Btrfs: Check metadata redundancy on balance
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
e8c9f186 57static const struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
01d58472
DD
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
19c00ddc
CM
279 int verify)
280{
01d58472 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 282 char *result = NULL;
19c00ddc
CM
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
607d432d 291 unsigned long inline_result;
19c00ddc
CM
292
293 len = buf->len - offset;
d397712b 294 while (len > 0) {
19c00ddc 295 err = map_private_extent_buffer(buf, offset, 32,
a6591715 296 &kaddr, &map_start, &map_len);
d397712b 297 if (err)
19c00ddc 298 return 1;
19c00ddc 299 cur_len = min(len, map_len - (offset - map_start));
b0496686 300 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
19c00ddc 304 }
607d432d 305 if (csum_size > sizeof(inline_result)) {
31e818fe 306 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
19c00ddc
CM
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
607d432d 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
317 u32 val;
318 u32 found = 0;
607d432d 319 memcpy(&found, result, csum_size);
e4204ded 320
607d432d 321 read_extent_buffer(buf, &val, 0, csum_size);
94647322
DS
322 btrfs_warn_rl(fs_info,
323 "%s checksum verify failed on %llu wanted %X found %X "
324 "level %d",
01d58472 325 fs_info->sb->s_id, buf->start,
efe120a0 326 val, found, btrfs_header_level(buf));
607d432d
JB
327 if (result != (char *)&inline_result)
328 kfree(result);
19c00ddc
CM
329 return 1;
330 }
331 } else {
607d432d 332 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 333 }
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
19c00ddc
CM
336 return 0;
337}
338
d352ac68
CM
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
1259ab75 345static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
1259ab75 348{
2ac55d41 349 struct extent_state *cached_state = NULL;
1259ab75 350 int ret;
2755a0de 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
b9fab919
CM
356 if (atomic)
357 return -EAGAIN;
358
a26e8c9f
JB
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
2ac55d41 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 365 0, &cached_state);
0b32f4bb 366 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
94647322
DS
371 btrfs_err_rl(eb->fs_info,
372 "parent transid verify failed on %llu wanted %llu found %llu",
373 eb->start,
29549aec 374 parent_transid, btrfs_header_generation(eb));
1259ab75 375 ret = 1;
a26e8c9f
JB
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
33958dc6 387out:
2ac55d41
JB
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
472b909f
JB
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
1259ab75 392 return ret;
1259ab75
CM
393}
394
1104a885
DS
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431}
432
d352ac68
CM
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
f188591e
CM
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
ca7a79ad 439 u64 start, u64 parent_transid)
f188591e
CM
440{
441 struct extent_io_tree *io_tree;
ea466794 442 int failed = 0;
f188591e
CM
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
ea466794 446 int failed_mirror = 0;
f188591e 447
a826d6dc 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
bb82ab88
AJ
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
f188591e 453 btree_get_extent, mirror_num);
256dd1bb
SB
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
b9fab919 456 parent_transid, 0))
256dd1bb
SB
457 break;
458 else
459 ret = -EIO;
460 }
d397712b 461
a826d6dc
JB
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
468 break;
469
5d964051 470 num_copies = btrfs_num_copies(root->fs_info,
f188591e 471 eb->start, eb->len);
4235298e 472 if (num_copies == 1)
ea466794 473 break;
4235298e 474
5cf1ab56
JB
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
f188591e 480 mirror_num++;
ea466794
JB
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
4235298e 484 if (mirror_num > num_copies)
ea466794 485 break;
f188591e 486 }
ea466794 487
c0901581 488 if (failed && !ret && failed_mirror)
ea466794
JB
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
f188591e 492}
19c00ddc 493
d352ac68 494/*
d397712b
CM
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 497 */
d397712b 498
01d58472 499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 500{
4eee4fa4 501 u64 start = page_offset(page);
19c00ddc 502 u64 found_start;
19c00ddc 503 struct extent_buffer *eb;
f188591e 504
4f2de97a
JB
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
19c00ddc 508 found_start = btrfs_header_bytenr(eb);
fae7f21c 509 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 510 return 0;
01d58472 511 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
512 return 0;
513}
514
01d58472 515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
516 struct extent_buffer *eb)
517{
01d58472 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
0a4e5586 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531}
532
a826d6dc 533#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
c1c9ff7c 536 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
537
538static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540{
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597}
598
facc8a22
MX
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
ce9adaa5 602{
ce9adaa5
CM
603 u64 found_start;
604 int found_level;
ce9adaa5
CM
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 607 int ret = 0;
727011e0 608 int reads_done;
ce9adaa5 609
ce9adaa5
CM
610 if (!page->private)
611 goto out;
d397712b 612
4f2de97a 613 eb = (struct extent_buffer *)page->private;
d397712b 614
0b32f4bb
JB
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
621 if (!reads_done)
622 goto err;
f188591e 623
5cf1ab56 624 eb->read_mirror = mirror;
656f30db 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
626 ret = -EIO;
627 goto err;
628 }
629
ce9adaa5 630 found_start = btrfs_header_bytenr(eb);
727011e0 631 if (found_start != eb->start) {
94647322
DS
632 btrfs_err_rl(eb->fs_info, "bad tree block start %llu %llu",
633 found_start, eb->start);
f188591e 634 ret = -EIO;
ce9adaa5
CM
635 goto err;
636 }
01d58472 637 if (check_tree_block_fsid(root->fs_info, eb)) {
94647322
DS
638 btrfs_err_rl(eb->fs_info, "bad fsid on block %llu",
639 eb->start);
1259ab75
CM
640 ret = -EIO;
641 goto err;
642 }
ce9adaa5 643 found_level = btrfs_header_level(eb);
1c24c3ce 644 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 645 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
646 (int)btrfs_header_level(eb));
647 ret = -EIO;
648 goto err;
649 }
ce9adaa5 650
85d4e461
CM
651 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
652 eb, found_level);
4008c04a 653
01d58472 654 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 655 if (ret) {
f188591e 656 ret = -EIO;
a826d6dc
JB
657 goto err;
658 }
659
660 /*
661 * If this is a leaf block and it is corrupt, set the corrupt bit so
662 * that we don't try and read the other copies of this block, just
663 * return -EIO.
664 */
665 if (found_level == 0 && check_leaf(root, eb)) {
666 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
667 ret = -EIO;
668 }
ce9adaa5 669
0b32f4bb
JB
670 if (!ret)
671 set_extent_buffer_uptodate(eb);
ce9adaa5 672err:
79fb65a1
JB
673 if (reads_done &&
674 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 675 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 676
53b381b3
DW
677 if (ret) {
678 /*
679 * our io error hook is going to dec the io pages
680 * again, we have to make sure it has something
681 * to decrement
682 */
683 atomic_inc(&eb->io_pages);
0b32f4bb 684 clear_extent_buffer_uptodate(eb);
53b381b3 685 }
0b32f4bb 686 free_extent_buffer(eb);
ce9adaa5 687out:
f188591e 688 return ret;
ce9adaa5
CM
689}
690
ea466794 691static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 692{
4bb31e92
AJ
693 struct extent_buffer *eb;
694 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
695
4f2de97a 696 eb = (struct extent_buffer *)page->private;
656f30db 697 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 698 eb->read_mirror = failed_mirror;
53b381b3 699 atomic_dec(&eb->io_pages);
ea466794 700 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 701 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
702 return -EIO; /* we fixed nothing */
703}
704
4246a0b6 705static void end_workqueue_bio(struct bio *bio)
ce9adaa5 706{
97eb6b69 707 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 708 struct btrfs_fs_info *fs_info;
9e0af237
LB
709 struct btrfs_workqueue *wq;
710 btrfs_work_func_t func;
ce9adaa5 711
ce9adaa5 712 fs_info = end_io_wq->info;
4246a0b6 713 end_io_wq->error = bio->bi_error;
d20f7043 714
7b6d91da 715 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
716 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
717 wq = fs_info->endio_meta_write_workers;
718 func = btrfs_endio_meta_write_helper;
719 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
720 wq = fs_info->endio_freespace_worker;
721 func = btrfs_freespace_write_helper;
722 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
723 wq = fs_info->endio_raid56_workers;
724 func = btrfs_endio_raid56_helper;
725 } else {
726 wq = fs_info->endio_write_workers;
727 func = btrfs_endio_write_helper;
728 }
d20f7043 729 } else {
8b110e39
MX
730 if (unlikely(end_io_wq->metadata ==
731 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
732 wq = fs_info->endio_repair_workers;
733 func = btrfs_endio_repair_helper;
734 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
735 wq = fs_info->endio_raid56_workers;
736 func = btrfs_endio_raid56_helper;
737 } else if (end_io_wq->metadata) {
738 wq = fs_info->endio_meta_workers;
739 func = btrfs_endio_meta_helper;
740 } else {
741 wq = fs_info->endio_workers;
742 func = btrfs_endio_helper;
743 }
d20f7043 744 }
9e0af237
LB
745
746 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
747 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
748}
749
22c59948 750int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 751 enum btrfs_wq_endio_type metadata)
0b86a832 752{
97eb6b69 753 struct btrfs_end_io_wq *end_io_wq;
8b110e39 754
97eb6b69 755 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
756 if (!end_io_wq)
757 return -ENOMEM;
758
759 end_io_wq->private = bio->bi_private;
760 end_io_wq->end_io = bio->bi_end_io;
22c59948 761 end_io_wq->info = info;
ce9adaa5
CM
762 end_io_wq->error = 0;
763 end_io_wq->bio = bio;
22c59948 764 end_io_wq->metadata = metadata;
ce9adaa5
CM
765
766 bio->bi_private = end_io_wq;
767 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
768 return 0;
769}
770
b64a2851 771unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 772{
4854ddd0 773 unsigned long limit = min_t(unsigned long,
5cdc7ad3 774 info->thread_pool_size,
4854ddd0
CM
775 info->fs_devices->open_devices);
776 return 256 * limit;
777}
0986fe9e 778
4a69a410
CM
779static void run_one_async_start(struct btrfs_work *work)
780{
4a69a410 781 struct async_submit_bio *async;
79787eaa 782 int ret;
4a69a410
CM
783
784 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
785 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
786 async->mirror_num, async->bio_flags,
787 async->bio_offset);
788 if (ret)
789 async->error = ret;
4a69a410
CM
790}
791
792static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
793{
794 struct btrfs_fs_info *fs_info;
795 struct async_submit_bio *async;
4854ddd0 796 int limit;
8b712842
CM
797
798 async = container_of(work, struct async_submit_bio, work);
799 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 800
b64a2851 801 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
802 limit = limit * 2 / 3;
803
ee863954
DS
804 /*
805 * atomic_dec_return implies a barrier for waitqueue_active
806 */
66657b31 807 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 808 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
809 wake_up(&fs_info->async_submit_wait);
810
79787eaa
JM
811 /* If an error occured we just want to clean up the bio and move on */
812 if (async->error) {
4246a0b6
CH
813 async->bio->bi_error = async->error;
814 bio_endio(async->bio);
79787eaa
JM
815 return;
816 }
817
4a69a410 818 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
819 async->mirror_num, async->bio_flags,
820 async->bio_offset);
4a69a410
CM
821}
822
823static void run_one_async_free(struct btrfs_work *work)
824{
825 struct async_submit_bio *async;
826
827 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
828 kfree(async);
829}
830
44b8bd7e
CM
831int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
832 int rw, struct bio *bio, int mirror_num,
c8b97818 833 unsigned long bio_flags,
eaf25d93 834 u64 bio_offset,
4a69a410
CM
835 extent_submit_bio_hook_t *submit_bio_start,
836 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
837{
838 struct async_submit_bio *async;
839
840 async = kmalloc(sizeof(*async), GFP_NOFS);
841 if (!async)
842 return -ENOMEM;
843
844 async->inode = inode;
845 async->rw = rw;
846 async->bio = bio;
847 async->mirror_num = mirror_num;
4a69a410
CM
848 async->submit_bio_start = submit_bio_start;
849 async->submit_bio_done = submit_bio_done;
850
9e0af237 851 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 852 run_one_async_done, run_one_async_free);
4a69a410 853
c8b97818 854 async->bio_flags = bio_flags;
eaf25d93 855 async->bio_offset = bio_offset;
8c8bee1d 856
79787eaa
JM
857 async->error = 0;
858
cb03c743 859 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 860
7b6d91da 861 if (rw & REQ_SYNC)
5cdc7ad3 862 btrfs_set_work_high_priority(&async->work);
d313d7a3 863
5cdc7ad3 864 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 865
d397712b 866 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
867 atomic_read(&fs_info->nr_async_submits)) {
868 wait_event(fs_info->async_submit_wait,
869 (atomic_read(&fs_info->nr_async_submits) == 0));
870 }
871
44b8bd7e
CM
872 return 0;
873}
874
ce3ed71a
CM
875static int btree_csum_one_bio(struct bio *bio)
876{
2c30c71b 877 struct bio_vec *bvec;
ce3ed71a 878 struct btrfs_root *root;
2c30c71b 879 int i, ret = 0;
ce3ed71a 880
2c30c71b 881 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 882 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 883 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
884 if (ret)
885 break;
ce3ed71a 886 }
2c30c71b 887
79787eaa 888 return ret;
ce3ed71a
CM
889}
890
4a69a410
CM
891static int __btree_submit_bio_start(struct inode *inode, int rw,
892 struct bio *bio, int mirror_num,
eaf25d93
CM
893 unsigned long bio_flags,
894 u64 bio_offset)
22c59948 895{
8b712842
CM
896 /*
897 * when we're called for a write, we're already in the async
5443be45 898 * submission context. Just jump into btrfs_map_bio
8b712842 899 */
79787eaa 900 return btree_csum_one_bio(bio);
4a69a410 901}
22c59948 902
4a69a410 903static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
904 int mirror_num, unsigned long bio_flags,
905 u64 bio_offset)
4a69a410 906{
61891923
SB
907 int ret;
908
8b712842 909 /*
4a69a410
CM
910 * when we're called for a write, we're already in the async
911 * submission context. Just jump into btrfs_map_bio
8b712842 912 */
61891923 913 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
4246a0b6
CH
914 if (ret) {
915 bio->bi_error = ret;
916 bio_endio(bio);
917 }
61891923 918 return ret;
0b86a832
CM
919}
920
de0022b9
JB
921static int check_async_write(struct inode *inode, unsigned long bio_flags)
922{
923 if (bio_flags & EXTENT_BIO_TREE_LOG)
924 return 0;
925#ifdef CONFIG_X86
926 if (cpu_has_xmm4_2)
927 return 0;
928#endif
929 return 1;
930}
931
44b8bd7e 932static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
933 int mirror_num, unsigned long bio_flags,
934 u64 bio_offset)
44b8bd7e 935{
de0022b9 936 int async = check_async_write(inode, bio_flags);
cad321ad
CM
937 int ret;
938
7b6d91da 939 if (!(rw & REQ_WRITE)) {
4a69a410
CM
940 /*
941 * called for a read, do the setup so that checksum validation
942 * can happen in the async kernel threads
943 */
f3f266ab 944 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 945 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 946 if (ret)
61891923
SB
947 goto out_w_error;
948 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
949 mirror_num, 0);
de0022b9
JB
950 } else if (!async) {
951 ret = btree_csum_one_bio(bio);
952 if (ret)
61891923
SB
953 goto out_w_error;
954 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
955 mirror_num, 0);
956 } else {
957 /*
958 * kthread helpers are used to submit writes so that
959 * checksumming can happen in parallel across all CPUs
960 */
961 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
962 inode, rw, bio, mirror_num, 0,
963 bio_offset,
964 __btree_submit_bio_start,
965 __btree_submit_bio_done);
44b8bd7e 966 }
d313d7a3 967
4246a0b6
CH
968 if (ret)
969 goto out_w_error;
970 return 0;
971
61891923 972out_w_error:
4246a0b6
CH
973 bio->bi_error = ret;
974 bio_endio(bio);
61891923 975 return ret;
44b8bd7e
CM
976}
977
3dd1462e 978#ifdef CONFIG_MIGRATION
784b4e29 979static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
980 struct page *newpage, struct page *page,
981 enum migrate_mode mode)
784b4e29
CM
982{
983 /*
984 * we can't safely write a btree page from here,
985 * we haven't done the locking hook
986 */
987 if (PageDirty(page))
988 return -EAGAIN;
989 /*
990 * Buffers may be managed in a filesystem specific way.
