Btrfs: use percpu counter for dirty metadata count
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
7e75bf3f 33#include <asm/unaligned.h>
4b4e25f2 34#include "compat.h"
eb60ceac
CM
35#include "ctree.h"
36#include "disk-io.h"
e089f05c 37#include "transaction.h"
0f7d52f4 38#include "btrfs_inode.h"
0b86a832 39#include "volumes.h"
db94535d 40#include "print-tree.h"
8b712842 41#include "async-thread.h"
925baedd 42#include "locking.h"
e02119d5 43#include "tree-log.h"
fa9c0d79 44#include "free-space-cache.h"
581bb050 45#include "inode-map.h"
21adbd5c 46#include "check-integrity.h"
606686ee 47#include "rcu-string.h"
8dabb742 48#include "dev-replace.h"
eb60ceac 49
de0022b9
JB
50#ifdef CONFIG_X86
51#include <asm/cpufeature.h>
52#endif
53
d1310b2e 54static struct extent_io_ops btree_extent_io_ops;
8b712842 55static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 56static void free_fs_root(struct btrfs_root *root);
fcd1f065 57static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 58 int read_only);
143bede5
JM
59static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
60static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 61static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
62 struct btrfs_root *root);
143bede5
JM
63static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
64static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 65static int btrfs_destroy_marked_extents(struct btrfs_root *root,
66 struct extent_io_tree *dirty_pages,
67 int mark);
68static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
69 struct extent_io_tree *pinned_extents);
ce9adaa5 70
d352ac68
CM
71/*
72 * end_io_wq structs are used to do processing in task context when an IO is
73 * complete. This is used during reads to verify checksums, and it is used
74 * by writes to insert metadata for new file extents after IO is complete.
75 */
ce9adaa5
CM
76struct end_io_wq {
77 struct bio *bio;
78 bio_end_io_t *end_io;
79 void *private;
80 struct btrfs_fs_info *info;
81 int error;
22c59948 82 int metadata;
ce9adaa5 83 struct list_head list;
8b712842 84 struct btrfs_work work;
ce9adaa5 85};
0da5468f 86
d352ac68
CM
87/*
88 * async submit bios are used to offload expensive checksumming
89 * onto the worker threads. They checksum file and metadata bios
90 * just before they are sent down the IO stack.
91 */
44b8bd7e
CM
92struct async_submit_bio {
93 struct inode *inode;
94 struct bio *bio;
95 struct list_head list;
4a69a410
CM
96 extent_submit_bio_hook_t *submit_bio_start;
97 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
98 int rw;
99 int mirror_num;
c8b97818 100 unsigned long bio_flags;
eaf25d93
CM
101 /*
102 * bio_offset is optional, can be used if the pages in the bio
103 * can't tell us where in the file the bio should go
104 */
105 u64 bio_offset;
8b712842 106 struct btrfs_work work;
79787eaa 107 int error;
44b8bd7e
CM
108};
109
85d4e461
CM
110/*
111 * Lockdep class keys for extent_buffer->lock's in this root. For a given
112 * eb, the lockdep key is determined by the btrfs_root it belongs to and
113 * the level the eb occupies in the tree.
114 *
115 * Different roots are used for different purposes and may nest inside each
116 * other and they require separate keysets. As lockdep keys should be
117 * static, assign keysets according to the purpose of the root as indicated
118 * by btrfs_root->objectid. This ensures that all special purpose roots
119 * have separate keysets.
4008c04a 120 *
85d4e461
CM
121 * Lock-nesting across peer nodes is always done with the immediate parent
122 * node locked thus preventing deadlock. As lockdep doesn't know this, use
123 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 124 *
85d4e461
CM
125 * The key is set by the readpage_end_io_hook after the buffer has passed
126 * csum validation but before the pages are unlocked. It is also set by
127 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 128 *
85d4e461
CM
129 * We also add a check to make sure the highest level of the tree is the
130 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
131 * needs update as well.
4008c04a
CM
132 */
133#ifdef CONFIG_DEBUG_LOCK_ALLOC
134# if BTRFS_MAX_LEVEL != 8
135# error
136# endif
85d4e461
CM
137
138static struct btrfs_lockdep_keyset {
139 u64 id; /* root objectid */
140 const char *name_stem; /* lock name stem */
141 char names[BTRFS_MAX_LEVEL + 1][20];
142 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
143} btrfs_lockdep_keysets[] = {
144 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
145 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
146 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
147 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
148 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
149 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
150 { .id = BTRFS_ORPHAN_OBJECTID, .name_stem = "orphan" },
151 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
152 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
153 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
154 { .id = 0, .name_stem = "tree" },
4008c04a 155};
85d4e461
CM
156
157void __init btrfs_init_lockdep(void)
158{
159 int i, j;
160
161 /* initialize lockdep class names */
162 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
163 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
164
165 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
166 snprintf(ks->names[j], sizeof(ks->names[j]),
167 "btrfs-%s-%02d", ks->name_stem, j);
168 }
169}
170
171void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
172 int level)
173{
174 struct btrfs_lockdep_keyset *ks;
175
176 BUG_ON(level >= ARRAY_SIZE(ks->keys));
177
178 /* find the matching keyset, id 0 is the default entry */
179 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
180 if (ks->id == objectid)
181 break;
182
183 lockdep_set_class_and_name(&eb->lock,
184 &ks->keys[level], ks->names[level]);
185}
186
4008c04a
CM
187#endif
188
d352ac68
CM
189/*
190 * extents on the btree inode are pretty simple, there's one extent
191 * that covers the entire device
192 */
b2950863 193static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 194 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 195 int create)
7eccb903 196{
5f39d397
CM
197 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
198 struct extent_map *em;
199 int ret;
200
890871be 201 read_lock(&em_tree->lock);
d1310b2e 202 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
203 if (em) {
204 em->bdev =
205 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 206 read_unlock(&em_tree->lock);
5f39d397 207 goto out;
a061fc8d 208 }
890871be 209 read_unlock(&em_tree->lock);
7b13b7b1 210
172ddd60 211 em = alloc_extent_map();
5f39d397
CM
212 if (!em) {
213 em = ERR_PTR(-ENOMEM);
214 goto out;
215 }
216 em->start = 0;
0afbaf8c 217 em->len = (u64)-1;
c8b97818 218 em->block_len = (u64)-1;
5f39d397 219 em->block_start = 0;
a061fc8d 220 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 221
890871be 222 write_lock(&em_tree->lock);
5f39d397
CM
223 ret = add_extent_mapping(em_tree, em);
224 if (ret == -EEXIST) {
225 free_extent_map(em);
7b13b7b1 226 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 227 if (!em)
0433f20d 228 em = ERR_PTR(-EIO);
5f39d397 229 } else if (ret) {
7b13b7b1 230 free_extent_map(em);
0433f20d 231 em = ERR_PTR(ret);
5f39d397 232 }
890871be 233 write_unlock(&em_tree->lock);
7b13b7b1 234
5f39d397
CM
235out:
236 return em;
7eccb903
CM
237}
238
19c00ddc
CM
239u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
240{
163e783e 241 return crc32c(seed, data, len);
19c00ddc
CM
242}
243
244void btrfs_csum_final(u32 crc, char *result)
245{
7e75bf3f 246 put_unaligned_le32(~crc, result);
19c00ddc
CM
247}
248
d352ac68
CM
249/*
250 * compute the csum for a btree block, and either verify it or write it
251 * into the csum field of the block.
252 */
19c00ddc
CM
253static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
254 int verify)
255{
6c41761f 256 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 257 char *result = NULL;
19c00ddc
CM
258 unsigned long len;
259 unsigned long cur_len;
260 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
261 char *kaddr;
262 unsigned long map_start;
263 unsigned long map_len;
264 int err;
265 u32 crc = ~(u32)0;
607d432d 266 unsigned long inline_result;
19c00ddc
CM
267
268 len = buf->len - offset;
d397712b 269 while (len > 0) {
19c00ddc 270 err = map_private_extent_buffer(buf, offset, 32,
a6591715 271 &kaddr, &map_start, &map_len);
d397712b 272 if (err)
19c00ddc 273 return 1;
19c00ddc
CM
274 cur_len = min(len, map_len - (offset - map_start));
275 crc = btrfs_csum_data(root, kaddr + offset - map_start,
276 crc, cur_len);
277 len -= cur_len;
278 offset += cur_len;
19c00ddc 279 }
607d432d
JB
280 if (csum_size > sizeof(inline_result)) {
281 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
282 if (!result)
283 return 1;
284 } else {
285 result = (char *)&inline_result;
286 }
287
19c00ddc
CM
288 btrfs_csum_final(crc, result);
289
290 if (verify) {
607d432d 291 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
292 u32 val;
293 u32 found = 0;
607d432d 294 memcpy(&found, result, csum_size);
e4204ded 295
607d432d 296 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 297 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
298 "failed on %llu wanted %X found %X "
299 "level %d\n",
300 root->fs_info->sb->s_id,
301 (unsigned long long)buf->start, val, found,
302 btrfs_header_level(buf));
607d432d
JB
303 if (result != (char *)&inline_result)
304 kfree(result);
19c00ddc
CM
305 return 1;
306 }
307 } else {
607d432d 308 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 309 }
607d432d
JB
310 if (result != (char *)&inline_result)
311 kfree(result);
19c00ddc
CM
312 return 0;
313}
314
d352ac68
CM
315/*
316 * we can't consider a given block up to date unless the transid of the
317 * block matches the transid in the parent node's pointer. This is how we
318 * detect blocks that either didn't get written at all or got written
319 * in the wrong place.
320 */
1259ab75 321static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
322 struct extent_buffer *eb, u64 parent_transid,
323 int atomic)
1259ab75 324{
2ac55d41 325 struct extent_state *cached_state = NULL;
1259ab75
CM
326 int ret;
327
328 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
329 return 0;
330
b9fab919
CM
331 if (atomic)
332 return -EAGAIN;
333
2ac55d41 334 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 335 0, &cached_state);
0b32f4bb 336 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
337 btrfs_header_generation(eb) == parent_transid) {
338 ret = 0;
339 goto out;
340 }
7a36ddec 341 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
342 "found %llu\n",
343 (unsigned long long)eb->start,
344 (unsigned long long)parent_transid,
345 (unsigned long long)btrfs_header_generation(eb));
1259ab75 346 ret = 1;
0b32f4bb 347 clear_extent_buffer_uptodate(eb);
33958dc6 348out:
2ac55d41
JB
349 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
350 &cached_state, GFP_NOFS);
1259ab75 351 return ret;
1259ab75
CM
352}
353
d352ac68
CM
354/*
355 * helper to read a given tree block, doing retries as required when
356 * the checksums don't match and we have alternate mirrors to try.
357 */
f188591e
CM
358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
359 struct extent_buffer *eb,
ca7a79ad 360 u64 start, u64 parent_transid)
f188591e
CM
361{
362 struct extent_io_tree *io_tree;
ea466794 363 int failed = 0;
f188591e
CM
364 int ret;
365 int num_copies = 0;
366 int mirror_num = 0;
ea466794 367 int failed_mirror = 0;
f188591e 368
a826d6dc 369 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
370 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
371 while (1) {
bb82ab88
AJ
372 ret = read_extent_buffer_pages(io_tree, eb, start,
373 WAIT_COMPLETE,
f188591e 374 btree_get_extent, mirror_num);
256dd1bb
SB
375 if (!ret) {
376 if (!verify_parent_transid(io_tree, eb,
b9fab919 377 parent_transid, 0))
256dd1bb
SB
378 break;
379 else
380 ret = -EIO;
381 }
d397712b 382
a826d6dc
JB
383 /*
384 * This buffer's crc is fine, but its contents are corrupted, so
385 * there is no reason to read the other copies, they won't be
386 * any less wrong.
387 */
388 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
389 break;
390
5d964051 391 num_copies = btrfs_num_copies(root->fs_info,
f188591e 392 eb->start, eb->len);
4235298e 393 if (num_copies == 1)
ea466794 394 break;
4235298e 395
5cf1ab56
JB
396 if (!failed_mirror) {
397 failed = 1;
398 failed_mirror = eb->read_mirror;
399 }
400
f188591e 401 mirror_num++;
ea466794
JB
402 if (mirror_num == failed_mirror)
403 mirror_num++;
404
4235298e 405 if (mirror_num > num_copies)
ea466794 406 break;
f188591e 407 }
ea466794 408
c0901581 409 if (failed && !ret && failed_mirror)
ea466794
JB
410 repair_eb_io_failure(root, eb, failed_mirror);
411
412 return ret;
f188591e 413}
19c00ddc 414
d352ac68 415/*
d397712b
CM
416 * checksum a dirty tree block before IO. This has extra checks to make sure
417 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 418 */
d397712b 419
b2950863 420static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 421{
d1310b2e 422 struct extent_io_tree *tree;
4eee4fa4 423 u64 start = page_offset(page);
19c00ddc 424 u64 found_start;
19c00ddc 425 struct extent_buffer *eb;
f188591e 426
d1310b2e 427 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 428
4f2de97a
JB
429 eb = (struct extent_buffer *)page->private;
430 if (page != eb->pages[0])
431 return 0;
19c00ddc
CM
432 found_start = btrfs_header_bytenr(eb);
433 if (found_start != start) {
55c69072 434 WARN_ON(1);
4f2de97a 435 return 0;
55c69072 436 }
55c69072 437 if (!PageUptodate(page)) {
55c69072 438 WARN_ON(1);
4f2de97a 439 return 0;
19c00ddc 440 }
19c00ddc 441 csum_tree_block(root, eb, 0);
19c00ddc
CM
442 return 0;
443}
444
2b82032c
YZ
445static int check_tree_block_fsid(struct btrfs_root *root,
446 struct extent_buffer *eb)
447{
448 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
449 u8 fsid[BTRFS_UUID_SIZE];
450 int ret = 1;
451
452 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
453 BTRFS_FSID_SIZE);
454 while (fs_devices) {
455 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
456 ret = 0;
457 break;
458 }
459 fs_devices = fs_devices->seed;
460 }
461 return ret;
462}
463
a826d6dc
JB
464#define CORRUPT(reason, eb, root, slot) \
465 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
466 "root=%llu, slot=%d\n", reason, \
467 (unsigned long long)btrfs_header_bytenr(eb), \
468 (unsigned long long)root->objectid, slot)
469
470static noinline int check_leaf(struct btrfs_root *root,
471 struct extent_buffer *leaf)
472{
473 struct btrfs_key key;
474 struct btrfs_key leaf_key;
475 u32 nritems = btrfs_header_nritems(leaf);
476 int slot;
477
478 if (nritems == 0)
479 return 0;
480
481 /* Check the 0 item */
482 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
483 BTRFS_LEAF_DATA_SIZE(root)) {
484 CORRUPT("invalid item offset size pair", leaf, root, 0);
485 return -EIO;
486 }
487
488 /*
489 * Check to make sure each items keys are in the correct order and their
490 * offsets make sense. We only have to loop through nritems-1 because
491 * we check the current slot against the next slot, which verifies the
492 * next slot's offset+size makes sense and that the current's slot
493 * offset is correct.
494 */
495 for (slot = 0; slot < nritems - 1; slot++) {
496 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
497 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
498
499 /* Make sure the keys are in the right order */
500 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
501 CORRUPT("bad key order", leaf, root, slot);
502 return -EIO;
503 }
504
505 /*
506 * Make sure the offset and ends are right, remember that the
507 * item data starts at the end of the leaf and grows towards the
508 * front.
509 */
510 if (btrfs_item_offset_nr(leaf, slot) !=
511 btrfs_item_end_nr(leaf, slot + 1)) {
512 CORRUPT("slot offset bad", leaf, root, slot);
513 return -EIO;
514 }
515
516 /*
517 * Check to make sure that we don't point outside of the leaf,
518 * just incase all the items are consistent to eachother, but
519 * all point outside of the leaf.
