btrfs: add error handling for scrub_workers_get()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
53b381b3 49#include "raid56.h"
5ac1d209 50#include "sysfs.h"
fcebe456 51#include "qgroup.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
e8c9f186 57static const struct extent_io_ops btree_extent_io_ops;
8b712842 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
143bede5 62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64 struct btrfs_root *root);
143bede5 65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67 struct extent_io_tree *dirty_pages,
68 int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70 struct extent_io_tree *pinned_extents);
48a3b636
ES
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 73
d352ac68 74/*
97eb6b69
DS
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete. This is used during reads to verify checksums, and it is used
d352ac68
CM
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
97eb6b69 79struct btrfs_end_io_wq {
ce9adaa5
CM
80 struct bio *bio;
81 bio_end_io_t *end_io;
82 void *private;
83 struct btrfs_fs_info *info;
84 int error;
bfebd8b5 85 enum btrfs_wq_endio_type metadata;
ce9adaa5 86 struct list_head list;
8b712842 87 struct btrfs_work work;
ce9adaa5 88};
0da5468f 89
97eb6b69
DS
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94 btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95 sizeof(struct btrfs_end_io_wq),
96 0,
97 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98 NULL);
99 if (!btrfs_end_io_wq_cache)
100 return -ENOMEM;
101 return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106 if (btrfs_end_io_wq_cache)
107 kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
d352ac68
CM
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads. They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
44b8bd7e
CM
115struct async_submit_bio {
116 struct inode *inode;
117 struct bio *bio;
118 struct list_head list;
4a69a410
CM
119 extent_submit_bio_hook_t *submit_bio_start;
120 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
121 int rw;
122 int mirror_num;
c8b97818 123 unsigned long bio_flags;
eaf25d93
CM
124 /*
125 * bio_offset is optional, can be used if the pages in the bio
126 * can't tell us where in the file the bio should go
127 */
128 u64 bio_offset;
8b712842 129 struct btrfs_work work;
79787eaa 130 int error;
44b8bd7e
CM
131};
132
85d4e461
CM
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root. For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets. As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid. This ensures that all special purpose roots
142 * have separate keysets.
4008c04a 143 *
85d4e461
CM
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock. As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 147 *
85d4e461
CM
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked. It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 151 *
85d4e461
CM
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
4008c04a
CM
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158# error
159# endif
85d4e461
CM
160
161static struct btrfs_lockdep_keyset {
162 u64 id; /* root objectid */
163 const char *name_stem; /* lock name stem */
164 char names[BTRFS_MAX_LEVEL + 1][20];
165 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
168 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
169 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
170 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
171 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
172 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 173 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
174 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
175 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
176 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 177 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 178 { .id = 0, .name_stem = "tree" },
4008c04a 179};
85d4e461
CM
180
181void __init btrfs_init_lockdep(void)
182{
183 int i, j;
184
185 /* initialize lockdep class names */
186 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190 snprintf(ks->names[j], sizeof(ks->names[j]),
191 "btrfs-%s-%02d", ks->name_stem, j);
192 }
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196 int level)
197{
198 struct btrfs_lockdep_keyset *ks;
199
200 BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202 /* find the matching keyset, id 0 is the default entry */
203 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204 if (ks->id == objectid)
205 break;
206
207 lockdep_set_class_and_name(&eb->lock,
208 &ks->keys[level], ks->names[level]);
209}
210
4008c04a
CM
211#endif
212
d352ac68
CM
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
b2950863 217static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 218 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 219 int create)
7eccb903 220{
5f39d397
CM
221 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222 struct extent_map *em;
223 int ret;
224
890871be 225 read_lock(&em_tree->lock);
d1310b2e 226 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
227 if (em) {
228 em->bdev =
229 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 230 read_unlock(&em_tree->lock);
5f39d397 231 goto out;
a061fc8d 232 }
890871be 233 read_unlock(&em_tree->lock);
7b13b7b1 234
172ddd60 235 em = alloc_extent_map();
5f39d397
CM
236 if (!em) {
237 em = ERR_PTR(-ENOMEM);
238 goto out;
239 }
240 em->start = 0;
0afbaf8c 241 em->len = (u64)-1;
c8b97818 242 em->block_len = (u64)-1;
5f39d397 243 em->block_start = 0;
a061fc8d 244 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 245
890871be 246 write_lock(&em_tree->lock);
09a2a8f9 247 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
248 if (ret == -EEXIST) {
249 free_extent_map(em);
7b13b7b1 250 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 251 if (!em)
0433f20d 252 em = ERR_PTR(-EIO);
5f39d397 253 } else if (ret) {
7b13b7b1 254 free_extent_map(em);
0433f20d 255 em = ERR_PTR(ret);
5f39d397 256 }
890871be 257 write_unlock(&em_tree->lock);
7b13b7b1 258
5f39d397
CM
259out:
260 return em;
7eccb903
CM
261}
262
b0496686 263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 264{
0b947aff 265 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
7e75bf3f 270 put_unaligned_le32(~crc, result);
19c00ddc
CM
271}
272
d352ac68
CM
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
01d58472
DD
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278 struct extent_buffer *buf,
19c00ddc
CM
279 int verify)
280{
01d58472 281 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
607d432d 282 char *result = NULL;
19c00ddc
CM
283 unsigned long len;
284 unsigned long cur_len;
285 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
286 char *kaddr;
287 unsigned long map_start;
288 unsigned long map_len;
289 int err;
290 u32 crc = ~(u32)0;
607d432d 291 unsigned long inline_result;
19c00ddc
CM
292
293 len = buf->len - offset;
d397712b 294 while (len > 0) {
19c00ddc 295 err = map_private_extent_buffer(buf, offset, 32,
a6591715 296 &kaddr, &map_start, &map_len);
d397712b 297 if (err)
19c00ddc 298 return 1;
19c00ddc 299 cur_len = min(len, map_len - (offset - map_start));
b0496686 300 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
301 crc, cur_len);
302 len -= cur_len;
303 offset += cur_len;
19c00ddc 304 }
607d432d 305 if (csum_size > sizeof(inline_result)) {
31e818fe 306 result = kzalloc(csum_size, GFP_NOFS);
607d432d
JB
307 if (!result)
308 return 1;
309 } else {
310 result = (char *)&inline_result;
311 }
312
19c00ddc
CM
313 btrfs_csum_final(crc, result);
314
315 if (verify) {
607d432d 316 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
317 u32 val;
318 u32 found = 0;
607d432d 319 memcpy(&found, result, csum_size);
e4204ded 320
607d432d 321 read_extent_buffer(buf, &val, 0, csum_size);
f0954c66 322 printk_ratelimited(KERN_WARNING
efe120a0
FH
323 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324 "level %d\n",
01d58472 325 fs_info->sb->s_id, buf->start,
efe120a0 326 val, found, btrfs_header_level(buf));
607d432d
JB
327 if (result != (char *)&inline_result)
328 kfree(result);
19c00ddc
CM
329 return 1;
330 }
331 } else {
607d432d 332 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 333 }
607d432d
JB
334 if (result != (char *)&inline_result)
335 kfree(result);
19c00ddc
CM
336 return 0;
337}
338
d352ac68
CM
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer. This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
1259ab75 345static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
346 struct extent_buffer *eb, u64 parent_transid,
347 int atomic)
1259ab75 348{
2ac55d41 349 struct extent_state *cached_state = NULL;
1259ab75 350 int ret;
2755a0de 351 bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
1259ab75
CM
352
353 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354 return 0;
355
b9fab919
CM
356 if (atomic)
357 return -EAGAIN;
358
a26e8c9f
JB
359 if (need_lock) {
360 btrfs_tree_read_lock(eb);
361 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362 }
363
2ac55d41 364 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 365 0, &cached_state);
0b32f4bb 366 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
367 btrfs_header_generation(eb) == parent_transid) {
368 ret = 0;
369 goto out;
370 }
68b663d1
DS
371 printk_ratelimited(KERN_ERR
372 "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
29549aec
WS
373 eb->fs_info->sb->s_id, eb->start,
374 parent_transid, btrfs_header_generation(eb));
1259ab75 375 ret = 1;
a26e8c9f
JB
376
377 /*
378 * Things reading via commit roots that don't have normal protection,
379 * like send, can have a really old block in cache that may point at a
380 * block that has been free'd and re-allocated. So don't clear uptodate
381 * if we find an eb that is under IO (dirty/writeback) because we could
382 * end up reading in the stale data and then writing it back out and
383 * making everybody very sad.
384 */
385 if (!extent_buffer_under_io(eb))
386 clear_extent_buffer_uptodate(eb);
33958dc6 387out:
2ac55d41
JB
388 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389 &cached_state, GFP_NOFS);
472b909f
JB
390 if (need_lock)
391 btrfs_tree_read_unlock_blocking(eb);
1259ab75 392 return ret;
1259ab75
CM
393}
394
1104a885
DS
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401 struct btrfs_super_block *disk_sb =
402 (struct btrfs_super_block *)raw_disk_sb;
403 u16 csum_type = btrfs_super_csum_type(disk_sb);
404 int ret = 0;
405
406 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407 u32 crc = ~(u32)0;
408 const int csum_size = sizeof(crc);
409 char result[csum_size];
410
411 /*
412 * The super_block structure does not span the whole
413 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414 * is filled with zeros and is included in the checkum.
415 */
416 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418 btrfs_csum_final(crc, result);
419
420 if (memcmp(raw_disk_sb, result, csum_size))
421 ret = 1;
422 }
423
424 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 425 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
426 csum_type);
427 ret = 1;
428 }
429
430 return ret;
431}
432
d352ac68
CM
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
f188591e
CM
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438 struct extent_buffer *eb,
ca7a79ad 439 u64 start, u64 parent_transid)
f188591e
CM
440{
441 struct extent_io_tree *io_tree;
ea466794 442 int failed = 0;
f188591e
CM
443 int ret;
444 int num_copies = 0;
445 int mirror_num = 0;
ea466794 446 int failed_mirror = 0;
f188591e 447
a826d6dc 448 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
449 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450 while (1) {
bb82ab88
AJ
451 ret = read_extent_buffer_pages(io_tree, eb, start,
452 WAIT_COMPLETE,
f188591e 453 btree_get_extent, mirror_num);
256dd1bb
SB
454 if (!ret) {
455 if (!verify_parent_transid(io_tree, eb,
b9fab919 456 parent_transid, 0))
256dd1bb
SB
457 break;
458 else
459 ret = -EIO;
460 }
d397712b 461
a826d6dc
JB
462 /*
463 * This buffer's crc is fine, but its contents are corrupted, so
464 * there is no reason to read the other copies, they won't be
465 * any less wrong.
466 */
467 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
468 break;
469
5d964051 470 num_copies = btrfs_num_copies(root->fs_info,
f188591e 471 eb->start, eb->len);
4235298e 472 if (num_copies == 1)
ea466794 473 break;
4235298e 474
5cf1ab56
JB
475 if (!failed_mirror) {
476 failed = 1;
477 failed_mirror = eb->read_mirror;
478 }
479
f188591e 480 mirror_num++;
ea466794
JB
481 if (mirror_num == failed_mirror)
482 mirror_num++;
483
4235298e 484 if (mirror_num > num_copies)
ea466794 485 break;
f188591e 486 }
ea466794 487
c0901581 488 if (failed && !ret && failed_mirror)
ea466794
JB
489 repair_eb_io_failure(root, eb, failed_mirror);
490
491 return ret;
f188591e 492}
19c00ddc 493
d352ac68 494/*
d397712b
CM
495 * checksum a dirty tree block before IO. This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 497 */
d397712b 498
01d58472 499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
19c00ddc 500{
4eee4fa4 501 u64 start = page_offset(page);
19c00ddc 502 u64 found_start;
19c00ddc 503 struct extent_buffer *eb;
f188591e 504
4f2de97a
JB
505 eb = (struct extent_buffer *)page->private;
506 if (page != eb->pages[0])
507 return 0;
19c00ddc 508 found_start = btrfs_header_bytenr(eb);
fae7f21c 509 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 510 return 0;
01d58472 511 csum_tree_block(fs_info, eb, 0);
19c00ddc
CM
512 return 0;
513}
514
01d58472 515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
2b82032c
YZ
516 struct extent_buffer *eb)
517{
01d58472 518 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
2b82032c
YZ
519 u8 fsid[BTRFS_UUID_SIZE];
520 int ret = 1;
521
0a4e5586 522 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
523 while (fs_devices) {
524 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525 ret = 0;
526 break;
527 }
528 fs_devices = fs_devices->seed;
529 }
530 return ret;
531}
532
a826d6dc 533#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
534 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
535 "root=%llu, slot=%d", reason, \
c1c9ff7c 536 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
537
538static noinline int check_leaf(struct btrfs_root *root,
539 struct extent_buffer *leaf)
540{
541 struct btrfs_key key;
542 struct btrfs_key leaf_key;
543 u32 nritems = btrfs_header_nritems(leaf);
544 int slot;
545
546 if (nritems == 0)
547 return 0;
548
549 /* Check the 0 item */
550 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551 BTRFS_LEAF_DATA_SIZE(root)) {
552 CORRUPT("invalid item offset size pair", leaf, root, 0);
553 return -EIO;
554 }
555
556 /*
557 * Check to make sure each items keys are in the correct order and their
558 * offsets make sense. We only have to loop through nritems-1 because
559 * we check the current slot against the next slot, which verifies the
560 * next slot's offset+size makes sense and that the current's slot
561 * offset is correct.
562 */
563 for (slot = 0; slot < nritems - 1; slot++) {
564 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567 /* Make sure the keys are in the right order */
568 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569 CORRUPT("bad key order", leaf, root, slot);
570 return -EIO;
571 }
572
573 /*
574 * Make sure the offset and ends are right, remember that the
575 * item data starts at the end of the leaf and grows towards the
576 * front.
577 */
578 if (btrfs_item_offset_nr(leaf, slot) !=
579 btrfs_item_end_nr(leaf, slot + 1)) {
580 CORRUPT("slot offset bad", leaf, root, slot);
581 return -EIO;
582 }
583
584 /*
585 * Check to make sure that we don't point outside of the leaf,
586 * just incase all the items are consistent to eachother, but
587 * all point outside of the leaf.
588 */
589 if (btrfs_item_end_nr(leaf, slot) >
590 BTRFS_LEAF_DATA_SIZE(root)) {
591 CORRUPT("slot end outside of leaf", leaf, root, slot);
592 return -EIO;
593 }
594 }
595
596 return 0;
597}
598
facc8a22
MX
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600 u64 phy_offset, struct page *page,
601 u64 start, u64 end, int mirror)
ce9adaa5 602{
ce9adaa5
CM
603 u64 found_start;
604 int found_level;
ce9adaa5
CM
605 struct extent_buffer *eb;
606 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 607 int ret = 0;
727011e0 608 int reads_done;
ce9adaa5 609
ce9adaa5
CM
610 if (!page->private)
611 goto out;
d397712b 612
4f2de97a 613 eb = (struct extent_buffer *)page->private;
d397712b 614
0b32f4bb
JB
615 /* the pending IO might have been the only thing that kept this buffer
616 * in memory. Make sure we have a ref for all this other checks
617 */
618 extent_buffer_get(eb);
619
620 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
621 if (!reads_done)
622 goto err;
f188591e 623
5cf1ab56 624 eb->read_mirror = mirror;
656f30db 625 if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ea466794
JB
626 ret = -EIO;
627 goto err;
628 }
629
ce9adaa5 630 found_start = btrfs_header_bytenr(eb);
727011e0 631 if (found_start != eb->start) {
68b663d1 632 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
193f284d 633 "%llu %llu\n",
29549aec 634 eb->fs_info->sb->s_id, found_start, eb->start);
f188591e 635 ret = -EIO;
ce9adaa5
CM
636 goto err;
637 }
01d58472 638 if (check_tree_block_fsid(root->fs_info, eb)) {
68b663d1 639 printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
29549aec 640 eb->fs_info->sb->s_id, eb->start);
1259ab75
CM
641 ret = -EIO;
642 goto err;
643 }
ce9adaa5 644 found_level = btrfs_header_level(eb);
1c24c3ce 645 if (found_level >= BTRFS_MAX_LEVEL) {
68b663d1 646 btrfs_err(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
647 (int)btrfs_header_level(eb));
648 ret = -EIO;
649 goto err;
650 }
ce9adaa5 651
85d4e461
CM
652 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653 eb, found_level);
4008c04a 654
01d58472 655 ret = csum_tree_block(root->fs_info, eb, 1);
a826d6dc 656 if (ret) {
f188591e 657 ret = -EIO;
a826d6dc
JB
658 goto err;
659 }
660
661 /*
662 * If this is a leaf block and it is corrupt, set the corrupt bit so
663 * that we don't try and read the other copies of this block, just
664 * return -EIO.
