Btrfs: avoid triggering bug_on() when we fail to start inode caching task
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
5a0e3ad6 29#include <linux/slab.h>
784b4e29 30#include <linux/migrate.h>
7a36ddec 31#include <linux/ratelimit.h>
6463fe58 32#include <linux/uuid.h>
803b2f54 33#include <linux/semaphore.h>
7e75bf3f 34#include <asm/unaligned.h>
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
0b947aff 37#include "hash.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
5ac1d209 51#include "sysfs.h"
eb60ceac 52
de0022b9
JB
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
d1310b2e 57static struct extent_io_ops btree_extent_io_ops;
d458b054 58static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 59static void free_fs_root(struct btrfs_root *root);
fcd1f065 60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 61 int read_only);
569e0f35
JB
62static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
63 struct btrfs_root *root);
143bede5 64static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
66 struct btrfs_root *root);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
d458b054 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
d458b054 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
13fd8da9 159 { .id = BTRFS_UUID_TREE_OBJECTID, .name_stem = "uuid" },
85d4e461 160 { .id = 0, .name_stem = "tree" },
4008c04a 161};
85d4e461
CM
162
163void __init btrfs_init_lockdep(void)
164{
165 int i, j;
166
167 /* initialize lockdep class names */
168 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
169 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
170
171 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
172 snprintf(ks->names[j], sizeof(ks->names[j]),
173 "btrfs-%s-%02d", ks->name_stem, j);
174 }
175}
176
177void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
178 int level)
179{
180 struct btrfs_lockdep_keyset *ks;
181
182 BUG_ON(level >= ARRAY_SIZE(ks->keys));
183
184 /* find the matching keyset, id 0 is the default entry */
185 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
186 if (ks->id == objectid)
187 break;
188
189 lockdep_set_class_and_name(&eb->lock,
190 &ks->keys[level], ks->names[level]);
191}
192
4008c04a
CM
193#endif
194
d352ac68
CM
195/*
196 * extents on the btree inode are pretty simple, there's one extent
197 * that covers the entire device
198 */
b2950863 199static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 200 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 201 int create)
7eccb903 202{
5f39d397
CM
203 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
204 struct extent_map *em;
205 int ret;
206
890871be 207 read_lock(&em_tree->lock);
d1310b2e 208 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
209 if (em) {
210 em->bdev =
211 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 212 read_unlock(&em_tree->lock);
5f39d397 213 goto out;
a061fc8d 214 }
890871be 215 read_unlock(&em_tree->lock);
7b13b7b1 216
172ddd60 217 em = alloc_extent_map();
5f39d397
CM
218 if (!em) {
219 em = ERR_PTR(-ENOMEM);
220 goto out;
221 }
222 em->start = 0;
0afbaf8c 223 em->len = (u64)-1;
c8b97818 224 em->block_len = (u64)-1;
5f39d397 225 em->block_start = 0;
a061fc8d 226 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 227
890871be 228 write_lock(&em_tree->lock);
09a2a8f9 229 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
230 if (ret == -EEXIST) {
231 free_extent_map(em);
7b13b7b1 232 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 233 if (!em)
0433f20d 234 em = ERR_PTR(-EIO);
5f39d397 235 } else if (ret) {
7b13b7b1 236 free_extent_map(em);
0433f20d 237 em = ERR_PTR(ret);
5f39d397 238 }
890871be 239 write_unlock(&em_tree->lock);
7b13b7b1 240
5f39d397
CM
241out:
242 return em;
7eccb903
CM
243}
244
b0496686 245u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 246{
0b947aff 247 return btrfs_crc32c(seed, data, len);
19c00ddc
CM
248}
249
250void btrfs_csum_final(u32 crc, char *result)
251{
7e75bf3f 252 put_unaligned_le32(~crc, result);
19c00ddc
CM
253}
254
d352ac68
CM
255/*
256 * compute the csum for a btree block, and either verify it or write it
257 * into the csum field of the block.
258 */
19c00ddc
CM
259static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
260 int verify)
261{
6c41761f 262 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 263 char *result = NULL;
19c00ddc
CM
264 unsigned long len;
265 unsigned long cur_len;
266 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
267 char *kaddr;
268 unsigned long map_start;
269 unsigned long map_len;
270 int err;
271 u32 crc = ~(u32)0;
607d432d 272 unsigned long inline_result;
19c00ddc
CM
273
274 len = buf->len - offset;
d397712b 275 while (len > 0) {
19c00ddc 276 err = map_private_extent_buffer(buf, offset, 32,
a6591715 277 &kaddr, &map_start, &map_len);
d397712b 278 if (err)
19c00ddc 279 return 1;
19c00ddc 280 cur_len = min(len, map_len - (offset - map_start));
b0496686 281 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
282 crc, cur_len);
283 len -= cur_len;
284 offset += cur_len;
19c00ddc 285 }
607d432d
JB
286 if (csum_size > sizeof(inline_result)) {
287 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
288 if (!result)
289 return 1;
290 } else {
291 result = (char *)&inline_result;
292 }
293
19c00ddc
CM
294 btrfs_csum_final(crc, result);
295
296 if (verify) {
607d432d 297 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
298 u32 val;
299 u32 found = 0;
607d432d 300 memcpy(&found, result, csum_size);
e4204ded 301
607d432d 302 read_extent_buffer(buf, &val, 0, csum_size);
efe120a0
FH
303 printk_ratelimited(KERN_INFO
304 "BTRFS: %s checksum verify failed on %llu wanted %X found %X "
305 "level %d\n",
306 root->fs_info->sb->s_id, buf->start,
307 val, found, btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75 331 int ret;
a26e8c9f
JB
332 bool need_lock = (current->journal_info ==
333 (void *)BTRFS_SEND_TRANS_STUB);
1259ab75
CM
334
335 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
336 return 0;
337
b9fab919
CM
338 if (atomic)
339 return -EAGAIN;
340
a26e8c9f
JB
341 if (need_lock) {
342 btrfs_tree_read_lock(eb);
343 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
344 }
345
2ac55d41 346 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 347 0, &cached_state);
0b32f4bb 348 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
349 btrfs_header_generation(eb) == parent_transid) {
350 ret = 0;
351 goto out;
352 }
7a36ddec 353 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d 354 "found %llu\n",
c1c9ff7c 355 eb->start, parent_transid, btrfs_header_generation(eb));
1259ab75 356 ret = 1;
a26e8c9f
JB
357
358 /*
359 * Things reading via commit roots that don't have normal protection,
360 * like send, can have a really old block in cache that may point at a
361 * block that has been free'd and re-allocated. So don't clear uptodate
362 * if we find an eb that is under IO (dirty/writeback) because we could
363 * end up reading in the stale data and then writing it back out and
364 * making everybody very sad.
365 */
366 if (!extent_buffer_under_io(eb))
367 clear_extent_buffer_uptodate(eb);
33958dc6 368out:
2ac55d41
JB
369 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
370 &cached_state, GFP_NOFS);
a26e8c9f 371 btrfs_tree_read_unlock_blocking(eb);
1259ab75 372 return ret;
1259ab75
CM
373}
374
1104a885
DS
375/*
376 * Return 0 if the superblock checksum type matches the checksum value of that
377 * algorithm. Pass the raw disk superblock data.
378 */
379static int btrfs_check_super_csum(char *raw_disk_sb)
380{
381 struct btrfs_super_block *disk_sb =
382 (struct btrfs_super_block *)raw_disk_sb;
383 u16 csum_type = btrfs_super_csum_type(disk_sb);
384 int ret = 0;
385
386 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
387 u32 crc = ~(u32)0;
388 const int csum_size = sizeof(crc);
389 char result[csum_size];
390
391 /*
392 * The super_block structure does not span the whole
393 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
394 * is filled with zeros and is included in the checkum.
395 */
396 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
397 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
398 btrfs_csum_final(crc, result);
399
400 if (memcmp(raw_disk_sb, result, csum_size))
401 ret = 1;
667e7d94
CM
402
403 if (ret && btrfs_super_generation(disk_sb) < 10) {
efe120a0
FH
404 printk(KERN_WARNING
405 "BTRFS: super block crcs don't match, older mkfs detected\n");
667e7d94
CM
406 ret = 0;
407 }
1104a885
DS
408 }
409
410 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
efe120a0 411 printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
1104a885
DS
412 csum_type);
413 ret = 1;
414 }
415
416 return ret;
417}
418
d352ac68
CM
419/*
420 * helper to read a given tree block, doing retries as required when
421 * the checksums don't match and we have alternate mirrors to try.
422 */
f188591e
CM
423static int btree_read_extent_buffer_pages(struct btrfs_root *root,
424 struct extent_buffer *eb,
ca7a79ad 425 u64 start, u64 parent_transid)
f188591e
CM
426{
427 struct extent_io_tree *io_tree;
ea466794 428 int failed = 0;
f188591e
CM
429 int ret;
430 int num_copies = 0;
431 int mirror_num = 0;
ea466794 432 int failed_mirror = 0;
f188591e 433
a826d6dc 434 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
435 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
436 while (1) {
bb82ab88
AJ
437 ret = read_extent_buffer_pages(io_tree, eb, start,
438 WAIT_COMPLETE,
f188591e 439 btree_get_extent, mirror_num);
256dd1bb
SB
440 if (!ret) {
441 if (!verify_parent_transid(io_tree, eb,
b9fab919 442 parent_transid, 0))
256dd1bb
SB
443 break;
444 else
445 ret = -EIO;
446 }
d397712b 447
a826d6dc
JB
448 /*
449 * This buffer's crc is fine, but its contents are corrupted, so
450 * there is no reason to read the other copies, they won't be
451 * any less wrong.
452 */
453 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
454 break;
455
5d964051 456 num_copies = btrfs_num_copies(root->fs_info,
f188591e 457 eb->start, eb->len);
4235298e 458 if (num_copies == 1)
ea466794 459 break;
4235298e 460
5cf1ab56
JB
461 if (!failed_mirror) {
462 failed = 1;
463 failed_mirror = eb->read_mirror;
464 }
465
f188591e 466 mirror_num++;
ea466794
JB
467 if (mirror_num == failed_mirror)
468 mirror_num++;
469
4235298e 470 if (mirror_num > num_copies)
ea466794 471 break;
f188591e 472 }
ea466794 473
c0901581 474 if (failed && !ret && failed_mirror)
ea466794
JB
475 repair_eb_io_failure(root, eb, failed_mirror);
476
477 return ret;
f188591e 478}
19c00ddc 479
d352ac68 480/*
d397712b
CM
481 * checksum a dirty tree block before IO. This has extra checks to make sure
482 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 483 */
d397712b 484
b2950863 485static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 486{
4eee4fa4 487 u64 start = page_offset(page);
19c00ddc 488 u64 found_start;
19c00ddc 489 struct extent_buffer *eb;
f188591e 490
4f2de97a
JB
491 eb = (struct extent_buffer *)page->private;
492 if (page != eb->pages[0])
493 return 0;
19c00ddc 494 found_start = btrfs_header_bytenr(eb);
fae7f21c 495 if (WARN_ON(found_start != start || !PageUptodate(page)))
4f2de97a 496 return 0;
19c00ddc 497 csum_tree_block(root, eb, 0);
19c00ddc
CM
498 return 0;
499}
500
2b82032c
YZ
501static int check_tree_block_fsid(struct btrfs_root *root,
502 struct extent_buffer *eb)
503{
504 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
505 u8 fsid[BTRFS_UUID_SIZE];
506 int ret = 1;
507
0a4e5586 508 read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
2b82032c
YZ
509 while (fs_devices) {
510 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
511 ret = 0;
512 break;
513 }
514 fs_devices = fs_devices->seed;
515 }
516 return ret;
517}
518
a826d6dc 519#define CORRUPT(reason, eb, root, slot) \
efe120a0
FH
520 btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu," \
521 "root=%llu, slot=%d", reason, \
c1c9ff7c 522 btrfs_header_bytenr(eb), root->objectid, slot)
a826d6dc
JB
523
524static noinline int check_leaf(struct btrfs_root *root,
525 struct extent_buffer *leaf)
526{
527 struct btrfs_key key;
528 struct btrfs_key leaf_key;
529 u32 nritems = btrfs_header_nritems(leaf);
530 int slot;
531
532 if (nritems == 0)
533 return 0;
534
535 /* Check the 0 item */
536 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
537 BTRFS_LEAF_DATA_SIZE(root)) {
538 CORRUPT("invalid item offset size pair", leaf, root, 0);
539 return -EIO;
540 }
541
542 /*
543 * Check to make sure each items keys are in the correct order and their
544 * offsets make sense. We only have to loop through nritems-1 because
545 * we check the current slot against the next slot, which verifies the
546 * next slot's offset+size makes sense and that the current's slot
547 * offset is correct.
548 */
549 for (slot = 0; slot < nritems - 1; slot++) {
550 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
551 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
552
553 /* Make sure the keys are in the right order */
554 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
555 CORRUPT("bad key order", leaf, root, slot);
556 return -EIO;
557 }
558
559 /*
560 * Make sure the offset and ends are right, remember that the
561 * item data starts at the end of the leaf and grows towards the
562 * front.
563 */
564 if (btrfs_item_offset_nr(leaf, slot) !=
565 btrfs_item_end_nr(leaf, slot + 1)) {
566 CORRUPT("slot offset bad", leaf, root, slot);
567 return -EIO;
568 }
569
570 /*
571 * Check to make sure that we don't point outside of the leaf,
572 * just incase all the items are consistent to eachother, but
573 * all point outside of the leaf.
574 */
575 if (btrfs_item_end_nr(leaf, slot) >
576 BTRFS_LEAF_DATA_SIZE(root)) {
577 CORRUPT("slot end outside of leaf", leaf, root, slot);
578 return -EIO;
579 }
580 }
581
582 return 0;
583}
584
facc8a22
MX
585static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
586 u64 phy_offset, struct page *page,
587 u64 start, u64 end, int mirror)
ce9adaa5 588{
ce9adaa5
CM
589 u64 found_start;
590 int found_level;
ce9adaa5
CM
591 struct extent_buffer *eb;
592 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 593 int ret = 0;
727011e0 594 int reads_done;
ce9adaa5 595
ce9adaa5
CM
596 if (!page->private)
597 goto out;
d397712b 598
4f2de97a 599 eb = (struct extent_buffer *)page->private;
d397712b 600
0b32f4bb
JB
601 /* the pending IO might have been the only thing that kept this buffer
602 * in memory. Make sure we have a ref for all this other checks
603 */
604 extent_buffer_get(eb);
605
606 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
607 if (!reads_done)
608 goto err;
f188591e 609
5cf1ab56 610 eb->read_mirror = mirror;
ea466794
JB
611 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
612 ret = -EIO;
613 goto err;
614 }
615
ce9adaa5 616 found_start = btrfs_header_bytenr(eb);
727011e0 617 if (found_start != eb->start) {
efe120a0 618 printk_ratelimited(KERN_INFO "BTRFS: bad tree block start "
193f284d 619 "%llu %llu\n",
c1c9ff7c 620 found_start, eb->start);
f188591e 621 ret = -EIO;
ce9adaa5
CM
622 goto err;
623 }
2b82032c 624 if (check_tree_block_fsid(root, eb)) {
efe120a0 625 printk_ratelimited(KERN_INFO "BTRFS: bad fsid on block %llu\n",
c1c9ff7c 626 eb->start);
1259ab75
CM
627 ret = -EIO;
628 goto err;
629 }
ce9adaa5 630 found_level = btrfs_header_level(eb);
1c24c3ce 631 if (found_level >= BTRFS_MAX_LEVEL) {
efe120a0 632 btrfs_info(root->fs_info, "bad tree block level %d",
1c24c3ce
JB
633 (int)btrfs_header_level(eb));
634 ret = -EIO;
635 goto err;
636 }
ce9adaa5 637
85d4e461
CM
638 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
639 eb, found_level);
4008c04a 640
ce9adaa5 641 ret = csum_tree_block(root, eb, 1);
a826d6dc 642 if (ret) {
f188591e 643 ret = -EIO;
a826d6dc
JB
644 goto err;
645 }
646
647 /*
648 * If this is a leaf block and it is corrupt, set the corrupt bit so
649 * that we don't try and read the other copies of this block, just
650 * return -EIO.
