
HH
2655 /*
2656 * one reference for us, and we leave it for the
2657 * caller
2658 */
a512bbf8
YZ
2659 bh = __getblk(device->bdev, bytenr / 4096,
2660 BTRFS_SUPER_INFO_SIZE);
2661 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2662
4eedeb75 2663 /* one reference for submit_bh */
a512bbf8 2664 get_bh(bh);
4eedeb75
HH
2665
2666 set_buffer_uptodate(bh);
a512bbf8
YZ
2667 lock_buffer(bh);
2668 bh->b_end_io = btrfs_end_buffer_write_sync;
2669 }
2670
387125fc
CM
2671 /*
2672 * we fua the first super. The others we allow
2673 * to go down lazy.
2674 */
21adbd5c 2675 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2676 if (ret)
a512bbf8 2677 errors++;
a512bbf8
YZ
2678 }
2679 return errors < i ? 0 : -1;
2680}
2681
387125fc
CM
2682/*
2683 * endio for the write_dev_flush, this will wake anyone waiting
2684 * for the barrier when it is done
2685 */
2686static void btrfs_end_empty_barrier(struct bio *bio, int err)
2687{
2688 if (err) {
2689 if (err == -EOPNOTSUPP)
2690 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2691 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2692 }
2693 if (bio->bi_private)
2694 complete(bio->bi_private);
2695 bio_put(bio);
2696}
2697
2698/*
2699 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2700 * sent down. With wait == 1, it waits for the previous flush.
2701 *
2702 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2703 * capable
2704 */
2705static int write_dev_flush(struct btrfs_device *device, int wait)
2706{
2707 struct bio *bio;
2708 int ret = 0;
2709
2710 if (device->nobarriers)
2711 return 0;
2712
2713 if (wait) {
2714 bio = device->flush_bio;
2715 if (!bio)
2716 return 0;
2717
2718 wait_for_completion(&device->flush_wait);
2719
2720 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2721 printk("btrfs: disabling barriers on dev %s\n",
2722 device->name);
2723 device->nobarriers = 1;
2724 }
2725 if (!bio_flagged(bio, BIO_UPTODATE)) {
2726 ret = -EIO;
2727 }
2728
2729 /* drop the reference from the wait == 0 run */
2730 bio_put(bio);
2731 device->flush_bio = NULL;
2732
2733 return ret;
2734 }
2735
2736 /*
2737 * one reference for us, and we leave it for the
2738 * caller
2739 */
2740 device->flush_bio = NULL;;
2741 bio = bio_alloc(GFP_NOFS, 0);
2742 if (!bio)
2743 return -ENOMEM;
2744
2745 bio->bi_end_io = btrfs_end_empty_barrier;
2746 bio->bi_bdev = device->bdev;
2747 init_completion(&device->flush_wait);
2748 bio->bi_private = &device->flush_wait;
2749 device->flush_bio = bio;
2750
2751 bio_get(bio);
21adbd5c 2752 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2753
2754 return 0;
2755}
2756
2757/*
2758 * send an empty flush down to each device in parallel,
2759 * then wait for them
2760 */
2761static int barrier_all_devices(struct btrfs_fs_info *info)
2762{
2763 struct list_head *head;
2764 struct btrfs_device *dev;
2765 int errors = 0;
2766 int ret;
2767
2768 /* send down all the barriers */
2769 head = &info->fs_devices->devices;
2770 list_for_each_entry_rcu(dev, head, dev_list) {
2771 if (!dev->bdev) {
2772 errors++;
2773 continue;
2774 }
2775 if (!dev->in_fs_metadata || !dev->writeable)
2776 continue;
2777
2778 ret = write_dev_flush(dev, 0);
2779 if (ret)
2780 errors++;
2781 }
2782
2783 /* wait for all the barriers */
2784 list_for_each_entry_rcu(dev, head, dev_list) {
2785 if (!dev->bdev) {
2786 errors++;
2787 continue;
2788 }
2789 if (!dev->in_fs_metadata || !dev->writeable)
2790 continue;
2791
2792 ret = write_dev_flush(dev, 1);
2793 if (ret)
2794 errors++;
2795 }
2796 if (errors)
2797 return -EIO;
2798 return 0;
2799}
2800
a512bbf8 2801int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 2802{
e5e9a520 2803 struct list_head *head;
f2984462 2804 struct btrfs_device *dev;
a061fc8d 2805 struct btrfs_super_block *sb;
