Btrfs: move the R/O check out of btrfs_clean_one_deleted_snapshot()
[linux-2.6-block.git] / fs / btrfs / disk-io.c
CommitLineData
6cbd5570
CM
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
e20d96d6 19#include <linux/fs.h>
d98237b3 20#include <linux/blkdev.h>
87cbda5c 21#include <linux/scatterlist.h>
22b0ebda 22#include <linux/swap.h>
0f7d52f4 23#include <linux/radix-tree.h>
35b7e476 24#include <linux/writeback.h>
d397712b 25#include <linux/buffer_head.h>
ce9adaa5 26#include <linux/workqueue.h>
a74a4b97 27#include <linux/kthread.h>
4b4e25f2 28#include <linux/freezer.h>
163e783e 29#include <linux/crc32c.h>
5a0e3ad6 30#include <linux/slab.h>
784b4e29 31#include <linux/migrate.h>
7a36ddec 32#include <linux/ratelimit.h>
6463fe58 33#include <linux/uuid.h>
7e75bf3f 34#include <asm/unaligned.h>
4b4e25f2 35#include "compat.h"
eb60ceac
CM
36#include "ctree.h"
37#include "disk-io.h"
e089f05c 38#include "transaction.h"
0f7d52f4 39#include "btrfs_inode.h"
0b86a832 40#include "volumes.h"
db94535d 41#include "print-tree.h"
8b712842 42#include "async-thread.h"
925baedd 43#include "locking.h"
e02119d5 44#include "tree-log.h"
fa9c0d79 45#include "free-space-cache.h"
581bb050 46#include "inode-map.h"
21adbd5c 47#include "check-integrity.h"
606686ee 48#include "rcu-string.h"
8dabb742 49#include "dev-replace.h"
53b381b3 50#include "raid56.h"
eb60ceac 51
de0022b9
JB
52#ifdef CONFIG_X86
53#include <asm/cpufeature.h>
54#endif
55
d1310b2e 56static struct extent_io_ops btree_extent_io_ops;
8b712842 57static void end_workqueue_fn(struct btrfs_work *work);
4df27c4d 58static void free_fs_root(struct btrfs_root *root);
fcd1f065 59static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 60 int read_only);
569e0f35
JB
61static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
62 struct btrfs_root *root);
143bede5 63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
acce952b 64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
65 struct btrfs_root *root);
aec8030a 66static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t);
143bede5 67static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
acce952b 68static int btrfs_destroy_marked_extents(struct btrfs_root *root,
69 struct extent_io_tree *dirty_pages,
70 int mark);
71static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
72 struct extent_io_tree *pinned_extents);
48a3b636
ES
73static int btrfs_cleanup_transaction(struct btrfs_root *root);
74static void btrfs_error_commit_super(struct btrfs_root *root);
ce9adaa5 75
d352ac68
CM
76/*
77 * end_io_wq structs are used to do processing in task context when an IO is
78 * complete. This is used during reads to verify checksums, and it is used
79 * by writes to insert metadata for new file extents after IO is complete.
80 */
ce9adaa5
CM
81struct end_io_wq {
82 struct bio *bio;
83 bio_end_io_t *end_io;
84 void *private;
85 struct btrfs_fs_info *info;
86 int error;
22c59948 87 int metadata;
ce9adaa5 88 struct list_head list;
8b712842 89 struct btrfs_work work;
ce9adaa5 90};
0da5468f 91
d352ac68
CM
92/*
93 * async submit bios are used to offload expensive checksumming
94 * onto the worker threads. They checksum file and metadata bios
95 * just before they are sent down the IO stack.
96 */
44b8bd7e
CM
97struct async_submit_bio {
98 struct inode *inode;
99 struct bio *bio;
100 struct list_head list;
4a69a410
CM
101 extent_submit_bio_hook_t *submit_bio_start;
102 extent_submit_bio_hook_t *submit_bio_done;
44b8bd7e
CM
103 int rw;
104 int mirror_num;
c8b97818 105 unsigned long bio_flags;
eaf25d93
CM
106 /*
107 * bio_offset is optional, can be used if the pages in the bio
108 * can't tell us where in the file the bio should go
109 */
110 u64 bio_offset;
8b712842 111 struct btrfs_work work;
79787eaa 112 int error;
44b8bd7e
CM
113};
114
85d4e461
CM
115/*
116 * Lockdep class keys for extent_buffer->lock's in this root. For a given
117 * eb, the lockdep key is determined by the btrfs_root it belongs to and
118 * the level the eb occupies in the tree.
119 *
120 * Different roots are used for different purposes and may nest inside each
121 * other and they require separate keysets. As lockdep keys should be
122 * static, assign keysets according to the purpose of the root as indicated
123 * by btrfs_root->objectid. This ensures that all special purpose roots
124 * have separate keysets.
4008c04a 125 *
85d4e461
CM
126 * Lock-nesting across peer nodes is always done with the immediate parent
127 * node locked thus preventing deadlock. As lockdep doesn't know this, use
128 * subclass to avoid triggering lockdep warning in such cases.
4008c04a 129 *
85d4e461
CM
130 * The key is set by the readpage_end_io_hook after the buffer has passed
131 * csum validation but before the pages are unlocked. It is also set by
132 * btrfs_init_new_buffer on freshly allocated blocks.
4008c04a 133 *
85d4e461
CM
134 * We also add a check to make sure the highest level of the tree is the
135 * same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
136 * needs update as well.
4008c04a
CM
137 */
138#ifdef CONFIG_DEBUG_LOCK_ALLOC
139# if BTRFS_MAX_LEVEL != 8
140# error
141# endif
85d4e461
CM
142
143static struct btrfs_lockdep_keyset {
144 u64 id; /* root objectid */
145 const char *name_stem; /* lock name stem */
146 char names[BTRFS_MAX_LEVEL + 1][20];
147 struct lock_class_key keys[BTRFS_MAX_LEVEL + 1];
148} btrfs_lockdep_keysets[] = {
149 { .id = BTRFS_ROOT_TREE_OBJECTID, .name_stem = "root" },
150 { .id = BTRFS_EXTENT_TREE_OBJECTID, .name_stem = "extent" },
151 { .id = BTRFS_CHUNK_TREE_OBJECTID, .name_stem = "chunk" },
152 { .id = BTRFS_DEV_TREE_OBJECTID, .name_stem = "dev" },
153 { .id = BTRFS_FS_TREE_OBJECTID, .name_stem = "fs" },
154 { .id = BTRFS_CSUM_TREE_OBJECTID, .name_stem = "csum" },
60b62978 155 { .id = BTRFS_QUOTA_TREE_OBJECTID, .name_stem = "quota" },
85d4e461
CM
156 { .id = BTRFS_TREE_LOG_OBJECTID, .name_stem = "log" },
157 { .id = BTRFS_TREE_RELOC_OBJECTID, .name_stem = "treloc" },
158 { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc" },
159 { .id = 0, .name_stem = "tree" },
4008c04a 160};
85d4e461
CM
161
162void __init btrfs_init_lockdep(void)
163{
164 int i, j;
165
166 /* initialize lockdep class names */
167 for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
168 struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
169
170 for (j = 0; j < ARRAY_SIZE(ks->names); j++)
171 snprintf(ks->names[j], sizeof(ks->names[j]),
172 "btrfs-%s-%02d", ks->name_stem, j);
173 }
174}
175
176void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
177 int level)
178{
179 struct btrfs_lockdep_keyset *ks;
180
181 BUG_ON(level >= ARRAY_SIZE(ks->keys));
182
183 /* find the matching keyset, id 0 is the default entry */
184 for (ks = btrfs_lockdep_keysets; ks->id; ks++)
185 if (ks->id == objectid)
186 break;
187
188 lockdep_set_class_and_name(&eb->lock,
189 &ks->keys[level], ks->names[level]);
190}
191
4008c04a
CM
192#endif
193
d352ac68
CM
194/*
195 * extents on the btree inode are pretty simple, there's one extent
196 * that covers the entire device
197 */
b2950863 198static struct extent_map *btree_get_extent(struct inode *inode,
306e16ce 199 struct page *page, size_t pg_offset, u64 start, u64 len,
b2950863 200 int create)
7eccb903 201{
5f39d397
CM
202 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
203 struct extent_map *em;
204 int ret;
205
890871be 206 read_lock(&em_tree->lock);
d1310b2e 207 em = lookup_extent_mapping(em_tree, start, len);
a061fc8d
CM
208 if (em) {
209 em->bdev =
210 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
890871be 211 read_unlock(&em_tree->lock);
5f39d397 212 goto out;
a061fc8d 213 }
890871be 214 read_unlock(&em_tree->lock);
7b13b7b1 215
172ddd60 216 em = alloc_extent_map();
5f39d397
CM
217 if (!em) {
218 em = ERR_PTR(-ENOMEM);
219 goto out;
220 }
221 em->start = 0;
0afbaf8c 222 em->len = (u64)-1;
c8b97818 223 em->block_len = (u64)-1;
5f39d397 224 em->block_start = 0;
a061fc8d 225 em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
d1310b2e 226
890871be 227 write_lock(&em_tree->lock);
09a2a8f9 228 ret = add_extent_mapping(em_tree, em, 0);
5f39d397
CM
229 if (ret == -EEXIST) {
230 free_extent_map(em);
7b13b7b1 231 em = lookup_extent_mapping(em_tree, start, len);
b4f359ab 232 if (!em)
0433f20d 233 em = ERR_PTR(-EIO);
5f39d397 234 } else if (ret) {
7b13b7b1 235 free_extent_map(em);
0433f20d 236 em = ERR_PTR(ret);
5f39d397 237 }
890871be 238 write_unlock(&em_tree->lock);
7b13b7b1 239
5f39d397
CM
240out:
241 return em;
7eccb903
CM
242}
243
b0496686 244u32 btrfs_csum_data(char *data, u32 seed, size_t len)
19c00ddc 245{
163e783e 246 return crc32c(seed, data, len);
19c00ddc
CM
247}
248
249void btrfs_csum_final(u32 crc, char *result)
250{
7e75bf3f 251 put_unaligned_le32(~crc, result);
19c00ddc
CM
252}
253
d352ac68
CM
254/*
255 * compute the csum for a btree block, and either verify it or write it
256 * into the csum field of the block.
257 */
19c00ddc
CM
258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
259 int verify)
260{
6c41761f 261 u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
607d432d 262 char *result = NULL;
19c00ddc
CM
263 unsigned long len;
264 unsigned long cur_len;
265 unsigned long offset = BTRFS_CSUM_SIZE;
19c00ddc
CM
266 char *kaddr;
267 unsigned long map_start;
268 unsigned long map_len;
269 int err;
270 u32 crc = ~(u32)0;
607d432d 271 unsigned long inline_result;
19c00ddc
CM
272
273 len = buf->len - offset;
d397712b 274 while (len > 0) {
19c00ddc 275 err = map_private_extent_buffer(buf, offset, 32,
a6591715 276 &kaddr, &map_start, &map_len);
d397712b 277 if (err)
19c00ddc 278 return 1;
19c00ddc 279 cur_len = min(len, map_len - (offset - map_start));
b0496686 280 crc = btrfs_csum_data(kaddr + offset - map_start,
19c00ddc
CM
281 crc, cur_len);
282 len -= cur_len;
283 offset += cur_len;
19c00ddc 284 }
607d432d
JB
285 if (csum_size > sizeof(inline_result)) {
286 result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
287 if (!result)
288 return 1;
289 } else {
290 result = (char *)&inline_result;
291 }
292
19c00ddc
CM
293 btrfs_csum_final(crc, result);
294
295 if (verify) {
607d432d 296 if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
e4204ded
CM
297 u32 val;
298 u32 found = 0;
607d432d 299 memcpy(&found, result, csum_size);
e4204ded 300
607d432d 301 read_extent_buffer(buf, &val, 0, csum_size);
7a36ddec 302 printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
193f284d
CM
303 "failed on %llu wanted %X found %X "
304 "level %d\n",
305 root->fs_info->sb->s_id,
306 (unsigned long long)buf->start, val, found,
307 btrfs_header_level(buf));
607d432d
JB
308 if (result != (char *)&inline_result)
309 kfree(result);
19c00ddc
CM
310 return 1;
311 }
312 } else {
607d432d 313 write_extent_buffer(buf, result, 0, csum_size);
19c00ddc 314 }
607d432d
JB
315 if (result != (char *)&inline_result)
316 kfree(result);
19c00ddc
CM
317 return 0;
318}
319
d352ac68
CM
320/*
321 * we can't consider a given block up to date unless the transid of the
322 * block matches the transid in the parent node's pointer. This is how we
323 * detect blocks that either didn't get written at all or got written
324 * in the wrong place.
325 */
1259ab75 326static int verify_parent_transid(struct extent_io_tree *io_tree,
b9fab919
CM
327 struct extent_buffer *eb, u64 parent_transid,
328 int atomic)
1259ab75 329{
2ac55d41 330 struct extent_state *cached_state = NULL;
1259ab75
CM
331 int ret;
332
333 if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
334 return 0;
335
b9fab919
CM
336 if (atomic)
337 return -EAGAIN;
338
2ac55d41 339 lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
d0082371 340 0, &cached_state);
0b32f4bb 341 if (extent_buffer_uptodate(eb) &&
1259ab75
CM
342 btrfs_header_generation(eb) == parent_transid) {
343 ret = 0;
344 goto out;
345 }
7a36ddec 346 printk_ratelimited("parent transid verify failed on %llu wanted %llu "
193f284d
CM
347 "found %llu\n",
348 (unsigned long long)eb->start,
349 (unsigned long long)parent_transid,
350 (unsigned long long)btrfs_header_generation(eb));
1259ab75 351 ret = 1;
0b32f4bb 352 clear_extent_buffer_uptodate(eb);
33958dc6 353out:
2ac55d41
JB
354 unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
355 &cached_state, GFP_NOFS);
1259ab75 356 return ret;
1259ab75
CM
357}
358
1104a885
DS
359/*
360 * Return 0 if the superblock checksum type matches the checksum value of that
361 * algorithm. Pass the raw disk superblock data.
362 */
363static int btrfs_check_super_csum(char *raw_disk_sb)
364{
365 struct btrfs_super_block *disk_sb =
366 (struct btrfs_super_block *)raw_disk_sb;
367 u16 csum_type = btrfs_super_csum_type(disk_sb);
368 int ret = 0;
369
370 if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
371 u32 crc = ~(u32)0;
372 const int csum_size = sizeof(crc);
373 char result[csum_size];
374
375 /*
376 * The super_block structure does not span the whole
377 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
378 * is filled with zeros and is included in the checkum.
379 */
380 crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
381 crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
382 btrfs_csum_final(crc, result);
383
384 if (memcmp(raw_disk_sb, result, csum_size))
385 ret = 1;
667e7d94
CM
386
387 if (ret && btrfs_super_generation(disk_sb) < 10) {
388 printk(KERN_WARNING "btrfs: super block crcs don't match, older mkfs detected\n");
389 ret = 0;
390 }
1104a885
DS
391 }
392
393 if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
394 printk(KERN_ERR "btrfs: unsupported checksum algorithm %u\n",
395 csum_type);
396 ret = 1;
397 }
398
399 return ret;
400}
401
d352ac68
CM
402/*
403 * helper to read a given tree block, doing retries as required when
404 * the checksums don't match and we have alternate mirrors to try.
405 */
f188591e
CM
406static int btree_read_extent_buffer_pages(struct btrfs_root *root,
407 struct extent_buffer *eb,
ca7a79ad 408 u64 start, u64 parent_transid)
f188591e
CM
409{
410 struct extent_io_tree *io_tree;
ea466794 411 int failed = 0;
f188591e
CM
412 int ret;
413 int num_copies = 0;
414 int mirror_num = 0;
ea466794 415 int failed_mirror = 0;
f188591e 416
a826d6dc 417 clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
f188591e
CM
418 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
419 while (1) {
bb82ab88
AJ
420 ret = read_extent_buffer_pages(io_tree, eb, start,
421 WAIT_COMPLETE,
f188591e 422 btree_get_extent, mirror_num);
256dd1bb
SB
423 if (!ret) {
424 if (!verify_parent_transid(io_tree, eb,
b9fab919 425 parent_transid, 0))
256dd1bb
SB
426 break;
427 else
428 ret = -EIO;
429 }
d397712b 430
a826d6dc
JB
431 /*
432 * This buffer's crc is fine, but its contents are corrupted, so
433 * there is no reason to read the other copies, they won't be
434 * any less wrong.
435 */
436 if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
ea466794
JB
437 break;
438
5d964051 439 num_copies = btrfs_num_copies(root->fs_info,
f188591e 440 eb->start, eb->len);
4235298e 441 if (num_copies == 1)
ea466794 442 break;
4235298e 443
5cf1ab56
JB
444 if (!failed_mirror) {
445 failed = 1;
446 failed_mirror = eb->read_mirror;
447 }
448
f188591e 449 mirror_num++;
ea466794
JB
450 if (mirror_num == failed_mirror)
451 mirror_num++;
452
4235298e 453 if (mirror_num > num_copies)
ea466794 454 break;
f188591e 455 }
ea466794 456
c0901581 457 if (failed && !ret && failed_mirror)
ea466794
JB
458 repair_eb_io_failure(root, eb, failed_mirror);
459
460 return ret;
f188591e 461}
19c00ddc 462
d352ac68 463/*
d397712b
CM
464 * checksum a dirty tree block before IO. This has extra checks to make sure
465 * we only fill in the checksum field in the first page of a multi-page block
d352ac68 466 */
d397712b 467
b2950863 468static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
19c00ddc 469{
d1310b2e 470 struct extent_io_tree *tree;
4eee4fa4 471 u64 start = page_offset(page);
19c00ddc 472 u64 found_start;
19c00ddc 473 struct extent_buffer *eb;
f188591e 474
d1310b2e 475 tree = &BTRFS_I(page->mapping->host)->io_tree;
19c00ddc 476
4f2de97a
JB
477 eb = (struct extent_buffer *)page->private;
478 if (page != eb->pages[0])
479 return 0;
19c00ddc
CM
480 found_start = btrfs_header_bytenr(eb);
481 if (found_start != start) {
55c69072 482 WARN_ON(1);
4f2de97a 483 return 0;
55c69072 484 }
55c69072 485 if (!PageUptodate(page)) {
55c69072 486 WARN_ON(1);
4f2de97a 487 return 0;
19c00ddc 488 }
19c00ddc 489 csum_tree_block(root, eb, 0);
19c00ddc
CM
490 return 0;
491}
492
2b82032c
YZ
493static int check_tree_block_fsid(struct btrfs_root *root,
494 struct extent_buffer *eb)
495{
496 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
497 u8 fsid[BTRFS_UUID_SIZE];
498 int ret = 1;
499
500 read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
501 BTRFS_FSID_SIZE);
502 while (fs_devices) {
503 if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
504 ret = 0;
505 break;
506 }
507 fs_devices = fs_devices->seed;
508 }
509 return ret;
510}
511
a826d6dc
JB
512#define CORRUPT(reason, eb, root, slot) \
513 printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
514 "root=%llu, slot=%d\n", reason, \
515 (unsigned long long)btrfs_header_bytenr(eb), \
516 (unsigned long long)root->objectid, slot)
517
518static noinline int check_leaf(struct btrfs_root *root,
519 struct extent_buffer *leaf)
520{
521 struct btrfs_key key;
522 struct btrfs_key leaf_key;
523 u32 nritems = btrfs_header_nritems(leaf);
524 int slot;
525
526 if (nritems == 0)
527 return 0;
528
529 /* Check the 0 item */
530 if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
531 BTRFS_LEAF_DATA_SIZE(root)) {
532 CORRUPT("invalid item offset size pair", leaf, root, 0);
533 return -EIO;
534 }
535
536 /*
537 * Check to make sure each items keys are in the correct order and their
538 * offsets make sense. We only have to loop through nritems-1 because
539 * we check the current slot against the next slot, which verifies the
540 * next slot's offset+size makes sense and that the current's slot
541 * offset is correct.
