percpu_counter: make percpu_counters_lock irq-safe
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
fcebe456 52#include "qgroup.h"
eb60ceac 53
de0022b9
JB
54#ifdef CONFIG_X86
55#include <asm/cpufeature.h>
56#endif
57
d1310b2e 58static struct extent_io_ops btree_extent_io_ops;
8b712842 59static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 60static void free_fs_root(struct btrfs_root *root);
fcd1f065 61static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 62 int read_only);
569e0f35
JB
63static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
67 struct btrfs_root *root);
143bede5 68static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 69static int btrfs_destroy_marked_extents(struct btrfs_root *root,
70 struct extent_io_tree *dirty_pages,
71 int mark);
72static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
73 struct extent_io_tree *pinned_extents);
48a3b636
ES
74static int btrfs_cleanup_transaction(struct btrfs_root *root);
75static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 76
d352ac68
CM
77/*
78 * end_io_wq structs are used to do processing in task context when an IO is
79 * complete. This is used during reads to verify checksums, and it is used
80 * by writes to insert metadata for new file extents after IO is complete.
81 */
ce9adaa5
CM
82struct end_io_wq {
83 struct bio *bio;
84 bio_end_io_t *end_io;
85 void *private;
86 struct btrfs_fs_info *info;
87 int error;
22c59948 88 int metadata;
ce9adaa5 89 struct list_head list;
8b712842 90 struct btrfs_work work;
ce9adaa5 91};
0da5468f 92
d352ac68
CM
93/*
94 * async submit bios are used to offload expensive checksumming
95 * onto the worker threads. They checksum file and metadata bios
96 * just before they are sent down the IO stack.
97 */
44b8bd7e
CM
98struct async_submit_bio {
99 struct inode *inode;
100 struct bio *bio;
101 struct list_head list;
4a69a410
CM
102 extent_submit_bio_hook_t *submit_bio_start;
103 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
104 int rw;
105 int mirror_num;
c8b97818 106 unsigned long bio_flags;
eaf25d93
CM
107 /*
108 * bio_offset is optional, can be used if the pages in the bio
109 * can't tell us where in the file the bio should go
110 */
111 u64 bio_offset;
8b712842 112 struct btrfs_work work;
79787eaa 113 int error;
44b8bd7e
CM
114};
115
85d4e461
CM
116/*
117 * Lockdep class keys for extent_buffer->lock's in this root. For a given
118 * eb, the lockdep key is determined by the btrfs_root it belongs to and
119 * the level the eb occupies in the tree.
120 *
121 * Different roots are used for different purposes and may nest inside each
122 * other and they require separate keysets. As lockdep keys should be
123 * static, assign keysets according to the purpose of the root as indicated
124 * by btrfs_root->objectid. This ensures that all special purpose roots
125 * have separate keysets.
4008c04a 126 *
85d4e461
CM
127 * Lock-nesting across peer nodes is always done with the immediate parent
128 * node locked thus preventing deadlock. As lockdep doesn't know this, use
129 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 130 *
85d4e461
CM
131 * The key is set by the readpage_end_io_hook after the buffer has passed
132 * csum validation but before the pages are unlocked. It is also set by
133 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 134 *
85d4e461
CM
135 * We also add a check to make sure the highest level of the tree is the
136 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
137 * needs update as well.
4008c04a
CM
138 */
139#ifdef CONFIG_DEBUG_LOCK_ALLOC
140# if BTRFS_MAX_LEVEL != 8
141# error
142# endif
85d4e461
CM
143
144static struct btrfs_lockdep_keyset {
145 u64 id; /* root objectid */
146 const char *name_stem; /* lock name stem */
147 char names[BTRFS_MAX_LEVEL + 1][20];
148 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
149} btrfs_lockdep_keysets[] = {
150 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
151 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
152 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
153 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
154 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
155 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 156 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
157 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
158 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
159 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 160 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 161 { .id = 0, .name_stem = "tree" },
4008c04a 162};
85d4e461
CM
163
164void __init btrfs_init_lockdep(void)
165{
166 int i, j;
167
168 /* initialize lockdep class names */
169 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
170 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
171
172 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
173 snprintf(ks->names[j], sizeof(ks->names[j]),
174 "btrfs-%s-%02d", ks->name_stem, j);
175 }
176}
177
178void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
179 int level)
180{
181 struct btrfs_lockdep_keyset *ks;
182
183 BUG_ON(level >= ARRAY_SIZE(ks->keys));
184
185 /* find the matching keyset, id 0 is the default entry */
186 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
187 if (ks->id == objectid)
188 break;
189
190 lockdep_set_class_and_name(&eb->lock,
191 &ks->keys[level], ks->names[level]);
192}
193
4008c04a
CM
194#endif
195
d352ac68
CM
196/*
197 * extents on the btree inode are pretty simple, there's one extent
198 * that covers the entire device
199 */
b2950863 200static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 201 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 202 int create)
7eccb903 203{
5f39d397
CM
204 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
205 struct extent_map *em;
206 int ret;
207
890871be 208 read_lock(&em_tree->lock);
d1310b2e 209 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
210 if (em) {
211 em->bdev =
212 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 213 read_unlock(&em_tree->lock);
5f39d397 214 goto out;
a061fc8d 215 }
890871be 216 read_unlock(&em_tree->lock);
7b13b7b1 217
172ddd60 218 em = alloc_extent_map();
5f39d397
CM
219 if (!em) {
220 em = ERR_PTR(-ENOMEM);
221 goto out;
222 }
223 em->start = 0;
0afbaf8c 224 em->len = (u64)-1;
c8b97818 225 em->block_len = (u64)-1;
5f39d397 226 em->block_start = 0;
a061fc8d 227 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 228
890871be 229 write_lock(&em_tree->lock);
09a2a8f9 230 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
231 if (ret == -EEXIST) {
232 free_extent_map(em);
7b13b7b1 233 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 234 if (!em)
0433f20d 235 em = ERR_PTR(-EIO);
5f39d397 236 } else if (ret) {
7b13b7b1 237 free_extent_map(em);
0433f20d 238 em = ERR_PTR(ret);
5f39d397 239 }
890871be 240 write_unlock(&em_tree->lock);
7b13b7b1 241
5f39d397
CM
242out:
243 return em;
7eccb903
CM
244}
245
b0496686 246u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 247{
0b947aff 248 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
249}
250
251void btrfs_csum_final(u32 crc, char *result)
252{
7e75bf3f 253 put_unaligned_le32(~crc, result);
19c00ddc
CM
254}
255
d352ac68
CM
256/*
257 * compute the csum for a btree block, and either verify it or write it
258 * into the csum field of the block.
259 */
19c00ddc
CM
260static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
261 int verify)
262{
6c41761f 263 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 264 char *result = NULL;
19c00ddc
CM
265 unsigned long len;
266 unsigned long cur_len;
267 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
268 char *kaddr;
269 unsigned long map_start;
270 unsigned long map_len;
271 int err;
272 u32 crc = ~(u32)0;
607d432d 273 unsigned long inline_result;
19c00ddc
CM
274
275 len = buf->len - offset;
d397712b 276 while (len > 0) {
19c00ddc 277 err = map_private_extent_buffer(buf, offset, 32,
a6591715 278 &kaddr, &map_start, &map_len);
d397712b 279 if (err)
19c00ddc 280 return 1;
19c00ddc 281 cur_len = min(len, map_len - (offset - map_start));
b0496686 282 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
283 crc, cur_len);
284 len -= cur_len;
285 offset += cur_len;
19c00ddc 286 }
607d432d
JB
287 if (csum_size > sizeof(inline_result)) {
288 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
289 if (!result)
290 return 1;
291 } else {
292 result = (char *)&inline_result;
293 }
294
19c00ddc
CM
295 btrfs_csum_final(crc, result);
296
297 if (verify) {
607d432d 298 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
299 u32 val;
300 u32 found = 0;
607d432d 301 memcpy(&found, result, csum_size);
e4204ded 302
607d432d 303 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
304 printk_ratelimited(KERN_INFO
305 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
306 "level %d\n",
307 root->fs_info->sb->s_id, buf->start,
308 val, found, btrfs_header_level(buf));
607d432d
JB
309 if (result != (char *)&inline_result)
310 kfree(result);
19c00ddc
CM
311 return 1;
312 }
313 } else {
607d432d 314 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 315 }
607d432d
JB
316 if (result != (char *)&inline_result)
317 kfree(result);
19c00ddc
CM
318 return 0;
319}
320
d352ac68
CM
321/*
322 * we can't consider a given block up to date unless the transid of the
323 * block matches the transid in the parent node's pointer. This is how we
324 * detect blocks that either didn't get written at all or got written
325 * in the wrong place.
326 */
1259ab75 327static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
328 struct extent_buffer *eb, u64 parent_transid,
329 int atomic)
1259ab75 330{
2ac55d41 331 struct extent_state *cached_state = NULL;
1259ab75 332 int ret;
a26e8c9f
JB
333 bool need_lock = (current->journal_info ==
334 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
335
336 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
337 return 0;
338
b9fab919
CM
339 if (atomic)
340 return -EAGAIN;
341
a26e8c9f
JB
342 if (need_lock) {
343 btrfs_tree_read_lock(eb);
344 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
345 }
346
2ac55d41 347 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 348 0, &cached_state);
0b32f4bb 349 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
350 btrfs_header_generation(eb) == parent_transid) {
351 ret = 0;
352 goto out;
353 }
7a36ddec 354 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 355 "found %llu\n",
c1c9ff7c 356 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 357 ret = 1;
a26e8c9f
JB
358
359 /*
360 * Things reading via commit roots that don't have normal protection,
361 * like send, can have a really old block in cache that may point at a
362 * block that has been free'd and re-allocated. So don't clear uptodate
363 * if we find an eb that is under IO (dirty/writeback) because we could
364 * end up reading in the stale data and then writing it back out and
365 * making everybody very sad.
366 */
367 if (!extent_buffer_under_io(eb))
368 clear_extent_buffer_uptodate(eb);
33958dc6 369out:
2ac55d41
JB
370 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
371 &cached_state, GFP_NOFS);
472b909f
JB
372 if (need_lock)
373 btrfs_tree_read_unlock_blocking(eb);
1259ab75 374 return ret;
1259ab75
CM
375}
376
1104a885
DS
377/*
378 * Return 0 if the superblock checksum type matches the checksum value of that
379 * algorithm. Pass the raw disk superblock data.
380 */
381static int btrfs_check_super_csum(char *raw_disk_sb)
382{
383 struct btrfs_super_block *disk_sb =
384 (struct btrfs_super_block *)raw_disk_sb;
385 u16 csum_type = btrfs_super_csum_type(disk_sb);
386 int ret = 0;
387
388 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
389 u32 crc = ~(u32)0;
390 const int csum_size = sizeof(crc);
391 char result[csum_size];
392
393 /*
394 * The super_block structure does not span the whole
395 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
396 * is filled with zeros and is included in the checkum.
397 */
398 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
399 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
400 btrfs_csum_final(crc, result);
401
402 if (memcmp(raw_disk_sb, result, csum_size))
403 ret = 1;
667e7d94
CM
404
405 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
406 printk(KERN_WARNING
407 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
408 ret = 0;
409 }
1104a885
DS
410 }
411
412 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 413 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
414 csum_type);
415 ret = 1;
416 }
417
418 return ret;
419}
420
d352ac68
CM
421/*
422 * helper to read a given tree block, doing retries as required when
423 * the checksums don't match and we have alternate mirrors to try.
424 */
f188591e
CM
425static int btree_read_extent_buffer_pages(struct btrfs_root *root,
426 struct extent_buffer *eb,
ca7a79ad 427 u64 start, u64 parent_transid)
f188591e
CM
428{
429 struct extent_io_tree *io_tree;
ea466794 430 int failed = 0;
f188591e
CM
431 int ret;
432 int num_copies = 0;
433 int mirror_num = 0;
ea466794 434 int failed_mirror = 0;
f188591e 435
a826d6dc 436 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
437 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
438 while (1) {
bb82ab88
AJ
439 ret = read_extent_buffer_pages(io_tree, eb, start,
440 WAIT_COMPLETE,
f188591e 441 btree_get_extent, mirror_num);
256dd1bb
SB
442 if (!ret) {
443 if (!verify_parent_transid(io_tree, eb,
b9fab919 444 parent_transid, 0))
256dd1bb
SB
445 break;
446 else
447 ret = -EIO;
448 }
d397712b 449
a826d6dc
JB
450 /*
451 * This buffer's crc is fine, but its contents are corrupted, so
452 * there is no reason to read the other copies, they won't be
453 * any less wrong.
454 */
455 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
456 break;
457
5d964051 458 num_copies = btrfs_num_copies(root->fs_info,
f188591e 459 eb->start, eb->len);
4235298e 460 if (num_copies == 1)
ea466794 461 break;
4235298e 462
5cf1ab56
JB
463 if (!failed_mirror) {
464 failed = 1;
465 failed_mirror = eb->read_mirror;
466 }
467
f188591e 468 mirror_num++;
ea466794
JB
469 if (mirror_num == failed_mirror)
470 mirror_num++;
471
4235298e 472 if (mirror_num > num_copies)
ea466794 473 break;
f188591e 474 }
ea466794 475
c0901581 476 if (failed && !ret && failed_mirror)
ea466794
JB
477 repair_eb_io_failure(root, eb, failed_mirror);
478
479 return ret;
f188591e 480}
19c00ddc 481
d352ac68 482/*
d397712b
CM
483 * checksum a dirty tree block before IO. This has extra checks to make sure
484 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 485 */
d397712b 486
b2950863 487static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 488{
4eee4fa4 489 u64 start = page_offset(page);
19c00ddc 490 u64 found_start;
19c00ddc 491 struct extent_buffer *eb;
f188591e 492
4f2de97a
JB
493 eb = (struct extent_buffer *)page->private;
494 if (page != eb->pages[0])
495 return 0;
19c00ddc 496 found_start = btrfs_header_bytenr(eb);
fae7f21c 497 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 498 return 0;
19c00ddc 499 csum_tree_block(root, eb, 0);
19c00ddc
CM
500 return 0;
501}
502
2b82032c
YZ
503static int check_tree_block_fsid(struct btrfs_root *root,
504 struct extent_buffer *eb)
505{
506 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
507 u8 fsid[BTRFS_UUID_SIZE];
508 int ret = 1;
509
0a4e5586 510 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
511 while (fs_devices) {
512 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
513 ret = 0;
514 break;
515 }
516 fs_devices = fs_devices->seed;
517 }
518 return ret;
519}
520
a826d6dc 521#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
522 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
523 "root=%llu, slot=%d", reason, \
c1c9ff7c 524 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
525
526static noinline int check_leaf(struct btrfs_root *root,
527 struct extent_buffer *leaf)
528{
529 struct btrfs_key key;
530 struct btrfs_key leaf_key;
531 u32 nritems = btrfs_header_nritems(leaf);
532 int slot;
533
534 if (nritems == 0)
535 return 0;
536
537 /* Check the 0 item */
538 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
539 BTRFS_LEAF_DATA_SIZE(root)) {
540 CORRUPT("invalid item offset size pair", leaf, root, 0);
541 return -EIO;
542 }
543
544 /*
545 * Check to make sure each items keys are in the correct order and their
546 * offsets make sense. We only have to loop through nritems-1 because
547 * we check the current slot against the next slot, which verifies the
548 * next slot's offset+size makes sense and that the current's slot
549 * offset is correct.
550 */
551 for (slot = 0; slot < nritems - 1; slot++) {
552 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
553 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
554
555 /* Make sure the keys are in the right order */
556 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
557 CORRUPT("bad key order", leaf, root, slot);
558 return -EIO;
559 }
560
561 /*
562 * Make sure the offset and ends are right, remember that the
563 * item data starts at the end of the leaf and grows towards the
564 * front.
565 */
566 if (btrfs_item_offset_nr(leaf, slot) !=
567 btrfs_item_end_nr(leaf, slot + 1)) {
568 CORRUPT("slot offset bad", leaf, root, slot);
569 return -EIO;
570 }
571
572 /*
573 * Check to make sure that we don't point outside of the leaf,
574 * just incase all the items are consistent to eachother, but
575 * all point outside of the leaf.