f2984462 2806 struct btrfs_dev_item *dev_item;
f2984462
CM
2807 int ret;
2808 int do_barriers;
a236aed1
CM
2809 int max_errors;
2810 int total_errors = 0;
a061fc8d 2811 u64 flags;
f2984462 2812
6c41761f 2813 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 2814 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 2815 backup_super_roots(root->fs_info);
f2984462 2816
6c41761f 2817 sb = root->fs_info->super_for_commit;
a061fc8d 2818 dev_item = &sb->dev_item;
e5e9a520 2819
174ba509 2820 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 2821 head = &root->fs_info->fs_devices->devices;
387125fc
CM
2822
2823 if (do_barriers)
2824 barrier_all_devices(root->fs_info);
2825
1f78160c 2826 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2827 if (!dev->bdev) {
2828 total_errors++;
2829 continue;
2830 }
2b82032c 2831 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2832 continue;
2833
2b82032c 2834 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
2835 btrfs_set_stack_device_type(dev_item, dev->type);
2836 btrfs_set_stack_device_id(dev_item, dev->devid);
2837 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2838 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2839 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2840 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2841 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2842 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 2843 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 2844
a061fc8d
CM
2845 flags = btrfs_super_flags(sb);
2846 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2847
a512bbf8 2848 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
2849 if (ret)
2850 total_errors++;
f2984462 2851 }
a236aed1 2852 if (total_errors > max_errors) {
d397712b
CM
2853 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2854 total_errors);
a236aed1
CM
2855 BUG();
2856 }
f2984462 2857
a512bbf8 2858 total_errors = 0;
1f78160c 2859 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
2860 if (!dev->bdev)
2861 continue;
2b82032c 2862 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
2863 continue;
2864
a512bbf8
YZ
2865 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2866 if (ret)
2867 total_errors++;
f2984462 2868 }
174ba509 2869 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 2870 if (total_errors > max_errors) {
d397712b
CM
2871 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2872 total_errors);
a236aed1
CM
2873 BUG();
2874 }
f2984462
CM
2875 return 0;
2876}
2877
a512bbf8
YZ
2878int write_ctree_super(struct btrfs_trans_handle *trans,
2879 struct btrfs_root *root, int max_mirrors)
eb60ceac 2880{
e66f709b 2881 int ret;
5f39d397 2882
a512bbf8 2883 ret = write_all_supers(root, max_mirrors);
5f39d397 2884 return ret;
cfaa7295
CM
2885}
2886
5eda7b5e 2887int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 2888{
4df27c4d 2889 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
2890 radix_tree_delete(&fs_info->fs_roots_radix,
2891 (unsigned long)root->root_key.objectid);
4df27c4d 2892 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
2893
2894 if (btrfs_root_refs(&root->root_item) == 0)
2895 synchronize_srcu(&fs_info->subvol_srcu);
2896
581bb050
LZ
2897 __btrfs_remove_free_space_cache(root->free_ino_pinned);
2898 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d
YZ
2899 free_fs_root(root);
2900 return 0;
2901}
2902
2903static void free_fs_root(struct btrfs_root *root)
2904{
82d5902d 2905 iput(root->cache_inode);
4df27c4d 2906 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
2907 if (root->anon_dev)
2908 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
2909 free_extent_buffer(root->node);
2910 free_extent_buffer(root->commit_root);
581bb050
LZ
2911 kfree(root->free_ino_ctl);