991 * We must have no buffers or drop them.
992 */
993 if (page_has_private(page) &&
994 !try_to_release_page(page, GFP_KERNEL))
995 return -EAGAIN;
a6bc32b8 996 return migrate_page(mapping, newpage, page, mode);
784b4e29 997}
3dd1462e 998#endif
784b4e29 999
0da5468f
CM
1000
1001static int btree_writepages(struct address_space *mapping,
1002 struct writeback_control *wbc)
1003{
e2d84521
MX
1004 struct btrfs_fs_info *fs_info;
1005 int ret;
1006
d8d5f3e1 1007 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1008
1009 if (wbc->for_kupdate)
1010 return 0;
1011
e2d84521 1012 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1013 /* this is a bit racy, but that's ok */
e2d84521
MX
1014 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1015 BTRFS_DIRTY_METADATA_THRESH);
1016 if (ret < 0)
793955bc 1017 return 0;
793955bc 1018 }
0b32f4bb 1019 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1020}
1021
b2950863 1022static int btree_readpage(struct file *file, struct page *page)
5f39d397 1023{
d1310b2e
CM
1024 struct extent_io_tree *tree;
1025 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1026 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1027}
22b0ebda 1028
70dec807 1029static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1030{
98509cfc 1031 if (PageWriteback(page) || PageDirty(page))
d397712b 1032 return 0;
0c4e538b 1033
f7a52a40 1034 return try_release_extent_buffer(page);
d98237b3
CM
1035}
1036
d47992f8
LC
1037static void btree_invalidatepage(struct page *page, unsigned int offset,
1038 unsigned int length)
d98237b3 1039{
d1310b2e
CM
1040 struct extent_io_tree *tree;
1041 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1042 extent_invalidatepage(tree, page, offset);
1043 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1044 if (PagePrivate(page)) {
efe120a0
FH
1045 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1046 "page private not zero on page %llu",
1047 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1048 ClearPagePrivate(page);
1049 set_page_private(page, 0);
1050 page_cache_release(page);
1051 }
d98237b3
CM
1052}
1053
0b32f4bb
JB
1054static int btree_set_page_dirty(struct page *page)
1055{
bb146eb2 1056#ifdef DEBUG
0b32f4bb
JB
1057 struct extent_buffer *eb;
1058
1059 BUG_ON(!PagePrivate(page));
1060 eb = (struct extent_buffer *)page->private;
1061 BUG_ON(!eb);
1062 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1063 BUG_ON(!atomic_read(&eb->refs));
1064 btrfs_assert_tree_locked(eb);
bb146eb2 1065#endif
0b32f4bb
JB
1066 return __set_page_dirty_nobuffers(page);
1067}
1068
7f09410b 1069static const struct address_space_operations btree_aops = {
d98237b3 1070 .readpage = btree_readpage,
0da5468f 1071 .writepages = btree_writepages,
5f39d397
CM
1072 .releasepage = btree_releasepage,
1073 .invalidatepage = btree_invalidatepage,
5a92bc88 1074#ifdef CONFIG_MIGRATION
784b4e29 1075 .migratepage = btree_migratepage,
5a92bc88 1076#endif
0b32f4bb 1077 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1078};
1079
d3e46fea 1080void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1081{
5f39d397
CM
1082 struct extent_buffer *buf = NULL;
1083 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1084
a83fffb7 1085 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1086 if (!buf)
6197d86e 1087 return;
d1310b2e 1088 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1089 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1090 free_extent_buffer(buf);
090d1875
CM
1091}
1092
c0dcaa4d 1093int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1094 int mirror_num, struct extent_buffer **eb)
1095{
1096 struct extent_buffer *buf = NULL;
1097 struct inode *btree_inode = root->fs_info->btree_inode;
1098 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1099 int ret;
1100
a83fffb7 1101 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1102 if (!buf)
1103 return 0;
1104
1105 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1106
1107 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1108 btree_get_extent, mirror_num);
1109 if (ret) {
1110 free_extent_buffer(buf);
1111 return ret;
1112 }
1113
1114 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1115 free_extent_buffer(buf);
1116 return -EIO;
0b32f4bb 1117 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1118 *eb = buf;
1119 } else {
1120 free_extent_buffer(buf);
1121 }
1122 return 0;
1123}
1124
01d58472 1125struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1126 u64 bytenr)
0999df54 1127{
01d58472 1128 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1129}
1130
1131struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1132 u64 bytenr)
0999df54 1133{
fccb84c9 1134 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1135 return alloc_test_extent_buffer(root->fs_info, bytenr);
1136 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1137}
1138
1139
e02119d5
CM
1140int btrfs_write_tree_block(struct extent_buffer *buf)
1141{
727011e0 1142 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1143 buf->start + buf->len - 1);
e02119d5
CM
1144}
1145
1146int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1147{
727011e0 1148 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1149 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1150}
1151
0999df54 1152struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1153 u64 parent_transid)
0999df54
CM
1154{
1155 struct extent_buffer *buf = NULL;
0999df54
CM
1156 int ret;
1157
a83fffb7 1158 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1159 if (!buf)
64c043de 1160 return ERR_PTR(-ENOMEM);
0999df54 1161
ca7a79ad 1162 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1163 if (ret) {
1164 free_extent_buffer(buf);
64c043de 1165 return ERR_PTR(ret);
0f0fe8f7 1166 }
5f39d397 1167 return buf;
ce9adaa5 1168
eb60ceac
CM
1169}
1170
01d58472
DD
1171void clean_tree_block(struct btrfs_trans_handle *trans,
1172 struct btrfs_fs_info *fs_info,
d5c13f92 1173 struct extent_buffer *buf)
ed2ff2cb 1174{
55c69072 1175 if (btrfs_header_generation(buf) ==
e2d84521 1176 fs_info->running_transaction->transid) {
b9447ef8 1177 btrfs_assert_tree_locked(buf);
b4ce94de 1178
b9473439 1179 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1180 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1181 -buf->len,
1182 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1183 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1184 btrfs_set_lock_blocking(buf);
1185 clear_extent_buffer_dirty(buf);
1186 }
925baedd 1187 }
5f39d397
CM
1188}
1189
8257b2dc
MX
1190static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1191{
1192 struct btrfs_subvolume_writers *writers;
1193 int ret;
1194
1195 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1196 if (!writers)
1197 return ERR_PTR(-ENOMEM);
1198
908c7f19 1199 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1200 if (ret < 0) {
1201 kfree(writers);
1202 return ERR_PTR(ret);
1203 }
1204
1205 init_waitqueue_head(&writers->wait);
1206 return writers;
1207}
1208
1209static void
1210btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1211{
1212 percpu_counter_destroy(&writers->counter);
1213 kfree(writers);
1214}
1215
707e8a07
DS
1216static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1217 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1218 u64 objectid)
d97e63b6 1219{
cfaa7295 1220 root->node = NULL;
a28ec197 1221 root->commit_root = NULL;
db94535d
CM
1222 root->sectorsize = sectorsize;
1223 root->nodesize = nodesize;
87ee04eb 1224 root->stripesize = stripesize;
27cdeb70 1225 root->state = 0;
d68fc57b 1226 root->orphan_cleanup_state = 0;
0b86a832 1227
0f7d52f4
CM
1228 root->objectid = objectid;
1229 root->last_trans = 0;
13a8a7c8 1230 root->highest_objectid = 0;
eb73c1b7 1231 root->nr_delalloc_inodes = 0;
199c2a9c 1232 root->nr_ordered_extents = 0;
58176a96 1233 root->name = NULL;
6bef4d31 1234 root->inode_tree = RB_ROOT;
16cdcec7 1235 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1236 root->block_rsv = NULL;
d68fc57b 1237 root->orphan_block_rsv = NULL;
0b86a832
CM
1238
1239 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1240 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1241 INIT_LIST_HEAD(&root->delalloc_inodes);
1242 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1243 INIT_LIST_HEAD(&root->ordered_extents);
1244 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1245 INIT_LIST_HEAD(&root->logged_list[0]);
1246 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1247 spin_lock_init(&root->orphan_lock);
5d4f98a2 1248 spin_lock_init(&root->inode_lock);
eb73c1b7 1249 spin_lock_init(&root->delalloc_lock);
199c2a9c 1250 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1251 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1252 spin_lock_init(&root->log_extents_lock[0]);
1253 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1254 mutex_init(&root->objectid_mutex);
e02119d5 1255 mutex_init(&root->log_mutex);
31f3d255 1256 mutex_init(&root->ordered_extent_mutex);
573bfb72 1257 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1258 init_waitqueue_head(&root->log_writer_wait);
1259 init_waitqueue_head(&root->log_commit_wait[0]);
1260 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1261 INIT_LIST_HEAD(&root->log_ctxs[0]);
1262 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1263 atomic_set(&root->log_commit[0], 0);
1264 atomic_set(&root->log_commit[1], 0);
1265 atomic_set(&root->log_writers, 0);
2ecb7923 1266 atomic_set(&root->log_batch, 0);
8a35d95f 1267 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1268 atomic_set(&root->refs, 1);
8257b2dc 1269 atomic_set(&root->will_be_snapshoted, 0);
55eeaf05 1270 atomic_set(&root->qgroup_meta_rsv, 0);
7237f183 1271 root->log_transid = 0;
d1433deb 1272 root->log_transid_committed = -1;
257c62e1 1273 root->last_log_commit = 0;
06ea65a3
JB
1274 if (fs_info)
1275 extent_io_tree_init(&root->dirty_log_pages,
1276 fs_info->btree_inode->i_mapping);
017e5369 1277
3768f368
CM
1278 memset(&root->root_key, 0, sizeof(root->root_key));
1279 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1280 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1281 if (fs_info)
1282 root->defrag_trans_start = fs_info->generation;
1283 else
1284 root->defrag_trans_start = 0;
4d775673 1285 root->root_key.objectid = objectid;
0ee5dc67 1286 root->anon_dev = 0;
8ea05e3a 1287
5f3ab90a 1288 spin_lock_init(&root->root_item_lock);
3768f368
CM
1289}
1290
f84a8bd6 1291static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1292{
1293 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1294 if (root)
1295 root->fs_info = fs_info;
1296 return root;
1297}
1298
06ea65a3
JB
1299#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1300/* Should only be used by the testing infrastructure */
1301struct btrfs_root *btrfs_alloc_dummy_root(void)
1302{
1303 struct btrfs_root *root;
1304
1305 root = btrfs_alloc_root(NULL);
1306 if (!root)
1307 return ERR_PTR(-ENOMEM);
707e8a07 1308 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1309 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1310 root->alloc_bytenr = 0;
06ea65a3
JB
1311
1312 return root;
1313}
1314#endif
1315
20897f5c
AJ
1316struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1317 struct btrfs_fs_info *fs_info,
1318 u64 objectid)
1319{
1320 struct extent_buffer *leaf;
1321 struct btrfs_root *tree_root = fs_info->tree_root;
1322 struct btrfs_root *root;
1323 struct btrfs_key key;
1324 int ret = 0;
6463fe58 1325 uuid_le uuid;
20897f5c
AJ
1326
1327 root = btrfs_alloc_root(fs_info);
1328 if (!root)
1329 return ERR_PTR(-ENOMEM);
1330
707e8a07
DS
1331 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1332 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1333 root->root_key.objectid = objectid;
1334 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1335 root->root_key.offset = 0;
1336
4d75f8a9 1337 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1338 if (IS_ERR(leaf)) {
1339 ret = PTR_ERR(leaf);
1dd05682 1340 leaf = NULL;
20897f5c
AJ
1341 goto fail;
1342 }
1343
20897f5c
AJ
1344 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1345 btrfs_set_header_bytenr(leaf, leaf->start);
1346 btrfs_set_header_generation(leaf, trans->transid);
1347 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1348 btrfs_set_header_owner(leaf, objectid);
1349 root->node = leaf;
1350
0a4e5586 1351 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1352 BTRFS_FSID_SIZE);
1353 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1354 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1355 BTRFS_UUID_SIZE);
1356 btrfs_mark_buffer_dirty(leaf);
1357
1358 root->commit_root = btrfs_root_node(root);
27cdeb70 1359 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1360
1361 root->root_item.flags = 0;
1362 root->root_item.byte_limit = 0;
1363 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1364 btrfs_set_root_generation(&root->root_item, trans->transid);
1365 btrfs_set_root_level(&root->root_item, 0);
1366 btrfs_set_root_refs(&root->root_item, 1);
1367 btrfs_set_root_used(&root->root_item, leaf->len);
1368 btrfs_set_root_last_snapshot(&root->root_item, 0);
1369 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1370 uuid_le_gen(&uuid);
1371 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1372 root->root_item.drop_level = 0;
1373
1374 key.objectid = objectid;
1375 key.type = BTRFS_ROOT_ITEM_KEY;
1376 key.offset = 0;
1377 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1378 if (ret)
1379 goto fail;
1380
1381 btrfs_tree_unlock(leaf);
1382
1dd05682
TI
1383 return root;
1384
20897f5c 1385fail:
1dd05682
TI
1386 if (leaf) {
1387 btrfs_tree_unlock(leaf);
59885b39 1388 free_extent_buffer(root->commit_root);
1dd05682
TI
1389 free_extent_buffer(leaf);
1390 }
1391 kfree(root);
20897f5c 1392
1dd05682 1393 return ERR_PTR(ret);
20897f5c
AJ
1394}
1395
7237f183
YZ
1396static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1397 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1398{
1399 struct btrfs_root *root;
1400 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1401 struct extent_buffer *leaf;
e02119d5 1402
6f07e42e 1403 root = btrfs_alloc_root(fs_info);
e02119d5 1404 if (!root)
7237f183 1405 return ERR_PTR(-ENOMEM);
e02119d5 1406
707e8a07
DS
1407 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1408 tree_root->stripesize, root, fs_info,
1409 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1410
1411 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1412 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1413 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1414
7237f183 1415 /*
27cdeb70
MX
1416 * DON'T set REF_COWS for log trees
1417 *
7237f183
YZ
1418 * log trees do not get reference counted because they go away
1419 * before a real commit is actually done. They do store pointers
1420 * to file data extents, and those reference counts still get
1421 * updated (along with back refs to the log tree).
