btrfs: Replace fs_info->endio_* workqueue with btrfs_workqueue.
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
fccb5d86 58static void end_workqueue_fn(struct btrfs_work_struct *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
fccb5d86 89 struct btrfs_work_struct work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
5cdc7ad3 111 struct btrfs_work_struct work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
0b947aff 247 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 347 "found %llu\n",
c1c9ff7c 348 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 349 ret = 1;
0b32f4bb 350 clear_extent_buffer_uptodate(eb);
33958dc6 351out:
2ac55d41
JB
352 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
353 &cached_state, GFP_NOFS);
1259ab75 354 return ret;
1259ab75
CM
355}
356
1104a885
DS
357/*
358 * Return 0 if the superblock checksum type matches the checksum value of that
359 * algorithm. Pass the raw disk superblock data.
360 */
361static int btrfs_check_super_csum(char *raw_disk_sb)
362{
363 struct btrfs_super_block *disk_sb =
364 (struct btrfs_super_block *)raw_disk_sb;
365 u16 csum_type = btrfs_super_csum_type(disk_sb);
366 int ret = 0;
367
368 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
369 u32 crc = ~(u32)0;
370 const int csum_size = sizeof(crc);
371 char result[csum_size];
372
373 /*
374 * The super_block structure does not span the whole
375 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
376 * is filled with zeros and is included in the checkum.
377 */
378 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
379 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
380 btrfs_csum_final(crc, result);
381
382 if (memcmp(raw_disk_sb, result, csum_size))
383 ret = 1;
667e7d94
CM
384
385 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
386 printk(KERN_WARNING
387 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
388 ret = 0;
389 }
1104a885
DS
390 }
391
392 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 393 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
394 csum_type);
395 ret = 1;
396 }
397
398 return ret;
399}
400
d352ac68
CM
401/*
402 * helper to read a given tree block, doing retries as required when
403 * the checksums don't match and we have alternate mirrors to try.
404 */
f188591e
CM
405static int btree_read_extent_buffer_pages(struct btrfs_root *root,
406 struct extent_buffer *eb,
ca7a79ad 407 u64 start, u64 parent_transid)
f188591e
CM
408{
409 struct extent_io_tree *io_tree;
ea466794 410 int failed = 0;
f188591e
CM
411 int ret;
412 int num_copies = 0;
413 int mirror_num = 0;
ea466794 414 int failed_mirror = 0;
f188591e 415
a826d6dc 416 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
417 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
418 while (1) {
bb82ab88
AJ
419 ret = read_extent_buffer_pages(io_tree, eb, start,
420 WAIT_COMPLETE,
f188591e 421 btree_get_extent, mirror_num);
256dd1bb
SB
422 if (!ret) {
423 if (!verify_parent_transid(io_tree, eb,
b9fab919 424 parent_transid, 0))
256dd1bb
SB
425 break;
426 else
427 ret = -EIO;
428 }
d397712b 429
a826d6dc
JB
430 /*
431 * This buffer's crc is fine, but its contents are corrupted, so
432 * there is no reason to read the other copies, they won't be
433 * any less wrong.
434 */
435 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
436 break;
437
5d964051 438 num_copies = btrfs_num_copies(root->fs_info,
f188591e 439 eb->start, eb->len);
4235298e 440 if (num_copies == 1)
ea466794 441 break;
4235298e 442
5cf1ab56
JB
443 if (!failed_mirror) {
444 failed = 1;
445 failed_mirror = eb->read_mirror;
446 }
447
f188591e 448 mirror_num++;
ea466794
JB
449 if (mirror_num == failed_mirror)
450 mirror_num++;
451
4235298e 452 if (mirror_num > num_copies)
ea466794 453 break;
f188591e 454 }
ea466794 455
c0901581 456 if (failed && !ret && failed_mirror)
ea466794
JB
457 repair_eb_io_failure(root, eb, failed_mirror);
458
459 return ret;
f188591e 460}
19c00ddc 461
d352ac68 462/*
d397712b
CM
463 * checksum a dirty tree block before IO. This has extra checks to make sure
464 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 465 */
d397712b 466
b2950863 467static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 468{
4eee4fa4 469 u64 start = page_offset(page);
19c00ddc 470 u64 found_start;
19c00ddc 471 struct extent_buffer *eb;
f188591e 472
4f2de97a
JB
473 eb = (struct extent_buffer *)page->private;
474 if (page != eb->pages[0])
475 return 0;
19c00ddc 476 found_start = btrfs_header_bytenr(eb);
fae7f21c 477 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 478 return 0;
19c00ddc 479 csum_tree_block(root, eb, 0);
19c00ddc
CM
480 return 0;
481}
482
2b82032c
YZ
483static int check_tree_block_fsid(struct btrfs_root *root,
484 struct extent_buffer *eb)
485{
486 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
487 u8 fsid[BTRFS_UUID_SIZE];
488 int ret = 1;
489
0a4e5586 490 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
491 while (fs_devices) {
492 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
493 ret = 0;
494 break;
495 }
496 fs_devices = fs_devices->seed;
497 }
498 return ret;
499}
500
a826d6dc 501#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
502 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
503 "root=%llu, slot=%d", reason, \
c1c9ff7c 504 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
505
506static noinline int check_leaf(struct btrfs_root *root,
507 struct extent_buffer *leaf)
508{
509 struct btrfs_key key;
510 struct btrfs_key leaf_key;
511 u32 nritems = btrfs_header_nritems(leaf);
512 int slot;
513
514 if (nritems == 0)
515 return 0;
516
517 /* Check the 0 item */
518 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
519 BTRFS_LEAF_DATA_SIZE(root)) {
520 CORRUPT("invalid item offset size pair", leaf, root, 0);
521 return -EIO;
522 }
523
524 /*
525 * Check to make sure each items keys are in the correct order and their
526 * offsets make sense. We only have to loop through nritems-1 because
527 * we check the current slot against the next slot, which verifies the
528 * next slot's offset+size makes sense and that the current's slot
529 * offset is correct.
530 */
531 for (slot = 0; slot < nritems - 1; slot++) {
532 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
533 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
534
535 /* Make sure the keys are in the right order */
536 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
537 CORRUPT("bad key order", leaf, root, slot);
538 return -EIO;
539 }
540
541 /*
542 * Make sure the offset and ends are right, remember that the
543 * item data starts at the end of the leaf and grows towards the
544 * front.
545 */
546 if (btrfs_item_offset_nr(leaf, slot) !=
547 btrfs_item_end_nr(leaf, slot + 1)) {
548 CORRUPT("slot offset bad", leaf, root, slot);
549 return -EIO;
550 }
551
552 /*
553 * Check to make sure that we don't point outside of the leaf,
554 * just incase all the items are consistent to eachother, but
555 * all point outside of the leaf.
556 */
557 if (btrfs_item_end_nr(leaf, slot) >
558 BTRFS_LEAF_DATA_SIZE(root)) {
559 CORRUPT("slot end outside of leaf", leaf, root, slot);
560 return -EIO;
561 }
562 }
563
564 return 0;
565}
566
facc8a22
MX
567static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
568 u64 phy_offset, struct page *page,
569 u64 start, u64 end, int mirror)
ce9adaa5 570{
ce9adaa5
CM
571 u64 found_start;
572 int found_level;
ce9adaa5
CM
573 struct extent_buffer *eb;
574 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 575 int ret = 0;
727011e0 576 int reads_done;
ce9adaa5 577
ce9adaa5
CM
578 if (!page->private)
579 goto out;
d397712b 580
4f2de97a 581 eb = (struct extent_buffer *)page->private;
d397712b 582
0b32f4bb
JB
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
589 if (!reads_done)
590 goto err;
f188591e 591
5cf1ab56 592 eb->read_mirror = mirror;
ea466794
JB
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
ce9adaa5 598 found_start = btrfs_header_bytenr(eb);
727011e0 599 if (found_start != eb->start) {
efe120a0 600 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 601 "%llu %llu\n",
c1c9ff7c 602 found_start, eb->start);
f188591e 603 ret = -EIO;
ce9adaa5
CM
604 goto err;
605 }
2b82032c 606 if (check_tree_block_fsid(root, eb)) {
efe120a0 607 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 608 eb->start);
1259ab75
CM
609 ret = -EIO;
610 goto err;
611 }
ce9adaa5 612 found_level = btrfs_header_level(eb);
1c24c3ce 613 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 614 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
615 (int)btrfs_header_level(eb));
616 ret = -EIO;
617 goto err;
618 }
ce9adaa5 619
85d4e461
CM
620 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
621 eb, found_level);
4008c04a 622
ce9adaa5 623 ret = csum_tree_block(root, eb, 1);
a826d6dc 624 if (ret) {
f188591e 625 ret = -EIO;
a826d6dc
JB
626 goto err;
627 }
628
629 /*
630 * If this is a leaf block and it is corrupt, set the corrupt bit so
631 * that we don't try and read the other copies of this block, just
632 * return -EIO.
633 */
634 if (found_level == 0 && check_leaf(root, eb)) {
635 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
636 ret = -EIO;
637 }
ce9adaa5 638
0b32f4bb
JB
639 if (!ret)
640 set_extent_buffer_uptodate(eb);
ce9adaa5 641err:
79fb65a1
JB
642 if (reads_done &&
643 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 644 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 645
53b381b3
DW
646 if (ret) {
647 /*
648 * our io error hook is going to dec the io pages
649 * again, we have to make sure it has something
650 * to decrement
651 */
652 atomic_inc(&eb->io_pages);
0b32f4bb 653 clear_extent_buffer_uptodate(eb);
53b381b3 654 }
0b32f4bb 655 free_extent_buffer(eb);
ce9adaa5 656out:
f188591e 657 return ret;
ce9adaa5
CM
658}
659
ea466794 660static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 661{
4bb31e92
AJ
662 struct extent_buffer *eb;
663 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
664
4f2de97a 665 eb = (struct extent_buffer *)page->private;
ea466794 666 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 667 eb->read_mirror = failed_mirror;
53b381b3 668 atomic_dec(&eb->io_pages);
ea466794 669 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 670 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
671 return -EIO; /* we fixed nothing */
672}
673
ce9adaa5 674static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
675{
676 struct end_io_wq *end_io_wq = bio->bi_private;
677 struct btrfs_fs_info *fs_info;
ce9adaa5 678
ce9adaa5 679 fs_info = end_io_wq->info;
ce9adaa5 680 end_io_wq->error = err;
fccb5d86 681 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
d20f7043 682
7b6d91da 683 if (bio->bi_rw & REQ_WRITE) {
53b381b3 684 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
fccb5d86
QW
685 btrfs_queue_work(fs_info->endio_meta_write_workers,
686 &end_io_wq->work);
53b381b3 687 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
fccb5d86
QW
688 btrfs_queue_work(fs_info->endio_freespace_worker,
689 &end_io_wq->work);
53b381b3 690 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
691 btrfs_queue_work(fs_info->endio_raid56_workers,
692 &end_io_wq->work);
cad321ad 693 else
fccb5d86
QW
694 btrfs_queue_work(fs_info->endio_write_workers,
695 &end_io_wq->work);
d20f7043 696 } else {
53b381b3 697 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
698 btrfs_queue_work(fs_info->endio_raid56_workers,
699 &end_io_wq->work);
53b381b3 700 else if (end_io_wq->metadata)
fccb5d86
QW
701 btrfs_queue_work(fs_info->endio_meta_workers,
702 &end_io_wq->work);
d20f7043 703 else
fccb5d86
QW
704 btrfs_queue_work(fs_info->endio_workers,
705 &end_io_wq->work);
d20f7043 706 }
ce9adaa5
CM
707}
708
0cb59c99
JB
709/*
710 * For the metadata arg you want
711 *
712 * 0 - if data
713 * 1 - if normal metadta
714 * 2 - if writing to the free space cache area
53b381b3 715 * 3 - raid parity work
0cb59c99 716 */
22c59948
CM
717int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
718 int metadata)
0b86a832 719{
ce9adaa5 720 struct end_io_wq *end_io_wq;
ce9adaa5
CM
721 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
722 if (!end_io_wq)
723 return -ENOMEM;
724
725 end_io_wq->private = bio->bi_private;
726 end_io_wq->end_io = bio->bi_end_io;
22c59948 727 end_io_wq->info = info;
ce9adaa5
CM
728 end_io_wq->error = 0;
729 end_io_wq->bio = bio;
22c59948 730 end_io_wq->metadata = metadata;
ce9adaa5
CM
731
732 bio->bi_private = end_io_wq;
733 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
734 return 0;
735}
736
b64a2851 737unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 738{
4854ddd0 739 unsigned long limit = min_t(unsigned long,
5cdc7ad3 740 info->thread_pool_size,
4854ddd0
CM
741 info->fs_devices->open_devices);
742 return 256 * limit;
743}
0986fe9e 744
5cdc7ad3 745static void run_one_async_start(struct btrfs_work_struct *work)
4a69a410 746{
4a69a410 747 struct async_submit_bio *async;
79787eaa 748 int ret;
4a69a410
CM
749
750 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
751 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
752 async->mirror_num, async->bio_flags,
753 async->bio_offset);
754 if (ret)
755 async->error = ret;
4a69a410
CM
756}
757
5cdc7ad3 758static void run_one_async_done(struct btrfs_work_struct *work)
8b712842
CM
759{
760 struct btrfs_fs_info *fs_info;
761 struct async_submit_bio *async;
4854ddd0 762 int limit;
8b712842
CM
763
764 async = container_of(work, struct async_submit_bio, work);
765 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 766
b64a2851 767 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
768 limit = limit * 2 / 3;
769
66657b31 770 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 771 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
772 wake_up(&fs_info->async_submit_wait);
773
79787eaa
JM
774 /* If an error occured we just want to clean up the bio and move on */
775 if (async->error) {
776 bio_endio(async->bio, async->error);
777 return;
778 }
779
4a69a410 780 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
781 async->mirror_num, async->bio_flags,
782 async->bio_offset);
4a69a410
CM
783}
784
5cdc7ad3 785static void run_one_async_free(struct btrfs_work_struct *work)
4a69a410
CM
786{
787 struct async_submit_bio *async;
788
789 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
790 kfree(async);
791}
792
44b8bd7e
CM
793int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
794 int rw, struct bio *bio, int mirror_num,
c8b97818 795 unsigned long bio_flags,
eaf25d93 796 u64 bio_offset,
4a69a410
CM
797 extent_submit_bio_hook_t *submit_bio_start,
798 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
799{
800 struct async_submit_bio *async;
801
802 async = kmalloc(sizeof(*async), GFP_NOFS);
803 if (!async)
804 return -ENOMEM;
805
806 async->inode = inode;
807 async->rw = rw;
808 async->bio = bio;
809 async->mirror_num = mirror_num;
4a69a410
CM
810 async->submit_bio_start = submit_bio_start;
811 async->submit_bio_done = submit_bio_done;
812
5cdc7ad3
QW
813 btrfs_init_work(&async->work, run_one_async_start,
814 run_one_async_done, run_one_async_free);
4a69a410 815
c8b97818 816 async->bio_flags = bio_flags;
eaf25d93 817 async->bio_offset = bio_offset;
8c8bee1d 818
79787eaa
JM
819 async->error = 0;
820
cb03c743 821 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 822
7b6d91da 823 if (rw & REQ_SYNC)
5cdc7ad3 824 btrfs_set_work_high_priority(&async->work);
d313d7a3 825
5cdc7ad3 826 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 827
d397712b 828 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
829 atomic_read(&fs_info->nr_async_submits)) {
830 wait_event(fs_info->async_submit_wait,
831 (atomic_read(&fs_info->nr_async_submits) == 0));
832 }
833
44b8bd7e
CM
834 return 0;
835}
836
ce3ed71a
CM
837static int btree_csum_one_bio(struct bio *bio)
838{
839 struct bio_vec *bvec = bio->bi_io_vec;
840 int bio_index = 0;
841 struct btrfs_root *root;
79787eaa 842 int ret = 0;
ce3ed71a
CM
843
844 WARN_ON(bio->bi_vcnt <= 0);
d397712b 845 while (bio_index < bio->bi_vcnt) {
ce3ed71a 846 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
847 ret = csum_dirty_buffer(root, bvec->bv_page);
848 if (ret)
849 break;
ce3ed71a
CM
850 bio_index++;
851 bvec++;
852 }
79787eaa 853 return ret;
ce3ed71a
CM
854}
855
4a69a410
CM
856static int __btree_submit_bio_start(struct inode *inode, int rw,
857 struct bio *bio, int mirror_num,
eaf25d93
CM
858 unsigned long bio_flags,
859 u64 bio_offset)
22c59948 860{
8b712842
CM
861 /*
862 * when we're called for a write, we're already in the async
5443be45 863 * submission context. Just jump into btrfs_map_bio
8b712842 864 */
79787eaa 865 return btree_csum_one_bio(bio);
4a69a410 866}
22c59948 867
4a69a410 868static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
869 int mirror_num, unsigned long bio_flags,
870 u64 bio_offset)
4a69a410 871{
61891923
SB
872 int ret;
873
8b712842 874 /*
4a69a410
CM
875 * when we're called for a write, we're already in the async
876 * submission context. Just jump into btrfs_map_bio
8b712842 877 */
61891923
SB
878 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
879 if (ret)
880 bio_endio(bio, ret);
881 return ret;
0b86a832
CM
882}
883
de0022b9
JB
884static int check_async_write(struct inode *inode, unsigned long bio_flags)
885{
886 if (bio_flags & EXTENT_BIO_TREE_LOG)
887 return 0;
888#ifdef CONFIG_X86
889 if (cpu_has_xmm4_2)
890 return 0;
891#endif
892 return 1;
893}
894
44b8bd7e 895static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
896 int mirror_num, unsigned long bio_flags,
897 u64 bio_offset)
44b8bd7e 898{
de0022b9 899 int async = check_async_write(inode, bio_flags);
cad321ad
CM
900 int ret;
901
7b6d91da 902 if (!(rw & REQ_WRITE)) {
4a69a410
CM
903 /*
904 * called for a read, do the setup so that checksum validation
905 * can happen in the async kernel threads
906 */
f3f266ab
CM
907 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
908 bio, 1);
1d4284bd 909 if (ret)
61891923
SB
910 goto out_w_error;
911 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
912 mirror_num, 0);
de0022b9
JB
913 } else if (!async) {
914 ret = btree_csum_one_bio(bio);
915 if (ret)
61891923
SB
916 goto out_w_error;
917 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
918 mirror_num, 0);
919 } else {
920 /*
921 * kthread helpers are used to submit writes so that
922 * checksumming can happen in parallel across all CPUs
923 */
924 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
925 inode, rw, bio, mirror_num, 0,
926 bio_offset,
927 __btree_submit_bio_start,
928 __btree_submit_bio_done);
44b8bd7e 929 }
d313d7a3 930
61891923
SB
931 if (ret) {
932out_w_error:
933 bio_endio(bio, ret);
934 }
935 return ret;
44b8bd7e
CM
936}
937
3dd1462e 938#ifdef CONFIG_MIGRATION
784b4e29 939static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
940 struct page *newpage, struct page *page,
941 enum migrate_mode mode)
784b4e29
CM
942{
943 /*
944 * we can't safely write a btree page from here,
945 * we haven't done the locking hook
946 */
947 if (PageDirty(page))
948 return -EAGAIN;
949 /*
950 * Buffers may be managed in a filesystem specific way.