2912 kfree(root->free_ino_pinned);
d397712b 2913 kfree(root->name);
2619ba1f 2914 kfree(root);
2619ba1f
CM
2915}
2916
35b7e476 2917static int del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
2918{
2919 int ret;
2920 struct btrfs_root *gang[8];
2921 int i;
2922
76dda93c
YZ
2923 while (!list_empty(&fs_info->dead_roots)) {
2924 gang[0] = list_entry(fs_info->dead_roots.next,
2925 struct btrfs_root, root_list);
2926 list_del(&gang[0]->root_list);
2927
2928 if (gang[0]->in_radix) {
2929 btrfs_free_fs_root(fs_info, gang[0]);
2930 } else {
2931 free_extent_buffer(gang[0]->node);
2932 free_extent_buffer(gang[0]->commit_root);
2933 kfree(gang[0]);
2934 }
2935 }
2936
d397712b 2937 while (1) {
0f7d52f4
CM
2938 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2939 (void **)gang, 0,
2940 ARRAY_SIZE(gang));
2941 if (!ret)
2942 break;
2619ba1f 2943 for (i = 0; i < ret; i++)
5eda7b5e 2944 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4
CM
2945 }
2946 return 0;
2947}
b4100d64 2948
c146afad 2949int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 2950{
c146afad
YZ
2951 u64 root_objectid = 0;
2952 struct btrfs_root *gang[8];
2953 int i;
3768f368 2954 int ret;
e089f05c 2955
c146afad
YZ
2956 while (1) {
2957 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2958 (void **)gang, root_objectid,
2959 ARRAY_SIZE(gang));
2960 if (!ret)
2961 break;
5d4f98a2
YZ
2962
2963 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 2964 for (i = 0; i < ret; i++) {
66b4ffd1
JB
2965 int err;
2966
c146afad 2967 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
2968 err = btrfs_orphan_cleanup(gang[i]);
2969 if (err)
2970 return err;
c146afad
YZ
2971 }
2972 root_objectid++;
2973 }
2974 return 0;
2975}
a2135011 2976
c146afad
YZ
2977int btrfs_commit_super(struct btrfs_root *root)
2978{
2979 struct btrfs_trans_handle *trans;
2980 int ret;
a74a4b97 2981
c146afad 2982 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 2983 btrfs_run_delayed_iputs(root);
a74a4b97 2984 btrfs_clean_old_snapshots(root);
c146afad 2985 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
2986
2987 /* wait until ongoing cleanup work done */
2988 down_write(&root->fs_info->cleanup_work_sem);
2989 up_write(&root->fs_info->cleanup_work_sem);
2990
7a7eaa40 2991 trans = btrfs_join_transaction(root);
3612b495
TI
2992 if (IS_ERR(trans))
2993 return PTR_ERR(trans);
54aa1f4d 2994 ret = btrfs_commit_transaction(trans, root);
c146afad
YZ
2995 BUG_ON(ret);
2996 /* run commit again to drop the original snapshot */
7a7eaa40 2997 trans = btrfs_join_transaction(root);
3612b495
TI
2998 if (IS_ERR(trans))
2999 return PTR_ERR(trans);
79154b1b
CM
3000 btrfs_commit_transaction(trans, root);
3001 ret = btrfs_write_and_wait_transaction(NULL, root);
3768f368 3002 BUG_ON(ret);
d6bfde87 3003
a512bbf8 3004 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3005 return ret;
3006}
3007
3008int close_ctree(struct btrfs_root *root)
3009{
3010 struct btrfs_fs_info *fs_info = root->fs_info;
3011 int ret;
3012
3013 fs_info->closing = 1;
3014 smp_mb();
3015
837d5b6e
ID
3016 /* pause restriper - we want to resume on mount */
3017 btrfs_pause_balance(root->fs_info);
3018
a2de733c 3019 btrfs_scrub_cancel(root);
4cb5300b
CM
3020
3021 /* wait for any defraggers to finish */
3022 wait_event(fs_info->transaction_wait,
3023 (atomic_read(&fs_info->defrag_running) == 0));
3024
3025 /* clear out the rbtree of defraggable inodes */
3026 btrfs_run_defrag_inodes(root->fs_info);
3027
acce952b 3028 /*
3029 * Here come 2 situations when btrfs is broken to flip readonly:
3030 *
3031 * 1. when btrfs flips readonly somewhere else before
3032 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3033 * and btrfs will skip to write sb directly to keep
3034 * ERROR state on disk.