576 */
577 if (btrfs_item_end_nr(leaf, slot) >
578 BTRFS_LEAF_DATA_SIZE(root)) {
579 CORRUPT("slot end outside of leaf", leaf, root, slot);
580 return -EIO;
581 }
582 }
583
584 return 0;
585}
586
facc8a22
MX
587static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
588 u64 phy_offset, struct page *page,
589 u64 start, u64 end, int mirror)
ce9adaa5 590{
ce9adaa5
CM
591 u64 found_start;
592 int found_level;
ce9adaa5
CM
593 struct extent_buffer *eb;
594 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 595 int ret = 0;
727011e0 596 int reads_done;
ce9adaa5 597
ce9adaa5
CM
598 if (!page->private)
599 goto out;
d397712b 600
4f2de97a 601 eb = (struct extent_buffer *)page->private;
d397712b 602
0b32f4bb
JB
603 /* the pending IO might have been the only thing that kept this buffer
604 * in memory. Make sure we have a ref for all this other checks
605 */
606 extent_buffer_get(eb);
607
608 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
609 if (!reads_done)
610 goto err;
f188591e 611
5cf1ab56 612 eb->read_mirror = mirror;
ea466794
JB
613 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
614 ret = -EIO;
615 goto err;
616 }
617
ce9adaa5 618 found_start = btrfs_header_bytenr(eb);
727011e0 619 if (found_start != eb->start) {
efe120a0 620 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 621 "%llu %llu\n",
c1c9ff7c 622 found_start, eb->start);
f188591e 623 ret = -EIO;
ce9adaa5
CM
624 goto err;
625 }
2b82032c 626 if (check_tree_block_fsid(root, eb)) {
efe120a0 627 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 628 eb->start);
1259ab75
CM
629 ret = -EIO;
630 goto err;
631 }
ce9adaa5 632 found_level = btrfs_header_level(eb);
1c24c3ce 633 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 634 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
635 (int)btrfs_header_level(eb));
636 ret = -EIO;
637 goto err;
638 }
ce9adaa5 639
85d4e461
CM
640 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
641 eb, found_level);
4008c04a 642
ce9adaa5 643 ret = csum_tree_block(root, eb, 1);
a826d6dc 644 if (ret) {
f188591e 645 ret = -EIO;
a826d6dc
JB
646 goto err;
647 }
648
649 /*
650 * If this is a leaf block and it is corrupt, set the corrupt bit so
651 * that we don't try and read the other copies of this block, just
652 * return -EIO.
653 */
654 if (found_level == 0 && check_leaf(root, eb)) {
655 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
656 ret = -EIO;
657 }
ce9adaa5 658
0b32f4bb
JB
659 if (!ret)
660 set_extent_buffer_uptodate(eb);
ce9adaa5 661err:
79fb65a1
JB
662 if (reads_done &&
663 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 664 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 665
53b381b3
DW
666 if (ret) {
667 /*
668 * our io error hook is going to dec the io pages
669 * again, we have to make sure it has something
670 * to decrement
671 */
672 atomic_inc(&eb->io_pages);
0b32f4bb 673 clear_extent_buffer_uptodate(eb);
53b381b3 674 }
0b32f4bb 675 free_extent_buffer(eb);
ce9adaa5 676out:
f188591e 677 return ret;
ce9adaa5
CM
678}
679
ea466794 680static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 681{
4bb31e92
AJ
682 struct extent_buffer *eb;
683 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
684
4f2de97a 685 eb = (struct extent_buffer *)page->private;
ea466794 686 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 687 eb->read_mirror = failed_mirror;
53b381b3 688 atomic_dec(&eb->io_pages);
ea466794 689 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 690 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
691 return -EIO; /* we fixed nothing */
692}
693
ce9adaa5 694static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
695{
696 struct end_io_wq *end_io_wq = bio->bi_private;
697 struct btrfs_fs_info *fs_info;
ce9adaa5 698
ce9adaa5 699 fs_info = end_io_wq->info;
ce9adaa5 700 end_io_wq->error = err;
fccb5d86 701 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
d20f7043 702
7b6d91da 703 if (bio->bi_rw & REQ_WRITE) {
53b381b3 704 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
fccb5d86
QW
705 btrfs_queue_work(fs_info->endio_meta_write_workers,
706 &end_io_wq->work);
53b381b3 707 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
fccb5d86
QW
708 btrfs_queue_work(fs_info->endio_freespace_worker,
709 &end_io_wq->work);
53b381b3 710 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
711 btrfs_queue_work(fs_info->endio_raid56_workers,
712 &end_io_wq->work);
cad321ad 713 else
fccb5d86
QW
714 btrfs_queue_work(fs_info->endio_write_workers,
715 &end_io_wq->work);
d20f7043 716 } else {
53b381b3 717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
718 btrfs_queue_work(fs_info->endio_raid56_workers,
719 &end_io_wq->work);
53b381b3 720 else if (end_io_wq->metadata)
fccb5d86
QW
721 btrfs_queue_work(fs_info->endio_meta_workers,
722 &end_io_wq->work);
d20f7043 723 else
fccb5d86
QW
724 btrfs_queue_work(fs_info->endio_workers,
725 &end_io_wq->work);
d20f7043 726 }
ce9adaa5
CM
727}
728
0cb59c99
JB
729/*
730 * For the metadata arg you want
731 *
732 * 0 - if data
733 * 1 - if normal metadta
734 * 2 - if writing to the free space cache area
53b381b3 735 * 3 - raid parity work
0cb59c99 736 */
22c59948
CM
737int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
738 int metadata)
0b86a832 739{
ce9adaa5 740 struct end_io_wq *end_io_wq;
ce9adaa5
CM
741 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
742 if (!end_io_wq)
743 return -ENOMEM;
744
745 end_io_wq->private = bio->bi_private;
746 end_io_wq->end_io = bio->bi_end_io;
22c59948 747 end_io_wq->info = info;
ce9adaa5
CM
748 end_io_wq->error = 0;
749 end_io_wq->bio = bio;
22c59948 750 end_io_wq->metadata = metadata;
ce9adaa5
CM
751
752 bio->bi_private = end_io_wq;
753 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
754 return 0;
755}
756
b64a2851 757unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 758{
4854ddd0 759 unsigned long limit = min_t(unsigned long,
5cdc7ad3 760 info->thread_pool_size,
4854ddd0
CM
761 info->fs_devices->open_devices);
762 return 256 * limit;
763}
0986fe9e 764
4a69a410
CM
765static void run_one_async_start(struct btrfs_work *work)
766{
4a69a410 767 struct async_submit_bio *async;
79787eaa 768 int ret;
4a69a410
CM
769
770 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
771 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
772 async->mirror_num, async->bio_flags,
773 async->bio_offset);
774 if (ret)
775 async->error = ret;
4a69a410
CM
776}
777
778static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
779{
780 struct btrfs_fs_info *fs_info;
781 struct async_submit_bio *async;
4854ddd0 782 int limit;
8b712842
CM
783
784 async = container_of(work, struct async_submit_bio, work);
785 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 786
b64a2851 787 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
788 limit = limit * 2 / 3;
789
66657b31 790 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 791 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
792 wake_up(&fs_info->async_submit_wait);
793
79787eaa
JM
794 /* If an error occured we just want to clean up the bio and move on */
795 if (async->error) {
796 bio_endio(async->bio, async->error);
797 return;
798 }
799
4a69a410 800 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
801 async->mirror_num, async->bio_flags,
802 async->bio_offset);
4a69a410
CM
803}
804
805static void run_one_async_free(struct btrfs_work *work)
806{
807 struct async_submit_bio *async;
808
809 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
810 kfree(async);
811}
812
44b8bd7e
CM
813int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
814 int rw, struct bio *bio, int mirror_num,
c8b97818 815 unsigned long bio_flags,
eaf25d93 816 u64 bio_offset,
4a69a410
CM
817 extent_submit_bio_hook_t *submit_bio_start,
818 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
819{
820 struct async_submit_bio *async;
821
822 async = kmalloc(sizeof(*async), GFP_NOFS);
823 if (!async)
824 return -ENOMEM;
825
826 async->inode = inode;
827 async->rw = rw;
828 async->bio = bio;
829 async->mirror_num = mirror_num;
4a69a410
CM
830 async->submit_bio_start = submit_bio_start;
831 async->submit_bio_done = submit_bio_done;
832
5cdc7ad3
QW
833 btrfs_init_work(&async->work, run_one_async_start,
834 run_one_async_done, run_one_async_free);
4a69a410 835
c8b97818 836 async->bio_flags = bio_flags;
eaf25d93 837 async->bio_offset = bio_offset;
8c8bee1d 838
79787eaa
JM
839 async->error = 0;
840
cb03c743 841 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 842
7b6d91da 843 if (rw & REQ_SYNC)
5cdc7ad3 844 btrfs_set_work_high_priority(&async->work);
d313d7a3 845
5cdc7ad3 846 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 847
d397712b 848 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
849 atomic_read(&fs_info->nr_async_submits)) {
850 wait_event(fs_info->async_submit_wait,
851 (atomic_read(&fs_info->nr_async_submits) == 0));
852 }
853
44b8bd7e
CM
854 return 0;
855}
856
ce3ed71a
CM
857static int btree_csum_one_bio(struct bio *bio)
858{
2c30c71b 859 struct bio_vec *bvec;
ce3ed71a 860 struct btrfs_root *root;
2c30c71b 861 int i, ret = 0;
ce3ed71a 862
2c30c71b 863 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 864 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
865 ret = csum_dirty_buffer(root, bvec->bv_page);
866 if (ret)
867 break;
ce3ed71a 868 }
2c30c71b 869
79787eaa 870 return ret;
ce3ed71a
CM
871}
872
4a69a410
CM
873static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
eaf25d93
CM
875 unsigned long bio_flags,
876 u64 bio_offset)
22c59948 877{
8b712842
CM
878 /*
879 * when we're called for a write, we're already in the async
5443be45 880 * submission context. Just jump into btrfs_map_bio
8b712842 881 */
79787eaa 882 return btree_csum_one_bio(bio);
4a69a410 883}
22c59948 884
4a69a410 885static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
4a69a410 888{
61891923
SB
889 int ret;
890
8b712842 891 /*
4a69a410
CM
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
8b712842 894 */
61891923
SB
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
0b86a832
CM
899}
900
de0022b9
JB
901static int check_async_write(struct inode *inode, unsigned long bio_flags)
902{
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905#ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908#endif
909 return 1;
910}
911
44b8bd7e 912static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
44b8bd7e 915{
de0022b9 916 int async = check_async_write(inode, bio_flags);
cad321ad
CM
917 int ret;
918
7b6d91da 919 if (!(rw & REQ_WRITE)) {
4a69a410
CM
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
f3f266ab
CM
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
1d4284bd 926 if (ret)
61891923
SB
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
de0022b9
JB
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
61891923
SB
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
44b8bd7e 946 }
d313d7a3 947
61891923
SB
948 if (ret) {
949out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
44b8bd7e
CM
953}
954
3dd1462e 955#ifdef CONFIG_MIGRATION
784b4e29 956static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
784b4e29
CM
959{
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
a6bc32b8 973 return migrate_page(mapping, newpage, page, mode);
784b4e29 974}
3dd1462e 975#endif
784b4e29 976
0da5468f
CM
977
978static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980{
e2d84521
MX
981 struct btrfs_fs_info *fs_info;
982 int ret;
983
d8d5f3e1 984 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
985
986 if (wbc->for_kupdate)
987 return 0;
988
e2d84521 989 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 990 /* this is a bit racy, but that's ok */
e2d84521
MX
991 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
992 BTRFS_DIRTY_METADATA_THRESH);
993 if (ret < 0)
793955bc 994 return 0;
793955bc 995 }
0b32f4bb 996 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
997}
998
b2950863 999static int btree_readpage(struct file *file, struct page *page)
5f39d397 1000{
d1310b2e
CM
1001 struct extent_io_tree *tree;
1002 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1003 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1004}
22b0ebda 1005
70dec807 1006static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1007{
98509cfc 1008 if (PageWriteback(page) || PageDirty(page))
d397712b 1009 return 0;
0c4e538b 1010
f7a52a40 1011 return try_release_extent_buffer(page);
d98237b3
CM
1012}
1013
d47992f8
LC
1014static void btree_invalidatepage(struct page *page, unsigned int offset,
1015 unsigned int length)
d98237b3 1016{
d1310b2e
CM
1017 struct extent_io_tree *tree;
1018 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1019 extent_invalidatepage(tree, page, offset);
1020 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1021 if (PagePrivate(page)) {
efe120a0
FH
1022 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1023 "page private not zero on page %llu",
1024 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1025 ClearPagePrivate(page);
1026 set_page_private(page, 0);
1027 page_cache_release(page);
1028 }
d98237b3
CM
1029}
1030
0b32f4bb
JB
1031static int btree_set_page_dirty(struct page *page)
1032{
bb146eb2 1033#ifdef DEBUG
0b32f4bb
JB
1034 struct extent_buffer *eb;
1035
1036 BUG_ON(!PagePrivate(page));
1037 eb = (struct extent_buffer *)page->private;
1038 BUG_ON(!eb);
1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 BUG_ON(!atomic_read(&eb->refs));
1041 btrfs_assert_tree_locked(eb);
bb146eb2 1042#endif
0b32f4bb
JB
1043 return __set_page_dirty_nobuffers(page);
1044}
1045
7f09410b 1046static const struct address_space_operations btree_aops = {
d98237b3 1047 .readpage = btree_readpage,
0da5468f 1048 .writepages = btree_writepages,
5f39d397
CM
1049 .releasepage = btree_releasepage,
1050 .invalidatepage = btree_invalidatepage,
5a92bc88 1051#ifdef CONFIG_MIGRATION
784b4e29 1052 .migratepage = btree_migratepage,
5a92bc88 1053#endif
0b32f4bb 1054 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1055};
1056
ca7a79ad
CM
1057int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 u64 parent_transid)
090d1875 1059{
5f39d397
CM
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1062 int ret = 0;
090d1875 1063
db94535d 1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1065 if (!buf)
090d1875 1066 return 0;
d1310b2e 1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1068 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1069 free_extent_buffer(buf);
de428b63 1070 return ret;
090d1875
CM
1071}
1072
ab0fff03
AJ
1073int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 int mirror_num, struct extent_buffer **eb)
1075{
1076 struct extent_buffer *buf = NULL;
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 int ret;
1080
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 if (!buf)
1083 return 0;
1084
1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 btree_get_extent, mirror_num);
1089 if (ret) {
1090 free_extent_buffer(buf);
1091 return ret;
1092 }
1093
1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 free_extent_buffer(buf);
1096 return -EIO;
0b32f4bb 1097 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1098 *eb = buf;
1099 } else {
1100 free_extent_buffer(buf);
1101 }
1102 return 0;
1103}
1104
0999df54
CM
1105struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107{
f28491e0 1108 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1109}
1110
1111struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1112 u64 bytenr, u32 blocksize)
1113{
faa2dbf0
JB
1114#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1115 if (unlikely(test_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state)))
1116 return alloc_test_extent_buffer(root->fs_info, bytenr,
1117 blocksize);
1118#endif
f28491e0 1119 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1120}
1121
1122
e02119d5
CM
1123int btrfs_write_tree_block(struct extent_buffer *buf)
1124{
727011e0 1125 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1126 buf->start + buf->len - 1);
e02119d5
CM
1127}
1128
1129int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1130{
727011e0 1131 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1132 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1133}
1134
0999df54 1135struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1136 u32 blocksize, u64 parent_transid)
0999df54
CM
1137{
1138 struct extent_buffer *buf = NULL;
0999df54
CM
1139 int ret;
1140
0999df54
CM
1141 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1142 if (!buf)
1143 return NULL;
0999df54 1144
ca7a79ad 1145 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1146 if (ret) {
1147 free_extent_buffer(buf);
1148 return NULL;
1149 }
5f39d397 1150 return buf;
ce9adaa5 1151
eb60ceac
CM
1152}
1153
d5c13f92
JM
1154void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
ed2ff2cb 1156{
e2d84521
MX
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1158
55c69072 1159 if (btrfs_header_generation(buf) ==
e2d84521 1160 fs_info->running_transaction->transid) {
b9447ef8 1161 btrfs_assert_tree_locked(buf);
b4ce94de 1162
b9473439 1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165 -buf->len,
1166 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1170 }
925baedd 1171 }
5f39d397
CM
1172}
1173
8257b2dc
MX
1174static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1175{
1176 struct btrfs_subvolume_writers *writers;
1177 int ret;
1178
1179 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1180 if (!writers)
1181 return ERR_PTR(-ENOMEM);
1182