951 * We must have no buffers or drop them.
952 */
953 if (page_has_private(page) &&
954 !try_to_release_page(page, GFP_KERNEL))
955 return -EAGAIN;
a6bc32b8 956 return migrate_page(mapping, newpage, page, mode);
784b4e29 957}
3dd1462e 958#endif
784b4e29 959
0da5468f
CM
960
961static int btree_writepages(struct address_space *mapping,
962 struct writeback_control *wbc)
963{
e2d84521
MX
964 struct btrfs_fs_info *fs_info;
965 int ret;
966
d8d5f3e1 967 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
968
969 if (wbc->for_kupdate)
970 return 0;
971
e2d84521 972 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 973 /* this is a bit racy, but that's ok */
e2d84521
MX
974 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
975 BTRFS_DIRTY_METADATA_THRESH);
976 if (ret < 0)
793955bc 977 return 0;
793955bc 978 }
0b32f4bb 979 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
980}
981
b2950863 982static int btree_readpage(struct file *file, struct page *page)
5f39d397 983{
d1310b2e
CM
984 struct extent_io_tree *tree;
985 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 986 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 987}
22b0ebda 988
70dec807 989static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 990{
98509cfc 991 if (PageWriteback(page) || PageDirty(page))
d397712b 992 return 0;
0c4e538b 993
f7a52a40 994 return try_release_extent_buffer(page);
d98237b3
CM
995}
996
d47992f8
LC
997static void btree_invalidatepage(struct page *page, unsigned int offset,
998 unsigned int length)
d98237b3 999{
d1310b2e
CM
1000 struct extent_io_tree *tree;
1001 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1002 extent_invalidatepage(tree, page, offset);
1003 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1004 if (PagePrivate(page)) {
efe120a0
FH
1005 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1006 "page private not zero on page %llu",
1007 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1008 ClearPagePrivate(page);
1009 set_page_private(page, 0);
1010 page_cache_release(page);
1011 }
d98237b3
CM
1012}
1013
0b32f4bb
JB
1014static int btree_set_page_dirty(struct page *page)
1015{
bb146eb2 1016#ifdef DEBUG
0b32f4bb
JB
1017 struct extent_buffer *eb;
1018
1019 BUG_ON(!PagePrivate(page));
1020 eb = (struct extent_buffer *)page->private;
1021 BUG_ON(!eb);
1022 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1023 BUG_ON(!atomic_read(&eb->refs));
1024 btrfs_assert_tree_locked(eb);
bb146eb2 1025#endif
0b32f4bb
JB
1026 return __set_page_dirty_nobuffers(page);
1027}
1028
7f09410b 1029static const struct address_space_operations btree_aops = {
d98237b3 1030 .readpage = btree_readpage,
0da5468f 1031 .writepages = btree_writepages,
5f39d397
CM
1032 .releasepage = btree_releasepage,
1033 .invalidatepage = btree_invalidatepage,
5a92bc88 1034#ifdef CONFIG_MIGRATION
784b4e29 1035 .migratepage = btree_migratepage,
5a92bc88 1036#endif
0b32f4bb 1037 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1038};
1039
ca7a79ad
CM
1040int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1041 u64 parent_transid)
090d1875 1042{
5f39d397
CM
1043 struct extent_buffer *buf = NULL;
1044 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1045 int ret = 0;
090d1875 1046
db94535d 1047 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1048 if (!buf)
090d1875 1049 return 0;
d1310b2e 1050 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1051 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1052 free_extent_buffer(buf);
de428b63 1053 return ret;
090d1875
CM
1054}
1055
ab0fff03
AJ
1056int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1057 int mirror_num, struct extent_buffer **eb)
1058{
1059 struct extent_buffer *buf = NULL;
1060 struct inode *btree_inode = root->fs_info->btree_inode;
1061 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1062 int ret;
1063
1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1065 if (!buf)
1066 return 0;
1067
1068 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1069
1070 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1071 btree_get_extent, mirror_num);
1072 if (ret) {
1073 free_extent_buffer(buf);
1074 return ret;
1075 }
1076
1077 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1078 free_extent_buffer(buf);
1079 return -EIO;
0b32f4bb 1080 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1081 *eb = buf;
1082 } else {
1083 free_extent_buffer(buf);
1084 }
1085 return 0;
1086}
1087
0999df54
CM
1088struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1089 u64 bytenr, u32 blocksize)
1090{
f28491e0 1091 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1092}
1093
1094struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1095 u64 bytenr, u32 blocksize)
1096{
f28491e0 1097 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1098}
1099
1100
e02119d5
CM
1101int btrfs_write_tree_block(struct extent_buffer *buf)
1102{
727011e0 1103 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1104 buf->start + buf->len - 1);
e02119d5
CM
1105}
1106
1107int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1108{
727011e0 1109 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1110 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1111}
1112
0999df54 1113struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1114 u32 blocksize, u64 parent_transid)
0999df54
CM
1115{
1116 struct extent_buffer *buf = NULL;
0999df54
CM
1117 int ret;
1118
0999df54
CM
1119 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1120 if (!buf)
1121 return NULL;
0999df54 1122
ca7a79ad 1123 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1124 if (ret) {
1125 free_extent_buffer(buf);
1126 return NULL;
1127 }
5f39d397 1128 return buf;
ce9adaa5 1129
eb60ceac
CM
1130}
1131
d5c13f92
JM
1132void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1133 struct extent_buffer *buf)
ed2ff2cb 1134{
e2d84521
MX
1135 struct btrfs_fs_info *fs_info = root->fs_info;
1136
55c69072 1137 if (btrfs_header_generation(buf) ==
e2d84521 1138 fs_info->running_transaction->transid) {
b9447ef8 1139 btrfs_assert_tree_locked(buf);
b4ce94de 1140
b9473439 1141 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1142 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1143 -buf->len,
1144 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1145 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1146 btrfs_set_lock_blocking(buf);
1147 clear_extent_buffer_dirty(buf);
1148 }
925baedd 1149 }
5f39d397
CM
1150}
1151
143bede5
JM
1152static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1153 u32 stripesize, struct btrfs_root *root,
1154 struct btrfs_fs_info *fs_info,
1155 u64 objectid)
d97e63b6 1156{
cfaa7295 1157 root->node = NULL;
a28ec197 1158 root->commit_root = NULL;
db94535d
CM
1159 root->sectorsize = sectorsize;
1160 root->nodesize = nodesize;
1161 root->leafsize = leafsize;
87ee04eb 1162 root->stripesize = stripesize;
123abc88 1163 root->ref_cows = 0;
0b86a832 1164 root->track_dirty = 0;
c71bf099 1165 root->in_radix = 0;
d68fc57b
YZ
1166 root->orphan_item_inserted = 0;
1167 root->orphan_cleanup_state = 0;
0b86a832 1168
0f7d52f4
CM
1169 root->objectid = objectid;
1170 root->last_trans = 0;
13a8a7c8 1171 root->highest_objectid = 0;
eb73c1b7 1172 root->nr_delalloc_inodes = 0;
199c2a9c 1173 root->nr_ordered_extents = 0;
58176a96 1174 root->name = NULL;
6bef4d31 1175 root->inode_tree = RB_ROOT;
16cdcec7 1176 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1177 root->block_rsv = NULL;
d68fc57b 1178 root->orphan_block_rsv = NULL;
0b86a832
CM
1179
1180 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1181 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1182 INIT_LIST_HEAD(&root->delalloc_inodes);
1183 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1184 INIT_LIST_HEAD(&root->ordered_extents);
1185 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1186 INIT_LIST_HEAD(&root->logged_list[0]);
1187 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1188 spin_lock_init(&root->orphan_lock);
5d4f98a2 1189 spin_lock_init(&root->inode_lock);
eb73c1b7 1190 spin_lock_init(&root->delalloc_lock);
199c2a9c 1191 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1192 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1193 spin_lock_init(&root->log_extents_lock[0]);
1194 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1195 mutex_init(&root->objectid_mutex);
e02119d5 1196 mutex_init(&root->log_mutex);
7237f183
YZ
1197 init_waitqueue_head(&root->log_writer_wait);
1198 init_waitqueue_head(&root->log_commit_wait[0]);
1199 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1200 INIT_LIST_HEAD(&root->log_ctxs[0]);
1201 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1202 atomic_set(&root->log_commit[0], 0);
1203 atomic_set(&root->log_commit[1], 0);
1204 atomic_set(&root->log_writers, 0);
2ecb7923 1205 atomic_set(&root->log_batch, 0);
8a35d95f 1206 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1207 atomic_set(&root->refs, 1);
7237f183 1208 root->log_transid = 0;
d1433deb 1209 root->log_transid_committed = -1;
257c62e1 1210 root->last_log_commit = 0;
06ea65a3
JB
1211 if (fs_info)
1212 extent_io_tree_init(&root->dirty_log_pages,
1213 fs_info->btree_inode->i_mapping);
017e5369 1214
3768f368
CM
1215 memset(&root->root_key, 0, sizeof(root->root_key));
1216 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1217 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1218 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1219 if (fs_info)
1220 root->defrag_trans_start = fs_info->generation;
1221 else
1222 root->defrag_trans_start = 0;
58176a96 1223 init_completion(&root->kobj_unregister);
6702ed49 1224 root->defrag_running = 0;
4d775673 1225 root->root_key.objectid = objectid;
0ee5dc67 1226 root->anon_dev = 0;
8ea05e3a 1227
5f3ab90a 1228 spin_lock_init(&root->root_item_lock);
3768f368
CM
1229}
1230
f84a8bd6 1231static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1232{
1233 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1234 if (root)
1235 root->fs_info = fs_info;
1236 return root;
1237}
1238
06ea65a3
JB
1239#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1240/* Should only be used by the testing infrastructure */
1241struct btrfs_root *btrfs_alloc_dummy_root(void)
1242{
1243 struct btrfs_root *root;
1244
1245 root = btrfs_alloc_root(NULL);
1246 if (!root)
1247 return ERR_PTR(-ENOMEM);
1248 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1249 root->dummy_root = 1;
1250
1251 return root;
1252}
1253#endif
1254
20897f5c
AJ
1255struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1256 struct btrfs_fs_info *fs_info,
1257 u64 objectid)
1258{
1259 struct extent_buffer *leaf;
1260 struct btrfs_root *tree_root = fs_info->tree_root;
1261 struct btrfs_root *root;
1262 struct btrfs_key key;
1263 int ret = 0;
6463fe58 1264 uuid_le uuid;
20897f5c
AJ
1265
1266 root = btrfs_alloc_root(fs_info);
1267 if (!root)
1268 return ERR_PTR(-ENOMEM);
1269
1270 __setup_root(tree_root->nodesize, tree_root->leafsize,
1271 tree_root->sectorsize, tree_root->stripesize,
1272 root, fs_info, objectid);
1273 root->root_key.objectid = objectid;
1274 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1275 root->root_key.offset = 0;
1276
1277 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1278 0, objectid, NULL, 0, 0, 0);
1279 if (IS_ERR(leaf)) {
1280 ret = PTR_ERR(leaf);
1dd05682 1281 leaf = NULL;
20897f5c
AJ
1282 goto fail;
1283 }
1284
20897f5c
AJ
1285 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1286 btrfs_set_header_bytenr(leaf, leaf->start);
1287 btrfs_set_header_generation(leaf, trans->transid);
1288 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1289 btrfs_set_header_owner(leaf, objectid);
1290 root->node = leaf;
1291
0a4e5586 1292 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1293 BTRFS_FSID_SIZE);
1294 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1295 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1296 BTRFS_UUID_SIZE);
1297 btrfs_mark_buffer_dirty(leaf);
1298
1299 root->commit_root = btrfs_root_node(root);
1300 root->track_dirty = 1;
1301
1302
1303 root->root_item.flags = 0;
1304 root->root_item.byte_limit = 0;
1305 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306 btrfs_set_root_generation(&root->root_item, trans->transid);
1307 btrfs_set_root_level(&root->root_item, 0);
1308 btrfs_set_root_refs(&root->root_item, 1);
1309 btrfs_set_root_used(&root->root_item, leaf->len);
1310 btrfs_set_root_last_snapshot(&root->root_item, 0);
1311 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1312 uuid_le_gen(&uuid);
1313 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1314 root->root_item.drop_level = 0;
1315
1316 key.objectid = objectid;
1317 key.type = BTRFS_ROOT_ITEM_KEY;
1318 key.offset = 0;
1319 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1320 if (ret)
1321 goto fail;
1322
1323 btrfs_tree_unlock(leaf);
1324
1dd05682
TI
1325 return root;
1326
20897f5c 1327fail:
1dd05682
TI
1328 if (leaf) {
1329 btrfs_tree_unlock(leaf);
1330 free_extent_buffer(leaf);
1331 }
1332 kfree(root);
20897f5c 1333
1dd05682 1334 return ERR_PTR(ret);
20897f5c
AJ
1335}
1336
7237f183
YZ
1337static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1338 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1339{
1340 struct btrfs_root *root;
1341 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1342 struct extent_buffer *leaf;
e02119d5 1343
6f07e42e 1344 root = btrfs_alloc_root(fs_info);
e02119d5 1345 if (!root)
7237f183 1346 return ERR_PTR(-ENOMEM);
e02119d5
CM
1347
1348 __setup_root(tree_root->nodesize, tree_root->leafsize,
1349 tree_root->sectorsize, tree_root->stripesize,
1350 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1351
1352 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1353 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1354 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1355 /*
1356 * log trees do not get reference counted because they go away
1357 * before a real commit is actually done. They do store pointers
1358 * to file data extents, and those reference counts still get
1359 * updated (along with back refs to the log tree).