3035 *
3036 * 2. when btrfs flips readonly just in btrfs_commit_super,
ae0e47f0 3037 * and in such case, btrfs cannot write sb via btrfs_commit_super,
acce952b 3038 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3039 * btrfs will cleanup all FS resources first and write sb then.
3040 */
c146afad 3041 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3042 ret = btrfs_commit_super(root);
3043 if (ret)
3044 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3045 }
3046
3047 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3048 ret = btrfs_error_commit_super(root);
d397712b
CM
3049 if (ret)
3050 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
c146afad 3051 }
0f7d52f4 3052
300e4f8a
JB
3053 btrfs_put_block_group_cache(fs_info);
3054
8929ecfa
YZ
3055 kthread_stop(root->fs_info->transaction_kthread);
3056 kthread_stop(root->fs_info->cleaner_kthread);
3057
f25784b3
YZ
3058 fs_info->closing = 2;
3059 smp_mb();
3060
b0c68f8b 3061 if (fs_info->delalloc_bytes) {
d397712b 3062 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3063 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3064 }
31153d81 3065 if (fs_info->total_ref_cache_size) {
d397712b
CM
3066 printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3067 (unsigned long long)fs_info->total_ref_cache_size);
31153d81 3068 }
bcc63abb 3069
5d4f98a2
YZ
3070 free_extent_buffer(fs_info->extent_root->node);
3071 free_extent_buffer(fs_info->extent_root->commit_root);
3072 free_extent_buffer(fs_info->tree_root->node);
3073 free_extent_buffer(fs_info->tree_root->commit_root);
3074 free_extent_buffer(root->fs_info->chunk_root->node);
3075 free_extent_buffer(root->fs_info->chunk_root->commit_root);
3076 free_extent_buffer(root->fs_info->dev_root->node);
3077 free_extent_buffer(root->fs_info->dev_root->commit_root);
3078 free_extent_buffer(root->fs_info->csum_root->node);
3079 free_extent_buffer(root->fs_info->csum_root->commit_root);
d20f7043 3080
9078a3e1 3081 btrfs_free_block_groups(root->fs_info);
d10c5f31 3082
c146afad 3083 del_fs_roots(fs_info);
d10c5f31 3084
c146afad 3085 iput(fs_info->btree_inode);
9ad6b7bc 3086
61d92c32 3087 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3088 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3089 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3090 btrfs_stop_workers(&fs_info->workers);
3091 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3092 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3093 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3094 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3095 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3096 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3097 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3098 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3099 btrfs_stop_workers(&fs_info->readahead_workers);
d6bfde87 3100
21adbd5c
SB
3101#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3102 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3103 btrfsic_unmount(root, fs_info->fs_devices);
3104#endif
3105
dfe25020 3106 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3107 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3108
04160088 3109 bdi_destroy(&fs_info->bdi);
76dda93c 3110 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3111
6c41761f 3112 free_fs_info(fs_info);
83a4d548 3113
eb60ceac
CM
3114 return 0;
3115}
3116
1259ab75 3117int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
5f39d397 3118{
1259ab75 3119 int ret;
810191ff 3120 struct inode *btree_inode = buf->first_page->mapping->host;
1259ab75 3121
2ac55d41