1422 */
e02119d5 1423
4d75f8a9
DS
1424 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1425 NULL, 0, 0, 0);
7237f183
YZ
1426 if (IS_ERR(leaf)) {
1427 kfree(root);
1428 return ERR_CAST(leaf);
1429 }
e02119d5 1430
5d4f98a2
YZ
1431 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1432 btrfs_set_header_bytenr(leaf, leaf->start);
1433 btrfs_set_header_generation(leaf, trans->transid);
1434 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1435 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1436 root->node = leaf;
e02119d5
CM
1437
1438 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1439 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1440 btrfs_mark_buffer_dirty(root->node);
1441 btrfs_tree_unlock(root->node);
7237f183
YZ
1442 return root;
1443}
1444
1445int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1446 struct btrfs_fs_info *fs_info)
1447{
1448 struct btrfs_root *log_root;
1449
1450 log_root = alloc_log_tree(trans, fs_info);
1451 if (IS_ERR(log_root))
1452 return PTR_ERR(log_root);
1453 WARN_ON(fs_info->log_root_tree);
1454 fs_info->log_root_tree = log_root;
1455 return 0;
1456}
1457
1458int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1459 struct btrfs_root *root)
1460{
1461 struct btrfs_root *log_root;
1462 struct btrfs_inode_item *inode_item;
1463
1464 log_root = alloc_log_tree(trans, root->fs_info);
1465 if (IS_ERR(log_root))
1466 return PTR_ERR(log_root);
1467
1468 log_root->last_trans = trans->transid;
1469 log_root->root_key.offset = root->root_key.objectid;
1470
1471 inode_item = &log_root->root_item.inode;
3cae210f
QW
1472 btrfs_set_stack_inode_generation(inode_item, 1);
1473 btrfs_set_stack_inode_size(inode_item, 3);
1474 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1475 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1476 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1477
5d4f98a2 1478 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1479
1480 WARN_ON(root->log_root);
1481 root->log_root = log_root;
1482 root->log_transid = 0;
d1433deb 1483 root->log_transid_committed = -1;
257c62e1 1484 root->last_log_commit = 0;
e02119d5
CM
1485 return 0;
1486}
1487
35a3621b
SB
1488static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1489 struct btrfs_key *key)
e02119d5
CM
1490{
1491 struct btrfs_root *root;
1492 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1493 struct btrfs_path *path;
84234f3a 1494 u64 generation;
cb517eab 1495 int ret;
0f7d52f4 1496
cb517eab
MX
1497 path = btrfs_alloc_path();
1498 if (!path)
0f7d52f4 1499 return ERR_PTR(-ENOMEM);
cb517eab
MX
1500
1501 root = btrfs_alloc_root(fs_info);
1502 if (!root) {
1503 ret = -ENOMEM;
1504 goto alloc_fail;
0f7d52f4
CM
1505 }
1506
707e8a07
DS
1507 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1508 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1509
cb517eab
MX
1510 ret = btrfs_find_root(tree_root, key, path,
1511 &root->root_item, &root->root_key);
0f7d52f4 1512 if (ret) {
13a8a7c8
YZ
1513 if (ret > 0)
1514 ret = -ENOENT;
cb517eab 1515 goto find_fail;
0f7d52f4 1516 }
13a8a7c8 1517
84234f3a 1518 generation = btrfs_root_generation(&root->root_item);
db94535d 1519 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1520 generation);
64c043de
LB
1521 if (IS_ERR(root->node)) {
1522 ret = PTR_ERR(root->node);
cb517eab
MX
1523 goto find_fail;
1524 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1525 ret = -EIO;
64c043de
LB
1526 free_extent_buffer(root->node);
1527 goto find_fail;
416bc658 1528 }
5d4f98a2 1529 root->commit_root = btrfs_root_node(root);
13a8a7c8 1530out:
cb517eab
MX
1531 btrfs_free_path(path);
1532 return root;
1533
cb517eab
MX
1534find_fail:
1535 kfree(root);
1536alloc_fail:
1537 root = ERR_PTR(ret);
1538 goto out;
1539}
1540
1541struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1542 struct btrfs_key *location)
1543{
1544 struct btrfs_root *root;
1545
1546 root = btrfs_read_tree_root(tree_root, location);
1547 if (IS_ERR(root))
1548 return root;
1549
1550 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1551 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1552 btrfs_check_and_init_root_item(&root->root_item);
1553 }
13a8a7c8 1554
5eda7b5e
CM
1555 return root;
1556}
1557
cb517eab
MX
1558int btrfs_init_fs_root(struct btrfs_root *root)
1559{
1560 int ret;
8257b2dc 1561 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1562
1563 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1564 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1565 GFP_NOFS);
1566 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1567 ret = -ENOMEM;
1568 goto fail;
1569 }
1570
8257b2dc
MX
1571 writers = btrfs_alloc_subvolume_writers();
1572 if (IS_ERR(writers)) {
1573 ret = PTR_ERR(writers);
1574 goto fail;
1575 }
1576 root->subv_writers = writers;
1577
cb517eab 1578 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1579 spin_lock_init(&root->ino_cache_lock);
1580 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1581
1582 ret = get_anon_bdev(&root->anon_dev);
1583 if (ret)
8257b2dc 1584 goto free_writers;
cb517eab 1585 return 0;
8257b2dc
MX
1586
1587free_writers:
1588 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1589fail:
1590 kfree(root->free_ino_ctl);
1591 kfree(root->free_ino_pinned);
1592 return ret;
1593}
1594
171170c1
ST
1595static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1596 u64 root_id)
cb517eab
MX
1597{
1598 struct btrfs_root *root;
1599
1600 spin_lock(&fs_info->fs_roots_radix_lock);
1601 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1602 (unsigned long)root_id);
1603 spin_unlock(&fs_info->fs_roots_radix_lock);
1604 return root;
1605}
1606
1607int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1608 struct btrfs_root *root)
1609{
1610 int ret;
1611
1612 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1613 if (ret)
1614 return ret;
1615
1616 spin_lock(&fs_info->fs_roots_radix_lock);
1617 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1618 (unsigned long)root->root_key.objectid,
1619 root);
1620 if (ret == 0)
27cdeb70 1621 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1622 spin_unlock(&fs_info->fs_roots_radix_lock);
1623 radix_tree_preload_end();
1624
1625 return ret;
1626}
1627
c00869f1
MX
1628struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1629 struct btrfs_key *location,
1630 bool check_ref)
5eda7b5e
CM
1631{
1632 struct btrfs_root *root;
381cf658 1633 struct btrfs_path *path;
1d4c08e0 1634 struct btrfs_key key;
5eda7b5e
CM
1635 int ret;
1636
edbd8d4e
CM
1637 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1638 return fs_info->tree_root;
1639 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1640 return fs_info->extent_root;
8f18cf13
CM
1641 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1642 return fs_info->chunk_root;
1643 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1644 return fs_info->dev_root;
0403e47e
YZ
1645 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1646 return fs_info->csum_root;
bcef60f2
AJ
1647 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1648 return fs_info->quota_root ? fs_info->quota_root :
1649 ERR_PTR(-ENOENT);
f7a81ea4
SB
1650 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1651 return fs_info->uuid_root ? fs_info->uuid_root :
1652 ERR_PTR(-ENOENT);
4df27c4d 1653again:
cb517eab 1654 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1655 if (root) {
c00869f1 1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1657 return ERR_PTR(-ENOENT);
5eda7b5e 1658 return root;
48475471 1659 }
5eda7b5e 1660
cb517eab 1661 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1662 if (IS_ERR(root))
1663 return root;
3394e160 1664
c00869f1 1665 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1666 ret = -ENOENT;
581bb050 1667 goto fail;
35a30d7c 1668 }
581bb050 1669
cb517eab 1670 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1671 if (ret)
1672 goto fail;
3394e160 1673
381cf658
DS
1674 path = btrfs_alloc_path();
1675 if (!path) {
1676 ret = -ENOMEM;
1677 goto fail;
1678 }
1d4c08e0
DS
1679 key.objectid = BTRFS_ORPHAN_OBJECTID;
1680 key.type = BTRFS_ORPHAN_ITEM_KEY;
1681 key.offset = location->objectid;
1682
1683 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1684 btrfs_free_path(path);
d68fc57b
YZ
1685 if (ret < 0)
1686 goto fail;
1687 if (ret == 0)
27cdeb70 1688 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1689
cb517eab 1690 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1691 if (ret) {
4df27c4d
YZ
1692 if (ret == -EEXIST) {
1693 free_fs_root(root);
1694 goto again;
1695 }
1696 goto fail;
0f7d52f4 1697 }
edbd8d4e 1698 return root;
4df27c4d
YZ
1699fail:
1700 free_fs_root(root);
1701 return ERR_PTR(ret);
edbd8d4e
CM
1702}
1703
04160088
CM
1704static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1705{
1706 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1707 int ret = 0;
04160088
CM
1708 struct btrfs_device *device;
1709 struct backing_dev_info *bdi;
b7967db7 1710
1f78160c
XG
1711 rcu_read_lock();
1712 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1713 if (!device->bdev)
1714 continue;
04160088 1715 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1716 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1717 ret = 1;
1718 break;
1719 }
1720 }
1f78160c 1721 rcu_read_unlock();
04160088
CM
1722 return ret;
1723}
1724
04160088
CM
1725static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1726{
ad081f14
JA
1727 int err;
1728
b4caecd4 1729 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1730 if (err)
1731 return err;
1732
df0ce26c 1733 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1734 bdi->congested_fn = btrfs_congested_fn;
1735 bdi->congested_data = info;
da2f0f74 1736 bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
04160088
CM
1737 return 0;
1738}
1739
8b712842
CM
1740/*
1741 * called by the kthread helper functions to finally call the bio end_io
1742 * functions. This is where read checksum verification actually happens
1743 */
1744static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1745{
ce9adaa5 1746 struct bio *bio;
97eb6b69 1747 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1748
97eb6b69 1749 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1750 bio = end_io_wq->bio;
ce9adaa5 1751
4246a0b6 1752 bio->bi_error = end_io_wq->error;
8b712842
CM
1753 bio->bi_private = end_io_wq->private;
1754 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1755 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
4246a0b6 1756 bio_endio(bio);
44b8bd7e
CM
1757}
1758
a74a4b97
CM
1759static int cleaner_kthread(void *arg)
1760{
1761 struct btrfs_root *root = arg;
d0278245 1762 int again;
da288d28 1763 struct btrfs_trans_handle *trans;
a74a4b97 1764
69624913 1765 set_freezable();
a74a4b97 1766 do {
d0278245 1767 again = 0;
a74a4b97 1768
d0278245 1769 /* Make the cleaner go to sleep early. */
babbf170 1770 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1771 goto sleep;
1772
1773 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1774 goto sleep;
1775
dc7f370c
MX
1776 /*
1777 * Avoid the problem that we change the status of the fs
1778 * during the above check and trylock.
1779 */
babbf170 1780 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1781 mutex_unlock(&root->fs_info->cleaner_mutex);
1782 goto sleep;
76dda93c 1783 }
a74a4b97 1784
d0278245
MX
1785 btrfs_run_delayed_iputs(root);
1786 again = btrfs_clean_one_deleted_snapshot(root);
1787 mutex_unlock(&root->fs_info->cleaner_mutex);
1788
1789 /*
05323cd1
MX
1790 * The defragger has dealt with the R/O remount and umount,
1791 * needn't do anything special here.
d0278245
MX
1792 */
1793 btrfs_run_defrag_inodes(root->fs_info);
67c5e7d4
FM
1794
1795 /*
1796 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1797 * with relocation (btrfs_relocate_chunk) and relocation
1798 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1799 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1800 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1801 * unused block groups.
1802 */
1803 btrfs_delete_unused_bgs(root->fs_info);
d0278245 1804sleep:
9d1a2a3a 1805 if (!try_to_freeze() && !again) {
a74a4b97 1806 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1807 if (!kthread_should_stop())
1808 schedule();
a74a4b97
CM
1809 __set_current_state(TASK_RUNNING);
1810 }
1811 } while (!kthread_should_stop());
da288d28
FM
1812
1813 /*
1814 * Transaction kthread is stopped before us and wakes us up.
1815 * However we might have started a new transaction and COWed some
1816 * tree blocks when deleting unused block groups for example. So
1817 * make sure we commit the transaction we started to have a clean
1818 * shutdown when evicting the btree inode - if it has dirty pages
1819 * when we do the final iput() on it, eviction will trigger a
1820 * writeback for it which will fail with null pointer dereferences
1821 * since work queues and other resources were already released and
1822 * destroyed by the time the iput/eviction/writeback is made.
1823 */
1824 trans = btrfs_attach_transaction(root);
1825 if (IS_ERR(trans)) {
1826 if (PTR_ERR(trans) != -ENOENT)
1827 btrfs_err(root->fs_info,
1828 "cleaner transaction attach returned %ld",
1829 PTR_ERR(trans));
1830 } else {
1831 int ret;
1832
1833 ret = btrfs_commit_transaction(trans, root);
1834 if (ret)
1835 btrfs_err(root->fs_info,
1836 "cleaner open transaction commit returned %d",
1837 ret);
1838 }
1839
a74a4b97
CM
1840 return 0;
1841}
1842
1843static int transaction_kthread(void *arg)
1844{
1845 struct btrfs_root *root = arg;
1846 struct btrfs_trans_handle *trans;
1847 struct btrfs_transaction *cur;
8929ecfa 1848 u64 transid;
a74a4b97
CM
1849 unsigned long now;
1850 unsigned long delay;
914b2007 1851 bool cannot_commit;
a74a4b97
CM
1852
1853 do {
914b2007 1854 cannot_commit = false;
8b87dc17 1855 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1856 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1857
a4abeea4 1858 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1859 cur = root->fs_info->running_transaction;
1860 if (!cur) {
a4abeea4 1861 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1862 goto sleep;
1863 }
31153d81 1864
a74a4b97 1865 now = get_seconds();
4a9d8bde 1866 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1867 (now < cur->start_time ||
1868 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1869 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1870 delay = HZ * 5;
1871 goto sleep;
1872 }
8929ecfa 1873 transid = cur->transid;
a4abeea4 1874 spin_unlock(&root->fs_info->trans_lock);
56bec294 1875
79787eaa 1876 /* If the file system is aborted, this will always fail. */
354aa0fb 1877 trans = btrfs_attach_transaction(root);
914b2007 1878 if (IS_ERR(trans)) {
354aa0fb
MX
1879 if (PTR_ERR(trans) != -ENOENT)
1880 cannot_commit = true;
79787eaa 1881 goto sleep;
914b2007 1882 }
8929ecfa 1883 if (transid == trans->transid) {
79787eaa 1884 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1885 } else {
1886 btrfs_end_transaction(trans, root);
1887 }
a74a4b97
CM
1888sleep:
1889 wake_up_process(root->fs_info->cleaner_kthread);
1890 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1891
4e121c06
JB
1892 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1893 &root->fs_info->fs_state)))
1894 btrfs_cleanup_transaction(root);
a0acae0e 1895 if (!try_to_freeze()) {
a74a4b97 1896 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1897 if (!kthread_should_stop() &&
914b2007
JK
1898 (!btrfs_transaction_blocked(root->fs_info) ||
1899 cannot_commit))
8929ecfa 1900 schedule_timeout(delay);
a74a4b97
CM
1901 __set_current_state(TASK_RUNNING);
1902 }
1903 } while (!kthread_should_stop());
1904 return 0;
1905}
1906
af31f5e5
CM
1907/*
1908 * this will find the highest generation in the array of
1909 * root backups. The index of the highest array is returned,
1910 * or -1 if we can't find anything.
1911 *
1912 * We check to make sure the array is valid by comparing the
1913 * generation of the latest root in the array with the generation
1914 * in the super block. If they don't match we pitch it.
1915 */
1916static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1917{
1918 u64 cur;
1919 int newest_index = -1;
1920 struct btrfs_root_backup *root_backup;
1921 int i;
1922
1923 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1924 root_backup = info->super_copy->super_roots + i;
1925 cur = btrfs_backup_tree_root_gen(root_backup);
1926 if (cur == newest_gen)
1927 newest_index = i;
1928 }
1929
1930 /* check to see if we actually wrapped around */
1931 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1932 root_backup = info->super_copy->super_roots;
1933 cur = btrfs_backup_tree_root_gen(root_backup);
1934 if (cur == newest_gen)
1935 newest_index = 0;
1936 }
1937 return newest_index;
1938}
1939
1940
1941/*
1942 * find the oldest backup so we know where to store new entries
1943 * in the backup array. This will set the backup_root_index
1944 * field in the fs_info struct
1945 */
1946static void find_oldest_super_backup(struct btrfs_fs_info *info,
1947 u64 newest_gen)
1948{
1949 int newest_index = -1;
1950
1951 newest_index = find_newest_super_backup(info, newest_gen);
1952 /* if there was garbage in there, just move along */
1953 if (newest_index == -1) {
1954 info->backup_root_index = 0;
1955 } else {
1956 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1957 }
1958}
1959
1960/*
1961 * copy all the root pointers into the super backup array.