1360 */
e02119d5
CM
1361 root->ref_cows = 0;
1362
5d4f98a2 1363 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1364 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1365 0, 0, 0);
7237f183
YZ
1366 if (IS_ERR(leaf)) {
1367 kfree(root);
1368 return ERR_CAST(leaf);
1369 }
e02119d5 1370
5d4f98a2
YZ
1371 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1372 btrfs_set_header_bytenr(leaf, leaf->start);
1373 btrfs_set_header_generation(leaf, trans->transid);
1374 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1375 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1376 root->node = leaf;
e02119d5
CM
1377
1378 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1379 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1380 btrfs_mark_buffer_dirty(root->node);
1381 btrfs_tree_unlock(root->node);
7237f183
YZ
1382 return root;
1383}
1384
1385int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1386 struct btrfs_fs_info *fs_info)
1387{
1388 struct btrfs_root *log_root;
1389
1390 log_root = alloc_log_tree(trans, fs_info);
1391 if (IS_ERR(log_root))
1392 return PTR_ERR(log_root);
1393 WARN_ON(fs_info->log_root_tree);
1394 fs_info->log_root_tree = log_root;
1395 return 0;
1396}
1397
1398int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1399 struct btrfs_root *root)
1400{
1401 struct btrfs_root *log_root;
1402 struct btrfs_inode_item *inode_item;
1403
1404 log_root = alloc_log_tree(trans, root->fs_info);
1405 if (IS_ERR(log_root))
1406 return PTR_ERR(log_root);
1407
1408 log_root->last_trans = trans->transid;
1409 log_root->root_key.offset = root->root_key.objectid;
1410
1411 inode_item = &log_root->root_item.inode;
3cae210f
QW
1412 btrfs_set_stack_inode_generation(inode_item, 1);
1413 btrfs_set_stack_inode_size(inode_item, 3);
1414 btrfs_set_stack_inode_nlink(inode_item, 1);
1415 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1416 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1417
5d4f98a2 1418 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1419
1420 WARN_ON(root->log_root);
1421 root->log_root = log_root;
1422 root->log_transid = 0;
d1433deb 1423 root->log_transid_committed = -1;
257c62e1 1424 root->last_log_commit = 0;
e02119d5
CM
1425 return 0;
1426}
1427
35a3621b
SB
1428static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1429 struct btrfs_key *key)
e02119d5
CM
1430{
1431 struct btrfs_root *root;
1432 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1433 struct btrfs_path *path;
84234f3a 1434 u64 generation;
db94535d 1435 u32 blocksize;
cb517eab 1436 int ret;
0f7d52f4 1437
cb517eab
MX
1438 path = btrfs_alloc_path();
1439 if (!path)
0f7d52f4 1440 return ERR_PTR(-ENOMEM);
cb517eab
MX
1441
1442 root = btrfs_alloc_root(fs_info);
1443 if (!root) {
1444 ret = -ENOMEM;
1445 goto alloc_fail;
0f7d52f4
CM
1446 }
1447
db94535d 1448 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1449 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1450 root, fs_info, key->objectid);
0f7d52f4 1451
cb517eab
MX
1452 ret = btrfs_find_root(tree_root, key, path,
1453 &root->root_item, &root->root_key);
0f7d52f4 1454 if (ret) {
13a8a7c8
YZ
1455 if (ret > 0)
1456 ret = -ENOENT;
cb517eab 1457 goto find_fail;
0f7d52f4 1458 }
13a8a7c8 1459
84234f3a 1460 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1461 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1462 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1463 blocksize, generation);
cb517eab
MX
1464 if (!root->node) {
1465 ret = -ENOMEM;
1466 goto find_fail;
1467 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1468 ret = -EIO;
1469 goto read_fail;
416bc658 1470 }
5d4f98a2 1471 root->commit_root = btrfs_root_node(root);
13a8a7c8 1472out:
cb517eab
MX
1473 btrfs_free_path(path);
1474 return root;
1475
1476read_fail:
1477 free_extent_buffer(root->node);
1478find_fail:
1479 kfree(root);
1480alloc_fail:
1481 root = ERR_PTR(ret);
1482 goto out;
1483}
1484
1485struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1486 struct btrfs_key *location)
1487{
1488 struct btrfs_root *root;
1489
1490 root = btrfs_read_tree_root(tree_root, location);
1491 if (IS_ERR(root))
1492 return root;
1493
1494 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1495 root->ref_cows = 1;
08fe4db1
LZ
1496 btrfs_check_and_init_root_item(&root->root_item);
1497 }
13a8a7c8 1498
5eda7b5e
CM
1499 return root;
1500}
1501
cb517eab
MX
1502int btrfs_init_fs_root(struct btrfs_root *root)
1503{
1504 int ret;
1505
1506 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1507 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1508 GFP_NOFS);
1509 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1510 ret = -ENOMEM;
1511 goto fail;
1512 }
1513
1514 btrfs_init_free_ino_ctl(root);
1515 mutex_init(&root->fs_commit_mutex);
1516 spin_lock_init(&root->cache_lock);
1517 init_waitqueue_head(&root->cache_wait);
1518
1519 ret = get_anon_bdev(&root->anon_dev);
1520 if (ret)
1521 goto fail;
1522 return 0;
1523fail:
1524 kfree(root->free_ino_ctl);
1525 kfree(root->free_ino_pinned);
1526 return ret;
1527}
1528
171170c1
ST
1529static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1530 u64 root_id)
cb517eab
MX
1531{
1532 struct btrfs_root *root;
1533
1534 spin_lock(&fs_info->fs_roots_radix_lock);
1535 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1536 (unsigned long)root_id);
1537 spin_unlock(&fs_info->fs_roots_radix_lock);
1538 return root;
1539}
1540
1541int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1542 struct btrfs_root *root)
1543{
1544 int ret;
1545
1546 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1547 if (ret)
1548 return ret;
1549
1550 spin_lock(&fs_info->fs_roots_radix_lock);
1551 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1552 (unsigned long)root->root_key.objectid,
1553 root);
1554 if (ret == 0)
1555 root->in_radix = 1;
1556 spin_unlock(&fs_info->fs_roots_radix_lock);
1557 radix_tree_preload_end();
1558
1559 return ret;
1560}
1561
c00869f1
MX
1562struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1563 struct btrfs_key *location,
1564 bool check_ref)
5eda7b5e
CM
1565{
1566 struct btrfs_root *root;
1567 int ret;
1568
edbd8d4e
CM
1569 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1570 return fs_info->tree_root;
1571 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1572 return fs_info->extent_root;
8f18cf13
CM
1573 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1574 return fs_info->chunk_root;
1575 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1576 return fs_info->dev_root;
0403e47e
YZ
1577 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1578 return fs_info->csum_root;
bcef60f2
AJ
1579 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1580 return fs_info->quota_root ? fs_info->quota_root :
1581 ERR_PTR(-ENOENT);
f7a81ea4
SB
1582 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1583 return fs_info->uuid_root ? fs_info->uuid_root :
1584 ERR_PTR(-ENOENT);
4df27c4d 1585again:
cb517eab 1586 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1587 if (root) {
c00869f1 1588 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1589 return ERR_PTR(-ENOENT);
5eda7b5e 1590 return root;
48475471 1591 }
5eda7b5e 1592
cb517eab 1593 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1594 if (IS_ERR(root))
1595 return root;
3394e160 1596
c00869f1 1597 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1598 ret = -ENOENT;
581bb050 1599 goto fail;
35a30d7c 1600 }
581bb050 1601
cb517eab 1602 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1603 if (ret)
1604 goto fail;
3394e160 1605
3f870c28
KN
1606 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1607 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1608 if (ret < 0)
1609 goto fail;
1610 if (ret == 0)
1611 root->orphan_item_inserted = 1;
1612
cb517eab 1613 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1614 if (ret) {
4df27c4d
YZ
1615 if (ret == -EEXIST) {
1616 free_fs_root(root);
1617 goto again;
1618 }
1619 goto fail;
0f7d52f4 1620 }
edbd8d4e 1621 return root;
4df27c4d
YZ
1622fail:
1623 free_fs_root(root);
1624 return ERR_PTR(ret);
edbd8d4e
CM
1625}
1626
04160088
CM
1627static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1628{
1629 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1630 int ret = 0;
04160088
CM
1631 struct btrfs_device *device;
1632 struct backing_dev_info *bdi;
b7967db7 1633
1f78160c
XG
1634 rcu_read_lock();
1635 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1636 if (!device->bdev)
1637 continue;
04160088
CM
1638 bdi = blk_get_backing_dev_info(device->bdev);
1639 if (bdi && bdi_congested(bdi, bdi_bits)) {
1640 ret = 1;
1641 break;
1642 }
1643 }
1f78160c 1644 rcu_read_unlock();
04160088
CM
1645 return ret;
1646}
1647
ad081f14
JA
1648/*
1649 * If this fails, caller must call bdi_destroy() to get rid of the
1650 * bdi again.
1651 */
04160088
CM
1652static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1653{
ad081f14
JA
1654 int err;
1655
1656 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1657 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1658 if (err)
1659 return err;
1660
4575c9cc 1661 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1662 bdi->congested_fn = btrfs_congested_fn;
1663 bdi->congested_data = info;
1664 return 0;
1665}
1666
8b712842
CM
1667/*
1668 * called by the kthread helper functions to finally call the bio end_io
1669 * functions. This is where read checksum verification actually happens
1670 */
fccb5d86 1671static void end_workqueue_fn(struct btrfs_work_struct *work)
ce9adaa5 1672{
ce9adaa5 1673 struct bio *bio;
8b712842 1674 struct end_io_wq *end_io_wq;
ce9adaa5 1675 int error;
ce9adaa5 1676
8b712842
CM
1677 end_io_wq = container_of(work, struct end_io_wq, work);
1678 bio = end_io_wq->bio;
ce9adaa5 1679
8b712842
CM
1680 error = end_io_wq->error;
1681 bio->bi_private = end_io_wq->private;
1682 bio->bi_end_io = end_io_wq->end_io;
1683 kfree(end_io_wq);
8b712842 1684 bio_endio(bio, error);
44b8bd7e
CM
1685}
1686
a74a4b97
CM
1687static int cleaner_kthread(void *arg)
1688{
1689 struct btrfs_root *root = arg;
d0278245 1690 int again;
a74a4b97
CM
1691
1692 do {
d0278245 1693 again = 0;
a74a4b97 1694
d0278245 1695 /* Make the cleaner go to sleep early. */
babbf170 1696 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1697 goto sleep;
1698
1699 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1700 goto sleep;
1701
dc7f370c
MX
1702 /*
1703 * Avoid the problem that we change the status of the fs
1704 * during the above check and trylock.