520 */
521 if (btrfs_item_end_nr(leaf, slot) >
522 BTRFS_LEAF_DATA_SIZE(root)) {
523 CORRUPT("slot end outside of leaf", leaf, root, slot);
524 return -EIO;
525 }
526 }
527
528 return 0;
529}
530
727011e0
CM
531struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
532 struct page *page, int max_walk)
533{
534 struct extent_buffer *eb;
535 u64 start = page_offset(page);
536 u64 target = start;
537 u64 min_start;
538
539 if (start < max_walk)
540 min_start = 0;
541 else
542 min_start = start - max_walk;
543
544 while (start >= min_start) {
545 eb = find_extent_buffer(tree, start, 0);
546 if (eb) {
547 /*
548 * we found an extent buffer and it contains our page
549 * horray!
550 */
551 if (eb->start <= target &&
552 eb->start + eb->len > target)
553 return eb;
554
555 /* we found an extent buffer that wasn't for us */
556 free_extent_buffer(eb);
557 return NULL;
558 }
559 if (start == 0)
560 break;
561 start -= PAGE_CACHE_SIZE;
562 }
563 return NULL;
564}
565
b2950863 566static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 567 struct extent_state *state, int mirror)
ce9adaa5
CM
568{
569 struct extent_io_tree *tree;
570 u64 found_start;
571 int found_level;
ce9adaa5
CM
572 struct extent_buffer *eb;
573 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 574 int ret = 0;
727011e0 575 int reads_done;
ce9adaa5 576
ce9adaa5
CM
577 if (!page->private)
578 goto out;
d397712b 579
727011e0 580 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 581 eb = (struct extent_buffer *)page->private;
d397712b 582
0b32f4bb
JB
583 /* the pending IO might have been the only thing that kept this buffer
584 * in memory. Make sure we have a ref for all this other checks
585 */
586 extent_buffer_get(eb);
587
588 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
589 if (!reads_done)
590 goto err;
f188591e 591
5cf1ab56 592 eb->read_mirror = mirror;
ea466794
JB
593 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
594 ret = -EIO;
595 goto err;
596 }
597
ce9adaa5 598 found_start = btrfs_header_bytenr(eb);
727011e0 599 if (found_start != eb->start) {
7a36ddec 600 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
601 "%llu %llu\n",
602 (unsigned long long)found_start,
603 (unsigned long long)eb->start);
f188591e 604 ret = -EIO;
ce9adaa5
CM
605 goto err;
606 }
2b82032c 607 if (check_tree_block_fsid(root, eb)) {
7a36ddec 608 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 609 (unsigned long long)eb->start);
1259ab75
CM
610 ret = -EIO;
611 goto err;
612 }
ce9adaa5
CM
613 found_level = btrfs_header_level(eb);
614
85d4e461
CM
615 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
616 eb, found_level);
4008c04a 617
ce9adaa5 618 ret = csum_tree_block(root, eb, 1);
a826d6dc 619 if (ret) {
f188591e 620 ret = -EIO;
a826d6dc
JB
621 goto err;
622 }
623
624 /*
625 * If this is a leaf block and it is corrupt, set the corrupt bit so
626 * that we don't try and read the other copies of this block, just
627 * return -EIO.
628 */
629 if (found_level == 0 && check_leaf(root, eb)) {
630 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
631 ret = -EIO;
632 }
ce9adaa5 633
0b32f4bb
JB
634 if (!ret)
635 set_extent_buffer_uptodate(eb);
ce9adaa5 636err:
4bb31e92
AJ
637 if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
638 clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
639 btree_readahead_hook(root, eb, eb->start, ret);
640 }
641
0b32f4bb
JB
642 if (ret)
643 clear_extent_buffer_uptodate(eb);
644 free_extent_buffer(eb);
ce9adaa5 645out:
f188591e 646 return ret;
ce9adaa5
CM
647}
648
ea466794 649static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 650{
4bb31e92
AJ
651 struct extent_buffer *eb;
652 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
653
4f2de97a 654 eb = (struct extent_buffer *)page->private;
ea466794 655 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 656 eb->read_mirror = failed_mirror;
ea466794 657 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 658 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
659 return -EIO; /* we fixed nothing */
660}
661
ce9adaa5 662static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
663{
664 struct end_io_wq *end_io_wq = bio->bi_private;
665 struct btrfs_fs_info *fs_info;
ce9adaa5 666
ce9adaa5 667 fs_info = end_io_wq->info;
ce9adaa5 668 end_io_wq->error = err;
8b712842
CM
669 end_io_wq->work.func = end_workqueue_fn;
670 end_io_wq->work.flags = 0;
d20f7043 671
7b6d91da 672 if (bio->bi_rw & REQ_WRITE) {
0cb59c99 673 if (end_io_wq->metadata == 1)
cad321ad
CM
674 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
675 &end_io_wq->work);
0cb59c99
JB
676 else if (end_io_wq->metadata == 2)
677 btrfs_queue_worker(&fs_info->endio_freespace_worker,
678 &end_io_wq->work);
cad321ad
CM
679 else
680 btrfs_queue_worker(&fs_info->endio_write_workers,
681 &end_io_wq->work);
d20f7043
CM
682 } else {
683 if (end_io_wq->metadata)
684 btrfs_queue_worker(&fs_info->endio_meta_workers,
685 &end_io_wq->work);
686 else
687 btrfs_queue_worker(&fs_info->endio_workers,
688 &end_io_wq->work);
689 }
ce9adaa5
CM
690}
691
0cb59c99
JB
692/*
693 * For the metadata arg you want
694 *
695 * 0 - if data
696 * 1 - if normal metadta
697 * 2 - if writing to the free space cache area
698 */
22c59948
CM
699int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
700 int metadata)
0b86a832 701{
ce9adaa5 702 struct end_io_wq *end_io_wq;
ce9adaa5
CM
703 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
704 if (!end_io_wq)
705 return -ENOMEM;
706
707 end_io_wq->private = bio->bi_private;
708 end_io_wq->end_io = bio->bi_end_io;
22c59948 709 end_io_wq->info = info;
ce9adaa5
CM
710 end_io_wq->error = 0;
711 end_io_wq->bio = bio;
22c59948 712 end_io_wq->metadata = metadata;
ce9adaa5
CM
713
714 bio->bi_private = end_io_wq;
715 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
716 return 0;
717}
718
b64a2851 719unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 720{
4854ddd0
CM
721 unsigned long limit = min_t(unsigned long,
722 info->workers.max_workers,
723 info->fs_devices->open_devices);
724 return 256 * limit;
725}
0986fe9e 726
4a69a410
CM
727static void run_one_async_start(struct btrfs_work *work)
728{
4a69a410 729 struct async_submit_bio *async;
79787eaa 730 int ret;
4a69a410
CM
731
732 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
733 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
734 async->mirror_num, async->bio_flags,
735 async->bio_offset);
736 if (ret)
737 async->error = ret;
4a69a410
CM
738}
739
740static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
741{
742 struct btrfs_fs_info *fs_info;
743 struct async_submit_bio *async;
4854ddd0 744 int limit;
8b712842
CM
745
746 async = container_of(work, struct async_submit_bio, work);
747 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 748
b64a2851 749 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
750 limit = limit * 2 / 3;
751
66657b31 752 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 753 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
754 wake_up(&fs_info->async_submit_wait);
755
79787eaa
JM
756 /* If an error occured we just want to clean up the bio and move on */
757 if (async->error) {
758 bio_endio(async->bio, async->error);
759 return;
760 }
761
4a69a410 762 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
763 async->mirror_num, async->bio_flags,
764 async->bio_offset);
4a69a410
CM
765}
766
767static void run_one_async_free(struct btrfs_work *work)
768{
769 struct async_submit_bio *async;
770
771 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
772 kfree(async);
773}
774
44b8bd7e
CM
775int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
776 int rw, struct bio *bio, int mirror_num,
c8b97818 777 unsigned long bio_flags,
eaf25d93 778 u64 bio_offset,
4a69a410
CM
779 extent_submit_bio_hook_t *submit_bio_start,
780 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
781{
782 struct async_submit_bio *async;
783
784 async = kmalloc(sizeof(*async), GFP_NOFS);
785 if (!async)
786 return -ENOMEM;
787
788 async->inode = inode;
789 async->rw = rw;
790 async->bio = bio;
791 async->mirror_num = mirror_num;
4a69a410
CM
792 async->submit_bio_start = submit_bio_start;
793 async->submit_bio_done = submit_bio_done;
794
795 async->work.func = run_one_async_start;
796 async->work.ordered_func = run_one_async_done;
797 async->work.ordered_free = run_one_async_free;
798
8b712842 799 async->work.flags = 0;
c8b97818 800 async->bio_flags = bio_flags;
eaf25d93 801 async->bio_offset = bio_offset;
8c8bee1d 802
79787eaa
JM
803 async->error = 0;
804
cb03c743 805 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 806
7b6d91da 807 if (rw & REQ_SYNC)
d313d7a3
CM
808 btrfs_set_work_high_prio(&async->work);
809
8b712842 810 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 811
d397712b 812 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
813 atomic_read(&fs_info->nr_async_submits)) {
814 wait_event(fs_info->async_submit_wait,
815 (atomic_read(&fs_info->nr_async_submits) == 0));
816 }
817
44b8bd7e
CM
818 return 0;
819}
820
ce3ed71a
CM
821static int btree_csum_one_bio(struct bio *bio)
822{
823 struct bio_vec *bvec = bio->bi_io_vec;
824 int bio_index = 0;
825 struct btrfs_root *root;
79787eaa 826 int ret = 0;
ce3ed71a
CM
827
828 WARN_ON(bio->bi_vcnt <= 0);
d397712b 829 while (bio_index < bio->bi_vcnt) {
ce3ed71a 830 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
831 ret = csum_dirty_buffer(root, bvec->bv_page);
832 if (ret)
833 break;
ce3ed71a
CM
834 bio_index++;
835 bvec++;
836 }
79787eaa 837 return ret;
ce3ed71a
CM
838}
839
4a69a410
CM
840static int __btree_submit_bio_start(struct inode *inode, int rw,
841 struct bio *bio, int mirror_num,
eaf25d93
CM
842 unsigned long bio_flags,
843 u64 bio_offset)
22c59948 844{
8b712842
CM
845 /*
846 * when we're called for a write, we're already in the async
5443be45 847 * submission context. Just jump into btrfs_map_bio
8b712842 848 */
79787eaa 849 return btree_csum_one_bio(bio);
4a69a410 850}
22c59948 851
4a69a410 852static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
853 int mirror_num, unsigned long bio_flags,
854 u64 bio_offset)
4a69a410 855{
61891923
SB
856 int ret;
857
8b712842 858 /*
4a69a410
CM
859 * when we're called for a write, we're already in the async
860 * submission context. Just jump into btrfs_map_bio
8b712842 861 */
61891923
SB
862 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
863 if (ret)
864 bio_endio(bio, ret);
865 return ret;
0b86a832
CM
866}
867
de0022b9
JB
868static int check_async_write(struct inode *inode, unsigned long bio_flags)
869{
870 if (bio_flags & EXTENT_BIO_TREE_LOG)
871 return 0;
872#ifdef CONFIG_X86
873 if (cpu_has_xmm4_2)
874 return 0;
875#endif
876 return 1;
877}
878
44b8bd7e 879static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
880 int mirror_num, unsigned long bio_flags,
881 u64 bio_offset)
44b8bd7e 882{
de0022b9 883 int async = check_async_write(inode, bio_flags);
cad321ad
CM
884 int ret;
885
7b6d91da 886 if (!(rw & REQ_WRITE)) {
4a69a410
CM
887 /*
888 * called for a read, do the setup so that checksum validation
889 * can happen in the async kernel threads
890 */
f3f266ab
CM
891 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
892 bio, 1);
1d4284bd 893 if (ret)
61891923
SB
894 goto out_w_error;
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
896 mirror_num, 0);
de0022b9
JB
897 } else if (!async) {
898 ret = btree_csum_one_bio(bio);
899 if (ret)
61891923
SB
900 goto out_w_error;
901 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
902 mirror_num, 0);
903 } else {
904 /*
905 * kthread helpers are used to submit writes so that
906 * checksumming can happen in parallel across all CPUs
907 */
908 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
909 inode, rw, bio, mirror_num, 0,
910 bio_offset,
911 __btree_submit_bio_start,
912 __btree_submit_bio_done);
44b8bd7e 913 }
d313d7a3 914
61891923
SB
915 if (ret) {
916out_w_error:
917 bio_endio(bio, ret);
918 }
919 return ret;
44b8bd7e
CM
920}
921
3dd1462e 922#ifdef CONFIG_MIGRATION
784b4e29 923static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
924 struct page *newpage, struct page *page,
925 enum migrate_mode mode)
784b4e29
CM
926{
927 /*
928 * we can't safely write a btree page from here,
929 * we haven't done the locking hook
930 */
931 if (PageDirty(page))
932 return -EAGAIN;
933 /*
934 * Buffers may be managed in a filesystem specific way.
935 * We must have no buffers or drop them.
936 */
937 if (page_has_private(page) &&
938 !try_to_release_page(page, GFP_KERNEL))
939 return -EAGAIN;
a6bc32b8 940 return migrate_page(mapping, newpage, page, mode);
784b4e29 941}
3dd1462e 942#endif
784b4e29 943
0da5468f
CM
944
945static int btree_writepages(struct address_space *mapping,
946 struct writeback_control *wbc)
947{
d1310b2e 948 struct extent_io_tree *tree;
e2d84521
MX
949 struct btrfs_fs_info *fs_info;
950 int ret;
951
d1310b2e 952 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 953 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
954
955 if (wbc->for_kupdate)
956 return 0;
957
e2d84521 958 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 959 /* this is a bit racy, but that's ok */
e2d84521
MX
960 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
961 BTRFS_DIRTY_METADATA_THRESH);
962 if (ret < 0)
793955bc 963 return 0;
793955bc 964 }
0b32f4bb 965 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
966}
967
b2950863 968static int btree_readpage(struct file *file, struct page *page)
5f39d397 969{
d1310b2e
CM
970 struct extent_io_tree *tree;
971 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 972 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 973}
22b0ebda 974
70dec807 975static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 976{
98509cfc 977 if (PageWriteback(page) || PageDirty(page))
d397712b 978 return 0;
0c4e538b
DS
979 /*
980 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
981 * slab allocation from alloc_extent_state down the callchain where
982 * it'd hit a BUG_ON as those flags are not allowed.