665 */
666 if (found_level == 0 && check_leaf(root, eb)) {
667 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668 ret = -EIO;
669 }
ce9adaa5 670
0b32f4bb
JB
671 if (!ret)
672 set_extent_buffer_uptodate(eb);
ce9adaa5 673err:
79fb65a1
JB
674 if (reads_done &&
675 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 676 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 677
53b381b3
DW
678 if (ret) {
679 /*
680 * our io error hook is going to dec the io pages
681 * again, we have to make sure it has something
682 * to decrement
683 */
684 atomic_inc(&eb->io_pages);
0b32f4bb 685 clear_extent_buffer_uptodate(eb);
53b381b3 686 }
0b32f4bb 687 free_extent_buffer(eb);
ce9adaa5 688out:
f188591e 689 return ret;
ce9adaa5
CM
690}
691
ea466794 692static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 693{
4bb31e92
AJ
694 struct extent_buffer *eb;
695 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
4f2de97a 697 eb = (struct extent_buffer *)page->private;
656f30db 698 set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5cf1ab56 699 eb->read_mirror = failed_mirror;
53b381b3 700 atomic_dec(&eb->io_pages);
ea466794 701 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 702 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
703 return -EIO; /* we fixed nothing */
704}
705
ce9adaa5 706static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5 707{
97eb6b69 708 struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
ce9adaa5 709 struct btrfs_fs_info *fs_info;
9e0af237
LB
710 struct btrfs_workqueue *wq;
711 btrfs_work_func_t func;
ce9adaa5 712
ce9adaa5 713 fs_info = end_io_wq->info;
ce9adaa5 714 end_io_wq->error = err;
d20f7043 715
7b6d91da 716 if (bio->bi_rw & REQ_WRITE) {
9e0af237
LB
717 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718 wq = fs_info->endio_meta_write_workers;
719 func = btrfs_endio_meta_write_helper;
720 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721 wq = fs_info->endio_freespace_worker;
722 func = btrfs_freespace_write_helper;
723 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724 wq = fs_info->endio_raid56_workers;
725 func = btrfs_endio_raid56_helper;
726 } else {
727 wq = fs_info->endio_write_workers;
728 func = btrfs_endio_write_helper;
729 }
d20f7043 730 } else {
8b110e39
MX
731 if (unlikely(end_io_wq->metadata ==
732 BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733 wq = fs_info->endio_repair_workers;
734 func = btrfs_endio_repair_helper;
735 } else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
9e0af237
LB
736 wq = fs_info->endio_raid56_workers;
737 func = btrfs_endio_raid56_helper;
738 } else if (end_io_wq->metadata) {
739 wq = fs_info->endio_meta_workers;
740 func = btrfs_endio_meta_helper;
741 } else {
742 wq = fs_info->endio_workers;
743 func = btrfs_endio_helper;
744 }
d20f7043 745 }
9e0af237
LB
746
747 btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748 btrfs_queue_work(wq, &end_io_wq->work);
ce9adaa5
CM
749}
750
22c59948 751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
bfebd8b5 752 enum btrfs_wq_endio_type metadata)
0b86a832 753{
97eb6b69 754 struct btrfs_end_io_wq *end_io_wq;
8b110e39 755
97eb6b69 756 end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
ce9adaa5
CM
757 if (!end_io_wq)
758 return -ENOMEM;
759
760 end_io_wq->private = bio->bi_private;
761 end_io_wq->end_io = bio->bi_end_io;
22c59948 762 end_io_wq->info = info;
ce9adaa5
CM
763 end_io_wq->error = 0;
764 end_io_wq->bio = bio;
22c59948 765 end_io_wq->metadata = metadata;
ce9adaa5
CM
766
767 bio->bi_private = end_io_wq;
768 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
769 return 0;
770}
771
b64a2851 772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 773{
4854ddd0 774 unsigned long limit = min_t(unsigned long,
5cdc7ad3 775 info->thread_pool_size,
4854ddd0
CM
776 info->fs_devices->open_devices);
777 return 256 * limit;
778}
0986fe9e 779
4a69a410
CM
780static void run_one_async_start(struct btrfs_work *work)
781{
4a69a410 782 struct async_submit_bio *async;
79787eaa 783 int ret;
4a69a410
CM
784
785 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
786 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787 async->mirror_num, async->bio_flags,
788 async->bio_offset);
789 if (ret)
790 async->error = ret;
4a69a410
CM
791}
792
793static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
794{
795 struct btrfs_fs_info *fs_info;
796 struct async_submit_bio *async;
4854ddd0 797 int limit;
8b712842
CM
798
799 async = container_of(work, struct async_submit_bio, work);
800 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 801
b64a2851 802 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
803 limit = limit * 2 / 3;
804
66657b31 805 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 806 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
807 wake_up(&fs_info->async_submit_wait);
808
79787eaa
JM
809 /* If an error occured we just want to clean up the bio and move on */
810 if (async->error) {
811 bio_endio(async->bio, async->error);
812 return;
813 }
814
4a69a410 815 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
816 async->mirror_num, async->bio_flags,
817 async->bio_offset);
4a69a410
CM
818}
819
820static void run_one_async_free(struct btrfs_work *work)
821{
822 struct async_submit_bio *async;
823
824 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
825 kfree(async);
826}
827
44b8bd7e
CM
828int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829 int rw, struct bio *bio, int mirror_num,
c8b97818 830 unsigned long bio_flags,
eaf25d93 831 u64 bio_offset,
4a69a410
CM
832 extent_submit_bio_hook_t *submit_bio_start,
833 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
834{
835 struct async_submit_bio *async;
836
837 async = kmalloc(sizeof(*async), GFP_NOFS);
838 if (!async)
839 return -ENOMEM;
840
841 async->inode = inode;
842 async->rw = rw;
843 async->bio = bio;
844 async->mirror_num = mirror_num;
4a69a410
CM
845 async->submit_bio_start = submit_bio_start;
846 async->submit_bio_done = submit_bio_done;
847
9e0af237 848 btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
5cdc7ad3 849 run_one_async_done, run_one_async_free);
4a69a410 850
c8b97818 851 async->bio_flags = bio_flags;
eaf25d93 852 async->bio_offset = bio_offset;
8c8bee1d 853
79787eaa
JM
854 async->error = 0;
855
cb03c743 856 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 857
7b6d91da 858 if (rw & REQ_SYNC)
5cdc7ad3 859 btrfs_set_work_high_priority(&async->work);
d313d7a3 860
5cdc7ad3 861 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 862
d397712b 863 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
864 atomic_read(&fs_info->nr_async_submits)) {
865 wait_event(fs_info->async_submit_wait,
866 (atomic_read(&fs_info->nr_async_submits) == 0));
867 }
868
44b8bd7e
CM
869 return 0;
870}
871
ce3ed71a
CM
872static int btree_csum_one_bio(struct bio *bio)
873{
2c30c71b 874 struct bio_vec *bvec;
ce3ed71a 875 struct btrfs_root *root;
2c30c71b 876 int i, ret = 0;
ce3ed71a 877
2c30c71b 878 bio_for_each_segment_all(bvec, bio, i) {
ce3ed71a 879 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
01d58472 880 ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
79787eaa
JM
881 if (ret)
882 break;
ce3ed71a 883 }
2c30c71b 884
79787eaa 885 return ret;
ce3ed71a
CM
886}
887
4a69a410
CM
888static int __btree_submit_bio_start(struct inode *inode, int rw,
889 struct bio *bio, int mirror_num,
eaf25d93
CM
890 unsigned long bio_flags,
891 u64 bio_offset)
22c59948 892{
8b712842
CM
893 /*
894 * when we're called for a write, we're already in the async
5443be45 895 * submission context. Just jump into btrfs_map_bio
8b712842 896 */
79787eaa 897 return btree_csum_one_bio(bio);
4a69a410 898}
22c59948 899
4a69a410 900static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
901 int mirror_num, unsigned long bio_flags,
902 u64 bio_offset)
4a69a410 903{
61891923
SB
904 int ret;
905
8b712842 906 /*
4a69a410
CM
907 * when we're called for a write, we're already in the async
908 * submission context. Just jump into btrfs_map_bio
8b712842 909 */
61891923
SB
910 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911 if (ret)
912 bio_endio(bio, ret);
913 return ret;
0b86a832
CM
914}
915
de0022b9
JB
916static int check_async_write(struct inode *inode, unsigned long bio_flags)
917{
918 if (bio_flags & EXTENT_BIO_TREE_LOG)
919 return 0;
920#ifdef CONFIG_X86
921 if (cpu_has_xmm4_2)
922 return 0;
923#endif
924 return 1;
925}
926
44b8bd7e 927static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
928 int mirror_num, unsigned long bio_flags,
929 u64 bio_offset)
44b8bd7e 930{
de0022b9 931 int async = check_async_write(inode, bio_flags);
cad321ad
CM
932 int ret;
933
7b6d91da 934 if (!(rw & REQ_WRITE)) {
4a69a410
CM
935 /*
936 * called for a read, do the setup so that checksum validation
937 * can happen in the async kernel threads
938 */
f3f266ab 939 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
bfebd8b5 940 bio, BTRFS_WQ_ENDIO_METADATA);
1d4284bd 941 if (ret)
61891923
SB
942 goto out_w_error;
943 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944 mirror_num, 0);
de0022b9
JB
945 } else if (!async) {
946 ret = btree_csum_one_bio(bio);
947 if (ret)
61891923
SB
948 goto out_w_error;
949 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950 mirror_num, 0);
951 } else {
952 /*
953 * kthread helpers are used to submit writes so that
954 * checksumming can happen in parallel across all CPUs
955 */
956 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957 inode, rw, bio, mirror_num, 0,
958 bio_offset,
959 __btree_submit_bio_start,
960 __btree_submit_bio_done);
44b8bd7e 961 }
d313d7a3 962
61891923
SB
963 if (ret) {
964out_w_error:
965 bio_endio(bio, ret);
966 }
967 return ret;
44b8bd7e
CM
968}
969
3dd1462e 970#ifdef CONFIG_MIGRATION
784b4e29 971static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
972 struct page *newpage, struct page *page,
973 enum migrate_mode mode)
784b4e29
CM
974{
975 /*
976 * we can't safely write a btree page from here,
977 * we haven't done the locking hook
978 */
979 if (PageDirty(page))
980 return -EAGAIN;
981 /*
982 * Buffers may be managed in a filesystem specific way.
983 * We must have no buffers or drop them.
984 */
985 if (page_has_private(page) &&
986 !try_to_release_page(page, GFP_KERNEL))
987 return -EAGAIN;
a6bc32b8 988 return migrate_page(mapping, newpage, page, mode);
784b4e29 989}
3dd1462e 990#endif
784b4e29 991
0da5468f
CM
992
993static int btree_writepages(struct address_space *mapping,
994 struct writeback_control *wbc)
995{
e2d84521
MX
996 struct btrfs_fs_info *fs_info;
997 int ret;
998
d8d5f3e1 999 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
1000
1001 if (wbc->for_kupdate)
1002 return 0;
1003
e2d84521 1004 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 1005 /* this is a bit racy, but that's ok */
e2d84521
MX
1006 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007 BTRFS_DIRTY_METADATA_THRESH);
1008 if (ret < 0)
793955bc 1009 return 0;
793955bc 1010 }
0b32f4bb 1011 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
1012}
1013
b2950863 1014static int btree_readpage(struct file *file, struct page *page)
5f39d397 1015{
d1310b2e
CM
1016 struct extent_io_tree *tree;
1017 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1018 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1019}
22b0ebda 1020
70dec807 1021static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1022{
98509cfc 1023 if (PageWriteback(page) || PageDirty(page))
d397712b 1024 return 0;
0c4e538b 1025
f7a52a40 1026 return try_release_extent_buffer(page);
d98237b3
CM
1027}
1028
d47992f8
LC
1029static void btree_invalidatepage(struct page *page, unsigned int offset,
1030 unsigned int length)
d98237b3 1031{
d1310b2e
CM
1032 struct extent_io_tree *tree;
1033 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1034 extent_invalidatepage(tree, page, offset);
1035 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1036 if (PagePrivate(page)) {
efe120a0
FH
1037 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038 "page private not zero on page %llu",
1039 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1040 ClearPagePrivate(page);
1041 set_page_private(page, 0);
1042 page_cache_release(page);
1043 }
d98237b3
CM
1044}
1045
0b32f4bb
JB
1046static int btree_set_page_dirty(struct page *page)
1047{
bb146eb2 1048#ifdef DEBUG
0b32f4bb
JB
1049 struct extent_buffer *eb;
1050
1051 BUG_ON(!PagePrivate(page));
1052 eb = (struct extent_buffer *)page->private;
1053 BUG_ON(!eb);
1054 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055 BUG_ON(!atomic_read(&eb->refs));
1056 btrfs_assert_tree_locked(eb);
bb146eb2 1057#endif
0b32f4bb
JB
1058 return __set_page_dirty_nobuffers(page);
1059}
1060
7f09410b 1061static const struct address_space_operations btree_aops = {
d98237b3 1062 .readpage = btree_readpage,
0da5468f 1063 .writepages = btree_writepages,
5f39d397
CM
1064 .releasepage = btree_releasepage,
1065 .invalidatepage = btree_invalidatepage,
5a92bc88 1066#ifdef CONFIG_MIGRATION
784b4e29 1067 .migratepage = btree_migratepage,
5a92bc88 1068#endif
0b32f4bb 1069 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1070};
1071
d3e46fea 1072void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
090d1875 1073{
5f39d397
CM
1074 struct extent_buffer *buf = NULL;
1075 struct inode *btree_inode = root->fs_info->btree_inode;
090d1875 1076
a83fffb7 1077 buf = btrfs_find_create_tree_block(root, bytenr);
5f39d397 1078 if (!buf)
6197d86e 1079 return;
d1310b2e 1080 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1081 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1082 free_extent_buffer(buf);
090d1875
CM
1083}
1084
c0dcaa4d 1085int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
ab0fff03
AJ
1086 int mirror_num, struct extent_buffer **eb)
1087{
1088 struct extent_buffer *buf = NULL;
1089 struct inode *btree_inode = root->fs_info->btree_inode;
1090 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091 int ret;
1092
a83fffb7 1093 buf = btrfs_find_create_tree_block(root, bytenr);
ab0fff03
AJ
1094 if (!buf)
1095 return 0;
1096
1097 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098
1099 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100 btree_get_extent, mirror_num);
1101 if (ret) {
1102 free_extent_buffer(buf);
1103 return ret;
1104 }
1105
1106 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107 free_extent_buffer(buf);
1108 return -EIO;
0b32f4bb 1109 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1110 *eb = buf;
1111 } else {
1112 free_extent_buffer(buf);
1113 }
1114 return 0;
1115}
1116
01d58472 1117struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
0308af44 1118 u64 bytenr)
0999df54 1119{
01d58472 1120 return find_extent_buffer(fs_info, bytenr);
0999df54
CM
1121}
1122
1123struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
a83fffb7 1124 u64 bytenr)
0999df54 1125{
fccb84c9 1126 if (btrfs_test_is_dummy_root(root))
ce3e6984
DS
1127 return alloc_test_extent_buffer(root->fs_info, bytenr);
1128 return alloc_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1129}
1130
1131
e02119d5
CM
1132int btrfs_write_tree_block(struct extent_buffer *buf)
1133{
727011e0 1134 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1135 buf->start + buf->len - 1);
e02119d5
CM
1136}
1137
1138int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139{
727011e0 1140 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1141 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1142}
1143
0999df54 1144struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ce86cd59 1145 u64 parent_transid)
0999df54
CM
1146{
1147 struct extent_buffer *buf = NULL;
0999df54
CM
1148 int ret;
1149
a83fffb7 1150 buf = btrfs_find_create_tree_block(root, bytenr);
0999df54 1151 if (!buf)
64c043de 1152 return ERR_PTR(-ENOMEM);
0999df54 1153
ca7a79ad 1154 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1155 if (ret) {
1156 free_extent_buffer(buf);
64c043de 1157 return ERR_PTR(ret);
0f0fe8f7 1158 }
5f39d397 1159 return buf;
ce9adaa5 1160
eb60ceac
CM
1161}
1162
01d58472
DD
1163void clean_tree_block(struct btrfs_trans_handle *trans,
1164 struct btrfs_fs_info *fs_info,
d5c13f92 1165 struct extent_buffer *buf)
ed2ff2cb 1166{
55c69072 1167 if (btrfs_header_generation(buf) ==
e2d84521 1168 fs_info->running_transaction->transid) {
b9447ef8 1169 btrfs_assert_tree_locked(buf);
b4ce94de 1170
b9473439 1171 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1172 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173 -buf->len,
1174 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1175 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1176 btrfs_set_lock_blocking(buf);
1177 clear_extent_buffer_dirty(buf);
1178 }
925baedd 1179 }
5f39d397
CM
1180}
1181
8257b2dc
MX
1182static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183{
1184 struct btrfs_subvolume_writers *writers;
1185 int ret;
1186
1187 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188 if (!writers)
1189 return ERR_PTR(-ENOMEM);
1190
908c7f19 1191 ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
8257b2dc
MX
1192 if (ret < 0) {
1193 kfree(writers);
1194 return ERR_PTR(ret);
1195 }
1196
1197 init_waitqueue_head(&writers->wait);
1198 return writers;
1199}
1200
1201static void
1202btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203{
1204 percpu_counter_destroy(&writers->counter);
1205 kfree(writers);
1206}
1207
707e8a07
DS
1208static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
143bede5 1210 u64 objectid)
d97e63b6 1211{
cfaa7295 1212 root->node = NULL;
a28ec197 1213 root->commit_root = NULL;
db94535d
CM
1214 root->sectorsize = sectorsize;
1215 root->nodesize = nodesize;
87ee04eb 1216 root->stripesize = stripesize;
27cdeb70 1217 root->state = 0;
d68fc57b 1218 root->orphan_cleanup_state = 0;
0b86a832 1219
0f7d52f4
CM
1220 root->objectid = objectid;
1221 root->last_trans = 0;
13a8a7c8 1222 root->highest_objectid = 0;
eb73c1b7 1223 root->nr_delalloc_inodes = 0;
199c2a9c 1224 root->nr_ordered_extents = 0;