1183 ret = percpu_counter_init(&writers->counter, 0);
1184 if (ret < 0) {
1185 kfree(writers);
1186 return ERR_PTR(ret);
1187 }
1188
1189 init_waitqueue_head(&writers->wait);
1190 return writers;
1191}
1192
1193static void
1194btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1195{
1196 percpu_counter_destroy(&writers->counter);
1197 kfree(writers);
1198}
1199
143bede5
JM
1200static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1201 u32 stripesize, struct btrfs_root *root,
1202 struct btrfs_fs_info *fs_info,
1203 u64 objectid)
d97e63b6 1204{
cfaa7295 1205 root->node = NULL;
a28ec197 1206 root->commit_root = NULL;
db94535d
CM
1207 root->sectorsize = sectorsize;
1208 root->nodesize = nodesize;
1209 root->leafsize = leafsize;
87ee04eb 1210 root->stripesize = stripesize;
27cdeb70 1211 root->state = 0;
d68fc57b 1212 root->orphan_cleanup_state = 0;
0b86a832 1213
0f7d52f4
CM
1214 root->objectid = objectid;
1215 root->last_trans = 0;
13a8a7c8 1216 root->highest_objectid = 0;
eb73c1b7 1217 root->nr_delalloc_inodes = 0;
199c2a9c 1218 root->nr_ordered_extents = 0;
58176a96 1219 root->name = NULL;
6bef4d31 1220 root->inode_tree = RB_ROOT;
16cdcec7 1221 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1222 root->block_rsv = NULL;
d68fc57b 1223 root->orphan_block_rsv = NULL;
0b86a832
CM
1224
1225 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1226 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1227 INIT_LIST_HEAD(&root->delalloc_inodes);
1228 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1229 INIT_LIST_HEAD(&root->ordered_extents);
1230 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1231 INIT_LIST_HEAD(&root->logged_list[0]);
1232 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1233 spin_lock_init(&root->orphan_lock);
5d4f98a2 1234 spin_lock_init(&root->inode_lock);
eb73c1b7 1235 spin_lock_init(&root->delalloc_lock);
199c2a9c 1236 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1237 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1238 spin_lock_init(&root->log_extents_lock[0]);
1239 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1240 mutex_init(&root->objectid_mutex);
e02119d5 1241 mutex_init(&root->log_mutex);
31f3d255 1242 mutex_init(&root->ordered_extent_mutex);
573bfb72 1243 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1244 init_waitqueue_head(&root->log_writer_wait);
1245 init_waitqueue_head(&root->log_commit_wait[0]);
1246 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1247 INIT_LIST_HEAD(&root->log_ctxs[0]);
1248 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1249 atomic_set(&root->log_commit[0], 0);
1250 atomic_set(&root->log_commit[1], 0);
1251 atomic_set(&root->log_writers, 0);
2ecb7923 1252 atomic_set(&root->log_batch, 0);
8a35d95f 1253 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1254 atomic_set(&root->refs, 1);
8257b2dc 1255 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1256 root->log_transid = 0;
d1433deb 1257 root->log_transid_committed = -1;
257c62e1 1258 root->last_log_commit = 0;
06ea65a3
JB
1259 if (fs_info)
1260 extent_io_tree_init(&root->dirty_log_pages,
1261 fs_info->btree_inode->i_mapping);
017e5369 1262
3768f368
CM
1263 memset(&root->root_key, 0, sizeof(root->root_key));
1264 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1265 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1266 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1267 if (fs_info)
1268 root->defrag_trans_start = fs_info->generation;
1269 else
1270 root->defrag_trans_start = 0;
58176a96 1271 init_completion(&root->kobj_unregister);
4d775673 1272 root->root_key.objectid = objectid;
0ee5dc67 1273 root->anon_dev = 0;
8ea05e3a 1274
5f3ab90a 1275 spin_lock_init(&root->root_item_lock);
3768f368
CM
1276}
1277
f84a8bd6 1278static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1279{
1280 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1281 if (root)
1282 root->fs_info = fs_info;
1283 return root;
1284}
1285
06ea65a3
JB
1286#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1287/* Should only be used by the testing infrastructure */
1288struct btrfs_root *btrfs_alloc_dummy_root(void)
1289{
1290 struct btrfs_root *root;
1291
1292 root = btrfs_alloc_root(NULL);
1293 if (!root)
1294 return ERR_PTR(-ENOMEM);
1295 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
27cdeb70 1296 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1297 root->alloc_bytenr = 0;
06ea65a3
JB
1298
1299 return root;
1300}
1301#endif
1302
20897f5c
AJ
1303struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1304 struct btrfs_fs_info *fs_info,
1305 u64 objectid)
1306{
1307 struct extent_buffer *leaf;
1308 struct btrfs_root *tree_root = fs_info->tree_root;
1309 struct btrfs_root *root;
1310 struct btrfs_key key;
1311 int ret = 0;
6463fe58 1312 uuid_le uuid;
20897f5c
AJ
1313
1314 root = btrfs_alloc_root(fs_info);
1315 if (!root)
1316 return ERR_PTR(-ENOMEM);
1317
1318 __setup_root(tree_root->nodesize, tree_root->leafsize,
1319 tree_root->sectorsize, tree_root->stripesize,
1320 root, fs_info, objectid);
1321 root->root_key.objectid = objectid;
1322 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1323 root->root_key.offset = 0;
1324
1325 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1326 0, objectid, NULL, 0, 0, 0);
1327 if (IS_ERR(leaf)) {
1328 ret = PTR_ERR(leaf);
1dd05682 1329 leaf = NULL;
20897f5c
AJ
1330 goto fail;
1331 }
1332
20897f5c
AJ
1333 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1334 btrfs_set_header_bytenr(leaf, leaf->start);
1335 btrfs_set_header_generation(leaf, trans->transid);
1336 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1337 btrfs_set_header_owner(leaf, objectid);
1338 root->node = leaf;
1339
0a4e5586 1340 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1341 BTRFS_FSID_SIZE);
1342 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1343 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1344 BTRFS_UUID_SIZE);
1345 btrfs_mark_buffer_dirty(leaf);
1346
1347 root->commit_root = btrfs_root_node(root);
27cdeb70 1348 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1349
1350 root->root_item.flags = 0;
1351 root->root_item.byte_limit = 0;
1352 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353 btrfs_set_root_generation(&root->root_item, trans->transid);
1354 btrfs_set_root_level(&root->root_item, 0);
1355 btrfs_set_root_refs(&root->root_item, 1);
1356 btrfs_set_root_used(&root->root_item, leaf->len);
1357 btrfs_set_root_last_snapshot(&root->root_item, 0);
1358 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1359 uuid_le_gen(&uuid);
1360 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1361 root->root_item.drop_level = 0;
1362
1363 key.objectid = objectid;
1364 key.type = BTRFS_ROOT_ITEM_KEY;
1365 key.offset = 0;
1366 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367 if (ret)
1368 goto fail;
1369
1370 btrfs_tree_unlock(leaf);
1371
1dd05682
TI
1372 return root;
1373
20897f5c 1374fail:
1dd05682
TI
1375 if (leaf) {
1376 btrfs_tree_unlock(leaf);
59885b39 1377 free_extent_buffer(root->commit_root);
1dd05682
TI
1378 free_extent_buffer(leaf);
1379 }
1380 kfree(root);
20897f5c 1381
1dd05682 1382 return ERR_PTR(ret);
20897f5c
AJ
1383}
1384
7237f183
YZ
1385static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1386 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1387{
1388 struct btrfs_root *root;
1389 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1390 struct extent_buffer *leaf;
e02119d5 1391
6f07e42e 1392 root = btrfs_alloc_root(fs_info);
e02119d5 1393 if (!root)
7237f183 1394 return ERR_PTR(-ENOMEM);
e02119d5
CM
1395
1396 __setup_root(tree_root->nodesize, tree_root->leafsize,
1397 tree_root->sectorsize, tree_root->stripesize,
1398 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1399
1400 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1401 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1402 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1403
7237f183 1404 /*
27cdeb70
MX
1405 * DON'T set REF_COWS for log trees
1406 *
7237f183
YZ
1407 * log trees do not get reference counted because they go away
1408 * before a real commit is actually done. They do store pointers
1409 * to file data extents, and those reference counts still get
1410 * updated (along with back refs to the log tree).
1411 */
e02119d5 1412
5d4f98a2 1413 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1414 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1415 0, 0, 0);
7237f183
YZ
1416 if (IS_ERR(leaf)) {
1417 kfree(root);
1418 return ERR_CAST(leaf);
1419 }
e02119d5 1420
5d4f98a2
YZ
1421 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1422 btrfs_set_header_bytenr(leaf, leaf->start);
1423 btrfs_set_header_generation(leaf, trans->transid);
1424 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1425 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1426 root->node = leaf;
e02119d5
CM
1427
1428 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1429 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1430 btrfs_mark_buffer_dirty(root->node);
1431 btrfs_tree_unlock(root->node);
7237f183
YZ
1432 return root;
1433}
1434
1435int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1436 struct btrfs_fs_info *fs_info)
1437{
1438 struct btrfs_root *log_root;
1439
1440 log_root = alloc_log_tree(trans, fs_info);
1441 if (IS_ERR(log_root))
1442 return PTR_ERR(log_root);
1443 WARN_ON(fs_info->log_root_tree);
1444 fs_info->log_root_tree = log_root;
1445 return 0;
1446}
1447
1448int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1449 struct btrfs_root *root)
1450{
1451 struct btrfs_root *log_root;
1452 struct btrfs_inode_item *inode_item;
1453
1454 log_root = alloc_log_tree(trans, root->fs_info);
1455 if (IS_ERR(log_root))
1456 return PTR_ERR(log_root);
1457
1458 log_root->last_trans = trans->transid;
1459 log_root->root_key.offset = root->root_key.objectid;
1460
1461 inode_item = &log_root->root_item.inode;
3cae210f
QW
1462 btrfs_set_stack_inode_generation(inode_item, 1);
1463 btrfs_set_stack_inode_size(inode_item, 3);
1464 btrfs_set_stack_inode_nlink(inode_item, 1);
1465 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1466 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1467
5d4f98a2 1468 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1469
1470 WARN_ON(root->log_root);
1471 root->log_root = log_root;
1472 root->log_transid = 0;
d1433deb 1473 root->log_transid_committed = -1;
257c62e1 1474 root->last_log_commit = 0;
e02119d5
CM
1475 return 0;
1476}
1477
35a3621b
SB
1478static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1479 struct btrfs_key *key)
e02119d5
CM
1480{
1481 struct btrfs_root *root;
1482 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1483 struct btrfs_path *path;
84234f3a 1484 u64 generation;
db94535d 1485 u32 blocksize;
cb517eab 1486 int ret;
0f7d52f4 1487
cb517eab
MX
1488 path = btrfs_alloc_path();
1489 if (!path)
0f7d52f4 1490 return ERR_PTR(-ENOMEM);
cb517eab
MX
1491
1492 root = btrfs_alloc_root(fs_info);
1493 if (!root) {
1494 ret = -ENOMEM;
1495 goto alloc_fail;
0f7d52f4
CM
1496 }
1497
db94535d 1498 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1499 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1500 root, fs_info, key->objectid);
0f7d52f4 1501
cb517eab
MX
1502 ret = btrfs_find_root(tree_root, key, path,
1503 &root->root_item, &root->root_key);
0f7d52f4 1504 if (ret) {
13a8a7c8
YZ
1505 if (ret > 0)
1506 ret = -ENOENT;
cb517eab 1507 goto find_fail;
0f7d52f4 1508 }
13a8a7c8 1509
84234f3a 1510 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1511 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1512 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1513 blocksize, generation);
cb517eab
MX
1514 if (!root->node) {
1515 ret = -ENOMEM;
1516 goto find_fail;
1517 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1518 ret = -EIO;
1519 goto read_fail;
416bc658 1520 }
5d4f98a2 1521 root->commit_root = btrfs_root_node(root);
13a8a7c8 1522out:
cb517eab
MX
1523 btrfs_free_path(path);
1524 return root;
1525
1526read_fail:
1527 free_extent_buffer(root->node);
1528find_fail:
1529 kfree(root);
1530alloc_fail:
1531 root = ERR_PTR(ret);
1532 goto out;
1533}
1534
1535struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1536 struct btrfs_key *location)
1537{
1538 struct btrfs_root *root;
1539
1540 root = btrfs_read_tree_root(tree_root, location);
1541 if (IS_ERR(root))
1542 return root;
1543
1544 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1545 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1546 btrfs_check_and_init_root_item(&root->root_item);
1547 }
13a8a7c8 1548
5eda7b5e
CM
1549 return root;
1550}
1551
cb517eab
MX
1552int btrfs_init_fs_root(struct btrfs_root *root)
1553{
1554 int ret;
8257b2dc 1555 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1556
1557 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1558 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1559 GFP_NOFS);
1560 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1561 ret = -ENOMEM;
1562 goto fail;
1563 }
1564
8257b2dc
MX
1565 writers = btrfs_alloc_subvolume_writers();
1566 if (IS_ERR(writers)) {
1567 ret = PTR_ERR(writers);
1568 goto fail;
1569 }
1570 root->subv_writers = writers;
1571
cb517eab 1572 btrfs_init_free_ino_ctl(root);
cb517eab
MX
1573 spin_lock_init(&root->cache_lock);
1574 init_waitqueue_head(&root->cache_wait);
1575
1576 ret = get_anon_bdev(&root->anon_dev);
1577 if (ret)
8257b2dc 1578 goto free_writers;
cb517eab 1579 return 0;
8257b2dc
MX
1580
1581free_writers:
1582 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1583fail:
1584 kfree(root->free_ino_ctl);
1585 kfree(root->free_ino_pinned);
1586 return ret;
1587}
1588
171170c1
ST
1589static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1590 u64 root_id)
cb517eab
MX
1591{
1592 struct btrfs_root *root;
1593
1594 spin_lock(&fs_info->fs_roots_radix_lock);
1595 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1596 (unsigned long)root_id);
1597 spin_unlock(&fs_info->fs_roots_radix_lock);
1598 return root;
1599}
1600
1601int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1602 struct btrfs_root *root)
1603{
1604 int ret;
1605
1606 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1607 if (ret)
1608 return ret;
1609
1610 spin_lock(&fs_info->fs_roots_radix_lock);
1611 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1612 (unsigned long)root->root_key.objectid,
1613 root);
1614 if (ret == 0)
27cdeb70 1615 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1616 spin_unlock(&fs_info->fs_roots_radix_lock);
1617 radix_tree_preload_end();
1618
1619 return ret;
1620}
1621
c00869f1
MX
1622struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1623 struct btrfs_key *location,
1624 bool check_ref)
5eda7b5e
CM
1625{
1626 struct btrfs_root *root;
1627 int ret;
1628
edbd8d4e
CM
1629 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1630 return fs_info->tree_root;
1631 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1632 return fs_info->extent_root;
8f18cf13
CM
1633 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1634 return fs_info->chunk_root;
1635 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1636 return fs_info->dev_root;
0403e47e
YZ
1637 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1638 return fs_info->csum_root;
bcef60f2
AJ
1639 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1640 return fs_info->quota_root ? fs_info->quota_root :
1641 ERR_PTR(-ENOENT);
f7a81ea4
SB
1642 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1643 return fs_info->uuid_root ? fs_info->uuid_root :
1644 ERR_PTR(-ENOENT);
4df27c4d 1645again:
cb517eab 1646 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1647 if (root) {
c00869f1 1648 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1649 return ERR_PTR(-ENOENT);
5eda7b5e 1650 return root;
48475471 1651 }
5eda7b5e 1652
cb517eab 1653 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1654 if (IS_ERR(root))
1655 return root;
3394e160 1656
c00869f1 1657 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1658 ret = -ENOENT;
581bb050 1659 goto fail;
35a30d7c 1660 }
581bb050 1661
cb517eab 1662 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1663 if (ret)
1664 goto fail;
3394e160 1665
3f870c28
KN
1666 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1667 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1668 if (ret < 0)
1669 goto fail;
1670 if (ret == 0)
27cdeb70 1671 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1672
cb517eab 1673 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1674 if (ret) {
4df27c4d
YZ
1675 if (ret == -EEXIST) {
1676 free_fs_root(root);
1677 goto again;
1678 }
1679 goto fail;
0f7d52f4 1680 }
edbd8d4e 1681 return root;
4df27c4d
YZ
1682fail:
1683 free_fs_root(root);
1684 return ERR_PTR(ret);
edbd8d4e
CM
1685}
1686
04160088
CM
1687static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1688{
1689 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1690 int ret = 0;
04160088
CM
1691 struct btrfs_device *device;
1692 struct backing_dev_info *bdi;
b7967db7 1693
1f78160c
XG
1694 rcu_read_lock();
1695 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1696 if (!device->bdev)
1697 continue;
04160088
CM
1698 bdi = blk_get_backing_dev_info(device->bdev);
1699 if (bdi && bdi_congested(bdi, bdi_bits)) {
1700 ret = 1;
1701 break;
1702 }
1703 }
1f78160c 1704 rcu_read_unlock();
04160088
CM
1705 return ret;
1706}
1707
ad081f14
JA
1708/*
1709 * If this fails, caller must call bdi_destroy() to get rid of the
1710 * bdi again.