JB
3122 ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
3123 NULL);
1259ab75
CM
3124 if (!ret)
3125 return ret;
3126
3127 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3128 parent_transid);
3129 return !ret;
5f39d397
CM
3130}
3131
3132int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3133{
810191ff 3134 struct inode *btree_inode = buf->first_page->mapping->host;
d1310b2e 3135 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
5f39d397
CM
3136 buf);
3137}
6702ed49 3138
5f39d397
CM
3139void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3140{
810191ff 3141 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
5f39d397
CM
3142 u64 transid = btrfs_header_generation(buf);
3143 struct inode *btree_inode = root->fs_info->btree_inode;
b9473439 3144 int was_dirty;
b4ce94de 3145
b9447ef8 3146 btrfs_assert_tree_locked(buf);
ccd467d6 3147 if (transid != root->fs_info->generation) {
d397712b
CM
3148 printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3149 "found %llu running %llu\n",
db94535d 3150 (unsigned long long)buf->start,
d397712b
CM
3151 (unsigned long long)transid,
3152 (unsigned long long)root->fs_info->generation);
ccd467d6
CM
3153 WARN_ON(1);
3154 }
b9473439
CM
3155 was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
3156 buf);
3157 if (!was_dirty) {
3158 spin_lock(&root->fs_info->delalloc_lock);
3159 root->fs_info->dirty_metadata_bytes += buf->len;
3160 spin_unlock(&root->fs_info->delalloc_lock);
3161 }
eb60ceac
CM
3162}
3163
d3c2fdcf 3164void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
16cdcec7
MX
3165{
3166 /*
3167 * looks as though older kernels can get into trouble with
3168 * this code, they end up stuck in balance_dirty_pages forever
3169 */
3170 u64 num_dirty;
3171 unsigned long thresh = 32 * 1024 * 1024;
3172
3173 if (current->flags & PF_MEMALLOC)
3174 return;
3175
3176 btrfs_balance_delayed_items(root);
3177
3178 num_dirty = root->fs_info->dirty_metadata_bytes;
3179
3180 if (num_dirty > thresh) {
3181 balance_dirty_pages_ratelimited_nr(
3182 root->fs_info->btree_inode->i_mapping, 1);
3183 }
3184 return;
3185}
3186
3187void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
35b7e476 3188{
188de649
CM
3189 /*
3190 * looks as though older kernels can get into trouble with
3191 * this code, they end up stuck in balance_dirty_pages forever
3192 */
d6bfde87 3193 u64 num_dirty;
771ed689 3194 unsigned long thresh = 32 * 1024 * 1024;
d6bfde87 3195
6933c02e 3196 if (current->flags & PF_MEMALLOC)
d6bfde87
CM
3197 return;
3198
585ad2c3
CM
3199 num_dirty = root->fs_info->dirty_metadata_bytes;
3200
d6bfde87
CM
3201 if (num_dirty > thresh) {
3202 balance_dirty_pages_ratelimited_nr(
d7fc640e 3203 root->fs_info->btree_inode->i_mapping, 1);
d6bfde87 3204 }
188de649 3205 return;
35b7e476 3206}
6b80053d 3207
ca7a79ad 3208int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3209{
810191ff 3210 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
ce9adaa5 3211 int ret;
ca7a79ad 3212 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
d397712b 3213 if (ret == 0)
b4ce94de 3214 set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
ce9adaa5 3215 return ret;
6b80053d 3216}
0da5468f 3217
01d658f2
CM
3218static int btree_lock_page_hook(struct page *page, void *data,
3219 void (*flush_fn)(void *))
4bef0848
CM
3220{
3221 struct inode *inode = page->mapping->host;
b9473439 3222 struct btrfs_root *root = BTRFS_I(inode)->root;
4bef0848
CM
3223 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3224 struct extent_buffer *eb;
3225 unsigned long len;
3226 u64 bytenr = page_offset(page);
3227