542 */
543 for (slot = 0; slot < nritems - 1; slot++) {
544 btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
545 btrfs_item_key_to_cpu(leaf, &key, slot + 1);
546
547 /* Make sure the keys are in the right order */
548 if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
549 CORRUPT("bad key order", leaf, root, slot);
550 return -EIO;
551 }
552
553 /*
554 * Make sure the offset and ends are right, remember that the
555 * item data starts at the end of the leaf and grows towards the
556 * front.
557 */
558 if (btrfs_item_offset_nr(leaf, slot) !=
559 btrfs_item_end_nr(leaf, slot + 1)) {
560 CORRUPT("slot offset bad", leaf, root, slot);
561 return -EIO;
562 }
563
564 /*
565 * Check to make sure that we don't point outside of the leaf,
566 * just incase all the items are consistent to eachother, but
567 * all point outside of the leaf.
568 */
569 if (btrfs_item_end_nr(leaf, slot) >
570 BTRFS_LEAF_DATA_SIZE(root)) {
571 CORRUPT("slot end outside of leaf", leaf, root, slot);
572 return -EIO;
573 }
574 }
575
576 return 0;
577}
578
b2950863 579static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
5cf1ab56 580 struct extent_state *state, int mirror)
ce9adaa5
CM
581{
582 struct extent_io_tree *tree;
583 u64 found_start;
584 int found_level;
ce9adaa5
CM
585 struct extent_buffer *eb;
586 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
f188591e 587 int ret = 0;
727011e0 588 int reads_done;
ce9adaa5 589
ce9adaa5
CM
590 if (!page->private)
591 goto out;
d397712b 592
727011e0 593 tree = &BTRFS_I(page->mapping->host)->io_tree;
4f2de97a 594 eb = (struct extent_buffer *)page->private;
d397712b 595
0b32f4bb
JB
596 /* the pending IO might have been the only thing that kept this buffer
597 * in memory. Make sure we have a ref for all this other checks
598 */
599 extent_buffer_get(eb);
600
601 reads_done = atomic_dec_and_test(&eb->io_pages);
727011e0
CM
602 if (!reads_done)
603 goto err;
f188591e 604
5cf1ab56 605 eb->read_mirror = mirror;
ea466794
JB
606 if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
607 ret = -EIO;
608 goto err;
609 }
610
ce9adaa5 611 found_start = btrfs_header_bytenr(eb);
727011e0 612 if (found_start != eb->start) {
7a36ddec 613 printk_ratelimited(KERN_INFO "btrfs bad tree block start "
193f284d
CM
614 "%llu %llu\n",
615 (unsigned long long)found_start,
616 (unsigned long long)eb->start);
f188591e 617 ret = -EIO;
ce9adaa5
CM
618 goto err;
619 }
2b82032c 620 if (check_tree_block_fsid(root, eb)) {
7a36ddec 621 printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
193f284d 622 (unsigned long long)eb->start);
1259ab75
CM
623 ret = -EIO;
624 goto err;
625 }
ce9adaa5 626 found_level = btrfs_header_level(eb);
1c24c3ce
JB
627 if (found_level >= BTRFS_MAX_LEVEL) {
628 btrfs_info(root->fs_info, "bad tree block level %d\n",
629 (int)btrfs_header_level(eb));
630 ret = -EIO;
631 goto err;
632 }
ce9adaa5 633
85d4e461
CM
634 btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
635 eb, found_level);
4008c04a 636
ce9adaa5 637 ret = csum_tree_block(root, eb, 1);
a826d6dc 638 if (ret) {
f188591e 639 ret = -EIO;
a826d6dc
JB
640 goto err;
641 }
642
643 /*
644 * If this is a leaf block and it is corrupt, set the corrupt bit so
645 * that we don't try and read the other copies of this block, just
646 * return -EIO.
647 */
648 if (found_level == 0 && check_leaf(root, eb)) {
649 set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
650 ret = -EIO;
651 }
ce9adaa5 652
0b32f4bb
JB
653 if (!ret)
654 set_extent_buffer_uptodate(eb);
ce9adaa5 655err:
79fb65a1
JB
656 if (reads_done &&
657 test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 658 btree_readahead_hook(root, eb, eb->start, ret);
4bb31e92 659
53b381b3
DW
660 if (ret) {
661 /*
662 * our io error hook is going to dec the io pages
663 * again, we have to make sure it has something
664 * to decrement
665 */
666 atomic_inc(&eb->io_pages);
0b32f4bb 667 clear_extent_buffer_uptodate(eb);
53b381b3 668 }
0b32f4bb 669 free_extent_buffer(eb);
ce9adaa5 670out:
f188591e 671 return ret;
ce9adaa5
CM
672}
673
ea466794 674static int btree_io_failed_hook(struct page *page, int failed_mirror)
4bb31e92 675{
4bb31e92
AJ
676 struct extent_buffer *eb;
677 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
678
4f2de97a 679 eb = (struct extent_buffer *)page->private;
ea466794 680 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
5cf1ab56 681 eb->read_mirror = failed_mirror;
53b381b3 682 atomic_dec(&eb->io_pages);
ea466794 683 if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
4bb31e92 684 btree_readahead_hook(root, eb, eb->start, -EIO);
4bb31e92
AJ
685 return -EIO; /* we fixed nothing */
686}
687
ce9adaa5 688static void end_workqueue_bio(struct bio *bio, int err)
ce9adaa5
CM
689{
690 struct end_io_wq *end_io_wq = bio->bi_private;
691 struct btrfs_fs_info *fs_info;
ce9adaa5 692
ce9adaa5 693 fs_info = end_io_wq->info;
ce9adaa5 694 end_io_wq->error = err;
8b712842
CM
695 end_io_wq->work.func = end_workqueue_fn;
696 end_io_wq->work.flags = 0;
d20f7043 697
7b6d91da 698 if (bio->bi_rw & REQ_WRITE) {
53b381b3 699 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
cad321ad
CM
700 btrfs_queue_worker(&fs_info->endio_meta_write_workers,
701 &end_io_wq->work);
53b381b3 702 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
0cb59c99
JB
703 btrfs_queue_worker(&fs_info->endio_freespace_worker,
704 &end_io_wq->work);
53b381b3
DW
705 else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
706 btrfs_queue_worker(&fs_info->endio_raid56_workers,
707 &end_io_wq->work);
cad321ad
CM
708 else
709 btrfs_queue_worker(&fs_info->endio_write_workers,
710 &end_io_wq->work);
d20f7043 711 } else {
53b381b3
DW
712 if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
713 btrfs_queue_worker(&fs_info->endio_raid56_workers,
714 &end_io_wq->work);
715 else if (end_io_wq->metadata)
d20f7043
CM
716 btrfs_queue_worker(&fs_info->endio_meta_workers,
717 &end_io_wq->work);
718 else
719 btrfs_queue_worker(&fs_info->endio_workers,
720 &end_io_wq->work);
721 }
ce9adaa5
CM
722}
723
0cb59c99
JB
724/*
725 * For the metadata arg you want
726 *
727 * 0 - if data
728 * 1 - if normal metadta
729 * 2 - if writing to the free space cache area
53b381b3 730 * 3 - raid parity work
0cb59c99 731 */
22c59948
CM
732int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
733 int metadata)
0b86a832 734{
ce9adaa5 735 struct end_io_wq *end_io_wq;
ce9adaa5
CM
736 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
737 if (!end_io_wq)
738 return -ENOMEM;
739
740 end_io_wq->private = bio->bi_private;
741 end_io_wq->end_io = bio->bi_end_io;
22c59948 742 end_io_wq->info = info;
ce9adaa5
CM
743 end_io_wq->error = 0;
744 end_io_wq->bio = bio;
22c59948 745 end_io_wq->metadata = metadata;
ce9adaa5
CM
746
747 bio->bi_private = end_io_wq;
748 bio->bi_end_io = end_workqueue_bio;
22c59948
CM
749 return 0;
750}
751
b64a2851 752unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
0986fe9e 753{
4854ddd0
CM
754 unsigned long limit = min_t(unsigned long,
755 info->workers.max_workers,
756 info->fs_devices->open_devices);
757 return 256 * limit;
758}
0986fe9e 759
4a69a410
CM
760static void run_one_async_start(struct btrfs_work *work)
761{
4a69a410 762 struct async_submit_bio *async;
79787eaa 763 int ret;
4a69a410
CM
764
765 async = container_of(work, struct async_submit_bio, work);
79787eaa
JM
766 ret = async->submit_bio_start(async->inode, async->rw, async->bio,
767 async->mirror_num, async->bio_flags,
768 async->bio_offset);
769 if (ret)
770 async->error = ret;
4a69a410
CM
771}
772
773static void run_one_async_done(struct btrfs_work *work)
8b712842
CM
774{
775 struct btrfs_fs_info *fs_info;
776 struct async_submit_bio *async;
4854ddd0 777 int limit;
8b712842
CM
778
779 async = container_of(work, struct async_submit_bio, work);
780 fs_info = BTRFS_I(async->inode)->root->fs_info;
4854ddd0 781
b64a2851 782 limit = btrfs_async_submit_limit(fs_info);
4854ddd0
CM
783 limit = limit * 2 / 3;
784
66657b31 785 if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
b64a2851 786 waitqueue_active(&fs_info->async_submit_wait))
4854ddd0
CM
787 wake_up(&fs_info->async_submit_wait);
788
79787eaa
JM
789 /* If an error occured we just want to clean up the bio and move on */
790 if (async->error) {
791 bio_endio(async->bio, async->error);
792 return;
793 }
794
4a69a410 795 async->submit_bio_done(async->inode, async->rw, async->bio,
eaf25d93
CM
796 async->mirror_num, async->bio_flags,
797 async->bio_offset);
4a69a410
CM
798}
799
800static void run_one_async_free(struct btrfs_work *work)
801{
802 struct async_submit_bio *async;
803
804 async = container_of(work, struct async_submit_bio, work);
8b712842
CM
805 kfree(async);
806}
807
44b8bd7e
CM
808int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
809 int rw, struct bio *bio, int mirror_num,
c8b97818 810 unsigned long bio_flags,
eaf25d93 811 u64 bio_offset,
4a69a410
CM
812 extent_submit_bio_hook_t *submit_bio_start,
813 extent_submit_bio_hook_t *submit_bio_done)
44b8bd7e
CM
814{
815 struct async_submit_bio *async;
816
817 async = kmalloc(sizeof(*async), GFP_NOFS);
818 if (!async)
819 return -ENOMEM;
820
821 async->inode = inode;
822 async->rw = rw;
823 async->bio = bio;
824 async->mirror_num = mirror_num;
4a69a410
CM
825 async->submit_bio_start = submit_bio_start;
826 async->submit_bio_done = submit_bio_done;
827
828 async->work.func = run_one_async_start;
829 async->work.ordered_func = run_one_async_done;
830 async->work.ordered_free = run_one_async_free;
831
8b712842 832 async->work.flags = 0;
c8b97818 833 async->bio_flags = bio_flags;
eaf25d93 834 async->bio_offset = bio_offset;
8c8bee1d 835
79787eaa
JM
836 async->error = 0;
837
cb03c743 838 atomic_inc(&fs_info->nr_async_submits);
d313d7a3 839
7b6d91da 840 if (rw & REQ_SYNC)
d313d7a3
CM
841 btrfs_set_work_high_prio(&async->work);
842
8b712842 843 btrfs_queue_worker(&fs_info->workers, &async->work);
9473f16c 844
d397712b 845 while (atomic_read(&fs_info->async_submit_draining) &&
771ed689
CM
846 atomic_read(&fs_info->nr_async_submits)) {
847 wait_event(fs_info->async_submit_wait,
848 (atomic_read(&fs_info->nr_async_submits) == 0));
849 }
850
44b8bd7e
CM
851 return 0;
852}
853
ce3ed71a
CM
854static int btree_csum_one_bio(struct bio *bio)
855{
856 struct bio_vec *bvec = bio->bi_io_vec;
857 int bio_index = 0;
858 struct btrfs_root *root;
79787eaa 859 int ret = 0;
ce3ed71a
CM
860
861 WARN_ON(bio->bi_vcnt <= 0);
d397712b 862 while (bio_index < bio->bi_vcnt) {
ce3ed71a 863 root = BTRFS_I(bvec->bv_page->mapping->host)->root;
79787eaa
JM
864 ret = csum_dirty_buffer(root, bvec->bv_page);
865 if (ret)
866 break;
ce3ed71a
CM
867 bio_index++;
868 bvec++;
869 }
79787eaa 870 return ret;
ce3ed71a
CM
871}
872
4a69a410
CM
873static int __btree_submit_bio_start(struct inode *inode, int rw,
874 struct bio *bio, int mirror_num,
eaf25d93
CM
875 unsigned long bio_flags,
876 u64 bio_offset)
22c59948 877{
8b712842
CM
878 /*
879 * when we're called for a write, we're already in the async
5443be45 880 * submission context. Just jump into btrfs_map_bio
8b712842 881 */
79787eaa 882 return btree_csum_one_bio(bio);
4a69a410 883}
22c59948 884
4a69a410 885static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
886 int mirror_num, unsigned long bio_flags,
887 u64 bio_offset)
4a69a410 888{
61891923
SB
889 int ret;
890
8b712842 891 /*
4a69a410
CM
892 * when we're called for a write, we're already in the async
893 * submission context. Just jump into btrfs_map_bio
8b712842 894 */
61891923
SB
895 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
896 if (ret)
897 bio_endio(bio, ret);
898 return ret;
0b86a832
CM
899}
900
de0022b9
JB
901static int check_async_write(struct inode *inode, unsigned long bio_flags)
902{
903 if (bio_flags & EXTENT_BIO_TREE_LOG)
904 return 0;
905#ifdef CONFIG_X86
906 if (cpu_has_xmm4_2)
907 return 0;
908#endif
909 return 1;
910}
911
44b8bd7e 912static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
eaf25d93
CM
913 int mirror_num, unsigned long bio_flags,
914 u64 bio_offset)
44b8bd7e 915{
de0022b9 916 int async = check_async_write(inode, bio_flags);
cad321ad
CM
917 int ret;
918
7b6d91da 919 if (!(rw & REQ_WRITE)) {
4a69a410
CM
920 /*
921 * called for a read, do the setup so that checksum validation
922 * can happen in the async kernel threads
923 */
f3f266ab
CM
924 ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
925 bio, 1);
1d4284bd 926 if (ret)
61891923
SB
927 goto out_w_error;
928 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
929 mirror_num, 0);
de0022b9
JB
930 } else if (!async) {
931 ret = btree_csum_one_bio(bio);
932 if (ret)
61891923
SB
933 goto out_w_error;
934 ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
935 mirror_num, 0);
936 } else {
937 /*
938 * kthread helpers are used to submit writes so that
939 * checksumming can happen in parallel across all CPUs
940 */
941 ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
942 inode, rw, bio, mirror_num, 0,
943 bio_offset,
944 __btree_submit_bio_start,
945 __btree_submit_bio_done);
44b8bd7e 946 }
d313d7a3 947
61891923
SB
948 if (ret) {
949out_w_error:
950 bio_endio(bio, ret);
951 }
952 return ret;
44b8bd7e
CM
953}
954
3dd1462e 955#ifdef CONFIG_MIGRATION
784b4e29 956static int btree_migratepage(struct address_space *mapping,
a6bc32b8
MG
957 struct page *newpage, struct page *page,
958 enum migrate_mode mode)
784b4e29
CM
959{
960 /*
961 * we can't safely write a btree page from here,
962 * we haven't done the locking hook
963 */
964 if (PageDirty(page))
965 return -EAGAIN;
966 /*
967 * Buffers may be managed in a filesystem specific way.
968 * We must have no buffers or drop them.