651 */
652 if (found_level == 0 && check_leaf(root, eb)) {
653 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
654 ret = -EIO;
655 }
ce9adaa5 656
0b32f4bb
JB
657 if (!ret)
658 set_extent_buffer_uptodate(eb);
ce9adaa5 659err:
79fb65a1
JB
660 if (reads_done &&
661 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 662 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 663
53b381b3
DW
664 if (ret) {
665 /*
666 * our io error hook is going to dec the io pages
667 * again, we have to make sure it has something
668 * to decrement
669 */
670 atomic_inc(&eb->io_pages);
0b32f4bb 671 clear_extent_buffer_uptodate(eb);
53b381b3 672 }
0b32f4bb 673 free_extent_buffer(eb);
ce9adaa5 674out:
f188591e 675 return ret;
ce9adaa5
CM
676}
677
ea466794 678static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 679{
4bb31e92
AJ
680 struct extent_buffer *eb;
681 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
682
4f2de97a 683 eb = (struct extent_buffer *)page->private;
ea466794 684 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 685 eb->read_mirror = failed_mirror;
53b381b3 686 atomic_dec(&eb->io_pages);
ea466794 687 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 688 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
689 return -EIO; /* we fixed nothing */
690}
691
ce9adaa5 692static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
693{
694 struct end_io_wq *end_io_wq = bio->bi_private;
695 struct btrfs_fs_info *fs_info;
ce9adaa5 696
ce9adaa5 697 fs_info = end_io_wq->info;
ce9adaa5 698 end_io_wq->error = err;
fccb5d86 699 btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
d20f7043 700
7b6d91da 701 if (bio->bi_rw & REQ_WRITE) {
53b381b3 702 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
fccb5d86
QW
703 btrfs_queue_work(fs_info->endio_meta_write_workers,
704 &end_io_wq->work);
53b381b3 705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
fccb5d86
QW
706 btrfs_queue_work(fs_info->endio_freespace_worker,
707 &end_io_wq->work);
53b381b3 708 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
709 btrfs_queue_work(fs_info->endio_raid56_workers,
710 &end_io_wq->work);
cad321ad 711 else
fccb5d86
QW
712 btrfs_queue_work(fs_info->endio_write_workers,
713 &end_io_wq->work);
d20f7043 714 } else {
53b381b3 715 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
fccb5d86
QW
716 btrfs_queue_work(fs_info->endio_raid56_workers,
717 &end_io_wq->work);
53b381b3 718 else if (end_io_wq->metadata)
fccb5d86
QW
719 btrfs_queue_work(fs_info->endio_meta_workers,
720 &end_io_wq->work);
d20f7043 721 else
fccb5d86
QW
722 btrfs_queue_work(fs_info->endio_workers,
723 &end_io_wq->work);
d20f7043 724 }
ce9adaa5
CM
725}
726
0cb59c99
JB
727/*
728 * For the metadata arg you want
729 *
730 * 0 - if data
731 * 1 - if normal metadta
732 * 2 - if writing to the free space cache area
53b381b3 733 * 3 - raid parity work
0cb59c99 734 */
22c59948
CM
735int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
736 int metadata)
0b86a832 737{
ce9adaa5 738 struct end_io_wq *end_io_wq;
ce9adaa5
CM
739 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
740 if (!end_io_wq)
741 return -ENOMEM;
742
743 end_io_wq->private = bio->bi_private;
744 end_io_wq->end_io = bio->bi_end_io;
22c59948 745 end_io_wq->info = info;
ce9adaa5
CM
746 end_io_wq->error = 0;
747 end_io_wq->bio = bio;
22c59948 748 end_io_wq->metadata = metadata;
ce9adaa5
CM
749
750 bio->bi_private = end_io_wq;
751 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
752 return 0;
753}
754
b64a2851 755unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 756{
4854ddd0 757 unsigned long limit = min_t(unsigned long,
5cdc7ad3 758 info->thread_pool_size,
4854ddd0
CM
759 info->fs_devices->open_devices);
760 return 256 * limit;
761}
0986fe9e 762
d458b054 763static void run_one_async_start(struct btrfs_work *work)
4a69a410 764{
4a69a410 765 struct async_submit_bio *async;
79787eaa 766 int ret;
4a69a410
CM
767
768 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
769 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
770 async->mirror_num, async->bio_flags,
771 async->bio_offset);
772 if (ret)
773 async->error = ret;
4a69a410
CM
774}
775
d458b054 776static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
777{
778 struct btrfs_fs_info *fs_info;
779 struct async_submit_bio *async;
4854ddd0 780 int limit;
8b712842
CM
781
782 async = container_of(work, struct async_submit_bio, work);
783 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 784
b64a2851 785 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
786 limit = limit * 2 / 3;
787
66657b31 788 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 789 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
790 wake_up(&fs_info->async_submit_wait);
791
79787eaa
JM
792 /* If an error occured we just want to clean up the bio and move on */
793 if (async->error) {
794 bio_endio(async->bio, async->error);
795 return;
796 }
797
4a69a410 798 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
799 async->mirror_num, async->bio_flags,
800 async->bio_offset);
4a69a410
CM
801}
802
d458b054 803static void run_one_async_free(struct btrfs_work *work)
4a69a410
CM
804{
805 struct async_submit_bio *async;
806
807 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
808 kfree(async);
809}
810
44b8bd7e
CM
811int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
812 int rw, struct bio *bio, int mirror_num,
c8b97818 813 unsigned long bio_flags,
eaf25d93 814 u64 bio_offset,
4a69a410
CM
815 extent_submit_bio_hook_t *submit_bio_start,
816 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
817{
818 struct async_submit_bio *async;
819
820 async = kmalloc(sizeof(*async), GFP_NOFS);
821 if (!async)
822 return -ENOMEM;
823
824 async->inode = inode;
825 async->rw = rw;
826 async->bio = bio;
827 async->mirror_num = mirror_num;
4a69a410
CM
828 async->submit_bio_start = submit_bio_start;
829 async->submit_bio_done = submit_bio_done;
830
5cdc7ad3
QW
831 btrfs_init_work(&async->work, run_one_async_start,
832 run_one_async_done, run_one_async_free);
4a69a410 833
c8b97818 834 async->bio_flags = bio_flags;
eaf25d93 835 async->bio_offset = bio_offset;
8c8bee1d 836
79787eaa
JM
837 async->error = 0;
838
cb03c743 839 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 840
7b6d91da 841 if (rw & REQ_SYNC)
5cdc7ad3 842 btrfs_set_work_high_priority(&async->work);
d313d7a3 843
5cdc7ad3 844 btrfs_queue_work(fs_info->workers, &async->work);
9473f16c 845
d397712b 846 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
847 atomic_read(&fs_info->nr_async_submits)) {
848 wait_event(fs_info->async_submit_wait,
849 (atomic_read(&fs_info->nr_async_submits) == 0));
850 }
851
44b8bd7e
CM
852 return 0;
853}
854
ce3ed71a
CM
855static int btree_csum_one_bio(struct bio *bio)
856{
857 struct bio_vec *bvec = bio->bi_io_vec;
858 int bio_index = 0;
859 struct btrfs_root *root;
79787eaa 860 int ret = 0;
ce3ed71a
CM
861
862 WARN_ON(bio->bi_vcnt <= 0);
d397712b 863 while (bio_index < bio->bi_vcnt) {
ce3ed71a 864 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
865 ret = csum_dirty_buffer(root, bvec->bv_page);
866 if (ret)
867 break;
ce3ed71a
CM
868 bio_index++;
869 bvec++;
870 }
79787eaa 871 return ret;
ce3ed71a
CM
872}
873
4a69a410
CM
874static int __btree_submit_bio_start(struct inode *inode, int rw,
875 struct bio *bio, int mirror_num,
eaf25d93
CM
876 unsigned long bio_flags,
877 u64 bio_offset)
22c59948 878{
8b712842
CM
879 /*
880 * when we're called for a write, we're already in the async
5443be45 881 * submission context. Just jump into btrfs_map_bio
8b712842 882 */
79787eaa 883 return btree_csum_one_bio(bio);
4a69a410 884}
22c59948 885
4a69a410 886static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
887 int mirror_num, unsigned long bio_flags,
888 u64 bio_offset)
4a69a410 889{
61891923
SB
890 int ret;
891
8b712842 892 /*
4a69a410
CM
893 * when we're called for a write, we're already in the async
894 * submission context. Just jump into btrfs_map_bio
8b712842 895 */
61891923
SB
896 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
897 if (ret)
898 bio_endio(bio, ret);
899 return ret;
0b86a832
CM
900}
901
de0022b9
JB
902static int check_async_write(struct inode *inode, unsigned long bio_flags)
903{
904 if (bio_flags & EXTENT_BIO_TREE_LOG)
905 return 0;
906#ifdef CONFIG_X86
907 if (cpu_has_xmm4_2)
908 return 0;
909#endif
910 return 1;
911}
912
44b8bd7e 913static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
914 int mirror_num, unsigned long bio_flags,
915 u64 bio_offset)
44b8bd7e 916{
de0022b9 917 int async = check_async_write(inode, bio_flags);
cad321ad
CM
918 int ret;
919
7b6d91da 920 if (!(rw & REQ_WRITE)) {
4a69a410
CM
921 /*
922 * called for a read, do the setup so that checksum validation
923 * can happen in the async kernel threads
924 */
f3f266ab
CM
925 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
926 bio, 1);
1d4284bd 927 if (ret)
61891923
SB
928 goto out_w_error;
929 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
930 mirror_num, 0);
de0022b9
JB
931 } else if (!async) {
932 ret = btree_csum_one_bio(bio);
933 if (ret)
61891923
SB
934 goto out_w_error;
935 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
936 mirror_num, 0);
937 } else {
938 /*
939 * kthread helpers are used to submit writes so that
940 * checksumming can happen in parallel across all CPUs
941 */
942 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
943 inode, rw, bio, mirror_num, 0,
944 bio_offset,
945 __btree_submit_bio_start,
946 __btree_submit_bio_done);
44b8bd7e 947 }
d313d7a3 948
61891923
SB
949 if (ret) {
950out_w_error:
951 bio_endio(bio, ret);
952 }
953 return ret;
44b8bd7e
CM
954}
955
3dd1462e 956#ifdef CONFIG_MIGRATION
784b4e29 957static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
958 struct page *newpage, struct page *page,
959 enum migrate_mode mode)
784b4e29
CM
960{
961 /*
962 * we can't safely write a btree page from here,
963 * we haven't done the locking hook
964 */
965 if (PageDirty(page))
966 return -EAGAIN;
967 /*
968 * Buffers may be managed in a filesystem specific way.
969 * We must have no buffers or drop them.
970 */
971 if (page_has_private(page) &&
972 !try_to_release_page(page, GFP_KERNEL))
973 return -EAGAIN;
a6bc32b8 974 return migrate_page(mapping, newpage, page, mode);
784b4e29 975}
3dd1462e 976#endif
784b4e29 977
0da5468f
CM
978
979static int btree_writepages(struct address_space *mapping,
980 struct writeback_control *wbc)
981{
e2d84521
MX
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
d8d5f3e1 985 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
986
987 if (wbc->for_kupdate)
988 return 0;
989
e2d84521 990 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 991 /* this is a bit racy, but that's ok */
e2d84521
MX
992 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
993 BTRFS_DIRTY_METADATA_THRESH);
994 if (ret < 0)
793955bc 995 return 0;
793955bc 996 }
0b32f4bb 997 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
998}
999
b2950863 1000static int btree_readpage(struct file *file, struct page *page)
5f39d397 1001{
d1310b2e
CM
1002 struct extent_io_tree *tree;
1003 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1004 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1005}
22b0ebda 1006
70dec807 1007static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1008{
98509cfc 1009 if (PageWriteback(page) || PageDirty(page))
d397712b 1010 return 0;
0c4e538b 1011
f7a52a40 1012 return try_release_extent_buffer(page);
d98237b3
CM
1013}
1014
d47992f8
LC
1015static void btree_invalidatepage(struct page *page, unsigned int offset,
1016 unsigned int length)
d98237b3 1017{
d1310b2e
CM
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1022 if (PagePrivate(page)) {
efe120a0
FH
1023 btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1024 "page private not zero on page %llu",
1025 (unsigned long long)page_offset(page));
9ad6b7bc
CM
1026 ClearPagePrivate(page);
1027 set_page_private(page, 0);
1028 page_cache_release(page);
1029 }
d98237b3
CM
1030}
1031
0b32f4bb
JB
1032static int btree_set_page_dirty(struct page *page)
1033{
bb146eb2 1034#ifdef DEBUG
0b32f4bb
JB
1035 struct extent_buffer *eb;
1036
1037 BUG_ON(!PagePrivate(page));
1038 eb = (struct extent_buffer *)page->private;
1039 BUG_ON(!eb);
1040 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1041 BUG_ON(!atomic_read(&eb->refs));
1042 btrfs_assert_tree_locked(eb);
bb146eb2 1043#endif
0b32f4bb
JB
1044 return __set_page_dirty_nobuffers(page);
1045}
1046
7f09410b 1047static const struct address_space_operations btree_aops = {
d98237b3 1048 .readpage = btree_readpage,
0da5468f 1049 .writepages = btree_writepages,
5f39d397
CM
1050 .releasepage = btree_releasepage,
1051 .invalidatepage = btree_invalidatepage,
5a92bc88 1052#ifdef CONFIG_MIGRATION
784b4e29 1053 .migratepage = btree_migratepage,
5a92bc88 1054#endif
0b32f4bb 1055 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1056};
1057
ca7a79ad
CM
1058int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1059 u64 parent_transid)
090d1875 1060{
5f39d397
CM
1061 struct extent_buffer *buf = NULL;
1062 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1063 int ret = 0;
090d1875 1064
db94535d 1065 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1066 if (!buf)
090d1875 1067 return 0;
d1310b2e 1068 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1069 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1070 free_extent_buffer(buf);
de428b63 1071 return ret;
090d1875
CM
1072}
1073
ab0fff03
AJ
1074int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1075 int mirror_num, struct extent_buffer **eb)
1076{
1077 struct extent_buffer *buf = NULL;
1078 struct inode *btree_inode = root->fs_info->btree_inode;
1079 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1080 int ret;
1081
1082 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1083 if (!buf)
1084 return 0;
1085
1086 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1087
1088 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1089 btree_get_extent, mirror_num);
1090 if (ret) {
1091 free_extent_buffer(buf);
1092 return ret;
1093 }
1094
1095 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1096 free_extent_buffer(buf);
1097 return -EIO;
0b32f4bb 1098 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1099 *eb = buf;
1100 } else {
1101 free_extent_buffer(buf);
1102 }
1103 return 0;
1104}
1105
0999df54
CM
1106struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1107 u64 bytenr, u32 blocksize)
1108{
f28491e0 1109 return find_extent_buffer(root->fs_info, bytenr);
0999df54
CM
1110}
1111
1112struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1113 u64 bytenr, u32 blocksize)
1114{
f28491e0 1115 return alloc_extent_buffer(root->fs_info, bytenr, blocksize);
0999df54
CM
1116}
1117
1118
e02119d5
CM
1119int btrfs_write_tree_block(struct extent_buffer *buf)
1120{
727011e0 1121 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1122 buf->start + buf->len - 1);
e02119d5
CM
1123}
1124
1125int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1126{
727011e0 1127 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1128 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1129}
1130
0999df54 1131struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1132 u32 blocksize, u64 parent_transid)
0999df54
CM
1133{
1134 struct extent_buffer *buf = NULL;
0999df54
CM
1135 int ret;
1136
0999df54
CM
1137 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1138 if (!buf)
1139 return NULL;
0999df54 1140
ca7a79ad 1141 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
0f0fe8f7
FDBM
1142 if (ret) {
1143 free_extent_buffer(buf);
1144 return NULL;
1145 }
5f39d397 1146 return buf;
ce9adaa5 1147
eb60ceac
CM
1148}
1149
d5c13f92
JM
1150void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1151 struct extent_buffer *buf)
ed2ff2cb 1152{
e2d84521
MX
1153 struct btrfs_fs_info *fs_info = root->fs_info;
1154
55c69072 1155 if (btrfs_header_generation(buf) ==
e2d84521 1156 fs_info->running_transaction->transid) {
b9447ef8 1157 btrfs_assert_tree_locked(buf);
b4ce94de 1158
b9473439 1159 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1160 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1161 -buf->len,
1162 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1163 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1164 btrfs_set_lock_blocking(buf);
1165 clear_extent_buffer_dirty(buf);
1166 }
925baedd 1167 }
5f39d397
CM
1168}
1169
8257b2dc
MX
1170static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1171{
1172 struct btrfs_subvolume_writers *writers;
1173 int ret;
1174
1175 writers = kmalloc(sizeof(*writers), GFP_NOFS);
1176 if (!writers)
1177 return ERR_PTR(-ENOMEM);
1178
1179 ret = percpu_counter_init(&writers->counter, 0);
1180 if (ret < 0) {
1181 kfree(writers);
1182 return ERR_PTR(ret);
1183 }
1184
1185 init_waitqueue_head(&writers->wait);
1186 return writers;
1187}
1188
1189static void
1190btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1191{
1192 percpu_counter_destroy(&writers->counter);
1193 kfree(writers);
1194}
1195
143bede5
JM