1711 */
04160088
CM
1712static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1713{
ad081f14
JA
1714 int err;
1715
1716 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1717 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1718 if (err)
1719 return err;
1720
4575c9cc 1721 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1722 bdi->congested_fn = btrfs_congested_fn;
1723 bdi->congested_data = info;
1724 return 0;
1725}
1726
8b712842
CM
1727/*
1728 * called by the kthread helper functions to finally call the bio end_io
1729 * functions. This is where read checksum verification actually happens
1730 */
1731static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1732{
ce9adaa5 1733 struct bio *bio;
8b712842 1734 struct end_io_wq *end_io_wq;
ce9adaa5 1735 int error;
ce9adaa5 1736
8b712842
CM
1737 end_io_wq = container_of(work, struct end_io_wq, work);
1738 bio = end_io_wq->bio;
ce9adaa5 1739
8b712842
CM
1740 error = end_io_wq->error;
1741 bio->bi_private = end_io_wq->private;
1742 bio->bi_end_io = end_io_wq->end_io;
1743 kfree(end_io_wq);
bc1e79ac 1744 bio_endio_nodec(bio, error);
44b8bd7e
CM
1745}
1746
a74a4b97
CM
1747static int cleaner_kthread(void *arg)
1748{
1749 struct btrfs_root *root = arg;
d0278245 1750 int again;
a74a4b97
CM
1751
1752 do {
d0278245 1753 again = 0;
a74a4b97 1754
d0278245 1755 /* Make the cleaner go to sleep early. */
babbf170 1756 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1757 goto sleep;
1758
1759 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1760 goto sleep;
1761
dc7f370c
MX
1762 /*
1763 * Avoid the problem that we change the status of the fs
1764 * during the above check and trylock.
1765 */
babbf170 1766 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1767 mutex_unlock(&root->fs_info->cleaner_mutex);
1768 goto sleep;
76dda93c 1769 }
a74a4b97 1770
d0278245
MX
1771 btrfs_run_delayed_iputs(root);
1772 again = btrfs_clean_one_deleted_snapshot(root);
1773 mutex_unlock(&root->fs_info->cleaner_mutex);
1774
1775 /*
05323cd1
MX
1776 * The defragger has dealt with the R/O remount and umount,
1777 * needn't do anything special here.
d0278245
MX
1778 */
1779 btrfs_run_defrag_inodes(root->fs_info);
1780sleep:
9d1a2a3a 1781 if (!try_to_freeze() && !again) {
a74a4b97 1782 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1783 if (!kthread_should_stop())
1784 schedule();
a74a4b97
CM
1785 __set_current_state(TASK_RUNNING);
1786 }
1787 } while (!kthread_should_stop());
1788 return 0;
1789}
1790
1791static int transaction_kthread(void *arg)
1792{
1793 struct btrfs_root *root = arg;
1794 struct btrfs_trans_handle *trans;
1795 struct btrfs_transaction *cur;
8929ecfa 1796 u64 transid;
a74a4b97
CM
1797 unsigned long now;
1798 unsigned long delay;
914b2007 1799 bool cannot_commit;
a74a4b97
CM
1800
1801 do {
914b2007 1802 cannot_commit = false;
8b87dc17 1803 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1804 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1805
a4abeea4 1806 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1807 cur = root->fs_info->running_transaction;
1808 if (!cur) {
a4abeea4 1809 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1810 goto sleep;
1811 }
31153d81 1812
a74a4b97 1813 now = get_seconds();
4a9d8bde 1814 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1815 (now < cur->start_time ||
1816 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1817 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1818 delay = HZ * 5;
1819 goto sleep;
1820 }
8929ecfa 1821 transid = cur->transid;
a4abeea4 1822 spin_unlock(&root->fs_info->trans_lock);
56bec294 1823
79787eaa 1824 /* If the file system is aborted, this will always fail. */
354aa0fb 1825 trans = btrfs_attach_transaction(root);
914b2007 1826 if (IS_ERR(trans)) {
354aa0fb
MX
1827 if (PTR_ERR(trans) != -ENOENT)
1828 cannot_commit = true;
79787eaa 1829 goto sleep;
914b2007 1830 }
8929ecfa 1831 if (transid == trans->transid) {
79787eaa 1832 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1833 } else {
1834 btrfs_end_transaction(trans, root);
1835 }
a74a4b97
CM
1836sleep:
1837 wake_up_process(root->fs_info->cleaner_kthread);
1838 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1839
4e121c06
JB
1840 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1841 &root->fs_info->fs_state)))
1842 btrfs_cleanup_transaction(root);
a0acae0e 1843 if (!try_to_freeze()) {
a74a4b97 1844 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1845 if (!kthread_should_stop() &&
914b2007
JK
1846 (!btrfs_transaction_blocked(root->fs_info) ||
1847 cannot_commit))
8929ecfa 1848 schedule_timeout(delay);
a74a4b97
CM
1849 __set_current_state(TASK_RUNNING);
1850 }
1851 } while (!kthread_should_stop());
1852 return 0;
1853}
1854
af31f5e5
CM
1855/*
1856 * this will find the highest generation in the array of
1857 * root backups. The index of the highest array is returned,
1858 * or -1 if we can't find anything.
1859 *
1860 * We check to make sure the array is valid by comparing the
1861 * generation of the latest root in the array with the generation
1862 * in the super block. If they don't match we pitch it.
1863 */
1864static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1865{
1866 u64 cur;
1867 int newest_index = -1;
1868 struct btrfs_root_backup *root_backup;
1869 int i;
1870
1871 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1872 root_backup = info->super_copy->super_roots + i;
1873 cur = btrfs_backup_tree_root_gen(root_backup);
1874 if (cur == newest_gen)
1875 newest_index = i;
1876 }
1877
1878 /* check to see if we actually wrapped around */
1879 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1880 root_backup = info->super_copy->super_roots;
1881 cur = btrfs_backup_tree_root_gen(root_backup);
1882 if (cur == newest_gen)
1883 newest_index = 0;
1884 }
1885 return newest_index;
1886}
1887
1888
1889/*
1890 * find the oldest backup so we know where to store new entries
1891 * in the backup array. This will set the backup_root_index
1892 * field in the fs_info struct
1893 */
1894static void find_oldest_super_backup(struct btrfs_fs_info *info,
1895 u64 newest_gen)
1896{
1897 int newest_index = -1;
1898
1899 newest_index = find_newest_super_backup(info, newest_gen);
1900 /* if there was garbage in there, just move along */
1901 if (newest_index == -1) {
1902 info->backup_root_index = 0;
1903 } else {
1904 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1905 }
1906}
1907
1908/*
1909 * copy all the root pointers into the super backup array.
1910 * this will bump the backup pointer by one when it is
1911 * done
1912 */
1913static void backup_super_roots(struct btrfs_fs_info *info)
1914{
1915 int next_backup;
1916 struct btrfs_root_backup *root_backup;
1917 int last_backup;
1918
1919 next_backup = info->backup_root_index;
1920 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1921 BTRFS_NUM_BACKUP_ROOTS;
1922
1923 /*
1924 * just overwrite the last backup if we're at the same generation
1925 * this happens only at umount
1926 */
1927 root_backup = info->super_for_commit->super_roots + last_backup;
1928 if (btrfs_backup_tree_root_gen(root_backup) ==
1929 btrfs_header_generation(info->tree_root->node))
1930 next_backup = last_backup;
1931
1932 root_backup = info->super_for_commit->super_roots + next_backup;
1933
1934 /*
1935 * make sure all of our padding and empty slots get zero filled
1936 * regardless of which ones we use today
1937 */
1938 memset(root_backup, 0, sizeof(*root_backup));
1939
1940 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1941
1942 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1943 btrfs_set_backup_tree_root_gen(root_backup,
1944 btrfs_header_generation(info->tree_root->node));
1945
1946 btrfs_set_backup_tree_root_level(root_backup,
1947 btrfs_header_level(info->tree_root->node));
1948
1949 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1950 btrfs_set_backup_chunk_root_gen(root_backup,
1951 btrfs_header_generation(info->chunk_root->node));
1952 btrfs_set_backup_chunk_root_level(root_backup,
1953 btrfs_header_level(info->chunk_root->node));
1954
1955 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1956 btrfs_set_backup_extent_root_gen(root_backup,
1957 btrfs_header_generation(info->extent_root->node));
1958 btrfs_set_backup_extent_root_level(root_backup,
1959 btrfs_header_level(info->extent_root->node));
1960
7c7e82a7
CM
1961 /*
1962 * we might commit during log recovery, which happens before we set
1963 * the fs_root. Make sure it is valid before we fill it in.
1964 */
1965 if (info->fs_root && info->fs_root->node) {
1966 btrfs_set_backup_fs_root(root_backup,
1967 info->fs_root->node->start);
1968 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1969 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1970 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1971 btrfs_header_level(info->fs_root->node));
7c7e82a7 1972 }
af31f5e5
CM
1973
1974 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1975 btrfs_set_backup_dev_root_gen(root_backup,
1976 btrfs_header_generation(info->dev_root->node));
1977 btrfs_set_backup_dev_root_level(root_backup,
1978 btrfs_header_level(info->dev_root->node));
1979
1980 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1981 btrfs_set_backup_csum_root_gen(root_backup,
1982 btrfs_header_generation(info->csum_root->node));
1983 btrfs_set_backup_csum_root_level(root_backup,
1984 btrfs_header_level(info->csum_root->node));
1985
1986 btrfs_set_backup_total_bytes(root_backup,
1987 btrfs_super_total_bytes(info->super_copy));
1988 btrfs_set_backup_bytes_used(root_backup,
1989 btrfs_super_bytes_used(info->super_copy));
1990 btrfs_set_backup_num_devices(root_backup,
1991 btrfs_super_num_devices(info->super_copy));
1992
1993 /*
1994 * if we don't copy this out to the super_copy, it won't get remembered
1995 * for the next commit
1996 */
1997 memcpy(&info->super_copy->super_roots,
1998 &info->super_for_commit->super_roots,
1999 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2000}
2001
2002/*
2003 * this copies info out of the root backup array and back into
2004 * the in-memory super block. It is meant to help iterate through
2005 * the array, so you send it the number of backups you've already
2006 * tried and the last backup index you used.