983 */
984 gfp_flags &= ~GFP_SLAB_BUG_MASK;
985
3083ee2e 986 return try_release_extent_buffer(page, gfp_flags);
d98237b3
CM
987}
988
5f39d397 989static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 990{
d1310b2e
CM
991 struct extent_io_tree *tree;
992 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
993 extent_invalidatepage(tree, page, offset);
994 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 995 if (PagePrivate(page)) {
d397712b
CM
996 printk(KERN_WARNING "btrfs warning page private not zero "
997 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
998 ClearPagePrivate(page);
999 set_page_private(page, 0);
1000 page_cache_release(page);
1001 }
d98237b3
CM
1002}
1003
0b32f4bb
JB
1004static int btree_set_page_dirty(struct page *page)
1005{
bb146eb2 1006#ifdef DEBUG
0b32f4bb
JB
1007 struct extent_buffer *eb;
1008
1009 BUG_ON(!PagePrivate(page));
1010 eb = (struct extent_buffer *)page->private;
1011 BUG_ON(!eb);
1012 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1013 BUG_ON(!atomic_read(&eb->refs));
1014 btrfs_assert_tree_locked(eb);
bb146eb2 1015#endif
0b32f4bb
JB
1016 return __set_page_dirty_nobuffers(page);
1017}
1018
7f09410b 1019static const struct address_space_operations btree_aops = {
d98237b3 1020 .readpage = btree_readpage,
0da5468f 1021 .writepages = btree_writepages,
5f39d397
CM
1022 .releasepage = btree_releasepage,
1023 .invalidatepage = btree_invalidatepage,
5a92bc88 1024#ifdef CONFIG_MIGRATION
784b4e29 1025 .migratepage = btree_migratepage,
5a92bc88 1026#endif
0b32f4bb 1027 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1028};
1029
ca7a79ad
CM
1030int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1031 u64 parent_transid)
090d1875 1032{
5f39d397
CM
1033 struct extent_buffer *buf = NULL;
1034 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1035 int ret = 0;
090d1875 1036
db94535d 1037 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1038 if (!buf)
090d1875 1039 return 0;
d1310b2e 1040 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1041 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1042 free_extent_buffer(buf);
de428b63 1043 return ret;
090d1875
CM
1044}
1045
ab0fff03
AJ
1046int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1047 int mirror_num, struct extent_buffer **eb)
1048{
1049 struct extent_buffer *buf = NULL;
1050 struct inode *btree_inode = root->fs_info->btree_inode;
1051 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1052 int ret;
1053
1054 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1055 if (!buf)
1056 return 0;
1057
1058 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1059
1060 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1061 btree_get_extent, mirror_num);
1062 if (ret) {
1063 free_extent_buffer(buf);
1064 return ret;
1065 }
1066
1067 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1068 free_extent_buffer(buf);
1069 return -EIO;
0b32f4bb 1070 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1071 *eb = buf;
1072 } else {
1073 free_extent_buffer(buf);
1074 }
1075 return 0;
1076}
1077
0999df54
CM
1078struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1079 u64 bytenr, u32 blocksize)
1080{
1081 struct inode *btree_inode = root->fs_info->btree_inode;
1082 struct extent_buffer *eb;
1083 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1084 bytenr, blocksize);
0999df54
CM
1085 return eb;
1086}
1087
1088struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1089 u64 bytenr, u32 blocksize)
1090{
1091 struct inode *btree_inode = root->fs_info->btree_inode;
1092 struct extent_buffer *eb;
1093
1094 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1095 bytenr, blocksize);
0999df54
CM
1096 return eb;
1097}
1098
1099
e02119d5
CM
1100int btrfs_write_tree_block(struct extent_buffer *buf)
1101{
727011e0 1102 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1103 buf->start + buf->len - 1);
e02119d5
CM
1104}
1105
1106int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1107{
727011e0 1108 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1109 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1110}
1111
0999df54 1112struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1113 u32 blocksize, u64 parent_transid)
0999df54
CM
1114{
1115 struct extent_buffer *buf = NULL;
0999df54
CM
1116 int ret;
1117
0999df54
CM
1118 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1119 if (!buf)
1120 return NULL;
0999df54 1121
ca7a79ad 1122 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1123 return buf;
ce9adaa5 1124
eb60ceac
CM
1125}
1126
d5c13f92
JM
1127void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1128 struct extent_buffer *buf)
ed2ff2cb 1129{
e2d84521
MX
1130 struct btrfs_fs_info *fs_info = root->fs_info;
1131
55c69072 1132 if (btrfs_header_generation(buf) ==
e2d84521 1133 fs_info->running_transaction->transid) {
b9447ef8 1134 btrfs_assert_tree_locked(buf);
b4ce94de 1135
b9473439 1136 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1137 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1138 -buf->len,
1139 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1140 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1141 btrfs_set_lock_blocking(buf);
1142 clear_extent_buffer_dirty(buf);
1143 }
925baedd 1144 }
5f39d397
CM
1145}
1146
143bede5
JM
1147static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1148 u32 stripesize, struct btrfs_root *root,
1149 struct btrfs_fs_info *fs_info,
1150 u64 objectid)
d97e63b6 1151{
cfaa7295 1152 root->node = NULL;
a28ec197 1153 root->commit_root = NULL;
db94535d
CM
1154 root->sectorsize = sectorsize;
1155 root->nodesize = nodesize;
1156 root->leafsize = leafsize;
87ee04eb 1157 root->stripesize = stripesize;
123abc88 1158 root->ref_cows = 0;
0b86a832 1159 root->track_dirty = 0;
c71bf099 1160 root->in_radix = 0;
d68fc57b
YZ
1161 root->orphan_item_inserted = 0;
1162 root->orphan_cleanup_state = 0;
0b86a832 1163
0f7d52f4
CM
1164 root->objectid = objectid;
1165 root->last_trans = 0;
13a8a7c8 1166 root->highest_objectid = 0;
58176a96 1167 root->name = NULL;
6bef4d31 1168 root->inode_tree = RB_ROOT;
16cdcec7 1169 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1170 root->block_rsv = NULL;
d68fc57b 1171 root->orphan_block_rsv = NULL;
0b86a832
CM
1172
1173 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1174 INIT_LIST_HEAD(&root->root_list);
2ab28f32
JB
1175 INIT_LIST_HEAD(&root->logged_list[0]);
1176 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1177 spin_lock_init(&root->orphan_lock);
5d4f98a2 1178 spin_lock_init(&root->inode_lock);
f0486c68 1179 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1180 spin_lock_init(&root->log_extents_lock[0]);
1181 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1182 mutex_init(&root->objectid_mutex);
e02119d5 1183 mutex_init(&root->log_mutex);
7237f183
YZ
1184 init_waitqueue_head(&root->log_writer_wait);
1185 init_waitqueue_head(&root->log_commit_wait[0]);
1186 init_waitqueue_head(&root->log_commit_wait[1]);
1187 atomic_set(&root->log_commit[0], 0);
1188 atomic_set(&root->log_commit[1], 0);
1189 atomic_set(&root->log_writers, 0);
2ecb7923 1190 atomic_set(&root->log_batch, 0);
8a35d95f 1191 atomic_set(&root->orphan_inodes, 0);
7237f183 1192 root->log_transid = 0;
257c62e1 1193 root->last_log_commit = 0;
d0c803c4 1194 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1195 fs_info->btree_inode->i_mapping);
017e5369 1196
3768f368
CM
1197 memset(&root->root_key, 0, sizeof(root->root_key));
1198 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1199 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1200 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1201 root->defrag_trans_start = fs_info->generation;
58176a96 1202 init_completion(&root->kobj_unregister);
6702ed49 1203 root->defrag_running = 0;
4d775673 1204 root->root_key.objectid = objectid;
0ee5dc67 1205 root->anon_dev = 0;
8ea05e3a 1206
5f3ab90a 1207 spin_lock_init(&root->root_item_lock);
3768f368
CM
1208}
1209
200a5c17
JM
1210static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1211 struct btrfs_fs_info *fs_info,
1212 u64 objectid,
1213 struct btrfs_root *root)
3768f368
CM
1214{
1215 int ret;
db94535d 1216 u32 blocksize;
84234f3a 1217 u64 generation;
3768f368 1218
db94535d 1219 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1220 tree_root->sectorsize, tree_root->stripesize,
1221 root, fs_info, objectid);
3768f368
CM
1222 ret = btrfs_find_last_root(tree_root, objectid,
1223 &root->root_item, &root->root_key);
4df27c4d
YZ
1224 if (ret > 0)
1225 return -ENOENT;
200a5c17
JM
1226 else if (ret < 0)
1227 return ret;
3768f368 1228
84234f3a 1229 generation = btrfs_root_generation(&root->root_item);
db94535d 1230 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1231 root->commit_root = NULL;
db94535d 1232 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1233 blocksize, generation);
b9fab919 1234 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1235 free_extent_buffer(root->node);
af31f5e5 1236 root->node = NULL;
68433b73
CM
1237 return -EIO;
1238 }
4df27c4d 1239 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1240 return 0;
1241}
1242
f84a8bd6 1243static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1244{
1245 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1246 if (root)
1247 root->fs_info = fs_info;
1248 return root;
1249}
1250
20897f5c
AJ
1251struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1252 struct btrfs_fs_info *fs_info,
1253 u64 objectid)
1254{
1255 struct extent_buffer *leaf;
1256 struct btrfs_root *tree_root = fs_info->tree_root;
1257 struct btrfs_root *root;
1258 struct btrfs_key key;
1259 int ret = 0;
1260 u64 bytenr;
1261
1262 root = btrfs_alloc_root(fs_info);
1263 if (!root)
1264 return ERR_PTR(-ENOMEM);
1265
1266 __setup_root(tree_root->nodesize, tree_root->leafsize,
1267 tree_root->sectorsize, tree_root->stripesize,
1268 root, fs_info, objectid);
1269 root->root_key.objectid = objectid;
1270 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1271 root->root_key.offset = 0;
1272
1273 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1274 0, objectid, NULL, 0, 0, 0);
1275 if (IS_ERR(leaf)) {
1276 ret = PTR_ERR(leaf);
1277 goto fail;
1278 }
1279
1280 bytenr = leaf->start;
1281 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1282 btrfs_set_header_bytenr(leaf, leaf->start);
1283 btrfs_set_header_generation(leaf, trans->transid);
1284 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1285 btrfs_set_header_owner(leaf, objectid);
1286 root->node = leaf;
1287
1288 write_extent_buffer(leaf, fs_info->fsid,
1289 (unsigned long)btrfs_header_fsid(leaf),
1290 BTRFS_FSID_SIZE);
1291 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1292 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1293 BTRFS_UUID_SIZE);
1294 btrfs_mark_buffer_dirty(leaf);
1295
1296 root->commit_root = btrfs_root_node(root);
1297 root->track_dirty = 1;
1298
1299
1300 root->root_item.flags = 0;
1301 root->root_item.byte_limit = 0;
1302 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1303 btrfs_set_root_generation(&root->root_item, trans->transid);
1304 btrfs_set_root_level(&root->root_item, 0);
1305 btrfs_set_root_refs(&root->root_item, 1);
1306 btrfs_set_root_used(&root->root_item, leaf->len);
1307 btrfs_set_root_last_snapshot(&root->root_item, 0);
1308 btrfs_set_root_dirid(&root->root_item, 0);
1309 root->root_item.drop_level = 0;
1310
1311 key.objectid = objectid;
1312 key.type = BTRFS_ROOT_ITEM_KEY;
1313 key.offset = 0;
1314 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1315 if (ret)
1316 goto fail;
1317
1318 btrfs_tree_unlock(leaf);
1319
1320fail:
1321 if (ret)
1322 return ERR_PTR(ret);
1323
1324 return root;
1325}
1326
7237f183
YZ
1327static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1328 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1329{
1330 struct btrfs_root *root;
1331 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1332 struct extent_buffer *leaf;
e02119d5 1333
6f07e42e 1334 root = btrfs_alloc_root(fs_info);
e02119d5 1335 if (!root)
7237f183 1336 return ERR_PTR(-ENOMEM);
e02119d5
CM
1337
1338 __setup_root(tree_root->nodesize, tree_root->leafsize,
1339 tree_root->sectorsize, tree_root->stripesize,
1340 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1341
1342 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1343 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1344 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1345 /*
1346 * log trees do not get reference counted because they go away
1347 * before a real commit is actually done. They do store pointers
1348 * to file data extents, and those reference counts still get
1349 * updated (along with back refs to the log tree).
1350 */
e02119d5
CM
1351 root->ref_cows = 0;
1352
5d4f98a2 1353 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1354 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1355 0, 0, 0);
7237f183
YZ
1356 if (IS_ERR(leaf)) {
1357 kfree(root);
1358 return ERR_CAST(leaf);
1359 }
e02119d5 1360
5d4f98a2
YZ
1361 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1362 btrfs_set_header_bytenr(leaf, leaf->start);
1363 btrfs_set_header_generation(leaf, trans->transid);
1364 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1365 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1366 root->node = leaf;
e02119d5
CM
1367
1368 write_extent_buffer(root->node, root->fs_info->fsid,
1369 (unsigned long)btrfs_header_fsid(root->node),
1370 BTRFS_FSID_SIZE);
1371 btrfs_mark_buffer_dirty(root->node);
1372 btrfs_tree_unlock(root->node);
7237f183
YZ
1373 return root;
1374}
1375
1376int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1377 struct btrfs_fs_info *fs_info)
1378{
1379 struct btrfs_root *log_root;
1380
1381 log_root = alloc_log_tree(trans, fs_info);
1382 if (IS_ERR(log_root))
1383 return PTR_ERR(log_root);
1384 WARN_ON(fs_info->log_root_tree);
1385 fs_info->log_root_tree = log_root;
1386 return 0;
1387}
1388
1389int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1390 struct btrfs_root *root)
1391{
1392 struct btrfs_root *log_root;
1393 struct btrfs_inode_item *inode_item;
1394
1395 log_root = alloc_log_tree(trans, root->fs_info);
1396 if (IS_ERR(log_root))
1397 return PTR_ERR(log_root);
1398
1399 log_root->last_trans = trans->transid;
1400 log_root->root_key.offset = root->root_key.objectid;
1401
1402 inode_item = &log_root->root_item.inode;
1403 inode_item->generation = cpu_to_le64(1);
1404 inode_item->size = cpu_to_le64(3);
1405 inode_item->nlink = cpu_to_le32(1);
1406 inode_item->nbytes = cpu_to_le64(root->leafsize);
1407 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1408
5d4f98a2 1409 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1410
1411 WARN_ON(root->log_root);
1412 root->log_root = log_root;
1413 root->log_transid = 0;
257c62e1 1414 root->last_log_commit = 0;
e02119d5
CM
1415 return 0;
1416}
1417
1418struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1419 struct btrfs_key *location)
1420{
1421 struct btrfs_root *root;
1422 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1423 struct btrfs_path *path;
5f39d397 1424 struct extent_buffer *l;
84234f3a 1425 u64 generation;
db94535d 1426 u32 blocksize;
0f7d52f4 1427 int ret = 0;
8ea05e3a 1428 int slot;
0f7d52f4 1429
6f07e42e 1430 root = btrfs_alloc_root(fs_info);
0cf6c620 1431 if (!root)
0f7d52f4 1432 return ERR_PTR(-ENOMEM);
0f7d52f4 1433 if (location->offset == (u64)-1) {
db94535d 1434 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1435 location->objectid, root);
1436 if (ret) {
0f7d52f4
CM
1437 kfree(root);
1438 return ERR_PTR(ret);
1439 }
13a8a7c8 1440 goto out;
0f7d52f4
CM
1441 }
1442
db94535d 1443 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1444 tree_root->sectorsize, tree_root->stripesize,
1445 root, fs_info, location->objectid);
0f7d52f4
CM
1446
1447 path = btrfs_alloc_path();
db5b493a
TI
1448 if (!path) {
1449 kfree(root);
1450 return ERR_PTR(-ENOMEM);
1451 }
0f7d52f4 1452 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1453 if (ret == 0) {
1454 l = path->nodes[0];
8ea05e3a
AB
1455 slot = path->slots[0];
1456 btrfs_read_root_item(tree_root, l, slot, &root->root_item);
13a8a7c8 1457 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1458 }
0f7d52f4
CM
1459 btrfs_free_path(path);
1460 if (ret) {
5e540f77 1461 kfree(root);
13a8a7c8
YZ
1462 if (ret > 0)
1463 ret = -ENOENT;
0f7d52f4
CM
1464 return ERR_PTR(ret);
1465 }
13a8a7c8 1466
84234f3a 1467 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1468 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1469 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1470 blocksize, generation);
5d4f98a2 1471 root->commit_root = btrfs_root_node(root);
79787eaa 1472 BUG_ON(!root->node); /* -ENOMEM */
13a8a7c8 1473out:
08fe4db1 1474 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1475 root->ref_cows = 1;
08fe4db1
LZ
1476 btrfs_check_and_init_root_item(&root->root_item);
1477 }
13a8a7c8 1478
5eda7b5e
CM
1479 return root;
1480}
1481
edbd8d4e
CM
1482struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1483 struct btrfs_key *location)
5eda7b5e
CM
1484{
1485 struct btrfs_root *root;
1486 int ret;
1487
edbd8d4e
CM
1488 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1489 return fs_info->tree_root;
1490 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1491 return fs_info->extent_root;
8f18cf13
CM
1492 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1493 return fs_info->chunk_root;
1494 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1495 return fs_info->dev_root;
0403e47e
YZ
1496 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1497 return fs_info->csum_root;
bcef60f2
AJ
1498 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1499 return fs_info->quota_root ? fs_info->quota_root :
1500 ERR_PTR(-ENOENT);
4df27c4d
YZ
1501again:
1502 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1503 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1504 (unsigned long)location->objectid);
4df27c4d 1505 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1506 if (root)
1507 return root;
1508
e02119d5 1509 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1510 if (IS_ERR(root))
1511 return root;
3394e160 1512
581bb050 1513 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1514 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1515 GFP_NOFS);
35a30d7c
DS
1516 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1517 ret = -ENOMEM;
581bb050 1518 goto fail;
35a30d7c 1519 }
581bb050
LZ
1520
1521 btrfs_init_free_ino_ctl(root);
1522 mutex_init(&root->fs_commit_mutex);
1523 spin_lock_init(&root->cache_lock);
1524 init_waitqueue_head(&root->cache_wait);
1525
0ee5dc67 1526 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1527 if (ret)
1528 goto fail;
3394e160 1529
d68fc57b
YZ
1530 if (btrfs_root_refs(&root->root_item) == 0) {
1531 ret = -ENOENT;
1532 goto fail;
1533 }
1534
1535 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1536 if (ret < 0)
1537 goto fail;
1538 if (ret == 0)
1539 root->orphan_item_inserted = 1;
1540
4df27c4d
YZ
1541 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1542 if (ret)
1543 goto fail;
1544
1545 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1546 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1547 (unsigned long)root->root_key.objectid,
0f7d52f4 1548 root);
d68fc57b 1549 if (ret == 0)
4df27c4d 1550 root->in_radix = 1;
d68fc57b 1551
4df27c4d
YZ
1552 spin_unlock(&fs_info->fs_roots_radix_lock);
1553 radix_tree_preload_end();
0f7d52f4 1554 if (ret) {
4df27c4d
YZ
1555 if (ret == -EEXIST) {
1556 free_fs_root(root);
1557 goto again;
1558 }
1559 goto fail;
0f7d52f4 1560 }
4df27c4d
YZ
1561
1562 ret = btrfs_find_dead_roots(fs_info->tree_root,
1563 root->root_key.objectid);
1564 WARN_ON(ret);
edbd8d4e 1565 return root;
4df27c4d
YZ
1566fail:
1567 free_fs_root(root);
1568 return ERR_PTR(ret);
edbd8d4e
CM
1569}
1570
04160088
CM
1571static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1572{
1573 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1574 int ret = 0;
04160088
CM
1575 struct btrfs_device *device;
1576 struct backing_dev_info *bdi;
b7967db7 1577
1f78160c
XG
1578 rcu_read_lock();
1579 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1580 if (!device->bdev)
1581 continue;
04160088
CM
1582 bdi = blk_get_backing_dev_info(device->bdev);
1583 if (bdi && bdi_congested(bdi, bdi_bits)) {
1584 ret = 1;
1585 break;
1586 }
1587 }
1f78160c 1588 rcu_read_unlock();
04160088
CM
1589 return ret;
1590}
1591
ad081f14
JA
1592/*
1593 * If this fails, caller must call bdi_destroy() to get rid of the
1594 * bdi again.