58176a96 1225 root->name = NULL;
6bef4d31 1226 root->inode_tree = RB_ROOT;
16cdcec7 1227 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1228 root->block_rsv = NULL;
d68fc57b 1229 root->orphan_block_rsv = NULL;
0b86a832
CM
1230
1231 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1232 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1233 INIT_LIST_HEAD(&root->delalloc_inodes);
1234 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1235 INIT_LIST_HEAD(&root->ordered_extents);
1236 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1237 INIT_LIST_HEAD(&root->logged_list[0]);
1238 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1239 spin_lock_init(&root->orphan_lock);
5d4f98a2 1240 spin_lock_init(&root->inode_lock);
eb73c1b7 1241 spin_lock_init(&root->delalloc_lock);
199c2a9c 1242 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1243 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1244 spin_lock_init(&root->log_extents_lock[0]);
1245 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1246 mutex_init(&root->objectid_mutex);
e02119d5 1247 mutex_init(&root->log_mutex);
31f3d255 1248 mutex_init(&root->ordered_extent_mutex);
573bfb72 1249 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1250 init_waitqueue_head(&root->log_writer_wait);
1251 init_waitqueue_head(&root->log_commit_wait[0]);
1252 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1253 INIT_LIST_HEAD(&root->log_ctxs[0]);
1254 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1255 atomic_set(&root->log_commit[0], 0);
1256 atomic_set(&root->log_commit[1], 0);
1257 atomic_set(&root->log_writers, 0);
2ecb7923 1258 atomic_set(&root->log_batch, 0);
8a35d95f 1259 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1260 atomic_set(&root->refs, 1);
8257b2dc 1261 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1262 root->log_transid = 0;
d1433deb 1263 root->log_transid_committed = -1;
257c62e1 1264 root->last_log_commit = 0;
06ea65a3
JB
1265 if (fs_info)
1266 extent_io_tree_init(&root->dirty_log_pages,
1267 fs_info->btree_inode->i_mapping);
017e5369 1268
3768f368
CM
1269 memset(&root->root_key, 0, sizeof(root->root_key));
1270 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1271 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
06ea65a3
JB
1272 if (fs_info)
1273 root->defrag_trans_start = fs_info->generation;
1274 else
1275 root->defrag_trans_start = 0;
4d775673 1276 root->root_key.objectid = objectid;
0ee5dc67 1277 root->anon_dev = 0;
8ea05e3a 1278
5f3ab90a 1279 spin_lock_init(&root->root_item_lock);
3768f368
CM
1280}
1281
f84a8bd6 1282static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1283{
1284 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285 if (root)
1286 root->fs_info = fs_info;
1287 return root;
1288}
1289
06ea65a3
JB
1290#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291/* Should only be used by the testing infrastructure */
1292struct btrfs_root *btrfs_alloc_dummy_root(void)
1293{
1294 struct btrfs_root *root;
1295
1296 root = btrfs_alloc_root(NULL);
1297 if (!root)
1298 return ERR_PTR(-ENOMEM);
707e8a07 1299 __setup_root(4096, 4096, 4096, root, NULL, 1);
27cdeb70 1300 set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
faa2dbf0 1301 root->alloc_bytenr = 0;
06ea65a3
JB
1302
1303 return root;
1304}
1305#endif
1306
20897f5c
AJ
1307struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308 struct btrfs_fs_info *fs_info,
1309 u64 objectid)
1310{
1311 struct extent_buffer *leaf;
1312 struct btrfs_root *tree_root = fs_info->tree_root;
1313 struct btrfs_root *root;
1314 struct btrfs_key key;
1315 int ret = 0;
6463fe58 1316 uuid_le uuid;
20897f5c
AJ
1317
1318 root = btrfs_alloc_root(fs_info);
1319 if (!root)
1320 return ERR_PTR(-ENOMEM);
1321
707e8a07
DS
1322 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1323 tree_root->stripesize, root, fs_info, objectid);
20897f5c
AJ
1324 root->root_key.objectid = objectid;
1325 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326 root->root_key.offset = 0;
1327
4d75f8a9 1328 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
20897f5c
AJ
1329 if (IS_ERR(leaf)) {
1330 ret = PTR_ERR(leaf);
1dd05682 1331 leaf = NULL;
20897f5c
AJ
1332 goto fail;
1333 }
1334
20897f5c
AJ
1335 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336 btrfs_set_header_bytenr(leaf, leaf->start);
1337 btrfs_set_header_generation(leaf, trans->transid);
1338 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339 btrfs_set_header_owner(leaf, objectid);
1340 root->node = leaf;
1341
0a4e5586 1342 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1343 BTRFS_FSID_SIZE);
1344 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1345 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1346 BTRFS_UUID_SIZE);
1347 btrfs_mark_buffer_dirty(leaf);
1348
1349 root->commit_root = btrfs_root_node(root);
27cdeb70 1350 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
20897f5c
AJ
1351
1352 root->root_item.flags = 0;
1353 root->root_item.byte_limit = 0;
1354 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355 btrfs_set_root_generation(&root->root_item, trans->transid);
1356 btrfs_set_root_level(&root->root_item, 0);
1357 btrfs_set_root_refs(&root->root_item, 1);
1358 btrfs_set_root_used(&root->root_item, leaf->len);
1359 btrfs_set_root_last_snapshot(&root->root_item, 0);
1360 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1361 uuid_le_gen(&uuid);
1362 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1363 root->root_item.drop_level = 0;
1364
1365 key.objectid = objectid;
1366 key.type = BTRFS_ROOT_ITEM_KEY;
1367 key.offset = 0;
1368 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369 if (ret)
1370 goto fail;
1371
1372 btrfs_tree_unlock(leaf);
1373
1dd05682
TI
1374 return root;
1375
20897f5c 1376fail:
1dd05682
TI
1377 if (leaf) {
1378 btrfs_tree_unlock(leaf);
59885b39 1379 free_extent_buffer(root->commit_root);
1dd05682
TI
1380 free_extent_buffer(leaf);
1381 }
1382 kfree(root);
20897f5c 1383
1dd05682 1384 return ERR_PTR(ret);
20897f5c
AJ
1385}
1386
7237f183
YZ
1387static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1389{
1390 struct btrfs_root *root;
1391 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1392 struct extent_buffer *leaf;
e02119d5 1393
6f07e42e 1394 root = btrfs_alloc_root(fs_info);
e02119d5 1395 if (!root)
7237f183 1396 return ERR_PTR(-ENOMEM);
e02119d5 1397
707e8a07
DS
1398 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1399 tree_root->stripesize, root, fs_info,
1400 BTRFS_TREE_LOG_OBJECTID);
e02119d5
CM
1401
1402 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
27cdeb70 1405
7237f183 1406 /*
27cdeb70
MX
1407 * DON'T set REF_COWS for log trees
1408 *
7237f183
YZ
1409 * log trees do not get reference counted because they go away
1410 * before a real commit is actually done. They do store pointers
1411 * to file data extents, and those reference counts still get
1412 * updated (along with back refs to the log tree).
1413 */
e02119d5 1414
4d75f8a9
DS
1415 leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416 NULL, 0, 0, 0);
7237f183
YZ
1417 if (IS_ERR(leaf)) {
1418 kfree(root);
1419 return ERR_CAST(leaf);
1420 }
e02119d5 1421
5d4f98a2
YZ
1422 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423 btrfs_set_header_bytenr(leaf, leaf->start);
1424 btrfs_set_header_generation(leaf, trans->transid);
1425 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1427 root->node = leaf;
e02119d5
CM
1428
1429 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1430 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1431 btrfs_mark_buffer_dirty(root->node);
1432 btrfs_tree_unlock(root->node);
7237f183
YZ
1433 return root;
1434}
1435
1436int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437 struct btrfs_fs_info *fs_info)
1438{
1439 struct btrfs_root *log_root;
1440
1441 log_root = alloc_log_tree(trans, fs_info);
1442 if (IS_ERR(log_root))
1443 return PTR_ERR(log_root);
1444 WARN_ON(fs_info->log_root_tree);
1445 fs_info->log_root_tree = log_root;
1446 return 0;
1447}
1448
1449int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450 struct btrfs_root *root)
1451{
1452 struct btrfs_root *log_root;
1453 struct btrfs_inode_item *inode_item;
1454
1455 log_root = alloc_log_tree(trans, root->fs_info);
1456 if (IS_ERR(log_root))
1457 return PTR_ERR(log_root);
1458
1459 log_root->last_trans = trans->transid;
1460 log_root->root_key.offset = root->root_key.objectid;
1461
1462 inode_item = &log_root->root_item.inode;
3cae210f
QW
1463 btrfs_set_stack_inode_generation(inode_item, 1);
1464 btrfs_set_stack_inode_size(inode_item, 3);
1465 btrfs_set_stack_inode_nlink(inode_item, 1);
707e8a07 1466 btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
3cae210f 1467 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1468
5d4f98a2 1469 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1470
1471 WARN_ON(root->log_root);
1472 root->log_root = log_root;
1473 root->log_transid = 0;
d1433deb 1474 root->log_transid_committed = -1;
257c62e1 1475 root->last_log_commit = 0;
e02119d5
CM
1476 return 0;
1477}
1478
35a3621b
SB
1479static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480 struct btrfs_key *key)
e02119d5
CM
1481{
1482 struct btrfs_root *root;
1483 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1484 struct btrfs_path *path;
84234f3a 1485 u64 generation;
cb517eab 1486 int ret;
0f7d52f4 1487
cb517eab
MX
1488 path = btrfs_alloc_path();
1489 if (!path)
0f7d52f4 1490 return ERR_PTR(-ENOMEM);
cb517eab
MX
1491
1492 root = btrfs_alloc_root(fs_info);
1493 if (!root) {
1494 ret = -ENOMEM;
1495 goto alloc_fail;
0f7d52f4
CM
1496 }
1497
707e8a07
DS
1498 __setup_root(tree_root->nodesize, tree_root->sectorsize,
1499 tree_root->stripesize, root, fs_info, key->objectid);
0f7d52f4 1500
cb517eab
MX
1501 ret = btrfs_find_root(tree_root, key, path,
1502 &root->root_item, &root->root_key);
0f7d52f4 1503 if (ret) {
13a8a7c8
YZ
1504 if (ret > 0)
1505 ret = -ENOENT;
cb517eab 1506 goto find_fail;
0f7d52f4 1507 }
13a8a7c8 1508
84234f3a 1509 generation = btrfs_root_generation(&root->root_item);
db94535d 1510 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
ce86cd59 1511 generation);
64c043de
LB
1512 if (IS_ERR(root->node)) {
1513 ret = PTR_ERR(root->node);
cb517eab
MX
1514 goto find_fail;
1515 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516 ret = -EIO;
64c043de
LB
1517 free_extent_buffer(root->node);
1518 goto find_fail;
416bc658 1519 }
5d4f98a2 1520 root->commit_root = btrfs_root_node(root);
13a8a7c8 1521out:
cb517eab
MX
1522 btrfs_free_path(path);
1523 return root;
1524
cb517eab
MX
1525find_fail:
1526 kfree(root);
1527alloc_fail:
1528 root = ERR_PTR(ret);
1529 goto out;
1530}
1531
1532struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1533 struct btrfs_key *location)
1534{
1535 struct btrfs_root *root;
1536
1537 root = btrfs_read_tree_root(tree_root, location);
1538 if (IS_ERR(root))
1539 return root;
1540
1541 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
27cdeb70 1542 set_bit(BTRFS_ROOT_REF_COWS, &root->state);
08fe4db1
LZ
1543 btrfs_check_and_init_root_item(&root->root_item);
1544 }
13a8a7c8 1545
5eda7b5e
CM
1546 return root;
1547}
1548
cb517eab
MX
1549int btrfs_init_fs_root(struct btrfs_root *root)
1550{
1551 int ret;
8257b2dc 1552 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1553
1554 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1555 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1556 GFP_NOFS);
1557 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1558 ret = -ENOMEM;
1559 goto fail;
1560 }
1561
8257b2dc
MX
1562 writers = btrfs_alloc_subvolume_writers();
1563 if (IS_ERR(writers)) {
1564 ret = PTR_ERR(writers);
1565 goto fail;
1566 }
1567 root->subv_writers = writers;
1568
cb517eab 1569 btrfs_init_free_ino_ctl(root);
57cdc8db
DS
1570 spin_lock_init(&root->ino_cache_lock);
1571 init_waitqueue_head(&root->ino_cache_wait);
cb517eab
MX
1572
1573 ret = get_anon_bdev(&root->anon_dev);
1574 if (ret)
8257b2dc 1575 goto free_writers;
cb517eab 1576 return 0;
8257b2dc
MX
1577
1578free_writers:
1579 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1580fail:
1581 kfree(root->free_ino_ctl);
1582 kfree(root->free_ino_pinned);
1583 return ret;
1584}
1585
171170c1
ST
1586static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1587 u64 root_id)
cb517eab
MX
1588{
1589 struct btrfs_root *root;
1590
1591 spin_lock(&fs_info->fs_roots_radix_lock);
1592 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1593 (unsigned long)root_id);
1594 spin_unlock(&fs_info->fs_roots_radix_lock);
1595 return root;
1596}
1597
1598int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1599 struct btrfs_root *root)
1600{
1601 int ret;
1602
1603 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1604 if (ret)
1605 return ret;
1606
1607 spin_lock(&fs_info->fs_roots_radix_lock);
1608 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1609 (unsigned long)root->root_key.objectid,
1610 root);
1611 if (ret == 0)
27cdeb70 1612 set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
cb517eab
MX
1613 spin_unlock(&fs_info->fs_roots_radix_lock);
1614 radix_tree_preload_end();
1615
1616 return ret;
1617}
1618
c00869f1
MX
1619struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1620 struct btrfs_key *location,
1621 bool check_ref)
5eda7b5e
CM
1622{
1623 struct btrfs_root *root;
381cf658 1624 struct btrfs_path *path;
1d4c08e0 1625 struct btrfs_key key;
5eda7b5e
CM
1626 int ret;
1627
edbd8d4e
CM
1628 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1629 return fs_info->tree_root;
1630 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1631 return fs_info->extent_root;
8f18cf13
CM
1632 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1633 return fs_info->chunk_root;
1634 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1635 return fs_info->dev_root;
0403e47e
YZ
1636 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1637 return fs_info->csum_root;
bcef60f2
AJ
1638 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1639 return fs_info->quota_root ? fs_info->quota_root :
1640 ERR_PTR(-ENOENT);
f7a81ea4
SB
1641 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1642 return fs_info->uuid_root ? fs_info->uuid_root :
1643 ERR_PTR(-ENOENT);
4df27c4d 1644again:
cb517eab 1645 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1646 if (root) {
c00869f1 1647 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1648 return ERR_PTR(-ENOENT);
5eda7b5e 1649 return root;
48475471 1650 }
5eda7b5e 1651
cb517eab 1652 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1653 if (IS_ERR(root))
1654 return root;
3394e160 1655
c00869f1 1656 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1657 ret = -ENOENT;
581bb050 1658 goto fail;
35a30d7c 1659 }
581bb050 1660
cb517eab 1661 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1662 if (ret)
1663 goto fail;
3394e160 1664
381cf658
DS
1665 path = btrfs_alloc_path();
1666 if (!path) {
1667 ret = -ENOMEM;
1668 goto fail;
1669 }
1d4c08e0
DS
1670 key.objectid = BTRFS_ORPHAN_OBJECTID;
1671 key.type = BTRFS_ORPHAN_ITEM_KEY;
1672 key.offset = location->objectid;
1673
1674 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
381cf658 1675 btrfs_free_path(path);
d68fc57b
YZ
1676 if (ret < 0)
1677 goto fail;
1678 if (ret == 0)
27cdeb70 1679 set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
d68fc57b 1680
cb517eab 1681 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1682 if (ret) {
4df27c4d
YZ
1683 if (ret == -EEXIST) {
1684 free_fs_root(root);
1685 goto again;
1686 }
1687 goto fail;
0f7d52f4 1688 }
edbd8d4e 1689 return root;
4df27c4d
YZ
1690fail:
1691 free_fs_root(root);
1692 return ERR_PTR(ret);
edbd8d4e
CM
1693}
1694
04160088
CM
1695static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1696{
1697 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1698 int ret = 0;
04160088
CM
1699 struct btrfs_device *device;
1700 struct backing_dev_info *bdi;
b7967db7 1701
1f78160c
XG
1702 rcu_read_lock();
1703 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1704 if (!device->bdev)
1705 continue;
04160088 1706 bdi = blk_get_backing_dev_info(device->bdev);
ff9ea323 1707 if (bdi_congested(bdi, bdi_bits)) {
04160088
CM
1708 ret = 1;
1709 break;
1710 }
1711 }
1f78160c 1712 rcu_read_unlock();
04160088
CM
1713 return ret;
1714}
1715
04160088
CM
1716static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1717{
ad081f14
JA
1718 int err;
1719
b4caecd4 1720 err = bdi_setup_and_register(bdi, "btrfs");
ad081f14
JA
1721 if (err)
1722 return err;
1723
df0ce26c 1724 bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
04160088
CM
1725 bdi->congested_fn = btrfs_congested_fn;
1726 bdi->congested_data = info;
1727 return 0;
1728}
1729
8b712842
CM
1730/*
1731 * called by the kthread helper functions to finally call the bio end_io
1732 * functions. This is where read checksum verification actually happens
1733 */
1734static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1735{
ce9adaa5 1736 struct bio *bio;
97eb6b69 1737 struct btrfs_end_io_wq *end_io_wq;
ce9adaa5 1738 int error;
ce9adaa5 1739
97eb6b69 1740 end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
8b712842 1741 bio = end_io_wq->bio;
ce9adaa5 1742
8b712842
CM
1743 error = end_io_wq->error;
1744 bio->bi_private = end_io_wq->private;
1745 bio->bi_end_io = end_io_wq->end_io;
97eb6b69 1746 kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
bc1e79ac 1747 bio_endio_nodec(bio, error);
44b8bd7e
CM
1748}
1749
a74a4b97
CM
1750static int cleaner_kthread(void *arg)
1751{
1752 struct btrfs_root *root = arg;
d0278245 1753 int again;
a74a4b97
CM
1754
1755 do {
d0278245 1756 again = 0;
a74a4b97 1757
d0278245 1758 /* Make the cleaner go to sleep early. */
babbf170 1759 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1760 goto sleep;
1761
1762 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1763 goto sleep;
1764
dc7f370c
MX
1765 /*
1766 * Avoid the problem that we change the status of the fs
1767 * during the above check and trylock.