2007 *
2008 * this returns -1 when it has tried all the backups
2009 */
2010static noinline int next_root_backup(struct btrfs_fs_info *info,
2011 struct btrfs_super_block *super,
2012 int *num_backups_tried, int *backup_index)
2013{
2014 struct btrfs_root_backup *root_backup;
2015 int newest = *backup_index;
2016
2017 if (*num_backups_tried == 0) {
2018 u64 gen = btrfs_super_generation(super);
2019
2020 newest = find_newest_super_backup(info, gen);
2021 if (newest == -1)
2022 return -1;
2023
2024 *backup_index = newest;
2025 *num_backups_tried = 1;
2026 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2027 /* we've tried all the backups, all done */
2028 return -1;
2029 } else {
2030 /* jump to the next oldest backup */
2031 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2032 BTRFS_NUM_BACKUP_ROOTS;
2033 *backup_index = newest;
2034 *num_backups_tried += 1;
2035 }
2036 root_backup = super->super_roots + newest;
2037
2038 btrfs_set_super_generation(super,
2039 btrfs_backup_tree_root_gen(root_backup));
2040 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2041 btrfs_set_super_root_level(super,
2042 btrfs_backup_tree_root_level(root_backup));
2043 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2044
2045 /*
2046 * fixme: the total bytes and num_devices need to match or we should
2047 * need a fsck
2048 */
2049 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2050 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2051 return 0;
2052}
2053
7abadb64
LB
2054/* helper to cleanup workers */
2055static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2056{
dc6e3209 2057 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2058 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2059 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2060 btrfs_destroy_workqueue(fs_info->endio_workers);
2061 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2062 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2063 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2064 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2065 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2067 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2068 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2069 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2070 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2071 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2072 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2073 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2074}
2075
2e9f5954
R
2076static void free_root_extent_buffers(struct btrfs_root *root)
2077{
2078 if (root) {
2079 free_extent_buffer(root->node);
2080 free_extent_buffer(root->commit_root);
2081 root->node = NULL;
2082 root->commit_root = NULL;
2083 }
2084}
2085
af31f5e5
CM
2086/* helper to cleanup tree roots */
2087static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2088{
2e9f5954 2089 free_root_extent_buffers(info->tree_root);
655b09fe 2090
2e9f5954
R
2091 free_root_extent_buffers(info->dev_root);
2092 free_root_extent_buffers(info->extent_root);
2093 free_root_extent_buffers(info->csum_root);
2094 free_root_extent_buffers(info->quota_root);
2095 free_root_extent_buffers(info->uuid_root);
2096 if (chunk_root)
2097 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2098}
2099
faa2dbf0 2100void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2101{
2102 int ret;
2103 struct btrfs_root *gang[8];
2104 int i;
2105
2106 while (!list_empty(&fs_info->dead_roots)) {
2107 gang[0] = list_entry(fs_info->dead_roots.next,
2108 struct btrfs_root, root_list);
2109 list_del(&gang[0]->root_list);
2110
27cdeb70 2111 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2112 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2113 } else {
2114 free_extent_buffer(gang[0]->node);
2115 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2116 btrfs_put_fs_root(gang[0]);
171f6537
JB
2117 }
2118 }
2119
2120 while (1) {
2121 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2122 (void **)gang, 0,
2123 ARRAY_SIZE(gang));
2124 if (!ret)
2125 break;
2126 for (i = 0; i < ret; i++)
cb517eab 2127 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2128 }
1a4319cc
LB
2129
2130 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2131 btrfs_free_log_root_tree(NULL, fs_info);
2132 btrfs_destroy_pinned_extent(fs_info->tree_root,
2133 fs_info->pinned_extents);
2134 }
171f6537 2135}
af31f5e5 2136
ad2b2c80
AV
2137int open_ctree(struct super_block *sb,
2138 struct btrfs_fs_devices *fs_devices,
2139 char *options)
2e635a27 2140{
db94535d
CM
2141 u32 sectorsize;
2142 u32 nodesize;
2143 u32 leafsize;
2144 u32 blocksize;
87ee04eb 2145 u32 stripesize;
84234f3a 2146 u64 generation;
f2b636e8 2147 u64 features;
3de4586c 2148 struct btrfs_key location;
a061fc8d 2149 struct buffer_head *bh;
4d34b278 2150 struct btrfs_super_block *disk_super;
815745cf 2151 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2152 struct btrfs_root *tree_root;
4d34b278
ID
2153 struct btrfs_root *extent_root;
2154 struct btrfs_root *csum_root;
2155 struct btrfs_root *chunk_root;
2156 struct btrfs_root *dev_root;
bcef60f2 2157 struct btrfs_root *quota_root;
f7a81ea4 2158 struct btrfs_root *uuid_root;
e02119d5 2159 struct btrfs_root *log_tree_root;
eb60ceac 2160 int ret;
e58ca020 2161 int err = -EINVAL;
af31f5e5
CM
2162 int num_backups_tried = 0;
2163 int backup_index = 0;
5cdc7ad3
QW
2164 int max_active;
2165 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2166 bool create_uuid_tree;
2167 bool check_uuid_tree;
4543df7e 2168
f84a8bd6 2169 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2170 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2171 if (!tree_root || !chunk_root) {
39279cc3
CM
2172 err = -ENOMEM;
2173 goto fail;
2174 }
76dda93c
YZ
2175
2176 ret = init_srcu_struct(&fs_info->subvol_srcu);
2177 if (ret) {
2178 err = ret;
2179 goto fail;
2180 }
2181
2182 ret = setup_bdi(fs_info, &fs_info->bdi);
2183 if (ret) {
2184 err = ret;
2185 goto fail_srcu;
2186 }
2187
e2d84521
MX
2188 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2189 if (ret) {
2190 err = ret;
2191 goto fail_bdi;
2192 }
2193 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2194 (1 + ilog2(nr_cpu_ids));
2195
963d678b
MX
2196 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2197 if (ret) {
2198 err = ret;
2199 goto fail_dirty_metadata_bytes;
2200 }
2201
c404e0dc
MX
2202 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2203 if (ret) {
2204 err = ret;
2205 goto fail_delalloc_bytes;
2206 }
2207
76dda93c
YZ
2208 fs_info->btree_inode = new_inode(sb);
2209 if (!fs_info->btree_inode) {
2210 err = -ENOMEM;
c404e0dc 2211 goto fail_bio_counter;
76dda93c
YZ
2212 }
2213
a6591715 2214 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2215
76dda93c 2216 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2217 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2218 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2219 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2220 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2221 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2222 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2223 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2224 spin_lock_init(&fs_info->trans_lock);
76dda93c 2225 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2226 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2227 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2228 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2229 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2230 spin_lock_init(&fs_info->super_lock);
fcebe456 2231 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2232 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2233 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2234 mutex_init(&fs_info->reloc_mutex);
573bfb72 2235 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2236 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2237
58176a96 2238 init_completion(&fs_info->kobj_unregister);
0b86a832 2239 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2240 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2241 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2242 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2243 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2244 BTRFS_BLOCK_RSV_GLOBAL);
2245 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2246 BTRFS_BLOCK_RSV_DELALLOC);
2247 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2248 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2249 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2250 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2251 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2252 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2253 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2254 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2255 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2256 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2257 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2258 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2259 fs_info->sb = sb;
6f568d35 2260 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2261 fs_info->metadata_ratio = 0;
4cb5300b 2262 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2263 fs_info->free_chunk_space = 0;
f29021b2 2264 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2265 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2266 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2267 /* readahead state */
2268 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2269 spin_lock_init(&fs_info->reada_lock);
c8b97818 2270
b34b086c
CM
2271 fs_info->thread_pool_size = min_t(unsigned long,
2272 num_online_cpus() + 2, 8);
0afbaf8c 2273
199c2a9c
MX
2274 INIT_LIST_HEAD(&fs_info->ordered_roots);
2275 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2276 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2277 GFP_NOFS);
2278 if (!fs_info->delayed_root) {
2279 err = -ENOMEM;
2280 goto fail_iput;
2281 }
2282 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2283
a2de733c
AJ
2284 mutex_init(&fs_info->scrub_lock);
2285 atomic_set(&fs_info->scrubs_running, 0);
2286 atomic_set(&fs_info->scrub_pause_req, 0);
2287 atomic_set(&fs_info->scrubs_paused, 0);
2288 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2289 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2290 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2291 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2292#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2293 fs_info->check_integrity_print_mask = 0;
2294#endif
a2de733c 2295
c9e9f97b
ID
2296 spin_lock_init(&fs_info->balance_lock);
2297 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2298 atomic_set(&fs_info->balance_running, 0);
2299 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2300 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2301 fs_info->balance_ctl = NULL;
837d5b6e 2302 init_waitqueue_head(&fs_info->balance_wait_q);
21c7e756 2303 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2304
a061fc8d
CM
2305 sb->s_blocksize = 4096;
2306 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2307 sb->s_bdi = &fs_info->bdi;
a061fc8d 2308
76dda93c 2309 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2310 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2311 /*
2312 * we set the i_size on the btree inode to the max possible int.
2313 * the real end of the address space is determined by all of
2314 * the devices in the system
2315 */
2316 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2317 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2318 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2319
5d4f98a2 2320 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2321 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2322 fs_info->btree_inode->i_mapping);
0b32f4bb 2323 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2324 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2325
2326 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2327
76dda93c
YZ
2328 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2329 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2330 sizeof(struct btrfs_key));
72ac3c0d
JB
2331 set_bit(BTRFS_INODE_DUMMY,
2332 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2333 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2334
0f9dd46c 2335 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2336 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2337 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2338
11833d66 2339 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2340 fs_info->btree_inode->i_mapping);
11833d66 2341 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2342 fs_info->btree_inode->i_mapping);
11833d66 2343 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2344 fs_info->do_barriers = 1;
e18e4809 2345
39279cc3 2346
5a3f23d5 2347 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2348 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2349 mutex_init(&fs_info->tree_log_mutex);
925baedd 2350 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2351 mutex_init(&fs_info->transaction_kthread_mutex);
2352 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2353 mutex_init(&fs_info->volume_mutex);
9e351cc8 2354 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2355 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2356 init_rwsem(&fs_info->subvol_sem);
803b2f54 2357 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2358 fs_info->dev_replace.lock_owner = 0;
2359 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2360 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2361 mutex_init(&fs_info->dev_replace.lock_management_lock);
2362 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2363
416ac51d 2364 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2365 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d 2366 fs_info->qgroup_tree = RB_ROOT;
fcebe456 2367 fs_info->qgroup_op_tree = RB_ROOT;
416ac51d
AJ
2368 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2369 fs_info->qgroup_seq = 1;
2370 fs_info->quota_enabled = 0;
2371 fs_info->pending_quota_state = 0;
1e8f9158 2372 fs_info->qgroup_ulist = NULL;
2f232036 2373 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2374
fa9c0d79
CM
2375 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2376 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2377
e6dcd2dc 2378 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2379 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2380 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2381 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2382
53b381b3
DW
2383 ret = btrfs_alloc_stripe_hash_table(fs_info);
2384 if (ret) {
83c8266a 2385 err = ret;
53b381b3
DW
2386 goto fail_alloc;
2387 }
2388
0b86a832 2389 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2390 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2391
3c4bb26b 2392 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2393
2394 /*
2395 * Read super block and check the signature bytes only
2396 */
a512bbf8 2397 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2398 if (!bh) {
2399 err = -EINVAL;
16cdcec7 2400 goto fail_alloc;
20b45077 2401 }
39279cc3 2402
1104a885
DS
2403 /*
2404 * We want to check superblock checksum, the type is stored inside.
2405 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2406 */
2407 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2408 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2409 err = -EINVAL;
2410 goto fail_alloc;
2411 }
2412
2413 /*
2414 * super_copy is zeroed at allocation time and we never touch the
2415 * following bytes up to INFO_SIZE, the checksum is calculated from
2416 * the whole block of INFO_SIZE
2417 */
6c41761f
DS
2418 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2419 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2420 sizeof(*fs_info->super_for_commit));
a061fc8d 2421 brelse(bh);
5f39d397 2422
6c41761f 2423 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2424
1104a885
DS
2425 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2426 if (ret) {
efe120a0 2427 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2428 err = -EINVAL;
2429 goto fail_alloc;
2430 }
2431
6c41761f 2432 disk_super = fs_info->super_copy;
0f7d52f4 2433 if (!btrfs_super_root(disk_super))
16cdcec7 2434 goto fail_alloc;
0f7d52f4 2435
acce952b 2436 /* check FS state, whether FS is broken. */
87533c47
MX
2437 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2438 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2439
af31f5e5
CM
2440 /*
2441 * run through our array of backup supers and setup
2442 * our ring pointer to the oldest one
2443 */
2444 generation = btrfs_super_generation(disk_super);
2445 find_oldest_super_backup(fs_info, generation);
2446
75e7cb7f
LB
2447 /*
2448 * In the long term, we'll store the compression type in the super
2449 * block, and it'll be used for per file compression control.
2450 */
2451 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2452
2b82032c
YZ
2453 ret = btrfs_parse_options(tree_root, options);
2454 if (ret) {
2455 err = ret;
16cdcec7 2456 goto fail_alloc;
2b82032c 2457 }
dfe25020 2458
f2b636e8
JB
2459 features = btrfs_super_incompat_flags(disk_super) &
2460 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2461 if (features) {
2462 printk(KERN_ERR "BTRFS: couldn't mount because of "
2463 "unsupported optional features (%Lx).\n",
c1c9ff7c 2464 features);
f2b636e8 2465 err = -EINVAL;
16cdcec7 2466 goto fail_alloc;
f2b636e8
JB
2467 }
2468
727011e0
CM
2469 if (btrfs_super_leafsize(disk_super) !=
2470 btrfs_super_nodesize(disk_super)) {
2471 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472 "blocksizes don't match. node %d leaf %d\n",
2473 btrfs_super_nodesize(disk_super),
2474 btrfs_super_leafsize(disk_super));
2475 err = -EINVAL;
2476 goto fail_alloc;
2477 }
2478 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2479 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2480 "blocksize (%d) was too large\n",
2481 btrfs_super_leafsize(disk_super));
2482 err = -EINVAL;
2483 goto fail_alloc;
2484 }
2485
5d4f98a2 2486 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2487 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2488 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2489 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2490
3173a18f 2491 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2492 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2493
727011e0
CM
2494 /*
2495 * flag our filesystem as having big metadata blocks if
2496 * they are bigger than the page size
2497 */
2498 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2499 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2500 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2501 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2502 }
2503
bc3f116f
CM
2504 nodesize = btrfs_super_nodesize(disk_super);
2505 leafsize = btrfs_super_leafsize(disk_super);
2506 sectorsize = btrfs_super_sectorsize(disk_super);
2507 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2508 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2509 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2510
2511 /*
2512 * mixed block groups end up with duplicate but slightly offset
2513 * extent buffers for the same range. It leads to corruptions
2514 */
2515 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2516 (sectorsize != leafsize)) {
efe120a0 2517 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2518 "are not allowed for mixed block groups on %s\n",
2519 sb->s_id);
2520 goto fail_alloc;
2521 }
2522
ceda0864
MX
2523 /*
2524 * Needn't use the lock because there is no other task which will
2525 * update the flag.
2526 */
a6fa6fae 2527 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2528
f2b636e8
JB
2529 features = btrfs_super_compat_ro_flags(disk_super) &
2530 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2531 if (!(sb->s_flags & MS_RDONLY) && features) {
2532 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2533 "unsupported option features (%Lx).\n",
c1c9ff7c 2534 features);
f2b636e8 2535 err = -EINVAL;
16cdcec7 2536 goto fail_alloc;
f2b636e8 2537 }
61d92c32 2538
5cdc7ad3 2539 max_active = fs_info->thread_pool_size;
61d92c32 2540
5cdc7ad3
QW
2541 fs_info->workers =
2542 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2543 max_active, 16);
c8b97818 2544
afe3d242
QW
2545 fs_info->delalloc_workers =