1962 * this will bump the backup pointer by one when it is
1963 * done
1964 */
1965static void backup_super_roots(struct btrfs_fs_info *info)
1966{
1967 int next_backup;
1968 struct btrfs_root_backup *root_backup;
1969 int last_backup;
1970
1971 next_backup = info->backup_root_index;
1972 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1973 BTRFS_NUM_BACKUP_ROOTS;
1974
1975 /*
1976 * just overwrite the last backup if we're at the same generation
1977 * this happens only at umount
1978 */
1979 root_backup = info->super_for_commit->super_roots + last_backup;
1980 if (btrfs_backup_tree_root_gen(root_backup) ==
1981 btrfs_header_generation(info->tree_root->node))
1982 next_backup = last_backup;
1983
1984 root_backup = info->super_for_commit->super_roots + next_backup;
1985
1986 /*
1987 * make sure all of our padding and empty slots get zero filled
1988 * regardless of which ones we use today
1989 */
1990 memset(root_backup, 0, sizeof(*root_backup));
1991
1992 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1993
1994 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1995 btrfs_set_backup_tree_root_gen(root_backup,
1996 btrfs_header_generation(info->tree_root->node));
1997
1998 btrfs_set_backup_tree_root_level(root_backup,
1999 btrfs_header_level(info->tree_root->node));
2000
2001 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2002 btrfs_set_backup_chunk_root_gen(root_backup,
2003 btrfs_header_generation(info->chunk_root->node));
2004 btrfs_set_backup_chunk_root_level(root_backup,
2005 btrfs_header_level(info->chunk_root->node));
2006
2007 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2008 btrfs_set_backup_extent_root_gen(root_backup,
2009 btrfs_header_generation(info->extent_root->node));
2010 btrfs_set_backup_extent_root_level(root_backup,
2011 btrfs_header_level(info->extent_root->node));
2012
7c7e82a7
CM
2013 /*
2014 * we might commit during log recovery, which happens before we set
2015 * the fs_root. Make sure it is valid before we fill it in.
2016 */
2017 if (info->fs_root && info->fs_root->node) {
2018 btrfs_set_backup_fs_root(root_backup,
2019 info->fs_root->node->start);
2020 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 2021 btrfs_header_generation(info->fs_root->node));
7c7e82a7 2022 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 2023 btrfs_header_level(info->fs_root->node));
7c7e82a7 2024 }
af31f5e5
CM
2025
2026 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2027 btrfs_set_backup_dev_root_gen(root_backup,
2028 btrfs_header_generation(info->dev_root->node));
2029 btrfs_set_backup_dev_root_level(root_backup,
2030 btrfs_header_level(info->dev_root->node));
2031
2032 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2033 btrfs_set_backup_csum_root_gen(root_backup,
2034 btrfs_header_generation(info->csum_root->node));
2035 btrfs_set_backup_csum_root_level(root_backup,
2036 btrfs_header_level(info->csum_root->node));
2037
2038 btrfs_set_backup_total_bytes(root_backup,
2039 btrfs_super_total_bytes(info->super_copy));
2040 btrfs_set_backup_bytes_used(root_backup,
2041 btrfs_super_bytes_used(info->super_copy));
2042 btrfs_set_backup_num_devices(root_backup,
2043 btrfs_super_num_devices(info->super_copy));
2044
2045 /*
2046 * if we don't copy this out to the super_copy, it won't get remembered
2047 * for the next commit
2048 */
2049 memcpy(&info->super_copy->super_roots,
2050 &info->super_for_commit->super_roots,
2051 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2052}
2053
2054/*
2055 * this copies info out of the root backup array and back into
2056 * the in-memory super block. It is meant to help iterate through
2057 * the array, so you send it the number of backups you've already
2058 * tried and the last backup index you used.
2059 *
2060 * this returns -1 when it has tried all the backups
2061 */
2062static noinline int next_root_backup(struct btrfs_fs_info *info,
2063 struct btrfs_super_block *super,
2064 int *num_backups_tried, int *backup_index)
2065{
2066 struct btrfs_root_backup *root_backup;
2067 int newest = *backup_index;
2068
2069 if (*num_backups_tried == 0) {
2070 u64 gen = btrfs_super_generation(super);
2071
2072 newest = find_newest_super_backup(info, gen);
2073 if (newest == -1)
2074 return -1;
2075
2076 *backup_index = newest;
2077 *num_backups_tried = 1;
2078 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2079 /* we've tried all the backups, all done */
2080 return -1;
2081 } else {
2082 /* jump to the next oldest backup */
2083 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2084 BTRFS_NUM_BACKUP_ROOTS;
2085 *backup_index = newest;
2086 *num_backups_tried += 1;
2087 }
2088 root_backup = super->super_roots + newest;
2089
2090 btrfs_set_super_generation(super,
2091 btrfs_backup_tree_root_gen(root_backup));
2092 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2093 btrfs_set_super_root_level(super,
2094 btrfs_backup_tree_root_level(root_backup));
2095 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2096
2097 /*
2098 * fixme: the total bytes and num_devices need to match or we should
2099 * need a fsck
2100 */
2101 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2102 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2103 return 0;
2104}
2105
7abadb64
LB
2106/* helper to cleanup workers */
2107static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2108{
dc6e3209 2109 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2110 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2111 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2112 btrfs_destroy_workqueue(fs_info->endio_workers);
2113 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2114 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2115 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2116 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2117 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2118 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2119 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2120 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2121 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2122 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2123 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2124 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2125 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2126 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2127}
2128
2e9f5954
R
2129static void free_root_extent_buffers(struct btrfs_root *root)
2130{
2131 if (root) {
2132 free_extent_buffer(root->node);
2133 free_extent_buffer(root->commit_root);
2134 root->node = NULL;
2135 root->commit_root = NULL;
2136 }
2137}
2138
af31f5e5
CM
2139/* helper to cleanup tree roots */
2140static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2141{
2e9f5954 2142 free_root_extent_buffers(info->tree_root);
655b09fe 2143
2e9f5954
R
2144 free_root_extent_buffers(info->dev_root);
2145 free_root_extent_buffers(info->extent_root);
2146 free_root_extent_buffers(info->csum_root);
2147 free_root_extent_buffers(info->quota_root);
2148 free_root_extent_buffers(info->uuid_root);
2149 if (chunk_root)
2150 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2151}
2152
faa2dbf0 2153void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2154{
2155 int ret;
2156 struct btrfs_root *gang[8];
2157 int i;
2158
2159 while (!list_empty(&fs_info->dead_roots)) {
2160 gang[0] = list_entry(fs_info->dead_roots.next,
2161 struct btrfs_root, root_list);
2162 list_del(&gang[0]->root_list);
2163
27cdeb70 2164 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2165 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2166 } else {
2167 free_extent_buffer(gang[0]->node);
2168 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2169 btrfs_put_fs_root(gang[0]);
171f6537
JB
2170 }
2171 }
2172
2173 while (1) {
2174 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2175 (void **)gang, 0,
2176 ARRAY_SIZE(gang));
2177 if (!ret)
2178 break;
2179 for (i = 0; i < ret; i++)
cb517eab 2180 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2181 }
1a4319cc
LB
2182
2183 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2184 btrfs_free_log_root_tree(NULL, fs_info);
2185 btrfs_destroy_pinned_extent(fs_info->tree_root,
2186 fs_info->pinned_extents);
2187 }
171f6537 2188}
af31f5e5 2189
638aa7ed
ES
2190static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2191{
2192 mutex_init(&fs_info->scrub_lock);
2193 atomic_set(&fs_info->scrubs_running, 0);
2194 atomic_set(&fs_info->scrub_pause_req, 0);
2195 atomic_set(&fs_info->scrubs_paused, 0);
2196 atomic_set(&fs_info->scrub_cancel_req, 0);
2197 init_waitqueue_head(&fs_info->scrub_pause_wait);
2198 fs_info->scrub_workers_refcnt = 0;
2199}
2200
779a65a4
ES
2201static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2202{
2203 spin_lock_init(&fs_info->balance_lock);
2204 mutex_init(&fs_info->balance_mutex);
2205 atomic_set(&fs_info->balance_running, 0);
2206 atomic_set(&fs_info->balance_pause_req, 0);
2207 atomic_set(&fs_info->balance_cancel_req, 0);
2208 fs_info->balance_ctl = NULL;
2209 init_waitqueue_head(&fs_info->balance_wait_q);
2210}
2211
f37938e0
ES
2212static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2213 struct btrfs_root *tree_root)
2214{
2215 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2216 set_nlink(fs_info->btree_inode, 1);
2217 /*
2218 * we set the i_size on the btree inode to the max possible int.
2219 * the real end of the address space is determined by all of
2220 * the devices in the system
2221 */
2222 fs_info->btree_inode->i_size = OFFSET_MAX;
2223 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2224
2225 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2226 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2227 fs_info->btree_inode->i_mapping);
2228 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2229 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2230
2231 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2232
2233 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2234 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2235 sizeof(struct btrfs_key));
2236 set_bit(BTRFS_INODE_DUMMY,
2237 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2238 btrfs_insert_inode_hash(fs_info->btree_inode);
2239}
2240
ad618368
ES
2241static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2242{
2243 fs_info->dev_replace.lock_owner = 0;
2244 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2245 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2246 mutex_init(&fs_info->dev_replace.lock_management_lock);
2247 mutex_init(&fs_info->dev_replace.lock);
2248 init_waitqueue_head(&fs_info->replace_wait);
2249}
2250
f9e92e40
ES
2251static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2252{
2253 spin_lock_init(&fs_info->qgroup_lock);
2254 mutex_init(&fs_info->qgroup_ioctl_lock);
2255 fs_info->qgroup_tree = RB_ROOT;
2256 fs_info->qgroup_op_tree = RB_ROOT;
2257 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2258 fs_info->qgroup_seq = 1;
2259 fs_info->quota_enabled = 0;
2260 fs_info->pending_quota_state = 0;
2261 fs_info->qgroup_ulist = NULL;
2262 mutex_init(&fs_info->qgroup_rescan_lock);
2263}
2264
2a458198
ES
2265static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2266 struct btrfs_fs_devices *fs_devices)
2267{
2268 int max_active = fs_info->thread_pool_size;
6f011058 2269 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2270
2271 fs_info->workers =
2272 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2273 max_active, 16);
2274
2275 fs_info->delalloc_workers =
2276 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2277
2278 fs_info->flush_workers =
2279 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2280
2281 fs_info->caching_workers =
2282 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2283
2284 /*
2285 * a higher idle thresh on the submit workers makes it much more
2286 * likely that bios will be send down in a sane order to the
2287 * devices
2288 */
2289 fs_info->submit_workers =
2290 btrfs_alloc_workqueue("submit", flags,
2291 min_t(u64, fs_devices->num_devices,
2292 max_active), 64);
2293
2294 fs_info->fixup_workers =
2295 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2296
2297 /*
2298 * endios are largely parallel and should have a very
2299 * low idle thresh
2300 */
2301 fs_info->endio_workers =
2302 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2303 fs_info->endio_meta_workers =
2304 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2305 fs_info->endio_meta_write_workers =
2306 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2307 fs_info->endio_raid56_workers =
2308 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2309 fs_info->endio_repair_workers =
2310 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2311 fs_info->rmw_workers =
2312 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2313 fs_info->endio_write_workers =
2314 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2315 fs_info->endio_freespace_worker =
2316 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2317 fs_info->delayed_workers =
2318 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2319 fs_info->readahead_workers =
2320 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2321 fs_info->qgroup_rescan_workers =
2322 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2323 fs_info->extent_workers =
2324 btrfs_alloc_workqueue("extent-refs", flags,
2325 min_t(u64, fs_devices->num_devices,
2326 max_active), 8);
2327
2328 if (!(fs_info->workers && fs_info->delalloc_workers &&
2329 fs_info->submit_workers && fs_info->flush_workers &&
2330 fs_info->endio_workers && fs_info->endio_meta_workers &&
2331 fs_info->endio_meta_write_workers &&
2332 fs_info->endio_repair_workers &&
2333 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2334 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2335 fs_info->caching_workers && fs_info->readahead_workers &&
2336 fs_info->fixup_workers && fs_info->delayed_workers &&
2337 fs_info->extent_workers &&
2338 fs_info->qgroup_rescan_workers)) {
2339 return -ENOMEM;
2340 }
2341
2342 return 0;
2343}
2344
63443bf5
ES
2345static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2346 struct btrfs_fs_devices *fs_devices)
2347{
2348 int ret;
2349 struct btrfs_root *tree_root = fs_info->tree_root;
2350 struct btrfs_root *log_tree_root;
2351 struct btrfs_super_block *disk_super = fs_info->super_copy;
2352 u64 bytenr = btrfs_super_log_root(disk_super);
2353
2354 if (fs_devices->rw_devices == 0) {
f14d104d 2355 btrfs_warn(fs_info, "log replay required on RO media");
63443bf5
ES
2356 return -EIO;
2357 }
2358
2359 log_tree_root = btrfs_alloc_root(fs_info);
2360 if (!log_tree_root)
2361 return -ENOMEM;
2362
2363 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2364 tree_root->stripesize, log_tree_root, fs_info,
2365 BTRFS_TREE_LOG_OBJECTID);
2366
2367 log_tree_root->node = read_tree_block(tree_root, bytenr,
2368 fs_info->generation + 1);
64c043de 2369 if (IS_ERR(log_tree_root->node)) {
f14d104d 2370 btrfs_warn(fs_info, "failed to read log tree");
0eeff236 2371 ret = PTR_ERR(log_tree_root->node);
64c043de 2372 kfree(log_tree_root);
0eeff236 2373 return ret;
64c043de 2374 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
f14d104d 2375 btrfs_err(fs_info, "failed to read log tree");
63443bf5
ES
2376 free_extent_buffer(log_tree_root->node);
2377 kfree(log_tree_root);
2378 return -EIO;
2379 }
2380 /* returns with log_tree_root freed on success */
2381 ret = btrfs_recover_log_trees(log_tree_root);
2382 if (ret) {
a4553fef 2383 btrfs_std_error(tree_root->fs_info, ret,
63443bf5
ES
2384 "Failed to recover log tree");
2385 free_extent_buffer(log_tree_root->node);
2386 kfree(log_tree_root);
2387 return ret;
2388 }
2389
2390 if (fs_info->sb->s_flags & MS_RDONLY) {
2391 ret = btrfs_commit_super(tree_root);
2392 if (ret)
2393 return ret;
2394 }
2395
2396 return 0;
2397}
2398
4bbcaa64
ES
2399static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2400 struct btrfs_root *tree_root)
2401{
a4f3d2c4 2402 struct btrfs_root *root;
4bbcaa64
ES
2403 struct btrfs_key location;
2404 int ret;
2405
2406 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2407 location.type = BTRFS_ROOT_ITEM_KEY;
2408 location.offset = 0;
2409
a4f3d2c4
DS
2410 root = btrfs_read_tree_root(tree_root, &location);
2411 if (IS_ERR(root))
2412 return PTR_ERR(root);
2413 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2414 fs_info->extent_root = root;
4bbcaa64
ES
2415
2416 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2417 root = btrfs_read_tree_root(tree_root, &location);
2418 if (IS_ERR(root))
2419 return PTR_ERR(root);
2420 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2421 fs_info->dev_root = root;
4bbcaa64