1768 */
babbf170 1769 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1770 mutex_unlock(&root->fs_info->cleaner_mutex);
1771 goto sleep;
76dda93c 1772 }
a74a4b97 1773
d0278245 1774 btrfs_run_delayed_iputs(root);
47ab2a6c 1775 btrfs_delete_unused_bgs(root->fs_info);
d0278245
MX
1776 again = btrfs_clean_one_deleted_snapshot(root);
1777 mutex_unlock(&root->fs_info->cleaner_mutex);
1778
1779 /*
05323cd1
MX
1780 * The defragger has dealt with the R/O remount and umount,
1781 * needn't do anything special here.
d0278245
MX
1782 */
1783 btrfs_run_defrag_inodes(root->fs_info);
1784sleep:
9d1a2a3a 1785 if (!try_to_freeze() && !again) {
a74a4b97 1786 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1787 if (!kthread_should_stop())
1788 schedule();
a74a4b97
CM
1789 __set_current_state(TASK_RUNNING);
1790 }
1791 } while (!kthread_should_stop());
1792 return 0;
1793}
1794
1795static int transaction_kthread(void *arg)
1796{
1797 struct btrfs_root *root = arg;
1798 struct btrfs_trans_handle *trans;
1799 struct btrfs_transaction *cur;
8929ecfa 1800 u64 transid;
a74a4b97
CM
1801 unsigned long now;
1802 unsigned long delay;
914b2007 1803 bool cannot_commit;
a74a4b97
CM
1804
1805 do {
914b2007 1806 cannot_commit = false;
8b87dc17 1807 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1808 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1809
a4abeea4 1810 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1811 cur = root->fs_info->running_transaction;
1812 if (!cur) {
a4abeea4 1813 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1814 goto sleep;
1815 }
31153d81 1816
a74a4b97 1817 now = get_seconds();
4a9d8bde 1818 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1819 (now < cur->start_time ||
1820 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1821 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1822 delay = HZ * 5;
1823 goto sleep;
1824 }
8929ecfa 1825 transid = cur->transid;
a4abeea4 1826 spin_unlock(&root->fs_info->trans_lock);
56bec294 1827
79787eaa 1828 /* If the file system is aborted, this will always fail. */
354aa0fb 1829 trans = btrfs_attach_transaction(root);
914b2007 1830 if (IS_ERR(trans)) {
354aa0fb
MX
1831 if (PTR_ERR(trans) != -ENOENT)
1832 cannot_commit = true;
79787eaa 1833 goto sleep;
914b2007 1834 }
8929ecfa 1835 if (transid == trans->transid) {
79787eaa 1836 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1837 } else {
1838 btrfs_end_transaction(trans, root);
1839 }
a74a4b97
CM
1840sleep:
1841 wake_up_process(root->fs_info->cleaner_kthread);
1842 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1843
4e121c06
JB
1844 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1845 &root->fs_info->fs_state)))
1846 btrfs_cleanup_transaction(root);
a0acae0e 1847 if (!try_to_freeze()) {
a74a4b97 1848 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1849 if (!kthread_should_stop() &&
914b2007
JK
1850 (!btrfs_transaction_blocked(root->fs_info) ||
1851 cannot_commit))
8929ecfa 1852 schedule_timeout(delay);
a74a4b97
CM
1853 __set_current_state(TASK_RUNNING);
1854 }
1855 } while (!kthread_should_stop());
1856 return 0;
1857}
1858
af31f5e5
CM
1859/*
1860 * this will find the highest generation in the array of
1861 * root backups. The index of the highest array is returned,
1862 * or -1 if we can't find anything.
1863 *
1864 * We check to make sure the array is valid by comparing the
1865 * generation of the latest root in the array with the generation
1866 * in the super block. If they don't match we pitch it.
1867 */
1868static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1869{
1870 u64 cur;
1871 int newest_index = -1;
1872 struct btrfs_root_backup *root_backup;
1873 int i;
1874
1875 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1876 root_backup = info->super_copy->super_roots + i;
1877 cur = btrfs_backup_tree_root_gen(root_backup);
1878 if (cur == newest_gen)
1879 newest_index = i;
1880 }
1881
1882 /* check to see if we actually wrapped around */
1883 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1884 root_backup = info->super_copy->super_roots;
1885 cur = btrfs_backup_tree_root_gen(root_backup);
1886 if (cur == newest_gen)
1887 newest_index = 0;
1888 }
1889 return newest_index;
1890}
1891
1892
1893/*
1894 * find the oldest backup so we know where to store new entries
1895 * in the backup array. This will set the backup_root_index
1896 * field in the fs_info struct
1897 */
1898static void find_oldest_super_backup(struct btrfs_fs_info *info,
1899 u64 newest_gen)
1900{
1901 int newest_index = -1;
1902
1903 newest_index = find_newest_super_backup(info, newest_gen);
1904 /* if there was garbage in there, just move along */
1905 if (newest_index == -1) {
1906 info->backup_root_index = 0;
1907 } else {
1908 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1909 }
1910}
1911
1912/*
1913 * copy all the root pointers into the super backup array.
1914 * this will bump the backup pointer by one when it is
1915 * done
1916 */
1917static void backup_super_roots(struct btrfs_fs_info *info)
1918{
1919 int next_backup;
1920 struct btrfs_root_backup *root_backup;
1921 int last_backup;
1922
1923 next_backup = info->backup_root_index;
1924 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1925 BTRFS_NUM_BACKUP_ROOTS;
1926
1927 /*
1928 * just overwrite the last backup if we're at the same generation
1929 * this happens only at umount
1930 */
1931 root_backup = info->super_for_commit->super_roots + last_backup;
1932 if (btrfs_backup_tree_root_gen(root_backup) ==
1933 btrfs_header_generation(info->tree_root->node))
1934 next_backup = last_backup;
1935
1936 root_backup = info->super_for_commit->super_roots + next_backup;
1937
1938 /*
1939 * make sure all of our padding and empty slots get zero filled
1940 * regardless of which ones we use today
1941 */
1942 memset(root_backup, 0, sizeof(*root_backup));
1943
1944 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1945
1946 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1947 btrfs_set_backup_tree_root_gen(root_backup,
1948 btrfs_header_generation(info->tree_root->node));
1949
1950 btrfs_set_backup_tree_root_level(root_backup,
1951 btrfs_header_level(info->tree_root->node));
1952
1953 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1954 btrfs_set_backup_chunk_root_gen(root_backup,
1955 btrfs_header_generation(info->chunk_root->node));
1956 btrfs_set_backup_chunk_root_level(root_backup,
1957 btrfs_header_level(info->chunk_root->node));
1958
1959 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1960 btrfs_set_backup_extent_root_gen(root_backup,
1961 btrfs_header_generation(info->extent_root->node));
1962 btrfs_set_backup_extent_root_level(root_backup,
1963 btrfs_header_level(info->extent_root->node));
1964
7c7e82a7
CM
1965 /*
1966 * we might commit during log recovery, which happens before we set
1967 * the fs_root. Make sure it is valid before we fill it in.
1968 */
1969 if (info->fs_root && info->fs_root->node) {
1970 btrfs_set_backup_fs_root(root_backup,
1971 info->fs_root->node->start);
1972 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1973 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1974 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1975 btrfs_header_level(info->fs_root->node));
7c7e82a7 1976 }
af31f5e5
CM
1977
1978 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1979 btrfs_set_backup_dev_root_gen(root_backup,
1980 btrfs_header_generation(info->dev_root->node));
1981 btrfs_set_backup_dev_root_level(root_backup,
1982 btrfs_header_level(info->dev_root->node));
1983
1984 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1985 btrfs_set_backup_csum_root_gen(root_backup,
1986 btrfs_header_generation(info->csum_root->node));
1987 btrfs_set_backup_csum_root_level(root_backup,
1988 btrfs_header_level(info->csum_root->node));
1989
1990 btrfs_set_backup_total_bytes(root_backup,
1991 btrfs_super_total_bytes(info->super_copy));
1992 btrfs_set_backup_bytes_used(root_backup,
1993 btrfs_super_bytes_used(info->super_copy));
1994 btrfs_set_backup_num_devices(root_backup,
1995 btrfs_super_num_devices(info->super_copy));
1996
1997 /*
1998 * if we don't copy this out to the super_copy, it won't get remembered
1999 * for the next commit
2000 */
2001 memcpy(&info->super_copy->super_roots,
2002 &info->super_for_commit->super_roots,
2003 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2004}
2005
2006/*
2007 * this copies info out of the root backup array and back into
2008 * the in-memory super block. It is meant to help iterate through
2009 * the array, so you send it the number of backups you've already
2010 * tried and the last backup index you used.
2011 *
2012 * this returns -1 when it has tried all the backups
2013 */
2014static noinline int next_root_backup(struct btrfs_fs_info *info,
2015 struct btrfs_super_block *super,
2016 int *num_backups_tried, int *backup_index)
2017{
2018 struct btrfs_root_backup *root_backup;
2019 int newest = *backup_index;
2020
2021 if (*num_backups_tried == 0) {
2022 u64 gen = btrfs_super_generation(super);
2023
2024 newest = find_newest_super_backup(info, gen);
2025 if (newest == -1)
2026 return -1;
2027
2028 *backup_index = newest;
2029 *num_backups_tried = 1;
2030 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2031 /* we've tried all the backups, all done */
2032 return -1;
2033 } else {
2034 /* jump to the next oldest backup */
2035 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2036 BTRFS_NUM_BACKUP_ROOTS;
2037 *backup_index = newest;
2038 *num_backups_tried += 1;
2039 }
2040 root_backup = super->super_roots + newest;
2041
2042 btrfs_set_super_generation(super,
2043 btrfs_backup_tree_root_gen(root_backup));
2044 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2045 btrfs_set_super_root_level(super,
2046 btrfs_backup_tree_root_level(root_backup));
2047 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2048
2049 /*
2050 * fixme: the total bytes and num_devices need to match or we should
2051 * need a fsck
2052 */
2053 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2054 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2055 return 0;
2056}
2057
7abadb64
LB
2058/* helper to cleanup workers */
2059static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2060{
dc6e3209 2061 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2062 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2063 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2064 btrfs_destroy_workqueue(fs_info->endio_workers);
2065 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2066 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
8b110e39 2067 btrfs_destroy_workqueue(fs_info->endio_repair_workers);
d05a33ac 2068 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2069 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2070 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2071 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2072 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2073 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2074 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2075 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2076 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2077 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
a79b7d4b 2078 btrfs_destroy_workqueue(fs_info->extent_workers);
7abadb64
LB
2079}
2080
2e9f5954
R
2081static void free_root_extent_buffers(struct btrfs_root *root)
2082{
2083 if (root) {
2084 free_extent_buffer(root->node);
2085 free_extent_buffer(root->commit_root);
2086 root->node = NULL;
2087 root->commit_root = NULL;
2088 }
2089}
2090
af31f5e5
CM
2091/* helper to cleanup tree roots */
2092static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2093{
2e9f5954 2094 free_root_extent_buffers(info->tree_root);
655b09fe 2095
2e9f5954
R
2096 free_root_extent_buffers(info->dev_root);
2097 free_root_extent_buffers(info->extent_root);
2098 free_root_extent_buffers(info->csum_root);
2099 free_root_extent_buffers(info->quota_root);
2100 free_root_extent_buffers(info->uuid_root);
2101 if (chunk_root)
2102 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2103}
2104
faa2dbf0 2105void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
171f6537
JB
2106{
2107 int ret;
2108 struct btrfs_root *gang[8];
2109 int i;
2110
2111 while (!list_empty(&fs_info->dead_roots)) {
2112 gang[0] = list_entry(fs_info->dead_roots.next,
2113 struct btrfs_root, root_list);
2114 list_del(&gang[0]->root_list);
2115
27cdeb70 2116 if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
cb517eab 2117 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2118 } else {
2119 free_extent_buffer(gang[0]->node);
2120 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2121 btrfs_put_fs_root(gang[0]);
171f6537
JB
2122 }
2123 }
2124
2125 while (1) {
2126 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2127 (void **)gang, 0,
2128 ARRAY_SIZE(gang));
2129 if (!ret)
2130 break;
2131 for (i = 0; i < ret; i++)
cb517eab 2132 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2133 }
1a4319cc
LB
2134
2135 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2136 btrfs_free_log_root_tree(NULL, fs_info);
2137 btrfs_destroy_pinned_extent(fs_info->tree_root,
2138 fs_info->pinned_extents);
2139 }
171f6537 2140}
af31f5e5 2141
638aa7ed
ES
2142static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2143{
2144 mutex_init(&fs_info->scrub_lock);
2145 atomic_set(&fs_info->scrubs_running, 0);
2146 atomic_set(&fs_info->scrub_pause_req, 0);
2147 atomic_set(&fs_info->scrubs_paused, 0);
2148 atomic_set(&fs_info->scrub_cancel_req, 0);
2149 init_waitqueue_head(&fs_info->scrub_pause_wait);
2150 fs_info->scrub_workers_refcnt = 0;
2151}
2152
779a65a4
ES
2153static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2154{
2155 spin_lock_init(&fs_info->balance_lock);
2156 mutex_init(&fs_info->balance_mutex);
2157 atomic_set(&fs_info->balance_running, 0);
2158 atomic_set(&fs_info->balance_pause_req, 0);
2159 atomic_set(&fs_info->balance_cancel_req, 0);
2160 fs_info->balance_ctl = NULL;
2161 init_waitqueue_head(&fs_info->balance_wait_q);
2162}
2163
f37938e0
ES
2164static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2165 struct btrfs_root *tree_root)
2166{
2167 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2168 set_nlink(fs_info->btree_inode, 1);
2169 /*
2170 * we set the i_size on the btree inode to the max possible int.