1705 */
babbf170 1706 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1707 mutex_unlock(&root->fs_info->cleaner_mutex);
1708 goto sleep;
76dda93c 1709 }
a74a4b97 1710
d0278245
MX
1711 btrfs_run_delayed_iputs(root);
1712 again = btrfs_clean_one_deleted_snapshot(root);
1713 mutex_unlock(&root->fs_info->cleaner_mutex);
1714
1715 /*
05323cd1
MX
1716 * The defragger has dealt with the R/O remount and umount,
1717 * needn't do anything special here.
d0278245
MX
1718 */
1719 btrfs_run_defrag_inodes(root->fs_info);
1720sleep:
9d1a2a3a 1721 if (!try_to_freeze() && !again) {
a74a4b97 1722 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1723 if (!kthread_should_stop())
1724 schedule();
a74a4b97
CM
1725 __set_current_state(TASK_RUNNING);
1726 }
1727 } while (!kthread_should_stop());
1728 return 0;
1729}
1730
1731static int transaction_kthread(void *arg)
1732{
1733 struct btrfs_root *root = arg;
1734 struct btrfs_trans_handle *trans;
1735 struct btrfs_transaction *cur;
8929ecfa 1736 u64 transid;
a74a4b97
CM
1737 unsigned long now;
1738 unsigned long delay;
914b2007 1739 bool cannot_commit;
a74a4b97
CM
1740
1741 do {
914b2007 1742 cannot_commit = false;
8b87dc17 1743 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1744 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1745
a4abeea4 1746 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1747 cur = root->fs_info->running_transaction;
1748 if (!cur) {
a4abeea4 1749 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1750 goto sleep;
1751 }
31153d81 1752
a74a4b97 1753 now = get_seconds();
4a9d8bde 1754 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1755 (now < cur->start_time ||
1756 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1757 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1758 delay = HZ * 5;
1759 goto sleep;
1760 }
8929ecfa 1761 transid = cur->transid;
a4abeea4 1762 spin_unlock(&root->fs_info->trans_lock);
56bec294 1763
79787eaa 1764 /* If the file system is aborted, this will always fail. */
354aa0fb 1765 trans = btrfs_attach_transaction(root);
914b2007 1766 if (IS_ERR(trans)) {
354aa0fb
MX
1767 if (PTR_ERR(trans) != -ENOENT)
1768 cannot_commit = true;
79787eaa 1769 goto sleep;
914b2007 1770 }
8929ecfa 1771 if (transid == trans->transid) {
79787eaa 1772 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1773 } else {
1774 btrfs_end_transaction(trans, root);
1775 }
a74a4b97
CM
1776sleep:
1777 wake_up_process(root->fs_info->cleaner_kthread);
1778 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1779
4e121c06
JB
1780 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1781 &root->fs_info->fs_state)))
1782 btrfs_cleanup_transaction(root);
a0acae0e 1783 if (!try_to_freeze()) {
a74a4b97 1784 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1785 if (!kthread_should_stop() &&
914b2007
JK
1786 (!btrfs_transaction_blocked(root->fs_info) ||
1787 cannot_commit))
8929ecfa 1788 schedule_timeout(delay);
a74a4b97
CM
1789 __set_current_state(TASK_RUNNING);
1790 }
1791 } while (!kthread_should_stop());
1792 return 0;
1793}
1794
af31f5e5
CM
1795/*
1796 * this will find the highest generation in the array of
1797 * root backups. The index of the highest array is returned,
1798 * or -1 if we can't find anything.
1799 *
1800 * We check to make sure the array is valid by comparing the
1801 * generation of the latest root in the array with the generation
1802 * in the super block. If they don't match we pitch it.
1803 */
1804static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1805{
1806 u64 cur;
1807 int newest_index = -1;
1808 struct btrfs_root_backup *root_backup;
1809 int i;
1810
1811 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1812 root_backup = info->super_copy->super_roots + i;
1813 cur = btrfs_backup_tree_root_gen(root_backup);
1814 if (cur == newest_gen)
1815 newest_index = i;
1816 }
1817
1818 /* check to see if we actually wrapped around */
1819 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1820 root_backup = info->super_copy->super_roots;
1821 cur = btrfs_backup_tree_root_gen(root_backup);
1822 if (cur == newest_gen)
1823 newest_index = 0;
1824 }
1825 return newest_index;
1826}
1827
1828
1829/*
1830 * find the oldest backup so we know where to store new entries
1831 * in the backup array. This will set the backup_root_index
1832 * field in the fs_info struct
1833 */
1834static void find_oldest_super_backup(struct btrfs_fs_info *info,
1835 u64 newest_gen)
1836{
1837 int newest_index = -1;
1838
1839 newest_index = find_newest_super_backup(info, newest_gen);
1840 /* if there was garbage in there, just move along */
1841 if (newest_index == -1) {
1842 info->backup_root_index = 0;
1843 } else {
1844 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1845 }
1846}
1847
1848/*
1849 * copy all the root pointers into the super backup array.
1850 * this will bump the backup pointer by one when it is
1851 * done
1852 */
1853static void backup_super_roots(struct btrfs_fs_info *info)
1854{
1855 int next_backup;
1856 struct btrfs_root_backup *root_backup;
1857 int last_backup;
1858
1859 next_backup = info->backup_root_index;
1860 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1861 BTRFS_NUM_BACKUP_ROOTS;
1862
1863 /*
1864 * just overwrite the last backup if we're at the same generation
1865 * this happens only at umount
1866 */
1867 root_backup = info->super_for_commit->super_roots + last_backup;
1868 if (btrfs_backup_tree_root_gen(root_backup) ==
1869 btrfs_header_generation(info->tree_root->node))
1870 next_backup = last_backup;
1871
1872 root_backup = info->super_for_commit->super_roots + next_backup;
1873
1874 /*
1875 * make sure all of our padding and empty slots get zero filled
1876 * regardless of which ones we use today
1877 */
1878 memset(root_backup, 0, sizeof(*root_backup));
1879
1880 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1881
1882 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1883 btrfs_set_backup_tree_root_gen(root_backup,
1884 btrfs_header_generation(info->tree_root->node));
1885
1886 btrfs_set_backup_tree_root_level(root_backup,
1887 btrfs_header_level(info->tree_root->node));
1888
1889 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1890 btrfs_set_backup_chunk_root_gen(root_backup,
1891 btrfs_header_generation(info->chunk_root->node));
1892 btrfs_set_backup_chunk_root_level(root_backup,
1893 btrfs_header_level(info->chunk_root->node));
1894
1895 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1896 btrfs_set_backup_extent_root_gen(root_backup,
1897 btrfs_header_generation(info->extent_root->node));
1898 btrfs_set_backup_extent_root_level(root_backup,
1899 btrfs_header_level(info->extent_root->node));
1900
7c7e82a7
CM
1901 /*
1902 * we might commit during log recovery, which happens before we set
1903 * the fs_root. Make sure it is valid before we fill it in.
1904 */
1905 if (info->fs_root && info->fs_root->node) {
1906 btrfs_set_backup_fs_root(root_backup,
1907 info->fs_root->node->start);
1908 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1909 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1910 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1911 btrfs_header_level(info->fs_root->node));
7c7e82a7 1912 }
af31f5e5
CM
1913
1914 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1915 btrfs_set_backup_dev_root_gen(root_backup,
1916 btrfs_header_generation(info->dev_root->node));
1917 btrfs_set_backup_dev_root_level(root_backup,
1918 btrfs_header_level(info->dev_root->node));
1919
1920 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1921 btrfs_set_backup_csum_root_gen(root_backup,
1922 btrfs_header_generation(info->csum_root->node));
1923 btrfs_set_backup_csum_root_level(root_backup,
1924 btrfs_header_level(info->csum_root->node));
1925
1926 btrfs_set_backup_total_bytes(root_backup,
1927 btrfs_super_total_bytes(info->super_copy));
1928 btrfs_set_backup_bytes_used(root_backup,
1929 btrfs_super_bytes_used(info->super_copy));
1930 btrfs_set_backup_num_devices(root_backup,
1931 btrfs_super_num_devices(info->super_copy));
1932
1933 /*
1934 * if we don't copy this out to the super_copy, it won't get remembered
1935 * for the next commit
1936 */
1937 memcpy(&info->super_copy->super_roots,
1938 &info->super_for_commit->super_roots,
1939 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1940}
1941
1942/*
1943 * this copies info out of the root backup array and back into
1944 * the in-memory super block. It is meant to help iterate through
1945 * the array, so you send it the number of backups you've already
1946 * tried and the last backup index you used.
1947 *
1948 * this returns -1 when it has tried all the backups
1949 */
1950static noinline int next_root_backup(struct btrfs_fs_info *info,
1951 struct btrfs_super_block *super,
1952 int *num_backups_tried, int *backup_index)
1953{
1954 struct btrfs_root_backup *root_backup;
1955 int newest = *backup_index;
1956
1957 if (*num_backups_tried == 0) {
1958 u64 gen = btrfs_super_generation(super);
1959
1960 newest = find_newest_super_backup(info, gen);
1961 if (newest == -1)
1962 return -1;
1963
1964 *backup_index = newest;
1965 *num_backups_tried = 1;
1966 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1967 /* we've tried all the backups, all done */
1968 return -1;
1969 } else {
1970 /* jump to the next oldest backup */
1971 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1972 BTRFS_NUM_BACKUP_ROOTS;
1973 *backup_index = newest;
1974 *num_backups_tried += 1;
1975 }
1976 root_backup = super->super_roots + newest;
1977
1978 btrfs_set_super_generation(super,
1979 btrfs_backup_tree_root_gen(root_backup));
1980 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1981 btrfs_set_super_root_level(super,
1982 btrfs_backup_tree_root_level(root_backup));
1983 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1984
1985 /*
1986 * fixme: the total bytes and num_devices need to match or we should
1987 * need a fsck
1988 */
1989 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1990 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1991 return 0;
1992}
1993
7abadb64
LB
1994/* helper to cleanup workers */
1995static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1996{
1997 btrfs_stop_workers(&fs_info->generic_worker);
1998 btrfs_stop_workers(&fs_info->fixup_workers);
afe3d242 1999 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2000 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2001 btrfs_destroy_workqueue(fs_info->endio_workers);
2002 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2003 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
7abadb64 2004 btrfs_stop_workers(&fs_info->rmw_workers);
fccb5d86
QW
2005 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2006 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2007 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2008 btrfs_destroy_workqueue(fs_info->submit_workers);
7abadb64
LB
2009 btrfs_stop_workers(&fs_info->delayed_workers);
2010 btrfs_stop_workers(&fs_info->caching_workers);
2011 btrfs_stop_workers(&fs_info->readahead_workers);
a44903ab 2012 btrfs_destroy_workqueue(fs_info->flush_workers);
2f232036 2013 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
7abadb64
LB
2014}
2015
2e9f5954
R
2016static void free_root_extent_buffers(struct btrfs_root *root)
2017{
2018 if (root) {
2019 free_extent_buffer(root->node);
2020 free_extent_buffer(root->commit_root);
2021 root->node = NULL;
2022 root->commit_root = NULL;
2023 }
2024}
2025
af31f5e5
CM
2026/* helper to cleanup tree roots */
2027static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2028{
2e9f5954 2029 free_root_extent_buffers(info->tree_root);
655b09fe 2030
2e9f5954
R
2031 free_root_extent_buffers(info->dev_root);
2032 free_root_extent_buffers(info->extent_root);
2033 free_root_extent_buffers(info->csum_root);
2034 free_root_extent_buffers(info->quota_root);
2035 free_root_extent_buffers(info->uuid_root);
2036 if (chunk_root)
2037 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2038}
2039
171f6537
JB
2040static void del_fs_roots(struct btrfs_fs_info *fs_info)
2041{
2042 int ret;
2043 struct btrfs_root *gang[8];
2044 int i;
2045
2046 while (!list_empty(&fs_info->dead_roots)) {
2047 gang[0] = list_entry(fs_info->dead_roots.next,
2048 struct btrfs_root, root_list);
2049 list_del(&gang[0]->root_list);
2050
2051 if (gang[0]->in_radix) {
cb517eab 2052 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2053 } else {
2054 free_extent_buffer(gang[0]->node);
2055 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2056 btrfs_put_fs_root(gang[0]);
171f6537
JB
2057 }
2058 }
2059
2060 while (1) {
2061 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2062 (void **)gang, 0,
2063 ARRAY_SIZE(gang));
2064 if (!ret)
2065 break;
2066 for (i = 0; i < ret; i++)
cb517eab 2067 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2068 }
1a4319cc
LB
2069
2070 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2071 btrfs_free_log_root_tree(NULL, fs_info);
2072 btrfs_destroy_pinned_extent(fs_info->tree_root,
2073 fs_info->pinned_extents);
2074 }
171f6537 2075}
af31f5e5 2076
ad2b2c80
AV
2077int open_ctree(struct super_block *sb,
2078 struct btrfs_fs_devices *fs_devices,
2079 char *options)
2e635a27 2080{
db94535d
CM
2081 u32 sectorsize;
2082 u32 nodesize;
2083 u32 leafsize;
2084 u32 blocksize;
87ee04eb 2085 u32 stripesize;
84234f3a 2086 u64 generation;
f2b636e8 2087 u64 features;
3de4586c 2088 struct btrfs_key location;
a061fc8d 2089 struct buffer_head *bh;
4d34b278 2090 struct btrfs_super_block *disk_super;
815745cf 2091 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2092 struct btrfs_root *tree_root;
4d34b278
ID
2093 struct btrfs_root *extent_root;
2094 struct btrfs_root *csum_root;
2095 struct btrfs_root *chunk_root;
2096 struct btrfs_root *dev_root;
bcef60f2 2097 struct btrfs_root *quota_root;
f7a81ea4 2098 struct btrfs_root *uuid_root;
e02119d5 2099 struct btrfs_root *log_tree_root;
eb60ceac 2100 int ret;
e58ca020 2101 int err = -EINVAL;
af31f5e5
CM
2102 int num_backups_tried = 0;
2103 int backup_index = 0;
5cdc7ad3
QW
2104 int max_active;
2105 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2106 bool create_uuid_tree;
2107 bool check_uuid_tree;
4543df7e 2108
f84a8bd6 2109 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2110 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2111 if (!tree_root || !chunk_root) {
39279cc3
CM
2112 err = -ENOMEM;
2113 goto fail;
2114 }
76dda93c
YZ
2115
2116 ret = init_srcu_struct(&fs_info->subvol_srcu);
2117 if (ret) {
2118 err = ret;
2119 goto fail;
2120 }
2121
2122 ret = setup_bdi(fs_info, &fs_info->bdi);
2123 if (ret) {
2124 err = ret;
2125 goto fail_srcu;
2126 }
2127
e2d84521
MX
2128 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2129 if (ret) {
2130 err = ret;
2131 goto fail_bdi;
2132 }
2133 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2134 (1 + ilog2(nr_cpu_ids));
2135
963d678b
MX
2136 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2137 if (ret) {
2138 err = ret;
2139 goto fail_dirty_metadata_bytes;
2140 }
2141
c404e0dc
MX
2142 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2143 if (ret) {
2144 err = ret;
2145 goto fail_delalloc_bytes;
2146 }
2147
76dda93c
YZ
2148 fs_info->btree_inode = new_inode(sb);
2149 if (!fs_info->btree_inode) {
2150 err = -ENOMEM;
c404e0dc 2151 goto fail_bio_counter;
76dda93c
YZ
2152 }
2153
a6591715 2154 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2155
76dda93c 2156 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2157 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2158 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2159 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2160 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2161 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2162 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2163 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2164 spin_lock_init(&fs_info->trans_lock);
76dda93c 2165 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2166 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2167 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2168 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2169 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2170 spin_lock_init(&fs_info->super_lock);
f28491e0 2171 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2172 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2173 mutex_init(&fs_info->reloc_mutex);
de98ced9 2174 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2175
58176a96 2176 init_completion(&fs_info->kobj_unregister);
0b86a832 2177 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2178 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2179 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2180 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2181 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2182 BTRFS_BLOCK_RSV_GLOBAL);
2183 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2184 BTRFS_BLOCK_RSV_DELALLOC);
2185 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2186 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2187 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2188 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2189 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2190 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2191 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2192 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2193 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2194 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2195 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2196 fs_info->sb = sb;
6f568d35 2197 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2198 fs_info->metadata_ratio = 0;
4cb5300b 2199 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2200 fs_info->free_chunk_space = 0;
f29021b2 2201 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2202 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2203 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2204 /* readahead state */
2205 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2206 spin_lock_init(&fs_info->reada_lock);
c8b97818 2207
b34b086c
CM
2208 fs_info->thread_pool_size = min_t(unsigned long,
2209 num_online_cpus() + 2, 8);
0afbaf8c 2210
199c2a9c
MX
2211 INIT_LIST_HEAD(&fs_info->ordered_roots);
2212 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2213 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2214 GFP_NOFS);
2215 if (!fs_info->delayed_root) {
2216 err = -ENOMEM;
2217 goto fail_iput;
2218 }
2219 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2220
a2de733c
AJ
2221 mutex_init(&fs_info->scrub_lock);
2222 atomic_set(&fs_info->scrubs_running, 0);
2223 atomic_set(&fs_info->scrub_pause_req, 0);
2224 atomic_set(&fs_info->scrubs_paused, 0);
2225 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2226 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2227 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2228 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2229#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2230 fs_info->check_integrity_print_mask = 0;
2231#endif
a2de733c 2232
c9e9f97b
ID
2233 spin_lock_init(&fs_info->balance_lock);
2234 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2235 atomic_set(&fs_info->balance_running, 0);
2236 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2237 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2238 fs_info->balance_ctl = NULL;
837d5b6e 2239 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2240
a061fc8d
CM
2241 sb->s_blocksize = 4096;
2242 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2243 sb->s_bdi = &fs_info->bdi;
a061fc8d 2244
76dda93c 2245 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2246 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2247 /*
2248 * we set the i_size on the btree inode to the max possible int.