ES
2422 btrfs_init_devices_late(fs_info);
2423
2424 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2425 root = btrfs_read_tree_root(tree_root, &location);
2426 if (IS_ERR(root))
2427 return PTR_ERR(root);
2428 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2429 fs_info->csum_root = root;
4bbcaa64
ES
2430
2431 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2432 root = btrfs_read_tree_root(tree_root, &location);
2433 if (!IS_ERR(root)) {
2434 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2435 fs_info->quota_enabled = 1;
2436 fs_info->pending_quota_state = 1;
a4f3d2c4 2437 fs_info->quota_root = root;
4bbcaa64
ES
2438 }
2439
2440 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2441 root = btrfs_read_tree_root(tree_root, &location);
2442 if (IS_ERR(root)) {
2443 ret = PTR_ERR(root);
4bbcaa64
ES
2444 if (ret != -ENOENT)
2445 return ret;
2446 } else {
a4f3d2c4
DS
2447 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2448 fs_info->uuid_root = root;
4bbcaa64
ES
2449 }
2450
2451 return 0;
2452}
2453
ad2b2c80
AV
2454int open_ctree(struct super_block *sb,
2455 struct btrfs_fs_devices *fs_devices,
2456 char *options)
2e635a27 2457{
db94535d
CM
2458 u32 sectorsize;
2459 u32 nodesize;
87ee04eb 2460 u32 stripesize;
84234f3a 2461 u64 generation;
f2b636e8 2462 u64 features;
3de4586c 2463 struct btrfs_key location;
a061fc8d 2464 struct buffer_head *bh;
4d34b278 2465 struct btrfs_super_block *disk_super;
815745cf 2466 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2467 struct btrfs_root *tree_root;
4d34b278 2468 struct btrfs_root *chunk_root;
eb60ceac 2469 int ret;
e58ca020 2470 int err = -EINVAL;
af31f5e5
CM
2471 int num_backups_tried = 0;
2472 int backup_index = 0;
5cdc7ad3 2473 int max_active;
4543df7e 2474
f84a8bd6 2475 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2476 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2477 if (!tree_root || !chunk_root) {
39279cc3
CM
2478 err = -ENOMEM;
2479 goto fail;
2480 }
76dda93c
YZ
2481
2482 ret = init_srcu_struct(&fs_info->subvol_srcu);
2483 if (ret) {
2484 err = ret;
2485 goto fail;
2486 }
2487
2488 ret = setup_bdi(fs_info, &fs_info->bdi);
2489 if (ret) {
2490 err = ret;
2491 goto fail_srcu;
2492 }
2493
908c7f19 2494 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2495 if (ret) {
2496 err = ret;
2497 goto fail_bdi;
2498 }
2499 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2500 (1 + ilog2(nr_cpu_ids));
2501
908c7f19 2502 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2503 if (ret) {
2504 err = ret;
2505 goto fail_dirty_metadata_bytes;
2506 }
2507
908c7f19 2508 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2509 if (ret) {
2510 err = ret;
2511 goto fail_delalloc_bytes;
2512 }
2513
76dda93c
YZ
2514 fs_info->btree_inode = new_inode(sb);
2515 if (!fs_info->btree_inode) {
2516 err = -ENOMEM;
c404e0dc 2517 goto fail_bio_counter;
76dda93c
YZ
2518 }
2519
a6591715 2520 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2521
76dda93c 2522 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2523 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2524 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2525 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2526 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2527 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2528 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2529 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2530 spin_lock_init(&fs_info->trans_lock);
76dda93c 2531 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2532 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2533 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2534 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2535 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2536 spin_lock_init(&fs_info->super_lock);
fcebe456 2537 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2538 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2539 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2540 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2541 mutex_init(&fs_info->unused_bg_unpin_mutex);
67c5e7d4 2542 mutex_init(&fs_info->delete_unused_bgs_mutex);
7585717f 2543 mutex_init(&fs_info->reloc_mutex);
573bfb72 2544 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2545 seqlock_init(&fs_info->profiles_lock);
d7c15171 2546 init_rwsem(&fs_info->delayed_iput_sem);
19c00ddc 2547
0b86a832 2548 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2549 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2550 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2551 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2552 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2553 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2554 BTRFS_BLOCK_RSV_GLOBAL);
2555 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2556 BTRFS_BLOCK_RSV_DELALLOC);
2557 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2558 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2559 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2560 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2561 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2562 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2563 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2564 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2565 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2566 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2567 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2568 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2569 fs_info->sb = sb;
95ac567a 2570 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2571 fs_info->metadata_ratio = 0;
4cb5300b 2572 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2573 fs_info->free_chunk_space = 0;
f29021b2 2574 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2575 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2576 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66 2577 /* readahead state */
d0164adc 2578 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
90519d66 2579 spin_lock_init(&fs_info->reada_lock);
c8b97818 2580
b34b086c
CM
2581 fs_info->thread_pool_size = min_t(unsigned long,
2582 num_online_cpus() + 2, 8);
0afbaf8c 2583
199c2a9c
MX
2584 INIT_LIST_HEAD(&fs_info->ordered_roots);
2585 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2586 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2587 GFP_NOFS);
2588 if (!fs_info->delayed_root) {
2589 err = -ENOMEM;
2590 goto fail_iput;
2591 }
2592 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2593
638aa7ed 2594 btrfs_init_scrub(fs_info);
21adbd5c
SB
2595#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2596 fs_info->check_integrity_print_mask = 0;
2597#endif
779a65a4 2598 btrfs_init_balance(fs_info);
21c7e756 2599 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2600
a061fc8d
CM
2601 sb->s_blocksize = 4096;
2602 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2603 sb->s_bdi = &fs_info->bdi;
a061fc8d 2604
f37938e0 2605 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2606
0f9dd46c 2607 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2608 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2609 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2610
11833d66 2611 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2612 fs_info->btree_inode->i_mapping);
11833d66 2613 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2614 fs_info->btree_inode->i_mapping);
11833d66 2615 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2616 fs_info->do_barriers = 1;
e18e4809 2617
39279cc3 2618
5a3f23d5 2619 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2620 mutex_init(&fs_info->tree_log_mutex);
925baedd 2621 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2622 mutex_init(&fs_info->transaction_kthread_mutex);
2623 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2624 mutex_init(&fs_info->volume_mutex);
1bbc621e 2625 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2626 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2627 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2628 init_rwsem(&fs_info->subvol_sem);
803b2f54 2629 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2630
ad618368 2631 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2632 btrfs_init_qgroup(fs_info);
416ac51d 2633
fa9c0d79
CM
2634 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2635 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2636
e6dcd2dc 2637 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2638 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2639 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2640 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2641
04216820
FM
2642 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2643
53b381b3
DW
2644 ret = btrfs_alloc_stripe_hash_table(fs_info);
2645 if (ret) {
83c8266a 2646 err = ret;
53b381b3
DW
2647 goto fail_alloc;
2648 }
2649
707e8a07 2650 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2651 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2652
3c4bb26b 2653 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2654
2655 /*
2656 * Read super block and check the signature bytes only
2657 */
a512bbf8 2658 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
92fc03fb
AJ
2659 if (IS_ERR(bh)) {
2660 err = PTR_ERR(bh);
16cdcec7 2661 goto fail_alloc;
20b45077 2662 }
39279cc3 2663
1104a885
DS
2664 /*
2665 * We want to check superblock checksum, the type is stored inside.
2666 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2667 */
2668 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2669 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885 2670 err = -EINVAL;
b2acdddf 2671 brelse(bh);
1104a885
DS
2672 goto fail_alloc;
2673 }
2674
2675 /*
2676 * super_copy is zeroed at allocation time and we never touch the
2677 * following bytes up to INFO_SIZE, the checksum is calculated from
2678 * the whole block of INFO_SIZE
2679 */
6c41761f
DS
2680 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2681 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2682 sizeof(*fs_info->super_for_commit));
a061fc8d 2683 brelse(bh);
5f39d397 2684
6c41761f 2685 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2686
1104a885
DS
2687 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2688 if (ret) {
efe120a0 2689 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2690 err = -EINVAL;
2691 goto fail_alloc;
2692 }
2693
6c41761f 2694 disk_super = fs_info->super_copy;
0f7d52f4 2695 if (!btrfs_super_root(disk_super))
16cdcec7 2696 goto fail_alloc;
0f7d52f4 2697
acce952b 2698 /* check FS state, whether FS is broken. */
87533c47
MX
2699 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2700 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2701
af31f5e5
CM
2702 /*
2703 * run through our array of backup supers and setup
2704 * our ring pointer to the oldest one
2705 */
2706 generation = btrfs_super_generation(disk_super);
2707 find_oldest_super_backup(fs_info, generation);
2708
75e7cb7f
LB
2709 /*
2710 * In the long term, we'll store the compression type in the super
2711 * block, and it'll be used for per file compression control.
2712 */
2713 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2714
2b82032c
YZ
2715 ret = btrfs_parse_options(tree_root, options);
2716 if (ret) {
2717 err = ret;
16cdcec7 2718 goto fail_alloc;
2b82032c 2719 }
dfe25020 2720
f2b636e8
JB
2721 features = btrfs_super_incompat_flags(disk_super) &
2722 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2723 if (features) {
2724 printk(KERN_ERR "BTRFS: couldn't mount because of "
2725 "unsupported optional features (%Lx).\n",
c1c9ff7c 2726 features);
f2b636e8 2727 err = -EINVAL;
16cdcec7 2728 goto fail_alloc;
f2b636e8
JB
2729 }
2730
707e8a07
DS
2731 /*
2732 * Leafsize and nodesize were always equal, this is only a sanity check.
2733 */
2734 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2735 btrfs_super_nodesize(disk_super)) {
2736 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2737 "blocksizes don't match. node %d leaf %d\n",
2738 btrfs_super_nodesize(disk_super),
707e8a07 2739 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2740 err = -EINVAL;
2741 goto fail_alloc;
2742 }
707e8a07 2743 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2744 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2745 "blocksize (%d) was too large\n",
707e8a07 2746 btrfs_super_nodesize(disk_super));
727011e0
CM
2747 err = -EINVAL;
2748 goto fail_alloc;
2749 }
2750
5d4f98a2 2751 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2752 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2753 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2754 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2755
3173a18f 2756 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2757 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2758
727011e0
CM
2759 /*
2760 * flag our filesystem as having big metadata blocks if
2761 * they are bigger than the page size
2762 */
707e8a07 2763 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2764 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2765 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2766 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2767 }
2768
bc3f116f 2769 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2770 sectorsize = btrfs_super_sectorsize(disk_super);
2771 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2772 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2773 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2774
2775 /*
2776 * mixed block groups end up with duplicate but slightly offset
2777 * extent buffers for the same range. It leads to corruptions
2778 */
2779 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2780 (sectorsize != nodesize)) {
aa8ee312 2781 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2782 "are not allowed for mixed block groups on %s\n",
2783 sb->s_id);
2784 goto fail_alloc;
2785 }
2786
ceda0864
MX
2787 /*
2788 * Needn't use the lock because there is no other task which will
2789 * update the flag.
2790 */
a6fa6fae 2791 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2792
f2b636e8
JB
2793 features = btrfs_super_compat_ro_flags(disk_super) &
2794 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2795 if (!(sb->s_flags & MS_RDONLY) && features) {
2796 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2797 "unsupported option features (%Lx).\n",
c1c9ff7c 2798 features);
f2b636e8 2799 err = -EINVAL;
16cdcec7 2800 goto fail_alloc;
f2b636e8 2801 }
61d92c32 2802
5cdc7ad3 2803 max_active = fs_info->thread_pool_size;
61d92c32 2804
2a458198
ES
2805 ret = btrfs_init_workqueues(fs_info, fs_devices);
2806 if (ret) {
2807 err = ret;
0dc3b84a
JB
2808 goto fail_sb_buffer;
2809 }
4543df7e 2810
4575c9cc 2811 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2812 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2813 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2814
db94535d 2815 tree_root->nodesize = nodesize;
db94535d 2816 tree_root->sectorsize = sectorsize;
87ee04eb 2817 tree_root->stripesize = stripesize;
a061fc8d
CM
2818
2819 sb->s_blocksize = sectorsize;
2820 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2821
3cae210f 2822 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2823 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2824 goto fail_sb_buffer;
2825 }
19c00ddc 2826
8d082fb7 2827 if (sectorsize != PAGE_SIZE) {
aa8ee312 2828 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2829 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2830 goto fail_sb_buffer;
2831 }
2832
925baedd 2833 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2834 ret = btrfs_read_sys_array(tree_root);
925baedd 2835 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2836 if (ret) {
aa8ee312 2837 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2838 "array on %s\n", sb->s_id);
5d4f98a2 2839 goto fail_sb_buffer;
84eed90f 2840 }
0b86a832 2841
84234f3a 2842 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2843
707e8a07
DS
2844 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2845 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2846
2847 chunk_root->node = read_tree_block(chunk_root,
2848 btrfs_super_chunk_root(disk_super),
ce86cd59 2849 generation);
64c043de
LB
2850 if (IS_ERR(chunk_root->node) ||
2851 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2852 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2853 sb->s_id);
e5fffbac 2854 if (!IS_ERR(chunk_root->node))
2855 free_extent_buffer(chunk_root->node);
95ab1f64 2856 chunk_root->node = NULL;
af31f5e5 2857 goto fail_tree_roots;
83121942 2858 }
5d4f98a2
YZ