3228 if (page->private == EXTENT_PAGE_PRIVATE)
3229 goto out;
3230
3231 len = page->private >> 2;
f09d1f60 3232 eb = find_extent_buffer(io_tree, bytenr, len);
4bef0848
CM
3233 if (!eb)
3234 goto out;
3235
01d658f2
CM
3236 if (!btrfs_try_tree_write_lock(eb)) {
3237 flush_fn(data);
3238 btrfs_tree_lock(eb);
3239 }
4bef0848 3240 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
b9473439
CM
3241
3242 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3243 spin_lock(&root->fs_info->delalloc_lock);
3244 if (root->fs_info->dirty_metadata_bytes >= eb->len)
3245 root->fs_info->dirty_metadata_bytes -= eb->len;
3246 else
3247 WARN_ON(1);
3248 spin_unlock(&root->fs_info->delalloc_lock);
3249 }
3250
4bef0848
CM
3251 btrfs_tree_unlock(eb);
3252 free_extent_buffer(eb);
3253out:
01d658f2
CM
3254 if (!trylock_page(page)) {
3255 flush_fn(data);
3256 lock_page(page);
3257 }
4bef0848
CM
3258 return 0;
3259}
3260
acce952b 3261static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3262 int read_only)
3263{
3264 if (read_only)
3265 return;
3266
3267 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3268 printk(KERN_WARNING "warning: mount fs with errors, "
3269 "running btrfsck is recommended\n");
3270}
3271
3272int btrfs_error_commit_super(struct btrfs_root *root)
3273{
3274 int ret;
3275
3276 mutex_lock(&root->fs_info->cleaner_mutex);
3277 btrfs_run_delayed_iputs(root);
3278 mutex_unlock(&root->fs_info->cleaner_mutex);
3279
3280 down_write(&root->fs_info->cleanup_work_sem);
3281 up_write(&root->fs_info->cleanup_work_sem);
3282
3283 /* cleanup FS via transaction */
3284 btrfs_cleanup_transaction(root);
3285
3286 ret = write_ctree_super(NULL, root, 0);
3287
3288 return ret;
3289}
3290
3291static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
3292{
3293 struct btrfs_inode *btrfs_inode;
3294 struct list_head splice;
3295
3296 INIT_LIST_HEAD(&splice);
3297
3298 mutex_lock(&root->fs_info->ordered_operations_mutex);
3299 spin_lock(&root->fs_info->ordered_extent_lock);
3300
3301 list_splice_init(&root->fs_info->ordered_operations, &splice);
3302 while (!list_empty(&splice)) {
3303 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3304 ordered_operations);
3305
3306 list_del_init(&btrfs_inode->ordered_operations);
3307
3308 btrfs_invalidate_inodes(btrfs_inode->root);
3309 }
3310
3311 spin_unlock(&root->fs_info->ordered_extent_lock);
3312 mutex_unlock(&root->fs_info->ordered_operations_mutex);
3313
3314 return 0;
3315}
3316
3317static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
3318{
3319 struct list_head splice;
3320 struct btrfs_ordered_extent *ordered;
3321 struct inode *inode;
3322
3323 INIT_LIST_HEAD(&splice);
3324
3325 spin_lock(&root->fs_info->ordered_extent_lock);
3326
3327 list_splice_init(&root->fs_info->ordered_extents, &splice);
3328 while (!list_empty(&splice)) {
3329 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3330 root_extent_list);
3331
3332 list_del_init(&ordered->root_extent_list);
3333 atomic_inc(&ordered->refs);
3334
3335 /* the inode may be getting freed (in sys_unlink path). */
3336 inode = igrab(ordered->inode);
3337
3338 spin_unlock(&root->fs_info->ordered_extent_lock);
3339 if (inode)
3340 iput(inode);
3341
3342 atomic_set(&ordered->refs, 1);
3343 btrfs_put_ordered_extent(ordered);
3344
3345 spin_lock(&root->fs_info->ordered_extent_lock);
3346 }
3347
3348 spin_unlock(&root->fs_info->ordered_extent_lock);
3349
3350 return 0;
3351}
3352
3353static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3354 struct btrfs_root *root)
3355{
3356 struct rb_node *node;
3357 struct btrfs_delayed_ref_root *delayed_refs;