1196static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1197 u32 stripesize, struct btrfs_root *root,
1198 struct btrfs_fs_info *fs_info,
1199 u64 objectid)
d97e63b6 1200{
cfaa7295 1201 root->node = NULL;
a28ec197 1202 root->commit_root = NULL;
db94535d
CM
1203 root->sectorsize = sectorsize;
1204 root->nodesize = nodesize;
1205 root->leafsize = leafsize;
87ee04eb 1206 root->stripesize = stripesize;
123abc88 1207 root->ref_cows = 0;
0b86a832 1208 root->track_dirty = 0;
c71bf099 1209 root->in_radix = 0;
d68fc57b
YZ
1210 root->orphan_item_inserted = 0;
1211 root->orphan_cleanup_state = 0;
0b86a832 1212
0f7d52f4
CM
1213 root->objectid = objectid;
1214 root->last_trans = 0;
13a8a7c8 1215 root->highest_objectid = 0;
eb73c1b7 1216 root->nr_delalloc_inodes = 0;
199c2a9c 1217 root->nr_ordered_extents = 0;
58176a96 1218 root->name = NULL;
6bef4d31 1219 root->inode_tree = RB_ROOT;
16cdcec7 1220 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1221 root->block_rsv = NULL;
d68fc57b 1222 root->orphan_block_rsv = NULL;
0b86a832
CM
1223
1224 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1225 INIT_LIST_HEAD(&root->root_list);
eb73c1b7
MX
1226 INIT_LIST_HEAD(&root->delalloc_inodes);
1227 INIT_LIST_HEAD(&root->delalloc_root);
199c2a9c
MX
1228 INIT_LIST_HEAD(&root->ordered_extents);
1229 INIT_LIST_HEAD(&root->ordered_root);
2ab28f32
JB
1230 INIT_LIST_HEAD(&root->logged_list[0]);
1231 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1232 spin_lock_init(&root->orphan_lock);
5d4f98a2 1233 spin_lock_init(&root->inode_lock);
eb73c1b7 1234 spin_lock_init(&root->delalloc_lock);
199c2a9c 1235 spin_lock_init(&root->ordered_extent_lock);
f0486c68 1236 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1237 spin_lock_init(&root->log_extents_lock[0]);
1238 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1239 mutex_init(&root->objectid_mutex);
e02119d5 1240 mutex_init(&root->log_mutex);
31f3d255 1241 mutex_init(&root->ordered_extent_mutex);
573bfb72 1242 mutex_init(&root->delalloc_mutex);
7237f183
YZ
1243 init_waitqueue_head(&root->log_writer_wait);
1244 init_waitqueue_head(&root->log_commit_wait[0]);
1245 init_waitqueue_head(&root->log_commit_wait[1]);
8b050d35
MX
1246 INIT_LIST_HEAD(&root->log_ctxs[0]);
1247 INIT_LIST_HEAD(&root->log_ctxs[1]);
7237f183
YZ
1248 atomic_set(&root->log_commit[0], 0);
1249 atomic_set(&root->log_commit[1], 0);
1250 atomic_set(&root->log_writers, 0);
2ecb7923 1251 atomic_set(&root->log_batch, 0);
8a35d95f 1252 atomic_set(&root->orphan_inodes, 0);
b0feb9d9 1253 atomic_set(&root->refs, 1);
8257b2dc 1254 atomic_set(&root->will_be_snapshoted, 0);
7237f183 1255 root->log_transid = 0;
d1433deb 1256 root->log_transid_committed = -1;
257c62e1 1257 root->last_log_commit = 0;
06ea65a3
JB
1258 if (fs_info)
1259 extent_io_tree_init(&root->dirty_log_pages,
1260 fs_info->btree_inode->i_mapping);
017e5369 1261
3768f368
CM
1262 memset(&root->root_key, 0, sizeof(root->root_key));
1263 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1264 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1265 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
06ea65a3
JB
1266 if (fs_info)
1267 root->defrag_trans_start = fs_info->generation;
1268 else
1269 root->defrag_trans_start = 0;
58176a96 1270 init_completion(&root->kobj_unregister);
6702ed49 1271 root->defrag_running = 0;
4d775673 1272 root->root_key.objectid = objectid;
0ee5dc67 1273 root->anon_dev = 0;
8ea05e3a 1274
5f3ab90a 1275 spin_lock_init(&root->root_item_lock);
3768f368
CM
1276}
1277
f84a8bd6 1278static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1279{
1280 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1281 if (root)
1282 root->fs_info = fs_info;
1283 return root;
1284}
1285
06ea65a3
JB
1286#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1287/* Should only be used by the testing infrastructure */
1288struct btrfs_root *btrfs_alloc_dummy_root(void)
1289{
1290 struct btrfs_root *root;
1291
1292 root = btrfs_alloc_root(NULL);
1293 if (!root)
1294 return ERR_PTR(-ENOMEM);
1295 __setup_root(4096, 4096, 4096, 4096, root, NULL, 1);
1296 root->dummy_root = 1;
1297
1298 return root;
1299}
1300#endif
1301
20897f5c
AJ
1302struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1303 struct btrfs_fs_info *fs_info,
1304 u64 objectid)
1305{
1306 struct extent_buffer *leaf;
1307 struct btrfs_root *tree_root = fs_info->tree_root;
1308 struct btrfs_root *root;
1309 struct btrfs_key key;
1310 int ret = 0;
6463fe58 1311 uuid_le uuid;
20897f5c
AJ
1312
1313 root = btrfs_alloc_root(fs_info);
1314 if (!root)
1315 return ERR_PTR(-ENOMEM);
1316
1317 __setup_root(tree_root->nodesize, tree_root->leafsize,
1318 tree_root->sectorsize, tree_root->stripesize,
1319 root, fs_info, objectid);
1320 root->root_key.objectid = objectid;
1321 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1322 root->root_key.offset = 0;
1323
1324 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1325 0, objectid, NULL, 0, 0, 0);
1326 if (IS_ERR(leaf)) {
1327 ret = PTR_ERR(leaf);
1dd05682 1328 leaf = NULL;
20897f5c
AJ
1329 goto fail;
1330 }
1331
20897f5c
AJ
1332 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1333 btrfs_set_header_bytenr(leaf, leaf->start);
1334 btrfs_set_header_generation(leaf, trans->transid);
1335 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1336 btrfs_set_header_owner(leaf, objectid);
1337 root->node = leaf;
1338
0a4e5586 1339 write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
20897f5c
AJ
1340 BTRFS_FSID_SIZE);
1341 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
b308bc2f 1342 btrfs_header_chunk_tree_uuid(leaf),
20897f5c
AJ
1343 BTRFS_UUID_SIZE);
1344 btrfs_mark_buffer_dirty(leaf);
1345
1346 root->commit_root = btrfs_root_node(root);
1347 root->track_dirty = 1;
1348
1349
1350 root->root_item.flags = 0;
1351 root->root_item.byte_limit = 0;
1352 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1353 btrfs_set_root_generation(&root->root_item, trans->transid);
1354 btrfs_set_root_level(&root->root_item, 0);
1355 btrfs_set_root_refs(&root->root_item, 1);
1356 btrfs_set_root_used(&root->root_item, leaf->len);
1357 btrfs_set_root_last_snapshot(&root->root_item, 0);
1358 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1359 uuid_le_gen(&uuid);
1360 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1361 root->root_item.drop_level = 0;
1362
1363 key.objectid = objectid;
1364 key.type = BTRFS_ROOT_ITEM_KEY;
1365 key.offset = 0;
1366 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1367 if (ret)
1368 goto fail;
1369
1370 btrfs_tree_unlock(leaf);
1371
1dd05682
TI
1372 return root;
1373
20897f5c 1374fail:
1dd05682
TI
1375 if (leaf) {
1376 btrfs_tree_unlock(leaf);
1377 free_extent_buffer(leaf);
1378 }
1379 kfree(root);
20897f5c 1380
1dd05682 1381 return ERR_PTR(ret);
20897f5c
AJ
1382}
1383
7237f183
YZ
1384static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1385 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1386{
1387 struct btrfs_root *root;
1388 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1389 struct extent_buffer *leaf;
e02119d5 1390
6f07e42e 1391 root = btrfs_alloc_root(fs_info);
e02119d5 1392 if (!root)
7237f183 1393 return ERR_PTR(-ENOMEM);
e02119d5
CM
1394
1395 __setup_root(tree_root->nodesize, tree_root->leafsize,
1396 tree_root->sectorsize, tree_root->stripesize,
1397 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1398
1399 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1400 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1401 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1402 /*
1403 * log trees do not get reference counted because they go away
1404 * before a real commit is actually done. They do store pointers
1405 * to file data extents, and those reference counts still get
1406 * updated (along with back refs to the log tree).
1407 */
e02119d5
CM
1408 root->ref_cows = 0;
1409
5d4f98a2 1410 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1411 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1412 0, 0, 0);
7237f183
YZ
1413 if (IS_ERR(leaf)) {
1414 kfree(root);
1415 return ERR_CAST(leaf);
1416 }
e02119d5 1417
5d4f98a2
YZ
1418 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1419 btrfs_set_header_bytenr(leaf, leaf->start);
1420 btrfs_set_header_generation(leaf, trans->transid);
1421 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1422 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1423 root->node = leaf;
e02119d5
CM
1424
1425 write_extent_buffer(root->node, root->fs_info->fsid,
0a4e5586 1426 btrfs_header_fsid(), BTRFS_FSID_SIZE);
e02119d5
CM
1427 btrfs_mark_buffer_dirty(root->node);
1428 btrfs_tree_unlock(root->node);
7237f183
YZ
1429 return root;
1430}
1431
1432int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1433 struct btrfs_fs_info *fs_info)
1434{
1435 struct btrfs_root *log_root;
1436
1437 log_root = alloc_log_tree(trans, fs_info);
1438 if (IS_ERR(log_root))
1439 return PTR_ERR(log_root);
1440 WARN_ON(fs_info->log_root_tree);
1441 fs_info->log_root_tree = log_root;
1442 return 0;
1443}
1444
1445int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1446 struct btrfs_root *root)
1447{
1448 struct btrfs_root *log_root;
1449 struct btrfs_inode_item *inode_item;
1450
1451 log_root = alloc_log_tree(trans, root->fs_info);
1452 if (IS_ERR(log_root))
1453 return PTR_ERR(log_root);
1454
1455 log_root->last_trans = trans->transid;
1456 log_root->root_key.offset = root->root_key.objectid;
1457
1458 inode_item = &log_root->root_item.inode;
3cae210f
QW
1459 btrfs_set_stack_inode_generation(inode_item, 1);
1460 btrfs_set_stack_inode_size(inode_item, 3);
1461 btrfs_set_stack_inode_nlink(inode_item, 1);
1462 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
1463 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
7237f183 1464
5d4f98a2 1465 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1466
1467 WARN_ON(root->log_root);
1468 root->log_root = log_root;
1469 root->log_transid = 0;
d1433deb 1470 root->log_transid_committed = -1;
257c62e1 1471 root->last_log_commit = 0;
e02119d5
CM
1472 return 0;
1473}
1474
35a3621b
SB
1475static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1476 struct btrfs_key *key)
e02119d5
CM
1477{
1478 struct btrfs_root *root;
1479 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1480 struct btrfs_path *path;
84234f3a 1481 u64 generation;
db94535d 1482 u32 blocksize;
cb517eab 1483 int ret;
0f7d52f4 1484
cb517eab
MX
1485 path = btrfs_alloc_path();
1486 if (!path)
0f7d52f4 1487 return ERR_PTR(-ENOMEM);
cb517eab
MX
1488
1489 root = btrfs_alloc_root(fs_info);
1490 if (!root) {
1491 ret = -ENOMEM;
1492 goto alloc_fail;
0f7d52f4
CM
1493 }
1494
db94535d 1495 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb 1496 tree_root->sectorsize, tree_root->stripesize,
cb517eab 1497 root, fs_info, key->objectid);
0f7d52f4 1498
cb517eab
MX
1499 ret = btrfs_find_root(tree_root, key, path,
1500 &root->root_item, &root->root_key);
0f7d52f4 1501 if (ret) {
13a8a7c8
YZ
1502 if (ret > 0)
1503 ret = -ENOENT;
cb517eab 1504 goto find_fail;
0f7d52f4 1505 }
13a8a7c8 1506
84234f3a 1507 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1508 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1509 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1510 blocksize, generation);
cb517eab
MX
1511 if (!root->node) {
1512 ret = -ENOMEM;
1513 goto find_fail;
1514 } else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1515 ret = -EIO;
1516 goto read_fail;
416bc658 1517 }
5d4f98a2 1518 root->commit_root = btrfs_root_node(root);
13a8a7c8 1519out:
cb517eab
MX
1520 btrfs_free_path(path);
1521 return root;
1522
1523read_fail:
1524 free_extent_buffer(root->node);
1525find_fail:
1526 kfree(root);
1527alloc_fail:
1528 root = ERR_PTR(ret);
1529 goto out;
1530}
1531
1532struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1533 struct btrfs_key *location)
1534{
1535 struct btrfs_root *root;
1536
1537 root = btrfs_read_tree_root(tree_root, location);
1538 if (IS_ERR(root))
1539 return root;
1540
1541 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1542 root->ref_cows = 1;
08fe4db1
LZ
1543 btrfs_check_and_init_root_item(&root->root_item);
1544 }
13a8a7c8 1545
5eda7b5e
CM
1546 return root;
1547}
1548
cb517eab
MX
1549int btrfs_init_fs_root(struct btrfs_root *root)
1550{
1551 int ret;
8257b2dc 1552 struct btrfs_subvolume_writers *writers;
cb517eab
MX
1553
1554 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1555 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1556 GFP_NOFS);
1557 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1558 ret = -ENOMEM;
1559 goto fail;
1560 }
1561
8257b2dc
MX
1562 writers = btrfs_alloc_subvolume_writers();
1563 if (IS_ERR(writers)) {
1564 ret = PTR_ERR(writers);
1565 goto fail;
1566 }
1567 root->subv_writers = writers;
1568
cb517eab 1569 btrfs_init_free_ino_ctl(root);
cb517eab
MX
1570 spin_lock_init(&root->cache_lock);
1571 init_waitqueue_head(&root->cache_wait);
1572
1573 ret = get_anon_bdev(&root->anon_dev);
1574 if (ret)
8257b2dc 1575 goto free_writers;
cb517eab 1576 return 0;
8257b2dc
MX
1577
1578free_writers:
1579 btrfs_free_subvolume_writers(root->subv_writers);
cb517eab
MX
1580fail:
1581 kfree(root->free_ino_ctl);
1582 kfree(root->free_ino_pinned);
1583 return ret;
1584}
1585
171170c1
ST
1586static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1587 u64 root_id)
cb517eab
MX
1588{
1589 struct btrfs_root *root;
1590
1591 spin_lock(&fs_info->fs_roots_radix_lock);
1592 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1593 (unsigned long)root_id);
1594 spin_unlock(&fs_info->fs_roots_radix_lock);
1595 return root;
1596}
1597
1598int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1599 struct btrfs_root *root)
1600{
1601 int ret;
1602
1603 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1604 if (ret)
1605 return ret;
1606
1607 spin_lock(&fs_info->fs_roots_radix_lock);
1608 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1609 (unsigned long)root->root_key.objectid,
1610 root);
1611 if (ret == 0)
1612 root->in_radix = 1;
1613 spin_unlock(&fs_info->fs_roots_radix_lock);
1614 radix_tree_preload_end();
1615
1616 return ret;
1617}
1618
c00869f1
MX
1619struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1620 struct btrfs_key *location,
1621 bool check_ref)
5eda7b5e
CM
1622{
1623 struct btrfs_root *root;
1624 int ret;
1625
edbd8d4e
CM
1626 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1627 return fs_info->tree_root;
1628 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1629 return fs_info->extent_root;
8f18cf13
CM
1630 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1631 return fs_info->chunk_root;
1632 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1633 return fs_info->dev_root;
0403e47e
YZ
1634 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1635 return fs_info->csum_root;
bcef60f2
AJ
1636 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1637 return fs_info->quota_root ? fs_info->quota_root :
1638 ERR_PTR(-ENOENT);
f7a81ea4
SB
1639 if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1640 return fs_info->uuid_root ? fs_info->uuid_root :
1641 ERR_PTR(-ENOENT);
4df27c4d 1642again:
cb517eab 1643 root = btrfs_lookup_fs_root(fs_info, location->objectid);
48475471 1644 if (root) {
c00869f1 1645 if (check_ref && btrfs_root_refs(&root->root_item) == 0)
48475471 1646 return ERR_PTR(-ENOENT);
5eda7b5e 1647 return root;
48475471 1648 }
5eda7b5e 1649
cb517eab 1650 root = btrfs_read_fs_root(fs_info->tree_root, location);
5eda7b5e
CM
1651 if (IS_ERR(root))
1652 return root;
3394e160 1653
c00869f1 1654 if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
cb517eab 1655 ret = -ENOENT;
581bb050 1656 goto fail;
35a30d7c 1657 }
581bb050 1658
cb517eab 1659 ret = btrfs_init_fs_root(root);
ac08aedf
CM
1660 if (ret)
1661 goto fail;
3394e160 1662
3f870c28
KN
1663 ret = btrfs_find_item(fs_info->tree_root, NULL, BTRFS_ORPHAN_OBJECTID,
1664 location->objectid, BTRFS_ORPHAN_ITEM_KEY, NULL);
d68fc57b
YZ
1665 if (ret < 0)
1666 goto fail;
1667 if (ret == 0)
1668 root->orphan_item_inserted = 1;
1669
cb517eab 1670 ret = btrfs_insert_fs_root(fs_info, root);
0f7d52f4 1671 if (ret) {
4df27c4d
YZ
1672 if (ret == -EEXIST) {
1673 free_fs_root(root);
1674 goto again;
1675 }
1676 goto fail;
0f7d52f4 1677 }
edbd8d4e 1678 return root;
4df27c4d
YZ
1679fail:
1680 free_fs_root(root);
1681 return ERR_PTR(ret);
edbd8d4e
CM
1682}
1683
04160088
CM
1684static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1685{
1686 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1687 int ret = 0;
04160088
CM
1688 struct btrfs_device *device;
1689 struct backing_dev_info *bdi;
b7967db7 1690
1f78160c
XG
1691 rcu_read_lock();
1692 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1693 if (!device->bdev)
1694 continue;
04160088
CM
1695 bdi = blk_get_backing_dev_info(device->bdev);
1696 if (bdi && bdi_congested(bdi, bdi_bits)) {
1697 ret = 1;
1698 break;
1699 }
1700 }
1f78160c 1701 rcu_read_unlock();
04160088
CM
1702 return ret;
1703}
1704
ad081f14
JA
1705/*
1706 * If this fails, caller must call bdi_destroy() to get rid of the
1707 * bdi again.