2249 * the real end of the address space is determined by all of
2250 * the devices in the system
2251 */
2252 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2253 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2254 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2255
5d4f98a2 2256 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2257 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2258 fs_info->btree_inode->i_mapping);
0b32f4bb 2259 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2260 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2261
2262 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2263
76dda93c
YZ
2264 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2265 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2266 sizeof(struct btrfs_key));
72ac3c0d
JB
2267 set_bit(BTRFS_INODE_DUMMY,
2268 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2269 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2270
0f9dd46c 2271 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2272 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2273 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2274
11833d66 2275 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2276 fs_info->btree_inode->i_mapping);
11833d66 2277 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2278 fs_info->btree_inode->i_mapping);
11833d66 2279 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2280 fs_info->do_barriers = 1;
e18e4809 2281
39279cc3 2282
5a3f23d5 2283 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2284 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2285 mutex_init(&fs_info->tree_log_mutex);
925baedd 2286 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2287 mutex_init(&fs_info->transaction_kthread_mutex);
2288 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2289 mutex_init(&fs_info->volume_mutex);
276e680d 2290 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2291 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2292 init_rwsem(&fs_info->subvol_sem);
803b2f54 2293 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2294 fs_info->dev_replace.lock_owner = 0;
2295 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2296 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2297 mutex_init(&fs_info->dev_replace.lock_management_lock);
2298 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2299
416ac51d 2300 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2301 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2302 fs_info->qgroup_tree = RB_ROOT;
2303 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2304 fs_info->qgroup_seq = 1;
2305 fs_info->quota_enabled = 0;
2306 fs_info->pending_quota_state = 0;
1e8f9158 2307 fs_info->qgroup_ulist = NULL;
2f232036 2308 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2309
fa9c0d79
CM
2310 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2311 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2312
e6dcd2dc 2313 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2314 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2315 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2316 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2317
53b381b3
DW
2318 ret = btrfs_alloc_stripe_hash_table(fs_info);
2319 if (ret) {
83c8266a 2320 err = ret;
53b381b3
DW
2321 goto fail_alloc;
2322 }
2323
0b86a832 2324 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2325 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2326
3c4bb26b 2327 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2328
2329 /*
2330 * Read super block and check the signature bytes only
2331 */
a512bbf8 2332 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2333 if (!bh) {
2334 err = -EINVAL;
16cdcec7 2335 goto fail_alloc;
20b45077 2336 }
39279cc3 2337
1104a885
DS
2338 /*
2339 * We want to check superblock checksum, the type is stored inside.
2340 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2341 */
2342 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2343 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2344 err = -EINVAL;
2345 goto fail_alloc;
2346 }
2347
2348 /*
2349 * super_copy is zeroed at allocation time and we never touch the
2350 * following bytes up to INFO_SIZE, the checksum is calculated from
2351 * the whole block of INFO_SIZE
2352 */
6c41761f
DS
2353 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2354 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2355 sizeof(*fs_info->super_for_commit));
a061fc8d 2356 brelse(bh);
5f39d397 2357
6c41761f 2358 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2359
1104a885
DS
2360 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2361 if (ret) {
efe120a0 2362 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2363 err = -EINVAL;
2364 goto fail_alloc;
2365 }
2366
6c41761f 2367 disk_super = fs_info->super_copy;
0f7d52f4 2368 if (!btrfs_super_root(disk_super))
16cdcec7 2369 goto fail_alloc;
0f7d52f4 2370
acce952b 2371 /* check FS state, whether FS is broken. */
87533c47
MX
2372 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2373 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2374
af31f5e5
CM
2375 /*
2376 * run through our array of backup supers and setup
2377 * our ring pointer to the oldest one
2378 */
2379 generation = btrfs_super_generation(disk_super);
2380 find_oldest_super_backup(fs_info, generation);
2381
75e7cb7f
LB
2382 /*
2383 * In the long term, we'll store the compression type in the super
2384 * block, and it'll be used for per file compression control.
2385 */
2386 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2387
2b82032c
YZ
2388 ret = btrfs_parse_options(tree_root, options);
2389 if (ret) {
2390 err = ret;
16cdcec7 2391 goto fail_alloc;
2b82032c 2392 }
dfe25020 2393
f2b636e8
JB
2394 features = btrfs_super_incompat_flags(disk_super) &
2395 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2396 if (features) {
2397 printk(KERN_ERR "BTRFS: couldn't mount because of "
2398 "unsupported optional features (%Lx).\n",
c1c9ff7c 2399 features);
f2b636e8 2400 err = -EINVAL;
16cdcec7 2401 goto fail_alloc;
f2b636e8
JB
2402 }
2403
727011e0
CM
2404 if (btrfs_super_leafsize(disk_super) !=
2405 btrfs_super_nodesize(disk_super)) {
2406 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2407 "blocksizes don't match. node %d leaf %d\n",
2408 btrfs_super_nodesize(disk_super),
2409 btrfs_super_leafsize(disk_super));
2410 err = -EINVAL;
2411 goto fail_alloc;
2412 }
2413 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2414 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2415 "blocksize (%d) was too large\n",
2416 btrfs_super_leafsize(disk_super));
2417 err = -EINVAL;
2418 goto fail_alloc;
2419 }
2420
5d4f98a2 2421 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2422 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2423 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2424 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2425
3173a18f 2426 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2427 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2428
727011e0
CM
2429 /*
2430 * flag our filesystem as having big metadata blocks if
2431 * they are bigger than the page size
2432 */
2433 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2434 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2435 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2436 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2437 }
2438
bc3f116f
CM
2439 nodesize = btrfs_super_nodesize(disk_super);
2440 leafsize = btrfs_super_leafsize(disk_super);
2441 sectorsize = btrfs_super_sectorsize(disk_super);
2442 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2443 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2444 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2445
2446 /*
2447 * mixed block groups end up with duplicate but slightly offset
2448 * extent buffers for the same range. It leads to corruptions
2449 */
2450 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2451 (sectorsize != leafsize)) {
efe120a0 2452 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2453 "are not allowed for mixed block groups on %s\n",
2454 sb->s_id);
2455 goto fail_alloc;
2456 }
2457
ceda0864
MX
2458 /*
2459 * Needn't use the lock because there is no other task which will
2460 * update the flag.
2461 */
a6fa6fae 2462 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2463
f2b636e8
JB
2464 features = btrfs_super_compat_ro_flags(disk_super) &
2465 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2466 if (!(sb->s_flags & MS_RDONLY) && features) {
2467 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2468 "unsupported option features (%Lx).\n",
c1c9ff7c 2469 features);
f2b636e8 2470 err = -EINVAL;
16cdcec7 2471 goto fail_alloc;
f2b636e8 2472 }
61d92c32 2473
5cdc7ad3 2474 max_active = fs_info->thread_pool_size;
61d92c32
CM
2475 btrfs_init_workers(&fs_info->generic_worker,
2476 "genwork", 1, NULL);
2477
5cdc7ad3
QW
2478 fs_info->workers =
2479 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2480 max_active, 16);
c8b97818 2481
afe3d242
QW
2482 fs_info->delalloc_workers =
2483 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2484
a44903ab
QW
2485 fs_info->flush_workers =
2486 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
61b49440 2487
bab39bf9 2488 btrfs_init_workers(&fs_info->caching_workers, "cache",
45d5fd14 2489 fs_info->thread_pool_size, NULL);
bab39bf9 2490
a8c93d4e
QW
2491 /*
2492 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2493 * likely that bios will be send down in a sane order to the
2494 * devices
2495 */
a8c93d4e
QW
2496 fs_info->submit_workers =
2497 btrfs_alloc_workqueue("submit", flags,
2498 min_t(u64, fs_devices->num_devices,
2499 max_active), 64);
53863232 2500
61d92c32
CM
2501 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2502 &fs_info->generic_worker);
fccb5d86
QW
2503
2504 /*
2505 * endios are largely parallel and should have a very
2506 * low idle thresh
2507 */
2508 fs_info->endio_workers =
2509 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2510 fs_info->endio_meta_workers =
2511 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2512 fs_info->endio_meta_write_workers =
2513 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2514 fs_info->endio_raid56_workers =
2515 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
53b381b3
DW
2516 btrfs_init_workers(&fs_info->rmw_workers,
2517 "rmw", fs_info->thread_pool_size,
2518 &fs_info->generic_worker);
fccb5d86
QW
2519 fs_info->endio_write_workers =
2520 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2521 fs_info->endio_freespace_worker =
2522 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
16cdcec7
MX
2523 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2524 fs_info->thread_pool_size,
2525 &fs_info->generic_worker);
90519d66
AJ
2526 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2527 fs_info->thread_pool_size,
2528 &fs_info->generic_worker);
2f232036
JS
2529 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2530 &fs_info->generic_worker);
61b49440 2531
53b381b3 2532 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2533
90519d66 2534 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2535
0dc3b84a
JB
2536 /*
2537 * btrfs_start_workers can really only fail because of ENOMEM so just
2538 * return -ENOMEM if any of these fail.
2539 */
5cdc7ad3 2540 ret = btrfs_start_workers(&fs_info->generic_worker);
0dc3b84a 2541 ret |= btrfs_start_workers(&fs_info->fixup_workers);
53b381b3 2542 ret |= btrfs_start_workers(&fs_info->rmw_workers);
0dc3b84a
JB
2543 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2544 ret |= btrfs_start_workers(&fs_info->caching_workers);
2545 ret |= btrfs_start_workers(&fs_info->readahead_workers);
2f232036 2546 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
0dc3b84a 2547 if (ret) {
fed425c7 2548 err = -ENOMEM;
0dc3b84a
JB
2549 goto fail_sb_buffer;
2550 }
a8c93d4e 2551 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2552 fs_info->submit_workers && fs_info->flush_workers &&
2553 fs_info->endio_workers && fs_info->endio_meta_workers &&
2554 fs_info->endio_meta_write_workers &&
2555 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2556 fs_info->endio_freespace_worker)) {
5cdc7ad3
QW
2557 err = -ENOMEM;
2558 goto fail_sb_buffer;
2559 }
4543df7e 2560
4575c9cc 2561 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2562 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2563 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2564
db94535d
CM
2565 tree_root->nodesize = nodesize;
2566 tree_root->leafsize = leafsize;
2567 tree_root->sectorsize = sectorsize;
87ee04eb 2568 tree_root->stripesize = stripesize;
a061fc8d
CM
2569
2570 sb->s_blocksize = sectorsize;
2571 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2572
3cae210f 2573 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2574 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2575 goto fail_sb_buffer;
2576 }
19c00ddc 2577
8d082fb7 2578 if (sectorsize != PAGE_SIZE) {
efe120a0 2579 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2580 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2581 goto fail_sb_buffer;
2582 }
2583
925baedd 2584 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2585 ret = btrfs_read_sys_array(tree_root);
925baedd 2586 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2587 if (ret) {
efe120a0 2588 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2589 "array on %s\n", sb->s_id);
5d4f98a2 2590 goto fail_sb_buffer;
84eed90f 2591 }
0b86a832
CM
2592
2593 blocksize = btrfs_level_size(tree_root,
2594 btrfs_super_chunk_root_level(disk_super));
84234f3a 2595 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2596
2597 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2598 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2599
2600 chunk_root->node = read_tree_block(chunk_root,
2601 btrfs_super_chunk_root(disk_super),
84234f3a 2602 blocksize, generation);
416bc658
JB
2603 if (!chunk_root->node ||
2604 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2605 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2606 sb->s_id);
af31f5e5 2607 goto fail_tree_roots;
83121942 2608 }
5d4f98a2
YZ
2609 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2610 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2611
e17cade2 2612 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2613 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2614
0b86a832 2615 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2616 if (ret) {
efe120a0 2617 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2618 sb->s_id);
af31f5e5 2619 goto fail_tree_roots;
2b82032c 2620 }
0b86a832 2621
8dabb742
SB
2622 /*
2623 * keep the device that is marked to be the target device for the
2624 * dev_replace procedure
2625 */
2626 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2627
a6b0d5c8 2628 if (!fs_devices->latest_bdev) {
efe120a0 2629 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2630 sb->s_id);
2631 goto fail_tree_roots;
2632 }
2633
af31f5e5 2634retry_root_backup:
db94535d
CM
2635 blocksize = btrfs_level_size(tree_root,
2636 btrfs_super_root_level(disk_super));
84234f3a 2637 generation = btrfs_super_generation(disk_super);
0b86a832 2638
e20d96d6 2639 tree_root->node = read_tree_block(tree_root,
db94535d 2640 btrfs_super_root(disk_super),
84234f3a 2641 blocksize, generation);
af31f5e5
CM
2642 if (!tree_root->node ||
2643 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2644 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2645 sb->s_id);
af31f5e5
CM
2646
2647 goto recovery_tree_root;
83121942 2648 }
af31f5e5 2649
5d4f98a2
YZ
2650 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2651 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2652 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2653
cb517eab
MX
2654 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2655 location.type = BTRFS_ROOT_ITEM_KEY;
2656 location.offset = 0;
2657
2658 extent_root = btrfs_read_tree_root(tree_root, &location);
2659 if (IS_ERR(extent_root)) {