2859 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2860 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2861
e17cade2 2862 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2863 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2864
0b86a832 2865 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2866 if (ret) {
aa8ee312 2867 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2868 sb->s_id);
af31f5e5 2869 goto fail_tree_roots;
2b82032c 2870 }
0b86a832 2871
8dabb742
SB
2872 /*
2873 * keep the device that is marked to be the target device for the
2874 * dev_replace procedure
2875 */
9eaed21e 2876 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2877
a6b0d5c8 2878 if (!fs_devices->latest_bdev) {
aa8ee312 2879 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2880 sb->s_id);
2881 goto fail_tree_roots;
2882 }
2883
af31f5e5 2884retry_root_backup:
84234f3a 2885 generation = btrfs_super_generation(disk_super);
0b86a832 2886
e20d96d6 2887 tree_root->node = read_tree_block(tree_root,
db94535d 2888 btrfs_super_root(disk_super),
ce86cd59 2889 generation);
64c043de
LB
2890 if (IS_ERR(tree_root->node) ||
2891 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2892 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2893 sb->s_id);
e5fffbac 2894 if (!IS_ERR(tree_root->node))
2895 free_extent_buffer(tree_root->node);
95ab1f64 2896 tree_root->node = NULL;
af31f5e5 2897 goto recovery_tree_root;
83121942 2898 }
af31f5e5 2899
5d4f98a2
YZ
2900 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2901 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2902 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2903
4bbcaa64
ES
2904 ret = btrfs_read_roots(fs_info, tree_root);
2905 if (ret)
af31f5e5 2906 goto recovery_tree_root;
f7a81ea4 2907
8929ecfa
YZ
2908 fs_info->generation = generation;
2909 fs_info->last_trans_committed = generation;
8929ecfa 2910
68310a5e
ID
2911 ret = btrfs_recover_balance(fs_info);
2912 if (ret) {
aa8ee312 2913 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2914 goto fail_block_groups;
2915 }
2916
733f4fbb
SB
2917 ret = btrfs_init_dev_stats(fs_info);
2918 if (ret) {
efe120a0 2919 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2920 ret);
2921 goto fail_block_groups;
2922 }
2923
8dabb742
SB
2924 ret = btrfs_init_dev_replace(fs_info);
2925 if (ret) {
efe120a0 2926 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2927 goto fail_block_groups;
2928 }
2929
9eaed21e 2930 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2931
b7c35e81
AJ
2932 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2933 if (ret) {
2934 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2935 goto fail_block_groups;
2936 }
2937
2938 ret = btrfs_sysfs_add_device(fs_devices);
2939 if (ret) {
2940 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2941 goto fail_fsdev_sysfs;
2942 }
2943
96f3136e 2944 ret = btrfs_sysfs_add_mounted(fs_info);
c59021f8 2945 if (ret) {
efe120a0 2946 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2947 goto fail_fsdev_sysfs;
c59021f8 2948 }
2949
c59021f8 2950 ret = btrfs_init_space_info(fs_info);
2951 if (ret) {
efe120a0 2952 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2953 goto fail_sysfs;
c59021f8 2954 }
2955
4bbcaa64 2956 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2957 if (ret) {
efe120a0 2958 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2959 goto fail_sysfs;
1b1d1f66 2960 }
5af3e8cc
SB
2961 fs_info->num_tolerated_disk_barrier_failures =
2962 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2963 if (fs_info->fs_devices->missing_devices >
2964 fs_info->num_tolerated_disk_barrier_failures &&
2965 !(sb->s_flags & MS_RDONLY)) {
78fa1770
ZL
2966 pr_warn("BTRFS: missing devices(%llu) exceeds the limit(%d), writeable mount is not allowed\n",
2967 fs_info->fs_devices->missing_devices,
2968 fs_info->num_tolerated_disk_barrier_failures);
2365dd3c 2969 goto fail_sysfs;
292fd7fc 2970 }
9078a3e1 2971
a74a4b97
CM
2972 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2973 "btrfs-cleaner");
57506d50 2974 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2975 goto fail_sysfs;
a74a4b97
CM
2976
2977 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2978 tree_root,
2979 "btrfs-transaction");
57506d50 2980 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2981 goto fail_cleaner;
a74a4b97 2982
c289811c
CM
2983 if (!btrfs_test_opt(tree_root, SSD) &&
2984 !btrfs_test_opt(tree_root, NOSSD) &&
2985 !fs_info->fs_devices->rotating) {
efe120a0 2986 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2987 "mode\n");
2988 btrfs_set_opt(fs_info->mount_opt, SSD);
2989 }
2990
572d9ab7
DS
2991 /*
2992 * Mount does not set all options immediatelly, we can do it now and do
2993 * not have to wait for transaction commit
2994 */
2995 btrfs_apply_pending_changes(fs_info);
3818aea2 2996
21adbd5c
SB
2997#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2998 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2999 ret = btrfsic_mount(tree_root, fs_devices,
3000 btrfs_test_opt(tree_root,
3001 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3002 1 : 0,
3003 fs_info->check_integrity_print_mask);
3004 if (ret)
efe120a0 3005 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
3006 " integrity check module %s\n", sb->s_id);
3007 }
3008#endif
bcef60f2
AJ
3009 ret = btrfs_read_qgroup_config(fs_info);
3010 if (ret)
3011 goto fail_trans_kthread;
21adbd5c 3012
acce952b 3013 /* do not make disk changes in broken FS */
68ce9682 3014 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 3015 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 3016 if (ret) {
63443bf5 3017 err = ret;
28c16cbb 3018 goto fail_qgroup;
79787eaa 3019 }
e02119d5 3020 }
1a40e23b 3021
76dda93c 3022 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 3023 if (ret)
28c16cbb 3024 goto fail_qgroup;
76dda93c 3025
7c2ca468 3026 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 3027 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 3028 if (ret)
28c16cbb 3029 goto fail_qgroup;
d68fc57b 3030
5f316481 3031 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 3032 ret = btrfs_recover_relocation(tree_root);
5f316481 3033 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
3034 if (ret < 0) {
3035 printk(KERN_WARNING
efe120a0 3036 "BTRFS: failed to recover relocation\n");
d7ce5843 3037 err = -EINVAL;
bcef60f2 3038 goto fail_qgroup;
d7ce5843 3039 }
7c2ca468 3040 }
1a40e23b 3041
3de4586c
CM
3042 location.objectid = BTRFS_FS_TREE_OBJECTID;
3043 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 3044 location.offset = 0;
3de4586c 3045
3de4586c 3046 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
3047 if (IS_ERR(fs_info->fs_root)) {
3048 err = PTR_ERR(fs_info->fs_root);
bcef60f2 3049 goto fail_qgroup;
3140c9a3 3050 }
c289811c 3051
2b6ba629
ID
3052 if (sb->s_flags & MS_RDONLY)
3053 return 0;
59641015 3054
2b6ba629
ID
3055 down_read(&fs_info->cleanup_work_sem);
3056 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3057 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3058 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3059 close_ctree(tree_root);
3060 return ret;
3061 }
3062 up_read(&fs_info->cleanup_work_sem);
59641015 3063
2b6ba629
ID
3064 ret = btrfs_resume_balance_async(fs_info);
3065 if (ret) {
efe120a0 3066 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3067 close_ctree(tree_root);
3068 return ret;
e3acc2a6
JB
3069 }
3070
8dabb742
SB
3071 ret = btrfs_resume_dev_replace_async(fs_info);
3072 if (ret) {
efe120a0 3073 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3074 close_ctree(tree_root);
3075 return ret;
3076 }
3077
b382a324
JS
3078 btrfs_qgroup_rescan_resume(fs_info);
3079
4bbcaa64 3080 if (!fs_info->uuid_root) {
efe120a0 3081 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3082 ret = btrfs_create_uuid_tree(fs_info);
3083 if (ret) {
efe120a0 3084 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3085 ret);
3086 close_ctree(tree_root);
3087 return ret;
3088 }
4bbcaa64
ES
3089 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3090 fs_info->generation !=
3091 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3092 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3093 ret = btrfs_check_uuid_tree(fs_info);
3094 if (ret) {
efe120a0 3095 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3096 ret);
3097 close_ctree(tree_root);
3098 return ret;
3099 }
3100 } else {
3101 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3102 }
3103
47ab2a6c
JB
3104 fs_info->open = 1;
3105
ad2b2c80 3106 return 0;
39279cc3 3107
bcef60f2
AJ
3108fail_qgroup:
3109 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3110fail_trans_kthread:
3111 kthread_stop(fs_info->transaction_kthread);
54067ae9 3112 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3113 btrfs_free_fs_roots(fs_info);
3f157a2f 3114fail_cleaner:
a74a4b97 3115 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3116
3117 /*
3118 * make sure we're done with the btree inode before we stop our
3119 * kthreads
3120 */
3121 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3122
2365dd3c 3123fail_sysfs:
6618a59b 3124 btrfs_sysfs_remove_mounted(fs_info);
2365dd3c 3125
b7c35e81
AJ
3126fail_fsdev_sysfs:
3127 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3128
1b1d1f66 3129fail_block_groups:
54067ae9 3130 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3131 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3132
3133fail_tree_roots:
3134 free_root_pointers(fs_info, 1);
2b8195bb 3135 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3136
39279cc3 3137fail_sb_buffer:
7abadb64 3138 btrfs_stop_all_workers(fs_info);
16cdcec7 3139fail_alloc:
4543df7e 3140fail_iput:
586e46e2
ID
3141 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3142
4543df7e 3143 iput(fs_info->btree_inode);
c404e0dc
MX
3144fail_bio_counter:
3145 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3146fail_delalloc_bytes:
3147 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3148fail_dirty_metadata_bytes:
3149 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3150fail_bdi:
7e662854 3151 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3152fail_srcu:
3153 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3154fail:
53b381b3 3155 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3156 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3157 return err;
af31f5e5
CM
3158
3159recovery_tree_root:
af31f5e5
CM
3160 if (!btrfs_test_opt(tree_root, RECOVERY))
3161 goto fail_tree_roots;
3162
3163 free_root_pointers(fs_info, 0);
3164
3165 /* don't use the log in recovery mode, it won't be valid */
3166 btrfs_set_super_log_root(disk_super, 0);
3167
3168 /* we can't trust the free space cache either */
3169 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3170
3171 ret = next_root_backup(fs_info, fs_info->super_copy,
3172 &num_backups_tried, &backup_index);
3173 if (ret == -1)
3174 goto fail_block_groups;
3175 goto retry_root_backup;
eb60ceac
CM
3176}
3177
f2984462
CM
3178static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3179{
f2984462
CM
3180 if (uptodate) {
3181 set_buffer_uptodate(bh);
3182 } else {
442a4f63
SB
3183 struct btrfs_device *device = (struct btrfs_device *)
3184 bh->b_private;
3185
b14af3b4
DS
3186 btrfs_warn_rl_in_rcu(device->dev_root->fs_info,
3187 "lost page write due to IO error on %s",
606686ee 3188 rcu_str_deref(device->name));
1259ab75
CM
3189 /* note, we dont' set_buffer_write_io_error because we have
3190 * our own ways of dealing with the IO errors
3191 */
f2984462 3192 clear_buffer_uptodate(bh);
442a4f63 3193 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3194 }
3195 unlock_buffer(bh);
3196 put_bh(bh);
3197}
3198
29c36d72
AJ
3199int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3200 struct buffer_head **bh_ret)
3201{
3202 struct buffer_head *bh;
3203 struct btrfs_super_block *super;
3204 u64 bytenr;
3205
3206 bytenr = btrfs_sb_offset(copy_num);
3207 if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3208 return -EINVAL;
3209
3210 bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3211 /*
3212 * If we fail to read from the underlying devices, as of now
3213 * the best option we have is to mark it EIO.
3214 */
3215 if (!bh)
3216 return -EIO;
3217
3218 super = (struct btrfs_super_block *)bh->b_data;
3219 if (btrfs_super_bytenr(super) != bytenr ||
3220 btrfs_super_magic(super) != BTRFS_MAGIC) {
3221 brelse(bh);
3222 return -EINVAL;
3223 }
3224
3225 *bh_ret = bh;
3226 return 0;
3227}
3228
3229
a512bbf8
YZ
3230struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3231{
3232 struct buffer_head *bh;
3233 struct buffer_head *latest = NULL;
3234 struct btrfs_super_block *super;
3235 int i;
3236 u64 transid = 0;
92fc03fb 3237 int ret = -EINVAL;
a512bbf8
YZ
3238
3239 /* we would like to check all the supers, but that would make
3240 * a btrfs mount succeed after a mkfs from a different FS.
3241 * So, we need to add a special mount option to scan for
3242 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3243 */
3244 for (i = 0; i < 1; i++) {
29c36d72
AJ
3245 ret = btrfs_read_dev_one_super(bdev, i, &bh);
3246 if (ret)
a512bbf8
YZ
3247 continue;
3248
3249 super = (struct btrfs_super_block *)bh->b_data;
a512bbf8
YZ
3250
3251 if (!latest || btrfs_super_generation(super) > transid) {
3252 brelse(latest);
3253 latest = bh;
3254 transid = btrfs_super_generation(super);
3255 } else {
3256 brelse(bh);
3257 }
3258 }
92fc03fb
AJ
3259
3260 if (!latest)
3261 return ERR_PTR(ret);
3262
a512bbf8
YZ
3263 return latest;
3264}
3265
4eedeb75
HH
3266/*
3267 * this should be called twice, once with wait == 0 and
3268 * once with wait == 1. When wait == 0 is done, all the buffer heads
3269 * we write are pinned.
3270 *
3271 * They are released when wait == 1 is done.
3272 * max_mirrors must be the same for both runs, and it indicates how
3273 * many supers on this one device should be written.
3274 *
3275 * max_mirrors == 0 means to write them all.
3276 */
a512bbf8
YZ
3277static int write_dev_supers(struct btrfs_device *device,
3278 struct btrfs_super_block *sb,
3279 int do_barriers, int wait, int max_mirrors)
3280{
3281 struct buffer_head *bh;
3282 int i;
3283 int ret;
3284 int errors = 0;
3285 u32 crc;
3286 u64 bytenr;
a512bbf8
YZ
3287
3288 if (max_mirrors == 0)
3289 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3290
a512bbf8
YZ
3291 for (i = 0; i < max_mirrors; i++) {
3292 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3293 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3294 device->commit_total_bytes)
a512bbf8
YZ
3295 break;
3296
3297 if (wait) {
3298 bh = __find_get_block(device->bdev, bytenr / 4096,
3299 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3300 if (!bh) {
3301 errors++;
3302 continue;
3303 }
a512bbf8 3304 wait_on_buffer(bh);
4eedeb75
HH
3305 if (!buffer_uptodate(bh))
3306 errors++;
3307
3308 /* drop our reference */
3309 brelse(bh);
3310
3311 /* drop the reference from the wait == 0 run */
3312 brelse(bh);
3313 continue;
a512bbf8
YZ
3314 } else {
3315 btrfs_set_super_bytenr(sb, bytenr);
3316
3317 crc = ~(u32)0;
b0496686 3318 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3319 BTRFS_CSUM_SIZE, crc,
3320 BTRFS_SUPER_INFO_SIZE -
3321 BTRFS_CSUM_SIZE);
3322 btrfs_csum_final(crc, sb->csum);
3323
4eedeb75
HH
3324 /*
3325 * one reference for us, and we leave it for the
3326 * caller
3327 */
a512bbf8
YZ
3328 bh = __getblk(device->bdev, bytenr / 4096,
3329 BTRFS_SUPER_INFO_SIZE);
634554dc 3330 if (!bh) {
f14d104d
DS
3331 btrfs_err(device->dev_root->fs_info,
3332 "couldn't get super buffer head for bytenr %llu",
3333 bytenr);
634554dc
JB
3334 errors++;
3335 continue;
3336 }
3337
a512bbf8
YZ
3338 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3339
4eedeb75 3340 /* one reference for submit_bh */
a512bbf8 3341 get_bh(bh);
4eedeb75
HH
3342
3343 set_buffer_uptodate(bh);
a512bbf8
YZ
3344 lock_buffer(bh);
3345 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3346 bh->b_private = device;
a512bbf8
YZ
3347 }
3348
387125fc
CM
3349 /*
3350 * we fua the first super. The others we allow
3351 * to go down lazy.
3352 */
e8117c26
WS
3353 if (i == 0)
3354 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3355 else
3356 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3357 if (ret)
a512bbf8 3358 errors++;
a512bbf8
YZ
3359 }
3360 return errors < i ? 0 : -1;
3361}
3362
387125fc
CM
3363/*
3364 * endio for the write_dev_flush, this will wake anyone waiting
3365 * for the barrier when it is done
3366 */
4246a0b6 3367static void btrfs_end_empty_barrier(struct bio *bio)
387125fc 3368{
387125fc
CM
3369 if (bio->bi_private)
3370 complete(bio->bi_private);
3371 bio_put(bio);
3372}
3373
3374/*
3375 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3376 * sent down. With wait == 1, it waits for the previous flush.