1708 */
04160088
CM
1709static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1710{
ad081f14
JA
1711 int err;
1712
1713 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1714 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1715 if (err)
1716 return err;
1717
4575c9cc 1718 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1719 bdi->congested_fn = btrfs_congested_fn;
1720 bdi->congested_data = info;
1721 return 0;
1722}
1723
8b712842
CM
1724/*
1725 * called by the kthread helper functions to finally call the bio end_io
1726 * functions. This is where read checksum verification actually happens
1727 */
d458b054 1728static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1729{
ce9adaa5 1730 struct bio *bio;
8b712842 1731 struct end_io_wq *end_io_wq;
ce9adaa5 1732 int error;
ce9adaa5 1733
8b712842
CM
1734 end_io_wq = container_of(work, struct end_io_wq, work);
1735 bio = end_io_wq->bio;
ce9adaa5 1736
8b712842
CM
1737 error = end_io_wq->error;
1738 bio->bi_private = end_io_wq->private;
1739 bio->bi_end_io = end_io_wq->end_io;
1740 kfree(end_io_wq);
8b712842 1741 bio_endio(bio, error);
44b8bd7e
CM
1742}
1743
a74a4b97
CM
1744static int cleaner_kthread(void *arg)
1745{
1746 struct btrfs_root *root = arg;
d0278245 1747 int again;
a74a4b97
CM
1748
1749 do {
d0278245 1750 again = 0;
a74a4b97 1751
d0278245 1752 /* Make the cleaner go to sleep early. */
babbf170 1753 if (btrfs_need_cleaner_sleep(root))
d0278245
MX
1754 goto sleep;
1755
1756 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1757 goto sleep;
1758
dc7f370c
MX
1759 /*
1760 * Avoid the problem that we change the status of the fs
1761 * during the above check and trylock.
1762 */
babbf170 1763 if (btrfs_need_cleaner_sleep(root)) {
dc7f370c
MX
1764 mutex_unlock(&root->fs_info->cleaner_mutex);
1765 goto sleep;
76dda93c 1766 }
a74a4b97 1767
d0278245
MX
1768 btrfs_run_delayed_iputs(root);
1769 again = btrfs_clean_one_deleted_snapshot(root);
1770 mutex_unlock(&root->fs_info->cleaner_mutex);
1771
1772 /*
05323cd1
MX
1773 * The defragger has dealt with the R/O remount and umount,
1774 * needn't do anything special here.
d0278245
MX
1775 */
1776 btrfs_run_defrag_inodes(root->fs_info);
1777sleep:
9d1a2a3a 1778 if (!try_to_freeze() && !again) {
a74a4b97 1779 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1780 if (!kthread_should_stop())
1781 schedule();
a74a4b97
CM
1782 __set_current_state(TASK_RUNNING);
1783 }
1784 } while (!kthread_should_stop());
1785 return 0;
1786}
1787
1788static int transaction_kthread(void *arg)
1789{
1790 struct btrfs_root *root = arg;
1791 struct btrfs_trans_handle *trans;
1792 struct btrfs_transaction *cur;
8929ecfa 1793 u64 transid;
a74a4b97
CM
1794 unsigned long now;
1795 unsigned long delay;
914b2007 1796 bool cannot_commit;
a74a4b97
CM
1797
1798 do {
914b2007 1799 cannot_commit = false;
8b87dc17 1800 delay = HZ * root->fs_info->commit_interval;
a74a4b97
CM
1801 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1802
a4abeea4 1803 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1804 cur = root->fs_info->running_transaction;
1805 if (!cur) {
a4abeea4 1806 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1807 goto sleep;
1808 }
31153d81 1809
a74a4b97 1810 now = get_seconds();
4a9d8bde 1811 if (cur->state < TRANS_STATE_BLOCKED &&
8b87dc17
DS
1812 (now < cur->start_time ||
1813 now - cur->start_time < root->fs_info->commit_interval)) {
a4abeea4 1814 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1815 delay = HZ * 5;
1816 goto sleep;
1817 }
8929ecfa 1818 transid = cur->transid;
a4abeea4 1819 spin_unlock(&root->fs_info->trans_lock);
56bec294 1820
79787eaa 1821 /* If the file system is aborted, this will always fail. */
354aa0fb 1822 trans = btrfs_attach_transaction(root);
914b2007 1823 if (IS_ERR(trans)) {
354aa0fb
MX
1824 if (PTR_ERR(trans) != -ENOENT)
1825 cannot_commit = true;
79787eaa 1826 goto sleep;
914b2007 1827 }
8929ecfa 1828 if (transid == trans->transid) {
79787eaa 1829 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1830 } else {
1831 btrfs_end_transaction(trans, root);
1832 }
a74a4b97
CM
1833sleep:
1834 wake_up_process(root->fs_info->cleaner_kthread);
1835 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1836
4e121c06
JB
1837 if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1838 &root->fs_info->fs_state)))
1839 btrfs_cleanup_transaction(root);
a0acae0e 1840 if (!try_to_freeze()) {
a74a4b97 1841 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1842 if (!kthread_should_stop() &&
914b2007
JK
1843 (!btrfs_transaction_blocked(root->fs_info) ||
1844 cannot_commit))
8929ecfa 1845 schedule_timeout(delay);
a74a4b97
CM
1846 __set_current_state(TASK_RUNNING);
1847 }
1848 } while (!kthread_should_stop());
1849 return 0;
1850}
1851
af31f5e5
CM
1852/*
1853 * this will find the highest generation in the array of
1854 * root backups. The index of the highest array is returned,
1855 * or -1 if we can't find anything.
1856 *
1857 * We check to make sure the array is valid by comparing the
1858 * generation of the latest root in the array with the generation
1859 * in the super block. If they don't match we pitch it.
1860 */
1861static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1862{
1863 u64 cur;
1864 int newest_index = -1;
1865 struct btrfs_root_backup *root_backup;
1866 int i;
1867
1868 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1869 root_backup = info->super_copy->super_roots + i;
1870 cur = btrfs_backup_tree_root_gen(root_backup);
1871 if (cur == newest_gen)
1872 newest_index = i;
1873 }
1874
1875 /* check to see if we actually wrapped around */
1876 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1877 root_backup = info->super_copy->super_roots;
1878 cur = btrfs_backup_tree_root_gen(root_backup);
1879 if (cur == newest_gen)
1880 newest_index = 0;
1881 }
1882 return newest_index;
1883}
1884
1885
1886/*
1887 * find the oldest backup so we know where to store new entries
1888 * in the backup array. This will set the backup_root_index
1889 * field in the fs_info struct
1890 */
1891static void find_oldest_super_backup(struct btrfs_fs_info *info,
1892 u64 newest_gen)
1893{
1894 int newest_index = -1;
1895
1896 newest_index = find_newest_super_backup(info, newest_gen);
1897 /* if there was garbage in there, just move along */
1898 if (newest_index == -1) {
1899 info->backup_root_index = 0;
1900 } else {
1901 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1902 }
1903}
1904
1905/*
1906 * copy all the root pointers into the super backup array.
1907 * this will bump the backup pointer by one when it is
1908 * done
1909 */
1910static void backup_super_roots(struct btrfs_fs_info *info)
1911{
1912 int next_backup;
1913 struct btrfs_root_backup *root_backup;
1914 int last_backup;
1915
1916 next_backup = info->backup_root_index;
1917 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1918 BTRFS_NUM_BACKUP_ROOTS;
1919
1920 /*
1921 * just overwrite the last backup if we're at the same generation
1922 * this happens only at umount
1923 */
1924 root_backup = info->super_for_commit->super_roots + last_backup;
1925 if (btrfs_backup_tree_root_gen(root_backup) ==
1926 btrfs_header_generation(info->tree_root->node))
1927 next_backup = last_backup;
1928
1929 root_backup = info->super_for_commit->super_roots + next_backup;
1930
1931 /*
1932 * make sure all of our padding and empty slots get zero filled
1933 * regardless of which ones we use today
1934 */
1935 memset(root_backup, 0, sizeof(*root_backup));
1936
1937 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1938
1939 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1940 btrfs_set_backup_tree_root_gen(root_backup,
1941 btrfs_header_generation(info->tree_root->node));
1942
1943 btrfs_set_backup_tree_root_level(root_backup,
1944 btrfs_header_level(info->tree_root->node));
1945
1946 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1947 btrfs_set_backup_chunk_root_gen(root_backup,
1948 btrfs_header_generation(info->chunk_root->node));
1949 btrfs_set_backup_chunk_root_level(root_backup,
1950 btrfs_header_level(info->chunk_root->node));
1951
1952 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1953 btrfs_set_backup_extent_root_gen(root_backup,
1954 btrfs_header_generation(info->extent_root->node));
1955 btrfs_set_backup_extent_root_level(root_backup,
1956 btrfs_header_level(info->extent_root->node));
1957
7c7e82a7
CM
1958 /*
1959 * we might commit during log recovery, which happens before we set
1960 * the fs_root. Make sure it is valid before we fill it in.
1961 */
1962 if (info->fs_root && info->fs_root->node) {
1963 btrfs_set_backup_fs_root(root_backup,
1964 info->fs_root->node->start);
1965 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1966 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1967 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1968 btrfs_header_level(info->fs_root->node));
7c7e82a7 1969 }
af31f5e5
CM
1970
1971 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1972 btrfs_set_backup_dev_root_gen(root_backup,
1973 btrfs_header_generation(info->dev_root->node));
1974 btrfs_set_backup_dev_root_level(root_backup,
1975 btrfs_header_level(info->dev_root->node));
1976
1977 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1978 btrfs_set_backup_csum_root_gen(root_backup,
1979 btrfs_header_generation(info->csum_root->node));
1980 btrfs_set_backup_csum_root_level(root_backup,
1981 btrfs_header_level(info->csum_root->node));
1982
1983 btrfs_set_backup_total_bytes(root_backup,
1984 btrfs_super_total_bytes(info->super_copy));
1985 btrfs_set_backup_bytes_used(root_backup,
1986 btrfs_super_bytes_used(info->super_copy));
1987 btrfs_set_backup_num_devices(root_backup,
1988 btrfs_super_num_devices(info->super_copy));
1989
1990 /*
1991 * if we don't copy this out to the super_copy, it won't get remembered
1992 * for the next commit
1993 */
1994 memcpy(&info->super_copy->super_roots,
1995 &info->super_for_commit->super_roots,
1996 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1997}
1998
1999/*
2000 * this copies info out of the root backup array and back into
2001 * the in-memory super block. It is meant to help iterate through
2002 * the array, so you send it the number of backups you've already
2003 * tried and the last backup index you used.
2004 *
2005 * this returns -1 when it has tried all the backups
2006 */
2007static noinline int next_root_backup(struct btrfs_fs_info *info,
2008 struct btrfs_super_block *super,
2009 int *num_backups_tried, int *backup_index)
2010{
2011 struct btrfs_root_backup *root_backup;
2012 int newest = *backup_index;
2013
2014 if (*num_backups_tried == 0) {
2015 u64 gen = btrfs_super_generation(super);
2016
2017 newest = find_newest_super_backup(info, gen);
2018 if (newest == -1)
2019 return -1;
2020
2021 *backup_index = newest;
2022 *num_backups_tried = 1;
2023 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2024 /* we've tried all the backups, all done */
2025 return -1;
2026 } else {
2027 /* jump to the next oldest backup */
2028 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2029 BTRFS_NUM_BACKUP_ROOTS;
2030 *backup_index = newest;
2031 *num_backups_tried += 1;
2032 }
2033 root_backup = super->super_roots + newest;
2034
2035 btrfs_set_super_generation(super,
2036 btrfs_backup_tree_root_gen(root_backup));
2037 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2038 btrfs_set_super_root_level(super,
2039 btrfs_backup_tree_root_level(root_backup));
2040 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2041
2042 /*
2043 * fixme: the total bytes and num_devices need to match or we should
2044 * need a fsck
2045 */
2046 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2047 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2048 return 0;
2049}
2050
7abadb64
LB
2051/* helper to cleanup workers */
2052static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2053{
dc6e3209 2054 btrfs_destroy_workqueue(fs_info->fixup_workers);
afe3d242 2055 btrfs_destroy_workqueue(fs_info->delalloc_workers);
5cdc7ad3 2056 btrfs_destroy_workqueue(fs_info->workers);
fccb5d86
QW
2057 btrfs_destroy_workqueue(fs_info->endio_workers);
2058 btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2059 btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
d05a33ac 2060 btrfs_destroy_workqueue(fs_info->rmw_workers);
fccb5d86
QW
2061 btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2062 btrfs_destroy_workqueue(fs_info->endio_write_workers);
2063 btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
a8c93d4e 2064 btrfs_destroy_workqueue(fs_info->submit_workers);
5b3bc44e 2065 btrfs_destroy_workqueue(fs_info->delayed_workers);
e66f0bb1 2066 btrfs_destroy_workqueue(fs_info->caching_workers);
736cfa15 2067 btrfs_destroy_workqueue(fs_info->readahead_workers);
a44903ab 2068 btrfs_destroy_workqueue(fs_info->flush_workers);
fc97fab0 2069 btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
7abadb64
LB
2070}
2071
2e9f5954
R
2072static void free_root_extent_buffers(struct btrfs_root *root)
2073{
2074 if (root) {
2075 free_extent_buffer(root->node);
2076 free_extent_buffer(root->commit_root);
2077 root->node = NULL;
2078 root->commit_root = NULL;
2079 }
2080}
2081
af31f5e5
CM
2082/* helper to cleanup tree roots */
2083static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2084{
2e9f5954 2085 free_root_extent_buffers(info->tree_root);
655b09fe 2086
2e9f5954
R
2087 free_root_extent_buffers(info->dev_root);
2088 free_root_extent_buffers(info->extent_root);
2089 free_root_extent_buffers(info->csum_root);
2090 free_root_extent_buffers(info->quota_root);
2091 free_root_extent_buffers(info->uuid_root);
2092 if (chunk_root)
2093 free_root_extent_buffers(info->chunk_root);
af31f5e5
CM
2094}
2095
171f6537
JB
2096static void del_fs_roots(struct btrfs_fs_info *fs_info)
2097{
2098 int ret;
2099 struct btrfs_root *gang[8];
2100 int i;
2101
2102 while (!list_empty(&fs_info->dead_roots)) {
2103 gang[0] = list_entry(fs_info->dead_roots.next,
2104 struct btrfs_root, root_list);
2105 list_del(&gang[0]->root_list);
2106
2107 if (gang[0]->in_radix) {
cb517eab 2108 btrfs_drop_and_free_fs_root(fs_info, gang[0]);
171f6537
JB
2109 } else {
2110 free_extent_buffer(gang[0]->node);
2111 free_extent_buffer(gang[0]->commit_root);
b0feb9d9 2112 btrfs_put_fs_root(gang[0]);
171f6537
JB
2113 }
2114 }
2115
2116 while (1) {
2117 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2118 (void **)gang, 0,
2119 ARRAY_SIZE(gang));
2120 if (!ret)
2121 break;
2122 for (i = 0; i < ret; i++)
cb517eab 2123 btrfs_drop_and_free_fs_root(fs_info, gang[i]);
171f6537 2124 }
1a4319cc
LB
2125
2126 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2127 btrfs_free_log_root_tree(NULL, fs_info);
2128 btrfs_destroy_pinned_extent(fs_info->tree_root,
2129 fs_info->pinned_extents);
2130 }
171f6537 2131}
af31f5e5 2132
ad2b2c80
AV
2133int open_ctree(struct super_block *sb,
2134 struct btrfs_fs_devices *fs_devices,
2135 char *options)
2e635a27 2136{
db94535d
CM
2137 u32 sectorsize;
2138 u32 nodesize;
2139 u32 leafsize;
2140 u32 blocksize;
87ee04eb 2141 u32 stripesize;
84234f3a 2142 u64 generation;
f2b636e8 2143 u64 features;
3de4586c 2144 struct btrfs_key location;
a061fc8d 2145 struct buffer_head *bh;
4d34b278 2146 struct btrfs_super_block *disk_super;
815745cf 2147 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2148 struct btrfs_root *tree_root;
4d34b278
ID
2149 struct btrfs_root *extent_root;
2150 struct btrfs_root *csum_root;
2151 struct btrfs_root *chunk_root;
2152 struct btrfs_root *dev_root;
bcef60f2 2153 struct btrfs_root *quota_root;
f7a81ea4 2154 struct btrfs_root *uuid_root;
e02119d5 2155 struct btrfs_root *log_tree_root;
eb60ceac 2156 int ret;
e58ca020 2157 int err = -EINVAL;
af31f5e5
CM
2158 int num_backups_tried = 0;
2159 int backup_index = 0;
5cdc7ad3
QW
2160 int max_active;
2161 int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
70f80175
SB
2162 bool create_uuid_tree;
2163 bool check_uuid_tree;
4543df7e 2164
f84a8bd6 2165 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e 2166 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
cb517eab 2167 if (!tree_root || !chunk_root) {
39279cc3
CM
2168 err = -ENOMEM;
2169 goto fail;
2170 }
76dda93c
YZ
2171
2172 ret = init_srcu_struct(&fs_info->subvol_srcu);
2173 if (ret) {
2174 err = ret;
2175 goto fail;
2176 }
2177
2178 ret = setup_bdi(fs_info, &fs_info->bdi);
2179 if (ret) {
2180 err = ret;
2181 goto fail_srcu;
2182 }
2183
e2d84521
MX
2184 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2185 if (ret) {
2186 err = ret;
2187 goto fail_bdi;
2188 }
2189 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2190 (1 + ilog2(nr_cpu_ids));
2191
963d678b
MX
2192 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2193 if (ret) {
2194 err = ret;
2195 goto fail_dirty_metadata_bytes;
2196 }
2197
c404e0dc
MX
2198 ret = percpu_counter_init(&fs_info->bio_counter, 0);
2199 if (ret) {
2200 err = ret;
2201 goto fail_delalloc_bytes;
2202 }
2203
76dda93c
YZ
2204 fs_info->btree_inode = new_inode(sb);
2205 if (!fs_info->btree_inode) {
2206 err = -ENOMEM;
c404e0dc 2207 goto fail_bio_counter;
76dda93c
YZ
2208 }
2209
a6591715 2210 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2211
76dda93c 2212 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
f28491e0 2213 INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
8fd17795 2214 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2215 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2216 INIT_LIST_HEAD(&fs_info->delayed_iputs);
eb73c1b7 2217 INIT_LIST_HEAD(&fs_info->delalloc_roots);
11833d66 2218 INIT_LIST_HEAD(&fs_info->caching_block_groups);
eb73c1b7 2219 spin_lock_init(&fs_info->delalloc_root_lock);
a4abeea4 2220 spin_lock_init(&fs_info->trans_lock);
76dda93c 2221 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2222 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2223 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2224 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2225 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2226 spin_lock_init(&fs_info->super_lock);
f28491e0 2227 spin_lock_init(&fs_info->buffer_lock);
f29021b2 2228 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2229 mutex_init(&fs_info->reloc_mutex);
573bfb72 2230 mutex_init(&fs_info->delalloc_root_mutex);
de98ced9 2231 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2232
58176a96 2233 init_completion(&fs_info->kobj_unregister);
0b86a832 2234 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2235 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2236 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2237 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2238 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2239 BTRFS_BLOCK_RSV_GLOBAL);
2240 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2241 BTRFS_BLOCK_RSV_DELALLOC);
2242 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2243 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2244 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2245 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2246 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2247 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2248 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2249 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2250 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2251 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2252 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2253 fs_info->sb = sb;
6f568d35 2254 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2255 fs_info->metadata_ratio = 0;
4cb5300b 2256 fs_info->defrag_inodes = RB_ROOT;
2bf64758 2257 fs_info->free_chunk_space = 0;
f29021b2 2258 fs_info->tree_mod_log = RB_ROOT;
8b87dc17 2259 fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
0a2b2a84 2260 fs_info->avg_delayed_ref_runtime = div64_u64(NSEC_PER_SEC, 64);
90519d66
AJ
2261 /* readahead state */
2262 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2263 spin_lock_init(&fs_info->reada_lock);
c8b97818 2264
b34b086c
CM
2265 fs_info->thread_pool_size = min_t(unsigned long,
2266 num_online_cpus() + 2, 8);
0afbaf8c 2267
199c2a9c
MX
2268 INIT_LIST_HEAD(&fs_info->ordered_roots);
2269 spin_lock_init(&fs_info->ordered_root_lock);
16cdcec7
MX
2270 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2271 GFP_NOFS);
2272 if (!fs_info->delayed_root) {
2273 err = -ENOMEM;
2274 goto fail_iput;
2275 }
2276 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2277
a2de733c
AJ
2278 mutex_init(&fs_info->scrub_lock);
2279 atomic_set(&fs_info->scrubs_running, 0);
2280 atomic_set(&fs_info->scrub_pause_req, 0);
2281 atomic_set(&fs_info->scrubs_paused, 0);
2282 atomic_set(&fs_info->scrub_cancel_req, 0);
c404e0dc 2283 init_waitqueue_head(&fs_info->replace_wait);
a2de733c 2284 init_waitqueue_head(&fs_info->scrub_pause_wait);
a2de733c 2285 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2286#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2287 fs_info->check_integrity_print_mask = 0;
2288#endif
a2de733c 2289
c9e9f97b
ID
2290 spin_lock_init(&fs_info->balance_lock);
2291 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2292 atomic_set(&fs_info->balance_running, 0);
2293 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2294 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2295 fs_info->balance_ctl = NULL;
837d5b6e 2296 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2297
a061fc8d
CM
2298 sb->s_blocksize = 4096;
2299 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2300 sb->s_bdi = &fs_info->bdi;
a061fc8d 2301
76dda93c 2302 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2303 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2304 /*
2305 * we set the i_size on the btree inode to the max possible int.