969 */
970 if (page_has_private(page) &&
971 !try_to_release_page(page, GFP_KERNEL))
972 return -EAGAIN;
a6bc32b8 973 return migrate_page(mapping, newpage, page, mode);
784b4e29 974}
3dd1462e 975#endif
784b4e29 976
0da5468f
CM
977
978static int btree_writepages(struct address_space *mapping,
979 struct writeback_control *wbc)
980{
d1310b2e 981 struct extent_io_tree *tree;
e2d84521
MX
982 struct btrfs_fs_info *fs_info;
983 int ret;
984
d1310b2e 985 tree = &BTRFS_I(mapping->host)->io_tree;
d8d5f3e1 986 if (wbc->sync_mode == WB_SYNC_NONE) {
448d640b
CM
987
988 if (wbc->for_kupdate)
989 return 0;
990
e2d84521 991 fs_info = BTRFS_I(mapping->host)->root->fs_info;
b9473439 992 /* this is a bit racy, but that's ok */
e2d84521
MX
993 ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
994 BTRFS_DIRTY_METADATA_THRESH);
995 if (ret < 0)
793955bc 996 return 0;
793955bc 997 }
0b32f4bb 998 return btree_write_cache_pages(mapping, wbc);
0da5468f
CM
999}
1000
b2950863 1001static int btree_readpage(struct file *file, struct page *page)
5f39d397 1002{
d1310b2e
CM
1003 struct extent_io_tree *tree;
1004 tree = &BTRFS_I(page->mapping->host)->io_tree;
8ddc7d9c 1005 return extent_read_full_page(tree, page, btree_get_extent, 0);
5f39d397 1006}
22b0ebda 1007
70dec807 1008static int btree_releasepage(struct page *page, gfp_t gfp_flags)
5f39d397 1009{
98509cfc 1010 if (PageWriteback(page) || PageDirty(page))
d397712b 1011 return 0;
0c4e538b 1012
f7a52a40 1013 return try_release_extent_buffer(page);
d98237b3
CM
1014}
1015
5f39d397 1016static void btree_invalidatepage(struct page *page, unsigned long offset)
d98237b3 1017{
d1310b2e
CM
1018 struct extent_io_tree *tree;
1019 tree = &BTRFS_I(page->mapping->host)->io_tree;
5f39d397
CM
1020 extent_invalidatepage(tree, page, offset);
1021 btree_releasepage(page, GFP_NOFS);
9ad6b7bc 1022 if (PagePrivate(page)) {
d397712b
CM
1023 printk(KERN_WARNING "btrfs warning page private not zero "
1024 "on page %llu\n", (unsigned long long)page_offset(page));
9ad6b7bc
CM
1025 ClearPagePrivate(page);
1026 set_page_private(page, 0);
1027 page_cache_release(page);
1028 }
d98237b3
CM
1029}
1030
0b32f4bb
JB
1031static int btree_set_page_dirty(struct page *page)
1032{
bb146eb2 1033#ifdef DEBUG
0b32f4bb
JB
1034 struct extent_buffer *eb;
1035
1036 BUG_ON(!PagePrivate(page));
1037 eb = (struct extent_buffer *)page->private;
1038 BUG_ON(!eb);
1039 BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1040 BUG_ON(!atomic_read(&eb->refs));
1041 btrfs_assert_tree_locked(eb);
bb146eb2 1042#endif
0b32f4bb
JB
1043 return __set_page_dirty_nobuffers(page);
1044}
1045
7f09410b 1046static const struct address_space_operations btree_aops = {
d98237b3 1047 .readpage = btree_readpage,
0da5468f 1048 .writepages = btree_writepages,
5f39d397
CM
1049 .releasepage = btree_releasepage,
1050 .invalidatepage = btree_invalidatepage,
5a92bc88 1051#ifdef CONFIG_MIGRATION
784b4e29 1052 .migratepage = btree_migratepage,
5a92bc88 1053#endif
0b32f4bb 1054 .set_page_dirty = btree_set_page_dirty,
d98237b3
CM
1055};
1056
ca7a79ad
CM
1057int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1058 u64 parent_transid)
090d1875 1059{
5f39d397
CM
1060 struct extent_buffer *buf = NULL;
1061 struct inode *btree_inode = root->fs_info->btree_inode;
de428b63 1062 int ret = 0;
090d1875 1063
db94535d 1064 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5f39d397 1065 if (!buf)
090d1875 1066 return 0;
d1310b2e 1067 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
bb82ab88 1068 buf, 0, WAIT_NONE, btree_get_extent, 0);
5f39d397 1069 free_extent_buffer(buf);
de428b63 1070 return ret;
090d1875
CM
1071}
1072
ab0fff03
AJ
1073int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1074 int mirror_num, struct extent_buffer **eb)
1075{
1076 struct extent_buffer *buf = NULL;
1077 struct inode *btree_inode = root->fs_info->btree_inode;
1078 struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1079 int ret;
1080
1081 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1082 if (!buf)
1083 return 0;
1084
1085 set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1086
1087 ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1088 btree_get_extent, mirror_num);
1089 if (ret) {
1090 free_extent_buffer(buf);
1091 return ret;
1092 }
1093
1094 if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1095 free_extent_buffer(buf);
1096 return -EIO;
0b32f4bb 1097 } else if (extent_buffer_uptodate(buf)) {
ab0fff03
AJ
1098 *eb = buf;
1099 } else {
1100 free_extent_buffer(buf);
1101 }
1102 return 0;
1103}
1104
0999df54
CM
1105struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1106 u64 bytenr, u32 blocksize)
1107{
1108 struct inode *btree_inode = root->fs_info->btree_inode;
1109 struct extent_buffer *eb;
1110 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
f09d1f60 1111 bytenr, blocksize);
0999df54
CM
1112 return eb;
1113}
1114
1115struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1116 u64 bytenr, u32 blocksize)
1117{
1118 struct inode *btree_inode = root->fs_info->btree_inode;
1119 struct extent_buffer *eb;
1120
1121 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
727011e0 1122 bytenr, blocksize);
0999df54
CM
1123 return eb;
1124}
1125
1126
e02119d5
CM
1127int btrfs_write_tree_block(struct extent_buffer *buf)
1128{
727011e0 1129 return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
8aa38c31 1130 buf->start + buf->len - 1);
e02119d5
CM
1131}
1132
1133int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1134{
727011e0 1135 return filemap_fdatawait_range(buf->pages[0]->mapping,
8aa38c31 1136 buf->start, buf->start + buf->len - 1);
e02119d5
CM
1137}
1138
0999df54 1139struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
ca7a79ad 1140 u32 blocksize, u64 parent_transid)
0999df54
CM
1141{
1142 struct extent_buffer *buf = NULL;
0999df54
CM
1143 int ret;
1144
0999df54
CM
1145 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1146 if (!buf)
1147 return NULL;
0999df54 1148
ca7a79ad 1149 ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
5f39d397 1150 return buf;
ce9adaa5 1151
eb60ceac
CM
1152}
1153
d5c13f92
JM
1154void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1155 struct extent_buffer *buf)
ed2ff2cb 1156{
e2d84521
MX
1157 struct btrfs_fs_info *fs_info = root->fs_info;
1158
55c69072 1159 if (btrfs_header_generation(buf) ==
e2d84521 1160 fs_info->running_transaction->transid) {
b9447ef8 1161 btrfs_assert_tree_locked(buf);
b4ce94de 1162
b9473439 1163 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
e2d84521
MX
1164 __percpu_counter_add(&fs_info->dirty_metadata_bytes,
1165 -buf->len,
1166 fs_info->dirty_metadata_batch);
ed7b63eb
JB
1167 /* ugh, clear_extent_buffer_dirty needs to lock the page */
1168 btrfs_set_lock_blocking(buf);
1169 clear_extent_buffer_dirty(buf);
1170 }
925baedd 1171 }
5f39d397
CM
1172}
1173
143bede5
JM
1174static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1175 u32 stripesize, struct btrfs_root *root,
1176 struct btrfs_fs_info *fs_info,
1177 u64 objectid)
d97e63b6 1178{
cfaa7295 1179 root->node = NULL;
a28ec197 1180 root->commit_root = NULL;
db94535d
CM
1181 root->sectorsize = sectorsize;
1182 root->nodesize = nodesize;
1183 root->leafsize = leafsize;
87ee04eb 1184 root->stripesize = stripesize;
123abc88 1185 root->ref_cows = 0;
0b86a832 1186 root->track_dirty = 0;
c71bf099 1187 root->in_radix = 0;
d68fc57b
YZ
1188 root->orphan_item_inserted = 0;
1189 root->orphan_cleanup_state = 0;
0b86a832 1190
0f7d52f4
CM
1191 root->objectid = objectid;
1192 root->last_trans = 0;
13a8a7c8 1193 root->highest_objectid = 0;
58176a96 1194 root->name = NULL;
6bef4d31 1195 root->inode_tree = RB_ROOT;
16cdcec7 1196 INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
f0486c68 1197 root->block_rsv = NULL;
d68fc57b 1198 root->orphan_block_rsv = NULL;
0b86a832
CM
1199
1200 INIT_LIST_HEAD(&root->dirty_list);
5d4f98a2 1201 INIT_LIST_HEAD(&root->root_list);
2ab28f32
JB
1202 INIT_LIST_HEAD(&root->logged_list[0]);
1203 INIT_LIST_HEAD(&root->logged_list[1]);
d68fc57b 1204 spin_lock_init(&root->orphan_lock);
5d4f98a2 1205 spin_lock_init(&root->inode_lock);
f0486c68 1206 spin_lock_init(&root->accounting_lock);
2ab28f32
JB
1207 spin_lock_init(&root->log_extents_lock[0]);
1208 spin_lock_init(&root->log_extents_lock[1]);
a2135011 1209 mutex_init(&root->objectid_mutex);
e02119d5 1210 mutex_init(&root->log_mutex);
7237f183
YZ
1211 init_waitqueue_head(&root->log_writer_wait);
1212 init_waitqueue_head(&root->log_commit_wait[0]);
1213 init_waitqueue_head(&root->log_commit_wait[1]);
1214 atomic_set(&root->log_commit[0], 0);
1215 atomic_set(&root->log_commit[1], 0);
1216 atomic_set(&root->log_writers, 0);
2ecb7923 1217 atomic_set(&root->log_batch, 0);
8a35d95f 1218 atomic_set(&root->orphan_inodes, 0);
7237f183 1219 root->log_transid = 0;
257c62e1 1220 root->last_log_commit = 0;
d0c803c4 1221 extent_io_tree_init(&root->dirty_log_pages,
f993c883 1222 fs_info->btree_inode->i_mapping);
017e5369 1223
3768f368
CM
1224 memset(&root->root_key, 0, sizeof(root->root_key));
1225 memset(&root->root_item, 0, sizeof(root->root_item));
6702ed49 1226 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
58176a96 1227 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
3f157a2f 1228 root->defrag_trans_start = fs_info->generation;
58176a96 1229 init_completion(&root->kobj_unregister);
6702ed49 1230 root->defrag_running = 0;
4d775673 1231 root->root_key.objectid = objectid;
0ee5dc67 1232 root->anon_dev = 0;
8ea05e3a 1233
5f3ab90a 1234 spin_lock_init(&root->root_item_lock);
3768f368
CM
1235}
1236
200a5c17
JM
1237static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1238 struct btrfs_fs_info *fs_info,
1239 u64 objectid,
1240 struct btrfs_root *root)
3768f368
CM
1241{
1242 int ret;
db94535d 1243 u32 blocksize;
84234f3a 1244 u64 generation;
3768f368 1245
db94535d 1246 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1247 tree_root->sectorsize, tree_root->stripesize,
1248 root, fs_info, objectid);
3768f368
CM
1249 ret = btrfs_find_last_root(tree_root, objectid,
1250 &root->root_item, &root->root_key);
4df27c4d
YZ
1251 if (ret > 0)
1252 return -ENOENT;
200a5c17
JM
1253 else if (ret < 0)
1254 return ret;
3768f368 1255
84234f3a 1256 generation = btrfs_root_generation(&root->root_item);
db94535d 1257 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
af31f5e5 1258 root->commit_root = NULL;
db94535d 1259 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1260 blocksize, generation);
b9fab919 1261 if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
68433b73 1262 free_extent_buffer(root->node);
af31f5e5 1263 root->node = NULL;
68433b73
CM
1264 return -EIO;
1265 }
4df27c4d 1266 root->commit_root = btrfs_root_node(root);
d97e63b6
CM
1267 return 0;
1268}
1269
f84a8bd6 1270static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
6f07e42e
AV
1271{
1272 struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1273 if (root)
1274 root->fs_info = fs_info;
1275 return root;
1276}
1277
20897f5c
AJ
1278struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1279 struct btrfs_fs_info *fs_info,
1280 u64 objectid)
1281{
1282 struct extent_buffer *leaf;
1283 struct btrfs_root *tree_root = fs_info->tree_root;
1284 struct btrfs_root *root;
1285 struct btrfs_key key;
1286 int ret = 0;
1287 u64 bytenr;
6463fe58 1288 uuid_le uuid;
20897f5c
AJ
1289
1290 root = btrfs_alloc_root(fs_info);
1291 if (!root)
1292 return ERR_PTR(-ENOMEM);
1293
1294 __setup_root(tree_root->nodesize, tree_root->leafsize,
1295 tree_root->sectorsize, tree_root->stripesize,
1296 root, fs_info, objectid);
1297 root->root_key.objectid = objectid;
1298 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1299 root->root_key.offset = 0;
1300
1301 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
1302 0, objectid, NULL, 0, 0, 0);
1303 if (IS_ERR(leaf)) {
1304 ret = PTR_ERR(leaf);
1dd05682 1305 leaf = NULL;
20897f5c
AJ
1306 goto fail;
1307 }
1308
1309 bytenr = leaf->start;
1310 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1311 btrfs_set_header_bytenr(leaf, leaf->start);
1312 btrfs_set_header_generation(leaf, trans->transid);
1313 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1314 btrfs_set_header_owner(leaf, objectid);
1315 root->node = leaf;
1316
1317 write_extent_buffer(leaf, fs_info->fsid,
1318 (unsigned long)btrfs_header_fsid(leaf),
1319 BTRFS_FSID_SIZE);
1320 write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1321 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
1322 BTRFS_UUID_SIZE);
1323 btrfs_mark_buffer_dirty(leaf);
1324
1325 root->commit_root = btrfs_root_node(root);
1326 root->track_dirty = 1;
1327
1328
1329 root->root_item.flags = 0;
1330 root->root_item.byte_limit = 0;
1331 btrfs_set_root_bytenr(&root->root_item, leaf->start);
1332 btrfs_set_root_generation(&root->root_item, trans->transid);
1333 btrfs_set_root_level(&root->root_item, 0);
1334 btrfs_set_root_refs(&root->root_item, 1);
1335 btrfs_set_root_used(&root->root_item, leaf->len);
1336 btrfs_set_root_last_snapshot(&root->root_item, 0);
1337 btrfs_set_root_dirid(&root->root_item, 0);
6463fe58
SB
1338 uuid_le_gen(&uuid);
1339 memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
20897f5c
AJ
1340 root->root_item.drop_level = 0;
1341
1342 key.objectid = objectid;
1343 key.type = BTRFS_ROOT_ITEM_KEY;
1344 key.offset = 0;
1345 ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1346 if (ret)
1347 goto fail;
1348
1349 btrfs_tree_unlock(leaf);
1350
1dd05682
TI
1351 return root;
1352
20897f5c 1353fail:
1dd05682
TI
1354 if (leaf) {
1355 btrfs_tree_unlock(leaf);
1356 free_extent_buffer(leaf);
1357 }
1358 kfree(root);
20897f5c 1359
1dd05682 1360 return ERR_PTR(ret);
20897f5c
AJ
1361}
1362
7237f183
YZ
1363static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1364 struct btrfs_fs_info *fs_info)
0f7d52f4
CM
1365{
1366 struct btrfs_root *root;
1367 struct btrfs_root *tree_root = fs_info->tree_root;
7237f183 1368 struct extent_buffer *leaf;
e02119d5 1369
6f07e42e 1370 root = btrfs_alloc_root(fs_info);
e02119d5 1371 if (!root)
7237f183 1372 return ERR_PTR(-ENOMEM);
e02119d5
CM
1373
1374 __setup_root(tree_root->nodesize, tree_root->leafsize,
1375 tree_root->sectorsize, tree_root->stripesize,
1376 root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1377
1378 root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1379 root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1380 root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
7237f183
YZ
1381 /*
1382 * log trees do not get reference counted because they go away
1383 * before a real commit is actually done. They do store pointers
1384 * to file data extents, and those reference counts still get
1385 * updated (along with back refs to the log tree).
1386 */
e02119d5
CM
1387 root->ref_cows = 0;
1388
5d4f98a2 1389 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
66d7e7f0 1390 BTRFS_TREE_LOG_OBJECTID, NULL,
5581a51a 1391 0, 0, 0);
7237f183
YZ
1392 if (IS_ERR(leaf)) {
1393 kfree(root);
1394 return ERR_CAST(leaf);
1395 }
e02119d5 1396
5d4f98a2
YZ
1397 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1398 btrfs_set_header_bytenr(leaf, leaf->start);
1399 btrfs_set_header_generation(leaf, trans->transid);
1400 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1401 btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
7237f183 1402 root->node = leaf;
e02119d5
CM
1403
1404 write_extent_buffer(root->node, root->fs_info->fsid,
1405 (unsigned long)btrfs_header_fsid(root->node),
1406 BTRFS_FSID_SIZE);
1407 btrfs_mark_buffer_dirty(root->node);
1408 btrfs_tree_unlock(root->node);
7237f183
YZ
1409 return root;
1410}
1411
1412int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1413 struct btrfs_fs_info *fs_info)
1414{
1415 struct btrfs_root *log_root;
1416
1417 log_root = alloc_log_tree(trans, fs_info);
1418 if (IS_ERR(log_root))
1419 return PTR_ERR(log_root);
1420 WARN_ON(fs_info->log_root_tree);
1421 fs_info->log_root_tree = log_root;
1422 return 0;
1423}
1424
1425int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1426 struct btrfs_root *root)
1427{
1428 struct btrfs_root *log_root;
1429 struct btrfs_inode_item *inode_item;
1430
1431 log_root = alloc_log_tree(trans, root->fs_info);
1432 if (IS_ERR(log_root))
1433 return PTR_ERR(log_root);
1434
1435 log_root->last_trans = trans->transid;
1436 log_root->root_key.offset = root->root_key.objectid;
1437
1438 inode_item = &log_root->root_item.inode;
1439 inode_item->generation = cpu_to_le64(1);
1440 inode_item->size = cpu_to_le64(3);
1441 inode_item->nlink = cpu_to_le32(1);
1442 inode_item->nbytes = cpu_to_le64(root->leafsize);
1443 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1444
5d4f98a2 1445 btrfs_set_root_node(&log_root->root_item, log_root->node);
7237f183
YZ
1446
1447 WARN_ON(root->log_root);
1448 root->log_root = log_root;
1449 root->log_transid = 0;
257c62e1 1450 root->last_log_commit = 0;
e02119d5
CM
1451 return 0;
1452}
1453
1454struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1455 struct btrfs_key *location)
1456{
1457 struct btrfs_root *root;
1458 struct btrfs_fs_info *fs_info = tree_root->fs_info;
0f7d52f4 1459 struct btrfs_path *path;
5f39d397 1460 struct extent_buffer *l;
84234f3a 1461 u64 generation;
db94535d 1462 u32 blocksize;
0f7d52f4 1463 int ret = 0;
8ea05e3a 1464 int slot;
0f7d52f4 1465
6f07e42e 1466 root = btrfs_alloc_root(fs_info);
0cf6c620 1467 if (!root)
0f7d52f4 1468 return ERR_PTR(-ENOMEM);
0f7d52f4 1469 if (location->offset == (u64)-1) {
db94535d 1470 ret = find_and_setup_root(tree_root, fs_info,
0f7d52f4
CM
1471 location->objectid, root);
1472 if (ret) {
0f7d52f4
CM
1473 kfree(root);
1474 return ERR_PTR(ret);
1475 }
13a8a7c8 1476 goto out;
0f7d52f4
CM
1477 }
1478
db94535d 1479 __setup_root(tree_root->nodesize, tree_root->leafsize,
87ee04eb
CM
1480 tree_root->sectorsize, tree_root->stripesize,
1481 root, fs_info, location->objectid);
0f7d52f4
CM
1482
1483 path = btrfs_alloc_path();
db5b493a
TI
1484 if (!path) {
1485 kfree(root);
1486 return ERR_PTR(-ENOMEM);
1487 }
0f7d52f4 1488 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
13a8a7c8
YZ
1489 if (ret == 0) {
1490 l = path->nodes[0];
8ea05e3a 1491 slot = path->slots[0];
5fbf83c1 1492 btrfs_read_root_item(l, slot, &root->root_item);
13a8a7c8 1493 memcpy(&root->root_key, location, sizeof(*location));
0f7d52f4 1494 }
0f7d52f4
CM
1495 btrfs_free_path(path);
1496 if (ret) {
5e540f77 1497 kfree(root);
13a8a7c8
YZ
1498 if (ret > 0)
1499 ret = -ENOENT;
0f7d52f4
CM
1500 return ERR_PTR(ret);
1501 }
13a8a7c8 1502
84234f3a 1503 generation = btrfs_root_generation(&root->root_item);
db94535d
CM
1504 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1505 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
84234f3a 1506 blocksize, generation);
416bc658
JB
1507 if (!root->node || !extent_buffer_uptodate(root->node)) {
1508 ret = (!root->node) ? -ENOMEM : -EIO;
1509
1510 free_extent_buffer(root->node);
1511 kfree(root);
1512 return ERR_PTR(ret);
1513 }
1514
5d4f98a2 1515 root->commit_root = btrfs_root_node(root);
13a8a7c8 1516out:
08fe4db1 1517 if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
e02119d5 1518 root->ref_cows = 1;
08fe4db1
LZ
1519 btrfs_check_and_init_root_item(&root->root_item);
1520 }
13a8a7c8 1521
5eda7b5e
CM
1522 return root;
1523}
1524
edbd8d4e
CM
1525struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1526 struct btrfs_key *location)
5eda7b5e
CM
1527{
1528 struct btrfs_root *root;
1529 int ret;
1530
edbd8d4e
CM
1531 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1532 return fs_info->tree_root;
1533 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1534 return fs_info->extent_root;
8f18cf13
CM
1535 if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1536 return fs_info->chunk_root;
1537 if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1538 return fs_info->dev_root;
0403e47e
YZ
1539 if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1540 return fs_info->csum_root;
bcef60f2
AJ
1541 if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1542 return fs_info->quota_root ? fs_info->quota_root :
1543 ERR_PTR(-ENOENT);
4df27c4d
YZ
1544again:
1545 spin_lock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1546 root = radix_tree_lookup(&fs_info->fs_roots_radix,
1547 (unsigned long)location->objectid);
4df27c4d 1548 spin_unlock(&fs_info->fs_roots_radix_lock);
5eda7b5e
CM
1549 if (root)
1550 return root;
1551
e02119d5 1552 root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
5eda7b5e
CM
1553 if (IS_ERR(root))
1554 return root;
3394e160 1555
581bb050 1556 root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
581bb050
LZ
1557 root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1558 GFP_NOFS);
35a30d7c
DS
1559 if (!root->free_ino_pinned || !root->free_ino_ctl) {
1560 ret = -ENOMEM;
581bb050 1561 goto fail;
35a30d7c 1562 }
581bb050
LZ
1563
1564 btrfs_init_free_ino_ctl(root);
1565 mutex_init(&root->fs_commit_mutex);
1566 spin_lock_init(&root->cache_lock);
1567 init_waitqueue_head(&root->cache_wait);
1568
0ee5dc67 1569 ret = get_anon_bdev(&root->anon_dev);
ac08aedf
CM
1570 if (ret)
1571 goto fail;
3394e160 1572
d68fc57b
YZ
1573 if (btrfs_root_refs(&root->root_item) == 0) {
1574 ret = -ENOENT;
1575 goto fail;
1576 }
1577
1578 ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1579 if (ret < 0)
1580 goto fail;
1581 if (ret == 0)
1582 root->orphan_item_inserted = 1;
1583
4df27c4d
YZ
1584 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1585 if (ret)
1586 goto fail;
1587
1588 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
1589 ret = radix_tree_insert(&fs_info->fs_roots_radix,
1590 (unsigned long)root->root_key.objectid,
0f7d52f4 1591 root);
d68fc57b 1592 if (ret == 0)
4df27c4d 1593 root->in_radix = 1;
d68fc57b 1594
4df27c4d
YZ
1595 spin_unlock(&fs_info->fs_roots_radix_lock);
1596 radix_tree_preload_end();
0f7d52f4 1597 if (ret) {
4df27c4d
YZ
1598 if (ret == -EEXIST) {
1599 free_fs_root(root);
1600 goto again;
1601 }
1602 goto fail;
0f7d52f4 1603 }
4df27c4d
YZ
1604
1605 ret = btrfs_find_dead_roots(fs_info->tree_root,
1606 root->root_key.objectid);
1607 WARN_ON(ret);
edbd8d4e 1608 return root;
4df27c4d
YZ
1609fail:
1610 free_fs_root(root);
1611 return ERR_PTR(ret);
edbd8d4e
CM
1612}
1613
04160088
CM
1614static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1615{
1616 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1617 int ret = 0;
04160088
CM
1618 struct btrfs_device *device;
1619 struct backing_dev_info *bdi;
b7967db7 1620
1f78160c
XG
1621 rcu_read_lock();
1622 list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
dfe25020
CM
1623 if (!device->bdev)
1624 continue;
04160088
CM
1625 bdi = blk_get_backing_dev_info(device->bdev);
1626 if (bdi && bdi_congested(bdi, bdi_bits)) {
1627 ret = 1;
1628 break;
1629 }
1630 }
1f78160c 1631 rcu_read_unlock();
04160088
CM
1632 return ret;
1633}
1634
ad081f14
JA
1635/*
1636 * If this fails, caller must call bdi_destroy() to get rid of the
1637 * bdi again.