2660 ret = PTR_ERR(extent_root);
af31f5e5 2661 goto recovery_tree_root;
cb517eab 2662 }
0b86a832 2663 extent_root->track_dirty = 1;
cb517eab 2664 fs_info->extent_root = extent_root;
0b86a832 2665
cb517eab
MX
2666 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2667 dev_root = btrfs_read_tree_root(tree_root, &location);
2668 if (IS_ERR(dev_root)) {
2669 ret = PTR_ERR(dev_root);
af31f5e5 2670 goto recovery_tree_root;
cb517eab 2671 }
5d4f98a2 2672 dev_root->track_dirty = 1;
cb517eab
MX
2673 fs_info->dev_root = dev_root;
2674 btrfs_init_devices_late(fs_info);
3768f368 2675
cb517eab
MX
2676 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2677 csum_root = btrfs_read_tree_root(tree_root, &location);
2678 if (IS_ERR(csum_root)) {
2679 ret = PTR_ERR(csum_root);
af31f5e5 2680 goto recovery_tree_root;
cb517eab 2681 }
d20f7043 2682 csum_root->track_dirty = 1;
cb517eab 2683 fs_info->csum_root = csum_root;
d20f7043 2684
cb517eab
MX
2685 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2686 quota_root = btrfs_read_tree_root(tree_root, &location);
2687 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2688 quota_root->track_dirty = 1;
2689 fs_info->quota_enabled = 1;
2690 fs_info->pending_quota_state = 1;
cb517eab 2691 fs_info->quota_root = quota_root;
bcef60f2
AJ
2692 }
2693
f7a81ea4
SB
2694 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2695 uuid_root = btrfs_read_tree_root(tree_root, &location);
2696 if (IS_ERR(uuid_root)) {
2697 ret = PTR_ERR(uuid_root);
2698 if (ret != -ENOENT)
2699 goto recovery_tree_root;
2700 create_uuid_tree = true;
70f80175 2701 check_uuid_tree = false;
f7a81ea4
SB
2702 } else {
2703 uuid_root->track_dirty = 1;
2704 fs_info->uuid_root = uuid_root;
70f80175
SB
2705 create_uuid_tree = false;
2706 check_uuid_tree =
2707 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2708 }
2709
8929ecfa
YZ
2710 fs_info->generation = generation;
2711 fs_info->last_trans_committed = generation;
8929ecfa 2712
68310a5e
ID
2713 ret = btrfs_recover_balance(fs_info);
2714 if (ret) {
efe120a0 2715 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2716 goto fail_block_groups;
2717 }
2718
733f4fbb
SB
2719 ret = btrfs_init_dev_stats(fs_info);
2720 if (ret) {
efe120a0 2721 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2722 ret);
2723 goto fail_block_groups;
2724 }
2725
8dabb742
SB
2726 ret = btrfs_init_dev_replace(fs_info);
2727 if (ret) {
efe120a0 2728 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2729 goto fail_block_groups;
2730 }
2731
2732 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2733
5ac1d209
JM
2734 ret = btrfs_sysfs_add_one(fs_info);
2735 if (ret) {
efe120a0 2736 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
5ac1d209
JM
2737 goto fail_block_groups;
2738 }
2739
c59021f8 2740 ret = btrfs_init_space_info(fs_info);
2741 if (ret) {
efe120a0 2742 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2743 goto fail_sysfs;
c59021f8 2744 }
2745
1b1d1f66
JB
2746 ret = btrfs_read_block_groups(extent_root);
2747 if (ret) {
efe120a0 2748 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2749 goto fail_sysfs;
1b1d1f66 2750 }
5af3e8cc
SB
2751 fs_info->num_tolerated_disk_barrier_failures =
2752 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2753 if (fs_info->fs_devices->missing_devices >
2754 fs_info->num_tolerated_disk_barrier_failures &&
2755 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2756 printk(KERN_WARNING "BTRFS: "
2757 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2758 goto fail_sysfs;
292fd7fc 2759 }
9078a3e1 2760
a74a4b97
CM
2761 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2762 "btrfs-cleaner");
57506d50 2763 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2764 goto fail_sysfs;
a74a4b97
CM
2765
2766 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2767 tree_root,
2768 "btrfs-transaction");
57506d50 2769 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2770 goto fail_cleaner;
a74a4b97 2771
c289811c
CM
2772 if (!btrfs_test_opt(tree_root, SSD) &&
2773 !btrfs_test_opt(tree_root, NOSSD) &&
2774 !fs_info->fs_devices->rotating) {
efe120a0 2775 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2776 "mode\n");
2777 btrfs_set_opt(fs_info->mount_opt, SSD);
2778 }
2779
3818aea2
QW
2780 /* Set the real inode map cache flag */
2781 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2782 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2783
21adbd5c
SB
2784#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2785 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2786 ret = btrfsic_mount(tree_root, fs_devices,
2787 btrfs_test_opt(tree_root,
2788 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2789 1 : 0,
2790 fs_info->check_integrity_print_mask);
2791 if (ret)
efe120a0 2792 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2793 " integrity check module %s\n", sb->s_id);
2794 }
2795#endif
bcef60f2
AJ
2796 ret = btrfs_read_qgroup_config(fs_info);
2797 if (ret)
2798 goto fail_trans_kthread;
21adbd5c 2799
acce952b 2800 /* do not make disk changes in broken FS */
68ce9682 2801 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2802 u64 bytenr = btrfs_super_log_root(disk_super);
2803
7c2ca468 2804 if (fs_devices->rw_devices == 0) {
efe120a0 2805 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2806 "on RO media\n");
7c2ca468 2807 err = -EIO;
bcef60f2 2808 goto fail_qgroup;
7c2ca468 2809 }
e02119d5
CM
2810 blocksize =
2811 btrfs_level_size(tree_root,
2812 btrfs_super_log_root_level(disk_super));
d18a2c44 2813
6f07e42e 2814 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2815 if (!log_tree_root) {
2816 err = -ENOMEM;
bcef60f2 2817 goto fail_qgroup;
676e4c86 2818 }
e02119d5
CM
2819
2820 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2821 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2822
2823 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2824 blocksize,
2825 generation + 1);
416bc658
JB
2826 if (!log_tree_root->node ||
2827 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2828 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2829 free_extent_buffer(log_tree_root->node);
2830 kfree(log_tree_root);
2831 goto fail_trans_kthread;
2832 }
79787eaa 2833 /* returns with log_tree_root freed on success */
e02119d5 2834 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2835 if (ret) {
2836 btrfs_error(tree_root->fs_info, ret,
2837 "Failed to recover log tree");
2838 free_extent_buffer(log_tree_root->node);
2839 kfree(log_tree_root);
2840 goto fail_trans_kthread;
2841 }
e556ce2c
YZ
2842
2843 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2844 ret = btrfs_commit_super(tree_root);
2845 if (ret)
2846 goto fail_trans_kthread;
e556ce2c 2847 }
e02119d5 2848 }
1a40e23b 2849
76dda93c 2850 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2851 if (ret)
2852 goto fail_trans_kthread;
76dda93c 2853
7c2ca468 2854 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2855 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2856 if (ret)
2857 goto fail_trans_kthread;
d68fc57b 2858
5d4f98a2 2859 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2860 if (ret < 0) {
2861 printk(KERN_WARNING
efe120a0 2862 "BTRFS: failed to recover relocation\n");
d7ce5843 2863 err = -EINVAL;
bcef60f2 2864 goto fail_qgroup;
d7ce5843 2865 }
7c2ca468 2866 }
1a40e23b 2867
3de4586c
CM
2868 location.objectid = BTRFS_FS_TREE_OBJECTID;
2869 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2870 location.offset = 0;
3de4586c 2871
3de4586c 2872 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2873 if (IS_ERR(fs_info->fs_root)) {
2874 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2875 goto fail_qgroup;
3140c9a3 2876 }
c289811c 2877
2b6ba629
ID
2878 if (sb->s_flags & MS_RDONLY)
2879 return 0;
59641015 2880
2b6ba629
ID
2881 down_read(&fs_info->cleanup_work_sem);
2882 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2883 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2884 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2885 close_ctree(tree_root);
2886 return ret;
2887 }
2888 up_read(&fs_info->cleanup_work_sem);
59641015 2889
2b6ba629
ID
2890 ret = btrfs_resume_balance_async(fs_info);
2891 if (ret) {
efe120a0 2892 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2893 close_ctree(tree_root);
2894 return ret;
e3acc2a6
JB
2895 }
2896
8dabb742
SB
2897 ret = btrfs_resume_dev_replace_async(fs_info);
2898 if (ret) {
efe120a0 2899 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2900 close_ctree(tree_root);
2901 return ret;
2902 }
2903
b382a324
JS
2904 btrfs_qgroup_rescan_resume(fs_info);
2905
f7a81ea4 2906 if (create_uuid_tree) {
efe120a0 2907 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2908 ret = btrfs_create_uuid_tree(fs_info);
2909 if (ret) {
efe120a0 2910 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2911 ret);
2912 close_ctree(tree_root);
2913 return ret;
2914 }
f420ee1e
SB
2915 } else if (check_uuid_tree ||
2916 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2917 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2918 ret = btrfs_check_uuid_tree(fs_info);
2919 if (ret) {
efe120a0 2920 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2921 ret);
2922 close_ctree(tree_root);
2923 return ret;
2924 }
2925 } else {
2926 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2927 }
2928
ad2b2c80 2929 return 0;
39279cc3 2930
bcef60f2
AJ
2931fail_qgroup:
2932 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2933fail_trans_kthread:
2934 kthread_stop(fs_info->transaction_kthread);
54067ae9 2935 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2936 del_fs_roots(fs_info);
3f157a2f 2937fail_cleaner:
a74a4b97 2938 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2939
2940 /*
2941 * make sure we're done with the btree inode before we stop our
2942 * kthreads
2943 */
2944 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2945
2365dd3c
AJ
2946fail_sysfs:
2947 btrfs_sysfs_remove_one(fs_info);
2948
1b1d1f66 2949fail_block_groups:
54067ae9 2950 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2951 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2952
2953fail_tree_roots:
2954 free_root_pointers(fs_info, 1);
2b8195bb 2955 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2956
39279cc3 2957fail_sb_buffer:
7abadb64 2958 btrfs_stop_all_workers(fs_info);
16cdcec7 2959fail_alloc:
4543df7e 2960fail_iput:
586e46e2
ID
2961 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2962
4543df7e 2963 iput(fs_info->btree_inode);
c404e0dc
MX
2964fail_bio_counter:
2965 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
2966fail_delalloc_bytes:
2967 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2968fail_dirty_metadata_bytes:
2969 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2970fail_bdi:
7e662854 2971 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2972fail_srcu:
2973 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2974fail:
53b381b3 2975 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2976 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2977 return err;
af31f5e5
CM
2978
2979recovery_tree_root:
af31f5e5
CM
2980 if (!btrfs_test_opt(tree_root, RECOVERY))
2981 goto fail_tree_roots;
2982
2983 free_root_pointers(fs_info, 0);
2984
2985 /* don't use the log in recovery mode, it won't be valid */
2986 btrfs_set_super_log_root(disk_super, 0);
2987
2988 /* we can't trust the free space cache either */
2989 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2990
2991 ret = next_root_backup(fs_info, fs_info->super_copy,
2992 &num_backups_tried, &backup_index);
2993 if (ret == -1)
2994 goto fail_block_groups;
2995 goto retry_root_backup;
eb60ceac
CM
2996}
2997
f2984462
CM
2998static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2999{
f2984462
CM
3000 if (uptodate) {
3001 set_buffer_uptodate(bh);
3002 } else {
442a4f63
SB
3003 struct btrfs_device *device = (struct btrfs_device *)
3004 bh->b_private;
3005
efe120a0 3006 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3007 "I/O error on %s\n",
3008 rcu_str_deref(device->name));
1259ab75
CM
3009 /* note, we dont' set_buffer_write_io_error because we have
3010 * our own ways of dealing with the IO errors
3011 */
f2984462 3012 clear_buffer_uptodate(bh);
442a4f63 3013 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3014 }
3015 unlock_buffer(bh);
3016 put_bh(bh);
3017}
3018
a512bbf8
YZ
3019struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3020{
3021 struct buffer_head *bh;
3022 struct buffer_head *latest = NULL;
3023 struct btrfs_super_block *super;
3024 int i;
3025 u64 transid = 0;
3026 u64 bytenr;
3027
3028 /* we would like to check all the supers, but that would make
3029 * a btrfs mount succeed after a mkfs from a different FS.
3030 * So, we need to add a special mount option to scan for
3031 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3032 */
3033 for (i = 0; i < 1; i++) {
3034 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3035 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3036 i_size_read(bdev->bd_inode))
a512bbf8 3037 break;
8068a47e
AJ
3038 bh = __bread(bdev, bytenr / 4096,
3039 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3040 if (!bh)
3041 continue;
3042
3043 super = (struct btrfs_super_block *)bh->b_data;
3044 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3045 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3046 brelse(bh);
3047 continue;
3048 }
3049
3050 if (!latest || btrfs_super_generation(super) > transid) {
3051 brelse(latest);
3052 latest = bh;
3053 transid = btrfs_super_generation(super);
3054 } else {
3055 brelse(bh);
3056 }
3057 }
3058 return latest;
3059}
3060
4eedeb75
HH
3061/*
3062 * this should be called twice, once with wait == 0 and
3063 * once with wait == 1. When wait == 0 is done, all the buffer heads
3064 * we write are pinned.
3065 *
3066 * They are released when wait == 1 is done.
3067 * max_mirrors must be the same for both runs, and it indicates how
3068 * many supers on this one device should be written.
3069 *
3070 * max_mirrors == 0 means to write them all.
3071 */
a512bbf8
YZ
3072static int write_dev_supers(struct btrfs_device *device,
3073 struct btrfs_super_block *sb,
3074 int do_barriers, int wait, int max_mirrors)
3075{
3076 struct buffer_head *bh;
3077 int i;
3078 int ret;
3079 int errors = 0;
3080 u32 crc;
3081 u64 bytenr;
a512bbf8
YZ
3082
3083 if (max_mirrors == 0)
3084 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3085
a512bbf8
YZ
3086 for (i = 0; i < max_mirrors; i++) {
3087 bytenr = btrfs_sb_offset(i);
3088 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3089 break;
3090
3091 if (wait) {
3092 bh = __find_get_block(device->bdev, bytenr / 4096,
3093 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3094 if (!bh) {
3095 errors++;
3096 continue;
3097 }
a512bbf8 3098 wait_on_buffer(bh);
4eedeb75
HH
3099 if (!buffer_uptodate(bh))
3100 errors++;
3101
3102 /* drop our reference */
3103 brelse(bh);
3104
3105 /* drop the reference from the wait == 0 run */
3106 brelse(bh);
3107 continue;
a512bbf8
YZ
3108 } else {
3109 btrfs_set_super_bytenr(sb, bytenr);
3110
3111 crc = ~(u32)0;
b0496686 3112 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3113 BTRFS_CSUM_SIZE, crc,
3114 BTRFS_SUPER_INFO_SIZE -
3115 BTRFS_CSUM_SIZE);
3116 btrfs_csum_final(crc, sb->csum);
3117
4eedeb75
HH
3118 /*
3119 * one reference for us, and we leave it for the
3120 * caller
3121 */
a512bbf8
YZ
3122 bh = __getblk(device->bdev, bytenr / 4096,
3123 BTRFS_SUPER_INFO_SIZE);
634554dc 3124 if (!bh) {
efe120a0 3125 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3126 "buffer head for bytenr %Lu\n", bytenr);
3127 errors++;
3128 continue;
3129 }
3130
a512bbf8
YZ
3131 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3132
4eedeb75 3133 /* one reference for submit_bh */
a512bbf8 3134 get_bh(bh);
4eedeb75
HH
3135
3136 set_buffer_uptodate(bh);
a512bbf8
YZ
3137 lock_buffer(bh);
3138 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3139 bh->b_private = device;
a512bbf8
YZ
3140 }
3141
387125fc
CM
3142 /*
3143 * we fua the first super. The others we allow
3144 * to go down lazy.