2306 * the real end of the address space is determined by all of
2307 * the devices in the system
2308 */
2309 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2310 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2311 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2312
5d4f98a2 2313 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2314 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2315 fs_info->btree_inode->i_mapping);
0b32f4bb 2316 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2317 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2318
2319 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2320
76dda93c
YZ
2321 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2322 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2323 sizeof(struct btrfs_key));
72ac3c0d
JB
2324 set_bit(BTRFS_INODE_DUMMY,
2325 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
778ba82b 2326 btrfs_insert_inode_hash(fs_info->btree_inode);
76dda93c 2327
0f9dd46c 2328 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2329 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2330 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2331
11833d66 2332 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2333 fs_info->btree_inode->i_mapping);
11833d66 2334 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2335 fs_info->btree_inode->i_mapping);
11833d66 2336 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2337 fs_info->do_barriers = 1;
e18e4809 2338
39279cc3 2339
5a3f23d5 2340 mutex_init(&fs_info->ordered_operations_mutex);
9ffba8cd 2341 mutex_init(&fs_info->ordered_extent_flush_mutex);
e02119d5 2342 mutex_init(&fs_info->tree_log_mutex);
925baedd 2343 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2344 mutex_init(&fs_info->transaction_kthread_mutex);
2345 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2346 mutex_init(&fs_info->volume_mutex);
9e351cc8 2347 init_rwsem(&fs_info->commit_root_sem);
c71bf099 2348 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2349 init_rwsem(&fs_info->subvol_sem);
803b2f54 2350 sema_init(&fs_info->uuid_tree_rescan_sem, 1);
e922e087
SB
2351 fs_info->dev_replace.lock_owner = 0;
2352 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2353 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2354 mutex_init(&fs_info->dev_replace.lock_management_lock);
2355 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2356
416ac51d 2357 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2358 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2359 fs_info->qgroup_tree = RB_ROOT;
2360 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2361 fs_info->qgroup_seq = 1;
2362 fs_info->quota_enabled = 0;
2363 fs_info->pending_quota_state = 0;
1e8f9158 2364 fs_info->qgroup_ulist = NULL;
2f232036 2365 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2366
fa9c0d79
CM
2367 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2368 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2369
e6dcd2dc 2370 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2371 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2372 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2373 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2374
53b381b3
DW
2375 ret = btrfs_alloc_stripe_hash_table(fs_info);
2376 if (ret) {
83c8266a 2377 err = ret;
53b381b3
DW
2378 goto fail_alloc;
2379 }
2380
0b86a832 2381 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2382 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2383
3c4bb26b 2384 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2385
2386 /*
2387 * Read super block and check the signature bytes only
2388 */
a512bbf8 2389 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2390 if (!bh) {
2391 err = -EINVAL;
16cdcec7 2392 goto fail_alloc;
20b45077 2393 }
39279cc3 2394
1104a885
DS
2395 /*
2396 * We want to check superblock checksum, the type is stored inside.
2397 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2398 */
2399 if (btrfs_check_super_csum(bh->b_data)) {
efe120a0 2400 printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
1104a885
DS
2401 err = -EINVAL;
2402 goto fail_alloc;
2403 }
2404
2405 /*
2406 * super_copy is zeroed at allocation time and we never touch the
2407 * following bytes up to INFO_SIZE, the checksum is calculated from
2408 * the whole block of INFO_SIZE
2409 */
6c41761f
DS
2410 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2411 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2412 sizeof(*fs_info->super_for_commit));
a061fc8d 2413 brelse(bh);
5f39d397 2414
6c41761f 2415 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2416
1104a885
DS
2417 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2418 if (ret) {
efe120a0 2419 printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
1104a885
DS
2420 err = -EINVAL;
2421 goto fail_alloc;
2422 }
2423
6c41761f 2424 disk_super = fs_info->super_copy;
0f7d52f4 2425 if (!btrfs_super_root(disk_super))
16cdcec7 2426 goto fail_alloc;
0f7d52f4 2427
acce952b 2428 /* check FS state, whether FS is broken. */
87533c47
MX
2429 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2430 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2431
af31f5e5
CM
2432 /*
2433 * run through our array of backup supers and setup
2434 * our ring pointer to the oldest one
2435 */
2436 generation = btrfs_super_generation(disk_super);
2437 find_oldest_super_backup(fs_info, generation);
2438
75e7cb7f
LB
2439 /*
2440 * In the long term, we'll store the compression type in the super
2441 * block, and it'll be used for per file compression control.
2442 */
2443 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2444
2b82032c
YZ
2445 ret = btrfs_parse_options(tree_root, options);
2446 if (ret) {
2447 err = ret;
16cdcec7 2448 goto fail_alloc;
2b82032c 2449 }
dfe25020 2450
f2b636e8
JB
2451 features = btrfs_super_incompat_flags(disk_super) &
2452 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2453 if (features) {
2454 printk(KERN_ERR "BTRFS: couldn't mount because of "
2455 "unsupported optional features (%Lx).\n",
c1c9ff7c 2456 features);
f2b636e8 2457 err = -EINVAL;
16cdcec7 2458 goto fail_alloc;
f2b636e8
JB
2459 }
2460
727011e0
CM
2461 if (btrfs_super_leafsize(disk_super) !=
2462 btrfs_super_nodesize(disk_super)) {
2463 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2464 "blocksizes don't match. node %d leaf %d\n",
2465 btrfs_super_nodesize(disk_super),
2466 btrfs_super_leafsize(disk_super));
2467 err = -EINVAL;
2468 goto fail_alloc;
2469 }
2470 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2471 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2472 "blocksize (%d) was too large\n",
2473 btrfs_super_leafsize(disk_super));
2474 err = -EINVAL;
2475 goto fail_alloc;
2476 }
2477
5d4f98a2 2478 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2479 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2480 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2481 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2482
3173a18f 2483 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
efe120a0 2484 printk(KERN_ERR "BTRFS: has skinny extents\n");
3173a18f 2485
727011e0
CM
2486 /*
2487 * flag our filesystem as having big metadata blocks if
2488 * they are bigger than the page size
2489 */
2490 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2491 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
efe120a0 2492 printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
727011e0
CM
2493 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2494 }
2495
bc3f116f
CM
2496 nodesize = btrfs_super_nodesize(disk_super);
2497 leafsize = btrfs_super_leafsize(disk_super);
2498 sectorsize = btrfs_super_sectorsize(disk_super);
2499 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2500 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2501 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2502
2503 /*
2504 * mixed block groups end up with duplicate but slightly offset
2505 * extent buffers for the same range. It leads to corruptions
2506 */
2507 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2508 (sectorsize != leafsize)) {
efe120a0 2509 printk(KERN_WARNING "BTRFS: unequal leaf/node/sector sizes "
bc3f116f
CM
2510 "are not allowed for mixed block groups on %s\n",
2511 sb->s_id);
2512 goto fail_alloc;
2513 }
2514
ceda0864
MX
2515 /*
2516 * Needn't use the lock because there is no other task which will
2517 * update the flag.
2518 */
a6fa6fae 2519 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2520
f2b636e8
JB
2521 features = btrfs_super_compat_ro_flags(disk_super) &
2522 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2523 if (!(sb->s_flags & MS_RDONLY) && features) {
2524 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2525 "unsupported option features (%Lx).\n",
c1c9ff7c 2526 features);
f2b636e8 2527 err = -EINVAL;
16cdcec7 2528 goto fail_alloc;
f2b636e8 2529 }
61d92c32 2530
5cdc7ad3 2531 max_active = fs_info->thread_pool_size;
61d92c32 2532
5cdc7ad3
QW
2533 fs_info->workers =
2534 btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2535 max_active, 16);
c8b97818 2536
afe3d242
QW
2537 fs_info->delalloc_workers =
2538 btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
771ed689 2539
a44903ab
QW
2540 fs_info->flush_workers =
2541 btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
61b49440 2542
e66f0bb1
QW
2543 fs_info->caching_workers =
2544 btrfs_alloc_workqueue("cache", flags, max_active, 0);
bab39bf9 2545
a8c93d4e
QW
2546 /*
2547 * a higher idle thresh on the submit workers makes it much more
61b49440
CM
2548 * likely that bios will be send down in a sane order to the
2549 * devices
2550 */
a8c93d4e
QW
2551 fs_info->submit_workers =
2552 btrfs_alloc_workqueue("submit", flags,
2553 min_t(u64, fs_devices->num_devices,
2554 max_active), 64);
53863232 2555
dc6e3209
QW
2556 fs_info->fixup_workers =
2557 btrfs_alloc_workqueue("fixup", flags, 1, 0);
fccb5d86
QW
2558
2559 /*
2560 * endios are largely parallel and should have a very
2561 * low idle thresh
2562 */
2563 fs_info->endio_workers =
2564 btrfs_alloc_workqueue("endio", flags, max_active, 4);
2565 fs_info->endio_meta_workers =
2566 btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2567 fs_info->endio_meta_write_workers =
2568 btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2569 fs_info->endio_raid56_workers =
2570 btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
d05a33ac
QW
2571 fs_info->rmw_workers =
2572 btrfs_alloc_workqueue("rmw", flags, max_active, 2);
fccb5d86
QW
2573 fs_info->endio_write_workers =
2574 btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2575 fs_info->endio_freespace_worker =
2576 btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
5b3bc44e
QW
2577 fs_info->delayed_workers =
2578 btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
736cfa15
QW
2579 fs_info->readahead_workers =
2580 btrfs_alloc_workqueue("readahead", flags, max_active, 2);
fc97fab0
QW
2581 fs_info->qgroup_rescan_workers =
2582 btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
61b49440 2583
a8c93d4e 2584 if (!(fs_info->workers && fs_info->delalloc_workers &&
fccb5d86
QW
2585 fs_info->submit_workers && fs_info->flush_workers &&
2586 fs_info->endio_workers && fs_info->endio_meta_workers &&
2587 fs_info->endio_meta_write_workers &&
2588 fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
e66f0bb1 2589 fs_info->endio_freespace_worker && fs_info->rmw_workers &&
dc6e3209 2590 fs_info->caching_workers && fs_info->readahead_workers &&
fc97fab0
QW
2591 fs_info->fixup_workers && fs_info->delayed_workers &&
2592 fs_info->qgroup_rescan_workers)) {
5cdc7ad3
QW
2593 err = -ENOMEM;
2594 goto fail_sb_buffer;
2595 }
4543df7e 2596
4575c9cc 2597 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2598 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2599 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2600
db94535d
CM
2601 tree_root->nodesize = nodesize;
2602 tree_root->leafsize = leafsize;
2603 tree_root->sectorsize = sectorsize;
87ee04eb 2604 tree_root->stripesize = stripesize;
a061fc8d
CM
2605
2606 sb->s_blocksize = sectorsize;
2607 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2608
3cae210f 2609 if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
efe120a0 2610 printk(KERN_INFO "BTRFS: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2611 goto fail_sb_buffer;
2612 }
19c00ddc 2613
8d082fb7 2614 if (sectorsize != PAGE_SIZE) {
efe120a0 2615 printk(KERN_WARNING "BTRFS: Incompatible sector size(%lu) "
8d082fb7 2616 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2617 goto fail_sb_buffer;
2618 }
2619
925baedd 2620 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2621 ret = btrfs_read_sys_array(tree_root);
925baedd 2622 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2623 if (ret) {
efe120a0 2624 printk(KERN_WARNING "BTRFS: failed to read the system "
d397712b 2625 "array on %s\n", sb->s_id);
5d4f98a2 2626 goto fail_sb_buffer;
84eed90f 2627 }
0b86a832
CM
2628
2629 blocksize = btrfs_level_size(tree_root,
2630 btrfs_super_chunk_root_level(disk_super));
84234f3a 2631 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2632
2633 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2634 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2635
2636 chunk_root->node = read_tree_block(chunk_root,
2637 btrfs_super_chunk_root(disk_super),
84234f3a 2638 blocksize, generation);
416bc658
JB
2639 if (!chunk_root->node ||
2640 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
efe120a0 2641 printk(KERN_WARNING "BTRFS: failed to read chunk root on %s\n",
83121942 2642 sb->s_id);
af31f5e5 2643 goto fail_tree_roots;
83121942 2644 }
5d4f98a2
YZ
2645 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2646 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2647
e17cade2 2648 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
b308bc2f 2649 btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
e17cade2 2650
0b86a832 2651 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2652 if (ret) {
efe120a0 2653 printk(KERN_WARNING "BTRFS: failed to read chunk tree on %s\n",
d397712b 2654 sb->s_id);
af31f5e5 2655 goto fail_tree_roots;
2b82032c 2656 }
0b86a832 2657
8dabb742
SB
2658 /*
2659 * keep the device that is marked to be the target device for the
2660 * dev_replace procedure
2661 */
2662 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2663
a6b0d5c8 2664 if (!fs_devices->latest_bdev) {
efe120a0 2665 printk(KERN_CRIT "BTRFS: failed to read devices on %s\n",
a6b0d5c8
CM
2666 sb->s_id);
2667 goto fail_tree_roots;
2668 }
2669
af31f5e5 2670retry_root_backup:
db94535d
CM
2671 blocksize = btrfs_level_size(tree_root,
2672 btrfs_super_root_level(disk_super));
84234f3a 2673 generation = btrfs_super_generation(disk_super);
0b86a832 2674
e20d96d6 2675 tree_root->node = read_tree_block(tree_root,
db94535d 2676 btrfs_super_root(disk_super),
84234f3a 2677 blocksize, generation);