1638 */
04160088
CM
1639static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1640{
ad081f14
JA
1641 int err;
1642
1643 bdi->capabilities = BDI_CAP_MAP_COPY;
e6d086d8 1644 err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
ad081f14
JA
1645 if (err)
1646 return err;
1647
4575c9cc 1648 bdi->ra_pages = default_backing_dev_info.ra_pages;
04160088
CM
1649 bdi->congested_fn = btrfs_congested_fn;
1650 bdi->congested_data = info;
1651 return 0;
1652}
1653
8b712842
CM
1654/*
1655 * called by the kthread helper functions to finally call the bio end_io
1656 * functions. This is where read checksum verification actually happens
1657 */
1658static void end_workqueue_fn(struct btrfs_work *work)
ce9adaa5 1659{
ce9adaa5 1660 struct bio *bio;
8b712842
CM
1661 struct end_io_wq *end_io_wq;
1662 struct btrfs_fs_info *fs_info;
ce9adaa5 1663 int error;
ce9adaa5 1664
8b712842
CM
1665 end_io_wq = container_of(work, struct end_io_wq, work);
1666 bio = end_io_wq->bio;
1667 fs_info = end_io_wq->info;
ce9adaa5 1668
8b712842
CM
1669 error = end_io_wq->error;
1670 bio->bi_private = end_io_wq->private;
1671 bio->bi_end_io = end_io_wq->end_io;
1672 kfree(end_io_wq);
8b712842 1673 bio_endio(bio, error);
44b8bd7e
CM
1674}
1675
d0278245 1676/*
05323cd1
MX
1677 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
1678 * anything except sleeping. This function is used to check the status of
1679 * the fs.
d0278245
MX
1680 */
1681static inline int need_cleaner_sleep(struct btrfs_root *root)
1682{
05323cd1
MX
1683 return (root->fs_info->sb->s_flags & MS_RDONLY ||
1684 btrfs_fs_closing(root->fs_info));
d0278245
MX
1685}
1686
a74a4b97
CM
1687static int cleaner_kthread(void *arg)
1688{
1689 struct btrfs_root *root = arg;
d0278245 1690 int again;
a74a4b97
CM
1691
1692 do {
d0278245 1693 again = 0;
a74a4b97 1694
d0278245
MX
1695 /* Make the cleaner go to sleep early. */
1696 if (need_cleaner_sleep(root))
1697 goto sleep;
1698
1699 if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1700 goto sleep;
1701
dc7f370c
MX
1702 /*
1703 * Avoid the problem that we change the status of the fs
1704 * during the above check and trylock.
1705 */
1706 if (need_cleaner_sleep(root)) {
1707 mutex_unlock(&root->fs_info->cleaner_mutex);
1708 goto sleep;
1709 }
1710
d0278245
MX
1711 btrfs_run_delayed_iputs(root);
1712 again = btrfs_clean_one_deleted_snapshot(root);
1713 mutex_unlock(&root->fs_info->cleaner_mutex);
1714
1715 /*
05323cd1
MX
1716 * The defragger has dealt with the R/O remount and umount,
1717 * needn't do anything special here.
d0278245
MX
1718 */
1719 btrfs_run_defrag_inodes(root->fs_info);
1720sleep:
9d1a2a3a 1721 if (!try_to_freeze() && !again) {
a74a4b97 1722 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa
YZ
1723 if (!kthread_should_stop())
1724 schedule();
a74a4b97
CM
1725 __set_current_state(TASK_RUNNING);
1726 }
1727 } while (!kthread_should_stop());
1728 return 0;
1729}
1730
1731static int transaction_kthread(void *arg)
1732{
1733 struct btrfs_root *root = arg;
1734 struct btrfs_trans_handle *trans;
1735 struct btrfs_transaction *cur;
8929ecfa 1736 u64 transid;
a74a4b97
CM
1737 unsigned long now;
1738 unsigned long delay;
914b2007 1739 bool cannot_commit;
a74a4b97
CM
1740
1741 do {
914b2007 1742 cannot_commit = false;
a74a4b97 1743 delay = HZ * 30;
a74a4b97
CM
1744 mutex_lock(&root->fs_info->transaction_kthread_mutex);
1745
a4abeea4 1746 spin_lock(&root->fs_info->trans_lock);
a74a4b97
CM
1747 cur = root->fs_info->running_transaction;
1748 if (!cur) {
a4abeea4 1749 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1750 goto sleep;
1751 }
31153d81 1752
a74a4b97 1753 now = get_seconds();
8929ecfa
YZ
1754 if (!cur->blocked &&
1755 (now < cur->start_time || now - cur->start_time < 30)) {
a4abeea4 1756 spin_unlock(&root->fs_info->trans_lock);
a74a4b97
CM
1757 delay = HZ * 5;
1758 goto sleep;
1759 }
8929ecfa 1760 transid = cur->transid;
a4abeea4 1761 spin_unlock(&root->fs_info->trans_lock);
56bec294 1762
79787eaa 1763 /* If the file system is aborted, this will always fail. */
354aa0fb 1764 trans = btrfs_attach_transaction(root);
914b2007 1765 if (IS_ERR(trans)) {
354aa0fb
MX
1766 if (PTR_ERR(trans) != -ENOENT)
1767 cannot_commit = true;
79787eaa 1768 goto sleep;
914b2007 1769 }
8929ecfa 1770 if (transid == trans->transid) {
79787eaa 1771 btrfs_commit_transaction(trans, root);
8929ecfa
YZ
1772 } else {
1773 btrfs_end_transaction(trans, root);
1774 }
a74a4b97
CM
1775sleep:
1776 wake_up_process(root->fs_info->cleaner_kthread);
1777 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1778
a0acae0e 1779 if (!try_to_freeze()) {
a74a4b97 1780 set_current_state(TASK_INTERRUPTIBLE);
8929ecfa 1781 if (!kthread_should_stop() &&
914b2007
JK
1782 (!btrfs_transaction_blocked(root->fs_info) ||
1783 cannot_commit))
8929ecfa 1784 schedule_timeout(delay);
a74a4b97
CM
1785 __set_current_state(TASK_RUNNING);
1786 }
1787 } while (!kthread_should_stop());
1788 return 0;
1789}
1790
af31f5e5
CM
1791/*
1792 * this will find the highest generation in the array of
1793 * root backups. The index of the highest array is returned,
1794 * or -1 if we can't find anything.
1795 *
1796 * We check to make sure the array is valid by comparing the
1797 * generation of the latest root in the array with the generation
1798 * in the super block. If they don't match we pitch it.
1799 */
1800static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1801{
1802 u64 cur;
1803 int newest_index = -1;
1804 struct btrfs_root_backup *root_backup;
1805 int i;
1806
1807 for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1808 root_backup = info->super_copy->super_roots + i;
1809 cur = btrfs_backup_tree_root_gen(root_backup);
1810 if (cur == newest_gen)
1811 newest_index = i;
1812 }
1813
1814 /* check to see if we actually wrapped around */
1815 if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1816 root_backup = info->super_copy->super_roots;
1817 cur = btrfs_backup_tree_root_gen(root_backup);
1818 if (cur == newest_gen)
1819 newest_index = 0;
1820 }
1821 return newest_index;
1822}
1823
1824
1825/*
1826 * find the oldest backup so we know where to store new entries
1827 * in the backup array. This will set the backup_root_index
1828 * field in the fs_info struct
1829 */
1830static void find_oldest_super_backup(struct btrfs_fs_info *info,
1831 u64 newest_gen)
1832{
1833 int newest_index = -1;
1834
1835 newest_index = find_newest_super_backup(info, newest_gen);
1836 /* if there was garbage in there, just move along */
1837 if (newest_index == -1) {
1838 info->backup_root_index = 0;
1839 } else {
1840 info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1841 }
1842}
1843
1844/*
1845 * copy all the root pointers into the super backup array.
1846 * this will bump the backup pointer by one when it is
1847 * done
1848 */
1849static void backup_super_roots(struct btrfs_fs_info *info)
1850{
1851 int next_backup;
1852 struct btrfs_root_backup *root_backup;
1853 int last_backup;
1854
1855 next_backup = info->backup_root_index;
1856 last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1857 BTRFS_NUM_BACKUP_ROOTS;
1858
1859 /*
1860 * just overwrite the last backup if we're at the same generation
1861 * this happens only at umount
1862 */
1863 root_backup = info->super_for_commit->super_roots + last_backup;
1864 if (btrfs_backup_tree_root_gen(root_backup) ==
1865 btrfs_header_generation(info->tree_root->node))
1866 next_backup = last_backup;
1867
1868 root_backup = info->super_for_commit->super_roots + next_backup;
1869
1870 /*
1871 * make sure all of our padding and empty slots get zero filled
1872 * regardless of which ones we use today
1873 */
1874 memset(root_backup, 0, sizeof(*root_backup));
1875
1876 info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1877
1878 btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1879 btrfs_set_backup_tree_root_gen(root_backup,
1880 btrfs_header_generation(info->tree_root->node));
1881
1882 btrfs_set_backup_tree_root_level(root_backup,
1883 btrfs_header_level(info->tree_root->node));
1884
1885 btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1886 btrfs_set_backup_chunk_root_gen(root_backup,
1887 btrfs_header_generation(info->chunk_root->node));
1888 btrfs_set_backup_chunk_root_level(root_backup,
1889 btrfs_header_level(info->chunk_root->node));
1890
1891 btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1892 btrfs_set_backup_extent_root_gen(root_backup,
1893 btrfs_header_generation(info->extent_root->node));
1894 btrfs_set_backup_extent_root_level(root_backup,
1895 btrfs_header_level(info->extent_root->node));
1896
7c7e82a7
CM
1897 /*
1898 * we might commit during log recovery, which happens before we set
1899 * the fs_root. Make sure it is valid before we fill it in.
1900 */
1901 if (info->fs_root && info->fs_root->node) {
1902 btrfs_set_backup_fs_root(root_backup,
1903 info->fs_root->node->start);
1904 btrfs_set_backup_fs_root_gen(root_backup,
af31f5e5 1905 btrfs_header_generation(info->fs_root->node));
7c7e82a7 1906 btrfs_set_backup_fs_root_level(root_backup,
af31f5e5 1907 btrfs_header_level(info->fs_root->node));
7c7e82a7 1908 }
af31f5e5
CM
1909
1910 btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1911 btrfs_set_backup_dev_root_gen(root_backup,
1912 btrfs_header_generation(info->dev_root->node));
1913 btrfs_set_backup_dev_root_level(root_backup,
1914 btrfs_header_level(info->dev_root->node));
1915
1916 btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1917 btrfs_set_backup_csum_root_gen(root_backup,
1918 btrfs_header_generation(info->csum_root->node));
1919 btrfs_set_backup_csum_root_level(root_backup,
1920 btrfs_header_level(info->csum_root->node));
1921
1922 btrfs_set_backup_total_bytes(root_backup,
1923 btrfs_super_total_bytes(info->super_copy));
1924 btrfs_set_backup_bytes_used(root_backup,
1925 btrfs_super_bytes_used(info->super_copy));
1926 btrfs_set_backup_num_devices(root_backup,
1927 btrfs_super_num_devices(info->super_copy));
1928
1929 /*
1930 * if we don't copy this out to the super_copy, it won't get remembered
1931 * for the next commit
1932 */
1933 memcpy(&info->super_copy->super_roots,
1934 &info->super_for_commit->super_roots,
1935 sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1936}
1937
1938/*
1939 * this copies info out of the root backup array and back into
1940 * the in-memory super block. It is meant to help iterate through
1941 * the array, so you send it the number of backups you've already
1942 * tried and the last backup index you used.