2171 * the real end of the address space is determined by all of
2172 * the devices in the system
2173 */
2174 fs_info->btree_inode->i_size = OFFSET_MAX;
2175 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
f37938e0
ES
2176
2177 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2178 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2179 fs_info->btree_inode->i_mapping);
2180 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2181 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2182
2183 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2184
2185 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2186 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2187 sizeof(struct btrfs_key));
2188 set_bit(BTRFS_INODE_DUMMY,
2189 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
2190 btrfs_insert_inode_hash(fs_info->btree_inode);
2191}
2192
ad618368
ES
2193static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2194{
2195 fs_info->dev_replace.lock_owner = 0;
2196 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2197 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2198 mutex_init(&fs_info->dev_replace.lock_management_lock);
2199 mutex_init(&fs_info->dev_replace.lock);
2200 init_waitqueue_head(&fs_info->replace_wait);
2201}
2202
f9e92e40
ES
2203static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2204{
2205 spin_lock_init(&fs_info->qgroup_lock);
2206 mutex_init(&fs_info->qgroup_ioctl_lock);
2207 fs_info->qgroup_tree = RB_ROOT;
2208 fs_info->qgroup_op_tree = RB_ROOT;
2209 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2210 fs_info->qgroup_seq = 1;
2211 fs_info->quota_enabled = 0;
2212 fs_info->pending_quota_state = 0;
2213 fs_info->qgroup_ulist = NULL;
2214 mutex_init(&fs_info->qgroup_rescan_lock);
2215}
2216
2a458198
ES
2217static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2218 struct btrfs_fs_devices *fs_devices)
2219{
2220 int max_active = fs_info->thread_pool_size;
6f011058 2221 unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2a458198
ES
2222
2223 fs_info->workers =
2224 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2225 max_active, 16);
2226
2227 fs_info->delalloc_workers =
2228 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2229
2230 fs_info->flush_workers =
2231 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2232
2233 fs_info->caching_workers =
2234 btrfs_alloc_workqueue("cache", flags, max_active, 0);
2235
2236 /*
2237 * a higher idle thresh on the submit workers makes it much more
2238 * likely that bios will be send down in a sane order to the
2239 * devices
2240 */
2241 fs_info->submit_workers =
2242 btrfs_alloc_workqueue("submit", flags,
2243 min_t(u64, fs_devices->num_devices,
2244 max_active), 64);
2245
2246 fs_info->fixup_workers =
2247 btrfs_alloc_workqueue("fixup", flags, 1, 0);
2248
2249 /*
2250 * endios are largely parallel and should have a very
2251 * low idle thresh
2252 */
2253 fs_info->endio_workers =
2254 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2255 fs_info->endio_meta_workers =
2256 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2257 fs_info->endio_meta_write_workers =
2258 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2259 fs_info->endio_raid56_workers =
2260 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2261 fs_info->endio_repair_workers =
2262 btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2263 fs_info->rmw_workers =
2264 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2265 fs_info->endio_write_workers =
2266 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2267 fs_info->endio_freespace_worker =
2268 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2269 fs_info->delayed_workers =
2270 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2271 fs_info->readahead_workers =
2272 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2273 fs_info->qgroup_rescan_workers =
2274 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2275 fs_info->extent_workers =
2276 btrfs_alloc_workqueue("extent-refs", flags,
2277 min_t(u64, fs_devices->num_devices,
2278 max_active), 8);
2279
2280 if (!(fs_info->workers && fs_info->delalloc_workers &&
2281 fs_info->submit_workers && fs_info->flush_workers &&
2282 fs_info->endio_workers && fs_info->endio_meta_workers &&
2283 fs_info->endio_meta_write_workers &&
2284 fs_info->endio_repair_workers &&
2285 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2286 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2287 fs_info->caching_workers && fs_info->readahead_workers &&
2288 fs_info->fixup_workers && fs_info->delayed_workers &&
2289 fs_info->extent_workers &&
2290 fs_info->qgroup_rescan_workers)) {
2291 return -ENOMEM;
2292 }
2293
2294 return 0;
2295}
2296
63443bf5
ES
2297static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2298 struct btrfs_fs_devices *fs_devices)
2299{
2300 int ret;
2301 struct btrfs_root *tree_root = fs_info->tree_root;
2302 struct btrfs_root *log_tree_root;
2303 struct btrfs_super_block *disk_super = fs_info->super_copy;
2304 u64 bytenr = btrfs_super_log_root(disk_super);
2305
2306 if (fs_devices->rw_devices == 0) {
2307 printk(KERN_WARNING "BTRFS: log replay required "
2308 "on RO media\n");
2309 return -EIO;
2310 }
2311
2312 log_tree_root = btrfs_alloc_root(fs_info);
2313 if (!log_tree_root)
2314 return -ENOMEM;
2315
2316 __setup_root(tree_root->nodesize, tree_root->sectorsize,
2317 tree_root->stripesize, log_tree_root, fs_info,
2318 BTRFS_TREE_LOG_OBJECTID);
2319
2320 log_tree_root->node = read_tree_block(tree_root, bytenr,
2321 fs_info->generation + 1);
64c043de
LB
2322 if (IS_ERR(log_tree_root->node)) {
2323 printk(KERN_ERR "BTRFS: failed to read log tree\n");
0eeff236 2324 ret = PTR_ERR(log_tree_root->node);
64c043de 2325 kfree(log_tree_root);
0eeff236 2326 return ret;
64c043de 2327 } else if (!extent_buffer_uptodate(log_tree_root->node)) {
63443bf5
ES
2328 printk(KERN_ERR "BTRFS: failed to read log tree\n");
2329 free_extent_buffer(log_tree_root->node);
2330 kfree(log_tree_root);
2331 return -EIO;
2332 }
2333 /* returns with log_tree_root freed on success */
2334 ret = btrfs_recover_log_trees(log_tree_root);
2335 if (ret) {
2336 btrfs_error(tree_root->fs_info, ret,
2337 "Failed to recover log tree");
2338 free_extent_buffer(log_tree_root->node);
2339 kfree(log_tree_root);
2340 return ret;
2341 }
2342
2343 if (fs_info->sb->s_flags & MS_RDONLY) {
2344 ret = btrfs_commit_super(tree_root);
2345 if (ret)
2346 return ret;
2347 }
2348
2349 return 0;
2350}
2351
4bbcaa64
ES
2352static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2353 struct btrfs_root *tree_root)
2354{
a4f3d2c4 2355 struct btrfs_root *root;
4bbcaa64
ES
2356 struct btrfs_key location;
2357 int ret;
2358
2359 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2360 location.type = BTRFS_ROOT_ITEM_KEY;
2361 location.offset = 0;
2362
a4f3d2c4
DS
2363 root = btrfs_read_tree_root(tree_root, &location);
2364 if (IS_ERR(root))
2365 return PTR_ERR(root);
2366 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2367 fs_info->extent_root = root;
4bbcaa64
ES
2368
2369 location.objectid = BTRFS_DEV_TREE_OBJECTID;
a4f3d2c4
DS
2370 root = btrfs_read_tree_root(tree_root, &location);
2371 if (IS_ERR(root))
2372 return PTR_ERR(root);
2373 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2374 fs_info->dev_root = root;
4bbcaa64
ES
2375 btrfs_init_devices_late(fs_info);
2376
2377 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
a4f3d2c4
DS
2378 root = btrfs_read_tree_root(tree_root, &location);
2379 if (IS_ERR(root))
2380 return PTR_ERR(root);
2381 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382 fs_info->csum_root = root;
4bbcaa64
ES
2383
2384 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
a4f3d2c4
DS
2385 root = btrfs_read_tree_root(tree_root, &location);
2386 if (!IS_ERR(root)) {
2387 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
4bbcaa64
ES
2388 fs_info->quota_enabled = 1;
2389 fs_info->pending_quota_state = 1;
a4f3d2c4 2390 fs_info->quota_root = root;
4bbcaa64
ES
2391 }
2392
2393 location.objectid = BTRFS_UUID_TREE_OBJECTID;
a4f3d2c4
DS
2394 root = btrfs_read_tree_root(tree_root, &location);
2395 if (IS_ERR(root)) {
2396 ret = PTR_ERR(root);
4bbcaa64
ES
2397 if (ret != -ENOENT)
2398 return ret;
2399 } else {
a4f3d2c4
DS
2400 set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2401 fs_info->uuid_root = root;
4bbcaa64
ES
2402 }
2403
2404 return 0;
2405}
2406
ad2b2c80
AV
2407int open_ctree(struct super_block *sb,
2408 struct btrfs_fs_devices *fs_devices,
2409 char *options)
2e635a27 2410{
db94535d
CM
2411 u32 sectorsize;
2412 u32 nodesize;
87ee04eb 2413 u32 stripesize;
84234f3a 2414 u64 generation;
f2b636e8 2415 u64 features;
3de4586c 2416 struct btrfs_key location;
a061fc8d 2417 struct buffer_head *bh;
4d34b278 2418 struct btrfs_super_block *disk_super;
815745cf 2419 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2420 struct btrfs_root *tree_root;
4d34b278 2421 struct btrfs_root *chunk_root;
eb60ceac 2422 int ret;
e58ca020 2423 int err = -EINVAL;
af31f5e5
CM
2424 int num_backups_tried = 0;
2425 int backup_index = 0;
5cdc7ad3 2426 int max_active;
4543df7e 2427
f84a8bd6 2428 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2429 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2430 if (!tree_root || !chunk_root) {
39279cc3
CM
2431 err = -ENOMEM;
2432 goto fail;
2433 }
76dda93c
YZ
2434
2435 ret = init_srcu_struct(&fs_info->subvol_srcu);
2436 if (ret) {
2437 err = ret;
2438 goto fail;
2439 }
2440
2441 ret = setup_bdi(fs_info, &fs_info->bdi);
2442 if (ret) {
2443 err = ret;
2444 goto fail_srcu;
2445 }
2446
908c7f19 2447 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
e2d84521
MX
2448 if (ret) {
2449 err = ret;
2450 goto fail_bdi;
2451 }
2452 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2453 (1 + ilog2(nr_cpu_ids));
2454
908c7f19 2455 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
963d678b
MX
2456 if (ret) {
2457 err = ret;
2458 goto fail_dirty_metadata_bytes;
2459 }
2460
908c7f19 2461 ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
c404e0dc
MX
2462 if (ret) {
2463 err = ret;
2464 goto fail_delalloc_bytes;
2465 }
2466
76dda93c
YZ
2467 fs_info->btree_inode = new_inode(sb);
2468 if (!fs_info->btree_inode) {
2469 err = -ENOMEM;
c404e0dc 2470 goto fail_bio_counter;
76dda93c
YZ
2471 }
2472
a6591715 2473 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2474
76dda93c 2475 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2476 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2477 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2478 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2479 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2480 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2481 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2482 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2483 spin_lock_init(&fs_info->trans_lock);
76dda93c 2484 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2485 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2486 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2487 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2488 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2489 spin_lock_init(&fs_info->super_lock);
fcebe456 2490 spin_lock_init(&fs_info->qgroup_op_lock);
f28491e0 2491 spin_lock_init(&fs_info->buffer_lock);
47ab2a6c 2492 spin_lock_init(&fs_info->unused_bgs_lock);
f29021b2 2493 rwlock_init(&fs_info->tree_mod_log_lock);
d7c15171 2494 mutex_init(&fs_info->unused_bg_unpin_mutex);
7585717f 2495 mutex_init(&fs_info->reloc_mutex);
573bfb72 2496 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2497 seqlock_init(&fs_info->profiles_lock);
d7c15171 2498 init_rwsem(&fs_info->delayed_iput_sem);
19c00ddc 2499
0b86a832 2500 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2501 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2502 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
47ab2a6c 2503 INIT_LIST_HEAD(&fs_info->unused_bgs);
0b86a832 2504 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2505 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2506 BTRFS_BLOCK_RSV_GLOBAL);
2507 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2508 BTRFS_BLOCK_RSV_DELALLOC);
2509 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2510 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2511 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2512 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2513 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2514 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2515 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2516 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2517 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2518 atomic_set(&fs_info->defrag_running, 0);
fcebe456 2519 atomic_set(&fs_info->qgroup_op_seq, 0);
fc36ed7e 2520 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2521 fs_info->sb = sb;
95ac567a 2522 fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
9ed74f2d 2523 fs_info->metadata_ratio = 0;
4cb5300b 2524 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2525 fs_info->free_chunk_space = 0;
f29021b2 2526 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2527 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
f8c269d7 2528 fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
90519d66
AJ
2529 /* readahead state */
2530 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2531 spin_lock_init(&fs_info->reada_lock);
c8b97818 2532
b34b086c
CM
2533 fs_info->thread_pool_size = min_t(unsigned long,
2534 num_online_cpus() + 2, 8);
0afbaf8c 2535
199c2a9c
MX
2536 INIT_LIST_HEAD(&fs_info->ordered_roots);
2537 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2538 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2539 GFP_NOFS);
2540 if (!fs_info->delayed_root) {
2541 err = -ENOMEM;
2542 goto fail_iput;
2543 }
2544 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2545
638aa7ed 2546 btrfs_init_scrub(fs_info);
21adbd5c
SB
2547#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2548 fs_info->check_integrity_print_mask = 0;
2549#endif
779a65a4 2550 btrfs_init_balance(fs_info);
21c7e756 2551 btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
a2de733c 2552
a061fc8d
CM
2553 sb->s_blocksize = 4096;
2554 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2555 sb->s_bdi = &fs_info->bdi;
a061fc8d 2556
f37938e0 2557 btrfs_init_btree_inode(fs_info, tree_root);
76dda93c 2558
0f9dd46c 2559 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2560 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2561 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2562
11833d66 2563 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2564 fs_info->btree_inode->i_mapping);
11833d66 2565 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2566 fs_info->btree_inode->i_mapping);
11833d66 2567 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2568 fs_info->do_barriers = 1;
e18e4809 2569
39279cc3 2570
5a3f23d5 2571 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2572 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2573 mutex_init(&fs_info->tree_log_mutex);
925baedd 2574 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2575 mutex_init(&fs_info->transaction_kthread_mutex);
2576 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2577 mutex_init(&fs_info->volume_mutex);
1bbc621e 2578 mutex_init(&fs_info->ro_block_group_mutex);
9e351cc8 2579 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2580 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2581 init_rwsem(&fs_info->subvol_sem);
803b2f54 2582 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
fa9c0d79 2583
ad618368 2584 btrfs_init_dev_replace_locks(fs_info);
f9e92e40 2585 btrfs_init_qgroup(fs_info);
416ac51d 2586
fa9c0d79
CM
2587 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2588 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2589
e6dcd2dc 2590 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2591 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2592 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2593 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2594
04216820
FM
2595 INIT_LIST_HEAD(&fs_info->pinned_chunks);
2596
53b381b3
DW
2597 ret = btrfs_alloc_stripe_hash_table(fs_info);
2598 if (ret) {
83c8266a 2599 err = ret;
53b381b3
DW
2600 goto fail_alloc;
2601 }
2602
707e8a07 2603 __setup_root(4096, 4096, 4096, tree_root,
2c90e5d6 2604 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2605
3c4bb26b 2606 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2607
2608 /*
2609 * Read super block and check the signature bytes only
2610 */
a512bbf8 2611 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2612 if (!bh) {
2613 err = -EINVAL;
16cdcec7 2614 goto fail_alloc;
20b45077 2615 }
39279cc3 2616
1104a885
DS
2617 /*
2618 * We want to check superblock checksum, the type is stored inside.
2619 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2620 */
2621 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2622 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2623 err = -EINVAL;
2624 goto fail_alloc;
2625 }
2626
2627 /*
2628 * super_copy is zeroed at allocation time and we never touch the
2629 * following bytes up to INFO_SIZE, the checksum is calculated from
2630 * the whole block of INFO_SIZE
2631 */
6c41761f
DS
2632 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2633 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2634 sizeof(*fs_info->super_for_commit));
a061fc8d 2635 brelse(bh);
5f39d397 2636
6c41761f 2637 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2638
1104a885
DS
2639 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2640 if (ret) {
efe120a0 2641 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2642 err = -EINVAL;
2643 goto fail_alloc;
2644 }
2645
6c41761f 2646 disk_super = fs_info->super_copy;
0f7d52f4 2647 if (!btrfs_super_root(disk_super))
16cdcec7 2648 goto fail_alloc;
0f7d52f4 2649
acce952b 2650 /* check FS state, whether FS is broken. */
87533c47
MX
2651 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2652 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2653
af31f5e5
CM
2654 /*
2655 * run through our array of backup supers and setup
2656 * our ring pointer to the oldest one
2657 */
2658 generation = btrfs_super_generation(disk_super);
2659 find_oldest_super_backup(fs_info, generation);
2660
75e7cb7f
LB
2661 /*
2662 * In the long term, we'll store the compression type in the super
2663 * block, and it'll be used for per file compression control.
2664 */
2665 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2666
2b82032c
YZ
2667 ret = btrfs_parse_options(tree_root, options);
2668 if (ret) {
2669 err = ret;
16cdcec7 2670 goto fail_alloc;
2b82032c 2671 }
dfe25020 2672
f2b636e8
JB
2673 features = btrfs_super_incompat_flags(disk_super) &
2674 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2675 if (features) {
2676 printk(KERN_ERR "BTRFS: couldn't mount because of "
2677 "unsupported optional features (%Lx).\n",
c1c9ff7c 2678 features);
f2b636e8 2679 err = -EINVAL;
16cdcec7 2680 goto fail_alloc;
f2b636e8
JB
2681 }
2682
707e8a07
DS
2683 /*
2684 * Leafsize and nodesize were always equal, this is only a sanity check.
2685 */
2686 if (le32_to_cpu(disk_super->__unused_leafsize) !=
727011e0
CM
2687 btrfs_super_nodesize(disk_super)) {
2688 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2689 "blocksizes don't match. node %d leaf %d\n",
2690 btrfs_super_nodesize(disk_super),
707e8a07 2691 le32_to_cpu(disk_super->__unused_leafsize));
727011e0
CM
2692 err = -EINVAL;
2693 goto fail_alloc;
2694 }
707e8a07 2695 if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
727011e0
CM
2696 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2697 "blocksize (%d) was too large\n",
707e8a07 2698 btrfs_super_nodesize(disk_super));
727011e0
CM
2699 err = -EINVAL;
2700 goto fail_alloc;
2701 }
2702
5d4f98a2 2703 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2704 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2705 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2706 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2707
3173a18f 2708 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
5efa0490 2709 printk(KERN_INFO "BTRFS: has skinny extents\n");
3173a18f 2710
727011e0
CM
2711 /*
2712 * flag our filesystem as having big metadata blocks if
2713 * they are bigger than the page size
2714 */
707e8a07 2715 if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
727011e0 2716 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2717 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2718 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2719 }
2720
bc3f116f 2721 nodesize = btrfs_super_nodesize(disk_super);
bc3f116f
CM
2722 sectorsize = btrfs_super_sectorsize(disk_super);
2723 stripesize = btrfs_super_stripesize(disk_super);
707e8a07 2724 fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
963d678b 2725 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2726
2727 /*
2728 * mixed block groups end up with duplicate but slightly offset
2729 * extent buffers for the same range. It leads to corruptions
2730 */
2731 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
707e8a07 2732 (sectorsize != nodesize)) {
aa8ee312 2733 printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2734 "are not allowed for mixed block groups on %s\n",
2735 sb->s_id);
2736 goto fail_alloc;
2737 }
2738
ceda0864
MX
2739 /*
2740 * Needn't use the lock because there is no other task which will
2741 * update the flag.