3145 */
e8117c26
WS
3146 if (i == 0)
3147 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3148 else
3149 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3150 if (ret)
a512bbf8 3151 errors++;
a512bbf8
YZ
3152 }
3153 return errors < i ? 0 : -1;
3154}
3155
387125fc
CM
3156/*
3157 * endio for the write_dev_flush, this will wake anyone waiting
3158 * for the barrier when it is done
3159 */
3160static void btrfs_end_empty_barrier(struct bio *bio, int err)
3161{
3162 if (err) {
3163 if (err == -EOPNOTSUPP)
3164 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3165 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3166 }
3167 if (bio->bi_private)
3168 complete(bio->bi_private);
3169 bio_put(bio);
3170}
3171
3172/*
3173 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3174 * sent down. With wait == 1, it waits for the previous flush.
3175 *
3176 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3177 * capable
3178 */
3179static int write_dev_flush(struct btrfs_device *device, int wait)
3180{
3181 struct bio *bio;
3182 int ret = 0;
3183
3184 if (device->nobarriers)
3185 return 0;
3186
3187 if (wait) {
3188 bio = device->flush_bio;
3189 if (!bio)
3190 return 0;
3191
3192 wait_for_completion(&device->flush_wait);
3193
3194 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3195 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3196 rcu_str_deref(device->name));
387125fc 3197 device->nobarriers = 1;
5af3e8cc 3198 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3199 ret = -EIO;
5af3e8cc
SB
3200 btrfs_dev_stat_inc_and_print(device,
3201 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3202 }
3203
3204 /* drop the reference from the wait == 0 run */
3205 bio_put(bio);
3206 device->flush_bio = NULL;
3207
3208 return ret;
3209 }
3210
3211 /*
3212 * one reference for us, and we leave it for the
3213 * caller
3214 */
9c017abc 3215 device->flush_bio = NULL;
9be3395b 3216 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3217 if (!bio)
3218 return -ENOMEM;
3219
3220 bio->bi_end_io = btrfs_end_empty_barrier;
3221 bio->bi_bdev = device->bdev;
3222 init_completion(&device->flush_wait);
3223 bio->bi_private = &device->flush_wait;
3224 device->flush_bio = bio;
3225
3226 bio_get(bio);
21adbd5c 3227 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3228
3229 return 0;
3230}
3231
3232/*
3233 * send an empty flush down to each device in parallel,
3234 * then wait for them
3235 */
3236static int barrier_all_devices(struct btrfs_fs_info *info)
3237{
3238 struct list_head *head;
3239 struct btrfs_device *dev;
5af3e8cc
SB
3240 int errors_send = 0;
3241 int errors_wait = 0;
387125fc
CM
3242 int ret;
3243
3244 /* send down all the barriers */
3245 head = &info->fs_devices->devices;
3246 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3247 if (dev->missing)
3248 continue;
387125fc 3249 if (!dev->bdev) {
5af3e8cc 3250 errors_send++;
387125fc
CM
3251 continue;
3252 }
3253 if (!dev->in_fs_metadata || !dev->writeable)
3254 continue;
3255
3256 ret = write_dev_flush(dev, 0);
3257 if (ret)
5af3e8cc 3258 errors_send++;
387125fc
CM
3259 }
3260
3261 /* wait for all the barriers */
3262 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3263 if (dev->missing)
3264 continue;
387125fc 3265 if (!dev->bdev) {
5af3e8cc 3266 errors_wait++;
387125fc
CM
3267 continue;
3268 }
3269 if (!dev->in_fs_metadata || !dev->writeable)
3270 continue;
3271
3272 ret = write_dev_flush(dev, 1);
3273 if (ret)
5af3e8cc 3274 errors_wait++;
387125fc 3275 }
5af3e8cc
SB
3276 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3277 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3278 return -EIO;
3279 return 0;
3280}
3281
5af3e8cc
SB
3282int btrfs_calc_num_tolerated_disk_barrier_failures(
3283 struct btrfs_fs_info *fs_info)
3284{
3285 struct btrfs_ioctl_space_info space;
3286 struct btrfs_space_info *sinfo;
3287 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3288 BTRFS_BLOCK_GROUP_SYSTEM,
3289 BTRFS_BLOCK_GROUP_METADATA,
3290 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3291 int num_types = 4;
3292 int i;
3293 int c;
3294 int num_tolerated_disk_barrier_failures =
3295 (int)fs_info->fs_devices->num_devices;
3296
3297 for (i = 0; i < num_types; i++) {
3298 struct btrfs_space_info *tmp;
3299
3300 sinfo = NULL;
3301 rcu_read_lock();
3302 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3303 if (tmp->flags == types[i]) {
3304 sinfo = tmp;
3305 break;
3306 }
3307 }
3308 rcu_read_unlock();
3309
3310 if (!sinfo)
3311 continue;
3312
3313 down_read(&sinfo->groups_sem);
3314 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3315 if (!list_empty(&sinfo->block_groups[c])) {
3316 u64 flags;
3317
3318 btrfs_get_block_group_info(
3319 &sinfo->block_groups[c], &space);
3320 if (space.total_bytes == 0 ||
3321 space.used_bytes == 0)
3322 continue;
3323 flags = space.flags;
3324 /*
3325 * return
3326 * 0: if dup, single or RAID0 is configured for
3327 * any of metadata, system or data, else
3328 * 1: if RAID5 is configured, or if RAID1 or
3329 * RAID10 is configured and only two mirrors
3330 * are used, else
3331 * 2: if RAID6 is configured, else
3332 * num_mirrors - 1: if RAID1 or RAID10 is
3333 * configured and more than
3334 * 2 mirrors are used.
3335 */
3336 if (num_tolerated_disk_barrier_failures > 0 &&
3337 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3338 BTRFS_BLOCK_GROUP_RAID0)) ||
3339 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3340 == 0)))
3341 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3342 else if (num_tolerated_disk_barrier_failures > 1) {
3343 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3344 BTRFS_BLOCK_GROUP_RAID5 |
3345 BTRFS_BLOCK_GROUP_RAID10)) {
3346 num_tolerated_disk_barrier_failures = 1;
3347 } else if (flags &
15b0a89d 3348 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3349 num_tolerated_disk_barrier_failures = 2;
3350 }
3351 }
5af3e8cc
SB
3352 }
3353 }
3354 up_read(&sinfo->groups_sem);
3355 }
3356
3357 return num_tolerated_disk_barrier_failures;
3358}
3359
48a3b636 3360static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3361{
e5e9a520 3362 struct list_head *head;
f2984462 3363 struct btrfs_device *dev;
a061fc8d 3364 struct btrfs_super_block *sb;
f2984462 3365 struct btrfs_dev_item *dev_item;
f2984462
CM
3366 int ret;
3367 int do_barriers;
a236aed1
CM
3368 int max_errors;
3369 int total_errors = 0;
a061fc8d 3370 u64 flags;
f2984462
CM
3371
3372 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3373 backup_super_roots(root->fs_info);
f2984462 3374
6c41761f 3375 sb = root->fs_info->super_for_commit;
a061fc8d 3376 dev_item = &sb->dev_item;
e5e9a520 3377
174ba509 3378 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3379 head = &root->fs_info->fs_devices->devices;
d7306801 3380 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3381
5af3e8cc
SB
3382 if (do_barriers) {
3383 ret = barrier_all_devices(root->fs_info);
3384 if (ret) {
3385 mutex_unlock(
3386 &root->fs_info->fs_devices->device_list_mutex);
3387 btrfs_error(root->fs_info, ret,
3388 "errors while submitting device barriers.");
3389 return ret;
3390 }
3391 }
387125fc 3392
1f78160c 3393 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3394 if (!dev->bdev) {
3395 total_errors++;
3396 continue;
3397 }
2b82032c 3398 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3399 continue;
3400
2b82032c 3401 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3402 btrfs_set_stack_device_type(dev_item, dev->type);
3403 btrfs_set_stack_device_id(dev_item, dev->devid);
3404 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3405 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3406 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3407 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3408 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3409 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3410 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3411
a061fc8d
CM
3412 flags = btrfs_super_flags(sb);
3413 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3414
a512bbf8 3415 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3416 if (ret)
3417 total_errors++;
f2984462 3418 }
a236aed1 3419 if (total_errors > max_errors) {
efe120a0 3420 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3421 total_errors);
a724b436 3422 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3423
9d565ba4
SB
3424 /* FUA is masked off if unsupported and can't be the reason */
3425 btrfs_error(root->fs_info, -EIO,
3426 "%d errors while writing supers", total_errors);
3427 return -EIO;
a236aed1 3428 }
f2984462 3429
a512bbf8 3430 total_errors = 0;
1f78160c 3431 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3432 if (!dev->bdev)
3433 continue;
2b82032c 3434 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3435 continue;
3436
a512bbf8
YZ
3437 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3438 if (ret)
3439 total_errors++;
f2984462 3440 }
174ba509 3441 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3442 if (total_errors > max_errors) {
79787eaa
JM
3443 btrfs_error(root->fs_info, -EIO,
3444 "%d errors while writing supers", total_errors);
3445 return -EIO;
a236aed1 3446 }
f2984462
CM
3447 return 0;
3448}
3449
a512bbf8
YZ
3450int write_ctree_super(struct btrfs_trans_handle *trans,
3451 struct btrfs_root *root, int max_mirrors)
eb60ceac 3452{
f570e757 3453 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3454}
3455
cb517eab
MX
3456/* Drop a fs root from the radix tree and free it. */
3457void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3458 struct btrfs_root *root)
2619ba1f 3459{
4df27c4d 3460 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3461 radix_tree_delete(&fs_info->fs_roots_radix,
3462 (unsigned long)root->root_key.objectid);
4df27c4d 3463 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3464
3465 if (btrfs_root_refs(&root->root_item) == 0)
3466 synchronize_srcu(&fs_info->subvol_srcu);
3467
1a4319cc 3468 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3469 btrfs_free_log(NULL, root);
3321719e 3470
581bb050
LZ
3471 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3472 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3473 free_fs_root(root);
4df27c4d
YZ
3474}
3475
3476static void free_fs_root(struct btrfs_root *root)
3477{
82d5902d 3478 iput(root->cache_inode);
4df27c4d 3479 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3480 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3481 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3482 if (root->anon_dev)
3483 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3484 free_extent_buffer(root->node);
3485 free_extent_buffer(root->commit_root);
581bb050
LZ
3486 kfree(root->free_ino_ctl);
3487 kfree(root->free_ino_pinned);
d397712b 3488 kfree(root->name);
b0feb9d9 3489 btrfs_put_fs_root(root);
2619ba1f
CM
3490}
3491
cb517eab
MX
3492void btrfs_free_fs_root(struct btrfs_root *root)
3493{
3494 free_fs_root(root);
2619ba1f
CM
3495}
3496
c146afad 3497int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3498{
c146afad
YZ
3499 u64 root_objectid = 0;
3500 struct btrfs_root *gang[8];
3501 int i;
3768f368 3502 int ret;
e089f05c 3503
c146afad
YZ
3504 while (1) {
3505 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3506 (void **)gang, root_objectid,
3507 ARRAY_SIZE(gang));
3508 if (!ret)
3509 break;
5d4f98a2
YZ
3510
3511 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3512 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3513 int err;
3514
c146afad 3515 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3516 err = btrfs_orphan_cleanup(gang[i]);
3517 if (err)
3518 return err;
c146afad
YZ
3519 }
3520 root_objectid++;
3521 }
3522 return 0;
3523}
a2135011 3524
c146afad
YZ
3525int btrfs_commit_super(struct btrfs_root *root)
3526{
3527 struct btrfs_trans_handle *trans;
a74a4b97 3528
c146afad 3529 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3530 btrfs_run_delayed_iputs(root);
c146afad 3531 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3532 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3533
3534 /* wait until ongoing cleanup work done */
3535 down_write(&root->fs_info->cleanup_work_sem);
3536 up_write(&root->fs_info->cleanup_work_sem);
3537
7a7eaa40 3538 trans = btrfs_join_transaction(root);
3612b495
TI
3539 if (IS_ERR(trans))
3540 return PTR_ERR(trans);
d52c1bcc 3541 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3542}
3543
3544int close_ctree(struct btrfs_root *root)
3545{
3546 struct btrfs_fs_info *fs_info = root->fs_info;
3547 int ret;
3548
3549 fs_info->closing = 1;
3550 smp_mb();
3551
803b2f54
SB
3552 /* wait for the uuid_scan task to finish */
3553 down(&fs_info->uuid_tree_rescan_sem);
3554 /* avoid complains from lockdep et al., set sem back to initial state */
3555 up(&fs_info->uuid_tree_rescan_sem);
3556
837d5b6e 3557 /* pause restriper - we want to resume on mount */
aa1b8cd4 3558 btrfs_pause_balance(fs_info);
837d5b6e 3559
8dabb742
SB
3560 btrfs_dev_replace_suspend_for_unmount(fs_info);
3561
aa1b8cd4 3562 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3563
3564 /* wait for any defraggers to finish */
3565 wait_event(fs_info->transaction_wait,
3566 (atomic_read(&fs_info->defrag_running) == 0));
3567
3568 /* clear out the rbtree of defraggable inodes */
26176e7c 3569 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3570
c146afad 3571 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3572 ret = btrfs_commit_super(root);
3573 if (ret)
efe120a0 3574 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3575 }
3576
87533c47 3577 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3578 btrfs_error_commit_super(root);
0f7d52f4 3579
e3029d9f
AV
3580 kthread_stop(fs_info->transaction_kthread);
3581 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3582
f25784b3
YZ
3583 fs_info->closing = 2;
3584 smp_mb();
3585
bcef60f2
AJ
3586 btrfs_free_qgroup_config(root->fs_info);
3587
963d678b 3588 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3589 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3590 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3591 }
bcc63abb 3592
5ac1d209
JM
3593 btrfs_sysfs_remove_one(fs_info);
3594
c146afad 3595 del_fs_roots(fs_info);
d10c5f31 3596
1a4319cc
LB
3597 btrfs_put_block_group_cache(fs_info);
3598
2b1360da
JB
3599 btrfs_free_block_groups(fs_info);
3600
96192499
JB
3601 btrfs_stop_all_workers(fs_info);
3602
13e6c37b 3603 free_root_pointers(fs_info, 1);
9ad6b7bc 3604
13e6c37b 3605 iput(fs_info->btree_inode);
d6bfde87 3606
21adbd5c
SB
3607#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3608 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3609 btrfsic_unmount(root, fs_info->fs_devices);
3610#endif
3611
dfe25020 3612 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3613 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3614
e2d84521 3615 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3616 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3617 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3618 bdi_destroy(&fs_info->bdi);
76dda93c 3619 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3620
53b381b3
DW
3621 btrfs_free_stripe_hash_table(fs_info);
3622
1cb048f5
FDBM
3623 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3624 root->orphan_block_rsv = NULL;
3625
eb60ceac
CM
3626 return 0;
3627}
3628
b9fab919
CM
3629int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3630 int atomic)
5f39d397 3631{
1259ab75 3632 int ret;
727011e0 3633 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3634
0b32f4bb 3635 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3636 if (!ret)
3637 return ret;
3638
3639 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3640 parent_transid, atomic);
3641 if (ret == -EAGAIN)
3642 return ret;
1259ab75 3643 return !ret;
5f39d397
CM
3644}
3645
3646int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3647{
0b32f4bb 3648 return set_extent_buffer_uptodate(buf);
5f39d397 3649}
6702ed49 3650
5f39d397
CM
3651void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3652{
06ea65a3 3653 struct btrfs_root *root;
5f39d397 3654 u64 transid = btrfs_header_generation(buf);
b9473439 3655 int was_dirty;
b4ce94de 3656
06ea65a3
JB
3657#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3658 /*
3659 * This is a fast path so only do this check if we have sanity tests
3660 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3661 * outside of the sanity tests.