3377 *
3378 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3379 * capable
3380 */
3381static int write_dev_flush(struct btrfs_device *device, int wait)
3382{
3383 struct bio *bio;
3384 int ret = 0;
3385
3386 if (device->nobarriers)
3387 return 0;
3388
3389 if (wait) {
3390 bio = device->flush_bio;
3391 if (!bio)
3392 return 0;
3393
3394 wait_for_completion(&device->flush_wait);
3395
4246a0b6
CH
3396 if (bio->bi_error) {
3397 ret = bio->bi_error;
5af3e8cc
SB
3398 btrfs_dev_stat_inc_and_print(device,
3399 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3400 }
3401
3402 /* drop the reference from the wait == 0 run */
3403 bio_put(bio);
3404 device->flush_bio = NULL;
3405
3406 return ret;
3407 }
3408
3409 /*
3410 * one reference for us, and we leave it for the
3411 * caller
3412 */
9c017abc 3413 device->flush_bio = NULL;
9be3395b 3414 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3415 if (!bio)
3416 return -ENOMEM;
3417
3418 bio->bi_end_io = btrfs_end_empty_barrier;
3419 bio->bi_bdev = device->bdev;
3420 init_completion(&device->flush_wait);
3421 bio->bi_private = &device->flush_wait;
3422 device->flush_bio = bio;
3423
3424 bio_get(bio);
21adbd5c 3425 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3426
3427 return 0;
3428}
3429
3430/*
3431 * send an empty flush down to each device in parallel,
3432 * then wait for them
3433 */
3434static int barrier_all_devices(struct btrfs_fs_info *info)
3435{
3436 struct list_head *head;
3437 struct btrfs_device *dev;
5af3e8cc
SB
3438 int errors_send = 0;
3439 int errors_wait = 0;
387125fc
CM
3440 int ret;
3441
3442 /* send down all the barriers */
3443 head = &info->fs_devices->devices;
3444 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3445 if (dev->missing)
3446 continue;
387125fc 3447 if (!dev->bdev) {
5af3e8cc 3448 errors_send++;
387125fc
CM
3449 continue;
3450 }
3451 if (!dev->in_fs_metadata || !dev->writeable)
3452 continue;
3453
3454 ret = write_dev_flush(dev, 0);
3455 if (ret)
5af3e8cc 3456 errors_send++;
387125fc
CM
3457 }
3458
3459 /* wait for all the barriers */
3460 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3461 if (dev->missing)
3462 continue;
387125fc 3463 if (!dev->bdev) {
5af3e8cc 3464 errors_wait++;
387125fc
CM
3465 continue;
3466 }
3467 if (!dev->in_fs_metadata || !dev->writeable)
3468 continue;
3469
3470 ret = write_dev_flush(dev, 1);
3471 if (ret)
5af3e8cc 3472 errors_wait++;
387125fc 3473 }
5af3e8cc
SB
3474 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3475 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3476 return -EIO;
3477 return 0;
3478}
3479
943c6e99
ZL
3480int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3481{
8789f4fe
ZL
3482 int raid_type;
3483 int min_tolerated = INT_MAX;
943c6e99 3484
8789f4fe
ZL
3485 if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3486 (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3487 min_tolerated = min(min_tolerated,
3488 btrfs_raid_array[BTRFS_RAID_SINGLE].
3489 tolerated_failures);
943c6e99 3490
8789f4fe
ZL
3491 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3492 if (raid_type == BTRFS_RAID_SINGLE)
3493 continue;
3494 if (!(flags & btrfs_raid_group[raid_type]))
3495 continue;
3496 min_tolerated = min(min_tolerated,
3497 btrfs_raid_array[raid_type].
3498 tolerated_failures);
3499 }
943c6e99 3500
8789f4fe
ZL
3501 if (min_tolerated == INT_MAX) {
3502 pr_warn("BTRFS: unknown raid flag: %llu\n", flags);
3503 min_tolerated = 0;
3504 }
3505
3506 return min_tolerated;
943c6e99
ZL
3507}
3508
5af3e8cc
SB
3509int btrfs_calc_num_tolerated_disk_barrier_failures(
3510 struct btrfs_fs_info *fs_info)
3511{
3512 struct btrfs_ioctl_space_info space;
3513 struct btrfs_space_info *sinfo;
3514 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3515 BTRFS_BLOCK_GROUP_SYSTEM,
3516 BTRFS_BLOCK_GROUP_METADATA,
3517 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
5af3e8cc
SB
3518 int i;
3519 int c;
3520 int num_tolerated_disk_barrier_failures =
3521 (int)fs_info->fs_devices->num_devices;
3522
2c458045 3523 for (i = 0; i < ARRAY_SIZE(types); i++) {
5af3e8cc
SB
3524 struct btrfs_space_info *tmp;
3525
3526 sinfo = NULL;
3527 rcu_read_lock();
3528 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3529 if (tmp->flags == types[i]) {
3530 sinfo = tmp;
3531 break;
3532 }
3533 }
3534 rcu_read_unlock();
3535
3536 if (!sinfo)
3537 continue;
3538
3539 down_read(&sinfo->groups_sem);
3540 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2c458045
ZL
3541 u64 flags;
3542
3543 if (list_empty(&sinfo->block_groups[c]))
3544 continue;
3545
3546 btrfs_get_block_group_info(&sinfo->block_groups[c],
3547 &space);
3548 if (space.total_bytes == 0 || space.used_bytes == 0)
3549 continue;
3550 flags = space.flags;
943c6e99
ZL
3551
3552 num_tolerated_disk_barrier_failures = min(
3553 num_tolerated_disk_barrier_failures,
3554 btrfs_get_num_tolerated_disk_barrier_failures(
3555 flags));
5af3e8cc
SB
3556 }
3557 up_read(&sinfo->groups_sem);
3558 }
3559
3560 return num_tolerated_disk_barrier_failures;
3561}
3562
48a3b636 3563static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3564{
e5e9a520 3565 struct list_head *head;
f2984462 3566 struct btrfs_device *dev;
a061fc8d 3567 struct btrfs_super_block *sb;
f2984462 3568 struct btrfs_dev_item *dev_item;
f2984462
CM
3569 int ret;
3570 int do_barriers;
a236aed1
CM
3571 int max_errors;
3572 int total_errors = 0;
a061fc8d 3573 u64 flags;
f2984462
CM
3574
3575 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3576 backup_super_roots(root->fs_info);
f2984462 3577
6c41761f 3578 sb = root->fs_info->super_for_commit;
a061fc8d 3579 dev_item = &sb->dev_item;
e5e9a520 3580
174ba509 3581 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3582 head = &root->fs_info->fs_devices->devices;
d7306801 3583 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3584
5af3e8cc
SB
3585 if (do_barriers) {
3586 ret = barrier_all_devices(root->fs_info);
3587 if (ret) {
3588 mutex_unlock(
3589 &root->fs_info->fs_devices->device_list_mutex);
a4553fef 3590 btrfs_std_error(root->fs_info, ret,
5af3e8cc
SB
3591 "errors while submitting device barriers.");
3592 return ret;
3593 }
3594 }
387125fc 3595
1f78160c 3596 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3597 if (!dev->bdev) {
3598 total_errors++;
3599 continue;
3600 }
2b82032c 3601 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3602 continue;
3603
2b82032c 3604 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3605 btrfs_set_stack_device_type(dev_item, dev->type);
3606 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3607 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3608 dev->commit_total_bytes);
ce7213c7
MX
3609 btrfs_set_stack_device_bytes_used(dev_item,
3610 dev->commit_bytes_used);
a061fc8d
CM
3611 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3612 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3613 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3614 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3615 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3616
a061fc8d
CM
3617 flags = btrfs_super_flags(sb);
3618 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3619
a512bbf8 3620 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3621 if (ret)
3622 total_errors++;
f2984462 3623 }
a236aed1 3624 if (total_errors > max_errors) {
efe120a0 3625 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3626 total_errors);
a724b436 3627 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3628
9d565ba4 3629 /* FUA is masked off if unsupported and can't be the reason */
a4553fef 3630 btrfs_std_error(root->fs_info, -EIO,
9d565ba4
SB
3631 "%d errors while writing supers", total_errors);
3632 return -EIO;
a236aed1 3633 }
f2984462 3634
a512bbf8 3635 total_errors = 0;
1f78160c 3636 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3637 if (!dev->bdev)
3638 continue;
2b82032c 3639 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3640 continue;
3641
a512bbf8
YZ
3642 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3643 if (ret)
3644 total_errors++;
f2984462 3645 }
174ba509 3646 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3647 if (total_errors > max_errors) {
a4553fef 3648 btrfs_std_error(root->fs_info, -EIO,
79787eaa
JM
3649 "%d errors while writing supers", total_errors);
3650 return -EIO;
a236aed1 3651 }
f2984462
CM
3652 return 0;
3653}
3654
a512bbf8
YZ
3655int write_ctree_super(struct btrfs_trans_handle *trans,
3656 struct btrfs_root *root, int max_mirrors)
eb60ceac 3657{
f570e757 3658 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3659}
3660
cb517eab
MX
3661/* Drop a fs root from the radix tree and free it. */
3662void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3663 struct btrfs_root *root)
2619ba1f 3664{
4df27c4d 3665 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3666 radix_tree_delete(&fs_info->fs_roots_radix,
3667 (unsigned long)root->root_key.objectid);
4df27c4d 3668 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3669
3670 if (btrfs_root_refs(&root->root_item) == 0)
3671 synchronize_srcu(&fs_info->subvol_srcu);
3672
1a4319cc 3673 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3674 btrfs_free_log(NULL, root);
3321719e 3675
faa2dbf0
JB
3676 if (root->free_ino_pinned)
3677 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3678 if (root->free_ino_ctl)
3679 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3680 free_fs_root(root);
4df27c4d
YZ
3681}
3682
3683static void free_fs_root(struct btrfs_root *root)
3684{
57cdc8db 3685 iput(root->ino_cache_inode);
4df27c4d 3686 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3687 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3688 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3689 if (root->anon_dev)
3690 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3691 if (root->subv_writers)
3692 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3693 free_extent_buffer(root->node);
3694 free_extent_buffer(root->commit_root);
581bb050
LZ
3695 kfree(root->free_ino_ctl);
3696 kfree(root->free_ino_pinned);
d397712b 3697 kfree(root->name);
b0feb9d9 3698 btrfs_put_fs_root(root);
2619ba1f
CM
3699}
3700
cb517eab
MX
3701void btrfs_free_fs_root(struct btrfs_root *root)
3702{
3703 free_fs_root(root);
2619ba1f
CM
3704}
3705
c146afad 3706int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3707{
c146afad
YZ
3708 u64 root_objectid = 0;
3709 struct btrfs_root *gang[8];
65d33fd7
QW
3710 int i = 0;
3711 int err = 0;
3712 unsigned int ret = 0;
3713 int index;
e089f05c 3714
c146afad 3715 while (1) {
65d33fd7 3716 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3717 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3718 (void **)gang, root_objectid,
3719 ARRAY_SIZE(gang));
65d33fd7
QW
3720 if (!ret) {
3721 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3722 break;
65d33fd7 3723 }
5d4f98a2 3724 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3725
c146afad 3726 for (i = 0; i < ret; i++) {
65d33fd7
QW
3727 /* Avoid to grab roots in dead_roots */
3728 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3729 gang[i] = NULL;
3730 continue;
3731 }
3732 /* grab all the search result for later use */
3733 gang[i] = btrfs_grab_fs_root(gang[i]);
3734 }
3735 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3736
65d33fd7
QW
3737 for (i = 0; i < ret; i++) {
3738 if (!gang[i])
3739 continue;
c146afad 3740 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3741 err = btrfs_orphan_cleanup(gang[i]);
3742 if (err)
65d33fd7
QW
3743 break;
3744 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3745 }
3746 root_objectid++;
3747 }
65d33fd7
QW
3748
3749 /* release the uncleaned roots due to error */
3750 for (; i < ret; i++) {
3751 if (gang[i])
3752 btrfs_put_fs_root(gang[i]);
3753 }
3754 return err;
c146afad 3755}
a2135011 3756
c146afad
YZ
3757int btrfs_commit_super(struct btrfs_root *root)
3758{
3759 struct btrfs_trans_handle *trans;
a74a4b97 3760
c146afad 3761 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3762 btrfs_run_delayed_iputs(root);
c146afad 3763 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3764 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3765
3766 /* wait until ongoing cleanup work done */
3767 down_write(&root->fs_info->cleanup_work_sem);
3768 up_write(&root->fs_info->cleanup_work_sem);
3769
7a7eaa40 3770 trans = btrfs_join_transaction(root);
3612b495
TI
3771 if (IS_ERR(trans))
3772 return PTR_ERR(trans);
d52c1bcc 3773 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3774}
3775
3abdbd78 3776void close_ctree(struct btrfs_root *root)
c146afad
YZ
3777{
3778 struct btrfs_fs_info *fs_info = root->fs_info;
3779 int ret;
3780
3781 fs_info->closing = 1;
3782 smp_mb();
3783
7343dd61
JM
3784 /* wait for the qgroup rescan worker to stop */
3785 btrfs_qgroup_wait_for_completion(fs_info);
3786
803b2f54
SB
3787 /* wait for the uuid_scan task to finish */
3788 down(&fs_info->uuid_tree_rescan_sem);
3789 /* avoid complains from lockdep et al., set sem back to initial state */
3790 up(&fs_info->uuid_tree_rescan_sem);
3791
837d5b6e 3792 /* pause restriper - we want to resume on mount */
aa1b8cd4 3793 btrfs_pause_balance(fs_info);
837d5b6e 3794
8dabb742
SB
3795 btrfs_dev_replace_suspend_for_unmount(fs_info);
3796
aa1b8cd4 3797 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3798
3799 /* wait for any defraggers to finish */
3800 wait_event(fs_info->transaction_wait,
3801 (atomic_read(&fs_info->defrag_running) == 0));
3802
3803 /* clear out the rbtree of defraggable inodes */
26176e7c 3804 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3805
21c7e756
MX
3806 cancel_work_sync(&fs_info->async_reclaim_work);
3807
c146afad 3808 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
e44163e1
JM
3809 /*
3810 * If the cleaner thread is stopped and there are
3811 * block groups queued for removal, the deletion will be
3812 * skipped when we quit the cleaner thread.
3813 */
e44163e1 3814 btrfs_delete_unused_bgs(root->fs_info);
e44163e1 3815
acce952b 3816 ret = btrfs_commit_super(root);
3817 if (ret)
04892340 3818 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3819 }
3820
87533c47 3821 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3822 btrfs_error_commit_super(root);
0f7d52f4 3823
e3029d9f
AV
3824 kthread_stop(fs_info->transaction_kthread);
3825 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3826
f25784b3
YZ
3827 fs_info->closing = 2;
3828 smp_mb();
3829
04892340 3830 btrfs_free_qgroup_config(fs_info);
bcef60f2 3831
963d678b 3832 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3833 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3834 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3835 }
bcc63abb 3836
6618a59b 3837 btrfs_sysfs_remove_mounted(fs_info);
b7c35e81 3838 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3839
faa2dbf0 3840 btrfs_free_fs_roots(fs_info);
d10c5f31 3841
1a4319cc
LB
3842 btrfs_put_block_group_cache(fs_info);
3843
2b1360da
JB
3844 btrfs_free_block_groups(fs_info);
3845
de348ee0
WS
3846 /*
3847 * we must make sure there is not any read request to
3848 * submit after we stopping all workers.
3849 */
3850 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3851 btrfs_stop_all_workers(fs_info);
3852
47ab2a6c 3853 fs_info->open = 0;
13e6c37b 3854 free_root_pointers(fs_info, 1);
9ad6b7bc 3855
13e6c37b 3856 iput(fs_info->btree_inode);
d6bfde87 3857
21adbd5c
SB
3858#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3859 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3860 btrfsic_unmount(root, fs_info->fs_devices);
3861#endif
3862
dfe25020 3863 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3864 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3865
e2d84521 3866 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3867 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3868 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3869 bdi_destroy(&fs_info->bdi);
76dda93c 3870 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3871
53b381b3
DW
3872 btrfs_free_stripe_hash_table(fs_info);
3873
cdfb080e 3874 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3875 root->orphan_block_rsv = NULL;
04216820
FM
3876
3877 lock_chunks(root);
3878 while (!list_empty(&fs_info->pinned_chunks)) {
3879 struct extent_map *em;
3880
3881 em = list_first_entry(&fs_info->pinned_chunks,
3882 struct extent_map, list);
3883 list_del_init(&em->list);
3884 free_extent_map(em);
3885 }
3886 unlock_chunks(root);
eb60ceac
CM
3887}
3888
b9fab919
CM
3889int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3890 int atomic)
5f39d397 3891{
1259ab75 3892 int ret;
727011e0 3893 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3894
0b32f4bb 3895 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3896 if (!ret)
3897 return ret;
3898
3899 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3900 parent_transid, atomic);
3901 if (ret == -EAGAIN)
3902 return ret;
1259ab75 3903 return !ret;
5f39d397
CM
3904}
3905
3906int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3907{
0b32f4bb 3908 return set_extent_buffer_uptodate(buf);
5f39d397 3909}
6702ed49 3910
5f39d397
CM
3911void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3912{
06ea65a3 3913 struct btrfs_root *root;
5f39d397 3914 u64 transid = btrfs_header_generation(buf);
b9473439 3915 int was_dirty;
b4ce94de 3916
06ea65a3
JB
3917#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3918 /*
3919 * This is a fast path so only do this check if we have sanity tests
3920 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3921 * outside of the sanity tests.