2742 */
a6fa6fae 2743 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2744
f2b636e8
JB
2745 features = btrfs_super_compat_ro_flags(disk_super) &
2746 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2747 if (!(sb->s_flags & MS_RDONLY) && features) {
2748 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2749 "unsupported option features (%Lx).\n",
c1c9ff7c 2750 features);
f2b636e8 2751 err = -EINVAL;
16cdcec7 2752 goto fail_alloc;
f2b636e8 2753 }
61d92c32 2754
5cdc7ad3 2755 max_active = fs_info->thread_pool_size;
61d92c32 2756
2a458198
ES
2757 ret = btrfs_init_workqueues(fs_info, fs_devices);
2758 if (ret) {
2759 err = ret;
0dc3b84a
JB
2760 goto fail_sb_buffer;
2761 }
4543df7e 2762
4575c9cc 2763 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2764 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2765 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2766
db94535d 2767 tree_root->nodesize = nodesize;
db94535d 2768 tree_root->sectorsize = sectorsize;
87ee04eb 2769 tree_root->stripesize = stripesize;
a061fc8d
CM
2770
2771 sb->s_blocksize = sectorsize;
2772 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2773
3cae210f 2774 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
aa8ee312 2775 printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2776 goto fail_sb_buffer;
2777 }
19c00ddc 2778
8d082fb7 2779 if (sectorsize != PAGE_SIZE) {
aa8ee312 2780 printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
8d082fb7 2781 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2782 goto fail_sb_buffer;
2783 }
2784
925baedd 2785 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2786 ret = btrfs_read_sys_array(tree_root);
925baedd 2787 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2788 if (ret) {
aa8ee312 2789 printk(KERN_ERR "BTRFS: failed to read the system "
d397712b 2790 "array on %s\n", sb->s_id);
5d4f98a2 2791 goto fail_sb_buffer;
84eed90f 2792 }
0b86a832 2793
84234f3a 2794 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832 2795
707e8a07
DS
2796 __setup_root(nodesize, sectorsize, stripesize, chunk_root,
2797 fs_info, BTRFS_CHUNK_TREE_OBJECTID);
0b86a832
CM
2798
2799 chunk_root->node = read_tree_block(chunk_root,
2800 btrfs_super_chunk_root(disk_super),
ce86cd59 2801 generation);
64c043de
LB
2802 if (IS_ERR(chunk_root->node) ||
2803 !extent_buffer_uptodate(chunk_root->node)) {
aa8ee312 2804 printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
83121942 2805 sb->s_id);
af31f5e5 2806 goto fail_tree_roots;
83121942 2807 }
5d4f98a2
YZ
2808 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2809 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2810
e17cade2 2811 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2812 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2813
0b86a832 2814 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2815 if (ret) {
aa8ee312 2816 printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
d397712b 2817 sb->s_id);
af31f5e5 2818 goto fail_tree_roots;
2b82032c 2819 }
0b86a832 2820
8dabb742
SB
2821 /*
2822 * keep the device that is marked to be the target device for the
2823 * dev_replace procedure
2824 */
9eaed21e 2825 btrfs_close_extra_devices(fs_devices, 0);
dfe25020 2826
a6b0d5c8 2827 if (!fs_devices->latest_bdev) {
aa8ee312 2828 printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2829 sb->s_id);
2830 goto fail_tree_roots;
2831 }
2832
af31f5e5 2833retry_root_backup:
84234f3a 2834 generation = btrfs_super_generation(disk_super);
0b86a832 2835
e20d96d6 2836 tree_root->node = read_tree_block(tree_root,
db94535d 2837 btrfs_super_root(disk_super),
ce86cd59 2838 generation);
64c043de
LB
2839 if (IS_ERR(tree_root->node) ||
2840 !extent_buffer_uptodate(tree_root->node)) {
efe120a0 2841 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2842 sb->s_id);
af31f5e5
CM
2843
2844 goto recovery_tree_root;
83121942 2845 }
af31f5e5 2846
5d4f98a2
YZ
2847 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2848 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2849 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2850
4bbcaa64
ES
2851 ret = btrfs_read_roots(fs_info, tree_root);
2852 if (ret)
af31f5e5 2853 goto recovery_tree_root;
f7a81ea4 2854
8929ecfa
YZ
2855 fs_info->generation = generation;
2856 fs_info->last_trans_committed = generation;
8929ecfa 2857
68310a5e
ID
2858 ret = btrfs_recover_balance(fs_info);
2859 if (ret) {
aa8ee312 2860 printk(KERN_ERR "BTRFS: failed to recover balance\n");
68310a5e
ID
2861 goto fail_block_groups;
2862 }
2863
733f4fbb
SB
2864 ret = btrfs_init_dev_stats(fs_info);
2865 if (ret) {
efe120a0 2866 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2867 ret);
2868 goto fail_block_groups;
2869 }
2870
8dabb742
SB
2871 ret = btrfs_init_dev_replace(fs_info);
2872 if (ret) {
efe120a0 2873 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2874 goto fail_block_groups;
2875 }
2876
9eaed21e 2877 btrfs_close_extra_devices(fs_devices, 1);
8dabb742 2878
b7c35e81
AJ
2879 ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
2880 if (ret) {
2881 pr_err("BTRFS: failed to init sysfs fsid interface: %d\n", ret);
2882 goto fail_block_groups;
2883 }
2884
2885 ret = btrfs_sysfs_add_device(fs_devices);
2886 if (ret) {
2887 pr_err("BTRFS: failed to init sysfs device interface: %d\n", ret);
2888 goto fail_fsdev_sysfs;
2889 }
2890
5ac1d209 2891 ret = btrfs_sysfs_add_one(fs_info);
c59021f8 2892 if (ret) {
efe120a0 2893 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
b7c35e81 2894 goto fail_fsdev_sysfs;
c59021f8 2895 }
2896
c59021f8 2897 ret = btrfs_init_space_info(fs_info);
2898 if (ret) {
efe120a0 2899 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2900 goto fail_sysfs;
c59021f8 2901 }
2902
4bbcaa64 2903 ret = btrfs_read_block_groups(fs_info->extent_root);
1b1d1f66 2904 if (ret) {
efe120a0 2905 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2906 goto fail_sysfs;
1b1d1f66 2907 }
5af3e8cc
SB
2908 fs_info->num_tolerated_disk_barrier_failures =
2909 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2910 if (fs_info->fs_devices->missing_devices >
2911 fs_info->num_tolerated_disk_barrier_failures &&
2912 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2913 printk(KERN_WARNING "BTRFS: "
2914 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2915 goto fail_sysfs;
292fd7fc 2916 }
9078a3e1 2917
a74a4b97
CM
2918 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2919 "btrfs-cleaner");
57506d50 2920 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2921 goto fail_sysfs;
a74a4b97
CM
2922
2923 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2924 tree_root,
2925 "btrfs-transaction");
57506d50 2926 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2927 goto fail_cleaner;
a74a4b97 2928
c289811c
CM
2929 if (!btrfs_test_opt(tree_root, SSD) &&
2930 !btrfs_test_opt(tree_root, NOSSD) &&
2931 !fs_info->fs_devices->rotating) {
efe120a0 2932 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2933 "mode\n");
2934 btrfs_set_opt(fs_info->mount_opt, SSD);
2935 }
2936
572d9ab7
DS
2937 /*
2938 * Mount does not set all options immediatelly, we can do it now and do
2939 * not have to wait for transaction commit
2940 */
2941 btrfs_apply_pending_changes(fs_info);
3818aea2 2942
21adbd5c
SB
2943#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2944 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2945 ret = btrfsic_mount(tree_root, fs_devices,
2946 btrfs_test_opt(tree_root,
2947 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2948 1 : 0,
2949 fs_info->check_integrity_print_mask);
2950 if (ret)
efe120a0 2951 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2952 " integrity check module %s\n", sb->s_id);
2953 }
2954#endif
bcef60f2
AJ
2955 ret = btrfs_read_qgroup_config(fs_info);
2956 if (ret)
2957 goto fail_trans_kthread;
21adbd5c 2958
acce952b 2959 /* do not make disk changes in broken FS */
68ce9682 2960 if (btrfs_super_log_root(disk_super) != 0) {
63443bf5 2961 ret = btrfs_replay_log(fs_info, fs_devices);
79787eaa 2962 if (ret) {
63443bf5 2963 err = ret;
28c16cbb 2964 goto fail_qgroup;
79787eaa 2965 }
e02119d5 2966 }
1a40e23b 2967
76dda93c 2968 ret = btrfs_find_orphan_roots(tree_root);
79787eaa 2969 if (ret)
28c16cbb 2970 goto fail_qgroup;
76dda93c 2971
7c2ca468 2972 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2973 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2 2974 if (ret)
28c16cbb 2975 goto fail_qgroup;
d68fc57b 2976
5f316481 2977 mutex_lock(&fs_info->cleaner_mutex);
5d4f98a2 2978 ret = btrfs_recover_relocation(tree_root);
5f316481 2979 mutex_unlock(&fs_info->cleaner_mutex);
d7ce5843
MX
2980 if (ret < 0) {
2981 printk(KERN_WARNING
efe120a0 2982 "BTRFS: failed to recover relocation\n");
d7ce5843 2983 err = -EINVAL;
bcef60f2 2984 goto fail_qgroup;
d7ce5843 2985 }
7c2ca468 2986 }
1a40e23b 2987
3de4586c
CM
2988 location.objectid = BTRFS_FS_TREE_OBJECTID;
2989 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2990 location.offset = 0;
3de4586c 2991
3de4586c 2992 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2993 if (IS_ERR(fs_info->fs_root)) {
2994 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2995 goto fail_qgroup;
3140c9a3 2996 }
c289811c 2997
2b6ba629
ID
2998 if (sb->s_flags & MS_RDONLY)
2999 return 0;
59641015 3000
2b6ba629
ID
3001 down_read(&fs_info->cleanup_work_sem);
3002 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3003 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 3004 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
3005 close_ctree(tree_root);
3006 return ret;
3007 }
3008 up_read(&fs_info->cleanup_work_sem);
59641015 3009
2b6ba629
ID
3010 ret = btrfs_resume_balance_async(fs_info);
3011 if (ret) {
efe120a0 3012 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
3013 close_ctree(tree_root);
3014 return ret;
e3acc2a6
JB
3015 }
3016
8dabb742
SB
3017 ret = btrfs_resume_dev_replace_async(fs_info);
3018 if (ret) {
efe120a0 3019 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
3020 close_ctree(tree_root);
3021 return ret;
3022 }
3023
b382a324
JS
3024 btrfs_qgroup_rescan_resume(fs_info);
3025
4bbcaa64 3026 if (!fs_info->uuid_root) {
efe120a0 3027 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
3028 ret = btrfs_create_uuid_tree(fs_info);
3029 if (ret) {
efe120a0 3030 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
3031 ret);
3032 close_ctree(tree_root);
3033 return ret;
3034 }
4bbcaa64
ES
3035 } else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3036 fs_info->generation !=
3037 btrfs_super_uuid_tree_generation(disk_super)) {
efe120a0 3038 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
3039 ret = btrfs_check_uuid_tree(fs_info);
3040 if (ret) {
efe120a0 3041 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
3042 ret);
3043 close_ctree(tree_root);
3044 return ret;
3045 }
3046 } else {
3047 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
3048 }
3049
47ab2a6c
JB
3050 fs_info->open = 1;
3051
ad2b2c80 3052 return 0;
39279cc3 3053
bcef60f2
AJ
3054fail_qgroup:
3055 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
3056fail_trans_kthread:
3057 kthread_stop(fs_info->transaction_kthread);
54067ae9 3058 btrfs_cleanup_transaction(fs_info->tree_root);
faa2dbf0 3059 btrfs_free_fs_roots(fs_info);
3f157a2f 3060fail_cleaner:
a74a4b97 3061 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
3062
3063 /*
3064 * make sure we're done with the btree inode before we stop our
3065 * kthreads
3066 */
3067 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 3068
2365dd3c
AJ
3069fail_sysfs:
3070 btrfs_sysfs_remove_one(fs_info);
3071
b7c35e81
AJ
3072fail_fsdev_sysfs:
3073 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3074
1b1d1f66 3075fail_block_groups:
54067ae9 3076 btrfs_put_block_group_cache(fs_info);
1b1d1f66 3077 btrfs_free_block_groups(fs_info);
af31f5e5
CM
3078
3079fail_tree_roots:
3080 free_root_pointers(fs_info, 1);
2b8195bb 3081 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 3082
39279cc3 3083fail_sb_buffer:
7abadb64 3084 btrfs_stop_all_workers(fs_info);
16cdcec7 3085fail_alloc:
4543df7e 3086fail_iput:
586e46e2
ID
3087 btrfs_mapping_tree_free(&fs_info->mapping_tree);
3088
4543df7e 3089 iput(fs_info->btree_inode);
c404e0dc
MX
3090fail_bio_counter:
3091 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3092fail_delalloc_bytes:
3093 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3094fail_dirty_metadata_bytes:
3095 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3096fail_bdi:
7e662854 3097 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3098fail_srcu:
3099 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3100fail:
53b381b3 3101 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3102 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3103 return err;
af31f5e5
CM
3104
3105recovery_tree_root:
af31f5e5
CM
3106 if (!btrfs_test_opt(tree_root, RECOVERY))
3107 goto fail_tree_roots;
3108
3109 free_root_pointers(fs_info, 0);
3110
3111 /* don't use the log in recovery mode, it won't be valid */
3112 btrfs_set_super_log_root(disk_super, 0);
3113
3114 /* we can't trust the free space cache either */
3115 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3116
3117 ret = next_root_backup(fs_info, fs_info->super_copy,
3118 &num_backups_tried, &backup_index);
3119 if (ret == -1)
3120 goto fail_block_groups;
3121 goto retry_root_backup;
eb60ceac
CM
3122}
3123
f2984462
CM
3124static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3125{
f2984462
CM
3126 if (uptodate) {
3127 set_buffer_uptodate(bh);
3128 } else {
442a4f63
SB
3129 struct btrfs_device *device = (struct btrfs_device *)
3130 bh->b_private;
3131
efe120a0 3132 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3133 "I/O error on %s\n",
3134 rcu_str_deref(device->name));
1259ab75
CM
3135 /* note, we dont' set_buffer_write_io_error because we have
3136 * our own ways of dealing with the IO errors
3137 */
f2984462 3138 clear_buffer_uptodate(bh);
442a4f63 3139 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3140 }
3141 unlock_buffer(bh);
3142 put_bh(bh);
3143}
3144
a512bbf8
YZ
3145struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3146{
3147 struct buffer_head *bh;
3148 struct buffer_head *latest = NULL;
3149 struct btrfs_super_block *super;
3150 int i;
3151 u64 transid = 0;
3152 u64 bytenr;
3153
3154 /* we would like to check all the supers, but that would make
3155 * a btrfs mount succeed after a mkfs from a different FS.
3156 * So, we need to add a special mount option to scan for
3157 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3158 */
3159 for (i = 0; i < 1; i++) {
3160 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3161 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3162 i_size_read(bdev->bd_inode))
a512bbf8 3163 break;
8068a47e
AJ
3164 bh = __bread(bdev, bytenr / 4096,
3165 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3166 if (!bh)
3167 continue;
3168
3169 super = (struct btrfs_super_block *)bh->b_data;
3170 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3171 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3172 brelse(bh);
3173 continue;
3174 }
3175
3176 if (!latest || btrfs_super_generation(super) > transid) {
3177 brelse(latest);
3178 latest = bh;
3179 transid = btrfs_super_generation(super);
3180 } else {
3181 brelse(bh);
3182 }
3183 }
3184 return latest;
3185}
3186
4eedeb75
HH
3187/*
3188 * this should be called twice, once with wait == 0 and
3189 * once with wait == 1. When wait == 0 is done, all the buffer heads
3190 * we write are pinned.
3191 *
3192 * They are released when wait == 1 is done.
3193 * max_mirrors must be the same for both runs, and it indicates how
3194 * many supers on this one device should be written.
3195 *
3196 * max_mirrors == 0 means to write them all.
3197 */
a512bbf8
YZ
3198static int write_dev_supers(struct btrfs_device *device,
3199 struct btrfs_super_block *sb,
3200 int do_barriers, int wait, int max_mirrors)
3201{
3202 struct buffer_head *bh;
3203 int i;
3204 int ret;
3205 int errors = 0;
3206 u32 crc;
3207 u64 bytenr;
a512bbf8
YZ
3208
3209 if (max_mirrors == 0)
3210 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3211
a512bbf8
YZ
3212 for (i = 0; i < max_mirrors; i++) {
3213 bytenr = btrfs_sb_offset(i);
935e5cc9
MX
3214 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3215 device->commit_total_bytes)
a512bbf8
YZ
3216 break;
3217
3218 if (wait) {
3219 bh = __find_get_block(device->bdev, bytenr / 4096,
3220 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3221 if (!bh) {
3222 errors++;
3223 continue;
3224 }
a512bbf8 3225 wait_on_buffer(bh);
4eedeb75
HH
3226 if (!buffer_uptodate(bh))
3227 errors++;
3228
3229 /* drop our reference */
3230 brelse(bh);
3231
3232 /* drop the reference from the wait == 0 run */
3233 brelse(bh);
3234 continue;
a512bbf8
YZ
3235 } else {
3236 btrfs_set_super_bytenr(sb, bytenr);
3237
3238 crc = ~(u32)0;
b0496686 3239 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3240 BTRFS_CSUM_SIZE, crc,
3241 BTRFS_SUPER_INFO_SIZE -
3242 BTRFS_CSUM_SIZE);
3243 btrfs_csum_final(crc, sb->csum);
3244
4eedeb75
HH
3245 /*
3246 * one reference for us, and we leave it for the
3247 * caller
3248 */
a512bbf8
YZ
3249 bh = __getblk(device->bdev, bytenr / 4096,
3250 BTRFS_SUPER_INFO_SIZE);
634554dc 3251 if (!bh) {
efe120a0 3252 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3253 "buffer head for bytenr %Lu\n", bytenr);
3254 errors++;
3255 continue;
3256 }
3257
a512bbf8
YZ
3258 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3259
4eedeb75 3260 /* one reference for submit_bh */
a512bbf8 3261 get_bh(bh);
4eedeb75
HH
3262
3263 set_buffer_uptodate(bh);
a512bbf8
YZ
3264 lock_buffer(bh);
3265 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3266 bh->b_private = device;
a512bbf8
YZ
3267 }
3268
387125fc
CM
3269 /*
3270 * we fua the first super. The others we allow
3271 * to go down lazy.