3662 */
3663 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3664 return;
3665#endif
3666 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3667 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3668 if (transid != root->fs_info->generation)
3669 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3670 "found %llu running %llu\n",
c1c9ff7c 3671 buf->start, transid, root->fs_info->generation);
0b32f4bb 3672 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3673 if (!was_dirty)
3674 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3675 buf->len,
3676 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3677}
3678
b53d3f5d
LB
3679static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3680 int flush_delayed)
16cdcec7
MX
3681{
3682 /*
3683 * looks as though older kernels can get into trouble with
3684 * this code, they end up stuck in balance_dirty_pages forever
3685 */
e2d84521 3686 int ret;
16cdcec7
MX
3687
3688 if (current->flags & PF_MEMALLOC)
3689 return;
3690
b53d3f5d
LB
3691 if (flush_delayed)
3692 btrfs_balance_delayed_items(root);
16cdcec7 3693
e2d84521
MX
3694 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3695 BTRFS_DIRTY_METADATA_THRESH);
3696 if (ret > 0) {
d0e1d66b
NJ
3697 balance_dirty_pages_ratelimited(
3698 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3699 }
3700 return;
3701}
3702
b53d3f5d 3703void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3704{
b53d3f5d
LB
3705 __btrfs_btree_balance_dirty(root, 1);
3706}
585ad2c3 3707
b53d3f5d
LB
3708void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3709{
3710 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3711}
6b80053d 3712
ca7a79ad 3713int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3714{
727011e0 3715 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3716 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3717}
0da5468f 3718
fcd1f065 3719static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3720 int read_only)
3721{
1104a885
DS
3722 /*
3723 * Placeholder for checks
3724 */
fcd1f065 3725 return 0;
acce952b 3726}
3727
48a3b636 3728static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3729{
acce952b 3730 mutex_lock(&root->fs_info->cleaner_mutex);
3731 btrfs_run_delayed_iputs(root);
3732 mutex_unlock(&root->fs_info->cleaner_mutex);
3733
3734 down_write(&root->fs_info->cleanup_work_sem);
3735 up_write(&root->fs_info->cleanup_work_sem);
3736
3737 /* cleanup FS via transaction */
3738 btrfs_cleanup_transaction(root);
acce952b 3739}
3740
569e0f35
JB
3741static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3742 struct btrfs_root *root)
acce952b 3743{
3744 struct btrfs_inode *btrfs_inode;
3745 struct list_head splice;
3746
3747 INIT_LIST_HEAD(&splice);
3748
3749 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3750 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3751
569e0f35 3752 list_splice_init(&t->ordered_operations, &splice);
acce952b 3753 while (!list_empty(&splice)) {
3754 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3755 ordered_operations);
3756
3757 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3758 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3759
3760 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3761
199c2a9c 3762 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3763 }
3764
199c2a9c 3765 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3766 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3767}
3768
143bede5 3769static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3770{
acce952b 3771 struct btrfs_ordered_extent *ordered;
acce952b 3772
199c2a9c 3773 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3774 /*
3775 * This will just short circuit the ordered completion stuff which will
3776 * make sure the ordered extent gets properly cleaned up.
3777 */
199c2a9c 3778 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3779 root_extent_list)
3780 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3781 spin_unlock(&root->ordered_extent_lock);
3782}
3783
3784static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3785{
3786 struct btrfs_root *root;
3787 struct list_head splice;
3788
3789 INIT_LIST_HEAD(&splice);
3790
3791 spin_lock(&fs_info->ordered_root_lock);
3792 list_splice_init(&fs_info->ordered_roots, &splice);
3793 while (!list_empty(&splice)) {
3794 root = list_first_entry(&splice, struct btrfs_root,
3795 ordered_root);
1de2cfde
JB
3796 list_move_tail(&root->ordered_root,
3797 &fs_info->ordered_roots);
199c2a9c 3798
2a85d9ca 3799 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3800 btrfs_destroy_ordered_extents(root);
3801
2a85d9ca
LB
3802 cond_resched();
3803 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3804 }
3805 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3806}
3807
35a3621b
SB
3808static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3809 struct btrfs_root *root)
acce952b 3810{
3811 struct rb_node *node;
3812 struct btrfs_delayed_ref_root *delayed_refs;
3813 struct btrfs_delayed_ref_node *ref;
3814 int ret = 0;
3815
3816 delayed_refs = &trans->delayed_refs;
3817
3818 spin_lock(&delayed_refs->lock);
d7df2c79 3819 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3820 spin_unlock(&delayed_refs->lock);
efe120a0 3821 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3822 return ret;
3823 }
3824
d7df2c79
JB
3825 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3826 struct btrfs_delayed_ref_head *head;
e78417d1 3827 bool pin_bytes = false;
acce952b 3828
d7df2c79
JB
3829 head = rb_entry(node, struct btrfs_delayed_ref_head,
3830 href_node);
3831 if (!mutex_trylock(&head->mutex)) {
3832 atomic_inc(&head->node.refs);
3833 spin_unlock(&delayed_refs->lock);
acce952b 3834
d7df2c79 3835 mutex_lock(&head->mutex);
e78417d1 3836 mutex_unlock(&head->mutex);
d7df2c79
JB
3837 btrfs_put_delayed_ref(&head->node);
3838 spin_lock(&delayed_refs->lock);
3839 continue;
3840 }
3841 spin_lock(&head->lock);
3842 while ((node = rb_first(&head->ref_root)) != NULL) {
3843 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3844 rb_node);
3845 ref->in_tree = 0;
3846 rb_erase(&ref->rb_node, &head->ref_root);
3847 atomic_dec(&delayed_refs->num_entries);
3848 btrfs_put_delayed_ref(ref);
e78417d1 3849 }
d7df2c79
JB
3850 if (head->must_insert_reserved)
3851 pin_bytes = true;
3852 btrfs_free_delayed_extent_op(head->extent_op);
3853 delayed_refs->num_heads--;
3854 if (head->processing == 0)
3855 delayed_refs->num_heads_ready--;
3856 atomic_dec(&delayed_refs->num_entries);
3857 head->node.in_tree = 0;
3858 rb_erase(&head->href_node, &delayed_refs->href_root);
3859 spin_unlock(&head->lock);
3860 spin_unlock(&delayed_refs->lock);
3861 mutex_unlock(&head->mutex);
acce952b 3862
d7df2c79
JB
3863 if (pin_bytes)
3864 btrfs_pin_extent(root, head->node.bytenr,
3865 head->node.num_bytes, 1);
3866 btrfs_put_delayed_ref(&head->node);
acce952b 3867 cond_resched();
3868 spin_lock(&delayed_refs->lock);
3869 }
3870
3871 spin_unlock(&delayed_refs->lock);
3872
3873 return ret;
3874}
3875
143bede5 3876static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3877{
3878 struct btrfs_inode *btrfs_inode;
3879 struct list_head splice;
3880
3881 INIT_LIST_HEAD(&splice);
3882
eb73c1b7
MX
3883 spin_lock(&root->delalloc_lock);
3884 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3885
3886 while (!list_empty(&splice)) {
eb73c1b7
MX
3887 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3888 delalloc_inodes);
acce952b 3889
3890 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3891 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3892 &btrfs_inode->runtime_flags);
eb73c1b7 3893 spin_unlock(&root->delalloc_lock);
acce952b 3894
3895 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3896
eb73c1b7 3897 spin_lock(&root->delalloc_lock);
acce952b 3898 }
3899
eb73c1b7
MX
3900 spin_unlock(&root->delalloc_lock);
3901}
3902
3903static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3904{
3905 struct btrfs_root *root;
3906 struct list_head splice;
3907
3908 INIT_LIST_HEAD(&splice);
3909
3910 spin_lock(&fs_info->delalloc_root_lock);
3911 list_splice_init(&fs_info->delalloc_roots, &splice);
3912 while (!list_empty(&splice)) {
3913 root = list_first_entry(&splice, struct btrfs_root,
3914 delalloc_root);
3915 list_del_init(&root->delalloc_root);
3916 root = btrfs_grab_fs_root(root);
3917 BUG_ON(!root);
3918 spin_unlock(&fs_info->delalloc_root_lock);
3919
3920 btrfs_destroy_delalloc_inodes(root);
3921 btrfs_put_fs_root(root);
3922
3923 spin_lock(&fs_info->delalloc_root_lock);
3924 }
3925 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3926}
3927
3928static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3929 struct extent_io_tree *dirty_pages,
3930 int mark)
3931{
3932 int ret;
acce952b 3933 struct extent_buffer *eb;
3934 u64 start = 0;
3935 u64 end;
acce952b 3936
3937 while (1) {
3938 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3939 mark, NULL);
acce952b 3940 if (ret)
3941 break;
3942
3943 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3944 while (start <= end) {
fd8b2b61
JB
3945 eb = btrfs_find_tree_block(root, start,
3946 root->leafsize);
69a85bd8 3947 start += root->leafsize;
fd8b2b61 3948 if (!eb)
acce952b 3949 continue;
fd8b2b61 3950 wait_on_extent_buffer_writeback(eb);
acce952b 3951
fd8b2b61
JB
3952 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3953 &eb->bflags))
3954 clear_extent_buffer_dirty(eb);
3955 free_extent_buffer_stale(eb);
acce952b 3956 }
3957 }
3958
3959 return ret;
3960}
3961
3962static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3963 struct extent_io_tree *pinned_extents)
3964{
3965 struct extent_io_tree *unpin;
3966 u64 start;
3967 u64 end;
3968 int ret;
ed0eaa14 3969 bool loop = true;
acce952b 3970
3971 unpin = pinned_extents;
ed0eaa14 3972again:
acce952b 3973 while (1) {
3974 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3975 EXTENT_DIRTY, NULL);
acce952b 3976 if (ret)
3977 break;
3978
3979 /* opt_discard */
5378e607
LD
3980 if (btrfs_test_opt(root, DISCARD))
3981 ret = btrfs_error_discard_extent(root, start,
3982 end + 1 - start,
3983 NULL);
acce952b 3984
3985 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3986 btrfs_error_unpin_extent_range(root, start, end);
3987 cond_resched();
3988 }
3989
ed0eaa14
LB
3990 if (loop) {
3991 if (unpin == &root->fs_info->freed_extents[0])
3992 unpin = &root->fs_info->freed_extents[1];
3993 else
3994 unpin = &root->fs_info->freed_extents[0];
3995 loop = false;
3996 goto again;
3997 }
3998
acce952b 3999 return 0;
4000}
4001
49b25e05
JM
4002void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4003 struct btrfs_root *root)
4004{
724e2315
JB
4005 btrfs_destroy_ordered_operations(cur_trans, root);
4006
49b25e05 4007 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4008
4a9d8bde 4009 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4010 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4011
4a9d8bde 4012 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4013 wake_up(&root->fs_info->transaction_wait);
49b25e05 4014
67cde344
MX
4015 btrfs_destroy_delayed_inodes(root);
4016 btrfs_assert_delayed_root_empty(root);
49b25e05 4017
49b25e05
JM
4018 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4019 EXTENT_DIRTY);
6e841e32
LB
4020 btrfs_destroy_pinned_extent(root,
4021 root->fs_info->pinned_extents);
49b25e05 4022
4a9d8bde
MX
4023 cur_trans->state =TRANS_STATE_COMPLETED;
4024 wake_up(&cur_trans->commit_wait);
4025
49b25e05
JM
4026 /*
4027 memset(cur_trans, 0, sizeof(*cur_trans));
4028 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4029 */
4030}
4031
48a3b636 4032static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4033{
4034 struct btrfs_transaction *t;
acce952b 4035
acce952b 4036 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4037
a4abeea4 4038 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4039 while (!list_empty(&root->fs_info->trans_list)) {
4040 t = list_first_entry(&root->fs_info->trans_list,
4041 struct btrfs_transaction, list);
4042 if (t->state >= TRANS_STATE_COMMIT_START) {
4043 atomic_inc(&t->use_count);
4044 spin_unlock(&root->fs_info->trans_lock);
4045 btrfs_wait_for_commit(root, t->transid);
4046 btrfs_put_transaction(t);
4047 spin_lock(&root->fs_info->trans_lock);
4048 continue;
4049 }
4050 if (t == root->fs_info->running_transaction) {
4051 t->state = TRANS_STATE_COMMIT_DOING;
4052 spin_unlock(&root->fs_info->trans_lock);
4053 /*
4054 * We wait for 0 num_writers since we don't hold a trans
4055 * handle open currently for this transaction.
4056 */
4057 wait_event(t->writer_wait,
4058 atomic_read(&t->num_writers) == 0);
4059 } else {
4060 spin_unlock(&root->fs_info->trans_lock);
4061 }
4062 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4063
724e2315
JB
4064 spin_lock(&root->fs_info->trans_lock);
4065 if (t == root->fs_info->running_transaction)
4066 root->fs_info->running_transaction = NULL;
acce952b 4067 list_del_init(&t->list);
724e2315 4068 spin_unlock(&root->fs_info->trans_lock);
acce952b 4069
724e2315
JB
4070 btrfs_put_transaction(t);
4071 trace_btrfs_transaction_commit(root);
4072 spin_lock(&root->fs_info->trans_lock);
4073 }
4074 spin_unlock(&root->fs_info->trans_lock);
4075 btrfs_destroy_all_ordered_extents(root->fs_info);
4076 btrfs_destroy_delayed_inodes(root);
4077 btrfs_assert_delayed_root_empty(root);
4078 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4079 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4080 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4081
4082 return 0;
4083}
4084
d1310b2e 4085static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4086 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4087 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4088 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4089 /* note we're sharing with inode.c for the merge bio hook */
4090 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4091};