1943 *
1944 * this returns -1 when it has tried all the backups
1945 */
1946static noinline int next_root_backup(struct btrfs_fs_info *info,
1947 struct btrfs_super_block *super,
1948 int *num_backups_tried, int *backup_index)
1949{
1950 struct btrfs_root_backup *root_backup;
1951 int newest = *backup_index;
1952
1953 if (*num_backups_tried == 0) {
1954 u64 gen = btrfs_super_generation(super);
1955
1956 newest = find_newest_super_backup(info, gen);
1957 if (newest == -1)
1958 return -1;
1959
1960 *backup_index = newest;
1961 *num_backups_tried = 1;
1962 } else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1963 /* we've tried all the backups, all done */
1964 return -1;
1965 } else {
1966 /* jump to the next oldest backup */
1967 newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1968 BTRFS_NUM_BACKUP_ROOTS;
1969 *backup_index = newest;
1970 *num_backups_tried += 1;
1971 }
1972 root_backup = super->super_roots + newest;
1973
1974 btrfs_set_super_generation(super,
1975 btrfs_backup_tree_root_gen(root_backup));
1976 btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1977 btrfs_set_super_root_level(super,
1978 btrfs_backup_tree_root_level(root_backup));
1979 btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1980
1981 /*
1982 * fixme: the total bytes and num_devices need to match or we should
1983 * need a fsck
1984 */
1985 btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1986 btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
1987 return 0;
1988}
1989
7abadb64
LB
1990/* helper to cleanup workers */
1991static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
1992{
1993 btrfs_stop_workers(&fs_info->generic_worker);
1994 btrfs_stop_workers(&fs_info->fixup_workers);
1995 btrfs_stop_workers(&fs_info->delalloc_workers);
1996 btrfs_stop_workers(&fs_info->workers);
1997 btrfs_stop_workers(&fs_info->endio_workers);
1998 btrfs_stop_workers(&fs_info->endio_meta_workers);
1999 btrfs_stop_workers(&fs_info->endio_raid56_workers);
2000 btrfs_stop_workers(&fs_info->rmw_workers);
2001 btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2002 btrfs_stop_workers(&fs_info->endio_write_workers);
2003 btrfs_stop_workers(&fs_info->endio_freespace_worker);
2004 btrfs_stop_workers(&fs_info->submit_workers);
2005 btrfs_stop_workers(&fs_info->delayed_workers);
2006 btrfs_stop_workers(&fs_info->caching_workers);
2007 btrfs_stop_workers(&fs_info->readahead_workers);
2008 btrfs_stop_workers(&fs_info->flush_workers);
2f232036 2009 btrfs_stop_workers(&fs_info->qgroup_rescan_workers);
7abadb64
LB
2010}
2011
af31f5e5
CM
2012/* helper to cleanup tree roots */
2013static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2014{
2015 free_extent_buffer(info->tree_root->node);
2016 free_extent_buffer(info->tree_root->commit_root);
af31f5e5
CM
2017 info->tree_root->node = NULL;
2018 info->tree_root->commit_root = NULL;
655b09fe
JB
2019
2020 if (info->dev_root) {
2021 free_extent_buffer(info->dev_root->node);
2022 free_extent_buffer(info->dev_root->commit_root);
2023 info->dev_root->node = NULL;
2024 info->dev_root->commit_root = NULL;
2025 }
2026 if (info->extent_root) {
2027 free_extent_buffer(info->extent_root->node);
2028 free_extent_buffer(info->extent_root->commit_root);
2029 info->extent_root->node = NULL;
2030 info->extent_root->commit_root = NULL;
2031 }
2032 if (info->csum_root) {
2033 free_extent_buffer(info->csum_root->node);
2034 free_extent_buffer(info->csum_root->commit_root);
2035 info->csum_root->node = NULL;
2036 info->csum_root->commit_root = NULL;
2037 }
bcef60f2 2038 if (info->quota_root) {
655b09fe
JB
2039 free_extent_buffer(info->quota_root->node);
2040 free_extent_buffer(info->quota_root->commit_root);
bcef60f2
AJ
2041 info->quota_root->node = NULL;
2042 info->quota_root->commit_root = NULL;
2043 }
af31f5e5
CM
2044 if (chunk_root) {
2045 free_extent_buffer(info->chunk_root->node);
2046 free_extent_buffer(info->chunk_root->commit_root);
2047 info->chunk_root->node = NULL;
2048 info->chunk_root->commit_root = NULL;
2049 }
2050}
2051
171f6537
JB
2052static void del_fs_roots(struct btrfs_fs_info *fs_info)
2053{
2054 int ret;
2055 struct btrfs_root *gang[8];
2056 int i;
2057
2058 while (!list_empty(&fs_info->dead_roots)) {
2059 gang[0] = list_entry(fs_info->dead_roots.next,
2060 struct btrfs_root, root_list);
2061 list_del(&gang[0]->root_list);
2062
2063 if (gang[0]->in_radix) {
2064 btrfs_free_fs_root(fs_info, gang[0]);
2065 } else {
2066 free_extent_buffer(gang[0]->node);
2067 free_extent_buffer(gang[0]->commit_root);
2068 kfree(gang[0]);
2069 }
2070 }
2071
2072 while (1) {
2073 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2074 (void **)gang, 0,
2075 ARRAY_SIZE(gang));
2076 if (!ret)
2077 break;
2078 for (i = 0; i < ret; i++)
2079 btrfs_free_fs_root(fs_info, gang[i]);
2080 }
2081}
af31f5e5 2082
ad2b2c80
AV
2083int open_ctree(struct super_block *sb,
2084 struct btrfs_fs_devices *fs_devices,
2085 char *options)
2e635a27 2086{
db94535d
CM
2087 u32 sectorsize;
2088 u32 nodesize;
2089 u32 leafsize;
2090 u32 blocksize;
87ee04eb 2091 u32 stripesize;
84234f3a 2092 u64 generation;
f2b636e8 2093 u64 features;
3de4586c 2094 struct btrfs_key location;
a061fc8d 2095 struct buffer_head *bh;
4d34b278 2096 struct btrfs_super_block *disk_super;
815745cf 2097 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
f84a8bd6 2098 struct btrfs_root *tree_root;
4d34b278
ID
2099 struct btrfs_root *extent_root;
2100 struct btrfs_root *csum_root;
2101 struct btrfs_root *chunk_root;
2102 struct btrfs_root *dev_root;
bcef60f2 2103 struct btrfs_root *quota_root;
e02119d5 2104 struct btrfs_root *log_tree_root;
eb60ceac 2105 int ret;
e58ca020 2106 int err = -EINVAL;
af31f5e5
CM
2107 int num_backups_tried = 0;
2108 int backup_index = 0;
4543df7e 2109
f84a8bd6 2110 tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
6f07e42e
AV
2111 extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
2112 csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
2113 chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2114 dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
bcef60f2 2115 quota_root = fs_info->quota_root = btrfs_alloc_root(fs_info);
8790d502 2116
f84a8bd6 2117 if (!tree_root || !extent_root || !csum_root ||
bcef60f2 2118 !chunk_root || !dev_root || !quota_root) {
39279cc3
CM
2119 err = -ENOMEM;
2120 goto fail;
2121 }
76dda93c
YZ
2122
2123 ret = init_srcu_struct(&fs_info->subvol_srcu);
2124 if (ret) {
2125 err = ret;
2126 goto fail;
2127 }
2128
2129 ret = setup_bdi(fs_info, &fs_info->bdi);
2130 if (ret) {
2131 err = ret;
2132 goto fail_srcu;
2133 }
2134
e2d84521
MX
2135 ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0);
2136 if (ret) {
2137 err = ret;
2138 goto fail_bdi;
2139 }
2140 fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2141 (1 + ilog2(nr_cpu_ids));
2142
963d678b
MX
2143 ret = percpu_counter_init(&fs_info->delalloc_bytes, 0);
2144 if (ret) {
2145 err = ret;
2146 goto fail_dirty_metadata_bytes;
2147 }
2148
76dda93c
YZ
2149 fs_info->btree_inode = new_inode(sb);
2150 if (!fs_info->btree_inode) {
2151 err = -ENOMEM;
963d678b 2152 goto fail_delalloc_bytes;
76dda93c
YZ
2153 }
2154
a6591715 2155 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1561deda 2156
76dda93c 2157 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
8fd17795 2158 INIT_LIST_HEAD(&fs_info->trans_list);
facda1e7 2159 INIT_LIST_HEAD(&fs_info->dead_roots);
24bbcf04 2160 INIT_LIST_HEAD(&fs_info->delayed_iputs);
ea8c2819 2161 INIT_LIST_HEAD(&fs_info->delalloc_inodes);
11833d66 2162 INIT_LIST_HEAD(&fs_info->caching_block_groups);
1832a6d5 2163 spin_lock_init(&fs_info->delalloc_lock);
a4abeea4 2164 spin_lock_init(&fs_info->trans_lock);
76dda93c 2165 spin_lock_init(&fs_info->fs_roots_radix_lock);
24bbcf04 2166 spin_lock_init(&fs_info->delayed_iput_lock);
4cb5300b 2167 spin_lock_init(&fs_info->defrag_inodes_lock);
2bf64758 2168 spin_lock_init(&fs_info->free_chunk_lock);
f29021b2 2169 spin_lock_init(&fs_info->tree_mod_seq_lock);
ceda0864 2170 spin_lock_init(&fs_info->super_lock);
f29021b2 2171 rwlock_init(&fs_info->tree_mod_log_lock);
7585717f 2172 mutex_init(&fs_info->reloc_mutex);
de98ced9 2173 seqlock_init(&fs_info->profiles_lock);
19c00ddc 2174
58176a96 2175 init_completion(&fs_info->kobj_unregister);
0b86a832 2176 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
6324fbf3 2177 INIT_LIST_HEAD(&fs_info->space_info);
f29021b2 2178 INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
0b86a832 2179 btrfs_mapping_init(&fs_info->mapping_tree);
66d8f3dd
MX
2180 btrfs_init_block_rsv(&fs_info->global_block_rsv,
2181 BTRFS_BLOCK_RSV_GLOBAL);
2182 btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2183 BTRFS_BLOCK_RSV_DELALLOC);
2184 btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2185 btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2186 btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2187 btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2188 BTRFS_BLOCK_RSV_DELOPS);
cb03c743 2189 atomic_set(&fs_info->nr_async_submits, 0);
771ed689 2190 atomic_set(&fs_info->async_delalloc_pages, 0);
8c8bee1d 2191 atomic_set(&fs_info->async_submit_draining, 0);
0986fe9e 2192 atomic_set(&fs_info->nr_async_bios, 0);
4cb5300b 2193 atomic_set(&fs_info->defrag_running, 0);
fc36ed7e 2194 atomic64_set(&fs_info->tree_mod_seq, 0);
e20d96d6 2195 fs_info->sb = sb;
6f568d35 2196 fs_info->max_inline = 8192 * 1024;
9ed74f2d 2197 fs_info->metadata_ratio = 0;
4cb5300b 2198 fs_info->defrag_inodes = RB_ROOT;
a4abeea4 2199 fs_info->trans_no_join = 0;
2bf64758 2200 fs_info->free_chunk_space = 0;
f29021b2 2201 fs_info->tree_mod_log = RB_ROOT;
c8b97818 2202
90519d66
AJ
2203 /* readahead state */
2204 INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2205 spin_lock_init(&fs_info->reada_lock);
c8b97818 2206
b34b086c
CM
2207 fs_info->thread_pool_size = min_t(unsigned long,
2208 num_online_cpus() + 2, 8);
0afbaf8c 2209
3eaa2885
CM
2210 INIT_LIST_HEAD(&fs_info->ordered_extents);
2211 spin_lock_init(&fs_info->ordered_extent_lock);
16cdcec7
MX
2212 fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2213 GFP_NOFS);
2214 if (!fs_info->delayed_root) {
2215 err = -ENOMEM;
2216 goto fail_iput;
2217 }
2218 btrfs_init_delayed_root(fs_info->delayed_root);
3eaa2885 2219
a2de733c
AJ
2220 mutex_init(&fs_info->scrub_lock);
2221 atomic_set(&fs_info->scrubs_running, 0);
2222 atomic_set(&fs_info->scrub_pause_req, 0);
2223 atomic_set(&fs_info->scrubs_paused, 0);
2224 atomic_set(&fs_info->scrub_cancel_req, 0);
2225 init_waitqueue_head(&fs_info->scrub_pause_wait);
2226 init_rwsem(&fs_info->scrub_super_lock);
2227 fs_info->scrub_workers_refcnt = 0;
21adbd5c
SB
2228#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2229 fs_info->check_integrity_print_mask = 0;
2230#endif
a2de733c 2231
c9e9f97b
ID
2232 spin_lock_init(&fs_info->balance_lock);
2233 mutex_init(&fs_info->balance_mutex);
837d5b6e
ID
2234 atomic_set(&fs_info->balance_running, 0);
2235 atomic_set(&fs_info->balance_pause_req, 0);
a7e99c69 2236 atomic_set(&fs_info->balance_cancel_req, 0);
c9e9f97b 2237 fs_info->balance_ctl = NULL;
837d5b6e 2238 init_waitqueue_head(&fs_info->balance_wait_q);
a2de733c 2239
a061fc8d
CM
2240 sb->s_blocksize = 4096;
2241 sb->s_blocksize_bits = blksize_bits(4096);
32a88aa1 2242 sb->s_bdi = &fs_info->bdi;
a061fc8d 2243
76dda93c 2244 fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
bfe86848 2245 set_nlink(fs_info->btree_inode, 1);
0afbaf8c
CM
2246 /*
2247 * we set the i_size on the btree inode to the max possible int.
2248 * the real end of the address space is determined by all of
2249 * the devices in the system
2250 */
2251 fs_info->btree_inode->i_size = OFFSET_MAX;
d98237b3 2252 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
04160088
CM
2253 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
2254
5d4f98a2 2255 RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
d1310b2e 2256 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
f993c883 2257 fs_info->btree_inode->i_mapping);
0b32f4bb 2258 BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
a8067e02 2259 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
d1310b2e
CM
2260
2261 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
0da5468f 2262
76dda93c
YZ
2263 BTRFS_I(fs_info->btree_inode)->root = tree_root;
2264 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2265 sizeof(struct btrfs_key));
72ac3c0d
JB
2266 set_bit(BTRFS_INODE_DUMMY,
2267 &BTRFS_I(fs_info->btree_inode)->runtime_flags);
c65ddb52 2268 insert_inode_hash(fs_info->btree_inode);
76dda93c 2269
0f9dd46c 2270 spin_lock_init(&fs_info->block_group_cache_lock);
6bef4d31 2271 fs_info->block_group_cache_tree = RB_ROOT;
a1897fdd 2272 fs_info->first_logical_byte = (u64)-1;
0f9dd46c 2273
11833d66 2274 extent_io_tree_init(&fs_info->freed_extents[0],
f993c883 2275 fs_info->btree_inode->i_mapping);
11833d66 2276 extent_io_tree_init(&fs_info->freed_extents[1],
f993c883 2277 fs_info->btree_inode->i_mapping);
11833d66 2278 fs_info->pinned_extents = &fs_info->freed_extents[0];
e66f709b 2279 fs_info->do_barriers = 1;
e18e4809 2280
39279cc3 2281
5a3f23d5 2282 mutex_init(&fs_info->ordered_operations_mutex);
e02119d5 2283 mutex_init(&fs_info->tree_log_mutex);
925baedd 2284 mutex_init(&fs_info->chunk_mutex);
a74a4b97
CM
2285 mutex_init(&fs_info->transaction_kthread_mutex);
2286 mutex_init(&fs_info->cleaner_mutex);
7d9eb12c 2287 mutex_init(&fs_info->volume_mutex);
276e680d 2288 init_rwsem(&fs_info->extent_commit_sem);
c71bf099 2289 init_rwsem(&fs_info->cleanup_work_sem);
76dda93c 2290 init_rwsem(&fs_info->subvol_sem);
e922e087
SB
2291 fs_info->dev_replace.lock_owner = 0;
2292 atomic_set(&fs_info->dev_replace.nesting_level, 0);
2293 mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2294 mutex_init(&fs_info->dev_replace.lock_management_lock);
2295 mutex_init(&fs_info->dev_replace.lock);
fa9c0d79 2296
416ac51d 2297 spin_lock_init(&fs_info->qgroup_lock);
f2f6ed3d 2298 mutex_init(&fs_info->qgroup_ioctl_lock);
416ac51d
AJ
2299 fs_info->qgroup_tree = RB_ROOT;
2300 INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2301 fs_info->qgroup_seq = 1;
2302 fs_info->quota_enabled = 0;
2303 fs_info->pending_quota_state = 0;
1e8f9158 2304 fs_info->qgroup_ulist = NULL;
2f232036 2305 mutex_init(&fs_info->qgroup_rescan_lock);
416ac51d 2306
fa9c0d79
CM
2307 btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2308 btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2309
e6dcd2dc 2310 init_waitqueue_head(&fs_info->transaction_throttle);
f9295749 2311 init_waitqueue_head(&fs_info->transaction_wait);
bb9c12c9 2312 init_waitqueue_head(&fs_info->transaction_blocked_wait);
4854ddd0 2313 init_waitqueue_head(&fs_info->async_submit_wait);
3768f368 2314
53b381b3
DW
2315 ret = btrfs_alloc_stripe_hash_table(fs_info);
2316 if (ret) {
83c8266a 2317 err = ret;
53b381b3
DW
2318 goto fail_alloc;
2319 }
2320
0b86a832 2321 __setup_root(4096, 4096, 4096, 4096, tree_root,
2c90e5d6 2322 fs_info, BTRFS_ROOT_TREE_OBJECTID);
7eccb903 2323
3c4bb26b 2324 invalidate_bdev(fs_devices->latest_bdev);
1104a885
DS
2325
2326 /*
2327 * Read super block and check the signature bytes only
2328 */
a512bbf8 2329 bh = btrfs_read_dev_super(fs_devices->latest_bdev);
20b45077
DY
2330 if (!bh) {
2331 err = -EINVAL;
16cdcec7 2332 goto fail_alloc;
20b45077 2333 }
39279cc3 2334
1104a885
DS
2335 /*
2336 * We want to check superblock checksum, the type is stored inside.
2337 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2338 */
2339 if (btrfs_check_super_csum(bh->b_data)) {
2340 printk(KERN_ERR "btrfs: superblock checksum mismatch\n");
2341 err = -EINVAL;
2342 goto fail_alloc;
2343 }
2344
2345 /*
2346 * super_copy is zeroed at allocation time and we never touch the
2347 * following bytes up to INFO_SIZE, the checksum is calculated from
2348 * the whole block of INFO_SIZE
2349 */
6c41761f
DS
2350 memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2351 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2352 sizeof(*fs_info->super_for_commit));
a061fc8d 2353 brelse(bh);
5f39d397 2354
6c41761f 2355 memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
0b86a832 2356
1104a885
DS
2357 ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2358 if (ret) {
2359 printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2360 err = -EINVAL;
2361 goto fail_alloc;
2362 }
2363
6c41761f 2364 disk_super = fs_info->super_copy;
0f7d52f4 2365 if (!btrfs_super_root(disk_super))
16cdcec7 2366 goto fail_alloc;
0f7d52f4 2367
acce952b 2368 /* check FS state, whether FS is broken. */
87533c47
MX
2369 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2370 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
acce952b 2371
af31f5e5
CM
2372 /*
2373 * run through our array of backup supers and setup
2374 * our ring pointer to the oldest one
2375 */
2376 generation = btrfs_super_generation(disk_super);
2377 find_oldest_super_backup(fs_info, generation);
2378
75e7cb7f
LB
2379 /*
2380 * In the long term, we'll store the compression type in the super
2381 * block, and it'll be used for per file compression control.
2382 */
2383 fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2384
2b82032c
YZ
2385 ret = btrfs_parse_options(tree_root, options);
2386 if (ret) {
2387 err = ret;
16cdcec7 2388 goto fail_alloc;
2b82032c 2389 }
dfe25020 2390
f2b636e8
JB
2391 features = btrfs_super_incompat_flags(disk_super) &
2392 ~BTRFS_FEATURE_INCOMPAT_SUPP;
2393 if (features) {
2394 printk(KERN_ERR "BTRFS: couldn't mount because of "
2395 "unsupported optional features (%Lx).\n",
21380931 2396 (unsigned long long)features);
f2b636e8 2397 err = -EINVAL;
16cdcec7 2398 goto fail_alloc;
f2b636e8
JB
2399 }
2400
727011e0
CM
2401 if (btrfs_super_leafsize(disk_super) !=
2402 btrfs_super_nodesize(disk_super)) {
2403 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2404 "blocksizes don't match. node %d leaf %d\n",
2405 btrfs_super_nodesize(disk_super),
2406 btrfs_super_leafsize(disk_super));
2407 err = -EINVAL;
2408 goto fail_alloc;
2409 }
2410 if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2411 printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2412 "blocksize (%d) was too large\n",
2413 btrfs_super_leafsize(disk_super));
2414 err = -EINVAL;
2415 goto fail_alloc;
2416 }
2417
5d4f98a2 2418 features = btrfs_super_incompat_flags(disk_super);
a6fa6fae 2419 features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
69e380d1 2420 if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
a6fa6fae 2421 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
727011e0 2422
3173a18f
JB
2423 if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2424 printk(KERN_ERR "btrfs: has skinny extents\n");
2425
727011e0
CM
2426 /*
2427 * flag our filesystem as having big metadata blocks if
2428 * they are bigger than the page size
2429 */
2430 if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2431 if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2432 printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2433 features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2434 }
2435
bc3f116f
CM
2436 nodesize = btrfs_super_nodesize(disk_super);
2437 leafsize = btrfs_super_leafsize(disk_super);
2438 sectorsize = btrfs_super_sectorsize(disk_super);
2439 stripesize = btrfs_super_stripesize(disk_super);
e2d84521 2440 fs_info->dirty_metadata_batch = leafsize * (1 + ilog2(nr_cpu_ids));
963d678b 2441 fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
bc3f116f
CM
2442
2443 /*
2444 * mixed block groups end up with duplicate but slightly offset
2445 * extent buffers for the same range. It leads to corruptions
2446 */
2447 if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2448 (sectorsize != leafsize)) {
2449 printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2450 "are not allowed for mixed block groups on %s\n",
2451 sb->s_id);
2452 goto fail_alloc;
2453 }
2454
ceda0864
MX
2455 /*
2456 * Needn't use the lock because there is no other task which will
2457 * update the flag.
2458 */
a6fa6fae 2459 btrfs_set_super_incompat_flags(disk_super, features);
5d4f98a2 2460
f2b636e8
JB
2461 features = btrfs_super_compat_ro_flags(disk_super) &
2462 ~BTRFS_FEATURE_COMPAT_RO_SUPP;
2463 if (!(sb->s_flags & MS_RDONLY) && features) {
2464 printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2465 "unsupported option features (%Lx).\n",
21380931 2466 (unsigned long long)features);
f2b636e8 2467 err = -EINVAL;
16cdcec7 2468 goto fail_alloc;
f2b636e8 2469 }
61d92c32
CM
2470
2471 btrfs_init_workers(&fs_info->generic_worker,
2472 "genwork", 1, NULL);
2473
5443be45 2474 btrfs_init_workers(&fs_info->workers, "worker",
61d92c32
CM
2475 fs_info->thread_pool_size,
2476 &fs_info->generic_worker);
c8b97818 2477
771ed689 2478 btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
61d92c32
CM
2479 fs_info->thread_pool_size,
2480 &fs_info->generic_worker);
771ed689 2481
8ccf6f19
MX
2482 btrfs_init_workers(&fs_info->flush_workers, "flush_delalloc",
2483 fs_info->thread_pool_size,
2484 &fs_info->generic_worker);
2485
5443be45 2486 btrfs_init_workers(&fs_info->submit_workers, "submit",
b720d209 2487 min_t(u64, fs_devices->num_devices,
61d92c32
CM
2488 fs_info->thread_pool_size),
2489 &fs_info->generic_worker);
61b49440 2490
bab39bf9
JB
2491 btrfs_init_workers(&fs_info->caching_workers, "cache",
2492 2, &fs_info->generic_worker);
2493
61b49440
CM
2494 /* a higher idle thresh on the submit workers makes it much more
2495 * likely that bios will be send down in a sane order to the
2496 * devices
2497 */
2498 fs_info->submit_workers.idle_thresh = 64;
53863232 2499
771ed689 2500 fs_info->workers.idle_thresh = 16;
4a69a410 2501 fs_info->workers.ordered = 1;
61b49440 2502
771ed689
CM
2503 fs_info->delalloc_workers.idle_thresh = 2;
2504 fs_info->delalloc_workers.ordered = 1;
2505
61d92c32
CM
2506 btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2507 &fs_info->generic_worker);
5443be45 2508 btrfs_init_workers(&fs_info->endio_workers, "endio",
61d92c32
CM
2509 fs_info->thread_pool_size,
2510 &fs_info->generic_worker);
d20f7043 2511 btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
61d92c32
CM
2512 fs_info->thread_pool_size,
2513 &fs_info->generic_worker);
cad321ad 2514 btrfs_init_workers(&fs_info->endio_meta_write_workers,
61d92c32
CM
2515 "endio-meta-write", fs_info->thread_pool_size,
2516 &fs_info->generic_worker);
53b381b3
DW
2517 btrfs_init_workers(&fs_info->endio_raid56_workers,
2518 "endio-raid56", fs_info->thread_pool_size,
2519 &fs_info->generic_worker);
2520 btrfs_init_workers(&fs_info->rmw_workers,
2521 "rmw", fs_info->thread_pool_size,
2522 &fs_info->generic_worker);
5443be45 2523 btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
61d92c32
CM
2524 fs_info->thread_pool_size,
2525 &fs_info->generic_worker);
0cb59c99
JB
2526 btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2527 1, &fs_info->generic_worker);
16cdcec7
MX
2528 btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2529 fs_info->thread_pool_size,
2530 &fs_info->generic_worker);
90519d66
AJ
2531 btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2532 fs_info->thread_pool_size,
2533 &fs_info->generic_worker);
2f232036
JS
2534 btrfs_init_workers(&fs_info->qgroup_rescan_workers, "qgroup-rescan", 1,
2535 &fs_info->generic_worker);
61b49440
CM
2536
2537 /*
2538 * endios are largely parallel and should have a very
2539 * low idle thresh
2540 */
2541 fs_info->endio_workers.idle_thresh = 4;
b51912c9 2542 fs_info->endio_meta_workers.idle_thresh = 4;
53b381b3
DW
2543 fs_info->endio_raid56_workers.idle_thresh = 4;
2544 fs_info->rmw_workers.idle_thresh = 2;
b51912c9 2545
9042846b
CM
2546 fs_info->endio_write_workers.idle_thresh = 2;
2547 fs_info->endio_meta_write_workers.idle_thresh = 2;
90519d66 2548 fs_info->readahead_workers.idle_thresh = 2;
9042846b 2549
0dc3b84a
JB
2550 /*
2551 * btrfs_start_workers can really only fail because of ENOMEM so just
2552 * return -ENOMEM if any of these fail.