af31f5e5
CM
2678 if (!tree_root->node ||
2679 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
efe120a0 2680 printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
83121942 2681 sb->s_id);
af31f5e5
CM
2682
2683 goto recovery_tree_root;
83121942 2684 }
af31f5e5 2685
5d4f98a2
YZ
2686 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2687 tree_root->commit_root = btrfs_root_node(tree_root);
69e9c6c6 2688 btrfs_set_root_refs(&tree_root->root_item, 1);
db94535d 2689
cb517eab
MX
2690 location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2691 location.type = BTRFS_ROOT_ITEM_KEY;
2692 location.offset = 0;
2693
2694 extent_root = btrfs_read_tree_root(tree_root, &location);
2695 if (IS_ERR(extent_root)) {
2696 ret = PTR_ERR(extent_root);
af31f5e5 2697 goto recovery_tree_root;
cb517eab 2698 }
0b86a832 2699 extent_root->track_dirty = 1;
cb517eab 2700 fs_info->extent_root = extent_root;
0b86a832 2701
cb517eab
MX
2702 location.objectid = BTRFS_DEV_TREE_OBJECTID;
2703 dev_root = btrfs_read_tree_root(tree_root, &location);
2704 if (IS_ERR(dev_root)) {
2705 ret = PTR_ERR(dev_root);
af31f5e5 2706 goto recovery_tree_root;
cb517eab 2707 }
5d4f98a2 2708 dev_root->track_dirty = 1;
cb517eab
MX
2709 fs_info->dev_root = dev_root;
2710 btrfs_init_devices_late(fs_info);
3768f368 2711
cb517eab
MX
2712 location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2713 csum_root = btrfs_read_tree_root(tree_root, &location);
2714 if (IS_ERR(csum_root)) {
2715 ret = PTR_ERR(csum_root);
af31f5e5 2716 goto recovery_tree_root;
cb517eab 2717 }
d20f7043 2718 csum_root->track_dirty = 1;
cb517eab 2719 fs_info->csum_root = csum_root;
d20f7043 2720
cb517eab
MX
2721 location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2722 quota_root = btrfs_read_tree_root(tree_root, &location);
2723 if (!IS_ERR(quota_root)) {
bcef60f2
AJ
2724 quota_root->track_dirty = 1;
2725 fs_info->quota_enabled = 1;
2726 fs_info->pending_quota_state = 1;
cb517eab 2727 fs_info->quota_root = quota_root;
bcef60f2
AJ
2728 }
2729
f7a81ea4
SB
2730 location.objectid = BTRFS_UUID_TREE_OBJECTID;
2731 uuid_root = btrfs_read_tree_root(tree_root, &location);
2732 if (IS_ERR(uuid_root)) {
2733 ret = PTR_ERR(uuid_root);
2734 if (ret != -ENOENT)
2735 goto recovery_tree_root;
2736 create_uuid_tree = true;
70f80175 2737 check_uuid_tree = false;
f7a81ea4
SB
2738 } else {
2739 uuid_root->track_dirty = 1;
2740 fs_info->uuid_root = uuid_root;
70f80175
SB
2741 create_uuid_tree = false;
2742 check_uuid_tree =
2743 generation != btrfs_super_uuid_tree_generation(disk_super);
f7a81ea4
SB
2744 }
2745
8929ecfa
YZ
2746 fs_info->generation = generation;
2747 fs_info->last_trans_committed = generation;
8929ecfa 2748
68310a5e
ID
2749 ret = btrfs_recover_balance(fs_info);
2750 if (ret) {
efe120a0 2751 printk(KERN_WARNING "BTRFS: failed to recover balance\n");
68310a5e
ID
2752 goto fail_block_groups;
2753 }
2754
733f4fbb
SB
2755 ret = btrfs_init_dev_stats(fs_info);
2756 if (ret) {
efe120a0 2757 printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
733f4fbb
SB
2758 ret);
2759 goto fail_block_groups;
2760 }
2761
8dabb742
SB
2762 ret = btrfs_init_dev_replace(fs_info);
2763 if (ret) {
efe120a0 2764 pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
8dabb742
SB
2765 goto fail_block_groups;
2766 }
2767
2768 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2769
5ac1d209
JM
2770 ret = btrfs_sysfs_add_one(fs_info);
2771 if (ret) {
efe120a0 2772 pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
5ac1d209
JM
2773 goto fail_block_groups;
2774 }
2775
c59021f8 2776 ret = btrfs_init_space_info(fs_info);
2777 if (ret) {
efe120a0 2778 printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2365dd3c 2779 goto fail_sysfs;
c59021f8 2780 }
2781
1b1d1f66
JB
2782 ret = btrfs_read_block_groups(extent_root);
2783 if (ret) {
efe120a0 2784 printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2365dd3c 2785 goto fail_sysfs;
1b1d1f66 2786 }
5af3e8cc
SB
2787 fs_info->num_tolerated_disk_barrier_failures =
2788 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2789 if (fs_info->fs_devices->missing_devices >
2790 fs_info->num_tolerated_disk_barrier_failures &&
2791 !(sb->s_flags & MS_RDONLY)) {
efe120a0
FH
2792 printk(KERN_WARNING "BTRFS: "
2793 "too many missing devices, writeable mount is not allowed\n");
2365dd3c 2794 goto fail_sysfs;
292fd7fc 2795 }
9078a3e1 2796
a74a4b97
CM
2797 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2798 "btrfs-cleaner");
57506d50 2799 if (IS_ERR(fs_info->cleaner_kthread))
2365dd3c 2800 goto fail_sysfs;
a74a4b97
CM
2801
2802 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2803 tree_root,
2804 "btrfs-transaction");
57506d50 2805 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2806 goto fail_cleaner;
a74a4b97 2807
c289811c
CM
2808 if (!btrfs_test_opt(tree_root, SSD) &&
2809 !btrfs_test_opt(tree_root, NOSSD) &&
2810 !fs_info->fs_devices->rotating) {
efe120a0 2811 printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
c289811c
CM
2812 "mode\n");
2813 btrfs_set_opt(fs_info->mount_opt, SSD);
2814 }
2815
3818aea2
QW
2816 /* Set the real inode map cache flag */
2817 if (btrfs_test_opt(tree_root, CHANGE_INODE_CACHE))
2818 btrfs_set_opt(tree_root->fs_info->mount_opt, INODE_MAP_CACHE);
2819
21adbd5c
SB
2820#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2821 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2822 ret = btrfsic_mount(tree_root, fs_devices,
2823 btrfs_test_opt(tree_root,
2824 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2825 1 : 0,
2826 fs_info->check_integrity_print_mask);
2827 if (ret)
efe120a0 2828 printk(KERN_WARNING "BTRFS: failed to initialize"
21adbd5c
SB
2829 " integrity check module %s\n", sb->s_id);
2830 }
2831#endif
bcef60f2
AJ
2832 ret = btrfs_read_qgroup_config(fs_info);
2833 if (ret)
2834 goto fail_trans_kthread;
21adbd5c 2835
acce952b 2836 /* do not make disk changes in broken FS */
68ce9682 2837 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2838 u64 bytenr = btrfs_super_log_root(disk_super);
2839
7c2ca468 2840 if (fs_devices->rw_devices == 0) {
efe120a0 2841 printk(KERN_WARNING "BTRFS: log replay required "
d397712b 2842 "on RO media\n");
7c2ca468 2843 err = -EIO;
bcef60f2 2844 goto fail_qgroup;
7c2ca468 2845 }
e02119d5
CM
2846 blocksize =
2847 btrfs_level_size(tree_root,
2848 btrfs_super_log_root_level(disk_super));
d18a2c44 2849
6f07e42e 2850 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2851 if (!log_tree_root) {
2852 err = -ENOMEM;
bcef60f2 2853 goto fail_qgroup;
676e4c86 2854 }
e02119d5
CM
2855
2856 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2857 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2858
2859 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2860 blocksize,
2861 generation + 1);
416bc658
JB
2862 if (!log_tree_root->node ||
2863 !extent_buffer_uptodate(log_tree_root->node)) {
efe120a0 2864 printk(KERN_ERR "BTRFS: failed to read log tree\n");
416bc658
JB
2865 free_extent_buffer(log_tree_root->node);
2866 kfree(log_tree_root);
2867 goto fail_trans_kthread;
2868 }
79787eaa 2869 /* returns with log_tree_root freed on success */
e02119d5 2870 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2871 if (ret) {
2872 btrfs_error(tree_root->fs_info, ret,
2873 "Failed to recover log tree");
2874 free_extent_buffer(log_tree_root->node);
2875 kfree(log_tree_root);
2876 goto fail_trans_kthread;
2877 }
e556ce2c
YZ
2878
2879 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2880 ret = btrfs_commit_super(tree_root);
2881 if (ret)
2882 goto fail_trans_kthread;
e556ce2c 2883 }
e02119d5 2884 }
1a40e23b 2885
76dda93c 2886 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2887 if (ret)
2888 goto fail_trans_kthread;
76dda93c 2889
7c2ca468 2890 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2891 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2892 if (ret)
2893 goto fail_trans_kthread;
d68fc57b 2894
5d4f98a2 2895 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2896 if (ret < 0) {
2897 printk(KERN_WARNING
efe120a0 2898 "BTRFS: failed to recover relocation\n");
d7ce5843 2899 err = -EINVAL;
bcef60f2 2900 goto fail_qgroup;
d7ce5843 2901 }
7c2ca468 2902 }
1a40e23b 2903
3de4586c
CM
2904 location.objectid = BTRFS_FS_TREE_OBJECTID;
2905 location.type = BTRFS_ROOT_ITEM_KEY;
cb517eab 2906 location.offset = 0;
3de4586c 2907
3de4586c 2908 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2909 if (IS_ERR(fs_info->fs_root)) {
2910 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2911 goto fail_qgroup;
3140c9a3 2912 }
c289811c 2913
2b6ba629
ID
2914 if (sb->s_flags & MS_RDONLY)
2915 return 0;
59641015 2916
2b6ba629
ID
2917 down_read(&fs_info->cleanup_work_sem);
2918 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2919 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2920 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2921 close_ctree(tree_root);
2922 return ret;
2923 }
2924 up_read(&fs_info->cleanup_work_sem);
59641015 2925
2b6ba629
ID
2926 ret = btrfs_resume_balance_async(fs_info);
2927 if (ret) {
efe120a0 2928 printk(KERN_WARNING "BTRFS: failed to resume balance\n");
2b6ba629
ID
2929 close_ctree(tree_root);
2930 return ret;
e3acc2a6
JB
2931 }
2932
8dabb742
SB
2933 ret = btrfs_resume_dev_replace_async(fs_info);
2934 if (ret) {
efe120a0 2935 pr_warn("BTRFS: failed to resume dev_replace\n");
8dabb742
SB
2936 close_ctree(tree_root);
2937 return ret;
2938 }
2939
b382a324
JS
2940 btrfs_qgroup_rescan_resume(fs_info);
2941
f7a81ea4 2942 if (create_uuid_tree) {
efe120a0 2943 pr_info("BTRFS: creating UUID tree\n");
f7a81ea4
SB
2944 ret = btrfs_create_uuid_tree(fs_info);
2945 if (ret) {
efe120a0 2946 pr_warn("BTRFS: failed to create the UUID tree %d\n",
f7a81ea4
SB
2947 ret);
2948 close_ctree(tree_root);
2949 return ret;
2950 }
f420ee1e
SB
2951 } else if (check_uuid_tree ||
2952 btrfs_test_opt(tree_root, RESCAN_UUID_TREE)) {
efe120a0 2953 pr_info("BTRFS: checking UUID tree\n");
70f80175
SB
2954 ret = btrfs_check_uuid_tree(fs_info);
2955 if (ret) {
efe120a0 2956 pr_warn("BTRFS: failed to check the UUID tree %d\n",
70f80175
SB
2957 ret);
2958 close_ctree(tree_root);
2959 return ret;
2960 }
2961 } else {
2962 fs_info->update_uuid_tree_gen = 1;
f7a81ea4
SB
2963 }
2964
ad2b2c80 2965 return 0;
39279cc3 2966
bcef60f2
AJ
2967fail_qgroup:
2968 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2969fail_trans_kthread:
2970 kthread_stop(fs_info->transaction_kthread);
54067ae9 2971 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2972 del_fs_roots(fs_info);
3f157a2f 2973fail_cleaner:
a74a4b97 2974 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2975
2976 /*
2977 * make sure we're done with the btree inode before we stop our
2978 * kthreads
2979 */
2980 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2981
2365dd3c
AJ
2982fail_sysfs:
2983 btrfs_sysfs_remove_one(fs_info);
2984
1b1d1f66 2985fail_block_groups:
54067ae9 2986 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2987 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2988
2989fail_tree_roots:
2990 free_root_pointers(fs_info, 1);
2b8195bb 2991 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2992
39279cc3 2993fail_sb_buffer:
7abadb64 2994 btrfs_stop_all_workers(fs_info);
16cdcec7 2995fail_alloc:
4543df7e 2996fail_iput:
586e46e2
ID
2997 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2998
4543df7e 2999 iput(fs_info->btree_inode);
c404e0dc
MX
3000fail_bio_counter:
3001 percpu_counter_destroy(&fs_info->bio_counter);
963d678b
MX
3002fail_delalloc_bytes:
3003 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
3004fail_dirty_metadata_bytes:
3005 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 3006fail_bdi:
7e662854 3007 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
3008fail_srcu:
3009 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 3010fail:
53b381b3 3011 btrfs_free_stripe_hash_table(fs_info);
586e46e2 3012 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 3013 return err;
af31f5e5
CM
3014
3015recovery_tree_root:
af31f5e5
CM
3016 if (!btrfs_test_opt(tree_root, RECOVERY))
3017 goto fail_tree_roots;
3018
3019 free_root_pointers(fs_info, 0);
3020
3021 /* don't use the log in recovery mode, it won't be valid */
3022 btrfs_set_super_log_root(disk_super, 0);
3023
3024 /* we can't trust the free space cache either */
3025 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3026
3027 ret = next_root_backup(fs_info, fs_info->super_copy,
3028 &num_backups_tried, &backup_index);
3029 if (ret == -1)
3030 goto fail_block_groups;
3031 goto retry_root_backup;
eb60ceac
CM
3032}
3033
f2984462
CM
3034static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3035{
f2984462
CM
3036 if (uptodate) {
3037 set_buffer_uptodate(bh);
3038 } else {
442a4f63
SB
3039 struct btrfs_device *device = (struct btrfs_device *)
3040 bh->b_private;
3041
efe120a0 3042 printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
606686ee
JB
3043 "I/O error on %s\n",
3044 rcu_str_deref(device->name));
1259ab75
CM
3045 /* note, we dont' set_buffer_write_io_error because we have
3046 * our own ways of dealing with the IO errors
3047 */
f2984462 3048 clear_buffer_uptodate(bh);
442a4f63 3049 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
3050 }
3051 unlock_buffer(bh);
3052 put_bh(bh);
3053}
3054
a512bbf8
YZ
3055struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3056{
3057 struct buffer_head *bh;
3058 struct buffer_head *latest = NULL;
3059 struct btrfs_super_block *super;
3060 int i;
3061 u64 transid = 0;
3062 u64 bytenr;
3063
3064 /* we would like to check all the supers, but that would make
3065 * a btrfs mount succeed after a mkfs from a different FS.
3066 * So, we need to add a special mount option to scan for
3067 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3068 */
3069 for (i = 0; i < 1; i++) {
3070 bytenr = btrfs_sb_offset(i);
8068a47e
AJ
3071 if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3072 i_size_read(bdev->bd_inode))
a512bbf8 3073 break;
8068a47e
AJ
3074 bh = __bread(bdev, bytenr / 4096,
3075 BTRFS_SUPER_INFO_SIZE);
a512bbf8
YZ
3076 if (!bh)
3077 continue;
3078
3079 super = (struct btrfs_super_block *)bh->b_data;
3080 if (btrfs_super_bytenr(super) != bytenr ||
3cae210f 3081 btrfs_super_magic(super) != BTRFS_MAGIC) {
a512bbf8
YZ
3082 brelse(bh);
3083 continue;
3084 }
3085
3086 if (!latest || btrfs_super_generation(super) > transid) {
3087 brelse(latest);
3088 latest = bh;
3089 transid = btrfs_super_generation(super);
3090 } else {
3091 brelse(bh);
3092 }
3093 }
3094 return latest;
3095}
3096
4eedeb75
HH
3097/*
3098 * this should be called twice, once with wait == 0 and
3099 * once with wait == 1. When wait == 0 is done, all the buffer heads
3100 * we write are pinned.
3101 *
3102 * They are released when wait == 1 is done.
3103 * max_mirrors must be the same for both runs, and it indicates how
3104 * many supers on this one device should be written.
3105 *
3106 * max_mirrors == 0 means to write them all.