2546 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2547
a44903ab
QW
2548 fs_info->flush_workers =
2549 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
8ccf6f19 2550
e66f0bb1
QW
2551 fs_info->caching_workers =
2552 btrfs_alloc_workqueue("cache", flags, max_active, 0);
61b49440 2553
a8c93d4e
QW
2554 /*
2555 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2556 * likely that bios will be send down in a sane order to the
2557 * devices
2558 */
a8c93d4e
QW
2559 fs_info->submit_workers =
2560 btrfs_alloc_workqueue("submit", flags,
2561 min_t(u64, fs_devices->num_devices,
2562 max_active), 64);
53863232 2563
dc6e3209
QW
2564 fs_info->fixup_workers =
2565 btrfs_alloc_workqueue("fixup", flags, 1, 0);
61b49440
CM
2566
2567 /*
2568 * endios are largely parallel and should have a very
2569 * low idle thresh
2570 */
fccb5d86
QW
2571 fs_info->endio_workers =
2572 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2573 fs_info->endio_meta_workers =
2574 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2575 fs_info->endio_meta_write_workers =
2576 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2577 fs_info->endio_raid56_workers =
2578 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2579 fs_info->rmw_workers =
2580 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2581 fs_info->endio_write_workers =
2582 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2583 fs_info->endio_freespace_worker =
2584 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2585 fs_info->delayed_workers =
2586 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2587 fs_info->readahead_workers =
2588 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2589 fs_info->qgroup_rescan_workers =
2590 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
a79b7d4b
CM
2591 fs_info->extent_workers =
2592 btrfs_alloc_workqueue("extent-refs", flags,
2593 min_t(u64, fs_devices->num_devices,
2594 max_active), 8);
61b49440 2595
a8c93d4e 2596 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2597 fs_info->submit_workers && fs_info->flush_workers &&
2598 fs_info->endio_workers && fs_info->endio_meta_workers &&
2599 fs_info->endio_meta_write_workers &&
2600 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2601 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2602 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0 2603 fs_info->fixup_workers && fs_info->delayed_workers &&
a79b7d4b 2604 fs_info->fixup_workers && fs_info->extent_workers &&
fc97fab0 2605 fs_info->qgroup_rescan_workers)) {
fed425c7 2606 err = -ENOMEM;
0dc3b84a
JB
2607 goto fail_sb_buffer;
2608 }
4543df7e 2609
4575c9cc 2610 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2611 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2612 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2613
db94535d
CM
2614 tree_root->nodesize = nodesize;
2615 tree_root->leafsize = leafsize;
2616 tree_root->sectorsize = sectorsize;
87ee04eb 2617 tree_root->stripesize = stripesize;
a061fc8d
CM
2618
2619 sb->s_blocksize = sectorsize;
2620 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2621
3cae210f 2622 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2623 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2624 goto fail_sb_buffer;
2625 }
19c00ddc 2626
8d082fb7 2627 if (sectorsize != PAGE_SIZE) {
efe120a0 2628 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2629 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2630 goto fail_sb_buffer;
2631 }
2632
925baedd 2633 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2634 ret = btrfs_read_sys_array(tree_root);
925baedd 2635 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2636 if (ret) {
efe120a0 2637 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2638 "array on %s\n", sb->s_id);
5d4f98a2 2639 goto fail_sb_buffer;
84eed90f 2640 }
0b86a832
CM
2641
2642 blocksize = btrfs_level_size(tree_root,
2643 btrfs_super_chunk_root_level(disk_super));
84234f3a 2644 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2645
2646 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2647 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2648
2649 chunk_root->node = read_tree_block(chunk_root,
2650 btrfs_super_chunk_root(disk_super),
84234f3a 2651 blocksize, generation);
416bc658
JB
2652 if (!chunk_root->node ||
2653 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2654 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2655 sb->s_id);
af31f5e5 2656 goto fail_tree_roots;
83121942 2657 }
5d4f98a2
YZ
2658 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2659 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2660
e17cade2 2661 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2662 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2663
0b86a832 2664 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2665 if (ret) {
efe120a0 2666 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2667 sb->s_id);
af31f5e5 2668 goto fail_tree_roots;
2b82032c 2669 }
0b86a832 2670
8dabb742
SB
2671 /*
2672 * keep the device that is marked to be the target device for the
2673 * dev_replace procedure
2674 */
2675 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2676
a6b0d5c8 2677 if (!fs_devices->latest_bdev) {
efe120a0 2678 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2679 sb->s_id);
2680 goto fail_tree_roots;
2681 }
2682
af31f5e5 2683retry_root_backup:
db94535d
CM
2684 blocksize = btrfs_level_size(tree_root,
2685 btrfs_super_root_level(disk_super));
84234f3a 2686 generation = btrfs_super_generation(disk_super);
0b86a832 2687
e20d96d6 2688 tree_root->node = read_tree_block(tree_root,
db94535d 2689 btrfs_super_root(disk_super),
84234f3a 2690 blocksize, generation);
af31f5e5
CM
2691 if (!tree_root->node ||
2692 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2693 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2694 sb->s_id);
af31f5e5
CM
2695
2696 goto recovery_tree_root;
83121942 2697 }
af31f5e5 2698
5d4f98a2
YZ
2699 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2700 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2701 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2702
cb517eab
MX
2703 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2704 location.type = BTRFS_ROOT_ITEM_KEY;
2705 location.offset = 0;
2706
2707 extent_root = btrfs_read_tree_root(tree_root, &location);
2708 if (IS_ERR(extent_root)) {
2709 ret = PTR_ERR(extent_root);
af31f5e5 2710 goto recovery_tree_root;
cb517eab 2711 }
27cdeb70 2712 set_bit(BTRFS_ROOT_TRACK_DIRTY, &extent_root->state);
cb517eab 2713 fs_info->extent_root = extent_root;
0b86a832 2714
cb517eab
MX
2715 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2716 dev_root = btrfs_read_tree_root(tree_root, &location);
2717 if (IS_ERR(dev_root)) {
2718 ret = PTR_ERR(dev_root);
af31f5e5 2719 goto recovery_tree_root;
cb517eab 2720 }
27cdeb70 2721 set_bit(BTRFS_ROOT_TRACK_DIRTY, &dev_root->state);
cb517eab
MX
2722 fs_info->dev_root = dev_root;
2723 btrfs_init_devices_late(fs_info);
3768f368 2724
cb517eab
MX
2725 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2726 csum_root = btrfs_read_tree_root(tree_root, &location);
2727 if (IS_ERR(csum_root)) {
2728 ret = PTR_ERR(csum_root);
af31f5e5 2729 goto recovery_tree_root;
cb517eab 2730 }
27cdeb70 2731 set_bit(BTRFS_ROOT_TRACK_DIRTY, &csum_root->state);
cb517eab 2732 fs_info->csum_root = csum_root;
d20f7043 2733
cb517eab
MX
2734 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2735 quota_root = btrfs_read_tree_root(tree_root, &location);
2736 if (!IS_ERR(quota_root)) {
27cdeb70 2737 set_bit(BTRFS_ROOT_TRACK_DIRTY, &quota_root->state);
bcef60f2
AJ
2738 fs_info->quota_enabled = 1;
2739 fs_info->pending_quota_state = 1;
cb517eab 2740 fs_info->quota_root = quota_root;
bcef60f2
AJ
2741 }
2742
f7a81ea4
SB
2743 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2744 uuid_root = btrfs_read_tree_root(tree_root, &location);
2745 if (IS_ERR(uuid_root)) {
2746 ret = PTR_ERR(uuid_root);
2747 if (ret != -ENOENT)
2748 goto recovery_tree_root;
2749 create_uuid_tree = true;
70f80175 2750 check_uuid_tree = false;
f7a81ea4 2751 } else {
27cdeb70 2752 set_bit(BTRFS_ROOT_TRACK_DIRTY, &uuid_root->state);
f7a81ea4 2753 fs_info->uuid_root = uuid_root;
70f80175
SB
2754 create_uuid_tree = false;
2755 check_uuid_tree =
2756 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2757 }
2758
8929ecfa
YZ
2759 fs_info->generation = generation;
2760 fs_info->last_trans_committed = generation;
8929ecfa 2761
68310a5e
ID
2762 ret = btrfs_recover_balance(fs_info);
2763 if (ret) {
efe120a0 2764 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2765 goto fail_block_groups;
2766 }
2767
733f4fbb
SB
2768 ret = btrfs_init_dev_stats(fs_info);
2769 if (ret) {
efe120a0 2770 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2771 ret);
2772 goto fail_block_groups;
2773 }
2774
8dabb742
SB
2775 ret = btrfs_init_dev_replace(fs_info);
2776 if (ret) {
efe120a0 2777 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2778 goto fail_block_groups;
2779 }
2780
2781 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2782
5ac1d209 2783 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2784 if (ret) {
efe120a0 2785 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
c59021f8 2786 goto fail_block_groups;
2787 }
2788
c59021f8 2789 ret = btrfs_init_space_info(fs_info);
2790 if (ret) {
efe120a0 2791 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2792 goto fail_sysfs;
c59021f8 2793 }
2794
1b1d1f66
JB
2795 ret = btrfs_read_block_groups(extent_root);
2796 if (ret) {
efe120a0 2797 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2798 goto fail_sysfs;
1b1d1f66 2799 }
5af3e8cc
SB
2800 fs_info->num_tolerated_disk_barrier_failures =
2801 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2802 if (fs_info->fs_devices->missing_devices >
2803 fs_info->num_tolerated_disk_barrier_failures &&
2804 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2805 printk(KERN_WARNING "BTRFS: "
2806 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2807 goto fail_sysfs;
292fd7fc 2808 }
9078a3e1 2809
a74a4b97
CM
2810 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2811 "btrfs-cleaner");
57506d50 2812 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2813 goto fail_sysfs;
a74a4b97
CM
2814
2815 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2816 tree_root,
2817 "btrfs-transaction");
57506d50 2818 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2819 goto fail_cleaner;
a74a4b97 2820
c289811c
CM
2821 if (!btrfs_test_opt(tree_root, SSD) &&
2822 !btrfs_test_opt(tree_root, NOSSD) &&
2823 !fs_info->fs_devices->rotating) {
efe120a0 2824 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2825 "mode\n");
2826 btrfs_set_opt(fs_info->mount_opt, SSD);
2827 }
2828
3818aea2
QW
2829 /* Set the real inode map cache flag */
2830 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2831 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2832
21adbd5c
SB
2833#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2834 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2835 ret = btrfsic_mount(tree_root, fs_devices,
2836 btrfs_test_opt(tree_root,
2837 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2838 1 : 0,
2839 fs_info->check_integrity_print_mask);
2840 if (ret)
efe120a0 2841 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2842 " integrity check module %s\n", sb->s_id);
2843 }
2844#endif
bcef60f2
AJ
2845 ret = btrfs_read_qgroup_config(fs_info);
2846 if (ret)
2847 goto fail_trans_kthread;
21adbd5c 2848
acce952b 2849 /* do not make disk changes in broken FS */
68ce9682 2850 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2851 u64 bytenr = btrfs_super_log_root(disk_super);
2852
7c2ca468 2853 if (fs_devices->rw_devices == 0) {
efe120a0 2854 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2855 "on RO media\n");
7c2ca468 2856 err = -EIO;
bcef60f2 2857 goto fail_qgroup;
7c2ca468 2858 }
e02119d5
CM
2859 blocksize =
2860 btrfs_level_size(tree_root,
2861 btrfs_super_log_root_level(disk_super));
d18a2c44 2862
6f07e42e 2863 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2864 if (!log_tree_root) {
2865 err = -ENOMEM;
bcef60f2 2866 goto fail_qgroup;
676e4c86 2867 }
e02119d5
CM
2868
2869 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2870 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2871
2872 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2873 blocksize,
2874 generation + 1);
416bc658
JB
2875 if (!log_tree_root->node ||
2876 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2877 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2878 free_extent_buffer(log_tree_root->node);
2879 kfree(log_tree_root);
28c16cbb 2880 goto fail_qgroup;
416bc658 2881 }
79787eaa 2882 /* returns with log_tree_root freed on success */
e02119d5 2883 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2884 if (ret) {
2885 btrfs_error(tree_root->fs_info, ret,
2886 "Failed to recover log tree");
2887 free_extent_buffer(log_tree_root->node);
2888 kfree(log_tree_root);
28c16cbb 2889 goto fail_qgroup;
79787eaa 2890 }
e556ce2c
YZ
2891
2892 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2893 ret = btrfs_commit_super(tree_root);
2894 if (ret)
28c16cbb 2895 goto fail_qgroup;
e556ce2c 2896 }
e02119d5 2897 }
1a40e23b 2898
76dda93c 2899 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2900 if (ret)
28c16cbb 2901 goto fail_qgroup;
76dda93c 2902
7c2ca468 2903 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2904 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2905 if (ret)
28c16cbb 2906 goto fail_qgroup;
d68fc57b 2907
5f316481 2908 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2909 ret = btrfs_recover_relocation(tree_root);
5f316481 2910 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2911 if (ret < 0) {
2912 printk(KERN_WARNING
efe120a0 2913 "BTRFS: failed to recover relocation\n");
d7ce5843 2914 err = -EINVAL;
bcef60f2 2915 goto fail_qgroup;
d7ce5843 2916 }
7c2ca468 2917 }
1a40e23b 2918
3de4586c
CM
2919 location.objectid = BTRFS_FS_TREE_OBJECTID;
2920 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2921 location.offset = 0;
3de4586c 2922
3de4586c 2923 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2924 if (IS_ERR(fs_info->fs_root)) {
2925 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2926 goto fail_qgroup;
3140c9a3 2927 }
c289811c 2928
2b6ba629
ID
2929 if (sb->s_flags & MS_RDONLY)
2930 return 0;
59641015 2931
2b6ba629
ID
2932 down_read(&fs_info->cleanup_work_sem);
2933 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2934 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2935 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2936 close_ctree(tree_root);
2937 return ret;
2938 }
2939 up_read(&fs_info->cleanup_work_sem);
59641015 2940
2b6ba629
ID
2941 ret = btrfs_resume_balance_async(fs_info);
2942 if (ret) {
efe120a0 2943 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2944 close_ctree(tree_root);
2945 return ret;
e3acc2a6
JB
2946 }
2947
8dabb742
SB
2948 ret = btrfs_resume_dev_replace_async(fs_info);
2949 if (ret) {
efe120a0 2950 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2951 close_ctree(tree_root);
2952 return ret;
2953 }
2954
b382a324
JS
2955 btrfs_qgroup_rescan_resume(fs_info);
2956
f7a81ea4 2957 if (create_uuid_tree) {
efe120a0 2958 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2959 ret = btrfs_create_uuid_tree(fs_info);
2960 if (ret) {
efe120a0 2961 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2962 ret);
2963 close_ctree(tree_root);
2964 return ret;
2965 }
f420ee1e
SB
2966 } else if (check_uuid_tree ||
2967 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2968 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2969 ret = btrfs_check_uuid_tree(fs_info);
2970 if (ret) {
efe120a0 2971 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2972 ret);
2973 close_ctree(tree_root);
2974 return ret;
2975 }
2976 } else {
2977 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2978 }
2979
ad2b2c80 2980 return 0;
39279cc3 2981
bcef60f2
AJ
2982fail_qgroup:
2983 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2984fail_trans_kthread:
2985 kthread_stop(fs_info->transaction_kthread);
54067ae9 2986 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 2987 btrfs_free_fs_roots(fs_info);
3f157a2f 2988fail_cleaner:
a74a4b97 2989 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2990
2991 /*
2992 * make sure we're done with the btree inode before we stop our
2993 * kthreads
2994 */
2995 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2996
2365dd3c
AJ
2997fail_sysfs:
2998 btrfs_sysfs_remove_one(fs_info);
2999
1b1d1f66 3000fail_block_groups:
54067ae9 3001 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3002 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3003
3004fail_tree_roots:
3005 free_root_pointers(fs_info, 1);
2b8195bb 3006 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3007
39279cc3 3008fail_sb_buffer:
7abadb64 3009 btrfs_stop_all_workers(fs_info);
16cdcec7 3010fail_alloc:
4543df7e 3011fail_iput:
586e46e2
ID
3012 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3013
4543df7e 3014 iput(fs_info->btree_inode);
c404e0dc
MX
3015fail_bio_counter:
3016 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3017fail_delalloc_bytes:
3018 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3019fail_dirty_metadata_bytes:
3020 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3021fail_bdi:
7e662854 3022 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3023fail_srcu:
3024 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3025fail:
53b381b3 3026 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3027 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3028 return err;
af31f5e5
CM
3029
3030recovery_tree_root:
af31f5e5
CM
3031 if (!btrfs_test_opt(tree_root, RECOVERY))
3032 goto fail_tree_roots;
3033
3034 free_root_pointers(fs_info, 0);
3035
3036 /* don't use the log in recovery mode, it won't be valid */
3037 btrfs_set_super_log_root(disk_super, 0);
3038
3039 /* we can't trust the free space cache either */
3040 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3041
3042 ret = next_root_backup(fs_info, fs_info->super_copy,
3043 &num_backups_tried, &backup_index);
3044 if (ret == -1)
3045 goto fail_block_groups;
3046 goto retry_root_backup;
eb60ceac
CM
3047}
3048
f2984462
CM
3049static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3050{
f2984462
CM
3051 if (uptodate) {
3052 set_buffer_uptodate(bh);
3053 } else {
442a4f63
SB
3054 struct btrfs_device *device = (struct btrfs_device *)
3055 bh->b_private;
3056
efe120a0 3057 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3058 "I/O error on %s\n",
3059 rcu_str_deref(device->name));
1259ab75
CM
3060 /* note, we dont' set_buffer_write_io_error because we have
3061 * our own ways of dealing with the IO errors
3062 */
f2984462 3063 clear_buffer_uptodate(bh);
442a4f63 3064 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3065 }
3066 unlock_buffer(bh);
3067 put_bh(bh);
3068}
3069
a512bbf8
YZ
3070struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3071{
3072 struct buffer_head *bh;
3073 struct buffer_head *latest = NULL;
3074 struct btrfs_super_block *super;
3075 int i;
3076 u64 transid = 0;
3077 u64 bytenr;
3078
3079 /* we would like to check all the supers, but that would make
3080 * a btrfs mount succeed after a mkfs from a different FS.
3081 * So, we need to add a special mount option to scan for
3082 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3083 */
3084 for (i = 0; i < 1; i++) {
3085 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3086 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3087 i_size_read(bdev->bd_inode))
a512bbf8 3088 break;
8068a47e
AJ
3089 bh = __bread(bdev, bytenr / 4096,
3090 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3091 if (!bh)
3092 continue;
3093
3094 super = (struct btrfs_super_block *)bh->b_data;
3095 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3096 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3097 brelse(bh);
3098 continue;
3099 }
3100
3101 if (!latest || btrfs_super_generation(super) > transid) {
3102 brelse(latest);
3103 latest = bh;
3104 transid = btrfs_super_generation(super);
3105 } else {
3106 brelse(bh);
3107 }
3108 }
3109 return latest;
3110}
3111
4eedeb75
HH
3112/*
3113 * this should be called twice, once with wait == 0 and
3114 * once with wait == 1. When wait == 0 is done, all the buffer heads
3115 * we write are pinned.
3116 *
3117 * They are released when wait == 1 is done.
3118 * max_mirrors must be the same for both runs, and it indicates how
3119 * many supers on this one device should be written.
3120 *
3121 * max_mirrors == 0 means to write them all.