3358 struct btrfs_delayed_ref_node *ref;
3359 int ret = 0;
3360
3361 delayed_refs = &trans->delayed_refs;
3362
3363 spin_lock(&delayed_refs->lock);
3364 if (delayed_refs->num_entries == 0) {
cfece4db 3365 spin_unlock(&delayed_refs->lock);
acce952b 3366 printk(KERN_INFO "delayed_refs has NO entry\n");
3367 return ret;
3368 }
3369
3370 node = rb_first(&delayed_refs->root);
3371 while (node) {
3372 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
3373 node = rb_next(node);
3374
3375 ref->in_tree = 0;
3376 rb_erase(&ref->rb_node, &delayed_refs->root);
3377 delayed_refs->num_entries--;
3378
3379 atomic_set(&ref->refs, 1);
3380 if (btrfs_delayed_ref_is_head(ref)) {
3381 struct btrfs_delayed_ref_head *head;
3382
3383 head = btrfs_delayed_node_to_head(ref);
3384 mutex_lock(&head->mutex);
3385 kfree(head->extent_op);
3386 delayed_refs->num_heads--;
3387 if (list_empty(&head->cluster))
3388 delayed_refs->num_heads_ready--;
3389 list_del_init(&head->cluster);
3390 mutex_unlock(&head->mutex);
3391 }
3392
3393 spin_unlock(&delayed_refs->lock);
3394 btrfs_put_delayed_ref(ref);
3395
3396 cond_resched();
3397 spin_lock(&delayed_refs->lock);
3398 }
3399
3400 spin_unlock(&delayed_refs->lock);
3401
3402 return ret;
3403}
3404
3405static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3406{
3407 struct btrfs_pending_snapshot *snapshot;
3408 struct list_head splice;
3409
3410 INIT_LIST_HEAD(&splice);
3411
3412 list_splice_init(&t->pending_snapshots, &splice);
3413
3414 while (!list_empty(&splice)) {
3415 snapshot = list_entry(splice.next,
3416 struct btrfs_pending_snapshot,
3417 list);
3418
3419 list_del_init(&snapshot->list);
3420
3421 kfree(snapshot);
3422 }
3423
3424 return 0;
3425}
3426
3427static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3428{
3429 struct btrfs_inode *btrfs_inode;
3430 struct list_head splice;
3431
3432 INIT_LIST_HEAD(&splice);
3433
acce952b 3434 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3435 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3436
3437 while (!list_empty(&splice)) {
3438 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3439 delalloc_inodes);
3440
3441 list_del_init(&btrfs_inode->delalloc_inodes);
3442
3443 btrfs_invalidate_inodes(btrfs_inode->root);
3444 }
3445
3446 spin_unlock(&root->fs_info->delalloc_lock);
3447
3448 return 0;
3449}
3450
3451static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3452 struct extent_io_tree *dirty_pages,
3453 int mark)
3454{
3455 int ret;
3456 struct page *page;
3457 struct inode *btree_inode = root->fs_info->btree_inode;
3458 struct extent_buffer *eb;
3459 u64 start = 0;
3460 u64 end;
3461 u64 offset;
3462 unsigned long index;
3463
3464 while (1) {
3465 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3466 mark);
3467 if (ret)
3468 break;
3469
3470 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3471 while (start <= end) {
3472 index = start >> PAGE_CACHE_SHIFT;
3473 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3474 page = find_get_page(btree_inode->i_mapping, index);
3475 if (!page)
3476 continue;
3477 offset = page_offset(page);
3478
3479 spin_lock(&dirty_pages->buffer_lock);
3480 eb = radix_tree_lookup(
3481 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3482 offset >> PAGE_CACHE_SHIFT);
3483 spin_unlock(&dirty_pages->buffer_lock);
3484 if (eb) {
3485 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3486 &eb->bflags);
3487 atomic_set(&eb->refs, 1);
3488 }
3489 if (PageWriteback(page))
3490 end_page_writeback(page);
3491
3492 lock_page(page);
3493 if (PageDirty(page)) {
3494 clear_page_dirty_for_io(page);
3495 spin_lock_irq(&page->mapping->tree_lock);