2553 */
2554 ret = btrfs_start_workers(&fs_info->workers);
2555 ret |= btrfs_start_workers(&fs_info->generic_worker);
2556 ret |= btrfs_start_workers(&fs_info->submit_workers);
2557 ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2558 ret |= btrfs_start_workers(&fs_info->fixup_workers);
2559 ret |= btrfs_start_workers(&fs_info->endio_workers);
2560 ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
53b381b3
DW
2561 ret |= btrfs_start_workers(&fs_info->rmw_workers);
2562 ret |= btrfs_start_workers(&fs_info->endio_raid56_workers);
0dc3b84a
JB
2563 ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2564 ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2565 ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2566 ret |= btrfs_start_workers(&fs_info->delayed_workers);
2567 ret |= btrfs_start_workers(&fs_info->caching_workers);
2568 ret |= btrfs_start_workers(&fs_info->readahead_workers);
8ccf6f19 2569 ret |= btrfs_start_workers(&fs_info->flush_workers);
2f232036 2570 ret |= btrfs_start_workers(&fs_info->qgroup_rescan_workers);
0dc3b84a 2571 if (ret) {
fed425c7 2572 err = -ENOMEM;
0dc3b84a
JB
2573 goto fail_sb_buffer;
2574 }
4543df7e 2575
4575c9cc 2576 fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
c8b97818
CM
2577 fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2578 4 * 1024 * 1024 / PAGE_CACHE_SIZE);
4575c9cc 2579
db94535d
CM
2580 tree_root->nodesize = nodesize;
2581 tree_root->leafsize = leafsize;
2582 tree_root->sectorsize = sectorsize;
87ee04eb 2583 tree_root->stripesize = stripesize;
a061fc8d
CM
2584
2585 sb->s_blocksize = sectorsize;
2586 sb->s_blocksize_bits = blksize_bits(sectorsize);
db94535d 2587
cdb4c574 2588 if (disk_super->magic != cpu_to_le64(BTRFS_MAGIC)) {
d397712b 2589 printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
39279cc3
CM
2590 goto fail_sb_buffer;
2591 }
19c00ddc 2592
8d082fb7
LB
2593 if (sectorsize != PAGE_SIZE) {
2594 printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2595 "found on %s\n", (unsigned long)sectorsize, sb->s_id);
941b2ddf
KM
2596 goto fail_sb_buffer;
2597 }
2598
925baedd 2599 mutex_lock(&fs_info->chunk_mutex);
e4404d6e 2600 ret = btrfs_read_sys_array(tree_root);
925baedd 2601 mutex_unlock(&fs_info->chunk_mutex);
84eed90f 2602 if (ret) {
d397712b
CM
2603 printk(KERN_WARNING "btrfs: failed to read the system "
2604 "array on %s\n", sb->s_id);
5d4f98a2 2605 goto fail_sb_buffer;
84eed90f 2606 }
0b86a832
CM
2607
2608 blocksize = btrfs_level_size(tree_root,
2609 btrfs_super_chunk_root_level(disk_super));
84234f3a 2610 generation = btrfs_super_chunk_root_generation(disk_super);
0b86a832
CM
2611
2612 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2613 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2614
2615 chunk_root->node = read_tree_block(chunk_root,
2616 btrfs_super_chunk_root(disk_super),
84234f3a 2617 blocksize, generation);
416bc658
JB
2618 if (!chunk_root->node ||
2619 !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
83121942
DW
2620 printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2621 sb->s_id);
af31f5e5 2622 goto fail_tree_roots;
83121942 2623 }
5d4f98a2
YZ
2624 btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2625 chunk_root->commit_root = btrfs_root_node(chunk_root);
0b86a832 2626
e17cade2 2627 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
d397712b
CM
2628 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2629 BTRFS_UUID_SIZE);
e17cade2 2630
0b86a832 2631 ret = btrfs_read_chunk_tree(chunk_root);
2b82032c 2632 if (ret) {
d397712b
CM
2633 printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2634 sb->s_id);
af31f5e5 2635 goto fail_tree_roots;
2b82032c 2636 }
0b86a832 2637
8dabb742
SB
2638 /*
2639 * keep the device that is marked to be the target device for the
2640 * dev_replace procedure
2641 */
2642 btrfs_close_extra_devices(fs_info, fs_devices, 0);
dfe25020 2643
a6b0d5c8
CM
2644 if (!fs_devices->latest_bdev) {
2645 printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2646 sb->s_id);
2647 goto fail_tree_roots;
2648 }
2649
af31f5e5 2650retry_root_backup:
db94535d
CM
2651 blocksize = btrfs_level_size(tree_root,
2652 btrfs_super_root_level(disk_super));
84234f3a 2653 generation = btrfs_super_generation(disk_super);
0b86a832 2654
e20d96d6 2655 tree_root->node = read_tree_block(tree_root,
db94535d 2656 btrfs_super_root(disk_super),
84234f3a 2657 blocksize, generation);
af31f5e5
CM
2658 if (!tree_root->node ||
2659 !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
83121942
DW
2660 printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2661 sb->s_id);
af31f5e5
CM
2662
2663 goto recovery_tree_root;
83121942 2664 }
af31f5e5 2665
5d4f98a2
YZ
2666 btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2667 tree_root->commit_root = btrfs_root_node(tree_root);
db94535d
CM
2668
2669 ret = find_and_setup_root(tree_root, fs_info,
e20d96d6 2670 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
0b86a832 2671 if (ret)
af31f5e5 2672 goto recovery_tree_root;
0b86a832
CM
2673 extent_root->track_dirty = 1;
2674
2675 ret = find_and_setup_root(tree_root, fs_info,
2676 BTRFS_DEV_TREE_OBJECTID, dev_root);
0b86a832 2677 if (ret)
af31f5e5 2678 goto recovery_tree_root;
5d4f98a2 2679 dev_root->track_dirty = 1;
3768f368 2680
d20f7043
CM
2681 ret = find_and_setup_root(tree_root, fs_info,
2682 BTRFS_CSUM_TREE_OBJECTID, csum_root);
2683 if (ret)
af31f5e5 2684 goto recovery_tree_root;
d20f7043
CM
2685 csum_root->track_dirty = 1;
2686
bcef60f2
AJ
2687 ret = find_and_setup_root(tree_root, fs_info,
2688 BTRFS_QUOTA_TREE_OBJECTID, quota_root);
2689 if (ret) {
2690 kfree(quota_root);
2691 quota_root = fs_info->quota_root = NULL;
2692 } else {
2693 quota_root->track_dirty = 1;
2694 fs_info->quota_enabled = 1;
2695 fs_info->pending_quota_state = 1;
2696 }
2697
8929ecfa
YZ
2698 fs_info->generation = generation;
2699 fs_info->last_trans_committed = generation;
8929ecfa 2700
68310a5e
ID
2701 ret = btrfs_recover_balance(fs_info);
2702 if (ret) {
2703 printk(KERN_WARNING "btrfs: failed to recover balance\n");
2704 goto fail_block_groups;
2705 }
2706
733f4fbb
SB
2707 ret = btrfs_init_dev_stats(fs_info);
2708 if (ret) {
2709 printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2710 ret);
2711 goto fail_block_groups;
2712 }
2713
8dabb742
SB
2714 ret = btrfs_init_dev_replace(fs_info);
2715 if (ret) {
2716 pr_err("btrfs: failed to init dev_replace: %d\n", ret);
2717 goto fail_block_groups;
2718 }
2719
2720 btrfs_close_extra_devices(fs_info, fs_devices, 1);
2721
c59021f8 2722 ret = btrfs_init_space_info(fs_info);
2723 if (ret) {
2724 printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2725 goto fail_block_groups;
2726 }
2727
1b1d1f66
JB
2728 ret = btrfs_read_block_groups(extent_root);
2729 if (ret) {
2730 printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2731 goto fail_block_groups;
2732 }
5af3e8cc
SB
2733 fs_info->num_tolerated_disk_barrier_failures =
2734 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
292fd7fc
SB
2735 if (fs_info->fs_devices->missing_devices >
2736 fs_info->num_tolerated_disk_barrier_failures &&
2737 !(sb->s_flags & MS_RDONLY)) {
2738 printk(KERN_WARNING
2739 "Btrfs: too many missing devices, writeable mount is not allowed\n");
2740 goto fail_block_groups;
2741 }
9078a3e1 2742
a74a4b97
CM
2743 fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2744 "btrfs-cleaner");
57506d50 2745 if (IS_ERR(fs_info->cleaner_kthread))
1b1d1f66 2746 goto fail_block_groups;
a74a4b97
CM
2747
2748 fs_info->transaction_kthread = kthread_run(transaction_kthread,
2749 tree_root,
2750 "btrfs-transaction");
57506d50 2751 if (IS_ERR(fs_info->transaction_kthread))
3f157a2f 2752 goto fail_cleaner;
a74a4b97 2753
c289811c
CM
2754 if (!btrfs_test_opt(tree_root, SSD) &&
2755 !btrfs_test_opt(tree_root, NOSSD) &&
2756 !fs_info->fs_devices->rotating) {
2757 printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2758 "mode\n");
2759 btrfs_set_opt(fs_info->mount_opt, SSD);
2760 }
2761
21adbd5c
SB
2762#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2763 if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2764 ret = btrfsic_mount(tree_root, fs_devices,
2765 btrfs_test_opt(tree_root,
2766 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2767 1 : 0,
2768 fs_info->check_integrity_print_mask);
2769 if (ret)
2770 printk(KERN_WARNING "btrfs: failed to initialize"
2771 " integrity check module %s\n", sb->s_id);
2772 }
2773#endif
bcef60f2
AJ
2774 ret = btrfs_read_qgroup_config(fs_info);
2775 if (ret)
2776 goto fail_trans_kthread;
21adbd5c 2777
acce952b 2778 /* do not make disk changes in broken FS */
68ce9682 2779 if (btrfs_super_log_root(disk_super) != 0) {
e02119d5
CM
2780 u64 bytenr = btrfs_super_log_root(disk_super);
2781
7c2ca468 2782 if (fs_devices->rw_devices == 0) {
d397712b
CM
2783 printk(KERN_WARNING "Btrfs log replay required "
2784 "on RO media\n");
7c2ca468 2785 err = -EIO;
bcef60f2 2786 goto fail_qgroup;
7c2ca468 2787 }
e02119d5
CM
2788 blocksize =
2789 btrfs_level_size(tree_root,
2790 btrfs_super_log_root_level(disk_super));
d18a2c44 2791
6f07e42e 2792 log_tree_root = btrfs_alloc_root(fs_info);
676e4c86
DC
2793 if (!log_tree_root) {
2794 err = -ENOMEM;
bcef60f2 2795 goto fail_qgroup;
676e4c86 2796 }
e02119d5
CM
2797
2798 __setup_root(nodesize, leafsize, sectorsize, stripesize,
2799 log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2800
2801 log_tree_root->node = read_tree_block(tree_root, bytenr,
84234f3a
YZ
2802 blocksize,
2803 generation + 1);
416bc658
JB
2804 if (!log_tree_root->node ||
2805 !extent_buffer_uptodate(log_tree_root->node)) {
2806 printk(KERN_ERR "btrfs: failed to read log tree\n");
2807 free_extent_buffer(log_tree_root->node);
2808 kfree(log_tree_root);
2809 goto fail_trans_kthread;
2810 }
79787eaa 2811 /* returns with log_tree_root freed on success */
e02119d5 2812 ret = btrfs_recover_log_trees(log_tree_root);
79787eaa
JM
2813 if (ret) {
2814 btrfs_error(tree_root->fs_info, ret,
2815 "Failed to recover log tree");
2816 free_extent_buffer(log_tree_root->node);
2817 kfree(log_tree_root);
2818 goto fail_trans_kthread;
2819 }
e556ce2c
YZ
2820
2821 if (sb->s_flags & MS_RDONLY) {
79787eaa
JM
2822 ret = btrfs_commit_super(tree_root);
2823 if (ret)
2824 goto fail_trans_kthread;
e556ce2c 2825 }
e02119d5 2826 }
1a40e23b 2827
76dda93c 2828 ret = btrfs_find_orphan_roots(tree_root);
79787eaa
JM
2829 if (ret)
2830 goto fail_trans_kthread;
76dda93c 2831
7c2ca468 2832 if (!(sb->s_flags & MS_RDONLY)) {
d68fc57b 2833 ret = btrfs_cleanup_fs_roots(fs_info);
44c44af2
ID
2834 if (ret)
2835 goto fail_trans_kthread;
d68fc57b 2836
5d4f98a2 2837 ret = btrfs_recover_relocation(tree_root);
d7ce5843
MX
2838 if (ret < 0) {
2839 printk(KERN_WARNING
2840 "btrfs: failed to recover relocation\n");
2841 err = -EINVAL;
bcef60f2 2842 goto fail_qgroup;
d7ce5843 2843 }
7c2ca468 2844 }
1a40e23b 2845
3de4586c
CM
2846 location.objectid = BTRFS_FS_TREE_OBJECTID;
2847 location.type = BTRFS_ROOT_ITEM_KEY;
2848 location.offset = (u64)-1;
2849
3de4586c 2850 fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3140c9a3
DC
2851 if (IS_ERR(fs_info->fs_root)) {
2852 err = PTR_ERR(fs_info->fs_root);
bcef60f2 2853 goto fail_qgroup;
3140c9a3 2854 }
c289811c 2855
2b6ba629
ID
2856 if (sb->s_flags & MS_RDONLY)
2857 return 0;
59641015 2858
2b6ba629
ID
2859 down_read(&fs_info->cleanup_work_sem);
2860 if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2861 (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
e3acc2a6 2862 up_read(&fs_info->cleanup_work_sem);
2b6ba629
ID
2863 close_ctree(tree_root);
2864 return ret;
2865 }
2866 up_read(&fs_info->cleanup_work_sem);
59641015 2867
2b6ba629
ID
2868 ret = btrfs_resume_balance_async(fs_info);
2869 if (ret) {
2870 printk(KERN_WARNING "btrfs: failed to resume balance\n");
2871 close_ctree(tree_root);
2872 return ret;
e3acc2a6
JB
2873 }
2874
8dabb742
SB
2875 ret = btrfs_resume_dev_replace_async(fs_info);
2876 if (ret) {
2877 pr_warn("btrfs: failed to resume dev_replace\n");
2878 close_ctree(tree_root);
2879 return ret;
2880 }
2881
ad2b2c80 2882 return 0;
39279cc3 2883
bcef60f2
AJ
2884fail_qgroup:
2885 btrfs_free_qgroup_config(fs_info);
7c2ca468
CM
2886fail_trans_kthread:
2887 kthread_stop(fs_info->transaction_kthread);
54067ae9 2888 btrfs_cleanup_transaction(fs_info->tree_root);
7b5ff90e 2889 del_fs_roots(fs_info);
3f157a2f 2890fail_cleaner:
a74a4b97 2891 kthread_stop(fs_info->cleaner_kthread);
7c2ca468
CM
2892
2893 /*
2894 * make sure we're done with the btree inode before we stop our
2895 * kthreads
2896 */
2897 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
7c2ca468 2898
1b1d1f66 2899fail_block_groups:
54067ae9 2900 btrfs_put_block_group_cache(fs_info);
1b1d1f66 2901 btrfs_free_block_groups(fs_info);
af31f5e5
CM
2902
2903fail_tree_roots:
2904 free_root_pointers(fs_info, 1);
2b8195bb 2905 invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
af31f5e5 2906
39279cc3 2907fail_sb_buffer:
7abadb64 2908 btrfs_stop_all_workers(fs_info);
16cdcec7 2909fail_alloc:
4543df7e 2910fail_iput:
586e46e2
ID
2911 btrfs_mapping_tree_free(&fs_info->mapping_tree);
2912
4543df7e 2913 iput(fs_info->btree_inode);
963d678b
MX
2914fail_delalloc_bytes:
2915 percpu_counter_destroy(&fs_info->delalloc_bytes);
e2d84521
MX
2916fail_dirty_metadata_bytes:
2917 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
ad081f14 2918fail_bdi:
7e662854 2919 bdi_destroy(&fs_info->bdi);
76dda93c
YZ
2920fail_srcu:
2921 cleanup_srcu_struct(&fs_info->subvol_srcu);
7e662854 2922fail:
53b381b3 2923 btrfs_free_stripe_hash_table(fs_info);
586e46e2 2924 btrfs_close_devices(fs_info->fs_devices);
ad2b2c80 2925 return err;
af31f5e5
CM
2926
2927recovery_tree_root:
af31f5e5
CM
2928 if (!btrfs_test_opt(tree_root, RECOVERY))
2929 goto fail_tree_roots;
2930
2931 free_root_pointers(fs_info, 0);
2932
2933 /* don't use the log in recovery mode, it won't be valid */
2934 btrfs_set_super_log_root(disk_super, 0);
2935
2936 /* we can't trust the free space cache either */
2937 btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
2938
2939 ret = next_root_backup(fs_info, fs_info->super_copy,
2940 &num_backups_tried, &backup_index);
2941 if (ret == -1)
2942 goto fail_block_groups;
2943 goto retry_root_backup;
eb60ceac
CM
2944}
2945
f2984462
CM
2946static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2947{
f2984462
CM
2948 if (uptodate) {
2949 set_buffer_uptodate(bh);
2950 } else {
442a4f63
SB
2951 struct btrfs_device *device = (struct btrfs_device *)
2952 bh->b_private;
2953
606686ee
JB
2954 printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2955 "I/O error on %s\n",
2956 rcu_str_deref(device->name));
1259ab75
CM
2957 /* note, we dont' set_buffer_write_io_error because we have
2958 * our own ways of dealing with the IO errors
2959 */
f2984462 2960 clear_buffer_uptodate(bh);
442a4f63 2961 btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
f2984462
CM
2962 }
2963 unlock_buffer(bh);
2964 put_bh(bh);
2965}
2966
a512bbf8
YZ
2967struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2968{
2969 struct buffer_head *bh;
2970 struct buffer_head *latest = NULL;
2971 struct btrfs_super_block *super;
2972 int i;
2973 u64 transid = 0;
2974 u64 bytenr;
2975
2976 /* we would like to check all the supers, but that would make
2977 * a btrfs mount succeed after a mkfs from a different FS.