3122 */
a512bbf8
YZ
3123static int write_dev_supers(struct btrfs_device *device,
3124 struct btrfs_super_block *sb,
3125 int do_barriers, int wait, int max_mirrors)
3126{
3127 struct buffer_head *bh;
3128 int i;
3129 int ret;
3130 int errors = 0;
3131 u32 crc;
3132 u64 bytenr;
a512bbf8
YZ
3133
3134 if (max_mirrors == 0)
3135 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3136
a512bbf8
YZ
3137 for (i = 0; i < max_mirrors; i++) {
3138 bytenr = btrfs_sb_offset(i);
3139 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3140 break;
3141
3142 if (wait) {
3143 bh = __find_get_block(device->bdev, bytenr / 4096,
3144 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3145 if (!bh) {
3146 errors++;
3147 continue;
3148 }
a512bbf8 3149 wait_on_buffer(bh);
4eedeb75
HH
3150 if (!buffer_uptodate(bh))
3151 errors++;
3152
3153 /* drop our reference */
3154 brelse(bh);
3155
3156 /* drop the reference from the wait == 0 run */
3157 brelse(bh);
3158 continue;
a512bbf8
YZ
3159 } else {
3160 btrfs_set_super_bytenr(sb, bytenr);
3161
3162 crc = ~(u32)0;
b0496686 3163 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3164 BTRFS_CSUM_SIZE, crc,
3165 BTRFS_SUPER_INFO_SIZE -
3166 BTRFS_CSUM_SIZE);
3167 btrfs_csum_final(crc, sb->csum);
3168
4eedeb75
HH
3169 /*
3170 * one reference for us, and we leave it for the
3171 * caller
3172 */
a512bbf8
YZ
3173 bh = __getblk(device->bdev, bytenr / 4096,
3174 BTRFS_SUPER_INFO_SIZE);
634554dc 3175 if (!bh) {
efe120a0 3176 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3177 "buffer head for bytenr %Lu\n", bytenr);
3178 errors++;
3179 continue;
3180 }
3181
a512bbf8
YZ
3182 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3183
4eedeb75 3184 /* one reference for submit_bh */
a512bbf8 3185 get_bh(bh);
4eedeb75
HH
3186
3187 set_buffer_uptodate(bh);
a512bbf8
YZ
3188 lock_buffer(bh);
3189 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3190 bh->b_private = device;
a512bbf8
YZ
3191 }
3192
387125fc
CM
3193 /*
3194 * we fua the first super. The others we allow
3195 * to go down lazy.
3196 */
e8117c26
WS
3197 if (i == 0)
3198 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3199 else
3200 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3201 if (ret)
a512bbf8 3202 errors++;
a512bbf8
YZ
3203 }
3204 return errors < i ? 0 : -1;
3205}
3206
387125fc
CM
3207/*
3208 * endio for the write_dev_flush, this will wake anyone waiting
3209 * for the barrier when it is done
3210 */
3211static void btrfs_end_empty_barrier(struct bio *bio, int err)
3212{
3213 if (err) {
3214 if (err == -EOPNOTSUPP)
3215 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3216 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3217 }
3218 if (bio->bi_private)
3219 complete(bio->bi_private);
3220 bio_put(bio);
3221}
3222
3223/*
3224 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3225 * sent down. With wait == 1, it waits for the previous flush.
3226 *
3227 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3228 * capable
3229 */
3230static int write_dev_flush(struct btrfs_device *device, int wait)
3231{
3232 struct bio *bio;
3233 int ret = 0;
3234
3235 if (device->nobarriers)
3236 return 0;
3237
3238 if (wait) {
3239 bio = device->flush_bio;
3240 if (!bio)
3241 return 0;
3242
3243 wait_for_completion(&device->flush_wait);
3244
3245 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3246 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3247 rcu_str_deref(device->name));
387125fc 3248 device->nobarriers = 1;
5af3e8cc 3249 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3250 ret = -EIO;
5af3e8cc
SB
3251 btrfs_dev_stat_inc_and_print(device,
3252 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3253 }
3254
3255 /* drop the reference from the wait == 0 run */
3256 bio_put(bio);
3257 device->flush_bio = NULL;
3258
3259 return ret;
3260 }
3261
3262 /*
3263 * one reference for us, and we leave it for the
3264 * caller
3265 */
9c017abc 3266 device->flush_bio = NULL;
9be3395b 3267 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3268 if (!bio)
3269 return -ENOMEM;
3270
3271 bio->bi_end_io = btrfs_end_empty_barrier;
3272 bio->bi_bdev = device->bdev;
3273 init_completion(&device->flush_wait);
3274 bio->bi_private = &device->flush_wait;
3275 device->flush_bio = bio;
3276
3277 bio_get(bio);
21adbd5c 3278 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3279
3280 return 0;
3281}
3282
3283/*
3284 * send an empty flush down to each device in parallel,
3285 * then wait for them
3286 */
3287static int barrier_all_devices(struct btrfs_fs_info *info)
3288{
3289 struct list_head *head;
3290 struct btrfs_device *dev;
5af3e8cc
SB
3291 int errors_send = 0;
3292 int errors_wait = 0;
387125fc
CM
3293 int ret;
3294
3295 /* send down all the barriers */
3296 head = &info->fs_devices->devices;
3297 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3298 if (dev->missing)
3299 continue;
387125fc 3300 if (!dev->bdev) {
5af3e8cc 3301 errors_send++;
387125fc
CM
3302 continue;
3303 }
3304 if (!dev->in_fs_metadata || !dev->writeable)
3305 continue;
3306
3307 ret = write_dev_flush(dev, 0);
3308 if (ret)
5af3e8cc 3309 errors_send++;
387125fc
CM
3310 }
3311
3312 /* wait for all the barriers */
3313 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3314 if (dev->missing)
3315 continue;
387125fc 3316 if (!dev->bdev) {
5af3e8cc 3317 errors_wait++;
387125fc
CM
3318 continue;
3319 }
3320 if (!dev->in_fs_metadata || !dev->writeable)
3321 continue;
3322
3323 ret = write_dev_flush(dev, 1);
3324 if (ret)
5af3e8cc 3325 errors_wait++;
387125fc 3326 }
5af3e8cc
SB
3327 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3328 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3329 return -EIO;
3330 return 0;
3331}
3332
5af3e8cc
SB
3333int btrfs_calc_num_tolerated_disk_barrier_failures(
3334 struct btrfs_fs_info *fs_info)
3335{
3336 struct btrfs_ioctl_space_info space;
3337 struct btrfs_space_info *sinfo;
3338 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3339 BTRFS_BLOCK_GROUP_SYSTEM,
3340 BTRFS_BLOCK_GROUP_METADATA,
3341 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3342 int num_types = 4;
3343 int i;
3344 int c;
3345 int num_tolerated_disk_barrier_failures =
3346 (int)fs_info->fs_devices->num_devices;
3347
3348 for (i = 0; i < num_types; i++) {
3349 struct btrfs_space_info *tmp;
3350
3351 sinfo = NULL;
3352 rcu_read_lock();
3353 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3354 if (tmp->flags == types[i]) {
3355 sinfo = tmp;
3356 break;
3357 }
3358 }
3359 rcu_read_unlock();
3360
3361 if (!sinfo)
3362 continue;
3363
3364 down_read(&sinfo->groups_sem);
3365 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3366 if (!list_empty(&sinfo->block_groups[c])) {
3367 u64 flags;
3368
3369 btrfs_get_block_group_info(
3370 &sinfo->block_groups[c], &space);
3371 if (space.total_bytes == 0 ||
3372 space.used_bytes == 0)
3373 continue;
3374 flags = space.flags;
3375 /*
3376 * return
3377 * 0: if dup, single or RAID0 is configured for
3378 * any of metadata, system or data, else
3379 * 1: if RAID5 is configured, or if RAID1 or
3380 * RAID10 is configured and only two mirrors
3381 * are used, else
3382 * 2: if RAID6 is configured, else
3383 * num_mirrors - 1: if RAID1 or RAID10 is
3384 * configured and more than
3385 * 2 mirrors are used.
3386 */
3387 if (num_tolerated_disk_barrier_failures > 0 &&
3388 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3389 BTRFS_BLOCK_GROUP_RAID0)) ||
3390 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3391 == 0)))
3392 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3393 else if (num_tolerated_disk_barrier_failures > 1) {
3394 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3395 BTRFS_BLOCK_GROUP_RAID5 |
3396 BTRFS_BLOCK_GROUP_RAID10)) {
3397 num_tolerated_disk_barrier_failures = 1;
3398 } else if (flags &
15b0a89d 3399 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3400 num_tolerated_disk_barrier_failures = 2;
3401 }
3402 }
5af3e8cc
SB
3403 }
3404 }
3405 up_read(&sinfo->groups_sem);
3406 }
3407
3408 return num_tolerated_disk_barrier_failures;
3409}
3410
48a3b636 3411static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3412{
e5e9a520 3413 struct list_head *head;
f2984462 3414 struct btrfs_device *dev;
a061fc8d 3415 struct btrfs_super_block *sb;
f2984462 3416 struct btrfs_dev_item *dev_item;
f2984462
CM
3417 int ret;
3418 int do_barriers;
a236aed1
CM
3419 int max_errors;
3420 int total_errors = 0;
a061fc8d 3421 u64 flags;
f2984462
CM
3422
3423 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3424 backup_super_roots(root->fs_info);
f2984462 3425
6c41761f 3426 sb = root->fs_info->super_for_commit;
a061fc8d 3427 dev_item = &sb->dev_item;
e5e9a520 3428
174ba509 3429 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3430 head = &root->fs_info->fs_devices->devices;
d7306801 3431 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3432
5af3e8cc
SB
3433 if (do_barriers) {
3434 ret = barrier_all_devices(root->fs_info);
3435 if (ret) {
3436 mutex_unlock(
3437 &root->fs_info->fs_devices->device_list_mutex);
3438 btrfs_error(root->fs_info, ret,
3439 "errors while submitting device barriers.");
3440 return ret;
3441 }
3442 }
387125fc 3443
1f78160c 3444 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3445 if (!dev->bdev) {
3446 total_errors++;
3447 continue;
3448 }
2b82032c 3449 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3450 continue;
3451
2b82032c 3452 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3453 btrfs_set_stack_device_type(dev_item, dev->type);
3454 btrfs_set_stack_device_id(dev_item, dev->devid);
3455 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3456 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3457 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3458 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3459 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3460 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3461 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3462
a061fc8d
CM
3463 flags = btrfs_super_flags(sb);
3464 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3465
a512bbf8 3466 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3467 if (ret)
3468 total_errors++;
f2984462 3469 }
a236aed1 3470 if (total_errors > max_errors) {
efe120a0 3471 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3472 total_errors);
a724b436 3473 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3474
9d565ba4
SB
3475 /* FUA is masked off if unsupported and can't be the reason */
3476 btrfs_error(root->fs_info, -EIO,
3477 "%d errors while writing supers", total_errors);
3478 return -EIO;
a236aed1 3479 }
f2984462 3480
a512bbf8 3481 total_errors = 0;
1f78160c 3482 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3483 if (!dev->bdev)
3484 continue;
2b82032c 3485 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3486 continue;
3487
a512bbf8
YZ
3488 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3489 if (ret)
3490 total_errors++;
f2984462 3491 }
174ba509 3492 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3493 if (total_errors > max_errors) {
79787eaa
JM
3494 btrfs_error(root->fs_info, -EIO,
3495 "%d errors while writing supers", total_errors);
3496 return -EIO;
a236aed1 3497 }
f2984462
CM
3498 return 0;
3499}
3500
a512bbf8
YZ
3501int write_ctree_super(struct btrfs_trans_handle *trans,
3502 struct btrfs_root *root, int max_mirrors)
eb60ceac 3503{
f570e757 3504 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3505}
3506
cb517eab
MX
3507/* Drop a fs root from the radix tree and free it. */
3508void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3509 struct btrfs_root *root)
2619ba1f 3510{
4df27c4d 3511 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3512 radix_tree_delete(&fs_info->fs_roots_radix,
3513 (unsigned long)root->root_key.objectid);
4df27c4d 3514 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3515
3516 if (btrfs_root_refs(&root->root_item) == 0)
3517 synchronize_srcu(&fs_info->subvol_srcu);
3518
1a4319cc 3519 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3520 btrfs_free_log(NULL, root);
3321719e 3521
faa2dbf0
JB
3522 if (root->free_ino_pinned)
3523 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3524 if (root->free_ino_ctl)
3525 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3526 free_fs_root(root);
4df27c4d
YZ
3527}
3528
3529static void free_fs_root(struct btrfs_root *root)
3530{
82d5902d 3531 iput(root->cache_inode);
4df27c4d 3532 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3533 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3534 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3535 if (root->anon_dev)
3536 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3537 if (root->subv_writers)
3538 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3539 free_extent_buffer(root->node);
3540 free_extent_buffer(root->commit_root);
581bb050
LZ
3541 kfree(root->free_ino_ctl);
3542 kfree(root->free_ino_pinned);
d397712b 3543 kfree(root->name);
b0feb9d9 3544 btrfs_put_fs_root(root);
2619ba1f
CM
3545}
3546
cb517eab
MX
3547void btrfs_free_fs_root(struct btrfs_root *root)
3548{
3549 free_fs_root(root);
2619ba1f
CM
3550}
3551
c146afad 3552int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3553{
c146afad
YZ
3554 u64 root_objectid = 0;
3555 struct btrfs_root *gang[8];
65d33fd7
QW
3556 int i = 0;
3557 int err = 0;
3558 unsigned int ret = 0;
3559 int index;
e089f05c 3560
c146afad 3561 while (1) {
65d33fd7 3562 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3563 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3564 (void **)gang, root_objectid,
3565 ARRAY_SIZE(gang));
65d33fd7
QW
3566 if (!ret) {
3567 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3568 break;
65d33fd7 3569 }
5d4f98a2 3570 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3571
c146afad 3572 for (i = 0; i < ret; i++) {
65d33fd7
QW
3573 /* Avoid to grab roots in dead_roots */
3574 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3575 gang[i] = NULL;
3576 continue;
3577 }
3578 /* grab all the search result for later use */
3579 gang[i] = btrfs_grab_fs_root(gang[i]);
3580 }
3581 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3582
65d33fd7
QW
3583 for (i = 0; i < ret; i++) {
3584 if (!gang[i])
3585 continue;
c146afad 3586 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3587 err = btrfs_orphan_cleanup(gang[i]);
3588 if (err)
65d33fd7
QW
3589 break;
3590 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3591 }
3592 root_objectid++;
3593 }
65d33fd7
QW
3594
3595 /* release the uncleaned roots due to error */
3596 for (; i < ret; i++) {
3597 if (gang[i])
3598 btrfs_put_fs_root(gang[i]);
3599 }
3600 return err;
c146afad 3601}
a2135011 3602
c146afad
YZ
3603int btrfs_commit_super(struct btrfs_root *root)
3604{
3605 struct btrfs_trans_handle *trans;
a74a4b97 3606
c146afad 3607 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3608 btrfs_run_delayed_iputs(root);
c146afad 3609 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3610 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3611
3612 /* wait until ongoing cleanup work done */
3613 down_write(&root->fs_info->cleanup_work_sem);
3614 up_write(&root->fs_info->cleanup_work_sem);
3615
7a7eaa40 3616 trans = btrfs_join_transaction(root);
3612b495
TI
3617 if (IS_ERR(trans))
3618 return PTR_ERR(trans);
d52c1bcc 3619 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3620}
3621
3622int close_ctree(struct btrfs_root *root)
3623{
3624 struct btrfs_fs_info *fs_info = root->fs_info;
3625 int ret;
3626
3627 fs_info->closing = 1;
3628 smp_mb();
3629
803b2f54
SB
3630 /* wait for the uuid_scan task to finish */
3631 down(&fs_info->uuid_tree_rescan_sem);
3632 /* avoid complains from lockdep et al., set sem back to initial state */
3633 up(&fs_info->uuid_tree_rescan_sem);
3634
837d5b6e 3635 /* pause restriper - we want to resume on mount */
aa1b8cd4 3636 btrfs_pause_balance(fs_info);
837d5b6e 3637
8dabb742
SB
3638 btrfs_dev_replace_suspend_for_unmount(fs_info);
3639
aa1b8cd4 3640 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3641
3642 /* wait for any defraggers to finish */
3643 wait_event(fs_info->transaction_wait,
3644 (atomic_read(&fs_info->defrag_running) == 0));
3645
3646 /* clear out the rbtree of defraggable inodes */
26176e7c 3647 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3648
21c7e756
MX
3649 cancel_work_sync(&fs_info->async_reclaim_work);
3650
c146afad 3651 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3652 ret = btrfs_commit_super(root);
3653 if (ret)
efe120a0 3654 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3655 }
3656
87533c47 3657 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3658 btrfs_error_commit_super(root);
0f7d52f4 3659
e3029d9f
AV
3660 kthread_stop(fs_info->transaction_kthread);
3661 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3662
f25784b3
YZ
3663 fs_info->closing = 2;
3664 smp_mb();
3665
bcef60f2
AJ
3666 btrfs_free_qgroup_config(root->fs_info);
3667
963d678b 3668 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3669 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3670 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3671 }
bcc63abb 3672
5ac1d209
JM
3673 btrfs_sysfs_remove_one(fs_info);
3674
faa2dbf0 3675 btrfs_free_fs_roots(fs_info);
d10c5f31 3676
1a4319cc
LB
3677 btrfs_put_block_group_cache(fs_info);
3678
2b1360da
JB
3679 btrfs_free_block_groups(fs_info);
3680
de348ee0
WS
3681 /*
3682 * we must make sure there is not any read request to
3683 * submit after we stopping all workers.