1595 */
04160088
CM
1596static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1597{
ad081f14
JA
1598 int err;
1599
1600 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1601 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1602 if (err)
1603 return err;
1604
4575c9cc 1605 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1606 bdi->congested_fn = btrfs_congested_fn;
1607 bdi->congested_data = info;
1608 return 0;
1609}
1610
8b712842
CM
1611/*
1612 * called by the kthread helper functions to finally call the bio end_io
1613 * functions. This is where read checksum verification actually happens
1614 */
1615static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1616{
ce9adaa5 1617 struct bio *bio;
8b712842
CM
1618 struct end_io_wq *end_io_wq;
1619 struct btrfs_fs_info *fs_info;
ce9adaa5 1620 int error;
ce9adaa5 1621
8b712842
CM
1622 end_io_wq = container_of(work, struct end_io_wq, work);
1623 bio = end_io_wq->bio;
1624 fs_info = end_io_wq->info;
ce9adaa5 1625
8b712842
CM
1626 error = end_io_wq->error;
1627 bio->bi_private = end_io_wq->private;
1628 bio->bi_end_io = end_io_wq->end_io;
1629 kfree(end_io_wq);
8b712842 1630 bio_endio(bio, error);
44b8bd7e
CM
1631}
1632
a74a4b97
CM
1633static int cleaner_kthread(void *arg)
1634{
1635 struct btrfs_root *root = arg;
1636
1637 do {
76dda93c
YZ
1638 if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1639 mutex_trylock(&root->fs_info->cleaner_mutex)) {
24bbcf04 1640 btrfs_run_delayed_iputs(root);
76dda93c
YZ
1641 btrfs_clean_old_snapshots(root);
1642 mutex_unlock(&root->fs_info->cleaner_mutex);
4cb5300b 1643 btrfs_run_defrag_inodes(root->fs_info);
76dda93c 1644 }
a74a4b97 1645
a0acae0e 1646 if (!try_to_freeze()) {
a74a4b97 1647 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1648 if (!kthread_should_stop())
1649 schedule();
a74a4b97
CM
1650 __set_current_state(TASK_RUNNING);
1651 }
1652 } while (!kthread_should_stop());
1653 return 0;
1654}
1655
1656static int transaction_kthread(void *arg)
1657{
1658 struct btrfs_root *root = arg;
1659 struct btrfs_trans_handle *trans;
1660 struct btrfs_transaction *cur;
8929ecfa 1661 u64 transid;
a74a4b97
CM
1662 unsigned long now;
1663 unsigned long delay;
914b2007 1664 bool cannot_commit;
a74a4b97
CM
1665
1666 do {
914b2007 1667 cannot_commit = false;
a74a4b97 1668 delay = HZ * 30;
a74a4b97
CM
1669 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1670
a4abeea4 1671 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1672 cur = root->fs_info->running_transaction;
1673 if (!cur) {
a4abeea4 1674 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1675 goto sleep;
1676 }
31153d81 1677
a74a4b97 1678 now = get_seconds();
8929ecfa
YZ
1679 if (!cur->blocked &&
1680 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1681 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1682 delay = HZ * 5;
1683 goto sleep;
1684 }
8929ecfa 1685 transid = cur->transid;
a4abeea4 1686 spin_unlock(&root->fs_info->trans_lock);
56bec294 1687
79787eaa 1688 /* If the file system is aborted, this will always fail. */
354aa0fb 1689 trans = btrfs_attach_transaction(root);
914b2007 1690 if (IS_ERR(trans)) {
354aa0fb
MX
1691 if (PTR_ERR(trans) != -ENOENT)
1692 cannot_commit = true;
79787eaa 1693 goto sleep;
914b2007 1694 }
8929ecfa 1695 if (transid == trans->transid) {
79787eaa 1696 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1697 } else {
1698 btrfs_end_transaction(trans, root);
1699 }
a74a4b97
CM
1700sleep:
1701 wake_up_process(root->fs_info->cleaner_kthread);
1702 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1703
a0acae0e 1704 if (!try_to_freeze()) {
a74a4b97 1705 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1706 if (!kthread_should_stop() &&
914b2007
JK
1707 (!btrfs_transaction_blocked(root->fs_info) ||
1708 cannot_commit))
8929ecfa 1709 schedule_timeout(delay);
a74a4b97
CM
1710 __set_current_state(TASK_RUNNING);
1711 }
1712 } while (!kthread_should_stop());
1713 return 0;
1714}
1715
af31f5e5
CM
1716/*
1717 * this will find the highest generation in the array of
1718 * root backups. The index of the highest array is returned,
1719 * or -1 if we can't find anything.
1720 *
1721 * We check to make sure the array is valid by comparing the
1722 * generation of the latest root in the array with the generation
1723 * in the super block. If they don't match we pitch it.
1724 */
1725static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1726{
1727 u64 cur;
1728 int newest_index = -1;
1729 struct btrfs_root_backup *root_backup;
1730 int i;
1731
1732 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1733 root_backup = info->super_copy->super_roots + i;
1734 cur = btrfs_backup_tree_root_gen(root_backup);
1735 if (cur == newest_gen)
1736 newest_index = i;
1737 }
1738
1739 /* check to see if we actually wrapped around */
1740 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1741 root_backup = info->super_copy->super_roots;
1742 cur = btrfs_backup_tree_root_gen(root_backup);
1743 if (cur == newest_gen)
1744 newest_index = 0;
1745 }
1746 return newest_index;
1747}
1748
1749
1750/*
1751 * find the oldest backup so we know where to store new entries
1752 * in the backup array. This will set the backup_root_index
1753 * field in the fs_info struct
1754 */
1755static void find_oldest_super_backup(struct btrfs_fs_info *info,
1756 u64 newest_gen)
1757{
1758 int newest_index = -1;
1759
1760 newest_index = find_newest_super_backup(info, newest_gen);
1761 /* if there was garbage in there, just move along */
1762 if (newest_index == -1) {
1763 info->backup_root_index = 0;
1764 } else {
1765 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1766 }
1767}
1768
1769/*
1770 * copy all the root pointers into the super backup array.
1771 * this will bump the backup pointer by one when it is
1772 * done
1773 */
1774static void backup_super_roots(struct btrfs_fs_info *info)
1775{
1776 int next_backup;
1777 struct btrfs_root_backup *root_backup;
1778 int last_backup;
1779
1780 next_backup = info->backup_root_index;
1781 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1782 BTRFS_NUM_BACKUP_ROOTS;
1783
1784 /*
1785 * just overwrite the last backup if we're at the same generation
1786 * this happens only at umount
1787 */
1788 root_backup = info->super_for_commit->super_roots + last_backup;
1789 if (btrfs_backup_tree_root_gen(root_backup) ==
1790 btrfs_header_generation(info->tree_root->node))
1791 next_backup = last_backup;
1792
1793 root_backup = info->super_for_commit->super_roots + next_backup;
1794
1795 /*
1796 * make sure all of our padding and empty slots get zero filled
1797 * regardless of which ones we use today
1798 */
1799 memset(root_backup, 0, sizeof(*root_backup));
1800
1801 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1802
1803 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1804 btrfs_set_backup_tree_root_gen(root_backup,
1805 btrfs_header_generation(info->tree_root->node));
1806
1807 btrfs_set_backup_tree_root_level(root_backup,
1808 btrfs_header_level(info->tree_root->node));
1809
1810 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1811 btrfs_set_backup_chunk_root_gen(root_backup,
1812 btrfs_header_generation(info->chunk_root->node));
1813 btrfs_set_backup_chunk_root_level(root_backup,
1814 btrfs_header_level(info->chunk_root->node));
1815
1816 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1817 btrfs_set_backup_extent_root_gen(root_backup,
1818 btrfs_header_generation(info->extent_root->node));
1819 btrfs_set_backup_extent_root_level(root_backup,
1820 btrfs_header_level(info->extent_root->node));
1821
7c7e82a7
CM
1822 /*
1823 * we might commit during log recovery, which happens before we set
1824 * the fs_root. Make sure it is valid before we fill it in.
1825 */
1826 if (info->fs_root && info->fs_root->node) {
1827 btrfs_set_backup_fs_root(root_backup,
1828 info->fs_root->node->start);
1829 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1830 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1831 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1832 btrfs_header_level(info->fs_root->node));
7c7e82a7 1833 }
af31f5e5
CM
1834
1835 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1836 btrfs_set_backup_dev_root_gen(root_backup,
1837 btrfs_header_generation(info->dev_root->node));
1838 btrfs_set_backup_dev_root_level(root_backup,
1839 btrfs_header_level(info->dev_root->node));
1840
1841 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1842 btrfs_set_backup_csum_root_gen(root_backup,
1843 btrfs_header_generation(info->csum_root->node));
1844 btrfs_set_backup_csum_root_level(root_backup,
1845 btrfs_header_level(info->csum_root->node));
1846
1847 btrfs_set_backup_total_bytes(root_backup,
1848 btrfs_super_total_bytes(info->super_copy));
1849 btrfs_set_backup_bytes_used(root_backup,
1850 btrfs_super_bytes_used(info->super_copy));
1851 btrfs_set_backup_num_devices(root_backup,
1852 btrfs_super_num_devices(info->super_copy));
1853
1854 /*
1855 * if we don't copy this out to the super_copy, it won't get remembered
1856 * for the next commit
1857 */
1858 memcpy(&info->super_copy->super_roots,
1859 &info->super_for_commit->super_roots,
1860 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1861}
1862
1863/*
1864 * this copies info out of the root backup array and back into
1865 * the in-memory super block. It is meant to help iterate through
1866 * the array, so you send it the number of backups you've already
1867 * tried and the last backup index you used.