2978 * So, we need to add a special mount option to scan for
2979 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2980 */
2981 for (i = 0; i < 1; i++) {
2982 bytenr = btrfs_sb_offset(i);
2983 if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2984 break;
2985 bh = __bread(bdev, bytenr / 4096, 4096);
2986 if (!bh)
2987 continue;
2988
2989 super = (struct btrfs_super_block *)bh->b_data;
2990 if (btrfs_super_bytenr(super) != bytenr ||
cdb4c574 2991 super->magic != cpu_to_le64(BTRFS_MAGIC)) {
a512bbf8
YZ
2992 brelse(bh);
2993 continue;
2994 }
2995
2996 if (!latest || btrfs_super_generation(super) > transid) {
2997 brelse(latest);
2998 latest = bh;
2999 transid = btrfs_super_generation(super);
3000 } else {
3001 brelse(bh);
3002 }
3003 }
3004 return latest;
3005}
3006
4eedeb75
HH
3007/*
3008 * this should be called twice, once with wait == 0 and
3009 * once with wait == 1. When wait == 0 is done, all the buffer heads
3010 * we write are pinned.
3011 *
3012 * They are released when wait == 1 is done.
3013 * max_mirrors must be the same for both runs, and it indicates how
3014 * many supers on this one device should be written.
3015 *
3016 * max_mirrors == 0 means to write them all.
3017 */
a512bbf8
YZ
3018static int write_dev_supers(struct btrfs_device *device,
3019 struct btrfs_super_block *sb,
3020 int do_barriers, int wait, int max_mirrors)
3021{
3022 struct buffer_head *bh;
3023 int i;
3024 int ret;
3025 int errors = 0;
3026 u32 crc;
3027 u64 bytenr;
a512bbf8
YZ
3028
3029 if (max_mirrors == 0)
3030 max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3031
a512bbf8
YZ
3032 for (i = 0; i < max_mirrors; i++) {
3033 bytenr = btrfs_sb_offset(i);
3034 if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
3035 break;
3036
3037 if (wait) {
3038 bh = __find_get_block(device->bdev, bytenr / 4096,
3039 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3040 if (!bh) {
3041 errors++;
3042 continue;
3043 }
a512bbf8 3044 wait_on_buffer(bh);
4eedeb75
HH
3045 if (!buffer_uptodate(bh))
3046 errors++;
3047
3048 /* drop our reference */
3049 brelse(bh);
3050
3051 /* drop the reference from the wait == 0 run */
3052 brelse(bh);
3053 continue;
a512bbf8
YZ
3054 } else {
3055 btrfs_set_super_bytenr(sb, bytenr);
3056
3057 crc = ~(u32)0;
b0496686 3058 crc = btrfs_csum_data((char *)sb +
a512bbf8
YZ
3059 BTRFS_CSUM_SIZE, crc,
3060 BTRFS_SUPER_INFO_SIZE -
3061 BTRFS_CSUM_SIZE);
3062 btrfs_csum_final(crc, sb->csum);
3063
4eedeb75
HH
3064 /*
3065 * one reference for us, and we leave it for the
3066 * caller
3067 */
a512bbf8
YZ
3068 bh = __getblk(device->bdev, bytenr / 4096,
3069 BTRFS_SUPER_INFO_SIZE);
634554dc
JB
3070 if (!bh) {
3071 printk(KERN_ERR "btrfs: couldn't get super "
3072 "buffer head for bytenr %Lu\n", bytenr);
3073 errors++;
3074 continue;
3075 }
3076
a512bbf8
YZ
3077 memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3078
4eedeb75 3079 /* one reference for submit_bh */
a512bbf8 3080 get_bh(bh);
4eedeb75
HH
3081
3082 set_buffer_uptodate(bh);
a512bbf8
YZ
3083 lock_buffer(bh);
3084 bh->b_end_io = btrfs_end_buffer_write_sync;
442a4f63 3085 bh->b_private = device;
a512bbf8
YZ
3086 }
3087
387125fc
CM
3088 /*
3089 * we fua the first super. The others we allow
3090 * to go down lazy.
3091 */
21adbd5c 3092 ret = btrfsic_submit_bh(WRITE_FUA, bh);
4eedeb75 3093 if (ret)
a512bbf8 3094 errors++;
a512bbf8
YZ
3095 }
3096 return errors < i ? 0 : -1;
3097}
3098
387125fc
CM
3099/*
3100 * endio for the write_dev_flush, this will wake anyone waiting
3101 * for the barrier when it is done
3102 */
3103static void btrfs_end_empty_barrier(struct bio *bio, int err)
3104{
3105 if (err) {
3106 if (err == -EOPNOTSUPP)
3107 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3108 clear_bit(BIO_UPTODATE, &bio->bi_flags);
3109 }
3110 if (bio->bi_private)
3111 complete(bio->bi_private);
3112 bio_put(bio);
3113}
3114
3115/*
3116 * trigger flushes for one the devices. If you pass wait == 0, the flushes are
3117 * sent down. With wait == 1, it waits for the previous flush.
3118 *
3119 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3120 * capable
3121 */
3122static int write_dev_flush(struct btrfs_device *device, int wait)
3123{
3124 struct bio *bio;
3125 int ret = 0;
3126
3127 if (device->nobarriers)
3128 return 0;
3129
3130 if (wait) {
3131 bio = device->flush_bio;
3132 if (!bio)
3133 return 0;
3134
3135 wait_for_completion(&device->flush_wait);
3136
3137 if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
606686ee
JB
3138 printk_in_rcu("btrfs: disabling barriers on dev %s\n",
3139 rcu_str_deref(device->name));
387125fc 3140 device->nobarriers = 1;
5af3e8cc 3141 } else if (!bio_flagged(bio, BIO_UPTODATE)) {
387125fc 3142 ret = -EIO;
5af3e8cc
SB
3143 btrfs_dev_stat_inc_and_print(device,
3144 BTRFS_DEV_STAT_FLUSH_ERRS);
387125fc
CM
3145 }
3146
3147 /* drop the reference from the wait == 0 run */
3148 bio_put(bio);
3149 device->flush_bio = NULL;
3150
3151 return ret;
3152 }
3153
3154 /*
3155 * one reference for us, and we leave it for the
3156 * caller
3157 */
9c017abc 3158 device->flush_bio = NULL;
9be3395b 3159 bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
387125fc
CM
3160 if (!bio)
3161 return -ENOMEM;
3162
3163 bio->bi_end_io = btrfs_end_empty_barrier;
3164 bio->bi_bdev = device->bdev;
3165 init_completion(&device->flush_wait);
3166 bio->bi_private = &device->flush_wait;
3167 device->flush_bio = bio;
3168
3169 bio_get(bio);
21adbd5c 3170 btrfsic_submit_bio(WRITE_FLUSH, bio);
387125fc
CM
3171
3172 return 0;
3173}
3174
3175/*
3176 * send an empty flush down to each device in parallel,
3177 * then wait for them
3178 */
3179static int barrier_all_devices(struct btrfs_fs_info *info)
3180{
3181 struct list_head *head;
3182 struct btrfs_device *dev;
5af3e8cc
SB
3183 int errors_send = 0;
3184 int errors_wait = 0;
387125fc
CM
3185 int ret;
3186
3187 /* send down all the barriers */
3188 head = &info->fs_devices->devices;
3189 list_for_each_entry_rcu(dev, head, dev_list) {
3190 if (!dev->bdev) {
5af3e8cc 3191 errors_send++;
387125fc
CM
3192 continue;
3193 }
3194 if (!dev->in_fs_metadata || !dev->writeable)
3195 continue;
3196
3197 ret = write_dev_flush(dev, 0);
3198 if (ret)
5af3e8cc 3199 errors_send++;
387125fc
CM
3200 }
3201
3202 /* wait for all the barriers */
3203 list_for_each_entry_rcu(dev, head, dev_list) {
3204 if (!dev->bdev) {
5af3e8cc 3205 errors_wait++;
387125fc
CM
3206 continue;
3207 }
3208 if (!dev->in_fs_metadata || !dev->writeable)
3209 continue;
3210
3211 ret = write_dev_flush(dev, 1);
3212 if (ret)
5af3e8cc 3213 errors_wait++;
387125fc 3214 }
5af3e8cc
SB
3215 if (errors_send > info->num_tolerated_disk_barrier_failures ||
3216 errors_wait > info->num_tolerated_disk_barrier_failures)
387125fc
CM
3217 return -EIO;
3218 return 0;
3219}
3220
5af3e8cc
SB
3221int btrfs_calc_num_tolerated_disk_barrier_failures(
3222 struct btrfs_fs_info *fs_info)
3223{
3224 struct btrfs_ioctl_space_info space;
3225 struct btrfs_space_info *sinfo;
3226 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3227 BTRFS_BLOCK_GROUP_SYSTEM,
3228 BTRFS_BLOCK_GROUP_METADATA,
3229 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3230 int num_types = 4;
3231 int i;
3232 int c;
3233 int num_tolerated_disk_barrier_failures =
3234 (int)fs_info->fs_devices->num_devices;
3235
3236 for (i = 0; i < num_types; i++) {
3237 struct btrfs_space_info *tmp;
3238
3239 sinfo = NULL;
3240 rcu_read_lock();
3241 list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3242 if (tmp->flags == types[i]) {
3243 sinfo = tmp;
3244 break;
3245 }
3246 }
3247 rcu_read_unlock();
3248
3249 if (!sinfo)
3250 continue;
3251
3252 down_read(&sinfo->groups_sem);
3253 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3254 if (!list_empty(&sinfo->block_groups[c])) {
3255 u64 flags;
3256
3257 btrfs_get_block_group_info(
3258 &sinfo->block_groups[c], &space);
3259 if (space.total_bytes == 0 ||
3260 space.used_bytes == 0)
3261 continue;
3262 flags = space.flags;
3263 /*
3264 * return
3265 * 0: if dup, single or RAID0 is configured for
3266 * any of metadata, system or data, else
3267 * 1: if RAID5 is configured, or if RAID1 or
3268 * RAID10 is configured and only two mirrors
3269 * are used, else
3270 * 2: if RAID6 is configured, else
3271 * num_mirrors - 1: if RAID1 or RAID10 is
3272 * configured and more than
3273 * 2 mirrors are used.
3274 */
3275 if (num_tolerated_disk_barrier_failures > 0 &&
3276 ((flags & (BTRFS_BLOCK_GROUP_DUP |
3277 BTRFS_BLOCK_GROUP_RAID0)) ||
3278 ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3279 == 0)))
3280 num_tolerated_disk_barrier_failures = 0;
53b381b3
DW
3281 else if (num_tolerated_disk_barrier_failures > 1) {
3282 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3283 BTRFS_BLOCK_GROUP_RAID5 |
3284 BTRFS_BLOCK_GROUP_RAID10)) {
3285 num_tolerated_disk_barrier_failures = 1;
3286 } else if (flags &
15b0a89d 3287 BTRFS_BLOCK_GROUP_RAID6) {
53b381b3
DW
3288 num_tolerated_disk_barrier_failures = 2;
3289 }
3290 }
5af3e8cc
SB
3291 }
3292 }
3293 up_read(&sinfo->groups_sem);
3294 }
3295
3296 return num_tolerated_disk_barrier_failures;
3297}
3298
48a3b636 3299static int write_all_supers(struct btrfs_root *root, int max_mirrors)
f2984462 3300{
e5e9a520 3301 struct list_head *head;
f2984462 3302 struct btrfs_device *dev;
a061fc8d 3303 struct btrfs_super_block *sb;
f2984462 3304 struct btrfs_dev_item *dev_item;
f2984462
CM
3305 int ret;
3306 int do_barriers;
a236aed1
CM
3307 int max_errors;
3308 int total_errors = 0;
a061fc8d 3309 u64 flags;
f2984462 3310
6c41761f 3311 max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
f2984462 3312 do_barriers = !btrfs_test_opt(root, NOBARRIER);
af31f5e5 3313 backup_super_roots(root->fs_info);
f2984462 3314
6c41761f 3315 sb = root->fs_info->super_for_commit;
a061fc8d 3316 dev_item = &sb->dev_item;
e5e9a520 3317
174ba509 3318 mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
e5e9a520 3319 head = &root->fs_info->fs_devices->devices;
387125fc 3320
5af3e8cc
SB
3321 if (do_barriers) {
3322 ret = barrier_all_devices(root->fs_info);
3323 if (ret) {
3324 mutex_unlock(
3325 &root->fs_info->fs_devices->device_list_mutex);
3326 btrfs_error(root->fs_info, ret,
3327 "errors while submitting device barriers.");
3328 return ret;
3329 }
3330 }
387125fc 3331
1f78160c 3332 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3333 if (!dev->bdev) {
3334 total_errors++;
3335 continue;
3336 }
2b82032c 3337 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3338 continue;
3339
2b82032c 3340 btrfs_set_stack_device_generation(dev_item, 0);
a061fc8d
CM
3341 btrfs_set_stack_device_type(dev_item, dev->type);
3342 btrfs_set_stack_device_id(dev_item, dev->devid);
3343 btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
3344 btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
3345 btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3346 btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3347 btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3348 memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2b82032c 3349 memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
a512bbf8 3350
a061fc8d
CM
3351 flags = btrfs_super_flags(sb);
3352 btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3353
a512bbf8 3354 ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
a236aed1
CM
3355 if (ret)
3356 total_errors++;
f2984462 3357 }
a236aed1 3358 if (total_errors > max_errors) {
d397712b
CM
3359 printk(KERN_ERR "btrfs: %d errors while writing supers\n",
3360 total_errors);
79787eaa
JM
3361
3362 /* This shouldn't happen. FUA is masked off if unsupported */
a236aed1
CM
3363 BUG();
3364 }
f2984462 3365
a512bbf8 3366 total_errors = 0;
1f78160c 3367 list_for_each_entry_rcu(dev, head, dev_list) {
dfe25020
CM
3368 if (!dev->bdev)
3369 continue;
2b82032c 3370 if (!dev->in_fs_metadata || !dev->writeable)
dfe25020
CM
3371 continue;
3372
a512bbf8
YZ
3373 ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3374 if (ret)
3375 total_errors++;
f2984462 3376 }
174ba509 3377 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
a236aed1 3378 if (total_errors > max_errors) {
79787eaa
JM
3379 btrfs_error(root->fs_info, -EIO,
3380 "%d errors while writing supers", total_errors);
3381 return -EIO;
a236aed1 3382 }
f2984462
CM
3383 return 0;
3384}
3385
a512bbf8
YZ
3386int write_ctree_super(struct btrfs_trans_handle *trans,
3387 struct btrfs_root *root, int max_mirrors)
eb60ceac 3388{
e66f709b 3389 int ret;
5f39d397 3390
a512bbf8 3391 ret = write_all_supers(root, max_mirrors);
5f39d397 3392 return ret;
cfaa7295
CM
3393}
3394
143bede5 3395void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2619ba1f 3396{
4df27c4d 3397 spin_lock(&fs_info->fs_roots_radix_lock);
2619ba1f
CM
3398 radix_tree_delete(&fs_info->fs_roots_radix,
3399 (unsigned long)root->root_key.objectid);
4df27c4d 3400 spin_unlock(&fs_info->fs_roots_radix_lock);
76dda93c
YZ
3401
3402 if (btrfs_root_refs(&root->root_item) == 0)
3403 synchronize_srcu(&fs_info->subvol_srcu);
3404
d7634482 3405 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3321719e
LB
3406 btrfs_free_log(NULL, root);
3407 btrfs_free_log_root_tree(NULL, fs_info);
3408 }
3409
581bb050
LZ
3410 __btrfs_remove_free_space_cache(root->free_ino_pinned);
3411 __btrfs_remove_free_space_cache(root->free_ino_ctl);
4df27c4d 3412 free_fs_root(root);
4df27c4d
YZ
3413}
3414
3415static void free_fs_root(struct btrfs_root *root)
3416{
82d5902d 3417 iput(root->cache_inode);
4df27c4d 3418 WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
0ee5dc67
AV
3419 if (root->anon_dev)
3420 free_anon_bdev(root->anon_dev);
4df27c4d
YZ
3421 free_extent_buffer(root->node);
3422 free_extent_buffer(root->commit_root);
581bb050
LZ
3423 kfree(root->free_ino_ctl);
3424 kfree(root->free_ino_pinned);
d397712b 3425 kfree(root->name);
2619ba1f 3426 kfree(root);
2619ba1f
CM
3427}
3428
c146afad 3429int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
cfaa7295 3430{
c146afad
YZ
3431 u64 root_objectid = 0;
3432 struct btrfs_root *gang[8];
3433 int i;
3768f368 3434 int ret;
e089f05c 3435
c146afad
YZ
3436 while (1) {
3437 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3438 (void **)gang, root_objectid,
3439 ARRAY_SIZE(gang));
3440 if (!ret)
3441 break;
5d4f98a2
YZ
3442
3443 root_objectid = gang[ret - 1]->root_key.objectid + 1;
c146afad 3444 for (i = 0; i < ret; i++) {
66b4ffd1
JB
3445 int err;
3446
c146afad 3447 root_objectid = gang[i]->root_key.objectid;
66b4ffd1
JB
3448 err = btrfs_orphan_cleanup(gang[i]);
3449 if (err)
3450 return err;
c146afad
YZ
3451 }
3452 root_objectid++;
3453 }
3454 return 0;
3455}
a2135011 3456
c146afad
YZ
3457int btrfs_commit_super(struct btrfs_root *root)
3458{
3459 struct btrfs_trans_handle *trans;
3460 int ret;
a74a4b97 3461
c146afad 3462 mutex_lock(&root->fs_info->cleaner_mutex);
24bbcf04 3463 btrfs_run_delayed_iputs(root);
c146afad 3464 mutex_unlock(&root->fs_info->cleaner_mutex);
9d1a2a3a 3465 wake_up_process(root->fs_info->cleaner_kthread);
c71bf099
YZ
3466
3467 /* wait until ongoing cleanup work done */
3468 down_write(&root->fs_info->cleanup_work_sem);
3469 up_write(&root->fs_info->cleanup_work_sem);
3470
7a7eaa40 3471 trans = btrfs_join_transaction(root);
3612b495
TI
3472 if (IS_ERR(trans))
3473 return PTR_ERR(trans);
54aa1f4d 3474 ret = btrfs_commit_transaction(trans, root);
79787eaa
JM
3475 if (ret)
3476 return ret;
c146afad 3477 /* run commit again to drop the original snapshot */
7a7eaa40 3478 trans = btrfs_join_transaction(root);
3612b495
TI
3479 if (IS_ERR(trans))
3480 return PTR_ERR(trans);
79787eaa
JM
3481 ret = btrfs_commit_transaction(trans, root);
3482 if (ret)
3483 return ret;
79154b1b 3484 ret = btrfs_write_and_wait_transaction(NULL, root);
79787eaa
JM
3485 if (ret) {
3486 btrfs_error(root->fs_info, ret,
3487 "Failed to sync btree inode to disk.");
3488 return ret;
3489 }
d6bfde87 3490
a512bbf8 3491 ret = write_ctree_super(NULL, root, 0);
c146afad
YZ
3492 return ret;
3493}
3494
3495int close_ctree(struct btrfs_root *root)
3496{
3497 struct btrfs_fs_info *fs_info = root->fs_info;
3498 int ret;
3499
3500 fs_info->closing = 1;
3501 smp_mb();
3502
837d5b6e 3503 /* pause restriper - we want to resume on mount */
aa1b8cd4 3504 btrfs_pause_balance(fs_info);
837d5b6e 3505
8dabb742
SB
3506 btrfs_dev_replace_suspend_for_unmount(fs_info);
3507
aa1b8cd4 3508 btrfs_scrub_cancel(fs_info);