3922 */
3923 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3924 return;
3925#endif
3926 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3927 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3928 if (transid != root->fs_info->generation)
3929 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3930 "found %llu running %llu\n",
c1c9ff7c 3931 buf->start, transid, root->fs_info->generation);
0b32f4bb 3932 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3933 if (!was_dirty)
3934 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3935 buf->len,
3936 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3937#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3938 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3939 btrfs_print_leaf(root, buf);
3940 ASSERT(0);
3941 }
3942#endif
eb60ceac
CM
3943}
3944
b53d3f5d
LB
3945static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3946 int flush_delayed)
16cdcec7
MX
3947{
3948 /*
3949 * looks as though older kernels can get into trouble with
3950 * this code, they end up stuck in balance_dirty_pages forever
3951 */
e2d84521 3952 int ret;
16cdcec7
MX
3953
3954 if (current->flags & PF_MEMALLOC)
3955 return;
3956
b53d3f5d
LB
3957 if (flush_delayed)
3958 btrfs_balance_delayed_items(root);
16cdcec7 3959
e2d84521
MX
3960 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3961 BTRFS_DIRTY_METADATA_THRESH);
3962 if (ret > 0) {
d0e1d66b
NJ
3963 balance_dirty_pages_ratelimited(
3964 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3965 }
3966 return;
3967}
3968
b53d3f5d 3969void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3970{
b53d3f5d
LB
3971 __btrfs_btree_balance_dirty(root, 1);
3972}
585ad2c3 3973
b53d3f5d
LB
3974void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3975{
3976 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3977}
6b80053d 3978
ca7a79ad 3979int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3980{
727011e0 3981 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3982 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3983}
0da5468f 3984
fcd1f065 3985static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3986 int read_only)
3987{
c926093e
DS
3988 struct btrfs_super_block *sb = fs_info->super_copy;
3989 int ret = 0;
3990
21e7626b
DS
3991 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3992 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3993 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3994 ret = -EINVAL;
3995 }
21e7626b
DS
3996 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3997 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3998 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3999 ret = -EINVAL;
4000 }
21e7626b
DS
4001 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4002 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
4003 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
4004 ret = -EINVAL;
4005 }
4006
1104a885 4007 /*
c926093e
DS
4008 * The common minimum, we don't know if we can trust the nodesize/sectorsize
4009 * items yet, they'll be verified later. Issue just a warning.
1104a885 4010 */
21e7626b 4011 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 4012 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 4013 btrfs_super_root(sb));
21e7626b 4014 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
4015 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
4016 btrfs_super_chunk_root(sb));
21e7626b 4017 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 4018 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 4019 btrfs_super_log_root(sb));
c926093e 4020
75d6ad38
DS
4021 /*
4022 * Check the lower bound, the alignment and other constraints are
4023 * checked later.
4024 */
4025 if (btrfs_super_nodesize(sb) < 4096) {
4026 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
4027 btrfs_super_nodesize(sb));
4028 ret = -EINVAL;
4029 }
4030 if (btrfs_super_sectorsize(sb) < 4096) {
4031 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
4032 btrfs_super_sectorsize(sb));
4033 ret = -EINVAL;
4034 }
4035
c926093e
DS
4036 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4037 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
4038 fs_info->fsid, sb->dev_item.fsid);
4039 ret = -EINVAL;
4040 }
4041
4042 /*
4043 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4044 * done later
4045 */
21e7626b 4046 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 4047 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 4048 btrfs_super_num_devices(sb));
75d6ad38
DS
4049 if (btrfs_super_num_devices(sb) == 0) {
4050 printk(KERN_ERR "BTRFS: number of devices is 0\n");
4051 ret = -EINVAL;
4052 }
c926093e 4053
21e7626b 4054 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 4055 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 4056 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
4057 ret = -EINVAL;
4058 }
4059
ce7fca5f
DS
4060 /*
4061 * Obvious sys_chunk_array corruptions, it must hold at least one key
4062 * and one chunk
4063 */
4064 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4065 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
4066 btrfs_super_sys_array_size(sb),
4067 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4068 ret = -EINVAL;
4069 }
4070 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4071 + sizeof(struct btrfs_chunk)) {
d2207129 4072 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
4073 btrfs_super_sys_array_size(sb),
4074 sizeof(struct btrfs_disk_key)
4075 + sizeof(struct btrfs_chunk));
4076 ret = -EINVAL;
4077 }
4078
c926093e
DS
4079 /*
4080 * The generation is a global counter, we'll trust it more than the others
4081 * but it's still possible that it's the one that's wrong.
4082 */
21e7626b 4083 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
4084 printk(KERN_WARNING
4085 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4086 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4087 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4088 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4089 printk(KERN_WARNING
4090 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4091 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4092
4093 return ret;
acce952b 4094}
4095
48a3b636 4096static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4097{
acce952b 4098 mutex_lock(&root->fs_info->cleaner_mutex);
4099 btrfs_run_delayed_iputs(root);
4100 mutex_unlock(&root->fs_info->cleaner_mutex);
4101
4102 down_write(&root->fs_info->cleanup_work_sem);
4103 up_write(&root->fs_info->cleanup_work_sem);
4104
4105 /* cleanup FS via transaction */
4106 btrfs_cleanup_transaction(root);
acce952b 4107}
4108
143bede5 4109static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4110{
acce952b 4111 struct btrfs_ordered_extent *ordered;
acce952b 4112
199c2a9c 4113 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4114 /*
4115 * This will just short circuit the ordered completion stuff which will
4116 * make sure the ordered extent gets properly cleaned up.
4117 */
199c2a9c 4118 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4119 root_extent_list)
4120 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4121 spin_unlock(&root->ordered_extent_lock);
4122}
4123
4124static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4125{
4126 struct btrfs_root *root;
4127 struct list_head splice;
4128
4129 INIT_LIST_HEAD(&splice);
4130
4131 spin_lock(&fs_info->ordered_root_lock);
4132 list_splice_init(&fs_info->ordered_roots, &splice);
4133 while (!list_empty(&splice)) {
4134 root = list_first_entry(&splice, struct btrfs_root,
4135 ordered_root);
1de2cfde
JB
4136 list_move_tail(&root->ordered_root,
4137 &fs_info->ordered_roots);
199c2a9c 4138
2a85d9ca 4139 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4140 btrfs_destroy_ordered_extents(root);
4141
2a85d9ca
LB
4142 cond_resched();
4143 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4144 }
4145 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4146}
4147
35a3621b
SB
4148static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4149 struct btrfs_root *root)
acce952b 4150{
4151 struct rb_node *node;
4152 struct btrfs_delayed_ref_root *delayed_refs;
4153 struct btrfs_delayed_ref_node *ref;
4154 int ret = 0;
4155
4156 delayed_refs = &trans->delayed_refs;
4157
4158 spin_lock(&delayed_refs->lock);
d7df2c79 4159 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4160 spin_unlock(&delayed_refs->lock);
efe120a0 4161 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4162 return ret;
4163 }
4164
d7df2c79
JB
4165 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4166 struct btrfs_delayed_ref_head *head;
c6fc2454 4167 struct btrfs_delayed_ref_node *tmp;
e78417d1 4168 bool pin_bytes = false;
acce952b 4169
d7df2c79
JB
4170 head = rb_entry(node, struct btrfs_delayed_ref_head,
4171 href_node);
4172 if (!mutex_trylock(&head->mutex)) {
4173 atomic_inc(&head->node.refs);
4174 spin_unlock(&delayed_refs->lock);
eb12db69 4175
d7df2c79 4176 mutex_lock(&head->mutex);
e78417d1 4177 mutex_unlock(&head->mutex);
d7df2c79
JB
4178 btrfs_put_delayed_ref(&head->node);
4179 spin_lock(&delayed_refs->lock);
4180 continue;
4181 }
4182 spin_lock(&head->lock);
c6fc2454
QW
4183 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4184 list) {
d7df2c79 4185 ref->in_tree = 0;
c6fc2454 4186 list_del(&ref->list);
d7df2c79
JB
4187 atomic_dec(&delayed_refs->num_entries);
4188 btrfs_put_delayed_ref(ref);
e78417d1 4189 }
d7df2c79
JB
4190 if (head->must_insert_reserved)
4191 pin_bytes = true;
4192 btrfs_free_delayed_extent_op(head->extent_op);
4193 delayed_refs->num_heads--;
4194 if (head->processing == 0)
4195 delayed_refs->num_heads_ready--;
4196 atomic_dec(&delayed_refs->num_entries);
4197 head->node.in_tree = 0;
4198 rb_erase(&head->href_node, &delayed_refs->href_root);
4199 spin_unlock(&head->lock);
4200 spin_unlock(&delayed_refs->lock);
4201 mutex_unlock(&head->mutex);
acce952b 4202
d7df2c79
JB
4203 if (pin_bytes)
4204 btrfs_pin_extent(root, head->node.bytenr,
4205 head->node.num_bytes, 1);
4206 btrfs_put_delayed_ref(&head->node);
acce952b 4207 cond_resched();
4208 spin_lock(&delayed_refs->lock);
4209 }
4210
4211 spin_unlock(&delayed_refs->lock);
4212
4213 return ret;
4214}
4215
143bede5 4216static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4217{
4218 struct btrfs_inode *btrfs_inode;
4219 struct list_head splice;
4220
4221 INIT_LIST_HEAD(&splice);
4222
eb73c1b7
MX
4223 spin_lock(&root->delalloc_lock);
4224 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4225
4226 while (!list_empty(&splice)) {
eb73c1b7
MX
4227 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4228 delalloc_inodes);
acce952b 4229
4230 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4231 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4232 &btrfs_inode->runtime_flags);
eb73c1b7 4233 spin_unlock(&root->delalloc_lock);
acce952b 4234
4235 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4236
eb73c1b7 4237 spin_lock(&root->delalloc_lock);
acce952b 4238 }
4239
eb73c1b7
MX
4240 spin_unlock(&root->delalloc_lock);
4241}
4242
4243static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4244{
4245 struct btrfs_root *root;
4246 struct list_head splice;
4247
4248 INIT_LIST_HEAD(&splice);
4249
4250 spin_lock(&fs_info->delalloc_root_lock);
4251 list_splice_init(&fs_info->delalloc_roots, &splice);
4252 while (!list_empty(&splice)) {
4253 root = list_first_entry(&splice, struct btrfs_root,
4254 delalloc_root);
4255 list_del_init(&root->delalloc_root);
4256 root = btrfs_grab_fs_root(root);
4257 BUG_ON(!root);
4258 spin_unlock(&fs_info->delalloc_root_lock);
4259
4260 btrfs_destroy_delalloc_inodes(root);
4261 btrfs_put_fs_root(root);
4262
4263 spin_lock(&fs_info->delalloc_root_lock);
4264 }
4265 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4266}
4267
4268static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4269 struct extent_io_tree *dirty_pages,
4270 int mark)
4271{
4272 int ret;
acce952b 4273 struct extent_buffer *eb;
4274 u64 start = 0;
4275 u64 end;
acce952b 4276
4277 while (1) {
4278 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4279 mark, NULL);
acce952b 4280 if (ret)
4281 break;
4282
4283 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4284 while (start <= end) {
01d58472 4285 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4286 start += root->nodesize;
fd8b2b61 4287 if (!eb)
acce952b 4288 continue;
fd8b2b61 4289 wait_on_extent_buffer_writeback(eb);
acce952b 4290
fd8b2b61
JB
4291 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4292 &eb->bflags))
4293 clear_extent_buffer_dirty(eb);
4294 free_extent_buffer_stale(eb);
acce952b 4295 }
4296 }
4297
4298 return ret;
4299}
4300
4301static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4302 struct extent_io_tree *pinned_extents)
4303{
4304 struct extent_io_tree *unpin;
4305 u64 start;
4306 u64 end;
4307 int ret;
ed0eaa14 4308 bool loop = true;
acce952b 4309
4310 unpin = pinned_extents;
ed0eaa14 4311again:
acce952b 4312 while (1) {
4313 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4314 EXTENT_DIRTY, NULL);
acce952b 4315 if (ret)
4316 break;
4317
acce952b 4318 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4319 btrfs_error_unpin_extent_range(root, start, end);
4320 cond_resched();
4321 }
4322
ed0eaa14
LB
4323 if (loop) {
4324 if (unpin == &root->fs_info->freed_extents[0])
4325 unpin = &root->fs_info->freed_extents[1];
4326 else
4327 unpin = &root->fs_info->freed_extents[0];
4328 loop = false;
4329 goto again;
4330 }
4331
acce952b 4332 return 0;
4333}
4334
49b25e05
JM
4335void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4336 struct btrfs_root *root)
4337{
4338 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4339
4a9d8bde 4340 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4341 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4342
4a9d8bde 4343 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4344 wake_up(&root->fs_info->transaction_wait);
49b25e05 4345
67cde344
MX
4346 btrfs_destroy_delayed_inodes(root);
4347 btrfs_assert_delayed_root_empty(root);
49b25e05 4348
49b25e05
JM
4349 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4350 EXTENT_DIRTY);
6e841e32
LB
4351 btrfs_destroy_pinned_extent(root,
4352 root->fs_info->pinned_extents);
49b25e05 4353
4a9d8bde
MX
4354 cur_trans->state =TRANS_STATE_COMPLETED;
4355 wake_up(&cur_trans->commit_wait);
4356
49b25e05
JM
4357 /*
4358 memset(cur_trans, 0, sizeof(*cur_trans));
4359 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4360 */
4361}
4362
48a3b636 4363static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4364{
4365 struct btrfs_transaction *t;
acce952b 4366
acce952b 4367 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4368
a4abeea4 4369 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4370 while (!list_empty(&root->fs_info->trans_list)) {
4371 t = list_first_entry(&root->fs_info->trans_list,
4372 struct btrfs_transaction, list);
4373 if (t->state >= TRANS_STATE_COMMIT_START) {
4374 atomic_inc(&t->use_count);
4375 spin_unlock(&root->fs_info->trans_lock);
4376 btrfs_wait_for_commit(root, t->transid);
4377 btrfs_put_transaction(t);
4378 spin_lock(&root->fs_info->trans_lock);
4379 continue;
4380 }
4381 if (t == root->fs_info->running_transaction) {
4382 t->state = TRANS_STATE_COMMIT_DOING;
4383 spin_unlock(&root->fs_info->trans_lock);
4384 /*
4385 * We wait for 0 num_writers since we don't hold a trans
4386 * handle open currently for this transaction.
4387 */
4388 wait_event(t->writer_wait,
4389 atomic_read(&t->num_writers) == 0);
4390 } else {
4391 spin_unlock(&root->fs_info->trans_lock);
4392 }
4393 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4394
724e2315
JB
4395 spin_lock(&root->fs_info->trans_lock);
4396 if (t == root->fs_info->running_transaction)
4397 root->fs_info->running_transaction = NULL;
acce952b 4398 list_del_init(&t->list);
724e2315 4399 spin_unlock(&root->fs_info->trans_lock);
acce952b 4400
724e2315
JB
4401 btrfs_put_transaction(t);
4402 trace_btrfs_transaction_commit(root);
4403 spin_lock(&root->fs_info->trans_lock);
4404 }
4405 spin_unlock(&root->fs_info->trans_lock);
4406 btrfs_destroy_all_ordered_extents(root->fs_info);
4407 btrfs_destroy_delayed_inodes(root);
4408 btrfs_assert_delayed_root_empty(root);
4409 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4410 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4411 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4412
4413 return 0;
4414}
4415
e8c9f186 4416static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4417 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4418 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4419 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4420 /* note we're sharing with inode.c for the merge bio hook */
4421 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4422};