1868 *
1869 * this returns -1 when it has tried all the backups
1870 */
1871static noinline int next_root_backup(struct btrfs_fs_info *info,
1872 struct btrfs_super_block *super,
1873 int *num_backups_tried, int *backup_index)
1874{
1875 struct btrfs_root_backup *root_backup;
1876 int newest = *backup_index;
1877
1878 if (*num_backups_tried == 0) {
1879 u64 gen = btrfs_super_generation(super);
1880
1881 newest = find_newest_super_backup(info, gen);
1882 if (newest == -1)
1883 return -1;
1884
1885 *backup_index = newest;
1886 *num_backups_tried = 1;
1887 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1888 /* we've tried all the backups, all done */
1889 return -1;
1890 } else {
1891 /* jump to the next oldest backup */
1892 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1893 BTRFS_NUM_BACKUP_ROOTS;
1894 *backup_index = newest;
1895 *num_backups_tried += 1;
1896 }
1897 root_backup = super->super_roots + newest;
1898
1899 btrfs_set_super_generation(super,
1900 btrfs_backup_tree_root_gen(root_backup));
1901 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1902 btrfs_set_super_root_level(super,
1903 btrfs_backup_tree_root_level(root_backup));
1904 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1905
1906 /*
1907 * fixme: the total bytes and num_devices need to match or we should
1908 * need a fsck
1909 */
1910 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1911 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1912 return 0;
1913}
1914
1915/* helper to cleanup tree roots */
1916static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1917{
1918 free_extent_buffer(info->tree_root->node);
1919 free_extent_buffer(info->tree_root->commit_root);
1920 free_extent_buffer(info->dev_root->node);
1921 free_extent_buffer(info->dev_root->commit_root);
1922 free_extent_buffer(info->extent_root->node);
1923 free_extent_buffer(info->extent_root->commit_root);
1924 free_extent_buffer(info->csum_root->node);
1925 free_extent_buffer(info->csum_root->commit_root);
bcef60f2
AJ
1926 if (info->quota_root) {
1927 free_extent_buffer(info->quota_root->node);
1928 free_extent_buffer(info->quota_root->commit_root);
1929 }
af31f5e5
CM
1930
1931 info->tree_root->node = NULL;
1932 info->tree_root->commit_root = NULL;
1933 info->dev_root->node = NULL;
1934 info->dev_root->commit_root = NULL;
1935 info->extent_root->node = NULL;
1936 info->extent_root->commit_root = NULL;
1937 info->csum_root->node = NULL;
1938 info->csum_root->commit_root = NULL;
bcef60f2
AJ
1939 if (info->quota_root) {
1940 info->quota_root->node = NULL;
1941 info->quota_root->commit_root = NULL;
1942 }
af31f5e5
CM
1943
1944 if (chunk_root) {
1945 free_extent_buffer(info->chunk_root->node);
1946 free_extent_buffer(info->chunk_root->commit_root);
1947 info->chunk_root->node = NULL;
1948 info->chunk_root->commit_root = NULL;
1949 }
1950}
1951
1952
ad2b2c80
AV
1953int open_ctree(struct super_block *sb,
1954 struct btrfs_fs_devices *fs_devices,
1955 char *options)
2e635a27 1956{
db94535d
CM
1957 u32 sectorsize;
1958 u32 nodesize;
1959 u32 leafsize;
1960 u32 blocksize;
87ee04eb 1961 u32 stripesize;
84234f3a 1962 u64 generation;
f2b636e8 1963 u64 features;
3de4586c 1964 struct btrfs_key location;
a061fc8d 1965 struct buffer_head *bh;
4d34b278 1966 struct btrfs_super_block *disk_super;
815745cf 1967 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 1968 struct btrfs_root *tree_root;
4d34b278
ID
1969 struct btrfs_root *extent_root;
1970 struct btrfs_root *csum_root;
1971 struct btrfs_root *chunk_root;
1972 struct btrfs_root *dev_root;
bcef60f2 1973 struct btrfs_root *quota_root;
e02119d5 1974 struct btrfs_root *log_tree_root;
eb60ceac 1975 int ret;
e58ca020 1976 int err = -EINVAL;
af31f5e5
CM
1977 int num_backups_tried = 0;
1978 int backup_index = 0;
4543df7e 1979
f84a8bd6 1980 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
1981 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1982 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1983 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1984 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 1985 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 1986
f84a8bd6 1987 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 1988 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
1989 err = -ENOMEM;
1990 goto fail;
1991 }
76dda93c
YZ
1992
1993 ret = init_srcu_struct(&fs_info->subvol_srcu);
1994 if (ret) {
1995 err = ret;
1996 goto fail;
1997 }
1998
1999 ret = setup_bdi(fs_info, &fs_info->bdi);
2000 if (ret) {
2001 err = ret;
2002 goto fail_srcu;
2003 }
2004
e2d84521
MX
2005 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2006 if (ret) {
2007 err = ret;
2008 goto fail_bdi;
2009 }
2010 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2011 (1 + ilog2(nr_cpu_ids));
2012
76dda93c
YZ
2013 fs_info->btree_inode = new_inode(sb);
2014 if (!fs_info->btree_inode) {
2015 err = -ENOMEM;
e2d84521 2016 goto fail_dirty_metadata_bytes;
76dda93c
YZ
2017 }
2018
a6591715 2019 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2020
76dda93c 2021 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2022 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2023 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2024 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2025 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
5a3f23d5 2026 INIT_LIST_HEAD(&fs_info->ordered_operations);
11833d66 2027 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2028 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2029 spin_lock_init(&fs_info->trans_lock);
76dda93c 2030 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2031 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2032 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2033 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2
JS
2034 spin_lock_init(&fs_info->tree_mod_seq_lock);
2035 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2036 mutex_init(&fs_info->reloc_mutex);
19c00ddc 2037
58176a96 2038 init_completion(&fs_info->kobj_unregister);
0b86a832 2039 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2040 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2041 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2042 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2043 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2044 BTRFS_BLOCK_RSV_GLOBAL);
2045 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2046 BTRFS_BLOCK_RSV_DELALLOC);
2047 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2048 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2049 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2050 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2051 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2052 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2053 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2054 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2055 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2056 atomic_set(&fs_info->defrag_running, 0);
f29021b2 2057 atomic_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2058 fs_info->sb = sb;
6f568d35 2059 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2060 fs_info->metadata_ratio = 0;
4cb5300b 2061 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2062 fs_info->trans_no_join = 0;
2bf64758 2063 fs_info->free_chunk_space = 0;
f29021b2 2064 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2065
90519d66
AJ
2066 /* readahead state */
2067 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2068 spin_lock_init(&fs_info->reada_lock);
c8b97818 2069
b34b086c
CM
2070 fs_info->thread_pool_size = min_t(unsigned long,
2071 num_online_cpus() + 2, 8);
0afbaf8c 2072
3eaa2885
CM
2073 INIT_LIST_HEAD(&fs_info->ordered_extents);
2074 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2075 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2076 GFP_NOFS);
2077 if (!fs_info->delayed_root) {
2078 err = -ENOMEM;
2079 goto fail_iput;
2080 }
2081 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2082
a2de733c
AJ
2083 mutex_init(&fs_info->scrub_lock);
2084 atomic_set(&fs_info->scrubs_running, 0);
2085 atomic_set(&fs_info->scrub_pause_req, 0);
2086 atomic_set(&fs_info->scrubs_paused, 0);
2087 atomic_set(&fs_info->scrub_cancel_req, 0);
2088 init_waitqueue_head(&fs_info->scrub_pause_wait);
2089 init_rwsem(&fs_info->scrub_super_lock);
2090 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2091#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2092 fs_info->check_integrity_print_mask = 0;
2093#endif
a2de733c 2094
c9e9f97b
ID
2095 spin_lock_init(&fs_info->balance_lock);
2096 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2097 atomic_set(&fs_info->balance_running, 0);
2098 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2099 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2100 fs_info->balance_ctl = NULL;
837d5b6e 2101 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2102
a061fc8d
CM
2103 sb->s_blocksize = 4096;
2104 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2105 sb->s_bdi = &fs_info->bdi;
a061fc8d 2106
76dda93c 2107 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2108 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2109 /*
2110 * we set the i_size on the btree inode to the max possible int.
2111 * the real end of the address space is determined by all of
2112 * the devices in the system
2113 */
2114 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2115 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2116 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2117
5d4f98a2 2118 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2119 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2120 fs_info->btree_inode->i_mapping);
0b32f4bb 2121 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2122 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2123
2124 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2125
76dda93c
YZ
2126 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2127 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2128 sizeof(struct btrfs_key));
72ac3c0d
JB
2129 set_bit(BTRFS_INODE_DUMMY,
2130 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2131 insert_inode_hash(fs_info->btree_inode);
76dda93c 2132
0f9dd46c 2133 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2134 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2135 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2136
11833d66 2137 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2138 fs_info->btree_inode->i_mapping);
11833d66 2139 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2140 fs_info->btree_inode->i_mapping);
11833d66 2141 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2142 fs_info->do_barriers = 1;
e18e4809 2143
39279cc3 2144
5a3f23d5 2145 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2146 mutex_init(&fs_info->tree_log_mutex);
925baedd 2147 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2148 mutex_init(&fs_info->transaction_kthread_mutex);
2149 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2150 mutex_init(&fs_info->volume_mutex);
276e680d 2151 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2152 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2153 init_rwsem(&fs_info->subvol_sem);
e922e087
SB
2154 fs_info->dev_replace.lock_owner = 0;
2155 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2156 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2157 mutex_init(&fs_info->dev_replace.lock_management_lock);
2158 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2159
416ac51d
AJ
2160 spin_lock_init(&fs_info->qgroup_lock);
2161 fs_info->qgroup_tree = RB_ROOT;
2162 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2163 fs_info->qgroup_seq = 1;
2164 fs_info->quota_enabled = 0;
2165 fs_info->pending_quota_state = 0;
2166
fa9c0d79
CM
2167 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2168 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2169
e6dcd2dc 2170 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2171 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2172 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2173 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2174
0b86a832 2175 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2176 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2177
3c4bb26b 2178 invalidate_bdev(fs_devices->latest_bdev);
a512bbf8 2179 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2180 if (!bh) {
2181 err = -EINVAL;
16cdcec7 2182 goto fail_alloc;
20b45077 2183 }
39279cc3 2184
6c41761f
DS
2185 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2186 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2187 sizeof(*fs_info->super_for_commit));
a061fc8d 2188 brelse(bh);
5f39d397 2189
6c41761f 2190 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2191
6c41761f 2192 disk_super = fs_info->super_copy;
0f7d52f4 2193 if (!btrfs_super_root(disk_super))
16cdcec7 2194 goto fail_alloc;
0f7d52f4 2195
acce952b 2196 /* check FS state, whether FS is broken. */
2197 fs_info->fs_state |= btrfs_super_flags(disk_super);
2198
fcd1f065
DS
2199 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2200 if (ret) {
2201 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2202 err = ret;
2203 goto fail_alloc;
2204 }
acce952b 2205
af31f5e5
CM
2206 /*
2207 * run through our array of backup supers and setup
2208 * our ring pointer to the oldest one
2209 */
2210 generation = btrfs_super_generation(disk_super);
2211 find_oldest_super_backup(fs_info, generation);
2212
75e7cb7f
LB
2213 /*
2214 * In the long term, we'll store the compression type in the super
2215 * block, and it'll be used for per file compression control.
2216 */
2217 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2218
2b82032c
YZ
2219 ret = btrfs_parse_options(tree_root, options);
2220 if (ret) {
2221 err = ret;
16cdcec7 2222 goto fail_alloc;
2b82032c 2223 }
dfe25020 2224
f2b636e8
JB
2225 features = btrfs_super_incompat_flags(disk_super) &
2226 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2227 if (features) {
2228 printk(KERN_ERR "BTRFS: couldn't mount because of "
2229 "unsupported optional features (%Lx).\n",
21380931 2230 (unsigned long long)features);
f2b636e8 2231 err = -EINVAL;
16cdcec7 2232 goto fail_alloc;
f2b636e8
JB
2233 }
2234
727011e0
CM
2235 if (btrfs_super_leafsize(disk_super) !=
2236 btrfs_super_nodesize(disk_super)) {
2237 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2238 "blocksizes don't match. node %d leaf %d\n",
2239 btrfs_super_nodesize(disk_super),
2240 btrfs_super_leafsize(disk_super));
2241 err = -EINVAL;
2242 goto fail_alloc;
2243 }
2244 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2245 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2246 "blocksize (%d) was too large\n",
2247 btrfs_super_leafsize(disk_super));
2248 err = -EINVAL;
2249 goto fail_alloc;
2250 }
2251
5d4f98a2 2252 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2253 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2254 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2255 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0
CM
2256
2257 /*
2258 * flag our filesystem as having big metadata blocks if
2259 * they are bigger than the page size
2260 */
2261 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2262 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2263 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2264 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2265 }
2266
bc3f116f
CM
2267 nodesize = btrfs_super_nodesize(disk_super);
2268 leafsize = btrfs_super_leafsize(disk_super);
2269 sectorsize = btrfs_super_sectorsize(disk_super);
2270 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2271 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2272
2273 /*
2274 * mixed block groups end up with duplicate but slightly offset
2275 * extent buffers for the same range. It leads to corruptions
2276 */
2277 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2278 (sectorsize != leafsize)) {
2279 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2280 "are not allowed for mixed block groups on %s\n",
2281 sb->s_id);
2282 goto fail_alloc;
2283 }
2284
a6fa6fae 2285 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2286
f2b636e8
JB
2287 features = btrfs_super_compat_ro_flags(disk_super) &
2288 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2289 if (!(sb->s_flags & MS_RDONLY) && features) {
2290 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2291 "unsupported option features (%Lx).\n",
21380931 2292 (unsigned long long)features);
f2b636e8 2293 err = -EINVAL;
16cdcec7 2294 goto fail_alloc;
f2b636e8 2295 }
61d92c32
CM
2296
2297 btrfs_init_workers(&fs_info->generic_worker,
2298 "genwork", 1, NULL);
2299
5443be45 2300 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2301 fs_info->thread_pool_size,
2302 &fs_info->generic_worker);
c8b97818 2303
771ed689 2304 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2305 fs_info->thread_pool_size,
2306 &fs_info->generic_worker);
771ed689 2307
8ccf6f19
MX
2308 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2309 fs_info->thread_pool_size,
2310 &fs_info->generic_worker);
2311
5443be45 2312 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2313 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2314 fs_info->thread_pool_size),
2315 &fs_info->generic_worker);
61b49440 2316
bab39bf9
JB
2317 btrfs_init_workers(&fs_info->caching_workers, "cache",
2318 2, &fs_info->generic_worker);
2319
61b49440
CM
2320 /* a higher idle thresh on the submit workers makes it much more
2321 * likely that bios will be send down in a sane order to the
2322 * devices
2323 */
2324 fs_info->submit_workers.idle_thresh = 64;
53863232 2325
771ed689 2326 fs_info->workers.idle_thresh = 16;
4a69a410 2327 fs_info->workers.ordered = 1;
61b49440 2328
771ed689
CM
2329 fs_info->delalloc_workers.idle_thresh = 2;
2330 fs_info->delalloc_workers.ordered = 1;
2331
61d92c32
CM
2332 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2333 &fs_info->generic_worker);
5443be45 2334 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2335 fs_info->thread_pool_size,
2336 &fs_info->generic_worker);
d20f7043 2337 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2338 fs_info->thread_pool_size,
2339 &fs_info->generic_worker);
cad321ad 2340 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2341 "endio-meta-write", fs_info->thread_pool_size,
2342 &fs_info->generic_worker);
5443be45 2343 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2344 fs_info->thread_pool_size,
2345 &fs_info->generic_worker);
0cb59c99
JB
2346 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2347 1, &fs_info->generic_worker);
16cdcec7
MX
2348 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2349 fs_info->thread_pool_size,
2350 &fs_info->generic_worker);
90519d66
AJ
2351 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2352 fs_info->thread_pool_size,
2353 &fs_info->generic_worker);
61b49440
CM
2354
2355 /*
2356 * endios are largely parallel and should have a very
2357 * low idle thresh
2358 */
2359 fs_info->endio_workers.idle_thresh = 4;
b51912c9
CM
2360 fs_info->endio_meta_workers.idle_thresh = 4;
2361
9042846b
CM
2362 fs_info->endio_write_workers.idle_thresh = 2;
2363 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2364 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2365
0dc3b84a
JB
2366 /*
2367 * btrfs_start_workers can really only fail because of ENOMEM so just
2368 * return -ENOMEM if any of these fail.