3272 */
e8117c26
WS
3273 if (i == 0)
3274 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3275 else
3276 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3277 if (ret)
a512bbf8 3278 errors++;
a512bbf8
YZ
3279 }
3280 return errors < i ? 0 : -1;
3281}
3282
387125fc
CM
3283/*
3284 * endio for the write_dev_flush, this will wake anyone waiting
3285 * for the barrier when it is done
3286 */
3287static void btrfs_end_empty_barrier(struct bio *bio, int err)
3288{
3289 if (err) {
3290 if (err == -EOPNOTSUPP)
3291 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3292 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3293 }
3294 if (bio->bi_private)
3295 complete(bio->bi_private);
3296 bio_put(bio);
3297}
3298
3299/*
3300 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3301 * sent down. With wait == 1, it waits for the previous flush.
3302 *
3303 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3304 * capable
3305 */
3306static int write_dev_flush(struct btrfs_device *device, int wait)
3307{
3308 struct bio *bio;
3309 int ret = 0;
3310
3311 if (device->nobarriers)
3312 return 0;
3313
3314 if (wait) {
3315 bio = device->flush_bio;
3316 if (!bio)
3317 return 0;
3318
3319 wait_for_completion(&device->flush_wait);
3320
3321 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3322 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3323 rcu_str_deref(device->name));
387125fc 3324 device->nobarriers = 1;
5af3e8cc 3325 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3326 ret = -EIO;
5af3e8cc
SB
3327 btrfs_dev_stat_inc_and_print(device,
3328 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3329 }
3330
3331 /* drop the reference from the wait == 0 run */
3332 bio_put(bio);
3333 device->flush_bio = NULL;
3334
3335 return ret;
3336 }
3337
3338 /*
3339 * one reference for us, and we leave it for the
3340 * caller
3341 */
9c017abc 3342 device->flush_bio = NULL;
9be3395b 3343 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3344 if (!bio)
3345 return -ENOMEM;
3346
3347 bio->bi_end_io = btrfs_end_empty_barrier;
3348 bio->bi_bdev = device->bdev;
3349 init_completion(&device->flush_wait);
3350 bio->bi_private = &device->flush_wait;
3351 device->flush_bio = bio;
3352
3353 bio_get(bio);
21adbd5c 3354 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3355
3356 return 0;
3357}
3358
3359/*
3360 * send an empty flush down to each device in parallel,
3361 * then wait for them
3362 */
3363static int barrier_all_devices(struct btrfs_fs_info *info)
3364{
3365 struct list_head *head;
3366 struct btrfs_device *dev;
5af3e8cc
SB
3367 int errors_send = 0;
3368 int errors_wait = 0;
387125fc
CM
3369 int ret;
3370
3371 /* send down all the barriers */
3372 head = &info->fs_devices->devices;
3373 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3374 if (dev->missing)
3375 continue;
387125fc 3376 if (!dev->bdev) {
5af3e8cc 3377 errors_send++;
387125fc
CM
3378 continue;
3379 }
3380 if (!dev->in_fs_metadata || !dev->writeable)
3381 continue;
3382
3383 ret = write_dev_flush(dev, 0);
3384 if (ret)
5af3e8cc 3385 errors_send++;
387125fc
CM
3386 }
3387
3388 /* wait for all the barriers */
3389 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3390 if (dev->missing)
3391 continue;
387125fc 3392 if (!dev->bdev) {
5af3e8cc 3393 errors_wait++;
387125fc
CM
3394 continue;
3395 }
3396 if (!dev->in_fs_metadata || !dev->writeable)
3397 continue;
3398
3399 ret = write_dev_flush(dev, 1);
3400 if (ret)
5af3e8cc 3401 errors_wait++;
387125fc 3402 }
5af3e8cc
SB
3403 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3404 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3405 return -EIO;
3406 return 0;
3407}
3408
5af3e8cc
SB
3409int btrfs_calc_num_tolerated_disk_barrier_failures(
3410 struct btrfs_fs_info *fs_info)
3411{
3412 struct btrfs_ioctl_space_info space;
3413 struct btrfs_space_info *sinfo;
3414 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3415 BTRFS_BLOCK_GROUP_SYSTEM,
3416 BTRFS_BLOCK_GROUP_METADATA,
3417 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3418 int num_types = 4;
3419 int i;
3420 int c;
3421 int num_tolerated_disk_barrier_failures =
3422 (int)fs_info->fs_devices->num_devices;
3423
3424 for (i = 0; i < num_types; i++) {
3425 struct btrfs_space_info *tmp;
3426
3427 sinfo = NULL;
3428 rcu_read_lock();
3429 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3430 if (tmp->flags == types[i]) {
3431 sinfo = tmp;
3432 break;
3433 }
3434 }
3435 rcu_read_unlock();
3436
3437 if (!sinfo)
3438 continue;
3439
3440 down_read(&sinfo->groups_sem);
3441 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3442 if (!list_empty(&sinfo->block_groups[c])) {
3443 u64 flags;
3444
3445 btrfs_get_block_group_info(
3446 &sinfo->block_groups[c], &space);
3447 if (space.total_bytes == 0 ||
3448 space.used_bytes == 0)
3449 continue;
3450 flags = space.flags;
3451 /*
3452 * return
3453 * 0: if dup, single or RAID0 is configured for
3454 * any of metadata, system or data, else
3455 * 1: if RAID5 is configured, or if RAID1 or
3456 * RAID10 is configured and only two mirrors
3457 * are used, else
3458 * 2: if RAID6 is configured, else
3459 * num_mirrors - 1: if RAID1 or RAID10 is
3460 * configured and more than
3461 * 2 mirrors are used.
3462 */
3463 if (num_tolerated_disk_barrier_failures > 0 &&
3464 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3465 BTRFS_BLOCK_GROUP_RAID0)) ||
3466 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3467 == 0)))
3468 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3469 else if (num_tolerated_disk_barrier_failures > 1) {
3470 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3471 BTRFS_BLOCK_GROUP_RAID5 |
3472 BTRFS_BLOCK_GROUP_RAID10)) {
3473 num_tolerated_disk_barrier_failures = 1;
3474 } else if (flags &
15b0a89d 3475 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3476 num_tolerated_disk_barrier_failures = 2;
3477 }
3478 }
5af3e8cc
SB
3479 }
3480 }
3481 up_read(&sinfo->groups_sem);
3482 }
3483
3484 return num_tolerated_disk_barrier_failures;
3485}
3486
48a3b636 3487static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3488{
e5e9a520 3489 struct list_head *head;
f2984462 3490 struct btrfs_device *dev;
a061fc8d 3491 struct btrfs_super_block *sb;
f2984462 3492 struct btrfs_dev_item *dev_item;
f2984462
CM
3493 int ret;
3494 int do_barriers;
a236aed1
CM
3495 int max_errors;
3496 int total_errors = 0;
a061fc8d 3497 u64 flags;
f2984462
CM
3498
3499 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3500 backup_super_roots(root->fs_info);
f2984462 3501
6c41761f 3502 sb = root->fs_info->super_for_commit;
a061fc8d 3503 dev_item = &sb->dev_item;
e5e9a520 3504
174ba509 3505 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3506 head = &root->fs_info->fs_devices->devices;
d7306801 3507 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3508
5af3e8cc
SB
3509 if (do_barriers) {
3510 ret = barrier_all_devices(root->fs_info);
3511 if (ret) {
3512 mutex_unlock(
3513 &root->fs_info->fs_devices->device_list_mutex);
3514 btrfs_error(root->fs_info, ret,
3515 "errors while submitting device barriers.");
3516 return ret;
3517 }
3518 }
387125fc 3519
1f78160c 3520 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3521 if (!dev->bdev) {
3522 total_errors++;
3523 continue;
3524 }
2b82032c 3525 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3526 continue;
3527
2b82032c 3528 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3529 btrfs_set_stack_device_type(dev_item, dev->type);
3530 btrfs_set_stack_device_id(dev_item, dev->devid);
7df69d3e 3531 btrfs_set_stack_device_total_bytes(dev_item,
935e5cc9 3532 dev->commit_total_bytes);
ce7213c7
MX
3533 btrfs_set_stack_device_bytes_used(dev_item,
3534 dev->commit_bytes_used);
a061fc8d
CM
3535 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3536 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3537 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3538 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3539 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3540
a061fc8d
CM
3541 flags = btrfs_super_flags(sb);
3542 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3543
a512bbf8 3544 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3545 if (ret)
3546 total_errors++;
f2984462 3547 }
a236aed1 3548 if (total_errors > max_errors) {
efe120a0 3549 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3550 total_errors);
a724b436 3551 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3552
9d565ba4
SB
3553 /* FUA is masked off if unsupported and can't be the reason */
3554 btrfs_error(root->fs_info, -EIO,
3555 "%d errors while writing supers", total_errors);
3556 return -EIO;
a236aed1 3557 }
f2984462 3558
a512bbf8 3559 total_errors = 0;
1f78160c 3560 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3561 if (!dev->bdev)
3562 continue;
2b82032c 3563 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3564 continue;
3565
a512bbf8
YZ
3566 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3567 if (ret)
3568 total_errors++;
f2984462 3569 }
174ba509 3570 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3571 if (total_errors > max_errors) {
79787eaa
JM
3572 btrfs_error(root->fs_info, -EIO,
3573 "%d errors while writing supers", total_errors);
3574 return -EIO;
a236aed1 3575 }
f2984462
CM
3576 return 0;
3577}
3578
a512bbf8
YZ
3579int write_ctree_super(struct btrfs_trans_handle *trans,
3580 struct btrfs_root *root, int max_mirrors)
eb60ceac 3581{
f570e757 3582 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3583}
3584
cb517eab
MX
3585/* Drop a fs root from the radix tree and free it. */
3586void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3587 struct btrfs_root *root)
2619ba1f 3588{
4df27c4d 3589 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3590 radix_tree_delete(&fs_info->fs_roots_radix,
3591 (unsigned long)root->root_key.objectid);
4df27c4d 3592 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3593
3594 if (btrfs_root_refs(&root->root_item) == 0)
3595 synchronize_srcu(&fs_info->subvol_srcu);
3596
1a4319cc 3597 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3598 btrfs_free_log(NULL, root);
3321719e 3599
faa2dbf0
JB
3600 if (root->free_ino_pinned)
3601 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3602 if (root->free_ino_ctl)
3603 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3604 free_fs_root(root);
4df27c4d
YZ
3605}
3606
3607static void free_fs_root(struct btrfs_root *root)
3608{
57cdc8db 3609 iput(root->ino_cache_inode);
4df27c4d 3610 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3611 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3612 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3613 if (root->anon_dev)
3614 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3615 if (root->subv_writers)
3616 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3617 free_extent_buffer(root->node);
3618 free_extent_buffer(root->commit_root);
581bb050
LZ
3619 kfree(root->free_ino_ctl);
3620 kfree(root->free_ino_pinned);
d397712b 3621 kfree(root->name);
b0feb9d9 3622 btrfs_put_fs_root(root);
2619ba1f
CM
3623}
3624
cb517eab
MX
3625void btrfs_free_fs_root(struct btrfs_root *root)
3626{
3627 free_fs_root(root);
2619ba1f
CM
3628}
3629
c146afad 3630int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3631{
c146afad
YZ
3632 u64 root_objectid = 0;
3633 struct btrfs_root *gang[8];
65d33fd7
QW
3634 int i = 0;
3635 int err = 0;
3636 unsigned int ret = 0;
3637 int index;
e089f05c 3638
c146afad 3639 while (1) {
65d33fd7 3640 index = srcu_read_lock(&fs_info->subvol_srcu);
c146afad
YZ
3641 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3642 (void **)gang, root_objectid,
3643 ARRAY_SIZE(gang));
65d33fd7
QW
3644 if (!ret) {
3645 srcu_read_unlock(&fs_info->subvol_srcu, index);
c146afad 3646 break;
65d33fd7 3647 }
5d4f98a2 3648 root_objectid = gang[ret - 1]->root_key.objectid + 1;
65d33fd7 3649
c146afad 3650 for (i = 0; i < ret; i++) {
65d33fd7
QW
3651 /* Avoid to grab roots in dead_roots */
3652 if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3653 gang[i] = NULL;
3654 continue;
3655 }
3656 /* grab all the search result for later use */
3657 gang[i] = btrfs_grab_fs_root(gang[i]);
3658 }
3659 srcu_read_unlock(&fs_info->subvol_srcu, index);
66b4ffd1 3660
65d33fd7
QW
3661 for (i = 0; i < ret; i++) {
3662 if (!gang[i])
3663 continue;
c146afad 3664 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3665 err = btrfs_orphan_cleanup(gang[i]);
3666 if (err)
65d33fd7
QW
3667 break;
3668 btrfs_put_fs_root(gang[i]);
c146afad
YZ
3669 }
3670 root_objectid++;
3671 }
65d33fd7
QW
3672
3673 /* release the uncleaned roots due to error */
3674 for (; i < ret; i++) {
3675 if (gang[i])
3676 btrfs_put_fs_root(gang[i]);
3677 }
3678 return err;
c146afad 3679}
a2135011 3680
c146afad
YZ
3681int btrfs_commit_super(struct btrfs_root *root)
3682{
3683 struct btrfs_trans_handle *trans;
a74a4b97 3684
c146afad 3685 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3686 btrfs_run_delayed_iputs(root);
c146afad 3687 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3688 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3689
3690 /* wait until ongoing cleanup work done */
3691 down_write(&root->fs_info->cleanup_work_sem);
3692 up_write(&root->fs_info->cleanup_work_sem);
3693
7a7eaa40 3694 trans = btrfs_join_transaction(root);
3612b495
TI
3695 if (IS_ERR(trans))
3696 return PTR_ERR(trans);
d52c1bcc 3697 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3698}
3699
3abdbd78 3700void close_ctree(struct btrfs_root *root)
c146afad
YZ
3701{
3702 struct btrfs_fs_info *fs_info = root->fs_info;
3703 int ret;
3704
3705 fs_info->closing = 1;
3706 smp_mb();
3707
803b2f54
SB
3708 /* wait for the uuid_scan task to finish */
3709 down(&fs_info->uuid_tree_rescan_sem);
3710 /* avoid complains from lockdep et al., set sem back to initial state */
3711 up(&fs_info->uuid_tree_rescan_sem);
3712
837d5b6e 3713 /* pause restriper - we want to resume on mount */
aa1b8cd4 3714 btrfs_pause_balance(fs_info);
837d5b6e 3715
8dabb742
SB
3716 btrfs_dev_replace_suspend_for_unmount(fs_info);
3717
aa1b8cd4 3718 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3719
3720 /* wait for any defraggers to finish */
3721 wait_event(fs_info->transaction_wait,
3722 (atomic_read(&fs_info->defrag_running) == 0));
3723
3724 /* clear out the rbtree of defraggable inodes */
26176e7c 3725 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3726
21c7e756
MX
3727 cancel_work_sync(&fs_info->async_reclaim_work);
3728
c146afad 3729 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3730 ret = btrfs_commit_super(root);
3731 if (ret)
04892340 3732 btrfs_err(fs_info, "commit super ret %d", ret);
acce952b 3733 }
3734
87533c47 3735 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3736 btrfs_error_commit_super(root);
0f7d52f4 3737
e3029d9f
AV
3738 kthread_stop(fs_info->transaction_kthread);
3739 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3740
f25784b3
YZ
3741 fs_info->closing = 2;
3742 smp_mb();
3743
04892340 3744 btrfs_free_qgroup_config(fs_info);
bcef60f2 3745
963d678b 3746 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
04892340 3747 btrfs_info(fs_info, "at unmount delalloc count %lld",
963d678b 3748 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3749 }
bcc63abb 3750
5ac1d209 3751 btrfs_sysfs_remove_one(fs_info);
b7c35e81 3752 btrfs_sysfs_remove_fsid(fs_info->fs_devices);
5ac1d209 3753
faa2dbf0 3754 btrfs_free_fs_roots(fs_info);
d10c5f31 3755
1a4319cc
LB
3756 btrfs_put_block_group_cache(fs_info);
3757
2b1360da
JB
3758 btrfs_free_block_groups(fs_info);
3759
de348ee0
WS
3760 /*
3761 * we must make sure there is not any read request to
3762 * submit after we stopping all workers.
3763 */
3764 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
96192499
JB
3765 btrfs_stop_all_workers(fs_info);
3766
47ab2a6c 3767 fs_info->open = 0;
13e6c37b 3768 free_root_pointers(fs_info, 1);
9ad6b7bc 3769
13e6c37b 3770 iput(fs_info->btree_inode);
d6bfde87 3771
21adbd5c
SB
3772#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3773 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3774 btrfsic_unmount(root, fs_info->fs_devices);
3775#endif
3776
dfe25020 3777 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3778 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3779
e2d84521 3780 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3781 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3782 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3783 bdi_destroy(&fs_info->bdi);
76dda93c 3784 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3785
53b381b3
DW
3786 btrfs_free_stripe_hash_table(fs_info);
3787
cdfb080e 3788 __btrfs_free_block_rsv(root->orphan_block_rsv);
1cb048f5 3789 root->orphan_block_rsv = NULL;
04216820
FM
3790
3791 lock_chunks(root);
3792 while (!list_empty(&fs_info->pinned_chunks)) {
3793 struct extent_map *em;
3794
3795 em = list_first_entry(&fs_info->pinned_chunks,
3796 struct extent_map, list);
3797 list_del_init(&em->list);
3798 free_extent_map(em);
3799 }
3800 unlock_chunks(root);
eb60ceac
CM
3801}
3802
b9fab919
CM
3803int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3804 int atomic)
5f39d397 3805{
1259ab75 3806 int ret;
727011e0 3807 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3808
0b32f4bb 3809 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3810 if (!ret)
3811 return ret;
3812
3813 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3814 parent_transid, atomic);
3815 if (ret == -EAGAIN)
3816 return ret;
1259ab75 3817 return !ret;
5f39d397
CM
3818}
3819
3820int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3821{
0b32f4bb 3822 return set_extent_buffer_uptodate(buf);
5f39d397 3823}
6702ed49 3824
5f39d397
CM
3825void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3826{
06ea65a3 3827 struct btrfs_root *root;
5f39d397 3828 u64 transid = btrfs_header_generation(buf);
b9473439 3829 int was_dirty;
b4ce94de 3830
06ea65a3
JB
3831#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3832 /*
3833 * This is a fast path so only do this check if we have sanity tests
3834 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3835 * outside of the sanity tests.