3107 */
a512bbf8
YZ
3108static int write_dev_supers(struct btrfs_device *device,
3109 struct btrfs_super_block *sb,
3110 int do_barriers, int wait, int max_mirrors)
3111{
3112 struct buffer_head *bh;
3113 int i;
3114 int ret;
3115 int errors = 0;
3116 u32 crc;
3117 u64 bytenr;
a512bbf8
YZ
3118
3119 if (max_mirrors == 0)
3120 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3121
a512bbf8
YZ
3122 for (i = 0; i < max_mirrors; i++) {
3123 bytenr = btrfs_sb_offset(i);
3124 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3125 break;
3126
3127 if (wait) {
3128 bh = __find_get_block(device->bdev, bytenr / 4096,
3129 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3130 if (!bh) {
3131 errors++;
3132 continue;
3133 }
a512bbf8 3134 wait_on_buffer(bh);
4eedeb75
HH
3135 if (!buffer_uptodate(bh))
3136 errors++;
3137
3138 /* drop our reference */
3139 brelse(bh);
3140
3141 /* drop the reference from the wait == 0 run */
3142 brelse(bh);
3143 continue;
a512bbf8
YZ
3144 } else {
3145 btrfs_set_super_bytenr(sb, bytenr);
3146
3147 crc = ~(u32)0;
b0496686 3148 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3149 BTRFS_CSUM_SIZE, crc,
3150 BTRFS_SUPER_INFO_SIZE -
3151 BTRFS_CSUM_SIZE);
3152 btrfs_csum_final(crc, sb->csum);
3153
4eedeb75
HH
3154 /*
3155 * one reference for us, and we leave it for the
3156 * caller
3157 */
a512bbf8
YZ
3158 bh = __getblk(device->bdev, bytenr / 4096,
3159 BTRFS_SUPER_INFO_SIZE);
634554dc 3160 if (!bh) {
efe120a0 3161 printk(KERN_ERR "BTRFS: couldn't get super "
634554dc
JB
3162 "buffer head for bytenr %Lu\n", bytenr);
3163 errors++;
3164 continue;
3165 }
3166
a512bbf8
YZ
3167 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3168
4eedeb75 3169 /* one reference for submit_bh */
a512bbf8 3170 get_bh(bh);
4eedeb75
HH
3171
3172 set_buffer_uptodate(bh);
a512bbf8
YZ
3173 lock_buffer(bh);
3174 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3175 bh->b_private = device;
a512bbf8
YZ
3176 }
3177
387125fc
CM
3178 /*
3179 * we fua the first super. The others we allow
3180 * to go down lazy.
3181 */
e8117c26
WS
3182 if (i == 0)
3183 ret = btrfsic_submit_bh(WRITE_FUA, bh);
3184 else
3185 ret = btrfsic_submit_bh(WRITE_SYNC, bh);
4eedeb75 3186 if (ret)
a512bbf8 3187 errors++;
a512bbf8
YZ
3188 }
3189 return errors < i ? 0 : -1;
3190}
3191
387125fc
CM
3192/*
3193 * endio for the write_dev_flush, this will wake anyone waiting
3194 * for the barrier when it is done
3195 */
3196static void btrfs_end_empty_barrier(struct bio *bio, int err)
3197{
3198 if (err) {
3199 if (err == -EOPNOTSUPP)
3200 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3201 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3202 }
3203 if (bio->bi_private)
3204 complete(bio->bi_private);
3205 bio_put(bio);
3206}
3207
3208/*
3209 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3210 * sent down. With wait == 1, it waits for the previous flush.
3211 *
3212 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3213 * capable
3214 */
3215static int write_dev_flush(struct btrfs_device *device, int wait)
3216{
3217 struct bio *bio;
3218 int ret = 0;
3219
3220 if (device->nobarriers)
3221 return 0;
3222
3223 if (wait) {
3224 bio = device->flush_bio;
3225 if (!bio)
3226 return 0;
3227
3228 wait_for_completion(&device->flush_wait);
3229
3230 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
efe120a0 3231 printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
606686ee 3232 rcu_str_deref(device->name));
387125fc 3233 device->nobarriers = 1;
5af3e8cc 3234 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3235 ret = -EIO;
5af3e8cc
SB
3236 btrfs_dev_stat_inc_and_print(device,
3237 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3238 }
3239
3240 /* drop the reference from the wait == 0 run */
3241 bio_put(bio);
3242 device->flush_bio = NULL;
3243
3244 return ret;
3245 }
3246
3247 /*
3248 * one reference for us, and we leave it for the
3249 * caller
3250 */
9c017abc 3251 device->flush_bio = NULL;
9be3395b 3252 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3253 if (!bio)
3254 return -ENOMEM;
3255
3256 bio->bi_end_io = btrfs_end_empty_barrier;
3257 bio->bi_bdev = device->bdev;
3258 init_completion(&device->flush_wait);
3259 bio->bi_private = &device->flush_wait;
3260 device->flush_bio = bio;
3261
3262 bio_get(bio);
21adbd5c 3263 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3264
3265 return 0;
3266}
3267
3268/*
3269 * send an empty flush down to each device in parallel,
3270 * then wait for them
3271 */
3272static int barrier_all_devices(struct btrfs_fs_info *info)
3273{
3274 struct list_head *head;
3275 struct btrfs_device *dev;
5af3e8cc
SB
3276 int errors_send = 0;
3277 int errors_wait = 0;
387125fc
CM
3278 int ret;
3279
3280 /* send down all the barriers */
3281 head = &info->fs_devices->devices;
3282 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3283 if (dev->missing)
3284 continue;
387125fc 3285 if (!dev->bdev) {
5af3e8cc 3286 errors_send++;
387125fc
CM
3287 continue;
3288 }
3289 if (!dev->in_fs_metadata || !dev->writeable)
3290 continue;
3291
3292 ret = write_dev_flush(dev, 0);
3293 if (ret)
5af3e8cc 3294 errors_send++;
387125fc
CM
3295 }
3296
3297 /* wait for all the barriers */
3298 list_for_each_entry_rcu(dev, head, dev_list) {
f88ba6a2
HS
3299 if (dev->missing)
3300 continue;
387125fc 3301 if (!dev->bdev) {
5af3e8cc 3302 errors_wait++;
387125fc
CM
3303 continue;
3304 }
3305 if (!dev->in_fs_metadata || !dev->writeable)
3306 continue;
3307
3308 ret = write_dev_flush(dev, 1);
3309 if (ret)
5af3e8cc 3310 errors_wait++;
387125fc 3311 }
5af3e8cc
SB
3312 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3313 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3314 return -EIO;
3315 return 0;
3316}
3317
5af3e8cc
SB
3318int btrfs_calc_num_tolerated_disk_barrier_failures(
3319 struct btrfs_fs_info *fs_info)
3320{
3321 struct btrfs_ioctl_space_info space;
3322 struct btrfs_space_info *sinfo;
3323 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3324 BTRFS_BLOCK_GROUP_SYSTEM,
3325 BTRFS_BLOCK_GROUP_METADATA,
3326 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3327 int num_types = 4;
3328 int i;
3329 int c;
3330 int num_tolerated_disk_barrier_failures =
3331 (int)fs_info->fs_devices->num_devices;
3332
3333 for (i = 0; i < num_types; i++) {
3334 struct btrfs_space_info *tmp;
3335
3336 sinfo = NULL;
3337 rcu_read_lock();
3338 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3339 if (tmp->flags == types[i]) {
3340 sinfo = tmp;
3341 break;
3342 }
3343 }
3344 rcu_read_unlock();
3345
3346 if (!sinfo)
3347 continue;
3348
3349 down_read(&sinfo->groups_sem);
3350 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3351 if (!list_empty(&sinfo->block_groups[c])) {
3352 u64 flags;
3353
3354 btrfs_get_block_group_info(
3355 &sinfo->block_groups[c], &space);
3356 if (space.total_bytes == 0 ||
3357 space.used_bytes == 0)
3358 continue;
3359 flags = space.flags;
3360 /*
3361 * return
3362 * 0: if dup, single or RAID0 is configured for
3363 * any of metadata, system or data, else
3364 * 1: if RAID5 is configured, or if RAID1 or
3365 * RAID10 is configured and only two mirrors
3366 * are used, else
3367 * 2: if RAID6 is configured, else
3368 * num_mirrors - 1: if RAID1 or RAID10 is
3369 * configured and more than
3370 * 2 mirrors are used.
3371 */
3372 if (num_tolerated_disk_barrier_failures > 0 &&
3373 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3374 BTRFS_BLOCK_GROUP_RAID0)) ||
3375 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3376 == 0)))
3377 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3378 else if (num_tolerated_disk_barrier_failures > 1) {
3379 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3380 BTRFS_BLOCK_GROUP_RAID5 |
3381 BTRFS_BLOCK_GROUP_RAID10)) {
3382 num_tolerated_disk_barrier_failures = 1;
3383 } else if (flags &
15b0a89d 3384 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3385 num_tolerated_disk_barrier_failures = 2;
3386 }
3387 }
5af3e8cc
SB
3388 }
3389 }
3390 up_read(&sinfo->groups_sem);
3391 }
3392
3393 return num_tolerated_disk_barrier_failures;
3394}
3395
48a3b636 3396static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3397{
e5e9a520 3398 struct list_head *head;
f2984462 3399 struct btrfs_device *dev;
a061fc8d 3400 struct btrfs_super_block *sb;
f2984462 3401 struct btrfs_dev_item *dev_item;
f2984462
CM
3402 int ret;
3403 int do_barriers;
a236aed1
CM
3404 int max_errors;
3405 int total_errors = 0;
a061fc8d 3406 u64 flags;
f2984462
CM
3407
3408 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3409 backup_super_roots(root->fs_info);
f2984462 3410
6c41761f 3411 sb = root->fs_info->super_for_commit;
a061fc8d 3412 dev_item = &sb->dev_item;
e5e9a520 3413
174ba509 3414 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3415 head = &root->fs_info->fs_devices->devices;
d7306801 3416 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
387125fc 3417
5af3e8cc
SB
3418 if (do_barriers) {
3419 ret = barrier_all_devices(root->fs_info);
3420 if (ret) {
3421 mutex_unlock(
3422 &root->fs_info->fs_devices->device_list_mutex);
3423 btrfs_error(root->fs_info, ret,
3424 "errors while submitting device barriers.");
3425 return ret;
3426 }
3427 }
387125fc 3428
1f78160c 3429 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3430 if (!dev->bdev) {
3431 total_errors++;
3432 continue;
3433 }
2b82032c 3434 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3435 continue;
3436
2b82032c 3437 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3438 btrfs_set_stack_device_type(dev_item, dev->type);
3439 btrfs_set_stack_device_id(dev_item, dev->devid);
3440 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3441 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3442 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3443 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3444 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3445 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3446 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3447
a061fc8d
CM
3448 flags = btrfs_super_flags(sb);
3449 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3450
a512bbf8 3451 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3452 if (ret)
3453 total_errors++;
f2984462 3454 }
a236aed1 3455 if (total_errors > max_errors) {
efe120a0 3456 btrfs_err(root->fs_info, "%d errors while writing supers",
d397712b 3457 total_errors);
a724b436 3458 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
79787eaa 3459
9d565ba4
SB
3460 /* FUA is masked off if unsupported and can't be the reason */
3461 btrfs_error(root->fs_info, -EIO,
3462 "%d errors while writing supers", total_errors);
3463 return -EIO;
a236aed1 3464 }
f2984462 3465
a512bbf8 3466 total_errors = 0;
1f78160c 3467 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3468 if (!dev->bdev)
3469 continue;
2b82032c 3470 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3471 continue;
3472
a512bbf8
YZ
3473 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3474 if (ret)
3475 total_errors++;
f2984462 3476 }
174ba509 3477 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3478 if (total_errors > max_errors) {
79787eaa
JM
3479 btrfs_error(root->fs_info, -EIO,
3480 "%d errors while writing supers", total_errors);
3481 return -EIO;
a236aed1 3482 }
f2984462
CM
3483 return 0;
3484}
3485
a512bbf8
YZ
3486int write_ctree_super(struct btrfs_trans_handle *trans,
3487 struct btrfs_root *root, int max_mirrors)
eb60ceac 3488{
f570e757 3489 return write_all_supers(root, max_mirrors);
cfaa7295
CM
3490}
3491
cb517eab
MX
3492/* Drop a fs root from the radix tree and free it. */
3493void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3494 struct btrfs_root *root)
2619ba1f 3495{
4df27c4d 3496 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3497 radix_tree_delete(&fs_info->fs_roots_radix,
3498 (unsigned long)root->root_key.objectid);
4df27c4d 3499 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3500
3501 if (btrfs_root_refs(&root->root_item) == 0)
3502 synchronize_srcu(&fs_info->subvol_srcu);
3503
1a4319cc 3504 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3321719e 3505 btrfs_free_log(NULL, root);
3321719e 3506
581bb050
LZ
3507 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3508 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3509 free_fs_root(root);
4df27c4d
YZ
3510}
3511
3512static void free_fs_root(struct btrfs_root *root)
3513{
82d5902d 3514 iput(root->cache_inode);
4df27c4d 3515 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
1cb048f5
FDBM
3516 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3517 root->orphan_block_rsv = NULL;
0ee5dc67
AV
3518 if (root->anon_dev)
3519 free_anon_bdev(root->anon_dev);
8257b2dc
MX
3520 if (root->subv_writers)
3521 btrfs_free_subvolume_writers(root->subv_writers);
4df27c4d
YZ
3522 free_extent_buffer(root->node);
3523 free_extent_buffer(root->commit_root);
581bb050
LZ
3524 kfree(root->free_ino_ctl);
3525 kfree(root->free_ino_pinned);
d397712b 3526 kfree(root->name);
b0feb9d9 3527 btrfs_put_fs_root(root);
2619ba1f
CM
3528}
3529
cb517eab
MX
3530void btrfs_free_fs_root(struct btrfs_root *root)
3531{
3532 free_fs_root(root);
2619ba1f
CM
3533}
3534
c146afad 3535int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3536{
c146afad
YZ
3537 u64 root_objectid = 0;
3538 struct btrfs_root *gang[8];
3539 int i;
3768f368 3540 int ret;
e089f05c 3541
c146afad
YZ
3542 while (1) {
3543 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3544 (void **)gang, root_objectid,
3545 ARRAY_SIZE(gang));
3546 if (!ret)
3547 break;
5d4f98a2
YZ
3548
3549 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3550 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3551 int err;
3552
c146afad 3553 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3554 err = btrfs_orphan_cleanup(gang[i]);
3555 if (err)
3556 return err;
c146afad
YZ
3557 }
3558 root_objectid++;
3559 }
3560 return 0;
3561}
a2135011 3562
c146afad
YZ
3563int btrfs_commit_super(struct btrfs_root *root)
3564{
3565 struct btrfs_trans_handle *trans;
a74a4b97 3566
c146afad 3567 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3568 btrfs_run_delayed_iputs(root);
c146afad 3569 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3570 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3571
3572 /* wait until ongoing cleanup work done */
3573 down_write(&root->fs_info->cleanup_work_sem);
3574 up_write(&root->fs_info->cleanup_work_sem);
3575
7a7eaa40 3576 trans = btrfs_join_transaction(root);
3612b495
TI
3577 if (IS_ERR(trans))
3578 return PTR_ERR(trans);
d52c1bcc 3579 return btrfs_commit_transaction(trans, root);
c146afad
YZ
3580}
3581
3582int close_ctree(struct btrfs_root *root)
3583{
3584 struct btrfs_fs_info *fs_info = root->fs_info;
3585 int ret;
3586
3587 fs_info->closing = 1;
3588 smp_mb();
3589
803b2f54
SB
3590 /* wait for the uuid_scan task to finish */
3591 down(&fs_info->uuid_tree_rescan_sem);
3592 /* avoid complains from lockdep et al., set sem back to initial state */
3593 up(&fs_info->uuid_tree_rescan_sem);
3594
837d5b6e 3595 /* pause restriper - we want to resume on mount */
aa1b8cd4 3596 btrfs_pause_balance(fs_info);
837d5b6e 3597
8dabb742
SB
3598 btrfs_dev_replace_suspend_for_unmount(fs_info);
3599
aa1b8cd4 3600 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3601
3602 /* wait for any defraggers to finish */
3603 wait_event(fs_info->transaction_wait,
3604 (atomic_read(&fs_info->defrag_running) == 0));
3605
3606 /* clear out the rbtree of defraggable inodes */
26176e7c 3607 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3608
c146afad 3609 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3610 ret = btrfs_commit_super(root);
3611 if (ret)
efe120a0 3612 btrfs_err(root->fs_info, "commit super ret %d", ret);
acce952b 3613 }
3614
87533c47 3615 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3616 btrfs_error_commit_super(root);
0f7d52f4 3617
e3029d9f
AV
3618 kthread_stop(fs_info->transaction_kthread);
3619 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3620
f25784b3
YZ
3621 fs_info->closing = 2;
3622 smp_mb();
3623
bcef60f2
AJ
3624 btrfs_free_qgroup_config(root->fs_info);
3625
963d678b 3626 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
efe120a0 3627 btrfs_info(root->fs_info, "at unmount delalloc count %lld",
963d678b 3628 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3629 }
bcc63abb 3630
5ac1d209
JM
3631 btrfs_sysfs_remove_one(fs_info);
3632
c146afad 3633 del_fs_roots(fs_info);
d10c5f31 3634
1a4319cc
LB
3635 btrfs_put_block_group_cache(fs_info);
3636
2b1360da
JB
3637 btrfs_free_block_groups(fs_info);
3638
96192499
JB
3639 btrfs_stop_all_workers(fs_info);
3640
13e6c37b 3641 free_root_pointers(fs_info, 1);
9ad6b7bc 3642
13e6c37b 3643 iput(fs_info->btree_inode);
d6bfde87 3644
21adbd5c
SB
3645#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3646 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3647 btrfsic_unmount(root, fs_info->fs_devices);
3648#endif
3649
dfe25020 3650 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3651 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3652
e2d84521 3653 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3654 percpu_counter_destroy(&fs_info->delalloc_bytes);
c404e0dc 3655 percpu_counter_destroy(&fs_info->bio_counter);
04160088 3656 bdi_destroy(&fs_info->bdi);
76dda93c 3657 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3658
53b381b3
DW
3659 btrfs_free_stripe_hash_table(fs_info);
3660
1cb048f5
FDBM
3661 btrfs_free_block_rsv(root, root->orphan_block_rsv);
3662 root->orphan_block_rsv = NULL;
3663
eb60ceac
CM
3664 return 0;
3665}
3666
b9fab919
CM
3667int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3668 int atomic)
5f39d397 3669{
1259ab75 3670 int ret;
727011e0 3671 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3672
0b32f4bb 3673 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3674 if (!ret)
3675 return ret;
3676
3677 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3678 parent_transid, atomic);
3679 if (ret == -EAGAIN)
3680 return ret;
1259ab75 3681 return !ret;
5f39d397
CM
3682}
3683
3684int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3685{
0b32f4bb 3686 return set_extent_buffer_uptodate(buf);
5f39d397 3687}
6702ed49 3688
5f39d397
CM
3689void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3690{
06ea65a3 3691 struct btrfs_root *root;
5f39d397 3692 u64 transid = btrfs_header_generation(buf);
b9473439 3693 int was_dirty;
b4ce94de 3694
06ea65a3
JB
3695#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3696 /*
3697 * This is a fast path so only do this check if we have sanity tests
3698 * enabled. Normal people shouldn't be marking dummy buffers as dirty
3699 * outside of the sanity tests.