2369 */
2370 ret = btrfs_start_workers(&fs_info->workers);
2371 ret |= btrfs_start_workers(&fs_info->generic_worker);
2372 ret |= btrfs_start_workers(&fs_info->submit_workers);
2373 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2374 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2375 ret |= btrfs_start_workers(&fs_info->endio_workers);
2376 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2377 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2378 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2379 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2380 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2381 ret |= btrfs_start_workers(&fs_info->caching_workers);
2382 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2383 ret |= btrfs_start_workers(&fs_info->flush_workers);
0dc3b84a 2384 if (ret) {
fed425c7 2385 err = -ENOMEM;
0dc3b84a
JB
2386 goto fail_sb_buffer;
2387 }
4543df7e 2388
4575c9cc 2389 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2390 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2391 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2392
db94535d
CM
2393 tree_root->nodesize = nodesize;
2394 tree_root->leafsize = leafsize;
2395 tree_root->sectorsize = sectorsize;
87ee04eb 2396 tree_root->stripesize = stripesize;
a061fc8d
CM
2397
2398 sb->s_blocksize = sectorsize;
2399 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2400
39279cc3
CM
2401 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2402 sizeof(disk_super->magic))) {
d397712b 2403 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2404 goto fail_sb_buffer;
2405 }
19c00ddc 2406
8d082fb7
LB
2407 if (sectorsize != PAGE_SIZE) {
2408 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2409 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2410 goto fail_sb_buffer;
2411 }
2412
925baedd 2413 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2414 ret = btrfs_read_sys_array(tree_root);
925baedd 2415 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2416 if (ret) {
d397712b
CM
2417 printk(KERN_WARNING "btrfs: failed to read the system "
2418 "array on %s\n", sb->s_id);
5d4f98a2 2419 goto fail_sb_buffer;
84eed90f 2420 }
0b86a832
CM
2421
2422 blocksize = btrfs_level_size(tree_root,
2423 btrfs_super_chunk_root_level(disk_super));
84234f3a 2424 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2425
2426 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2427 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2428
2429 chunk_root->node = read_tree_block(chunk_root,
2430 btrfs_super_chunk_root(disk_super),
84234f3a 2431 blocksize, generation);
79787eaa 2432 BUG_ON(!chunk_root->node); /* -ENOMEM */
83121942
DW
2433 if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2434 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2435 sb->s_id);
af31f5e5 2436 goto fail_tree_roots;
83121942 2437 }
5d4f98a2
YZ
2438 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2439 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2440
e17cade2 2441 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2442 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2443 BTRFS_UUID_SIZE);
e17cade2 2444
0b86a832 2445 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2446 if (ret) {
d397712b
CM
2447 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2448 sb->s_id);
af31f5e5 2449 goto fail_tree_roots;
2b82032c 2450 }
0b86a832 2451
8dabb742
SB
2452 /*
2453 * keep the device that is marked to be the target device for the
2454 * dev_replace procedure
2455 */
2456 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2457
a6b0d5c8
CM
2458 if (!fs_devices->latest_bdev) {
2459 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2460 sb->s_id);
2461 goto fail_tree_roots;
2462 }
2463
af31f5e5 2464retry_root_backup:
db94535d
CM
2465 blocksize = btrfs_level_size(tree_root,
2466 btrfs_super_root_level(disk_super));
84234f3a 2467 generation = btrfs_super_generation(disk_super);
0b86a832 2468
e20d96d6 2469 tree_root->node = read_tree_block(tree_root,
db94535d 2470 btrfs_super_root(disk_super),
84234f3a 2471 blocksize, generation);
af31f5e5
CM
2472 if (!tree_root->node ||
2473 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2474 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2475 sb->s_id);
af31f5e5
CM
2476
2477 goto recovery_tree_root;
83121942 2478 }
af31f5e5 2479
5d4f98a2
YZ
2480 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2481 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2482
2483 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2484 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2485 if (ret)
af31f5e5 2486 goto recovery_tree_root;
0b86a832
CM
2487 extent_root->track_dirty = 1;
2488
2489 ret = find_and_setup_root(tree_root, fs_info,
2490 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2491 if (ret)
af31f5e5 2492 goto recovery_tree_root;
5d4f98a2 2493 dev_root->track_dirty = 1;
3768f368 2494
d20f7043
CM
2495 ret = find_and_setup_root(tree_root, fs_info,
2496 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2497 if (ret)
af31f5e5 2498 goto recovery_tree_root;
d20f7043
CM
2499 csum_root->track_dirty = 1;
2500
bcef60f2
AJ
2501 ret = find_and_setup_root(tree_root, fs_info,
2502 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2503 if (ret) {
2504 kfree(quota_root);
2505 quota_root = fs_info->quota_root = NULL;
2506 } else {
2507 quota_root->track_dirty = 1;
2508 fs_info->quota_enabled = 1;
2509 fs_info->pending_quota_state = 1;
2510 }
2511
8929ecfa
YZ
2512 fs_info->generation = generation;
2513 fs_info->last_trans_committed = generation;
8929ecfa 2514
68310a5e
ID
2515 ret = btrfs_recover_balance(fs_info);
2516 if (ret) {
2517 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2518 goto fail_block_groups;
2519 }
2520
733f4fbb
SB
2521 ret = btrfs_init_dev_stats(fs_info);
2522 if (ret) {
2523 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2524 ret);
2525 goto fail_block_groups;
2526 }
2527
8dabb742
SB
2528 ret = btrfs_init_dev_replace(fs_info);
2529 if (ret) {
2530 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2531 goto fail_block_groups;
2532 }
2533
2534 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2535
c59021f8 2536 ret = btrfs_init_space_info(fs_info);
2537 if (ret) {
2538 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2539 goto fail_block_groups;
2540 }
2541
1b1d1f66
JB
2542 ret = btrfs_read_block_groups(extent_root);
2543 if (ret) {
2544 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2545 goto fail_block_groups;
2546 }
5af3e8cc
SB
2547 fs_info->num_tolerated_disk_barrier_failures =
2548 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2549 if (fs_info->fs_devices->missing_devices >
2550 fs_info->num_tolerated_disk_barrier_failures &&
2551 !(sb->s_flags & MS_RDONLY)) {
2552 printk(KERN_WARNING
2553 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2554 goto fail_block_groups;
2555 }
9078a3e1 2556
a74a4b97
CM
2557 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2558 "btrfs-cleaner");
57506d50 2559 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2560 goto fail_block_groups;
a74a4b97
CM
2561
2562 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2563 tree_root,
2564 "btrfs-transaction");
57506d50 2565 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2566 goto fail_cleaner;
a74a4b97 2567
c289811c
CM
2568 if (!btrfs_test_opt(tree_root, SSD) &&
2569 !btrfs_test_opt(tree_root, NOSSD) &&
2570 !fs_info->fs_devices->rotating) {
2571 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2572 "mode\n");
2573 btrfs_set_opt(fs_info->mount_opt, SSD);
2574 }
2575
21adbd5c
SB
2576#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2577 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2578 ret = btrfsic_mount(tree_root, fs_devices,
2579 btrfs_test_opt(tree_root,
2580 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2581 1 : 0,
2582 fs_info->check_integrity_print_mask);
2583 if (ret)
2584 printk(KERN_WARNING "btrfs: failed to initialize"
2585 " integrity check module %s\n", sb->s_id);
2586 }
2587#endif
bcef60f2
AJ
2588 ret = btrfs_read_qgroup_config(fs_info);
2589 if (ret)
2590 goto fail_trans_kthread;
21adbd5c 2591
acce952b 2592 /* do not make disk changes in broken FS */
68ce9682 2593 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2594 u64 bytenr = btrfs_super_log_root(disk_super);
2595
7c2ca468 2596 if (fs_devices->rw_devices == 0) {
d397712b
CM
2597 printk(KERN_WARNING "Btrfs log replay required "
2598 "on RO media\n");
7c2ca468 2599 err = -EIO;
bcef60f2 2600 goto fail_qgroup;
7c2ca468 2601 }
e02119d5
CM
2602 blocksize =
2603 btrfs_level_size(tree_root,
2604 btrfs_super_log_root_level(disk_super));
d18a2c44 2605
6f07e42e 2606 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2607 if (!log_tree_root) {
2608 err = -ENOMEM;
bcef60f2 2609 goto fail_qgroup;
676e4c86 2610 }
e02119d5
CM
2611
2612 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2613 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2614
2615 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2616 blocksize,
2617 generation + 1);
79787eaa 2618 /* returns with log_tree_root freed on success */
e02119d5 2619 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2620 if (ret) {
2621 btrfs_error(tree_root->fs_info, ret,
2622 "Failed to recover log tree");
2623 free_extent_buffer(log_tree_root->node);
2624 kfree(log_tree_root);
2625 goto fail_trans_kthread;
2626 }
e556ce2c
YZ
2627
2628 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2629 ret = btrfs_commit_super(tree_root);
2630 if (ret)
2631 goto fail_trans_kthread;
e556ce2c 2632 }
e02119d5 2633 }
1a40e23b 2634
76dda93c 2635 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2636 if (ret)
2637 goto fail_trans_kthread;
76dda93c 2638
7c2ca468 2639 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2640 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2641 if (ret)
2642 goto fail_trans_kthread;
d68fc57b 2643
5d4f98a2 2644 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2645 if (ret < 0) {
2646 printk(KERN_WARNING
2647 "btrfs: failed to recover relocation\n");
2648 err = -EINVAL;
bcef60f2 2649 goto fail_qgroup;
d7ce5843 2650 }
7c2ca468 2651 }
1a40e23b 2652
3de4586c
CM
2653 location.objectid = BTRFS_FS_TREE_OBJECTID;
2654 location.type = BTRFS_ROOT_ITEM_KEY;
2655 location.offset = (u64)-1;
2656
3de4586c
CM
2657 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2658 if (!fs_info->fs_root)
bcef60f2 2659 goto fail_qgroup;
3140c9a3
DC
2660 if (IS_ERR(fs_info->fs_root)) {
2661 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2662 goto fail_qgroup;
3140c9a3 2663 }
c289811c 2664
2b6ba629
ID
2665 if (sb->s_flags & MS_RDONLY)
2666 return 0;
59641015 2667
2b6ba629
ID
2668 down_read(&fs_info->cleanup_work_sem);
2669 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2670 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2671 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2672 close_ctree(tree_root);
2673 return ret;
2674 }
2675 up_read(&fs_info->cleanup_work_sem);
59641015 2676
2b6ba629
ID
2677 ret = btrfs_resume_balance_async(fs_info);
2678 if (ret) {
2679 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2680 close_ctree(tree_root);
2681 return ret;
e3acc2a6
JB
2682 }
2683
8dabb742
SB
2684 ret = btrfs_resume_dev_replace_async(fs_info);
2685 if (ret) {
2686 pr_warn("btrfs: failed to resume dev_replace\n");
2687 close_ctree(tree_root);
2688 return ret;
2689 }
2690
ad2b2c80 2691 return 0;
39279cc3 2692
bcef60f2
AJ
2693fail_qgroup:
2694 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2695fail_trans_kthread:
2696 kthread_stop(fs_info->transaction_kthread);
3f157a2f 2697fail_cleaner:
a74a4b97 2698 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2699
2700 /*
2701 * make sure we're done with the btree inode before we stop our
2702 * kthreads
2703 */
2704 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2705 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2706
1b1d1f66
JB
2707fail_block_groups:
2708 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2709
2710fail_tree_roots:
2711 free_root_pointers(fs_info, 1);
2712
39279cc3 2713fail_sb_buffer:
61d92c32 2714 btrfs_stop_workers(&fs_info->generic_worker);
306c8b68 2715 btrfs_stop_workers(&fs_info->readahead_workers);
247e743c 2716 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 2717 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
2718 btrfs_stop_workers(&fs_info->workers);
2719 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 2720 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 2721 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 2722 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 2723 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 2724 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 2725 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 2726 btrfs_stop_workers(&fs_info->caching_workers);
8ccf6f19 2727 btrfs_stop_workers(&fs_info->flush_workers);
16cdcec7 2728fail_alloc:
4543df7e 2729fail_iput:
586e46e2
ID
2730 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2731
7c2ca468 2732 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4543df7e 2733 iput(fs_info->btree_inode);
e2d84521
MX
2734fail_dirty_metadata_bytes:
2735 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2736fail_bdi:
7e662854 2737 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2738fail_srcu:
2739 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2740fail:
586e46e2 2741 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2742 return err;
af31f5e5
CM
2743
2744recovery_tree_root:
af31f5e5
CM
2745 if (!btrfs_test_opt(tree_root, RECOVERY))
2746 goto fail_tree_roots;
2747
2748 free_root_pointers(fs_info, 0);
2749
2750 /* don't use the log in recovery mode, it won't be valid */
2751 btrfs_set_super_log_root(disk_super, 0);
2752
2753 /* we can't trust the free space cache either */
2754 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2755
2756 ret = next_root_backup(fs_info, fs_info->super_copy,
2757 &num_backups_tried, &backup_index);
2758 if (ret == -1)
2759 goto fail_block_groups;
2760 goto retry_root_backup;
eb60ceac
CM
2761}
2762
f2984462
CM
2763static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2764{
f2984462
CM
2765 if (uptodate) {
2766 set_buffer_uptodate(bh);
2767 } else {
442a4f63
SB
2768 struct btrfs_device *device = (struct btrfs_device *)
2769 bh->b_private;
2770
606686ee
JB
2771 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2772 "I/O error on %s\n",
2773 rcu_str_deref(device->name));
1259ab75
CM
2774 /* note, we dont' set_buffer_write_io_error because we have
2775 * our own ways of dealing with the IO errors
2776 */
f2984462 2777 clear_buffer_uptodate(bh);
442a4f63 2778 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2779 }
2780 unlock_buffer(bh);
2781 put_bh(bh);
2782}
2783
a512bbf8
YZ
2784struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2785{
2786 struct buffer_head *bh;
2787 struct buffer_head *latest = NULL;
2788 struct btrfs_super_block *super;
2789 int i;
2790 u64 transid = 0;
2791 u64 bytenr;
2792
2793 /* we would like to check all the supers, but that would make
2794 * a btrfs mount succeed after a mkfs from a different FS.
2795 * So, we need to add a special mount option to scan for
2796 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2797 */
2798 for (i = 0; i < 1; i++) {
2799 bytenr = btrfs_sb_offset(i);
2800 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2801 break;
2802 bh = __bread(bdev, bytenr / 4096, 4096);
2803 if (!bh)
2804 continue;
2805
2806 super = (struct btrfs_super_block *)bh->b_data;
2807 if (btrfs_super_bytenr(super) != bytenr ||
2808 strncmp((char *)(&super->magic), BTRFS_MAGIC,
2809 sizeof(super->magic))) {
2810 brelse(bh);
2811 continue;
2812 }
2813
2814 if (!latest || btrfs_super_generation(super) > transid) {
2815 brelse(latest);
2816 latest = bh;
2817 transid = btrfs_super_generation(super);
2818 } else {
2819 brelse(bh);
2820 }
2821 }
2822 return latest;
2823}
2824
4eedeb75
HH
2825/*
2826 * this should be called twice, once with wait == 0 and
2827 * once with wait == 1. When wait == 0 is done, all the buffer heads
2828 * we write are pinned.
2829 *
2830 * They are released when wait == 1 is done.
2831 * max_mirrors must be the same for both runs, and it indicates how
2832 * many supers on this one device should be written.
2833 *
2834 * max_mirrors == 0 means to write them all.
2835 */
a512bbf8
YZ
2836static int write_dev_supers(struct btrfs_device *device,
2837 struct btrfs_super_block *sb,
2838 int do_barriers, int wait, int max_mirrors)
2839{
2840 struct buffer_head *bh;
2841 int i;
2842 int ret;
2843 int errors = 0;
2844 u32 crc;
2845 u64 bytenr;
a512bbf8
YZ
2846
2847 if (max_mirrors == 0)
2848 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2849
a512bbf8
YZ
2850 for (i = 0; i < max_mirrors; i++) {
2851 bytenr = btrfs_sb_offset(i);
2852 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2853 break;
2854
2855 if (wait) {
2856 bh = __find_get_block(device->bdev, bytenr / 4096,
2857 BTRFS_SUPER_INFO_SIZE);
2858 BUG_ON(!bh);
a512bbf8 2859 wait_on_buffer(bh);
4eedeb75
HH
2860 if (!buffer_uptodate(bh))
2861 errors++;
2862
2863 /* drop our reference */
2864 brelse(bh);
2865
2866 /* drop the reference from the wait == 0 run */
2867 brelse(bh);
2868 continue;
a512bbf8
YZ
2869 } else {
2870 btrfs_set_super_bytenr(sb, bytenr);
2871
2872 crc = ~(u32)0;
2873 crc = btrfs_csum_data(NULL, (char *)sb +
2874 BTRFS_CSUM_SIZE, crc,
2875 BTRFS_SUPER_INFO_SIZE -
2876 BTRFS_CSUM_SIZE);
2877 btrfs_csum_final(crc, sb->csum);
2878
4eedeb75
HH
2879 /*
2880 * one reference for us, and we leave it for the
2881 * caller
2882 */
a512bbf8
YZ
2883 bh = __getblk(device->bdev, bytenr / 4096,
2884 BTRFS_SUPER_INFO_SIZE);
2885 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2886
4eedeb75 2887 /* one reference for submit_bh */
a512bbf8 2888 get_bh(bh);
4eedeb75
HH
2889
2890 set_buffer_uptodate(bh);
a512bbf8
YZ
2891 lock_buffer(bh);
2892 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 2893 bh->b_private = device;
a512bbf8
YZ
2894 }
2895
387125fc
CM
2896 /*
2897 * we fua the first super. The others we allow
2898 * to go down lazy.
2899 */
21adbd5c 2900 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 2901 if (ret)
a512bbf8 2902 errors++;
a512bbf8
YZ
2903 }
2904 return errors < i ? 0 : -1;
2905}
2906
387125fc
CM
2907/*
2908 * endio for the write_dev_flush, this will wake anyone waiting
2909 * for the barrier when it is done
2910 */
2911static void btrfs_end_empty_barrier(struct bio *bio, int err)
2912{
2913 if (err) {
2914 if (err == -EOPNOTSUPP)
2915 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2916 clear_bit(BIO_UPTODATE, &bio->bi_flags);
2917 }
2918 if (bio->bi_private)
2919 complete(bio->bi_private);
2920 bio_put(bio);
2921}
2922
2923/*
2924 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
2925 * sent down. With wait == 1, it waits for the previous flush.