3836 */
3837 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3838 return;
3839#endif
3840 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3841 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3842 if (transid != root->fs_info->generation)
3843 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3844 "found %llu running %llu\n",
c1c9ff7c 3845 buf->start, transid, root->fs_info->generation);
0b32f4bb 3846 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3847 if (!was_dirty)
3848 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3849 buf->len,
3850 root->fs_info->dirty_metadata_batch);
1f21ef0a
FM
3851#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3852 if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3853 btrfs_print_leaf(root, buf);
3854 ASSERT(0);
3855 }
3856#endif
eb60ceac
CM
3857}
3858
b53d3f5d
LB
3859static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3860 int flush_delayed)
16cdcec7
MX
3861{
3862 /*
3863 * looks as though older kernels can get into trouble with
3864 * this code, they end up stuck in balance_dirty_pages forever
3865 */
e2d84521 3866 int ret;
16cdcec7
MX
3867
3868 if (current->flags & PF_MEMALLOC)
3869 return;
3870
b53d3f5d
LB
3871 if (flush_delayed)
3872 btrfs_balance_delayed_items(root);
16cdcec7 3873
e2d84521
MX
3874 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3875 BTRFS_DIRTY_METADATA_THRESH);
3876 if (ret > 0) {
d0e1d66b
NJ
3877 balance_dirty_pages_ratelimited(
3878 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3879 }
3880 return;
3881}
3882
b53d3f5d 3883void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3884{
b53d3f5d
LB
3885 __btrfs_btree_balance_dirty(root, 1);
3886}
585ad2c3 3887
b53d3f5d
LB
3888void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3889{
3890 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3891}
6b80053d 3892
ca7a79ad 3893int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3894{
727011e0 3895 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3896 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3897}
0da5468f 3898
fcd1f065 3899static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3900 int read_only)
3901{
c926093e
DS
3902 struct btrfs_super_block *sb = fs_info->super_copy;
3903 int ret = 0;
3904
21e7626b
DS
3905 if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3906 printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3907 btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3908 ret = -EINVAL;
3909 }
21e7626b
DS
3910 if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3911 printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3912 btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3913 ret = -EINVAL;
3914 }
21e7626b
DS
3915 if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3916 printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3917 btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
c926093e
DS
3918 ret = -EINVAL;
3919 }
3920
1104a885 3921 /*
c926093e
DS
3922 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3923 * items yet, they'll be verified later. Issue just a warning.
1104a885 3924 */
21e7626b 3925 if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
c926093e 3926 printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
cd743fac 3927 btrfs_super_root(sb));
21e7626b 3928 if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
cd743fac
DS
3929 printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3930 btrfs_super_chunk_root(sb));
21e7626b 3931 if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
cd743fac 3932 printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
21e7626b 3933 btrfs_super_log_root(sb));
c926093e 3934
75d6ad38
DS
3935 /*
3936 * Check the lower bound, the alignment and other constraints are
3937 * checked later.
3938 */
3939 if (btrfs_super_nodesize(sb) < 4096) {
3940 printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3941 btrfs_super_nodesize(sb));
3942 ret = -EINVAL;
3943 }
3944 if (btrfs_super_sectorsize(sb) < 4096) {
3945 printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3946 btrfs_super_sectorsize(sb));
3947 ret = -EINVAL;
3948 }
3949
c926093e
DS
3950 if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3951 printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3952 fs_info->fsid, sb->dev_item.fsid);
3953 ret = -EINVAL;
3954 }
3955
3956 /*
3957 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3958 * done later
3959 */
21e7626b 3960 if (btrfs_super_num_devices(sb) > (1UL << 31))
c926093e 3961 printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
21e7626b 3962 btrfs_super_num_devices(sb));
75d6ad38
DS
3963 if (btrfs_super_num_devices(sb) == 0) {
3964 printk(KERN_ERR "BTRFS: number of devices is 0\n");
3965 ret = -EINVAL;
3966 }
c926093e 3967
21e7626b 3968 if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
c926093e 3969 printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
21e7626b 3970 btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
c926093e
DS
3971 ret = -EINVAL;
3972 }
3973
ce7fca5f
DS
3974 /*
3975 * Obvious sys_chunk_array corruptions, it must hold at least one key
3976 * and one chunk
3977 */
3978 if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3979 printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3980 btrfs_super_sys_array_size(sb),
3981 BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3982 ret = -EINVAL;
3983 }
3984 if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3985 + sizeof(struct btrfs_chunk)) {
d2207129 3986 printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
ce7fca5f
DS
3987 btrfs_super_sys_array_size(sb),
3988 sizeof(struct btrfs_disk_key)
3989 + sizeof(struct btrfs_chunk));
3990 ret = -EINVAL;
3991 }
3992
c926093e
DS
3993 /*
3994 * The generation is a global counter, we'll trust it more than the others
3995 * but it's still possible that it's the one that's wrong.
3996 */
21e7626b 3997 if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
c926093e
DS
3998 printk(KERN_WARNING
3999 "BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
21e7626b
DS
4000 btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4001 if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4002 && btrfs_super_cache_generation(sb) != (u64)-1)
c926093e
DS
4003 printk(KERN_WARNING
4004 "BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
21e7626b 4005 btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
c926093e
DS
4006
4007 return ret;
acce952b 4008}
4009
48a3b636 4010static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 4011{
acce952b 4012 mutex_lock(&root->fs_info->cleaner_mutex);
4013 btrfs_run_delayed_iputs(root);
4014 mutex_unlock(&root->fs_info->cleaner_mutex);
4015
4016 down_write(&root->fs_info->cleanup_work_sem);
4017 up_write(&root->fs_info->cleanup_work_sem);
4018
4019 /* cleanup FS via transaction */
4020 btrfs_cleanup_transaction(root);
acce952b 4021}
4022
143bede5 4023static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 4024{
acce952b 4025 struct btrfs_ordered_extent *ordered;
acce952b 4026
199c2a9c 4027 spin_lock(&root->ordered_extent_lock);
779880ef
JB
4028 /*
4029 * This will just short circuit the ordered completion stuff which will
4030 * make sure the ordered extent gets properly cleaned up.
4031 */
199c2a9c 4032 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
4033 root_extent_list)
4034 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
4035 spin_unlock(&root->ordered_extent_lock);
4036}
4037
4038static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4039{
4040 struct btrfs_root *root;
4041 struct list_head splice;
4042
4043 INIT_LIST_HEAD(&splice);
4044
4045 spin_lock(&fs_info->ordered_root_lock);
4046 list_splice_init(&fs_info->ordered_roots, &splice);
4047 while (!list_empty(&splice)) {
4048 root = list_first_entry(&splice, struct btrfs_root,
4049 ordered_root);
1de2cfde
JB
4050 list_move_tail(&root->ordered_root,
4051 &fs_info->ordered_roots);
199c2a9c 4052
2a85d9ca 4053 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
4054 btrfs_destroy_ordered_extents(root);
4055
2a85d9ca
LB
4056 cond_resched();
4057 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
4058 }
4059 spin_unlock(&fs_info->ordered_root_lock);
acce952b 4060}
4061
35a3621b
SB
4062static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4063 struct btrfs_root *root)
acce952b 4064{
4065 struct rb_node *node;
4066 struct btrfs_delayed_ref_root *delayed_refs;
4067 struct btrfs_delayed_ref_node *ref;
4068 int ret = 0;
4069
4070 delayed_refs = &trans->delayed_refs;
4071
4072 spin_lock(&delayed_refs->lock);
d7df2c79 4073 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 4074 spin_unlock(&delayed_refs->lock);
efe120a0 4075 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 4076 return ret;
4077 }
4078
d7df2c79
JB
4079 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4080 struct btrfs_delayed_ref_head *head;
c6fc2454 4081 struct btrfs_delayed_ref_node *tmp;
e78417d1 4082 bool pin_bytes = false;
acce952b 4083
d7df2c79
JB
4084 head = rb_entry(node, struct btrfs_delayed_ref_head,
4085 href_node);
4086 if (!mutex_trylock(&head->mutex)) {
4087 atomic_inc(&head->node.refs);
4088 spin_unlock(&delayed_refs->lock);
eb12db69 4089
d7df2c79 4090 mutex_lock(&head->mutex);
e78417d1 4091 mutex_unlock(&head->mutex);
d7df2c79
JB
4092 btrfs_put_delayed_ref(&head->node);
4093 spin_lock(&delayed_refs->lock);
4094 continue;
4095 }
4096 spin_lock(&head->lock);
c6fc2454
QW
4097 list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4098 list) {
d7df2c79 4099 ref->in_tree = 0;
c6fc2454 4100 list_del(&ref->list);
d7df2c79
JB
4101 atomic_dec(&delayed_refs->num_entries);
4102 btrfs_put_delayed_ref(ref);
e78417d1 4103 }
d7df2c79
JB
4104 if (head->must_insert_reserved)
4105 pin_bytes = true;
4106 btrfs_free_delayed_extent_op(head->extent_op);
4107 delayed_refs->num_heads--;
4108 if (head->processing == 0)
4109 delayed_refs->num_heads_ready--;
4110 atomic_dec(&delayed_refs->num_entries);
4111 head->node.in_tree = 0;
4112 rb_erase(&head->href_node, &delayed_refs->href_root);
4113 spin_unlock(&head->lock);
4114 spin_unlock(&delayed_refs->lock);
4115 mutex_unlock(&head->mutex);
acce952b 4116
d7df2c79
JB
4117 if (pin_bytes)
4118 btrfs_pin_extent(root, head->node.bytenr,
4119 head->node.num_bytes, 1);
4120 btrfs_put_delayed_ref(&head->node);
acce952b 4121 cond_resched();
4122 spin_lock(&delayed_refs->lock);
4123 }
4124
4125 spin_unlock(&delayed_refs->lock);
4126
4127 return ret;
4128}
4129
143bede5 4130static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 4131{
4132 struct btrfs_inode *btrfs_inode;
4133 struct list_head splice;
4134
4135 INIT_LIST_HEAD(&splice);
4136
eb73c1b7
MX
4137 spin_lock(&root->delalloc_lock);
4138 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 4139
4140 while (!list_empty(&splice)) {
eb73c1b7
MX
4141 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4142 delalloc_inodes);
acce952b 4143
4144 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
4145 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4146 &btrfs_inode->runtime_flags);
eb73c1b7 4147 spin_unlock(&root->delalloc_lock);
acce952b 4148
4149 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 4150
eb73c1b7 4151 spin_lock(&root->delalloc_lock);
acce952b 4152 }
4153
eb73c1b7
MX
4154 spin_unlock(&root->delalloc_lock);
4155}
4156
4157static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4158{
4159 struct btrfs_root *root;
4160 struct list_head splice;
4161
4162 INIT_LIST_HEAD(&splice);
4163
4164 spin_lock(&fs_info->delalloc_root_lock);
4165 list_splice_init(&fs_info->delalloc_roots, &splice);
4166 while (!list_empty(&splice)) {
4167 root = list_first_entry(&splice, struct btrfs_root,
4168 delalloc_root);
4169 list_del_init(&root->delalloc_root);
4170 root = btrfs_grab_fs_root(root);
4171 BUG_ON(!root);
4172 spin_unlock(&fs_info->delalloc_root_lock);
4173
4174 btrfs_destroy_delalloc_inodes(root);
4175 btrfs_put_fs_root(root);
4176
4177 spin_lock(&fs_info->delalloc_root_lock);
4178 }
4179 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 4180}
4181
4182static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4183 struct extent_io_tree *dirty_pages,
4184 int mark)
4185{
4186 int ret;
acce952b 4187 struct extent_buffer *eb;
4188 u64 start = 0;
4189 u64 end;
acce952b 4190
4191 while (1) {
4192 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 4193 mark, NULL);
acce952b 4194 if (ret)
4195 break;
4196
4197 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4198 while (start <= end) {
01d58472 4199 eb = btrfs_find_tree_block(root->fs_info, start);
707e8a07 4200 start += root->nodesize;
fd8b2b61 4201 if (!eb)
acce952b 4202 continue;
fd8b2b61 4203 wait_on_extent_buffer_writeback(eb);
acce952b 4204
fd8b2b61
JB
4205 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4206 &eb->bflags))
4207 clear_extent_buffer_dirty(eb);
4208 free_extent_buffer_stale(eb);
acce952b 4209 }
4210 }
4211
4212 return ret;
4213}
4214
4215static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4216 struct extent_io_tree *pinned_extents)
4217{
4218 struct extent_io_tree *unpin;
4219 u64 start;
4220 u64 end;
4221 int ret;
ed0eaa14 4222 bool loop = true;
acce952b 4223
4224 unpin = pinned_extents;
ed0eaa14 4225again:
acce952b 4226 while (1) {
4227 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4228 EXTENT_DIRTY, NULL);
acce952b 4229 if (ret)
4230 break;
4231
acce952b 4232 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4233 btrfs_error_unpin_extent_range(root, start, end);
4234 cond_resched();
4235 }
4236
ed0eaa14
LB
4237 if (loop) {
4238 if (unpin == &root->fs_info->freed_extents[0])
4239 unpin = &root->fs_info->freed_extents[1];
4240 else
4241 unpin = &root->fs_info->freed_extents[0];
4242 loop = false;
4243 goto again;
4244 }
4245
acce952b 4246 return 0;
4247}
4248
50d9aa99
JB
4249static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4250 struct btrfs_fs_info *fs_info)
4251{
4252 struct btrfs_ordered_extent *ordered;
4253
4254 spin_lock(&fs_info->trans_lock);
4255 while (!list_empty(&cur_trans->pending_ordered)) {
4256 ordered = list_first_entry(&cur_trans->pending_ordered,
4257 struct btrfs_ordered_extent,
4258 trans_list);
4259 list_del_init(&ordered->trans_list);
4260 spin_unlock(&fs_info->trans_lock);
4261
4262 btrfs_put_ordered_extent(ordered);
4263 spin_lock(&fs_info->trans_lock);
4264 }
4265 spin_unlock(&fs_info->trans_lock);
4266}
4267
49b25e05
JM
4268void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4269 struct btrfs_root *root)
4270{
4271 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4272
4a9d8bde 4273 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4274 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4275
4a9d8bde 4276 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4277 wake_up(&root->fs_info->transaction_wait);
49b25e05 4278
50d9aa99 4279 btrfs_free_pending_ordered(cur_trans, root->fs_info);
67cde344
MX
4280 btrfs_destroy_delayed_inodes(root);
4281 btrfs_assert_delayed_root_empty(root);
49b25e05 4282
49b25e05
JM
4283 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4284 EXTENT_DIRTY);
6e841e32
LB
4285 btrfs_destroy_pinned_extent(root,
4286 root->fs_info->pinned_extents);
49b25e05 4287
4a9d8bde
MX
4288 cur_trans->state =TRANS_STATE_COMPLETED;
4289 wake_up(&cur_trans->commit_wait);
4290
49b25e05
JM
4291 /*
4292 memset(cur_trans, 0, sizeof(*cur_trans));
4293 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4294 */
4295}
4296
48a3b636 4297static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4298{
4299 struct btrfs_transaction *t;
acce952b 4300
acce952b 4301 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4302
a4abeea4 4303 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4304 while (!list_empty(&root->fs_info->trans_list)) {
4305 t = list_first_entry(&root->fs_info->trans_list,
4306 struct btrfs_transaction, list);
4307 if (t->state >= TRANS_STATE_COMMIT_START) {
4308 atomic_inc(&t->use_count);
4309 spin_unlock(&root->fs_info->trans_lock);
4310 btrfs_wait_for_commit(root, t->transid);
4311 btrfs_put_transaction(t);
4312 spin_lock(&root->fs_info->trans_lock);
4313 continue;
4314 }
4315 if (t == root->fs_info->running_transaction) {
4316 t->state = TRANS_STATE_COMMIT_DOING;
4317 spin_unlock(&root->fs_info->trans_lock);
4318 /*
4319 * We wait for 0 num_writers since we don't hold a trans
4320 * handle open currently for this transaction.
4321 */
4322 wait_event(t->writer_wait,
4323 atomic_read(&t->num_writers) == 0);
4324 } else {
4325 spin_unlock(&root->fs_info->trans_lock);
4326 }
4327 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4328
724e2315
JB
4329 spin_lock(&root->fs_info->trans_lock);
4330 if (t == root->fs_info->running_transaction)
4331 root->fs_info->running_transaction = NULL;
acce952b 4332 list_del_init(&t->list);
724e2315 4333 spin_unlock(&root->fs_info->trans_lock);
acce952b 4334
724e2315
JB
4335 btrfs_put_transaction(t);
4336 trace_btrfs_transaction_commit(root);
4337 spin_lock(&root->fs_info->trans_lock);
4338 }
4339 spin_unlock(&root->fs_info->trans_lock);
4340 btrfs_destroy_all_ordered_extents(root->fs_info);
4341 btrfs_destroy_delayed_inodes(root);
4342 btrfs_assert_delayed_root_empty(root);
4343 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4344 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4345 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4346
4347 return 0;
4348}
4349
e8c9f186 4350static const struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4351 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4352 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4353 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4354 /* note we're sharing with inode.c for the merge bio hook */
4355 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4356};