3496 radix_tree_tag_clear(&page->mapping->page_tree,
3497 page_index(page),
3498 PAGECACHE_TAG_DIRTY);
3499 spin_unlock_irq(&page->mapping->tree_lock);
3500 }
3501
3502 page->mapping->a_ops->invalidatepage(page, 0);
3503 unlock_page(page);
3504 }
3505 }
3506
3507 return ret;
3508}
3509
3510static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3511 struct extent_io_tree *pinned_extents)
3512{
3513 struct extent_io_tree *unpin;
3514 u64 start;
3515 u64 end;
3516 int ret;
3517
3518 unpin = pinned_extents;
3519 while (1) {
3520 ret = find_first_extent_bit(unpin, 0, &start, &end,
3521 EXTENT_DIRTY);
3522 if (ret)
3523 break;
3524
3525 /* opt_discard */
5378e607
LD
3526 if (btrfs_test_opt(root, DISCARD))
3527 ret = btrfs_error_discard_extent(root, start,
3528 end + 1 - start,
3529 NULL);
acce952b 3530
3531 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3532 btrfs_error_unpin_extent_range(root, start, end);
3533 cond_resched();
3534 }
3535
3536 return 0;
3537}
3538
3539static int btrfs_cleanup_transaction(struct btrfs_root *root)
3540{
3541 struct btrfs_transaction *t;
3542 LIST_HEAD(list);
3543
3544 WARN_ON(1);
3545
acce952b 3546 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3547
a4abeea4 3548 spin_lock(&root->fs_info->trans_lock);
acce952b 3549 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3550 root->fs_info->trans_no_join = 1;
3551 spin_unlock(&root->fs_info->trans_lock);
3552
acce952b 3553 while (!list_empty(&list)) {
3554 t = list_entry(list.next, struct btrfs_transaction, list);
3555 if (!t)
3556 break;
3557
3558 btrfs_destroy_ordered_operations(root);
3559
3560 btrfs_destroy_ordered_extents(root);
3561
3562 btrfs_destroy_delayed_refs(t, root);
3563
3564 btrfs_block_rsv_release(root,
3565 &root->fs_info->trans_block_rsv,
3566 t->dirty_pages.dirty_bytes);
3567
3568 /* FIXME: cleanup wait for commit */
3569 t->in_commit = 1;
3570 t->blocked = 1;
3571 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3572 wake_up(&root->fs_info->transaction_blocked_wait);
3573
3574 t->blocked = 0;
3575 if (waitqueue_active(&root->fs_info->transaction_wait))
3576 wake_up(&root->fs_info->transaction_wait);
acce952b 3577
acce952b 3578 t->commit_done = 1;
3579 if (waitqueue_active(&t->commit_wait))
3580 wake_up(&t->commit_wait);
acce952b 3581
3582 btrfs_destroy_pending_snapshots(t);
3583
3584 btrfs_destroy_delalloc_inodes(root);
3585
a4abeea4 3586 spin_lock(&root->fs_info->trans_lock);
acce952b 3587 root->fs_info->running_transaction = NULL;
a4abeea4 3588 spin_unlock(&root->fs_info->trans_lock);
acce952b 3589
3590 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3591 EXTENT_DIRTY);
3592
3593 btrfs_destroy_pinned_extent(root,
3594 root->fs_info->pinned_extents);
3595
13c5a93e 3596 atomic_set(&t->use_count, 0);
acce952b 3597 list_del_init(&t->list);
3598 memset(t, 0, sizeof(*t));
3599 kmem_cache_free(btrfs_transaction_cachep, t);
3600 }
3601
a4abeea4
JB
3602 spin_lock(&root->fs_info->trans_lock);
3603 root->fs_info->trans_no_join = 0;
3604 spin_unlock(&root->fs_info->trans_lock);
acce952b 3605 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3606
3607 return 0;
3608}
3609
d1310b2e 3610static struct extent_io_ops btree_extent_io_ops = {
4bef0848 3611 .write_cache_pages_lock_hook = btree_lock_page_hook,
ce9adaa5 3612 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3613 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3614 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3615 /* note we're sharing with inode.c for the merge bio hook */
3616 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3617};