2926 *
2927 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2928 * capable
2929 */
2930static int write_dev_flush(struct btrfs_device *device, int wait)
2931{
2932 struct bio *bio;
2933 int ret = 0;
2934
2935 if (device->nobarriers)
2936 return 0;
2937
2938 if (wait) {
2939 bio = device->flush_bio;
2940 if (!bio)
2941 return 0;
2942
2943 wait_for_completion(&device->flush_wait);
2944
2945 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
2946 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2947 rcu_str_deref(device->name));
387125fc 2948 device->nobarriers = 1;
5af3e8cc 2949 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 2950 ret = -EIO;
5af3e8cc
SB
2951 btrfs_dev_stat_inc_and_print(device,
2952 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
2953 }
2954
2955 /* drop the reference from the wait == 0 run */
2956 bio_put(bio);
2957 device->flush_bio = NULL;
2958
2959 return ret;
2960 }
2961
2962 /*
2963 * one reference for us, and we leave it for the
2964 * caller
2965 */
9c017abc 2966 device->flush_bio = NULL;
387125fc
CM
2967 bio = bio_alloc(GFP_NOFS, 0);
2968 if (!bio)
2969 return -ENOMEM;
2970
2971 bio->bi_end_io = btrfs_end_empty_barrier;
2972 bio->bi_bdev = device->bdev;
2973 init_completion(&device->flush_wait);
2974 bio->bi_private = &device->flush_wait;
2975 device->flush_bio = bio;
2976
2977 bio_get(bio);
21adbd5c 2978 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
2979
2980 return 0;
2981}
2982
2983/*
2984 * send an empty flush down to each device in parallel,
2985 * then wait for them
2986 */
2987static int barrier_all_devices(struct btrfs_fs_info *info)
2988{
2989 struct list_head *head;
2990 struct btrfs_device *dev;
5af3e8cc
SB
2991 int errors_send = 0;
2992 int errors_wait = 0;
387125fc
CM
2993 int ret;
2994
2995 /* send down all the barriers */
2996 head = &info->fs_devices->devices;
2997 list_for_each_entry_rcu(dev, head, dev_list) {
2998 if (!dev->bdev) {
5af3e8cc 2999 errors_send++;
387125fc
CM
3000 continue;
3001 }
3002 if (!dev->in_fs_metadata || !dev->writeable)
3003 continue;
3004
3005 ret = write_dev_flush(dev, 0);
3006 if (ret)
5af3e8cc 3007 errors_send++;
387125fc
CM
3008 }
3009
3010 /* wait for all the barriers */
3011 list_for_each_entry_rcu(dev, head, dev_list) {
3012 if (!dev->bdev) {
5af3e8cc 3013 errors_wait++;
387125fc
CM
3014 continue;
3015 }
3016 if (!dev->in_fs_metadata || !dev->writeable)
3017 continue;
3018
3019 ret = write_dev_flush(dev, 1);
3020 if (ret)
5af3e8cc 3021 errors_wait++;
387125fc 3022 }
5af3e8cc
SB
3023 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3024 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3025 return -EIO;
3026 return 0;
3027}
3028
5af3e8cc
SB
3029int btrfs_calc_num_tolerated_disk_barrier_failures(
3030 struct btrfs_fs_info *fs_info)
3031{
3032 struct btrfs_ioctl_space_info space;
3033 struct btrfs_space_info *sinfo;
3034 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3035 BTRFS_BLOCK_GROUP_SYSTEM,
3036 BTRFS_BLOCK_GROUP_METADATA,
3037 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3038 int num_types = 4;
3039 int i;
3040 int c;
3041 int num_tolerated_disk_barrier_failures =
3042 (int)fs_info->fs_devices->num_devices;
3043
3044 for (i = 0; i < num_types; i++) {
3045 struct btrfs_space_info *tmp;
3046
3047 sinfo = NULL;
3048 rcu_read_lock();
3049 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3050 if (tmp->flags == types[i]) {
3051 sinfo = tmp;
3052 break;
3053 }
3054 }
3055 rcu_read_unlock();
3056
3057 if (!sinfo)
3058 continue;
3059
3060 down_read(&sinfo->groups_sem);
3061 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3062 if (!list_empty(&sinfo->block_groups[c])) {
3063 u64 flags;
3064
3065 btrfs_get_block_group_info(
3066 &sinfo->block_groups[c], &space);
3067 if (space.total_bytes == 0 ||
3068 space.used_bytes == 0)
3069 continue;
3070 flags = space.flags;
3071 /*
3072 * return
3073 * 0: if dup, single or RAID0 is configured for
3074 * any of metadata, system or data, else
3075 * 1: if RAID5 is configured, or if RAID1 or
3076 * RAID10 is configured and only two mirrors
3077 * are used, else
3078 * 2: if RAID6 is configured, else
3079 * num_mirrors - 1: if RAID1 or RAID10 is
3080 * configured and more than
3081 * 2 mirrors are used.
3082 */
3083 if (num_tolerated_disk_barrier_failures > 0 &&
3084 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3085 BTRFS_BLOCK_GROUP_RAID0)) ||
3086 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3087 == 0)))
3088 num_tolerated_disk_barrier_failures = 0;
3089 else if (num_tolerated_disk_barrier_failures > 1
3090 &&
3091 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3092 BTRFS_BLOCK_GROUP_RAID10)))
3093 num_tolerated_disk_barrier_failures = 1;
3094 }
3095 }
3096 up_read(&sinfo->groups_sem);
3097 }
3098
3099 return num_tolerated_disk_barrier_failures;
3100}
3101
a512bbf8 3102int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3103{
e5e9a520 3104 struct list_head *head;
f2984462 3105 struct btrfs_device *dev;
a061fc8d 3106 struct btrfs_super_block *sb;
f2984462 3107 struct btrfs_dev_item *dev_item;
f2984462
CM
3108 int ret;
3109 int do_barriers;
a236aed1
CM
3110 int max_errors;
3111 int total_errors = 0;
a061fc8d 3112 u64 flags;
f2984462 3113
6c41761f 3114 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 3115 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3116 backup_super_roots(root->fs_info);
f2984462 3117
6c41761f 3118 sb = root->fs_info->super_for_commit;
a061fc8d 3119 dev_item = &sb->dev_item;
e5e9a520 3120
174ba509 3121 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3122 head = &root->fs_info->fs_devices->devices;
387125fc 3123
5af3e8cc
SB
3124 if (do_barriers) {
3125 ret = barrier_all_devices(root->fs_info);
3126 if (ret) {
3127 mutex_unlock(
3128 &root->fs_info->fs_devices->device_list_mutex);
3129 btrfs_error(root->fs_info, ret,
3130 "errors while submitting device barriers.");
3131 return ret;
3132 }
3133 }
387125fc 3134
1f78160c 3135 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3136 if (!dev->bdev) {
3137 total_errors++;
3138 continue;
3139 }
2b82032c 3140 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3141 continue;
3142
2b82032c 3143 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3144 btrfs_set_stack_device_type(dev_item, dev->type);
3145 btrfs_set_stack_device_id(dev_item, dev->devid);
3146 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3147 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3148 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3149 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3150 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3151 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3152 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3153
a061fc8d
CM
3154 flags = btrfs_super_flags(sb);
3155 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3156
a512bbf8 3157 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3158 if (ret)
3159 total_errors++;
f2984462 3160 }
a236aed1 3161 if (total_errors > max_errors) {
d397712b
CM
3162 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3163 total_errors);
79787eaa
JM
3164
3165 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3166 BUG();
3167 }
f2984462 3168
a512bbf8 3169 total_errors = 0;
1f78160c 3170 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3171 if (!dev->bdev)
3172 continue;
2b82032c 3173 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3174 continue;
3175
a512bbf8
YZ
3176 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3177 if (ret)
3178 total_errors++;
f2984462 3179 }
174ba509 3180 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3181 if (total_errors > max_errors) {
79787eaa
JM
3182 btrfs_error(root->fs_info, -EIO,
3183 "%d errors while writing supers", total_errors);
3184 return -EIO;
a236aed1 3185 }
f2984462
CM
3186 return 0;
3187}
3188
a512bbf8
YZ
3189int write_ctree_super(struct btrfs_trans_handle *trans,
3190 struct btrfs_root *root, int max_mirrors)
eb60ceac 3191{
e66f709b 3192 int ret;
5f39d397 3193
a512bbf8 3194 ret = write_all_supers(root, max_mirrors);
5f39d397 3195 return ret;
cfaa7295
CM
3196}
3197
143bede5 3198void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3199{
4df27c4d 3200 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3201 radix_tree_delete(&fs_info->fs_roots_radix,
3202 (unsigned long)root->root_key.objectid);
4df27c4d 3203 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3204
3205 if (btrfs_root_refs(&root->root_item) == 0)
3206 synchronize_srcu(&fs_info->subvol_srcu);
3207
581bb050
LZ
3208 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3209 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3210 free_fs_root(root);
4df27c4d
YZ
3211}
3212
3213static void free_fs_root(struct btrfs_root *root)
3214{
82d5902d 3215 iput(root->cache_inode);
4df27c4d 3216 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3217 if (root->anon_dev)
3218 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3219 free_extent_buffer(root->node);
3220 free_extent_buffer(root->commit_root);
581bb050
LZ
3221 kfree(root->free_ino_ctl);
3222 kfree(root->free_ino_pinned);
d397712b 3223 kfree(root->name);
2619ba1f 3224 kfree(root);
2619ba1f
CM
3225}
3226
143bede5 3227static void del_fs_roots(struct btrfs_fs_info *fs_info)
0f7d52f4
CM
3228{
3229 int ret;
3230 struct btrfs_root *gang[8];
3231 int i;
3232
76dda93c
YZ
3233 while (!list_empty(&fs_info->dead_roots)) {
3234 gang[0] = list_entry(fs_info->dead_roots.next,
3235 struct btrfs_root, root_list);
3236 list_del(&gang[0]->root_list);
3237
3238 if (gang[0]->in_radix) {
3239 btrfs_free_fs_root(fs_info, gang[0]);
3240 } else {
3241 free_extent_buffer(gang[0]->node);
3242 free_extent_buffer(gang[0]->commit_root);
3243 kfree(gang[0]);
3244 }
3245 }
3246
d397712b 3247 while (1) {
0f7d52f4
CM
3248 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3249 (void **)gang, 0,
3250 ARRAY_SIZE(gang));
3251 if (!ret)
3252 break;
2619ba1f 3253 for (i = 0; i < ret; i++)
5eda7b5e 3254 btrfs_free_fs_root(fs_info, gang[i]);
0f7d52f4 3255 }
0f7d52f4 3256}
b4100d64 3257
c146afad 3258int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3259{
c146afad
YZ
3260 u64 root_objectid = 0;
3261 struct btrfs_root *gang[8];
3262 int i;
3768f368 3263 int ret;
e089f05c 3264
c146afad
YZ
3265 while (1) {
3266 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3267 (void **)gang, root_objectid,
3268 ARRAY_SIZE(gang));
3269 if (!ret)
3270 break;
5d4f98a2
YZ
3271
3272 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3273 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3274 int err;
3275
c146afad 3276 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3277 err = btrfs_orphan_cleanup(gang[i]);
3278 if (err)
3279 return err;
c146afad
YZ
3280 }
3281 root_objectid++;
3282 }
3283 return 0;
3284}
a2135011 3285
c146afad
YZ
3286int btrfs_commit_super(struct btrfs_root *root)
3287{
3288 struct btrfs_trans_handle *trans;
3289 int ret;
a74a4b97 3290
c146afad 3291 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3292 btrfs_run_delayed_iputs(root);
a74a4b97 3293 btrfs_clean_old_snapshots(root);
c146afad 3294 mutex_unlock(&root->fs_info->cleaner_mutex);
c71bf099
YZ
3295
3296 /* wait until ongoing cleanup work done */
3297 down_write(&root->fs_info->cleanup_work_sem);
3298 up_write(&root->fs_info->cleanup_work_sem);
3299
7a7eaa40 3300 trans = btrfs_join_transaction(root);
3612b495
TI
3301 if (IS_ERR(trans))
3302 return PTR_ERR(trans);
54aa1f4d 3303 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3304 if (ret)
3305 return ret;
c146afad 3306 /* run commit again to drop the original snapshot */
7a7eaa40 3307 trans = btrfs_join_transaction(root);
3612b495
TI
3308 if (IS_ERR(trans))
3309 return PTR_ERR(trans);
79787eaa
JM
3310 ret = btrfs_commit_transaction(trans, root);
3311 if (ret)
3312 return ret;
79154b1b 3313 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3314 if (ret) {
3315 btrfs_error(root->fs_info, ret,
3316 "Failed to sync btree inode to disk.");
3317 return ret;
3318 }
d6bfde87 3319
a512bbf8 3320 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3321 return ret;
3322}
3323
3324int close_ctree(struct btrfs_root *root)
3325{
3326 struct btrfs_fs_info *fs_info = root->fs_info;
3327 int ret;
3328
3329 fs_info->closing = 1;
3330 smp_mb();
3331
837d5b6e 3332 /* pause restriper - we want to resume on mount */
aa1b8cd4 3333 btrfs_pause_balance(fs_info);
837d5b6e 3334
8dabb742
SB
3335 btrfs_dev_replace_suspend_for_unmount(fs_info);
3336
aa1b8cd4 3337 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3338
3339 /* wait for any defraggers to finish */
3340 wait_event(fs_info->transaction_wait,
3341 (atomic_read(&fs_info->defrag_running) == 0));
3342
3343 /* clear out the rbtree of defraggable inodes */
26176e7c 3344 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3345
c146afad 3346 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3347 ret = btrfs_commit_super(root);
3348 if (ret)
3349 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3350 }
3351
68ce9682
SB
3352 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
3353 btrfs_error_commit_super(root);
0f7d52f4 3354
300e4f8a
JB
3355 btrfs_put_block_group_cache(fs_info);
3356
e3029d9f
AV
3357 kthread_stop(fs_info->transaction_kthread);
3358 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3359
f25784b3
YZ
3360 fs_info->closing = 2;
3361 smp_mb();
3362
bcef60f2
AJ
3363 btrfs_free_qgroup_config(root->fs_info);
3364
b0c68f8b 3365 if (fs_info->delalloc_bytes) {
d397712b 3366 printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
21380931 3367 (unsigned long long)fs_info->delalloc_bytes);
b0c68f8b 3368 }
bcc63abb 3369
5d4f98a2
YZ
3370 free_extent_buffer(fs_info->extent_root->node);
3371 free_extent_buffer(fs_info->extent_root->commit_root);
3372 free_extent_buffer(fs_info->tree_root->node);
3373 free_extent_buffer(fs_info->tree_root->commit_root);
e3029d9f
AV
3374 free_extent_buffer(fs_info->chunk_root->node);
3375 free_extent_buffer(fs_info->chunk_root->commit_root);
3376 free_extent_buffer(fs_info->dev_root->node);
3377 free_extent_buffer(fs_info->dev_root->commit_root);
3378 free_extent_buffer(fs_info->csum_root->node);
3379 free_extent_buffer(fs_info->csum_root->commit_root);
bcef60f2
AJ
3380 if (fs_info->quota_root) {
3381 free_extent_buffer(fs_info->quota_root->node);
3382 free_extent_buffer(fs_info->quota_root->commit_root);
3383 }
d20f7043 3384
e3029d9f 3385 btrfs_free_block_groups(fs_info);
d10c5f31 3386
c146afad 3387 del_fs_roots(fs_info);
d10c5f31 3388
c146afad 3389 iput(fs_info->btree_inode);
9ad6b7bc 3390
61d92c32 3391 btrfs_stop_workers(&fs_info->generic_worker);
247e743c 3392 btrfs_stop_workers(&fs_info->fixup_workers);
771ed689 3393 btrfs_stop_workers(&fs_info->delalloc_workers);
8b712842
CM
3394 btrfs_stop_workers(&fs_info->workers);
3395 btrfs_stop_workers(&fs_info->endio_workers);
d20f7043 3396 btrfs_stop_workers(&fs_info->endio_meta_workers);
cad321ad 3397 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
e6dcd2dc 3398 btrfs_stop_workers(&fs_info->endio_write_workers);
0cb59c99 3399 btrfs_stop_workers(&fs_info->endio_freespace_worker);
1cc127b5 3400 btrfs_stop_workers(&fs_info->submit_workers);
16cdcec7 3401 btrfs_stop_workers(&fs_info->delayed_workers);
bab39bf9 3402 btrfs_stop_workers(&fs_info->caching_workers);