3684 */
3685 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3686 btrfs_stop_all_workers(fs_info);
3687
13e6c37b 3688 free_root_pointers(fs_info, 1);
9ad6b7bc 3689
13e6c37b 3690 iput(fs_info->btree_inode);
d6bfde87 3691
21adbd5c
SB
3692#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3693 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3694 btrfsic_unmount(root, fs_info->fs_devices);
3695#endif
3696
dfe25020 3697 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3698 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3699
e2d84521 3700 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3701 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3702 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3703 bdi_destroy(&fs_info->bdi);
76dda93c 3704 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3705
53b381b3
DW
3706 btrfs_free_stripe_hash_table(fs_info);
3707
1cb048f5
FDBM
3708 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3709 root->orphan_block_rsv = NULL;
3710
eb60ceac
CM
3711 return 0;
3712}
3713
b9fab919
CM
3714int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3715 int atomic)
5f39d397 3716{
1259ab75 3717 int ret;
727011e0 3718 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3719
0b32f4bb 3720 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3721 if (!ret)
3722 return ret;
3723
3724 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3725 parent_transid, atomic);
3726 if (ret == -EAGAIN)
3727 return ret;
1259ab75 3728 return !ret;
5f39d397
CM
3729}
3730
3731int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3732{
0b32f4bb 3733 return set_extent_buffer_uptodate(buf);
5f39d397 3734}
6702ed49 3735
5f39d397
CM
3736void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3737{
06ea65a3 3738 struct btrfs_root *root;
5f39d397 3739 u64 transid = btrfs_header_generation(buf);
b9473439 3740 int was_dirty;
b4ce94de 3741
06ea65a3
JB
3742#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3743 /*
3744 * This is a fast path so only do this check if we have sanity tests
3745 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3746 * outside of the sanity tests.
3747 */
3748 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3749 return;
3750#endif
3751 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3752 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3753 if (transid != root->fs_info->generation)
3754 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3755 "found %llu running %llu\n",
c1c9ff7c 3756 buf->start, transid, root->fs_info->generation);
0b32f4bb 3757 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3758 if (!was_dirty)
3759 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3760 buf->len,
3761 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3762#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3763 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3764 btrfs_print_leaf(root, buf);
3765 ASSERT(0);
3766 }
3767#endif
eb60ceac
CM
3768}
3769
b53d3f5d
LB
3770static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3771 int flush_delayed)
16cdcec7
MX
3772{
3773 /*
3774 * looks as though older kernels can get into trouble with
3775 * this code, they end up stuck in balance_dirty_pages forever
3776 */
e2d84521 3777 int ret;
16cdcec7
MX
3778
3779 if (current->flags & PF_MEMALLOC)
3780 return;
3781
b53d3f5d
LB
3782 if (flush_delayed)
3783 btrfs_balance_delayed_items(root);
16cdcec7 3784
e2d84521
MX
3785 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3786 BTRFS_DIRTY_METADATA_THRESH);
3787 if (ret > 0) {
d0e1d66b
NJ
3788 balance_dirty_pages_ratelimited(
3789 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3790 }
3791 return;
3792}
3793
b53d3f5d 3794void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3795{
b53d3f5d
LB
3796 __btrfs_btree_balance_dirty(root, 1);
3797}
585ad2c3 3798
b53d3f5d
LB
3799void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3800{
3801 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3802}
6b80053d 3803
ca7a79ad 3804int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3805{
727011e0 3806 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3807 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3808}
0da5468f 3809
fcd1f065 3810static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3811 int read_only)
3812{
1104a885
DS
3813 /*
3814 * Placeholder for checks
3815 */
fcd1f065 3816 return 0;
acce952b 3817}
3818
48a3b636 3819static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3820{
acce952b 3821 mutex_lock(&root->fs_info->cleaner_mutex);
3822 btrfs_run_delayed_iputs(root);
3823 mutex_unlock(&root->fs_info->cleaner_mutex);
3824
3825 down_write(&root->fs_info->cleanup_work_sem);
3826 up_write(&root->fs_info->cleanup_work_sem);
3827
3828 /* cleanup FS via transaction */
3829 btrfs_cleanup_transaction(root);
acce952b 3830}
3831
569e0f35
JB
3832static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3833 struct btrfs_root *root)
acce952b 3834{
3835 struct btrfs_inode *btrfs_inode;
3836 struct list_head splice;
3837
3838 INIT_LIST_HEAD(&splice);
3839
3840 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3841 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3842
569e0f35 3843 list_splice_init(&t->ordered_operations, &splice);
acce952b 3844 while (!list_empty(&splice)) {
3845 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3846 ordered_operations);
3847
3848 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3849 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3850
3851 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3852
199c2a9c 3853 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3854 }
3855
199c2a9c 3856 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3857 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3858}
3859
143bede5 3860static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3861{
acce952b 3862 struct btrfs_ordered_extent *ordered;
acce952b 3863
199c2a9c 3864 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3865 /*
3866 * This will just short circuit the ordered completion stuff which will
3867 * make sure the ordered extent gets properly cleaned up.
3868 */
199c2a9c 3869 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3870 root_extent_list)
3871 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3872 spin_unlock(&root->ordered_extent_lock);
3873}
3874
3875static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3876{
3877 struct btrfs_root *root;
3878 struct list_head splice;
3879
3880 INIT_LIST_HEAD(&splice);
3881
3882 spin_lock(&fs_info->ordered_root_lock);
3883 list_splice_init(&fs_info->ordered_roots, &splice);
3884 while (!list_empty(&splice)) {
3885 root = list_first_entry(&splice, struct btrfs_root,
3886 ordered_root);
1de2cfde
JB
3887 list_move_tail(&root->ordered_root,
3888 &fs_info->ordered_roots);
199c2a9c 3889
2a85d9ca 3890 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3891 btrfs_destroy_ordered_extents(root);
3892
2a85d9ca
LB
3893 cond_resched();
3894 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3895 }
3896 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3897}
3898
35a3621b
SB
3899static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3900 struct btrfs_root *root)
acce952b 3901{
3902 struct rb_node *node;
3903 struct btrfs_delayed_ref_root *delayed_refs;
3904 struct btrfs_delayed_ref_node *ref;
3905 int ret = 0;
3906
3907 delayed_refs = &trans->delayed_refs;
3908
3909 spin_lock(&delayed_refs->lock);
d7df2c79 3910 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3911 spin_unlock(&delayed_refs->lock);
efe120a0 3912 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3913 return ret;
3914 }
3915
d7df2c79
JB
3916 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3917 struct btrfs_delayed_ref_head *head;
e78417d1 3918 bool pin_bytes = false;
acce952b 3919
d7df2c79
JB
3920 head = rb_entry(node, struct btrfs_delayed_ref_head,
3921 href_node);
3922 if (!mutex_trylock(&head->mutex)) {
3923 atomic_inc(&head->node.refs);
3924 spin_unlock(&delayed_refs->lock);
eb12db69 3925
d7df2c79 3926 mutex_lock(&head->mutex);
e78417d1 3927 mutex_unlock(&head->mutex);
d7df2c79
JB
3928 btrfs_put_delayed_ref(&head->node);
3929 spin_lock(&delayed_refs->lock);
3930 continue;
3931 }
3932 spin_lock(&head->lock);
3933 while ((node = rb_first(&head->ref_root)) != NULL) {
3934 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3935 rb_node);
3936 ref->in_tree = 0;
3937 rb_erase(&ref->rb_node, &head->ref_root);
3938 atomic_dec(&delayed_refs->num_entries);
3939 btrfs_put_delayed_ref(ref);
e78417d1 3940 }
d7df2c79
JB
3941 if (head->must_insert_reserved)
3942 pin_bytes = true;
3943 btrfs_free_delayed_extent_op(head->extent_op);
3944 delayed_refs->num_heads--;
3945 if (head->processing == 0)
3946 delayed_refs->num_heads_ready--;
3947 atomic_dec(&delayed_refs->num_entries);
3948 head->node.in_tree = 0;
3949 rb_erase(&head->href_node, &delayed_refs->href_root);
3950 spin_unlock(&head->lock);
3951 spin_unlock(&delayed_refs->lock);
3952 mutex_unlock(&head->mutex);
acce952b 3953
d7df2c79
JB
3954 if (pin_bytes)
3955 btrfs_pin_extent(root, head->node.bytenr,
3956 head->node.num_bytes, 1);
3957 btrfs_put_delayed_ref(&head->node);
acce952b 3958 cond_resched();
3959 spin_lock(&delayed_refs->lock);
3960 }
3961
3962 spin_unlock(&delayed_refs->lock);
3963
3964 return ret;
3965}
3966
143bede5 3967static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3968{
3969 struct btrfs_inode *btrfs_inode;
3970 struct list_head splice;
3971
3972 INIT_LIST_HEAD(&splice);
3973
eb73c1b7
MX
3974 spin_lock(&root->delalloc_lock);
3975 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3976
3977 while (!list_empty(&splice)) {
eb73c1b7
MX
3978 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3979 delalloc_inodes);
acce952b 3980
3981 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3982 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3983 &btrfs_inode->runtime_flags);
eb73c1b7 3984 spin_unlock(&root->delalloc_lock);
acce952b 3985
3986 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3987
eb73c1b7 3988 spin_lock(&root->delalloc_lock);
acce952b 3989 }
3990
eb73c1b7
MX
3991 spin_unlock(&root->delalloc_lock);
3992}
3993
3994static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3995{
3996 struct btrfs_root *root;
3997 struct list_head splice;
3998
3999 INIT_LIST_HEAD(&splice);
4000
4001 spin_lock(&fs_info->delalloc_root_lock);
4002 list_splice_init(&fs_info->delalloc_roots, &splice);
4003 while (!list_empty(&splice)) {
4004 root = list_first_entry(&splice, struct btrfs_root,
4005 delalloc_root);
4006 list_del_init(&root->delalloc_root);
4007 root = btrfs_grab_fs_root(root);
4008 BUG_ON(!root);
4009 spin_unlock(&fs_info->delalloc_root_lock);
4010
4011 btrfs_destroy_delalloc_inodes(root);
4012 btrfs_put_fs_root(root);
4013
4014 spin_lock(&fs_info->delalloc_root_lock);
4015 }
4016 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4017}
4018
4019static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4020 struct extent_io_tree *dirty_pages,
4021 int mark)
4022{
4023 int ret;
acce952b 4024 struct extent_buffer *eb;
4025 u64 start = 0;
4026 u64 end;
acce952b 4027
4028 while (1) {
4029 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4030 mark, NULL);
acce952b 4031 if (ret)
4032 break;
4033
4034 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4035 while (start <= end) {
fd8b2b61
JB
4036 eb = btrfs_find_tree_block(root, start,
4037 root->leafsize);
69a85bd8 4038 start += root->leafsize;
fd8b2b61 4039 if (!eb)
acce952b 4040 continue;
fd8b2b61 4041 wait_on_extent_buffer_writeback(eb);
acce952b 4042
fd8b2b61
JB
4043 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4044 &eb->bflags))
4045 clear_extent_buffer_dirty(eb);
4046 free_extent_buffer_stale(eb);
acce952b 4047 }
4048 }
4049
4050 return ret;
4051}
4052
4053static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4054 struct extent_io_tree *pinned_extents)
4055{
4056 struct extent_io_tree *unpin;
4057 u64 start;
4058 u64 end;
4059 int ret;
ed0eaa14 4060 bool loop = true;
acce952b 4061
4062 unpin = pinned_extents;
ed0eaa14 4063again:
acce952b 4064 while (1) {
4065 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4066 EXTENT_DIRTY, NULL);
acce952b 4067 if (ret)
4068 break;
4069
4070 /* opt_discard */
5378e607
LD
4071 if (btrfs_test_opt(root, DISCARD))
4072 ret = btrfs_error_discard_extent(root, start,
4073 end + 1 - start,
4074 NULL);
acce952b 4075
4076 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4077 btrfs_error_unpin_extent_range(root, start, end);
4078 cond_resched();
4079 }
4080
ed0eaa14
LB
4081 if (loop) {
4082 if (unpin == &root->fs_info->freed_extents[0])
4083 unpin = &root->fs_info->freed_extents[1];
4084 else
4085 unpin = &root->fs_info->freed_extents[0];
4086 loop = false;
4087 goto again;
4088 }
4089
acce952b 4090 return 0;
4091}
4092
49b25e05
JM
4093void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4094 struct btrfs_root *root)
4095{
724e2315
JB
4096 btrfs_destroy_ordered_operations(cur_trans, root);
4097
49b25e05 4098 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4099
4a9d8bde 4100 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4101 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4102
4a9d8bde 4103 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4104 wake_up(&root->fs_info->transaction_wait);
49b25e05 4105
67cde344
MX
4106 btrfs_destroy_delayed_inodes(root);
4107 btrfs_assert_delayed_root_empty(root);
49b25e05 4108
49b25e05
JM
4109 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4110 EXTENT_DIRTY);
6e841e32
LB
4111 btrfs_destroy_pinned_extent(root,
4112 root->fs_info->pinned_extents);
49b25e05 4113
4a9d8bde
MX
4114 cur_trans->state =TRANS_STATE_COMPLETED;
4115 wake_up(&cur_trans->commit_wait);
4116
49b25e05
JM
4117 /*
4118 memset(cur_trans, 0, sizeof(*cur_trans));
4119 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4120 */
4121}
4122
48a3b636 4123static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4124{
4125 struct btrfs_transaction *t;
acce952b 4126
acce952b 4127 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4128
a4abeea4 4129 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4130 while (!list_empty(&root->fs_info->trans_list)) {
4131 t = list_first_entry(&root->fs_info->trans_list,
4132 struct btrfs_transaction, list);
4133 if (t->state >= TRANS_STATE_COMMIT_START) {
4134 atomic_inc(&t->use_count);
4135 spin_unlock(&root->fs_info->trans_lock);
4136 btrfs_wait_for_commit(root, t->transid);
4137 btrfs_put_transaction(t);
4138 spin_lock(&root->fs_info->trans_lock);
4139 continue;
4140 }
4141 if (t == root->fs_info->running_transaction) {
4142 t->state = TRANS_STATE_COMMIT_DOING;
4143 spin_unlock(&root->fs_info->trans_lock);
4144 /*
4145 * We wait for 0 num_writers since we don't hold a trans
4146 * handle open currently for this transaction.
4147 */
4148 wait_event(t->writer_wait,
4149 atomic_read(&t->num_writers) == 0);
4150 } else {
4151 spin_unlock(&root->fs_info->trans_lock);
4152 }
4153 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4154
724e2315
JB
4155 spin_lock(&root->fs_info->trans_lock);
4156 if (t == root->fs_info->running_transaction)
4157 root->fs_info->running_transaction = NULL;
acce952b 4158 list_del_init(&t->list);
724e2315 4159 spin_unlock(&root->fs_info->trans_lock);
acce952b 4160
724e2315
JB
4161 btrfs_put_transaction(t);
4162 trace_btrfs_transaction_commit(root);
4163 spin_lock(&root->fs_info->trans_lock);
4164 }
4165 spin_unlock(&root->fs_info->trans_lock);
4166 btrfs_destroy_all_ordered_extents(root->fs_info);
4167 btrfs_destroy_delayed_inodes(root);
4168 btrfs_assert_delayed_root_empty(root);
4169 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4170 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4171 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4172
4173 return 0;
4174}
4175
d1310b2e 4176static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4177 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4178 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4179 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4180 /* note we're sharing with inode.c for the merge bio hook */
4181 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4182};