4cb5300b
CM
3509
3510 /* wait for any defraggers to finish */
3511 wait_event(fs_info->transaction_wait,
3512 (atomic_read(&fs_info->defrag_running) == 0));
3513
3514 /* clear out the rbtree of defraggable inodes */
26176e7c 3515 btrfs_cleanup_defrag_inodes(fs_info);
4cb5300b 3516
c146afad 3517 if (!(fs_info->sb->s_flags & MS_RDONLY)) {
acce952b 3518 ret = btrfs_commit_super(root);
3519 if (ret)
3520 printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
3521 }
3522
87533c47 3523 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
68ce9682 3524 btrfs_error_commit_super(root);
0f7d52f4 3525
300e4f8a
JB
3526 btrfs_put_block_group_cache(fs_info);
3527
e3029d9f
AV
3528 kthread_stop(fs_info->transaction_kthread);
3529 kthread_stop(fs_info->cleaner_kthread);
8929ecfa 3530
f25784b3
YZ
3531 fs_info->closing = 2;
3532 smp_mb();
3533
bcef60f2
AJ
3534 btrfs_free_qgroup_config(root->fs_info);
3535
963d678b
MX
3536 if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3537 printk(KERN_INFO "btrfs: at unmount delalloc count %lld\n",
3538 percpu_counter_sum(&fs_info->delalloc_bytes));
b0c68f8b 3539 }
bcc63abb 3540
e3029d9f 3541 btrfs_free_block_groups(fs_info);
d10c5f31 3542
13e6c37b 3543 btrfs_stop_all_workers(fs_info);
2932505a 3544
c146afad 3545 del_fs_roots(fs_info);
d10c5f31 3546
13e6c37b 3547 free_root_pointers(fs_info, 1);
9ad6b7bc 3548
13e6c37b 3549 iput(fs_info->btree_inode);
d6bfde87 3550
21adbd5c
SB
3551#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3552 if (btrfs_test_opt(root, CHECK_INTEGRITY))
3553 btrfsic_unmount(root, fs_info->fs_devices);
3554#endif
3555
dfe25020 3556 btrfs_close_devices(fs_info->fs_devices);
0b86a832 3557 btrfs_mapping_tree_free(&fs_info->mapping_tree);
b248a415 3558
e2d84521 3559 percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
963d678b 3560 percpu_counter_destroy(&fs_info->delalloc_bytes);
04160088 3561 bdi_destroy(&fs_info->bdi);
76dda93c 3562 cleanup_srcu_struct(&fs_info->subvol_srcu);
0b86a832 3563
53b381b3
DW
3564 btrfs_free_stripe_hash_table(fs_info);
3565
eb60ceac
CM
3566 return 0;
3567}
3568
b9fab919
CM
3569int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3570 int atomic)
5f39d397 3571{
1259ab75 3572 int ret;
727011e0 3573 struct inode *btree_inode = buf->pages[0]->mapping->host;
1259ab75 3574
0b32f4bb 3575 ret = extent_buffer_uptodate(buf);
1259ab75
CM
3576 if (!ret)
3577 return ret;
3578
3579 ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
b9fab919
CM
3580 parent_transid, atomic);
3581 if (ret == -EAGAIN)
3582 return ret;
1259ab75 3583 return !ret;
5f39d397
CM
3584}
3585
3586int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
ccd467d6 3587{
0b32f4bb 3588 return set_extent_buffer_uptodate(buf);
5f39d397 3589}
6702ed49 3590
5f39d397
CM
3591void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3592{
727011e0 3593 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
5f39d397 3594 u64 transid = btrfs_header_generation(buf);
b9473439 3595 int was_dirty;
b4ce94de 3596
b9447ef8 3597 btrfs_assert_tree_locked(buf);
31b1a2bd
JL
3598 if (transid != root->fs_info->generation)
3599 WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
d397712b 3600 "found %llu running %llu\n",
db94535d 3601 (unsigned long long)buf->start,
d397712b
CM
3602 (unsigned long long)transid,
3603 (unsigned long long)root->fs_info->generation);
0b32f4bb 3604 was_dirty = set_extent_buffer_dirty(buf);
e2d84521
MX
3605 if (!was_dirty)
3606 __percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3607 buf->len,
3608 root->fs_info->dirty_metadata_batch);
eb60ceac
CM
3609}
3610
b53d3f5d
LB
3611static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3612 int flush_delayed)
16cdcec7
MX
3613{
3614 /*
3615 * looks as though older kernels can get into trouble with
3616 * this code, they end up stuck in balance_dirty_pages forever
3617 */
e2d84521 3618 int ret;
16cdcec7
MX
3619
3620 if (current->flags & PF_MEMALLOC)
3621 return;
3622
b53d3f5d
LB
3623 if (flush_delayed)
3624 btrfs_balance_delayed_items(root);
16cdcec7 3625
e2d84521
MX
3626 ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3627 BTRFS_DIRTY_METADATA_THRESH);
3628 if (ret > 0) {
d0e1d66b
NJ
3629 balance_dirty_pages_ratelimited(
3630 root->fs_info->btree_inode->i_mapping);
16cdcec7
MX
3631 }
3632 return;
3633}
3634
b53d3f5d 3635void btrfs_btree_balance_dirty(struct btrfs_root *root)
35b7e476 3636{
b53d3f5d
LB
3637 __btrfs_btree_balance_dirty(root, 1);
3638}
585ad2c3 3639
b53d3f5d
LB
3640void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3641{
3642 __btrfs_btree_balance_dirty(root, 0);
35b7e476 3643}
6b80053d 3644
ca7a79ad 3645int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
6b80053d 3646{
727011e0 3647 struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
0b32f4bb 3648 return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
6b80053d 3649}
0da5468f 3650
fcd1f065 3651static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
acce952b 3652 int read_only)
3653{
1104a885
DS
3654 /*
3655 * Placeholder for checks
3656 */
fcd1f065 3657 return 0;
acce952b 3658}
3659
48a3b636 3660static void btrfs_error_commit_super(struct btrfs_root *root)
acce952b 3661{
acce952b 3662 mutex_lock(&root->fs_info->cleaner_mutex);
3663 btrfs_run_delayed_iputs(root);
3664 mutex_unlock(&root->fs_info->cleaner_mutex);
3665
3666 down_write(&root->fs_info->cleanup_work_sem);
3667 up_write(&root->fs_info->cleanup_work_sem);
3668
3669 /* cleanup FS via transaction */
3670 btrfs_cleanup_transaction(root);
acce952b 3671}
3672
569e0f35
JB
3673static void btrfs_destroy_ordered_operations(struct btrfs_transaction *t,
3674 struct btrfs_root *root)
acce952b 3675{
3676 struct btrfs_inode *btrfs_inode;
3677 struct list_head splice;
3678
3679 INIT_LIST_HEAD(&splice);
3680
3681 mutex_lock(&root->fs_info->ordered_operations_mutex);
3682 spin_lock(&root->fs_info->ordered_extent_lock);
3683
569e0f35 3684 list_splice_init(&t->ordered_operations, &splice);
acce952b 3685 while (!list_empty(&splice)) {
3686 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3687 ordered_operations);
3688
3689 list_del_init(&btrfs_inode->ordered_operations);
b216cbfb 3690 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3691
3692 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb
MX
3693
3694 spin_lock(&root->fs_info->ordered_extent_lock);
acce952b 3695 }
3696
3697 spin_unlock(&root->fs_info->ordered_extent_lock);
3698 mutex_unlock(&root->fs_info->ordered_operations_mutex);
acce952b 3699}
3700
143bede5 3701static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
acce952b 3702{
acce952b 3703 struct btrfs_ordered_extent *ordered;
acce952b 3704
3705 spin_lock(&root->fs_info->ordered_extent_lock);
779880ef
JB
3706 /*
3707 * This will just short circuit the ordered completion stuff which will
3708 * make sure the ordered extent gets properly cleaned up.
3709 */
3710 list_for_each_entry(ordered, &root->fs_info->ordered_extents,
3711 root_extent_list)
3712 set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
acce952b 3713 spin_unlock(&root->fs_info->ordered_extent_lock);
acce952b 3714}
3715
79787eaa
JM
3716int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3717 struct btrfs_root *root)
acce952b 3718{
3719 struct rb_node *node;
3720 struct btrfs_delayed_ref_root *delayed_refs;
3721 struct btrfs_delayed_ref_node *ref;
3722 int ret = 0;
3723
3724 delayed_refs = &trans->delayed_refs;
3725
3726 spin_lock(&delayed_refs->lock);
3727 if (delayed_refs->num_entries == 0) {
cfece4db 3728 spin_unlock(&delayed_refs->lock);
acce952b 3729 printk(KERN_INFO "delayed_refs has NO entry\n");
3730 return ret;
3731 }
3732
b939d1ab 3733 while ((node = rb_first(&delayed_refs->root)) != NULL) {
eb12db69 3734 struct btrfs_delayed_ref_head *head = NULL;
acce952b 3735
eb12db69 3736 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
acce952b 3737 atomic_set(&ref->refs, 1);
3738 if (btrfs_delayed_ref_is_head(ref)) {
acce952b 3739
3740 head = btrfs_delayed_node_to_head(ref);
b939d1ab
JB
3741 if (!mutex_trylock(&head->mutex)) {
3742 atomic_inc(&ref->refs);
3743 spin_unlock(&delayed_refs->lock);
3744
3745 /* Need to wait for the delayed ref to run */
3746 mutex_lock(&head->mutex);
3747 mutex_unlock(&head->mutex);
3748 btrfs_put_delayed_ref(ref);
3749
e18fca73 3750 spin_lock(&delayed_refs->lock);
b939d1ab
JB
3751 continue;
3752 }
3753
54067ae9
JB
3754 if (head->must_insert_reserved)
3755 btrfs_pin_extent(root, ref->bytenr,
3756 ref->num_bytes, 1);
78a6184a 3757 btrfs_free_delayed_extent_op(head->extent_op);
acce952b 3758 delayed_refs->num_heads--;
3759 if (list_empty(&head->cluster))
3760 delayed_refs->num_heads_ready--;
3761 list_del_init(&head->cluster);
acce952b 3762 }
eb12db69 3763
b939d1ab
JB
3764 ref->in_tree = 0;
3765 rb_erase(&ref->rb_node, &delayed_refs->root);
3766 delayed_refs->num_entries--;
eb12db69
JB
3767 if (head)
3768 mutex_unlock(&head->mutex);
acce952b 3769 spin_unlock(&delayed_refs->lock);
3770 btrfs_put_delayed_ref(ref);
3771
3772 cond_resched();
3773 spin_lock(&delayed_refs->lock);
3774 }
3775
3776 spin_unlock(&delayed_refs->lock);
3777
3778 return ret;
3779}
3780
aec8030a 3781static void btrfs_evict_pending_snapshots(struct btrfs_transaction *t)
acce952b 3782{
3783 struct btrfs_pending_snapshot *snapshot;
3784 struct list_head splice;
3785
3786 INIT_LIST_HEAD(&splice);
3787
3788 list_splice_init(&t->pending_snapshots, &splice);
3789
3790 while (!list_empty(&splice)) {
3791 snapshot = list_entry(splice.next,
3792 struct btrfs_pending_snapshot,
3793 list);
aec8030a 3794 snapshot->error = -ECANCELED;
acce952b 3795 list_del_init(&snapshot->list);
acce952b 3796 }
acce952b 3797}
3798
143bede5 3799static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
acce952b 3800{
3801 struct btrfs_inode *btrfs_inode;
3802 struct list_head splice;
3803
3804 INIT_LIST_HEAD(&splice);
3805
acce952b 3806 spin_lock(&root->fs_info->delalloc_lock);
5be76758 3807 list_splice_init(&root->fs_info->delalloc_inodes, &splice);
acce952b 3808
3809 while (!list_empty(&splice)) {
3810 btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3811 delalloc_inodes);
3812
3813 list_del_init(&btrfs_inode->delalloc_inodes);
df0af1a5
MX
3814 clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
3815 &btrfs_inode->runtime_flags);
b216cbfb 3816 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3817
3818 btrfs_invalidate_inodes(btrfs_inode->root);
b216cbfb
MX
3819
3820 spin_lock(&root->fs_info->delalloc_lock);
acce952b 3821 }
3822
3823 spin_unlock(&root->fs_info->delalloc_lock);
acce952b 3824}
3825
3826static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3827 struct extent_io_tree *dirty_pages,
3828 int mark)
3829{
3830 int ret;
acce952b 3831 struct extent_buffer *eb;
3832 u64 start = 0;
3833 u64 end;
acce952b 3834
3835 while (1) {
3836 ret = find_first_extent_bit(dirty_pages, start, &start, &end,
e6138876 3837 mark, NULL);
acce952b 3838 if (ret)
3839 break;
3840
3841 clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3842 while (start <= end) {
fd8b2b61
JB
3843 eb = btrfs_find_tree_block(root, start,
3844 root->leafsize);
69a85bd8 3845 start += root->leafsize;
fd8b2b61 3846 if (!eb)
acce952b 3847 continue;
fd8b2b61 3848 wait_on_extent_buffer_writeback(eb);
acce952b 3849
fd8b2b61
JB
3850 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3851 &eb->bflags))
3852 clear_extent_buffer_dirty(eb);
3853 free_extent_buffer_stale(eb);
acce952b 3854 }
3855 }
3856
3857 return ret;
3858}
3859
3860static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3861 struct extent_io_tree *pinned_extents)
3862{
3863 struct extent_io_tree *unpin;
3864 u64 start;
3865 u64 end;
3866 int ret;
ed0eaa14 3867 bool loop = true;
acce952b 3868
3869 unpin = pinned_extents;
ed0eaa14 3870again:
acce952b 3871 while (1) {
3872 ret = find_first_extent_bit(unpin, 0, &start, &end,
e6138876 3873 EXTENT_DIRTY, NULL);
acce952b 3874 if (ret)
3875 break;
3876
3877 /* opt_discard */
5378e607
LD
3878 if (btrfs_test_opt(root, DISCARD))
3879 ret = btrfs_error_discard_extent(root, start,
3880 end + 1 - start,
3881 NULL);
acce952b 3882
3883 clear_extent_dirty(unpin, start, end, GFP_NOFS);
3884 btrfs_error_unpin_extent_range(root, start, end);
3885 cond_resched();
3886 }
3887
ed0eaa14
LB
3888 if (loop) {
3889 if (unpin == &root->fs_info->freed_extents[0])
3890 unpin = &root->fs_info->freed_extents[1];
3891 else
3892 unpin = &root->fs_info->freed_extents[0];
3893 loop = false;
3894 goto again;
3895 }
3896
acce952b 3897 return 0;
3898}
3899
49b25e05
JM
3900void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3901 struct btrfs_root *root)
3902{
3903 btrfs_destroy_delayed_refs(cur_trans, root);
3904 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3905 cur_trans->dirty_pages.dirty_bytes);
3906
3907 /* FIXME: cleanup wait for commit */
3908 cur_trans->in_commit = 1;
3909 cur_trans->blocked = 1;
d7096fc3 3910 wake_up(&root->fs_info->transaction_blocked_wait);
49b25e05 3911
aec8030a
MX
3912 btrfs_evict_pending_snapshots(cur_trans);
3913
49b25e05 3914 cur_trans->blocked = 0;
d7096fc3 3915 wake_up(&root->fs_info->transaction_wait);
49b25e05
JM
3916
3917 cur_trans->commit_done = 1;
d7096fc3 3918 wake_up(&cur_trans->commit_wait);
49b25e05 3919
67cde344
MX
3920 btrfs_destroy_delayed_inodes(root);
3921 btrfs_assert_delayed_root_empty(root);
49b25e05 3922
49b25e05
JM
3923 btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3924 EXTENT_DIRTY);
6e841e32
LB
3925 btrfs_destroy_pinned_extent(root,
3926 root->fs_info->pinned_extents);
49b25e05
JM
3927
3928 /*
3929 memset(cur_trans, 0, sizeof(*cur_trans));
3930 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3931 */
3932}
3933
48a3b636 3934static int btrfs_cleanup_transaction(struct btrfs_root *root)
acce952b 3935{
3936 struct btrfs_transaction *t;
3937 LIST_HEAD(list);
3938
acce952b 3939 mutex_lock(&root->fs_info->transaction_kthread_mutex);
3940
a4abeea4 3941 spin_lock(&root->fs_info->trans_lock);
acce952b 3942 list_splice_init(&root->fs_info->trans_list, &list);
a4abeea4
JB
3943 root->fs_info->trans_no_join = 1;
3944 spin_unlock(&root->fs_info->trans_lock);
3945
acce952b 3946 while (!list_empty(&list)) {
3947 t = list_entry(list.next, struct btrfs_transaction, list);
acce952b 3948
569e0f35 3949 btrfs_destroy_ordered_operations(t, root);
acce952b 3950
3951 btrfs_destroy_ordered_extents(root);
3952
3953 btrfs_destroy_delayed_refs(t, root);
3954
acce952b 3955 /* FIXME: cleanup wait for commit */
3956 t->in_commit = 1;
3957 t->blocked = 1;
66657b31 3958 smp_mb();
acce952b 3959 if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3960 wake_up(&root->fs_info->transaction_blocked_wait);
3961
aec8030a
MX
3962 btrfs_evict_pending_snapshots(t);
3963
acce952b 3964 t->blocked = 0;
66657b31 3965 smp_mb();
acce952b 3966 if (waitqueue_active(&root->fs_info->transaction_wait))
3967 wake_up(&root->fs_info->transaction_wait);
acce952b 3968
acce952b 3969 t->commit_done = 1;
66657b31 3970 smp_mb();
acce952b 3971 if (waitqueue_active(&t->commit_wait))
3972 wake_up(&t->commit_wait);
acce952b 3973
67cde344
MX
3974 btrfs_destroy_delayed_inodes(root);
3975 btrfs_assert_delayed_root_empty(root);
3976
acce952b 3977 btrfs_destroy_delalloc_inodes(root);
3978
a4abeea4 3979 spin_lock(&root->fs_info->trans_lock);
acce952b 3980 root->fs_info->running_transaction = NULL;
a4abeea4 3981 spin_unlock(&root->fs_info->trans_lock);
acce952b 3982
3983 btrfs_destroy_marked_extents(root, &t->dirty_pages,
3984 EXTENT_DIRTY);
3985
3986 btrfs_destroy_pinned_extent(root,
3987 root->fs_info->pinned_extents);
3988
13c5a93e 3989 atomic_set(&t->use_count, 0);
acce952b 3990 list_del_init(&t->list);
3991 memset(t, 0, sizeof(*t));
3992 kmem_cache_free(btrfs_transaction_cachep, t);
3993 }
3994
a4abeea4
JB
3995 spin_lock(&root->fs_info->trans_lock);
3996 root->fs_info->trans_no_join = 0;
3997 spin_unlock(&root->fs_info->trans_lock);
acce952b 3998 mutex_unlock(&root->fs_info->transaction_kthread_mutex);
acce952b 3999
4000 return 0;
4001}
4002
d1310b2e 4003static struct extent_io_ops btree_extent_io_ops = {
ce9adaa5 4004 .readpage_end_io_hook = btree_readpage_end_io_hook,
4bb31e92 4005 .readpage_io_failed_hook = btree_io_failed_hook,
0b86a832 4006 .submit_bio_hook = btree_submit_bio_hook,
239b14b3
CM
4007 /* note we're sharing with inode.c for the merge bio hook */
4008 .merge_bio_hook = btrfs_merge_bio_hook,
0da5468f 4009};