90519d66 3403 btrfs_stop_workers(&fs_info->readahead_workers);
8ccf6f19 3404 btrfs_stop_workers(&fs_info->flush_workers);
d6bfde87 3405
21adbd5c
SB
3406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3407 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3408 btrfsic_unmount(root, fs_info->fs_devices);
3409#endif
3410
dfe25020 3411 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3412 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3413
e2d84521 3414 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
04160088 3415 bdi_destroy(&fs_info->bdi);
76dda93c 3416 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3417
eb60ceac
CM
3418 return 0;
3419}
3420
b9fab919
CM
3421int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3422 int atomic)
5f39d397 3423{
1259ab75 3424 int ret;
727011e0 3425 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3426
0b32f4bb 3427 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3428 if (!ret)
3429 return ret;
3430
3431 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3432 parent_transid, atomic);
3433 if (ret == -EAGAIN)
3434 return ret;
1259ab75 3435 return !ret;
5f39d397
CM
3436}
3437
3438int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3439{
0b32f4bb 3440 return set_extent_buffer_uptodate(buf);
5f39d397 3441}
6702ed49 3442
5f39d397
CM
3443void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3444{
727011e0 3445 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3446 u64 transid = btrfs_header_generation(buf);
b9473439 3447 int was_dirty;
b4ce94de 3448
b9447ef8 3449 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3450 if (transid != root->fs_info->generation)
3451 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3452 "found %llu running %llu\n",
db94535d 3453 (unsigned long long)buf->start,
d397712b
CM
3454 (unsigned long long)transid,
3455 (unsigned long long)root->fs_info->generation);
0b32f4bb 3456 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3457 if (!was_dirty)
3458 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3459 buf->len,
3460 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3461}
3462
b53d3f5d
LB
3463static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3464 int flush_delayed)
16cdcec7
MX
3465{
3466 /*
3467 * looks as though older kernels can get into trouble with
3468 * this code, they end up stuck in balance_dirty_pages forever
3469 */
e2d84521 3470 int ret;
16cdcec7
MX
3471
3472 if (current->flags & PF_MEMALLOC)
3473 return;
3474
b53d3f5d
LB
3475 if (flush_delayed)
3476 btrfs_balance_delayed_items(root);
16cdcec7 3477
e2d84521
MX
3478 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3479 BTRFS_DIRTY_METADATA_THRESH);
3480 if (ret > 0) {
16cdcec7
MX
3481 balance_dirty_pages_ratelimited_nr(
3482 root->fs_info->btree_inode->i_mapping, 1);
3483 }
3484 return;
3485}
3486
b53d3f5d 3487void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3488{
b53d3f5d
LB
3489 __btrfs_btree_balance_dirty(root, 1);
3490}
585ad2c3 3491
b53d3f5d
LB
3492void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3493{
3494 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3495}
6b80053d 3496
ca7a79ad 3497int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3498{
727011e0 3499 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3500 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3501}
0da5468f 3502
fcd1f065 3503static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3504 int read_only)
3505{
fcd1f065
DS
3506 if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3507 printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3508 return -EINVAL;
3509 }
3510
acce952b 3511 if (read_only)
fcd1f065 3512 return 0;
acce952b 3513
fcd1f065 3514 return 0;
acce952b 3515}
3516
68ce9682 3517void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3518{
acce952b 3519 mutex_lock(&root->fs_info->cleaner_mutex);
3520 btrfs_run_delayed_iputs(root);
3521 mutex_unlock(&root->fs_info->cleaner_mutex);
3522
3523 down_write(&root->fs_info->cleanup_work_sem);
3524 up_write(&root->fs_info->cleanup_work_sem);
3525
3526 /* cleanup FS via transaction */
3527 btrfs_cleanup_transaction(root);
acce952b 3528}
3529
143bede5 3530static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
acce952b 3531{
3532 struct btrfs_inode *btrfs_inode;
3533 struct list_head splice;
3534
3535 INIT_LIST_HEAD(&splice);
3536
3537 mutex_lock(&root->fs_info->ordered_operations_mutex);
3538 spin_lock(&root->fs_info->ordered_extent_lock);
3539
3540 list_splice_init(&root->fs_info->ordered_operations, &splice);
3541 while (!list_empty(&splice)) {
3542 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3543 ordered_operations);
3544
3545 list_del_init(&btrfs_inode->ordered_operations);
3546
3547 btrfs_invalidate_inodes(btrfs_inode->root);
3548 }
3549
3550 spin_unlock(&root->fs_info->ordered_extent_lock);
3551 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3552}
3553
143bede5 3554static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3555{
3556 struct list_head splice;
3557 struct btrfs_ordered_extent *ordered;
3558 struct inode *inode;
3559
3560 INIT_LIST_HEAD(&splice);
3561
3562 spin_lock(&root->fs_info->ordered_extent_lock);
3563
3564 list_splice_init(&root->fs_info->ordered_extents, &splice);
3565 while (!list_empty(&splice)) {
3566 ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3567 root_extent_list);
3568
3569 list_del_init(&ordered->root_extent_list);
3570 atomic_inc(&ordered->refs);
3571
3572 /* the inode may be getting freed (in sys_unlink path). */
3573 inode = igrab(ordered->inode);
3574
3575 spin_unlock(&root->fs_info->ordered_extent_lock);
3576 if (inode)
3577 iput(inode);
3578
3579 atomic_set(&ordered->refs, 1);
3580 btrfs_put_ordered_extent(ordered);
3581
3582 spin_lock(&root->fs_info->ordered_extent_lock);
3583 }
3584
3585 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3586}
3587
79787eaa
JM
3588int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3589 struct btrfs_root *root)
acce952b 3590{
3591 struct rb_node *node;
3592 struct btrfs_delayed_ref_root *delayed_refs;
3593 struct btrfs_delayed_ref_node *ref;
3594 int ret = 0;
3595
3596 delayed_refs = &trans->delayed_refs;
3597
3598 spin_lock(&delayed_refs->lock);
3599 if (delayed_refs->num_entries == 0) {
cfece4db 3600 spin_unlock(&delayed_refs->lock);
acce952b 3601 printk(KERN_INFO "delayed_refs has NO entry\n");
3602 return ret;
3603 }
3604
b939d1ab 3605 while ((node = rb_first(&delayed_refs->root)) != NULL) {
acce952b 3606 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3607
3608 atomic_set(&ref->refs, 1);
3609 if (btrfs_delayed_ref_is_head(ref)) {
3610 struct btrfs_delayed_ref_head *head;
3611
3612 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3613 if (!mutex_trylock(&head->mutex)) {
3614 atomic_inc(&ref->refs);
3615 spin_unlock(&delayed_refs->lock);
3616
3617 /* Need to wait for the delayed ref to run */
3618 mutex_lock(&head->mutex);
3619 mutex_unlock(&head->mutex);
3620 btrfs_put_delayed_ref(ref);
3621
e18fca73 3622 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3623 continue;
3624 }
3625
78a6184a 3626 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3627 delayed_refs->num_heads--;
3628 if (list_empty(&head->cluster))
3629 delayed_refs->num_heads_ready--;
3630 list_del_init(&head->cluster);
acce952b 3631 }
b939d1ab
JB
3632 ref->in_tree = 0;
3633 rb_erase(&ref->rb_node, &delayed_refs->root);
3634 delayed_refs->num_entries--;
3635
acce952b 3636 spin_unlock(&delayed_refs->lock);
3637 btrfs_put_delayed_ref(ref);
3638
3639 cond_resched();
3640 spin_lock(&delayed_refs->lock);
3641 }
3642
3643 spin_unlock(&delayed_refs->lock);
3644
3645 return ret;
3646}
3647
143bede5 3648static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
acce952b 3649{
3650 struct btrfs_pending_snapshot *snapshot;
3651 struct list_head splice;
3652
3653 INIT_LIST_HEAD(&splice);
3654
3655 list_splice_init(&t->pending_snapshots, &splice);
3656
3657 while (!list_empty(&splice)) {
3658 snapshot = list_entry(splice.next,
3659 struct btrfs_pending_snapshot,
3660 list);
3661
3662 list_del_init(&snapshot->list);
3663
3664 kfree(snapshot);
3665 }
acce952b 3666}
3667
143bede5 3668static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3669{
3670 struct btrfs_inode *btrfs_inode;
3671 struct list_head splice;
3672
3673 INIT_LIST_HEAD(&splice);
3674
acce952b 3675 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3676 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3677
3678 while (!list_empty(&splice)) {
3679 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3680 delalloc_inodes);
3681
3682 list_del_init(&btrfs_inode->delalloc_inodes);
3683
3684 btrfs_invalidate_inodes(btrfs_inode->root);
3685 }
3686
3687 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3688}
3689
3690static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3691 struct extent_io_tree *dirty_pages,
3692 int mark)
3693{
3694 int ret;
3695 struct page *page;
3696 struct inode *btree_inode = root->fs_info->btree_inode;
3697 struct extent_buffer *eb;
3698 u64 start = 0;
3699 u64 end;
3700 u64 offset;
3701 unsigned long index;
3702
3703 while (1) {
3704 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3705 mark, NULL);
acce952b 3706 if (ret)
3707 break;
3708
3709 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3710 while (start <= end) {
3711 index = start >> PAGE_CACHE_SHIFT;
3712 start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3713 page = find_get_page(btree_inode->i_mapping, index);
3714 if (!page)
3715 continue;
3716 offset = page_offset(page);
3717
3718 spin_lock(&dirty_pages->buffer_lock);
3719 eb = radix_tree_lookup(
3720 &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3721 offset >> PAGE_CACHE_SHIFT);
3722 spin_unlock(&dirty_pages->buffer_lock);
ee670f0a 3723 if (eb)
acce952b 3724 ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3725 &eb->bflags);
acce952b 3726 if (PageWriteback(page))
3727 end_page_writeback(page);
3728
3729 lock_page(page);
3730 if (PageDirty(page)) {
3731 clear_page_dirty_for_io(page);
3732 spin_lock_irq(&page->mapping->tree_lock);
3733 radix_tree_tag_clear(&page->mapping->page_tree,
3734 page_index(page),
3735 PAGECACHE_TAG_DIRTY);
3736 spin_unlock_irq(&page->mapping->tree_lock);
3737 }
3738
acce952b 3739 unlock_page(page);
ee670f0a 3740 page_cache_release(page);
acce952b 3741 }
3742 }
3743
3744 return ret;
3745}
3746
3747static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3748 struct extent_io_tree *pinned_extents)
3749{
3750 struct extent_io_tree *unpin;
3751 u64 start;
3752 u64 end;
3753 int ret;
ed0eaa14 3754 bool loop = true;
acce952b 3755
3756 unpin = pinned_extents;
ed0eaa14 3757again:
acce952b 3758 while (1) {
3759 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3760 EXTENT_DIRTY, NULL);
acce952b 3761 if (ret)
3762 break;
3763
3764 /* opt_discard */
5378e607
LD
3765 if (btrfs_test_opt(root, DISCARD))
3766 ret = btrfs_error_discard_extent(root, start,
3767 end + 1 - start,
3768 NULL);
acce952b 3769
3770 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3771 btrfs_error_unpin_extent_range(root, start, end);
3772 cond_resched();
3773 }
3774
ed0eaa14
LB
3775 if (loop) {
3776 if (unpin == &root->fs_info->freed_extents[0])
3777 unpin = &root->fs_info->freed_extents[1];
3778 else
3779 unpin = &root->fs_info->freed_extents[0];
3780 loop = false;
3781 goto again;
3782 }
3783
acce952b 3784 return 0;
3785}
3786
49b25e05
JM
3787void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3788 struct btrfs_root *root)
3789{
3790 btrfs_destroy_delayed_refs(cur_trans, root);
3791 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3792 cur_trans->dirty_pages.dirty_bytes);
3793
3794 /* FIXME: cleanup wait for commit */
3795 cur_trans->in_commit = 1;
3796 cur_trans->blocked = 1;
d7096fc3 3797 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05
JM
3798
3799 cur_trans->blocked = 0;
d7096fc3 3800 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3801
3802 cur_trans->commit_done = 1;
d7096fc3 3803 wake_up(&cur_trans->commit_wait);
49b25e05 3804
67cde344
MX
3805 btrfs_destroy_delayed_inodes(root);
3806 btrfs_assert_delayed_root_empty(root);
49b25e05
JM
3807
3808 btrfs_destroy_pending_snapshots(cur_trans);
3809
3810 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3811 EXTENT_DIRTY);
6e841e32
LB
3812 btrfs_destroy_pinned_extent(root,
3813 root->fs_info->pinned_extents);
49b25e05
JM
3814
3815 /*
3816 memset(cur_trans, 0, sizeof(*cur_trans));
3817 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3818 */
3819}
3820
3821int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3822{
3823 struct btrfs_transaction *t;
3824 LIST_HEAD(list);
3825
acce952b 3826 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3827
a4abeea4 3828 spin_lock(&root->fs_info->trans_lock);
acce952b 3829 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3830 root->fs_info->trans_no_join = 1;
3831 spin_unlock(&root->fs_info->trans_lock);
3832
acce952b 3833 while (!list_empty(&list)) {
3834 t = list_entry(list.next, struct btrfs_transaction, list);
3835 if (!t)
3836 break;
3837
3838 btrfs_destroy_ordered_operations(root);
3839
3840 btrfs_destroy_ordered_extents(root);
3841
3842 btrfs_destroy_delayed_refs(t, root);
3843
3844 btrfs_block_rsv_release(root,
3845 &root->fs_info->trans_block_rsv,
3846 t->dirty_pages.dirty_bytes);
3847
3848 /* FIXME: cleanup wait for commit */
3849 t->in_commit = 1;
3850 t->blocked = 1;
66657b31 3851 smp_mb();
acce952b 3852 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3853 wake_up(&root->fs_info->transaction_blocked_wait);
3854
3855 t->blocked = 0;
66657b31 3856 smp_mb();
acce952b 3857 if (waitqueue_active(&root->fs_info->transaction_wait))
3858 wake_up(&root->fs_info->transaction_wait);
acce952b 3859
acce952b 3860 t->commit_done = 1;
66657b31 3861 smp_mb();
acce952b 3862 if (waitqueue_active(&t->commit_wait))
3863 wake_up(&t->commit_wait);
acce952b 3864
67cde344
MX
3865 btrfs_destroy_delayed_inodes(root);
3866 btrfs_assert_delayed_root_empty(root);
3867
acce952b 3868 btrfs_destroy_pending_snapshots(t);
3869
3870 btrfs_destroy_delalloc_inodes(root);
3871
a4abeea4 3872 spin_lock(&root->fs_info->trans_lock);
acce952b 3873 root->fs_info->running_transaction = NULL;
a4abeea4 3874 spin_unlock(&root->fs_info->trans_lock);
acce952b 3875
3876 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3877 EXTENT_DIRTY);
3878
3879 btrfs_destroy_pinned_extent(root,
3880 root->fs_info->pinned_extents);
3881
13c5a93e 3882 atomic_set(&t->use_count, 0);
acce952b 3883 list_del_init(&t->list);
3884 memset(t, 0, sizeof(*t));
3885 kmem_cache_free(btrfs_transaction_cachep, t);
3886 }
3887
a4abeea4
JB
3888 spin_lock(&root->fs_info->trans_lock);
3889 root->fs_info->trans_no_join = 0;
3890 spin_unlock(&root->fs_info->trans_lock);
acce952b 3891 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3892
3893 return 0;
3894}
3895
d1310b2e 3896static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 3897 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 3898 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 3899 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
3900 /* note we're sharing with inode.c for the merge bio hook */
3901 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 3902};