3700 */
3701 if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3702 return;
3703#endif
3704 root = BTRFS_I(buf->pages[0]->mapping->host)->root;
b9447ef8 3705 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3706 if (transid != root->fs_info->generation)
3707 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3708 "found %llu running %llu\n",
c1c9ff7c 3709 buf->start, transid, root->fs_info->generation);
0b32f4bb 3710 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3711 if (!was_dirty)
3712 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3713 buf->len,
3714 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3715}
3716
b53d3f5d
LB
3717static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3718 int flush_delayed)
16cdcec7
MX
3719{
3720 /*
3721 * looks as though older kernels can get into trouble with
3722 * this code, they end up stuck in balance_dirty_pages forever
3723 */
e2d84521 3724 int ret;
16cdcec7
MX
3725
3726 if (current->flags & PF_MEMALLOC)
3727 return;
3728
b53d3f5d
LB
3729 if (flush_delayed)
3730 btrfs_balance_delayed_items(root);
16cdcec7 3731
e2d84521
MX
3732 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3733 BTRFS_DIRTY_METADATA_THRESH);
3734 if (ret > 0) {
d0e1d66b
NJ
3735 balance_dirty_pages_ratelimited(
3736 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3737 }
3738 return;
3739}
3740
b53d3f5d 3741void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3742{
b53d3f5d
LB
3743 __btrfs_btree_balance_dirty(root, 1);
3744}
585ad2c3 3745
b53d3f5d
LB
3746void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3747{
3748 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3749}
6b80053d 3750
ca7a79ad 3751int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3752{
727011e0 3753 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3754 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3755}
0da5468f 3756
fcd1f065 3757static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3758 int read_only)
3759{
1104a885
DS
3760 /*
3761 * Placeholder for checks
3762 */
fcd1f065 3763 return 0;
acce952b 3764}
3765
48a3b636 3766static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3767{
acce952b 3768 mutex_lock(&root->fs_info->cleaner_mutex);
3769 btrfs_run_delayed_iputs(root);
3770 mutex_unlock(&root->fs_info->cleaner_mutex);
3771
3772 down_write(&root->fs_info->cleanup_work_sem);
3773 up_write(&root->fs_info->cleanup_work_sem);
3774
3775 /* cleanup FS via transaction */
3776 btrfs_cleanup_transaction(root);
acce952b 3777}
3778
569e0f35
JB
3779static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3780 struct btrfs_root *root)
acce952b 3781{
3782 struct btrfs_inode *btrfs_inode;
3783 struct list_head splice;
3784
3785 INIT_LIST_HEAD(&splice);
3786
3787 mutex_lock(&root->fs_info->ordered_operations_mutex);
199c2a9c 3788 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3789
569e0f35 3790 list_splice_init(&t->ordered_operations, &splice);
acce952b 3791 while (!list_empty(&splice)) {
3792 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3793 ordered_operations);
3794
3795 list_del_init(&btrfs_inode->ordered_operations);
199c2a9c 3796 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3797
3798 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3799
199c2a9c 3800 spin_lock(&root->fs_info->ordered_root_lock);
acce952b 3801 }
3802
199c2a9c 3803 spin_unlock(&root->fs_info->ordered_root_lock);
acce952b 3804 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3805}
3806
143bede5 3807static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3808{
acce952b 3809 struct btrfs_ordered_extent *ordered;
acce952b 3810
199c2a9c 3811 spin_lock(&root->ordered_extent_lock);
779880ef
JB
3812 /*
3813 * This will just short circuit the ordered completion stuff which will
3814 * make sure the ordered extent gets properly cleaned up.
3815 */
199c2a9c 3816 list_for_each_entry(ordered, &root->ordered_extents,
779880ef
JB
3817 root_extent_list)
3818 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
199c2a9c
MX
3819 spin_unlock(&root->ordered_extent_lock);
3820}
3821
3822static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
3823{
3824 struct btrfs_root *root;
3825 struct list_head splice;
3826
3827 INIT_LIST_HEAD(&splice);
3828
3829 spin_lock(&fs_info->ordered_root_lock);
3830 list_splice_init(&fs_info->ordered_roots, &splice);
3831 while (!list_empty(&splice)) {
3832 root = list_first_entry(&splice, struct btrfs_root,
3833 ordered_root);
1de2cfde
JB
3834 list_move_tail(&root->ordered_root,
3835 &fs_info->ordered_roots);
199c2a9c 3836
2a85d9ca 3837 spin_unlock(&fs_info->ordered_root_lock);
199c2a9c
MX
3838 btrfs_destroy_ordered_extents(root);
3839
2a85d9ca
LB
3840 cond_resched();
3841 spin_lock(&fs_info->ordered_root_lock);
199c2a9c
MX
3842 }
3843 spin_unlock(&fs_info->ordered_root_lock);
acce952b 3844}
3845
35a3621b
SB
3846static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3847 struct btrfs_root *root)
acce952b 3848{
3849 struct rb_node *node;
3850 struct btrfs_delayed_ref_root *delayed_refs;
3851 struct btrfs_delayed_ref_node *ref;
3852 int ret = 0;
3853
3854 delayed_refs = &trans->delayed_refs;
3855
3856 spin_lock(&delayed_refs->lock);
d7df2c79 3857 if (atomic_read(&delayed_refs->num_entries) == 0) {
cfece4db 3858 spin_unlock(&delayed_refs->lock);
efe120a0 3859 btrfs_info(root->fs_info, "delayed_refs has NO entry");
acce952b 3860 return ret;
3861 }
3862
d7df2c79
JB
3863 while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
3864 struct btrfs_delayed_ref_head *head;
e78417d1 3865 bool pin_bytes = false;
acce952b 3866
d7df2c79
JB
3867 head = rb_entry(node, struct btrfs_delayed_ref_head,
3868 href_node);
3869 if (!mutex_trylock(&head->mutex)) {
3870 atomic_inc(&head->node.refs);
3871 spin_unlock(&delayed_refs->lock);
acce952b 3872
d7df2c79 3873 mutex_lock(&head->mutex);
e78417d1 3874 mutex_unlock(&head->mutex);
d7df2c79
JB
3875 btrfs_put_delayed_ref(&head->node);
3876 spin_lock(&delayed_refs->lock);
3877 continue;
3878 }
3879 spin_lock(&head->lock);
3880 while ((node = rb_first(&head->ref_root)) != NULL) {
3881 ref = rb_entry(node, struct btrfs_delayed_ref_node,
3882 rb_node);
3883 ref->in_tree = 0;
3884 rb_erase(&ref->rb_node, &head->ref_root);
3885 atomic_dec(&delayed_refs->num_entries);
3886 btrfs_put_delayed_ref(ref);
e78417d1 3887 }
d7df2c79
JB
3888 if (head->must_insert_reserved)
3889 pin_bytes = true;
3890 btrfs_free_delayed_extent_op(head->extent_op);
3891 delayed_refs->num_heads--;
3892 if (head->processing == 0)
3893 delayed_refs->num_heads_ready--;
3894 atomic_dec(&delayed_refs->num_entries);
3895 head->node.in_tree = 0;
3896 rb_erase(&head->href_node, &delayed_refs->href_root);
3897 spin_unlock(&head->lock);
3898 spin_unlock(&delayed_refs->lock);
3899 mutex_unlock(&head->mutex);
acce952b 3900
d7df2c79
JB
3901 if (pin_bytes)
3902 btrfs_pin_extent(root, head->node.bytenr,
3903 head->node.num_bytes, 1);
3904 btrfs_put_delayed_ref(&head->node);
acce952b 3905 cond_resched();
3906 spin_lock(&delayed_refs->lock);
3907 }
3908
3909 spin_unlock(&delayed_refs->lock);
3910
3911 return ret;
3912}
3913
143bede5 3914static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3915{
3916 struct btrfs_inode *btrfs_inode;
3917 struct list_head splice;
3918
3919 INIT_LIST_HEAD(&splice);
3920
eb73c1b7
MX
3921 spin_lock(&root->delalloc_lock);
3922 list_splice_init(&root->delalloc_inodes, &splice);
acce952b 3923
3924 while (!list_empty(&splice)) {
eb73c1b7
MX
3925 btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
3926 delalloc_inodes);
acce952b 3927
3928 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3929 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3930 &btrfs_inode->runtime_flags);
eb73c1b7 3931 spin_unlock(&root->delalloc_lock);
acce952b 3932
3933 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb 3934
eb73c1b7 3935 spin_lock(&root->delalloc_lock);
acce952b 3936 }
3937
eb73c1b7
MX
3938 spin_unlock(&root->delalloc_lock);
3939}
3940
3941static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
3942{
3943 struct btrfs_root *root;
3944 struct list_head splice;
3945
3946 INIT_LIST_HEAD(&splice);
3947
3948 spin_lock(&fs_info->delalloc_root_lock);
3949 list_splice_init(&fs_info->delalloc_roots, &splice);
3950 while (!list_empty(&splice)) {
3951 root = list_first_entry(&splice, struct btrfs_root,
3952 delalloc_root);
3953 list_del_init(&root->delalloc_root);
3954 root = btrfs_grab_fs_root(root);
3955 BUG_ON(!root);
3956 spin_unlock(&fs_info->delalloc_root_lock);
3957
3958 btrfs_destroy_delalloc_inodes(root);
3959 btrfs_put_fs_root(root);
3960
3961 spin_lock(&fs_info->delalloc_root_lock);
3962 }
3963 spin_unlock(&fs_info->delalloc_root_lock);
acce952b 3964}
3965
3966static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3967 struct extent_io_tree *dirty_pages,
3968 int mark)
3969{
3970 int ret;
acce952b 3971 struct extent_buffer *eb;
3972 u64 start = 0;
3973 u64 end;
acce952b 3974
3975 while (1) {
3976 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3977 mark, NULL);
acce952b 3978 if (ret)
3979 break;
3980
3981 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3982 while (start <= end) {
fd8b2b61
JB
3983 eb = btrfs_find_tree_block(root, start,
3984 root->leafsize);
69a85bd8 3985 start += root->leafsize;
fd8b2b61 3986 if (!eb)
acce952b 3987 continue;
fd8b2b61 3988 wait_on_extent_buffer_writeback(eb);
acce952b 3989
fd8b2b61
JB
3990 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3991 &eb->bflags))
3992 clear_extent_buffer_dirty(eb);
3993 free_extent_buffer_stale(eb);
acce952b 3994 }
3995 }
3996
3997 return ret;
3998}
3999
4000static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4001 struct extent_io_tree *pinned_extents)
4002{
4003 struct extent_io_tree *unpin;
4004 u64 start;
4005 u64 end;
4006 int ret;
ed0eaa14 4007 bool loop = true;
acce952b 4008
4009 unpin = pinned_extents;
ed0eaa14 4010again:
acce952b 4011 while (1) {
4012 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 4013 EXTENT_DIRTY, NULL);
acce952b 4014 if (ret)
4015 break;
4016
4017 /* opt_discard */
5378e607
LD
4018 if (btrfs_test_opt(root, DISCARD))
4019 ret = btrfs_error_discard_extent(root, start,
4020 end + 1 - start,
4021 NULL);
acce952b 4022
4023 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4024 btrfs_error_unpin_extent_range(root, start, end);
4025 cond_resched();
4026 }
4027
ed0eaa14
LB
4028 if (loop) {
4029 if (unpin == &root->fs_info->freed_extents[0])
4030 unpin = &root->fs_info->freed_extents[1];
4031 else
4032 unpin = &root->fs_info->freed_extents[0];
4033 loop = false;
4034 goto again;
4035 }
4036
acce952b 4037 return 0;
4038}
4039
49b25e05
JM
4040void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4041 struct btrfs_root *root)
4042{
724e2315
JB
4043 btrfs_destroy_ordered_operations(cur_trans, root);
4044
49b25e05 4045 btrfs_destroy_delayed_refs(cur_trans, root);
49b25e05 4046
4a9d8bde 4047 cur_trans->state = TRANS_STATE_COMMIT_START;
d7096fc3 4048 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 4049
4a9d8bde 4050 cur_trans->state = TRANS_STATE_UNBLOCKED;
d7096fc3 4051 wake_up(&root->fs_info->transaction_wait);
49b25e05 4052
67cde344
MX
4053 btrfs_destroy_delayed_inodes(root);
4054 btrfs_assert_delayed_root_empty(root);
49b25e05 4055
49b25e05
JM
4056 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4057 EXTENT_DIRTY);
6e841e32
LB
4058 btrfs_destroy_pinned_extent(root,
4059 root->fs_info->pinned_extents);
49b25e05 4060
4a9d8bde
MX
4061 cur_trans->state =TRANS_STATE_COMPLETED;
4062 wake_up(&cur_trans->commit_wait);
4063
49b25e05
JM
4064 /*
4065 memset(cur_trans, 0, sizeof(*cur_trans));
4066 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4067 */
4068}
4069
48a3b636 4070static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 4071{
4072 struct btrfs_transaction *t;
acce952b 4073
acce952b 4074 mutex_lock(&root->fs_info->transaction_kthread_mutex);
4075
a4abeea4 4076 spin_lock(&root->fs_info->trans_lock);
724e2315
JB
4077 while (!list_empty(&root->fs_info->trans_list)) {
4078 t = list_first_entry(&root->fs_info->trans_list,
4079 struct btrfs_transaction, list);
4080 if (t->state >= TRANS_STATE_COMMIT_START) {
4081 atomic_inc(&t->use_count);
4082 spin_unlock(&root->fs_info->trans_lock);
4083 btrfs_wait_for_commit(root, t->transid);
4084 btrfs_put_transaction(t);
4085 spin_lock(&root->fs_info->trans_lock);
4086 continue;
4087 }
4088 if (t == root->fs_info->running_transaction) {
4089 t->state = TRANS_STATE_COMMIT_DOING;
4090 spin_unlock(&root->fs_info->trans_lock);
4091 /*
4092 * We wait for 0 num_writers since we don't hold a trans
4093 * handle open currently for this transaction.
4094 */
4095 wait_event(t->writer_wait,
4096 atomic_read(&t->num_writers) == 0);
4097 } else {
4098 spin_unlock(&root->fs_info->trans_lock);
4099 }
4100 btrfs_cleanup_one_transaction(t, root);
4a9d8bde 4101
724e2315
JB
4102 spin_lock(&root->fs_info->trans_lock);
4103 if (t == root->fs_info->running_transaction)
4104 root->fs_info->running_transaction = NULL;
acce952b 4105 list_del_init(&t->list);
724e2315 4106 spin_unlock(&root->fs_info->trans_lock);
acce952b 4107
724e2315
JB
4108 btrfs_put_transaction(t);
4109 trace_btrfs_transaction_commit(root);
4110 spin_lock(&root->fs_info->trans_lock);
4111 }
4112 spin_unlock(&root->fs_info->trans_lock);
4113 btrfs_destroy_all_ordered_extents(root->fs_info);
4114 btrfs_destroy_delayed_inodes(root);
4115 btrfs_assert_delayed_root_empty(root);
4116 btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4117 btrfs_destroy_all_delalloc_inodes(root->fs_info);
acce952b 4118 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 4119
4120 return 0;
4121}
4122
d1310b2e 4123static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4124 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4125 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4126 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4127 /* note we're sharing with inode.c for the merge bio hook */
4128 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4129};